


This page intentionally left blank



INCENTIVES

Second Edition

This book examines the incentives at work in a wide range of institutions
to see how and how well coordination is achieved by informing and moti-
vating individual decision makers. Incentives work well when they result
in a high level of individual welfare generally. This is problematic because
each individual acts to maximize his or her individual payoff, regardless
of its implications for the welfare of others. The book examines the per-
formance of agents hired to carry out specific tasks, from taxi drivers to
CEOs. It investigates the performance of institutions, from voting schemes
to kidney transplants, to see if they enhance general well-being. The book
examines a broad range of market transactions, from auctions to labor
markets to the entire economy. The analysis is conducted using specific
worked examples, lucid general theory, and illustrations drawn from news
stories. The theory and examples are presented rigorously but not in an
overly “high tech” way. Of the seventy different topics and sections, only
twelve require a knowledge of calculus. The second edition offers new
chapters on auctions, matching and assignment problems, and corporate
governance. Boxed examples are used to highlight points of theory and
are separated from the main text.

Donald E. Campbell is CSX Professor of Economics and Public Policy
at The College of William and Mary, Williamsburg, Virginia, where he
has taught since 1990. He previously served as professor of economics
at the University of Toronto from 1970 to 1990. He is the author of
Resource Allocation Mechanisms (Cambridge University Press, 1987) and
Equity, Efficiency, and Social Choice (1992). His published research has
appeared in leading journals such as Econometrica, Journal of Political
Economy, American Economic Review, Journal of Economic Theory, Review
of Economics Studies, and the Journal of Mathematical Economics.





SECOND EDITION

Incentives
MOTIVATION AND THE

ECONOMICS OF

INFORMATION

Donald E. Campbell
The College of William and Mary



cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-83204-5

isbn-13 978-0-521-53974-6

isbn-13 978-0-511-21966-5

© Donald E. Campbell 1995, 2006

2006

Information on this title: www.cambridge.org/9780521832045

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-21966-0

isbn-10 0-521-83204-7

isbn-10 0-521-53974-9

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

eBook (EBL)

eBook (EBL)

hardback



For Soren, Rosie, and Edie, and their parents, Samantha and Tyler





Contents

Preface to the Second Edition page xi

1 Equilibrium, Efficiency, and Asymmetric Information . . . . . . . . . . 1

1. Asymmetric Information 10
2. Taxi! 16
3. Acid Rain 18
4. Efficiency 23
5. Equilibrium 30
6. The Prisoner’s Dilemma Game 45
7. Repetition and Equilibrium 53

2 Basic Models and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

1. Maximizing a Quadratic 72
∂2. Overview of Calculus 76

3. Lagrangian Multipliers 86
4. The Composite Commodity Model 98
5. Quasi-Linear Preferences 102
6. Decision Making Under Uncertainty 112
7. Insurance 124

3 Hidden Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

1. Resource Allocation 139
2. Marketable Pollution Rights 143
3. Incentive Regulation of the Telecommunications Industry 152
4. The Savings and Loan Debacle 155
5. Personal Bankruptcy 164
6. Mandatory Retirement 165
7. Tenure and the Performance of Professors 174
8. Pay and Performance in U.S. Public Schools 177
9. Moral Hazard and Insurance 179

vii



viii Contents

4 Corporate Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

1. A Brief Tour of Several Countries 197
2. Partnerships 198
3. The Owner-Employee Relationship 207
4. The Owner-Manager Relationship in Practice 212
5. Agency Theory 231

5 Hidden Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

1. Price Discrimination 257
2. Two-Person Exchange 259

∂3. The Used-Car Market 269
4. Credit Rationing 272

∂5. Bundling and Product Quality 280
6. Job-Market Signaling 290
7. Competitive Insurance Markets 303

6 Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

1. Introduction 326
2. The Vickrey Auction 334
3. Four Basic Auction Mechanisms 349
4. Revenue Equivalence 358
5. Applications of the Revenue Equivalence Theorem 374
6. Interdependent Values 377

7 Voting and Preference Revelation . . . . . . . . . . . . . . . . . . . . . 384

1. Voting Schemes 385
2. Preference Revelation in General 402
3. General Proof of the Gibbard-Satterthwaite Theorem 411
4. The Revelation Principle 418

8 Public Goods and Preference Revelation . . . . . . . . . . . . . . . . 420

1. The Economic Model 422
2. The Pivotal Mechanism 440
3. Groves Mechanisms 453
4. Efficiency and Incentive Compatibility 457

9 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

1. Students and Advisors 469
2. College Admissions 480
3. Hospitals and Doctors 496
4. Allocating Dormitory Rooms 499
5. Kidney Transplants 510



Contents ix

10 General Competitive Equilibrium . . . . . . . . . . . . . . . . . . . . . . 513

1. Competition, Property Rights, and Prosperity 514
2. The Arrow-Debreu Economy 523
3. Nonconvex Economies 538
4. Efficiency and Incentive Compatibility 543
5. Common Property Resources 556

References 561

Author Index 579

Subject Index 583





Preface to the Second Edition

I am pleased to have this opportunity to express my appreciation to the following
students and colleagues who assisted me at various stages: My former students
Hanley Chiang, Ryan Mutter, and Sita Slavov discovered some glitches in the first
edition and brought them to my attention. My current students David Hansen,
Jonathan Kuzma, and Emma Murray helped me fill in many of the boxes that
connect the theory to contemporary events, and Matthew Draper did some
preliminary spadework for Chapter 9. I am grateful for the superb diagrams
produced by Carrie Clingan, a student in the Masters in Public Policy program at
William and Mary. Jerry Kelly of the Syracuse University Economics Department
made copious comments on early drafts of Chapter 7. I have benefited from the
insightful comments of Ed Nelson of the Tulane Economics Department, John
Weymark of the Vanderbilt Economics Department, and David Ellerman of the
World Bank. My colleague and coauthor for two undergraduate texts, Alfredo
Pereira, taught me how to write textbooks. I express my deep gratitude to these
people. I assume responsibility for any errors in the book.

It is a pleasure to acknowledge the support and encouragement of Scott
Parris, the economics and finance editor at Cambridge University Press, and the
diligence of his assistant, Brianne Millett. My readers will benefit significantly
from the finishing touches of my copy editor, Nancy Hulan. Renee Redding, of
TechBooks, did a first-class job of guiding me through the production process.
The superb index is the work of Jake Kawatski. I tip my hat to these five, and
I express my gratitude.

The new edition is an improvement over the first in many ways. The material
is much better organized, with examples, definitions, and theorems properly
identified and displayed.

There are dozens of one-paragraph stories from current—and occasionally
ancient—events to illustrate or reinforce the theory. These are displayed in boxes
and separated from the main text.

The first edition claimed to be grounded in calculus, but in preparing this
edition I discovered that calculus isn’t really used that much. Where it was used
in the first edition it was often employed to maximize a quadratic function, and
this can be done perfectly rigorously using high school algebra. (See Section 1

xi



xii Preface to the Second Edition

of Chapter 2 on maximizing a quadratic function.) For instance, to work out the
symmetric equilibrium bidding strategy in a two-person, first-price auction with
values distributed uniformly, one simply has to maximize a quadratic function.
Where calculus is used I have identified the relevant section with the ∂ symbol
(even though there is only one variable).

There is lots of new material, including an entire chapter on auctions, which
includes a noncalculus proof of the revenue equivalence theorem. (There is also
a simple integral calculus version.) There is a new chapter on matching, with
sections on the assignment of advisors to advisees, students to colleges, doctors
to hospitals, and students to dormitories. There is now a separate chapter on
corporate governance, about half of which is new.

Chapter 7 presents a proof of the Gibbard-Satterthwaite Theorem that is dif-
ferent from the one in the first edition. I now begin by proving the result for two
people and three alternatives and then generalize in stages. The hidden action
chapter has new sections on resource allocation, marketable pollution rights,
incentive regulation of the telecommunications industry, personal bankruptcy,
and pay and performance in U.S. public schools. Also, the moral hazard and
insurance section contains a new subsection on the binary choice model of
moral hazard. The discussion of the savings and loan crisis has been expanded.
The hidden characteristics chapter has a new section on two-person exchange
(including subsections on dominant strategy equilibrium and Nash equilib-
rium) and a new section on credit rationing. The bundling and product quality
section now includes the simple binary model. Chapter 8 on preference revela-
tion with public goods has new sections on Groves mechanisms and efficiency
and incentive compatibility (with subsections on dominant strategy equilibrium
and Nash equilibrium).

Chapter 1 has a new illustration of hidden characteristic problems, based
on the problem of reducing acid rain at low cost, as well as brief subsections on
harboring terrorists and on the invisible hand. Chapter 2 includes new sections
on decision making under uncertainty (asset preferences, etc.) and on com-
petitive insurance markets under full information (to establish a benchmark, of
course). The discussion of efficiency with quasi-linear preferences (in Chapter 2)
is much improved. It includes a very easy—but perfectly rigorous—proof that
efficiency is characterized by maximization of total utility if there is no non-
negativity constraint on consumption. Chapter 10 briefly considers why the
Industrial Revolution did not first take root in China during one of its periods of
great inventiveness.

I dedicate this book to my exemplary grandchildren Rosie, Soren, and Edie,
ages five, seven, and two. They live seven hundred miles away but the bond with
my wife and me couldn’t be stronger. I salute their mom and dad, Samantha
and Tyler, whose “attachment parenting” has produced extraordinarily happy,
healthy, creative children who are a joy to be with.
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A successful institution, whether large or small, must coordinate the activities
of its individual members. In this book, I examine the incentives at work in a
wide range of institutions, to see how—and how well—coordination is achieved
by informing and motivating individual decision makers. Incentives work well
when they result in a high level of individual welfare generally. This is problematic
because each individual acts to maximize his or her individual payoff, regardless
of the implications for the welfare of others. In other words, we examine incen-
tives to determine the extent to which they prevent the pursuit of self-interest
from being self-defeating. We look at an entire economy, as well as a single firm
in that economy. Even two-person institutions receive attention: a car owner and
a mechanic hired to repair the car, for instance. In all cases, a satisfactory out-
come requires coordination among the participants, and coordination requires
information transmission and motivation, as shown in Table 1.1.

The individual members of the institution cannot do their part unless they
receive information telling them what their roles are. In the case of a market
economy, much of the vital information is transmitted by prices. In a wide range
of situations, the consumer’s budget constraint and the firm’s profit motive give
the respective decision maker the incentive to use the information embodied in
prices in a way that enhances the welfare of all households. However, in many
significant political and economic interactions, the relevant information has
been received by individuals but they have no incentive to use that information
in a way that enhances the welfare of others. If everyone chooses a strategy
that benefits himself or herself a little and harms others a lot, the outcome will
leave everyone with a lower payoff than the system is capable of delivering. For
instance, each individual in a town knows that everyone can benefit from an
Independence Day fireworks display. But there is no incentive for anyone to use
this information about the spillover benefit in deciding whether to finance the
display. In most towns, no individual would gain by watching fireworks if that
person also had to pay the entire cost. If the decision were left to the market
system there would be no fireworks. This is typically not a good outcome. If
the display would cost $100,000 and there are 50,000 townspeople, then the
fireworks spectacular could be produced by having each person contribute $2.
In most towns, everyone would be better off if he or she gave up $2 to watch
a fireworks display. Although everyone knows that there would be a high level
of total benefit from the display, no individual has an incentive to act on that
information. The economic theory of incentives is devoted in part to the design
of mechanisms that give the decision maker an incentive to use information
about spillover benefits.

In rare cases there is a natural alignment of the incentives of the deci-
sion maker and the rest of the community. For instance, the pilot of an air-
craft is just as determined as the passengers to arrive safely at the destination.



Equilibrium, Effeciency, and Asymetric Information 3

Table 1.1

Coordination

Motivation

Information
Transmission

Price Signals

Financial Incentives;
eg., Sales Commission

Nonmaterial Incentives;
eg., Promotion

Without A Pay Raise

Other Signals
eg., Product Warranty

However, the welfare of an airport security guard or mechanic on the ground
is not directly linked with that of the passengers. The passengers need to
be reassured that the mechanic, say, has a strong incentive to act as though
his or her chief concern is the passengers’ well-being. With inappropriate

In 1979 all DC-10 airplanes were tem-
porarily grounded after one of them
crashed upon takeoff. The crash was
caused by a crack in one of the
engine attachment assemblies. The
crack resulted from the way that the
engine was replaced after servicing. It
had been reinstalled in a way that was
not recommended or even anticipated
by the plane’s designer. Reattachment
was henceforth done with special care
(Petrosky, 1992, pp. 95–6).

incentives, a mechanic may succumb to the
temptation to avoid hard work by doing a
superficial job of inspection and repair.

Incentives are obviously of vital concern to
air travelers and are worth studying for that
reason alone. But they are also vital to society
as a whole. Given the decisions made by oth-
ers, a worker—whether a mechanic or profes-
sor or company president—may find it in his
or her interest to expend little effort on the job
while drawing a full salary. If a large fraction of
the labor force can get away with shirking, the
economy’s output of goods and services will be
greatly diminished and per capita consump-

tion will be very low. In that case, each worker will wish that everyone had been
prevented from shirking, to enable each to consume less leisure but more pro-
duced goods and services. The pursuit of self-interest is self-defeating in this case.
A more appropriate system of incentives could have prevented this—making
everyone better off, even though each individual is maximizing his or her own
welfare given the decisions of others when everyone shirks as a result of poor
incentives.

Appropriate incentives are crucial to the success of any institution, whether
large or small. This book examines incentive environments and evaluates each
in terms of its ability to promote individual welfare generally. In most cases, the
pursuit of self-interest can lead to a high level of individual welfare generally
only if the individual taking action incurs a cost equal to the cost that his or



4 Equilibrium, Efficiency, and Asymmetric Information

her action imposes on the rest of society. We refer to this as social cost pricing.
Here is an informal explanation of why social cost pricing works: Let Ui be
the payoff (or utility) to individual i, who will act to maximize Ui. This will

Four hundred people died in January
1996 when the Indonesian ferry Gurita
sank. The boat sailed even though the
captain knew that the cement that had
been used to patch holes in the hull
had not dried. A government official had
ordered the captain to sail or lose his job.

typically affect the payoffs of others, and we let
Ci be the total decline in the payoffs of every-
one but individual i, resulting from i’s decision.
Then Ci is the cost that i imposes on the rest
of society. We modify the rules of the game so
that the payoff to i is now Ui − Ci, which is what
individual i will now maximize. But the change
in Ui − Ci is obviously equal to the change in
the sum of the payoffs of everyone in society,

including individual i. By imposing a cost on individual i equal to the cost that
i’s actions impose on the rest of society, we induce individual i to act to maximize
the total social payoff, even though i is only directly interested in maximizing
his or her own payoff.

DEFINITION: Social cost pricing
An institution uses social cost pricing if each decision imposes a cost on the
decision maker that is equal to the total cost incurred by the rest of the group
as a result of that decision. If there is in fact a net benefit realized by everyone
else then the decision maker receives a reward equal to that net benefit.

In many situations individuals must be sheltered from uncertainty if high
levels of individual welfare are to be achieved. Full social cost pricing then would
leave maximum exposure to risk or uncertainty. In other words, in the presence of
uncertainty, incentives have to be less than fully efficient, to allow for insurance.

We look at incentive schemes currently in use, and we also consider the
prospects for designing superior schemes in particular situations. The starting
point is the realization that, although the decision maker’s actions affect the
welfare of a wider group, the decision maker has private information that is
not available to members of that wider group—nor to a representative of the
group, such as a government agency—and that the decision maker will act to
maximize his or her payoff, without taking into consideration any resulting side
effects on the other members of the group. For example, the manager of a fac-
tory has much better information about the production process and product
quality than the firm’s consumers or the residents of the neighborhood in which
the factory is located. If the government attempts to regulate the firm—to affect
product quality or the emission of toxic waste—it can do a much better job if it
taps the manager’s private information instead of issuing direct commands. If
the government orders each factory to modify its production process in the same
specific way, it may achieve the desired level of pollution abatement. However, it
will usually be possible to achieve the same pollution reduction at a lower total
cost in resources that have to be diverted from other uses by having the indi-
vidual factories adjust in quite different ways, depending on their specific input
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requirements and production technologies. Doing so requires the provision of
incentives to harness the factory manager’s self-interest and inside informa-
tion. We refer to this as incentive regulation, and it is coming into increasing use,
replacing the old command and control approach.

Transmission of information goes hand in hand with incentives. Market
prices have their limitations as conduits of information, but they do a superb
job in a wide range of situations. For example, wages are important determi-
nants of individual career choices, and wages contain information about the
value of various skills to all consumers. An occupation will command a high
wage if it contributes significantly to the production of highly valued goods
and services. That’s because the high demand for a consumer good translates
into high prices and profit for the producer. There will be great demand for
workers who are crucial to the production process because they generate sub-
stantial revenues for their employers. The high demand for these workers leads
to high wages. Competitive bidding in the labor market raises the wage of
the most productive workers above that of other workers. A particular wage
signals information to the economy as a whole concerning the value of the
associated skill. We not only acquire the information that a particular occu-
pation is valuable to consumers as a whole; at the same time, an individual
has a strong incentive to take this information into consideration in choosing a
career, because higher wages provide more income and thus more consumption
opportunities.

In general, the way prices enter our budget constraints gives us the incentive
to use the information embodied in those prices. All individuals maximize their
own payoffs, but because the prices embody information about the welfare of
others, the pursuit of self-interest induces individuals to take the welfare of
others into consideration, without realizing that they are doing so.

Information transmission and motivation do not always go hand in hand.
Commuters know that traffic is congested during rush hour. If individual driver A
joined a car pool, other drivers would benefit from the reduction in the number
of cars on the road. But the benefit to A is slight, and A’s own welfare would
decrease because of the inconvenience of not having his or her own car. Self-
interest leads all motorists—well, almost all motorists—to drive their own cars
to work. It’s plausible that if everyone joined a car pool the improved traffic
flow would leave everyone better off, net of the inconvenience of carpooling.
As it is, everyone knows about the social value of carpooling but no one has
an incentive to act on that information. However, information technology now
allows municipalities to charge for the use of designated high-speed lanes. Such
lanes remain uncongested because their user fee gives motorists for whom time
is relatively less valuable the incentive to use the lanes that are free but more
crowded.

Information transmission can be more or less costly. Low-cost informa-
tion transmission is problematic. If the institution is the entire economy, the
delivery of information throughout the economy can be exceedingly costly.
For one thing, contracts must be enforced, and legal costs can be very high.
Prices transmit information at low cost but, as Table 1.1 indicates, other devices
such as warranties are important. An extensive warranty on a manufactured
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“More than 2000 television sets a year
exploded in Moscow alone” before the
collapse of the Soviet Union (Milgrom
and Roberts, 1992, p. 13).

good is a signal that the manufacturer believes
that the likelihood of a defect is small. If
an entrepreneur set out to deceive customers
by manufacturing low-quality television sets
and passing them off as high-quality sets, he

could not offer a good warranty without losing the profits that his decep-
tion was designed to yield. He would know that a very high number of
sets would be returned for replacement or repair under the warranty. Com-
petition between manufacturers in a private ownership market economy
induces each producer to make a high-quality appliance and offer an extensive
warranty.

Even when the information transmission problem is solved, the motivation
problem remains. As with the highway congestion example, there must also be
an incentive for the individual to use the information in a way that promotes
the goals of the institution—a high level of welfare by commuters generally,
in the case of the traffic example. Incentives are essential because individuals’
paramount concern is their own welfare, not the welfare of others. This book is
devoted to the study of material incentives—incentives that have their impact
on the decision maker’s welfare through their impact on his or her consumption
opportunities. How can they be designed to harness self-interest and prevent
the pursuit of self-interest from being self-defeating?

An automobile repair shop illustrates nicely how incentives will come into
play in this book. A car owner who brings his car to the shop for repair wants a
reliable job done at low cost. He has neither the expertise nor the time required
to monitor the mechanic. If the car owner suspects that the mechanic has cut
corners he is likely to broadcast his suspicions to acquaintances. This implicit
threat, along with the existence of other repair shops competing for business,
gives the owner of a garage some incentive to ensure that the repairs are well
done and that customers are not overcharged. But how does the garage owner
motivate the mechanic that she employs? Competition and reputation effects
may give the right incentives to the owners of firms, but they are just part of the
solution. The owner—in general, the principal—now has the problem of provid-
ing appropriate incentives to the agents (mechanics) that she hires. We attempt
to solve this problem—with considerable success. The private ownership market
economy is very sophisticated when it comes to generating devices for solving

In World War II the United States won the
race with Germany to develop the atomic
bomb. Computers were not available, of
course, and the United States depended
on a team of high school graduates to do
a staggering amount of calculating. The
productivity of the calculators increased
almost tenfold when they were told what
they were working on (Gribbin and Grib-
bin, 1997, p. 97).

these principal-agent problems. But there are
serious limits to the ability of any institution to
overcome incentive difficulties in many situa-
tions. The difficulties are compounded by the
presence of random effects. If the car breaks
down a week after it was repaired, should that
be attributed to shirking on the part of the
mechanic or to bad luck?

Although this book is almost exclu-
sively concerned with material incentives, we
acknowledge that nonmaterial incentives play
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a role in any institution. In one of the first influential articles on the modern
economics of information, Kenneth J. Arrow (1963b) noted that the informa-
tion advantage possessed by physicians in treating their patients has led to the
emergence of institutions based on trust and delegation to supplement market
incentives. Hence, the code of medical ethics.

Each of us does things that benefit others, at some personal sacrifice. Nev-
ertheless, we employ a model that assumes that each individual always pursues

As early as 1931 the Soviet ruler Joseph
Stalin deviated from the egalitarian wage
ethic, realizing that a high level of
economic performance could not be
achieved without material incentives.
The opportunity to work for the com-
mon good was not sufficient motivation
(Laffont and Martimort, 2002, p. 23).

narrow self-interest. One reason for doing so is
that we are alerted to potential difficulties if our
model results in low levels of individual welfare
generally. Moreover, we are much less likely to
recommend policies that are naively utopian
when we work within this framework.

The importance of incentives has been doc-
umented in many ways and in many contexts,
although the specific contractual form derived
from economic theory is not always reflected

in contracts as actually written (Chiappori and Salanié, 2003). For the specific
case of the relationship between a tenant farmer and the landowner, Allen and
Lueck (2002) show convincingly that incentives are central to understanding the
nature of the contracts that are employed.

In 1896 South Carolina enacted a law
levying a fine on any county in which a
lynching took place. No county that had
been fined for this abuse ever had a sec-
ond lynching (Dray, 2002). Lynching of
African Americans by white mobs was
common from the late nineteenth cen-
tury until the middle of the twentieth and
was one of the many devices by which
African Americans were terrorized.

One measure of the importance for public
policy of a formal study of incentives is pro-
vided by McAfee and McMillan (1988). They
estimate that switching to appropriate contract
design could reduce government costs by at
least 8%, and sometimes by as much as 30%
(p. 149). The switch to the responsibility sys-
tem in Chinese agriculture in the 1980s resulted
in a remarkable increase in productivity over a
short period of time (McMillan, 1992, pp. 96–8).
The responsibility system requires each farm to
deliver a fixed amount of output to the state, but

the farm keeps the proceeds of all output above this quota. This is an example
of social cost pricing: The social cost of the farmer’s leisure consumption is the
output that society loses when the farmer consumes an hour of leisure. But that
is also equal to the cost imposed on the farmer under the new system because
the farmer would have been allowed to keep the harvest from that hour of labor.
Under the old system, the cost to the farmer of an additional hour of leisure con-
sumption was zero because all of the output from an additional hour of labor
goes to the state. It was the farmer whose return was fixed.

Another reason why we assume selfish behavior at every turn is that, although
it abstracts from important features of the real world, it gives us a simple model
with a lot of explanatory power. We have come to accept abstract models in
everyday life and should not be reluctant to employ them in economics. A road
map, for instance, is a representation of a particular region. It abstracts from
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almost everything that is important—scenery, the location of shops, and so on.
Because it is so abstract it is very easy to use to work out a route from one location
to another; it can even be used to compute a short route. Similarly, an economic
model can be exceedingly abstract and still allow us to determine the effect of an
excise tax on a commodity’s price or the nature of a salary contract that will be
offered when the employer can observe the quality of the employee’s work but
cannot validate that observation with evidence that would be credible to a third
party, such as a judge. Conclusions are drawn from abstract, formal economic
models via theorems.

Many people are impatient with economists for abstracting—and worse,
employing assumptions that are at odds with reality. It may comfort you to
know that this is standard practice in physics. It can even be useful for a physi-
cist to assume that a cow is a sphere! (See Krauss, 1993, pp. 1–7.) “The set of
tools physicists have to describe nature is limited. Most of the modern theories
you read about began life as simple models by physicists who didn’t know how
else to start to solve a problem. . . . Before doing anything else, abstract out all
irrelevant details! . . . Overcoming the natural desire not to throw out unneces-
sary information is probably the hardest and most important part of learning
physics” (Krauss, 1993, p. 4). The classical model of the motion of the planets
around the sun assumes that the mass of each planet is concentrated at a single
point of zero breadth. That’s absurd. Nevertheless, the model is extremely use-
ful. It was used to predict the existence of the planet Pluto, for example, which
was discovered in 1930.

We begin then by assuming that all individuals evaluate outcomes exclu-
sively in terms their effect on their own well-being. This allows us to work

Public drunkenness is not uncommon
in Japan, but drunk driving is very rare
because of the severe penalties. A pro-
fessional person can even be disquali-
fied from practicing if convicted of driv-
ing while intoxicated.

out an individual’s response to a change in
the incentive environment. The assumption of
selfish utility maximization implies that there
will be a response. Not everyone is able to grasp
this point. For example, a lot of people argue
against long prison sentences for drunk drivers
who kill or maim others: “It could happen to
anyone.” Well, wouldn’t you make sure that it

couldn’t happen to you if a long prison sentence were the penalty for drunk
driving? To adapt a phrase of Dr. Johnson’s, the prospect of a long jail sentence
focuses the mind wonderfully.

We examine incentives at work to see whether we can expect outcomes that
maximize individual welfare generally when individuals are motivated by selfish
considerations. In each case study we assume that an individual takes whatever
available course of action leads to the highest possible personal benefit for him-
self or herself. Of course, in real life there are situations in which some or all
individuals behave altruistically, at least up to a point. But self-seeking behavior
is pervasive enough to warrant independent study, particularly when the econ-
omy as a whole is our concern. Therefore, our goal is to work out the implications
of self-motivated behavior, by means of examples and theorems, and we try to
learn from them without being distracted by the many real-world features that
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are left out of the models. We discover that the need to provide individuals with
socially beneficial incentives imposes constraints on the economic system as a
whole, forcing us to make trade-offs. For instance, giving individuals an incen-
tive to truthfully reveal their preferences for public goods leads to government
budget imbalance. By identifying such trade-offs we can design better public
policies. In particular, we won’t waste resources trying to accomplish goals that
are mutually exclusive.

Links
McMillan (2002) is a superb but non-technical account of how, and to what
extent, markets can provide the incentives that lead to a high standard of liv-
ing. The role of the CIA in supplying the Bush administration with evidence of
Iraq’s weapons of mass destruction, prior to the invasion of March 2003, is a
reminder that the performance of an organization is a function of worker and
management incentives. See The Economist, July 15, 2004 (“The weapons that
weren’t”). Baumol (1993) contains many examples of entrepreneurial responses
to incentives, some of which reach back to ancient Greece and Rome. See Sap-
pington (1993), Laffont (1994), and Sappington and Weisman (1996) for further
discussion of incentive regulation. Stiglitz (1993) has a good discussion of the
limits of prices in transmitting information. See Chapter 4 of Baumol (1993) for
examples of the costs of contract enforcement.

Problem set

1. The services of garbage collectors have far more total value to the commu-
nity than the services of heart surgeons: Compare a world without garbage
collection—plagues, low life expectancy, only 50% of children surviving to
the age of five—to a world without heart surgeons—no appreciable differ-
ence in life expectancy. But heart surgeons are paid far more per hour than
garbage collectors. What information is being signaled by this wage rate
differential?

2. I drive a car made in 1990, before air bags became mandatory in all cars
sold in the United States. I could buy a safer car—a new Mercedes Benz,
for example—but I prefer a basket of goods and services that includes my
present car and an annual vacation on the ocean to a basket with a safer car
but an annual vacation consisting of croquet in the backyard. Is it in society’s
interest for firms to devote enough resources to the production of consumer
goods to ensure that there is absolutely no chance of a defective product
injuring someone?

3. A barber will not stay in business long if he gives bad haircuts. Competition
among barbers ensures that each attempts to build a reputation for high-
quality service. What about an industry in which problems do not show up
until long after the commodity has been purchased—housing construction,
for instance? Is there a role for some form of government regulation in these
cases?
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1 ASYMMETRIC INFORMATION

When you hire a taxi you are employing an agent to carry out an assignment. You,
the principal, want to get to your destination quickly and at low cost, but the taxi
driver wants to maximize his revenue. The driver appears to have an incentive
to overcharge, and your ability to monitor this is very limited because you know
very little about traffic patterns and expedient routes, especially if you are a
visitor to the city. This is an instance of a hidden action problem. The passenger
cannot directly determine if the driver has acted in a way that minimizes the
travel time.

DEFINITION: Hidden action problem
A principal hires an agent to carry out a task, but it is impossible or extremely
costly for the principal to monitor the agent.

In Section 2, we demonstrate that the conventional taxi fare schedule induces
the driver (the agent) to choose the route that the principal (the passenger) would
select if the principal had as much information about routes and traffic pat-
terns as the agent—even though the principal in fact has very little information,
and the agent knows it. In general, we investigate the possibility of providing
appropriate incentives to agents to induce them to behave in the way the prin-
cipals would instruct them to act if the principals themselves possessed the
relevant information—even though the principal is in fact unable to monitor
the agent, and the agent knows this. There are three reasons why the principal
may want to employ an agent: The agent may possess a skill that is particu-
larly appropriate to the task at hand. (I hired a specialist to remove a tree that
had fallen over my driveway during a storm.) The principal may not have the
time to carry out the task herself. (I sometimes eat in restaurants where the chef
is not as good a cook as I am.) Finally, even if the principal and the agent are
“twins,” economies of scale can justify the delegation of some tasks by one to the
other.

Providing the agent with an incentive that is optimal from the standpoint
of the principal requires us to choose the incentive scheme that maximizes the
principal’s payoff subject to constraints. These constraints embody the notion
that agents will act to maximize their payoffs subject to the incentive scheme
governing their behavior, and the notion that agents have alternative job oppor-
tunities and hence must do at least as well working for principals as they would
in the next best alternative. These constraints on principals’ choices of incentive
schemes result in principals achieving lower payoffs than if principals had all
of the information available to agents and could simply instruct agents to carry
out the actions that maximized the principals’ payoffs. In some cases, the prin-
cipal’s loss is the agent’s gain, but in other cases the constraints result in a net
loss to the principal-agent duo. If there were no asymmetry of information, the
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principals would offer the agents a contract that specified precisely what task
was to be performed and how and when it was to be carried out. A court could
easily determine if the conditions had been met.

A second family of hidden information problems concerns the attempts by
a principal to elicit a specific piece of information that is known only by the
agent, but which affects the principal’s welfare. For example, the principal is the
owner of an asset that is up for sale. If the owner knew the maximum amount
that each potential buyer is willing to pay, the current owner could offer the asset
to the individual with the highest willingness to pay at a price that is just below
that value. That would clearly maximize the owner’s return from the sale. For
that very reason, all potential buyers have incentive to conceal their maximum
willingness to pay, which is the hidden information in this case. This is called a
hidden characteristic problem. In Chapter 6, we show that it is possible to design
an auction that motivates the bidders to reveal their true willingness to pay.

DEFINITION: Hidden characteristic problem
Information possessed by one individual (or firm or institution) is concealed
from everyone else, but the welfare of others depends on that information.

In many cases we employ a fictitious principal, usually a surrogate for society
as a whole. Maximizing the principal’s payoff is then a metaphor for maximizing
consumer welfare generally, subject to the limitations imposed by resources
and technology. The goal is to provide individuals and firms with an incentive
to disclose their private information—specifically, individual preferences and
firms’ production recipes. In Section 3, we show that a firm can be given an
incentive to disclose how much it would have to pay to reduce the amount
of pollution it generated. In this case, the firm’s true pollution abatement cost
is the hidden characteristic. The incentive scheme induces the firm to reveal
its true cost, even though the firm with the lowest cost will actually have to
make the adjustment. The fact that information is hidden from the principal
reduces the principal’s payoff. In the case of the pollution example, the principal
is a metaphor for general consumer welfare, and the payoff reduction is the
money that has to be paid to firms to induce them to reveal their costs truthfully.
(Pollution is reduced in the end, so there is an overall net gain for consumers.
But the gain would be even larger if the government knew what the individual
firm costs were.)

There are many types of hidden characteristics. Here are some examples:

� An individual’s preference scheme, or some statistic based on that prefer-
ence scheme; the marginal rate of substitution at a point (elicited by some
resource allocation mechanisms); the elasticity of demand (elicited by a
price-discriminating producer).
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� The probability that an automobile driver will have an accident. This infor-
mation is sought by an insurance company. The probability affects the
driver’s preference scheme via the expected utility function.

� A voter’s most-preferred candidate (required by the plurality rule voting
mechanism).

� The cost that would be incurred by a firm if it were to reduce its pollution
output by 15%.

� A firm’s production function.

Here is an interesting example with a global perspective. Worldwide reduc-
tion of carbon dioxide (CO2 ) emission is advocated by many as a way of slowing
global warming. One widely supported policy would require each country to pay
a tax on CO2 emissions greater than a specified quota. A country’s quota would
be a fraction of its current CO2 emission rate, with the fraction determined by an
international committee. The current emission rate is the country’s hidden char-
acteristic. It is naive to assume that each country would report its true emission
rate if it could be assigned a higher quota by reporting a higher emission rate.

The owners of baseball franchises have
become adept at hiding the team’s
profit to make it easier to deal with
the players’ union (Zimbalist, 2004,
Chapter 4).

All of the models and examples discussed
in this book can be placed in either the hidden
action or the hidden characteristic category,
and some have elements of both. These two
categories constitute the family of principal-
agent models. The principal is the individual
whose welfare is to be served, and this welfare

is affected by an agent who makes decisions on behalf of the principal. The
principal knows that the agent will choose a course of action that maximizes
the agent’s own welfare. But the principal may be able to provide the agent with
incentives that cause the agent’s welfare to reach its maximum when the agent
takes the action that leads to the maximization of the principal’s welfare. This is
problematic because the principal cannot observe the agent’s action or cannot
determine if the agent has acted appropriately.

In other situations the principal’s welfare depends on the agent’s character-
istic, which cannot be observed or even verified by the principal. There are two
ways in which the principal’s utility can depend on agent characteristics: In gen-
eral equilibrium resource-allocation models the principal is an abstract planner
whose utility is identified with social welfare. Social welfare in turn is a function of
the characteristics (preferences and technology) of the economy’s agents (con-
sumers and firms). We examine a special case of this in Section 1 of Chapter 3.
In Chapters 8 and 10, we investigate this subject thoroughly. In more narrowly
focused models the principal may be an insurance company, for instance, and
the company’s profit depends on the number of claims submitted, and that in
turn is a function of the probability that a policyholder has an accident. The
potential policyholders are the agents in this case. The agent cannot be relied
on to act in the principal’s best interest—either to take the appropriate action or
disclose the agent’s characteristic—because the agent wants to maximize his or
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her own utility. We see whether and to what extent the agent’s self-interest can be
harnessed by a judicious deployment of incentives that induce the agent to act
in a way that promotes the principal’s welfare. In hidden characteristic models,
the incentive structure will be deemed a success when the agent’s action reveals
the agent’s characteristic.

The hidden action and hidden characteristic phenomena are often
called moral hazard and adverse selection problems, respectively, echo-
ing insurance terminology. I prefer the terms hidden action and hidden
characteristic, which are more appropriate for economic applications. In
this book, we apply the term moral hazard to situations in which there
is a hidden action problem that is not handled successfully. Similarly, we
use adverse selection to refer to welfare losses due to a hidden characteristic
problem.

Hope Scholarships, proposed during the
1992 U.S. presidential campaign, would
allow students to borrow money for
college and then pay back a specified
fraction of their incomes after gradu-
ation. This plan would be plagued by
adverse selection. Students expecting to
go into high-income occupations after
graduation would opt for conventional
loans, leaving only those heading for low
paying—but perhaps socially valuable—
careers to apply for Hope Scholarships
(Wheelan, 2002, p. 81).

Hidden information problems are every-
where. What guarantee do you have that your
instructor devotes a reasonable amount of time
to designing the course, preparing lectures, and
grading tests? Surely there is a temptation to
increase leisure time and reduce preparation
time or to substitute consulting activity—or
research activity, in general—for lecture prepa-
ration. In this case the student is the principal
and the instructor is the agent. This is clearly
a hidden action problem. The committee that
hires a new faculty member has a hidden char-
acteristic problem, and the characteristic in
this case is the prospective employee’s quality.
Here are two more examples: Business travelers

sometimes choose unnecessarily expensive flights (paid for by their employers)
to get higher “frequent flyer” bonus points, which are then applied to personal
travel. (Can you identify the social waste in this case?) The United States federal
student loans program involves billions of dollars. Private contractors are hired
to collect student debts, and some of the collecting companies are financially
tied to firms in the profitable secondary loan market, giving the collectors an
incentive to allow students to default on the original loans (Washington Post,
June 19, 1993, p. 2).

Moral hazard can create adverse selection! A retail store that did not monitor
incoming cash would give employees insufficient incentive to be careful with
that cash. This would also invite unscrupulous people to apply for work at this
store, in the expectation that they could embezzle easily.

An adverse selection problem can be so severe that the market can disap-
pear completely. Consider the viability of unemployment insurance if it were
to be provided by the private ownership market economy. It would be costly to
purchase, so individuals who know that the likelihood of their becoming unem-
ployed is low would not buy it. This would result in a higher number of claims
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“Your pizza’s free if you don’t get a
receipt.” Sales receipts make it much eas-
ier for a store owner to monitor incoming
cash. But they only work if the employee
issues a receipt. By giving free pizza if
there is no receipt, the owner gives the
customer an incentive to monitor the
employee working the cash register.

per insured worker, leading to an increase in
premiums to enable the insurance companies
to offer unemployment insurance without tak-
ing a loss. This would lead to more individu-
als opting out—those who were willing to buy
when the premium was lower but who feel that
the probability of their being unemployed is
not high enough to justify paying the slightly
higher premium. As the premium increases, it

is always the low-probability individuals within the group of previously insured
workers who discover that it is now rational for them to cancel their insurance
coverage because of the increase in the premium. This means that the number
of claims per insured person will rise after an increase in premiums, resulting in
another round of premium increases. The whole market can unravel in this way.
And if that’s the case, and protection against the risk is socially desirable—that
is, provides net benefit to workers generally—there is a case for provision by the
public sector.

A democratic political and legal system also exposes its participants to risk.
I might be formally charged with a crime that someone else committed. Part of
the benefit of a democracy has to do with competition for political office, and
the consequent realization of incumbents that they will be punished by defeat
at the polls (or worse) if too many constituents are falsely accused of crimes.
However, it is in our interest as law-abiding citizens to have arrests made before
the authorities are perfectly certain that they have identified the culprit. If they
waited until they were certain there would be too few arrests and too much crime,

Cardozo Law School’s Innocence Project
uses DNA evidence to determine the
culpability of U.S. defendants convicted
(primarily of rape and murder) before
accurate DNA testing became avail-
able in the 1980s. By April 2002, 104
inmates had been exonerated—almost
two-thirds of the cases examined. (The
project is the brainchild of lawyers Barry
Scheck and Peter Neufeld. Cardozo Law
School is part of Yeshiva University in
Manhattan.) Factors leading to the faulty
convictions include mistaken eyewit-
ness reports, coerced confessions, police
corruption, poor legal representation,
prosecutorial misconduct, and inaccu-
rate laboratory work (Weinberg, 2003,
pp. 200–1). Do you think that police and
prosecutors have too strong an incentive
to obtain convictions?

and the arrests that were made would be
obtained at too high a cost in resources. (What
does “too high a cost” mean? How do we
know the cost would be too high?) So, there
remains some risk that a law-abiding citizen
will be arrested and forced to defend himself in
court. Why don’t private markets insure against
that risk by offering policies that pay legal
costs? Legal services don’t come cheap. (And
legal defense insurance would cause legal fees
to soar. Why? Why have physicians’ incomes
soared over the past few decades in all coun-
tries that provide national health insurance,
even if it’s only to those over sixty-five?) The
premium would not be trivial and hence not
everyone would purchase insurance. But why
isn’t some legal defense insurance provided by
the market? The adverse selection problem is
quite evident here. The individuals who are
most willing to buy this policy would be those
who know themselves most likely to be in hot



1. Asymmetric Information 15

water. This means that the premium would be higher than if everyone in the
community purchased a legal defense policy. But, the higher the premium the
higher the percentage of lawbreakers among the policyholders. There is no pre-
mium at which the claims paid out could be covered by the premiums paid in,
and the market breaks down. (Private legal defense insurance is available in the
United States—mostly in group form—but it does not provide significant cov-
erage for criminal cases.)

Can a case be made for public provision of legal defense insurance as with
unemployment insurance? Probably not. Whether the insurance is provided by
the public or private sector, there is a severe moral hazard problem. This doesn’t
apply to you or me, but a lot of people would increase the scope of their criminal
activities if they knew that any necessary legal defense would be funded by tax-
payers or holders of private insurance policies. There would be such an increase
in the demand for the top spellbinding courtroom orators that their fees would
increase and then so would the flow of students into law schools. This waste of
resources is perhaps the least of the antisocial effects of the provision of legal
defense insurance, a commodity that would substantially increase individual
utility were it not for the moral hazard and adverse selection problems.

Sources
The theory of principal and agent is now central to economic theory. K. J. Arrow
(1984) proposed the terms hidden action and hidden information as substitutes
for the terms moral hazard and adverse selection in widespread use. (We refer to
hidden information as hidden characteristics.) Arrow (1963b, 1971) was the first
to draw attention to the economic significance of moral hazard, called hidden
action throughout this book. The modern theory of principal and agent was
introduced in Ross (1973) and Stiglitz (1974) and given its modern expression
in Mirlees (1999), which debuted in mimeograph form in 1975. The optimal
income tax problem, a special case of the principal-agent model with the tax
authority as the principal and taxpayers as the agents, was proposed by Vickrey
(1945) and examined by Mirlees (1971). The pioneering articles by Akerlof (1970)
on the used-car market and Spence (1973) on education as a signal of worker
quality are credited with turning the attention of the profession to hidden char-
acteristic problems. Mirlees and Vickrey shared the Nobel Prize in 1996, and
Akerlof, Spence, and Stiglitz shared the prize in 2001. K. J. Arrow, considered by
many to be the most significant economist of the twentieth century, received
the Nobel Prize in 1972.

Links
Stiglitz (2000) and Chapter 1 of Laffont and Martimort (2002) outline the history
of the treatment of asymmetric information in economic theory. The former
emphasizes the ways in which earlier theory was misleading because of failures
to acknowledge problems caused by asymmetric information, and the latter
highlights the ways in which modern information theory was anticipated.
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2 TAXI!

