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Preface

People who are not mathematicians are strange. At least, they think differ-
ently. Things that we take for granted are exciting news for them. Problems
which are most interesting for us don't even get registered with them. And,
most annoyingly, they have a habit of asking really difficult questions. For
instance, you are working on a model of colon cancer initiation. The bi-
ologist keeps asking "Can you include this? Can you include that in your
model?" You smile meekly ("It's hardl"), and then, just to finish you off,
he adds: "By the way, things work differently whether it is in the front or
on the back of the colon." You didn't tell him that you modeled the colon
as a sphere...

Something has to change. Many mathematical papers have been written
about cancer, many interesting models created, many challenging questions
asked. However, theoretical work is only valuable to the field of cancer re-
search if models are validated by experiment, predictions are tested, and
models are revised in the light of empirical data. Such an integrated and
multi-disciplinary approach is so far lacking in the context of carcinogen-
esis. Theorists sometimes do modeling for the sake of the mathematical
analysis that they can successfully pursue, which is of zero relevance to the
field of cancer research. This creates general skepticism among the exper-
imentalists. On the other hand, experimental biologists are often unfairly
dismissive of the role of theory. It is not uncommon to hear that all the-
ory is naive and that theoretical biologists cannot possibly grasp the full
complexity of the biological reality, leave alone modeling it accurately.

The broad aim of this book is to provide an introduction to mathemat-
ical modeling in cancer research, and we hope that this will contribute to
bridging the gap between mathematical modelers and experimental oncolo-
gists. The book is written with this goal in mind. On the one hand we will
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viii Computational Biology of Cancer

introduce the mathematical methodology which underlies the theoretical
work. On the other hand, we discuss how the modeling results can help
us generate new biologically relevant insights, interpret data, and design
further experiments.

Which readership do we have in mind? On a sunny day we think that
the book will be read with enthusiasm by both applied mathematicians who
wish to learn about theoretical work in cancer, and by experimental oncol-
ogists who would like to bring new, interdisciplinary dimensions to their
research. On a rainy day, however, we realize that this is easier said than
done. The book is certainly suited very well for applied mathematicians,
because they are already familiar with the backbone of theoretical biology:
computation and mathematics. We hope that after reading this book, they
will sense a longing to learn much more about cancer biology and to pursue
modeling work which is closely linked to biological data. The book should
also be relatively easy to digest by biologists who will understand all the
concepts even if they might not be familiar with some of the math. It
will motivate them to get more familiar with mathematical methods and
to widen their horizons; or, in case of experimentalists, it will allow them
to see that modeling can give rise to interesting concepts which could help
them formulate new questions and experiments. The biggest challenge, of
course, are biologists who close the book when they encounter an equation,
or who have the preconception that all theoretical work is naive and useless.
Having many more sunny than rainy days in California, however, we have
an optimistic outlook. We think that if enough experimental oncologists
become enthusiastic about collaborating with modelers, theoretical work
will spread through the community and bring many interesting results.

Besides the weather, our optimism is also fueled by experiences from
another biomedical discipline: the interaction between pathogens and the
immune system. Before 1990, all of the research which was considered "bio-
logically relevant" by immunologists and virologists was experimental, and
theoretical work was met with great skepticism. Subsequently, a wave of
interesting work emerged which involved collaborations between some ex-
perimental immunologists/virologists and mathematical modelers. In fact,
one of the most influential and widely cited papers in AIDS research, which
appeared in a couple of Nature papers in 1995, came about through collab-
orations between modelers and experimental labs. Today, theory plays a
relatively large role in immunology, to the extent that experimental design
and research directions can be influenced by results obtained from mathe-
matical modeling.
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Why has mathematical modeling become an integral part of immuno-
logical research? The interactions between pathogens and the immune sys-
tem involves many different components which interact with each other.
These interactions are highly complex, non-linear, and can result in counter-
intuitive outcomes. People started to realize that simple verbal or graphical
reasoning is not sufficient to obtain a complete understanding of these in-
teractions. Instead, it became clear that mathematical models are essential.
They provide a solid framework upon which to generate hypotheses, inter-
pret data, and design new experiments.

Cancer research is similar in this respect. It involves multiple interac-
tions between molecules, cells, and their environment. As in immunology,
we expect that mathematical models are essential to complement experi-
mental work in order to obtain a satisfactory understanding of this complex
biological system. We hope that our book will help to push the field of can-
cer research a little bit in the direction in which immunology has developed
over time.

This brings up an important question. Does this book cover all aspects
of cancer research? Certainly not! In fact, this would be impossible, unless
you write many many volumes. Cancer is a very complicated topic and can
be studied on many different levels. We chose to focus on one particular
aspect of cancer: the process of carcinogenesis as somatic evolution of cells.
This is a suitable topic for the introduction of mathematical modeling.
Besides being deeply rooted in cancer biology, it is also partly based on the
principles of evolutionary theory (mutation and selection) - a field where
mathematical modeling has played a significant role since the early 1930s.

We would like to thank a number of people who got us fascinated by
cancer research and who ultimately enabled us to write this book. These
are experimental oncologists who are already very open minded towards
computational approaches, who are willing to discuss theoretical ideas, and
who educate us about the field. Arnie Levine provided the initial stimu-
lus which got us working on cancer. At the Institute for Advanced Study
in Princeton, where this book was partly written, we enjoyed many inter-
esting and important discussions. Rick Boland at Baylor University, Dan
Gottschling, Lee Hartwell and Chris Kemp at the Hutch, Larry Loeb at the
University of Washington, and Vladimir Mironov at Medical University of
South Carolina have provided many useful discussions and insights which
were essential for our modeling work.

We are also grateful to our fellow theoreticians. In our old Princeton
group, Steve Frank (also at UCI), Yoh Iwasa, David Krakauer, Alun Lloyd,
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Martin Nowak, Karen Page, and Joshua Plotkin. In the Hutch, Mark
Clements, Bill Hazelton, Georg Luebeck, and Suresh Moolgavkar. At Rut-
gers, Liming Wang, Eduardo Sontag, and the math physics group. Special
thanks to Victoria Kamsler for artistic advice, Michel Reymond for pro-
viding food for inspiration, and Diane Depiano, Susan Higgins, and Anne
Humes for always being there for us.

We are indebted to the institutions at which we worked while writing the
book: Fred Hutchinson Cancer Research Center, University of California
Irvine, Rutgers University, and Institute for Advanced Study in Prince-
ton. Finally we would like to thank Steve Frank, Francisco Ayala, and the
Biology and Math Departments of the University of California Irvine for
recruiting us recently. They gave us an excellent work environment, and
allowed us to be at a place with many sunny days.

Dominik Wodarz and Natalia L. Komarova,
Princeton & Irvine, 2004
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Chapter 1

Cancer and somatic evolution

1.1 What is cancer?

The development and healthy life of a human being requires the cooper-
ation of more than ten million cells for the good of the organism. This
cooperation is maintained by signals and cellular checkpoints which deter-
mine whether cells divide, die, or differentiate. The phenomenon of cancer
can be defined on various levels. On the most basic level, cancer represents
the collapse of this cooperation. This results in the selfish, uncontrolled
growth of cells within the body which eventually leads to the death of the
organism. The first chapter will discuss several aspects of cancer biology.
This forms the background for the mathematical models which are pre-
sented in this book. Of course, cancer biology is a very complicated topic
and involves many components which are not mentioned here. A compre-
hensive review of cancer biology is given in standard textbooks, such as
[Kinzler and Vogelstein (1998)].

It is commonly thought that cancer is a disease of the DNA. That is,
uncontrolled growth of cells is the result of alterations or mutations in the
genetic material. More precisely, the emergence of cancer may require the
accumulation of multiple mutations which allow cells to break out of the
regulatory networks which ensure cooperation. This concept is referred
to as multi-stage carcinogenesis. Once a cancerous cell has been created
it can undergo a process known as clonal expansion. That is, it gives
rise to descendants by cell division, and the population of cells grows to
higher numbers. During this process, cells can acquire a variety of further
mutations which leads to more advanced progression. A cancer is typically
comprised of a variety of different genotypes and represents a "mosaic" of
cell lineages. The growth of a single, or primary, cancer does not usually
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lead to the death of the organism. Some cancer cells can, however, acquire
the ability to enter the blood supply, travel to a different site, and start
growing in a different organ. This process is referred to as metastasis. It is
usually the metastatic growth which kills the organism.

1.2 Basic cancer genetics

Specific genes ensure that the integrity of cells is maintained and that un-
controlled growth is prevented. When these genes are mutated, cells become
prone to developing a cancerous phenotype (also referred to as transfor-
mation). These genes can be broadly divided into three basic categories
[Vogelstein et al. (2000a)]: oncogenes, tumor suppressor genes, and repair
genes.

(a) Oncogene (gain of function) A

I Q Q \ Single mutational event \ Q Q S

(b) Tumor suppressor gene (loss of function) A

® first j ^v second A « . ^^

mutation ̂  / § 1 \ mutation ^ \ I ? \

Fig. 1.1 The concept of (a) oncogenes and (b) tumor suppressor genes. Oncogenes
result in a gain of function if one of the two copies receives an activating mutation.
Tumor suppressor genes can be inactivated (loss of function) if both copies are mutated.

In healthy cells, oncogenes (Figure 1.1) promote the regulated prolifer-
ation of cells in the presence of the appropriate growth signals. The best
example is the renewal of epithelial tissue such as the skin or the lining of
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the gastrointestinal tract. When oncogenes become mutated they induce
the cell to divide continuously, irrespective of the presence or absence of
growth signals. This can result in unwanted growth and cancer. Examples
of oncogenes include Ras in colon cancer or BCL-2 in lymphoid cancers.
Only a single mutation is required to activate an oncogene because it causes
a "gain of function". Normal cells have two copies of every gene and chro-
mosome; one derived from the mother, the other derived from the father.
If any of the copies becomes activated, the cell attains the new behavior.

Tumor suppressor genes (Figure 1.1), on the other hand, are responsible
for stopping growth in normal cells. Cell growth has to be stopped if a cell
becomes damaged or mutated, or if cell death is required for normal tissue
homeostasis. This is done either by preventing the cell from completing
the cell cycle (cell cycle arrest or senescence), or by inducing a cellular
program which results in cell death (apoptosis). In this way, altered cells
cannot succeed to grow to higher levels and cannot induce pathology. When
tumor suppressor genes become inactivated, the growth of altered cells
is not prevented anymore, and this promotes the development of cancer.
Because this type of gene needs to be inactivated rather than activated (i.e.
a loss of function event), both the paternal and the maternal copies of the
gene have to be mutated. Therefore, two mutational events are required
for the inactivation of tumor suppressor genes. Because many cancers are
initiated via the inactivation of a tumor suppressor gene, it is thought that
cancer initiation often requires two hits. This idea was first formulated by
Alfred Knudson and is called the "two hit hypothesis". Examples of tumor
suppressor genes are the gene which encodes the retinoblastoma protein
and which is inactivated in retinoblastomas, APC which is inactivated in
colon cancer, and p53 which is inactivated in more than 50% of all human
cancers.

Finally, repair genes are responsible for maintaining the integrity of
genomes. When DNA becomes damaged, for example through the expo-
sure to UV radiation or carcinogens contained in food, those genes make
sure that the damage is removed and the cell remains healthy. If repair
genes become mutated, cells can acquire new genetic alterations at a faster
rate, and this promotes the process of carcinogenesis. For example, muta-
tions in oncogenes or tumor suppressor genes are generated faster. Cells
which have mutated repair genes are sometimes referred to as "mutator
phenotypes" or "genetically unstable cells". Examples of repair genes are
mismatch repair genes and nucleotide excision repair genes. Their inactiva-
tion promotes a variety of cancers. Loss of repair function usually requires
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two hits, although a single mutation might result in reduced function in the
context of certain repair genes.

1.3 Multi-stage carcinogenesis and colon cancer

Cancer initiation and progression requires the sequential accumulation of
mutations, most importantly in tumor suppressor genes and in oncogenes.
The case study where this is understood in most detail so far is colorectal
cancer. The colon consists of a collection of so-called crypts.

Apoptosis

O\ £? O\ |? C H 'R P / differentiation
m m M JO 9 \ /D 9A ypj/into committed

A small number of tern cells
replenishes the whole crypt

Fig. 1.2 Schematic diagram of crypts in the colon.

Crypts are involutions of the colonic epithelium (Figure 1.2). Stem cells
are thought to be located at the base of the crypts. These are undifferen-
tiated cells which can keep dividing and which give rise to differentiated
epithelial cells. It is thought that stem cells divide asymmetrically. That
is, stem cell division creates one new stem cell and one cell which embarks
on a journey of differentiation. The differentiating cells travel up the crypt,
perform their function, and die by apoptosis after about a week. Because
the epithelial cells are relatively short lived, stem cell division has to give
rise to new differentiated cells continuously in order to replenish the tis-
sue. For this process to function in a healthy way, it is crucial that the
differentiated cells die by apoptosis. If this cell death fails, we observe an
accumulation of transformed cells around the crypts, and this gives rise to
a mass of cells called a dysplastic crypt (Figure 1.3).

This is the first stage of colon cancer. In molecular terms, the death of
differentiated cells is induced by the APC gene. APC is a tumor suppressor
gene. Data suggest that the majority of colon cancers are initiated through
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'Tpcf K-ras l°ss°f lossofpSS
APC DCC/DPC4/JV18

Healthy Cells — • DysplasticCtypt—• Early Adenoma ""•" Late Adenoma — • Carcinoma

Fig. 1.3 Diagram describing the multi-stage progression of colon cancer. Drawn ac-
cording to [Kinzler and Vogelstein (1998)].

the inactivation of the APC gene (Figure 1.3). A dysplastic crypt is also
sometimes referred to as a polyp. As a subsequent step, many colon cancers
activate the oncogene K-ras which allows the overgrowth of surrounding
cells and an increase in the size of the tumor. This stage is called the early
adenoma stage (Figure 1.3). In more than 70% of the cases, this is followed
by the loss of chromosome 18q which contains several tumor suppressor
genes including DDC, DPC4, and JV18-1/MADR2. This results in the
generation of late adenomas (Figure 1.3). In the further transition from
late adenoma to the carcinoma stage, p53 is typically lost in more than
80% of the cases (Figure 1.3). Further mutations are assumed to occur
which subsequently allow the colon cancer cells to enter the blood system
and metastasize. Note that this sequence of event is not a hard fact, but
rather a caricature. The exact details may vary from case to case, and new
details emerge as more genetic research is performed.

This is a clear example of cells acquiring sequential mutations in a multi-
step process while they proceed down the path of malignancy. This gives
rise to an important question. The multi-step process requires many mu-
tations. The inactivation of each tumor suppressor gene requires two mu-
tations, and the activation of each oncogene requires one mutation. The
physiological mutation rate has been estimated to be 10~7per gene per cell
division. Is this rate high enough to allow cells to proceed through multi-
stage carcinogenesis during the life time of a human? Some investigators
argue that the process of clonal expansion involves a sufficient number of
cell divisions in order to account for the accumulation of all the muta-
tions. A competing argument says that the accumulation of the oncogenic
mutations requires a loss of repair function and the generation of mutator
phenotypes (i.e. genetically unstable cells). Genetic instability is a defining
characteristic of many cancers. It is reviewed in the following section.
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1.4 Genetic instability

Many cancer cells show a large variety of genetic alterations which range
from small scale mutations to large chromosomal aberrations. While this is
an intriguing observation, this does not prove that the cells are genetically
unstable. The alterations could come about through a variety of factors,
such as the exposure to extensive damage at some point in time, or specific
selective conditions. Genetic instability is defined by an increased rate at
which cells acquire genetic abnormalities [Lengauer et al. (1998)]. That is,
cells have a defect in specific repair genes which results in higher variability.
Indeed, studies have shown that many cancer cells are characterized by
an increased rate at which genetic alterations are accumulated and are
truly genetically unstable. Different types of genetic instabilities can be
distinguished. They can be broadly divided into two categories. Small
sequence instabilities and gross chromosomal instabilities (Figure 1.4).

(a) M i S t a k e -CACACACACACA- Shortened

^-^-^-x repeat
'—' " " ^ - ^ *dSil "GTGTGTGTGTGT—

— CACACACACACACA— — CACACACACACACA— ^ r

-GTGTGTGTGTGTGT- -QTGTGT GTGTGT- / \
I | ^ \ ^ A — CACACACACACACA— Normal

G. . T 2-J repeat

/ \ —GTGTGTGTGTGTGT

Mismatch repair JKT

(b)

(HHfl)
Fig. 1.4 Schematic diagram explaining the concept of genetic instability, (a) Small scale
instabilities, such as MSI, involve subtle sequence changes. With MSI, mismatch repair
genes are defect and this leads to copying mistakes in repeat sequences, (b) Chromosomal
instability involves gross chromosomal changes, such as loss of chromosomes.
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Small sequence instabilities involve subtle genetic changes which can
dramatically speed up the process of cancer progression. Defects in mis-
match repair mechanisms give rise to microsatellite instability or MSI. This
involves copying errors in repeat sequences (Figure 1.4). MSI is most com-
mon in colon cancer. It is observed in about 13% of sporadic cases and is
the mechanism of cancer initiation in the hereditary non-polyposis colorec-
tal cancer (HNPCC). Another type of small scale instability comes about
through defects in nucleotide excision repair genes. These are responsible
for the repair of DNA damage caused by exogenous mutagens, most impor-
tantly ultraviolet light. It is thus most important in the development of skin
cancers. A defect in such repair mechanisms has been found in a disease
called xeroderma pigmentosum, which is characterized by the development
of many skin tumors in sun exposed areas.

Instabilities which involve gross chromosomal alterations are called chro-
mosomal instability or CIN (Figure 1.4). Cells which are characterized by
CIN show a variety of chromosomal abnormalities. There can be alterations
in chromosome numbers which involve losses and gains of whole chromo-
somes. This results in aneuploidy. Alternatively, parts of chromosomes may
be lost, or we can observe chromosome translocations, gene amplifications,
and mitotic recombinations. Many cancers show evidence of chromosomal
instability. For example, 87% of sporadic colon cancers show CIN. The
reason why CIN is observed in so many cancers is unclear. CIN can be
advantageous because it helps to inactivate tumor suppressor genes where
both functional copies have to be lost. Assume that one copy of a tumor
suppressor gene becomes inactivated by a point mutation which occurs with
a rate of 10~7 per cell division. The second copy can then be lost much
faster by a CIN event (Figure 1.4). For example, CIN could speed up the
generation of an APC deficient cell in the colon. On the other hand, CIN
is very destructive to the genome. Therefore, even though a cell with an
inactivated tumor suppressor gene can be created with a faster rate, clonal
expansion of this cell can be compromised because of elevated cell death as
a consequence of chromosome loss. The costs and benefits of CIN, as well
as the role of CIN in cancer progression, will be discussed extensively in
this book.

While it seems intuitive that genetic instability can be advantageous
because it leads to the faster accumulation of oncogenic mutations, this is
not the whole story. Genetic instability can be advantageous because of an
entirely different reason. If cells become damaged frequently, they will enter
cell cycle arrest relatively often in order to repair the damage. Therefore, in
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the presence of elevated damage, repair can compromise the growth of cells.
On the other hand, cells which are unstable avoid cell cycle arrest in the
face of damage and keep replicating while accumulating genetic alterations.
This can lead to an overall higher growth rate of unstable compared to
stable cells. The role of DNA damage for the selection of genetic instability
will be discussed later in the book.

1.5 Barriers to cancer progression: importance of the mi-
croenvironment

So far we have discussed the processes of multi-stage carcinogenesis in some
detail. We have thereby concentrated on an approach which is centered
around the genetic events which allow cells to escape from growth control
and to become cancerous. However, experiments have revealed that the in-
teractions between tumor cells with their tissue micro-environment may be
equally important in the process of carcinogenesis [Hsu et al. (2002); Tlsty
(2001); Tlsty and Hein (2001)]. The stroma surrounding the tumors shows
in many cases changes in the patterns of gene expression, in the cellular
composition, and in the extracellular matrix. This allows cancers to grow
and progress. The development of cancer can thus be seen as a conspiracy
between tumor cells and their altered environment which allows uncon-
trolled growth. Under non-pathogenic conditions, the tissue environment
can prevent tumor cells from growing to significant levels.

Interestingly, autopsies have revealed that people who die without ever
developing cancers show microscopic colonies of cancer cells which are re-
ferred to as in situ tumors [Folkman and Kalluri (2004)]. Data suggest that
>30% of women in the age range between 40 and 50 who do not develop
cancer in their life-time are characterized by small colonies of breast can-
cer cells. Only 1% of women in this age range, however, develop clinically
visible breast cancer. Similar patterns have been observed in the context
of thyroid or prostate cancers. The reason for the inability of cancer cells
to grow to higher numbers and give rise to pathology is important to un-
derstand. The defensive role of the tissue microenvironment in which the
cancer tries to grow could be a key factor. For example, cancer cells require
the formation of new blood supply in order to obtain oxygen and nutrients,
and to grow beyond a relatively small size [Folkman (2002)]. The formation
of new blood supply is termed angiogenesis (Figure 1.5).

Our understanding about the role of angiogenesis in the development of
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\ ' >"i% > Pre-angiogenic mass of tumor cells
«j ^ (small tumor)

Chemical •••»-,...
signals x^" £ \ Earh> sta8e angiogenesis where

f * ^ 4 * blood vessels are recruited

(b)
\\ „ \A VV ^ Growing capillaries

( c ) i ' ~ ~ " " \
^ Jj . R. Growing fumor

Fig. 1.5 Diagram explaining the concept of angiogenesis. (a) When a cancerous cell is
created it can expand up to a small size without the need for blood supply. At this stage,
the growth of an avascular tumor stops, (b) When angiogenic cell lines emerge, they
send out chemical signals called promoters. This induces blood vessels to grow towards
the tumor, (c) This process leads to the complete vascularization of the tumor, allowing
it to grow to larger sizes.

cancers has been advanced significantly by a variety of studies from Judah
Folkman's laboratory [Folkman (1971); Folkman (2002)]. Whether new
blood supply can be formed or not appears to be determined by the bal-
ance between angiogenesis inhibitors and angiogenesis promoters. Healthy
tissue produces angiogenesis inhibitors. Examples of inhibitors are throm-
bospondin, tumstatin, canstatin, endostatin, angiostatin, and interferons.
At the time of cancer initiation, the balance between inhibitors and pro-
moters is heavily in favor of inhibition. Data suggest that even cancer cells
themselves initially produce angiogenesis inhibitors which strengthens the
defense of the organism against the spread of aberrant genes. In order to
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grow beyond a small size, angiogenic tumors have to emerge. These are tu-
mor cells which can shift the balance away from inhibition and in favor of
promotion. This can be brought about by the inactivation of angiogenesis
inhibitors, or by mutations which result in the production of angiogenesis
promoters. Examples of promoters are growth factors such as FGF, VEGF,
IL-8, or PDGF. If the balance between inhibitors and promoters has been
shifted sufficiently in favor of promotion, the cancer cells can grow to higher
numbers and progress towards malignancy (Figure 1.5). The mechanisms
by which blood supply is recruited to the tumor, and the ways in which
inhibitors and promoters affect cancer cells are still under investigation.
New blood supply can be built from existing local endothelial cells. On the
other hand, angiogenesis promoters may induce a population of circulating
endothelial progenitor cells to be recruited to the local site where the blood
supply needs to be built. Blood supply can affect cancer cells in two basic
ways. First it can influence the rate of cell death. That is, in the absence of
blood supply cells die more often by apoptosis as a result of hypoxia, and
this is relaxed when sufficient blood supply is available. On the other hand,
lack of blood supply can prevent cancer cells from dividing. In this case
they remain dormant, That is, they do no divide and do not die. These
dynamics will be discussed extensively.

1.6 Evolutionary theory and Darwinian selection

Theodosius Dobzhansky who, according to Stephen J. Gould, was the great-
est evolutionary geneticist of our times, wrote that "nothing in biology
makes sense except in the light of evolution". This also applies to our
understanding of cancer. The process of carcinogenesis includes all the
essential ingredients of evolutionary theory: reproduction, mutation, and
selection (Figure 1.6).

As outlined in detail above, the entire process of cancer initiation and
progression is concerned with the accumulation of mutations which allow
the cells to break out of normal regulatory mechanisms. Such cells will grow
better than healthy cells and are advantageous. In evolutionary terms, they
are said to have a higher fitness. The more oncogenic mutations the cells
acquire, the better they are adapted to growing in their environments, and
the higher their fitness. Cancer cells which grow best can be selected for
and can exclude less fit genotypes. Cancer cells can even adapt their "evolv-
ability": genetically unstable cells may be able to evolve faster and adapt
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Fig. 1.6 Diagram explaining the concept of somatic evolution and cancer progression.
Cancer originates with the generation of a mutant cell. This cell divides and the popu-
lation grows. This is called clonal expansion. Further mutations can subsequently arise
which have a higher fitness. They grow and expand further. Consecutive mutations and
rounds of clonal expansion allow the cancer to grow to ever increasing sizes.

better than stable cells. This can be very important in the face of many se-
lective barriers and changing environments. Barriers can include inhibitory
effects which are exerted by the tissue microenvironment, or an adaptive
immune system which can specifically recognize a variety of tumor proteins
and mount new responses as the tumor evolves. The environment in our
bodies can change over time and render different genotypes advantageous
at different stages. An example is aging which involves the continuous rise
in the rate of DNA damage as a result reactive oxygen species which are
produced as a byproduct of metabolism.

The somatic evolution of cells will be a central component of the math-
ematical models which are discussed in this book. A large part of the
chapters will investigate the selective forces which can account for the emer-
gence of genetic instability in cancer. Is instability selected for because it
allows faster adaptive evolution of cells as a result of the enhanced ability
to acquire oncogenic mutations? Can instability reduce the fitness of cells
because it destroys the integrity of the genome? Can a rise in the level of
DNA damage select for unstable cells because the costs of arrest and senes-
cence are avoided? What are the pathways to cancer? Further, the book
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will examine the evolution of angiogenic cell lines, the relationship between
immunity, somatic evolution and cancer progression, and will conclude with
some implications for treatment strategies.

The central philosophy of the book is twofold: to introduce mathe-
maticians to modeling cancer biology, and to introduce cancer biologists to
computational and mathematical approaches. The book is written in this
spirit, presenting both the analytical approaches and the biological impli-
cations. It is important to note that we do not aim to cover the entire
subject of computational cancer biology. That would be impossible be-
cause the subject is characterized by an enormous complexity and can be
addressed on a variety of levels. Instead, we concentrate on one particular
aspect of cancer biology; that is, we concentrate on studying the process
of carcinogenesis and consider it in the light of somatic evolution. We aim
to introduce readers to the basic mathematical methodology as well as to
some interesting biological insights which have come out of this work.



Chapter 2

Mathematical modeling of
tumorigenesis

Traditionally, scientists from many different backgrounds have been pro-
ducing interesting and unexpected ideas. Their methods come from various
fields, including applied mathematics, statistics, computer science, mate-
rial science, fluid mechanics, population dynamics and evolutionary game
theory.

Broadly speaking, there are three major areas where theory has con-
tributed the most to cancer research:

(i) Modeling in the context of epidemiology and other statis-
tical data. One of the oldest and most successful methodologies
in theoretical cancer research is using the available incident statis-
tics and creating models to explain the observations. This field
was originated by Armitage and Doll in 1954 [Armitage and Doll
(1954)], and then taken to the next level by Moolgavkar and col-
leagues [Moolgavkar and Knudson (1981)].

(ii) Mechanistic modeling of avascular and vascular tumor
growth. An entirely different approach to cancer modeling is to
look at the mechanistic aspects of tumor material and use phys-
ical properties of biological tissues to describe tumor growth, see
[Preziosi (2003)] for review.

(iii) Modeling of cancer initiation and progression as somatic
evolution. In this area of research, methods of population dynam-
ics and evolutionary game theory are applied to study cancer. First
developed by ecologists and evolutionary biologists, these methods
have been used to understand the collective behavior of a popula-
tion of cancer cells, see [Gatenby and Gawlinski (2003)], [Gatenby
and Vincent (2003b)], [Gatenby and Vincent (2003a)].

13
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In this Chapter we review basic mathematical tools necessary to under-
take different types of cancer modeling. These are: ordinary differential
equations, partial differential equations, stochastic processes, cellular au-
tomata and agent based modeling.

2.1 Ordinary differential equations

Mathematical modeling of growth, differentiation and mutations of cells in
tumors is one of the oldest and best developed topics in biomathematics.
It involves modeling of growth, differentiation and mutation of cells in tu-
mors. Let us view cancer as a population of cells, which has some potential
to grow. In the simplest case, we can model cellular growth followed by
saturation with the following logistic ordinary differential equation (ODE):

x = rx(l — x/k), x(0) = 1,

where dot is the time derivative, x = x(t) is the number of cancer cells
at time t, r is the growth rate and k is the carrying capacity, that is, the
maximal size the population of cells can reach, defined by the nutrient
supply, spatial constraints etc. The solution of the above ODE is a familiar
looking "sigmoidal" curve.

Next, let us suppose that the population of cells is heterogeneous, and
all cells compete with each other and with surrounding healthy cells for
nutrients, oxygen and space. Then we can imagine the following system,
equipped with the appropriate number of initial conditions:

Xi = TiXi - (f>Xi, 0 < i < n, Xi(0) = Xi,

where xi is the number of cells of type i, with the corresponding growth
rate, r .̂ We have the total of n types, and we can model the competition
by the term c/> in a variety of ways, e.g. by setting

where N = Yl7=o *̂ ls ^ne total number of cells in the system, which is
assumed to be constant in this model.

As a next step, we can allow for mutations in the system. In other words,
each cell division (happening with rate r» for each type) has a chance to
result in the production of a different type. Let us assume for simplicity
that the type i can mutate into type (i + 1) only, according to the following
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simple diagram:

xo —» xi —> . . . -> xn_i —> xn

Then the equations become,

xo = »"o(l - ^o)xo — 0xo,

Xi = Ui-iJ-j-xXi-i + rj(l - Uj)a;i - <̂ ;r,, 1 < i < n - 1,

in = Tij-iMn.jXn-i + r n x n - <j>xn,

Xj(0) = Xi, 0 < i < n,

where (j> is denned as before, and u, is the probability that a cell of type
(i + 1) is created as a result of a division of a cell of type i. The above
equations are called the quasispecies equations. These were introduced
by Manfred Eigen in 1971 as a way to model the evolutionary dynamics
of single-stranded RNA molecules in in vitro evolution experiments. Since
Eigen's original paper, the quasispecies model has been extended to viruses,
bacteria, and even to simple models of the immune system. Quasispecies
equations are nonlinear, like most differential equations in cancer modeling.
However, there is a simple and elegant way to solve these equations, which
we review in Chapter 7. In a more general case, the mutation network
can be more complicated, allowing mutations from each type to any other
type. This is done by introducing a mutation matrix with entries, Uij,
for mutation rates from type i to type j . Examples of using quasispecies
equations in recent literature are [Sole and Deisboeck (2004)] and [Gatenby
and Vincent (2003b)].

Other ordinary differential equations used to study the dynamics of can-
cerous cells are similar to predator-prey systems in ecology. For instance,
Gatenby and Vincent [Gatenby and Vincent (2003a)] used the following
competition model,

/ , x + axyy\ . ( y + ayxx\

* = H 1 ~—r^J *• v = rv{1-—k—)v>
where x and y describe the populations of cancerous and healthy cells,
respectively. Moore and Li [Moore and Li (2004)] used a model in a similar
spirit to describe the interactions between chronic myelogenous leukemia
(CML) and T cells. They considered a system of 3 ODEs, for naive T cells,
effector T cells and CML cancer cells.

The equations shown above are toy models to illustrate general princi-
ples, rather than actual tools to study real biological phenomena. However,
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by modifying these equations and incorporating particular properties of a
biological system in question, we can describe certain aspects of cancer
dynamics. Like any other method, the method of ODEs has advantages
and drawbacks. Among the advantages is its simplicity. The disadvantages
include the absence of detail. For instance, no spatial interactions can be
described by ODEs, thus imposing the assumption of "mass-action"-type
interactions. Stochastic effects are not included, restricting the applicabil-
ity to large systems with no "extinction" effects.

Finally, because of an empirical nature of this kind of modeling, this
method (like most other empirical methods) presents a problem when trying
to find ways to measure coefficients in the equations. Several methods of
robustness analysis have been developed. The main idea is as follows. If
the number of equations is in the tens, and the number of coefficients is
in the hundreds, one could argue that almost any kind of behavior can be
reproduced if we tune the parameters in the right way. Therefore, it appears
desirable to reduce the number of unknown parameters and also to design
some sort of reliability measure of the system. In the paper by [Moore and
Li (2004)], Latin hypercube sampling on large ranges of the parameters
is employed, which is a method for systems with large uncertainties in
parameters. This involves choosing parameters randomly from a range and
solving the resulting system numerically, trying to identify the parameters
to which the behavior is the most sensitive. In the paper by Evans et
al [Evans et al. (2004)], "structural identifiability analysis" is discussed,
which determines whether model outputs can uniquely determine all of
the unknown parameters. This is related to (but is not the same as) the
confidence with which we view parameter estimation from experimental
data. In general, questions of robustness and reliability are studied in
mathematical control theory.

2.2 Partial differential equations

The next method that we will mention here is partial differential equations
(PDEs). They can be a very useful tool when studying tumor growth and
invasion into surrounding tissue. In many models, tumor tissue is described
as a mechanistic system, for instance, as a fluid (with a production term
proportional to the concentration of nutrients) [Evans et al. (2004)], or as
a mixture of solid (tumor) and liquid (extracellular fluid with nutrients)
phases [Byrne and Preziosi (2003)]. As an example, we quote the system
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used by Pranks et al. [Fauth and Speicher (2001); Franks et al. (2003)].
These authors view an avascular tumor as a coherent mass whose behavior
is similar to that of a viscous fluid. The variables n(x, t), m(x,t) and
p(x, t) describe the concentration of tumor cells, dead cells and surrounding
material, respectively. The nutrient concentration is c(x, t), and the velocity
of cells is denoted by v(x,i). Applying the principle of mass balance to
different kinds of material, we arrive at the following system:

n + V • (nv) = (fcm(c) - kd{c))n, (2.1)

m + V • (mv) = kd(c)n, (2.2)

p + V(pv)=0. (2.3)

Here, we have production terms given by the rate of mitosis, kd{c), and cell
death, fcd(c), which are both given empirical functions of nutrient concen-
tration. The nutrients are governed by a similar mass transport equation,

c + V(cv) = DV2c - >ykm{c)n,

where D is the diffusion coefficient and jkm(c)n represents the rate of
nutrient consumption. In order to fully define the system, we also need
to use the mass conservation law for the cells, modeled as incompressible,
continuous fluid, n + m + p = 1. Finally, a constitutive law for material
deformation must be added to define the relation between concentration
(stress) and velocity. Also, the complete set of boundary conditions must
be imposed to make the system well denned. We skip the details here,
referring the reader to the original papers. Our goal in this chapter is to
give the flavor of the method.

As our next example, we will mention the paper by Owen et al. [Owen
et al. (2004)] which modeled the use of macrophages as vehicles for drug
delivery to hypoxic tumors. This model is based on a growing avascu-
lar tumor spheroid, in which volume is filled by tumor cells, macrophages
and extracellular material, and tumor cell proliferation and death is regu-
lated by nutrient diffusion. It also includes terms representing the induced
death of tumor cells by hypoxic engineered macrophages. Matzavinos et al.
[Matzavinos et al. (2004)] used four nonlinear PDEs for tumor-infiltrating
cytotoxic lymphocytes, tumor cells, complexes and chemokines to describe
the interaction of an early, prevascular tumor with the immune system.

Avascular growth is relevant only when studying very small lesions, or
tumor spheroids grown in vitro. To describe realistically tumorigenesis at
later stages, one needs to look at the vascular stage and consider mecha-
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nisms responsible for angiogenesis. An extension of avascular mechanistic
models which includes angiogenesis can be found for example in the paper
by Breward et al. [Breward et al. (2003)]. There, cells divide and migrate
in response to stress and lack of nutrition. Here we present a different model
developed by Anderson and Chaplain [Anderson and Chaplain (1997)]. It
describes the dynamics of endothelial cell (EC) density, migrating toward a
tumor and forming neovasculature in response to specific chemical signals,
tumor angiogenic factors (TAF). If we denote by n(x,t) the EC density,
then their migration can be described as

n = DV2n - V(x(c)nVc) + g{n, / , c),

where D and x(c) are the diffusion and the chemotactic parameter respec-
tively, c(x, t) is a specific chemical (TAF) responsible for chemotaxis, and
g(n, c) is the proliferation function. In the simplest case, the chemicals can
be assumed to be in a steady-state (that is, ^-independent), or they can
satisfy a PDE:

c = DcV2n + v(c, n),

with v(n, / ) being a specific production/uptake function.
As with any system of nonlinear PDEs, one should be careful about

well-posedness of the problem. The appropriate boundary conditions must
be imposed, depending on the dimensionality and geometry of the problem.
Then, either numerical solutions can be investigated, or a stability analysis
of a simple solution performed. An example of a simple solution could be,
for instance, a spherically symmetrical or planar tumor.

These could be interesting exercises in applied mathematics, but in our
experience, description of most biologically relevant phenomena does not
readily follow from a stability analysis and requires a specific, directed ques-
tion. Mechanistic models are necessarily an idealization of reality, and the
only way to judge how "bad" such a description is comes from formulating
a specific biological question and figuring out what is necessary and what
is secondary with respect to the phenomenon in question.

As an example of an interesting usage of the mechanistic tumor model-
ing by PDEs, where experience of physical sciences is used to study specific
biological phenomena, we will mention the paper on the phenomenon of
vascular collapse [Araujo and McElwain (2004)]. In this study, the distri-
bution of stress is calculated throughout the tumor, as it changes in time as
a result of cell division. The vascular collapse is modeled by identifying the
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region where stresses exceed a critical value. At this point, a collapse oc-
curs and the inner regions of the tumor become cut out of the central blood
system. The growth of tumor obtained in the model resembles experimen-
tally observed patterns, with exponential growth before and retardation
after the collapse. Another paper that we would like to mention addressed
the question of the precise origin of neovascularization [Stoll et al. (2003)].
The traditional view of angiogenesis emphasizes proliferation and migration
of local endothelial cells. However, circulating endothelial progenitor cells
have recently been shown to contribute to tumor angiogenesis. The paper
quantified the relative contributions of endothelial and endothelial progeni-
tor cells to angiogenesis using a mathematical model, with implications for
the rational design of antiangiogenic therapy.

At the next level of complexity, we have integro-differential equations.
They can be used to describe nonlocal effects or inhomogeneity of the pop-
ulation of cells, such as age structure. For an example of integro-differential
equations in tumor modeling, see [Dallon and Sherratt (1998)].

To summarize the method of partial differential equations, applied to
mechanistic modeling of tumor growth, we note that it is significantly more
powerful than the method of ODEs, as it allows us to make a dynamic
description of spatial variations in the system. We have a large, well-
established apparatus of mathematical physics, fluid mechanics and ma-
terial science working for us, as long as we model biological tissue as a
"material". We have the comforting convenience of laws as long as we
are willing to stay within the realm of physics (complex biological systems
cannot boast having any laws whatsoever). The problem is that we do not
exactly know to what extent a tumor behaves as an incompressible fluid (or
homogeneous porous medium, or any other physical idealization), and to
what extent its behavior is governed by those mysterious biological mech-
anisms that we cannot fit into a neat theory. Any researcher using the
framework of mechanistic modeling should be prepared to adapt the model
to allow for more biology.

On a more down-to-earth note, there is one obvious limitation of PDEs
which comes from the very nature of differential equations: they describe
continuous functions. If the cellular structure of an organ is important,
then we need to use a different method, and this is what we consider next.
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2.3 Discrete, cellular automaton models

Cellular automaton models are based on a spatial grid, where the dynamics
is defined by some local rules of interaction among neighboring nodes. The
interaction rules can be deterministic or stochastic (that is, dictated by
some random processes, with probabilities imposed). Each grid point may
represent an individual cell, or a cluster of cells; for simplicity we will refer
to them as "cells". To begin, we present a very simple model of tumor
growth which illustrates the method. We start from a rectangular, two-
dimensional grid. Let us refer to a grid point as Xij, where i and j are
the horizontal and vertical coordinates of the point. Each node, x^, can
be a healthy cell, a cancer cell, or a dead cell. We start from an initial
distribution of tumor cells, healthy cells and dead cells. For each time-step,
we update the grid values according to some local interaction rules. Let
us denote the discrete time variable as n = 1,2,.... Here is an example of
an update rule. At each time step, we update one site, in a fixed order;
Xij(n + 1) is given by the following:

• If x^ is surrounded by a layer of thickness 8 of tumor cells, it dies.
• If x^ is a tumor cell not surrounded by a (Mayer of tumor cells,

it reproduces. This means that the site x^j remains a tumor cell,
and in addition, one of its neighbors (chosen at random) becomes
a tumor cell. As a result, all the non-dead cells on that side of x^
between x^ and the nearest dead cell, are shifted away from x^ by
one position.

• If x^ is a dead cell, it remains a dead cell.
• If x^ is a healthy cell, it remains a healthy cell.

Of course, this is only a toy model. Cellular automata models used to de-
scribe realistic situations are more complicated as they have to grasp many
aspects of tumor biology. For instance, Kansal et al. [Kansal et al. (2000)]
used a very sophisticated three-dimensional cellular automaton model of
brain tumor growth. It included both proliferative and non-proliferative
cells, an isotropic lattice, and an adaptive grid lattice.

Cellular automata have been used to study a variety of questions. Alar-
con et al. [Alarcon et al. (2003)] studied how inhomogeneous environments
can affect tumor growth. They considered a network of normal healthy
blood vessels and used an (engineering in spirit) approach to model the dy-
namics of blood flow through this fixed network. The outcome of this part
of the model was the distribution of oxygen (red blood cells) throughout
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the network. Next, a cellular automaton model was run where, like in our
toy model above, each element of the discrete spatial grid could take one of
three values: "unoccupied", "has a normal cell", or "has a cancerous cell".
The concentration of oxygen was fed into the local interaction rules.

In the paper by Gatenby and Gawlinski [Gatenby and Gawlinski (2003)],
the acid-mediated tumor invasion hypothesis was studied. This hypothesis
states that tumors are invasive because they perturb the environment in
such a way that it is optimal for their proliferation, and toxic to the normal
cells with which they compete for space and substrate. The authors con-
sidered a spatial tumor invasion model, using PDEs and cellular automata.
The model was based on the competition of healthy and tumor cells, with
elements of acid production by tumor cells, acid reabsorption, buffering and
spatial diffusion of acid and cells. The authors propose that the associated
glycolytic phenotype represents a successful adaptation to environmental
selection parameters because it confers the ability for the tumor to invade.

A cellular automaton model of tumor angiogenesis was designed by [An-
derson and Chaplain (1998)]. In their discrete model, the movement rules
between states are based directly on a discretized form of the continuous
model, which was considered in the previous section. The discretization is
performed by using the Euler finite difference approximation to the PDEs.
Then, numerical simulations allow for tracking the dynamics of individual
endothelial cells, as they build blood vessels in response to TAFs. A qual-
itatively novel feature of this model is its ability to describe branching of
new vessels by imposing some simple local rules. In particular, it is as-
sumed that if the density of TAFs is above critical, there is enough space
for branching, and the current sprout is sufficiently "old", then there is a
finite probability for the vessel to branch and form a new sprout. This
behavior cannot be grasped by the continuous, PDE-based models.

Finally, we would like to mention that apart from cellular automaton
type models, there is an emerging area of agent-based modeling applied to
tumor growth. In such models, each cell is modeled as an agent with some
"strategy". In a paper by [Mansury and Deisboeck (2003)], an agent-based
model was applied to investigate migration of tumor cells. It was assumed
that tumor cells can proliferate or migrate, depending on nutrition and
toxicity of their environment, using a local search algorithm. It turned out
that the search precision did not have to be 100% to ensure the maximum
invasion velocity. It had a saturation level, after which it did not pay to
overexpress the genes involved in the search.
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To conclude the section on discrete modeling, we would like to mention
that the cellular automaton approach gives rise to a new class of behaviors
which can hardly be seen in continuous, PDE-based models. It allows to
track individual cells, and reproduce the dynamics of emerging structures
such as tumor vasculature. A drawback of this approach is that it is almost
universally numerical. It is difficult to perform any analysis of such models,
which leaves the researcher without an ability to generalize the behavioral
trends.

2.4 Stochastic modeling

Next we review one of the most important tools in biological modeling,
which is stochastic processes. The need for stochastic modeling arises be-
cause many of the phenomena in biology have characteristics of random
variables. That is, as a process develops, we cannot predict exactly the
state of the system at any given moment of time, but there are certain
trends which can be deduced, and, if repeated, an experiment will lead
to a similar in some sense (but not identical) outcome. In this chapter
we are not aiming at a comprehensive introduction to stochastic processes.
Rather, we will give several examples where various stochastic methods are
used to describe tumorigenesis.

The process where the stochastic nature of events can be seen very
clearly is the accumulation of mutations. This process is central to cancer
progression, and therefore developing tools to describe it is of vital impor-
tance for modeling. In the simplest case, we can envisage cell division as
a binary (or branching) process, where at regular instances of time, each
cell divides into two identical cells with probability 1 — u, and it results in
creating one mutant and one wild type cell with probability u. To complete
the description of this simplified model, we assume that a mutant cell can
only give rise to two mutant daughter cells. Let us start from one wild
type cell and denote the number of mutants at time n as zn. The random
variable zn can take nonnegative integer values; another way to say this is
that the state space is {0} U / . This is a simple branching process, which
is a discrete state space, discrete time process. We could ask the question:
what is the probability distribution of the variable zn? Possible modifi-
cations of this process can come from the existence of several consecutive
mutations, a possibility of having one or both daughter cells mutate as a
result of cell division, allowing for cell death, or from distinguishing among
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different kinds of mutations. As an example of a branching process type
model, we will mention the recent paper by Prank [Prank (2003)] which
addressed the accumulation of somatic mutation during the embryonic (de-
velopmental) stage, where cells divide in a binary fashion, similar to the
branching process. Two recessive mutations to the retinoblastoma locus
are required to initiate tumors. In this paper, a mathematical framework
is developed for somatic mosaicism in which two recessive mutations cause
cancer. The following question is asked: given the observed frequency of
cells with two mutations, what is the conditional frequency distribution of
cells carrying one mutation (thus rendering them susceptible to transfor-
mation by a second mutation)? Luria-Delbruck-type analysis is used to
calculate a conditional distribution of single somatic mutations.

Next, we consider another important process, the birth and death pro-
cess. Suppose that we have a population of cells, whose number changes
from time t to time t + At, where At is a short time interval, according to
the following rules:

• With probability LAt a cell reproduces, creating an identical copy
of itself,

• With probability DAt a cell dies.

All other events have a vanishingly small probability. The number of cells,
X(t), can take positive integer values, and it depends on the continuous
time variable. That is, it can change at any time, and not just at pre-
scribed intervals. Therefore, this is a continuous time, discrete state space
process. One obvious modification to the above rules is to include muta-
tions. Say, instead of LAt, we could have the probability L(l - u)At to
reproduce faithfully, and probability LuAt to create a mutant. Further,
we could consider a chain of mutations, and describe the evolution of the
number of cells of each type. This resembles Moolgavkar's description of
multistage carcinogenesis [Moolgavkar and Knudson (1981)] which is re-
viewed in Chapter 3.