You have just landed at the airport in a city that you are visiting for the first time.
You hail a cab to take you to your hotel. How can you be sure that the driver
chooses the quickest and cheapest route to your destination? You can’t, unless
you make an investment beforehand; an investment of money to purchase a
map and of time to compute the shortest route between your departure point
and your destination. Even then, you will not know which streets are normally
congested, so it would be very costly to discover the cheapest route. Assuming
that you are not prepared to incur that cost, is there any way of ensuring that
the taxi driver will not take you out of your way to enhance his or her income
at your expense? We need to find a way of providing the driver with an incen-
tive to choose the least-cost route, so that even though you don’t know what
that route is you will be sure that the driver has chosen it because that choice
maximizes the driver’s return from operating the cab. This is the purpose of the
fixed part of the nonlinear pricing schedule for taxi rides. The fare is F + cD
where D is the distance to your destination in miles, c is the charge per mile,
and F is the fixed initial fee which is independent of the length of the ride. (In
fact, you will be charged for time spent idling in traffic, but let’s keep things
simple.)

If F is zero, and hence the fare is cD, then the driver has a strong incentive to
make each trip as long as possible. That’s a consequence of the fact that when
passengers are dropped off at their destinations, it takes the taxi driver time to
find a new passenger. On one hand, from the driver’s standpoint, it would be
better to keep the meter running by keeping the original passenger in the cab,
and that requires taking a much longer route than necessary. On the other hand,
if the fixed fee is relatively large—say $3.00 when the average variable cost per
ride is $6.00—then the driver has a strong incentive to maximize the number of
trips per day. But maximizing the number of trips per day can be accomplished
only by making each trip as short as possible.

Example 2.1: The linear fare induces shirking

F = 0 and c = 1. Hence the fare is equal to D, the distance of the trip. To simplify,
each trip is 5 miles long when the taxi driver takes the short route, and the long
route is 10 miles long. The driver can make 30 trips a day of 10 miles each or 55
trips a day of 5 miles each. (Remember, time is lost between trips.) When the
driver works efficiently her revenue is 55 × $1 × 5 = $275. But when the driver
shirks, and takes the long route, her daily revenue is 30 × $1 × 10 = $300: She
makes more money by shirking.

The linear fare schedule (with F = 0) gives the agent (the taxi driver) incentive
to behave in a way that makes a single ride unnecessarily expensive. It also wastes
a valuable resource—time. Both the driver’s and the passenger’s labor are wasted,
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and if this fare schedule were used throughout the economy the accumulated
waste would be enormous.

When F is positive and greater than the value of the time consumed search-
ing for a new passenger, the income maximizing strategy is for the driver to
get the passengers to their destinations as quickly as possible: The driver will
lose L dollars, if we assume that L dollars of income is lost while waiting for
another passenger, but the next passenger will pay F dollars in addition to the
variable fee of c dollars per minute. This yields a net gain of F − L, compared
to the strategy of driving twice as far as necessary on each trip. Of course, any
particular trip of distance D would cost less if the charge were merely cD instead
of F + cD, but the fee schedule F + cD results in a lower actual cost to the
passenger because it induces the driver to choose a route with the smallest
value of D.

Example 2.2: The nonlinear fare motivates the agent to perform well

F = 3 and c = 1. Hence the fare is 3 + D. As in Example 2.1, each trip is 5 miles
long by the short route and 10 miles by the long route. The driver can make 30
trips a day of 10 miles each or 55 trips a day of 5 miles each. When the driver
works efficiently her revenue is 55 × $3 + 55 × $1 × 5 = $440, but she if shirks
her revenue is only 30 × $3 + 30 × $1 × 10 = $390. The driver’s revenue is lower
when she shirks.

If the driver can make only 50 trips a day when she takes the short route,
the revenue would only be $400 = 50 × $3 + 50 × $1 × 5. That’s only slightly
more than the $390 a day that she collects when she shirks. But the point
is that the nonlinear fare schedule 3 + cD undermines the strong incentive
to shirk that is built into the linear fare. The nonlinear fare is an effective
solution to the principal-agent problem. The passenger is unable to moni-
tor the driver, and the driver knows that she cannot be monitored. Neverthe-
less, in her own self-interest the driver chooses the action that the passenger
would mandate if the passenger had the necessary information about the best
route.

We said that shirking by taxi drivers wastes both the driver’s and the pas-
senger’s labor. It is worth noting that the nonlinear fare results in a cheaper
ride for the passenger. Given the length D of the trip, the fare cD is obviously
lower than the fare F + cD. However, the latter changes the driver’s incentive
and, because it eliminates shirking, the passenger actually pays less. For Exam-
ples 2.1 and 2.2 the passenger is charged $10 for a trip under the linear fare
$1 × D but pays only $8 for the same trip when the nonlinear fare $3 + $1 × D
is used.

Links
It would be interesting to look into the emergence of the nonlinear taxi fare
schedule as a response to market forces. It might have been a device introduced
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by owners (or managers) of taxi fleets to enhance the performance of their
drivers and hence the market share of the company. If it was introduced as
a crude device for extracting more money from customers—with the effect on
driver performance unanticipated—the company that introduced the nonlin-
ear fare would acquire a reputation for speedy service. This would result in a
larger market share and the other companies would likely imitate in an effort to
catch up.

Chou (2000); Camerer, Babcock, Lowenstein, and Thaler (2004); Farber
(2003); and Sutton (2000, pp. 1–2 and 87–9) provide different perspectives on
the taxi industry.

Problem set

1. The fare is 3 + D, and each trip is 5 miles long by the short route and 10 miles
by the long route. The driver can make 30 trips a day of 10 miles each or k
trips a day of 5 miles each. Calculate the value of k for which shirking and
minimizing the length of a trip are equally profitable. Now show that shirking
is unprofitable for any higher value of k.

2. Each trip lasts m miles when there is no shirking and 2m miles when the
driver shirks. A taxi does s trips per day when the driver shirks and n trips
per day otherwise. Of course, s < n. The fixed fee is F and the charge per mile
is c. Characterize the values of F, c, s, and n for which shirking will not take
place.

3 ACID RAIN

Consider an economy that produces electricity primarily by burning coal, dis-
charging sulphur dioxide into the air in the process. Sulphur dioxide (SO2) dis-
solves in water to produce sulphuric acid, the principal form of acid rain. Sup-
pose that the government wants one of the firms to reduce its output of SO2 by
25%, and it’s going to choose the firm that can do so at lowest cost. (We are sim-
plifying the story by requiring only one firm to adjust.) The chosen firm will have
to make some costly adjustments—purchasing more expensive coal with a lower
sulphur content, for example. Other firms might have to install very expensive
new equipment to achieve the same reduction in SO2. General consumer wel-
fare will be best served by selecting the firm that can make the adjustment at the
lowest cost. That will minimize the value of resources that have to be diverted
from the production of other goods and services to reduce SO2 emissions.

A firm’s adjustment cost is a hidden characteristic. Suppose that the gov-
ernment simply asks each firm to disclose that cost. We’ll call this the naive
mechanism. It will not motivate firms to provide truthful information. Each firm
will overstate its adjustment cost by a wide margin, hoping that some other firm
will report a lower cost and thus be the one forced to assume the burden of
adjustment. We’ll not get anything close to truthful revelation of costs, and thus
the designated firm could be one of the relatively high-cost companies.
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Table 1.2

Firm 1 2 3 4 5 6 7 8 9 10
Cost 300 120 200 100 150 180 130 300 160 140

The following Vickrey mechanism gives the firm an incentive to report truth-
fully.

DEFINITION: Vickrey mechanism
Each firm is asked to report its adjustment cost, and the firm reporting the
lowest cost is the one that is forced to reduce its SO2 by 25%. Then the gov-
ernment compensates that firm by paying it an amount equal to the second-
lowest reported cost.

Let’s look at this scheme from the standpoint of the individual firm. We see
that whatever a firm’s true adjustment cost, it can never do better than reporting
that true cost, even though no one outside of the firm knows what that cost is.

Example 3.1: Ten utilities with different production processes

The true adjustment cost of each firm is given by Table 1.2.
Firm 4 is the low-cost firm, so it is the one required to reduce its SO2 output by

25% if everyone reports truthfully. Firm 4’s true adjustment cost is 100, and the
second-lowest cost is 120, so firm 4 will be paid 120 according to the mechanism’s
rules. This will give the firm a profit of 20. If firm 4 claims its cost is higher than
120 then the lowest reported cost will be 120, and firm 4 will forego the profit
of 20. If firm 4 reports any cost figure below 120 then the outcome will be the
same as under truthful revelation: firm 4 will be selected and will be paid 120,
which will still be the second-lowest reported cost. Firm 4 cannot benefit by
misrepresenting its true cost, but it can harm itself by doing so. Note: A firm’s
profit is its revenue minus its true cost, not revenue minus reported cost.

Let’s look at firm 7, with a true cost of 130. If firm 7 reported a higher cost,
it would have no effect on its profit—firm 7 would not be selected with 130 or
with anything higher. Firm 7 would only be required to make the adjustment
if it reported a cost below 100. Suppose, for example, that firm 7 reported an
adjustment cost of 90. It would be the low-cost firm, so it would be required to
adjust, and it would be paid the second lowest cost—100, reported by firm 4. In
that case, firm 7 would actually incur a cost of 130 but would only be paid 100. It
would suffer a loss of 30. A firm that does not have the lowest cost cannot benefit
from reporting falsely, but it can hurt itself by doing so.
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Figure 1.1

Let’s apply the Vickrey mechanism to the general case: There are n firms
and Cj is the true cost of firm j ( j = 1, 2, . . . , n). No one outside of firm j knows
this true cost. We’ll show that j cannot gain by misrepresenting that true cost.
It is assumed that each firm cares only about its own profit and is indifferent
between two outcomes in which it receives the same profit, however much the
payoffs of other firms may differ. This is the classic starting point for economic
analysis.

Let D represent the lowest reported cost among all firms except j. Firm j can
submit its true adjustment cost Cj or not. Suppose that D > Cj. Under truthful
revelation (i.e., reporting Cj) firm j would be required to adjust and would be
paid D, so its profit would increase by D − Cj. What is the effect of a false report
on j’s profit?

There are three subcases to consider, L, M, and H, as suggested by Figure 1.1.
On one hand, if firm j reports an adjustment cost in region L, below Cj, or in
region M above Cj but below D, firm j’s profit will increase by D − C j because
either report would be lower than the next lowest cost D. In either subcase, firm
j would be required to adjust, incurring a cost of Cj but receiving a payment of
D at the same time. That is also what happens with truthful revelation—that is,
with a report of Cj by firm j. On the other hand, suppose that firm j reported a
cost in region H above D. Then it will be not required to make the adjustment.
The firm reporting D will be selected. Consequently, j would forgo the profit
of D − C j that can be realized with truthful revelation. Either a deviation from
truthful revelation has the same effect on j’s profit as revelation of the true cost
C j , or misrepresentation by overstating cost results in a lower profit than does
truthful revelation.

Now, suppose that D, representing the lowest reported cost among all firms
other than j, is less than Cj. Under truthful revelation firm j would not be required
to adjust, and there would be no change in its profit. Could a false report by j
ever be profitable? Again, there are three subcases to consider (Figure 1.2).

Suppose that j reports an adjustment cost above D, in region M between D
and Cj or in region H above Cj. Either way, the firm reporting D would be the low-
cost firm, and j would not be required to adjust. The effect on j’s profit would be
the same as under truthful revelation. If, however, j reports an adjustment cost
in region L below D, then j would be the low-cost firm and would have to adjust
its SO2 output. This will actually cost Cj but the firm will only be paid D, the
next lowest reported cost, resulting in a loss of C j − D. (Profit is always revenue
minus actual cost. The firm can’t reduce its costs by telling a third party that
they are lower than they actually are!) If firm j had truthfully reported Cj then
it would not have been the low-cost firm, and it would not have been required

CjMD HL

Figure 1.2
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to adjust. Truthful revelation does not result in any change in profit, but an
understatement of the true cost results in a loss.

We have examined all the possibilities. Reporting a cost that is different from
the true cost can never benefit a firm, but it can be harmful. The Vickrey mech-
anism provides appropriate incentives for truthful revelation. In contrast, the
naive mechanism—ask each firm its cost, select the low-cost firm, which is then
required to finance the necessary changes with its own funds—will induce vast
overstatement of the costs by the firms. Only by chance would the firm reporting
the lowest cost be the one with the lowest true cost. The naive mechanism does
not serve the interest of consumers. The Vickrey mechanism works well even
when the government authorities have no clue about the true adjustment costs
of individual firms. The individual firm has absolutely no incentive to deviate
from truthful revelation.

What if firm j suspects that other firms will not calculate their profit-
maximizing strategies correctly and report costs that are not their true costs?
Would j then have an incentive to deviate from truthful revelation? No! The pre-
vious argument, showing that misrepresentation can only harm firm j and can
never be beneficial, does not depend on an assumption that other firms are
reporting truthfully. We demonstrated that whatever these reports are, and for
whatever reason they are submitted, firm j can never profit by misrepresenting
its cost.

Source
The Vickrey mechanism is a special case of the Vickrey auction, which is dis-
cussed at length in Chapter 6 and which was introduced into economic theory
by Vickrey (1961).

Links
To provide clear insight, this section has examined an extreme case: Only one
firm will reduce its pollution output by modifying its production process. Sec-
tion 2 of Chapter 3 presents an incentive scheme that harnesses the individual
firm’s profit motive in a way that induces the firms to cooperate with each other
to determine the assignment of pollution abatement targets to each firm in a
way that minimizes the cost to consumers of the total reduction in pollution.

Problem set

1. The discussion in this section does not acknowledge the possibility of a tie.
If two firms report the same cost, and all other firms report a higher cost,
then the tie is broken by flipping a coin. The firm that is selected will still be
paid an amount equal to the second-lowest reported cost. When there is a
tie, that will be the same as the cost reported by the winner of the coin toss.
Prove that it is still not possible for a firm to gain by deviating from truthful
revelation.

2. This question concerns the government’s attempt to determine which of
five firms can reduce its emission of sulphur dioxide by 1000 tons per year at
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the lowest cost. For each of the following four schemes the government will
require each firm to report its adjustment cost, and it will impose the burden
of adjustment on the firm reporting the lowest cost. In each case, determine
whether a firm can ever profit by deviating from truthful revelation. If not,
explain why. If it is possible, demonstrate that fact with a numerical example.

A. The firm reporting the lowest cost is paid that cost plus 5%.

B. The firm reporting the lowest cost is paid the second-lowest reported
cost plus 5%.

C. The firm reporting the lowest cost is paid the average of the lowest
and the second-lowest reported cost.

D. The firm reporting the lowest cost is paid an amount equal to 50% of
the highest reported cost.

E. The firm reporting the lowest cost is paid the second-lowest cost, and
all other firms are paid 10% of the lowest reported cost.

3. This question also concerns the attempt to reduce acid rain by identifying
the firm that can reduce sulphur dioxide emissions at lowest cost. Five for-
mulas are given below for determining the payment to be given to the firm
reporting the lowest cost. In each case there will be a situation in which one
of the firms has an incentive to misrepresent its true adjustment cost. (A
“situation” is a specification of the true cost for each firm.) For Part 1 of your
answer you have to present a table of true costs, identify the firm that has an
incentive to misrepresent its cost, and give an example of a misrepresenta-
tion that will give the firm more profit than truthful revelation. (You won’t
need more than three firms.) Part 2 requires you to explain why the specific
misrepresentation strategy that you propose in part 1 would not be more
profitable than truthful revelation if the low-cost firm received a payment
equal to the second-lowest reported cost—that is, if the Vickrey mechanism
were employed.

A. The firm reporting the lowest cost is paid an amount equal to 150%
of the second-lowest reported cost.

B. The firm reporting the lowest cost is paid an amount equal to the
average of the lowest-reported cost and the second lowest reported
cost.

C. The firm reporting the lowest cost is paid an amount equal to the
third-lowest reported cost.

D. The firm reporting the lowest cost is paid $10 less than the second-
lowest reported cost.

E. The firm reporting the lowest cost is paid $100, regardless of what any
other firm reports.
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4 EFFICIENCY

We sometimes advocate taxing household A to benefit household B—“because
it results in a more equitable distribution of welfare.” Whether it’s a good idea or
not, it’s always possible to change the configuration of production and consump-
tion activities to benefit one individual at the expense of another. Clearly, it is
not possible to maximize the utility of everyone simultaneously. How, then, can
we formalize the notion that an economic system should maximize consumer
welfare generally? By requiring that it exploit every opportunity to benefit some
individuals that can be achieved without penalizing anyone else. This is the
efficiency criterion.

DEFINITION: Efficient and inefficient outcomes
Outcome A is efficient if it is feasible and there is no other feasible outcome
B that gives everyone at least as high a payoff as A and gives at least one
individual a strictly higher payoff than outcome A. An outcome is inefficient
if it is not efficient.

An economic system is efficient if it coordinates individual production and
consumption activities so well that it uses all opportunities to increase welfare
without reducing anyone’s well-being. If a system is not efficient, then there are
equilibria that could be improved to the extent of making some people better off
without adversely affecting anyone else. This would be a serious waste because
it is extremely costly to identify the individuals in question and to bring about
the necessary changes in economic activity. The economic system should not
burden public policy makers with this kind of adjustment. The adjustments
should be made by the economy itself, before equilibrium is reached.

The efficiency test can be applied to any institution, not only to an economic
system. For instance, suppose that there are three candidates, A, B, and C, for
a political office, and the community’s election rules result in A winning even
though half of the voters would have been just as happy with C and the rest
actually prefer C to A. Then we can say that the result of the election is inefficient,
and that the election rules fail the efficiency test. A minimal test of the ability
of any system, or institution, to promote individual well-being generally is its
ability to eliminate every conceivable kind of waste. There is waste somewhere in
the system if it is possible to make at least one person better off without making
anyone else worse off. If it is not possible to do this we say that the outcome is
efficient.

To apply the definition of efficiency we must be able to identify the group
of individuals under study and also the set of feasible outcomes. Because the
various outcomes are evaluated in terms of the preferences of the members of
the group, it is vital to know these preferences. The set of efficiency outcomes can
change if we change the group whose welfare is being evaluated, if we change the
feasible set, or if we change the preferences of the individual group members.
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Example 4.1: The movie or the restaurant

Suppose that the group in question is a family of five who must decide whether
to spend a total of $50 attending a movie (M) or going to a restaurant (R). For this
specific group decision problem there are only two feasible outcomes, M and R. If
individuals 1, 2, and 3 prefer M to R but 4 and 5 prefer R to M then both outcomes
are efficient: A move from M to R would make 1, 2, and 3 worse off, and a move
from R to M would make individuals 4 and 5 worse off. Therefore, whatever the
feasible outcome, it is not possible to make someone better off without making
someone else worse off. Suppose also, that preferences are such that persons 1,
2, and 3 each prefer outcome S to R, where S is obtained from M by taking $4
from each of the first three individuals and giving $6 each to persons 4 and 5.
Suppose that persons 4 and 5 also prefer S to R. If we change the decision problem
so that S is now feasible, then R is not efficient in this new context: Everyone
prefers S to R. Finally, return to the case for which M and R are the only feasible
outcomes. Individuals 1, 2, and 3 are the children, and the parents (4 and 5)
want the choice of activity to be a function of the children’s preferences alone.
In that case the relevant group is the set consisting of 1, 2, and 3 only, and hence
outcome R is not efficient: Each of the three individuals in the group prefers M
to R. But suppose that on a different weekend individuals 1 and 2 prefer M to R
but person 3 prefers R to M. If the group is {1,2,3} and the feasible set is M, R
then both M and R are efficient. We see that a change in preferences can change
the set of efficient outcomes.

If there are 1000 individuals in the group, the feasible set is {A,B}, and
999 people prefer A to B but the remaining person prefers B to A, then out-
come B is efficient, however unfair it might be. Efficiency has to do with the
elimination of waste and does not address fairness at all. Consideration of effi-
ciency does not prevent fairness from playing a role: If only 1 of 1000 individuals
prefers B to A then both A and B are efficient. We can choose A from the set of
efficient outcomes on the basis of fairness or equity.

There are two sufficient conditions for efficiency that are easy to apply: First,
if an alternative maximizes the total payoff then it must be efficient. We prove this
by demonstrating that if an alternative is not efficient then it can’t maximize the
total payoff. Here’s the proof: Suppose there are n individuals. We will let Ui(X )
denote the payoff (or utility) to individual i from generic outcome X. Suppose that
alternative Y is not efficient. Then there is a feasible alternative Z such that some
individual prefers Z to Y and no one prefers Y to Z. In symbols, Ui(Z) > Ui(Y )
for at least one i and Ui(Z) ≥ Ui(Y ) for all i = 1, 2, . . . , n. The latter implies

U1(Z) + U2(Z) + · · · + Un(Z) ≥ U1(Y ) + U2(Y ) + · · · + Un(Y ).

Because Ui(Z) is strictly greater than Ui(Y ) for at least one person we actually
have

U1(Z) + U2(Z) + · · · + Un(Z) > U1(Y ) + U2(Y ) + · · · + Un(Y ).

Therefore, Y does not maximize total utility.
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The second sufficient condition is even easier to apply and defend: If alter-
native X gives some individual—say, j—a strictly higher payoff than any other
alternative then X is efficient. There can’t be another feasible outcome that
makes one person better off without harming anyone because every other out-
come would lower j’s payoff. There typically exist efficient alternatives that do
not satisfy either of the sufficient conditions, but any alternative that does satisfy
one of them is guaranteed to be efficient.

Two sufficient conditions for efficiency:

1. A feasible outcome is efficient if it maximizes the total payoff (over the
set of feasible outcomes).

2. A feasible outcome is efficient if some individual strictly prefers it to every
other feasible outcome.

Example 4.2: Three individuals and five feasible alternatives

Table 1.3 gives the utility of each of the individuals 1, 2, and 3 for each of the
feasible alternatives A, B, C, D, and E. U1 is the utility of person 1. U1(A) > U1(B)
indicates that individual 1 strictly prefers alternative A to B. U2 and U3, the utility
functions of 2 and 3, respectively, are interpreted similarly. We know immedi-
ately that D is efficient because individual 3 strictly prefers D to every other
outcome. Alternative C is efficient because it maximizes total utility: U1(C) +
U2(C) + U3(C) = 125, which is higher than the total utility from any other fea-
sible alternative. Alternative B is efficient, although we can’t use either of our

Table 1.3

Alternative U 1 U 2 U 3

A 25 50 25
B 20 25 60
C 25 50 50
D 10 15 70
E 5 10 60

sufficient conditions to prove it. Moving from B to A or C would harm person 3,
and moving from B to D or E would harm person 2. Therefore, starting from B,
we can’t make anyone better off without making someone worse off. Outcomes
A and E are inefficient. C gives persons 1 and 2 the same (utility) payoff as A, but
C gives person 3 a higher payoff than A, demonstrating that A is not efficient. D
gives each person a higher payoff than E, so E is inefficient. Note that A generates
more total utility than the efficient alternative D, but A is not efficient.
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In economic models we typically assume that each individual cares only
about the direct impact of an outcome on his own welfare, and that more is
better.

DEFINITION: Self-regarding and monotonic preferences
Individual i’s preference scheme is self-regarding if i cares only about the
amount of goods and services that he or she consumes. Monotonicity means
that i’s utility increases if his or her consumption of each good increases.

The simplest economic model requires a cake to be divided among a fixed
group of individuals.

Example 4.3: Dividing a cake

There are n individuals who are to share one cake. Assume that each person’s
preference scheme is independent of the amount of cake received by anyone
else and that each person always prefers more to less. The feasible set consists of
the different ways—allocations—of dividing a single cake among the n persons.
Allocation x assigns the fraction xi of the cake to individual i. Of course, xi ≥ 0 for
all i and �xi = x1 + x2 + · · · + xn ≤ 1. These are the feasibility conditions. Our
assumption of self-regarding and monotonic preferences implies that individual
i will prefer allocation x to allocation y if and only if xi > yi .

If �xi < 1 then x is not efficient because we can set yj = xj + (1 − �xi)/n for
each j, resulting in an allocation y such that yj > xj for all j. On the other hand,
if �xi = 1 then x is efficient because

yj ≥ xj for all j and yh > xh for some h

implies y1 + y2 + · · · + yn > x1 + x2 + · · · + xn = 1 and thus y is not feasible. In
short, an allocation x ≥ 0 is efficient for the division of a cake problem if and
only if �xi = 1. This means that there are many efficient allocations, and that
is typical of almost all economic models. For the division of a cake problem, if
all waste has been eliminated, it is still possible to increase someone’s utility,
but only by transferring some commodity or benefit—“cake”—from someone
else. If the transfer is made in a nonwasteful fashion we will have a new efficient
outcome. This can be done in many ways, accounting for the large number of
efficient outcomes.

Assume that n = 3 for Example 4.3. Then x = (x1, x2, x3) assigns the fraction
x1 of the cake to person 1, x2 to person 2, and x3 to person 3. The allocation
(1/3, 1/3, 1/3) is efficient and (0.4, 0.4, 0.1) is not. However, both persons 1 and
2 prefer (0.4, 0.4, 0.1) to (1/3, 1/3, 1/3,). Therefore, it is false to say that everyone
prefers any efficient allocation to any inefficient allocation. Of course, there is
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some allocation that everyone prefers to (0.4, 0.4, 0.1). For example, everyone
prefers the feasible allocation (0.42, 0.42, 0.16) to (0.4, 0.4, 0.1).

Note that (0.2, 0.2, 0.2) is not efficient; the allocation (1/4, 1/4, 1/4) gives everyone
more utility. But (1/4, 1/4, 1/4) is not efficient either. So, it’s false to say that if y gives
everyone more utility than x then y is efficient.

Now, compare allocations (1/3, 1/3, 1/3) and (1, 0, 0). Both are efficient. There-
fore, a move from (1, 0, 0) to (1/3, 1/3, 1/3) will make one person worse off. But it is
false to say that the efficiency criterion stands in the way of such a change. All that
we are entitled to say is that there is no efficiency argument justifying a move
from allocation (1, 0, 0) to allocation (1/3, 1/3, 1/3). There may be a strong fairness
or equity argument for the change, however.

There is a weak version of efficiency that is often easier to work with. Its value
lies in the fact that it is an easier definition to apply and that for most economic
models the two definitions yield the same set of efficient outcomes.

DEFINITION: Weakly efficient outcome
An outcome is weakly efficient if it is feasible and there is no feasible outcome
that would make everyone strictly better off.

Obviously, an efficient allocation is weakly efficient in general. If everyone
can be made strictly better off then it is certainly possible to make one person
better off without harming anyone. Consequently, an outcome cannot be effi-
cient if it is not weakly efficient. However, in noneconomic contexts it is possible
to have weakly efficient allocations that are not efficient. Consider, for example,
a house party with n guests. One may dress casually or formally. Consequently,
there are then 2n outcomes. Assume that no one cares how anyone else dresses
so each person is one of two types: C (someone who prefers to dress casually)
or F (someone who prefers to dress formally). There is only one efficient out-
come, the one that assigns to each person his or her most-preferred mode of
dress. Any other outcome has at least one person in his least-preferred attire.
This person can be made strictly better off without affecting anyone else and
thus the original outcome is not efficient. However, every outcome but one is
weakly efficient. Unless each guest is assigned his or her least-preferred mode of
dress the outcome is weakly efficient. If at least one person is in his or her most-
preferred attire then that person cannot be made better off so it is impossible to
make everyone better off.

In the division of a cake model (Example 4.3) an allocation is efficient if
and only if it is weakly efficient. If, say, y is feasible, y1 > x1, and yi ≥ xi for all
i set ε = y1 − x1 . Define z by setting zi = yi + ε/2n for i > 1 and z1 = y1 − ε/2.
Then everyone is better off under z than under x, and z is feasible because
�zi < �yi . Therefore, an allocation is not weakly efficient if it is not efficient. In
other words, a weakly efficient allocation is efficient in the division of the cake
model. In any model, an efficient outcome is weakly efficient. Hence, efficiency
and weak efficiency are equivalent for the division of a cake problem.
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Table 1.4

Charli
Opera Hockey

Nan
Opera 10,4 2,1
Hockey 0,2 3,9

We conclude this section by proving that a weakly efficient allocation is effi-
cient in any standard economic model. The general proof requires the assump-
tion of a commodity such as money (or cake) that can be divided into arbitrarily
small amounts, and which everyone wants more of, and such that each person
cares only about his own assignment of that good. We take it as axiomatic that
this is possible in any economic context.

To show that weak efficiency implies efficiency in an economic model, sup-
pose that feasible outcome y makes person 1 strictly better off than x and leaves
no one else worse off. Construct outcome z from y by having person 1 give up
a small amount of some commodity, money perhaps. Make this amount small
enough so that person 1 prefers z to x. Now divide this amount evenly among
the remaining individuals to complete the specification of z. Each person likes y
at least as well as x. Thus, with the extra money each person i �= 1 will be strictly
better off (at z) than under x. We already know that person 1 prefers z to x. There-
fore, everyone strictly prefers z to x. Hence, if it is possible to make one person
better off without leaving anyone worse off then it is possible to make everyone
strictly better off.

Problem set

1. This question concerns two roommates, Nan and Charli, who must decide
how to spend their evening. Each prefers being with the other to any outcome
in which they attend different events, but Nan likes opera better than hockey
and Charli likes hockey better than opera. Table 1.4 displays the payoffs,
which can be used to recover their preferences. The first number in each cell
is Nan’s payoff, and the second is Charli’s payoff. List the efficient outcomes.

2. This question concerns a simple economic problem of distribution involv-
ing three people, 1, 2, and 3. Specifically, there is a six-pound cake to be
divided among the three. Assume that only the following five assignments
are feasible:

(6, 0, 0), (2, 2, 2), (2, 1, 2), (1, 2, 3), (2, 0, 4).

(The first number is the amount of cake assigned to person 1, the second
is the amount of cake assigned to person 2, and the third number is the
amount of cake assigned to person 3.) Each individual cares only about his
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Table 1.5

Kyle’s utility Jackson’s utility Mia’s utility

X 1 2 3
Y 2 4 1
Z 3 1 0

or her own consumption of cake and prefers more to less. Of the five specified
assignments list the ones that are efficient.

3. Three siblings, Jeremy, Kerri, and Tom, have jointly inherited three assets:
X, a large house; Y, a yacht; and Z, a very valuable painting. Each individual
must receive one of the assets, so there are six possible assignments of assets
to individuals. For each of the following three cases specify the preferences
of each of the individuals so that no individual is indifferent between any
two assets:

A. There is only one efficient outcome.

B. Every outcome is efficient.

C. There are at least two efficient outcomes and at least one that is not
efficient.

4. Christine, Jay, and Christy-Ann have jointly inherited five assets (call them
A, B, C, D, and E). The assets are indivisible—an antique car, a sailboat, and
so forth. It is left to the heirs to allocate the assets among them. Therefore,
the feasible outcomes are the set of all possible ways of assigning the assets
to the three individuals. The individual preferences are as follows:

Christine strictly prefers A to B, B to C, C to D, and D to E.

Jay strictly prefers E to D, D to C, C to B, and B to A.

Christy-Ann is indifferent between each pair of assets. (If you took one
asset away from her and gave her a different one in its place she would
be no better off and no worse off.)

Each person gets positive utility from each asset. (If you gave an individual
an additional asset, he or she would be better off, whatever the asset.)

A. List five efficient outcomes that leave Christy-Ann with nothing.

B. List five efficient outcomes that leave Jay with nothing.

C. List five efficient outcomes that give each person at least one asset.

5. This question concerns a situation in which three roommates, Kyle, Jackson,
and Mia, have to choose between the following three alternatives:

X: studying together,

Y: going to the basketball game together, and

Z: going their independent ways.
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Table 1.6

F G H J K M

Cathy’s payoff 0 60 200 100 40 205
Vince’s payoff 170 60 65 40 110 95

These three alternatives, and only these alternatives, are feasible. The util-
ity derived by each individual from each alternative is revealed Table 1.5.
“Alternative X is efficient yet it does not maximize the sum of individual
utilities.” Is this statement correct ? Explain.

6. This question asks you to identify the efficient outcomes in a simple model
with two individuals, Cathy and Vincent, and six outcomes, F, G, H, J, K, and
M. Table 1.6 gives the level of utility obtained by each individual under each
outcome. All six outcomes are feasible, and there are no other feasible out-
comes. Which of the outcomes are efficient? Suppose that a seventh option
becomes available, and it provides utility levels of 206 for Cathy and 172 for
Vincent. How would the set of efficient outcomes be affected?

7. There are three individuals (1, 2, and 3) and five feasible outcomes (A, B, X,
Y, Z). Table 1.7 specifies the utility function for each person. List the efficient
outcomes. Now, list the weakly efficient outcomes.

8. Return to Example 4.2. Multiply each of the utility numbers for person 3
by 10, leaving the utility numbers of 1 and 2 unchanged. Show that the set
of efficient outcomes is unchanged, even though a different outcome now
maximizes total utility. This demonstrates that efficiency depends only on
individual preference rankings and not on the utility numbers that we use
to represent those rankings. To drive this point home, for each individual
list the alternatives in order of preference. Now work out the efficient out-
comes, using only those rankings. (If two alternatives have the same utility
number put them in the same row of your list for the individual in question.)

5 EQUILIBRIUM

Each person has a given set of actions from which he or she is allowed to choose.
When each person employs a strategy that maximizes his or her payoff, given
the choices made by others, we will be at equilibrium. In most situations the

Table 1.7

A B X Y Z

U 1 1 2 5 4 3
U 2 50 0 100 1 1
U 3 1 1 1 1 1
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strategy that is best for individual A depends on what individual B is expected
to do. For instance, in a game of soccer—known as football outside of North
America—if A has a clear shot on goal, whether A decides to kick to the right or
the left depends on whether A expects the goalie to move left or right.

We begin by examining a special family of games in which each person’s best
strategy can be determined independently of what the opponent is expected
to do.

5.1 Dominant strategy equilibrium
This section considers a small but important family of games in which the indi-
vidual’s payoff-maximizing strategy is independent of the strategies that others

Table 1.8

Player 2
L R

Player 1
U 5, 5 0, 10
D 10, 0 1, 1

pursue. Consider Table 1.8: Player 1 has to choose
between two strategies U and D, and Player 2 has
to choose between the two strategies L and R. The
first number in a cell is player 1’s payoff, and the
second number is player 2’s payoff. On one hand,
if person 1 thinks that her opponent will choose
L then she’ll do better playing D than playing U.
When person 2 plays L, player 1 gets 5 by playing
U but 10 from D. On the other hand, if player 1
expects her opponent to play R then she’ll also

do better playing D than playing U. The former yields 1 but the latter yields 0
when person 2 plays R. Therefore, player 1 should play D, whatever she thinks
her opponent will do. We say that D is a dominant strategy.

DEFINITION: Dominant strategy
We say that S* is a dominant strategy for player A if, for any strategy T
available to A’s opponent, none of A’s strategies yields a higher payoff than
S* when A’s opponent plays T. (We use an asterisk to distinguish a salient
strategy or outcome.)

Notice that a dominant strategy does not necessarily give a player the highest
possible payoff. It is not even the case that a dominant strategy gives a player
the same payoff for each of the opponent’s strategies. D is clearly a dominant
strategy for player 1 in the game of Table 1.8, but when she plays D she will get
10 if player 2 chooses L but only 1 if player 2 chooses R. The payoffs are quite
different. But D is a dominant strategy because when player 2 plays L, player 1’s
payoff is higher from D than from U, and when player 2 plays R, player 1’s payoff
is also higher from D than from U.

Both players have a dominant strategy in the above game. Person 2 will do
better playing R, whichever strategy person 1 has chosen. When player 1 plays
U, player 2 gets 5 from L and 10 from R. If player 1 were to play D, player 2 would
get 0 from L and 1 from R. Therefore, R is a dominant strategy for player 2.
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If each individual has a dominant strategy then we can say with confidence
that the outcome that has each individual playing his or her dominant strategy
is an equilibrium.

DEFINITION: Dominant strategy equilibrium
If each individual has a dominant strategy then there is a dominant strategy
equilibrium, and it results when each person chooses his or her dominant
strategy.

The game that we have been analyzing is an example of a prisoner’s dilemma
game, which demonstrates that the pursuit of self-interest does not always lead
to an outcome that benefits individuals in the end. In the game of Table 1.8 when
each individual is guided by self-interest, person 1 will play D, person 2 will play
R, and each will get a payoff of 1. However, if each had chosen the alternative
strategy, then the payoff for each would have been 5. The pursuit of self-interest
is self-defeating in this game. (If person 1 thinks that person 2 has studied this
game and will play L, doing her part so that they can each get 5, then person 1
has a strong incentive to play D because she gets 10 that way.) The prisoner’s
dilemma is more fully examined in Section 6. We remind you that dominant
strategies do not usually exist. For example, the game resulting from repeated
play of the prisoner’s dilemma does not have dominant strategies.

5.2 Nash equilibrium
A dominant strategy equilibrium is a special case of a Nash equilibrium, in
which each person’s strategy is a best response to the strategies chosen by the

Table 1.9

Rob
L R

Pat
U 12, 10 15, 5
D 10, 20 5, 25

other players. We say that S* is player A’s best
response to player B’s strategy T if there is no other
strategy available to player A that gives her a higher
payoff than S*, given that the opponent has selected
T. Consider the game described by Table 1.9: (U, L)
is a Nash equilibrium because Pat’s best response
to L is U, and Rob’s best response to U is L. It is the
only Nash equilibrium, because if Pat were to play
D then Rob would respond with R. But D is not Pat’s
best response to R.

The unique Nash equilibrium for this game is not a dominant strategy equi-
librium. Although Pat has a dominant strategy (her best response to L is U, and
her best response to R is also U), Rob does not. Rob’s best response to U is L, but
if Pat were to select D then Rob’s best response would be R, not L.

In any two-person game, each player has a set of available strategies, and
if player 1 chooses strategy S1 and 2 chooses S2, we let U1(S1, S2) represent the
resulting payoff to player 1, with U2(S1, S2) denoting player 2’s payoff. We say
that (S∗

1 , S∗
2 ) is a Nash equilibrium if, given that player 2 plays S∗

2 , there is no
strategy available to player 1 that gives him a higher payoff than S∗

1 and given
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that player 1 plays S∗
1 there is no strategy available to player 2 that gives him a

higher payoff thanS∗
2 .

DEFINITION: Nash equilibrium
(S∗

1 , S∗
1 ) is a Nash equilibrium if U1(S∗

1 , S∗
2 ) ≥ U2(S1, S∗

2 ) for every strategy S1

available to person 1 andU2(S∗
1 , S∗

2 ) ≥ U2(S∗
1 , S2) for every strategy S2 available

to person 2.

Because the payoff U1(S∗
1 , S∗

2 ) to player 1 is the highest payoff available to
him given that his opponent plays S∗

2 we say that S∗
1 is a best response to S∗

2 . Note
that a dominant strategy equilibrium is a special case of a Nash equilibrium: A
dominant strategy is a best response to anything that the opponent might do.

In general, there are n players and each has a set of available strategies. We
say that the strategy list (S∗

1 , S∗
2 , S∗

3 , . . . , S∗
n) is a Nash equilibrium if for each player

i the strategy S∗
i is a best response by i to the choice of S∗

j by each j �= i. We may
want an equilibrium to have additional properties but it should at least be self-
enforcing in the sense that each person’s strategy is a best response to what the
others are doing.

5.3 The invisible hand
The prisoner’s dilemma shows that without appropriate incentives the pursuit of
self-interest can be self-defeating. Adam Smith identified a range of situations in

Table 1.10

Player 2
L R

Player 1
U 5, 5 7, 2
D 2, 7 1, 1

which the pursuit of self-interest promotes the
well-being of everyone, without the need for
regulation by any central authority—except that
there must be some agency to enforce the rules
of the game. Consider the game represented by
Table 1.10: Person 1 has to choose between two
actions U and D, and person 2 has to choose
between L and R. If person 2 plays R then person
1 does better playing U than playing D. But when
person 1 plays U, person 2 does better switching to

L. And when person 2 plays L, the best response for person 1 is to play U. Then
we have a Nash equilibrium with person 1 playing U and person 2 playing L.
Although an individual would rather have 7 than the 5 that he or she gets at
equilibrium, the temptation to get the big payoff doesn’t ruin things. The incen-
tives still take this tiny society to the (U, L) outcome and would still do so if we
changed 7 to 700 in the description of the rules of the game: Person 1 has to
play U to get 700, but person 2’s best response to U is to play L. We don’t get
the bad outcome in this situation, even though each player is pursuing narrow
self-interest, as in the prisoner’s dilemma game of Section 5.1.

It’s all a matter of incentives. If the appropriate incentives are in place, then
the pursuit of individual self-interest leads to an outcome that benefits society
as a whole—without the need for a government to guide the participants. We
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Table 1.11

Country B
Retaliate Don’t retaliate

Country A
Retaliate 120, 150 100, 125
Don’t retaliate 95, 130 105, 95

say that we have a decentralized system—that is, the individuals are on their
own to follow their self-interest. The games of this section and Section 5.1 are
both decentralized; in one of them we get the bad outcome and in the other
we do not.

5.4 The incentive to harbor terrorists
There is a spillover benefit from any effort to eliminate terrorism undertaken
by an individual country. The elimination of any terrorist cell by any country
reduces the threat to other countries. With many cases of spillover benefits, the

In the 1980s the United States became
the main target of Middle East terrorist
attacks, in part because of Israel’s effec-
tive protection of El Al Airline flights and
its efforts in other aspects of security
(Hill, 1986).

resulting game in which the players are
involved is a prisoner’s dilemma. But not in
the case of countries seeking to protect them-
selves from terrorism. When country X puts
more resources into shielding itself from ter-
rorism, country Y becomes more vulnerable,
to the extent that terrorists shift their activities
away from X and toward Y. The cost of attack-

ing a country increases when that country increases its level of protection, and
hence the probability of an attack on other countries increases.

Because of the shift in terrorist activity, the specific benefits to country X
when it retaliates for acts of terrorism increases with the level of retaliation
by country Y. Even if X would not have an incentive to retaliate if Y did not
retaliate, if Y does retaliate then X is better off retaliating than being passive.
Let’s examine the resulting two-agent game of Table 1.11. The first number in a
cell is country A’s payoff, and the second number is country B’s payoff. (When a
country retaliates, it attacks the terorists, not the other country.)

Table 1.11 shows that it is to country B’s advantage to retaliate, whatever
country A does. If A does not retaliate, then B’s payoff is 130 for retaliation but only
95 for passivity. However, if A does retaliate, then B’s payoff is 150 for retaliation
and only 125 for passivity. We say that for B, retaliation is a dominant strategy.
Therefore, we can be sure that country B will choose to retaliate. How will country
A respond? Its payoff is 120 if it retaliates, and only 95 if it doesn’t. Therefore A
will retaliate. We have a unique equilibrium in which both countries retaliate.
(Note that A would have an incentive not to retaliate if B did not retaliate. But,
of course, we know that B will retaliate.)