In the birth-death type processes, the population of cells may become
extinct, or it could grow indefinitely. Another type of process that is very
common in tumor modeling corresponds to constant population size. An
example is the Moran process. Whenever a cell reproduces (with the prob-
ability weighted with the cell's fitness), another cell is chosen to die to
keep a constant population size. If we include a possibility of mutations
(or sequences of mutations), which lead to a change of fitness in cells, we
can model an emergence and invasion of malignant cells. Models of this
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kind are relevant for the description of cellular compartments [Komarova
et al. (2003)] or organs of adult organisms. In a series of stochastic models,
Frank and Nowak [Frank and Nowak (2003)] discussed how the architecture
of renewing epithelial tissues could affect the accumulation of mutations.
They showed that a hierarchy of stem cells could reduce the accumulation
of mutations by the mechanism that they term stochastic flushing. They as-
sume that each compartment retains a pool of nearly quiescent proto-stem
cells. The renewal of tissue happens in the usual way by stem cell divisions.
If a stem cell dies, it is replaced from the pool of proto-stem cells. This
process is characterized by the absence of long stem cell lineages, which
protects tissue from accumulating mutations [Michor et al. (2003b)]. The
interesting question of the role of compartment size on the accumulation
of somatic mutations in cancer was addressed by [Michor et al. (2003a)].
They assumed that the total number of cells in the organ is fixed, and
divided the population into compartments of variable size, N. Then they
used a Moran process to calculate the optimum value, N, which minimizes
the rate of accumulation of mutant cells.

Stochastic models of stem cell dynamics have been proposed by many
authors. [Nowak et al. (2003)] employ a linear process of somatic evolu-
tion to mimic the dynamics of tissue renewal. There, cells in a constant
population are thought to be put in a straight line. The first one is the
symmetrically dividing stem cell, which places its offspring next to itself
and moves the other cells by one position. The last cell is taken out of the
system. This process has the property of canceling out selective differences
among cells yet retaining the protective function of apoptosis. It is shown
that this design can slow down the rate of somatic evolution and therefore
delay the onset of cancer. A different constant population model is em-
ployed by [Calabrese et al. (2004); Kim et al. (2004)], where precancerous
mutations in colon stem cell compartments (niches) are studied. Each niche
contains multiple stem cells, and niche stem cells are lost at random with
replacement. It is assumed that each stem cell can either divide asymmet-
rically, or give rise to two stem cells, or to two differentiated cells. This loss
and replacement dynamics eventually leads to the loss of all stem cell lin-
eages except one. The average time to cancer is calculated with this model,
using five successive mutational steps. The results are compared with the
existing age-incidence statistics. We will briefly mention statistical methods
in the next subsection.
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2.5 Statistics and parameter fitting

The idea is the following. A multi-stage model of carcinogenesis is formu-
lated as a stochastic process, which includes a series of mutational events
and clonal expansions. The mutation rates, the average rates of clonal ex-
pansions for each stage, and even the number of stages are variables of the
model. Then, the probability of developing cancer by a certain age is calcu-
lated (usually, by means of numerical simulations), as a function of all the
unknown parameters. The outcome of such calculations, for each set of pa-
rameters, is then compared with the existing data on cancer incidence, and
the set of parameters which gives the best fit is identified. In their excellent
paper, Luebeck and Moolgavkar [Luebeck and Moolgavkar (2002)] use the
data on the incidence of colorectal cancers in the Surveillance, Epidemiol-
ogy, and End Results (SEER) registry. They conclude that the statistics
are most consistent with a model with two rare events followed by a high-
frequency event in the conversion of a normal stem cell into an initiated
cell that expands clonally, which is followed by one more rare event. The
two rare events involved in the initiation are interpreted to represent the
homozygous loss of the APC gene.

Many authors have analyzed age-incidence curves [Frank (2004); Hay-
lock and Muirhead (2004); Krewski et al. (2003)] and death statistics
[Filoche and Schwartz (2004)]. In the latter paper, the statistics of fluctua-
tions in cancer deaths per year lead to an intriguing discovery: there is a big
difference between cancers of young ages and cancers after 40. The authors
suggest that cancers attacking older people behave like "critical systems"
in physics and can be considered as an avalanche of "malfunctions" in the
entire organism.

Another interesting way of looking at cancer statistics (of a different
kind) is due to Mitelman and his colleagues. They study distributions of
chromosome aberrations in various cancers and use statistical tools to ana-
lyze the emerging patterns [Hoglund et al. (2002a); Hoglund et al. (2002b);
Hoglund et al. (2001); Mitelman (2000)]. In one paper [Frigyesi et al.
(2003)], they found that the number of chromosomal imbalances per tumor
follows a power law (with the exponent one). The main idea of a model
explaining this behavior is as follows. The karyotype in unstable cancers
evolves gradually, in such a way that the variability is proportional to the
number of changes that already exist. The authors propose two possible
interpretations of the model. One is that the rate at which changes accu-
mulate, increases as cancer progresses (this is consistent with the notion of
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a "imitator phenotype" due to Loeb [Loeb (2001)]). The other is the evolv-
ing and increasingly permissive tumor environment. Similar theoretical and
computational tools were applied to testicular germ cell tumor karyotypes
[Frigyesi et al. (2004)]. It was shown that two distinct processes are operat-
ing in the karyotypic evolution of these tumors; whole-chromosome changes
originate from a multipolar cell division of a tetraploid cell, whereas imbal-
ances accumulate in a stepwise manner.

2.6 Concluding remarks

In the rest of the book, we will employ many of the methods mentioned
here, and explain models and their solutions in detail. In particular, Chap-
ter 3 talks about birth-death processes; Chapter 5 uses a branching process;
the Moran process is employed in Chapters 3 and 4; Chapter 6 combines
a stochastic Moran process with a deterministic ODE; Chapter 7 studies
quasispecies ODEs; Chapter 8 uses PDEs and pattern formation-type anal-
ysis; and Chapters 9-12 talk about analytical and numerical solutions of
ODEs.



Chapter 3

Cancer initiation: one-hit and two-hit
stochastic models

The question of the origins of cancer is among the most important in our
understanding of the disease. There is no universal answer to this question,
as different cancers are initiated by different mechanisms. There are how-
ever certain patterns that can be recognized. Among the most important
ones is cancer initiation via the inactivation of a tumor suppressor gene.
The concept has evolved during the last 30 years. A defining landmark was
the discovery of the Rb gene.

Retinoblastoma is a rare and deadly cancer of the eye that afflicts chil-
dren. It comes in two versions. One affects newborn infants and is char-
acterized by multiple tumors. The other hits children when they are older
and is usually characterized by only a single tumor. In 1971, Alfred Knud-
son proposed an explanation, which became known as the famous Knud-
son's "two-hit hypothesis" [Knudson (1971)]. According to his theory, in
the early-onset version of retinoblastoma, children inherit a defective gene
from one parent. These children are halfway to getting the disease the
moment they are born. Then, an error in DNA replication in a single eye
cell, causing a defect in the normal gene that was inherited from the other
parent, would send that cell on its way to becoming a tumor. In contrast,
children who develop retinoblastoma later in childhood are probably born
with two good copies of the gene but acquire two hits in both copies of the
gene in a cell. This would take longer, causing the cancer to show up at a
later age.

Knudson proposed the tumor suppressor gene hypothesis of oncogen-
esis after detecting a partial deletion of chromosome 13 in a child with
retinoblastoma. This was a revolutionary concept, that is, cancer was not
caused by the presence of an oncogene, but rather the absence of an "anti-
oncogene." He concluded that the retinoblastoma tumor suppressor gene

27
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would be found at band 13ql4. It wasn't until the late 1980s when scien-
tists eventually cloned the gene Rb which mapped exactly to the location
predicted by Knudson.

Other genes with similar properties were discovered, including p53,
WT1, BRCA1, BRCA2 and APC. The generic definition of a tumor sup-
pressor gene comprises the idea of a loss of function. Only when both alleles
of the gene are inactivated, does the cell acquire a phenotypic change. Many
of tumor suppressor genes are involved in familial cancers. The mechanism
is similar to the one described by Knudson in retinoblastoma. If a defec-
tive allele is present in the germline, the affected individuals will have a
higher chance of developing a cancer as only one remaining allele must be
inactivated to initiate an early stage lesion.

In collaboration with Knudson, Suresh Moolgavkar went on to develop
mathematical models for this hypothesis, which were the first to coa-
lesce clinical-epidemiological observations with putative mutation rates and
molecular genetics [Moolgavkar and Knudson (1981)]. In subsequent publi-
cations, Moolgavkar and colleagues have created a rigorous methodology of
studying multistage carcinogenesis [Moolgavkar (1978); Moolgavkar et al.
(1980); Moolgavkar et al. (1988)]. In this chapter we will review some of
the main ideas of the two-hit models, and develop them further to provide
tools for this book. In particular, we will derive simple expressions for the
probability of generating double-mutants. We consider small, intermediate
and large populations, in the case of disadvantageous, neutral or advanta-
geous intermediate mutants. We start from a one-hit model and then go on
to describe a more involved process with two hits.

3.1 A one-hit model

We will use this section to review several important mathematical tools
describing stochastic population dynamics.

3.1.1 Mutation-selection diagrams and
the formulation of a stochastic process

Let us first assume that there are two types of cells in a population, which
we will call type "A" and type "B". Cells can reproduce, mutate and die.
The probability that a cell of type "A" reproduces faithfully is 1 - u; with
probability u it will mutate to type "B". Cells of type "B" always reproduce
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faithfully. We will assume that the total number of cells is constant and
equal to N. Let the cells of type "A" have reproductive rate 1 and the cells
of type "B" - reproductive rate r.

We will use the following convenient short-hand representation of these
processes:

A(i) u- - B ( r ) (3.1)

Here the reproductive rate of each type is given in brackets and the mutation
rate is marked above the arrow. We will refer to such diagrams as mutation-
selection networks.

The one-hit model can be relevant for the description of an oncogene
activation, or cancer initiation in patients with familial disorders, where the
first allele is mutated in the germ line, and the inactivation of the second
allele leads to a fitness advantage of the cell. In these cases, we can assume
r > 1. In the more general case, we can view the one-hit model as the
process of any one genetic alteration, resulting in a advantageous (r > 1),
disadvantageous (r < 1) or a neutral (r = 1) mutant.
The Moran process. One can envisage the following birth-death process
(called the Moran process). At each time step, one cell reproduces, and one
cell dies. We set the length of each time step to be I/AT, so that during a
unit time interval, N cells are chosen for reproduction and A'' cells die. We
assume that all cells have an equal chance to die (this is equal to 1/N). On
the other hand, reproduction happens differentially depending on the type,
and the relative probability of being chosen for reproduction is given by 1
and r for the cells of types "A" and "B" respectively. Obviously, in this
setting the total number of cells is preserved.

Let us denote the number of cells of type "A" as a, and the number of
cells of type "B" as b, so that a + b = N. The probability that a cell of
type "A" reproduces is proportional to its frequency and the reproductive
rate, and is given by a/(a + rb). Similarly, the probability that a cell of
type "B" reproduces is rb/(a + rb). Thus the probability that the new cell
is of type "A" or type "B" is given respectively by

a + rb a + rb a + rb

Cells of both types have a probability to die proportional to their abun-
dance, i.e. the probability that a cell of type "A" (or "B") dies is given
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respectively by

P a P b

We will refer to an event consisting of one replication and one cell death by
an elementary event.

The resulting population dynamics is a Markov process with states
b = 0 ,1 , . . . , N, and time steps of length 1/JV. The probability that an
elementary event results in an increase of the number of cells of type "B",
is equal to P+gP-A, and the probability that the number of cells of type
"B" decreases is equal to P-SP+A- If Pij is the probability to go to state
b = j from state b = i, then the transition matrix is given by

( u(N-i)+ri N-i „•_,•_, i

(l~u){N-i) j , - _ , - _ 1
Pij = { ^ JV> J *> (3.2)

1 - Pi,i+\ - Pi,i-i j = i,
0 otherwise,

where 0 < i,j < N, and we introduced the notation

Mi = N - i + ir.

The corresponding Markov process is a biased random walk with one ab-
sorbing state, b — N. Let us set the initial condition to be b = 0 (all
cells are of type "A") and study the dynamics of absorption into the state
b = N.
Notation for the time-variable. In this chapter, we will adopt the upper
case variable, T, for measuring the time in terms of elementary events. The
lower-case notation is reserved for time measured in terms of generations.
For constant population processes, we have the simple relation,

t = T/N.

3.1.2 Analysis of a one-hit process

Diffusion approximation. Let us denote the probability to be in state
a = i at time T as <fii(T). Using the transition matrix for two types, (3.2),
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we can write down the Kolmogorov forward equation for ip:

d^ (, ^\n ii-l)[N-(i-l)] LJ(N-i)]

w=(i -u) h-1 —jf-, <"—$—]
[r{N -(i + 1)) + (i + l)u]{i + 1) [r(N -i)+ iu)(N - i)

+ m i A ^ Vi M •
It is convenient to introduce the variable r] = i/N. Taking the continuous
limit and expanding into the Taylor series up to the second order, we obtain
the following partial differential equation for <p(i],T):

£->«"^&<™ <">
where

M ; _ * 7 ( 1 - r ) ( 1 - ' 7 ) - " y_ ly[(l-ri)(l + r)-uO.-2ri)]
r/(r — 1) — r ' 2 rj(r — 1) — r

When r = 1 + s/N with s <C N, we have the following equation:

N%=s^l-r,)V) + ^{r,{l-r,)V).

This equation is studied in [Kimura (1994)]. In the case s < l the principal
term in the expression for ip(r),T) is proportional to e~*i°T, where

Mo = ̂ ( l + 0((*)2)).

This sets the typical time-scale of the process.
We can also study the case 1 <C \s\ <S N. In that limit, for s > 0, the

region of interest is r) <C 1 (remember that r] = 0 corresponds to all the "B"
states). Thus the equation simplifies to

This equation could be solved in terms of Laguerre polynomials, in general:
oo

<p(ri, T) = e"8" Y, cnLl{S71)e~:i^.
n=0

The Laguerre polynomials, L"(x), satisfy the differential equation
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Note that the leading transient gives fio = jj- = |1 — r\ in this limit. One
could similarly treat the case of s < 0, \s\ <C 1. In general, /J,0 = jff(s)
where f(s) = 1 + O(s2) for small s, but f(s) » \s\ for large s.

Absorption time. The method presented above provides a lot of informa-
tion about the process. However, we can address some interesting questions
without such a detailed description. For example, if we are only interested
in the time it takes for a mutant of type "B" to appear and invade the
population, we can do this directly, by looking at the absorption time for
the Markov process. If we denote the number of elementary events until
absorption starting from state i as Tj, we have

N-l

Ti = N + Y, PimTm, 0<i<N-l. (3.4)
771=0

The absorption time is then given by To. Solving system (3.4) directly is
cumbersome, so we will use some approximations.

There are two processes that go on in the system: mutation and se-
lection. If the characteristic time scales of the two processes are vastly
different, our task of finding the absorption time simplifies greatly. Let us
assume that u is very small, so that once a mutant of type "B" is produced,
it typically has time to get fixated or die out before a new mutation occurs.
In other words, once a mutant is produced, it is safe to assume that dur-
ing its life-time no other mutations occur. In this case of rare mutations,
the inverse time to absorption is roughly u times the probability to get
absorbed in the state b = N from the state b = 1 assuming u = 0.

For u = 0, the system has two absorbing states, b — 0 and b = N. Let
us denote the probability to get absorbed in b — N starting from the state
b = i as TTJ. Then we have approximately

— = Nuwu (3.5)
tabs

where the quantity TTI is given by the system:

J V - l

7T; = PiN + ^2 Pim^m', (3.6)
7 7 1 = 1

note that we set u = 0 in the expression for P. System (3.6) can be
rewritten as

-7Tj_i + (r + 1)TTJ - riri+i = 0 , 1 < i < N - 1,
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where we canceled the common multiplier in terms of the matrix / — P in
the same row. The boundary conditions are

(r + 1)TTI — r-7r2 = 0,

-TTjV-2 + (r + l)7TjV-l = r-

We can look for a solution in the form TTJ = a\ The quadratic equation for
a gives the roots a = 1/r and a = l. Substituting ni = Ar~l + B into the
boundary conditions we obtain the solution,

^ ^ ^ . ( " ,

Let us reserve the notation p for the quantity TTI:

We have from (3.5):

- ^ - = Nup. (3.9)
tabs

The same result is obtained if we solve system (3.4) explicitly and then take
the first term in the Taylor expansion of To in u.

In order for approximation (3.5) to be valid, we need to make sure that
the time-scale related to mutation ((iVu)"1) is much longer than the time-
scale of the fixation/extinction processes. Only the fraction p of all mutants
will successfully reach fixation, whereas the rest will be quickly driven to
extinction. In order for each mutant lineage to be treated independently,
we need to require that the time it takes to produce a successful mutant,
(pNu)~l, is much larger than the typical time-scale of fixation, /xjj"1. The
value /IQ1 is calculated above. We have the general expression,

Mo
pN

In the case of neutral mutations, p = 1/N, p,0 = l/N and we arrive at the
intuitive condition,

u « i , i f | l - r | « ^ . (3.10)

(3.8)
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In the case where the mutation is positively or negatively selected, we have

u < ( r J V - 1 7 V ) - 1 , i f r < l , -^ «C |1 - r\ < 1, (3.11)

u<^r/N, i f r > l , -^ « |1 - r\ < 1. (3.12)

The approximation of "almost absorbing" states. We will call a
state of the system homogeneous, or pure, if all the N cells are of the same
type. In the two-species model, these are the states 6 = 0 and 6 = N.
States containing more than one type of cells (1 < b < N) will be referred
to as heterogeneous, or mixed states.

Since the mutation rate is very low relative to the absorption processes
in the system (conditions (3.10-3.12)), the probability of finding the system
in a heterogeneous state is very low. More precisely, the probability of
finding the state with b cells of species "B" is of the order u for 1 < b < N.
The system spends most of the time in the states 6 = 0 and b = N. This
allows us to make a further approximation of "almost absorbing" states.

Let us use the capital letters A and B for the probability to find the
system in the state 6 = 0 and b = N respectively. Strictly speaking, the
state b = 0 is not absorbing, but it is long-lived. We have approximately,
A + B = 1. Let us define the following "coarse-grained", continuous time
stochastic process: the system jumps between two states, A = 0 and . 4 = 1 ,
with the following probabilities:

P(A = 0,t + At\A = 1,i) = upAt, P{A = 0,t + At\A = 0,t) = 1,

P(A = l,t + At\A = l,t) = 1 - upAt, P(A = l,t + At\A = 0,t) = 0.

The Kolmogorov forward equations for this simple system can be written
down, which describe the dynamics of the two-species model, (3.1):

A = -uNpA A(0) = 1, (3.13)

B = uNpA, S(0) = 0, (3.14)

where A is the probability to find the entire system in state "A", B is the
probability to find the entire system in state "B" and p is given by equation
(3.7). Equations (3.13-3.14) lead to the solution A(t) = exp(-uNpt) and
B = 1 -exp(-uNpt).

A short-hand notation for coarse-grained differential equations (3.13-
3.14) is as follows:

A ^ £ »B
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We will use this notation later to describe the Kolmogorov forward equation
of more complex mutation-selection networks.

3.2 A two-hit model

Now we will consider a two-hit model. In this section we will restrict
ourselves to the Moran process (a constant population process). Later on,
we will also discuss models with a changing population size.

3.2.1 Process description

We suppose that there are three types of cells: type "A", type "B" and
type "C", and the mutation-selection network that governs the dynamics
is as follows:

A(i) * -B ( r ) ^ *C( r i ) (3.15)

The reproductive rates are respectively 1, r and r^. As before, the repro-
ductive rates must be interpreted as relative probabilities to be chosen for
reproduction, rather than parameters defining the time-scale. We assume
that type "A" can mutate into type "B" with probability u, and type "B"
can mutate to type "C" with probability u\. There are no other mutation
processes in the system.

This model describes several biologically relevant situations. For in-
stance, it may be directly applied for the two-hit hypothesis, that is, the
process of the inactivation of a tumor suppressor gene. In the simplest case,
the inactivation of the first allele of a tumor suppressor gene (TSP) does
not lead to a phenotypic change, which corresponds to the value r = 1.
This rigid definition can be relaxed to allow for certain gene dosage effects.
For instance, the loss of one copy can lead to a certain change in the phe-
notype, and the loss of both copies will increase this effect. In this case,
we could have 1 < r < n. Finally, the case r < 1, r\ > 1 means that
the intermediate cell has a disadvantage compared to wild type cells. For
example, this may correspond to the situation where the inactivation of
the first allele is achieved by a large scale genomic alteration, such as a
loss-of-heterozygocity event where many genes have been lost. This would
lead to the intermediate product having a disadvantage compared to the
wild type cells. Losing the remaining allele of the tumor suppressor gene
will give the cell a growth advantage which may override the fitness loss of
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the previous event, resulting in r\ > 1.
In general, the two-hit model described above refers to any two con-

secutive mutations, such that the first one may be positively or negatively
selected (or neutral), and the second one confers a selective advantage to
the cell.

Let us specify the states of the system by the variables a, b and c, which
correspond to the number of cells of species "A", "B" and "C", respectively.
They satisfy the constraint a + b + c = N. We can characterize a state as a
vector (b, c). In this notation, the state we start with is (0,0), which is all
"A". The final state, which is the state of interest, is (0, N), or all "C". The
question we will study is again, the time of absorption in the state c = N.

We are interested in the case where the type "C" has a large selective
advantage, i.e. r\ ^> (l ,r), so that once there is one cell of type "C",
this type will invade instantaneously with probability one. Under this as-
sumption we can use a trick which allows us to view the dynamics as a
one-dimensional process. Namely, let us consider the following reduced
Markov process with the independent stochastic variable b: the states b = i
with 0 < i < N correspond to a = N — i, b = i, c = 0, and the state
b = N + 1 contains all states with c > 1. The state b = N + 1 is absorbing,
because we assume that once a mutant of type "C" appears, then cells "C"
invade, so the system cannot go back to a state with c = 0. The transition
probabilities are given by

( u(N-i) + (l-ui)ri N-i • _ • , -,
M N ' J - 2 - I - J - ,

(l-u)(N-i) j 7 - , - - 1

^ = f , j = N + l, (3.16)

1 - Piti+i - Piti-i - Pi,N+i, j = i,

0, otherwise,

for 0 < i < N, PN+hN+1 = 1 and PN+i,j = 0 for all j =£ N + 1. In
some special cases, the absorption time can be found from equation (3.4),
however, a direct solution is not possible in the general case, and we will
use some approximations.

3.2.2 Two ways to acquire the second hit

Let us start from the all "A" state. If we are in the regime of homogeneous
states, conditions (3.10-3.12), we can consider the lineages of each mutant
of type "B" separately. Once a mutant of type "B" is created, it can either
go extinct, or get fixated. A mutant of type "C" can be created before or
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after type "B" reaches fixation. This gives rise to two possible scenarios
[Komarova et al. (2003)].

We will reserve the name genuine two-step process for a sequence of
steps where starting from (0,0), after some time the system finds itself in
the state (AT, 0) and then gets absorbed in the state (0, N). In other words,
starting from the all "A" state, the system gets to the state where the entire
population consists of cells of type "B" and finally reaches fixation in the
all "C" state.

We will use the term tunneling for such processes where the system
goes from (0,0) to (0, AT) without ever visiting state (AT, 0). This means
that from the all "A" state the system gets absorbed in the all "C" state,
skipping the intermediate fixation of type "B".

It turns out that the computation of the waiting time for a mutant of
type "C" to appear will be different in the two regimes. We start from
looking at the tunneling regime and then talk about a genuine two-step
process.

3.2.3 The regime of tunneling

The hazard function. We would like to calculate the probability, P{t),
that by the time t, at least one cell of type "C" has been produced, starting
from all cells in the state "A" at time t = 0. This can be calculated by
using the so-called hazard function, h(i), which is denned as the probability
to create a mutant of type "C" in the next interval At, given that it has
not been produced so far. We have

/ ft \
P{t) = 1 - exp ( - / h(t')dt' .

V Jo )

Let ipjjj$) be the probability that at time t, we have b = j and c = k.
It is convenient to introduce the probability generating function,

tf(l/,z;*) = J>ii fc(%>zfc. (3-17)

The hazard function can be expressed in terms of \Ef as follows:

<E(l,O;t)
(3.18)
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A trivial calculation shows that the probability P(t) can be expressed in
terms of the function \P as follows:

P(*) = l - * ( l , 0 ; t ) .

The meaning of function "J>(1,0; t) is the probability that by time t, no cells
of type "C" have been created.

Doubly stochastic process in a constant population. Let us calculate
the function Vl/(y, z; t). The initial condition of this problem is that all cells
are normal (type "A"). In what follows we will assume that the time of
interest is sufficiently short so that most cells remain type "A". In the
Moran process, this means that a « N, and b,c -C N. This assumption
simplifies the problem. Following Moolgavkar, we will consider a filtered (or
doubly-stochastic) Poisson process, where cells of type "B" are produced by
mutations at the rate Nu (if we measure the time in terms of generations).
Each cell of type "B" can produce a lineage (a clone). These lineages are
independent of each other, so that the numbers of offspring of each "initial"
cell are independent identically distributed random variables. Note that the
assumption of the independence of the lineages breaks down as soon as a
mutant of type "B" gets fixated. This happens with the probability p, see
equation (3.8).

Assuming that fixation does not take place (the tunneling regime), we
can write down the probability distribution, (̂ fc, which is the probability to
have j cells of type "B" and k cells of type "C" starting from one cell of type
"B" and no further "A"—>"B" mutations. The corresponding probability
generating function is given by

$(y,z;t) = J2QAt)yJzk.

According to Parzen [Parzen (1962)], we have

*(y, z; t) = exp -uN f (1 - $(y, z; t')) dA . (3.19)

The function R(t) = 1 — $(y,z;t), which we call the tunneling rate, can
be calculated directly. We start by writing down the Kolmogorov forward
equation for Q^'

Cj,k = 0-i,fc(j - l)r(l - ui) + Cj+i,fc(i + 1) + Cj,k-ijrUl - Cj,k(r + 1).
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Here we use matrix (3.16) with u = 0, measure time in terms of generations
and assume that a « N. Rewriting this for $(?/, z; t) we obtain

Mv, z; t) = (y2r(l - Ul) + yzru, - (r + l)y + l) ^ M .

We want to find $(1,0; t). Setting z = 0, we can write the equation for
characteristics, which is a Riccati equation,

y = y2r(l - m) - (r + l)y + 1.

Following the standard method, we change the variables, y = — 2 (1-M ) f >
and obtain a second order linear equation for z(i). Using the initial condi-
tion $(y, 0; 0) = y, we can write down the solution:

where A = — ^ j ^ ' ^ j , and 6i > 62 are the roots of the quadratic equation,

b2 + {r + l)b + r(l-Ul) = 0. (3.21)

Behavior of the tunneling rate. There are three important limits:

(i) Disadvantageous intermediate step, r < 1, |1 — r\ S> ̂ /ui- Then
h = -r+f^r,b2 = -l-f^.

(ii) Neutral intermediate step, |1 — r\ -€i A/UT. Then b\ = — 1 + ^/ui,

b2 = - 1 - ^/u\-
(iii) Advantageous intermediate step, r > 1, |1 — r\ 3> 2^/MJ. Then

6i = - l + ^ , 6 a = - r - ^ .

Let us plot the tunneling rate, i?(i) = 1 - $(1,0;i), equation (3.20),
as a function of time, see Figure 3.1. It starts at zero at t = 0, grows
monotonically and reaches a saturation. We can identify three distinct
regimes in the behavior of the function $(1,0; t). For very short times,
where

iaax{^/u^, |1 - r\}t <C 1,

we have the linear regime, where the function R{t) grows linearly with
time; we have

R(t) = ruit.

(3.20)
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Fig. 3.1 The tunneling rate, R(t) = 1-*(1,0; t), equation (3.20), vs time, is represented
by thick lines. There are three cases, (a) the intermediate mutant is disadvantageous, (b)
it is neutral, and (c) it is advantageous. The linear regime and the regime of saturation
are marked. Note that in (c), we have an intermediate, exponential growth regime. The
parameter values are as follows: (a) u = 10~7, r = 0.99, (b) u = 10~7, r = 0.999999,
(c) u = 10"6, r = 1.01.

Next, during the times where l/(r - 1) < t < | logW!|/(r - 1), we have the
intermediate regime where the function R(t) grows faster than linear. If
we assume that the intermediate mutant is advantageous, such that \r—1| 3>
ui, then the expression for R(t) can be simplified to give

= ttl(^-»-i)
r — 1

As time increases, the function <E>(l,0;i) quickly reaches saturation, that
is, a steady-state, $(1,0; i) = -b1/[r(l - ui)]. In the case where the inter-
mediate step is disadvantageous, r < 1, |1 — r\ 2> y/ui, the saturated value
is
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where R is the "tunneling rate". In the case where the intermediate step is
neutral, |1 - r\ C i/ul, the saturated value is

J R=l -$ ( l ,O ; t ) = VuT,

In the case where the intermediate step is advantageous, r > 1, |1 — r\ -C
2^/rui, the saturated value is

R=l- $(1,0;t) = — + -j^—.
r r(r - 1)

Probability of double mutations for disadvantageous, neutral and
advantageous intermediate mutants. Now we can use the detailed
information about the behavior of the function $(1,0; t) to evaluate the
integral in (3.19) in different limiting cases. Let us first examine the case
where the intermediate mutant is disadvantageous. Roughly speaking,
the behavior of the function 1 — $(1,0; t) changes from linear to constant
at t — tc, where tc = 1/|1 - r\. At this value of time, the integral / o c( l —
$(1,0; t')) dt ~ 1. In order to estimate the expression in (3.19), we need to
know which of the regimes of growth makes the largest contribution. This
is the same as to determine whether the exponent in (3.19) is negligible at
the critical time, t = tc. It is easy to see that if uN -c 1, then there is a
large contribution from the regime of saturation. On the other hand, for
uN >̂ 1, it is only the linear regime that contributes. Therefore we have
the following answer:

(l-exp (-^irA , uN <C 1,
Pit) = I / \

I 1 - exp (-Nvft-^ , uN » 1.

Next, we consider the case of a neutral intermediate mutant. The
point of regime change is tc = 1/y/ui- Again, if uN <C 1, then there is a
large contribution from the regime of saturation. On the other hand, for
uN » 1, it is only the linear regime that contributes, and we have the
result:

J 1 - exp{-Nuy/ult), uN < 1,

P ( t ) = { 1 - exp (-Z2f£) , uN » 1.

Finally, we consider the case of advantageous mutants. There are
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three regimes. The two critical times where the regimes change are

1 _ [logMil
r l — 7> &2 — r~-

r — 1 r — 1
The value of the function U(t) = /0*(l - $(1, 0; £')) dt can be estimated at
these points by using the expression for the intermediate regime; we have

m ( e - 2 ) 1 + u i log MI
ft(*i)= r - 1 «i. ^(*i) = —[ L

Therefore, we have three regimes depending on the value of N: in the case
where TV <C 1/u, the saturated regime contributes the most, for 1/u <C
N <C l/(uui), we have the contribution from the intermediate regime, and
for N 3> l/(uui), we have the contribution from the linear regime only. In
summary,

{ 1 - exp (-Nu^t) , N < 1/u,
1 - exp (~NuuiI(t)), 1/u < Â  < l/(uui), (3.22)

l - e a y p * * " 1 ' ' ) , JV > l/(u«i),
with /(t) = p̂ Y ( e r _ 1 ~ 1 — t j for the intermediate regime.

Applicability of the method. The method assumes independence of
the lineages of the intermediate mutant. Thus for the method to work, the
probability of fixation of intermediate mutants must be small compared to
the probability of "tunneling". Therefore, the applicability is defined by
the inequality,

p(r) < lim R,
t—»oo

where the right hand side is the saturated value of 1 — $(1,0; i). This
condition can be written as

N > Ntun, (3.23)

where for disadvantageous intermediate mutants, we have:

log M l + 2 log ^

Ntun = bgT • ( 3 - 2 4 )

For neutral intermediate mutants, we have

Ntun = - j L . (3.25)
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For advantageous mutants, we have

Ntun = n ^ ~ - (3-26)

Summary: tunneling rates. Having a high mutation rate, ui will in-
crease the probability of tunneling. Also, in the case of a large population
size, N, the fixation of type "B" becomes less probable thus making tunnel-
ing a more likely scenario. Finally, if type "B" is greatly disadvantageous,
we also expect the system to tunnel from "A" to "B".

It is interesting that tunneling can be interpreted as making a two-hit
process behaves effectively as a one-step process. Let us concentrate on the
case where

Ntun <N < 1/u.

In the general case, we have the following diagram:

A ^ ^ 2 *C.

This corresponds to the differential equations,

A = -RA^CA A(0) = 1, (3.27)

C = RA-*CA, C(0) = 0. (3.28)

This is similar to the one-hit model, which we considered in the previous
sections, see equations (3.13-3.14). The tunneling rate, RA^C, is differ-
ent depending on whether the intermediate mutant, "B", is positively or
negatively selected. We have three cases:

• Type "B" negatively selected. If r < 1 and jl — r\ S> y/ui,
then we have tunneling from "A" to "C" with the rate

Nurui
RA-*C = -r~Z—• {S.29)

• Type "B" neutral. If |1 — r\ <IC ->/ui, then we have tunneling
from "A" to "C" with the rate

RA^c = Nuy/u[. (3.30)
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• Type "B" positively selected. If r > 1 and |1 — r\ -C y/u\, then
we have tunneling from "A" to "C" with the rate

RA^c = NuT-^. (3.31)
r

3.2.4 Genuine two-step processes

If the number of cells in the population, N, is sufficiently small, then the
assumption of the previous section (3.23) breaks down, and tunneling does
not happen. In this case, the dynamics can be represented by the diagram

A ^4-e ^B ^ ± s - C

with

RA^B = Nup, RB^C = Nui.

Here we assumed that }~],1, « 1. The corresponding differential equations
are

A = -NupA, A(0) = 1, (3.32)

B = NupA - Nu±B, B(0) = 0, (3.33)

C = NUlB. (3.34)

3.2.5 Summary of the two-hit model with a constant popu-
lation

To put all the results together, we will describe the dynamics of the acquisi-
tion of a double mutant, as a function of time. Depending on the population
size, the behavior is quite different. For small populations, where

N < Ntun,

we have
. p-Nupt _ 1mp-Nult

P{t) = i _ ™ ^ f .
«i — up

This comes from solving equations (3.32-3.34) and setting P(t) = C(i). The
function p depends on the fitness of the intermediate mutant, p — ^SU.,!N •
The value Ntun is also denned by r, see formulas (3.24), (3.25) and (3.26).

For intermediate values on N, such that

Ntun <N < 1/U,
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we have the following behavior:

P(t) = 1 - e-RA~c\

which comes from the solution of equations (3.27-3.28). The rate of tun-
neling, RA^C again depends on the fitness of the intermediate mutant, see
formulas (3.29), (3.30) and (3.31).

Finally, for very large population sizes, such that

iV > 1/u,

we have

»«ui rt2

P(t) = 1 - e =—.

For advantageous mutants we have another intermediate regime, which
comes for 1/u < N < \/{uu{). This is given in equation (3.22).

3.3 Modeling non-constant populations

3.3.1 Description of the model

Consider the process described by the following mutation-selection network:

A( i ) 2 " B(L) Hi . c

D D (3.35)

out out

Here the reproductive rates of types "A" and "B" are the same and equal
to L, and the death rates are D. Type "A" can mutate into type "B"
with probability u, and type "B" can mutate to type "C" with probability
u\. There are no other mutation processes in the system. We assume that
u C ui, and that the dynamics follow a Poisson process, where in time
interval At, the following events can occur:

• With probability 1/(1 —u) At a cell of type "A" reproduces, creating
an identical copy of itself,

• With probability Lu a cell of type "A" reproduces with a mutation,
creating a cell of type "B",

• With probability L(l—ui)At a cell of type "B" reproduces, creating
an identical copy of itself,
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• With probability Lu\ a cell of type "B" reproduces with a muta-
tion, creating a cell of type "C",

• With probability DAt a cell of type "A" dies,
• With probability DAt a cell of type "B" dies.

We start with one cell of type "A", and follow the process until the first
cell of type "C" has been created. As before, we would like to calculate the
probability, P(t), that one cell of type "C" has been created as a function
of time. Before, we used the approximation of a doubly-stochastic process,
see equation (3.19). A similar approach can be used to describe expand-
ing populations, as long as we can assume that the expansion process is
nearly deterministic. On the other hand, if we want to take account of
the stochasticity in the colony growth, we need to perform a more general
calculation, which is described below. An example of a system where such
a calculation is necessary is a colony which grows from very low numbers,
such that at the beginning, stochastic effects define the growth (or death)
of the cell population.

Let us consider the probability £i,j,fc(*) that at time t, we have a = i,
b = j and c = k. We have the Kolmogorov forward equation,

ii,j,k = &-i,j,kL(i - 1)(1 - u) + £i+ltjtkD(i + 1)

+ Zid_hk[L(j - 1)(1 - Ul) + Liu] + &j+i,kD(j + 1)

- Zi^k-iLjUi - £ij,k(L + D)(i+ j). (3.36)

Note that here we do not consider the dynamics of the double-mutants:
once produced, they remain in the colony. Birth-death processes of double-
mutants can be incorporated leading to a slightly more complicated system.
Let us define the generating function

*{x,y,z;t) = ^ ^ ( t > V z f c . (3.37)
i,j,k

The quantity \P(l,l,O;t) has the meaning of the probability that at time
t, no cells of type "C" have been created. The quantity in question, the
probability that at least one cell of type "C" has been created by time t, is
given by

P2(t) = l - * ( l , l ) 0 ; i ) .
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The subscript "2" refers to the number of hits (from "A" to "B" and from
"B" to "C"). The function if?(x,y,z;t) satisfies the following equation:

-T^ = -r^[x2L(l -u) + D + yxLu - (L + D)x]

+ -Q-[y2L(l -Ul) + D + zyLui - (L + D)y\. (3.38)

The equations for characteristics are:

x = L{\- u)x2 + [Luy -{L + D)]x + D, (3.39)

y = L(l- Ul)y2 + [LulZ - (L + D)}y + D, (3.40)

z = 0 (3.41)

(note that the last equation is trivial because we suppress the dynamics
of double-mutants; if we include their dynamics, the equation for z would
reflect that). We want to obtain the expression for \P(1,1,0; t), thus we can
set the initial conditions

x(0) = 1, y(0) = 1, z(0) = 0.

We obtain immediately from equation (3.41) that z = 0.

3.3.2 A one-hit process

First, we consider a simplified model with only one hit. Note that the
function

P1(t) = l-y(t)

with the initial condition as above, has the meaning of the probability that
a cell of type "C" has been created starting with one cell of type "B". The
corresponding diagram is this:

B ( i ) * - C

D (3.42)

out
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The equation for y(t), (3.40), can then be solved exactly with z = 0. We
set

Y
V~~L{l-Ul)Y'

and obtain a Riccati equation for Y:

Y + (L + D)Y + L(l - ux)DY = 0.

The solution can be easily obtained:

b + 1 + Ab2e^-b^t

V~~L(1- «i)(l + y4e(^-ii)«)'

where

b2 + L(l-u1)'

and b\ > b<± are roots of the quadratic equation,

b2 + {L + D)b + 1,(1 - m)D = 0.

This is similar to equation (3.21). The difference is that now, we allow for
expansion and contraction of the population by using different values for L
and D.

3.3.3 Three types of dynamics

Again, there are three limits in this problem.

Slow expansion or contraction. In the limit where \L — D\ <C 2\/LDui,
we have

6i = -L( l - y/ud, b2 = -L{\ + v/uT),

and the behavior of y is as follows:

• for small t, that is when Ly/u{t <C 1, we have y = 1-Luit, whereas
• for larger t such that Ly/u^t > 1, y(t) —> y^, where

2/oo = 1 - y/ui-
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Shrinking population. If D > L and D - L >• 2\/LDu\, we have

and the solution has the following shape:

• y(t) = 1 — «iLi for (D — L)t <C 1, as before, and
• for t such that (D — L)t > 1, y(£) tends to a constant,

- 1 _ L u i

Vo°- D-L'

Fast expansion. In the opposite case where L — D 3> 2y/LDu\, we have

and the solution has the following shape:

• y(t) = 1 - u\Lt for (L — I?)t <C 1, as before, and
• for t such that ( i — D)t > 1, j/(i) saturates at a different value,

D ( Put \

3.3.4 Probability to create a mutant of type "C"

- For slow expansion/contraction, initially (Ly/u\T <C 1) we have a
linear growth, P\(t) « Lu\t, and then the probability saturates at

- For a shrinking population, initially ((D—L)t <C 1) we have P\{t) «
Lu\t, and then it saturates at Pi = Lu\J(D — L).

- For an expanding population, we have initially (when (L—D)t <fC 1)
Pi{t) K Lmt, and then Pi = 1 - D/L.

The function Pi{t) is presented in Figure 3.2, the upper line.

3.3.5 A two-hit process

Next, we can solve the equation for x, equation (3.39), in order to obtain

P2(t) = l-x(t),
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Fig. 3.2 The functions -Pi(i) and P2(t) for an expanding population, corresponding to
one-hit and two-hit processes. The function Pi(t) denotes the probability to create at
least one "dangerous" mutant by time t, in an i-hit process. The parameter values are
L = Z, D = l,u = U!=5x 1 C T 4 .

the probability that a mutant of type "C" has been created starting from
one cell of type "A". Using the same change of variables,

Y

X = ~L(l~u)Xy

we again obtain a Riccati equation,

X + (L + D - Luy)X + L(l - u)DX = 0, (3.43)

but now it contains a time-dependent coefficient. If we substitute the value
of y(t) at t = 0, y = 1, we will get the solution

X(t) = e-L(1-")*, x(t) = 1.

For the saturated value of y(t), y(t) = D/L, we obtain

x(t) = 1 - (L - D)ut, (L - D)t < 1, (3.44)

x(t) = D/L, (L - D)t > 1. (3.45)

This gives us bounds for P2 = 1 - x(t). In general, we can solve equation
(3.43) numerically. For a particular set of parameters, the function Pz(t) is
presented in Figure 3.2.
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3.4 Overview

In this chapter we developed the main ideas of the stochastic formalism for
two-hit models of carcinogenesis. In the next chapters we will see how these
ideas can be applied to studying some of the most intriguing questions of
cancer initiation and progression.





Chapter 4

Microsatellite and chromosomal
instability in sporadic and familial

cancers

This is the first of a number of chapters which investigates the relation-
ship between carcinogenesis and genetic instability. Here, we will examine
the most basic scenario: the generation of the first malignant cell. Does
the presence of genetic instability result in a faster generation of the first
malignant cell? The mathematics in this chapter are applications of the
formalisms developed in Chapter 3. Here we present a simple example of
how stochastic models developed for two-hit processes can be applied to
biological reality.

We will concentrate on cancers which are initiated via the inactivation
of a tumor suppressor gene. That is, both the maternal and the paternal
copy of the gene have to lose function. A particular example which will
be discussed in this context is colorectal cancer. Colorectal cancer is a
major cause of mortality in the Western world. Approximately 5% of the
population develop the disease, and about 40% of those diagnosed with
it die within 5 years. Considerable progress has been made in identifying
genetic events leading to colorectal cancer. Somatic inactivation of the
adenomatous polyposis coli (APC) gene is believed to be one of the earliest
steps occurring in sporadic colorectal cancer. It has been observed that the
frequency of APC mutations is as high in small lesions as it is in cancers.
Evidence that the APC gene plays a crucial role in colorectal cancer also
comes from the study of individuals with familial adenomatous polyposis
coli (FAP). FAP patients inherit a mutation in one of the copies of the APC
gene; by their teens, they harbor hundreds to thousands of adenomatous
polyps.

The APC gene is a tumor suppressor gene which controls cell birth and
cell death processes. Inactivation of only one copy of the APC gene does
not seem to lead to any phenotypic changes. Inactivation of both copies

53
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of this gene appears to result in an increased cell birth to death ratio in
the corresponding cell and leads to clonal expansion and the formation of a
dysplastic crypt. Here, we define a dysplastic crypt as a crypt that consists
of cells with both copies of the APC gene inactivated. Dysplastic crypts are
at risk of developing further somatic mutations which will eventually lead
to cancer. The typical estimate is that an average 70 year old has about
1-10 dysplastic crypts, but precise counts have never been published.

How can the tumor suppressor gene be inactivated? A point mutation
can induce a loss of function in one copy of the gene. Both copies of the
gene can be inactivated by two subsequent point mutations in the same
cell: one in the maternal, and the other in the paternal allele. Each mu-
tation would occur with the physiological mutation rate of 10~7 per gene
per cell division. Now consider genetic instability. As explained in Chapter
1, there are two major types of instabilities [Lengauer et al. (1998); Sen
(2000)]: (i) small scale subtle sequence changes, such as microsatellite in-
stability (MSI). The MSI phenotype is generated if specific MSI genes are
inactivated. Both copies of an MSI gene need to be mutated. MSI basically
results in an elevated point mutation rate in the context of repeat sequences
called microsatellites. (ii) Gross chromosomal alterations can occur, and
this is known as chromosomal instability (CIN). The genetic basis of CIN
is uncertain, and specific scenarios will be discussed below. If one copy of
the tumor suppressor gene has been inactivated by a point mutation, the
other copy can be inactivated very quickly in CIN cells due to the loss of
the healthy allele. This can occur through a variety of mechanisms. They
include loss of the remaining chromosome and loss of part of the remaining
chromosome. These processes are also called loss of heterozygocity, or LOH.

While genetic instability might speed up the loss of tumor suppressor
function, the MSI or CIN phenotypes need to be generated first (for ex-
ample by basic point mutations). This chapter discusses a mathematical
analysis of how MSI and CIN influence the rate of tumor suppressor gene
inactivation. We will apply this analysis to various scenarios which include
the sporadic (spontaneous) development of colon cancer, and familial colon
cancers. We start with some more detailed biological facts about CIN and
MSI in colon cancer and then present the mathematical analysis.
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4.1 Some biological facts about genetic instability in colon
cancer

Here we will study the role that CIN and MSI may play in the inactivation
of the APC gene. About 13 % of all colorectal cancers have MSI and most
of the rest are characterized by CIN [Lengauer et al. (1998)]. MSI occurs in
virtually all hereditary non-polyposis colorectal cancers (HNPCC), which
account for about 3% of all colorectal cancers. The MSI phenotype results
from defective mismatch repair. Several genes have been identified whose
inactivation leads to an increased rate of subtle genetic alterations. The
main ones are hMSH2 and hMLHl. Both copies of an MSI gene must be
inactivated in order for any phenotypic changes to occur. HNPCC patients
inherit a mutation in one of the copies of an MSI gene and normally develop
colorectal tumors in their forties. Unlike FAP patients, they do not have a
vastly increased number of polyps, but the rate of progression from polyp
to cancer is faster.

Molecular mechanisms leading to CIN in human cancers remain to be
understood. It has been proposed that CIN might be caused by mutations
in genes involved in centrosome/microtubule dynamics, or checkpoint genes
that monitor the progression of the cell cycle, e.g. the spindle checkpoint
or the DNA-damage checkpoint [Kolodner et al. (2002)]. For example, het-
erozygous mutations in the mitotic spindle checkpoint gene hBUBl have
been detected in a small fraction of colorectal cancers with the CIN phe-
notype [Cahill et al. (1998); Gemma et al. (2000); Imai et al. (1999);
Ohshima et al. (2000)]. Also, the MAD2 gene seems to be transcription-
ally repressed in various solid tumors [Li and Benezra (1996); Michel et al.
(2001); Ro and Rannala (2001); Wang et al. (2000)]. Some CIN genes
might act in a dominant-negative fashion: an alteration in one allele leads
to CIN.