Table 1.12 portrays the situation in which country A has a third strategy—to
harbor terrorists within its borders, in hopes of winning the terrorists’ favor, and
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Table 1.12

Country B
Retaliate Don’t retaliate

Country A
Retaliate 120, 150 100, 125
Don’t retaliate 95, 130 105, 95
Harbor 140, 75 115, 80

in that way shield itself from attack. Often the host country obtains a promise
from the terrorists that it will not be attacked. A country that would benefit con-
siderably from a strategy of retaliation—because a terrorist attack could be par-
ticularly devastating—might be a country that would also benefit considerably

France, Italy, Greece, and Cyprus are
among the many countries that have
allowed foreign terrorists to establish a
base within their own borders. Cuba has
accepted a dozen United Nations’ coun-
terterrorist conventions, but it hosts a
number of Latin America’s most wanted
terrorists, in addition to Basque terrorists
and Irish Republican Army nationalists
(The Economist, May 25, 2002, p. 30).

from buying protection—that is, by harbor-
ing terrorists. Note that harboring the terrorist
group is now a dominant strategy for A. On one
hand, if country B retaliates then A gets a payoff
of 140 from harboring, and that is higher than
the payoff from either retaliating or being pas-
sive, given that B retaliates. On the other hand,
if B does not retaliate then A’s payoff is 115 from
harboring, but A gets only 100 from retaliating
and 105 from passivity when B does not retal-
iate. Therefore, we can expect A to harbor the
terrorists. B’s best response to that is to refrain

from retaliating because it gets a slightly higher payoff from doing so when A
hosts the terrorists. Why does B retaliate in Table 1.11 but not in Table 1.12?
Because part of the benefit to any country X from retaliating in the first scenario
comes from offsetting the shift in terrorism activities against Y to X that results
from Y’s retaliation. In the second scenario, country A does not retaliate because
it pays A to harbor the terrorists.

The relative magnitude of the numbers that we have used is not the only
plausible choice. In Table 1.11, we can think of B as a country like Israel that is
plagued by local terrorists whose objective is to destroy B, whereas country A
is victimized by foreign terrorists whose grievances are primarily against B. For
that story we would probably want to increase the 75 in the bottom left-hand
cell (excuse the pun) of Table 1.12 to 95, in which case B would be better off
retaliating than being passive when A harbors the terrorists.

5.5 Dissolving a partnership
Two companies, located in different countries, embark on a joint project in a
third country. If one of the parties wants to be released from its commitment at
some stage, how should the breakup of the partners be adjudicated?

Before addressing this question, we look at the two-person division of a cake
problem. (Example 4.3, with n = 2.) An allocation x assigns the fraction x1 of
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the cake to person 1 and x2 to person 2. Allocation x is efficient if and only if
x1 + x2 = 1. In particular, the allocation that assigns all of the cake to one person
is efficient. (Either x1 = 1 and x2 = 0, or x1 = 0 and x2 = 1.) Such an outcome is
far from fair, of course. Let’s agree that x1 = 1/2 = x2 is the only fair and efficient
allocation.

Suppose that our aim is to implement the fair and efficient allocation x1 =
1/2 = x2 in a decentralized way so that the cake is distributed evenly as the result
of selfish utility-maximizing behavior by each individual. We want to design a
game for which the unique Nash equilibrium gives exactly half of the cake to
each person. This cannot be done without specifying the rules of the game.
These rules will detail the strategies available to each player and will also specify
the allocation as a function of the pair of individual strategies. An appropriate
mechanism is not hard to find. Let person 1 cut the cake into two pieces. With
the sizes of the two pieces determined by individual 1, let person 2 choose
one of the two pieces for his own consumption. Person 1 then consumes the
remaining piece. The only equilibrium allocation generated by this game is the
fair and efficient allocation x1 = 1/2 = x2 because person 1 knows that person
2 will choose the larger piece if 1 cuts the pieces unequally. Therefore, person 1
is sure to receive less than half the cake if she cuts the pieces unequally at stage
1. She can prevent this by cutting the cake precisely in half and this, therefore, is
the strategy that ensures her the largest payoff. Consequently, person 2’s choice
becomes irrelevant.

This simple game has an important application in the business world. It
often happens that two companies from different countries find themselves
involved in a joint business venture in a third country. If at some point one of
the parties is presented with a more profitable opportunity elsewhere and wants
to abandon the project, there will be considerable uncertainty about the legal
resolution that would be handed down by the courts. This prospect could inhibit
the firms from undertaking the project in the first place, and thus some socially
desirable investments may not be adopted.

Some joint ventures have been undertaken after the two participants agree
to settle disputes over withdrawal by the following straightforward variant
of the division of the cake mechanism: The partner that wishes to withdraw
from the project names a price P at which he is willing to sell his share of the
venture to the second partner. If that were all there were to it, the withdrawing
partner would have a strong incentive to name an exorbitantly high price (and
there would be a strong incentive to withdraw) just as person 1 would have a
strong incentive to cut a cake unequally if he were the one to decide who gets
the larger piece. But there is a second stage to the game: The second partner
now chooses whether to buy the other out at the named price P or to sell out
to the partner that set the price P. This forces the withdrawing partner to set a
price equal to one half of the present value of the project. Proof: Suppose that
the present value of the project is $V and the contracting parties have equal
ownership shares. If the project is completed then each gets a payoff of 1/2V .
If partner 1 (the company wishing to withdraw) names a price P > 1/2V then
partner 2 is better off selling to 1 at that price than insisting on completion. If
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partner 1 sets P below 1/2V then partner 2 will want to buy out partner 1 at that
price and complete the project at her own expense for a net gain of V − P > 1/2V .
In either case, by choosing a value of P different from 1/2V , partner 1 will wind
up with less that 1/2V and he can always ensure a payoff of exactly 1/2V by setting
P = 1/2V .

Because the only equilibrium solution has the withdrawing partner setting
P = 1/2V , why don’t they simply agree in advance that 1/2V will be the price
at which a partner can be bought out should he or she decide to withdraw
before the project is completed? Because there will be disagreement about V. The
remaining partner will claim that the project has little likelihood of generating
substantial profit and will offer to buy out the other at a very low price, claiming
that she is offering 1/2V but that V is very small. The partner selling his share in
the enterprise will have a strong incentive to claim that V is very large, whatever
he really believes, and hence 1/2V is large. Suppose, however, that partner 1 can
name a price P and then partner 2 has the right to buy out the other at P or to
sell her share to company 1 for P. Then partner 1 could lose heavily by naming
a price that was much greater than 1/2V1, where V1 is partner 1’s estimate of the
present value of the project. If partner 2’s estimate of the present value were no
higher than partner 1’s, then partner 2 would opt to sell to partner 1 at any price
P greater than 1/2V1 and the net value to partner 1 of the project would then be
V1 − P, which is less than 1/2V1, the payoff that partner 1 could get just by setting
P = 1/2V1.

5.6 The centipede game
In spite of the plausibility of Nash equilibrium, there are games that have a single
Nash equilibrium that is not a reasonable forecast of the game’s outcome. One
of the niftiest examples is the so-called centipede game characterized by the
game tree in Figure 1.3. The two players are Samantha and Tyler. As time passes
we move from left to right along Figure 1.3.

The players take turns moving, and when it’s a player’s turn to move he or
she has to choose between grabbing the money (g) and passing (p). If he or
she passes then the total amount of money available doubles. When one of the
players grabs then the game is over and Samantha’s payoff is the first number in
parentheses and Tyler’s is the second number. If each player passes at each turn
then the game ends at the extreme right of the diagram with Samantha receiving
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$256 and Tyler receiving $64. (Note that the only efficient outcomes are this one
and the second-last outcome at which Samantha receives $32 and Tyler receives
$128.)

What makes analyzing the game tricky is that, although the total payoff dou-
bles every time a player passes, the amount that he or she will receive if the
other person responds by choosing g is cut in half. Suppose that each player
passes every time it is his or her turn to move. Then Tyler will receive $64. But he
can get twice as much money by grabbing on his last move instead of passing.
Passing at the last stage is not a best response by Tyler to Samantha’s strategy
of passing at every opportunity. Therefore, the outcome that results when each
player passes at each opportunity is not self-enforcing and hence not part of a
Nash equilibrium.

Both players can predict that the game will not end with a player passing.
Suppose both players anticipate that the game will end after move t with Tyler
grabbing at that stage. Then Samantha will not let the game survive to that stage
because she can get twice as much money by grabbing on the previous move,
instead of passing and letting the game continue. Similarly, if Samantha were
expected to end the game by grabbing at stage t > 1, Tyler’s best response would
be to grab at the previous stage because he would double his payoff by doing so.
Therefore, the only self-enforcing outcome has Samantha grabbing at the first
opportunity and this results in a payoff of $4 for Samantha and $1 for Tyler. This
is obviously far from efficient. (The game is called the centipede game because
the associated diagram looks like a centipede. Moreover, one could extend the
game by adding 94 more moves, with the pot continuing to double each time.
The starting point would remain the only equilibrium, but it offers minuscule
payoffs relative to those available later on.)

Our intuition tells us that the two players would not end up at the Nash equi-
librium. In fact, McKelvey and Palfrey (1992) conducted experiments and found
that the players typically finish somewhere near the middle of the centipede,
not at either extreme of grabbing at the first opportunity or passing until the last
move or two. Therefore, Nash equilibrium is an inappropriate solution concept
in this case. Why? To identify the difficulty, we will truncate the game so that
each player potentially has only two moves, as illustrated in Figure 1.4. We refer
to the later move as the player’s second move.
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Here is a difficulty: We have implicitly assumed that both players are
“rational.” Rationality means that agents care only about the effect of an out-
come on their own welfare, and they always act to enhance their welfare in
any situation where that has an unambiguous meaning. We have also assumed
that each player believes that the other is rational. Here is the argument that
establishes that the unique Nash equilibrium has Samantha grabbing on the
first move and receiving $4, with $1 going to Tyler: If Tyler is rational and he has
the opportunity to make the last move—his second move—he will grab rather
than pass because he gets $32 by grabbing and only $16 by passing. Nothing
remarkable about the background assumptions so far.

Now, suppose that Samantha is rational and that Samantha knows that Tyler
is rational. Then Samantha will anticipate that Tyler will grab if he has a second
move. This means that Samantha deduces that she will get $8 if Tyler is given
an opportunity to make a second move. Therefore, if Samantha has the chance
to make a second move, she knows that she is really choosing between $8—if
she passes—and $16—if she grabs. She is rational, so she will grab if she has a
second move. Now, suppose that Tyler is rational, Tyler knows that Samantha
is rational, and Tyler knows that Samantha knows that Tyler is rational. Then
Tyler can anticipate that Samantha will grab if Samantha has an opportunity for
a second move. Then Tyler will wind up with $4 if Samantha has a second move.
Therefore, on Tyler’s first move—if he has one—he can obtain $8 by grabbing
or $4 by passing. He is rational, so he will grab on the first move if Samantha
hasn’t grabbed first. And so on. The conclusion that Samantha will grab at the
first opportunity is based on the following suppositions:

1. Samantha and Tyler are each rational.
2. Samantha knows that Tyler is rational.
3. Tyler knows that Samantha knows that Tyler is rational.
4. Samantha knows that Tyler knows that Samantha knows that Tyler is rational.

Statement 1 implies that Tyler will grab if he is given a second move. State-
ments 1 and 2 imply that Samantha will grab if she is given a second move.
Statements 1–3 imply that Tyler will grab on his first move if Samantha passes
on her first move. Statements 1–4 imply that Samantha will grab on the first
move. Therefore, assumptions 1–4 collectively imply that the unique Nash
equilibrium has each person grabbing whenever he or she is given an oppor-
tunity to move. But these assumptions are extremely unstable. If Samantha
actually passes on the first move then Tyler knows that one of the four state-
ments is false—perhaps Samantha is not rational, or perhaps she is unsure
that Tyler knows that she knows that Tyler is rational—and the logical chain
directing Tyler to grab at the first opportunity is broken. Anything can happen
now.

The longer the game, the larger is the spread between the payoff a player
gets by grabbing early and the payoff that awaits both players if the game ends
much later. Moreover, the longer the game, the longer is the chain “I know that
he knows that I know that he knows . . . ” that is required to support the backward
induction derivation that the game will end on the first move. For long games
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of this nature—or short ones, for that matter—we don’t have a good model
for predicting behavior, but at least we can see why results in which the game
ends after seven or eight rounds of passing are not inconsistent with our basic
rational choice model. It’s just that the results are inconsistent with the implicit
assumption about what individuals know about what others know.

5.7 Subgame-perfect Nash equilibrium
The centipede game of the previous section has a single Nash equilibrium, but
we don’t have much confidence that it would emerge as the outcome when the
game is actually played, and that is confirmed by experiments. Now we examine
a game with two Nash equilibria, one of which is not a sensible forecast of the
game’s outcome. In this case the equilibrium is implausible because it is based
on a threat that is not credible. Simply put, a subgame-perfect equilibrium is a
Nash equilibrium that is not sustained by a threat that is not believable. Before
we can present a formal definition we need to prepare the ground.

A strategy is much more comprehensive than an action. “Steal second base
now” is a simple instruction by a coach in a baseball game, and the attempted
theft is the action. But a strategy specifies an act as a function of every act made
by every participant up to the present stage of the game. “Attempt a theft of
second base if we haven’t reached the fifth inning, or if it is late in the game
and we are behind by two or more runs, provided that the batter has fewer than
two strikes and the probability of a pitch-out is less than 0.25” is a strategy. We
could specify a single strategy for the manager of a baseball game for the entire
game. It would specify a decision for every situation that could arise, as well as
the decisions made at the beginning of the game before the opponent has taken
any action.

Consider a deterministic two-person game—that is, a game between two
individuals that is not affected by any random variables. Let S1 and S2 denote,
respectively, the strategies chosen by players 1 and 2. Then the pair (S1, S2)
uniquely determines the outcome of the game. If we display the payoffs awarded
to player 1 as function of the strategies chosen by players 1 and 2, and similarly for
player 2, we have what is called the normal form representation of the game. The
normal form payoffs are simply expressed as functions U1(S1, S2) and U2(S1, S2)
of the chosen strategies. Recall that a Nash equilibrium is a pair of strategies
(S1, S2) such that U1(S1, S2) ≥ U1(T1, S2) for every strategy T1 available to person
1, and U2(S1, S2) ≥ U2(S1, T2) for every strategy T2 available to person 2. It is
helpful to think of the respective strategies S1 and S2 as chosen simultaneously
and submitted to a referee who then computes the outcome and assigns payoffs
according to the rules of the game. In a nondeterministic game there are points in
the game at which a strategy calls for an act to be selected randomly by means of
a given probability distribution over a given set of acts. Uncertainty may even be
imposed on the players—the arrival of rain during a baseball game, for example.
The outcome will be random, but the payoff to an individual associated with
any configuration of strategies—one for each player—can still be expressed as a
single number by using the probabilities as weights on the different payoffs that
could arise. (See Section 6.1 of Chapter 2.)
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An extensive form representation of the game has much more structure than
the normal form. The extensive form provides information about the sequences
of moves—whose turn it is to move at each stage and what choices that person
has. A strategy for an individual prescribes an action for that person for every
situation that could arise.

DEFINITION: Individual strategy
At any point in the game at which the player is allowed to move, the strategy
specifies an action for that player for each potential history of the game to
that point—and a single action for the game’s opening move.

Example 5.1: Extensive form two-person game

The game is represented as Figure 1.5 . At the first stage player A has a choice of
moving left or right. If A moves left the game is over, and A’s payoff is 1 and B’s
payoff is 5. If player A moves right at the first stage then player B has the next
move and can go up or down. If B chooses up then each gets a payoff of 3, but if
B moves down then A’s payoff is 0 and B’s payoff is 2. Consider the normal form
representation of the same game displayed as Table 1.13. R → U represents the
strategy “B moves Up if A has opened by moving Right,” and R → D represents
“B moves Down if A opened by moving Right.” There are two Nash equilibria
here: (Right, R → U) and (Left, R → D). Confirm that Right is a best response
by A to R → U, and that R → U is a best response by B to Right. Note also that
Left is a best response by A to R → D, and that R → D is a best response by B to
Left.

The equilibrium (Left, R → D) of Example 5.1 is not a plausible one. It
depends on B’s threat to move Down if A moves Right. In plain words, A

Table 1.13

Player B
R → U R → D

Player A
Left 1, 5 1, 5
Right 3, 3 0, 2

announces her intention to move Left, what-
ever B proposes to do should B get a chance to
move, and B announces her intention to move
Down if A moves Right. If A believes that B is
really committed to Down if B gets a chance to
move, then Left is the rational choice for A: Left
gives A a payoff of 1, but A gets 0 if he moves
Right and B carries out her threat to move Down.
However, B’s threat is not credible. If B does get
a chance to move it will come after A’s move and

thus it can have no impact on A’s choice. Therefore, the payoff-maximizing move
for B is Up, yielding a payoff of 3 instead of 2. A Nash equilibrium that does not
depend on an incredible threat is termed a subgame-perfect Nash equilibrium.
Subgame refers to the game that would be defined if we were to begin play at
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some advanced stage of the original game. The players are assumed to play
best responses in the subgame. For Figure 1.5, moving Up is the best response
for B at the second stage, so a threat to move Down is not credible. The only
subgame-perfect Nash equilibrium is (Right, R → U).

DEFINITION: Subgame
A subgame of an extensive form game is a game obtained by separating the
tree at one node and retaining only that node and all parts of the tree that
can be reached from that node by going forward and not backward (in time).
Any node may serve as the origin of a subgame, provided that the person who
moves at that stage knows the entire history of the game up to that point.

The prisoner’s dilemma (Table 1.8 in Section 5.1) can be represented in exten-
sive form: Player 1 moves first and chooses between U and D. At the second node,
player 2 chooses between L and R. However, at this point player 2 will not know
what choice player 1 made at the first node. Therefore, player 2 will not know the
prior history of the game when it is his turn to move. This game has no subgames
(except for the entire game itself).

The game of Figure 1.5 has five subgames, including the original game itself:
There are three trivial subgames corresponding to the three terminal nodes with
respective payoff vectors (1, 5), (3, 3), (0, 2). The trivial subgames do not allow
anyone to move, of course. There is only one proper and nontrivial subgame,
obtained by eliminating the branches Left and Right.

If the original game includes moves in which the player taking action is not
perfectly certain of what has gone before, then a subgame must have an addi-
tional property: at the node N where the separation identifying the subgame
occurs, any act A by the mover M (the player who moves at N) must be included
in the subgame if there is some prior history of the game that would make A
available to M if A is not ruled out by the information available to M at N. A
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subgame-perfect equilibrium is one that remains an equilibrium for all
subgames—with the equilibrium strategies amputated to fit the subgame.

DEFINITION: Subgame-perfect Nash equilibrium
A Nash equilibrium β is subgame perfect if the strategies specified by β

constitute a Nash equilibrium in every subgame.

For the game of Figure 1.5, if we begin at the point where B moves we have a
subgame in which B chooses between Up and Down. Clearly, Up is the only Nash
equilibrium in this one-player game. Therefore, the equilibrium (Left, R → D)
of the original game is not subgame perfect.

For finite games we locate subgame-perfect equilibria by backward
induction: Begin with the proper subgames that are closest to a terminal node.
In Figure 1.5, that would be the subgame beginning with B’s move. Replace those
subgames with their Nash equilibrium payoffs. For the subgame of Figure 1.5
that begins with B’s move, player B has a simple choice between Up, with a payoff
of 3 to herself, and Down, which gives her a payoff of 2. She would choose Up,

A moves

RightLeft

(1, 5) (3, 3)

Figure 1.6

resulting in the payoff vector (3, 3). We replace the
entire subgame with (3, 3), as illustrated in Figure 1.6.
We continue by induction. Having reduced the size
of the game by successively abbreviating it by replac-
ing subgames with their Nash equilibrium payoffs,
we have a new game. We then identify the proper
subgames that are closest to a terminal node of this
new game. Then we replace those subgames with their
Nash equilibrium payoffs. At some stage we will have
reduced the game to one with a single move, as in

Figure 1.6. The Nash equilibrium of that game gives us the subgame-perfect
equilibrium of the original game. The unique Nash equilibrium of Figure 1.6 has
A choosing Right, leading to a payoff of 3 for A. (His payoff would only be 1 if he
chose Left.) Therefore, the unique subgame-perfect equilibrium for the game of
Figure 1.5 is (Right, R → U ).

Sources
The term Nash equilibrium honors the mathematician John Nash, who is the
subject of the book A Beautiful Mind by Sylvia Nasar (1998). Lee (1988) is the
basis for Section 5.4 on terrorism. The centipede game was invented by Robert
Rosenthal (1981).

Links
Myerson (1999) is an excellent study of the history of Nash equilibrium in eco-
nomic analysis. Baumol (2002) discusses the contribution of Adam Smith more
deeply than our static version of Section 5.3. There are other situations, in addi-
tion to the centipede game, in which Nash equilibrium does not appear to offer a



44 Equilibrium, Efficiency, and Asymmetric Information

good forecast of the outcome that would result when intelligent, self-motivated
people interact. See Goeree and Holt (2001) for ten important cases. Cramton,
Gibbons, and Klemperer (1987) is a very advanced treatment of the problem of
dissolving a partnership. Subgame-perfect equilibrium is discussed at length in
Binmore (1992), Gibbons (1992), Kreps (1990), and Osborne (2004). Frank (2004)
offers an attractive suggestion for enriching the standard economic model in a
way that is consistent with observed play of the centipede game.

Problem set

1. The utility functions of our two individuals are

U1 = 100(e1 + e2 ) − 150e1 and U2 = 100(e1 + e2 ) − 150e2

where e1 is the effort contributed by individual 1 and e2 is the effort con-
tributed by individual 2. Each individual i can set ei equal to any number
between zero and one inclusive.

A. Given individual 2’s choice of e2, whatever that might be, what is the
best response of person 1? Justify your answer.

B. What is the Nash equilibrium for this game?

2. This time there are nindividuals, and ei is the effort contributed by individual
i whose utility function is

Ui = α(e1 + e2 + · · · + en−1 + en) − βei

Individual i can set ei equal to any number between zero and one inclusive.

A. Show that ei = 0 is a dominant strategy for individual i if and only if
α < β.

B. For what range of values of α and β will we have Ui(1, 1, . . . , 1, 1) >

Ui(0, 0, . . . , 0, 0)? Justify your answer.

C. If n = 10 = β, for what range of values of α is this a prisoner’s dilemma
game?

3. X and Y are on the only candidates on the ballot in an election. Every voter
prefers X to Y. Explain why we have a Nash equilibrium if everyone votes for Y
and there are at least three voters. Is this a plausible forecast of the outcome?
Are there any other Nash equilibria? (Note that each voter has a dominant
strategy.)

4. The airline has lost the luggage of two travelers. Their luggage was identi-
cal. Each is invited to submit a claim for any integer amount between $10
and $100 inclusive. If the claims are identical then each receives a payment
equal to the common claim. If the claims are not the same then the traveler
submitting the smaller claim gets that amount plus $5, and the traveler sub-
mitting the larger claim receives a payment equal to the smaller claim minus
$5. Prove that the unique Nash equilibrium has each person submitting a
claim for $10. This game was devised by Basu (1994). (It is noteworthy that
experiments reveal a high concentration of claims around $99.)
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Table 1.14

Player B
Don’t confess Confess

Player A
Don’t confess 1, 1 10, 0
Confess 0, 10 5, 5

6 THE PRISONER’S DILEMMA GAME

This section discusses a simple situation in which the interplay of incentives
leads to an outcome that the participants deeply regret, even though the out-
come is the consequence of the pursuit of self-interest: Self-interest drives
individual behavior but self-interest is self-defeating in this setting. The phe-
nomenon under discussion, the prisoner’s dilemma paradox, has a wide range
of applications; it explains many organizational failures. It is a model of a situa-
tion in which individual incentives are not well aligned.

If fire is detected in a crowded building almost no one will escape alive if there
is panic, and all attempt to get through the exit door at once. But if the crowd

Ninety-seven people died in a Rhode
Island nightclub after a fire broke out.
“There was nowhere to move” (Boston
Herald, February 26, 2003). Twenty-one
people died in a Chicago nightclub after
a fight provoked a panic that resulted in
the exits being so completely jammed
that the people stuck there couldn’t
move forward or backward (Chicago
Sun-Times, February 18, 2003).

is orderly it is advantageous to any one individ-
ual to run past everyone else to get to the exit
first. Panic will prevail if everyone comes to the
same conclusion. However, if everyone runs to
the exit then no one can gain anything by walk-
ing slowly.

The prisoner’s dilemma refers to a simple
game involving two players, each of whom
must choose one of two options indepen-
dently of the other. The game can be described
abstractly but we will introduce it in its origi-
nal guise: Two individuals A and B have been

arrested and charged with bank robbery. The police are convinced of their guilt
but there is no admissible evidence on which they can be convicted of robbery,
although they were carrying guns when caught and for this each can be sen-
tenced to one year in jail. To obtain confessions to the crime of robbery the
authorities interrogate them separately and offer each his complete freedom if
he confesses to the robbery and his partner does not. The partner who does not
confess will receive ten years in jail, but if both confess then each will receive a
five-year sentence. The situation confronting each prisoner is summarized by
Table 1.14.

The first number in a cell is A’s sentence, and the second number is B’s
sentence. A and B cannot communicate with each other—or if they can com-
municate they can’t make binding agreements. Suppose that A believes that B
will not confess. Then A will receive a sentence of one year if he does not confess,
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Table 1.15

Player B
Cooperate Defect

Player A
Cooperate 20, 20 1, 30
Defect 30, 1 5, 5

but he will not have to serve any time if he confesses. A receives a lighter sentence
by confessing. However, suppose that A believes that B will confess. Then A will
receive five years if he confesses but ten years if he doesn’t. Again, A’s self interest
is served by confessing. Whichever decision the partner in crime is expected to
make, an individual does better by confessing than not confessing. They both
confess and each receives a sentence of five years. If neither had confessed then
each would have been free after only one year.

In this situation self-interest drives each person to take a course of action that
leaves each worse off than if they had coordinated their strategies. (But notice

U.S. law allows a firm involved in a cor-
porate conspiracy to escape punishment
if it is the first to confess (The Economist,
October 21, 2000, p. 67).

how strong the incentive is to get one’s partner
to agree not to confess and then, having also
solemnly sworn not to confess, to confess and
go free.)

Consider the general formulation of this
game, with the outcomes translated to money

(or similar) payoffs, which an individual wants to maximize. Each person must
decide whether to cooperate or to defect without knowing what choice the other
will make. The payoff for each of the four possible combinations of strategies is
given in Table 1.15. The first number is player A’s payoff, and the second number
in a cell is player B’s payoff.

If B is expected to cooperate then A can get 20 by cooperating but 30 by
defecting. If B is expected to defect then A can get 1 by cooperating and 5 by
defecting. In either case the higher payoff for A is obtained by defecting. Defect-
ing is a dominant strategy. A dominant strategy is one that is the best course of
action for a decision maker regardless of the actions that others are expected to
take. B is in exactly the same position; both will defect and each receives a payoff
of 5. If each had chosen to cooperate then each would have received a payoff of
20. The equilibrium outcome is not efficient. The equilibrium, which is the out-
come when both play their dominant strategies, gives each a lower payoff than
when both cooperate. The incentive to defect is irresistible, however, assum-
ing that the game is played under two conditions. First, the two players cannot
undertake a binding commitment to cooperate. Second, the game is played only
once.

If the players can make commitments then the incentives could be quite
different. Suppose, for example, that before playing the game the two players
anticipated that each would succumb to the temptation to defect and each



6. The Prisoner’s Dilemma Game 47

signed a document that required one person to pay the other a thousand dollars
if he defects. This contract could also state that it was binding on a signatory
only if the other person signed. This results in a new game in which both can
be expected to sign the document and cooperate. (Assume that the payoffs in
Table 1.15 are dollar amounts.) Now, suppose that binding agreements are not
possible but the same game is repeated a number of times by the same two
players. Then we have a different game with different incentives, although the
tension that we have uncovered in the “one-shot” game still plays a role in the
repeated game. We can still have an equilibrium in which each person defects at
each stage, but the justification of this as an equilibrium is feeble compared to
the story for the one-shot game. For one thing, there are no dominant strategies
in the repeated version of the prisoner’s dilemma game which is discussed in
more detail in Sections 7.1 and 7.2.

We now turn to a consideration of seven situations for which the prisoner’s
dilemma game is applicable. The first five illustrate how the prisoner’s dilemma
incentive structure can work to the disadvantage of society. But it can also work to
society’s benefit, as in the case of Sections 6.6 and 6.7. In every case there are more
than two people, but the extension to the several-person case is straightforward.

DEFINITION: n-person prisoner’s dilemma
A game with two or more players is a prisoner’s dilemma if each has a unique
dominant strategy and an inefficient outcome results when each plays his
or her dominant strategy.

6.1 Economic sanctions
Shortly after Iraq invaded Kuwait in August 1990 the United Nations Security
Council imposed sanctions against Iraq. Most countries endorsed the sanctions
and publicly stated a commitment not to allow imports from Iraq or to permit
exports to Iraq. By December, observers in the Middle East were reporting serious
leakages in the blockade. Let’s look at sanctions from the standpoint of the
incentives facing a typical country. Oil is the chief export of Iraq. A ban on the
purchase of goods from Iraq is costly to an importing country because it reduces
its options for acquiring energy. The restriction on exports is costly because
trade is mutually advantageous, and to the extent that a country restricts trade
it obviously limits the benefits that it receives from trade. The ban on exports
would be seen in the legislature and in the press of the banning country as a
threat to income and employment in that country. In addition, compliance with
the sanctions would have to be monitored by the central government and that
involves direct costs.

On one hand, if a large number of countries joined in the imposition of sanc-
tions then country A would be tempted to relax its grip to recapture some of the
benefits of trade, hoping that others would maintain the sanctions with sufficient
determination to allow A to reap the benefit of sanctions without having to pay
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the cost. On the other hand, if quite a few countries allow trade to continue then
country A will benefit little from any embargo that it imposes, because sanctions
have little effect if they are not widely enforced. In short, the dominant strat-
egy for each country is to allow its firms to disregard the sanctions. This is not
an argument against multilateral sanctions. However, the prisoner’s dilemma
problem teaches that sanctions must be implemented with a clear understand-
ing of the incentives facing individual countries and with the determination to
use diplomacy and ongoing consultation to maintain compliance.

Although there was less than total compliance with the economic sanctions
against Iraq, there was enough of an effect to cause serious hardship among
the Iraqi poor. In 1995 the United Nations instituted an oil-for-food program
to relieve the suffering. Iraq was allowed to export a limited amount of oil at a
limited price. The revenue was paid into a United Nations escrow account, to be
used only for essentials—food and medicine, in particular. The program appar-
ently led to a wide range of abuses including smuggling, illegal commissions,
bribes, and kickbacks. At least $2 billion wound up in Saddam Hussein’s pocket.
More surprising are the charges that up to $10 billion found its way into the bank
accounts of officials outside of Iraq (The Economist, May 1, 2004, pp. 46–7).

6.2 Public opinion
It is quite costly for an individual to stay well informed on most issues that
are before national legislatures. On the one hand, the cost of investing the time
required to develop an intelligent opinion on each critical public event is consid-
erable, and on the other hand, the personal benefit from the resulting improve-
ment in the quality of public opinion is negligible because a single individual’s
viewpoint, whether sound or silly, has a negligible effect. Whether others are
well informed or not, an individual’s own utility is maximized by investing in
knowledge up to the point where the benefit to him or her from any additional
investment would be more than offset by the cost. This results in citizens gener-
ally not being well enough informed from the standpoint of their own welfare. If
everyone were to invest additional time in studying current events then public
opinion would induce better public decisions and that would benefit everyone.

6.3 Pollution
Suppose that consumers have a free choice between automobiles produced
without emission control devices and automobiles that have equipment that
eliminates most harmful exhaust but costing $3000 more than those with-
out. (The emission control equipment costs $3000 per car to manufacture and
install.) Consider the typical consumer’s decision problem. Given the choices
made by others, whatever they are, the purchase of a pollution-free car would
cost the individual $3000 extra but would not appreciably improve the quality
of the air. Clearly, purchasing the cheaper, polluting automobile is a dominant
strategy. Everyone makes this choice and thus automobile traffic generates sub-
stantial pollution. One could specify the payoffs so that everyone would be bet-
ter off if each paid a $3000 charge to eliminate pollution caused by automobile
exhaust, but the individual incentives push the society away from this outcome.
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The Environmental Protection Agency was formed in the United States in
1970. Before that time pollution was regulated in part by private lawsuits. The
prisoner’s dilemma phenomenon was involved here as well. Individuals get the
benefit of any pollution-reduction strategy financed by their neighbors, whether
or not they themselves make a contribution. Declining to help pay the legal costs
of a lawsuit is a dominant strategy for each individual. Hence, there is less than
the socially optimal amount of pollution abatement when we rely exclusively
on private lawsuits to regulate behavior.

6.4 Beggar-thy-neighbor policies
The great depression of the 1930s had most industrial countries in its grip, and
individual nations were unable to resist the temptation to devalue their curren-
cies. Given the exchange rates of other countries, if one country devalued its
currency then its goods would be cheaper to the rest of the world and its own
citizens would import less as other countries’ goods rose in price in terms of the
domestic currency. The result is a stimulus to the devaluing country’s industries
at the expense of other countries. (It was thus called a beggar-thy-neighbor pol-
icy.) But the same temptation confronts each nation. Devaluation is a dominant
strategy. Each country attempts to lower the price of its currency relative to oth-
ers and adopts additional measures to restrict imports. As all countries restrict
imports all countries’ exports dwindle and the worldwide depression deepens.

6.5 Disarmament
In this example the players are countries. Defecting in this case is a decision to
arm heavily. Cooperation is the decision to maintain only a defensive posture.
If a country expects others to cooperate there is a strong incentive to obtain an
extra measure of security by arming heavily. If the same country expects others to
arm heavily then national security demands that the country arm heavily. Arm-
ing heavily is a dominant strategy for each country. Alternatively, imagine that
war has broken out between A and B and that defecting corresponds to the use
of chemical weapons in combat. Without introducing any other considerations,
our analysis predicts that the use of chemical weapons would be commonplace.
But that’s not what we observe. Because defecting is a dominant strategy in these
situations, nations generally have a responsibility to convince belligerents that
the employment of particularly heinous methods of warfare (or violations of the
Geneva conventions on the treatment of prisoners of war, etc.) will be counter-
productive. In other words, it has to be brought to bear on A and B that they are
playing a larger game than the immediate one-shot prisoner’s dilemma game.

6.6 Cartels
Producer cartels form to keep industry supply low and price high. This provides
each member of the cartel with more profit than when they compete vigorously
against each other. When the firms actively compete then the industry output
will be high, and price low, because each firm’s output will be relatively high.
Cooperation in the cartel context requires a firm to stick to the cartel agreement
by restricting its own supply. But if each firm does this the market price will
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Table 1.16

Rosie
Hold Sell 2 shares

Soren
Hold 36, 36 20, 40
Sell 2 shares 40, 20 30, 30

be high, and if the market price is high then an individual firm has a strong
incentive to increase its profit by producing more output. If every firm does this
the market output will be high and the price low. This is a case where the incentive
structure, which leads to an inefficient outcome from the standpoint of the group
of producers, works to the benefit of society as a whole: Individual incentives
promote competition in spite of the substantial profits awaiting the shareholders
in firms that can get their competitors to agree to cooperate in restricting output.
The original prisoners’ dilemma, in which suspects are interrogated, is another
instance in which society is served although the individuals playing the game
deeply regret the outcome.

6.7 Hostile takeovers
DianeCam corporation has two owners, Soren and Rosie, each of whom owns
two shares in the firm. The current market value of a share is $10. Edie wants
to acquire all four shares in the firm and then replace the current manager with
a more efficient one. This will raise DianeCam’s profit and hence the market
value of a share from $10 per share to $18. Therefore, Edie could offer to buy the
outstanding shares at $15 each. This would give Soren and Rosie a nice profit.
But, why would they sell if the shares will be worth even more after the takeover?

Edie can get around this difficulty by means of a two-tier offer: She offers
to pay $20 per share for the first two shares tendered and buy the next two at
$10 each, but if Soren and Rosie simultaneously tender two shares each then
Edie will pay each owner $20 + $10 for two shares. Soren and Rosie now face a
prisoner’s dilemma problem represented by Table 1.16.

On one hand, if Soren holds onto his shares, waiting for the takeover to drive
their value up to $18, then Rosie will get $18 per share if she also holds out, but $20

From an economy-wide perspective,
takeovers may improve the performance
of managers, who risk being dismissed
by a new owner if the firm has been rel-
atively unprofitable. (See the discussion
in Section 4.1 of Chapter 4.)

for each of her two shares if she tenders them to
Edie. On the other hand, if Soren tenders his two
shares immediately then Rosie gets $10 for each
of her two shares if she holds out, but a total of
$20 + $10 if she also sells right away. (A condi-
tion of sale at the $20 price is that DianeCam
will be merged with a company Edie already
owns, once Edie has 50% of the shares, and the

outstanding DianeCam shares will be purchased for $10 each.) Whatever Soren
elects to do, Rosie does better by selling her shares immediately. Similarly with
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Table 1.17

Strategy pair Game 1 Game 2 Game 3

S1 S2 U1 U2 U1 U2 U1 U2

U L −5 10 5 5 10 12
U R 10 5 7 1 5 5
D L −10 5 1 7 5 40
D R 5 −5 8 2 20 24

Soren. Because selling is a dominant strategy, the takeover will be consummated.
(Even if there is no takeover when they both hold out, their shares will be worth
only $10 each, so selling is still a dominant strategy.)

Sources
The prisoner’s dilemma game was invented by Dresher and Flood at Rand in the
1950s. Professor Albert Tucker of Princeton University immediately recognized
its great significance for social studies. The example of Section 6.7 is based on
Ryngaert (1988).

Links
Poundstone (1992) is an informative book on the history of the prisoner’s
dilemma game. Both Osborne (2004) and Binmore (1992) provide a thorough
analysis of the game. Page 28 of Osborne (2004) gives an excellent account of
experiments involving the prisoner’s dilemma. See Downs (1957), pages 207–
219, for a thorough discussion of the public opinion “game” of Section 6.2.
Frank (2004) offers an attractive suggestion for enriching the standard economic
model in a way that is consistent with observed play of the prisoner’s dilemma
game.

Problem set

1. Table 1.17 gives you enough information to set up three different games. In
each case player 1 has two available strategies, U and D, and player 2 also has
two available strategies, called L and R in her case. The table gives you each
player’s payoff (or utility) for each of the four possible pairs of strategies. For
each game, determine if it is a prisoner’s dilemma game, and defend your
answer.

2. Consider a market served by two firms with identical cost functions Ci = Qi ,
where Qi is firm i’s output and Ci is the firm’s total cost. The market demand
curve is Q = 82 − 2P.

A. Determine the market output and price when the two firms form a
cartel that restricts output to maximize industry profit.
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Table 1.18

Game Left Right

Game 1
Up 15, 15 2, 8
Down 8, 2 10, 10

Game 2
Up 12, 12 20, 2
Down 2, 20 5, 5

Game 3
Up 5, 50 50, 0
Down 0, 500 10, 100

Game 4
Up 7, 7 4, 10
Down 4, 10 5, 5

Game 5
Up 100, 100 4, 102
Down 102, 4 5, 5

B. Assuming that the cartel imposes a quota on each firm equal to half
the industry profit-maximizing level of output, what is the firm’s profit
under the cartel arrangement?

C. Now assume that consumers will buy only from firm i if it breaks
the cartel agreement and charges a price of $15 when the other firm
continues to charge the cartel price. What profit will each firm receive
if firm i maximizes profit given a price of $15 and given the market
demand curve?

D. If a firm has a choice of only two strategies—charge $15 or charge the
cartel price—show that they are playing a prisoner’s dilemma game.

3. Determine which of the five two-person games defined by Table 1.18 are
examples of the prisoner’s dilemma game. In each case each individual must
choose one of two strategies: A controls the rows and B controls the columns.
In other words, A must choose between Up or Down and B must choose
between Left or Right. Each combination of strategies determines a payoff
to each person as indicated in the table: the first number in a cell is A’s payoff
and the second number is B’s. Each player wants to maximize his or her
payoff and the players cannot make binding contracts. (All of which says
that we have the standard setting.)
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Table 1.19

Ryan
Cooperate Defect

Jodi
Cooperate 10, 10 2, 15
Defect 15, 2 5, 5

4. Consider the prisoner’s dilemma of Table 1.19. Suppose that Ryan and Jodi
play the game three times in succession and each knows that the game will
end after three periods. Show that defecting every period is not a domi-
nant strategy even though the unique (Nash) equilibrium results in each
person defecting each period. (You don’t have to prove that a Nash equi-
librium results in each person defecting at each stage; you just have to
show that the player who always defects is not employing a dominant
strategy.)

7 REPETITION AND EQUILIBRIUM

A short-run decision can affect a firm or individual’s long-run reputation, and
that makes it easier to devise incentives under which agents can maximize
individual payoffs without precipitating an inefficient outcome. Specifically,
cooperation can emerge when the players have an opportunity to punish any-
one who sacrifices overall group welfare by pursuing short-run personal gain.
With repeated play there will be future periods in which the punishment can
take place. That means that there are equilibria in which each player faces
a credible threat of punishment should he or she deviate from the path that
results in an efficient outcome. Our intuition will be confirmed by the the-
ory when the number of repetitions is infinite. In fact, just as there are typ-
ically many efficient outcomes, there are typically many equilibrium paths if
the number of repetitions is infinite. All of this depends on there always being
a future, which is not the case in the last period if the number of repetitions
is finite.

We begin with the repeated prisoner’s dilemma game, but first we recall the
definition of a strategy from Section 5.7.

DEFINITION: Individual strategy
At any point in the game at which the player is allowed to move, the strategy
specifies an action for that player for each potential history of the game to
that point—and a single action for the game’s opening move.
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7.1 Repeated prisoner’s dilemma with terminal date
If we stick to the assumption of selfishness at every turn, then the only equilib-
rium when the prisoner’s dilemma game is played a fixed finite number of times

Table 1.20

Player B
C D

Player A
C c, c �, h
D h, � d, d

has each person defecting at each stage, provided
that both players know when play will end.

At each stage the players simultaneously and
independently choose between defecting (D) and
cooperating (C), and payoffs are then awarded
according to Table 1.20, where � < d < c < h. This
game is played exactly T times in succession. We
assume that each individual’s overall payoff from
the repeated game takes the form

α1u1 + α2u2 + · · · + αT−1uT−1 + αT uT

where ut is the player’s payoff in period t and αt is some positive weight. (The
weights can be different for different players.) What will happen?

At the Tth and last stage there is only one possible outcome: Both defect
because there is no further play, and thus no opportunity for their choices to
affect future payoffs, and defecting is a dominant strategy for the one-shot game.
Knowing that both will inevitably defect at the last stage, independent of what
has happened previously, there can be no advantage to anyone who cooperates
at the second-last stage—nothing will induce the opponent to cooperate in the
last round. An individual’s chosen action in period T − 1 then depends solely on
the payoffs in that period, and we know that defecting is a dominant strategy in
that context. Therefore, both will defect in round T − 1. Knowing that both will
inevitably defect in the last two rounds, independently of what has happened
previously, there can be no advantage to anyone who cooperates in stage T − 2.
Therefore, both will defect in round T − 2, and so on. The only equilibrium has
each person defecting at each stage.

Equilibrium theorem for the finitely repeated prisoner’s dilemma

Both individuals will defect at each stage if there is a fixed number of repeti-
tions, and both payers know when the game will end. This Nash equilibrium
is subgame perfect.

The equilibrium is subgame perfect because the argument of the previous
paragraph works for any subgame. (Section 5.7 defines subgame perfection.)

Even though the only Nash equilibrium in the finitely repeated prisoner’s
dilemma game has each person defecting each period, it is not true to say that
defecting each period is a dominant strategy. This is not even true for two repe-
titions. Suppose that T = 2, α1 = 1 = α2, and we have c = 20, d = 5, � = 1, and
h = 30 as in Table 1.15 at the beginning of Section 6. Suppose that A announces
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his intention to cooperate in the first period, and then to cooperate again in the
second period if B has also cooperated in the first period, and to defect in the
second period if B defected in the first period. (I don’t mean to imply that this is
a smart decision on A’s part; it may or may not be.) This is called the tit-for-tat
strategy. If B defects in both periods her payoff will be 30 + 5 but if B cooper-
ates in the first period and then defects in the second period her payoff will be
20 + 30. (Will that give A second thoughts about playing tit-for-tat?) Given A’s tit-
for-tat strategy, the cooperate-then-defect strategy gives B a higher total payoff
than the defect-then-defect strategy, and therefore the latter is not a dominant
strategy. Defecting both periods is, however, a payoff-maximizing response of B
to the announcement by A that he will defect both periods. Therefore, we have
not contradicted the assertion that defection each period by each player is a
Nash equilibrium. (To prove that it is the only Nash equilibrium you need to do
more.)

DEFINITION: The tit-for-tat strategy
The individual cooperates in period 1 and for any period t will cooperate in
that period if the opponent has cooperated in the previous period, but will
defect if the opponent defected in the previous period.

We have seen that the predictions of economic theory based on Nash equilib-
rium are not always confirmed by experiments and observations. An important
contribution to the study of the finitely repeated prisoner’s dilemma game, and
hence to the understanding of the conditions under which cooperation will
be induced by rational self-motivated behavior, is the competition devised by
Robert Axelrod in which opponents formulated strategies for playing prisoner’s
dilemma. The strategies competed against each other in a round robin tourna-
ment in which each match consisted of repeated play of the prisoner’s dilemma
game. The tit-for-tat strategy, submitted by Anatol Rapoport, was the winner.
Although it did not beat any other strategy it scored highest because it was a
survivor: other strategies reduced each others’ scores when pitted against each
other.

7.2 Infinitely repeated prisoner’s dilemma
Suppose that neither player knows when the interaction is going to end. We
can model this by investigating a supergame in which the one-shot prisoner’s
dilemma game is played period after period without end. (The one-shot game
is also called the stage game.) Even when there is a finite terminal date, having
an infinite number of periods in the model is a good way to embody the fact
that the players don’t let that terminal date influence their behavior in the early
and intermediate stages. We will see that when the game is played an infinite
number of times there is an abundance of equilibria. As in any dynamic game, a
strategy specifies one’s choice at each stage as a function of the possible previous
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choices of both players, so there is a vast number of strategies and many of these
are equilibria.

Players A and B simultaneously and independently choose whether
to cooperate or defect in each of an infinite number of periods
1, 2, . . . , t. An individual’s preferences are captured by the discounted sum of
her payoff each period. That is, her period t payoff ut is discounted by the factor
δt−1, where 0 < δ < 1. Because δ < 1, the discount factor will be close to zero
if t is very large. (We simplify by assuming the same discount factor for each
individual.) The individual’s overall payoff from playing the infinitely repeated
prisoner’s dilemma game is

�δt−1ut = u1 + δu2 + δ2u3 + · · · + δt−1ut + · · · .

If the game will end in finite time, but the individual does not know the terminal
date, then we can view δt+1 as proportional to the probability that period t is the
last time the game will be played. Consequently, far distant dates have a very
low probability of being reached.

If δ = (1 + r)−1 and r is the (positive) rate of interest then we certainly have
0 < δ < 1. In fact, if the individual can borrow and lend at the rate of interest r,
and the payoffs from the stage game are in money terms, then the individual
will act so as to maximize �δt+1ut because that maximizes the right-hand side
(the wealth term) of the individual’s intertemporal budget constraint, without
affecting the left-hand side (the expenditure term) of that constraint.

The generic one-shot game is again represented by Table 1.20 of the previous
subsection. One equilibrium pair of strategies that induces universal coopera-
tion when δ is sufficiently close to one has each person cooperating in the first
period and cooperating every period thereafter as long as his opponent cooper-
ated in all previous periods, but defecting every period subsequent to a defection
by the opponent. This is called the grim trigger strategy.

DEFINITION: The grim trigger strategy
The individual cooperates in period one and any period t if the opponent has
cooperated in every previous period. The individual defects in every period
following a stage in which the opponent defected.

The name derives from the fact that a defection in any period triggers a severe
punishment—defection by the other player in every subsequent period.

Consider the special case c = 20, d = 5, � = 1, and h = 30. Let’s see why we
have a Nash equilibrium if each adopts the grim trigger strategy. Suppose that
player B uses the grim trigger strategy but player A cooperates in periods 1,
2, . . . , t − 1 and defects in period t. Then player B will cooperate up to and
including period t and defect every period thereafter. Now, compare A’s payoffs
discounted to period t from the grim trigger strategy with the overall payoff from
the deviation. The deviation produces a payoff of 30 in period t and at most 5 in
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every subsequent period. Treating period t as “now,” the discounted stream of
payoffs, 30, 5, 5, . . . , 5, . . . is no larger than

30 + δ5 + δ25 + δ35 + · · · = 30 + 5δ

1 − δ
.

Let St denote the sum a + aδ + aδ2 + · · · + aδt−1 of t terms. Then δSt = aδ +
aδ2 + · · · + aδt−1 + aδt. Then St − δSt = a − aδt. We can solve this equation for
St. We get

St = a − aδt

1 − δ
.

If 0 < δ < 1 then aδt approaches zero as t gets arbitrarily large. In that case, St

gets arbitrarily close to a/(1 − δ) as t gets arbitrarily large. Then we can say that
a/(1 − δ) is the sum of the infinite series a + aδ + aδ2 + · · · + aδt−1 + · · · if 0 <

δ < 1. [In the case of δ5 + δ25 + δ35 + · · · we have a = δ5, and thus the sum is
5δ/(1 − δ).]

The trigger strategy, which has A and B cooperating every period, yields a dis-
counted payoff of

20 + δ20 + δ220 + δ320 + · · · = 20
1 − δ

.

Deviation from this can be profitable for A only if

30 + 5δ

1 − δ
>

20
1 − δ

,

which is equivalent to δ < 0.4. (To discount to the present multiply the payoffs
discounted to period t by δt−1. That will lead to the same inequality.) Therefore,
if δ ≥ 0.4 and both play the grim trigger strategy we have a Nash equilibrium.

If δ = (1 + r)−1 then δ < 0.4 is equivalent to r > 1.5: Only when the interest
rate is greater than 150% can it be profitable for a player to deviate from the trigger
strategy, which induces cooperation in each period. The cooperative outcome
can be sustained as long as the players are not inordinately impatient.

The grim trigger strategy equilibrium is not subgame perfect. Consider A’s
payoff in the subgame following the choice of D by A in period t, with each
playing C in each prior period, and B playing C in period t. The trigger strategy
has A playing C in the first period of the subgame (period t + 1 of the parent
game) and B playing D to punish A for the choice of D in period t + 1. Then
both will play D in every subsequent period and hence A’s payoff stream from
period t + 1 on will be �, d, d . . . d, . . . . If A were to deviate slightly and play D
from period t + 1 on then her payoff stream would be d, d, d, . . . , d, . . . and that
is better for A for any (positive) value of the discount factor.

We can modify the grim trigger strategy slightly to produce a subgame-
perfect equilibrium that sustains cooperation: Have each individual cooperate
in period one and in any period t if the opponent has cooperated in every pre-
vious period, but have the individual defect in every period following a stage in
which either player defected.
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If c > (h + �)/2 then the cooperative outcome also results from the more con-
ciliatory tit-for-tat strategy that has a player cooperating in the first period, and
in every subsequent period playing whatever strategy the opponent employed
in the previous period. We investigate this claim for the generic stage game.

DEFINITION: The tit-for-tat strategy
The individual cooperates in period 1 and for any period t will cooperate in
that period if the opponent has cooperated in the previous period, but will
defect if the opponent defected in the previous period.

We put ourselves in the shoes of player A. Assume that B is playing tit-for-tat.
Let’s see if tit-for-tat is a best response. When both play tit-for-tat each will wind
up choosing C every period, so each will get c every period, and hence A’s overall
payoff will be c/(1 − δ). Now, suppose that A chooses D in every period. Then A
will get h in the first period but d ever after because B will play D in every period
after the first. The resulting overall payoff to A will be

h + δd + δ2d + δ3d + · · · = h + δd
1 − δ

.

The overall payoff from tit-for-tat will be higher if c/(1 − δ) > h + δd/(1 − δ), and
that is equivalent to δ > (h − c)/(h − d). (Note that h − c is less than h − d.) If δ

is sufficiently close to 1 (i.e., if A is sufficiently patient) then playing tit-for-tat
gives A a higher payoff than defecting every period—when B plays tit-for-tat.

Consider a different strategy for A: Suppose that A were to defect in the
first period but then cooperate in period 2 and play tit-for-tat thereafter. B is
playing tit-for-tat from the start, so A’s sequence of actions will be D, C, D, C,
D, C, D, . . . and B’s will be C, D, C, D, C, D, C, . . . . In other words, they alternate
defecting and cooperating. Then A’s sequence of stage-game payoffs will be
h + � + h + � + · · · resulting in the overall payoff for the repeated game of

h + δ� + δ2h + δ3� + · · · = h + δ2h + δ4h + δ6h · · ·
+ δ� + δ3� + δ5� + δ7� · · · .

The sum of the terms involving h is h/(1 − δ2) and the sum of the terms involving
� is δ�/(1 − δ2). When do we have

c
1 − δ

>
h

1 − δ2
+ δ�

1 − δ2
?

Multiplying both sides of the inequality by the positive number 1 − δ2 reveals
that it is equivalent to

c(1 + δ) > h + δ�.

Because c > (h + �)/2 (by assumption), 2c > h + � and hence for δ < 1 arbitrarily
close to 1 we have c(1 + δ) arbitrarily close to 2c, and hence c(1 + δ) > h + δ�.
Therefore, if player B’s strategy is tit-for-tat then A cannot do better than tit-for-
tat by alternating between D and C.
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Suppose that player A waits until period t to begin defecting every period or
to begin alternating between D and C. In that case, the deviant strategies will
have the same payoff for A as tit-for-tat up to and including period t − 1. We can
then discount future-stage game payoffs back to period t and this will lead us
back to the respective inequalities of the previous two paragraphs.

For a sufficiently high discount rate, tit-for-tat is a superior response to tit-
for-tat than defecting every period or alternating between D and C. What about
other strategies? Continue to assume that B plays tit-for-tat but suppose that A
plays C in each of the first three periods, then plays D for the next two periods,
and then C every period thereafter. Compare A’s overall payoff from this strategy
to tit-for-tat. Each pays c in each of the first three periods and c in the seventh
period and every subsequent period. Therefore, we can begin the comparison
at period 4 and end it in period 6, discounting the payoffs to period 4: The
deviant strategy yields h + δd + δ2� and tit-for-tat yields c + δc + δ2c. We can
make h + δ2� as close as we like to h + � and c + δ2c as close as we like to 2c by
taking δ sufficiently close to 1. Then with c > (h + �)/2 we have c + δ2c > h + δ2�

for δ sufficiently close to 1. And δc > δd for any δ > 0. Therefore, tit-for-tat is
superior to the deviant strategy. If A were to play C for three periods then D for
n periods and then C ever after we would have essentially the same argument,
except that we would compare h + δn� to c + δn c, but again with c > (h + �)/2 we
have c + δn c > h + δn� for δ sufficiently close to 1. It is clear that any strategy that
elicits a different stream of payoffs from tit-for-tat will be inferior to tit-for-tat if
the opponent plays tit-for-tat and if δ is sufficiently close to 1.

There are many other equilibria. For instance, if both players announce that
they will defect at every stage regardless of their opponent’s behavior then an
individual’s payoff will fall if he or she does not defect in each period: The oppo-
nent will defect in period t, so playing C leads to a lower payoff in that period
than D, and hence to a lower overall payoff. Moreover, in this case choosing C
will not induce the opponent to act in a future period in a way that enhances
the player’s overall payoff. Note that this argument is valid for any value of the
discount factor δ. Note also that this equilibrium gives each person a payoff of
d each period, whereas our first two equilibria leave each person with c at each
stage.

Surprisingly, we can use a variant of the grim trigger strategy to sustain a
wide range of overall payoffs at equilibrium. Let SA be any strategy for A and
let SB be any strategy for B. Player i can threaten to punish player j if the latter
doesn’t follow the pattern of choices prescribed by Sj .

DEFINITION: The grim trigger strategy in general
Individual A performs the actions required by SA in each period, as long as
B has performed the actions required by SB in each previous period. But if
B deviates from SB in some period then A will defect in every subsequent
period. (The grim trigger strategy is defined analogously for player B.)



60 Equilibrium, Efficiency, and Asymmetric Information

The grim trigger strategy will induce A to behave according to SA and B to act
according to SB provided that (i) each would prefer the resulting overall payoff to
a payoff of d every period after some time t, and (ii) each is sufficiently patient.
The next section clarifies condition (i), but the following example illustrates.

Example 7.1: A run of Cs and Ds

Suppose that SA and SB each have the player cooperating for three periods and
then defecting for two periods, and then repeating the cycle indefinitely. The
string of payoffs for each is c, c, c, d, d, c, c, c, d, d. . . . If A deviates from SA in a
period t when B chooses C then A will get h instead of c. However, if δ is sufficiently
close to one we can think of the overall payoff from SA starting from period t as

c + c + c + d + d + c + c + c + d + d + · · · .
If B employs the grim trigger strategy we can think of the deviation as precipi-
tating at best

h + d + d + d + d + d + d + d + d + d · · ·
for player A. The resulting period t gain of h − c from the deviation is swamped
by infinite number of periods in which A gets c instead of d by following SA.
Therefore (SA, SB) augmented by the grim trigger strategy is a Nash equilibrium
for δ sufficiently large.

To turn any Nash equilibrium based on the grim trigger strategy into a
subgame-perfect equilibrium we just have to require the individual to play D
every period following a deviation from the prescribed behavior SA or SB by
either A or B, respectively.

7.3 Equilibrium theorem for infinitely repeated games
The argument of Section 7.2, showing that a wide range of strategy pairs can be
sustained as a Nash equilibrium of the infinitely repeated prisoner’s dilemma
game, is easy to generalize to the infinite replication of any n-person game in
which each person has a finite number of available actions.

Let’s quickly review the prisoner’s dilemma case: The strategy “play D every
period” yields a payoff of at least d every period—the payoff will be either d
or h—and thus yields an overall payoff of at least d/(1 − δ). The grim trigger
strategy, which relegates a player to d one period after a defection and every
subsequent period, can be used to induce each player to stick to a given strategy,
provided that it yields a higher overall payoff than d/(1 − δ). (This assumes a
discount factor δ sufficiently close to one.) We refer to d as a player’s security
level in the prisoner’s dilemma game. By playing D an individual is assured of
getting at least d, and she could wind up with less by playing C.

To generalize the argument to an arbitrary one-shot n-person game we need
do little more than identify arbitrary player i’s security level. In general, it is
a stage game payoff m such that i can guarantee that her payoff is at least m
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by choosing some action M. Specifically, for each assignment a of actions to
the other players, let max(a) be i’s payoff from her best response to a. Now let
â be the assignment of actions to players other than i that minimizes max(a).
Then m = max(â). (We’re assuming that each player has a finite set of available
actions.)

DEFINITION: The individual’s security level
Given a one-shot game, let A denote the set of all logically possible assign-
ments of actions to everyone but i, and for each a in A let max(a) be the
highest payoff that i can achieve when the others play a. Then if â minimizes
max(a) over all a in A we set m = max(â) and refer to it as player i’s security
level.

As in Section 7.2 we assume that an individual evaluates the stream of payoffs
resulting from an infinite number of plays of a one-shot game by discounting to
the present. If the player’s period t payoff is ut (where t = 1, 2, 3, . . . ) and δ is her
discount factor, then her overall payoff is

�δt−1ut = u1 + δu2 + δ2u3 + · · · + δt−1ut + · · · .

The equilibrium theorem for infinitely repeated games establishes that any
pattern of actions in the infinitely repeated game that allows each player to do
better than her security level can be precipitated by some Nash equilibrium,
provided that all players evaluate their payoff streams with a discount factor
sufficiently close to one. That’s because the generalized grim trigger strategy
can be used to prevent anyone from deviating from the given course of action.
To prove this we need to clarify the statement “doing better than.” To this end
we need some preliminary notation and definitions.

A strategy profile S for a repeated n-person game assigns a strategy Si to each
player i. Given a strategy profile S, for arbitrary individual i, and arbitrary period
t we let Ut

t (S) be i’s payoff stream from period t on, discounted to period t,
assuming that each individual j employs Sj. Let Ui

t be the value of the stream of
i’s security-level payoffs, received every period, discounted to period t.

Equilibrium theorem for infinitely repeated games
Let S be a strategy profile such that Ut

i (S) > Ui
t for each individual i for

each period t. If each individual is sufficiently patient there is a subgame-
perfect Nash equilibrium in which each individual i behaves according to Si

at equilibrium.

To show that S is sustained by a Nash equilibrium we just have each individ-
ual employ a generalized trigger strategy. Each individual i follows Si provided
that no individual j has deviated from Sj in the past. After a deviation by any
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individual, every other person employs the action that, collectively, drives the
deviating individual to his or her security level and takes that action in every
subsequent period, ad infinitum. This typically does not give us a subgame-
perfect equilibrium, but it is possible to refine the strategies to give each player
an incentive to punish anyone who does not do his or her part in punishing
someone who deviates from the behavior prescribed for him or her by S, and
thereby to justify the use of the adjective subgame perfect. (This is easy to do for
the repeated prisoner’s dilemma because the individual security levels emerge
from the unique Nash equilibrium of the stage game.)

To bring out the significance of the equilibrium theorem, we next explore
a version of the prisoner’s dilemma game that gives rise to a continuum of
Nash equilibria in the infinite replication game, even though the stage game
has a single dominant strategy equilibrium: Each player must choose a level of
cooperation between zero and one—not necessarily just an extreme point, zero
(defect) or one (full cooperation).

Example 7.2: The continuum dilemma

In the stage game player A selects a fraction α(0 ≤ α ≤ 1) and B selects a fraction
β(0 ≤ β ≤ 1). Each person’s fraction expresses the degree of cooperation chosen.
The payoffs are defined so that α = 0 is a dominant strategy in the stage game
for A, and similarly β = 0 is a dominant strategy for B. Set

uA(α, β) = 2β − α and uB(α, β) = 2α − β.

These payoff functions can be given a simple interpretation. A and B are neigh-
bors, and each is bothered by the amount of debris that motorists deposit as
they drive by. If either A or B supplies e units of effort to cleaning up the trash
then each will receive 2e units of utility from the improved appearance of the
neighborhood. But cleanup is costly, and for each unit of effort expended by
A there is a utility cost of 3 units. Similarly for B. Then if A devotes α units of
effort to cleanup while B contributes β, then A’s utility is 2(α + β) − 3α and B’s
utility is 2(α + β) − 3β. This gives us the previous payoff functions. Whatever the
value of β, player A can increase uA by reducing α. Therefore, α = 0 is a dom-
inant strategy for A in the stage game. Similarly, β = 0 is a dominant strategy
for B.

What are the feasible payoff vectors for this game? They comprise the entire
diamond OKLM in Figure 1.7 (including the interior). Consider point x, which is
a convex combination of (−1, 2) and (1, 1). That is, x = λ(−1, 2) + (1 − λ)(1, 1) for
some value of λ between zero and unity. In plainer terms, the first component of
x (A’s payoff) is λ(−1) + (1 − λ)(1) and the second (B’s payoff) is λ(2) + (1 − λ)(1).
Can we have

2β − α = −λ + (1 − λ) and 2α − β = 2λ + (1 − λ)?

The solution of these equations is α = 1 and β = 1 − λ, and both are admissible
strategies.
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Consider y = λ(1, 1) + (1 − λ)(2, −1). Set

2β − α = λ + 2(1 − λ) and 2α − β = λ − (1 − λ).

The solution is α = λ and β = 1; both are admissible. Verify that

z = λ(−1, 2) + (1 − λ)(0, 0) results from α = λ and β = 0,

w = λ(2, −1) + (1 − λ)(0, 0) results from α = 0 and β = λ,

p = λ(−1, 2) + θ(1, 1) + (1 − λ − θ)(2, −1) if α = λ + θ and β = 1 − λ,

q = λ(−1, 2) + θ(2, −1) + (1 − λ − θ)(0, 0) if α = λ and β = θ.

In each case 0 ≤ λ ≤ 1, and for p and q we have 0 ≤ θ ≤ 1 and 0 ≤ λ + θ ≤ 1 as
well.

To summarize, any point in the diamond OKLM in Figure 1.7 is a feasible
payoff assignment for the one-shot version of the game. The equilibrium theo-
rem says that any point (uA, uB) in the shaded part of the diamond, excluding
the lines OH and OJ, can be sustained as a subgame-perfect Nash equilibrium in
which A gets uA each period and B gets uB each period in the infinitely repeated
game. At least, that will be the case if the discount rate is sufficiently high. We
have seen why these payoffs can be supported by a Nash equilibrium. The grim
trigger strategy permanently reduces an opponent to a utility of zero if he once
deviates from the equilibrium degree of cooperation. It is easy to see why a point
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outside of the shaded area cannot be sustained, even with infinite replication
and a high discount rate. Outside of the shaded area one person receives less
than zero, but a player can always guarantee a payoff of at least zero per period
by selecting a cooperation level of zero each period.

Although we can show how cooperation might be sustained in an infinitely
repeated game, there are many other equilibria as well. We certainly have not
been able to show that cooperation is inevitable.

7.4 Terminal date and unknown type
Section 7.1 demonstrated that if the repeated prisoner’s dilemma game has a
know finite terminal date then each player will defect each period. That depends
on the supposition that player B knows that A will always play a best response
to B’s strategy, and A knows that B knows this, and that B knows that A knows
that B knows this, and so on. What if B believes that there is a small but positive
probability that A is committed to the tit-for-tat strategy, even when it is not a
best response to what B has done? We now show how this opens the door for

Table 1.21

Period 1 Period 2

Opponent Player Player

D D D
D D C
C D C
C D D
D C C
C C D
D C D
C C C

cooperation by both even when both players
know the finite terminal date. (See Section 7.2
for a definition of tit-for-tat.)

We again begin with the generic one-shot
prisoner’s dilemma game of Table 1.20 in
Section 7.1. Recall that � < d < c < h. To make
the analysis more transparent we will not dis-
count: Each player wants to maximize the sum
of the payoffs over the lifetime of the repeated
game. Player A is one of two types, but B does
not know which type A actually is when play
begins. There is a positive probability π that A
is a cooperative type who can only play the tit-
for-tat strategy. Tit-for-tat cooperates in the
first period and for every subsequent period
duplicates the move made by the opponent at

the previous stage. In that case we say that A is type Q. With probability 1 − π

player A is “rational” (type R), which means that R can play any strategy, and
R knows that this is also true of B. (Section 7.1 showed that if both players are
rational, and both know this, then the unique Nash equilibrium has each player
defecting each period.) Player B is assumed to be risk neutral, which means that
B wants to maximize πq(s) + (1 − π)r(s), where q(s) is the payoff that B gets from
strategy s if he’s actually playing against Q, and r(s) is his payoff from s should
he be playing against R.

With two choices available to each player there are four logically possible
pairs of first-round decisions, and for each there are two possible responses for
a given player. These eight cases are displayed as eight rows in Table 1.21. The
first four cases will not arise when the player is type Q because Q always begins by
cooperating. The tit-for-tat strategy is represented by the last two lines with Q as
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Table 1.22

Period 1 Period 2
B’s total

A’s type A B A B payoff Probability

Q C C C D c + h π

R D C D D � + d 1 − π

Q C D D D h + d π

R D D D D d + d 1 − π

the player. What will R do in equilibrium? R could begin by cooperating to fool B
into thinking that she (A) is type Q. But in a two-period model this will not work.
R knows that B will defect in period 2. Therefore, R will defect in both periods.
Q will cooperate in the first period and select X in the second period, where X is
B’s first period choice. It remains to determine B’s first period move X.

There are two possibilities: X = C (cooperate) and X = D (defect); for each
of these R’s move is uniquely determined in each period and so is Q’s move in
each period. Therefore, there are 2 × 2 = 4 cases, displayed as Table 1.22. If B
cooperates in period 1 his overall payoff is π(c + h) + (1 − π)(� + d), the sum of
the column 4 payoffs weighted by the probabilities. But if B defects at the outset
his overall payoff is π(h + d) + (1 − π)(d + d). Cooperation in period 1 leads to a
higher payoff for B when π(c + h) + (1 − π)(� + d) > π(h + d) + (1 − π)(d + d),
and this reduces to

π >
d − �

c − �

Set π0 = (d − �)/(c − �). As long as π > π0 the equilibrium strategies for the two-
period game are as follows:

Q: tit-for-tat.
R: defect each period, whatever B does.
B: cooperate in the first period, then defect, whatever A does.

Because d is smaller than c, the threshold π0 decreases when � increases. (If
0 < x < y < z then (y − x)/(z − x) is less than y/z.) Consider � = d − ε, with ε

positive but very small. Then π0 will be arbitrarily small. That is, if we make �

sufficiently close to d we only need a tiny probability that A is tit-for-tat to sustain

Table 1.23A

Type Period 1 Period 2 Period 3 Payoff

Q C D D � + d + d
B D D D h + d + d
R C D D � + d + d
B D D D h + d + d
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Table 1.23B

Type Period 1 Period 2 Period 3 Payoff

Q C D D � + d + d
B D D D h + d + d
R D D D d + d + d
B D D D d + d + d

some cooperation in equilibrium. That’s because the cost to B of cooperating in
the first period against someone who defects is very small if � is close to d.

Consider a three-period replication. It is conceivable that R will open by
cooperating to build a reputation for cooperating and so induce B to cooperate.
We know that R and B will both defect in the last period, so there is no value to R
in cooperating beyond the first period. Either R will defect every period or else
R will cooperate in period 1 and defect in the other two periods. Therefore, the
only decision to be specified for R is the first-period move. But if R defects on
the first move B will know for sure that he is not playing against Q and will thus
defect in each of the last two periods (because he will know that A will defect in
each of the last two stages). Let’s see if cooperation by R on the first move can be
sustained at equilibrium. There are two possibilities, and for each of these there
are four possible moves for B. (We know that B will defect on the last round.)
Therefore, there are 2 × 4 = 8 cases to consider, represented by Tables 1.23A–
1.26B. For each of the four table numbers, the A and B tables differ only with
respect to R’s first period move.

Table 1.25A has R cooperating in the first period and B cooperating in the
first two periods. Let’s work out the conditions on π such that Table 1.25A is
observed at equilibrium. The strategies underlying this table are as follows:

SR: R cooperates in the first period and defects in each of the other two
periods, whatever B does.

SQ: Q cooperates in the first period and then imitates B’s previous move
in each of the subsequent periods.

SB : B cooperates in period 1 and defects in the other two periods if A
defects in period 1: If A cooperates in the first period then B will
cooperate in the second period and defect in the last period.

Table 1.24A

Type Period 1 Period 2 Period 3 Payoff

Q C D C � + h + �

B D C D h + � + h
R C D D � + h + d
B D C D h + � + d
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Table 1.24B

Type Period 1 Period 2 Period 3 Payoff

Q C D C � + h + �

B D C D h + � + h
R D D D d + h + d
B D C D d + � + d

Table 1.25A

Type Period 1 Period 2 Period 3 Payoff

Q C C C c + c + �

B C C D c + c + h
R C D D c + h + d
B C C D c + � + d

Table 1.25B

Type Period 1 Period 2 Period 3 Payoff

Q C C C c + c + �

B C C D c + c + h
R D D D h + h + d
B C C D � + � + d

Table 1.26A

Type Period 1 Period 2 Period 3 Payoff

Q C C D c + � + d
B C D D c + h + d
R C D D c + d + d
B C D D c + d + d
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Table 1.26B

Type Period 1 Period 2 Period 3 Payoff

Q C C D c + � + d
B C D D c + h + d
R D D D h + d + d
B C D D � + d + d

Will it be profitable for R to deviate from SR? If R defects in period 1 then B
will know in period 2 that A is type R and will defect in periods 2 and 3. Therefore,
a deviation by R will take us to Table 1.26B. This deviation will be unprofitable
for R if h + d + d < c + h + d, and that is equivalent to d < c, which is always
the case for a prisoner’s dilemma game. We don’t have to consider a deviation
by Q from SQ because, by assumption, Q can only play tit-for-tat.

Will B deviate from SB, given that R plays SR? Note that R opens by playing
C, which restricts us to the A tables. The four A tables differ only with respect
to B’s actions (and any effect that may have on the tit-for-tat player’s actions).
Table 1.27 gives B’s payoff from each of the four A tables, given that R cooperates
in the first period and defects in the other two, regardless of what B does. The
third line results from SB, and the other three lines result from the possible
deviations by B.

We have c + π(c + h) + (1 − π)(� + d) > h + 2d as long as

π >
h + d − � − c
h + c − � − d

. [1]

We have c + π(c + h) + (1 − π)(� + d) > h + � + πh + (1 − π)d as long as

π >
h − c
c − �

[2]

And we have c + π(c + h) + (1 − π)(� + d) > c + d + πh + (1 − π)d as long as

π >
d − �

c − �
[3]

Table 1.27

B ’s strategy B ’s payoff

From Table 23A π(h + 2d) + (1 − π)(h + 2d) = h + 2d
From Table 24A π(2h + �) + (1 − π)(h + � + d) = h + � + πh + (1 − π)d
From Table 25A π(2c + h) + (1 − π)(c + � + d) = c + π(c + h) + (1 − π)(� + d)
From Table 26A π(c + h + d) + (1 − π)(c + 2d) = c + d + πh + (1 − π)d
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Therefore, we have an equilibrium with cooperation in the early stages of the
game (for one period by R and two periods by B) as long as [1], [2], and [3]
hold. Notice that [3] is the condition for cooperation by B in the first period of a
two-period game.

We have examined reputation building as a motivation for behavior that
promotes social welfare. Is R creating a false reputation by cooperating on the
first move? No. Defecting every period is implied by rationality only when there
is a finite number of repetitions with a known terminal date and R’s opponent
knows that he is rational. But if B doesn’t know A’s type then the optimal strategy
for rational A will be affected. In the two-period model it is only B who cooperates
at all (for one period). But as the three-period case shows, if B can be induced to
cooperate—because of his uncertainty about A’s type—then A has an incentive
to build a reputation as a cooperative player, even if A is actually type R.

Let’s apply conditions [1], [2], and [3] to the case c = 20, d = 5, � = 1, and
h = 30. We get π > 7/22, π > 10/19, and π > 4/19. Therefore, B has to believe
that the probability of A being tit-for-tat is greater than 10/19 to be induced
to cooperate in the first two periods. However, as the number of repetitions
increases the greater the long-run payoff to cooperative behavior, and hence
smaller values of π will sustain cooperation. Note that π > 4/19 is sufficient
to induce B to cooperate in the first period of the two-stage game, whereas π >

10/19 is the sufficient condition for (ST , SR, SB) to be an equilibrium in the three-
stage game. Don’t be misled into thinking that cooperation is more problematic
when the time horizon is longer. We get more cooperation—two periods instead
of one period—when π > 10/19.

Sources
The repeated prisoner’s dilemma competition devised by Robert Axelrod is
reported in Axelrod (1984). An early version of the equilibrium theorem for
infinitely repeated games was proved by Friedman (1971). The treatment of
the prisoner’s dilemma game when individual types are unknown is based on
Gibbons (1992, p. 225). Kreps et al. (1982) actually prove that, given π , if there is
a large number of periods then the players will cooperate in every period until
they are close to the terminal period.

Links
For more on the prisoner’s dilemma game replayed many times see Rapoport,
1989. See Calvert (1986, pp. 47–54) for related treatments of reputation in eco-
nomics and politics. Osborne (2004, pp. 439–41) provides a very good assessment
of Axelrod’s tournament. Fudenberg and Maskin (1986) and Wen (1994) contain
significant generalizations of the equilibrium theorem (called the folk theorem
in the literature).

Limitations in the information processing capacity of the players can elimi-
nate a lot of Nash equilibria of the infinitely repeated game, appearing to make
cooperation more likely in the prisoner’s dilemma case. In particular, see Rubin-
stein (1986 and 1998) and Binmore and Samuelson (1992).
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Problem set

1. Prove that the grim trigger strategies constitute a Nash equilibrium of the
generic version of the infinitely repeated game provided that each individual
is sufficiently patient.

2. Let A’s discount rate be 0.9 and let B’s be 0.7. Find a condition guaranteeing
that cooperation every period by both players is the outcome of a subgame-
perfect Nash equilibrium when the payoffs in the stage game are given by
Table 1.15 in Section 6.

3. Rework the argument of Section 7.2 for the specific case c = 20, d = 5, � = 1,
and h = 30.

4. Does the analysis of Section 7.4 change if we replace the tit-for-tat by the
strategy “cooperate every period whatever the opponent does?”
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1 MAXIMIZING A QUADRATIC

There are about a hundred worked examples in this book, and many of them con-
clude with a simple exercise—finding the value of x that maximizes a quadratic
function of the form Px − Qx2 + R. This is a very simple procedure that does not
require calculus. This section shows you how to determine whether a maximum
exists, and if it does, how to quickly compute that maximizing value of x as a
simple function of P and Q. We begin by assuming that x is unconstrained
and then conclude with an examination of the solution to the constrained
maximization problem, for which x must lie between the numbers a and b,
inclusive.

Danger: The formula for the root of the quadratic equation ax2 + bx + c is

x = −b ± √
b2 − 4ac

2a
.

This gives the two values of x for which the value of the function is zero. In
this section we seek to maximize the value of a quadratic function.

1.1 Unconstrained maximization
Consider the basic consumer decision problem, which requires the maxi-
mization of a utility function U(x, y) subject to the simple budget constraint
p1x + p2 y = θ . We can turn that into an unconstrained maximization problem
by solving the budget constraint for y as a function of x. Then we can substi-
tute this expression for y in the utility function to get a function of a single
variable x.
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Example 1.1: Consumer choice with quadratic utility

The budget constraint is 4x + 2y = 12. Then 2y = 12 − 4x and thus y = 6 − 2x.
The given utility function is

U(x, y) = 64x − x2 + 3y.

If we substitute 6 − 2x for y in the utility function we get

U = 64x − x2 + 3[6 − 2x] = 64x − x2 + 18 − 6x = 58x − x2 + 18.

The final expression depends on x alone because it has the budget constraint
built in. If we maximize

f (x) = 18 + 58x − x2

then we will have solved the problem of maximizing utility subject to the budget
constraint.

The function f (x) = 18 + 58x − x2 is called a quadratic because there is only
one unknown, and the highest power of the unknown is a squared term. Func-
tions of a single variable will also come up in other contexts, such as profit
maximization by firms and determining the efficient level of output of a public
good. The purpose of this section is to teach you how to quickly find the value
of x that maximizes a quadratic of the form

Px − Qx2 + R where Q > 0.

That is, P and Q are given real numbers, and Q is positive.

Example 1.2: Maximizing the function 25 − (x − 3)2

f (x) = 25 − (x − 3)2

Note that if x is not equal to 3 then (x − 3)2 is positive, which means that we
subtract a positive amount from 25. Therefore, the best that we can do, if we want
to maximize f (x), is to make sure that (x − 3)2 is zero. There is only one value
of x for which (x − 3)2 = 0, and that is x = 3. Therefore, x = 3, and only x = 3,
maximizes f . Note that this function can be written in the form Px − Qx2 + R:
Because (x − 3)2 = x2 − 6x + 9 we have

f (x) = 25 − (x − 3)2 = 6x − x2 + 16.

That is, P = 6, Q = 1, and R = 16.

When there is one and only one value that maximizes f (x) we say that it is a
unique global maximum.
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DEFINITION: Global maximum
The number x∗ is a global maximum of f if f (x∗) ≥ f (x) for every real number
x. And x∗ is a unique global maximum if f (x∗) > f (x) for every real number
x distinct from x∗.

The function f (x) = 6x − x2 + 16 can be rewritten as f (x) = 25 − (x − 3)2 to
allow us to apply the argument of Example 1.2. What about other cases?

Example 1.3: Maximizing the function 6x − 1/2 x2 + 82

We are given f (x) = 6x − 1/2 x2 + 82. But 6x − 1/2 x2 + 82 = 82 − 1/2(x2 − 12x) =
82 − 1/2(x − 6)2 + 18. Hence f (x) = 100 − 1/2(x − 6)2.

If x �= 6 then (x − 6)2 is positive, and hence a positive amount is subtracted
from 100. Therefore f (x) has a unique global maximum at x = 6.

Now return to our generic function Px − Qx2 + R with Q > 0. Rewrite this
as

f (x) = R − Q
(

x2 − P
Q

x
)

.

Note that [x − (P/2Q)]2 is similar to [x2 − (P/Q)x]. If we distribute [x − (P/2Q)]2

we get (
x − P

2Q

)2

= x2 − P
Q

x + P2

4Q2

Therefore, if in f (x) we replace −Q[x2 − (P/Q)x] by −Q[x − (P/2Q)]2 we have
to add Q × (P2/4Q2) to preserve the value of f (x). To summarize, we have

f (x) = R − Q
(

x2 − P
Q

x
)

= R + P2

4Q
− Q

(
x − P

2Q

)2

.

The only part of this that is influenced by x is −Q[x − (P/2Q)]2, and because
Q is positive we maximize f (x) by making [x − (P/2Q)]2 as small as possi-
ble. Therefore, we set x = P/2Q, which gives us a unique global maximum.
It is unique because any x different from P/2Q will cause [x − (P/2Q)]2 to be
positive.

Formula for maximizaing a quadratic

If f (x) = Px − Qx2 + R and Q > 0, then for x∗ = P/2Q we have f (x∗) > f (x)
for all x �= x∗.

Note that f (x) does not have a maximum if f (x) = Px − Qx2 + R and Q < 0.
That’s because we can write

f (x) = R + P2

4Q
− Q

(
x − P

2Q

)2

,
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x1 x2 x3 x4 x5 x6 x7

f (x)

Figure 2.1

and when—Q is positive we can make −Q[x − (P/2Q)]2 arbitrarily large by mak-
ing x sufficiently large.

1.2 Constrained maximization
In this subsection we want to maximize f (x) = Px − Qx2 + R subject to the con-
straint a ≤ x ≤ b. Restrictions of the form a ≤ x ≤ b arise naturally in consumer
choice because we cannot have x < 0 nor can we have y < 0. (The budget con-
straint p1x + p2 y = θ implies y < 0 when expenditure on commodity X exceeds
income—i.e., when p1x > θ , which is equivalent to x > θ/p1. Therefore, when
we find the global maximizing value x∗ we have to check to make sure that the
inequality 0 ≤ x∗ ≤ θ/p1 is satisfied at x∗.)

Because f (x) = R + (P2/4Q2) − Q[x − (P/2Q)]2, when Q > 0 we see that,
using x = P/2Q as the starting point, f (x) decreases as we increase x. That’s
because Q[x − (P/2Q)]2 is zero when x = P/2Q and Q[x − (P/2Q)]2 increases
when x increases through values greater than P/2Q. And, again using x = P/2Q
as the starting point, f (x) decreases as we decrease x because Q[x − (P/2Q)]2 is
zero when x = P/2Q and Q[x − (P/2Q)]2 increases when x decreases through
values less than P/2Q. We have established that the graph of f is hill shaped,
with the peak occurring when x = P/2Q (Figure 2.1, with x4 = P/2Q).

We have just learned that f (x) is increasing (the graph is uphill) to the left of
x = P/2Q, and f (x) is decreasing (the graph is downhill) to the right of x = P/2Q.
If P/2Q > b then the solution of the problem

maximize f (x) = Px − Qx2 + R subject to a ≤ x ≤ b

must be x = b. That follows from the fact that P/2Q > b implies that f (x)
increases when x < b and x increases (Figure 2.1, with x2 = b). However, if
P/2Q < a then the solution to the constrained maximization problem is x =
a because a > P/2Q implies that f (x) increases when x > a and x decreases
(see Figure 2.1, with x6 = a).
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Formulas for constrained maximization of a quadratic

The given function is f (x) = Px − Qx2 + R and Q > 0. And a and b are given
numbers, with a < b.

If a ≤ P/2Q ≤ b, then x∗ = P/2Q maximizes f (x) subject to a ≤ x ≤ b.
If P/2Q > b, then x∗ = b maximizes f (x) subject to a ≤ x ≤ b.
If P/2Q < a then x∗ = a maximizes f (x) subject to a ≤ x ≤ b.

∂2 OVERVIEW OF CALCULUS

This section establishes the first-order conditions for maximization of a func-
tion of one real variable, with and without constraints. The derivation is self-
contained, but some of the applications in this book assume that you know
more than is presented in Section 2.1. For instance, it is taken for granted that
you know the power rule: the derivative of f (x) = xn is nxn−1. Also, the chain
rule is used on occasion. Nevertheless, the basic theory is developed rigorously
in Section 2.1 because many readers will benefit from a refresher course, par-
ticularly in view of the fact that we highlight the intuition underlying the use
of calculus. We use f ′(x) to denote the first derivative of f at x, although on
occasion df /dx or even dy/dx, with y = f (x), make an appearance.

Consider the standard consumer choice problem:

maximize U(x, y) subject to p1x + p2 y = θ.

U is the utility function, and utility depends on the amounts x and y of the two
goods consumed. The prices of goods X and Y are p1 and p2, respectively, and
θ is the individual’s income. The budget constraint p1x + p2 y = θ can be solved
for y as a function of x:

y = θ

p2
− p1x

p2
.

Now, substitute this value of y into the utility function. We want to maximize

V (x) = U
(

x,
θ

p2
− p1x

p2

)

and V is a function of only one variable, x, because θ , p1, and p2 are constants—
they are outside of the control of the consumer at the time the consumption
decision is made. This means that we can apply elementary calculus to the
problem and maximize V (x). We no longer have to worry about the budget
constraint because that is built into V . With one stroke we have eliminated one
variable and the budget constraint as well. Once we have obtained the number
x∗ that maximizes V , we simply use the budget constraint to solve for y.