4.2 A model for the initiation of sporadic colorectal cancers

The colonic epithelium is organized in crypts covered with a self-renewing
layer of cells (Figure 4.1). The total number of crypts is of the order of
M = 107 in a human. Each crypt contains of the order of 103 cells. A
crypt is renewed by a small number of stem cells (perhaps 1 — 10) [Ro and
Rannala (2001); Yatabe et al. (2001)]. The life cycle of stem cells is of the
order of 1 - 20 days [Bach et al. (2000); Potten et al. (1992)]. Stem cells
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Apoptosis

V
^ on top of crypt

/approximately

/ 36 hours

A small number of tern cells
replenishes the whole crypt

Fig. 4.1 The epithelium of the colon is organized into crypts. Each crypt contains
about 103 cells. A small number of (stem) cells, which are thought to be located at
the bottom of the crypt, divide asymmetrically to replenish the whole crypt. They give
rise to differentiated cells which travel within 36 hours to the top of the crypt where
they undergo apoptosis. Inactivation of both copies of the APC gene is believed to
prevent apoptosis. The mutated cells remain on the top of the crypt, continue to divide
and ultimately take over the crypt. This process gives rise to a dysplastic crypt, which
represents the first step on the way to colorectal cancer.

give rise to differentiated cells which divide at a faster rate, and travel to
the top of the crypt where they undergo apoptosis.

We start with the basic model of sporadic colorectal cancer initiation
[Komarova et al. (2002)]. All the relevant parameters with their respective
values are summarized in Table 4.1. Let us assume that the effective popu-
lation size of a crypt is N; this means that N cells are at risk of developing
mutations which can lead to cancer. The value of N is unknown. As will
be explained in detail in Chapter 5, one hypothesis is that only the stem
cells are at risk of developing cancer, which gives TV" ~ 1 — 10, and in this
case the average turnover rate would be r = 1 — 20 days. Alternatively, we
could assume that some differentiated cells are also at risk. In this case,
N might be of the order of 100 and the average turnover rate could be less
than 1 day. Here we will concentrate on the model with N ~ 1 — 10; some
implications of the other model will also be discussed. In this chapter, we
will not consider the details of the population structure. That is, the dis-
tinction between stem cell and differentiated cell division patterns will be
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ignored. Chapter 5 suggests a way of incorporating this in the model.

Table 4.1 Parameters, notations and possible numerical values; the mutation
and LOH rates are given per gene per cell division.

Quantity Definition Range
M Number of crypts in a colon 10Y

N Effective number of cells in a crypt 1 — 100
T Effective time of cell cycle, days 1 — 20
u Probability of mutation in normal (non-MSI) cells 10~7

u Probability of mutation in MSI cells 10~4

p0 Rate of LOH in normal (non-CIN) cells IP"7

p Rate of LOH in CIN cells "To"2

nm Total number of MSI genes 2 — 5
nc Total number of CIN genes ?

1 copy of
APC inactivated

Y lu » Y'^OIL) Y

Fig. 4.2 Mutation-selection network of sporadic colorectal cancer initiation. Initially,
the crypt is at the state Xo, i.e. all cells are wild-type. With the rate 2«, cells with
one copy of the APC gene mutated will take over the crypt (state Xi). This rate of
change is calculated as N times the probability (per cell division) to produce a mutant
of X\ (2u because either of the two alleles can be mutated) times the probability of one
mutant of type X\ to get fixed (1/N since there is no phenotypic change). From state
X\ the system can go to state X2 (both copies of the APC gene inactivated) with the
rate N(u + po)- This rate is calculated as N times the probability per cell division to
produce a mutant of X2 (u for an independent point mutation plus po for an LOH event)
times the probability of the advantageous mutant of type X2 to take over (this is 1).

Let us denote by Xo, X\ and X<x the probability that the whole crypt
consists of cells with 0, 1 and 2 copies of the APC gene inactivated, respec-
tively. The simplest mutation-selection network leading from Xg to X\ to
X2 is shown in Figure 4.2. The rate of change is equal to the probability
that one relevant mutation occurs times the probability that the mutant
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cell will take over the crypt.
In the beginning (see Figure 4.2), all cells are wild type. The fist copy

of the APC gene can get inactivated by a mutation event. Because the
mutation rate per gene per cell division, u ~ 10~7, is very small and the
number of cells, N, is not large, it is safe to assume that once a mutation
occurs, the population typically has enough time to become homogeneous
again before the next mutation occurs. The condition is that the mutation
rate, u, is much smaller than 1/N, as was derived in Chapter 3. This means
that most of the time, the effective population of cells in a crypt can be
considered as homogeneous with respect to APC mutations. Under this
assumption we have XQ + X\ + X2 = 1.

Initially, all the N cells of a crypt have two copies of the APC gene. The
first copy of the APC gene can be inactivated by means of a point mutation.
The probability of mutation is given by iV (a mutation can occur in any of
the N cells) times the mutation rate per cell division, u, times 2, because
any of the two copies of the APC gene can be mutated. Because inactivation
of one copy of the APC does not lead to any phenotypic changes, the rate
of fixation of the corresponding (neutral) mutant is equal to

see Chapter 3. "Fixation" means that the mutant cells take over the crypt.
Therefore, the rate of change from Xo to X\ is 2uN x 1/N = 2u.

Once the first allele of the APC gene has been inactivated, the second
allele can be inactivated either by another point mutation or by an LOH
event. This process occurs with rate N(u + Po), where po is the rate of
LOH in normal (non-CIN) cells. We assume that mutants with both copies
of the APC gene inactivated have a large selective advantage, so that once
such a mutant is produced, the probability of its fixation is close to one.
This assumption is made for simplicity. More generally, the relative fitness
of type X2 is f, whereas the fitness of type Xo and X\ is 1. Then the
second rate in Figure 4.1 should be taken to be Np(u + p0), with p =
(1 — l/f)/(l — l/fN). If the population size is not too large, and the
relative fitness of type X2 is much greater than 1, we have /02 —*• 1, and we
obtain the expression N(u + Po)-

The mutation-selection network of Figure 4.2 is equivalent to a linear
system of ordinary differential equations (ODE's), where the rates by the
arrows refer to the coefficients and the direction of the arrows to the sign
of the terms. One (non-dimensional) time unit (t/r = 1) corresponds to
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a generation turn-over. The calculations leading to the mutation-selection
network are performed for a Moran process where the population size is kept
constant by removing one cell each time a cell reproduces, see Chapter 3.
Our biological time-unit again corresponds to N "elementary events" of
the Moran process, where an elementary event includes one birth and one
death. We have:

Xo = -2uX0,

Xx =2uXo-N(u+po)Xu

with the constraint Xo + X\ 4- X2 = 1 and the initial condition

X0(0) = l, Xi(0)=0.

Here, we use the fact that the intermediate mutant is neutral and that
the population size is small (N < Ntun, see Chapter 3) so that stochastic
tunneling does not take place. Calculations for larger values of N can also
be performed.

Using ut/r <C 1 and N(po + u)t/r <C 1, we can approximate the solution
for X2 as

X2(t)=Nu(u + p0)(t/r)2.

The quantity X2(t) stands for the probability that a crypt is dysplastic
(i.e. consists of cells with both copies of the APC gene inactivated) at
time t measured in days. This formula is a consequence of the fact that in
the parameter regime we are considering, APC~/~ cells are produced as a
result of a genuine two-hit process (see Chapter 3). There are two steps
that separate the state Xo from the state X2, and thus the expected number
of dysplastic crypts in a person of age t is proportional to the product of
the two rates and the second power of time. This reminds us of the general
Armitage-Doll model where the power dependence of the probability of
cancer is equal to the number of mutations in the multi-stage process. In
our case, the number of mutations needed to create a dysplastic crypt is
two.

The probability to have i dysplastic crypts by the age t is given by
a simple binomial, (™)X2(t)i(l - X2{t))M-\ The expected number of
dysplastic crypts in a person of age t is then given by the following quantity,

MNu(u+po)(t/T)2. (4.1)
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Some estimates of the expected number of dysplastic crypts, based on equa-
tion (4.1), are given in Table 4.5.

Table 4.2 Sporadic colorectal
cancer: the expected number of dys-
plastic crypts, at 70 years of age, the
simple model. M = 107, JV = 5,
u = 10~7 and t = 70 years.

I po = IP"7 I po = 10~6

r = 1 654 3,595
~T = 3 "73 ~l00

r = 10 ~7 36
~r = 20 | 2 I 9

One has to be careful when comparing these calculations with data.
It is possible that dysplastic crypts can be lost. The model presented
here gives the number of dysplastic crypts that are being produced over
time, which could be larger than the actual number of dysplastic crypts
that patients have at a particular time point. Exact measurements of the
incidence of dysplastic crypts will provide important information about the
crucial parameters of colorectal cancer initiation.

4.3 Sporadic colorectal cancers, CIN and MSI

Let us now consider the possibility of developing genetic instabilities during
cancer initiation. Starting from a population of normal cells, three different
events can occur: (i) inactivation of the first copy of the APC gene, (ii)
inactivation of the first copy of one of nm MSI genes, and (iii) mutation of
one copy of one of nc CIN genes.

We use the notation Xt, Yi and Zi, respectively, for the probability that
a crypt consists of normal cells, CIN cells or MSI cells with i copies of
the APC gene inactivated, see Table 4.3. Figure 4.3 shows the mutation-
selection network of colorectal cancer initiation including CIN and MSI. All
the transition rates are calculated as the relevant mutation rate times the
probability that the mutant will take over the crypt.

Let us denote the rate of LOH in CIN cells as p. We assume that the
crucial effect of CIN is to increase the rate of LOH [Bardelli et al. (2001);
Lengauer et al. (1997)], which implies p > p0. Intuitively, the advantage
of CIN for the cancer cell is to accelerate the loss of the second copy of a
tumor suppressor gene. Similarly, the advantage of MSI is to increase the
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Sporadic CRC

MIN Z0JUZlNH^Z2

u + p0

normal x o ^ * x , ^ V x 2

-"•« 2ncu\

CIN y0 -J?L+ v_ ^ y2

Fig. 4.3 Mutation-selection network of sporadic colorectal cancer initiation including
CIN and MSI. From the initial wild-type state, Xo, the crypt can change to state X\ as
in Figure 4.1, acquire a CIN mutation (the arrow down) or an MSI mutation (the arrow
up). The line Xo —> Xi —> X2 is identical to the process in Figure 4.1 of developing a
dysplastic crypt with no genetic instabilities. The bottom row of the diagram corresponds
to CIN cells acquiring the first, and then the second, mutation (loss) of the APC gene;
the second copy can be lost by a point mutation or by an LOH event whose rate is much
larger for CIN cells than it is for normal or MSI cells. The state Yi corresponds to a CIN
dysplastic crypt. The top row is the development of an MSI dysplastic crypt. The MSI
phenotype is characterized by an increased point mutation rate, u. The state Zi is an
MSI dysplastic crypt. Red arrows denote faster steps. Note that it takes only one leap
(down) to go to a CIN state from a state with no genetic instability, because CIN genes
are dominant-negative. It takes two steps to acquire MSI (up) because both copies of
an MSI gene need to be inactivated before any phenotypic changes happen.

Table 4.3 The three major classes of homogeneous states.

Quantity Definition Point mutation rate Rate of LOH
XQ,X\,X2 non-CIN, non-MSI u po
Y0,Y1,Y2~ CIN ~u p>p0

Z0,Zi,Z2 MSI u> u po

point-mutation rate, which means that u > u.
We are interested in the probability to find the crypt in the state X2, Y2

and Z2 as a function of t. In other words, we want to know the probability
for the dysplastic crypt to have CIN (Y2), MSI (Z2) or no genetic instability
(X2). The mutation-selection network of Figure 4.3 is more complicated
than the one-dimensional network of Figure 4.2, but the solutions for X2,
Yi and Z2 can still be written down.
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The diagram of Figure 4.3 corresponds to a system of 11 linear ODE's
describing the time-evolution of the probabilities to find the system in any
of the 12 possible homogeneous states. An exact solution can be written
down but it is a very cumbersome expression, so we will make some approx-
imations. Let us use the fact that the quantities ut/r and N(u+po)t/r are
very small compared to 1 for t ~ 70 years, and the quantity Npt/r 3> 1.
This tells us that the steps in the diagram characterized by the rates u and
Po are slow (rate limiting) compared to the steps with the rate p. Taking
the Taylor expansion of the solution in terms of ut/r and N(u + po)t/T, we
obtain the following result:

X2{t) = Nu(u + Po)(t/T)2, Y2(t) = 4:ncu2{t/T)2. (4.2)

The rate u is neither fast nor slow, so the solution for Z2 is more compli-
cated. We have

nmu{u + p0) (r,(h3p 3 p , n3 h3
(abu,y(a — b)\

+ ab(b2 - a2)ut/r) + a2b2(a - b^it/r)2) (4.3)

where a = 2, b = N(u +po)/u and Ex = e-xM/T. Note that if the it-
steps are fast (i.e. if ut/r 3> 1), the limit of this expression is given by
Z(t) = nmu{u + po)(t/r)2. In the opposite limit where ut/r <?C 1, we have
Z(t) = nmNu(u + po)u(u + po)(t/r)4/6.

The key idea of this analysis is to identify how many slow (rate-limiting)
steps separate the initial state (Xo) from the state of interest. The slow
steps in our model are the ones whose rates scale with u or po. The step
from Y\ to I2 is fast, because it is proportional to the rate of LOH in CIN
cells, p, which is much larger than u and PQ. The steps with the rate u are
neither fast nor slow. For all possible pathways from the initial state to
the final state of interest, we have to multiply the slow rates together times
the appropriate power of t/r, and divide by the factorial of the number of
slow steps. Summing over all possible paths we will obtain the probability
to find the crypt in the state in question.

Applying this rule, we can see that X2{t) and I2W are both quadratic
in time, because it takes two rate-limiting steps to go from Xo to X2 and
from Xo to Y2- The state Z2 is separated from Xo by two rate-limiting
steps and two 'intermediate' steps (whose rate is proportional to u), so the
quantity Z2(t) grows as the forth power of time for ut/r -C 1 and as the
second power of time in the opposite limit.
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The probability that a crypt is dysplastic at time t is given by P(t) =
Xzit) + Y2(t) + Z2(t). Therefore, the expected number of dysplastic crypts
in a person of age t is MP(t). Of these dysplastic crypts, MY2(t) have CIN
and MZ2(t) have MSI. This suggests that the fraction of CIN cancers is at
least Y2(t)/P(t) and the fraction of MSI cancers is at least Z2(t)/P{t). The
actual values may be higher because in our model, only the very first stage
of cancer development is considered. At later stages of progression from
a dysplastic crypt to cancer, there are more chances for cells to acquire a
CIN or an MSI mutation.

Some numerical examples are given in Table 4.4, where the relative
fractions of dysplastic crypts with CIN, MSI and without genetic instability
are presented for different values of nc, the number of CIN genes. Larger
values of nc lead to increased percentage of dysplastic crypts with CIN.
According to observations, 13% of all sporadic colorectal cancers have MSI
and 87% have CIN [Lengauer et al. (1998)]. In terms of our model this
means that we should have Z2(t)/P{t) < 0.13 and Y2/P(t) < 0.87. Prom
Table 4.4 we can see that for values of nc of the order of 100, the fraction
of CIN crypts is higher than expected.

Table 4.4 Sporadic colorectal cancer: the expected number of dysplastic crypts and
fractions of crypts with different instabilities, at 70 years of age, in the model with CIN
and MSI. M = 107, N = 5, r = 20 days, u = HT7, umet = 10"6, u = 10"4, Po = 10~7,
nm = 3 and t = 70 years.

MSI gene inactivation nc Total number of dyspl. crypts % of CIN % of MSI
mutation 1 2 28% 0.4%
mutation 10 8 80% 0.1%

"imitation 100 67 98% ~ 0.01%
""methylation ' 1 3 21% ~ 23%

methylation 10 9 74%" 7%
methylation IOC) 68~ 97% 1%

The calculations presented in Table 4.4 were performed under the as-
sumption that chromosomal instability does not have a cost. In other words,
the CIN phenotype is neutral with respect to the wild type. Perhaps a more
realistic model should include a possibility that CIN phenotype is disad-
vantageous compared to the wild-type. Indeed, genetically unstable cells
can have a higher apoptosis rate because of a high frequency of mutations
in essential genes. Therefore, we can assume that genetic instability leads
to a change of reproductive rate thus giving the mutant cells a selective
disadvantage, see Chapter 6 (or a selective advantage, if the environment
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is right, see Chapter 7).
For both disadvantageous and advantageous CIN, we have the computa-

tional machinery developed in Chapter 3 which can be used. Let us suppose
that the relative reproductive rate of CIN cells is rc. Then, if no tunneling
occurs, the transition rates from XQ to YQ and from Xi to Y\ is not 2ncu
but 2ncNr^~1(l — rc)/(l — rj?). This quantity is larger than 2ncu in the
case when CIN is advantageous (rc > 1) and smaller if it is disadvanta-
geous (rc < 1). In the case where CIN is disadvantageous, the transition
rate from XQ to Yo and from X\ to Yx becomes lower. For example, if
the relative disadvantage of a CIN cell is 10%, then the fraction of CIN
dysplastic crypts in Table 4.4 will be reduced by 20%. In the case where
stochastic tunneling occurs, the computation will be different. It follows
in a straightforward manner from the results of Chapter 3, and we do not
present it here. An interested reader can refer to the paper by Komarova
et al [Komarova et al. (2003)] for details.

In our model, we assume that CIN is generated by means of a mutation
in any of nc dominant-negative CIN genes. In other words, a genetic hit in
either of the two copies of a CIN gene will lead to the acquisition of the CIN
phenotype. Alternatively, it could happen that the CIN phenotype requires
the inactivation of both copies [Rajagopalan et al. (2004)], like MSI genes
or tumor suppressor genes. In terms of the diagram in Figure 4.3, this
would mean that we have two steps separating the wild type (XQ) from the
CIN phenotype (ZQ). If we assume that the CIN phenotype is neutral, the
fraction of CIN dysplastic crypts in Table 4.4 would be negligible. This
means that in this case, the CIN phenotype must be very advantageous
in order to show up early in carcinogenesis. We will develop these ideas
further in Chapters 6 and 7.

The fraction of MSI crypts as predicted by this model is quite low (for
nc = 10 we get only 0.1 % of dysplastic crypts with MSI). This could mean
that MSI develops at later stages of cancer. However, there is indirect
evidence that the replication error phenotype precedes, and is responsible
for, APC mutations in MSI cancers [Huang et al. (1996)]. Our model is
consistent with this data if we assume higher rates of MSI induction in a
cell. This could be caused by higher mutation rates in MSI genes, a larger
number of MSI genes or the possibility of epigenetic mechanisms of gene
silencing. DNA methylation of the hMLHl gene is found at a high frequency
in sporadic MSI tumors [Ahuja et al. (1997); Cunningham et al. (1998);
Kane et al. (1997)]. In the diagram of Figure 4.3 this means that the rates
from XQ to the MSI type (vertical arrows), 1nmu and u + po, should be
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replaced by 2nmumet and umet +po, respectively, where umet is the rate of
methylation per gene per cell division. In terms of our equations, we need to
replace u by umet in the expression for Z2(t), equation (4.3). If we assume
that umet is larger than the basic mutation rate, u (say umet = 10~6),
then the expected fraction of MSI crypts predicted by our model becomes
larger. Note however that at this stage there is no accurate estimation of
methylation rates compared to mutation rates. Our model suggests that
if epigenetic mechanisms significantly increase the APC inactivation rate,
then the predicted fraction of MSI crypts is consistent with the observed
frequency of MSI cancers, see Table 4.4.

4.4 FAP

The framework developed in this chapter allows us to study familial cancers
in a systematic manner, by modifying the basic mutation-selection diagram
of Figure 4.3. In FAP patients, one allele of the APC gene is inactivated
in the germ line. In terms of our model this means that all crypts start in
state Xi. The corresponding mutation-selection network is found in Figure
4.4a.

?AP I IHNPCC

MIN z ^ z 2 MIN z0J^z,N^l^z2

" + /J I u + pA I I

1 j | ON Y0^Y{ —»Y2

cm Y1 * Y2

Fig. 4.4 (a) Mutation-selection network of FAP initiation. We start with the type X\
because the first copy of the APC gene is inactivated in the germ line, (b) Mutation-
selection network of HNPCC initiation. One mutation of an MSI gene is inherited, and
therefore it takes only one step (inactivation of the second copy of the MSI gene, arrows
up) to develop the MSI phenotype.

Again, the mutation-selection diagram can be converted into a system
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of ODEs. The solutions are given by

X2(t) = N(u + po)t/r, Y2{t) = 2ncut/r,

and

nmu(u + po)[2 - 2ubt/r + (ubt/r)2 - 2Eb]

Z2{t) = W2 '
In the limit where ut/r —> oo, we have Z2{t) = nmu(u + Po)(t/r)2. If
ut/r < 1, then Z2{t) = nmNu(u + po)(u + Po)(t/T)3/3. X2(*) and r2(i)
are linear functions of time (there is one rate-limiting step), whereas Z2(t)
grows slower than the second power of time (two rate-limiting steps plus
one 'intermediate' step).

Some predictions of the model are shown in Table 4.5. The expected
number of dysplastic crypts and the fraction of CIN crypts are calculated
for t = 16 years. As the number of CIN genes, nc, increases, we expect
more dysplastic crypts, and a larger fraction of crypts with CIN. According
to our model, the expected number of dysplastic crypts grows linearly with
time, and by the age of 16 years is expected to be in the thousands to tens
of thousands, see Table 4.5. This should be compared with the observation
that patients with FAP have hundreds to thousands of polyps by age 16.

Table 4.5 FAP: the expected number of dysplastic crypts
and the fraction of CIN crypts, at 16 years of age. M = 107,
N = 5, T = 20 days, u = 10~7, u = lO"4, p0 = 10~7, nm = 3
and t = 16 years.

~nc I Total No of dyspl. crypts I % of CIN I % of MSI
~1 ~ 3, 500 17% 0%

10 ~ 8, 800 67% 0%
~100 I ~ 61,300 ~ 95% I 0%

The number of polyps in FAP patients does not grow linearly with
time. Instead, most polyps appear 'suddenly' in the second decade of life.
These observations are consistent with the predictions of our model. It
is believed that polyps result from dysplastic crypts by means of further
somatic mutations and clonal expansions. Therefore, the number of polyps
is expected to be a higher than linear power of time, which looks like a steep
increase in the number of lesions after a relatively non-eventful period. Also,
the number of dysplastic crypts (103 — 104 in our model) is expected to be
much larger than the number of polyps (102 — 103) consistent with the
expectation that not all dysplastic crypts progress to polyps.
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Another prediction of this model is that the fraction of MSI crypts in
patients with FAP is negligible. This is consistent with an experimental
study where MSI was found in none of the 57 adenomas from FAP patients
[Keller et al. (2001)].

Finally, we note that the logical possibility exists that the second copy
of the APC gene in FAP patients may be inactivated by an epigenetic event,
just like the second copy of an MSI gene can be silenced by methylation.
Experimental investigations [Menigatti et al. (2001)] however suggest that
this is unlikely: out of the 84 FAP tumors, only 1 exhibited hypermethyla-
tion of the APC gene.

4.5 HNPCC

Patients with HNPCC inherit one mutation in an MSI gene. The cor-
responding mutation-selection network is presented in Figure 4.4b. The
solutions for X2 and Y2 in this case are identical to those for sporadic col-
orectal cancers and are given by equations (4.2). The solution for Zi is as
follows:

(u + Po)[a2Eb - b2Ea + (a - b){uaU/r - (a + &))]
Z2{t) = — — ;

abu[a — b)

in the limit where u is a fast rate we have Zi{t) — (u + po)t/r. In the
opposite limit, where u is a slow rate, ^ ( t ) = N(u+po)u(u+po)(t/T)3 /3. If
we assume that the second copy of the MSI gene is silenced by methylation,
we need to replace u by umet in the expression for Z^it).

The solutions for X2 and I2 in this case are quadratic in time (two rate-
limiting steps), and the quantity Zz(i) grows slower than linear but faster
than quadratic, because it requires one rate-limiting and two intermediate
steps (note that we are talking about linear and quadratic functions of
an argument smaller than one). In Table 4.6 we present the expected
number of dysplastic crypts and the fraction of MSI crypts, calculated for
t = 40. We have explored two possibilities: (1) inactivation of the second
copy of an MSI gene happens by means of a point mutation, with the rate
u, and (2) inactivation of the second copy of an MSI gene happens by
methylation. There is evidence that the second scenario is less likely in
the case of HNPCC [Yamamoto et al. (2002)]. In a recent study, DNA
methylation of the hMLHl gene was found in 80% of 40 sporadic MSI
cancers and in 0% of 30 cancers in HNPCC patients [Esteller et al. (2001)].
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Our model predicts that the majority of dysplastic crypts in HNPCC
patients are expected to have MSI. However, we do not find that 100%
of dysplastic crypts will contain MSI. On the other hand, we know that
virtually all tumors in HNPCC patients have MSI. This might suggest that
selection for MSI also happens at later stages of carcinogenesis: dysplastic
crypts with MSI might have a faster rate of progression to cancer than
dysplastic crypts containing CIN or normal cells.

Finally we note that the total number of dysplastic crypts in HNPCC
patients, as predicted by our model, is of the order 10 at age 40, which is
only slightly larger than the expected number of dysplastic crypts in normal
individuals and is not nearly as high as in the case of FAP (of the order
10,000, Table 4.6). This is also consistent with observations.

Table 4.6 HNPCC: the expected number of dysplastic crypts and the fraction
of MSI crypts, at 40 years of age. M = 107, N = 5, r = 20 days, u = 10~7,
umet = 10~6, u = 10~4, po = 10~7, nc = 10 and t = 40 years. Compared with
patients with FAP and sporadic colorectal cancer.

Condition I Total No of dyspl. crypts I % of CIN I % of MSI
"HNPCCby mutation 14 15% ~ 81%

HNPCC by methylation 66 3% 96%
Sporadic colorectal cancer 3 78% 3%

~FAP ~ 22,000 67% ~ 0%

4.6 Insights following from this analysis

In this chapter we applied the tools developed in Chapter 3 to study the
dynamics of colorectal cancer initiation. We calculate the rate of dysplastic
crypt formation as a consequence of inactivating both alleles of the APC
tumor suppressor gene. This can either happen in normal cells or in cells
that have already acquired one of the two genetic instabilities, MSI or CIN.
If the rate of triggering genetic instability in a cell is high and if the cost of
genetic instability is not too large, then inactivation of APC will frequently
occur in cells that are genetically unstable. In this case, genetic instability
is the first phenotypic modification of a cell on the way to cancer.

It is interesting to compare the two types of instability, MSI and CIN.
MSI, being associated with subtle changes in the genome, is probably less
of a liability for the cell than CIN. In other words, CIN cells are more likely
to produce non-viable offspring than MSI cells. At the same time, it may
be possible that CIN is easier to trigger (for instance, if it requires a change
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in a single allele of many genes). Our analysis shows that if inactivation
of MSI genes (either by point mutation or by methylation) occurs at a
sufficiently fast rate - around 10~6 per cell division, then MSI can precede
APC inactivation in a significant number of cases. Regarding CIN, the
crucial questions are (i) how many dominant CIN genes can be found in
the human genome, (ii) how fast are CIN genes inactivated, and (iii) what
are the costs of CIN. A more detailed analysis of costs and benefits of CIN
is given in Chapters 6 and 7.

Our calculations show that important insights could be derived by care-
fully monitoring the incidence rate of dysplastic crypts in patients as func-
tion of age. With or without early genetic instability, the abundance of
dysplastic crypts should grow approximately as a second power of time.
The two rate limiting steps can either refer to two mutations of APC, or
one mutation of APC and one CIN mutation. In the case of CIN, LOH of
the second allele of APC is not rate limiting. Hence, two rate limiting steps
for the inactivation of a tumor suppressor gene can be compatible with an
additional genetic instability mutation.

Several further insights emerge from our analysis.

Fraction of dysplastic crypts with CIN or MSI. About 87% of spo-
radic colorectal cancers have CIN while the rest have MSI. Assuming that
CIN and MSI are irreversible, we conclude that the maximum fraction of
dysplastic crypts with CIN should be 87%, while the maximum fraction of
dysplastic crypts with MSI should be 13%. This provides certain restric-
tions on the possible parameter values of our model (see Table 2b).

Epigenetic factors. If we assume that MSI genes in sporadic colorectal
cancer are inactivated only by point mutation or LOH events, then the
fraction of dysplastic crypts with MSI is very low. We get higher fractions
of MSI if we assume that MSI genes can also be inactivated by methylation
and if methylation of MSI genes is fast compared to point mutation or
LOH. Thus, methylation events could play a crucial role in the formation
of sporadic MSI cancers.

Competition among crypts. Another interesting possibility is that dys-
plastic crypts can be lost and replaced by normal crypts. In this case, many
dysplastic crypts could be produced, but only a part of them is retained so
that the actual number of dysplastic crypts stays low. To our knowledge,
the competitive dynamics of crypts in a colon has not been investigated
experimentally.
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No MSI in FAP. Our model predicts that the fraction of MSI dysplastic
crypts in FAP patients is close to zero. A significant number of dysplastic
crypts will contain CIN. This is consistent with experiments observations.

The number of dysplastic crypts. We calculated both the absolute
numbers and relative proportions of dysplastic crypts with or without ge-
netic instabilities. An interesting empirical project is to measure the abun-
dance of such dysplastic crypts as function of age. This will provide crucial
information on the dynamics of colorectal cancer initiation.

A more precise description of the mutation spectrum. The muta-
tion spectrum of the APC gene is far from random (one reason being that
the APC gene is long and multi-functional). The type of the second APC
mutation may depend on where the first APC mutation took place [Lam-
lum et al. (1999); Rowan et al. (2000)]. Our model is well suited to take
this into account. Here is a simple way to differentiate between two kinds
of point mutations. Let us assume that the total probability of a point mu-
tation is u (as in the basic model), and there are two kinds of mutations,
(i) With probability u\, a mutation happens such that the second allele
can only be inactivated by a point mutation, (ii) With probability u2, a
mutation happens which can be followed by another point mutation or an
LOH event. We have U\ +U2 = u. These two scenarios can be incorporated
in our calculations adding a new level of complexity to the basic theory.

The cells at risk of cancer. In this first model we assumed that only
stem cells are at risk of cancer. Another possibility is that both stem cells
and large numbers of differentiated cells in a crypt are running the risk
of acquiring cancerous mutations. In its present form, this analysis would
predict that the expected number of dysplastic crypts in persons of 70
years of age is enormous and biologically implausible. In order to correctly
include the possibility of cancer initiation in partially differentiated cells,
one needs to perform a calculation similar to that presented in the next
chapter.



Chapter 5

Cellular origins of cancer

Chapter 3 presented an extensive stochastic analysis of a two-hit model. In
particular we calculated the probability of creating a double-mutant as a
function of time, depending on the population size and the relative fitness of
the intermediate type. Chapter 4 made the first attempt to apply this model
to real-life carcinogenesis, by taking account of specific features of sporadic
and familial colorectal cancers. One important consideration which was not
included in the analysis so far is the population structure. In Chapters 3 and
4, the population of cells was completely homogeneous with respect to the
patterns of mitosis/apoptosis. In other words, cells were only characterized
by their "fitness", which was a function of acquired mutations. In some
cases, this is not enough to grasp the essential dynamics of the system.
An example is the colonic epithelial tissue. There, when talking about the
dynamics of cell division and mutations, we may have to take into account
the fact that stem cells behave differently from differentiated cells. The
analysis which follows can be of importance for one of the fundamental
questions in cancer research, namely, from which cells in our body does
cancer originate?

To begin, we will briefly describe important aspects of tissue architec-
ture, development, and function. We have to make a distinction between
stem cells and differentiated cells. Stem cells have the ability to divide in-
definitely. During this process they give rise to differentiated cells which
make up the tissue. The differentiated cells perform their function and
eventually die. In the context of stem cells, we have to distinguish between
embryonic stem cells and adult stem cells. Embryonic stem cells give rise to
the organism during development. They are said to be truly multipotent.
That is, they can give rise to any tissue in the body (e.g. lung, liver, brain,
colon, skin, etc.). Adult stem cells, on the other hand, are thought to be
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more restricted. That is, they might only be able to give rise to certain
tissues. For example, liver stem cells can only differentiate into "commit-
ted" liver cells, or colon stem cells can only differentiate into "committed"
colon cells. Adult stem cells are thought to be responsible for maintaining
and renewing a given tissue. They may divide at a relatively slow rate, or
divide only when new tissue cells need to be created (e.g. when already
differentiated cells die). Division of adult stem cells is thought to be asym-
metric. That is, division gives rise to one stem cell, and one cell which
differentiates into a functioning tissue cell.

Consider the colon as an example. The epithelial lining of the colon is
made up of many involutions which are called crypts. There are about 107

crypts within a human colon. Each crypt contains stem cells. The exact
number of stem cells per crypt is not known; there might be just one stem
cell or a small number of them. Upon division, a stem cell gives rise to one
stem cell and one cell which embarks on a journey of differentiation. Before
this cell is fully differentiated, it divides a certain number of times. A fully
differentiated cell lives for about one week. Then it dies and is washed out
of the colon. The first malignant change in colon cancer ensures that the
differentiated cell does not die after one week. Instead it remains, and this
causes an accumulation of abnormal or transformed cells. The inactivation
of the tumor suppressor gene APC is responsible for this behavior. The
generation of APC-/- cells (or the inactivation of other genes involved in the
Wnt pathway) is the first step toward colon cancer [Katoh (2003); Kinzler
and Vogelstein (1998); Polakis (1997); Polakis (1999)]. We are faced with
an important question. Did the mutation which inactivates the APC gene
occur in the stem cells, or in the cells which differentiate?

Talking in more general terms, cancer cells have been shown to have var-
ious characteristics in common with stem cells. Fore example, they have the
capacity to divide indefinitely. This does not, however, mean that the origin
of cancer lies in stem cells. There are two theories. The stem-cell theory,
suggests that the first event happens in a stem cell. The de-differentiation
theory, claims that it occurs in a (partially)-differentiated cell, thus lead-
ing to its de-differentiation, or "immortalization". Experimentally this is a
very difficult question, and the debate is ongoing.

Despite this uncertainty, many researches feel that differentiated cells
are unimportant for cancer initiation, for the following (quantitative) rea-
son, unrelated to biological evidence. Let us concentrate on colon cancer.
It is widely believed that the APC gene is a tumor suppressor gene. That
is, the inactivation of both copies is required to confer phenotypic changes
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[Kinzler and Vogelstein (1998); Macleod (2000)] (consistent with Knudson's
two-hit hypothesis [Knudson (1996)]). Then an obvious question arises:
how can the first mutation occur in the migrating compartment, without
being washed away? As John Cairns writes [Cairns (2002)], "...there are
256 exponentially multiplying cells that divide twice a day and are being
replenished continually by the divisions of a single stem cell, none of these
256 cells will ever be separated from the stem cell by more than eight divi-
sions, and the replication errors made in those eight divisions are destined,
of course, to be discarded".

The point of this chapter is to address exactly this issue: will migrating
cell mutations be indeed discarded, or is there a chance that they will persist
until the second hit comes, which immortalizes the cell and thus initiates
dysplasia in the crypt?

5.1 Stem cells, tissue renewal and cancer

The normal functioning of colon relies on the fine-tuned balance of the
epithelial cell production, differentiation and death. The regulation of the
processes of cell proliferation and shedding occurs at the level of crypts -
the folds of colonic epithelium which are continuously renewed by stem cell
division. The appearance of dysplastic crypts in the beginning of colorectal
cancers is a manifestation of the broken balance between cell division and
apoptosis. At the molecular level, it has been shown that the earliest event
of sporadic colorectal cancers is the inactivation of the APC gene [Kinzler
and Vogelstein (1998); Polakis (1997)], or other genes involved in the Wnt
pathway [Katoh (2003); Polakis (1999)]. The APC gene inhibits members
of the Wnt signaling pathway, which promote the expression of /3-catenin.
In its turn, /3-catenin acts as an enhancer of cell division [Behrens et al.
(1998)].

It is widely believed that the relevant target cells for the first mutation
are the colonic stem cells, [Bach et al. (2000); Fuchs and Segre (2000);
Kim and Shibata (2002); Potten et al. (2003); Potten and Loeffler (1990);
Winton (2001); Wong et al. (2002)]. The argument usually goes in the
following way, see e.g. [Cairns (2002)]. If the first mutation happened in a
proliferative daughter cell, it would be washed away before the second hit
has a chance to confer a significant phenotypic change. On the other hand,
if the first mutation occurs in the "immortal" stem cell, then its mutant
progeny will populate the compartment and persist for as long as it takes
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to accumulate further mutations which give rise to neoplasia.
It is often assumed that the stem cells are located in a niche at the base

of the crypt. The "bottom-up" model of colorectal histogenesis [Preston
et al. (2003); Wong et al. (2002); Wright and Poulsom (2002)] states that
the oncogenic mutations occur in the stem cells at the base of the crypt. A
natural consequence of this model is that once such a mutation occurs, the
entire crypt will be monoclonally-mutant. There has been some evidence
which contradicts this view. Namely, dysplastic cells exhibiting genetic
alterations in the APC gene have been found in the upper layer of crypts,
whereas cells located at the bottom of the same crypt did not contain such
alterations. This led to the "top-down" model [Shih et al. (2001a)]. The
two explanations proposed were that (i) the stem cells reside near the top
of the crypts, or (ii) transformed cells originate from the stem cells at the
base of the crypt, then they passively move upward, after which a cycle of
cell proliferation and tissue replacement starts in the top-down direction.

Another explanation has been put forward which suggests that the rele-
vant mutations occur in fully differentiated cells [Fodde et al. (2001b)], or in
the proliferative/migrating daughter cells [Lamprecht and Lipkin (2002)].
This is consistent with the stem cells being located at the base of the crypt,
as previously thought. At the basis of these models is the idea that a pro-
liferating daughter cell with a silenced APC gene (or otherwise upregulated
/3-catenin) will acquire a stem cell phenotypic characteristic, that is, per-
manence in the crypt. Indeed, it has been shown that the /3-catenin/T
cell factor 4 complex constitutes the "master switch" that controls prolif-
eration versus differentiation in healthy and malignant intestinal epithelial
cells [van de Wetering et al. (2002)]. Inactivation of the APC gene in a
migrating cell could reverse the process of differentiation and trick the cell
into thinking that it is "immortal". This would lead to a continued prolif-
eration of this cell which would avoid entering the final differentiation and
programmed apoptosis stage.

The following sections will discuss these mechanisms mathematically.

5.2 The basic renewal model

We assume that the stem cells are located in a niche at the base of the crypt.
They are characterized by an asymmetric division pattern resulting in one
stem cell and one proliferative daughter cell. The latter cells divide and
populate the migrating compartment. Cells of the migrating compartment



Cellular origins of cancer 75

go through a number of symmetric divisions, moving toward the crypt
surface. On their way up, they go through stages of differentiation, until the
fully differentiated cells stop dividing, reach the crypt surface and get shed
into the lumen, to be replaced by new generations of cells coming from the
bottom of the crypt. We will refer to the symmetrically dividing, migrating
progeny of a stem cell (SC) as "differentiated cells" (DC), keeping in mind
that the degree of differentiation increases with the number of divisions
that separate the progeny from the stem cell.

Apoptosis .

/ A g e 4 • « , • • • • • • • | \
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Differentiated.cells constitute ^ \ y ^ . •£
the migrating compartment , , v^r u
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Fig. 5.1 The history of one daughter DC. It undergoes 3 rounds of division. The number
of cells in the last generation is 8.

Figure 5.1 traces the offspring of one DC created from a SC. Different
levels represent consecutive moments of time (or rounds of proliferation).
Another interpretation of this figure is spatial: we can think of cells of
consecutive generations to be located closer and closer to the top of the
crypt. The cells of "age 4" are the closest to the top, and they are shed
into the lumen. This can be better seen in Figure 5.2.

The progeny of a single daughter cell is marked by the same letter. The
degree of maturation/differentiation is reflected in the intensity of shading:
the darker the circle is, the more mature is the cell. The apoptotic cells
are presented by dashed circles. At all moments of time, the crypt contains
DCs of 4 generations. In the beginning (the leftmost diagram) there are
progeny of cells A, B and C, and a newly produced daughter cell, D. After
some time (the middle diagram), all of the "oldest" cells (marked with A)
have been shed, the cells B and C went through one round of division,
advancing their degree of maturation and moving upward, and a daughter
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Fig. 5.2 Schematic snapshots of one crypt at three moments of time. The stem cell is
marked by "S".

cell, E, has been produced. The process of renewal goes on in this way,
eventually replacing all DCs in the crypt [Komarova and Wang (2004)].

In Figure 5.2 only one stem cell is shown to repopulate the crypt. In
reality, there are several stem cells per crypt, and thus each crypt is a
composition of several clones. This can be easily included in our model:
if, for example, there are four stem cells in the crypt, then this crypt can
be viewed as a "superposition" of four crypts. The general rule that more
mature cells are situated closer to the top of the crypt still holds, and
the general dynamics of each of the clones is as in Figure 5.2. The only
difference is in the numbers that should be used in the model.

Several models of SC dynamics have been designed, [Ro and Rannala
(2001); Yatabe et al. (2001)]. In these papers, two main mechanisms of
SC reproduction have been proposed. In the deterministic model, each SC
divides asymmetrically, and the number of SC is kept constant. In more
sophisticated models, each SC has a probability to produce upon division
(i) two SCs, (ii) one SC and one DC, or (iii) two DCs. In this model,
the number of stem cells fluctuates. The latter model seems to be more
realistic. Here, we will use the simpler model, and note that the methods
and results developed should remain the same, with minimal changes, if
the reproduction model for stem cells is refined.
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5.3 Three scenarios

Let us first describe the process of accumulation and spread of mutations in
a dynamic crypt. By "mutations" we mean any kind of genetic alteration
(a point mutation, a loss of heterozygocity (LOH) event, etc.) which leads
to the inactivation of an allele of the APC gene. We will assume that a
cell with a single mutation has the same properties as a wild type cell, and
a double-mutant has the ability to avoid apoptosis, continue divisions and
thus remain and spread in the crypt.

\Q / \ © X X *

"sd" (j ® <jp <S5 ®

"dd" o o o o o

Fig. 5.3 Three scenarios of the emergence of a double mutant, (a), the ss scenario, (b),
the sd scenario, (c), the dd scenario. The open circles are wild-type cells, circles with
an "x" contain one mutation in the tumor suppressor gene, and double-x's are double
mutants.

There are three logical possibilities of accumulation of mutations, see
Figure 5.3.

(i) In the ss scenario, Figure 5.3a, a mutation happens in the stem
cell. Then, after a few divisions, the entire crypt will consist of
mutated cells. At some point, a second mutation occurs in the SC,
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shortly after which the entire crypt will consist of double mutants.
This is the scenario consistent with the "bottom-up" hypothesis. It
predicts that the crypt will be monoclonal with respect to double
mutations.

(ii) In the sd scenario, Figure 5.3b, again a mutation occurs in the
SC which then spreads throughout the crypt. However, the first
double-mutant emerges in the proliferating/migrating compart-
ment. This mutant divides and its progeny first spreads in the
upward direction. At this point, the lower part of the crypt is
monoclonal with respect to one mutation in the APC gene, and
the upper part of the crypt is monoclonal with respect to two mu-
tations.

(iii) In the dd scenario, Figure 5.3c, a mutation occurs in one of the
migrating daughter cells. The cell divides, its progeny moves in
the upward direction, but before it undergoes apoptosis, one of
these cells experiences a second hit, creating a double mutant. As
a result, the lower part of the crypt consists of wild-type cells, and
the upper part is composed of monoclonal double-mutants.

5.4 Mathematical analysis

It is convenient to introduce the quantity I, the total number of division
rounds during the life-span of one clone, see Figure 5.1. This number in-
cludes one asymmetric division of the stem cell and l—l rounds of symmetric
divisions of the DCs (for simplicity we assume that these are synchronized).
The total number of progeny of an SC existing at any one time in a crypt,
is 2l - 1. We denote N = 2l. For example, in Figure 5.1 we have I = 4,
AT = 16.

Since the probability of the first hit, p\, is very small, it can be shown
that most of the time the population of the crypt will be homogeneous, that
is, most of the cells will either be wild-type, or will contain one mutation,
see also [Komarova et al. (2003)]. Indeed, if a mutation arises in a DC,
it gets washed out in less than I time-steps; in fact, most of the mutants
are very short-lived, and only survive for one or two time-steps, because at
each moment of time, the majority of the crypt consists of cells only one or
two steps away from apoptosis, see Figure 5.1. The frequency with which
new mutants are created is Npi, and only about 1/N of these mutants will
happen in an SC. So the condition pi <C 1/JV (the homogeneity condition)
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guarantees that the crypt contains no mutants most of the time. Unless, of
course, a mutation occurs in a SC, in which case in less than I time-units,
the entire crypt will consist of mutant cells. Finally, a double mutant may
appear, but in this case we assume that the process is over and a dysplastic
crypt has been created. Note that the homogeneity condition easily holds
for the realistic values, px ~ 10~7 [Albertini et al. (1990)], and N ~ 103

[Kim and Shibata (2002); Potten and Loeffler (1990)].
Let us call the probability to find the entire crypt consisting of wild-type

cells, XQ. The probability that the entire crypt consists of cells with a single
mutation is x\, and the probability that the crypt is dysplastic (contains
one or more double mutants) is x2. The symbols Xo, X\ and X2 will
be used to denote the corresponding states. Because of the homogeneity
condition, we have Xo + X\ + X2 ~ 1. A double mutant can be created via
two major pathways. One pathway includes a fixation of a single mutant.
First, a mutation happens in a SC (the rate is p\), after which the entire
crypt enters state X\, and then a new mutation occurs (with rate Np2),
which brings the crypt to the state X%. Alternatively, a second mutation
can occur in a mutant clone which originates in a DC, without a prior
fixation of a single mutant. This happens with the rate R, which we now
calculate.

Calculation the rate of double mutant generation, for path dd. Let
us write down the probability to have at least one mutant such that both
mutations happen in the DC (given that no SC mutations have happened).
We assume that the mutation rate, pi, is sufficiently small such that the
clones can be treated independently (the condition is p\N <C 1), and con-
sider a doubly stochastic process, see also [Iwasa et al. (2004); Moolgavkar
et al. (1988)]. We obtain

i

R = J2r^-
1 = 1

To see this, we write down the total rate of primary mutations,
YJ\=\ P I 2 ' " 1 = PiN ( t h i s i s v a l i d foipiN <C 1). Then each term r; = p^'1
is a contribution corresponding to the first mutation happening in a DC
of generation i. Vi is related to the "secondary" stochastic process which
happens in the clone after the first mutation. Inside such a clone, we have
2̂ -1+1 _ 2 cell divisions, so that the total probability to get a second hit is

Vi = 1 - (1 -p2f-i+1-2 « 1 - e-^(2'-*+l-2).
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We have

R = pi ^ 2 i - 1 ( l - e -^ (2 ' - i + 1 - 2 ) ) .
i=l

This expression can be calculated by replacing the summation with an
integral,

Iog2 [2 N J^ J

In the limit of small p2, we have the following expression,

^ 1 p 2 ( | l o g p 2 | - l o g 2 - 7 )
R b g l ( 5 1 )

(here 7 is the Euler's constant, 7 « 0.577).
It is interesting to compare this with the results of Chapter 3, obtained

for the rate at which a double mutant is produced in a two-hit model. In
Chapter 3, the structure of compartments is not taken into account, but the
phenomenon of "stochastic tunneling" tunneling that we introduced there
is very similar to pathway dd studied here. Indeed, tunneling occurs when
the second hit occurs before the first hit has had a chance to reach fixation.
For such models, the rate R, roughly speaking, is given by Npi^/p~2. We can
see that taking account of the structure of the colon changes these results.
In particular, the new rate given by (5.1) is lower because P2I logy>2| < \fpi-

Equations containing all scenarios. We have the following equations
for the mutation processes:

xo = -pix0 - Rx0, (5.2)

±1 =pix0 - Np2xi, (5.3)

±2 = Np2xi + Rx0. (5.4)

The probability to obtain a double mutant, x2, is given by equation
(5.4). It can be rewritten as a sum of three contributions,

x2 = xdd + xsd + xss.