2.1 Unconstrained maximization
Let f (x) represent the function to be maximized, with x a real variable. This
means that x can be any real number, and for any choice of x the function f
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specifies another real number f (x). Initially, we assume that there is no con-
straint of any kind on the range of values that x can assume. We’ll show that
f ′(x∗) = 0 must hold if f is maximized at x∗.

Now let x∗ represent any real number that maximizes the function f . For-
mally, this means that f (x∗) ≥ f (x) holds for every real number x. Another way
of saying this is f (x∗) ≥ f (x∗ + ε) for every real number ε. (Just replace x by
x∗ + ε, defining ε as the quantity x − x∗.) We can think of ε as an increment,
positive or negative, taking us away from x∗. Because f is maximized at x∗, this
increment, or step, cannot increase the value of f . More formally, we write

f (x∗ + ε) − f (x∗) ≤ 0 for all ε. [1]

Condition [1] is just another way of saying that f is maximized at x∗. This is
pretty obvious, but we only need to pursue this a little further to get a striking
and useful result.

Multiplying an inequality by a constant

Let α, β, ε, and φ be real numbers. If ε > 0 and φ > 0 then ε × φ > 0. There-
fore, if α > β then α − β > 0, and thus ε × (α − β) > 0 if ε > 0. This implies
that if α > β and ε > 0 we have εα > εβ. It follows that if ε < 0 and α > β

then −εα > −εβ, which in turn implies εα < εβ. Finally, if ε > 0 and α ≥ β

then εα ≥ εβ, and if ε < 0 and α ≥ β then εα ≤ εβ.

If ε is positive (strictly greater than zero) then f (x∗ + ε) − f (x∗) will still be
less than or equal to zero after we divide that expression by ε. We state this
formally as Condition [2]:

f (x∗ + ε) − f (x∗)
ε

≤ 0 for all ε > 0. [2]

As ε approaches zero through positive values, the limit must also be less than or
equal to zero as a consequence of Condition [2]. For future reference, we state
this as Condition [3]:

The limit of
f (x∗ + ε) − f (x∗)

ε
is ≤ 0 as ε > 0 approaches 0. [3]

Similarly, if we divide f (x∗ + ε) − f (x∗) by any ε < 0 the inequality sign will
change direction, and so we have Condition [4]:

f (x∗ + ε) − f (x∗)
ε

≥ 0 for all ε < 0. [4]

As ε approaches zero through negative numbers the limit must be nonnega-
tive because each term is nonnegative by Condition [4]. This is represented as
Condition [5]:

The limit of
f (x∗ + ε) − f (x∗)

ε
is ≥ 0 as ε < 0 approaches 0. [5]
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If f has a derivative at x then, by definition, the limit of [ f (x∗ + ε) − f (x∗)]/ε
must be the same when ε approaches zero through positive values as it is when
ε approaches zero through negative values. But then [3] and [5] can both be
satisfied only if the limit is zero in both cases. In short, f ′(x∗) = 0 is a necessary
condition for f to have a maximum at x∗. The function f in Figure 2.1 is max-
imized at x∗ = x4. We see that the first derivative of f is zero at x4 because the
graph of f is perfectly horizontal at x4.

Necessary condition for an unconstrained maximum

If f (x∗) ≥ f (x) for all real numbers x then f ′(x∗) = 0.

Here is an alternative derivation of the fact that f ′(x∗) = 0 if f is maximized
at x∗. (You don’t need to master both treatments; just adopt the one with which
you are more comfortable.) Suppose that f ′(x) > 0. We show that f cannot have
a maximum at x. Let δ represent f ′(x). We have δ > 0. Intuitively, a small move
to the right will increase the value of f . It may have to be a very small move if x
is close to the top of the hill, as is the case with x = x2 in Figure 2.1. A move to x7

will lower the value of f , but a sufficiently small move to the right, such as the
one taking us from x2 to x3, will increase f .

Here is the formal argument: The limit of [ f (x + ε) − f (x)]/ε is δ, and
we assume that δ > 0. For ε > 0 sufficiently close to zero we can get
[ f (x + ε) − f (x)]/ε close enough to δ to guarantee that the ratio is greater than
1/2 δ. But then

f (x + ε) − f (x) > ε × 1/2 δ > 0.

This means that f (x + ε) − f (x) > 0, or f (x + ε) > f (x). Then x does not yield
the maximum value of f , because f (x + ε) is larger than f (x).

Next we show that f cannot have a maximum at x if f ′(x) < 0. Let δ again
represent f ′(x), with δ < 0 this time. Intuitively, a small move to the left increases
the value of f . It may have to be a very small move as in the case x = x6 in
Figure 2.1. A move to x1 lowers f (x), but a sufficiently small move to the left,
such as the one taking us from x6 to x5, will increase f (x). Consider: Because
the limit of [ f (x + ε) − f (x)]/ε is δ, for ε < 0 sufficiently close to zero we can
get [ f (x + ε) − f (x)]/ε close enough to δ to guarantee that ratio is algebraically
smaller than 1/2 δ. Therefore, [ f (x + ε) − f (x)]/ε < 1/2 δ for ε sufficiently close to
zero and negative. Now if we multiply this last inequality on both sides by ε < 0
we change the sign, yielding

f (x + ε) − f (x) > ε × 1/2 δ > 0.

(We have ε × 1/2 δ > 0 because both ε and δ are negative.) But then f (x + ε) −
f (x) > 0, or f (x + ε) > f (x). Then x does not yield the maximum value of f ,
because f (x + ε) is larger than f (x). Therefore, if f is maximized at x we can
rule out both f ′(x) > 0 and f ′(x) < 0.
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Example 2.1: Maximizing the function f (x) = 10x − x2 − 25

We want to find the point at which f is maximized. Note that f (x) = −(x − 5)2,
which can never be positive. When x = 5 the value of the function is zero, so
that is the point at which f reaches a maximum. Every other value of x will yield
f (x) < 0. So we don’t need calculus in this case. But let’s see how calculus brings
us to the same conclusion. We need to calculate the first derivative of f .

f (x + ε) = 10(x + ε) − (x + ε)2 − 25

= 10x + 10ε − x2 − 2εx − ε2 − 25.

Therefore,

f (x + ε) − f (x) = 10ε − 2εx − ε2

and hence

f (x + ε) − f (x)
ε

= 10ε − 2εx − ε2

ε
= 10 − 2x − ε.

Clearly, 10 − 2x − ε approaches 10 − 2x as ε approaches zero. Therefore, f ′(x) =
10 − 2x, the first derivative of f . Now, we said that f ′(x) = 0 is necessary
for a maximum. Set f ′(x) = 0 and solve for x: We get 10 − 2x = 0, and thus
x = 5.

Next we look at consumer choice.

Example 2.2: A simple consumer choice problem

We want to maximize U(x, y) = xy subject to the budget constraint 5x + 2y =
1000. The utility of a basket with x units of commodity X and y units of com-
modity Y is the product of the two numbers x and y. (It may help at this point to
draw a typical indifference curve; say, the set of baskets that yield a utility of 12.)
The price of good X is 5 and the price of good Y is 2. Income is 1000. Solving the
budget constraint for y yields

y = 1000
2

− 5x
2

= 500 − 2.5x.

Now, substitute this value of y into the utility function. We want to maximize

V (x) = x(500 − 2.5x).
V (x) = 500x − 2.5x2, and thus V ′(x) = 500 − 5x.

Then V ′(x) = 0 yields 500 − 5x = 0, and thus x∗ = 100. There is only one value
of x that gives V ′ = 0. Therefore, there can be only one utility-maximizing value
of x, namely x = 100. Now we can use the budget constraint to solve for y:

y = 500 − 2.5x = 500 − 2.5(100) = 500 − 250 = 250.

Therefore, the chosen basket has x = 100 and y = 250.
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We can use the technique of Example 2.2 to solve for the demand functions.
All we have to do is represent prices and income symbolically, but treat them as
numbers.

Example 2.3: Deriving a demand function

U(x, y) = xy, which we maximize, subject to the budget constraint p1x + p2 y =
θ , where prices and income are parameters. We will solve for the demands x and
y as a function of prices and income. Then y = θ/p2 − p1x/p2, and we substitute
this into the utility function:

V (x) = x ×
(

θ

p2
− p1x

p2

)
.

We have V = θx/p2 − p1x2/p2 and thus V ′(x) = θ/p2 − 2 p1x/p2. When θ/p2 −
2 p1x/p2 = 0 we have x = θ/2 p1. This is the only value of x that gives V ′ = 0,
so the consumer choice problem has a unique solution: x = θ/2 p1. From
the budget constraint, y = θ/p2 − p1x/p2 and if in addition x = θ/2 p1 we
must have y = θ/2 p2. The expressions x = θ/2 p1 and y = θ/2 p2 are the demand
functions for commodities X and Y respectively.

If we are given particular values for prices and income we can plug them into
the demand functions to get the amounts demanded at that price and income
regime. (Verify that x = 100 and y = 250 when p1 = 5, p2 = 2, and θ = 1000.)
Note that we have V ′′(x) < 0 for all x when V is derived from the utility function
U = xy by solving the budget constraint for y and substituting.

2.2 Constrained maximization
Suppose that we want to maximize f subject to the restriction a ≤ x ≤ b. It
is vital that you pay attention to the difference between a < x and a ≤ x and
similarly to the distinction between x < b and x ≤ b. Our first observation is
that if we actually have a < x∗ < b at the point x∗ where the constrained maxi-
mum is achieved, then f ′(x∗) = 0 is still a necessary condition for f to be max-
imized at x∗. The proof of that fact is actually embedded in the discussion of
the unconstrained case. If f ′(x) > 0 then for ε > 0 sufficiently close to zero we
will have [ f (x + ε) − f (x)]/ε > 0 and hence f (x + ε) > f (x). Review Section 2.1
to confirm that we will have [ f (x + ε) − f (x)]/ε > 0 if we make ε > 0 smaller
still. Therefore, if f ′(x) > 0 and x < b then we can find ε > 0 small enough
so that we get both x + ε < b and f (x + ε) > f (x). And we will certainly have
x + ε ≥ a if x ≥ a. Therefore, if a ≤ x < b and f ′(x) > 0 the function x cannot be
maximized at x even if we are not allowed to consider values of x larger than b
or smaller than a. (In Figure 2.1, f is not maximized at x2, even if the constraint
x1 ≤ x ≤ x7 must be observed.)

Similarly, we can show that f cannot be maximized at x if f ′(x) < 0 and
a < x ≤ b, even if we are not allowed to go below a or above b. (In Figure 2.1, f is
not maximized at x6, even with the restriction x1 ≤ x ≤ x7.) We have proved the
following: If x∗ maximizes f subject to the constraint a ≤ x ≤ b and a < x∗ < b
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actually holds, then we can’t have f ′(x∗) > 0 and we can’t have f ′(x∗) < 0. This
means that f ′(x∗) = 0 must hold. Be careful! There is nothing to guarantee that
a < x∗ < b will actually hold at the solution value x∗. (Try maximizing f (x) = 2x
subject to 0 ≤ x ≤ 100. Clearly, the solution is x∗ = 100, but f ′(100) = 2 because
f ′ is constant at 2.) But if a < x∗ < b does hold at the solution point then we
must have f ′(x∗) = 0. The function f is maximized at x = x4 in Figure 2.1, with
or without the constraint x1 ≤ x ≤ x7. The first derivative of f is zero at x4.

Now, what if we do have x∗ = a or x∗ = bat the point x∗ where f is maximized,
subject to the constraint a ≤ x ≤ b? Calculus is still a big help here, but you have
to know how to use it. In general, calculus is not a formula for cranking out an
answer to a problem but rather a useful device for finding the solution.

We know that if f is maximized at x∗ and a < x∗ < b, then f ′(x∗) must equal
zero. Therefore, if we want to maximize f subject to the constraints a ≤ x ≤ b
then either f will achieve its maximum at a point where its first derivative is zero
or else the solution value of x will be a or at b.

First-order conditions for constrained maximization

If f (x) is maximized at x∗ subject to the constraints a ≤ x ≤ b then either
f ′(x∗) = 0 or x∗ = a or x∗ = b.

This means that in solving the constrained maximization problem we can con-
fine our attention to a limited number of values of x: points where the first
derivative is zero, and the values x = a and x = b. Then we can compute f (x) at
these points to see which gives the highest value of x.

Example 2.4: Consumer choice with nonnegative consumption

Let U(x, y) = (x + 5)(y + 2), which we want to maximize subject to Px + y =
θ , x ≥ 0, and y ≥ 0. (We fix p2 at 1 and set P = p1 to simplify computation.) We
have y = θ − Px from the budget equation, and substituting this into the utility
function yields

V (x) = (x + 5)(θ − Px + 2) = (θ + 2 − 5P)x − Px2 + 5θ + 10.

V ′(x) = θ + 2 − 5P − 2Px. Then V ′′(x) = −2P, which is always negative. There-
fore, the graph of the function V is hill shaped, and if V ′(x) = 0 yields a
unique value of x satisfying 0 ≤ x ≤ θ/P this will be the demand for x. Of
course, θ + 2 − 5P − 2Px = 0 implies x = [1/2(θ + 2 − 5P)]/P. If P = 1 and θ =
100 then x = 97/2 = 48.5, which certainly satisfies 0 ≤ x ≤ 100. (How much Y
will be demanded in that case?) If P = 25 and θ = 100 then V ′(x) = 0 implies x =
−0.46, which is inadmissible. The consumer will either set x = 0 or x = 100/25.
We have V (0) = 5 × (100 + 2) = 510, and V (4) = (4 + 5) × (100 − 100 + 2) = 18.
Therefore, the consumer will demand x = 0 units of X and 100 units of Y when
p1 = 25, p2 = 1, and θ = 100.
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In solving the consumer choice problem in Example 2.2 we ignored the con-
straint 0 ≤ x ≤ 200 that is required to ensure that neither x nor y is negative.
Here’s why we were able to do that: Note that utility is zero when x or y is zero.
That is, U = xy = 0 if x = 0 or y = 0. Even a tiny amount of money spent on each
good will yield a positive product xy, so we know that the consumer can do bet-
ter than zero utility. Therefore, the utility-maximizing basket will have x > 0 and
y > 0. But if y is positive we can’t have x = 200; we must have x < 200. There-
fore, the solution value x∗ will have to satisfy 0 < x∗ < 200. We know that in this
case we must have V ′(x∗) = 0. We saw that only one value of x gives V ′ = 0. The
solution to the consumer choice problem must have V ′ = 0. The same argument
works for the derivation of the demand functions in Example 2.3. For many other
utility functions that you will encounter, corner (or boundary) solutions can be
ruled out a priori.

Example 2.5: Corner points need not apply

Maximize U(x, y) = x2 y subject to 5x + 2y = 60. From the budget equation we
have y = 30 − 5x/2 = 30 − 2.5x. Substitute this for y in the utility function to
obtain

V = x2(30 − 2.5x) = 30x2 − 2.5x3.

We want to maximize this function of x subject to 0 ≤ x ≤ 60/5. V ′(x) = 60x −
7.5x2 and V ′′(x) = 60 − 15x. Setting the first derivative equal to zero yields

60 − 7.5x = 0 or x = 8.

Because U = 0 if x = 0 or y = 0, utility will be maximized at a point where x is
strictly greater than 0 and strictly less than 12. Therefore, V ′(x) = 0 at the solution
to the consumer choice problem. Therefore, x = 8 is the optimal value of x, and
the budget constraint yields y = 10.

2.3 Strictly concave functions
We now confine our attention to a special class of functions that arises most of the
time in economics. We consider only functions for which the second derivative
f ′′(x) is negative at all values of x. Such functions are called strictly concave.

DEFINITION: Strictly concave function
The function f of a single variable x is strictly concave if f ′′(x) < 0 for all x.

By definition, f ′′ is the derivative of the derivative. For f (x) = 10x − x2 − 25
we have f ′(x) = 10 − 2x and hence f ′′(x) = −2, which is negative. The second
derivative tells us how the first derivative changes as x changes. If we always
have f ′′(x) < 0 then f ′(x) gets smaller (algebraically) as x increases. This has
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two important implications. First, if f ′(x∗) = 0 then there is no other value of
x for which f ′ is zero: To the right of x∗ the first derivative is negative. Why?
Because f ′(x) falls as x increases and it is zero at x∗, so f ′(x) < 0 for all x > x∗.
Therefore, we cannot find any x > x∗ for which f ′(x) = 0. Now, consider x < x∗.
The first derivative decreases as we move to the right, so it increases as we move
to the left. If f ′ is zero at x∗ and it increases as we move to the left then f ′(x)
is positive for all x < x∗. Therefore, we cannot have f ′(x) = 0 for any x < x∗. In
short, if f ′′ is negative at all points then there is at most one value of x for which
f ′ is zero.

Here is the second important consequence of the fact that f ′′ < 0 at all points:
If f ′(x∗) = 0 we know that f ′ is positive to the left of x∗ and f ′ is negative to the
right of x∗. When f ′ is positive the value of the function f itself is increasing. We
know that because f ′(x) > 0 is just another way of saying that f is increasing at x.
To the right of x∗ we have f ′(x) < 0 and hence the value of f falls as x increases
beyond x∗. This is a consequence of the fact that f ′ is negative to the right of
x∗, and f ′(x) < 0 is just another way of saying that f is falling at x. (In Figure
2.1, x∗ = x4 and f ′(x) is strictly positive to the left of x4 and f ′(x) < 0 to the right
of x4.)

Now, let’s summarize: Suppose f ′′ is negative everywhere and f ′(x∗) = 0.
Then f ′ is not equal to zero for any other value of x. Moreover, f falls as we move
to the right of x∗ and f rises as we move toward x∗ from the left. This means that
the graph of f is a hill with the peak at x∗, as in Figure 2.1 with x∗ = x4. In other
words, f has a unique maximum at x∗.

Global maximization with a negative second derivative

If f ′′(x) < 0 for all x and f ′(x∗) = 0 then f (x∗) > f (x) for all x �= x∗. In other
words, f has a unique global maximum at x∗ if f ′(x∗) = 0 and f ′′(x) < 0 for
all x.

Suppose, however, that we are restricted to the region a ≤ x ≤ b. If we find
some x∗ in that interval such that f ′(x∗) = 0 then we are sure that is the unique
solution to our problem. Why? Because f ′(x∗) = 0 implies that f (x∗) > f (x) for
all other x, and therefore we certainly have f (x∗) > f (x) for all x �= x∗ satisfy-
ing a ≤ x ≤ b. (Caveat: This all depends on f ′′ < 0 holding everywhere.) Sup-
pose, however, that the value of x for which f ′ is zero is outside of the interval
a ≤ x ≤ b.

Consider first the case f ′(x∗) = 0 and x∗ > b. We know that f is rising to the
left of x∗. Therefore, f is increasing at all x in the constraint region, because a ≤
x ≤ b implies that x is to the left of x∗. Therefore, f ′(x∗) = 0 and x∗ > b implies
that x = b is our solution: f (b) > f (x) for all x satisfying a ≤ x < b, as illustrated
in Figure 2.1 with x1 representing a and x2 representing b (and x∗ = x4). Now
suppose that f ′(x∗) = 0 and x∗ < a. Because f ′′ < 0 at every point, f is falling



84 Basic Models and Tools

to the right of x∗. Therefore f is decreasing at all x in the constraint region,
because a ≤ x ≤ b implies that x is to the right of x∗. Therefore, f ′(x∗) = 0 and
x∗ < a implies that x = a is our solution: f (a) > f (x) for all x satisfying a < x ≤ b,
as illustrated in Figure 2.1 with a = x6 and b = x7 (and x∗ = x4).

You will probably have encountered other techniques for generating con-
sumer demand. For your peace of mind, we will apply each of them to the
problem

maximize U(x, y) = x2 y subject to 5x + 2y = 60

to confirm that they yield the same solution. The first (in Section 2.5) is expressed
in terms of the tangency of the indifference curve through the chosen bundle to
the budget line.

2.4 Minimization
If x∗ minimizes f (x) over all real numbers x, then by definition f (x∗) ≤ f (x) for
all x. It follows that − f (x∗) ≥ − f (x) for all x. In other words, if x∗ minimizes
f then x∗ maximizes − f . It follows that the derivative of − f is zero at x∗. But
for any function f , the derivative of − f is the negative of the derivative of f .
Therefore, f ′(x∗) = 0 if f is minimized at x∗. Similarly, f ′(x∗) = 0 if a < x∗ < b
and x∗ is the solution to problem

minimize f (x) subject to a ≤ x ≤ b.

Finally, we say that f is strictly convex if its second derivative is positive at
every point. But if f ′′(x) > 0 for all x then the function − f has a negative second
derivative at every point. In that case, − f ′(x∗) = 0 implies that − f (x∗) > − f (x)
for all x �= x∗. It follows that f (x∗) < f (x) for all x �= x∗. Because − f ′(x∗) = 0
implies f ′(x∗) = 0, we have demonstrated that for any strictly convex function
f, if f ′(x∗) = 0 then f has a unique global minimum at x∗.

Conditions for minimization

If f (x∗) ≤ f (x) for every real number x then f ′(x∗) = 0. If f (x) is minimized
at x∗ subject to the constraints a ≤ x ≤ b, then either f ′(x∗) = 0 or x∗ = a
or x∗ = b. If f is strictly convex and f ′(x∗) = 0 then f has a unique global
minimum at x∗. If f is strictly convex and we want to minimize f subject
to a ≤ x ≤ b, then f ′(x) = 0 and x > b implies that the solution is x = b, and
the solution is x = a if f ′(x) = 0 implies x < a.

2.5 The tangency approach
Recall that the marginal rate of substitution (MRS) at a point (x0, y0) is the abso-
lute value of the slope of the indifference curve through (x0, y0). Let C be that
indifference curve. C is defined byU(x, y) = c0, where c0 is the constantU(x0, y0),
and it implicitly gives us y as a function of x. For many utility functions we can
explicitly solve for y as a function of x. For other cases, we use the implicit
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function theorem: the derivative dy/dx of the implicit function is the negative
of the ratio of the partial derivatives of U.

Example 2.6: Tangency and consumer choice

We reconsider Example 2.5: Maximize U(x, y) = x2 y subject to 5x + 2y = 60.
Notice that utility is zero if either x = 0 or y = 0, so the solution will have x > 0
and y > 0. In that case, the economic argument based on indifference curves
reveals that the MRS equals the price ratio at the chosen consumption plan. To
derive the MRS we set utility equal to a constant �. That gives us the equation
of a generic indifference curve: x2 y = � in the present case. We solve for y to get
y = �x−2. Then dy/dx = −2�x−3. Now, � = x2 y. Therefore,

dy
dx

= −2x2 yx−3 = −2y
x

.

The MRS is the negative of the slope of the indifference curve, and hence if
U = x2 y the MRS at the generic bundle (x, y) is 2y/x. The price ratio is 5/2.
Therefore, the solution will satisfy 2y/x = 5/2, which implies 4y = 5x.This equa-
tion does not have a unique solution, nor should we expect one. We can’t pin
down the choice without the budget equation. Substituting 4y for 5x in the bud-
get equation yields 4y + 2y = 60, which yields y = 10. Then 4y = 40 = 5x and
hence x = 8. (Verify that x = 8 and y = 10 satisfies the budget equation and
equates MRS and the price ratio.)

2.6 The total derivative and the chain rule
If f is a function of x and y, and y itself is a function of x, say y = g(x), then
the chain rule gives us df /dx in terms of the partial derivatives of f and the
derivative of g. Specifically

df
dx

= ∂ f
∂x

+ ∂ f
∂y

× dy
dx

= ∂ f
∂x

+ ∂ f
∂y

× g′(x).

In words, the rate of change in f with respect to x is the rate of change of f with
respect to x when y is held constant, plus the rate of change of f with respect to
y with x held constant multiplied by the rate of change of y per unit change in
x, determined by the function g. It is easy to grasp the idea by looking at linear
functions.

Example 2.7: The chain rule with linear functions

Suppose f (x, y) = 2x + 5y, and y = 3x. Of course, ∂ f /∂x = 2 and ∂ f /∂y = 5,
with g′(x) = 3. According to the chain rule df /dx = 2 + 5 × 3 = 17. We can con-
firm this by substituting 3x for y in f . We get f = 2x + 5(3x) = 2x + 15x = 17x.
Clearly, df /dx = 17.
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Example 2.8: The chain rule and consumer choice

Maximize U(x, y) = x2 y subject to 5x + 2y = 60. We have y = 30 − 2.5x from the
budget constraint, and thus dy/dx = −2.5. Because U(x, y) depends on x and y
we let Ux denote the partial derivative of U with respect to x and let Uy denote
the partial derivative of U with respect to y. If we think of y as a function of x,
then the total derivative of U with respect to x is

dU
dx

= Ux + Uy × dy
dx

.

We have Ux = 2xy and Uy = x2. Therefore, dU/dx = 2xy − 2.5x2. Now, set this
equal to zero to find a maximum:

2xy − 2.5x2 = 0.

Dividing through by x (do we have to worry about dividing by zero?) yields

2y − 2.5x = 0 or 4y = 5x.

Substituting 4y for 5x in the budget equation yields y = 10, and thus x = 8.

Sources
The material in this section is very standard and is the subject of hundreds of
mathematics books, including Strang (1991), Dozens more texts have been writ-
ten by and for economists, featuring economic applications, including Novshek
(1993) and Binmore and Davies (2001).

Problem set

1. Solve for the demand functions of a consumer whose preferences can be
represented by the utility function U(x, y) = xα yβ , where α and β are positive
constants.

2. Solve for the demand functions of a consumer whose preferences can be
represented by the utility function U(x, y) = (x + 1)y.

3. Solve for the demand functions of a consumer whose preferences can be
represented by the utility function U(x, y) = √

x + y.

3 LAGRANGIAN MULTIPLIERS

In Section 2 we were able to solve constrained maximization problems involving
two variables x and y because there was only one constraint, and that could be
solved to express y as a function of x. The resulting function was then substituted
for y in the function being maximized, leaving us with an unconstrained one-
variable problem. That technique suffices for all of the applications in this book.
However, if you want to know more about the use of prices—that is, Lagrangian
multipliers—in solving constrained maximization problems you will benefit
from this section. The Lagrangian technique requires verification of a constraint
qualification, but we will not address that issue because our examples will use
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functions for which the qualification is met. Moreover, that is also the case with
virtually all economic applications.

∂3.1 The Lagrangian multiplier with a single resource constraint
We return to Example 2.5, this time using the Lagrangian technique to obtain
the solution.

Example 3.1: The Lagrangian approach to consumer choice

We want to maximize U(x, y) = x2 y subject to 5x + 2y = 60. Instead we maxi-
mize

� = x2 y − λ(5x + 2y − 60).

Let �x denote the partial of � with respect to x and let �y denote the partial of
� with respect to y. Setting the first partials equal to zero yields

�x = 2xy − 5λ = 0 and �y = x2 − 2λ = 0.

The first equation yields λ = 2xy/5 and substituting this value of λ into the
second equation leads to

x2 − 2 × 2xy
5

= 0,

or 5x = 4y after dividing both sides by x. (We know that x will not be zero at the
chosen consumption plan.) Of course 5x = 4y along with the budget equation
yields x = 8 and y = 10.

Now, substitute the solution values of x and y into the equation �x = 0 to
solve for λ. We get 2(8)(10) − 5λ = 0, and hence λ∗ = 32 at the solution point
(x∗, y∗). To interpret λ∗, write the budget equation with income mas a variable:

5x + 2y = m.

Solve once more for the consumer’s chosen basket. We still get 5x = 4y whatever
solution technique is employed. Substituting into the budget equation yields
4y + 2y = m, or y = m/6. Because 4y = 5x we have 5x = 4m/6, or x = 4m/30.
This gives us the demands as a function of income: x∗ = 4m/30 and y∗ = m/6,
given p1 = 5 and p2 = 2. Now, substitute these demands into the utility function.
We get

U =
(

4m
30

)2

× m
6

= 16m3

5400
.

Then dU/dm = (16 × 3m2)/5400 = 8m2/900. When m = 60 this yields
dU/dm = 32 = λ∗. This is a general phenomenon. The Lagrangian multiplier
always gives the increase in utility per unit increase in income.

∂3.2 Remark on planning and Lagrangians
The function of price in a market system is in part to signal marginal values
to producers and consumers. Example 3.1 illustrates the fact that Lagrangian
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multipliers are also marginal values. If we maximize U(x, y) subject to the con-
straint px + qy = a, the value of U at the solution point (x∗, y∗) will, of course,
be a function of a. If p and q are positive constants, the larger a is the larger U
will be. Specifically, dU/da = λ∗ if λ is the multiplier associated with the con-
straint. That means that the Lagrangian can be interpreted as a price. This will
be true even if the constraint is nonlinear. Therefore, prices are intrinsic to the
solution of constrained maximization problems, even in the case of problems
that appear to have nothing to do with economics. For optimization problems
that arise from economic considerations, the fact that Lagrangians are marginal
values is of great significance.

Suppose that U(x, y) is an economic planner’s objective function, represent-
ing the social value of output in the economy, and the equation px + qy = a
represents a resource constraint on the capacity of the economy to produce x
and y. Then the solution value λ∗ of the Lagrangian multiplier for the constraint
is the value of the scarce resource at the margin. If a additional units of the
resource were obtained, and the maximization problem was solved again, the
value of U would increase by λ∗a. Therefore, even if the planner has no inten-
tion of deferring to the market system, prices are embedded in the mathematical
logic of constrained maximization. They can be used to guide the system to the
socially optimal menu of goods and services—that is, the one that maximizes U
subject to resource and technology constraints. Moreover, when prices are used
to guide decision making, it is far easier to design incentives to get producers
and consumers to do their part in executing the optimal menu.

When there are many variables and many constraints the Lagrangian tech-
nique is by far the most efficient. And, as Example 3.1 demonstrates, once the
planners start using Lagrangians they are using prices. The Lagrangian is the
marginal value of an additional unit of the scarce resource that gives rise to
the constraint, as we explain in greater depth in the next section.

∂3.3 Lagrangian multipliers with more than one resource constraint
Consider the problem

maximize f (x, y) subject to g(x, y) ≤ a and h(x, y) ≤ b.

We will not consider functions that depend on more than the two variables x
and y, nor will we have more than the two constraints g and h. The two-variable,
two-constraint case will provide sufficient insight.

The function f represents the goal or objective, and we want to pick the
values of x and y that maximize f . But constraints g and h restrict the values of x
and y that can be selected. For instance, f might refer to the value to society of the
plan (x, y) with g and h reflecting resource utilization by the plan of two inputs A
and B—labor and capital, say. Then a and b denote the total amounts available
of A and B, respectively. The plan (x, y) uses g(x, y) units of labor, and that
cannot exceed the total amount of labor, a, in the economy. Similarly, the plan
(x, y) uses h(x, y) units of capital, and the economy has only b units of capital.
In another application, f (x, y) denotes a firm’s profit from the production of x
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units of commodity X and y units of commodity Y . The constraints represent
limitations such as warehouse and transportation capacity.

DEFINITION: Resource utilization
The plan (x, y) requires g(x, y) units of resource A as input and h(x, y) units
of resource B.

The solution of our constrained maximization problem can be characterized
by means of two Lagrangian variables α and β associated with the respective
constraints g and h. If x∗ and y∗ constitute a solution to the problem then there
exist α ≥ 0 and β ≥ 0 such that

∂ f (x∗, y∗)
∂x

− α × ∂g(x∗, y∗)
∂x

− β × ∂h(x∗, y∗)
∂x

= 0 [6]

and

∂ f (x∗, y∗)
∂y

− α × ∂g(x∗, y∗)
∂y

− β × ∂h(x∗, y∗)
∂y

= 0. [7]

Notice that we arrive at the same two necessary conditions if (x∗, y∗) is the
plan that maximizes

� = f (x, y) − αg(x, y) − βh(x, y),

provided that we treat α and β as given constants. That is, if we take the partial
derivatives of � and equate them to zero we get the first-order conditions [6] and
[7]. The interpretation of α and β as prices is not a mere contrivance: Lagrangian
variable α is a price in the sense that it is the value of a unit of the resource A
underlying constraint g, and similarly for β and resource B. In other words, if
additional units of A can be obtained then α is the rate at which f will increase
per unit of A added. Therefore, α and β truly are social cost prices. (Recall the
definition in the introductory section of Chapter 1.) Hence � (x, y) is the gross
value f (x, y) of the plan (x, y) minus the cost of employing the scarce resources.

We need to prove that there exists α and β such that [6] and [7] have to hold
if (x∗, y∗) is a solution to our original problem. Why can we use prices to charac-
terize the solution to a problem that at the outset may have nothing to do with
prices or at least is articulated without any reference to prices? The remainder
of this subsection explains, but if you want to make a smaller investment of time
you may be satisfied with the following numerical example.

Example 3.2: Linear functions

Maximize f (x, y) = 4x + 7y subject to x + 3y ≤ 34 and 2x + y ≤ 18. Figure 2.2
shows that the solution will occur at the plan (x∗, y∗) where the lines x + 3y = 34
and 2x + y = 18 meet. Solving these two equations yields x∗ = 4 and y∗ = 10,
yielding 4x∗ + 7y∗ = 86, the maximum value of f . The solution is the plan (4, 10)
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y

10

4 x

2 x + y = 18

4x + 7y = 86

x + 3y = 34
(x*, y *)

Figure 2.2

where the lines x + 3y = 34 and 2x + y = 18 intersect because the slope of the
line 4x + 7y = 86 is in between the slopes of the lines x + 3y = 34 and 2x + y =
18. (The absolute values of the slopes of g, f , and h are respectively 1/3 < 4/7 <

2.) For the present problem, [6] and [7] become

4 = α + 2β and 7 = 3α + β.

This yields α = 2 and β = 1. Our claim is that if we obtain one more unit of
resource A and replace the constraint x + 3y ≤ 34 with x + 3y ≤ 35 then the
solution value of the objective function will increase by α = 2. Let’s confirm
this. The solution is now x = 3.8 and y = 10.4 where the lines x + 3y = 35 and
2x + y = 18 meet. The value of the objective function f is 4 × 3.8 + 7 × 10.4 =
88, an increase of 2 over the solution value of f for the original problem. Now let’s
have b increase by 1, with a at its original level of 34. Does the maximum value of
the objective function increase by β = 1? The solution to this new constrained
optimization problem is x = 4.6 and y = 9.8 at the intersection of the lines x +
3y = 34 and 2x + y = 19. This time, the value of the objective function is 4 ×
4.6 + 7 × 9.8 = 87, an increase of 1.
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(5, 2) = ( p, q)

5x + 2y = 0 y

a

c

x

b

(0, 0) θ

(2, −5) = (q, −p)

px + qy = 0

Figure 2.3

Consider the simple linear equation 5x + 2y = 0. It is represented in Fig-
ure 2.3 where we see that the vector of coefficients (5, 2) makes a ninety-
degree angle with the line generated by those coefficients. We begin by show-
ing that this always holds: The vector ( p, q) makes a ninety-degree angle with
the line px + qy = 0. Let’s look at the specific case 5x + 2y = 0 first. If x = 2
then we must have y = −5 if the point (x, y) is to be on the line. (Just solve
5 × 2 + 2y = 0 for y.) Then we have a triangle with the three vertices (5, 2), (2, −5),
and (0, 0) and with sides a, b, and c as depicted in Figure 2.3. We want to show that
angle θ is a right angle, so we need to prove that a2 + b2 = c2, the Pythagorean
equality. (Section 3.4 shows why θ is a right angle if the Pythagorean equality
holds.)

a2 = (5 − 0)2 + (2 − 0)2 = 25 + 4 = 29.

b2 = (2 − 0)2 + (−5 − 0)2 = 4 + 25 = 29.

c2 = (2 − 5)2 + (−5 − 2)2 = 9 + 49 = 58.

Therefore, a2 + b2 = c2, and hence θ is a right angle. In general, the point (q, −p)
is on the line px + qy = 0 so we have a triangle with the three vertices (p, q),
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Figure 2.4

(q, −p), and (0, 0). Consult Figure 2.3 again:

a2 = ( p − 0)2 + (q − 0)2 = p2 + q2,

b2 = (q − 0)2 + (−p − 0)2 = q2 + p2,

c2 = (q − p)2 + (−p − q)2 = q2 − 2qp + p2 + p2 + 2 pq + q2 = 2( p2 + q2).

Therefore, a2 + b2 = c2, and hence θ is a right angle.
Because ( p, q) makes a right angle with the line px + qy = 0, if we start at

a point (x, y) on the line px + qy = � and move in the direction ( p, q) then we
are increasing the value of px + qy at the fastest rate, as illustrated by Figure 2.4.
The directions A1 and A2 do not make right angles with the line (�0), and they
get us onto the respective level curves �1 and �2, which are below the level curve
�pq associated with the direction ( p, q). (We have normalized the arrows so that
they have the same length, say, unit length.)

Consider the generic constrained optimization problem for linear functions:

maximize f1x + f2 y subject to g1x + g2 y ≤ a and h1x + h2 y ≤ b.

In this case, f1, f2, g1, g2, h1, and h2 are given constants. We deal with the family
of problems for which the solution occurs at the plan (x∗, y∗) where the lines
g1x + g2 y = a and h1x + h2 y = b meet (Figure 2.5a). The vector ( f1, f2) must lie
between (g1, g2) and (h1, h2). Otherwise (x∗, y∗) would not be the solution (see
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g1x + g2 y = a

( f1,  f2) = 2( g1, g2 ) + (h1, h2 )

f1x + f2 y = v

h1x + h2 y = b

(h1, h2)

2(g1, g2)

Figure 2.5a

Figure 2.5b). But this means that ( f1, f2) can be expressed as a linear combination
of (g1, g2) and (h1, h2) and that the weightsα andβ will be positive (or at least non-
negative). For the example of Figure 2.5a we have ( f1, f2) = 2(g1, g2) + 1(h1, h2).
That is,

f1 = 2g1 + h1 and f2 = 2g2 + h2.

(When we apply these two conditions to Example 3.2 we get 4 = 2 × 1 + 1 ×
2 and 7 = 2 × 3 + 1 × 1.)

f1x + f2 y = v > d

f1x + f2 y = d

(h1, h2 )

( f1,  f2)

( g1, g2)

Figure 2.5b
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( f1, f2)

(g1, g2)g1x + g2 y = a

(x*, y*)

f1x + f2 y = v

f as (x*, y*)

This point is
on the same
level curve of

�b �b+1

Figure 2.6

Consider two special cases. Case (i): The lines f1x + f2 y = v and g1x + g2 y =
a coincide, where v denotes the solution value of the objective function. Then
the arrows ( f1, f2) and (g1, g2) point in the same direction, and we must have

f1 = αg1 + 0h1 and f2 = αg2 + 0h2

forα > 0. What does this tell us? Consult Figure 2.6. An increase in the B resource,
shifting the boundary of the h constraint out from �b to �b+1, will not lead to any
increase in the value of the objective function f . The diagram shows that there
is no production plan in the expanded feasible region that puts us on a higher
level curve. Clearly, the value of resource B is zero: additional amounts of it are
not beneficial. This is why β = 0.

Case (ii): The lines f1x + f2 y = v and h1x + h2 y = b coincide, so ( f1, f2) and
(h1, h2) are colinear. Hence

f1 = 0g1 + βh1 and f2 = 0g2 + βh2

for β > 0. This time an increase in the A resource will not increase the solution
value of the objective function. You can confirm this by drawing a diagram
analogous to Figure 2.6. The value to society of resource A is zero in this case.

Consider the typical case, with α and β both positive. Suppose that ( f1, f2)
is close to (g1, g2) as depicted in Figure 2.7a. Then α will be large relative to
β, and this tells us that an increase in resource A will have a bigger impact
on the objective function than an increase in resource B. We demonstrate this
by considering in turn what happens when the amount available of input A
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( f1,  f2 )

(g
1
, g

2
)

la+1

la
Sa+1

So

(h1, h2)

f1x + f2 y > v

f1x + f2 y = v

Figure 2.7a

increases from a to a + 1 and then when the amount of input B increases to
b + 1. When input A increases to a + 1 the boundary of the g constraint, involving
resource A, shifts up from �a to �a+1, as Figure 2.7a shows. The other boundary
line is unchanged, because b has not changed. We can move to a higher level
curve, reflecting an increase in the solution value of f . The optimal plan moves
from S◦ to Sa+1. Figure 2.7b shows what happens when the amount available of
input B increases to b + 1. The boundary of the h constraint, involving resource
B, shifts out, from �b to �b+1, and �a is unchanged. We again move to a higher
level curve (from S◦ to Sb+1) but the move is not nearly as great as when we
get an additional unit of resource A. Therefore, resource A is substantially more
valuable than resource B: There is a much bigger increase in the solution value
of f when we get an extra unit of A. That is why α is much bigger than β. To
convince yourself that α is precisely the rate at which the solution value of f
increases per additional unit of resource A—and analogously for B—go back to
the calculation of Example 3.2.

So Sb+1

lb
lb+1

Figure 2.7b
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The Lagrangian variables α and β are prices in the sense that they equal
the value of additional units of the respective resources. For the planning inter-
pretation of the constrained maximization problem, the variable α is the cost
imposed on society by a firm using a unit of A. This unit of A could be employed
elsewhere to generate α additional units of “social welfare”—assuming that is
what f measures. Imposing a cost on the firm of α per unit of A employed by the
firm promotes efficiency in that it forces the firm to provide at least α units of
social welfare per unit of A employed. Otherwise it would take a loss. The same
holds for β with respect to resource B. (Chapter 4 investigates the problem of
motivating the manager of the firm to maximize profit.) We haven’t discussed
incentives in this section, but we have seen that prices can in principle be used
to guide an economy, or a firm within an economy, to an efficient outcome. We
didn’t begin with the determination to employ prices. The prices were forced on
us by the mathematics.

If the functions f, g, and h are nonlinear, then the preceding argument goes
through if we interpret f1 as the partial derivative of f with respect to x, evaluated
at the optimal plan, with f2 representing the partial of f with respect to y, also
evaluated at the optimal plan, and similarly for g1, g2, h1, and h2. Confirm that
[6] and [7] are the first-order conditions associated with the maximization of

� ≡ f (x, y) − αg(x, y) − βh(x, y).

Recall that g(x, y) is the amount of A used up by the plan (x, y). If the price α is
the cost to society of employing one unit of A, then αg(x, y) is the cost to society
of the amount of A required by the production plan (x, y). Similarly, βh(x, y)
is the cost to society of the amount of B required by the plan (x, y). Therefore,
maximization of � can be interpreted as the maximization of the value to society
of the plan (x, y) net of the cost to society of the resources consumed by that
plan.