Here, the probability to obtain a double mutant by two DC mutations is
given by

xdd = Rx0,
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which yields

dd _ Jg(l-e-fr+«>«)

x ~ vi+R ' ( '

The probability to obtain a double mutant by first mutating the stem cell
is

xsd + xss = Np2X!, (5.6)

where xss refers to the pathway where both mutations occur in the SC, and
xsd implies the second mutation in a DC. We have the following intuitive
relation,

xss/xsd « 1/N. (5.7)

This means that the vast majority of double mutants will acquire the second
mutation in the differentiated stage. We can solve equations (5.2), (5.3)
and (5.6) and use equation (5.7) to eliminate xss to obtain the following
expressions:

~ {Pl + R)(Pl + R-Np2y [b-*>

where A = Np2(e-^+R^ - 1) - (Pl + R){e~Np2t - 1), and

xss = Xsd/N_ (59^

Relative importance of the three scenarios. It is clear that the prob-
ability of the ss scenario is small compared to the sd scenario. As time
increases, we have

l i m xdd = _ H
t-*oo Pl + R

This means that if the condition R > pi is satisfied, then the majority
of double mutants will acquire both mutations in a DC. Using expression
(5.1), we obtain the following inequality,

P2|logp2| > jj. (5.10)

If this condition is satisfied, then the probability to obtain a double mutant
by two hits in the DC compartment is larger than the probability to first
get a mutation in an SC. It is interesting that this condition only depends
on the second mutation rate, p2, and is independent on the first mutation
rate, p\.
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A technical note: very little elaboration is required to obtain the re-
lationship between xss and xsd, equation (5.7). This simple relationship
provides important insight that "stem cells are not the entire story, and
the second hit is more likely to occur in a DC". However, we need to do
more work to answer the following question: how likely is it that both hits
fall outside the stem cell compartment? This is where the above model
becomes necessary.

Simulations. To check our analytical results, we can use numerical simu-
lations to study the crypt dynamics. Let us trace the offspring of one stem
cell; the process goes on until the first double mutant is created. We record
whether each of the hits in the double mutant was the result of an SC or
a DC mutation, and then we stop the simulation for the crypt. This pro-
cess is repeated many times, and then the probability of different pathways
is estimated. We ran the simulation with 103 and 107 realizations. The
results are almost the same which suggests convergence.

Figure 5.4 plots the probability of having a double mutant via different
pathways by time n. The curves represent analytical prediction by formulas
(5.5), (5.8) and (5.9). The points are results of numerical simulation and
they agree with the calculations very well. Notice that for p\= P2 = 10~4

(Figure 5.4a) the probability of having a double mutant initiated in an SC
(pathway sd) is greater than the probability of having a double mutant
initiated in a DC (pathway dd). On the other hand, when p2 increases to
p2 = 1CT3, the situation reverses, see Figure 5.4b. The reversal of the two
scenarios is predicted correctly by formula (5.10): if N = 29 = 512, this
condition holds for p2 = 10~3 and it does not hold for p2 = 10~4.

Figure 5.4c shows the situation corresponding to colon cancer initiation
in the presence of chromosomal instability. The first mutation rate, p\ =
10~7, corresponds to the basic point mutation rate. The second mutation
rate corresponds to a highly elevated rate of LOH in unstable cancers,
Pi = 10~2. We can see that the dd scenario prevails in this case.

Simulating crypt dynamics for lower values of mutation rates, e.g.,
Pi = Vi w 10~~7, which corresponds to both hits occurring with the basic
point-mutation rate, is very time-consuming. More sophisticated numerical
methods could give a faster performance, but here we would like to empha-
sizes the value of analytical results. Our formulas are valid for arbitrarily
small values of mutation rates, and in fact, the precision of the method
grows as pi^ decrease!

Finally, we have derived an exact analytical formula for the total prob-
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Fig. 5.4 The probability to acquire a double mutant as a function of time, with I = 9.
Numerical simulations are compared with analytical results, "o" denotes the simulation
for sd pathway, "+" denotes the simulation for dd pathway, and "0" denotes the sim-
ulation for ss pathway. In (a), pathway sd is more likely. In (b), where P2 is an order
of magnitude larger, pathway dd prevails. In (c), dd pathway prevails. Pathway ss is
always the least likely scenario.

ability of creating a double mutant, see Appendix 12.6. This was used to
check the simulations by comparing the numerical value of xss + xsd + xdd

with the exact formula, expression (A.I) in Appendix 12.6. The formula
gave a perfect agreement with simulation results (data not shown). For-
mula (A.I) works very well for large values of j>\%i- For instance, it can give
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the probability of producing a double mutant, where the approximation of
this section breaks down, that is, in the regime where pi ~ I/AT. However,
the exact calculation of Appendix 12.6 has the same disadvantage as the
numerical simulations: for low values of P12 it becomes difficult to imple-
ment. The approximate formulas (5.5), (5.8) and (5.9) can be used for all
realistic values of mutation rates.

5.5 Implications and data

We considered the renewal dynamics of a colon crypt, repopulated by asym-
metric divisions of stem cells. Dysplasia occurs as a result of inactivation of
both copies of the APC gene (or other genes in the Wnt pathway). Thus, it
takes two hits before phenotypic changes occur. There are three pathways
for the two hits: ss (both hits occur in an SC), sd (the first hit occurs in
an SC, and the next hit is acquired by one of the DC in its clone), and
dd (the first hit is acquired in a DC, and the second hit occurs in one of
its progeny). The results obtained from the mathematical models can be
summarized as follows:

(1) The probability of the ss pathway is negligible. That is, it is unlikely
that both hits occur in the SC.

(2) As a consequence, at least one of the hits will occur in the migrating,
proliferative compartment. This is consistent with the observation that
below the dysplastic layer, cells in the crypt do not exhibit the APC~/~
phenotype. The relative importance of sd and dd pathways depends on
the parameters of the system.

(3) In particular, if p2| Iogp2| > 1/-W, the dd pathways become more impor-
tant. It means that the first double mutant will appear outside of the
SC compartment. This contradicts previous thinking that SCs are cru-
cially important for colon cancer initiation, being the first mutational
"targets".

(4) If the reverse condition holds, that is, if P21 log P21 < 1/W> then the
most likely scenario is the sd pathway, that is, first an SC acquires a
mutation, then all of its offspring contain an inactivated APC copy,
and then one of these daughter cells acquires a second hit. According
to the sd scenario, the crypt below the dysplastic cells should contain
cells with one inactivated and one functional copy of the APC gene.
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One remarkable property of the model is a very small number of param-
eters that it contains. For instance, the condition which identifies whether
an SC mutation is important (that is, which of the pathways sd and dd is
more likely), only depends on two parameters, p2 and N. Table 5.1 identi-
fies the most important pathway, depending on the parameter p2 and the
number of SCs per crypt. The parameter N can be found as follows. If
there are n SCs per crypt, then N is the size of the crypt divided by n, that
is, the "share" of each of the SCs in the crypt. We suppose that there are
2,000 cells in a crypt, and the number of SCs per crypt is varied between
1 and 32 [Potten and Loeffler (1990)].

Table 5.1 The most likely pathway for the
two hits

Number of stem cells per crypt
p2~~ 1 I 2 I 4 I 8 I 16 I 32~

10~7 sd sd sd sd sd sd
10~5 sd sd sd sd sd sd

~ l ( r 4 dd~ sd ~sd~ sd ~~scT sd
10~a dd dd dd dd sd sd
10-~^~ dd | dd~ dd \ dd~ dd dd

The parameter p2 is the rate of inactivation of the second allele of the
APC gene. In Table 5.1, it is varied between 10~7 per cell division (the
basic point mutation rate, [Albertini et al. (1990)]) and 10~2. The elevated
values of p2 may be related to the phenomenon of chromosomal instability,
which is commonly observed in colon cancers [Lengauer et al. (1998)].
There is evidence that chromosomal instability arises very early in colorectal
cancers [Shih et al. (2001b)], and the in vitro estimates of the corresponding
elevated rate of LOH give the value as high as p2 = 10~2 per cell division
[Lengauer et al. (1997)]. We can see that without chromosomal instability
(low values of mutation rate), the pathway sd is more likely. For elevated
rates of APC inactivation, it is more likely that both hits will occur in the
migrating compartment.

There are several examples in the literature which support the notion
that cancer cells might arise in partially differentiated cells. One such
example is leukemia, [Grisolano et al. (1997)]. Acute myeloid leukemia
(AML) is assumed to reflect transformation of a primitive stem cell com-
partment. On the other hand, it is thought that acute promyelocytic
leukemia (APL) arises in committed myeloid progenitors. The evidence
in support of the partially-differentiated-cell origin of APL has been re-
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ported in [Turhan et al. (1995)], where clonality of leukemia was studied.
Furthermore, many mouse models of APL have been designed [Brown et al.
(1997); Grisolano et al. (1997); He et al. (1997); Westervelt et al. (2003);
Westervelt and Ley (1999)], which suggest that genetic changes occurring
in committed cells may lead to cancer initiation. For some solid tumors,
it has also been proposed that the first change may occur in differentiated
cells; this includes skin cancers [Perez-Losada and Balmain (2003)], and
stomach cancers [Kirchner et al. (2001)]. However, for most other cancers,
including colorectal cancers, no experiments have so far been performed to
clearly establish whether a partially differentiated cell can be a target for
cancer initiation.



Chapter 6

Costs and benefits of chromosomal
instability

Chapter 4 discussed mathematical models which demonstrated that genetic
instability can sometimes speed up the generation of a mutant cell which can
give rise to cancer. This underlines the verbal arguments which were first
presented in Lawrence Loeb's mutator phenotype hypothesis [Loeb et al.
(1974)]: the multi-stage nature of cancer initiation and progression requires
genetic instability; otherwise a sufficient number of mutations cannot be
generated during the life time of a human being.

The mutator phenotype hypothesis, however, considers genetic insta-
bility in general and in all its forms. Do the same arguments apply to all
types of instabilities? As reviewed in Chapters 1 and 4, genomic instability
can be divided into two broad categories: small scale mutations (such as
MSI) and gross chromosomal abnormalities (such as CIN). After a mutant
cell has been generated, it needs to give rise to clonal expansion for the
cancer to be established. If the instability induces the generation of subtle
sequence changes, the process of clonal expansion is not likely to be influ-
enced to a significant degree, and the result derived in Chapter 5 still holds.
If the instability induces destructive genomic changes, such as imbalances
in genes and chromosome numbers, then clonal expansion can be compro-
mised significantly. Although the cells can undergo uncontrolled growth,
genome destruction can result in frequent cell death and this could coun-
teract the establishment of a cancer. Therefore, while CIN can speed up
the generation of a cell with an inactivated tumor suppressor gene, it might
impair the growth of these cells and slow down clonal expansion. In the
light of this tradeoff, what is the overall effect of CIN on the establishment
and progression of a cancer? This is the subject of the current chapter.

87
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6.1 The effect of chromosome loss on the generation of can-
cer

We study the role of chromosomal instability in the context of the inacti-
vation of tumor suppressor genes (TSP). We will concentrate on a specific
event, namely, the chromosome loss event [Thiagalingam et al. (2001)].
Other features of CIN such as mitotic recombination or chromosome dupli-
cation, may contribute to an activation of oncogenes or gene dosage effects
[Luo et al. (2000); Tischfield and Shao (2003); Wijnhoven et al. (2001)],
but such events cannot turn off a TSP. Thus, focusing on cancers with a
TSP allows us to isolate one feature of CIN, and identify its role in cancer
progression.

Inactivating ^ ^ ^ ^ ^ ^ ^ 1

mutation s^^^^^^J
+/- s' ^^^^^

Normal cell TSP cell \r

( A_iv^/^"fc^ Tsp "*"
I j *•( ^ ^ ^ P capable of clonal
V J \. ^HT expansion

''inactivating ^ ^ _ ^ ^ ^ ^ \ ^
mutation ^\?

Loss of ^ v ^ ^ ^
chromosome ^ ^ A

Fig. 6.1 Two mechanisms of a TSP inactivation. First, one allele of the TSP must be
inactivated by a small-scale event, e.g. a point mutation. Then, there are two possibil-
ities. Either the second allele experiences another small-scale hit (the phenotype with
two inactivated copies of the gene is represented by a black circle). Or, the whole chro-
mosome containing the second, functional copy of the TSP could be lost (this phenotype
is represented by a black semicircle).

Let us start our quantitative study by identifying exactly how loss of
chromosomes may influence the inactivation of a TSP, see Figure 6.1 [Ko-
marova and Wodarz (2004)]. In a normal cell (an empty circle), both ma-
ternal and paternal chromosomes are present, and both alleles of the TSP
are intact. An inactivating mutation can occur which turns off one of the
alleles of the TSP (this is represented by a half of the circle turning black).
The corresponding phenotype is denoted by TSP+//~. For "classical" TSP's
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there is no noticeable change in function of such cells; both alleles must be
inactivated before a phenotypic change is observed. This second event, the
inactivation of the remaining allele of the TSP, can happen in two ways.
First of all, another inactivating small-scale event could occur (both halves
of the circle become black). Alternatively, the second allele can be lost by
a loss-of-chromosome event (this is depicted by means of a "missing" half
of a circle). This will unmask the mutated copy of the TSP and lead to a
phenotypic change in the cell.
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Fig. 6.2 TSP inactivation and clonal expansion, (a) In the case where chromosome
losses occur rarely (p = 0), we have the following sequence of events: first, a mutant
appears which has one copy of the TSP inactivated. After a while, a second mutation
may occur producing a cell with two inactivated copies of the TSP. This leads to clonal
expansion, (b) If losses of chromosomes are possible, then one of the progeny of the first
TSP+/~ cell may lose the chromosome containing the functional copy of the TSP, thus
giving rise to cells with one inactivated TSP copy and one "missing" TSP copy. Such
cells enter a phase of clonal expansion, but this happens at a slower rate compared to (a)
because of frequent chromosome loss events resulting in dead or non-reproductive cells.



90 Computational Biology of Cancer

Let us denote the rate at which small-scale genetic events happen by u
(per cell division per gene), and the rate of chromosome loss by p (per cell
division per chromosome). The basic rate at which such mutation events
occur in stable cells has been estimated to be approximately u — 10~7 per
cell division per gene. The inactivation of the first allele of the TSP will
happen with the rate 2«, because there are two alleles. The inactivation of
the second allele can happen with the rate u by a mutation, and with the
rate p by loss of chromosome, see Figure 6.2. Let us first suppose that the
rate of chromosome loss is zero, p = 0, Figure 6.2a; a TSP gene can only be
inactivated by two consecutive, independent (small scale) genetic events.
This is possible, but the probability of such a double mutation is very low.
Next, let us consider the opposite extreme, where the rate of LOH is very
high, such that p >̂ u, Figure 6.2b. Now, the second inactivation event
happens with probability p, that is, it is greatly accelerated compared to
the case p = 0. However, the price that the cell lineage has to pay is a very
high rate at which non-viable mutants are produced. This will considerably
slow down the expansion of the TSP-negative phenotype.

Therefore, there must be an intermediate, optimal (for cancer!) value
of the rate of chromosome loss, for which wild-type cells have a high chance
of inactivating the TSP gene, without having to pay too high a price in
non-viable or non-reproductive mutants.

6.2 Calculating the optimal rate of chromosome loss

The model set-up. We model epithelial tissue organized into compart-
ments. In the simplest case, there is one stem-cell per compartment. For
example, in colon this would correspond to crypts with a stem-cell situated
at the base of each crypt. Stem cells divide asymmetrically producing one
(immortal) stem-cell and one differentiated cell. Here we concentrate on
the dynamics of the stem cells. Each division event is equivalent to a re-
placement of the old stem cell with a copy of itself. Upon division of a stem
cell, the immortal daughter cell might (i) acquire a silencing mutation in
one of its alleles of the APC gene with probability u per cell division, or (ii)
lose one of its chromosomes, with probability p per cell per cell division per
chromosome. Once both copies of the TSP gene have been inactivated, the
cell will be able to escape homeostatic control and create a growing clone.
We will describe the clonal expansion by a deterministic model.
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Uncertainties still exist about the exact cellular origins of cancer, see
Chapter 5. According to the stem-cell theory, it is the stem cells which are
at risk. The de-differentiation theory suggests that partially differentiated
cells could be targets for cancerous mutations. If we do not want to restrict
ourselves to one or the other theory, we can solve the problem of opti-
mization for a number of different assumptions. According to one scenario,
cancer is initiated in adult stem cells. There are or several stem cells per
compartment, such as the crypt of the colon. Alternatively, we can assume
that a healthy compartment contains a population of partially differenti-
ated cells, which are subject to a constant turnover, but still maintain a
constant size of the compartment. Depending on the number of cells, this
can be described either with a stochastic or a deterministic model. Again,
inactivation of a TSP gene results in clonal expansion. It turns out that
the results remain very similar in the context of the different assumptions.

Optimal rate of chromosome loss. Suppose that a stem cell has a
probability to lose a chromosome p per chromosome per cell division. First
we calculate the probability to inactivate the TSP gene by time t. The
sequence of events can be expressed by the following simple diagram,

yo — " 2/1 *• 2/2

do(k) di(fc)

lose 2k lose 2fc — 1
chromosomes chromosomes

Here j/j is the probability for the stem cell to have i inactivated copies of the
TSP gene. The first event of inactivation happens by a fine-scale genetic
event (probability u times two for two alleles), and the second event is a loss
of the chromosome with the remaining copy of the TSP gene (probability
p). The parameter k is related to the cost of chromosome loss, as explained
below.

A very important issue here is the exact cost of LOH events for the cell
and its reproductive potential. In the most optimistic (for cancer) scenario,
(a), there is no reduction in fitness due to the loss of any other chromosomes:
the only chromosome that "counts" is the one containing the TSP gene. At
stage yo, a loss of either copy damages the cell, and at stage j/i, a loss of the
chromosome with the mutated copy of the TSP gene is harmful (and a loss
of the other copy leads to a clonal expansion). An alternative interpretation



92 Computational Biology of Cancer

of this extreme case is that while loss of a single chromosome copy would
reduce fitness, this is buffered by duplication events. In the most pessimistic
scenario (b), a loss of any chromosome results in cell death, unless it leads to
a TSP inactivation. It is safe to say that the reality is somewhere between
these extreme scenarios.

For scenario (b), we set do(k) = l-(l-p)2k anddi(fc) = l-(l-p)2k-\
where k = 23 is the number of chromosomes. For scenario (a), the death
rates can be expressed by the same formulas with k = 1.

We can write down the Kolmogorov forward equations for all the prob-
abilities (skipping the argument k of do and di),

W> = [ ( l - d i ) ( l - 2 u ) - l ] i t o , (6-1)

3/i = (1 - do)2uyo + [(1 - di)(l - p) - 1] »i, (6.2)

y2 = {l-d1)py1, (6.3)

with the initial condition j/o(0) = 1. We need to calculate the probability
distribution of creating a TSP~/~ mutant as a function of time, which is
given by y\. We have,

m(t) = up{& , , e K (6.4)
p + d\ — u

where we assumed that ut -C 1. Note that the argument given here holds
without change for (constant) populations of more than one cell, as long
as the number N of cells satisfies N < \/u and N < 1/^/p. Otherwise,
the calculations can be easily adapted to include the effect of tunneling, see
Chapter 3.

Once a TSP~/~ cell has been produced, it starts dividing according to
some law which is (at least, initially) close to exponential. Starting from
one cell at time t = 0, by time t we will have Zy(t) cells, with

Zy(t) = e°W-*iW]t. (6.5)

The parameter a is the growth rate of the initiated cells, and 0 < j3 < 1
is the cost due to the fact that a chromosome is missing from all CIN cells
because of the inactivation of the TSP by a loss of chromosome. The factor
[1 - d\{k)\ comes from the probability for a CIN cell to produce a non-
viable mutant, which for scenario (a) only happens if only one particular
chromosome is lost, and for scenario (b) - if any chromosome is lost.

If we now include the mutation stage, we will need to evaluate the
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convolution,

Zy(t)= fut'^-^^dt'.
Jo

The integral yields the following law of growth:

Zy{t) ~ a f l l - * ) '
where we assumed that for relevant times, a/3t > 1.

Let us ask the following question: how long does it take, on average,
for a TSP~/~ clone to reach a certain size? The answer will depend on all
the parameters of the system, and in particular, on the rate of chromosome
loss, p. For the reasons explained above, the waiting time will be very large
both for p = 0 and for very high values of p. Indeed, for very small p
the mutations that lead to a TSP inactivation will take too long, and for
very large values of p, the clonal expansion will be too slow because of the
amount of non-viable or non-reproductive cells produced. The waiting time
will have a minimum for an intermediate value of p = p*, which we call the
optimal (for cancer) value of the rate of chromosome loss. With this value
of p, a cancer will appear and grow at the fastest rate. This approach is
equivalent to the "minimum-time-to-target" method in optimization theory.

To find an optimal value of p that maximizes the growth, we solve
Zy{t) = M for t, which gives,

ap(l-di) [ u p \

and then we minimize this as a function of p. This can be done easily if we
assume that p Ĉ l/(2k) (it will turn out that the result for p* satisfies this
assumption). Expanding the expression dt{M)/dp in terms of p, we obtain
the equation for p,

1 . , , , a/3M
- = (2fc-l)log-^—,
p up

where we formally have k = 1 for scenario (a), and k = 23 for scenario (b).

Large initial number of cells. In the above model, the number of wild-
type cells in the compartment is small (N <C 1/u). In order to handle the
scenario where a large number of cells are competing in a compartment,
which may correspond to later stages of carcinogenesis, we numerically
simulated a set of quasispecies-type equations. The estimate obtained for
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the optimal value of p is very similar to the ones given for the stochastic
model above.

Parameter dependence of the result. The result for p* turns out to
be amazingly robust, see Table 6.1. We can see that p* depends logarith-
mically (that is, weakly), on the combination n = a(3M/u. As we vary
these parameters over many decades, so that K changes from 105 to 1020,
the result for the optimal value of p varies only slightly. Interestingly, it
also does not significantly depend on the overall fitness cost for the cell
brought about by chromosome loss. The results for scenarios (a) and (b)
are presented in Table 6.1. The optimal value of p is lower in scenario
(b), which is not surprising because this case assumes a higher penalty for
chromosome loss events. The remarkable fact is that the values of p* for
the two scenarios are so close to each other, and that they depend so little
on the assumptions of the model.

Table 6.1 Calculated values for the optimal
rate of chromosome loss, p«, for different val-
ues of the parameter, re, and for each of the
two scenarios, (a) and (b).

~Scenario I n = 102U I re = 105

(a) Optimistic 2 x 10~2 8 x 10~'2
(b) Pessimistic 5 x 10~4 2 x 10~3

What is even more encouraging is that we can compare these results
with the value of the rate of chromosomal loss obtained by Lengauer et
al. [Lengauer et al. (1997)] in vitro for several CIN colon cancer cell
lines. In their paper, Lengauer et al. allowed cell colonies to grow from a
single cell for 25 generations, after which FISH analysis was performed on
a subset of the progeny. This allowed to count the number of individual
chromosomes in cells. The average number of chromosomal copies was
calculated for each cell line, for each chromosome, and this was compared
with the mode number, equivalent to the number of chromosome copies in
the original cell. This was the first (and only) experiment which allowed to
calculate the rate of chromosome loss and gain, as opposed to the estimates
of the frequency of various chromosomal aberrations in a given lesion/cell
colony. Two types of cancer cells have been used: some known to possess
mismatch repair instability, and some characterized by CIN. In the cell lines
with microsatellite instability, the rate of chromosome loss was the same as
control (and indistinguishable from the background). In the chromosomally
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unstable cell lines, the rate of chromosome copy change was highly elevated.
The value that emerges from experiments of Lengauer et al. is p = 10~2

per chromosome per cell division, which is almost exactly in the middle of
the range that we obtained theoretically.

6.3 Why does CIN emerge?

Next, we will discuss the ways by which CIN could come about in carcino-
genesis. Let us compare two cell lines, one with CIN, such that its rate of
chromosome loss is optimal, p — p*, and another without CIN, such that
p<Cj),. From our argument above, and from the definition of the optimal
rate, p*, it is clear that the unstable cell line will grow faster. Now let us
reformulate the question slightly. Suppose that we start from a non-CIN
wild-type cell. In order to use the "advantages" of CIN, a cell must at some
points acquire the CIN phenotype.

Comparison of stable and unstable pathways. Let us include the
step of initiation of CIN. All pathways can be expressed by the following
diagram,

x0 — «- x i - *• x2

yo 2- - yi ^ -1/2

da(k) di(fc)

lose 2fc lose 2k — 1
chromosomes chromosomes

Here Xi are the probabilities for the stem cell to be stable and have i
inactivated copies of the TSP gene, and yi are the probabilities for the cell
to be CIN and have i inactivated copies of the TSP gene. uc is the rate at
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which a cell acquires CIN. The Kolmogorov forward equations are:

i o = [ ( l -2«) ( l -u c ) - l ]x o , (6-6)

xi = (1 - uc)2ux0 + [(1 - uc)(l -u)- \}x1, (6.7)

x2 = (1 ~ uc)uxi, (6.8)

i/o = (1 - u)ucx0 + [(1 - di)(l - 2u) - 1] j/o, (6-9)

yi = (1 - do)2m/o + (1 - M H ^ I + [(1 -d{){l-u-p)- 1] yi, (6.10)

K8 = ( l -d i ) (u+p) i / 1 , (6.11)

with the initial condition xo(0) = 1. It is easy to show that for the optimistic
(for cancer) scenario (a), the two CIN pathways (xo —> yo —> J/i —> 2/2 and
xo —> xi —> yi —> y-i) contribute equally to j/2- F°r the pessimistic (for
cancer) scenario (b), and p >̂ u, the second of these pathways gives a
much larger contribution. The reason for this is that losing a "wrong"
chromosome will destroy the cell line in this extreme scenario. Therefore,
it is much more likely to reach the state y2 if CIN appears as late as possible.
In what follows we will ignore the first pathway entirely because it either
does not contribute anything or gives a factor of 2. This simplifies the
calculation because now, the first step for both stable and CIN cancer is
Xo —> Xi, and if we only want to compare the CIN and non-CIN pathways
with each other, this step can be ignored. This is equivalent to starting
from xi(0) = 1 rather than xo(O) = 1.

The probability distribution of creating a TSP~/~ mutant as a function
of time, is given by x'2 for the stable pathway and by y2, for the unstable
pathway. We have,

±2(t) = ue-Uot,

and y2 is given by formula (6.4), with u replaced by uc.
The clonal expansion law for unstable cells is given by equation (6.5),

and for stable cells we simply have Zx(t) = eot. Taking a convolution of
the rates for the mutation and expansion stages, we arrive at the following
laws of growth:

7 (t\ ue<lt 7 (t\ uc(u + p)ea^1~d^
zx(t)-—, zy(t) = —a / 3 ( 1_d i )—•

It turns out that unless uc is several orders of magnitude bigger than u,
Zy grows slower than Zx, that is, genetically activated CIN cannot be
advantageous.
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Can CIN be the first event? Here is what the calculation above shows.
Let us assume that

(1) CIN is a genetic event which happens at a rate comparable to the basic
mutation rate, u, or even a couple of orders of magnitude larger, and

(2) unstable cells do not have any additional fitness advantages compared
to wild type cells.

/

TSP+/+ 2 u a TSP+/" u > TSP - ' ^ ^ ^
staole stable stable ^ = \ ^ - ^ ^

"activation" /
+/+ofCIN +/+2u +/-p -1-^/^^

TSP ^ TSP > TSP -^ T S P = ^ C ^
stable unstable unstable unstable^-^^^^j^

Fig. 6.3 Cancer initiation and progression in the case of stable cells (above), and unsta-
ble cells (below). The latter pathway includes an additional step, "activation of CIN".
Also, the inactivation of the second copy of the TSP gene is a fast step in the case of
unstable cancers. The second pathways takes longer if conditions (a) and (b) are satisfied
(see text).

Then a CIN cancer, even with the optimal value of p*, still cannot
progress faster than a stable cancer, simply because it requires this extra
event, the "activation" of the CIN phenotype. Let us outline the basic
reasoning at an intuitive level, by comparing two sequences of events, see
Figure 6.3. The first one (for stable cancers) involves two slow inactivation
events and clonal expansion. The other (for unstable cancers) involves
some mutations leading to the acquisition of the unstable phenotype, two
inactivation events (one slow and the other fast), and clonal expansion.
Our calculations show that under assumption (1) and (2) above, the second
sequence of events can never happen faster than the first one.

The following conclusions can be drawn from this argument. In order
for CIN to be selected for, that is, to play the role of the driving force in
cancer progression, at least one of the assumptions, (1) or (2), must be
wrong. Let us first explore the possibility that (I) is violated, and then
move on to (2).
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One way to see how CIN could accelerate cancer progression is to assume
that CIN comes about by some epigenetic mechanism with a rate much
faster than the basic mutation rate [Eden et al. (2003); Gaudet et al.
(2003); Lindblom (2001)]. This hypothesis is consistent with the numerous
but still unsuccessful attempts to find a "CIN gene" [Amon (1999); Gemma
et al. (2000); Kolodner et al. (2002); Michel et al. (2001); Ohshima et al.
(2000); Wassmann and Benezra (2001)] and (at least, partially) epigenetic
nature of CIN in yeast. If this were true, then the "activation of CIN" step
in the diagram of Figure 6.3 would be short, and this would give CIN a
chance to be "beneficial" for cancer.

Another possibility is that CIN arises because of alternative reasons,
such as environmental factors, so that the unstable phenotype has an ad-
vantage compared to the wild type cells. For example, if cells are exposed
to high degrees of DNA damage (as a result of carcinogens and metabolic
radicals), CIN can be selected for, because it avoids frequent cell cycle ar-
rest upon damage [Gasche et al. (2001)]. The effect of DNA damage on
the selection of genetically unstable cells is the subject of the next chap-
ter. In this case, all the steps in the diagram for unstable cancer (Figure
6.3) will be accelerated, which means that the instability indeed facilitates
progression to cancer.

Alternatively, CIN might be the consequence of another mutation which
confers an advantage to the cell [Cahill et al. (1999)]. It has been proposed
that a mutation in the APC gene itself leads to the development of CIN and
the generation of aneuploidy in colon cancer [Fodde et al. (2001a); Kaplan
et al. (2001)]. This could lead to a number of possibilities, for instance,
two steps in the pathway for the unstable cancer combined in one.

6.4 The bigger picture

We have calculated the optimal rate of chromosome loss assuming that
cancer is initiated by the inactivation of a TSP followed by a clonal ex-
pansion. The resulting rate, p* ss 10~2 per cell division per chromosome,
is similar to that obtained experimentally by Lengauer et al. This is a
thought-provoking result. A hypothesis consistent with our finding is that
the rate at which cancerous cells lose chromosomal material is under selec-
tion pressure, and as a result, the optimal rate, p», is the one that survives
the competition. In other words, out of many possibilities, we will mostly
see the cancers that have the optimal rate of chromosome loss, because
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these are cancers that are initiated and progress at the fastest rate.
The next natural question is the following. What happens if there are

more TSP's which need to be inactivated down the line, as cancer pro-
gresses? It is easy to see that adding another TSP to the pathway will
not change the value of p* significantly. This is because every new TSP
gene takes much less time to be inactivated than a previous one; this is a
consequence of a growing size of the lesion.

The optimal rate of chromosome loss calculated in this chapter is in-
deed optimal during early and intermediate stages of cancer progression
as long as they involve TSP's. However, at later stage of carcinogenesis,
the selective pressures optimizing the rate of LOH change drastically. It
is well-known that a lesion cannot grow above a certain small size (about
2 mm) without extra blood supply (angiogenesis). A larger or metastasizing
tumor is hard to maintain, and the price of losing chromosomes becomes
too high to be balanced by an elevated variability. Therefore, we predict
that at later stages, the optimal rate of LOH will decrease to nearly zero
[Komarova (2004)]. This is consistent with observations that late stage
cancers are sometimes (surprisingly) stable. In their recent review, Al-
bertson et al. [Albertson et al. (2003)] note that chromosome aberration
spectra seem to stabilize in advanced cancers. Some evidence comes from
comparing tumor genomes (in the same individual) of in situ and invasive
lesions [Kuukasjarvi et al. (1997b)], primary and recurrent tumors [Wald-
man et al. (2000)] and primary and metastatic tumors [Kuukasjarvi et al.
(1997a)]. Also, some established cancerous cell lines exhibit remarkable
stability [Yoon et al. (2002)], suggesting that they may originate from a
system where an optimal, stable phenotype has been shaped by selective
forces.

Similarly, if the activation of oncogenes (rather than the inactivation of
tumor suppressor genes) plays a major role in the progression of cancers,
then chromosomal instability is likely to be detrimental to the cancer. In-
deed, to turn on an oncogene, a small scale mutation is often needed rather
than a chromosome loss event or another crude chromosomal change. More-
over, a chromosome loss event may lead to the inactivation of a functioning
oncogene which will revert the process of oncogenesis. Further mathemat-
ical work will be required to investigate the effect of CIN in the context of
both oncogenes and tumor suppressor genes.

To leave the reader with an important message, we note that our analysis
leads to the insight that CIN does not arise simply because it allows a faster
accumulation of carcinogenic mutations. Instead, CIN must arise because
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of alternative reasons, such as environmental factors, fast/epigenetic events,
or as a direct consequence of a TSP inactivation. The increased variability
alone is not a sufficient explanation for the presence of CIN in the majority
of cancers.



Chapter 7

DNA damage and genetic instability

Cancer is initiated and progresses via the accumulation of multiple mu-
tations. The last chapters presented mathematical analyses of how cells
proceed down this pathway to cancer in the most efficient way. In par-
ticular, the question was addressed whether genetic instability is observed
because it allows cells to acquire oncogenic mutations at a faster rate. The
mathematical approaches concentrated entirely on the cells which develop
cancer, and did not take into account environmental factors. Environmen-
tal factors can greatly influence whether cells can become cancerous and
grow successfully. They may also provide conditions under which geneti-
cally unstable cells have a selective advantage. Identifying such conditions
is important, since they might contribute to explaining why so many can-
cers are characterized by genomic instability.

A major environmental factor in the development of cancer is the
amount of DNA damage which cells experience. DNA damage can come
from a variety of sources. Carcinogens contained in food or in the air we
breath can damage DNA. UV radiation can break DNA. Chemotherapeutic
agents can lead to various forms of DNA damage. Most importantly per-
haps, aging leads to an increased amount of DNA damage. This is because
metabolic activities produce reactive oxygen species which are toxic for our
genome [Campisi (2001)].

How does DNA damage influence the process of carcinogenesis? On
the most elementary level, it might increase the basic mutation rate. More
damage results in a higher probability that mutations are produced. More
profoundly, however, it might also influence whether genetically unstable
cells are more advantageous than stable cells, or whether stable cells can
grow better than unstable ones. High amounts of DNA damage have the
following consequences for stable cells. On the one hand, the cells main-
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tain stable genomes. On the other hand, each time a cell gets hit it repairs
the damage. This takes time and is usually manifested in cell cycle arrest
or in stalling of the replication process. Repair is therefore costly because
it slows down the overall growth of the cell population. Unstable cells are
influenced by high levels of DNA damage in the following way. They avoid
repair and therefore do not enter cell cycle arrest. On the other hand, they
pay an alternative cost. Many mutants are created, and a large proportion
of the mutants are likely to be non-viable.

This chapter will present a mathematical model to investigate whether
and how DNA damage can influence the growth processes of stable and un-
stable cells. This is done by examining the competition dynamics between
stable and unstable cells. Which cell type wins? Can an increase in the
level of DNA damage reverse the outcome of competition?

7.1 Competition dynamics

We start by exploring the competition dynamics between a stable and a
mutator cell population [Komarova and Wodarz (2003)]. They differ in
the probability with which they repair genetic damage. Stable cells repair
damage with a probability es, and mutator cells repair damage with a prob-
ability em, where es > em. We further assume that these cell populations
differ in their intrinsic rate of replication. The stable cells replicate at a
rate rs, and the mutator cells replicate at a rate rm. Let us denote the
abundance of stable and mutator cells as S and M, respectively. The com-
petition dynamics are given by the following pair of differential equations
which describe the development of the cell populations over time,

S = rsS{l -u + pesu) + aursS(l - es) - 4>S, (7.1)

M = rmM(\ -u + /3emu) + aurmM(l - em) - 4>M. (7.2)

The model is explained graphically in Figure 7.1. The cells replicate at
a rate rs or rm. These parameters reflect how often cells reproduce and
die; we will call this the intrinsic replication rate of the cells. The two cell
populations compete for a shared resource. Competition is captured in the
expressions <pS and 4>M, where 4> is defined as follows:

<l> = Srs f l - u M - /3e 8 -a ( l -e B ) ) l+Mr m |1 - u(l - /3em - a(l - em)) .

During replication a genetic alteration can occur with a probability u.
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Fig. 7.1 Schematic Diagram of the model, (a) Process of cell reproduction, DNA dam-
age, repair, cell cycle arrest, mutation, and death, (b) When DNA damage is not re-
paired, the cells can accumulate mutations. In the model cancer progression corresponds
to the successive accumulation of mutations, also referred to as the mutation cascade.

We call this the DNA hit rate. DNA damage can occur both spontaneously
(most likely at low levels), or it can be induced by DNA damaging agents
which corresponds to a high value of u. If a genetic alteration has occurred,
it gets repaired with a probability es or em. During repair, there is cell
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cycle arrest, and this is captured in the parameter /3. The value of j3
can lie between zero and one and thus reduces the rate of cell division
(given by fir). If /? = 0, the repairing cells never replicate and this is
the maximal cost. If /3 = 1, there is no cell cycle arrest and no cost
associated with repair. With a probability (1 — es or 1 — em) the genetic
alteration does not get repaired. If the alteration is not repaired, a mutant
is generated. A mutation is therefore the result of the occurrence of DNA
damage combined with the absence of repair. The mutant is viable (and
neutral) with a probability a, while it is non-viable with a probability
1 — a. Therefore, the model captures both the costs and benefits of repair:
Efficient repair avoids deleterious mutations but is associated with cell cycle
arrest. Absence of efficient repair can result in the generation of deleterious
mutants, but avoids cell cycle arrest.

Note that in this first model, we assume that mutants that are created
are either non-viable (and thus do not participate in the competition dy-
namics) or neutral (and thus have the same intrinsic reproductive rate as
the wild type). We will include the possibility of advantageous and disad-
vantageous (but viable) mutants later.

Le us explore how the competition dynamics depends on the rate at
which cells acquire genetic alterations (DNA hit rate, u). In general, if
two cell populations compete, the cells with the higher fitness wins. The
fitness of the cells is given by rS)m[l — u[l — a + eSt7n(a - 0)]]. Note that
the quantity 1 — a has the meaning of the cost of production of deleterious
mutants; we will refer to it as

Cdei = 1 - a.

Similarly, the quantity 1 — (3 is the cost of cell cycle arrest,

^arr = 1 P-

In these notations, we can rewrite the expression for the fitness in a more
intuitive way,

1~s,m — UrSiTn[Cdel + £s,m(Carr ~ Cdel)}- (7-3)

If the DNA hit rate is low (low value of u), the fitness of the cells is ap-
proximately given by their intrinsic rate of replication (rs and rm). Thus,
the cell population with the higher intrinsic replication rate has a higher
fitness than the cell population with the lower intrinsic replication rate.
On the other hand, when the DNA hit rate, u, is increased, the fitness
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(a) Small difference in repair rate (b) Large difference in repair rate

•s ^ \ \ - ^ \ X
to 0.8- ^V> X , ^**Os.

0 0.2 0.4 u 0.6 0.8 1 D 0.2 0.4 u 0.6 0.8 1

DNA hit rate DNA hit rate

Fig. 7.2 Effect of the DNA hit rate, u, on the fitness of two cell populations. At low
DNA hit rates, the population with the higher intrinsic replication rate wins. An increase
in the DNA hit rate decreases the fitness of both cell populations. However, the degree of
fitness reduction of the population characterized by the higher intrinsic replication rate
is stronger than that of the slower population of cells. If there is a sufficient difference
in the repair rates (degrees of genetic stability) between the two cell populations (a), an
increase in the DNA hit rate can result in a reversal of the relative fitnesses, and thus
in a reversal of the outcome of competition. If the difference in repair rates between the
two cell populations is not sufficient, (6), we do not observe such a reversal. Parameter
values were chosen as follows: r3 = 1; rm = 1.3; a = 0.05; f3 = 0.3; es = 0.99. For (a)
em = 0.1. For (b) em = 0.9.

depends more strongly on other parameters. In particular, the fitness of
both populations can depend on the DNA hit rate, u. Notably, an increase
in the value of u may result in a stronger decline in fitness of the cell popu-
lation with the faster intrinsic rate of replication relative to the slower cell
population (Figure 7.2). Therefore, if the DNA hit rate crosses a critical
threshold, u > uc, the outcome of competition can be reversed. The value
of uc is given by

Uc Ts ~Tm . (7,4)
(rs - rm)Cdel + (rses ~ rmem)(Carr - Cdel)

We are interested to find out, under what circumstances reversal of com-
petition can occur. One condition required for the reversal of competition is
that the stable and mutator cells are characterized by a sufficient difference
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in the repair rate (Figure 7.2) which is defined as

A e > \rs - rm\[(l - Cdel)(l - es) + e,(l - Carr)}
~~ \Carr ~ Cdel\rm

Further, we need to distinguish between two scenarios.

(1) In the first case we assume that the stable cells have a faster intrinsic
rate of replication than the mutator cells (i.e. rs > rm). Therefore, at
low DNA hit rates, the stable cells win. An increased DNA hit rate,
u, can shift the competition dynamics in favor of the unstable cells.
In other words, unstable cells gain a selective advantage as the DNA
hit rate becomes large. This is because the population of stable cells
frequently enters cell cycle arrest when repairing genetic damage and
this slows down the overall growth rate. For this outcome to be possible,
the following condition has to be fulfilled: The cost of cell cycle arrest,
Carr, must be greater than the cost of producing non-viable mutants,
Cdei- If this condition is not fulfilled, reversal of competition at high
DNA hit rates is not observed.

(2) In the second case we assume that the stable cells have a slower intrinsic
replication rate than the mutator cells (i.e. rs < rm). Therefore, at
low DNA hit rates, the unstable cells win. An increased DNA hit
rate, u, can shift the competition dynamics in favor of the stable cells.
In other words, a high DNA hit rate selects against genetic instability.
This is because the unstable cells produce more non-viable mutants and
this reduces the effective growth rate significantly. In contrast to the
previous scenario, this requires that the cost of producing non-viable
mutants, Cdei, must be higher than the cost of cell cycle arrest, Carr.
If this condition is not fulfilled, reversal of competition at high DNA
hit rates is not observed.

Table 7.1 Summary of the basic competition dynamics. If the mutators
(M) have a lower intrinsic replication rate than the stable cells (S), a high
DNA hit rate can select in favor of M. If the intrinsic replication rate of M
is higher than that of S, then a high DNA hit rate can select for S.

M slower than S M faster than S
Low DNA hit rate S win M win
High DNA hit rate M win if Carr > Cdei S win if Carr < Cdei

To summarize, this analysis gives rise to the following results (Table
7.1). A high DNA hit rate, u, can reverse the outcome of competition in
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favor of the cell population characterized by a slower intrinsic growth rate
if the competing populations are characterized by a sufficient difference in
their repair rates. The higher the difference in the intrinsic replication rate
of the two cell populations, the higher the difference in repair rates required
to reverse the outcome of competition. If the intrinsic replication rate of
the genetically unstable cell is slower, a high DNA hit rate can select in
favor of genetic instability. On the other hand, if the intrinsic growth rate
of the genetically unstable cell is faster, a high DNA hit rate can select
against genetic instability.

7.2 Competition dynamics and cancer evolution

7.2.1 A quasispecies model

In the previous section, we considered the competition dynamics between
stable and unstable populations of cells, assuming that they are character-
ized by different and fixed rates of replication. We further assumed that
mutations are either non-viable or neutral. However, mutations are un-
likely to be neutral, and will change the replication rate of the cells. In
other words, cells may evolve to grow either at a faster or a slower rate,
depending on the mutations generated. Here, we extend the above model
to take into account such evolutionary dynamics.

The competition problem. As before, we consider two competing cell
populations: a genetically stable population, S, and a mutator population,
M, see Figure 7.1b. We start with unaltered cells which have not accu-
mulated any mutations. They are denoted by So and Mo, respectively.
Both are assumed to replicate at the same rate, r0. When the cells become
damaged and this damage is not repaired, mutants are generated. If the
mutants are viable, they can continue to replicate. During these replication
events, further mutations can be accumulated if genetic alterations are not
repaired. We call the process of accumulation of mutations the mutational
cascade. Cells which have accumulated i mutations are denoted by Si and
Mi, respectively, where i — 1,... ,n. They are assumed to replicate at a
rate T-J. Stable and unstable cells differ in the rate at which they proceed
down the mutational cascade. In addition to the basic dynamics of cell
replication described in the previous section, we assume that during cell
division, mutated cells can undergo apoptosis, since oncogenic mutations
can induce apoptotic checkpoints [Seoane et al. (2002); Vogelstein et al.



108 Computational Biology of Cancer

(2000b)]. Thus, the intrinsic replication rate of mutated cells is given by
?*i(l — a), where a denotes the probability to undergo apoptosis upon cell
division. These processes can be summarized in the following equations:

50 = R0S0(l - us) - 4>S0, (7.5)

51 = auRi^Si-iil - es) + RiSi(l - us) - (f>Su 1 < i < n - 1, (7.6)

Sn = auRn-iSn-iil - es) + RnSn[l - us + au(l - es)] - 4>Sn, (7.7)

Mo = RoMo{l - um) - 4>M0, (7.8)

Mi = auRi^Mi-xil - em) + RiMi(l - um) - <f>Mu 2<i<n-l, (7.9)

Mn = auRn^Mn-^l - em) + RnMn[l - um + au(l - em)\ - <f>Sn, (7.10)
n n

w = (l-a)u (l-es)^RiSi + (l-em)Y/RiMi -</nv, (7.11)
i=l i=l

where we introduced the following short hand notations: Ri is the effective
intrinsic reproductive rate, Ri = rj(l — o) for 1 < i < n and Ro ~ r0, and
uStm are the two effective mutation rates, uStTn = u(l -/3eS i m). The variable
w denotes the non-viable mutants produced by the cells. The equations are
coupled through the function (f>, the average fitness, which is given by

n n

4> = (1 - ua) Y^ RjSj + (1 - Mm) J2 RiMr
3=0 j=l

Solving quasispecies equations. Equations (7.5-7.11) are an example
of a guasispecies-type system, which is a well-known population dynamical
model in evolutionary biology. Quasispecies equations were first derived
for molecular evolution by M. Eigen and P. Schuster [Eigen and Schuster
(1979)], and since then have found applications in many areas of research,
including biochemistry, evolution, and game theory.