3.4 The converse of the Pythagorean theorem
The Pythagorean theorem proves that a2 + b2 = c2 if θ is a right angle (see Fig-
ure 2.3). To prove that θ is a right angle if a2 + b2 = c2, drop a line from the vertex
at the intersection of sides a and c, so that the line meets side b at a right angle
(Figure 2.8). Call this line d, and let e represent the third side of the right triangle,
which has as its other sides a and d. Let the same letters represent the length of
the sides, and consider the following equations:

a2 + b2 = c2, [8]

d2 + e2 = a2, [9]

d2 + (b − e)2 = c2, [10]

We are given [8] and the other two are consequences of the Pythagorean
theorem. Rewrite [10], after replacing d2 with a2 − e2 (from [9]) and c2 with
a2 + b2 (from [8]). We get

a2 − e2 + b2 − 2be + e2 = a2 + b2,
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a c
d

b

eθ

Figure 2.8

which reduces to 2be = 0. We are given b �= 0, and hence
e = 0. Therefore, a and d coincide. It follows that θ is
a right angle. (Could θ be greater than ninety degrees,
in which case the line d would be to the left of side
a? In that case, draw a new diagram by extending the
base b of the original triangle to the left so that it meets
the line d, which is perpendicular to the extended base
line. Equations [8] and [9] still hold but [10] is replaced
by d2 + (b + e)2 = c2, and the three equations still yield
2be = 0.)

Source
Lagrangian theory with inequality constraints is the creation of Kuhn and Tucker
(1950). The Lagrangian multipliers are often called Kuhn-Tucker multipliers.

Links
A good introductory treatment of the general problem of maximizing a function
of an arbitrary number of variables subject to an arbitrary number of constraints
can be found in Chapter 12 of Weintraub (1982). Chapters 5 and 6 of Novshek
(1993) provide a more thorough account, as does Chapter 6 of Binmore and
Davies (2001). Koopmans (1957) remains a superb elucidation of the lessons of
constrained optimization theory for resource allocation.

Problem set

1. Given the constants f1 and f2, use an algebraic argument to show that if
we take a step of unit length in any direction from the point (x, y) then we
will obtain the greatest increase in the value of f1x + f2 y if we move in the
direction ( f1, f2).

A. ( f1, f2) = (0, 1), (g1, g2) = (2, 2), and (h1, h2) = (1, 0). Draw a diagram
to show that ( f1, f2) does not lie between (g1, g2) and (h1, h2). Now use
algebra to show that we cannot have ( f1, f2) = α(g1, g2) + β(h1, h2) for
nonnegative α and β.

B. Repeat A with ( f1, f2) = (4, 1), (g1, g2) = (1, 2), and (h1, h2) = (2, 1).

C. ( f1, f2) = (2, 2), (g1, g2) = (0, 1), and (h1, h2) = (1, 0). Draw a diagram
to show that ( f1, f2) lies between (g1, g2) and (h1, h2), and then find
α > 0 and β > 0 such that ( f1, f2) = α(g1, g2) + β(h1, h2).

D. Repeat C with ( f1, f2) = (2, 1), (g1, g2) = (1, 2), and (h1, h2) = (4, 1).

2. Consider the standard consumer choice problem:

maximize U(x, y) ≡ xy subject to the budget constraint x + 4y ≤ 24.

Of course, U is the utility function. Utility depends on the amounts x and
y consumed of the two goods. The price of X is $1 and the price of Y is $4.
Income is $24. The constraint is the budget line.



98 Basic Models and Tools

A. Draw the indifference curve through (4, 3) and the indifference curve
through (4, 5). Try to be reasonable accurate.

B. Use calculus to find the basket that maximizes utility subject to the
budget constraint. To turn this into a one-variable problem, first
express the budget constraint as an equality (why?), solve it for y
as a function of x, and then substitute this expression for y into the
utility function.

C. Let g(x, y) = x + 4y represent the left-hand side of the budget con-
straint. Compute the following four partial derivatives: ∂U(x, y)/∂x,
∂U(x, y)/∂y, ∂g(x, y)/∂x, and ∂g(x, y)/∂y. Remember: The partial
derivative of f with respect to x, denoted by ∂ f /∂x, is obtained by
treating y as a constant. (For instance, if f (x, y) = x2 + yx + y2 then
∂ f /∂x = 2x + y. Similarly, the partial derivative of f with respect to
y, denoted by ∂ f /∂y, is obtained by treating x as a constant.

D. Evaluate the partial derivatives of part C at the chosen consumption
plan. Find a positive number α such that

∂U(x0, y0)
∂x

= α × ∂g(x0, y0)
∂x

and
∂U(x0, y0)

∂y
= α × ∂g(x0, y0)

∂y

where (x0, y0) represents the chosen consumption plan from part B.

E. Now solve this problem:

maximize U(x, y) ≡ xy subject to x + 4y = �.

Note that we have just replaced income in the budget constraint with
the variable �. The chosen basket (x∗, y∗) will now be a function of
�. Now substitute x∗ and y∗ into the utility function U = xy to get
utility as a function of �. Now, take the derivative of this function
(with respect to �) and evaluate it at � = 24. The number that you
get will equal the value of α from part D.

4 THE COMPOSITE COMMODITY MODEL

This section justifies the two-commodity model of consumer choice. To do so
we must test it against the complete model with a large number of goods—an
arbitrary number, in fact.

In the contrived, composite commodity model X is a conventional good,
which we also refer to as the zeroth good, with x denoting the amount of com-
modity X demanded. Assuming that the prices of all goods other than X are
constant, we let y denote total expenditure on all goods other than X . The sec-
ond good, Y , is called a composite commodity. The consumer actually has a total
of n + 1 commodities form which to choose.
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4.1 The budget constraint and preferences
Let p0 be the price of X and let θ denote the individual’s income. The budget
constraint is “total expenditure = income,” and this is equivalent to

expenditure on X + expenditure on all other goods = income

hence p0x + y = θ.

Therefore, we can express the individual’s budget constraint in terms of the
conventional good X and the contrived, composite commodity Y .

What about individual preferences? Let (x ′, y ′) and (x′′, y′′) be two different
commodity bundles in the composite model. We say that the individual prefers
(x ′, y ′) to (x′′, y′′) if and only if the individual prefers (x ′, b′) to (x′′, b′′) where b′ is
the most desirable basket of the ngoods other than X that the individual can buy
with y ′ dollars, given that he or she will consume x ′ units of X , and b′′ is the most
desirable basket of goods other than X that the individual can buy with y′′ dollars,
given that he or she will consume x′′ units of X . Note that b′ itself is a collection
of n commodities (involving everything but X) and so is b′′. The individual’s
primitive preferences have been compressed into a preference for bundles in
the composite commodity model. We lose a lot of information in the process.
The bundle (x∗, y∗) that is the most preferred of all the bundles satisfying the
budget constraint identifies expenditure y∗ on all goods other than X , but we
have no idea how y∗ is distributed across the individual commodities. How-
ever, the composite commodity model does tell us that the individual demands
exactly x∗ units of commodity X .

4.2 The composite commodity theorem
Section 4.1 showed rigorously that the budget constraint can be expressed in
terms of x and y, given the price p0 of X and the individual’s income θ . It also
suggested that the consumer’s preferences can be squeezed into this mold. In
this section we give a rigorous proof that the resulting preferences can be used to
identify the amount of commodity X that the individual would actually demand
in the real world of n + 1 goods.

Let xc denote the amount of commodity c consumed, for c = 0, 1, 2, . . . , n,
and let pc denote its price. Let u(x0, x1, . . . , xn) represent the individual’s utility
function. The consumer will choose the consumption plan (x0, x1, . . . , xn) that
maximizes utility subject to the budget constraint. We refer to this as problem B.

DEFINITION: The basic problem
Problem B: Find the values x0, x1, x2, . . . , xn that maximize u(x0, x1, x2, . . . , xn)
subject to p0x0 + p1x1 + p2x2 + · · · + pnxn ≤ θ .

We want to solve this and show that the solution value of x0 is equal to the
solution value of x in the composite commodity model—assuming that we use
the same income and the same prices in both cases.



100 Basic Models and Tools

Before we can even state the maximization problem for the composite com-
modity model we have to derive the two-commodity utility function U from the
primitive utility function u of the basic problem. Simply put, U(x, y) is the utility
from consuming x units of X along with the best combination of the other goods
and services that costs y dollars.

DEFINITION: The contrived utility function U
U(z0, y) is the value of u(x0, x1, x2, . . . , xn) when we choose x0, x1, x2, . . . , xn

to maximize u(x0, x1, x2, . . . , xn) subject only to the restrictions

x0 = z0 and p1x1 + p2x2 + · · · + pnxn ≤ y.

As we will see, the basic problem is closely related to the maximization of U
subject to the restriction that expenditure on X and Y cannot exceed θ .

DEFINITION: The contrived problem
Problem C: Choose α and β to maximize U(α, β) subject to p0α + β ≤ θ .

The solutions to problems B and C are related in the following way.

The composite commodity theorem

If (z0, z1, z2, . . . , zn) is a solution to problem B then for α = z0 and β =
p1z1 + p2z2 + · · · + pnzn, the two-commodity bundle (α, β) is a solution
to problem C . Conversely, if (α, β) is a solution to problem C there is
some solution (z0, z1, z2, . . . , zn) to problem B such that z0 = α and p1z1 +
p2z2 + · · · +pnzn = β. Moreover, for any solutions (z0, z1, z2, . . . , zn) and (α, β)
to the respective problems B and C we have u(z0, z1, z2, . . . , zn) = U(α, β).

Proof
Part 1. We show that if (z0, z1, z2, . . . , zn) is any solution to problem B then (α, β)
solves problem C if α = z0 and β = p1z1 + p2z2 + · · · + pnzn.

Suppose, then, that (z0, z1, z2, . . . , zn) is a solution to problem B. Set α = z0

and β = p1z1 + p2z2 + · · · + pnzn. We have U(α, β) ≥ u(z0, z1, z2, . . . , zn) by def-
inition of U, because α = z0 and p1z1 + p2z2 + · · · + pnzn ≤ β certainly hold.
Clearly, p0z0 + β ≤ θ holds. Therefore, (α, β) satisfies the constraints of problem
C . Suppose that (α∗, β∗) maximizes U subject to the two constraints of prob-
lem C . Then U(α∗, β∗) ≥ U(α, β) because (α, β) is feasible for problem C . By
definition of U, there is some (x0, x1, x2, . . . , xn) such that

U(α∗, β∗) = u(x0, x1, x2, . . . , xn),

with x0 = α∗ and p1x1 + p2x2 + · · · + pnxn ≤ β∗.
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But p0x0 + p1x1 + p2x2 + · · · + pnxn ≤ p0α
∗ + β∗ ≤ θ . This means that (x0, x1,

x2, . . . , xn) is feasible for problem B. Therefore

u(z0, z1, z2, . . . , zn) ≥ u(x0, x1, x2, . . . , xn)

because (z0, z1, z2, . . . , zn) gives the maximum value of usubject to the feasibility
constraints of problem B. We have proved the following:

u(z0, z1, z2, . . . , zn) ≥ u(x0, x1, x2, . . . , xn) = U(α∗, β∗) ≥ U(α, β)

≥ u(z0, z1, z2, . . . , zn).

This can only hold if all of the inequalities are satisfied as equalities. Then
U(α, β) = U(α∗, β∗). Note that (α∗, β∗) is the name we have given to an arbi-
trary solution to problem C and (α, β) satisfies the constraint of problem C .
Therefore, (α, β) is also a solution to problem C . We have thus proved the first
part of our claim.

Proof
Part 2. We show that if (α, β) is a solution to problem C then there is some
solution (z0, z1, z2, . . . , zn) to problem B such that z0 = α and p1z1 + p2z2 + · · · +
pnzn = β.

Suppose that (α, β) is a solution to problem C . By definition of U there is
some (z0, z1, z2, . . . , zn) such that α = z0, β ≥ p1z1 + p2z2 + · · · + pnzn, and

u(z0, z1, z2, . . . , zn) ≥ u(x0, x1, x2, . . . , xn)

for all (x0, x1, x2, . . . , xn) such that x0 = α and p1x1 + p2x2 + · · · + pnxn ≤ β.
Because (α, β) satisfies the constraint of problem C we have

p0z0 + p1z1 + p2z2 + · · · + pnzn ≤ p0α + β ≤ θ

and hence (z0, z1, z2, . . . , zn) satisfies the constraint of problem B. Next we show
that (z0, z1, z2, . . . , zn) is actually a solution to problem B. Let (x0, x1, x2, . . . , xn)
be any consumption plan satisfying the constraints of problem B. Set α∗ = x0

and β∗ = p1x1 + p2x2 + · · · + pnxn. Then

p0α
∗ + β∗ = p0x0 + p1x1 + p2x2 + · · · + pnxn ≤ θ.

Therefore, by definition of U we have

u(x0, x1, x2, . . . , xn) ≤ U(α∗, β∗).

Note that p0α
∗ + β∗ ≤ θ , and therefore U(α∗, β∗) ≤ U(α, β), because (α, β) solves

problem C and (α∗, β∗) is feasible for C . Therefore, we have established the
following:

u(x0, x1, x2, . . . , xn) ≤ U(α∗, β∗) ≤ U(α, β) = u(z0, z1, z2, . . . , zn).

Therefore, u(x0, x1, x2, . . . , xn) ≤ u(z0, z1, z2, . . . , zn) for any values x0, x1, x2, . . . ,
xn that satisfy the constraint for problem B. This proves that (z0, z1, z2, . . . , zn) is
a solution to problem B.
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Proof
Part 3. We have to show that the maximum utility for problem B equals the
maximum utility for problem C . We have already done that because part 1
established that u(z0, z1, z2, . . . , zn) = U(α, β) holds for any two solutions
(z0, z1, z2, . . . , zn) and (α, β) of the respective problems.

In some applications, X is also a composite commodity: In an economic
analysis of health care, x would be total expenditure on health care and y would
be expenditure on everything else. You can see that the justification for employ-
ing a composite commodity Y would also be valid for X when x is expenditure
on health care, or education, or food, and so forth.

Source
The composite commodity theorem was discovered independently by Hicks
(1939) and Leontief (1936).

5 QUASI-LINEAR PREFERENCES

Having simplified things by reducing the number of commodities to two, we now
show how a simple family of utility functions can be used to bring additional
clarity. Suppose the individual’s utility function U(x, y) has the special form
B(x) + y. This function is linear in y but not necessarily in x.

DEFINITION: Quasi-linear function
A quasi-linear function of two variables x and y has the form B(x) + y, where
B can be any function of x.

Quasi-linear preferences endow economic models with some very nice proper-
ties. They will be used to uncover basic principles at relatively low cost.

We assume throughout this section that Y is a private good that is divisible.
This means two things: (i) all individuals care only about their own consump-
tion of Y (but not anyone else’s) and prefer more Y to less; and (ii) any amount
of any individual i’s consumption of Y can be transferred to any individual j.
Assumption (i) implies that if x is unchanged but individual i’s consumption of
Y increases then individual i’s utility increases, regardless of how anyone else’s
consumption of Y changes. Assumption (ii) implies that if individual i has a
positive amount ε of the private good, however small, any positive fraction of
ε can be transferred from individual i to someone else. One of the advantages
of assuming quasi-linear preferences is that efficiency is equivalent to maxi-
mization of the sum of individual utilities (subject to the limitations inherent
in resource constraints, etc.). This is demonstrated in two subsections. Subsec-
tion 5.1 offers a short, easy proof, but it does not incorporate the constraint
that an individual’s consumption of Y cannot fall below zero. Using calculus,
and assuming that consumption is strictly positive, Subsection 1.2 of Chapter 8
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establishes the equivalence of efficiency and total utility maximization when
preferences are quasilinear.

5.1 Efficiency with quasi-linear utility
Assuming that Y is a divisible private good and that individual preferences are
quasilinear, we show that an allocation is efficient if and only if it maximizes total
utility. We have already seen that for any model, any outcome that maximizes
total utility is efficient (Section 4 of Chapter 1). Without quasi-linear preferences,
an outcome can be efficient without maximizing total community utility, as
Example 5.3 demonstrates. The next example highlights the role of the divisibility
assumption.

Example 5.1: Efficiency without divisibility

There are two feasible outcomes, A and B, and two individuals whose utility
functions are displayed in Table 2.1. A is efficient, because a move to B would
lower person 2’s utility. But A certainly does not maximize total utility. If a divis-
ible private good were available, some of it could be transferred from person 1
to person 2 at outcome B to increase U2. And if both U1 and U2 were quasi-
linear the transfer could be accomplished in a way that left both 1 and 2 with
more utility than they would have at A. But this transfer would create a new
outcome C , contradicting the fact that only two outcomes are feasible in the
present case. Therefore, in this example there is no divisible commodity in the
background.

This section explains why, when every individual’s utility function is quasi-
linear, and Y is a divisible private good, every efficient allocation maximizes
total utility. We do this by showing how everyone’s utility can be increased at any
allocation that does not maximize total utility.

Each individual i’s utility has the form Ui(x, yi) = Bi(x) + yi . Therefore, if yi

changes to yi + yi but x remains the same, then the change in the individual’s
utility is

Ui = Bi(x) + yi + yi − [Bi(x) + yi] = yi .

In brief, if x does not change, then for each individual i we have Ui = yi . In
words, the change in individual i’s utility is equal to the change in i’s consumption

Table 2.1

Outcome U1 U2

A 2 20
B 100 15

of Y if x is unchanged. Now, suppose that outcomes
F and G are both feasible, but total utility is higher
at G than at F . Then we can create outcome H from
G by redistributing commodity Y without changing
the value of x. Because x does not change, there
is no transfer of resources from the production of
Y to the production of X . Consequently, the total
amount of Y available for consumption will be the
same at G and H, and thus if we create H from G by
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redistributing Y the new outcome H will be feasible. And because total utility
is higher at G than at F the redistribution can be done in a way that increases
everyone’s utility.

Example 5.2: Three individuals

Outcomes F and G are given, and the individual utility levels realized at each
are specified Table 2.2. F is not efficient, but outcome G by itself does not
demonstrate that because persons 2 and 3 have lower utility at G than at F .
However, if we create H from G by setting x = 0, y1 = −12, y2 = +8, and
y3 = +4 then the sum of the changes in Y is zero. Therefore, H is feasible.
Because x = 0 we have U1(H) = U1(G) + y1 = 29 − 12 = 17. And U2(H) =
U2(G) + y2 = 14 + 8 = 22. Finally, U3(H) = U3(G) + y3 = 28 + 4 = 32. Out-
come H gives everyone more utility than F , and thus we have demonstrated
that F is not efficient.

Example 5.2 does not specify the consumption y1 of individual 1 at G. There-
fore, we cannot be sure that y1 − 12 is positive, or at least zero. Our argument
was perfectly rigorous, provided that yi ≥ 0 is not required. In many models, the
original consumption levels of the private good are assumed to be high enough
so that there is no danger of driving someone’s consumption of that good below
zero. We continue to ignore the constraint yi ≥ 0 until Section 1.2 of Chapter 8.

Efficiency theorem for quasi-linear utility functions

If yi is allowed to have any value (positive, negative, or zero) then an allocation
is efficient if and only if it maximizes total utility.

There will be more than one efficient allocation because if (x, y) maximizes
total utility then it is efficient. Then (x, y ′) is efficient for any y ′ such that �iεN y ′

i =
�iεN yi . That’s because x does not change and total consumption of Y does not
change, and thus total utility is still maximized. Thus (x, y ′) must be efficient.

Table 2.2

1 2 3 Total

Ui (F ) 15 20 29 64
Ui (G) 29 14 28 71
Ui (H) 17 22 32 71

Here is the proof of the efficiency theo-
rem for an arbitrary number n of individuals.
The individuals are indexed by i = 1, 2, . . . , n.
If X is a private good, then x specifies an
assignment of some amount X to each indi-
vidual. If X is a public good, then x denotes
the level of that good provided to all. It is also
possible that x denotes some mix of public
and private goods. The following argument
works for any interpretation of the variable x.

Each individual i has a utility function of the form Ui(x, yi) = Bi(x) + yi . We will
show that an outcome cannot be efficient if it does not maximize total utility.
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Let (x̃, ỹ) be a feasible allocation. If it does not maximize the sum of individual
utilities then there is another feasible allocation (x, y) such that

�iεN[Bi(x) + yi] > �iεN[Bi(x̃) + ỹi . [11]

Define a new allocation (x0, y0) such that x0 = x and

y0
i = Bi(x̃) + ỹi − Bi(x) + 1

n
× �hεN[Bh(x) + yh − Bh(x̃) − ỹh].

Note that

�iεN y0
i = �iεN Bi(x̃) + �iεN ỹi − �iεN Bi(x) + �iεN Bi(x) + �iεN yi

−�iεN Bi(x̃) − �iεN ỹi = �iεN yi

In words, the allocation (x0, y0) is created from (x, y) by leaving the value of x
unchanged but redistributing commodity Y . This means that (x0, y0) is feasible.
But for each i in N

Bi(x0) + y0
i = Bi(x) + Bi(x̃) + ỹi − Bi(x) + 1

n
× �hεN[Bh(x) + yh − Bh(x̃) − ỹh]

and thus

Bi(x0) + y0
i = Bi(x̃) + ỹi + 1

n
× �hεN[Bh(x) + yh − Bh(x̃) − ỹh] [12]

for each individual i.
Statement [11] implies that �hεN[Bh(x) + yh − Bh(x̃) − ỹh] is a positive num-

ber, and thus [12] implies that Bi(x0) + y0
i > Bi(x̃) + ỹi holds for each individual

i. We conclude that (x̃, ỹ) is not efficient.
Our proof clearly depends on the divisibility of Y—think of Y as money—

but X could be available only in discrete units, although the argument applies
equally well when X is divisible. We conclude this subsection by showing that
the quasi-linear assumption is crucial.

Example 5.3: Counterexample when one of the utility functions
is not quasi-linear

There are two individuals, 1 and 2. U1(x, y1) = 1/2 x + y1 and U2(x, y2) = xy2.
Person 1’s utility function is quasi-linear, but 2’s is not. The feasible outcomes
are values of x, y1, and y2 such that x + y1 + y2 = 4. Outcome A has x = 2, y1 = 1,
and y2 = 1. Then A is feasible. It is also efficient. To prove that A is efficient we
begin by trying to increase U2 without changing U1. To keep U1 constant we will
have to have 1/2 x + y1 = 2. We also have to satisfy the feasibility requirement x +
y1 + y2 = 4. If we subtract 1/2 x + y1 from the left-hand side of the last equation
and we subtract 2 from the right-hand side we get 1/2 x + y2 = 2. This means that
y2 = 2 − 1/2 x. Therefore, we want to maximize U2 = xy2 subject to y2 = 2 − 1/2 x.
That is equivalent to maximizing x(2 − 1/2 x) = 2x − 1/2 x2. You can use calculus to
get the solution value x = 2. Alternatively, note that 2x − 1/2 x2 = 2 − 1/2(x − 2)2.
To maximize 2 − 1/2(x − 2)2 we have to set x = 2; otherwise we will be subtracting
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a positive number from 2 to get the value U2, and that is less than U2 = 2, which
we get when x = 2. We have x = 2 and y2 = 2 − 1/2 x. Therefore, y2 = 1. If x =
2, y2 = 1, and feasibility requires x + y1 + y2 = 4, we must have y1 = 1. That is
precisely outcome A. We have demonstrated that if U1 must equal its value at A
then any feasible outcome other than A must yield a lower value of U2 than the
value of U2 at A. This implies that, starting from A, we cannot increase U2 without
lowering U1. It also implies that, starting from A, we cannot increase U1 without
lowering U2. (Why?) Therefore, A is efficient. But A does not maximize U1 + U2

over the set of feasible allocations. At A we have U1 + U2 = 2 + 2 × 1 = 4. If B has
x = 2 = y2 and y1 = 0, then at B we have U1 + U2 = 1 + 2 × 2 = 5. A is efficient,
but it does not maximize the sum of utilities. This does not depend on the fact
that y1 is 0 at B: Set x = 2, y1 = ε, and y2 = 2 − ε to create outcome C . Then C
is feasible. We can take ε > 0 sufficiently small so that U1 + U2 is as close as we
like to 5.

Our proof did not acknowledge the possibility that when yi is negative the
resulting consumption of the private good by individual i, which is yi + yi ,
could be negative. Fortunately, there are many applications in which we do not
need to worry about the constraint yi ≥ 0, simply because there is reason to
believe that no one’s consumption of the private good will be driven to zero. For
completeness and rigor, Section 1.2 of Chapter 8 explicitly imposes yi ≥ 0 for
each individual i.

∂5.2 Quasi-linear preference and demand
We now focus on a single individual, so we can drop the subscript i. The indi-
vidual’s utility depends only on his or her own consumption of X and Y . The
utility function has the quasi-linear form U(x, y) = B(x) + y. We also assume
diminishing marginal utility, which means that B ′′(x) < 0 at all x. We show (in
Section 5.3) that the function B can be recovered from the individual’s demand
function for X .

In this section we demonstrate that, beyond a minimum income level, when
the individual’s income increases he or she will not increase the consumption
of X , assuming that prices do not change. Assuming that the price of X is not so
high that the individual demands zero units of X , maximization of utility subject
to the budget constraint implies that B ′(x) equals the price ratio. Let x∗ be the
value of x for which this holds. As income increases, we will still have B ′(x∗)
equal to the price ratio, so x∗ will still be the individual’s demand for X . (This
claim is true only for quasi-linear preferences.)

Formally, we maximize B(x) + y subject to p1x + p2 y = θ , and x ≥ 0 and y ≥
0. We can solve the budget constraint for y. We have y = (θ − p1x)/p2. Therefore
we maximize

V (x) = B(x) + θ − p1x
p2

,
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a function of x, subject to 0 ≤ x ≤ θ/p1. (Note that y = (θ − p1x)/p2 will be
nonnegative if and only if x ≤ θ/p1.) Assume that 0 < x∗ < θ/p1 at the maximiz-
ing value of x. Then the first derivative of V (x) must equal zero at x∗. That is,
B ′(x∗) − p1/p2 = 0, which of course implies B ′(x∗) = p1/p2. The solution x∗ will
be unique because B ′′(x) < 0 at all x. Moreover, B ′(x∗) = p1/p2 will still hold if
income increases and prices do not change. Therefore, the demand for X does
not change when income changes.

Income effect with quasi-linear utility functions

If U = B(x) + y, and both x and y are positive at the chosen consumption
plan, then the demand for x will not increase when income increases.

We can view this in terms of the tangency condition for consumer choice:
The indifference curve is tangent to the budget line at the chosen bundle. This
means that the marginal rate of substitution (MRS) equals the price ratio. To
determine the MRS we start with the fact the utility is constant along an indif-
ference curve. Therefore, the equation of an indifference curve is B(x) + y = �,
where � is a constant. We have y = � − B(x). The derivative of this function is
−B ′(x), which is thus the slope of the indifference curve at the point (x, y).
Because the MRS is the absolute value of the slope of the indifference curve,
the MRS is B ′(x). The MRS is independent of y so, with x on the horizon-
tal axis, the MRS is constant along any vertical line. If we have a consumer
optimum (x∗, y∗) that does not occur at a corner point of the budget region
we will have MRS = p1/p2, and that can occur at only one point on the bud-
get line. As income increases and the budget line shifts out parallel to itself
the new optimum will also occur at a point where MRS = p1/p2. The MRS
doesn’t change. This can only happen on the vertical line through x∗: There
is no change in the demand for X . (The demand for X does change when p1 or
p2 changes.)

Now, suppose that B ′(x) = p1/p2 implies x < 0. Because B ′′ < 0 we have
B ′(0) < p1/p2 and thus V ′(0) = B ′(0) − p1/p2 < 0. Because V ′′ = B ′′ < 0, we
have V ′(x) < V ′(0) < 0 for all x > 0, and hence V (x) < V (0) for all x > 0. The
solution to the constrained utility maximization problem is x = 0. If θ (income)
increases we will still have B ′(0) < p1/p2, and thus x = 0 will still solve the con-
strained utility-maximization problem. There is no income effect on the demand
for X in this case as well.

There can be an income effect on the demand for X only if B ′(θ/p1) > p1/p2,
and this inequality will fail for θ large enough, because B ′ falls as x increases.
Let θ∗ satisfy B ′(θ∗/p1) = p1/p2. For θ > θ∗ there is no income effect on the
demand for x, and even when θ ≤ θ∗ there is no income effect if B ′(0) < p1/p2.
But beyond a minimum income level θ∗ there is no income effect for sure.
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Example 5.5: Consumer choice with quasi-linear utility

U(x, y) = ln(x + 1) + y. Now maximize utility subject to p1x + p2 y = θ . (If y is a
composite commodity set p2 = 1.)

Because the budget constraint implies y = (θ − p1x)/p2 we can maxi-
mize V (x) = ln(x + 1) + (θ − p1x)/p2 subject to 0 ≤ x ≤ θ/p1. The first deriva-
tive is (x + 1)−1 − p1/p2 and the second derivative is −(x + 1)−2, which is
always negative. If V ′(x∗) = 0 and 0 ≤ x∗ ≤ θ/p1 then x∗ is our solution (see
Section 2.2). Then we will have (x∗ + 1)−1 − p1/p2 = 0, which implies x∗ =
p2/p1 − 1. If p2/p1 − 1 < 0 or p2/p1 − 1 > θ/p1 we know that p2/p1 − 1 cannot
be the demand for X . In either case the consumer will demand either zero or θ/p1

units of X . V ′′ is negative everywhere so (from Section 2.2) if V ′(x) = 0 implies
x > θ/p1 then x = θ/p1 maximizes V subject to 0 ≤ x ≤ θ/p1. If V ′(x) = 0 implies
x < 0 then x = 0 is our solution. We can now display the demand function
for x:

x( p1, p2, θ) = 0 if
p2

p1
< 1,

x( p1, p2, θ) = p2

p1
− 1 if 1 ≤ p2

p1
≤ 1 + θ

p1
,

x( p1, p2, θ) = θ

p1
if

p2

p1
> 1 + θ

p1
.

By solving the budget constraint p1x + p2 y = θ for y we can obtain directly the
demand function for Y :

y( p1, p2, θ) = θ

p2
if

p2

p1
< 1,

y( p1, p2, θ) = θ + p1 − p2

p2
if 1 ≤ p2

p1
≤ 1 + θ

p1
,

y( p1, p2, θ) = 0 if
p2

p1
> 1 + θ

p1
.

Fix p1 and p2 and allow θ to vary. If p1 is larger than p2 then we have x( p1, p2, θ) =
0 for all values of θ . The income effect on the demand for X is zero. If
p2/p1 > 1 + θ/p1 then all income is spent on X , and this continues to be the case
as θ rises until it reaches p2 − p1. At this point we have x = θ/p1 =
( p2 − p1)/p1 = p2/p1 − 1. As θ rises beyond p2 − p1 all additional income is
spent on commodity Y . Note that if either inequality 1 ≤ p2/p1 or p2/p1 ≤
1 + θ/p1 holds then it continues to hold as θ rises. In summary, for θ ≥ p2 − p1

or p1 > p2 there is no increase in the demand for X when income increases.
There is an income effect on the demand for X only when p1 < p2 and even
then only in the extreme case of incomes less than p2 − p1 (or less than 1 − p1

if y is a composite commodity and p2 = 1).

∂5.3 Consumer surplus
Now we show that if utility is quasi-linear then the demand function for com-
modity X can be used to estimate the utility function. Specifically, if U(x, y) =
B(x) + y then the demand curve for X can be used to recover the benefit function
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B(x). For convenience we assume that B(0) = 0. Quasi-linear utility also means
that the area under the demand curve and above the line P = p1, where p1 is
the given price of X , is equal to the utility gain from being able to purchase X at
the price p1. We refer to this utility increase as the consumer surplus.

DEFINITION: Consumer surplus

The consumer surplus is U(x, θ − p1x) − U(0, θ), where θ is the individual’s
income and x is the amount of commodity X that maximizes U subject to
the budget equation p1x + y = θ . (We simplify by setting p2 = 1.)

Because p2 = 1, the budget equation implies that y = θ − p1x. Therefore,
U(x, θ − p1x) − U(0, θ) is the utility from being able to purchase X at the price
p1 minus utility when only commodity Y is available (in which case the budget
equation implies y = θ).

Let’s see how the consumer surplus can be recovered from the demand func-
tion for X . We begin by deriving that demand function. Maximize B(x) + y sub-
ject to p1x + y = θ and x ≥ 0 and y ≥ 0. Equivalently, maximize B(x) + θ − p1x
subject to 0 ≤ x ≤ θ/p1. We assume a range of prices such that the demand for
X satisfies 0 < x < θ/p1, which implies that the first derivative of B(x) + θ − p1x
equals zero. That is, B ′(x) = p1 is satisfied at the solution to the consumer
decision problem. It follows that if we plot B ′(x) = p1 on a diagram with x on
the horizontal axis and p1 on the vertical axis we will portray the individual’s
demand curve for X . Given p1, the curve shows us the value of x for which
B ′(x) = p1, and that is in fact the demand for X at the price p1. (Strictly speak-
ing, B ′(x) is the inverse demand function. However, when we plot the graph of
B ′(x) we can interpret it as the demand curve by taking a given price and finding
the value of x on the graph at that price. It will be the quantity demanded at that
price because it will be the quantity x at which B ′(x) equals the given price.)

We can’t observe the function B directly, but we can observe prices and
quantities, so we can estimate the demand curve. Let P(x) be the function rep-
resented by that demand curve. Suppose, for convenience, that P and B ′ are
identical. (The demand curve has been estimated with precision.) Using the
fundamental theorem of calculus we have

B(x) =
∫ x

0
B ′(t) dt =

∫ x

0
P(t) dt.

Because
∫ x

0 P(t) dt is the area under the curve P(t) from 0 to x, we can use the
observable demand curve to compute B(x).

Assuming for convenience that B(0) = 0, the consumer surplus is B(x) + θ −
p1x − [B(0) + θ ], which equals B(x) − p1x. The consumer surplus B(x) − p1x is
the area under the demand curve from 0 to x minus p1x. Now, p1 × x is the area
of a rectangle with height p1 and length x and thus is the area under the line
P = p1 between 0 and x. We have shown that the consumer surplus is the area
under the demand curve from 0 to x minus the area under the horizontal line
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P = p1 between 0 and x. In other words, the consumer surplus is area below the
demand curve and above the price line, and between 0 and x.

Measuring consumer surplus with quasi-linear utility functions

If U = B(x) + y and p2 = 1, then the surplus from consuming X at price p1

is equal to the area under the demand curve for X and above the horizontal
line drawn p1 units above the horizontal axis.

Example 5.6: Consumer surplus with quasi-linear utility

U(x, y) = ln(x + 1) + y, as in Example 5.5. We saw that the individual’s demand
function is x = P−1 − 1 if p2 = 1 and P denotes p1. (Again, we are assuming
a range of prices for which the amount of commodity X demanded is strictly
between 0 and θ/p1.) Of course, x = P−1 − 1 implies P = (x + 1)−1. This is the
inverse demand function, which we want to integrate to determine the area
under the demand curve.

∫
P dx = ∫

(x + 1)−1dx = ln(x + 1) + c, for arbitrary
constant c. Note that B(x) = ln(x + 1), and if B(x) = 0 we must have c = 0. We
have recovered the function B(x) from the demand curve. The consumer surplus
is B(x) − Px, which equals the area under the demand curve and above the
horizontal line at height P.

We conclude this section by showing that if each individual i has a quasi-
linear utility function then the area under the market (or total) demand curve is
equal to the aggregate consumer surplus and hence is equal to the total util-
ity realized by the community when each individual is able to purchase X
at a price of p1. Individual i’s utility function is Ui = Bi(xi) + yi , where xi is
the amount of X consumed by household i and yi is the amount of Y con-
sumed by i. The function Bi can be different for different individuals, hence the
i subscript.

Individual i’s consumer surplus is∫ x

0
Pi(t) dt − Pxi ,

the area below i’s demand curve Pi and above the horizontal line at height P.
But we can also integrate along the vertical axis: The area under the individual
demand curve and above the horizontal line at P is∫ ∞

P
xi(ρ) dρ

where xi is consumer i’s quantity demanded as a function of the price ρ. Total
market demand q is the sum of the individual demands, so we can write q(ρ) =∑

iεN xi(ρ), where N is the set of consumers. Therefore,

∑
iεN

∫ ∞

P
xi(ρ) dρ =

∫ ∞

P
q(ρ) dρ.
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But
∫ ∞

P q(ρ) dρ can be expressed as
∫ q

0 P(t) dt, where P(q) is the inverse market
demand curve—that is, the price at which a total of q units would be demanded
in total by all consumers. Clearly,

∑
iεN Pxi = Pq. Therefore,

∑
iεN

∫ ∞

P
xi(ρ) dρ =

∫ q

0
P(t) dt − Pq.

Therefore, the area under the market demand curve and above P is the sum
of the areas under the individual demand curves above P. Because the sum
of the areas under the individual demand curves is equal to the total util-
ity, we can say that total utility is exactly equal to the area under the market
demand curve when each individual’s utility function is quasi-linear. Similarly,
the total consumer surplus equals the area under the market demand curve and
above P.

Measuring total consumer surplus with quasi-linear utility functions

If each individual’s utility function has the form Ui = Bi(x) + y, and p2 = 1,
then the total surplus from consuming X at price P is the area under the
market demand curve for X and above the horizontal line drawn P units
above the horizontal axis.

Example 5.7: Total consumer surplus with quasi-linear utility

To simplify the calculations we will assume n identical consumers, each with the
utility function U(x, y) = ln(x + 1) + y, as in Example 5.5. When each individual
begins with x = 0 and then is able to purchase X at price P, the individual
increase in utility is ln(x + 1) − Px. Therefore, the total increase in utility over
the entire community is n ln(x + 1) − nPx. We will show that this equals the area
between the market demand curve and the horizontal line at height P.

The individual demand function is x = P−1 − 1 (Example 5.5), so market (or
total) demand is n times that. If q denotes market demand we have

q = nP−1 − n and thus P = n(q + n)−1.

The second equation is the inverse market demand function, which we want to
integrate. We have

∫
P dq = ∫

n(q + n)−1 dq = n ln(q + n) − n ln n. (By subtract-
ing n ln n we get an area of zero when q is zero.) Therefore, the area under the
market demand curve and above the horizontal line at P is

n ln(q + n) − n ln n − Pq.

(The area from 0 to q between the horizontal axis and the line of height P is a
rectangle of height P and width q, and thus has area Pq.) Now, q = nx, and thus
n ln(q + n) − n ln n = n ln(nx + n) − n ln n = n ln[(nx + n)/n] = n ln(x + 1) =
nB(x). Therefore, the area under the market demand curve and above the
horizontal line at height P is equal to n[B(x) − Px], the total consumer surplus.
(Compare with Example 5.6.)
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Source
The efficiency condition of Section 5.1 first appeared in Samuelson (1954).

Links
See Campbell and Truchon (1988) for a general characterization of efficiency
with quasi-linear preferences covering allocations for which yi = 0 for some
individuals i. See also Conley and Diamantaris (1996). See Katzner (1970, p. 152)
for the general result on demand functions and consumer surplus when prefer-
ences are not necessarily quasi-linear.

6 DECISION MAKING UNDER UNCERTAINTY

Most of the models in this book either employ a framework in which there is no
uncertainty or assume that there are only two possible random events, “bad” and
“good,” and that the decision maker knows the probability of each event. There-
fore, we begin with a study of choice under uncertainty when an action leads to
one event with probability π and an alternative event with probability 1 − π . Of
course, 0 ≤ π ≤ 1. The bad event leads to a low payoff x, and the good event yields
a high payoff y. We typically think of x and y as changes in the decision maker’s
wealth in the respective events. To keep the terminology simple we refer to the
prospect of getting x with probability π and y with probability 1 − π as an asset,
even though there will be other applications, such as the purchase of insurance.

DEFINITION: Asset
An asset is any opportunity that yields a specified low payoff x with proba-
bility π and a specified high payoff y with probability 1 − π .

We allow x to be negative, because in some cases we want the payoffs to be
reported net of the purchase price of the financial instrument.

6.1 Asset preferences
An individual with a current wealth ofθ is confronted with a choice between a safe
asset (money) that preserves his or her wealth at θ with certainty and a risky asset
(an investment) that reduces his or her wealth to x with probability π but will
cause his or her wealth to increase to y with probability 1 − π . Of course, x < θ <

y. One important element—but not the only element—of the decision process
is the expected payoff. The expected monetary value of an asset is the weighted
sum of the monetary payoffs, where each payoff’s weight is its probability.

DEFINITION: Expected monetary value (EMV)
If x dollars is received with probability π and y is received with probability
1 − π then the expected monetary value of the asset is πx + (1 − π)y.
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Example 6.1: EMV when the bad outcome is a burglary

An individual’s current wealth of $100 will be reduced to $40 if he or she is
robbed, and that will happen with probability 0.3. Then the EMV of wealth
(without insurance) is 0.3 × 40 + 0.7 × 100 = 82.

A risky asset would leave the individual with x with probability π and y
with probability (1 − π), with x < θ < y. For most of us there is a value of π

sufficiently close to 0 (perhaps extremely close) that would induce us to choose
this risky asset. And there would be a value of π sufficiently close to 1 that would
prompt us to choose the safe asset, with a guaranteed θ . But what about more
realistic, intermediate, values of π? Clearly, the decision would depend on the
magnitudes θ , x, y, on the probability π , and on the individual’s preferences
under uncertainty. For a wide range of circumstances it is possible to model an
individual’s preferences by means of a utility-of-wealth function U(w), where w
is the market value of the individual’s wealth. The utility function represents the
individual’s preferences in the sense that he or she would prefer the risky asset
if and only if

πU(x) + (1 − π)U(y) > U(θ).

The expected utility (EU) of an asset is the weighted sum of the payoff utilities,
where each weight is the probability of the associated payoff.

DEFINITION: Expected utility (EU)
If U is the utility-of-wealth function and x dollars is received with probability
π and y is received with probability 1 − π then

EU = πU(x) + (1 − π)U(y).

Example 6.2: EU when the bad outcome is a burglary

The individual’s utility-of-wealth function is U(w) = 4
√

w. Then for the situation
of Example 6.1

EU = 0.3 × 4
√

40 + 0.7 × 4
√

100 = 35.6.

It is possible to prove that, under some fairly mild assumptions on the nature
of individual preference under uncertainty, for each preference scheme there is
a utility-of-wealth-function such that the individual will always choose the asset
that leads to the highest expected utility of wealth. In other words, the individual
acts so as to maximize his or her expected utility.
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DEFINITION: Expected utility maximization
The market will provide the individual with a range of affordable assets, and
the individual will choose the one that yields values of x and y that maximize
πU(x) + (1 − π)U(y) over all affordable assets.

This means that the individual can be represented as an expected utility
maximizer. The quantity πU(x) + (1 − π)U(y) is called the expected utility of an
investment that results in a wealth level of x with probability π and a wealth level
of y with probability 1 − π . In general, given a choice between an investment
I that yields x with probability π and yields y with probability 1 − π and an
investment J that yields a with probability ρ and b with probability 1 − ρ, the
individual will choose I if

πU(x) + (1 − π)U(y) > ρU(a) + (1 − ρ)U(b)

and will choose J if

ρU(a) + (1 − ρ)U(b) > πU(x) + (1 − π)U(y).

We are assuming expected utility maximization but, as we have said, it is
possible to deduce this property from mild assumptions about individual pref-
erence. We do not present the proof in this book, however.

Example 6.3: Individuals with different preferences make
different choices

Dale’s utility-of-wealth function is U(w) = 10
√

w and Joanne’s is U(w) = 2w.
Each has to choose between a safe asset A that leaves the individual with $196
for sure, and a risky asset B that yields $36 with probability 1/2 and $400 with
probability 1/2. For Dale we have

EU(A) = 10
√

196 = 140

and

EU(B) = 1/2 × 10
√

36 + 1/2 × 10
√

400 = 130.