In order to analyze system (7.5-7.11), we would like to review some of
the techniques for solving quasispecies equations. Let the variable x =
(xo, x\,..., xn±i) satisfy the system

x0 = aoxo - 4>x0, (7.12)

±i = biXi-i + diXi - cj>Xi, 1 < i < n, (7-13)
n

xn+i = ^CiXi - 4>xn+1, (7.14)
i=0
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where

n

<t> = {a0 + CQ)X0 + J^[(afe + ck)xk + bkxk-i\.
fe=i

We have YA:=O xk = 1- System (7.12-7.14) is nonlinear. However, the
nonlinearity can be removed by the following trick. Let us consider the
variable z = (ZQ, Z\, ..., zn+i) which satisfies the following system:

10 = aozo, (7.15)

11 = biZi-i + ciiZi, 1 < i < n, (7.16)

zn+i = ^2ciZi. (7.17)
i=0

If we set

ra+l

Xi = Z i / ^ z f c , 0 < i < n + l , (7.18)
fe=0

then the variable x satisfies system (7.12-7.14). The general solution of
system (7.15-7.17) is given by

n
z(i) = ^ a j - v k V ' * + a n + iv(" + 1 \ (7.19)

j=0

where oij are constants determined from the initial condition, and v^
are eigenvectors of the appropriate triangular matrix corresponding to the
eigenvalues a,-. The eigenvector v(n + 1) = (0 ,0 , . . . ,0 ,1)T corresponds to
the zero eigenvalue, and for the rest of the eigenvectors we have,

( 0, i < j ,
v[j) = I I, i = j , (7.20)

(_1 \i-j rP"-3 hj+k i + 1 < ? < r?{ I 1J llfc=l (aj+h-aj)' -? + i - * - n -

Prom solution (7.19) and transformation (7.18) we can see that as time
goes to infinity, the solution x(i) tends to the normalized eigenvector cor-
responding to the largest of the eigenvalues ao,...,an-

The exact solution corresponding to the initial condition z(0) =
(1 ,0 , . . . , 0)T can be found. The appropriate coefficients in equation (7.19)
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are

ai=tlj—^ v 0 < i < n .
™Ji (ai - am-l)

For the ith component, we obtain,

\fc=l / j=0 m=0, m#i J m

The short-time behavior of this quantity is given by

Zi(t) = \f[h)t\ 1 < i < n, Ojt < 1 Vj.
\fc=i /

The expression for zn+i can also be obtained but is slightly more cumber-
some.

Mutation cascades. Let us assume that ao < an, and in addition we
have a,i - a4_i ~ a, ~ 1. Then the system exhibits the following behavior
(Figure 7.3).

Starting from the "all Xo" state, the fraction of XQ goes down steadily,
and the population acquires some amount of x\ (they may or may not be
the majority). Upon reaching a maximum, the fraction of x\ decreases
and the fraction of x2 experiences a "hump", to be in turn replaced by X3,
etc. The characteristic time at which each type experiences its maximum
abundance can be estimated if we replace the expressions for Zj(t) in (7.21)
by the leading term, i.e. the term which has the largest exponential, so
that

* ( * ) * ( n bm )eait-
Then type i is at its maximum near

*«** = ~J— flog — ^ — + T log ^ L Z - ^ . (7.22)
a-i-i -a,i y at- a ; _ i ^Q <n - am J

In particular, after time tn, the type xn will dominate.

Multidimensional competition dynamics. Equations (7.5-7.11) rep-
resent two parallel mutation cascades, that is, two sets of quasispecies
equations, coupled via the common fitness term, <f>. In order to use the

(7.21)
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Fig. 7.3 Simulation of mutation cascades. In the picture above, we have â  = ai-i + 2,
for 1 < i < n and bi = e. In the picture below, we have a, = Oi_i + 2(1 + £j)
and bi = e(l + Q), where ^j and Q are some random numbers drawn from a uniform
distribution between zero and one. For both pictures, n = 9, C; = 0 for all i, e = 0.001
and ao = 1.

techniques developed above, let us write the equations for the mutational

cascade in a simpler form,

z0 = aozo, ii = hz^i + diZi, 1 < i < n, (7.23)

z'o=a'oz'o, z'i = l/iz'i_1+a'izti, 1 < i < n, (7.24)
n

Zn+l = ^2(ckZk + 4 4 ) . (7-25)
fc=0
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by introducing the following obvious notations:

Zi —• Si, z'i —>• Mi, 0 < i < n, zn+1 —• u>, (7.26)

Oi = Ri(l-ua), a^Riil-Um), 0 < * < n - l , (7.27)

an = Rn[l-us+ au(l - es)], <4 = i?n[l - wm + cm(l - em)], (7.28)

bi = auRi-1(l-es), t/i = auRi-1{l-em), 1 < i < n, (7.29)

d = (1 - a)JRiu(l - es), c- = (1 - a)JRiw(l - em), 0 < i < n. (7.30)

In a matrix notation, equations (7.5-7.11) read:

z = f.z, z' = fmz', (7.31)

where the fitness matrices fs,m are found from (7.23-7.25). The solution of

the nonlinear system can be found by re-normalizing the solution of system

(7.23-7.25), as before.

Fitness landscape. In order to analyze the dynamics of system (7.5-7.11),

we have to make assumptions on the fitness landscape for the consecutive

mutants (Figure 7.4).

r-. (a) Apoptosis intact (j,j Apoptosis impaired
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Fig. 7.4 Fitness landscape as a result of the successive accumulation of mutations by
cells. We distinguish two scenarios, (a) If apoptosis is intact, accumulation of mutations
results in a lower fitness compared to unaltered cells. Even if the mutations result in an
increased rate of cell division, the induction of apoptosis in mutated cells prevents them
from attaining a higher fitness than the unaltered cells, (b) If apoptosis is impaired, the
accumulation of successive mutations will eventually result in a higher fitness compared
to unaltered cells. The exact shapes of the curves are not essential. What is important is
whether the mutants will eventually have a lower (a) or higher (b) intrinsic reproductive
rate.
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Since we are interested in cancer progression, we assume that the intrin-
sic rate of cell division of the consecutive mutants, ri: increases (ri+i > r^).
Such mutations could correspond to alterations in oncogenes or tumor sup-
pressor genes. Because an accumulation of mutations cannot result in an
infinite increase in the division rate of cells, we assume that the division
rate plateaus. Once the cells have accumulated n mutations, we assume
that further viable mutants are neutral because the division rate cannot be
increased further. (This end stage of the mutational cascade is thus mathe-
matically identical to the simple model discussed in the last section.) While
we assume that the consecutive mutants can divide faster, they can also
carry a disadvantage: the mutations can be recognized by the appropriate
checkpoints which induce apoptosis. With this in mind, we will consider
two basic types of fitness landscapes. If r0 > rn(l — a), the intrinsic growth
rate of the mutated cells, Si and M,, will be less than that of the unaltered
cells, So and Mo (Figure 7.4). While the mutations allow the cells to es-
cape growth control, the mutated cells are killed at a fast rate by apoptosis
upon cell division. This scenario corresponds to the presence of efficient
apoptotic mechanisms in cells. On the other hand, if TQ < rn(l — a), the
accumulation of mutations will eventually result in an intrinsic growth rate
which is larger than that of unaltered cells (Figure 7.4). While mutated
cells can still undergo apoptosis upon cell division, apoptosis is not strong
enough to prevent an increase in the intrinsic growth rate. Hence, this sce-
nario corresponds to impaired apoptosis in cells. In the following sections,
we study the competition dynamics between stable and mutator cells in an
evolutionary setting, assuming the presence of relatively strong and weak
apoptotic responses.

Time scale separation. In what follows we will assume that the dynamics
of the two cell populations happen on two different time scales. In other
words, we require that the stable population is still in the state So while
the unstable population has already produced all mutants and reached a
quasistationary state.

The typical time, if, of change for the type So is found from equation
(7.22). Similarly, we can find the time, i™, it takes to reach the state Mn.
It is given by the same equation (7.22) except the coefficients in the nth
equation must be replaced by the corresponding coefficients with primes.
The mapping to the biological parameters is found from (7.26-7.30). Note
that using formula (7.22) has its restrictions, and in the case where it is not
applicable, one can directly calculate £™ by estimating the time it takes for
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zn to reach its maximum (see formula (7.21)). The inequality

*i < C (7-32)

guarantees that by the time the unstable population has traveled down the
mutation cascade to approach its quasistationary distribution, the stable
population of cells is still dominated by SQ .

The conditions for the reversal of competition. In the multidimen-
sional competition problem, equations (7.31), the outcome is determined by
the largest eigenvalue of the fitness matrices, fs and fm. As time goes by,
the unstable cell population will approach its stationary distribution (de-
fined by the eigenvector corresponding to the principal eigenvalue), and its
fitness is given by the eigenvalue. Because of the time-scale separation, we
will assume that during this time, the stable population remains largely at
the state So- Thus the "winner" of the competition is defined by comparing
the two eigenvalues, ao and a'n, see equations (7.27-7.28).

Let us define the value of u, uc, so that for u = uc, we have ao = a'n. As
the hit rate passes through uc, the result of the competition reverses. We
have

RQ — Rn

Uc~ Ro-Rn- (3(R0es - Rnem) + Rna{l - em)"

In order to determine whether competition reversal takes place for each
scenario (see below), we need to make sure that the following condition is
satisfied:

0 < uc < 1.

In the next sections we will examine different parameter regimes and con-
clude that competition reversal may or may not take place; we derive the
exact conditions for this. In what follows, we will use several definitions.
Let us set

Ae = es - em,

and denote by es the following threshold value of es,

_ aRn

6s~ f3Ro + Rn(a-(3y {7-66>
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This quantity is defined from setting uc = 1 and Ae — 0. Finally, we define
the critical gap, A*e, between the two values of e, by setting uc = 1:

Now, let us go back to the two types of fitness landscape, Figure 7.4,
and examine the scenarios of strong and weak apoptosis separately.

7.2.2 Strong apoptosis

Here we assume that the apoptotic mechanisms in cells are strong. That
is, VQ > rn{l — a) (Figure 7.4a). This means that although the successive
mutations will allow the cell to divide faster, the induction of apoptosis
ensures that the intrinsic growth rate of the mutants is lower compared to
unaltered cells. Note that it is not necessary to assume that oncogenic mu-
tations allow cells to divide faster. Indeed, some cancer cells may progress
more slowly through the cell cycle than healthy cells. The important as-
sumption is that accumulation of mutations lowers the intrinsic growth rate
of the cells.

In this scenario, the intrinsic growth rate of the stable cells, S, is higher
than that of the unstable cells, M. The reason is as follows. The population
of stable cells, S, has efficient repair mechanisms. Thus, most cells will
remain at the unaltered stage, So- Because population M is unstable, a
higher fraction of this cell population will contain mutations. Since these
mutations impair reproduction (e.g. because of induction of apoptosis),
the intrinsic growth rate of the unstable cells, M, is lower than that of the
stable population, 5*.

At low DNA hit rates, the cells with the faster intrinsic growth rate win
the competition. Thus, at low DNA hit rates (low value of u), the stable
phenotype, S, wins (Figure 7.5a). On the other hand, at higher DNA
hit rates (high value of u), the outcome of competition can be reversed
because frequent cell cycle arrest significantly reduces growth. That is, the
genetically unstable cells, M, may win and take over the population. As
in the simple model discussed above, it requires that the cost of cell cycle
arrest is higher than the cost associated with the generation of deleterious
mutants (i.e. Carr > Cdei)- Furthermore, reversal of competition may
require that the repair rate of stable cells (es) lies below a threshold, and
that there is a sufficient difference in the repair rate between stable and
unstable cells.
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As the population of unstable cells wins, they accumulate mutations.

Even if the sequential mutants are disadvantageous because of the induc-

tion of apoptosis, the high mutation rate pushes the population down the

mutational cascade. While all variants, Mi, persist, the distribution of the

variants becomes skewed toward Mn as the DNA hit rate is increased.
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Fig. 7.5 DNA damage and the selection of genetic instability, (a) Cells have intact
apoptotic responses. At low DNA hit rates stability wins. At high DNA hit rates
instability wins, (b) Cells have impaired apoptotic responses. At low DNA hit rates,
instability wins. At high DNA hit rates stability wins. Parameter values were chosen
as follows: es = 0.99; em = 0.1; 0 = 0.2. For (a) a = 0.61 a = 0.5. For (b) a = 0.1;
a = 0.2. Low DNA hit rate corresponds to u = 0.07, and high DNA hit rate corresponds
to u = 0.7. Fitness landscapes for successive mutants are given in Figure 7.4.
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These results can be obtained by a very simple analysis of the relative
values of the relevant eigenvectors, see (7.27-7.28), and by finding conditions
under which reversal can occur. In mathematical terms, strong apoptosis
corresponds to the situation where

Ro > Rn-

From definition (7.33), 0 < es < 1. Also, we will use the fact that A*e
grows with eg, so that A*e > 0 for es > es and A*e < 0 for es < es. We can
distinguish the following two cases:

• If (3 > a (which is the same as Ca r r < Cdei), we have an > a'n, which
means that Mn never corresponds to the largest eigenvalue. This means
that the stable cells always win and the competition reversal does not
happen. (Technically speaking, the reversal happens between ao and
an rather than ao and a!n.)

• If (3 < a (which is the same as Carr > Cdei), then competition reversal
will happen if the following condition is satisfied: Ae > A*e (this is
because the function uc decays with Ae). We also observe that in this
case, A*e is a growing function of es, which reaches zero at es = e, with
0 < e < 1. We have two subcases:

(a) For es < es, we have A*e < 0, and the reversal happens for any
difference between es and em.

(b) For es > es, A*e > 0, and we need a finite gap between es and em,
Ae > A*e. We also have to make sure that A*e < es, which gives
the condition

uRn
ts < -ITS--pn0

The biological interpretation of these conditions was given in the beginning
of this section.

These results have important practical implications. The model tells us
that in the presence of intact apoptotic mechanisms, a high DNA hit rate
selects in favor of genetic instability, while the tissue remains stable and
unaltered if the DNA hit rate is low. A high DNA hit rate can be brought
about both by the presence of carcinogens, or by chemotherapy. Therefore,
if healthy tissue is exposed to carcinogens, we expect genetic instability to
rapidly emerge and this can give rise to cancer progression. In the same
way, chemotherapy can select for genetic instability in otherwise healthy
tissue and thus induce new tumors as a side effect.
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7.2.3 Weak apoptosis

Now we assume that the apoptotic mechanisms in cells are impaired. That
is, r0 < rjv(l - a), Figure 7.4b. This means that accumulation of muta-
tions will eventually result in the generation of variants which have a faster
intrinsic growth rate compared to unaltered cells. Thus, in principle, both
populations are expected to eventually evolve toward the accumulation of
mutations and progression to cancer. Hence, both stable and unstable can-
cers can be observed. However, as we noted before, we assume that these
processes occur over different time scales for the two populations of cells,
condition (7.32).

If the stable and unstable populations compete, the unstable population
will have a higher intrinsic growth rate than the stable population (because
the induction of apoptosis in response to mutation is inefficient). Therefore,
at low DNA hit rates, u, the mutator phenotype, M, wins the competition
(Figure 7.5). If the DNA hit rate is increased, the competition can be
reversed in favor of the stable cell population, S. This requires that the cost
of generating deleterious mutants be greater than the cost of cell cycle arrest
(i.e. Cdei > Carr). Furthermore, a sufficient difference in the repair rate of
stable and unstable cells is required to reverse the outcome of competition.

Here is the reasoning behind these conclusions. For weak apoptosis, we
have

Ro < r̂a-

in this case, if (Rn — Ro)/Rn < a//3, then es > 1. If on the other hand

(Rn — R0)/Rn > a/fi, then es < 0. We have the following two cases:

• If (3 > a, then the function uc decays with Ae, so for reversal to occur
we need to have Ae > A*e.

(a) For (Rn — R0)/Rn < a/0, the function A*e decays with es and
crosses zero at es = e > 1. This means that for all es, A*e > 0.
We need to require that A*e < es, which gives the condition

aRn

6s>Wo-
If this condition holds then the reversal occurs, as long as Ae >
A*e; that is, the difference in repair rates must be larger than the
critical value.

(b) For (Rn — Ro)/Rn > a/(3, the function A*e grows with es and
crosses zero at es = e < 0. This means that for all es, A*e > 0.



DNA damage and genetic instability 119

We need to require that A*e < es, which gives again the condition

£s> fJRo-

If this condition holds then the reversal occurs as long as Ae >
A*e.

• If ft < a, then the function uc grows with Ae, so we need to have
Ae < A*e.

(a) Condition (Rn — Ro)/Rn > a/(3 is impossible to satisfy, so reversal
does not happen in this case.

(b) If (Rn - R0)/Rn < a I'/? then A*e is a growing function of es which
crosses zero at es = e > 1. This means that for all es, A*e < 0,
and reversal is again impossible.

Our results have practical implications. If cells develop a mutation
resulting in impaired apoptotic responses, then genetic instability has a se-
lective advantage if the DNA hit rate is low. Therefore, even if there is no
exposure to carcinogens, a chance loss of apoptosis can result in the out-
growth of genetic instability and thus progression of cancer. On the other
hand, if there is a growing cancer with impaired apoptotic responses, our
results suggest that an elevation of the DNA hit rate by chemotherapeutic
agents can reverse the relative fitness in favor of stable cells, and this can
result in cancer reduction or slower progression.

A note of clarification: in the above arguments we assumed for simplicity
that apoptosis is inefficient in both the unstable and the stable cells. The
arguments about chemotherapy, however, remain robust even if we assume
that only the mutator phenotypes have impaired apoptosis, while the stable
and healthy population of cells has intact apoptotic responses. The reason
is that over the time frame considered, the population of stable cells remains
genetically unaltered (i.e. at stage So). Since the cells are unaltered, the
presence or absence of apoptosis does not change the dynamics.

7.3 Summary of mathematical results

The equations have examined the competition dynamics between geneti-
cally stable and unstable populations of cells. They identified under which
circumstances genetic instability is selected for or against in the context
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of cancer progression. In particular, they examined the role of the rate at

which DNA is damaged.

Table 7.2 Summary of the results gained from the model which takes into
account evolution and mutation cascades. If apoptosis is intact, mutators
(M) have a lower intrinsic growth rate than stable cells (S). Hence, a high
DNA hit rate can select for M. If apoptosis is impaired, M have a higher
overall intrinsic growth rate than S. Thus, a high DNA hit rate can select in
favor of S.

Apoptosis intact Apoptosis impaired
Low DNA hit rate S win M win
High DNA hit rate HyTwin if C a r r > Cdei "S win if Carr < Cdel

A change in the DNA hit rate can reverse the outcome of competition.
In the simplest setting, an increase in the DNA hit rate can switch the
outcome of competition in favor of cells characterized by a slower intrinsic
growth rate. This requires a sufficient difference in the repair rate between
the stable and mutator cells, and a condition on the relative values of costs
associated with cell cycle arrest and creation of deleterious mutants. The
conditions under which genetic instability is selected for depends on the
efficacy of apoptosis. In terms of cancer evolution and progression, this
gave rise to the following insights (Table 7.2).

• If apoptosis is strong, accumulation of mutations by unstable cells slows
down the intrinsic growth rate because of the frequent induction of
cell death. Thus, stable cells have a higher intrinsic growth rate than
mutators. Consequently, at low DNA hit rates, the stable cells win. The
presence of high DNA hit rates can, however, result in the selection and
emergence of the genetically unstable cells. This occurs if the cost of cell
cycle arrest upon repair is higher than the cost of creating deleterious
mutations.

• On the other hand, if apoptotic responses are impaired, accumulation
of mutations by unstable cells will not result in frequent cell death upon
division. Therefore, the intrinsic growth rate of unstable cells can be
higher than that of stable cells if adaptive mutations are acquired. In
this case, genetic instability is expected to emerge at low DNA hit rates.
At high DNA hit rates, however, genetic instability can be selected
against and mutators can go extinct. This occurs if the cost of creating
deleterious mutations is higher than the cost of cell cycle arrest.
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7.4 Selection for genetic instability

A fascinating question is how much genetic instability can contribute to
faster adaptation and evolution of cancer cells [Jackson and Loeb (1998);
Jackson and Loeb (2001); Loeb and Loeb (2000); Loeb (1991); Loeb (2001);
Tomlinson (2000); Tomlinson and Bodmer (1999); Tomlinson et al. (1996)].
It can be argued that genetic instability can be selected for due to the
following two factors:

(i) Genetic instability can be advantageous if it results in a faster accu-
mulation of adaptive mutations compared to stable cells [Loeb (1991)].
This could allow the cancer to evolve faster and to overcome selective
barriers and host defenses. An example are tumor suppressor genes
where both copies have to be mutated. Instead of the occurrence of
two independent point mutations, loss of heterozygocity in genetically
unstable cells can result in the loss of suppressor function if one copy
has been mutated.

(ii) Genetic instability can be advantageous simply because cells avoid
delay in reproduction associated with repairing and maintaining the
genome [Breivik and Gaudernack (1999a); Breivik and Gaudernack
(1999b)]. When genetic damage is detected, the relevant checkpoints
induce cell cycle arrest during which the damage is repaired. If ge-
netic damage occurs often, frequent arrest significantly slows down the
replication rate of the cells, and loss of repair can be advantageous. Ex-
perimental evidence supports this notion. Bardelli et al. [Bardelli et al.
(2001)] have shown that exposure to specific carcinogens can result in
the loss of the checkpoint that was induced by the carcinogenic agent
used.

At this stage, it is unclear what selective mechanism is responsible for
the emergence of genetic instability (or in fact whether genetic instability
appears simply as a side effect of other genetic alterations on the way to
cancer). It is possible that different types of genetic instability can have
different effects on the evolution of the cell populations. The increased rate
at which the quasispecies travels up the fitness landscape may or may not
be out-weighed by the costs associated with creating deleterious mutations.
This in turn may depend on the nature of the instability. In particular, it
may be determined by whether the genetic changes are relatively small
(such as in MIN) or larger (such as in CIN, see Chapter 6).
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If the main driving force for the emergence of genetic instability is avoid-
ance of cell cycle arrest (rather than faster adaptation), this could con-
tribute to explaining why certain instabilities are specific to certain types
of cancers or tissues. Different environments can cause different types of ge-
netic alterations which induce separate checkpoints [Bardelli et al. (2001)].
The checkpoints which are lost in the cancer would be the ones which are
most often induced in the appropriate environment and tissue surround-
ings. On the other hand, if genetic instability mainly emerges because it
allows the cells to adapt faster, we expect that instability is lost at later
stages of cancer progression. This is because the cancer has evolved to
an optimal phenotype, and now stability avoids deleterious mutations and
thus increases fitness [Cahill et al. (1999)].

7.5 Genetic instability and apoptosis

If genetic instability can result in a faster accumulation of adaptive muta-
tions (case (i) above), it could in principle be the driving force of cancer
progression. As pointed out in the previous section, it is unclear whether
this is the case, or whether alternative selection pressures are responsible
for the emergence of genetic instability. Here, we assume that instability
can result in the accumulation of adaptive mutations and explore possible
pathways to the emergence of genetic instability and cancer progression.
Assume we start from a wild-type cell which is stable and has intact apop-
totic mechanisms. The mathematical model suggests that genetic insta-
bility can only drive progression toward fitter phenotypes if apoptosis is
impaired. This is because in the presence of intact apoptosis, accumulation
of mutations results in elevated levels of cell death which slows down the
intrinsic growth rates. Thus, to gain a fitness advantage, both apoptosis,
and stability genes have to be mutated. This can occur via two pathways
(Figure 7.6).

(1) In the first pathway, the initial mutation impairs the apoptotic response
in the cell. This variant is selectively neutral compared to the wild-
type. The reason is that the cell still has intact repair mechanisms.
Therefore, mutations are unlikely to be generated in the time frame
considered. As long as mutations do not accumulate, the presence or
absence of apoptotic mechanisms does not change the dynamics of cell
growth. Following this mutation, a second mutation is generated which
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Fig. 7.6 Pathways toward the selection of genetic instability and cancer progression.

confers genetic instability. This mutant will be selected for instantly.
(2) In the second pathway, the initial mutation confers genetic instability

to the cell. Since apoptotic responses are still intact, the model analysis
tells us that this variant will have a lower fitness compared to the wild
type and will be on its way to extinction. However, because the cell is
unstable, it can generate mutations at a faster rate. Thus, there is a
chance that the mutation impairing apoptosis is generated before this
cell variant has gone extinct. As soon as the apoptotic mechanism has
been impaired, the unstable cell gains a selective advantage.

We can calculate which of these two pathways occurs faster, and this
is the pathway that is more likely to lead to selection of instability (for
mathematical details of this approach, see Chapters 2 and 4). We introduce
the following notation (Figure 7.6). The number of cells in a tissue is
denoted by N. The rate at which a genetically stable cell mutates (to be
either unstable or apoptosis impaired) is given by /i. The rate at which
an unstable cell mutates toward a loss of apoptotic function is denoted
by /2. Thus, p, > fj.. The relative reproductive rate of an unstable cell
which has intact apoptotic responses is given by a < 1 (we assume that the
wild-type reproductive rate is 1), which reflects the fact that unstable cells
with intact apoptosis have a selective disadvantage. The rate at which an
advantageous mutator is generated via the first pathway (first apoptosis~,
then repair~) is given by fx2N. The rate at which an advantageous mutator
is generated via the second pathway (first repair~, then apoptosis~) is
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given by N/iajl/(l — a). Therefore, if

a
then repair and stability are lost first. In the opposite case, apoptosis is
lost first. In biological terms, if the relative fitness of the unstable and
apoptosis competent cell is sufficiently low (because mutants are killed effi-
ciently) , then generation of an advantageous mutator is likely to proceed by
first losing apoptosis, and then acquiring genetic instability. Knowledge of
parameter values will be required to determine which of the two pathways
is more likely. The result might vary between different tissues.

7.6 Can competition be reversed by chemotherapy?

The results derived in this chapter have implications for the use of
chemotherapy (Figure 7.7). Chemotherapy essentially increases the degree
of DNA damage. Therefore, it can be used to reverse the relative fitness
of stable and unstable cells such that unstable cells are excluded (Figure
7.7). This can drive progressing cancer cells extinct and result in the per-
sistence of stable cells. These may either be healthy cells or less aggressive
and slowly progressing tumor cells. In order to achieve this outcome, there
needs to be a sufficient difference in the repair rate between stable and
unstable cells. If this is not the case, therapy can merely slow down cancer
progression.

Since in this scenario, chemotherapy acts by modulating the competition
between stable and unstable cells, it is not a requirement that every last cell
is killed by the drugs. Selection and competition will make sure that the
unstable cancer cells are driven extinct. This argument, however, requires
that there is an element of competition between unstable and stable cells.
Whether and under which circumstances this is the case remains to be
determined.

This is a different mechanism of action compared to the traditional view
which assumes that chemotherapy only acts by killing dividing cells. For
chemotherapy to reverse the fitness of stable and unstable cells, two condi-
tions are required, (i) There needs to be a sufficient difference in the repair
rate between stable and unstable cells. The higher the replication rate of
unstable cells relative to stable cells, the higher this difference in the repair
rate required to achieve success. Therefore, contrary to traditional views,
a faster rate of cell division of cancerous unstable cells renders successful
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Fig. 7.7 Simulation of chemotherapy, modeled by an increase in the DNA hit rate, u.
We start with a situation where cells which are unstable and have impaired apoptosis
spontaneously give rise to cancer growth and progression, (a) If there is a large difference
in repair rate between stable and unstable cells, therapy can exclude the unstable cells,
(b) If there is a smaller difference between stable and unstable cells, then therapy fails to
exclude instability. Parameters were chosen as follows: es = 0.99; /3 = 0.2; a = 0.1. We
assume that the degree of apoptosis differs between stable and unstable cells. Stable cells
have intact apoptosis (a = 0.5), while unstable cells have impaired apoptosis (a = 0.2).
For (a) em = 0.1. For (b) em = 0.4. Low DNA hit rate corresponds to u = 0.07, and
high DNA hit rate corresponds to u = 0.8. Fitness landscapes for successive mutants
are given in Figure 7.4.

treatment more difficult in this scenario, (ii) The cost of generating lethal
mutants in unstable cells must be higher than the cost of cell cycle arrest
in stable cells. If this is not the case, it does not pay to retain repair mech-
anisms, and the fitness of unstable cells can never be reversed. In this case,
treatment has a higher negative impact on stable than on unstable cells,
and the imitators are resistant.





Chapter 8

Tissue aging and the development of
cancer

Chapter 1 discussed cellular mechanisms which prevent cells from acquiring
genomic alterations and from becoming cancerous. When cells are dam-
aged, so called checkpoint genes induce repair, senescence, or apoptosis
[Chavez-Reyes et al. (2003); Itahana et al. (2001); Offer et al. (2002)].
The most prominent checkpoint gene is p53. It is thought to play a role in
all three responses [Vogelstein et al. (2000a)] and is mutated in more than
half of all human cancers. Loss of p53 is a defining event in the progression
to malignancy in many cases. There are many other cellular checkpoints
which have a similar role.

The activity of checkpoints such as p53 can, however, also have a differ-
ent effect. If tissue cells become damaged very often, cells might frequently
undergo apoptosis or enter permanent senescence. This could reduce the
size of the tissue and the ability of the tissue to function in a healthy
way. The amount of DNA damage increases with age [Finkel and Holbrook
(2000)]. The reason is that metabolism generates reactive oxygen species
as a byproduct, and this has a genotoxic effect. Since damage can induce
p53 activity, aging can manifest itself in increased amounts of cell death or
senescence. Therefore, high levels of checkpoint activity, as a consequence
of aging-induced genotoxic events, could contribute to the symptoms of ag-
ing in mammals or humans [Campisi (2003a); Hasty et al. (2003); Oren
(2003); Schmitt (2003)].

Therefore, there seems to be a tradeoff in the presence of high DNA
damage. On the one hand, checkpoint activity prevents the accumulation
of mutations and the development of cancer. On the other hand, it pro-
motes aging which in itself can lead to morbidity and mortality. However,
the relationship between checkpoint competence, the development of can-
cer, and the development of age related symptoms can be rather intricate.

127



128 Computational Biology of Cancer

In addition to the simple tradeoff mentioned above, there are additional
complicating factors. For example, healthy tissue cells might play a crucial
role in exerting inhibitory effects on cancer cells and in preventing the de-
velopment of cancer [Hsu et al. (2002); Mueller and Fusenig (2002)]. Such
interactions between cancer and the microenvironment were described in
Chapter 1. In this case, increased checkpoint activity could correlate with
a higher chance to develop cancer. The reason is that increased check-
point activity results in tissue aging, and this in turn results in less tumor
inhibition.

This chapter explores possible connections between checkpoint compe-
tence, aging, and the development of cancer. How does checkpoint activity
correlate with the life span of an organism? We will consider organisms
which vary in their checkpoint competence. That is, we will compare geno-
types which are more or less efficient at detecting and reacting to DNA
damage. We will relate this to mice which vary in their p53 competence.
At one end of the spectrum, there are p53 deficient mice (p53-/-). All cells
of these mice lack functional p53. Then, there are p53+/- and p53+/+
mice. The p53 +/- mice have one functional, and one inactivated copy of
p53. The p53+/+ mice have two functional copies of p53. Both p53 +/-
and p53+/+ mice are thought to be wild type, because one copy of the
gene is sufficient to display normal function, although this notion is still
under debate. At the other end of the spectrum, there are so-called super
p53 mice. These have additional copies of p53 that are active in all cells of
the animal. These organisms show an increased ability to detect and react
to DNA damage.

8.1 What is aging?

It is important to define the concept of aging in the current context. Aging
is a complex phenomenon and involves many different aspects. As humans
approach middle age, the functions of the body start to deteriorate. There
is a general decline in physical function, and possibly in mental function
as well. As humans age, they become more prone to a variety of diseases.
These involve, for example, the cardiovascular, immune, nervous, digestive,
and urinary systems. Prevalent diseases associated with aging include heart
attacks, Alzheimer's disease, arthritis, diabetes, and cancer. Most diseases
which are associated with aging might have a similar underlying genetic
and cellular cause. The diseases are generally thought to be linked to
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cellular senescence [Campisi (2001); Campisi (2003b)]. Cellular senescence
is defined as the occurrence of infinite cell cycle arrest. That is, although
the cells do not die, they stop dividing and remain in a dormant state.

As mentioned briefly in the introduction, cellular senescence can be
caused by the very checkpoint genes which are responsible for preventing
cancer. In particular, senescence is induced if a cell experiences a high
amount of DNA damage which cannot be repaired anymore. As explained
above, the amount of DNA damage which cells experience increases with
age as a result of the production of reactive oxygen species in metabolism
[Finkel and Holbrook (2000)]. This can lead to increased amounts of cellular
senescence in tissues and can lead to a decline in tissue function. In the
context of this chapter, we will therefore give the following definition of
aging: Aging is the decline in tissue function as a result of high levels of
cellular senescence which occurs in the face of elevated DNA damage. On a
more physical level this can translate into the weight of an organism or of
specific organs. Such criteria of aging have been used in experiments with
mice which examined the relationship between p53 and aging [Tyner et al.
(2002)]. We will discuss this extensively in this chapter.

8.2 Basic modeling assumptions

We consider a mathematical model which takes into account both the pop-
ulation of healthy tissue cells, and the population of first stage tumor cells
[Wodarz (2004)]. The basic difference between these two is that the popula-
tion size of healthy cells is constant, while the population of tumor cells can
clonally expand. The central concept of the model is as follows. It starts
with healthy tissue which experiences a certain amount of genome damage.
This is either repaired or not depending on checkpoint competence. In the
absence of repair, and if the mutation does not result in apoptosis, a trans-
formed cell can be generated with a certain probability (first stage tumor
cell). This tumor cell can expand and grow to a certain limited size. The
model examines the characteristic time it takes for the number of tumor
cells to increase to a defined value. The model does not consider growth
of the tumor beyond this first stage. It does, however, examine the rate
with which this first stage tumor can acquire additional mutations; this is
a measure for the ability of the tumor to progress towards more advanced
stages. The model is explained schematically in Figure 8.1. The general
question which we ask is as follows. How does a reduction in checkpoint



130 Computational Biology of Cancer

competence influence the initiation and progression of tumors?
We will study this question by numerical simulations. We determine

how long it takes the cancer to grow to a denned (arbitrary) size threshold.
This can be done with any standard ODE solver, or by writing a computer
program which solves ordinary differential equations (using for example the
Runge-Kutta method).

8.3 Modeling healthy tissue

We start with the population of healthy cells. We distinguish between
two sub-populations: functioning cells, x, and arrested cells, y. When a
cell divides, the DNA of the daughter cells is damaged with a probability
u which correlates with the application of carcinogenic agents. With a
probability 77 this damage results in cell cycle arrest (Figure 8.1). The
arrested cell repairs the DNA damage and returns to a functioning state
at a rate 7. The lower the value of 7, the longer the duration of cell cycle
arrest. If j=0, there is indefinite senescence. With a probability l-rj, the
DNA damage does not result in cell cycle arrest and repair. Now there are
two possibilities. With a probability a, the damage leads to cell death, e.g.
as a result of apoptosis. With a probability 1-a, the damaged or mutated
cell survives. With a probability (3 the mutation is carcinogenic; that is,
a transformed cell is generated. With a probability 1-/3 the mutation does
not contribute to the process of carcinogenesis. For simplicity it is assumed
that these cells are selectively neutral.

Therefore, checkpoint competence is captured in two parameters. The
parameter 77 describes the probability that damage will result in cell cycle
arrest and repair. The parameter a describes the probability that damage
results in apoptosis. The value of these parameters can range between zero
and one. A lower value of 77 corresponds to a lower probability of arrest
and repair in all cells and could in practical terms correspond to e.g. a
p53 knockout organism . If r\=0, damage is never repaired. If J]=l, repair
always happens upon damage and mutations can never occur. The same
applies to the probability to undergo apoptosis upon DNA damage.

These dynamics are given by the following set of differential equations
which describe the development of the cell populations over time.
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Fig. 8.1 Schematic representation of the principles which underlie the mathematical
model, (a) Basic cellular processes in healthy and tumor cells, (b) Dynamics which
underlie the equations.

x = px [1 - u + u (1 - rj) (1 - a) (1 - /3)] + 72/ - <px,

y = rjupx - i y - 4>y.
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The parameter p denotes the turnover rate of the cells, and (f> is an
expression which ensures that the population size x + y remains constant
(<j> = px [1 - u + u (1 - 77) (1 - a) (1 - 0)\ + r)upx; i.e. y — I — x). These

dynamics go to a steady state where both functioning and arrested cells are
present. The frequencies of functioning and arrested cells are determined
mainly by the rate at which DNA is damaged, u, the probability that DNA
damage results in arrest, rj, and the duration of cell cycle arrest, 7. (Ex-
pressions for these frequencies are not given because they are cumbersome
and un-informative.) A higher rate of DNA damage (higher value of u), a
higher probability of arrest (higher value of rj), and a longer duration of cell
cycle arrest (lower value of 7) corresponds to a lower fraction of functional
cells in the steady state (Figure 8.2).
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Fig. 8.2 The fraction of functional tissue cells is a function of the rate at which DNA
becomes damaged (u), checkpoint competence (the probability to arrest upon damage,
rf) and the duration of cell cycle arrest (expressed as the rate at which cells exit from the
arrested state, 7). Parameter values were chosen as follows: p=2; -)=0.1; u=0.3; r/=0.9;
a=0.5; (3=10-7;d = 0.1.

The effect of apoptosis on the number of tissue cells is difficult to de-
termine. In the basic model as it is written here, tissue size is assumed
to remain constant through homeostatic regulation. If cells die, the tis-
sue compensates by producing more cells. Therefore, apoptosis does not
have an effect on tissue size in this setting. During aging, however, it is
likely that the ability of the tissue to renew itself becomes compromised.
In this context, increased occurrence of apoptosis upon DNA damage can
lead to a reduction in the number of functioning tissue cells, in the same
manner as shown for the induction of cell cycle arrest. Because the rela-
tionship between aging and apoptosis is currently unclear [Campisi (2003a);
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Camplejohn et al. (2003); Gilhar et al. (2004); Jansen-Durr (2002)], and
because the processes of cell renewal and proliferation upon death may also
vary among different tissues, the effect of apoptosis will not be analyzed ex-
plicitly. Instead, the analysis concentrates on how the induction of cellular
senescence influences the relationship between a decline in tissue function
and the emergence of cancer [Campisi (2001); Parrinello et al. (2003)].

8.4 Modeling tumor cell growth

Next, consider the population of tumor cells. In addition to the basic cellu-
lar processes which have been described in the context of healthy cells, the
tumor cell dynamics are characterized by some important additional fea-
tures. The tumor cells escape homeostatic regulation and undergo clonal
expansion rather than staying at a constant population size. In addition,
the proliferation of tumor cells can be inhibited by the tissue microenvi-
ronment. This is a well documented process [Hsu et al. (2002); Mueller
and Pusenig (2002)] and is explained in more detail before the model is
constructed and analyzed.

Experiments strongly suggest that the genetic and molecular events
which occur in cancerous cells are not sufficient to account for the process
of carcinogenesis. The microenvironrnent in which the cancer develops may
be equally important for the tumor cells to escape homeostatic control and
to give rise to disease [Cunha and Matrisian (2002); Hsu et al. (2002);
Tlsty (2001); Tlsty and Hein (2001)]. The stroma surrounding the tumors
shows in many cases changes in the patterns of gene expression, cellular
composition and the extracellular matrix. This allows cancers to grow and
progress. The development of cancer can thus be seen as a conspiracy be-
tween tumor cells and their altered environment which allows uncontrolled
growth. Under non-pathogenic conditions, the tissue environment can pre-
vent tumor cells from growing to significant levels. Autopsies have revealed
that multiple small and non-pathogenic tumors exist which have failed to
progress [Folkman and Kalluri (2004)]. A major regulatory force in this
context is the inhibition of angiogenesis, i.e. the formation of new blood
supply which tumor cells need to proliferate [Bayko et al. (1998); Folkman
(2002); Hahnfeldt et al. (1999a)]. The concept of angiogenesis was briefly
reviewed in Chapter 1 and will be explored in further details in Chapters
9 and 10. Angiogenesis inhibitors are produced by normal tissue cells, but
also by tumor cells. The tumor can only progress if it attains mutations
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which allow for the production of a sufficient level of angiogenesis promot-
ers, such that inhibition is overcome and new blood supply is built. Other,
less well defined mechanisms of tumor cell inhibition have also been re-
ported [Guba et al. (2001)]. Here we focus on inhibitory effects which the
tissue microenvironment can exert on tumor cells, and examine how this
influences the relationship between checkpoint gene competence, aging, and
the development of cancer.

As before, the model distinguishes between dividing cancer cells, w, and
arrested cancer cells, z. These dynamics are captured in the following pair
of differential equations which describe the development of the tumor cells
over time,

vw
w = /3pxu (1 - ry) (1 - a) H [1 - u + u (1 - rj) (1 - a) (1 - /?)] + jz,

px + 1
riurw

z = — - 7Z.
px + 1

The first term in the equation for tumor growth represents the produc-
tion of tumor cells from healthy cells by mutation with a rate f3pxu{l —
TJ)(1 - a) (see Figure 8.1). In other words, a transformed cell is generated
when a healthy cell experiences a genomic alteration which is not repaired,
is carcinogenic, and does not result in apoptosis. The parameter r denotes
the turnover of the tumor cells. Note the absence of the parameter <j> which
means that there is no constant population size. Instead, the population
of tumor cells can grow exponentially. Similarly to healthy cells, tumor
cells can become damaged with a rate u. With a probability rj the damage
results in cell cycle arrest and arrested cells return to a dividing state with
a rate 7. With a probability 1 — rj damage does not result in cell cycle
arrest and repair. With a probability a the damage leads to cell death, for
example caused by apoptosis. With a probability 1 — a, the damaged cell
survives and attains an additional mutation. This mutation contributes to
further cancer progression with a probability j3. In addition to these basic
cell growth kinetics, the model assumes that tumor cell division is inhibited
by the surrounding tissue cells with a rate p. The higher the value of p, the
lower the rate of tumor cell division. If the value of p is sufficiently large,
the rate of tumor cell division is less than or equal to the tumor death
rate; hence, the tumor fails to grow altogether. In the model, only cells
which do not repair or are not senescent can contribute to this suppressive
activity. This is because repairing or senescent cells are not active. Note
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that the outcome of the model does not depend on the particular form by
which tissue-mediated tumor cell inhibition is described. Alternatives (such
as a tissue-mediated increase in the death rate of tumor cells) can also be
explored, and give qualitatively identical results (see Chapter 9).

It is important to note that the model only concentrates on describing
the initial growth dynamics of the tumor within a tissue environment which
varies in checkpoint competence (such as p53+/+, p53+/-, and p53-/- or-
ganisms). The checkpoints under consideration (e.g. p53) can induce cell
cycle arrest and apoptosis in tumor cells; they can be lost later in the course
of progression [Blagosklonny (2002); Kahlem et al. (2004)]. Therefore,
these initial tumor cells are assumed to have the same level of checkpoint
competence as the normal tissue cells.

There are two quantities which are important for the analysis. These
are the initial growth rate of the tumor and the mutation rate of the tumor
cells. They will be explained in turn.

(i) The initial growth rate of the tumor is made up of two components.
These are the production of tumor cells from healthy tissue, and the growth
of those tumor cells (clonal expansion). While production of tumor cells
by healthy tissue is important for the initiation of tumor cell growth, the
growth term becomes dominant as clonal expansion takes off. Because both
processes are involved in the initiation of cancer, we consider the time until
a tumor reaches an arbitrary threshold size as a measure of how fast a
tumor can develop. The longer this time, the slower the development of
cancer. In terms of experimental data it correlates with a lower fraction of
animals which show a tumor by a defined time point. It is important to
note that this growth phase only corresponds to the initial expansion phase
which leads to a first stage and detectable tumor. While not included in
the model explicitly, this initial growth is not assumed to go on. Instead
the tumor is likely to remain at a given small size until further mutations
allow the cells to progress and expand further. In the model this is dealt
with by stopping the simulation once the tumor has reached this critical
threshold size.

(ii) Thus, once a tumor has been initiated and has grown to the thresh-
old size, further progression requires the accumulation of additional car-
cinogenic mutations. This is influenced by the mutation rate of cells, /i.
The higher the mutation rate, the higher the chance that an additional
carcinogenic mutation is created. In the model the mutation rate of cells is
given by /i = (3ru(l — r))(l — a)/(px + 1).

The following sections will examine how checkpoint competence influ-
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ences the initial tumor cell growth and the accumulation of further muta-
tions. We will start by examining the basic tumor cell dynamics without
taking into account tissue-tumor cell interactions. Then, we will examine
how tissue-mediated tumor cell inhibition influences the results. As ex-
plained above, the analysis will concentrate on the effect of cell cycle arrest
and senescence, captured in the parameter 77.

8.5 Checkpoints and basic tumor growth

Here we consider how checkpoint competence influences initial tumor
growth and the accumulation of carcinogenic mutations in the absence of
tissue-mediated tumor cell inhibition (p = 0). That is, the only effect of
healthy tissue is to give rise to a transformed cell by mutation. The outcome
depends on what can be called the "cost of cell cycle arrest", and the "cost
of cell death", and is summarized in Figure 8.3a. These concepts have been
explained in detail in Chapter 7. The cost of cell cycle arrest represents the
average time cells remain in an arrested state (given by I/7). The longer
the duration of cell cycle arrest, the more the cell cycle becomes delayed,
and the higher the fitness cost for the cells. On the other hand, the cost of
cell death represents the fitness reduction of cells which is brought about
by the generation of lethal mutants. Lethality can arise from necrotic cell
death, but in cancer apoptosis will also play a very important role. The
higher the probability that a mutant is lethal (higher value of a), the higher
the cost of cell death. The behavior of the model depends on the relative
magnitude of these costs.

If the cost of cell cycle arrest is significantly higher than the cost of cell
death, a decrease in checkpoint competence correlates with faster initial
tumor growth, and with an enhanced ability to accumulate further carcino-
genic mutations (Figure 8.3a, 8.4). The reason is that cells in checkpoint
deficient organisms avoid senescence, and this leads to faster cell division
and a higher mutation rate. As the cost of cell cycle arrest is decreased rela-
tive to the cost of cell death (cells return to a dividing state faster and more
mutations result in cell death), this picture changes (Figure 8.3a). Now a
reduction in checkpoint competence can lead to a slower initial growth of
tumor cells. That is, checkpoint deficient organisms are expected to show a
reduced incidence of tumors. The lower the cost of cell cycle arrest, and the
higher the cost of cell death, the more pronounced this trend. The reason
is as follows. The advantage gained from avoiding cell cycle arrest in check-
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Fig. 8.3 Relationship between checkpoint competence (probability to arrest upon dam-
age, if) and the time it takes for the tumor to reach a critical size (first stage size). We
observe similar patterns with two mechanisms, (a) The duration of cell cycle arrest (ex-
pressed in the variable 7) is varied. Parameter values were chosen as follows: p=2; r=2;
u=0.3; a=0.9; 0=lO~7;d = 0.1; tar getsize = 1012. (b) The amount of tissue induced
tumor cell inhibition, p, is varied. Parameter values were chosen as follows: p=Z; r=2;
u=0.3; a=0.5; j3=10~7;d = 0.1; tar getsize = 1012.

point deficient organisms is outweighed by the disadvantage of increased
cell death in the absence of repair. Overall, this leads to a reduced initial
growth rate of tumor cells in the checkpoint deficient scenario. Note that
the time it takes for the tumor to reach the threshold size tends towards
infinity as 77 —>1. This is because for r]—l, genome surveillance is 100%
efficient and no mutants are ever created. This is clearly unrealistic.
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While a reduction in checkpoint competence can lead to a slower initial
growth rate of the tumor cells in this parameter region, a reduction in
checkpoint competence always results in a higher mutation rate of the tumor
cells (Figure 8.4), and thus in an enhanced ability of the tumor to progress.
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Fig. 8.4 Relationship between checkpoint competence (probability to arrest upon dam-
age, 7]) and the mutation rate of cells. The same relationship is observed irrespective
of the duration of cell cycle arrest or the rate of tissue-mediated tumor cell inhibition.
Parameter values were chosen as follows: p=2; r=2; u=0.3; a=0.9; 0=1O~7; d = 0.1.

Therefore, if the cost of cell death is high compared to the cost of cell
cycle arrest, the model gives rise to the counter-intuitive observation that a
reduction in checkpoint competence can lead to the generation of fewer first-
stage tumors during a defined time frame; however, the tumors which do
arise are expected to accumulate further carcinogenic mutations faster and
therefore have the potential to progress faster. It remains to be determined
how relevant this result is. While these conditions could hold for checkpoint
genes which are solely responsible for DNA repair, they might not hold for
checkpoints which are responsible for apoptosis, or for both senescence and
apoptosis (such as p53). If a reduction in the checkpoint leads to reduced
apoptosis, cell death in not likely to be the dominant fitness cost.
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8.6 Tumor growth and the microenvironment

Now we examine how tissue-mediated tumor cell inhibition influences the
effect of checkpoint competence on the initial growth rate of the tumor and
the mutation rate of tumor cells. The dynamics depend on the degree with
which healthy tissue exerts inhibitory activity on the tumor cells, p. This
is shown in Figure 8.3b, and also summarized by time-series simulations in
Figure 8.5.

First, assume that the tissue-mediated inhibitory activity is relatively
small and lies below a threshold (small value of p). Now the behavior of the
model is identical to the one described in the last section. We concentrate on
the parameter region in which a reduction in checkpoint competence leads
to an increased initial growth rate of the tumor cells, and to an increased
mutation rate (shown again in Figure 8.3b for reference). In other words,
senescence represents an important cost for the cells. As explained above,
reduced checkpoint competence allows cancer cells to proceed through the
cell cycle without delay following genomic alterations (Figure 8.5a). Again,
at values of rj close to 1, the time it takes the tumor to reach the threshold
size becomes rapidly longer and goes to infinity for r\=l because genomic
surveillance is 100% efficient (Figure 8.3b).

As the rate of tumor cell inhibition, p, is increased, these patterns change
(Figure 8.3b). Now, a reduction of checkpoint competence results in a
slower growth rate of the tumor (summarized by a time-series graph in
Figure 8.5b). The higher the checkpoint competence, the faster the ini-
tial growth rate of the tumor. As the rate of tissue-mediated inhibition
of cancer cells is increased further, the more pronounced this relationship
becomes (Figure 8.3b). This is the same counter-intuitive result observed
above, and is explained as follows in the current context. A checkpoint has
two opposite effects on cancer cells in the model. On the one hand, it sends
tumor cells into cell cycle arrest and this slows down tumor growth. On
the other hand, it reduces the inhibitory effect exerted by tissue cells, and
this enhances tumor growth. Tissue mediated inhibitory effects are reduced
because the tissue cells frequently enter cell cycle arrest during which they
do not function at normal levels. If tissue-mediated inhibition plays a suf-
ficiently important role in the dynamics of tumor initiation (high values of
p), the advantage gained by reduced tissue-mediated inhibition in the pres-
ence of a checkpoint outweighs the cost the cancer cells have to pay as a
result of checkpoint competence. As before, we observe that as the value of
rj approaches 1, the time it takes for the tumor to grow to the threshold size
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Fig. 8.5 Time series depicting the average initial growth of the first stage tumor in
checkpoint competent organisms (solid line) and checkpoint deficient organisms (dashed
line), (a) Rate of tissue-mediated tumor cell inhibition is zero, (b) Rate of tissue-
mediated tumor cell inhibition is relatively high. Parameter values were chosen as follows:
p=2; r=2 1=0.1; u=0.3; a=0.5; /3=10~r;d = 0.1. Checkpoint competent organisms
have 71=0.9, and checkpoint deficient organisms have ri=0.1.

goes towards infinity because genomic surveillance prevents the generation
of any tumor cells (Figure 8.3b). In contrast to the rate of tumor growth,
an increase in the level of tissue-mediated tumor cell inhibition does not
change the relationship between checkpoint competence and the mutation
rate of the cells (ability of the tumor to progress). Regardless of the value
of p, a reduction in checkpoint competence is predicted to result in a faster
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rate of mutation (Figure 8.4). Therefore while reduced checkpoint compe-
tence is expected to result in the establishment of fewer tumors within a
given time frame, the tumors which do develop are predicted to progress
faster. This is the same outcome as observed in the last section, but is
brought about by a different mechanism.

The only case where these relationships do not hold is at very high
rates of DNA damage (u —» 1). In this case, most tissue cells will be
non-functional or dead and tumor cell inhibition is not a significant fac-
tor anymore. This parameter region is, however, biologically unrealistic
because such a scenario would correspond to death of the organism as a
result of senescence or tissue destruction.

While not considered explicitly, the same considerations should apply to
checkpoints which induce apoptosis. Higher levels of apoptosis can reduce
the number of tissue cells, and this can lead to a compromised ability of
the tissue to inhibit tumor cells. If tissue-mediated inhibition of tumor cells
is a sufficiently significant component in the dynamics of tumor initiation,
then apoptosis deficiency can lead to reduced tumor incidence, but in faster
progression of the tumors which do develop. Whether this argument holds
depends on how exactly apoptosis influences tissue size and the process of
aging [Campisi (2003a); Camplejohn et al. (2003); Gilhar et al. (2004);
Jansen-Durr (2002)].

8.7 Theory and data

The following relationships between checkpoint competence, senescence,
and the development of cancer were found.

(1) The higher the checkpoint competence, the lower the rate of cancer
incidence and progression, but the earlier the onset of aging (level of
senescence is higher in the face of DNA damage). Lower checkpoint
competence prevents an early onset of aging, but promotes cancers.
This outcome is brought about by the following conditions. First, the
advantage derived from avoiding cell cycle arrest upon damage must
be higher than the cost derived from cell death in the absence of re-
pair. In addition it requires that tissue cells exert no (or only little)
inhibitory activity on tumor cells. These arguments might only apply
to checkpoints which induce cell cycle arrest, and not to checkpoints
which induce apoptosis.
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(2) A reduction in checkpoint competence can result both in fewer aging
symptoms and in fewer cancers; however, the cancers which do be-
come established are characterized by accelerated progression. This is
promoted by the following conditions (for a schematic explanation see
Figure 8.6). First, it may occur because the cost derived from increased
cell death in the absence of repair is higher than the benefit derived from
avoiding cell cycle arrest upon damage. Whether this argument applies
depends on the details of the checkpoint mediated activity, and requires
that cell death (and thus apoptosis) occurs efficiently. However, a sep-
arate mechanism can lead to the same observation. It involves tissue-
mediated tumor cell inhibition as a significant factor in the dynamics
of tumor initiation. Reduced checkpoint competence prevents tissue
aging and preserves the inhibitory function. This in turn leads to the
development of fewer tumors. In contrast, higher checkpoint compe-
tence promotes tissue aging and compromises inhibitory function. In
this parameter region, the advantage which the tumor cells gain from
impaired inhibition outweighs the cost derived from the disruption of
the tumor cell cycle; this leads to the generation of more cancers. This
effect of tissue-mediated tumor cell inhibition is summarized by com-
puter simulations in Figure 8.5. Since this mechanism requires that
checkpoint-induced aging plays a dominant role in the dynamics of tis-
sue cells, it is promoted by relatively high levels of DNA damage which
can potentially trigger the checkpoints. It is unlikely to work if DNA
damage is a relatively rare event. This mechanism may also be rel-
evant to the induction of apoptosis if apoptosis contributes to tissue
aging and a decline of tissue function.

In the following, these notions will be discussed in the context of mice
which have varying competence to mount p53 responses upon genomic dam-
age.

A recent study has demonstrated that p53 might be an important factor
which contributes to senescence and aging [Donehower (2002); Tyner et al.
(2002)], and this has sparked much discussion [Kirkwood (2002); Sharp-
less and DePinho (2002)]. Tyner et al. developed a genetically altered
mouse that can express a truncated form of p53 which augments wild-type
p53 activity. Survival of these super-p53 mice was compared to wild-type
(p53+/+) animals as well as p53 deficient animals (p53-/+, p53-/-). The
experiments demonstrated that p53+/+ mice showed best survival, fol-
lowed by the super-p53 mice. The p53 deficient animals were characterized
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checkpoint competence and tumor incidence. This is not based on numerical simulation,
but is a graphical summary to aid understanding.

by an even lower survival rate because of the early development of certain
cancers. It turned out that the super-p53 animals had reduced survival
compared to wild-type mice because they experienced an accelerated onset
of aging. On the other hand, tumor incidence in super-p53 mice was greatly
reduced. These experiments support the notion that p53 activity represents
a tradeoff between preventing senescence and preventing the development
of cancer. This corresponds to one of the parameter regions observed in
the model, and the conditions of the experiments are consistent with this
parameter region. Two aspects are likely to be responsible. First, the study
looked for the spontaneous development of tumors and did not induce them
with carcinogenic agents. This means that especially at relatively early ages
of the mice, DNA damage and the induction of checkpoints are rare events
in healthy tissue cells. Consequently, the amount of tissue-mediated tumor
cell inhibition is not likely to differ significantly between p53 competent and
p53 deficient mice during this phase. The only effect of p53 deficiency is to
allow the tumor cells to progress faster through the cell cycle in the face of
oncogenic mutations. Therefore, p53 deficient mice are expected to show
an elevated onset of tumors during early life. In addition, it is possible that
the cancers which developed in the p53 deficient mice are not significantly
inhibited by tissue cells. The amount of tissue-mediated inhibition of tu-
mor cells can vary between different tissues. In this context, it is interesting
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to note that the cancers which developed in p53 deficient animals in this
study were specific cases, mostly sarcomas and lymphomas. Other cancers
in which the deletion of p53 is an important step did not occur at elevated
levels. In fact, lung cancers were observed in p53 competent but not in p53
deficient animals.

Another interesting study compared the rate of skin cancer initiation
and progression in p53+/+, p53+/-, and p53-/- mice [Kemp et al. (1993)].
The rate of cancer initiation and progression was statistically similar in
p53+/+ and p53+/- heterozygotes. Double knockout mice (p53-/-), how-
ever, showed a reduced incidence of papillomas compared to wild-type an-
imals. On the other hand, the tumors which were generated in p53-/-
mice were characterized by more rapid malignant progression compared to
p53+/+ animals. This is the second type of behavior predicted by the
model. The reason that this behavior is observed in the Study by Kemp et
al. could be as follows. First, the development of skin cancer is known to
depend strongly on angiogenesis, and therefore inhibition of angiogenesis
could ensure that tissue-mediated tumor cell inhibition is a significant force
in the process of cancer initiation and progression. Moreover, in contrast
to the study by Tyner et al., mice were treated with carcinogenic agents in
order to induce tumors. This means that mice experience elevated levels
of DNA damage and frequent induction of p53. This can result in elevated
levels of tissue senescence in p53 competent animals, and this could re-
sult in reduced ability of tissue cells to display anti-tumor activity. Hence,
tumors develop more often in p53 competent, compared to p53 deficient
mice. According to the model, another explanation for this outcome could
be that in the absence of repair, the cost derived from the production of
lethal mutants outweighs the benefit derived from avoiding repair and cell
cycle arrest. It is, however, not clear whether this is a likely explanation.
Because p53 is also involved in the induction of apoptosis upon genomic
damage or oncogenic mutations, it can be argued that p53 deficient organ-
isms show reduced levels of apoptosis and cell death. Therefore, lethality
in the absence of repair might not be a dominant factor.

This work also has implications for understanding the pattern of can-
cer incidence in patients which have a familial genetic defect in checkpoint
genes. An interesting example is Li-Fraumeni syndrome which is character-
ized by lack of functional p53 in every cell of the body [Evans and Lozano
(1997)]. Interestingly, patients develop only certain types of cancers, most
importantly sarcomas. Although other types of cancers, such as colon can-
cer, also involve p53 inactivation as a crucial event in progression, they
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do not occur at elevated rates in Li-Praumeni patients. According to the
modeling results presented here, the exact details involved in the process
of carcinogenesis can determine whether reduced p53 activity (and reduced
checkpoint competence in general) leads to a higher incidence of cancers or
not.





Chapter 9

Basic models of tumor inhibition and
promotion

The development of cancer is regulated on many levels. So far, we have
concentrated on the development of the cancerous phenotype itself. That
is we investigated the processes which lead to the generation of a malignant
cell and examined conditions under which genetically unstable cells can
emerge. However, even if cancer cells have been generated and can in
principle evolve to accumulate more mutations, these cancer cells might
not be able to grow beyond a very small size. The reason is that the body
is characterized by specific defenses which try to prevent the growth and
pathogenicity of selfish transformed cells once they have been generated. In
particular, the microenvironment in which the cancer emerges is thought to
play a pivotal role in deciding whether the cancer will succeed at growing
to high levels or not [Tlsty (2001); Tlsty and Hein (2001)]. Indeed, the
development of cancer may require a conspiracy between tumor cells and
their microenvironment [Hsu et al. (2002)].

One of the most important players in this respect is the blood sup-
ply which provides cancer cells with oxygen, the necessary nutrients, and
factors required for replication and survival. A given tissue or organ must
have a sufficient blood supply in order to function. No extra blood supply is
available though, which will hinder any potential abnormal growth. Cancer
cells have to induce the generation of new blood supply in order to sustain
their growth. This process is called angiogenesis (as explained already in
Chapter 1). Research on the role of angiogenesis for cancer progression has
been pioneered by Judah Folkman in the 1960s and 70s [Folkman (1971)],
and work from his laboratory has been dominating the literature up to
now (e.g. [Folkman (1995a); Folkman (2002)]). In early experiments, Folk-
man and colleagues placed a small number of rabbit melanoma cells on the
surface of the rabbit thyroid gland. They observed that the tumor cells

147
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initially grew but subsequently stopped growing once they reached a rela-
tively small size comparable to that of a pea. The reason is that the tumor
cells run out of blood supply.

It is now clear that growth to larger sizes requires the emergence of
so-called angiogenic tumor cells. The ability of the cancer to grow depends
on the balance between so-called angiogenesis inhibitors, and angiogen-
esis promoters. Examples of inhibitors are thrombospondin, tumstatin,
canstatin, endostatin, angiostatin and interferons. Examples of promoters
are growth factors such as FGF, VEGF, IL-8, and PDGF. Normal tissue
produces mostly angiogenesis inhibitors. So do cancer cells. This serves as a
preventative measure against abnormal growth. Angiogenic cancer cells, on
the other hand, have mutations which allow the balance between inhibitors
and promoters to be shifted away from inhibition, and towards promotion.
This is done by activating the production of angiogenesis promoters, or
by inactivating genes which encode inhibitors. Once such angiogenic cells
have evolved, it is possible for the cancer to recruit new blood vessels and
hence to grow to larger sizes. Folkman's research has also given rise to ex-
citing new avenues of therapies [Hahnfeldt et al. (1999b)]: Administration
of angiogenesis inhibitors can destroy blood supply and result in remission
of cancers. While encouraging results have been obtained in laboratory
animals, our understanding is far less complete in the context of human
pathologies.

This chapter reviews mathematical models which have examined the
dynamics of angiogenesis-dependent tumor growth. The absence of blood
supply can affect tumor cells in two basic ways [Folkman (2002)]. On the
one hand, it can increase the death rate of tumor cells. In the absence
of blood supply, apoptosis can be triggered as a result of hypoxia. On
the other hand, the absence of blood supply can prevent cell division and
growth. In this case the cells are dormant; that is, they do not divide or
die. Both types of scenarios have been modeled and will be discussed. The
models have similar properties, and we will discuss the requirements for
the evolution of angiogenic cell lines and for the transition from a small
and non-pathogenic tumor to a tumor with malignant potential. We will
then take one of the models and incorporate the spread of the tumor across
space into the equations. We will discuss how the dynamics between tumor
promotion and inhibition influence more advanced tumor growth within a
tissue. Finally, we will discuss clinical implications of the modeling results.



Basic models of tumor inhibition and promotion 149

9.1 Model 1: Angiogenesis inhibition induces cell death

We describe and analyze a model for the evolution of angiogenic tumor
cell lines [Wodarz and Krakauer (2001)]. The model consists of three basic
variables (Figure 9.1).
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Fig. 9.1 Schematic diagram illustrating the central assumptions underlying the math-
ematical model.

Healthy host tissue, xo', a first transformed cell line, X\, which is non-
angiogenic and cannot grow above a given threshold size; an angiogenic
tumor cell line which has the potential to progress, X2- It is thought that
the formation of new blood vessels depends on a balance of angiogenesis
inhibitors and promoters. If the balance is in favor of the inhibitors, new
blood vessels are not formed. On the other hand, if it is in favor of the pro-
moters, angiogenesis can proceed. Hence, the model assumes that healthy
tissue, x0, and stage one tumor cells, X\, produce a ratio of inhibitors and
promoters that is in favor of angiogenesis inhibition. On the other hand,
it is assumed that angiogenic tumor cell lines have the ability to shift the
balance in favor of angiogenesis promotion. We first consider progression
from the wildtype cells to a first transformed cell line. The basic model is
given by the following pair of differential equations,

xo = roxo (1 - y^ ) (1 - Mo) - doxo,
V *o /

(-> x°\ , ft X A n \ A
xi = Horoxo 1 - — + rxxi 1 - — (1 - ill) - dixi.

V «o / V fci /
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Healthy cells are assumed to replicate at a density dependent rate ro:ro(l ~
xo/kg). The value of ko represents the maximum size this population of
cells can achieve, or the carrying capacity. The cells die at a rate d$XQ. We
assume that the rate of mutation is proportional to the rate of replication
of the cells, and is thus given by [iwroxo(l — xo/ko). The mutations give
rise to the first stage of tumor progression, x\, i.e. to a tumor cell line that
is not angiogenic. This cell line will depend on the blood supply of the
healthy tissue and will not be able to grow beyond a small size. These cells
replicate at a density dependent rate r\Xi{l — rci/fci), where the carrying
capacity k\ is assumed to be relatively small {k\ « ko). They die at a rate
dixi, and mutate to give rise to an angiogenic tumor cell line, x2, at a rate
Hxrix\{\ — x\/k\). In the model, the population of healthy cells attains
a homeostatic setpoint given by XQ = ko(ro — do)/ro- The mutation rate
/xo can be assumed to be very small, since healthy tissue has intact repair
mechanisms that ensure faithful replication of the genome. Once mutation
gives rise to the first tumor cell line, it will grow to its small homeostatic
set point level defined by x\ = k\{r\ — d\)/ri.

The wildtype cell population and the small population of first stage
tumors are assumed to reach constant levels in a relatively short time. In
other words, they reach an equilibrium abundance. Further tumor growth
requires the emergence of the angiogenic cell line, x%. In the following we
investigate the conditions required for angiogenic tumor cell lines to evolve
assuming a constant background abundance of XQ and x\.

The angiogenic cell line replicates at a density dependent rate r'2X2(1 —
x2/fc2). As these cells can potentially influence the balance of inhibitors
and promoters in favor of promoters, we have to take these dynamics into
account. The death rate of these cells is determined by two components.
The angiogenic tumor cells are characterized by a composite background
death rate d2x2, as with XQ, and x\. In addition, the model assumes that the
death rate can be increased if the balance between angiogenesis inhibition
and promotion is in favor of inhibition. Hence, this death rate is expressed
as {poXo + P1X1 + p2x2)/(qx2 + 1). Thus all three cell types lead to the
inhibition of angiogenesis, whereas inhibition of angiogenesis can only be
overcome by cell line x2 •

As we have assumed that XQ and X\ are at equilibrium, we start our
analysis by ignoring mutation and simply looking at the dynamics of the
angiogenic cell line, x2. These dynamics are described by the equation,
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f-. X2\ X2 (PQXQ + piX* + p2X2)
x2 = r2x2 1 - — - d2x2 ^ y -^ '-,

\ k2) qx2 + l
where XQ and x\ are defined above. Two outcomes are possible, (i) The
cell line x2 cannot invade, resulting in equilibrium EO where x2 = 0. (ii)
The cell line x2 can invade and converges to equilibrium El described by

(i) _ -Q + \/Q2 ~ 4r2g2 [k (d2 - r2) + fcp/xj]
2 2r2q2

where Q = kq2 (d2 — r2) + r2 + kp2 and subscript / refers to the inhibitory
cell lines: piXj = po^o +P i x i -

In the following we examine the stability properties of these two equi-
libria which are summarized in Figure 9.2. If pixj < r2 — d2, then the
equilibrium describing the extinction of the angiogenic tumor, x\ , is not
stable. The equilibrium describing the invasion of the angiogenic tumor cell
line, x2 , is stable. In other words, if the above condition is fulfilled, then
the degree of angiogenesis inhibition is too weak, and the angiogenic tumor
cell line can emerge, marking progression of the disease.

(a) Emergence of <b) ^stability: (c) No Emergence of
angiogenic cells p ^ , " ' 0 0 " 1 6 8 angiogenic cells

^ .

"3 Level of angiogenesis inhibition
8* /r /
i /
00 /
'5 -( s

1 , ^ ^
Extinction Extinction
equilibrium equilibrium
unstable stable

Fig. 9.2 Graph showing the stability properties and the outcome of the model. Param-
eters were chosen as follows: ri = 1; fo = 1; &2 = 0.1; P2 = 1; g = 10.
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On the other hand, iipjxi > r^ — di, the degree of inhibition is stronger
and the situation is more complicated (Figure 9.2). The equilibrium de-
scribing the extinction of the angiogenic cell population, x2 , becomes sta-
ble. However, equilibrium x2 , describing the emergence of angiogenic
tumor cells, may or may not be stable (Figure 9.2).

(1) If the degree of angiogenesis inhibition lies above a certain threshold,
equilibrium x2 is unstable and the angiogenic cell line cannot invade.
It was not possible to define this threshold in a meaningful way.

(2) If the degree of angiogenesis inhibition lies below this threshold, equilib-
rium x2 remains stable. Now, both the extinction and the emergence
equilibria are stable (Figure 9.2). This means that two outcomes are
possible and that the outcome depends on the initial conditions. Ei-
ther the angiogenic cell line fails to emerge, or the angiogenic cell line
does emerge, resulting in tumor progression. As shown in Figure 9.3,
a low initial abundance of angiogenic tumor cells results in failure of
growth. On the other hand, a high initial number of angiogenic tumor
cells results in growth of the tumor and progression (Figure 9.3).

To summarize, the model shows the existence of three parameter regions
(Figure 9.2). If the degree of angiogenesis inhibition by healthy tissue
and stage one tumor cells lies below a threshold, angiogenic tumor cell
lines always invade resulting in progression of the disease. If the degree of
inhibition lies above a threshold, the angiogenic cell lines can never emerge
and pathology is prevented. Between these two thresholds, both outcomes
are possible depending on the initial conditions. A high initial number of
angiogenic tumor cells results in growth of this cell line and progression of
the disease.

What does the initial number of angiogenic cells mean in biological
terms? The dependence of growth on the initial number of angiogenic
tumor cells presents an effective barrier against pathologic tumor growth.
Given that a small number of non-angiogenic tumor cells exists, it will
be difficult to create a sufficiently large number of angiogenic mutants to
overcome the blood supply barrier. This difficulty could explain why, upon
autopsy, people tend to show small tumors which have failed to grow to
larger sizes. The initial number of the angiogenic cells could be determined
by the mutation rate /xi, which gives rise to the angiogenic cells. If the
mutation rate is high, the initial number of angiogenic cells will be high.
On the other hand, if the mutation rate is low, the initial number of the



Basic models of tumor inhibition and promotion 153

is o.e- YYYYYYYYYYYYYYYYYYYYYYY.YYYYYY.
S . . ; . < . . . . : . .
g ,i .Li . i i . i . n i l / , .
g1 °.6- - - i - V ' " :V-f '

s ****<*<* j>s> /* /• T \ "V * * * * * * •« • - •«« - * - • -

tiUUtitHlliiiii^
Level of angiogenesis inhibition

Fig. 9.3 Direction field plot showing how the outcome of the model can depend on the
initial conditions. Parameters were chosen as follows: T2 = I;fe2 = 100; &i = 0.1;p2 =
l;g = 10. For the purpose of simplicity the populations of non-angiogenic cells were
summarized in a single variable and assumed to converge towards a stable setpoint
(characterized by the parameters r=0.15; d=0.1; k=10).

angiogenic cells will be low. Hence, in the parameter region where the
outcome of the dynamics depends on the initial conditions, a high mutation
rate promotes the emergence and growth of angiogenic tumor cells (Figure
9.4). If a high mutation rate by tumor cells defines genetic instability, then
it is possible that genetic instability might be required for the invasion of
angiogenic tumor cells.

9.2 Model 2: Angiogenesis inhibition prevents tumor cell
division

We consider a basic mathematical model which describes the growth of a
cancer cell population, assuming that the amount of blood supply does not
influence cell death, but the rate of cell division [Wodarz and Iwasa (2004)].
This model will also be used to consider the effect of diffusion of cells and
soluble molecules across space; this is done in the next sections. Therefore,
the model will take into account explicitly the dynamics of promoters and
inhibitors. This is in contrast to the last section where for the purpose



154 Computational Biology of Cancer

(a) genetic stability I low mutation rate (b) genetic instability I high mutation rate

- °*] 21 ^
E i.o- f
%S °-5' 1* /

•a &• °-4- 12

US ,.

I! --
& ~ 0.6- /

°-2° 20 40 60 80 100 ' V 20 X ^ ^ 60 S Too

Time (arbitrary scale)

Fig. 9.4 Genetic instability and the emergence of angiogenic cell lines, (a) If the
mutation rate is low (genetic stability), the initial number of angiogenic cells created
is low. Consequently they cannot emerge, (b) On the other hand, if the mutation
rate is high (genetic instability), a higher initial number of angiogenic cells is cre-
ated. Hence, they emerge and become established. Parameters were chosen as fol-
lows: ro = 0.11; fco = 10 ;« = 0.001; do = 0.1; n = 0.12;fci = 2;d2 = 0.1; r2 = 2.5; fc2 =
2;d2 =0.1;p0 = 2;pi = 2;p2 = 2; q = 10; for (a) m =0.001; For (b) fii = 0.01; \ii = pi.

of simplicity inhibitors and promoters were assumed to be proportional to
the number of cells which secrete them. The new model includes three
variables: the population of cancer cells, C; promoters, P; and inhibitors,
I. It is assumed that both promoters and inhibitors can be produced by-
cancer cells. In addition, inhibitors may be produced by healthy tissue. The
model is given by the following set of differential equations which describe
cancer growth as a function of time,

P = aPC- bPP, (9.2)

i = £ + aiC- hi. (9.3)

The population of cancer cells grows with a rate r. Growth is assumed
to be density dependent and saturates if the population of cancer cells
becomes large (expressed in the parameter e). In addition, the growth
rate of the cancer cells depends on the balance between promoters and
inhibitors, expressed as P/(I+1). The higher the level of promoters relative
to inhibitors, the faster the growth rate of the cancer cell population. If the
level of promoters is zero, or the balance between promoters and inhibitors

(9.1)
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in heavily in favor of inhibitors, the cancer cells cannot grow and remain
dormant [O'Reilly et al. (1997); O'Reilly et al. (1996); Ramanujan et al.
(2000)]. Cancer cells are assumed to die at a rate 8. Promoters are produced
by cancer cells at a rate ap and decay at a rate bp. Inhibitors are produced
by cancer cells at a rate a/ and decay at a rate bj. In addition, the model
allows for production of inhibitors by normal tissue at a rate £.

9.2.1 Linear stability analysis of the ODEs

Let us simplify system (9.1-9.3) by using a quasistationary approach, that
is, we will assume that the level of promoters adjusts instantaneously to its
steady-state value (P = Cap/bp). It is convenient to denote

w_r_aL aj

Now we have a two-dimensional system,

/ = 6 j (7C- / ) . (9.5)

There can be up to three fixed points in this system,

(C,J) = (0,0), and (C,I) = (C±,I±),

where I± = "fC±, and

~ - (7 + c - W) ± V(7 + e " W)2 - 4e7

C±= ^ •

It is obvious that if ~/ + e-W < 0, and (7 + e - W)2-Ae-j > 0, then there are
exactly three positive equilibria in the system. If either of these conditions
is violated, the (0,0) solution is the only (biologically meaningful) stable
point.

Stability analysis can be performed by the usual methods. It shows that
for the (0, 0) equilibrium, the Jacobian is

(-5 0 \
\bn-bjj'

that is, this equilibrium is always stable. For the points (C±,I±), we get

(9.4)



156 Computational Biology of Cancer

the following Jacobian,

( -5(e—y-W±r) Sje—y-W-T) \
2W 2-yW

where we denote for convenience, F = y/(e + 7 — W)2 — Acy. It is easy to
show that the eigenvalues of this matrix for the solution (C_,/_) are given
by

and for the solution (C+,I+) we have eigenvalues

w {~Y+ ± A+ - 1 6 b i S w r ) '
where Y± = 2bIW + 8(e-~(- W±T). We can see that solution (C_,/_) is
always unstable and we will not consider it any longer. Solution (C+,I+),
which we call for simplicity (C, /) from now on, is stable as long as

Y+ > 0. (9.6)

9.2.2 Conclusions from the linear analysis

As we can see this model has very similar properties compared to the last
one, and they are summarized as follows. There are two outcomes, (i)
The cancer cells cannot grow and consequently go extinct. That is, C = 0,
P = 0 and / = £/&/• The cancer goes extinct in the model because we
only consider cells which require the presence of promoters for division. If
the level of promoters is not sufficient, the rate of cell death is larger than
the rate of cell division. In reality, however, it is possible that a small
population of non-angiogenic tumor cells survives. This was modeled in
more detail in the previous section. Here, we omit this for simplicity, (ii)
The population of cancer cells grows to significant levels, that is, C = C.

How do the parameter values influence the outcome of cancer growth?
The cancer extinction outcome is always stable. The reason is as follows.
The cancer cells require promoters to grow. The promoters, however, are
produced by the cancer cells themselves. If we start with a relatively low
initial number of cancer cells, this small population cannot produce enough
promoters to overcome the presence of inhibitors. Consequently, the cancer
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fails to grow and goes extinct. This outcome is always a possibility, regard-
less of the parameter values. Significant cancer growth can be observed if
the intrinsic growth rate, r, lies above a threshold relative to the death rate
of the cells, 8, and degree of tumor cell inhibition (ap and bp relative to a/
and 6/). The exact condition is given by (9.6). In this case, the outcome
is either failure of cancer growth, or successful growth to large numbers.
Which outcome is achieved depends on the initial conditions. Successful
growth is only observed if the initial number of cancer cells lies above a
threshold. Then, enough promoters are initially produced to overcome in-
hibition. This is the same result as presented in the previous section; in
biological terms this may mean that mutant cells which produce promot-
ers must be generated frequently (e.g. by mutator phenotypes) in order to
initiate tumor growth to higher levels [Wodarz and Krakauer (2001)].

9.3 Spread of tumors across space

In this section, we introduce space into the above described model. We
consider a one-dimensional space along which tumor cells can migrate. The
model is formulated as a set of partial differential equations and is written
as follows,

dC { rC \ / P \ . _ _ dC2 fn _.

dT = i7cT-i){Tn)~SC + Dc^' (9-7)

^=aPC- bPP, (9.8)

J|=ajC-&iJ + I?/|^, 0<x<I. (9.9)

The model assumes that tumor cells can migrate, and this is described by
the diffusion coefficient Dc. Inhibitors can also diffuse across space, and
this is described by the diffusion coefficient Dj. It is generally thought
that inhibitors act over a longer range, while promoters act locally [Folk-
man (2002); Ramanujan et al. (2000)]. Therefore, we make the extreme
assumption that promoters do not diffuse. For simplicity we assume that
inhibitors are only produced by cancer cells and ignore the production by
normal tissue (that is, £ = 0). This simplification is justified because this
model concentrates on the tumor dynamics, and numerical simulations show
that the results considered here are not altered by this simplification. As
mentioned above, the model considers tumor spread across space. It is im-
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portant to point out that we do not consider long-range metastatic spread.
Instead, we consider local spread of a tumor within a tissue, such as the
breast, liver, brain, or esophagus.

These equations must be equipped with appropriate initial and bound-
ary conditions. In the simulations we used the following (Neumann) bound-
ary conditions:

dc_ _&i _ap _dc_ _m_ _ap _ 0

dx x=0 ~ 8x x=0 ~ dx x = 0 " dx X=L ~ dx x=L ~ dx X=L ~

The dependence of the results on the initial conditions is discussed below.
Here we investigate the process of tumor growth and progression in re-

lation to the degree of inhibition and promotion. First we will present a
mathematical analysis and then biological insights and results of simula-
tions.

9.3.1 Turing stability analysis

Again, we are going to assume that promoters adjust instantaneously to
their equilibrium level. By replacing P with C defined by P — ijf-C, we
can rewrite equation (9.7) as

This equation together with equation (9.9) gives a Turing model.
Let us go back to the system of ODEs, (9.4-9.5), and assume that so-

lution (C, I) is a stable equilibrium. Of course, this solution also satisfies
the system of PDEs, (9.10,9.9). Let us consider a wave-like deviation from
this spatially uniform solution:

C(x,t) =C + Acos(ujx)ext,

I(x,t) = I + B cos(cox)ext.

Here, the amplitudes of the perturbation, A and B, are small compared to
the amplitude of the spatially uniform solution, and we assume an infinitely
large space. The equation for the new eigenvalue, A, is

^(a-D^-X h - \ A=0, (9.11)

(9.10)
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where we define

a= ^ ^ > 0 , P= ^ . >0.
&p(l + eC)2(l+J) H bp(l + cC)(l + I)2

Equation (9.11) can be written as

A2 + \(bT -a + (Dc + Di)w2) + arf - (b7 + J5/W2)(a - DCLO2) = 0. (9.12)

This is the dispersion relation which connects the growth-rate, A, with the
spatial frequency of the perturbation, u>. The stability conditions are now
given by

bj - a + (Dc + £>i)w2 > 0, (9.13)

a//? - (6/+ i W X a --Dcw2) > 0. (9.14)

Note that the stability conditions for solution (C, I) of the system of ODEs,
(9.4-9.5), are obtained automatically from the conditions above by setting
w = 0:

6/ - a > 0, (9.15)

aIP-bIa>0. (9.16)

Inequality (9.13) is always satisfied because of inequality (9.15). Let us
derive conditions under which the spatially uniform solution is unstable.
This requires that condition (9.14) is reversed. This can be expressed as
follows:

F{OJ) = DjDcu* - w27i + 72 < 0, (9.17)

where we denoted for simplicity,

71 = aDi — biDc, 72 = ar/3 — abi > 0.

This is a fourth order polynomial, symmetrical with respect to the line
u> = 0, with a positive leading term. The points, ±|w|, satisfying

"2 - 2 l S v (9'18)
correspond to the two minima of the left hand side of inequality (9.17). Let
us call these values of u>, ±UJC- The condition F(toc) < 0 defines that the
uniform solution (C, I) is unstable.

Let us plot the function F(u) for different values of aI: see Figure 9.5.
For small values of aj, F(UJ) is strictly positive, and the spatially uniform



160 Computational Biology of Cancer

I I \ o>oo25|F(to) / M^a,=0.1

I \ a°°2' / /
\ o.«,6t / / L-a,=au=0.31

\ \ V^^B^^r-—___X / /

\ \ / / ^ \ / /
\ \ /o: 0005 - \ \ / /
\ \ / / \ \ / /

\ V,// f Vv//
- 4 0 \ -201 7 \ 2 0 / 4 0

\ »c / Y»c / CD
\ / - 0. 0005 - \ /

\

a,=0.4

Fig. 9.5 Emergence of Turing instability. As a/ increases and through its critical value,
the function F(UJ) (equation (9.17)) crosses zero. Negative regions of F{uf) correspond
to unstable wave-numbers. The wave-number which becomes unstable first is denoted
by uic. The parameters are as follows: r = 1; 5 = 0.1; aP = 5; bp = 0.1; 6/ = 0.01; DQ =
0.00001; Dj = 0.001.

solution is stable. As aj increases, the function F(u>) crosses the line F = 0.
The critical value of a/, a/)C, for which F(wc) = 0, is determined from

(a£>j - biDc)2 = ADtDdaiP - abj),

where a and /3 both depend on a/. We solved this equation numerically to
find the critical value of a/iC, see Figure 9.5.

The applicability of the above analysis depends on the parameters of
the system. First of all, we need conditions (9.15-9.16) to be satisfied. They
mean that without diffusion, a positive, spatially uniform solution is stable.
Next, we need to be in a weakly nonlinear regime, where the function F(to)
has only very narrow regions of u> corresponding to negative values. More
precisely, Au> ~ IT"1, where L is the spatial dimension of the system. In
terms of parameter a/, we require that it is sufficiently close to a/iC. Then,
we can calculate the "most unstable" wave-number, that is, LUC defined by
equation (9.18), with ucj. This value will determine the spatial period of
the solution,

Period = —. (9.19)
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9.3.2 Stationary periodic solutions

Let us start from the value aj below the critical, aj < aj}C. The system
exhibits bistability. If we start in the vicinity of a (0,0) solution, then
cancer will not grow and decay to zero. If we start from a point (C, /) in
the domain of attraction of the solution (C, I), then the system will develop
towards this positive spatially homogeneous stationary solution.

Next, let us suppose we have aj > ajiC, but make sure that it is suffi-
ciently close to a/)C (the exact meaning of "close" is specified in the analysis
above). Again, if the initial conditions are close to the zero solution, then
the zero state will be the state that the system will attain. However, if we
start in the vicinity of the (C, I) state, we will observe interesting behavior.
Solution {C, I) is now unstable, and we will see "ripples" developing on top
of this solution. This is Turing instability. The spatial period of the ripple
was calculated in the previous section. Long-time evolution of this state is
of course not in the realm of linear stability analysis, but we can predict
that the spatial scale of the resulting solution will be given by (9.19).

Finally, let us assume that aj is much higher than critical. Now, solution
(C, I) is unstable even in the system of ODEs. However, a periodic solution
will develop, unless the initial condition is in the domain of attraction of
the zero solution. The spatial scale of the periodic solution is determined
intrinsically by the parameters of the system, and it grows with aj. Intu-
itively this is easy to understand, because higher values of aj correspond
to higher levels of inhibition, so the distance between regions of large C
will become larger. Note that the exact period of the periodic solution is
adjusted to fit the boundary conditions of the system. For instance, with
the Neumann boundary conditions, the boundary points are forced to be
troughs of the wave-like pattern. In other words, the period of the solution
must be an integer fraction of L.

9.3.3 Biological implications and numerical simulations

We start with a scenario where the degree of inhibition is much larger
than the degree of promotion {aj/bi » ap/bp). This corresponds to the
early stages when the tumor is generated. We then investigate how tumor
growth changes as the degree of inhibition is reduced relative to the level
of promotion (i.e. the value of ai/bi is reduced). We consider the following
parameter regions (Figure 9.6).

(1) If the degree of inhibition is strong and lies above a threshold, growth
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of the cancer cells to higher levels does not occur (not shown). Only
a small number of cells which do not require promotion for survival
would remain.

(2) If the degree of inhibition is weaker, the cancer cells can grow. The
spread across space is, however, self-limited (Figure 9.6a). The can-
cer cells migrate across space. The inhibitors produced by the cancer
cells also spread across space, while the promoters do not. There-
fore, as the cancer cells migrate, they enter regions of the tissue where
the balance of inhibitors to promoters is heavily in favor of inhibitors.
Consequently, these cells cannot grow within the space. They remain
dormant and may eventually die. In biological terms, this corresponds
to a single coherent but self-limited lesion (uni-focal). Note that this
does not mean that it is in principle impossible to generate more le-
sions. It means that the space between lesions is bigger than the space
provided for cancer growth within the tissue.

(3) As the production of inhibitors is further reduced, we enter another
parameter region. Now fewer inhibitors diffuse across space. We ob-
serve that multiple lesions or foci are formed (Figure 9.6b). They are
separated by tissue space which does not contain any tumor cells. The
separate lesions produce some inhibitors, and they diffuse across space.
This explains the absence of tumor cells between lesions. Because the
production of inhibitors is weakened, however, tumor growth is only
inhibited in a certain area around the lesion, and not across the whole
space. How many lesions are found within a tissue depends on the
parameters in the model, in particular on the relative strength of inhi-
bition and promotion (Figures 9.6b and c). The stronger the degree of
inhibition, the larger the space between lesions, and the fewer lesions
we expect. The weaker the degree of inhibition, the smaller the space
between lesions, and the larger the expected number of lesions. An-
alytical expressions for the space between lesions are given below. In
biological terms, the occurrence of multiple lesions within a tissue which
arise from a single tumor is often referred to as multi-focal cancers.

(4) If the degree of inhibition is further reduced and lies below a threshold,
spread of inhibitors is sufficiently diminished such that the tumor cells
can invade the entire space and tissue (Figure 9.6d). In biological terms,
this corresponds to the most extensive tumor growth possible within a
tissue.
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Fig. 9.6 Outcome of the spatial model depending on the relative balance of promoters
and inhibitors,captured in the variable cjj. Parameters were chosen as follows: r = 1; 5 —
0.1; aP = 5;bP = 0.1;*/ = 0.01; A? = 0.00001; Dr = 0.001; L = 2 For (a) a; = 3, (b),
or = 2, (c), ax = 1, (d) a/ = 0.1

In summary, as the relative degree of inhibition is reduced, the patterns
of tumor growth change from absence of significant growth, to a single
self-limited tumor, to the occurrence of multiple foci, and to the maximal
invasion of the tissue by tumor cells. Multi-focal cancers may arise through
the dynamical interplay between long range inhibition and local promotion.
The following section will examine this in the light of somatic evolution.
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9.4 Somatic cancer evolution and progression

The previous sections have shown how the pattern of cancer growth can
depend on the relative balance of promoters and inhibitors. Here we con-
sider these results in the context of somatic evolution. Initially, the balance
between inhibitors and promoters is in favor of inhibition. Inhibitors are
likely to be produced by healthy cells (e.g. in the context of angiogenesis),
and they are more abundant than an initiating population of transformed
cells. In the context of angiogenesis, specific mutations have been shown to
result in the enhanced production of promoters or reduced production of
inhibitors in cancer cells. Our model has shown that such mutants have to
be produced at a relatively high frequency, so that a sufficient number of
promoting cells are present in order to ensure that enough promoters are
produced to overcome the effect of inhibition.

Once the promoting cells have succeeded to expand, cancer progression
can occur in a variety of ways according to the model. How the cancer
progresses depends on how much the balance between promotion and in-
hibition has been shifted in favor of promotion. We distinguish between
three possibilities (Figures 9.7, 9.8 & 9.9).

(i) The balance between inhibition and promotion has been shifted only
slightly in favor of promotion, such that self-limited growth of the cancer is
observed (Figure 9.7). That is, we observe a single lesion which can grow to
a certain size but which is limited in the spread through the tissue. In order
to progress further towards the occurrence of multiple lesions or towards
more extensive invasion of the tissue, further mutants have to be generated
which are characterized by enhanced production of promoters or by reduced
production of inhibitors. This introduces a new problem: such a mutant will
not have a selective advantage, but is selectively neutral relative to the other
cells. This is because the promoters and inhibitors secreted from one cell
affect the whole population of cells. If the mutant produces more promoters,
not only the mutant, but the entire population of tumor cells benefits. This
means that a mutant characterized by enhanced production of promoters
will not invade the tumor cell population. Instead, we observe genetic
drift which is stochastic and not described by the equations considered
here. The model does, however, suggest the following (Figure 9.7): if the
population of mutant cells remains below a given threshold relative to the
rest of the tumor cells, it will not alter the growth pattern. If the population
of mutant cells grows beyond a threshold relative to the rest of the tumor
cells, it can change the pattern of cancer growth, even if the mutants do not
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Fig. 9.7 Tumor progression if the initial mutant cell line has only shifted the balance
between promoters and inhibitors slightly in favor of promotion. This cell line can only
give rise to self limited growth. Further tumor growth requires the generation of further
mutants. The new mutant in the simulation is depicted by the dashed line. Parameters
were chosen as follows: r = 1;6 = 0.1; ap = 5;6p = 0.1; aj = 3; 6/ = 0.01; Dc =
0.00001; £>/ = 0.001, L = 2. For mutant: ar = 0.5; aP = 20.

become fixed in the population (Figure 9.7). The change can either be the
generation of multiple lesions, or invasion of the whole tissue, depending
on the amount by which the level of promotion has been enhanced by the
mutant cell population. The chances that the mutant cell population drifts
to levels high enough to cause such a change in tumor growth depend on
the population size of the lesion. The larger the number of tumor cells,



166 Computational Biology of Cancer

o-[ ——i 1/~—*| 1 ,
0 20 40 60 80 100

•g °-| 1 —*i r [ 1
^ 0 20 40 GO SO 100

&

1 "I

ILAA.. i
2 0 20 40 60 80 100
O 20-1

'Uy/L
MM.

0 30 40 E0 SO 100

Space (arbitrary units)

Fig. 9.8 Tumor progression if the initial mutant cell line has shifted the balance between
promoters and inhibitors more substantially towards promotion. Now, multiple foci can
develop without the need for further mutations. The multiple foci develop, however, by
first generating a single lesion which subsequently splits to give rise to two lesions during
the natural growth process. Parameters were chosen as follows: r = 1;<5 = 0.1; ap =
5; bP = 0.1; aj = 1; 6/ = 0.01; Dc = 0.00001; Dj = 0.001, L = 2.

the lower the chance that the relative population size of the mutants can
cross this threshold. If this cannot occur, further cancer progression not
only requires the generation of a mutation which enhances the level of
promotion, but an additional mutation which gives the promoter mutant a
selective advantage over the rest of the cell population. That is, in addition
to the mutation which shifts the balance in favor of promotion, a mutation
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is required either in an oncogene or a tumor suppressor gene so that the
mutant can grow to sufficiently high numbers or fixation.
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Fig. 9.9 Tumor progression if the initial cell line has largely escaped inhibition, and
promotion is the dominant force. Now the tumor grows in space as a single lesion until
the whole tissue is invaded. Parameters were chosen as follows; r = 1;<5 = 0.1; ap =
5; bp = 0.1; a/ = 0.1; 6/ = 0.01; Dc = 0.00001; £>/ = 0.001, L = 2.