For Joanne,

EU(A) = 2 × 196 = 392

and

EU(B) = 1/2 × 2 × 36 + 1/2 × 2 × 400 = 436.

Dale chooses A but Joanne chooses B.
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Even in an uncertain environment outcomes can be tested for efficiency. We
apply the standard definition (of Chapter 1, Section 4) but we used expected
utility as the individual’s payoff. (If your town built so many parking garages that
you always found a spot, no matter where or when you arrived, the outcome
would not be efficient. Can you explain why?)

Source
Von Neumann and Morgenstern (1944) introduced the notion of expected util-
ity. They also showed how it could be used to represent a very wide family of
preference schemes.

Links
The axioms that imply expected utility maximization are introduced and
explained in Chapter 5 of Kreps (1988), where a fairly elementary proof that
the axioms imply EU maximization can also be found. A more general result
is Herstein and Milnor (1953). Chapter 6 in Mas-Colell, Whinston, and Green
(1995) also contains a very general theorem and proof, along with a discussion
of the associated economics.

6.2 Risk aversion and risk neutrality
Suppose that you are offered a choice between your annual salary of $40,000 for
sure, and a chance of getting double that salary with probability 1/2 accompa-
nied by an equal chance of winding up with zero. Most of us would choose the
sure thing because the two options have the same expected monetary value of
$40,000, but the plunge from $40,000 to zero is far more devastating than a drop
from $80,000 to $40,000.

Example 6.4: A chance to double your salary

If the individual’s utility-of-wealth function is U(w) = 4
√

w then the EU of
$40,000 for sure is 4

√
40,000 = 800. The EU of a gamble that yields $80,000 with

probability 1/2 or zero with the same probability is

1/2 × 4
√

80,000 + 1/2 × 4
√

0 = 565.7.

This individual prefers $40,000 for sure because it yields a higher level of expected
utility than the gamble.

We say that individuals are risk averse if they prefer having w for sure to an
uncertain wealth level with an expected monetary value that is no higher than
w. If asset A yields a high outcome y with probability 1/2 and a low outcome x
with probability 1/2, and asset B yields y + δ with probability 1/2 and x − δ with
probability 1/2 and δ > 0, then B is unambiguously the riskier asset. The two have
the same mean, but B’s payoffs have a wider spread than A’s.
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DEFINITION: Risk aversion
Individuals are risk averse if for any payoff w they would always prefer w
dollars for sure to an asset under which their wealth would have an expected
monetary value of w but which would leave them with less than w with
positive probability. In general, if assets A and B provide the individuals
with the same expected monetary value of wealth, but A is unambiguously
less risky, risk-averse individuals will always prefer A to B.

The individual would prefer θ for sure if the opportunity of obtaining a higher
level of wealth brought with it the chance of winding up with a lower level of
wealth and θ is at least as high as the average (expected) wealth associated with
the gamble.

We conclude this section by showing that risk aversion is equivalent to dimin-
ishing marginal utility of wealth: We let MUw denote the marginal utility of wealth
at the level w. Suppose that we have MUx > MUy for any choice of x and y such
that x < y. In other words, the marginal utility of wealth is always positive, but
it is smaller at higher levels of wealth. Consider an asset that pays w − δ with
probability 1/2 and w + δ with probability 1/2, where δ > 0. The EMV of this asset is
w. Let L denote the potential utility loss, U(w) − U(w − δ), and let G denote the
potential utility gain, U(w + δ) − U(w). Diminishing marginal utility of wealth
implies that L is larger than G, because L involves a change in wealth at a lower
level than G. Therefore, 1/2G < 1/2L, which can be written

1
2

[U(w + δ) − U(w)] <
1
2

[U(w) − U(w − δ)].

Add 1/2U(w) + 1/2U(w − δ) to both sides of this inequality. We get

1
2

[U(w + δ) + U(w − δ)] <
1
2

[U(w) + U(w)] = U(w).

Therefore, the EU of an asset that yields w + δ with probability 1/2 and w − δ with
probability 1/2 is less than the EU of w dollars for sure. This is a consequence of
diminishing marginal utility of wealth, and it holds for every wealth level w and
every positive δ. Therefore, diminishing marginal utility of wealth implies risk
aversion.

Figure 2.9 portrays the graph of a utility-of-wealth function with diminishing
marginal utility. Diminishing MU causes the graph to bow upward, so that the
straight line connecting any two points on the graph lies entirely below the graph,
except at the endpoints. Let x be the wealth level at the left end with y denoting
the wealth at the other end. The wealth level at the halfway point on the line is
1/2 x + 1/2 y. Note that this is the expected monetary value of an asset that leaves
wealth at x with probability 1/2 and at y with probability 1/2. The coordinate on
the vertical axis for the halfway point on the straight line is the average utility,
1/2U(x) + 1/2U(y). Of course, this is the EU of an asset that leaves wealth at x
with probability 1/2 and at y with probability 1/2. Because of the curvature of the
graph of U, U(1/2 x + 1/2 y) is greater than 1/2U(x) + 1/2U(y). In other words, the
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U( y)

U(0.5x + 0.5y)

0.5U(x) + 0.5U( y)

U(x)

x 0.5x + 0.5y y w

U(w)

Figure 2.9

utility from 1/2 x + 1/2y for sure is greater than the expected utility of an asset
with an EMV of 1/2 x + 1/2y, if the probability of receiving x is positive. Therefore,
diminishing marginal utility of wealth implies risk aversion.

It is easy to show that risk aversion implies diminishing marginal utility of
wealth. We just have to press “rewind.” By definition of risk aversion, we have

1
2

[U(w + δ) + U(w − δ)] < U(w)

for every choice of positive w and δ because the EMVs are equal. This implies

1
2

[U(w + δ) + U(w − δ)] <
1
2

[U(w) + U(w)]

and hence U(w + δ) − U(w) < U(w) − U(w − δ).
But U(w + δ) − U(w) is proportional to the marginal utility of wealth at the

wealth level w, and U(w) − U(w − δ) is proportional to the marginal utility of
wealth at the lower level w − δ. Therefore, risk aversion implies that the marginal
utility of wealth is lower at higher levels of wealth.

A risk-neutral individual is insensitive to the degree of risk. He or she will
always chooses the asset with the higher EMV and will be indifferent between
two assets with the same EMV, even if one has a much bigger spread between
the two payoffs.

DEFINITION: Risk neutrality
Individuals are risk neutral if for any two assets A and B they prefer A to B if
and only if A has a higher expected monetary value than B.
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In general, to determine which asset an individual will choose we have to
determine how each asset will affect an individual’s wealth and then calculate
the resulting expected utility. The asset that results in the highest EU from the
final wealth portfolio will be the one that is chosen. However, in the case of a
risk-neutral decision maker, we just have to calculate the expected monetary
value of each asset. The one with the highest EMV will be chosen. That follows
from the fact that

EMV (original wealth + new asset) = EMV (original wealth)

+ EMV (new asset).

The asset with the highest EMV will be the asset that leads to the highest EMV
of the new wealth portfolio.

We have shown—albeit informally—that risk aversion is equivalent to dimin-
ishing marginal utility of wealth. The next subsection uses elementary calculus
to establish this rigorously.

∂6.3 Risk aversion and a negative second derivative
If y ≥ x then a risk-averse individual is one who would prefer an asset A that
yielded y with probability 1/2 and x with probability 1/2 to an asset B that yielded
y + δ with probability 1/2 and x − δ with probability 1/2, as long as δ is positive.
Notice that A and B have the same EMV, 1/2x + 1/2y. For a risk-averse individ-
ual asset B will have a lower expected utility because there is a greater spread
between the bad outcome and the good outcome. The definition of risk aversion
leads directly to a proof that risk-averse individuals have utility functions with
negative second derivatives. (For the converse, a utility-of-wealth function with
a negative second derivative everywhere implies risk aversion; see the sketch of
a proof employing Figure 2.9 in Section 6.2.)

Suppose that y > x and δ > 0. By the definition of risk aversion 1/2U(y) +
1/2U(x) > 1/2U(y + δ) + 1/2U(x − δ) and therefore U(x) − U(x − δ) > U(y + δ) −
U(y), which implies

U(x) − U(x − δ)
δ

>
U(y + δ) − U(y)

δ

because δ is positive. As δ approaches zero the left-hand side of this inequality
approaches U′(x) and the right-hand side approaches U′(y). Therefore, we have
proved that U′(y) ≤ U′(x) holds whenever y > x. But we can do better.

Suppose that U′(x) = U′(y) and x < y. Then U′(x) = U′(z) = U′(y) for x ≤
z ≤ y because we have just proved that U′ cannot increase as wealth increases.
That is, U′(x) ≥ U′(z) ≥ U′(y) = U′(x) implies U′(x) = U′(z) = U′(y). Consider
the asset that yields x0 = x + 1/4(y − x) with probability 1/2 and y0 = y − 1/4(y − x)
with probability 1/2. For a risk-averse individual this must have a higher expected
utility than the asset that yields x and y each with probability 1/2 because the latter
has the same expected monetary value as the former but a lower bad outcome
and a higher good outcome. Therefore, for δ = 1/4(y − x) we have

1/2U(x) + 1/2U(y) < 1/2U(x + δ) + 1/2U(y − δ)



6. Decision Making Under Uncertainty 119

and thus

U(y) − U(y − δ) < U(x + δ) − U(x).

But this is inconsistent with U′ being constant on the range of values between
x and y. The inconsistency arises from the fact that constant U′ implies U(y) −
U(y − δ) = δU′(x) = U(x + δ) − U(x). We must conclude thatU′(x) > U′(y) actu-
ally holds for a risk-averse person whenever x < y.

The risk-aversion theorem

An individual with a twice differentiable utility-of-wealth function U is risk
averse if and only if the second derivative of U is negative at every point.

Because a risk-averse individual gets higher expected utility from asset A
than asset B if they have the same EMV but A is unambiguously less risky, it is
clear that a risk-averse individual will pay a premium—large or small, depend-
ing on preference—to avoid risk. This is one of the foundations of the insurance
industry. (The other is the law of large numbers.) In fact, the prominence of insur-
ance in almost all aspects of our economy is strong evidence for the prevalence
of risk aversion. Individuals have even been known to buy insurance against the
possibility that an existing insurance opportunity will disappear.

Because a risk-neutral person is indifferent between two assets with the same
EMV, we have

1
2

U(x) + 1
2

U(y) = 1
2

U(x + δ) + 1
2

U(y − δ)

for all values of x, y, and δ. Therefore,

U(y) − U(y − δ)
δ

= U(x + δ) − U(x)
δ

for all δ �= 0, and thus U′(x) = U′(y) for all x and y. If the first derivative is constant
the function U must be of the form U(x) = αx + β. If utility is increasing in wealth
we must have α > 0. Therefore, maximizing expected utility is equivalent to
maximizing expected monetary value in the case of a risk-neutral individual.

6.4 The market opportunity line
In the absence of uncertainty the individual’s consumption plan (x, y) must
be chosen from a budget line determined by equating expenditure and income.
When the individual chooses in an uncertain environment the market also deter-
mines the combinations of x and y from which the decision maker is able to
choose. Although these pairs (x, y) can’t always be represented by a straight line,
almost all of the examples in this book are elementary enough to be so depicted.
Hence, for convenience we refer to the market opportunity line.
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DEFINITION: Market opportunity line

The market opportunity line is the set of pairs (x, y) from which the individual
is allowed to choose.

Example 6.5: An investment

An individual with current wealth of $160 has an opportunity to invest in a
project that will be successful with probability 0.7, in which case the individual
will receive $4 for every dollar invested. There is a probability 0.3 that the project
will fail and the individual will get back only twenty cents on the dollar. Let C
be the amount invested. If the project fails the individual’s wealth will be 160 −
C + 0.2C = 160 − 0.8C . If the project were to succeed, the individual’s wealth
will be 160 − C + 4C = 160 + 3C . Therefore, x = 160 − 0.8C and y = 160 + 3C .
From the first of these equations we have C = 200 − 1.25x. Now substitute the
right-hand side of this equation for C in y = 160 + 3C . We get

y = 160 + 3(200 − 1.25x) = 760 − 3.75x.

Finally, the market opportunity line can be expressed as 3.75x + y = 760.

Example 6.6: Insurance

An individual with current wealth of $100 will have 70% of it stolen with a prob-
ability of 0.3. He can purchase insurance for forty cents per dollar of coverage.
If C is the amount of coverage purchased, then the individual’s wealth will be
x = 30 + C − 0.4C if there is a burglary, and y = 100 − 0.4C if there is no burglary.
Because x = 30 + 0.6C we have C = (1/0.6)x − 50. Therefore,

y = 100 − 0.4
(

1
0.6

x − 50
)

= 120 − 2
3

x.

The market opportunity line is (2/3)x + y = 120. Note that this equation is sat-
isfied when the individual buys no insurance, in which case x = 30 and y = 100.

When π is the probability of receiving x and 1 − π is the probability of receiv-
ing y, and the market opportunity line has the form πx + (1 − π)y = θ , then we
say that the odds are fair.

DEFINITION: Fair odds line
A fair odds line is any market opportunity line that can be written in the
form

πx + (1 − π)y = θ ,

where π is the probability of actually receiving x, 1 − π is the probability of
actually getting y, and θ is some constant.
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If 2πx + 2(1 − π)y = θ we still have fair odds because we can divide both sides of
the equation by 2 to get πx + (1 − π)y = θ/2. In fact, if the market opportunity
equation is p1x + p2 y = θ then we have fair odds if and only if p1/p2 = π/(1 − π).
In that case, multiply both sides of p1x + p2 y = θ by π/p1 and use the fact
that p2π/p1 = 1 − π to prove that the equation can be expressed in the form
πx + (1 − π)y = θπ/p1.

Note that we do not have fair odds in Example 6.5 because p1/p2 = 3.75/1 =
3.75 but π/(1 − π) = 0.3/0.7 = 0.429. Nor do we have fair odds in Example 6.6
because p1/p2 = 2/3 but π/(1 − π) = 0.3/0.7 = 0.429.

Example 6.7: Insurance with fair odds

An individual with current wealth of $100 will have 70% of it stolen with prob-
ability 0.2. Every dollar of premium paid to the insurance company results
in $5 being received in case of an accident. If P is the premium paid, then
x = 30 + 5P − P and y = 100 − P. This last equation yields P = 100 − y and
thus x = 30 + 4P = 30 + 4(100 − y). Therefore, the market opportunity line is
x + 4y = 430. The ratio of probabilities is 0.2/0.8, which is also equal to 1/4, the
ratio of the coefficients of the market opportunity line. The individual faces fair
odds.

The next two sections relax the assumption that there are only two possible
outcomes. In fact, we now assume an infinite number of possibilities.

6.5 The uniform probability distribution
Suppose that the random variable x could turn out to be any of the real numbers
between zero and one inclusive. Assume further that each value is as likely as any
other. This characterizes the uniform probability distribution. Because there are
an infinite number of values between 0 and 1, the most useful way of applying
the uniform distribution is in terms of the probability that x is between 0 and β,
for a given value of β (not exceeding 1). For the uniform probability distribution,
the probability that 0 ≤ x ≤ β is β itself. The probability that 0 ≤ x < β is also β.
Now, consider the uniform probability distribution on the interval [a, b], which
is the set of x such that a ≤ x ≤ b.

DEFINITION: The uniform probability distribution
If x is a random draw from the interval [a, b] then the probability that a ≤ x ≤
β is (x − a)/(β − a) if x is governed by the uniform probability distribution
on [a, b].

For instance, if you are submitting a bid in a sealed-bid auction with one
other participant, and you view your opponent’s bid as a random draw from
the uniform probability distribution on the interval [0, 100] then the probability
that you will win with your bid of x is the probability that the other person’s bid
is below x, which is x/100.
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∂6.6 The continuum case in general
Suppose that the random variable x is drawn from the interval [a, b] of real
numbers, where [a, b] denotes the set of all numbers x such that a ≤ x ≤ b.
We use a probability density function f (x) to determine the probability that x
belongs to the subinterval [α, β]. The function f is integrable, and given real
numbers α and β such that a ≤ α < β ≤ b,

Prob[α < x < β] =
∫ β

α

f (x) dx.

Of course, Prob[α < x < β] denotes the probability that x > α and x < β both
hold. In the continuum case, Prob[α < x < β] = Prob[α < x ≤ β] = Prob[α ≤
x < β] = Prob [α ≤ x ≤ β].

Given the utility-of-wealth function U, the expected utility of the random
variable x over the interval (α, β) is defined by∫ β

α

U(x) f (x) dx.

In the case of the uniform probability distribution on [a, b], f (x) = 1/(b − a)
for all x. Hence

Prob[α < x < β] =
∫ β

α

1
b − a

dx = β

b − a
− α

b − a
= β − α

b − a
.

Therefore, if a = 0 then x is drawn from the uniform probability distribution
on the set of numbers between 0 and b, in which case the probability that x
is less than β is β/b. Consequently, if x is drawn from the uniform probability
distribution on the set of numbers between 0 and 1 then the probability that x
is less than β is β itself. Finally, for the uniform probability distribution on [a, b],
we have f (x) = 1/(b − a), and thus the expected utility of the random variable
x over the interval (α, β) with respect to the utility function U is∫ β

α

U(x)
b − a

dx.

Link
See Sheffrin (1993, p. 51) for an instance of the purchase of insurance against
the possibility that an existing insurance opportunity will disappear.

Problem set

1. The individual’s utility-of-wealth function is U(w) = √
w and current wealth

is $10,000. Is this individual risk averse? What is the maximum premium that
this individual would pay to avoid a loss of $1900 that occurs with probability
1/2? Why is this maximum premium not equal to half of the loss?

2. An individual has a utility-of-wealth function U(w) = ln(w + 1) and a current
wealth of $20. Is this individual risk averse? How much of this wealth will this
person use to purchase an asset that yields zero with probability 1/2, and with
probability 1/2 returns $4 for every dollar invested? (When the asset pays off,
a $1 investment returns $3 net of the original outlay.)
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3. The utility-of-wealth function is U(w) = ln(w + 1) and the individual’s cur-
rent wealth is θ . As a function of π , r, and θ how much of this wealth will the
individual invest in a project that yields zero with probability π , and with
probability 1 − π pays rC dollars to an investor who has sunk C dollars into
the project?

4. For U(w) = √
w prove that U(1/2 x + 1/2y) > 1/2U(x) + 1/2U(y) for x �= y.

5. For U(w) = √
w prove that U(πx + (1 − π)y) > πU(x) + (1 − π)U(y) for 0 <

π < 1 and x �= y.

6. Diane has a utility-of-wealth function U(w) = √
w and a current wealth of

$2000.

A. Will Diane invest in a scheme that requires an initial capital outlay of
$2000 and returns nothing with probability of 1/2 (i.e., the initial outlay
is lost and there is no revenue) and returns $6000 with probability
of 1/2?

B. Cathy is identical to Diane in every respect. If Diane and Cathy can
share the investment (this is called risk spreading) will they do so? In
this case sharing means that each puts up $1000 and they split the
proceeds of the investment.

7. Leo, who has a utility-of-wealth function U(w) = ln(w + 20), has $100 of
income before tax and is taxed at a rate of 40% of earned income. If he
is caught underreporting his income he will have to pay the taxes owed
and in addition will pay a fine of $1 for every dollar of income he failed
to report. How much income will he conceal (i.e., fail to report) if the
probability of being caught is 0.2? (Let C denote the amount of income
concealed.)

8. Teri, who has a utility-of-wealth function U(w) = ln(w + 100), would have
an after-tax income of $100 if she reported all her income. She is taxed at a
rate of 50% of earned income (just to keep the calculations simple). If she
is caught underreporting her income she will have to pay the taxes owed,
of course, but in addition she will pay a fine of F dollars for every dollar of
income she failed to report.

A. How much income will she conceal (i.e., fail to report) if F = 2 and
the probability of being caught is 0.10? Let C denote the amount of
income concealed.

B. Determine C as a function of the fine F and the probability of being
caught ρ. Show that C falls when either F or ρ increases.

9. Spencer, who has a utility-of-wealth function U(w) = √
w, has an initial

wealth of $52. He has an opportunity to invest in a project that will cause him
to lose his capital with probability 0.75, but with probability 0.25 will provide
a net return of $4 for every dollar of capital he puts up. How much will he
invest? (Let A denote the amount invested—i.e., the amount of capital he
puts up. He loses A if the project fails, but if it succeeds it will pay him $5
gross for every dollar invested.)
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10. Determine the market opportunity line for questions 2, 3, 7, 8A, and 9.

11. A standard measure of the degree of risk aversion at wealth level w is
−U′′(w)/U′(w). (It is called the Arrow-Pratt measure.)

A. Show that if U(w) = wα , where α is a positive constant less than one,
then risk aversion decreases as w increases.

B. Show that if U(w) = K − e−αw, where α > 0, then degree of risk aver-
sion is independent of the level of wealth.

(The idea of the Arrow-Pratt measure is that the faster the marginal utility of
wealth declines, the more risk averse the individual is. The first derivative of
U is used as the denominator because we would otherwise have a change in
the measure if we replaced U with λU for λ > 0. That would be undesirable
because the underlying preferences can be represented by either U or λU:
If the EU of asset A exceeds that of asset B according to U then the EU of A
will be greater than the EU of B according to λU, and vice versa.)

12. The host of the television game show Wheel of Fortune tells contestants
that it would be irrational to risk $15,000 for a $12,000 car because the
probability of losing everything is one-half. The “asset” in this case yields
zero with probability 1/2 and $27,000 with probability 1/2. If the individual
stands pat and takes the safe asset, he or she will have $15,000 for sure.

A. Explain why any risk-averse individual would stand pat.

B. Find a utility-of-wealth function U such that the EU of the risky asset
is greater than the expected utility of $15,000 for sure. Of course, U
will not have diminishing marginal utility.

(I have oversimplified the position in which the contestants find themselves,
but not in ways that vitiate the point that the gamble is not irrational for
some people.)

7 INSURANCE

In this section we work out the equilibrium of a competitive insurance market
when the probability of an accident is the same for any two individuals and
no individual has an opportunity to reduce the probability of an accident by
devoting effort to preventive care. These two extreme assumptions establish a
benchmark case. We relax the latter in Section 9 of Chapter 3 when we take
account of the fact that if everyone takes preventive care there will be far fewer
accidents and hence a higher level of expected utility for everyone. However,
with insurance coverage no individual has incentive to invest in preventive
care. Section 7 of Chapter 5 examines a competitive insurance market when dif-
ferent individuals have different probabilities of an accident. That information
is hidden from the insurance companies and that can also result in inefficiency.
But in this chapter everyone has the same probability of an accident, and that
probability is independent of any choice made by any individual. We begin by
showing that a risk-averse decision maker will set x = y when confronted with
fair odds.
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7.1 The complete insurance theorem
When risk-averse individuals choose under fair odds they will set x = y. This
will allow us to identify their decision quickly: If the market opportunity line is
πx + (1 − π)y = θ , then x = y implies πx + (1 − π)x = θ , so x = θ = y.

Complete insurance theorem

A risk-averse individual will maximize expected utility by setting x = y when-
ever the odds are fair.

We say that we have compete insurance whenever x = y because the individual’s
wealth is the same in either event. Without complete insurance, the low payoff
(which occurs with probability π) will be lower than the payoff that occurs with
probability 1 − π .

7.2 Sketch of the proof of the complete insurance theorem
We test the bundle (x, y) to see if it maximizes expected utility subject to the fact
that x and y must be on the opportunity line. With x as the initial level of wealth,
let MUX denote the increase in U per unit increase in wealth in the “accident”
state. Similarly, starting from the level y, let MUY denote the increase in U per
unit increase in wealth in the “no accident” state.

Under fair odds the individual’s choice of x and y must satisfy πx + (1 −
π)y = θ . We can solve this for y. We get

y = θ

1 − π
− π

1 − π
x.

Therefore, if we change x and y by x and y, respectively, we must have y =
−[π/(1 − π)]x. The resulting change in EU will be

EU = π × MU X × x + (1 − π) × MUY × y.

Replace y in this last expression by −[π/(1 − π)]x. We get

EU = π × MU X × x + (1 − π) × MUY × − π

1 − π
x

= πx(MU X − MUY ).

Therefore, a fair odds market opportunity line implies that EU = πx(MU X −
MUY ). If MU X > MUY then we can increase EU by setting x > 0, in which
case both πx and MU X − MUY will be positive, and thus EU will also be pos-
itive. Therefore, if MU X > MUY we have not maximized EU. If MU X < MUY

then we can increase EU by setting x < 0, in which case both πx and
MU X − MUY will be negative, and thus EU will be positive. Therefore, EU
is not at its maximum if MUX �= MUY . We have established that MUX must equal
MUY at the values of x and y that maximize EU. Diminishing marginal utility of
wealth implies that MUX > MUY if x < y and MUX < MUY if x > y. Therefore,
if MUX = MUY holds if and only if x = y. Consequently, maximization of EU
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subject to fair odds implies that x = y. When we set x = y in the opportunity
line πx + (1 − π)y = θ we get x = θ = y.

∂7.3 Calculus proof of the complete insurance theorem
We want to maximize EU = πU(x) + (1 − π)U(y) subject to πx + (1 − π)y = θ .
First we solve the market opportunity equation for y. We get y = θ/(1 − π) −
[π/(1 − π)]x. Then dy/dx = −π/(1 − π). The variable y appears in the expression
for EU, but we will treat it as a function of x. Then we can set

V (x) = πU(x) + (1 − π)U(y)

and use the chain rule to find the first derivative of V. We have

dV
dx

= πU′(x) + (1 − π)U′(y) × dy
dx

= πU′(x) + (1 − π)U′(y) × − π

1 − π

= πU′(x) − πU′(y).

The first derivative must be equal to 0 at a maximum of V. But V ′ = 0 and V ′ =
πU′(x) − πU′(y) imply U′(x) = U′(y). Finally, because U′′ < 0 at every point (by
the risk-aversion assumption) we can have U′(x) = U′(y) if and only if x = y.
(If U′′ < 0 at every point then the first derivative of U falls as the wealth level
increases. Therefore, if x < y then U′(x) > U′(y), and if x > y we have U′(x) <

U′(y).)
To confirm that V ′ = 0 takes us to a maximum, let’s compute the second

derivative of V. With fair odds the first derivative of V is πU′(x) − πU′(y). Then

V ′′ = πU′′(x) − πU′′(y) × dy
dx

= πU′′(x) − πU′′(y) × − π

1 − π

= πU′′(x) + π2

1 − π
U′′(y).

Because π and (1 − π) are both positive and U′′ is negative at every point (by the
risk-aversion assumption) we have V ′′(x) < 0 for all x. Therefore, V ′ = 0 at the
point where V achieves its unique global maximum.

Example 7.1: A specific utility-of-wealth function

The utility-of-wealth function is U(w) = ln(w + 1). The individual will receive x
with probability 1/4 and y with probability 3/4. We are told that 1/4 x + 1/4y = 10
is this individual’s market opportunity equation. Therefore, he or she faces
fair odds. Now, maximize 1/4 ln(x + 1) + 3/4 ln(y + 1) subject to 1/4 x + 3/4 y = 10.
From the market opportunity line we have y = 40/3 − 1/3 x. Then we wish to
maximize

V (x) = 1
4

ln(x + 1) + 3
4

ln
(

40
3

− 1
3

x + 1
)

.

We have

V ′(x) = 1
4

(x + 1)−1 + 3
4

(y + 1)−1 ×
(

−1
3

)
= 1

4
(x + 1)−1 − 1

4
(y + 1)−1.
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Note that V ′′ < 0 at all points. Therefore, if V ′(x) = 0 yields nonnegative values of
x and y the equation V ′(x) = 0 will characterize the solution to our problem. But
V ′(x) = 0 gives us 1/4(x + 1)−1 = 1/4(y + 1)−1. Multiply both sides by 4(x + 1)(y +
1). This yields y + 1 = x + 1, and hence x = y. Substituting x for y in the market
opportunity equation yields x = 10. Thus x = 10 = y and we have complete
insurance.

The next three examples demonstrate that different risk-averse individuals
will purchase different levels of insurance coverage if the odds are not fair, but
the same individuals will choose complete insurance when the odds are fair.

Example 7.2: Insurance without fair odds

Rosie’s utility-of-wealth function is U(w) = √
w. Her current wealth is $100, but

with probability 0.3 an accident will reduce her wealth to $30, as summarized by
Table 2.3. Suppose that a dollar of insurance coverage costs forty cents. Therefore,
if Rosie has an accident and has C dollars of coverage her wealth will be

x = 30 + C − 0.4C = 30 + 0.6C.

(She gets a claim check for C dollars but still has to pay her premium in a year
when she has an accident.) With C dollars of insurance she will have wealth of

y = 100 − 0.4C

if she doesn’t have an accident. Let’s calculate the market opportunity line: We
have y = 100 − 0.4C and thus C = 250 − 2.5y. Now substitute 250 − 2.5y for C in
the expression x = 30 + 0.6C . We get x = 30 + 0.6 × (250 − 2.5y) = 30 + 150 −
1.5y. That is, x = 180 − 1.5y. Then

x + 1.5y = 180

is the equation of the market opportunity line. We do not have fair odds because
the ratio of the x coefficient to the y coefficient is 2/3 but the ratio of probabilities
is 3/7, which is smaller than 2/3.

Table 2.3

State Probability Wealth

No accident 0.7 100
Accident 0.3 30

Let’s determine how much insurance Rosie will purchase. We want to maxi-
mize

EU = 0.3
√

x + 0.7
√

y = 0.3
√

30 + 0.6C + 0.7
√

100 − 0.4C ,
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a function of C . The first derivative is

0.3 × 0.6

2
√

30 + 0.6C
+ 0.7 × −0.4

2
√

100 − 0.4C
.

We maximize EU by setting the first derivative equal to 0. (Confirm that the
second derivative is negative for all C ≥ 0.) After setting the first derivative equal
to 0 and multiplying both sides of the equation by 200 we get

18√
30 + 0.6C

− 28√
100 − 0.4C

= 0.

This implies 9
√

100 − 0.4C = 14
√

30 + 0.6C . We square both sides and solve for
C , yielding C∗ = 14.8. If Rosie has an accident her wealth will be x∗ = 30 + 0.6 ×
14.8 = 38.88. If there is no accident her wealth will be y∗ = 100 − 0.4 × 14.8 =
94.08. With insurance, Rosie’s EU will be 0.3

√
38.88 + 0.7

√
94.08 = 8.66. Without

insurance her EU is 0.3
√

30 + 0.7
√

100 = 8.64.

Let’s see what a different individual will choose with the same market oppor-
tunity.

Example 7.3: The same odds but a different utility-of-wealth function

Soren’s utility-of-wealth function is U(w) = ln(w + 1). Except for the utility-of-
wealth function, the data are the same as for Example 7.2: Soren’s wealth will be
$100 with probability 0.7 and $30 with probability 0.3. A dollar of insurance cov-
erage costs forty cents. To determine how much insurance Soren will purchase
we maximize

EU = 0.3 ln(x + 1) + 0.7 ln(y + 1) = 0.3 ln(30 + 0.6C + 1)

+ 0.7 ln(100 − 0.4C + 1).

The first derivative is
0.3 × 0.6

31 + 0.6C
+ 0.7 × −0.4

101 − 0.4C
.

(Confirm that the second derivative is negative for all C ≥ 0.) When we set
the first derivative equal to 0 and solve for C we get C∗ = 39.58. This is sub-
stantially more coverage than Rosie would purchase under the same terms.
Evidently, Soren is more risk averse than Rosie. If Soren has an accident
his wealth will be x∗ = 30 + 0.6 × 39.58 = 53.75. If there is no accident his
wealth will be y∗ = 100 − 0.4 × 39.58 = 84.17. With insurance, Soren’s EU will
be 0.3 ln(53.75 + 1) + 0.7 ln(84.17 + 1) = 4.31. Without insurance his EU is
0.3 ln(30 + 1) + 0.7 ln(100 + 1) = 4.26.

Both individuals buy some insurance, even though it lowers the EMV
of their wealth. With x = 30 + 0.6C and y = 100 − 0.4C we have E MV =
0.3(30 + 0.6C) + 0.7(100 − 0.4C) = 79 − 0.1C . Then without insurance we have
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C = 0 and E MV = 79. But if C is positive then EMV is less than 79. Risk-averse
individuals typically buy some insurance even when it lowers the EMV of their
wealth because the reduction in exposure to risk more than makes up for the
loss in EU resulting from the loss in EMV. (Of course, under fair odds the EMV
of wealth is the same with insurance as without.)

Now, suppose that the cost of a dollar of insurance coverage falls to thirty
cents. This leads to fair odds. Let’s check. We now have

x = 30 + C − 0.3C = 30 + 0.7C and y = 100 − 0.3C.

From the second equation we get C = 100/0.3 − y/0.3. When we substitute the
right-hand side for C in the equation x = 30 + 0.7C we get

x = 30 + 70
0.3

− 0.7y
0.3

.

Multiply both sides by 0.3, resulting in 0.3x = 79 − 0.7y, or 0.3x + 0.7y = 79. We
do indeed have fair odds.

Example 7.4: The chosen coverage under fair odds

As shown in Table 2.4, the individual faces the same risk as in the previous two
examples. A dollar of insurance coverage now costs thirty cents. Rosie will now
maximize

EU = 0.3
√

x + 0.7
√

y = 0.3
√

30 + 0.7C + 0.7
√

100 − 0.3C .

The first derivative is
0.3 × 0.7

2
√

30 + 0.7C
+ 0.7 × −0.3

2
√

100 − 0.3C
.

Note that the derivative is 0 when C = 70. Rosie chooses $70 of cover-
age. In that case, x = 30 + 0.7 × 70 = 79 and y = 100 − 0.3 × 70 = 79. Rosie
chooses complete insurance. Note also that the expected value of her wealth

Table 2.4

State Probability Wealth

No accident 0.7 100
Accident 0.3 30

is $79 with insurance, and it is also $79 without insurance (0.3 × 30 + 0.7 ×
100 = 79). With complete insurance Rosie’s EU is 0.3

√
79 + 0.7

√
79 = 8.89.

To determine how much insurance Soren will purchase under fair odds we
maximize

EU = 0.3 ln(x + 1) + 0.7 ln(y + 1) = 0.3 ln(30 + 0.7C + 1)

+ 0.7 ln(100 − 0.3C + 1).



130 Basic Models and Tools

The first derivative is

0.3 × 0.7
31 + 0.7C

+ 0.7 × −0.3
101 − 0.3C

,

which will be zero when C = 70. The two risk-averse individuals make the same
choice when the odds are fair. With complete insurance, Soren’s EU is 0.3 ln(79 +
1) + 0.7 ln(79 + 1) = 4.38.

7.4 Competitive insurance markets
Assume a large number n of individuals and that an individual’s wealth will fall
from z to a with probability π . Each has the utility-of-wealth function U(w),
and we assume diminishing marginal utility of wealth because we assume that
each person is risk averse. Because there are n identical individuals, we can
treat the n experiences as the result of n statistically independent experiments
in which the probability of failure is π in each case. The law of large numbers
assures us that the actual number of failures will be very close to the expected
number πn with very high probability. In that case we save ourselves the trou-
ble of saying that our results hold with probability extremely close to one by
claiming that there will be exactly πn accidents. In that case there will be πn
individuals with wealth a and n − πn individuals who do not suffer an accident
and hence whose wealth is z. Therefore, the community’s actual wealth will
be πna + (n − πn)z.

Suppose that an individual pays a premium of p per dollar of net coverage.
That is, if coverage of c is purchased then the individual’s wealth will be a + c
with probability π and z − pc with probability (1 − π). (Note that the individual
pays the premium pc whether or not there is an accident.) In short, x = a + c
and y = z − pc. Because the individual ultimately cares about x and y we let the
terms of the policy be implicit and refer to an insurance policy as a pair (x, y).
We can always use (x, y) to derive the terms of the policy because c = x − a and
p = (z − y)/c. In other words, given the pair (x, y), the total premium is z − y (the
difference between wealth if there is no accident and no insurance and wealth if
there is insurance but no accident). The net coverage (the claim check minus the
premium) is the difference between wealth if there is an accident with insurance
and wealth if there is an accident but no insurance. The premium per dollar of
net coverage is, of course, the total premium divided by net coverage.

DEFINITION: The simple model
Without insurance, all individuals have wealth a if they have an accident and
z otherwise. With insurance, an individual’s wealth is x in case of an accident
and y otherwise.

Suppose that everyone buys the same policy. Then everyone will have the
same pair (x, y), with x denoting wealth in case of an accident and y representing
wealth if there is no accident. Because “exactly” πn individuals have an accident
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(and thus n − πn individuals do not have an accident) when everyone buys the
policy (x, y) the community’s wealth will be

πn × x + (n − πn) × y.

But we have also calculated total community wealth as πn × a + (n − πn) × z.
The insurance industry cannot create wealth; it can only redistribute it from
those who have not suffered an accident to those who have. Therefore,

πnx + (n − πn)y ≤ πna + (n − πn)z.

Now suppose that we actually have πnx + (n − πn)y < πna + (n − πn)z. This
means that insurance companies have taken in more money in premiums than
they paid out in claims. This is not consistent with equilibrium if we assume
that there is vigorous competition among insurance providers and that admin-
istration costs are zero. (The latter is adopted just for convenience.) Then when
more money is collected in premiums that is paid out in claims then insur-
ance companies are making a positive economic profit. Some insurance com-
panies will lower their premiums to attract customers away from other com-
panies and thus increase their profit. Hence, we can’t be at equilibrium if
πnx + (n − πn)y < πna + (n − πn)z. Because we have already established that
πnx + (n − πn)y ≤ πna + (n − πn)z must hold, we conclude that we have

πnx + (n − πn)y = πna + (n − πn)z.

Now, divide both sides of this equation by n, yielding

πx + (1 − π)y = πa + (1 − π)z.

Because this equation embodies fair odds, and individuals are risk averse,
expected utility is maximized, subject to this equality, by setting x = y. Now,
πx + (1 − π)x = x. Therefore, when we replace y by x in the equation πx + (1 −
π)y = πa + (1 − π)z we get x = πa + (1 − π)z = y. This is the equilibrium of the
competitive insurance industry. Any other policy on the fair odds line would
give individuals less expected utility, and thus would leave room for an insurer to
offer a policy resulting in x = πa + (1 − π)z and y just slightly less than that. This
would be preferred by consumers (as long as y is not too far below πa + (1 − π)z)
and would be profitable for the insurer. That tells us that the original situation
could not have been an equilibrium. And if a policy does not leave the consumer
on the fair odds line it is either not feasible or it fails to distribute all of the money
collected in claims, and either case is inconsistent with equilibrium.

Example 7.5: A simple case

The probability of an accident is π = 1/4 for each person. Then 1 − π = 3/4, the
probability that the individual does not have an accident. Each person’s wealth
is a = 4 if there is an accident and no insurance, and z = 12 if there is no accident
and no insurance. In a competitive insurance market the individual’s opportu-
nity equation is

1/4 x + 3/4y = 1/4 × 4 + 3/4 × 12 = 10.
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Because complete insurance under competitive conditions yields x = y, we have
x = 10 = y. The insurance premium is z minus wealth when there is insurance
but no accident. Specifically, the premium is 12 − 10 = 2. In case of an accident
individuals would receive claim checks for $8, and their wealth would be a +
claim check − premium = 4 + 8 − 2 = 10.

We would expect that, even with complete insurance, the individual’s wealth
would be lower if the probability of an accident were higher. The next example
illustrates.

Example 7.6: A higher probability of an accident

The probability of an accident is 1/2, which is also the probability that there is
no accident. We again assume that wealth is a = 4 if there is an accident and no
insurance and z = 12 if there is no accident and no insurance. The competitive
equilibrium per capita opportunity equation is

1/2 x + 1/2y = 1/2 × 4 + 1/2 × 12 = 8.

Then x = y gives us x = 8 = y. The insurance premium is now 12 − 8 = 4, and
if there is an accident individuals receive claim checks for $8, and their wealth
would be 4 + 8 − 4 = 8.

7.5 Efficiency of competitive insurance markets with full information
To establish a benchmark case, we are assuming away all hidden action and
hidden characteristic problems. Specifically, we suppose that no individual
can reduce the probability of an accident by devoting effort to prevention—
no hidden action—and also that the probability of an accident is the same for
everyone—no hidden characteristics. We continue to assume a large number
n of risk-averse individuals, each with a probability π of his wealth declin-
ing from z to a. We have seen that the competitive equilibrium results in
x = y = πa + (1 − π)z for each individual. We now prove that this outcome is
efficient. We do so by showing that any outcome that gives everyone higher
expected utility than the competitive equilibrium is not feasible because it
requires more total wealth than the community has available.

Suppose that each individual’s expected utility is higher at (x′, y′) than it is at
the competitive equilibrium. Because the latter maximizes individual EU on the
market opportunity line πx + (1 − π)y = πa + (1 − π)z, an allocation delivering
even higher EU must be above that line. Therefore,

πx ′ + (1 − π)y ′ > πa + (1 − π)z.

If we multiply both sides of that inequality by n we get nπx ′ + (n − nπ)y ′ >

nπa + (n − nπ)z. Because nπ individuals will have an accident, nπx ′ + (n −
nπ)y ′ is total community wealth as a result of giving each person (x′, y′), and
nπa + (n − nπ)z is actual community wealth. Then πx ′ + (1 − π)y ′ > πa + (1 −
π)z tells us that we can’t give everyone (x′, y ′) because it requires more wealth to
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be distributed than the community actually has. (Insurance, whether it is pro-
vided by private firms or the government, cannot create wealth; it can only redis-
tribute it.) Therefore, there is no feasible outcome that gives everyone higher
expected utility than the competitive equilibrium.

The preceding argument is incomplete because it ignores the possibility of
giving individuals different levels of insurance.

Example 7.7: A highly unlikely scenario

Suppose that a = 40 and z = 60 with π = 1/2. Consider two policies, A = (46, 56)
and B = (50, 54). If everyone got policy A the outcome would not be feasible
because the expected value of per capita wealth with insurance would be 1/2 ×
46 + 1/2 × 56 = 51, which exceeds 50 = 1/2 × 40 + 1/2 × 60, the expected value of
per capita wealth without insurance. Similarly, B is not feasible if everyone gets
B because its expected value is 1/2 × 50 + 1/2 × 54 = 52. Suppose, however, that
half the people get A and the other half get B. The “actual” number of accidents
will be 1/2 × n. Suppose that all the people with A have an accident, but none of
the people with B suffer an accident. Then the actual wealth per capita will be
1/2 × 46 + 1/2 × 54 = 50, and that is feasible. But we can discount this challenge
to the competitive equilibrium because, with a large number of individuals, the
probability of it happening is virtually zero. That is, if we give 1/2 n individuals
policy A and the rest policy B we can’t count on only those holding policy A to
have an accident.