(ii) The first mutation shifts the balance between promoters and in-
hibitors to a lager extent which is sufficient to result in the generation of
multiple lesions (Figure 9.8). The multiple lesions do not, however, occur
immediately. First, the tumor grows as a single and self limited lesion (Fig-
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ure 9.8). Over time, this lesion bifurcates to give rise to two lesions, or
further lesions if the degree of promotion is large enough relative to the
degree of inhibition (Figure 9.8). The temporal sequence from a single and
self-controlled lesion to the occurrence of multiple lesions is the same as in
the previous case. But in contrast to the previous case, no further muta-
tions are required. This is because multiple foci arise from the split and
migration of a single lesion. The number of foci that form depends on the
exact degree of promotion which was achieved by the initial mutation. The
higher the degree of promotion, the larger the number of lesions. Growth
beyond this number of lesions (which will eventually result in maximal in-
vasion) then requires higher levels of promotion. This is in turn achieved
by further mutational events according to the same principles as described
in the previous section.

(iii) Finally, assume that the initial mutation shifts the balance so much
in favor of promotion that maximal invasion of the tissue is possible (Figure
9.9). Now we observe cancer progression without the generation of multiple
foci. Instead, a relatively small single lesion expands in space until all the
tissue has been invaded.

In summary, the model predicts different modes of cancer progression
in relation to the evolution away from tumor inhibition and towards pro-
motion. A single cancer lesion may spread across the tissue without the
occurrence of multiple lesions. Alternatively, the cancer can first grow as a
single, self-contained lesion. This can then bifurcate to give rise to multiple
foci, either as a result of additional mutations, or as a result of the natural
pathway by which multiple foci are generated, depending on the degree of
tumor promotion conferred by the initial mutation. Further evolutionary
events can then induce the multiple foci to become a single, maximally
invasive mass. The occurrence of multiple foci therefore represents an in-
termediate stage in tumor progression towards malignancy.

9.5 Clinical implications

The occurrence of multiple lesions is observed in a variety of cancers. That
is, not one, but several lesions are observed within a given tissue. Multiple
lesions can occur by two basic mechanisms [Hafner et al. (2002); Hartmann
et al. (2000); Ruijter et al. (1999); Tsuda and Hirohashi (1995); Wilkens
et al. (2000)]. Either they originate independently by separate carcinogenic
events, or they are generated by a single transformation event (monoclonal
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origin). Sometimes, the term "multi-centric cancers" is used to describe
the occurrence of clonally unrelated lesions, while the term "multi-focal"
refers to a monoclonal origin [Teixeira et al. (2003)]. Clinically, it is im-
portant to determine the nature of multiple lesions. The occurrence of
multiple lesions can be indicative of a familial cancer, especially if they oc-
cur at a relatively young age. Examples are familial adenomatous polyposis
(FAP) in the colon, and familial retinoblastoma [Marsh and Zori (2002)].
The genetic predisposition of such individuals renders multiple independent
carcinogenic events likely. Alternatively, multiple independent lesions can
arise because a large area of tissue has been altered and is prone to the de-
velopment of cancer, such as Barrett's esophagus [van Dekken et al. (1999)],
or by other mechanisms which are not yet understood. On the other hand,
genetic analysis has indicated that multiple lesions in several cases have a
monoclonal origin [Antonescu et al. (2000); Holland (2000); Junker et al.
(2002); Kupryjanczyk et al. (1996); Louhelainen et al. (2000); Middleton
et al. (2002); Miyake et al. (1998); Noguchi et al. (1994); Rosenthal et al.
(2002); Simon et al. (2001); van Dekken et al. (1999)]. Examples are mam-
mary carcinoma, gliomas, renal cell carcinoma, hepatocellular carcinoma,
and esophageal adenocarcinoma.

The models discussed here show that multiple foci with a monoclonal
origin can develop through a dynamical interplay between tumor promoters
and inhibitors. The cancer can only grow to high loads as a single mass if it
has largely escaped all inhibitory effects. Otherwise, the cancer is likely to
grow via the generation of a relatively small and self limited tumor which
then bifurcates into multiple foci until it finally invades the entire tissue.
The occurrence of multiple foci is therefore an intermediate stage in cancer
progression. The higher the number of foci, the further advanced the stage
of cancer progression.

A clinically important step in carcinogenesis is the process of metas-
tasis. That is, the spread of tumor cells to the lymph node, entry into
the blood supply, and the spread to other tissues. Various studies have
investigated the metastatic potential of multi-focal compared to uni-focal
cancers [Andea et al. (2002); Junker et al. (1999); Junker et al. (1997)]. In
uni-focal cancers, tumor size has been found to be a predictor of metastatic
potential. For staging multi-focal breast carcinomas, it has been suggested
to use the diameter of the largest tumor only [Andea et al. (2002)]. This,
however, assumes that the other foci do not significantly contribute to tu-
mor progression. According to our arguments, this would under-stage the
cancer. According to the model, the number of foci correlates with the
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stage of the disease. This has also been concluded in clinical studies, and
is supported by data which show reduced patient survival with multi-focal
compared to uni-focal cancers [Andea et al. (2002)]. Moreover, because our
model suggests that multi-focality can occur as a result of reduced tumor
cell inhibition, successful metastatic growth might be easier to achieve. Al-
though under debate, some data suggest that inhibitors produced by the
primary tumor can prevent metastatic cells from growing [Ramanujan et al.
(2000)]. If multi-focality correlates with reduced inhibition, then it could
also correlate with an increased chance that metastatic cells grow and do
not remain dormant.

Further, it is important to note that studies which aim to assess the
correlation between multi-focality and metastatic potential should not only
concentrate on the number of foci, but also on the size of the foci. As we
have shown with the model, cancer progression might start with a small
single lesion which can be considered uni-focal. It can then bifurcate to give
rise to multiple foci, and finally spread through the entire tissue. When such
spread occurs, the multiple foci turn into a big and single mass, and this
would again be considered uni-focal. Hence, the cumulative size or volume
of the tumor is likely to be the best predictor of malignant progression.



Chapter 10

Mechanisms of tumor
neovascularization

In Chapter 9 we explored general models of tumor inhibition and promotion
and investigated how the requirement for blood supply influences tumor
initiation and progression. The models did not make any specific assump-
tions about the mechanism by which the tumor induces the formation of
new blood supply. Here, we will address this question. Blood vessels are
built from so-called endothelial cells. As explained in Chapter 9, new en-
dothelial cells are generated and form blood vessels if the balance between
promoting factors and inhibiting factors is in favor of promotion. So far,
there are two basic hypotheses regarding the mechanism by which tumors
induce the generation of new blood vessels.

Traditionally, it was thought that promoters induce local endothelial
cells to divide. That is, endothelial cells which make up pre-existing blood
vessels divide and give rise to new endothelial cells. These new endothelial
cells build more blood vessels. This process has been termed angiogenesis.

Recently, another mechanism has been suggested. According to this
hypothesis, the promoting factors induce a circulating population of en-
dothelial progenitor cells (EPCs) to migrate to the site of the tumor and
to build new blood vessels locally. The progenitor cells are primitive stem
cells which will differentiate into endothelial cells. This is in contrast to
the previous mechanism where new endothelial cells were derived from the
division of already existing and fully differentiated endothelial cells. There
is some experimental evidence which supports a role for progenitor cells in
the formation of blood vessels in cancer [Asahara et al. (1999); Bolontrade
et al. (2002); Drake (2003); Rabbany et al. (2003); Ribatti et al. (2003)].
In order to distinguish this mechanism from the previous one, we will refer
to it as vasculogenesis (derived from the process of post-natal vasculogen-
esis). Note, however, that this might not be a universally accepted term.

171
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In fact, the use of progenitor cells for the generation of blood vessels is
sometimes referred to as angiogenesis in the literature. We use the term
vasculogenesis only for the purpose of distinction.

Given that there are two possible ways to build blood vessels, which one
is more important in the context of cancer? How do the two mechanisms
influence the pattern of tumor growth? This Chapter discusses mathemat-
ical models which have investigated these questions. They have given rise
to suggested experiments which can determine the relative importance of
angiogenesis versus vasculogenesis.

10.1 Emergence of the concept of postnatal vasculogenesis

The term "vasculogenesis" was first clearly denned and opposed to the term
"angiogenesis" by W. Risau [Risau et al. (1988)]. In his classic 1997 Na-
ture review he used the assumption that vasculogenesis occurs only during
embryonic life [Risau (1997)]. Indeed at that time, there was no direct
evidence for postnatal vasculogenesis. The assumption that vasculogenesis
occurs only during the embryonic period still persists in some academic
circles, as well as in text books on histology. It is argued that once the vas-
cular endothelial system is formed, angiogenesis becomes the predominant
mechanism of vascular regeneration during wound healing, as well as during
cyclic (physiological) and pathological postnatal vascular morphogenesis.

The concept of postnatal vasculogenesis started emerging in the second
half of the 1990s. In 1995, in his review paper in Nature Medicine Judah
Folkman wrote: "Postnatal vasculogenesis has never been observed, but it
would not be entirely surprising if it were discovered in tumors." [Folk-
man (1995a)]. The situation changed dramatically after the appearance of
the paper by Jeffrey Isner and colleagues in Science about identification,
isolation and angiogenic potential of circulated endothelial progenitor cells
[Asahara et al. (1997)]. It was the first publication presenting clear ev-
idence of postnatal vasculogenesis. Since then, a number of publications
on postnatal and tumor vasculogenesis have appeared. The evidence keeps
growing, and there are already several excellent reviews in this field [Asa-
hara et al. (1999); Bolontrade et al. (2002); Drake (2003); Rabbany et al.
(2003); Ribatti et al. (2003)].
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10.2 Relative importance of angiogenesis versus vasculoge-
nesis

There are only three logically possible situations reflecting the relationship
between tumor vasculogenesis and angiogenesis.

(1) Tumor angiogenesis exists but tumor vasculogenesis does not exist.
This was the dominant view before the ground breaking paper by Asa-
hara [Asahara et al. (1997)].

(2) Tumor vasculogenesis is the only mechanism of tumor vascular mor-
phogenesis; angiogenesis does not play any role. Existing experimental
data contradict this hypothesis.

(3) Tumor vasculogenesis and tumor angiogenesis coexist. This is what
we assumed in the model. There are several ways in which the two
processes can co-occur.

(a) In different types of tumors, the relative contribution of vasculogen-
esis and angiogenesis to tumor vascular morphogenesis is different;

(b) This relation depends on patients' age;
(c) This relation changes during the dynamics of tumor growth and

depends on the stage of tumor growth;
(d) There are tissue-specific and organ-specific differences in the rela-

tionship between angio- and vasculogenesis in tumors;
(e) The relative roles of tumor angiogenesis and vasculogenesis can vary

inside the tumor.

Finally, one can imagine very complex combinations of all of the above
factors. In fact, it is probably safe to predict that in reality, we are dealing
with some sort of a combination of many components. It is obvious that this
question is the subject of future intensive research. Here we pursue the fol-
lowing strategy. We fist assume that the process of angiogenesis dominates,
and use a mathematical model to determine the patterns of typical tumor
growth dynamics. Then, we make the opposite assumption and describe
the growth of tumor dominated by vasculogenesis. We show that vasculo-
genesis-driven and angiogenesis-driven tumors grow in different ways. Once
we know this, we can use data to identify the "signature" of these processes
by measuring relevant variables, such as tumor growth, the level of circu-
lating stem cells, the state of the bone marrow, etc. This knowledge will
help to identify the relative contributions of the two processes in cancer
progression.
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10.3 Mathematical models of tumor angiogenesis and vas-
culogenesis

The model describes interactions between three compartments, the bone
marrow, the blood and the tumor vasculature, see Fig. 10.1. Let us denote
the number of endothelial progenitor cells (EPC) in the bone marrow (BM)
at time t as x{t), the number of EPC circulating in the blood system as
y(t), and the number of cells involved in the tumor vasculature as z(t).

We will consider two mechanisms by which the tumor's vasculature is
built [Komarova and Mironov (2004)]:

(i) angiogenesis,
(ii) vasculogenesis.

Tumor vascular cells that originate (or are descendants of cells that origi-
nate) by means of mechanism (i) are denoted as za. The ones that come
about by means of mechanism (ii) are denotes as zv. The subscripts in za

and zv refer to angiogenesis and vasculogenesis respectively. The total
number of cells involved in tumor vasculature is simply given by z = za+zv.
In Figure 10.1 we schematically denote angiogenesis-derived cells as white,
and vasculogenesis-derived cells as gray. Tumor vasculature will consist of
a mixture of the two types of cells.

. . - - ' " Long-range signaling. A, "" ~ - ^

£_ 3 | \
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j= of nearby vessels

Fig. 10.1 Angiogenesis- and vasculogenesis-related formation of tumor vasculature.

Let us first consider mechanism (i). As the tumor grows, it excretes
tumor angiogenesis factors, or TAF, that help activate the endothelial cells
of nearby blood vessels. Some tumors, such as many gliomas, secrete the
vascular endothelial growth factor (VEGF) that is normally produced by
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kidneys and brain cells [Plate et al. (1992); Shweiki et al. (1992)]. The
inhibition of VEGF induced angiogenesis suppresses tumor growth in mice
[Buchler et al. (2003); Kim et al. (1993)]. We assume that the degree to
which endothelial cells are induced to multiply is proportional to the tumor
mass, M(t), which in turn depends on the amount of vasculature, z(t).

Mechanism (ii) involves the following components. We assume that the
stem cells suitable for vasculogenesis are supplied to the blood by bone
marrow (BM). In the absence of a tumor (or other sites that use circulat-
ing stem cells), they enter the blood flow with a constant rate, Ao- They
circulate in the blood system and die with a constant rate, d\, or can return
to the BM with the rate, di- If there is no tumor (or any other need for
recruitment) then there is a constant, steady concentration of stem cells in
the blood [Rani et al. (2003)]. In the presence of a tumor, BM stem cells
are mobilized into the blood, by means of long-range signaling, mediated by
granulocyte-macrophage colony stimulating factor (GM-CSF). This means
that the number of stem cells delivered into the blood flow by the BM
is increasing with the rate proportional to the tumor size. Experimental
evidence of this mechanism is available in the literature, see e.g. [Taka-
hashi et al. (1999)], [Shirakawa et al. (2002)]. On the other hand, the
tumor recruits stem cells from the blood by means of short range signaling
(which involves cell adhesion molecules, [Joseph-Silverstein and Silverstein
(1998)]). The vascular endothelium of the nearby vessels becomes activated
and allows the stem cells to extravascate and start a cycle of differentia-
tion/division. The rate at which activation proceeds is also proportional to
the tumor load (which in turn is proportional to z).

Finally, we assume that both the newly stimulated epithelial cells (mech-
anism (i)) and the recruited stem cells (mechanism (ii)), enter a stage of
clonal expansion and continue to form blood vessels. The law of growth
is chosen to be consistent with the following simple mechanism: the new
blood vessels mostly form on the surface of the growing tumor. This means
that the rate of growth is proportional to the tumor surface, S(t). For the
time-scales of interest, this is not an unreasonable assumption. Saturation
of growth (due to lack of space or other constraints) happens much later
and is not considered here. What we would like to calculate is the rate at
which a tumor can grow, the relative contributions of the two mechanisms,
and how this changes over time.

The assumptions listed above lead to the following system of ordinary
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differential equations,

x = b0 - Xox - XMx - dox + d2y, (10.1)

y = Xox + XMx - (di + d2)y - rSy, (10.2)

za = lS, (10.3)

iv = rSy. (10.4)

All the variables and parameters are summarized in Table 5.1. We expect
the tumor mass to grow as a function of vasculature; in general we assume
that

Tumor mass oc (Tumor vasculature)0, (10.5)

where a is some positive number. An example of a possible power law is
given by a m 1, if vasculature is distributed throughout the body of the
tumor. If we assume a fractal structure of vasculature, this exponent may
be different. The main assumption here is that the tumor mass adjusts
instantaneously to the growing size of the vasculature. This is a quasista-
tionary approach. In a more general scenario, one could introduce some
rate at which the tumor mass adjusts to changes in vasculature.

With a — 1 in equation (10.5), equations (10.3) and (10.4) can be
replaced by

Ma = 1S, (10.6)

Mv = rSy. (10.7)

We have M = Ma+Mv. Depending on the tumor geometry, the relationship
between the tumor mass and its surface changes. The basic formula is
S = DM~ET , where D is the dimension of the tumor. For instance, in fiat
tumors, such as bladder carcinoma in situ, certain cancers of the eye or
flat adenomas/adenocarcinomas of the colorectal mucosa [Hurlstone et al.
(2004); Rubio et al. (1995)] we have D = 2. The two-dimensional analysis
is also applicable in certain in vitro experiments. Most of the time, however,
solid tumors are three-dimensional, and we will set D — 3.
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10.4 Mathematical analysis

Let us rewrite the system in a closed form,

x = b0 - Xox - XMx - dox + d2y, (10.8)

y = Xox + XMx - {di + d2)y - rSy, (10.9)

M = 1S + rSy, (10.10)

with S = DM^.

Tumor-free equilibrium. In the absence of a tumor, we have Ma =
Mv = M = S = 0, and the equilibrium level of circulating stem cells is
determined by setting the right hand side of equations (10.8), (10.9) to
zero, which gives

X(Q\ _ x _ feo(<ii +d2) , , _ boXo
do(d\ + d2) + diXo ' do(di + d2) + diXo

If the rate of return to BM is negligible, d2 <€. d\, then these equilibrium
expressions become more transparent,

/r>\ ^0 /r.N XQXQ

a0 + Ao di

The expression for XQ, the equilibrium number of BM EPCs in the absence
of a tumor, is a balance between a constant production, tumor-independent
recruitment and death. We conclude that in the absence of tumor,

„ Constant production
BM EPCs = — ——-.

Constant Recruitment + Death

This is an unstable equilibrium. Adding a small amount of M will get it
out of balance and lead to a growth of tumor. It is this process that we
will model next. We start from the initial condition

M = e, x(0) = x0, y(0) = yo-

The advantage of the above system is that we can consider the two
regimes, angiogenesis and vasculogenesis, separately. Namely, by taking
7 = 0, we can assume that the only way the tumor vasculature is built is
by vasculogenesis. Alternatively, r — X = 0 means that we assume that the
only mechanism is angiogenesis.
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Fig. 10.2 Typical angiogenesis-driven tumor dynamics: the quantities x(t), y(t) and
M(£) are plotted as a function of time. The parameter values are as follows: D = 3,
6o = 10, Ao = 0.01.A = 0, do = 0.1, d\ = 0.1, d2 = 0, r = 0,7 = 2.

Angiogenesis-driven dynamics. We start with r = A — 0. Let us
suppose that the linear size of tumor is a. Then M oc aP and S oc DaD~l.
Prom the equation (10.10) with r = 0, we have

a oc 7,

and we have the law for tumor growth,

M(t) oc tD,

which is valid for all times. Obviously, in this regime, the equation for
the tumor becomes independent of the equation for circulating EPCs. The
numbers of the BM EPCs and circulating EPCs remain at their equilibrium
level,

x(t) = x0, y(t) = y0.

The very simple behavior of this system is presented in Figure 10.2.

Vasculogenesis-driven dynamics. Next, let us consider the opposite
regime by taking 7 = 0. Now all the equations are coupled. As time
goes by, the tumor size will increase, and this will lead to an increase in
the number of circulating EPCs. Consequently, the number of BM EPCs
will drop. Qualitatively, the dynamics can be described as follows. In the
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beginning, y(t) increases. Then it reaches a maximum, after which it will
decrease to zero. x(t) drops to low numbers as y(t) reaches its maximum,
and then it continues to decrease to zero. The dynamics of M(t) also has
two stages. It grows faster than linear in the beginning, and then saturates
at a linear growth with slope bo, as y —> oo.

To understand the long-term behavior, let us suppose that di = 0, since
it does not change the behavior qualitatively. We note that initially, the
balance in the equation for x is denned by the b0 and -(Ao + do)x terms.
As time goes by and M increases, we have the balance bo « \Mx, which
means that x —> 0. Also, this expression defines the dynamics of y; we have
bo ~ rSy, where S —> oo, and y —> 0.

A typical outcome of a numerical simulation of system (10.8-10.10) is
given in Figure 10.3. A note of caution: the numerical values of the func-
tions should not be taken literally. The point of Figures 10.2 and 10.3 is
to depict the qualitative behavior of the angiogenesis- and vasculogenesis-
driven systems, which turns out to be very different.
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Fig. 10.3 Typical vasculogenesis-driven tumor dynamics: the quantities x(t), y(t) and
M(t) are plotted as a function of time. The parameter values are as in Figure 10.2,
except A = 0.1, r = 0.1 and 7 = 0.

Main qualitative differences. From this analysis we conclude that the
behavior of the system driven by angiogenesis and vasculogenesis is differ-
ent. The two main points of difference are as follows:
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• For angiogenesis driven systems, the amount of BM EPCs and circu-
lating EPCs stays constant in time. For vasculogenesis driven systems,
the amount of BM EPCs steadily decreases, and the amount of circu-
lating EPCs experiences a sharp peak in the beginning and then also
decreases.

• The tumor mass in angiogenesis driven systems grows as a cube of
time, that is, the diameter of the tumor grows linearly with time. For
vasculogenesis driven systems, tumor growth has two stages: at first,
the tumor mass grows faster than linear, and later, once the BM is
depleted of EPCs, the tumor mass grows linearly with time, which
means that the diameter of the tumor grows as a cubic root of time.

Another mathematical model of tumor vasculogenesis has been recently
proposed [Stoll et al. (2003)]. In this paper, the emphasis is on the geometry
of the tumor and its growth dynamics. However, this model does not take
account of the independent dynamics of BM and circulating EPCs. Our
model concentrates on the description of the fine balance between the three
compartments: the BM, the circulatory system and the tumor.

10.5 Applications

We have presented a mathematical model of tumor growth driven by angio-
genesis and vasculogenesis and found that the dynamics are quite different
in the two cases, as predicted by our equations. Indeed, if angiogenesis was
the entire story, then we would expect a cubic (third power) growth of the
tumor mass, and constant levels of BM EPCs and circulating EPCs. On
the other hand, if the tumor growth is driven by vasculogenesis, then the
dynamics will go through two stages. First, the level of circulating EPCs
will increase and the tumor will grow faster than linear, and then, when
the BM is depleted of EPCs, the level of circulating EPCs will also go down
and tumor growth will slow down to linear, which means that the tumor
diameter will only grow as a cubic root of time.

10.5.1 Dynamics of BM-derived EPCs

Even though the exact role the BM-derived EPCs play in the formation of
de novo blood vessels in the process of tumorigenesis is heavily debated,
there is growing evidence of their importance for the formation of tumor
vasculature [Bolontrade et al. (2002); Davidoff et al. (2001)]. A paper
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by [Lyden et al. (2001)] suggests that "recruitment of VEGF-responsive
BM-derived precursors is necessary and sufficient for tumor angiogenesis".
Schuch et al. [Schuch et al. (2003)] propose that EPCs can be a novel
target for endostatin and suggest that their relative numbers can serve as
a surrogate marker for the biological activity of antiangiogenic treatment.

In this chapter, we developed a model with a predictive power regarding
the dynamics of BM-derived EPCs. This is a first attempt to quantify the
level of EPCs in relation to carcinogenesis.

10.5.2 Re-evaluation of apparently contradictory experi-
mental data

The two-stage dynamics characteristic of vasculogenesis-driven tumor
growth is consistent with some experimental data published recently. In
particular, our model can help resolve some contradicting reports on the
levels of circulating EPCs in cancer patients. In the paper [Beerepoot et al.
(2004)] it is found that the level of circulating endothelial cells in periph-
eral blood of cancer patients is increased compared with healthy subjects.
More specifically, cancer patients with progressive disease had on average
3.6-fold more circulating EPCs than healthy subjects. Patients with stable
disease had circulating EPC numbers equal to that in healthy subjects. On
the other hand, [Kim et al. (2003)] reports that the number of circulating
EPCs was not found to be increased in cancer patients, although the plasma
levels of VEGF were elevated. It was further concluded by the authors that
VEGF, at concentrations typical of those observed in the blood of cancer
patients, does not mobilize EPCs into the peripheral blood.

With our model, it is possible to resolve this apparent discrepancy in
measurements of the level of circulating EPCs. If we look at Figure 10.3, we
can see that the level of EPCs first increases and then drops even below the
level corresponding to the equilibrium in healthy subjects. Therefore, the
timing of measurements becomes crucially important. The level of circulat-
ing EPCs will depend on the stage of cancer development. It experiences
a peak and drops considerably afterward. It would be very interesting
to perform systematic measurements to find out the exact timing of this
process.

Application for diagnostics. Dynamic analysis of the number of circu-
lated EPCs in blood opens up a clinically important avenue of research.
Circulated stem cells can be used as a surrogate marker of tumor vas-
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culogenesis. Development of assays which would allow us to monitor the
recruitment of labeled EPCs could eventually be transformed into a clinical
diagnostic test for estimating the intensity of tumor vasculogenesis.

10.5.3 Tumor growth kinetics

The kinetics of tumor growth is a complicated question, and no universal
answer has been given as to how exactly tumors develop in time. There
may be a good reason for this: different tumors may grow according to dif-
ferent scenarios, and these scenarios may be very complicated. The Gom-
pertzian law of tumor growth has been extensively discussed over the last
four decades, see e.g. [Laird (1969); Lazareff et al. (1999); Norton (1988)].
This "sigmoidal" empirical law models an exponential growth of a tumor at
the initial stages followed by saturation at a constant level. There are many
papers which suggest that this law does not hold [Retsky et al. (1990)],
and propose different models [Ferreira et al. (2002); Gatenby and Gawlin-
ski (1996); Guiot et al. (2003); Kansal et al. (2000); Sherratt and Chaplain
(2001)]. Many of the mathematical models seem to be concerned with the
avascular stage in tumor growth. While this may be of theoretical interest,
it is believed that most of the observed tumors are dependent on blood
supply. Therefore, the formation of new blood vessels should be a part of
a realistic model.

In general, there is a curious situation regarding the state of affairs
with the studies of tumor growth kinetics. It seems that many modelers
come up with different theoretical constructs predicting various modes of
growth, while there is very little directed research in this area on the part
of experimental cancer biologists. One possible explanation is of course
the impossibility of studying tumor growth kinetics in humans, without
treatment. Another factor is the difficulty of precise measurements: with
only a limited number of data points and a large error of measurement, it
is impossible to make out subtleties of the growth dynamics. Finally, the
very complexity of multistage tumorigenesis poses a problem when trying to
identify any "universal" behavior, thus leaving theorists with their theories
unchecked, and making experimental biologists concentrate on issues of
"survival", "treatment success" etc., which present more possibilities for
direct applications in treatment.

It is probably safe to say that different factors affect the rate of tumor
growth during different stages of tumorigenesis. In the very beginning (the
avascular stage), a mutation (or a set of mutations) throws the growth
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and death regulation out of balance, which may lead to an exponential
accumulation of such (pre-)malignant cells. Then, for some reason, the
growth slows down. This can be related to space/density control or the
lack of specific growth factors. The growth of the lesion plateaus, until
the next mutation breaks out of homeostatic regulation, leading to another
increase in cell number. At some point, the lesion reaches the size where
it is impossible to keep up the functioning of cells unless additional blood
supply is provided. At this stage, the rate-limiting factor becomes the
making of the new blood vessels.

It is this stage of the growth that we concentrated on in our model. We
assumed that new blood vessels are formed near the surface of the existing
tumor, thus making the cells near the surface divide more often than the
core. A similar assumption was made in the interesting paper by [Bru et al.
(2003)]. There, a linear growth of the diameter with time was observed in
colonies of tumor cell lines in vitro. The authors went on to develop a
model which takes account of the fractal structure of a tumor. Most of
the growth activity (i.e. mitosis) was assumed to be concentrated on the
boundary of the colony/tumor, which leads to a linear growth law for the
colony diameter.

Our model is similar to this in the assumption that tumor growth hap-
pens mostly on the surface. However, it makes more explicit statements
on the kinetics of de-novo vascularization. If we assume that new blood
vessels are formed locally, that is, if the tumor dynamics are dominated by
the process of angiogenesis, then we find that tumor mass grows as a third
power of time (this means that the tumor diameter grows linearly, like in
the model by [Bru et al. (2003)]). On the other hand, if circulating EPCs
are recruited from the blood stream, that is, vasculogenesis is the dominant
process, the growth of the tumor mass (after some transition period) will
be linear in time.

The point of our model is to address a specific question, namely, whether
new blood vessels are formed "locally" or "globally". It is incomplete with-
out an experimental validation. An experimental test can be performed
to find out which of the processes contributes more to tumor growth. If a
linear growth is found, then we can conclude that vasculogenesis is more
important. If the growth is cubic in time, then angiogenesis wins. Several
studies have reported the kinetics of tumor growth which can be used to test
our predictions. For instance, in the paper by Schuch et al. [Schuch et al.
(2002)], the law of tumor volume growth for pancreatic cancers resembles
linear, which suggests the prevalence of vasculogenesis. The paper [Hah-
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nfeldt et al. (1999b)] contains data on Lewis lung carcinoma implanted
in mice, where a linear growth of three-dimensional tumor size was ob-
served. This is again consistent with our vasculogenesis-driven dynamics.
On the other hand, [Mandonnet et al. (2003)] report the linear growth of
the tumor diameter for gliomas, which is consistent with the dominance of
angiogenesis. However, statistically it may be difficult to distinguish be-
tween a linear and a cubic growth curve unless we have many experimental
points. A conscious experiment with this specific question in mind would
be very desirable to address this issue.



Chapter 11

Cancer and immune responses

As pointed out in the previous chapter, the body is characterized by defense
systems which can limit the growth and pathogenicity of selfish tumor cells
once they have arisen by a series of mutations. The previous chapter ex-
plored how the limitation of blood supply can prevent cancers from growing
beyond a very small size and from progressing. This is a mechanism which
is supported very well by experimental and clinical data, and which is also
studied from a therapeutic point of view. Another mechanism which can
potentially counter the growth of cancer cells is the immune system. As will
become apparent in this chapter, however, the role of the immune system
in cancer is highly debated and uncertain.

The immune system defends human beings from intruders such as
pathogens which would otherwise kill them. It does so by specifically recog-
nizing proteins derived from the pathogens (for example, viruses, bacteria,
or parasites). Through complicated mechanisms which will be discussed
briefly later on, the immune system knows that these proteins are foreign
and that they are not derived from the organism that it is supposed to
protect. What about cancer? As discussed throughout this book, car-
cinogenesis involves the accumulation of multiple mutations and in general
often exhibits genetic instability. This means that many mutated proteins
are produced which are different from the organism's own proteins and
should thus appear foreign. In principle, these should be visible to the im-
mune system which could potentially remove tumor cells and prevent the
development of cancer.

A role of the immune system in the fight against cancer was first sug-
gested in 1909 by Paul Ehrlich [Ehrlich (1909)]. It was not, however, until
the 1950s, when the idea was pursued more vigorously and the immune
surveillance hypothesis was formulated by Burnet [Burnet (1957)]. It stated
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that while cancers continuously arise, they are eliminated by specific im-
mune responses. The successful establishment of cancer was thought to
come about by the occasional escape of cancer cells from the immune re-
sponses. In support of this hypothesis, experimental data indicated that
cancer cells show many characteristics which prevent the immune system
from recognizing the mutated proteins and from killing the cells success-
fully.

Following a lot of enthusiastic research in this context, clinical and ex-
perimental data cast doubt on the immune surveillance hypothesis [Dunn
et al. (2002)]. Patients characterized by impaired immune systems showed
no significant increase in the incidence of cancers which are not induced
by viruses. Similarly, nude mice - which lack adaptive immune responses
- have a similar incidence of cancers compared to normal mice. Moreover,
experimental studies tracked immune cells specific for cancer proteins and
found that they did not react successfully in the first place. This in fact con-
tradicted the hypothesis that the immune system can play any surveillance
role in the context of cancers. Since then, many papers have investigated
the relevance of immune responses in cancer [Dunn et al. (2002)]. While our
understanding is still rudimentary, it seems that the truth lies somewhere
in between these two extreme views.

This chapter will review mathematical work which tried to account for
some of the experimental data on immunity and cancer. We will start with
a brief overview of immunity which gives the necessary background before
discussing the model and equations.

11.1 Some facts about immune responses

This section will briefly review some basic immunological principles which
form the basis for the rest of the chapter. More extensive descriptions of
the immune system can be found in any standard immunology text book,
for example [Janeway et al. (1999)]. We can distinguish between two basic
types of immune responses. Innate immune responses provide a first line
of defense. They do not recognize foreign proteins specifically. They pro-
vide environments which generally inhibit the spread of intruders. While
they may be important to limit the initial growth of a pathogen, they are
usually not sufficient to resolve diseases. They will not be considered fur-
ther here. On the other hand, adaptive immune responses can specifically
recognize foreign proteins and can resolve diseases. We concentrate on this
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type of response here. Adaptive immunity can be subdivided broadly into
two types of responses: antibodies and killer cells. Antibodies recognize
proteins outside the cells, such as free virus particles, extracellular bacte-
ria or parasites. Killer cells recognize foreign proteins which are displayed
on cells. For example, viruses replicate inside cells. During this process,
the cell captures some viral proteins and displays them on the cell surface.
When the killer cells recognize the foreign proteins on the cell surface, they
release substances which kill. Mutated cancer proteins are displayed on
the surface of cancer cells. Therefore, killer cells are the most important
branch of the immune system in the fight against cancer. The rest of this
chapter will discuss only the role of killer cell responses. The scientific term
is cytotoxic T lymphocyte, abbreviated as CTL. They can also be referred
to as CD8+ T cells because they are characterized by the expression of the
CD8 molecule on the cell surface.

The CTL are able to recognize the cell which displays a foreign protein
in the following way. When proteins inside the cell are captured for display
on the cell surface, they are presented in conjunction with so-called major
histocompatibility complex (MHC) molecules. The MHC genes are highly
variable, and different MHC genotypes present different proteins. This
accounts for the variability between different people in immune responses
against the same pathogen. The CTL carries the so-called T cell receptor
or TCR. The TCR recognizes the protein-MHC complexes. This triggers
the release of specific molecules such as perforin or FAS, which induce
apoptosis in the cell that displays the foreign proteins. In immunology, the
foreign protein which is recognized by the immune cells is also referred to
as antigen.

It is important to note that all proteins of a cell are processed and dis-
played in this way, not just the ones which are supposed to be recognized
by the immune system. With this in mind, how can the immune cells dis-
tinguish between self and foreign? After all, the vast majority of proteins
produced by a cell are normal self proteins. Immune cells usually do not
react against self proteins. This is called tolerance. They do, however, react
against most pathogens. This is called reactivity. In the context of cancers
it appears that the immune response can remain tolerant to mutated cancer
proteins during the natural history of progression, but that reactivity can
be induced by certain vaccination approaches. What determines whether
we observe tolerance or reactivity? This question is still debated. Different
hypotheses have been put forward. According to one hypothesis, immune
cells can distinguish between "self" and "foreign" [Janeway (2002)]. Neg-
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ative selection early during the development of immune cells can result in
the deletion of cells which react to self proteins. This hypothesis has diffi-
culties to explain immunological tolerance in the context of tumors because
the mutated tumor cell proteins should appear foreign to the immune sys-
tem. Another idea is the danger signal hypothesis [Fuchs and Matzinger
(1996)]. This states that immune responses only react if they sense so-
called "danger signals". They can be released as a result of tissue injury,
necrosis, or virus infections. Since tumor cells die predominantly by apop-
tosis, such danger signals are not released. This could explain why the
immune system remains tolerant in the context of cancers, while it reacts
to infectious agents. The problem with the danger signal hypothesis is that
such signals have yet to be identified in terms of chemical compounds.

Recently, the phenomenon of cross-priming and cross-presentation has
received attention in the context of CTL regulation [Albert et al. (2001);
Albert et al. (1998); Belz et al. (2002); Blankenstein and Schuler (2002);
den Haan and Bevan (2001); den Haan et al. (2000); Heath and Carbone
(2001a); Heath and Carbone (2001b)]. This relates to the initiation of
immune responses. Before the antigen is seen, very few specific immune
cells exist. When antigen is recognized the specific CTL start to divide
and undergo clonal expansion. If clonal expansion is successful, we observe
reactivity. If it is not successful, we observe tolerance. This initiation of
the response does not occur at the site where the aberrant target cells are
located, but in the lymph nodes. Cross priming means that the initiation
of the CTL response is not mediated by antigen which is displayed on the
target cells themselves. Instead, it occurs when antigen is recognized on so-
called antigen presenting cells (APCs). The job of these cells is to take up
antigen, transport it to the lymph nodes, and present it to the CTL. This
activates the CTL and induces clonal CTL expansion. Once expanded, the
CTL can migrate to the site where the aberrant cells are located. Once
there, they perform their effector function; that is, they kill the cells.

In summary, the indirect recognition of antigen by CTL on antigen pre-
senting cells is called cross-priming or cross-presentation. On the other
hand, the direct recognition of antigen on the target cells which are sup-
posed to be killed is called direct presentation. These concepts are explained
in more detail schematically in Figure 11.1.

Because cross-presentation is thought to play a role in deciding whether
we observe reactivity or tolerance, this process is the subject of mathemat-
ical models in this chapter. We start by introducing a basic mathematical
model of CTL response regulation and then discusses basic mathematical
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results. These mathematical results are subsequently applied to aspects of
cancer evolution, progression and treatment.

Cross-presentation Direct presentation

V / V / -̂ ~* Activated "^p*

Fig. 11.1 Schematic representation of the concept of cross-priming, which is central to
this chapter. So called "antigen presenting cells" can take up antigen (proteins derived
from pathogens or cells) and display them on their surface. Before the APCs can function,
they need to be activated. This is achieved by so called helper T cells (Th) which can
recognize the antigen on the APC. The activated APC subsequently can interact with
CTL. CTL can also specifically recognize the antigen on the APC. This interaction
activates the CTL which can then turn into effector cells and kill the troubled target
cells which display the antigen. These target cells are different from APCs and can be for
example virus-infected cells or tumor cells. This process is called cross-priming because
the CTL do not get activated directly by the troubled cells which need to be killed, but
indirectly by the APCs which can take up and display the antigen.

11.2 The model

We describe a model containing four variables: cells directly displaying
antigen such as infected cells or tumor cells, T (we will refer to these cells
as "target cells"); non-activated APCs which do not present the antigen,
A; loaded and activated APCs which have taken up antigen and display
it, A*; CTL, C. The model is given by the following system of differential
equations which describe the development of these populations over time,

T = rT I 1 - - j - dT - jTC,

A = \-S1A- aAT,

A* =aAT-52A*,

The infected or tumor cells grow at a density dependent rate rT(l-T/k). In
case of virus infections, this represents viral replication, where virus load

(11.1)
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is limited by the availability of susceptible cells, captured in the parameter
k. In case of tumors, this corresponds to division of the tumor cells, and
the parameter k denotes the maximum size the tumor can achieve, limited
for example by spatial constraints. The cells die at a rate dT, and are
in addition killed by CTL at a rate -jTC. APCs, A, are produced at a
constant rate A and die at a rate Si A. They take up antigen and become
activated at a rate a AT. The parameter a summarizes several processes:
the rate at which antigen is released from the cells, T, and the rate at
which this antigen is taken up by APCs and processed for display and cross-
presentation. Loaded APCs, A*, are lost at a rate 82A*. This corresponds
either to death of the loaded APC, or to loss of the antigen-MHC complexes
on the APC. Upon cross-presentation, CTL expand at a rate T]A*C/(eC+i).
The saturation term, eC+1, has been included to account for the limited
expansion of CTL in the presence of strong cross-stimulation [De Boer and
Perelson (1995)]. The activated and expanding population of CTL can
kill the infected cells upon direct presentation. In addition, it is assumed
that direct presentation can result in removal of CTL at a rate qTC. This
can be brought about, for example, by antigen-induced cell death, or over-
differentiation into effectors followed by death. Finally, CTL die at a rate
H C.

Thus a central assumption of the model is that cross-presentation can
induce CTL expansion, while direct presentation does not have that ef-
fect; instead it can result in the decline of the CTL population. This
assumption implies that the magnitude of cross-presentation relative to di-
rect presentation could be a decisive factor which determines the outcome
of a CTL response: activation or tolerance. In the model, the ratio of
cross-presentation to direct presentation is given by cA*/qT.

We assume that r > a. That is, the rate of increase of the target
cells, T, is greater than their death rate. This ensures that this population
of cells can grow and remain present. If this is fulfilled, the system can
converge to a number of different equilibria (Figure 11.2). The expressions
for the equilibria will not be written out here since most of them involve
complicated expressions.

(1) The CTL response fails to expand, i.e. C — 0. The population of target
cells grows to a high equilibrium level, unchecked by the CTL. The
populations of unloaded and loaded APCs, A and A*, also equilibrate.

(2) The CTL response expands, i.e. C > 0. In this case, the system
can converge to one of two different outcomes, (a) The number of
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Fig. 11.2 Different outcomes of the model shown as time series, (a) Tolerance; CTL go
extinct, (b) Tolerance outcome where CTL do not go extinct but are maintained at very
low levels, (c) Immunity outcome. Parameters were chosen as follows: r=0.5; k=10;
d=0.1; i=l; X=l; 8±=0.1; &i=1.5; r)=2; e=l; q=0.5; n=0.1. a=0.2 for (i) and a=0.1
for (ii). For (iii) a=0.05; r=10; t)=10.

CTL is low and the number of target cells is high. This outcome is
qualitatively similar to (i), because the CTL population does not fully
expand, and the population of target remains high, (b) The number
of CTL is high and the number of target cells is low. This can be
considered the immune control equilibrium. If the population of target
cells is reduced to very low levels, this can be considered equivalent to
extinction (number of cells below one).

These equilibria therefore fall into two basic categories: (a) Tolerance;
this is described by two equilibria. Either the immune response goes extinct,
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or it exists at low and ineffective levels, (b) Reactivity; this is described
by only one equilibrium. The immune response expands to higher levels
and exerts significant levels of effector activity. The following sections will
examine which outcomes are achieved under which circumstances.

11.3 Method of model analysis

The equilibrium outcomes of the model describe the states to which the
system can converge: reactivity or tolerance. These equilibria are roots of
polynomials of degree larger than two. Consequently, the stability analysis
of the equilibria was performed numerically, and will be presented as bifur-
cation plots below. The numerical analysis was carried out with a program
called Content. It allows tracking the position of the equilibria as we vary
parameters of the system. It also determines their eigenvalues as a function
of parameters, thus giving full information on their stability properties.

11.4 Properties of the model

The two most important parameters in the present context are the rate
of antigen uptake by APCs, a, and the growth rate of the target cells,
r. This is because variation in these parameters can significantly influence
the ratio of cross-presentation to direct presentation which is the subject of
investigation. Hence, in the following sections we will examine the behavior
of the model in dependence of these two parameters.

The rate of antigen uptake by APCs. The rate of antigen uptake by
APCs comprises two processes: (i) the degree to which the antigen is made
available for uptake; this can be determined for example by the amount
of antigen released from the target cell, or the amount of apoptosis going
on [Albert et al. (1998)]. (ii) The rate at which the APCs take up the
available antigen and process it for presentation. As the rate of antigen
uptake by APCs, a, decreases, the ratio of cross-presentation to direct
presentation decreases (Figure 11.3a). When the value of a is high, the
outcome is immunity. If the value of a is decreased and crosses a threshold,
we enter a region of bistability (Figure 11.3a): both the immunity and the
tolerance equilibria are stable. Which outcome is achieved depends on the
initial conditions. If the value of a is further decreased and crosses another
threshold, the immune control equilibrium loses stability. The only stable
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Fig. 11.3 Bifurcation diagram showing the outcome of the model as a function of (a)
the rate of antigen presentation by APCs, a, and (b) the growth rate of target cells, r.
Virus load and the ratio of cross-presentation to direct presentation at equilibrium are
shown. Parameters were chosen as follows: r=0.5; k=10; d=0.1; i=l; A=J; Si=0.1;
a=0.S; 52=l.S; r)=9; e=l; q=0.5; n=0.1.

outcome is tolerance (Figure 11.3a).
In the region of bistability, the dependence on initial conditions is as

follows. Convergence to the immune control equilibrium is promoted by low
initial numbers of target cells, high initial numbers of presenting APCs, and
high initial numbers of CTL. This is because under these initial conditions,
the dynamics start out with a high ratio of cross-presentation to direct
presentation and this promotes the expansion of the CTL. On the other
hand, if the initial number of target cells is high and the initial number of
presenting APCs and CTL is low, then the initial ratio of cross-presentation
to direct presentation is low and this promotes tolerance. There are some
slight variations to this general picture. As they do not alter the basic
results, however, the reader is referred to [Wodarz and Jansen (2001)] for
details.
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In summary, as the rate of antigen uptake by APCs is decreased, the
ratio of cross-presentation to direct presentation decreases, and this shifts
the dynamics of the CTL response in the direction of tolerance. This can
include a parameter region in which both the tolerance and the immunity
outcome are stable, depending on the initial conditions. If the CTL respon-
siveness to cross-presentation is very strong, tolerance becomes an unlikely
outcome.
The growth rate of target cells. An increase in the growth rate of
target cells, r, results in a decrease in the ratio of cross-presentation to
direct presentation in the model. Hence an increase in the growth rate of
target cells shifts the dynamics of the CTL from a responsive state towards
tolerance. The dependence of the dynamics on the parameter r is shown in
Figure 11.3b. The growth rate of target cells needs to lie above a threshold
to enable the CTL to potentially react. This is because for very low values of
r, the number of target cells is very low, not sufficient to trigger immunity.
If the growth rate of target cells is sufficiently high to potentially induce
immunity, we observe the following behavior (Figure 11.3b). If the value of r
lies below a threshold, the only stable outcome is immunity. If the value of r
is increased and crosses a threshold, we enter a region of bistability. That is,
both the immunity and the tolerance outcomes are possible, depending on
the initial conditions. The dependence on the initial conditions is the same
as explained in the last section. If the value of r is further increased and
crosses another threshold, the immunity equilibrium loses stability and the
only possible outcome is tolerance. Again, there are some slight variations
to this general picture. As they do not alter the basic results, however, the
reader is referred to [Wodarz and Jansen (2001)] for details.

In summary, an increase in the growth rate of target cells has a similar
effect as a decrease in the rate of antigen uptake by APCs: the ratio of cross-
presentation to direct presentation becomes smaller, and the outcome of the
dynamics is driven from immunity towards tolerance. Again, this includes
a parameter region where both the immunity and tolerance outcomes are
stable and where the outcome depends on the initial conditions. The higher
the overall responsiveness of the CTL to cross-stimulation, the less likely it
is that a high growth rate of target cells can induce tolerance.
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11.5 Immunity versus tolerance

The models have investigated the topic of CTL regulation from a dynami-
cal point of view. We showed that the immune system can switch between
two states: tolerance and activation. Which state is reached need not de-
pend on the presence or absence of signals, but on the relative magnitude
of cross-presentation to direct presentation. This shows that regulation can
be accomplished without signals but in response to a continuously varying
parameter. Thus, the regulation of CTL responses could be implicit in the
dynamics. This relies on the assumption that there is a difference in the ef-
fect of cross-presentation and direct presentation. The mathematical model
assumes that while cross-presentation results in CTL expansion, direct pre-
sentation results in lysis followed by removal of the CTL. Some mechanisms
described in the literature support this notion. The simplest mechanism
resulting in CTL removal could be antigen-induced cell death [Baumann
et al. (2002); Budd (2001); Hildeman et al (2002)]. That is, exposure
to large amounts of antigen by direct presentation can trigger apoptosis in
the T cells. Another mechanisms could be that exposure to direct presen-
tation of antigen on the target cells induces the generation of short lived
effectors which are destined for death [Guilloux et al. (2001)]. Since CTL
effectors are thought to die shortly after killing target cells, exposure to
large amounts of direct presentation can result in over-differentiation and
an overall loss of CTL.

With the assumptions explained above, we find a very simple rule that
determines whether CTL responses expand and react, or whether they re-
main silent and tolerant. CTL expansion and immunity is promoted if the
ratio of cross-presentation to direct presentation is relatively high. This is
because the amount of CTL expansion upon cross-presentation outweighs
the degree of CTL loss upon direct presentation. On the other hand, tol-
erance is promoted if the ratio cross-presentation to direct presentation is
relatively low. This is because the amount of CTL loss upon direct presen-
tation outweighs the amount of CTL expansion upon cross-presentation.

For self antigen displayed on cells of the body, the ratio of cross-
presentation to direct presentation is normally low. This is because these
cells do not die at a high enough rate or release the antigen at a high
enough rate for the amount of cross presentation to be strong. On the
other hand, large amounts of this antigen can be available on the surface of
the cells expressing them (direct presentation). In terms of our model, this
situation can best be described by a low value of a. Hence, in our model,
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CTL responses are not predicted to become established against self anti-
gens. Instead, the outcome is tolerance. In addition, the initial conditions
favor tolerance in this scenario. When immune cells with specificity for self
are created and try to react, the number of these immune cells is very low
and the number of target cells (tissue) is relatively high. This promotes
failure of the CTL response to expand and to become established. On the
other hand, with infectious agents, antigen is abundantly available. For
example, virus particles are released from infected cells, ready to be taken
up by APCs for cross-presentation. Therefore, the immune responses react
and become fully established. In contrast, tumors may fail to induce CTL
responses because tumor antigens are largely displayed on the surface of
the tumor cells, but relatively little tumor antigen is made available for
uptake by dendritic cells and hence for cross-presentation. The relative
amount of cross-presentation, however, is influenced by parameters such
as the growth rate of the target cells, and we observe a parameter region
where the outcome of the CTL dynamics can depend on the initial condi-
tions. Since cancer cells continuously evolve towards less inhibited growth,
these results have implications for the role of CTL in tumor progression
and cancer therapy. This is explored in the following sections.

11.6 Cancer initiation

A tumor cell is characterized by mutations which enable it to escape growth
control mechanisms which keep healthy cells in check. According to the
model, the generation of a tumor cell can lead to three different scenarios
(Figure 11.4):

(i) A CTL response is induced which clears the cancer, (ii) A CTL
response develops which is weaker; it controls the cancer at low levels, but
does not eradicate it. (iii) A CTL response fails to develop; tolerance is
achieved and the cancer can grow uncontrolled. Which outcome is attained
depends on the characteristics of the cancer cells. In particular it depends
on how fast the cancer cells can grow (r in the model), and how resistant
they are against death and apoptosis. Cell death, and in particular apop-
tosis, is thought to increase the amount of cross-presentation [Albert et al.
(1998)]. Resistance to apoptosis thus corresponds to a reduction in the
parameter a in the model. Three parameter regions can be distinguished
(Figure 11.5).

(i) If the cancer cells replicate slowly and/or still retain the ability to
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Fig. 11.4 Time series plots showing the different possible outcomes when a tumor is
generated, (a) Clearance, (b) Immune control but failure to clear the target cells, (c)
Tolerance. Parameters were chosen as follows: k=10; d=0.1; 7 =1; X=l; 5\=0.1;
a=0.5; 52=l-5; 77 =2; e=l; q=0.5; fi =0.1. (a) r = 0.13. (b, c) r = 1. The difference
between graphs (b) and (c) lies in the initial number of CTL, 2.

undergo apoptosis, the cancer will be cleared, because strong CTL responses
are induced, (ii) If the cancer cells replicate faster and/or the degree of
apoptosis is weaker, the ratio of cross-presentation to direct presentation is
reduced. This can shift the dynamics into the bistable parameter region.
That is, the outcome depends on the initial conditions. If the initial size
of the tumor is relatively small, it is likely that CTL responses will be
develop successfully. This will result in control of the tumor. Because the
response is less efficient, however, clearance is not likely. If the size of the
tumor is already relatively large when the CTL response is activated, the
likely outcome is tolerance, (iii) If the growth rate of the tumor cells is
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CTL-mediated clearance CTL-mediated control CTL collapse
(cancer goes extinct) (cancer persists at low levels) (uncontrolled cancer growth)

Faster rate of cancer cell replication and/or less apoptosis

Fig. 11.5 Three parameter regions of the model: CTL mediated clearance, CTL-
mediated control with tumor persistence at low levels, and CTL collapse leading to
uncontrolled tumor growth. Which outcome is observed depends on the rate of cancer
cell replication and on the ability of cells to undergo apoptosis.

still higher and/or the degree of apoptosis is still lower, then the ratio of
cross-presentation to direct presentation falls below a threshold; now the
only possible outcome is tolerance and uncontrolled tumor growth.

11.7 Tumor dormancy, evolution, and progression

Here, we investigate in more detail the scenario where the growth rate
of the tumor is intermediate, and both the tolerance and the CTL con-
trol outcomes are possible, depending on the initial conditions. Assume
the CTL control equilibrium is attained because the initial tumor size is
small. The number of tumor cells is kept at low levels, but the tumor is
unlikely to be cleared because in this bistable parameter region the ratio
of cross-presentation to direct presentation is already reduced. If the tu-
mor persists at low levels, the cells can keep evolving over time. They can
evolve, through selection and accumulation of mutations, either towards a
higher growth rate, r, or towards a reduced rate of apoptosis which leads to
reduced levels of antigen uptake by dendritic cells, a. Both cases result in
similar evolutionary dynamics. This is illustrated in Figure 11.6 assuming
that the cancer cells evolve towards faster growth rates (higher values of
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Fig. 11.6 Equilibrium tumor load (a) and the number of tumor specific CTL (b) as a
function of the growth rate of tumor cells, r. This graph can by interpreted to show the
effect of tumor evolution towards faster growth rates over time. As evolution increase
the value of r over time, the tumor population and the CTL attain a new equilibrium.
Parameters were chosen as follows: r=0.5; k=10; d=0.1; 7 =1; \=1; 5\=0.1; a=0.5;
82=1-5; 77 =2; e=l; q=0.5; ft =0.1.

An increase in the growth rate of tumor cells does not lead to a signifi-
cant increase in tumor load. At the same time, it results in an increase in
the number of tumor-specific CTL. The reason is that a faster growth rate
of tumor cells stimulates more CTL which counter this growth and keep
the number of tumor cells at low levels. When the growth rate of the tumor
cells evolves beyond a threshold, the equilibrium describing CTL-mediated
control of the cancer becomes unstable. Consequently, the CTL response
collapses and the tumor can grow to high levels.

The dynamics of tumor growth and progression can include a phase
called "dormancy". During this phase the tumor size remains steady at a
low level over a prolonged period of time before breaking out of dormancy
and progressing further. Several mechanisms could account for this phe-
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nomenon. The limitation of blood supply, or inhibition of angiogenesis,
can prevent a tumor from growing above a certain size threshold [Folkman
(1995b)]. When angiogenic tumor cell lines evolve, the cancer can progress
further. Other mechanisms that have been suggested to account for dor-
mancy are immune mediated, although a precise nature of this regulation
remains elusive [Uhr and Marches (2001)]. As shown in this section, the
model presented here can account for a dormancy phase in tumor pro-
gression. If the overall growth rate of the cancer cells evolves beyond this
threshold, dormancy is broken: the CTL response collapses and the tumor
progresses.

11.8 Immunotherapy against cancers

Assuming that the CTL response has failed and the cancer can grow
unchecked, we investigate how immunotherapy can be used to restore CTL
mediated control or to eradicate the tumor. In the context of the model, the
aim of immunotherapy should be to increase the ratio of cross-presentation
to direct presentation. The most straightforward way to do this is dendritic
cell vaccination. In the model, this corresponds to an increase in the num-
ber of activated and presenting dendritic cells, 4̂*. We have to distinguish
between two scenarios: (i) The tumor cells have evolved sufficiently so that
the CTL control equilibrium is not stable anymore, and the only stable
outcome is tolerance, (ii) The tumor has evolved and progressed less; the
equilibrium describing CTL mediated control is still stable.

First we consider the situation where the tumor has progressed far
enough so that the CTL control equilibrium is not stable anymore. Upon
dendritic cell vaccination, tolerance is temporarily broken (Figure 11.7).
That is, the CTL expand and reduce the tumor cell population. This CTL
expansion is, however, not sustained and tumor growth relapses (Figure
11.7). The reason is as follows. Upon dendritic cell vaccination, the ratio
of cross-presentation to direct presentation is increased sufficiently, enabling
the CTL to expand. However, this boost in the level of cross-presentation
subsequently declines, allowing the tumor to get the upper hand and re-
grow. The model suggests, however, that the tumor can be eradicated if the
level of cross-presentation is continuously maintained at high levels. This
can be achieved by repeated vaccination events (Figure 11.7). The next
vaccination event has to occur before the level of cross-presentation has
significantly declined. This will drive tumor load below a threshold level
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Fig. 11.7 Effect of dendritic cell vaccination on tumor dynamics assuming that the
growth rate of the tumor has evolved to high values, where only the tolerance outcome
is stable, (a) A single vaccination event induces a temporary reduction in tumor load,
followed by a relapse, (b) Repeated vaccination events can drive the tumor load below
a threshold which corresponds to extinction in practical terms. Parameters were chosen
as follows: r=1.5; k=10; d=0.1; 7 =1; X=l; 5i=0.01; a=0.5; 52=1.5; tj =0.5; e=l;
q=0.5; fi =0.1.

which practically corresponds to extinction (Figure 11.7).
Next, we consider the more benign scenario in which the tumor has not

progressed that far and the CTL control equilibrium is still stable. Now a
single vaccination event can shift the dynamics from the tolerance outcome
to the CTL control outcome (Figure 11.8). The reason is that an elevation
in the number of presenting dendritic cells shifts the system into a space
where the trajectories lead to CTL control and not to tolerance. This is
likely to be achieved if the size of the tumor is not very large. The larger
the size of the tumor, the stronger the vaccination has to be (higher A*) in
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Fig. 11.8 Effect of dendritic cell vaccination on tumor dynamics assuming that the
growth rate has not yet progressed beyond a threshold, so that we are in the bistable
parameter region of the model. A single vaccination event can induce immunity which
can control the tumor at low levels. Parameters were chosen as follows: r=0.3; k=10;
d=0.1; 7 =1; \=1; S1=0.01; a=0.5; 8-2=1.5; 77 =0.5; e=l; q=0.5; y, =0.1.

order to achieve success. If the tumor size is very large, then an elevated
level of dendritic cells cannot shift the ratio of cross-presentation to direct
presentation sufficiently to induce sustained immunity. A combination of
vaccination and chemotherapy can, however, result in success. This is be-
cause chemotherapy reduces the size of the tumor and also induces death of
tumor cells. Both factors contribute to a higher ratio of cross-presentation
to direct presentation and to induction of immunity. Once a sustained CTL
response has been induced, tumor cells are kept at low levels. However, the
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cancer is unlikely to be eradicated. Consequently, it can evolve over time.
Thus, induction of CTL mediated control in the model is likely to result in
a temporary phase of tumor dormancy. This phase is again broken after
the overall growth rate of the tumor has evolved beyond the threshold at
which the CTL control outcome becomes unstable.

These considerations result in the following suggestions. Dendritic cell
vaccination should be administered repeatedly until the last tumor cell has
been eradicated. If the tumor has already progressed relatively far, this
is the only way to prevent immediate relapse of the cancer. If the tumor
is less progressed, temporary tumor dormancy can be achieved by a single
vaccination event. Tumor persistence and evolution will, however, break
this dormancy phase, resulting in renewed cancer growth after a certain
period of time. Thus, in this case, repeated vaccination is also advisable
in order to keep the level of cross-presentation above a threshold and to
avoid tumor persistence. In all cases, the model suggests that a combi-
nation of immunotherapy with conventional therapy is beneficial because
conventional therapy can reduce the growth rate of the tumor. If conven-
tional therapy increases the chances of developing immunological control of
the tumor, conventional therapy would have to be applied only temporarily
which would have significant clinical benefits.





Chapter 12

Therapeutic approaches: viruses as
anti-tumor weapons

In the final chapter of this book we will discuss some treatment strategies
against cancer. We start with a brief introductory section which summa-
rizes some major treatment options. We then focus on an experimental
gene therapeutic approach and show how mathematical analysis can be
useful for identifying optimal treatment schedules.

The basic principle which underlies the treatment of cancer is the spe-
cific attack of cancer cells, without harming healthy cells. This is a most
difficult challenge. The reason is that cancer cells are derived from healthy
cells. While there are certainly many characteristics which are specific to
cancer cells and which are not present in healthy cells, it is unclear how
to exploit these differences therapeutically. Several therapy methods have
already been mentioned or discussed in some detail throughout this book in
different contexts. These include chemotherapy, immunotherapy, and the
use of angiogenesis inhibitors. In the following we will briefly summarize
common treatment options as well as some new and promising approaches.

As long as the tumor is localized and has not yet spread by metastasis,
the best strategy is to remove it by surgery. This cures the patient. If
the tumor has already spread to other tissues, however, surgery does not
provide the patient with a significant benefit because the cancer cannot be
eradicated anymore. In this case, the most common treatment strategy is
chemotherapy, or radiation therapy if treatment is applied locally. These
approaches work by damaging the DNA of cells. The aim is that this
damage kills the cells. The rational for specificity is that chemotherapeutic
agents are taken up by dividing cells. The common wisdom is as follows.
Because cancer cells divide significantly more often than healthy tissue cells,
chemotherapy is supposed to attack cancer cells preferentially. Tissue cells
which do, however, divide relatively often, suffer side effects. Side effects are
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particularly common in epithelial tissue (hair, skin, mouth, digestive tract,
etc.). It is unclear how chemotherapy works. Studies have attempted to
find specific genes which correlate with success and failure. Some drugs
appear to result in cell death by triggering apoptosis. Other drugs trigger
cellular arrest and senescence. More work will be needed to develop genetic
profiles which correlate with treatment success.

Recently, the use of targeted small molecules has caught a lot of at-
tention as a complement or alternative to chemotherapy [Guillemard and
Saragovi (2004); Smith et al. (2004)]. Research has identified molecular
mechanisms and pathways which are responsible for cancerous growth. The
aim is to use specific drugs to target these mechanisms and thereby remove
the cancerous cells. There has already been some success with this kind
of drugs. A Novartis drug called Gleevec has shown very promising results
in the context of chronic myelogenous leukemia and a rare gastric cancer
[Hasan et al. (2003); John et al. (2004)]. However, major problems remain,
especially with respect to the emergence of drug resistance which leads to
treatment failure [Yee and Keating (2003)]. In some cases, combining such
targeted therapy with chemotherapy has been shown to have a beneficial
impact on patients [Daley (2003)].

Another interesting therapy approach is still experimental. It serves as a
nice example of how mathematical models can be used to help identify under
which circumstances treatment success might be achieved. The treatment
involves the use of so-called oncolytic viruses [Kirn et al. (1998); Kirn
and McCormick (1996); McCormick (2003)]. These are viruses which have
been engineered to replicate in cancer cells; healthy cells are not susceptible.
They infect, reproduce, kill, and spread to further cancer cells. They act
in a similar way as predators and biological control agents in agriculture.
Predatory insects are used in order to destroy and control populations of
pest insects which might be resistant to chemical pest control agents.

Several viruses have been altered to selectively infect cancer cells. Ex-
amples are HSV-1, NDV, and adenoviruses [Kirn and McCormick (1996)].
A specific example that has drawn attention recently is ONYX-015, an
attenuated adenovirus which selectively infects tumor cells with a defect
in p53 [Dix et al. (2000); Hall et al. (1998); Heise et al. (1999a); Heise
et al. (1999b); Kirn and McCormick (1996); Oliff et al. (1996); Rogulski
et al. (2000)]. This virus has been shown to have significant anti-tumor
activity and has proven to be relatively effective at reducing or eliminating
tumors in clinical trials in the context of head and neck cancer [Ganly et al.
(2000); Khuri et al. (2000); Kirn et al. (1998)]. Yet challenges remain. In
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particular, it is unclear which virus characteristics are most optimal for
therapeutic purposes. Viruses have been altered in a variety of ways by
targeted mutations, but it is not clear what types of mutants have to be
produced in order to achieve extinction of the cancer. Viruses can be al-
tered with respect to their rate of infection, rate of replication, or the rate
at which they kill cancer cells. Some studies have introduced "explosive"
genes which the virus can deliver to the cancer cells and which will kill the
cells instantly.

If tumor eradication does not occur, the outcome can be the persistence
of both the tumor and the virus infection, and this would be detrimental for
patients. Persistence of both tumor and virus has been seen in experiments
with a mouse model system by Harrison et al. [Harrison et al. (2001)].
The reason for the failure to eradicate the tumor despite ongoing viral
replication was left open to speculation.

Mathematical models have been used to address this question. Taking
into account the complex interactions between viruses, tumor cells, and
immune responses, such models have identified conditions under which on-
colytic virus therapy is most likely to result in successful clearance of cancer.
This chapter discusses these insights. The models take into account a va-
riety of mechanisms which can contribute to cancer elimination. On the
most basic level, virus infection and the consequent virus-induced death of
the cancer cell can be responsible for tumor eradication. On top of this,
the immune system is expected to have an effect. In particular, cytotoxic
T lymphocytes (CTL, reviewed in Chapter 11) are likely to be important.
These immune responses can kill cells which display foreign or mutated
proteins. They may act in two basic ways. They can recognize the virus
presented on infected cells and kill virus-infected cells. Alternatively, the
virus infection may promote the establishment of a CTL response against
cancer proteins, again resulting in their death. Mathematical models for
each scenario will be discussed in turn, and some practical implications will
be presented towards the end of the chapter.

12.1 Virus-induced killing of tumor cells

This section investigates the basic dynamics between a growing tumor pop-
ulation and a replicating virus selective for the tumor cells. Various aspects
of tumor growth and inhibition have been modeled in literature [Adam and
Bellomo (1997); Gatenby (1996); Gatenby and Gawlinski (1996); Kirschner
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and Panetta (1998)] and explored in previous chapters. Here, we concen-
trate on a simple model, capturing the essential assumptions for analyzing
virus-mediated therapy. The model contains two variables: uninfected tu-
mor cells, x, and tumor cells infected by the virus, y. It is explained
schematically in Figure 12.1.

Carrying capacity of tumor, k

Uninfected tumor cells, x
Proliferation, r
Death, d

WggQsS'^^ ^^^^fc Infected tumor cells, y
A jA*S&® Proliferation, s

^ ^ ^ Death, a

Lysis, pT Lysis, pv

Expand in response Expand in response
to tumor antigen & to viral antigen, c

presence of virus, A ^ ^ ^ ^ ^ * ^ ^ t _ ^ * ^
cr(stimulatory ~ ^ ^ ^ ^ . 3 * — " " jttk. . 3
signal) ^ \ . 4 ^ T^* < ^

Tumor-specific CTL, z,- Virus-specific CTL, zv

Fig. 12.1 Schematic representation of the models which are reviewed in this chapter.

The tumor cells grow in a logistic fashion at a rate r and die at a rate
d. The maximum size or space the tumor is allowed to occupy is given
by its carrying capacity k. The virus spreads to tumor cells at a rate (3
(this parameter can be viewed as summarizing the replication rate of the
virus). Infected tumor cells are killed by the virus at a rate a and grow in
a logistic fashion at a rate s. This assumes that division of infected tumor
cells results in both daughter cells carrying the virus. This would certainly
be the case with a virus that integrates into the tumor cell genome, but
with a non-integrating virus, the chances of transmission upon cell division
should be sufficiently high to justify this assumption. The model is given
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by the following set of ordinary differential equations [Wodarz (2001)].

( x + y\
x = rx I 1 — I — ax — pxy,

\ k J

( x ~\~ ii \
1 — - ay.

k )

In the absence of the virus the trivial equilibrium is attained and is
given by E0: ar(°) = k(r - d)/r, y(0) = 0.

The virus can establish an infection in the tumor cell population if
[Pk(r — d) + sd]/r > a. In this case, two types of outcomes are possible.
The virus can either attain 100% prevalence in the tumor cell population
(i.e. all tumor cells are infected), or it may only infect a fraction of the
tumor cells (i.e. both uninfected and infected tumor cells are observed).
Hundred percent virus prevalence is described by equilibrium El:

x ( i ) = 0 ) yW =k(s-a)/s.

Coexistence of infected and uninfected tumor cells is described by equilib-
rium E2:

,2\ fik (a — s) + ar — sd ^2) /3k (r — d) + sd — ra

X = p(pk + r-s) ' V = P(pk + r-s) '

The virus infects all tumor cells (equilibrium El) if a < s(d +(3k)/(r +(3k).
Otherwise, equilibrium E2 is observed.

With this result in mind, how does viral cytotoxicity influence the size
of the overall tumor? The tumor size is defined as the sum of infected
and uninfected tumor cells, x + y, at equilibrium. Viral cytotoxicity has
an opposing influence on tumor load depending on which equilibrium is
attained (Figure 12.2). If all tumor cells are infected, then x+y = k(s—a)/s.
An increase in viral cytotoxicity results in a reduction in tumor load (Figure
12.2). On the other hand, if not all tumor cells are infected, then x + y =
k{r — s + a — d)/(Pk + r — s). Now, an increase in the viral cytotoxicity
increases tumor load (Figure 12.2). The reason is that increased rates
of tumor cell killing eliminate infected tumor cells before the virus had a
chance to significantly spread. This in turn increases the pool of uninfected
tumor cells and therefore the tumor load.

Hence, there is an optimal cytotoxicity, aopt, corresponding to the min-
imum tumor size. This optimum is the degree of cytotoxicity at which the
system jumps from the equilibrium describing 100% virus prevalence to the
equilibrium where uninfected tumor cells are also present (Figure 12.2a).
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Fig. 12.2 Dependence of overall tumor load on the cytotoxicity of the virus. There is
an optimal cytotoxicity at which tumor load is smallest. The faster the rate of virus
replication, the higher the optimal level of cytotoxicity, and the smaller the minimum
tumor load. Parameters were chosen as follows: k=10; r=0.2; s=0.2; d—0.1; for fast
viral replication, (3=1; for slow viral replication (3=0.1.

The optimal viral cytotoxicity is thus given by aopt = s(d + (3k)/(r + /3k).
At this optimal cytotoxicity the tumor size is reduced maximally and is
given by [a; + y] [min] = k(r - d)/(r + (3k).

There are a number of points worth noting about this result. The
minimum tumor size this therapy regime can achieve is most strongly de-
termined by the replication rate of the virus, (3 (Figure 12.2). The higher
the replication rate of the virus, the smaller the minimum size of the tumor.
In order to achieve this minimum, the viral cytotoxicity must be around
its optimum value. A major determinant of the optimal viral cytotoxic-
ity is the rate of growth of uninfected and infected tumor cells (r and s
respectively).

(1) If the infected tumor cells grow at a significantly slower rate relative
to uninfected cells (s « r), the optimal cytotoxicity is low (Figure
12.3a). In the extreme case where the virus completely inhibits the
ability of the tumor cell to divide, a non-cytotoxic virus is required
to achieve optimal treatment results. More cytotoxic viruses result in
tumor persistence (Figure 12.3a).

(2) On the other hand, if the growth rate of infected tumor cells is not
significantly lower than that of uninfected tumor cells, an intermediate
level of virus induced cell death is required to achieve minimum tumor
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Fig. 12.3 Simulation of therapy using an oncolytic viruses in the absence of immunity.
(a) The growth rate of infected tumor cells is significantly slower than that of uninfected
tumor cells. A non-cytotoxic virus now results in tumor eradication. A more cytotoxic
virus results in tumor persistence. Parameters were chosen as follows; k=10; r=0.5; s=0;
(3=1; d=0.1; a = 0.1 for the non-cytotoxic virus, and a = 0.5 for the more cytotoxic virus.
(b) The growth rate of infected tumor cells is not significantly reduced relative to that
of uninfected cells. An intermediate level of cytotoxicity results in tumor eradication.
Weaker or stronger levels of cytotoxicity result in tumor persistence. Parameters were
chosen as follows: k=10; r=0.5; s=0; fl=l; d=0.1; a = 0.2 for the weakly cytotoxic
virus, a = 0.55 for intermediate cytotoxicity, and a = 3 for strong cytotoxicity.

size (Figure 12.3b). If viral cytotoxicity is too weak, the tumor persists.
However, if the viral cytotoxicity is too high, the tumor also persists
because infected cells die too fast for the virus to spread efficiently
(Figure 12.3b). In general, the faster the replication rate of the virus,
the higher the optimal level of cytotoxicity.
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12.2 Effect of virus-specific CTL

This section expands the above model to include a population of virus-
specific CTL, zv. The CTL recognize viral antigen on infected tumor cells.
Upon antigenic encounter, the CTL proliferate with a rate cvyzv and kill
the infected tumor cells with a rate pvyzv. In the absence of antigenic
stimulation the CTL die with a rate bzv. The model is given by the following
set of differential equations [Wodarz (2001)].

/ i* -I— 11 i

x = rx I 1 :— I — dx — (3xy,
\ k )

( x + y\
1 r— ) -ay- pvyzv,

K /

z = cvyzv - bzv.

First, we define the conditions under which an anti-viral CTL response
is established. This condition is different depending on whether the virus
attains 100% prevalence in the tumor cell population in the absence of the
CTL. The strength of the CTL response, or CTL responsiveness, is denoted
by cv. If the virus has attained 100% prevalence in the absence of CTL,
the CTL become established cv > bs/[k(s — a)]. On the other hand, if the
virus is not 100% prevalent in the tumor cell population in the absence of
CTL, the CTL invade if cv > b(3({3k + r- s)/[r((3k - a) - d(f3k - s)}.

In the presence of the CTL, we again observe two basic equilibria: either
100% virus prevalence in the tumor cell population, or the coexistence of
infected and uninfected tumor cells. Hundred percent virus prevalence in
the tumor cell population is described by equilibrium El:

_(i) _ 0 ?,(i) _ b/c z(i) _ kcv(s-a)-sbx - 0 , y -b/cv, zv - p ^

Coexistence of infected and uninfected cells is described by equilibrium E2:

(2) _ r(kcv-b)-k(cvd + bp) (2) _

rcv

(2) _ /3k (rcv - b(3 - cvd) - cv (ar - sd) - 6/3 (r — s)
v pvcvr

How do the CTL influence the outcome of treatment? We distinguish
between two scenarios.
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Fig. 12.4 Dependence of overall tumor load on the strength of the virus-specific CTL
response. There is an optimal CTL responsiveness at which tumor load is smallest. The
faster the rate of virus replication, the higher the optimal strength of the CTL response,
and the smaller the minimum tumor load. Parameters were chosen as follows: k=10;
r=0.5; s=0.5; d=0.1; b=0.1; p=l; a=0.2; for fast viral replication, (3=1; for slow viral
replication (3=0.1.

(i) If the virus has established 100% prevalence in the tumor cell pop-
ulation in the absence of the CTL response, the presence of CTL can both
be beneficial and detrimental to the patient (Figure 12.4). On one hand,
the virus can remain 100% prevalent in the tumor in the presence of CTL.
In this case, overall tumor size is given by x + y = b/cv. At this equilib-
rium, an increase in the CTL responsiveness against the virus decreases the
tumor size. On the other hand, if the CTL responsiveness crosses a thresh-
old given by cv > b{(3k + r)/[k(r — d)], the virus does not maintain 100%
prevalence in the tumor cell population, and the overall tumor size is given
by x + y — k[cv(i— d) — b(3}J{cvr). In this case, an increase in the CTL re-
sponsiveness to the virus increases tumor load and is detrimental to the pa-
tient (Figure 12.4). This is because the CTL response kills the virus faster
than it can spread. Hence, the optimal CTL responsiveness is given by
copt = b{(3k + r) /[k(r — d)}. At this optimal CTL responsiveness, the tumor
size is reduced maximally and is given by [x + y][min] = k(r — d)/(r + j3k).
The faster the replication rate of the virus, the higher the optimal CTL
responsiveness, and the lower the minimum size of the tumor that can be
attained by therapy (Figure 12.4). Note that the minimum tumor size that
can be achieved is the same as in the previous case where viral cytotoxicity
alone was responsible for reducing the tumor. The effect of the CTL re-
sponse is to modulate the overall death rate of infected cells with the aim
of pushing it towards its optimum value. Figure 12.5 shows a simulation of
therapy where an intermediate CTL responsiveness results in tumor remis-
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sion, while a stronger CTL response can result in failure of therapy because
virus spread is inhibited.
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Fig. 12.5 Simulation of therapy using an oncolytic viruses in the presence of virus-
specific lytic CTL. An intermediate CTL responsiveness results in tumor eradication,
while a stronger CTL response results in tumor persistence. Parameters were chosen
as follows: k=10; r=0.5; s=0.5; (3=0.1; a=0.2; p=l; b=0.1; b=0.1; d=0.1; The inter-
mediate CTL responsiveness is characterized by cv = 0.2625, while the stronger CTL
response is characterized by cv = 2.

(ii) If the virus is not 100% prevalent already in the absence of the CTL
response, a CTL-mediated increase in the death rate of infected cells can
only be detrimental to the patient since it increases tumor load. The system
converges to an equilibrium tumor size described by x + y = k[cv(r — d) —
bP]/cvr.

12.3 Virus infection and the induction of tumor-specific
CTL

Previous sections explored how virus infection and the virus-specific CTL
response can influence tumor load. However, virus infection might not only
induce a CTL response specific for viral antigen displayed on the surface of
the tumor cells. In addition, active virus replication could induce a CTL re-
sponse specific for tumor antigens [Puchs and Matzinger (1996); Matzinger
(1998)]. The reason is that virus replication could result in the release of
substances and signals alerting and stimulating the immune system. This
could be induced by tumor antigens being released and taken up by pro-
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fessional antigen presenting cells (APC), and/or by other signals released
from the infected tumor cells. This is known as the danger signal hypothe-
sis in immunology (and is discussed in more detail in Chapter 11). Normal
tumor growth is thought not to evoke such signals, whereas the presence
of viruses might evoke danger signals. Here, such a tumor specific CTL
response is included in the model. It is assumed that the responsiveness of
the tumor-specific CTL requires two signals: (i) the presence of the tumor
antigen, and (ii) the presence of infected tumor cells providing immuno-
stimulatory signals. In the following, the interactions between the tumor,
the virus, and the tumor-specific CTL are investigated.

A model is constructed describing the interactions between the tumor
population, the virus population, and a tumor-specific CTL response. It
takes into account three variables. Uninfected tumor cells, x, infected tumor
cells, y, and tumor-specific CTL, ZT- It is given by the following set of
differential equations [Wodarz (2001)],

/ £ -L- y \

x = rx 1 — \ — dx — Bxy — pTxzT,

\ k J
( x *4~ IJ \

y = I3xy + sy[l — ) - ay - pTyzT,
\ K /

zT = CT(X + y)zT — bzT.

The basic interactions between viral replication and tumor growth are
identical to the models described above. The tumor-specific CTL expand
in response to tumor antigen, which is displayed both on uninfected and
infected cells (x+y), at a rate ex- However, in accord with the danger signal
hypothesis, it is assumed that the tumor-specific CTL response only has
the potential to expand in the presence of the virus, y. In the model virus
load correlates with the ability of the tumor-specific response to expand,
since high levels of viral replication result in stronger stimulatory signals.
The tumor-specific CTL kill both uninfected and infected tumor cells at a
rate PTVZT-

If the virus has reached 100% prevalence in the absence of CTL, the
tumor-specific CTL response becomes established if cT > bs2/[k(a — s)]2.
If infected and uninfected tumor cells coexist in the absence of CTL, the
tumor-specific CTL response becomes established if

b(3(s - r - (3k)2

k[/3k(r — d) — ra + sd](r — s + a — d)
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In the presence of the tumor-specific CTL, the virus can again attain
100% prevalence in the tumor cell population, or we may observe the coex-
istence of infected and uninfected tumor cells. Hundred percent prevalence
in the tumor population is described by equilibrium El :

xW=0, v™ = «,/<*?<>, 4) = HS-^Sy{1)-

Coexistence of infected and uninfected tumor cells is described by equi-
librium E2:

acT PT L V k J J

2.(2) = 9. ,

Cxk ((3k + r — s) (r — d + a — s ) '

where

Q = cTrk [r - 2 (d + s + a)] + cTdk2 [d+2(s- a)} + cTk2 [s (s - 2a) + a2]

+ b(3k [2 (s - r) - f3k] - br2 + bs (2r - s ) .

b I ^ v Slower replicating and more cytotoxic viras

1 r N..
§ rg >w Faster replicating and
O g, >ŝ  less cytotoxic virus

o s ^ ^ ^ , ,, , ,,

Log tumor-specific CTL responsiveness, cT

Fig. 12.6 Dependence of overall tumor load on the strength of the tumor-specific CTL
response. The higher the strength of the tumor-specific CTL, the lower tumor load. If the
strength of the tumor-specific CTL crosses a threshold, tumor load becomes independent
of CTL parameters. The faster the rate of virus replication and the smaller the degree
of viral cytotoxicity, the further the overall tumor load can be reduced. Parameters were
chosen as follows: k=10; r=0.5; s=0.5; d=0.1; b=0.1. The fast replicating and weakly
cytotoxic virus is characterized by 0=1 and a = 0.2. The slower replicating and more
cytotoxic virus is characterized by (3=0.5 and a = 0.5.
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We investigate how the responsiveness of the tumor-specific CTL, CT,
influences the size of the tumor, x + y. The presence of the tumor-specific
CTL can have the following effects. If the virus achieves 100% prevalence
in the tumor cell population, then x + y = (b/cT)1^2. Thus, an increase
in the responsiveness of the tumor-specific CTL results in a decrease in
tumor load (Figure 12.6). If cT > b(/3k + r- s)2/[k(r - s + a- d)]2, the
virus is not 100% prevalent in the tumor cell population. This switch is
thus promoted by a high responsiveness of the tumor-specific CTL relative
to the replication rate of the virus (Figure 12.6). In this case, the size of
the tumor is given by x + y = k(r - s + a — d)/{j3k + r - s). This is the
minimum tumor size that can be achieved. Thus, if the CTL responsiveness
against the tumor lies above a threshold, tumor load reaches its minimum
(Figure 12.6). Note that it also becomes independent of the strength of
the CTL. Hence, a CTL responsiveness that lies above this threshold is not
detrimental to the patient. In this situation, tumor size is determined by
the replication rate and the cytotoxicity of the virus (Figure 12.6). The
higher the replication rate of the virus and the lower the degree of viral
cytotoxicity, the smaller the tumor. The reason is that fast viral replication
and low cytotoxicity result in higher virus load which in turn results in
stronger signals to induce the tumor-specific CTL. Figure 12.7 shows a
simulation of treatment underscoring this result.

' F - - - - , Slower replicating and
p 7 - A \ more cytotoxic virus

x - I \
i 6 f /
1 4T / \

i >\ / \..y
> 1 - /

O ; ^ Faster replicating and less cytotoxic virus
0 10 20 30 40 50 60

A Time scale (arbitrary units)

Start of virus therapy

Fig. 12.7 Simulation of therapy using an oncolytic virus in order to stimulate a tumor-
specific CTL response. If the virus replicates at a fast rate and is weakly cytotoxic, the
level of immuno-stimulatory signals is high. Hence the tumor-specific response is strong
and drives the tumor extinct. Parameters were chosen as follows: k=10; r—0.5; s=0.5;
d=0.1; b=0.1; c-r = 0.2. The fast replicating and weakly cytotoxic virus is characterized
by /3=0.5 and a = 0.2. The slower replicating and more cytotoxic virus is characterized
by (3=0.1 and a = 0.6.
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A note of caution: the model assumes that the production of immuno-
stimulatory signals induced by the virus is proportional to the amount of
viral replication. If cellular debris following virus-mediated destruction of
cells also contributes to these signals, then the effect of viral cytotoxicity
could be more complex. However, the exact nature and concept of the so-
called danger signals is still controversial. The model takes into account
the simple observation that presence of signals typical of viral replication
can enhance immunity to tumors.

12.4 Interactions between virus- and tumor-specific CTL

In this section, the two types of CTL responses studied above are brought
together. That is, both the virus- and the tumor specific CTL responses are
taken into consideration. The model is explained schematically in Figure
12.1 and given by the following set of differential equations [Wodarz (2001)]:

x = rx I 1 — I — ax — pxy — PTXZT,
\ * /

I rp I qj \

y = /3xy + sy[l — - ay - pvyzv - pryzr,

Zy Cy yZy OZy j

zT = CT(X + y)zT - bzT-

In this model the virus- and the tumor specific CTL responses are in com-
petition with each other, because both can reduce tumor load and hence
the strength of the stimulus required to induce CTL proliferation. In the
following these competition dynamics are examined.

If the virus has reached 100% prevalence in the tumor cell population
in the absence of CTL, then virus- and tumor specific CTL cannot coexist.
If cv > (orb)1/2, then the virus-specific CTL response is established. On
the other hand, if cv < (CT&)1//2, then the tumor-specific CTL response
becomes established.

If both infected and uninfected tumor cells are present in the absence of
CTL, the situation is more complicated. Now, three outcomes are possible.
Either the virus-specific response becomes established, or the tumor-specific
response becomes established, or both responses can coexist. The virus-
specific response persists if cv > kcrir-s + a-d)/(fik + r — s). The tumor-
specific response persists if CT > c^r/{k[cv{r — d) — b/3]}. Coexistence of
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both CTL responses is only observed if both of these conditions are fulfilled.
This outcome is described by the following equilibrium expressions:

CVCT

•p-^K'-5^)-*"].
*>=i[*"+.(i-^)-.-»4

If both responses coexist, then the size of the tumor is given by x + y =
CV/CT- Thus, a strong tumor-specific response, CT, reduces tumor load.
On the other hand, a strong virus-specific response, cv, increases tumor
load. The reason is that a strong virus-specific response results in low virus
load and therefore in low stimulatory signals promoting the induction of
tumor-specific immunity. Note that this last statement only applies to the
parameter region where both types of CTL responses co-exist.

12.5 Treatment strategies

The above discussion has shown that the outcome of therapy depends on a
complex balance between host and viral parameters. An important variable
is the death rate of infected tumor cells. In order to achieve maximum re-
duction of the tumor, the death rate of the infected cells must be around its
optimum, denned by the mathematical models. If the death rate of infected
cells lies around its optimum, a fast replication rate of the virus and a slow
growth rate of the tumor increase the chances of tumor eradication. The
death rate of infected tumor cells can be influenced by a variety of factors:
(i) Viral cytotoxicity alone kills tumor cells, (ii) A CTL response against
the virus contributes to killing infected tumor cells. (Hi) The virus helps
eliciting a tumor-specific CTL response following the release of immuno-
stimulatory signals.

The most straightforward way to use viruses as anti-cancer weapons is
in the absence of immunity. If the cytotoxicity of the virus is around its
optimum value, minimum tumor size is achieved. It is important to note
that the highest rate of virus induced tumor cell killing does not necessarily
contribute to the elimination of the tumor. The reason is that a very
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high rate of virus-induced cell death compromises the overall spread of the
infection through the tumor. If a virus specific CTL response is induced,
the best strategy would be to use a fast replicating and weakly cytotoxic
virus. This is because the CTL will increase the death rate of infected cells.
If the overall death rate of infected cells is too high, this is detrimental to
the patient, since virus spread is prevented. In addition, a weakly cytotoxic
and fast replicating virus may provide the strongest stimulatory signals for
the establishment of tumor-specific immunity.

Because the model suggests that a fast growth rate of the tumor de-
creases the efficacy of treatment, success of therapy could be promoted
by using a combination of virus therapy and conventional chemo- or ra-
diotherapy. These suggestions are supported by recent experimental data
[Preytag et al. (1998); Heise et al. (1997); Rogulski et al. (2000); You
et al. (2000)]. A combination of treatment with the adenovirus ONYX-015
and chemotherapy or radiotherapy has been shown to be significantly more
effective than treatment with either agent alone.

The principles of the mathematical modeling approaches presented here
can help to improve treatment and to attain higher levels of success. In
order to achieve this, however, more work is needed. Basic parameters of
viruses and virus mutants need to be measured as a first step. Because
the optimal death rate of infected tumor cells is crucial, it will be impor-
tant to precisely measure the rate at which different viruses kill the tumor
cells. Equally important is the quantification of the viral replication kinet-
ics. Once such basic parameters have been measured, it is important to
re-consider some model assumptions. The models discussed in this chapter
are only a first approach to use computational methods for the analysis of
oncolytic virus therapy, and the models will probably need to be revised
and improved. For example, it is unclear whether and how the replication
rate of the virus correlates with the rate of virus-induced cell killing. Many
possibilities exist, and this is similar to the relationship between pathogen
spread and "virulence" in an epidemiological context. Such more detailed
information, based on experimental measurements, will be important to
incorporate into the models in order to make more solid and reliable pre-
dictions.
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12.6 Evaluating viruses in culture

A central result derived from the mathematical models is that success is
promoted by using a virus which induces an optimal death rate of infected
cells. Too high a rate of virus-induced cell death is detrimental and leads
to the persistence of both tumor and virus, because overall virus spread
is impaired. This gives rise to important insights for the methods used to
evaluate potential viruses in culture [Wodarz (2003)].
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Fig. 12.8 Simulation showing the evaluation of potential replicating viruses in culture.
A weakly and a strongly cytopathic virus are compared. Introduction of the virus is in-
dicated by an arrow, (a) High multiplicity of infection, (b) Low multiplicity of infection.
Parameters were chosen as follows: r=0.5; s=0; k=10; (3=1.5; d=0.01; k=0.1; u=l.
For the strongly cytopathic virus, a = 0.4. For the weakly cytopathic virus, a = 0.04.
Virus inoculum was y = 10 for high MOI and y = 0.01 for low MOI.

In vitro experiments can be used to evaluate the potential efficiency
with which the virus can eradicate a tumor. This is done by infecting a
population of cancer cells with virus in a dish and monitoring the number
of cancer cell over time. The models suggest that a low multiplicity of
infection (MOI, i.e. the initial abundance of the virus relative to the tumor
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cells) is required to evaluate the virus. The reason is that in vivo, the
replicating virus has to spread through the cancer cell population, and this
has to be mimicked in culture. Using a high MOI can lead to misleading
evaluations. These notions are illustrated in Figure 12.8 with computer
simulations. This figure depicts the dynamics in culture for strongly and
weakly cytopathic viruses, using different MOIs. Figure 12.6a shows the
dynamics for a high MOI. In this simulation, the strongly cytopathic virus
results in quick elimination of the tumor cells, while the weakly cytopathic
virus is much less effective. Thus, if viruses are evaluated using a high
MOI, the virus with the strongest degree of tumor cell killing receives the
highest grades. Importantly, this is the virus which is predicted to be least
efficient at reducing tumor load in vivo. The situation is different when
viruses are evaluated in culture using a low MOI (Figure 12.6b). The less
cytopathic virus results in elimination of tumor cells in culture, while the
more cytopathic virus fails to eliminate tumor cells in culture. Therefore,
the less cytopathic virus gets the better marks, and this is also the virus
which is predicted to be more efficient at reducing tumor load in vivo.



Appendix A

Exact formula for total probability of
double mutations

Here we calculate the probability of having a double mutant in a crypt, as
a function of time. We focus on the progeny of one stem cell. The total
number of cells in the crypt, N(n), is

_r, , [2™, n< I

Note that n < I represents the "development" stage of the crypt. After
n = I, the size of the crypt remains constant. Each cell division may
result in creating mutants. The probability of mutation is p\, so that with
probability 2pi(l — pi) one mutant is created, and with probability p\ two
mutants are created. A mutated cell can acquire a second mutation with
probability p%.

Let us trace mutations in one clone. The number of mutants at time
n (with one mutation) is a random variable, whose values go from 0 to
21"1. If a double mutant is created, we set this random variable to the
value E (for "end"). This is an absorbing state because once a double
mutant is creatjed, it is assumed to stay in the system. We have a time-
inhomogeneous Markov process for the variable j , j g {0,1, . . . , 2l~x, E}.
The probability distribution for the variable j at time n is a row-vector
p("), whose evolution is given by

p(n) =p(n-l)Af(»)) n = l , 2 , . . . .

The transition matrices, M^, can be easily written down. The first matrix
corresponds to the asymmetric division of the SC, and is given by

M ^ = l - P l , M£>=Pu M[\) = 1-P2, MW=p2, M ^ , = l,

with all the rest of the elements being zero. The matrices corresponding to
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symmetric divisions of DCs are given by the following:

for 0 < k < 2™"1 - 2j, 0<j< 2 n " 2 , and

M$ = l-(l~P2)2i, 0 < j < 2 " - 2 ,

M(E% = 1,

with all the rest of the elements being zero. Let us suppose that the SC
is not mutated at time n = 0. Let us consider one clone in isolation. The
probability to have at least one double mutant by time n is given by

1
Po(E;n)= (l,0,...)l[M^\ , n < I, P0(E;n) = Po(E;l), n > Z;

here [• • -]E stands for the .Eth entry of a row-vector. Note that after I divi-
sions starting from SC, the cumulative probability does not change anymore
because the clone is removed. Similarly, if the SC is mutated at time 0,
then the corresponding probability is

P*(E;n)= \(0,l,...)f[M^\ , n < I, P.(E;n) = P.(E;l), n > I.

L s=l J E

This formula can be simplified to give

AT(n)-l

P*(E;n)= J2 ( l-( l-P2)2 ' )( l-p2)2 J- \
3=0

where the upper limit of summation is J\f(n) = n for n < I, and N{n) = I
for n > I.

We would like to calculate the probability to have at least one double
mutant in the system by time n. We consider a sequence of clones. There
are n divisions of the SC. Let us denote the event of acquiring a mutation
in the SC at time k, and no further mutations in the SC before time n, by
Sk,n- We have

Prob{Sk,n) = (l-p1)k-1p1(l-p2)n~h.
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Given Sk,n, the probability to have no double mutant by time n is

k n

Prob(E;n\Sk,n) = H(l-P0{E;n-j + l)) f | (1 - P*(E;n - j + 1)).
J=l j=k+l

Each clone is originated at time j , so its "age" is n - j + 1. Similarly,
the probability to have no double mutant by time n, given that no SC
mutations have occurred by time n, is

n

Prob(E; n\no SC mut) = JJ(1 - P0(E; n-j + 1)),
i=i

and the probability to have no SC mutations by time n is (1 — pi)™. The
total probability to have at least one double mutant by time n is given by

n

1 - Prob(E;n) = ^Pro&(JB;n|5fe,n)Pro6(5fciTl)
fc=i

+ Pro6(.E;n|noSCmut)(l-pi)n. (A.I)

This formula was compared with numerical simulations for the total
probability of a double mutant, and with the approximate expression for
xss + xsd + xdd derived in Appendix A. The agreement with the numeric
is perfect. The agreement with the approximation is very good, if the
following consideration is taken into account. Note that the expressions
for xss, xsd and xdd (formulas (5.5), (5.8) and (5.9)) were derived assuming
that the size of the crypt is always N. On the other hand, in the simulations
and in formula (A.I) we have a "development" phase where the size of the
crypt is growing. The growth is exponential and thus during the first I — 2
steps, the population size is significantly less than N, and thus mutation
probabilities are negligible. This is why in order to get a perfect fit, the
expressions for xss, xsd and xdd should be shifted by I — 2 steps.
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