There is something seriously wrong with the argument of Example 7.7. The
outcome is feasible only if a very specific—and very improbable—pattern of
accidents occurs. If no one holding the policy that pays a high claim has an
accident then the premiums can be sufficient to cover the claims paid out.
Feasibility calculations should not be so contrived. To impose a more meaningful
test we will say that a mix of policies is feasible if the expected amount of revenue
from premiums is at least as large as the expected amount paid out in claims.
We conclude this section by showing that there is no feasible set of policies—
according to this new definition—that would give everyone more expected utility
than the competitive equilibrium. We do that by showing that if a set of policies
S does give everyone more expected utility than the competitive equilibrium,
then S must not collect enough premium revenue on average to pay the claims
that will be paid out on average.

Suppose that n1 individuals get (x1, y1), a different group of n2 persons get
(x2, y2), and n3 get (x3, y3), and so on. Suppose that there are k different groups.
Of course, n1 + n2 + · · · + nk = n. Suppose that the expected utility of each indi-
vidual in group i is higher at (xi , yi) than it is at the competitive equilibrium.
Because the latter maximizes individual expected utility on the market oppor-
tunity line πx + (1 − π)y = πa + (1 − π)z, an allocation delivering even higher
expected utility must be above that line. Therefore,

πxi + (1 − π)yi > πa + (1 − π)z.
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If we multiply both sides of that inequality by ni we get niπxi + (ni − niπ)yi >

niπa + (ni − niπ)z. Because niπ individuals will have an accident, the number
niπxi + (ni − niπ)yi is total group i wealth as a result of giving (xi , yi ,) to each
person in group i, and niπa + (ni − niπ)z is actual group i wealth. Therefore,
the total wealth allocated to all individuals (over all groups) exceeds actual total
wealth summed over all individuals. This tells us that we can’t give (xi , yi ,) to
everyone in group i for all groups because it requires more wealth to be dis-
tributed than the community actually has. Note that

niπxi + (ni − niπ)yi > niπa + (ni − niπ)z

is equivalent to

niπ(xi − a) > (ni − niπ)(z − y).

The second inequality says that the total net claim paid to the individuals in
group i who have an accident exceeds the total money collected in premiums
from the people in group i who do not suffer an accident. Therefore, there is no
feasible outcome that gives everyone higher expected utility than the competi-
tive equilibrium, establishing that the competitive equilibrium is efficient.

Sufficient condition for efficiency

If there is a large number of individuals, each with probability π of having
wealth level a and probability (1 − π) of wealth z then the outcome at which
each person has x = πa + (1 − π)z = y is efficient.

Example 7.8: Expected premiums and expected claims for Example 7.7

Suppose a = 40 and z = 60 with π = 1/2. Half of the n individuals get A = (46, 56)
and the other half get B = (50, 54). Therefore, A pays a net claim of 46 − 40 = 6,
and B pays a net claim of 50 − 40 = 10. A’s premium is 60 − 56 = 4 and B’s
premium is 60 − 54 = 6. The expected number of accidents in each group is 1/4 n.
The expect amount of premium income from the individuals who don’t suffer an
accident is 1/4 n × 4 + 1/4 n × 6 = 2.5n. The total expected value of claims paid out
to those who do have an accident is 1/4 n × 6 + 1/4 n × 10 = 4n. Expected claims
paid out (4n) exceeds expected premium income (2.5n).

Problem set

1. Prove that the competitive equilibrium is efficient (not just weakly efficient)
by showing that if it is possible to give one person higher EU without lowering
anyone else’s EU then it is possible to give everyone higher EU.

2. Note that individual utility is quasi-linear in this section. Prove that an out-
come is efficient if and only if it maximizes total utility assuming that leisure
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� is transferrable across individuals. (Leisure is not really transferrable. I
can’t give you five hours of my leisure on Saturday, allowing you to consume
twenty-nine hours of leisure that day. But we can justify the fiction if we allow
the possibility that one individual can work for another. If I work for you for
five hours on Saturday, my utility will fall by five and yours will increase
by five.)

The remaining questions pertain to Dana, whose utility-of-wealth func-
tion is U(w) = 1 − 1/(w + 1), and Tyler, whose utility-of-wealth function is
U(w) = ln(w + 1). Each has a current wealth of $100 and in each case there
is a probability of 0.2 that $60 of it will be destroyed in an accident.

3. Are Dana and Tyler each risk averse? Explain.

4. Insurance can be purchased for twenty-five cents per dollar of coverage. (If
the individual has an accident and has $30 of coverage then that individual
will get a claim check for $30.)

A. Derive the market opportunity line. Does it exhibit fair odds? Explain.

B. How much insurance coverage will Dana purchase? Consequently,
what will Dana’s wealth be if she has an accident, and what wealth
will she have if she does not have an accident?

C. How much insurance coverage will Tyler choose? Consequently, what
will his wealth be if he has an accident, and what wealth will he have
if he does not have an accident?

5. Insurance can be purchased for forty cents per dollar of coverage. (If the
individual has an accident and has $30 of coverage then that individual will
get a claim check for $30.)

A. Derive the market opportunity line. Does it exhibit fair odds? Explain.

B. How much insurance coverage will Dana purchase? Consequently,
what will Dana’s wealth be if she has an accident, and what wealth
will she have if she does not have an accident?

C. How much insurance coverage will Tyler choose? Consequently, what
will his wealth be if he has an accident, and what wealth will he have
if he does not have an accident?

6. Insurance can be purchased for twenty cents per dollar of coverage. (If the
individual has an accident and has $30 of coverage then that individual will
get a claim check for $30.)

A. Derive the market opportunity line. Does it exhibit fair odds? Explain.

B. How much insurance coverage will Dana purchase? Consequently,
what will Dana’s wealth be if she has an accident, and what wealth
will she have if she does not have an accident?

C. How much insurance coverage will Tyler choose? Consequently, what
will his wealth be if he has an accident, and what wealth will he have
if he does not have an accident?
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This chapter and the next investigate the extent to which an agent can be moti-
vated to act in the principal’s interest when the principal cannot determine
whether the agent has in fact taken the appropriate action. Agents’ behavior is
problematic because their goal is to maximize their own utility. The next chap-
ter is devoted to the specific hidden action problem of motivating workers and
management in a firm, with the latter receiving most of our attention. This chap-
ter examines a wide variety of other issues. In many of these the principal is a
surrogate for society as a whole, and the principal’s utility is maximized when
the agents—the producers and consumers—are all motivated to do their part in
contributing to an efficient outcome.

As with all hidden information problems, there are hidden characteristic
elements as well as the hidden action element. In fact, some of the topics could
have been presented as hidden characteristic problems. For instance, we could
study resource allocation from the standpoint of inducing consumers to reveal
their hidden preferences and firms to reveal their hidden production technolo-
gies so that an efficient outcome can be identified. However, the approach taken
in the first section is that of inducing each individual to choose a bundle of goods
and services at which his or her marginal rate of substitution equals that of the
other consumers. Similarly, when discussing pollution abatement in Section 2,
we begin with the fact that the adjustment cost of an individual firm—the firm’s
characteristic—is hidden from the government. If the firm were simply asked
to report its adjustment cost we would have a hidden characteristic problem,
belonging in Chapter 5. However, we instead look at an incentive scheme that
harnesses the profit motive to induce firms to coordinate their actions so that
the adjustment burden falls on the firms that can reduce pollution at the lowest
cost to consumers.

Although the incentives governing the behavior of workers and manage-
ment in firms is the subject of the next chapter, we briefly examine a simple
firm to introduce you to the central problem. Hidden action problems are com-
plicated by the presence of uncertainty. If your car breaks down a week after
you bring it home from the repair shop you do not know whether you are the
victim of bad luck or shirking by the mechanic. This makes it hard to design
efficient, incentive-compatible contracts. Consider the case of a principal who
owns farmland and hires a worker—the agent—to operate the farm. Suppose
that the landlord charges a fixed rent and hence allows the agent to keep all the
proceeds of the farm over and above the rental payment. Then the agent has
maximum incentive to run the farm efficiently. That’s because the agent is the
residual claimant under the rental contract: Once the rent is paid every addi-
tional dollar of profit goes directly into the agent’s pocket. This should result
in the maximum possible payoff for both the principal and the agent. The rent
can be set at a level that leaves each with a higher return that can be achieved
through any alternative contract—that is, sharing arrangement—that results in
a lower profit.

We have implicitly assumed, however, that the agent is risk neutral. The farm’s
profit is affected by uncertainty in many ways. The weather, the activity of pests,
and so forth can be viewed as random variables from the standpoint of both
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the principal and the agent. It is reasonable to assume that the farm worker is
risk averse. Because the profit derived from the farm has a random component,
when the agent is the residual claimant, he not only has maximum incentive, he
also has maximum exposure to risk. The rent will have to be reduced sufficiently
to keep the agent on the farm and prevent him from taking a fixed-wage job in
the city. The owner of the land will find that she can get more income by sharing
the risk with the agent—by offering a contract that reduces the rental payment
when events beyond the control of the agent reduce the harvest.

We still haven’t incorporated all the ways in which uncertainty affects the
nature of the contracts that principals offer their agents. There are things
that the agent can do to mitigate the effect of harmful events. For instance,
keeping fences in good repair makes it unlikely that the crop will be tram-
pled by the neighbor’s cattle. By devoting effort to keeping rodents out of
the barn, less seed will be consumed by these intruders. In some cases a
contract can be structured so that the agent’s rent is reduced in bad times
only if he has devoted effort to keeping pests away. However, if the owner

When you buy a new car the warranty is
kept in force only if the periodic mainte-
nance has been done properly. It is fairly
easy for the manufacturer to determine
whether the maintenance was proper.

of the land does not live on the farm then she
can’t observe whether the agent has expended
effort to that effect. In that case, the contract
cannot be written so that the agent’s return is
conditional on his supply of effort. In other
cases, the agent’s effort is observable by the
principal but not by a third party such as a

judge. For instance, if the owner lives on the farm she can see whether the
agent puts effort into keeping rodents out of the barn. But the owner’s obser-
vations would not be admissible in court, which would require independent
evidence of shirking by the agent. Therefore, the conditional contract could not
be enforced, so it would not be written in the first place. When the agent’s effort
can’t be observed by the principal or by a judge or jury, a fixed rent would leave
the worker with maximum exposure to risk but minimum incentive to shirk.
However, a fixed wage would provide the worker with maximum shelter from
risk but minimum incentive to work. The principal will maximize her return
from the contract by finding the optimal trade-off between providing incentive
and providing shelter from uncertainty. In this case farming often takes the form
of sharecropping, particularly in developing countries: The worker gets a fixed
share of the farm’s profit, say one-half. If profit falls by 100 then the worker’s share
falls by 50, not by 100, so there is some insulation from uncertainty. When profit
increases by 120 as a result of the agent’s effort the agent’s income increases by
60, so there is some incentive for the agent to supply effort, although it is not the
maximum incentive.

The effect of risk on efficiency is not treated explicitly until Section 9, although
uncertainty plays a supporting role in Sections 3 through 6.

Source
The rationale for sharecropping is based on Stiglitz (1974), a seminal contribu-
tion to the theory of incentives.
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1 RESOURCE ALLOCATION

One of the elements of efficient resource allocation is ensuring that a consumer
does not purchase a commodity beyond the point where it adds very little to the
buyer’s welfare when it could provide substantial additional benefit to someone
else. This section considers the possibility of giving individuals an incentive to
consume only up to a certain point—a point that depends on the preferences
of others. The aim is to arrive at an efficient allocation of consumer goods.
(Chapter 10 considers production and consumption simultaneously.)

To get a handle on the conditions for efficiency in the allocation of consumer
goods we’ll begin with the simplest case of two individuals, A and B, and two
commodities, 1 and 2. Suppose that A’s marginal rate of substitution (MRS) is 2 at
his current consumption plan, and B’s MRS is 1/2 at his current plan. That means
that if A sacrificed less than 2 units of commodity 2 but received an additional unit
of commodity 1 she would be better off as a result. If B lost a unit of the first good
he would wind up better off if he received more than half a unit of the second
good as compensation. Then if we arrange for A to give B one unit of the second
good in return for one unit of the first good they would both wind up better off.
In general, if MRSA > MRSB then A and B could each gain by trading, provided
that A exported the second good and imported the first good, and B did the
reverse, and the amount of commodity 2 exchanged per unit of commodity 1
were between MRSA and MRSB . Similarly, they could strike a mutually advanta-
geous trade if MRSA < MRSB . Efficiency requires equality of the marginal rates of
substitution for any two individuals and any two commodities that each actually
consumes.

Example 1.1: Two consumers with unequal marginal rates
of substitution

A’s utility function is UA = x2 y, and UB = xy2, where x is the amount of the
first good consumed and y is the amount of the second good. Suppose that
each person is currently consuming 4 units of each good. Then UA = 64 = UB .
We don’t actually have to compute each MRS here to construct a trade that
increases the utility of each. Note that A’s utility function puts extra weight on
the first good and B’s puts extra weight on the second good. In other words, the
first good gets more weight in A’s preference scheme and the second good gets
more weight in B’s preference scheme. Surely MRSA > MRSB and both would
be better off if A gave one unit of good 2 to B in return for one unit of the first
good. Let’s check: UA(5, 3) = 52 × 3 = 75 and UB(3, 5) = 3 × 52 = 75. The trade
increases the utility of each.

If an economic system is not efficient, then there are equilibria that could
be improved to the extent of making some people better off without adversely
affecting anyone else. This would be a serious waste because it is extremely
costly to identify the individuals in question and to bring about the necessary
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changes in economic activity. The economic system should not burden public
policy makers with this kind of adjustment.

It is easy to show that at an equilibrium of the private ownership market
economy is efficient if one person’s consumption does not directly affect the
welfare of another. Before giving the brief (but rigorous) proof of that claim we
give the intuition: Consider two people, A and B, and two goods. Suppose that
each consumes some commodity 1 and some commodity 2 at equilibrium. Then
each individual’s MRS will equal the price ratio P1/P2, the price of good 1 divided
by the price of good 2. The price ratio plays a central role in A’s determination of
her preferred consumption plan. But the price ratio equals B’s MRS, so without
realizing it A is taking B’s preferences into consideration when determining her
own consumption plan. It’s as though A says, “I’ve studied economics. When my
MRS is greater than the price ratio my MRS is greater than B’s. Then because
I place a higher intrinsic value on commodity 1, I am justified in consuming
more of it. I’m not wasting resources. But I don’t want to consume up to the
point where my MRS is below the price ratio. If that happened I would be wast-
ing resources. I would be consuming units of the good that have less intrinsic
value to me than they do to person B.” In fact, it is in A’s self-interest not to con-
sume good 1 beyond the point where her MRS equals the price ratio. The prices
transmit information to A about the preferences of other consumers, and the
budget constraint gives A the incentive to take that information into consider-
ation when planning her consumption. This results in an efficient allocation of
resources.

Now here’s the general proof. Consider two individuals: A, who lives in
Allentown (Pennsylvania), and B, who lives in Bozeman (Montana). They haven’t
met, and because the market economy is decentralized, with no central agency
making sure that individuals do get together when something mutually advan-
tageous might ensue, we have to ask if it is possible for A and B to trade in a way
that would leave both better off. We’re assuming that the system has reached an
equilibrium before the trade takes place because we’re testing the market econ-
omy for efficiency. Let’s suppose that we have found a mutually advantageous
trade. This assumption will quickly be shown to be untenable.

The trade must be balanced if we want to leave the consumption of others
unchanged. (We want to increase UA and UB without harming anyone else.) The
trade will be balanced if every increase in A’s consumption comes at the expense
of B and vice versa. Let a denote the list of exports and imports for individual
A. For instance, if a = (+7, −3, −6, . . .) then A receives (imports) 7 units of the
first good from B, but delivers (exports) 3 units of the second good and 6 units
of the third good to B, and so on. We’ll let b represent the list of B’s exports and
imports. Hence, our example requires b = (−7, +3, +6, . . .) because B exports
7 units of the first good to A and imports 3 units and 6 units, respectively, of
the second and third goods. In brief, b = −a. Let pa denote the value of all A’s
imports minus the value of all A’s exports, calculated using equilibrium prices.
Similarly, pb is the value of all B’s imports minus the value of all B’s exports.

Suppose this trade makes both A and B better off. Because the trade makes
A better off, we must have pa > 0. If pa ≤ 0 then these changes would already
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have been incorporated into A’s consumption plan at equilibrium. For instance,
if a = (+7, −3, −6) and each good costs $2 (so pa < 0) then by reducing con-
sumption of good 2 by 3 units and reducing consumption of good 3 by 6 units,
individual A would have reduced her expenditure by enough to enable her to
purchase 7 units of the first good. We’re claiming that these changes would leave
her better off, and that she could afford to make the changes on her own. (If the
cost of the goods that A is acquiring is $14, and the cost of the goods that A is
giving up is $18, then A can effect the change unilaterally.) That contradicts the
notion that at equilibrium individuals have maximized their utility subject to
the budget constraint. It follows that pa > 0.

Similarly, because the changes specified by b leave individual B better off
they must not have been affordable when B chose his consumption plan. In
other words, pb > 0. We also have a + b = 0 because every unit of a com-
modity imported by A is exported by B and vice versa. But a + b = 0 is
inconsistent with a and b both having a positive market value: That is, we
can’t simultaneously satisfy a + b = 0, pa > 0, and pb > 0. For instance, if
a = (+7, −3, −6), b = (−7, +3, +6), and each good costs $2 at equilibrium, then
pb = +4 but pa = −4. We are forced to abandon the supposition that there is a
trade between A and B that would leave both better off than they are at the market
equilibrium.

Once the market system reaches equilibrium, if someone in Allentown tele-
phones everyone in Bozeman, hoping to find an individual with whom to strike
a mutually advantageous trade, he or she will be disappointed. (How do we
account for eBay then? Preferences have changed: People are trading things
they no longer want. There is also a lot of retail activity on eBay—it is part of the
market process.)

In any market, the price has three functions:

1. Rationing: The price adjusts until demand equals supply, which means that
for every unit of the good that someone wants to buy there is a unit that
someone wants to sell and vice versa.

2. Information transmission: The equilibrium price ratio transmits information
to each consumer about the marginal rate of substitution of others.

3. Incentive compatibility: The budget constraint gives all individuals the
incentive to take that information into consideration when planning their
consumption.

We can easily extend this argument to any number of consumers. Let’s orga-
nize a trade involving n individuals. Let t1 be the list of exports and imports for
individual 1, with t2 denoting the list of exports and imports for individual 2, t3

the list of exports and imports for individual 3, and so on. If this trade makes
individual i better off, then we have pti > 0. If the trade makes everyone better
off than under the market equilibrium, we have pti > 0 for each individual i.
But if we add over all n individuals we get pt1 + pt2 + · · · + ptn > 0. This tells
us that the total value of imports exceeds the total value of exports. That is
inconsistent with the fact that for every unit of a good imported by someone
there is a unit of the same good exported by someone. (We are not changing
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any production plans at this stage. That will be considered in Chapter 10.)
Therefore, it is not possible to have any number of individuals trade among
themselves in a way that leaves everyone better off than they are at the market
equilibrium.

Would it be possible to change the consumption of a subset of the individuals
in a way that doesn’t raise or lower the level of well-being of any member of the
subset but do so in a way that generates a surplus that can be used to make
someone else better off? No. Section 4 of Chapter 1 showed that if the menu of
produced goods can be reallocated in a way that makes some individuals better
off, and leaves others with the same level of welfare as before, then it is possible
to make everyone strictly better off. (Just have the individuals who gain share
some of the gain with the rest.) But we have just proved that there is no feasible
outcome that makes everyone better off.

We said at the outset that the key assumption is that one person’s consump-
tion does not have a direct effect on another’s welfare. Where did this assump-
tion get used? If, say, person C’s welfare were affected by the consumption of
A and B, we could construct an example of an economy such that, starting at
equilibrium, we could have A and B trade in a way that neither increased nor
decreased the welfare of either but that increased the welfare of C. We can’t say
that C would have brought about the change as part of his or her own con-
sumption plan, because the increase in C’s utility requires A and B to act in very
specific ways.

If we use the term private good to refer to a commodity that is immune
to external effects, then we have shown that there is no change in the market
equilibrium allocation of the produced private goods that could be used to make
some individuals better off without harming others.

DEFINITION: Private good
A commodity is private if a change in the amount of it consumed by one
individual has no effect on the welfare of any other individual whose own
consumption does not change.

Links
Chapter 4 of this book examines the problem of giving a firm’s manager
the incentive to choose the production plan that contributes to efficiency.
Koopmans (1957) is a classic and very readable exposition of the connection
between efficiency and the competitive market system. Pages 1–126 are espe-
cially recommended.

Problem set
The two cases presented in Table 3.1 give you the amounts of two commodities
X and Y consumed by two individuals A and B. Individual A’s utility function is
UA(x, y) = xy and thus A’s MRS at commodity bundle (x, y) is y/x. Individual B’s
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Table 3.1

Case 1 Case 2
Commodity Commodity

Person X Y Person X Y

A 4 8 A 2 2

B 6 2 B 8 8

utility function is UB(x, y) = x2 y and the MRS at (x, y) is 2y/x. Answer each of
the following questions for each case.

1. Report the utility level and the MRS for each individual at the given com-
modity bundle.

2. Construct a trade between A and B that increases the utility of each. Make
sure that the trade is balanced—that is, the total consumption of X remains
at 10 and the total consumption of Y also remains at 10.

3. Report the exchange rate for your trade of question 2. (The exchange rate
is the amount of commodity Y exchanged per unit of commodity X.) Notice
that the exchange rate is between the two MRSs.)

4. Using the exchange rate of question 3, construct a trade that reduces the
utility of both A and B by making the trade “too big”—that is, with a large
amount of exports and imports.

5. Assume the exchange rate of question 3, but with trade flowing in the opposite
direction (have A export the good that he or she imported in your answer to
question 2). For each of the two cases displayed in Table 3.1, show that both
individuals have lower utility than they had to start with (in question 1) as a
result of trade.

2 MARKETABLE POLLUTION RIGHTS

Incentive regulation allows the regulated party a choice from a menu that is
governed by the central authority. It has replaced command and control reg-
ulation in many cases. If the menu items are cleverly chosen then the out-
come will be superior to what can be achieved by command and control reg-
ulation. That is because the regulated agent has better information than the

Command and control regulation can
be quite daunting: The U.S. Department
of Defense requires thirty-five pages of
small print to define a T-shirt to guide
private firms supplying that garment to
military personnel (Stiglitz, 1993).

central authority. After all, the local decision
makers are on the scene day after day. They
typically have far more at stake, which gives a
strong motivation for acquiring information.
A successful incentive scheme can tap this
information by harnessing the self-interested
behavior of the regulated agent.
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Table 3.2. Firm A

SO2 reduction Revenue Cost Profit

50% 2000 1700 300
100% 2000 2300 −300

This section presents a scheme for giving producers an incentive to cooper-
ate in achieving the least-cost method of reducing pollution.

The production of electricity releases large amounts of sulphur dioxide (SO2)
into the air as coal is burned to produce the steam that runs the turbines. The
SO2 by-product can be reduced only if the firms that make electricity install new
equipment. Suppose that a government agency wants to reduce the amount of
SO2 in the air in a way that minimizes the value of new equipment used in the
production of electric power. The agency would have to acquire specific informa-
tion about the production technology of individual electricity firms to identify
the firms that can adjust at lowest cost. Without proper incentives, these firms
will not disclose the information willingly and accurately. If a firm can lower its
burden of adjustment by misleading the regulators, it can be expected to do so.
Here is a simple example.

Example 2.1: Three ways to hit the target

There are two firms A and B who each have been dumping 30 tons of SO2 into
the air per year. The government wants to reduce total SO2 output by 50%, and
we consider three possibilities: A and B each reduce their SO2 by 50%, A reduces
its SO2 by 100% while B continues to dump 30 tons per year, or B reduces its SO2

by 100% while A continues to dump 30 tons per year. To determine which of the
three is most advantageous for consumers we need the data in Tables 3.2 and
3.3. Table 3.2 shows that the 100% reduction in SO2 output would require A to
significantly modify its technology, and that would add so much to cost that A
would incur a $300 loss, instead of the $300 profit that it would realize with the
50% reduction. Table 3.3 reveals that even a 50% reduction in SO2 output would
leave B with a loss, because it is much more costly for B to adjust its production
recipe. Perhaps the adjustment cost will have to fall entirely on the shoulders of
firm A. However, A can be expected to be greatly overstate its adjustment cost in
an attempt to avoid this.

Table 3.3. Firm B

SO2 reduction Revenue Cost Profit

0% 2100 1300 800
50% 2100 2400 −300
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Suppose that the government required each firm of Example 2.1 to reduce
its SO2 output by 50%, without attempting to discover what an individual firm’s
adjustment cost is. Firm A would have to reduce its output from 30 to 15 tons but
would be allowed to dump 15 tons of SO2, and similarly with firm B. Suppose
that the government also allowed one firm to sell its pollution entitlement of
15 tons to another firm. If A sold its entitlement to B for $700 it would have to
reduce its SO2 output by 100%, and its profit would be 2000 + 700 − 2300 = 400.
(The $400 amount equals the loss of $300 from the last row of the first table, plus
the $700 from the sale of the right to dump 15 tons.) This is more than the $300
profit that it could make by keeping its entitlement to dump 15 tons. Therefore,
A has an incentive to sell its pollution entitlement. And firm B has an incentive
to buy it: B takes a loss of $300 if it tries to reduce its SO2 output by 50% (15 tons).
However, if B pays $700 to firm A for the right to dump 15 tons of SO2 it will
be able continue production without doing any adjusting at all. (It will have its
own entitlement to dump 15 tons plus the 15-ton entitlement obtained from
A.) Firm B’s profit would then be 2100 − 1300 − 700 = 100. (The $100 amount
equals the $800 profit from the first row of the second table minus the
$700 payment.)

If the government asked each firm to report its adjustment cost to identify the
least-cost way of reducing total SO2 output by 50% it wouldn’t get anything close
to truthful revelation from individual firms. However, by allowing one firm to sell
its pollution entitlement to another, the low-cost firm has an incentive to assume
all of the adjustment cost, and the other has an incentive to pass the adjustment
burden onto the former. Note that if each firm were forced to reduce its SO2 out-
put by 50% the two firms’ costs would total $4100. But with firm A shouldering
the entire burden of adjustment the total cost is only $3600. The incentive reg-
ulation scheme—that is, marketable pollution permits—significantly reduces
the value of resources that have to be diverted from the production of other
goods and services to enable the electricity generation industry to modify its
technology and reduce SO2 emissions.

This example illustrates how the U.S. program of marketable pollution per-
mits has worked to reduce the sulphur dioxide production by the electric utility
industry by 50% since 1990. In fact there is a large number of firms producing
electricity, and each is given a number of pollution permits. Each permit entitles
the bearer to dump one ton of sulphur dioxide into the air, and the total number
of permits issued by the government equals the target level of SO2 output. (The
difference between the previous year’s SO2 output and the total number of per-
mits issued in the current year is the target SO2 reduction.) The individual firm
can buy any number of entitlements and can sell as many of its own permits as it
chooses. The selling price of a permit is not determined by negotiation between
two firms but by a competitive market.

Suppose that at the current market price Pt of pollution permits the adjust-
ment costs for firms in general are so high that the demand for permits exceeds
the supply. The price will be bid up (to Pt+1). A firm that could reduce its SO2

output by one ton at a cost C that is greater than Pt but less than Pt+1 would
now want to sell a pollution permit and increase its profit by Pt+1 − C . At the
lower price Pt the firm would have been better off to hold the permit (because
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C > Pt). Any firm with a cost C > Pt+1 would have demanded a permit at the
lower price and will continue to demand it at the new higher price. Only the
firms with Pt < C < Pt+1 will switch from demanders to suppliers of permits.
Therefore, only the low-cost firms will, on their own initiative, modify their pro-
duction process to reduce their SO2 output. (Firms with C < Pt will have already
assumed that role. Firms with C > Pt+1 will continue to demand permits.)

Here is a simple proof that the equilibrium price of pollution rights will result
in target pollution abatement being reached at the minimum cost. Let P denote
the equilibrium price of the right to dump one ton of SO2. Suppose that firm
X dumps x tons of SO2 at equilibrium. Let MADJ

X equal the cost of dumping x
tons minus the cost at x + 1. (Cost decreases as x increases because it is costly to
reduce SO2 emissions.) Suppose that P < MADJ

X . Then the market is not in fact
at equilibrium. Firm X can increase its profit by reducing its abatement effort
by one ton, emitting x + 1 tons of SO2 and buying a pollution permit at a cost
of P. The increase in profit will be MADJ

X − P. Therefore, P > MADJ
X must hold

at equilibrium for every firm X. Now, suppose firm Y uses exactly q pollution
permits at equilibrium. Let MP OL

Y be the addition to Y ’s cost were it to use only
q − 1 permits and assume the cost of reducing its SO2 output by one additional
ton. (The costs are calculated without taking into consideration any purchase or
sale of pollution permits.) If P > MP OL

Y we can’t be at equilibrium because firm
Y could increase its profit by incurring the cost MP OL

Y of increasing its abatement
by one and selling one permit (or eliminating the need to buy one permit) at a
price of P. Therefore, P < MP OL

Y must hold at equilibrium for every firm Y.
We have demonstrated that MADJ

x < P < MP OL
Y must hold at equilibrium for

any two firms X and Y (including the case X = Y ). Then the equilibrium price of
a pollution permit must fall between the highest MADJ

x over all firms X and the
lowest MP OL

Y over all firms Y. Because MADJ
x < P for any firm X that has reduced

its SO2 output by one additional ton, and P < MP OL
Y for any firm Y that has

used a pollution permit, we see that market forces ensure that the adjustment
is made by a firm (such as X ) when that can be accomplished at a lower cost to
society than when it is made by some other firm (such as Y ). The price transmits
information to each firm about the adjustment costs of other firms, and the
profit motive gives each firm the incentive to use that information in the socially
optimal way. Any change in the SO2 adjustment pattern away from equilibrium
would shift the adjustment burden from some firm X with MADJ

x < P to some
firm Y with P < MP OL

Y , and that would increase the value of resources consumed
in reaching the abatement target. The total cost of achieving the target would
increase by MP OL

Y − MADJ
x .

We have implicitly assumed that a firm’s revenue is independent of the
amount of pollution abatement. In that case, with revenue constant, profit max-
imization reduces to cost minimization. However, we would expect to see the
firm’s output fall when it increased its pollution abatement effort, and the change
in output would usually result in a change in revenue. We can rescue the argu-
ment of the previous two paragraphs simply by setting MADJ

x equal to X’s profit
when it dumps x + 1 units of SO2 minus its profit when it dumps x tons. (We
do not include the effect on profit of the purchase or sale of pollution permits.)
Similarly, MP OL

Y will now denote Y ’s profit when it uses q permits minus its profit
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when it uses q – 1 permits, before taking into consideration the purchase or sale
of permits. The equilibrium condition MADJ

x < P < MP OL
Y then follows.

With the modified definitions of MADJ
x and MP OL

Y , to take into considera-
tion revenue effects, we can demonstrate that the equilibrium with marketable
pollution rights leads to the maximum industry profit, given the target overall
abatement level: Any change in the SO2 adjustment pattern away from equi-
librium would shift the adjustment burden from some firm X with MADJ

x < P
to some firm Y with P < MP OL

Y , and that would reduce total industry profit by
MP OL

Y − MADJ
x .

It is important for you to see that our proof that the equilibrium leads to
maximum industry profit is independent of how the pollution rights are ini-
tially allocated. As long as these rights can be bought and sold in a competitive
market, the resulting equilibrium maximizes total profit. We know that to be
the case because our proof did not require the specification of the initial rights
assignment. Therefore, it is valid for any initial distribution of rights that sum to
a given total.

When the market for pollution rights reaches an equilibrium, total indus-
try profit is maximized, subject to the constraint that total pollution in the
industry has to fall to the target level specified by the regulatory authority.
Moreover, this holds true for any assignment of rights summing to the given
target.

Why do we use profit as a measure of the net benefit that consumers derive
from a firm’s activities? Revenue is a rough measure of the benefit that consumers
receive from the firm X’s output of goods and services. The cost of production is
equal to the market value of inputs used, and that in turn is a rough measure of
the value to consumers of other goods that could have been produced with the
resources that were employed instead in firm X. The difference measures the
net value to consumers of the firm’s activities. Therefore, we want to distribute
pollution abatement costs in a way that maximizes the total profit over all firms
subject to the total amount of pollution not exceeding the specified amount.

Example 2.2: Pollution and profit

Firms X and Y each released 100 tons of SO2 last year, and they are required
to bring that down to 80 tons each this year. As long as the total SO2 output is
160, the target pollution abatement will be achieved. Table 3.4 gives individual
firm profit figures for different levels of SO2 output. Higher pollution abatement
levels involve higher costs and hence lower profit.

There are nine different ways that the two firms can combine to reduce the
amount of SO2 released to 160 tons, and Table 3.5 gives total profit for each com-
bination. We let x (respectively, y) denote the SO2 output of firm X (respectively,
firm Y ).

We see that total profit is maximized when firm X releases 90 tons of sulphur
dioxide and Y releases 70 tons. If the government gives each firm the right to
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Table 3.4

Firm SO2 output Firm X profit Firm Y profit

100 515 450
95 510 430
90 500 425
85 480 420
80 470 415
75 460 410
70 440 400
65 420 350
60 390 300

release 80 tons, firm Y can sell 10 tons of its entitlement to firm X for a fee of P
dollars. On one hand, because the profit realized by firm X is $470 when x = 80
and $500 when x = 90, it would be to its advantage to buy the rights to 10 tons
for any price less than $30. On the other hand, Y’s profit is $415 when y = 80
and $400 when x = 70, so it would be prepared to sell the right to dump 10 tons
if P exceeds 15. At any price between $15 and $30 both would profit from the
transaction. From the standpoint of consumer welfare, the potential for trading
in pollution rights results in the target pollution abatement being achieved in
a way that maximizes consumer welfare. Why wouldn’t the two firms strike
a different deal? Because any other pollution abatement assignment α would
result in less total profit, and hence there is a price P that would divide the
total profit from x = 90 and y = 70 in a way that gives each firm more profit
than α.

Carbon permits allocated on a global
scale would go a long way toward reduc-
ing the carbon dioxide (CO2) emissions
that are suspected of causing global cli-
mate change. The permits should be allo-
cated by auction, rather than by giving
a larger share of the permits to firms
that did proportionately more pollut-
ing in the past. The auction would pro-
vide more incentive to invest in research
to develop new production technologies
that reduce CO2 emissions. Heavy pol-
luters have to pay more to continue oper-
ating with the old technology when auc-
tions are used (Cramton and Kerr, 1999,
2002).

Trade in pollution rights allows the two
firms to maximize their total profit and to
share that total in a way that gives each more
profit than if the government had insisted on
them sharing the burden of pollution abatement
equally. Because total profit is maximized, the
cost to consumers of pollution abatement is
minimized. (If it helps you appreciate this
point, you can assume that each firm’s revenue
is unchanged when sulphur dioxide output is
reduced. In that case, maximizing total profit is
equivalent to minimizing total cost.)

Finally, we consider a model with many
firms and assume that it is feasible for each
to reduce its pollution by-product by any
real number amount between zero and the
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Table 3.5

x y Total profit

100 60 815
95 65 860
90 70 900
85 75 890
80 80 885
75 85 880
70 90 865
65 95 850
60 100 840

previous period’s level. Let S be the target level
of pollution for the current period. (Of course, S
is below last period’s level.) Let σ be the assign-
ment of pollution levels to the individual firms
that maximizes total profit. Because σ maxi-
mizes total profit, that total can be distributed
among the n firms in a way that leaves each
with more profit than if each had been required
to set its pollution level to S/n. Allowing some
firms to sell some part of their entitlement to
dump S/n tons of pollutant to other firms allows
them to achieve this distribution of the total
profit.

Example 2.3: Two firms, each with quadratic profit functions

We let x denote the amount of SO2 released by firm X as a by-product of its
production process. The higher is X’s output of goods and services, the larger is x.
We let f (x) denote the profit realized by X when the SO2 output is x. Specifically

f (x) = 190x − 5x2.

Using the formula for maximizing a quadratic, we see that f is maximized when
x = 190/(2 × 5) = 19. The reason why profit declines as x increases when x >

19 is that higher levels of SO2 result from higher sales of the firm’s product,
and because marginal cost of production is increasing and marginal revenue
is nonincreasing, there is a point when profit falls as output increases—and
consequently, profit falls when SO2 increases.

We let g(y) be firm Y’s profit when y tons of SO2 are emitted by firm Y. Specif-
ically

g(y) = 110y − 5y2.

Y’s profit is maximized when y = 110/(2 × 5) = 11.
If each firm can maximize profit without constraint we will have x = 19 and

y = 11, in which case a total of 30 tons of SO2 will be released into the air. But
suppose that the government wants to restrict the total emissions to 20 tons. To
incorporate this constraint we can set y = 20 − x. Now, maximize total profit,
f + g, with y = 20 − x. We want to maximize

190x − 5x2 + 110(20 − x) − 5(20 − x)2 = 280x − 10x2 + 200.

This is maximized when x = 280/(2 × 10) = 14. We have x = 14 and y = 6.
(Remember, y = 20 − x.) Confirm that f (14) = 1680 and g(6) = 480. However, if
the government required the firms to share equally the burden of reduced SO2

emissions, each firm would have to reduce its pollution to 10 tons per year (for
a total of 20). In that case f (10) = 1400 and g(10) = 600 are the respective profit
figures. Table 3.6 summarizes.
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Table 3.6

x y X’s profit Y’s profit Total profit

10 10 1400 600 2000
14 6 1680 480 2160

Suppose that instead of insisting that each firm reduce its SO2 output to
10 tons, the government gave each firm the right to release 10 tons into the air
and allowed each firm to sell all or part of that right. Then if Y sells firm X its right
to dump 4 tons of SO2 for a price between 120 and 280, each firm would have
more profit than under the equal burden formula. (X would pay up to 1680 −
1400, and Y would have to be paid at least 600 − 480.) And the total amount of
pollution would still be 20. Conversely, if X had been given the right to dump
15 tons of SO2 and Y had been given the right to dump 5 tons, the target of 20
would still be reached. But this time firm X would sell Y the right to dump 1 ton,
resulting in the maximum total profit once again (subject to x + y = 20). The
minimum that X would accept in payment is the difference between profit at
x = 15 and profit at x = 14. The maximum that Y would be prepared to pay is
the difference between profit at y = 6 and profit at y = 5. Marketable pollution
rights give the two firms the chance to share the maximum total profit in a
way that makes each better off than under a rigid assignment of individual firm
pollution limits, however the rights are initially assigned.

We see that marketable pollution permits achieve the target SO2 reduction.
The government determines the number of permits, and a firm must surren-
der one permit for every ton of SO2 released. The permits achieve that target
in the way that is most beneficial to consumers—reducing SO2 output requires
resources to be diverted from the production of goods and services so that the
electric utility can modify its production technology, and we have seen that, if
revenue is unaffected, the lower cost firms will do the adjusting. The low-cost
firms maximize profit by selling some of their permits, requiring them to further
reduce their SO2 output. The high-cost firms maximize profit by buying addi-
tional permits, allowing them to release more SO2 than their initial allotment
of permits allows. Marketable pollution permits give each firm the incentive to
implement the production plan that would be assigned to it by a central plan-
ning authority if the planning authority were able to obtain reliable information
about the firm’s adjustment cost.

Links
This book’s web site provides a general proof that consumer welfare is maxi-
mized at equilibrium when pollution allowances can be traded. The fact that
the distribution of emissions levels across firms is independent of the way that
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rights are initially allocated across firms (given total emissions) is a special case
of the Coase theorem (Coase, 1960). Schmalensee, Joskow, Ellerman, Montero,
and Bailey (1998) and Stavins (1998) provide good overviews of the success of
the American pollution allowance program. Joskow, Schmalensee, and Bailey
(1998) provide a deeper, more technical analysis. For an application of the pol-
lution permit idea to carbon regulation see Cramton and Kerr (1999). For global
perspectives see Schmalensee, Stoker, and Judson (1998) and Chichilnisky and
Heal (1993, 1999).

Problem set

1. Show that for any total SO2 output S, for any assignment A of emissions levels
to the individual firms that totals S, at the assignment of emissions levels that
maximizes total profit (subject to total emissions being S), the total profit can
be shared in a way that gives each firm more total profit than under A.

For the remaining questions, x denotes the amount of SO2 released by
firm X as a by-product of its production process, with f (x) denoting the
resulting profit of firm X. Similarly, let g(y) be firm Y ’s profit when y tons of
SO2 are emitted by firm Y.

2. Let f (x) = 1200x − 10x2 and g(y) = 4000y − 20y2. Determine the profit-
maximizing values of x and y respectively when there is no limit on pol-
lution and each firm maximizes its profit independently of the other. Now,
suppose that the government limits each firm’s pollution output to 50 but
allows either firm to sell some or all of its pollution allowance to the other.
Determine the equilibrium values of x and y.

3. Let f (x) = 144x − 4x2 and g(y) = 120y − 5y2.

A. Assuming that the firms are not regulated in any way, find the profit-
maximizing levels of x and y for firms X and Y, respectively. Determine
the profit realized by each firm.

B. The regulatory authority requires x ≤ 15 and y ≤ 6 but allows any firm
to sell some or all of its right to pollute to the other firm. Determine
the resulting equilibrium values of x and y, and the profit realized by
each firm under two conditions: (i) assuming that pollution rights are
not tradeable, and (ii) assuming that pollution rights are tradeable,
but in this case compute each firm’s profit at the new values of x and
y before taking into consideration the money that changes hands as
a result of the exchange of pollution rights.

C. Which firm sells pollution rights and which firm buys them? How
many rights are exchanged?

D. Let P denote the price of a right to dump one ton of SO2. Find the range
in which the equilibrium value of P must fall when the constraints
x ≤ 15 and y ≤ 6 are imposed.
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4. The firms are the same as in question 3: f (x) = 144x − 4x2 and g(y) = 120y −
5y2.

A. The regulatory authority requires firm X to reduce its output of SO2

by 6 tons and Y to reduce SO2 output by 3 tons. It allows any firm to
sell some or all of its right to pollute to the other firm. Determine the
resulting equilibrium values of x and y and the profit realized by each
firm before adding or subtracting money from the sale or purchase
of pollution rights.

B. Answer questions 3C and 3D for the situation of 4A (with the inequal-
ities of part D appropriately modified).

5. Let f (x) = 300x − 10x2 and g(y) = 120y − 5y2.

A. Assuming that the firms are not regulated in any way, find the profit-
maximizing levels of x and y for firms X and Y, respectively. Determine
the profit realized by each firm.

B. The regulatory authority requires x ≤ 12 and y ≤ 12 but allows any
firm to sell some or all of its right to pollute to the other firm. Deter-
mine the resulting equilibrium values of x and y and the profit realized
by each firm.

C. Which firm sells pollution rights and which firm buys them? How
many rights are exchanged?

D. Let P denote the price of a right to dump 1 ton of SO2. Find the range
in which the equilibrium value of P must fall when the constraints
x ≤ 12 and y ≤ 12 are imposed.

6. The firms are the same as in question 5: f (x) = 300x − 10x2 and g(y) =
120y − 5y2.

A. The regulatory authority requires firm X to reduce its output of SO2

by 2 tons and Y to reduce SO2 output by 1 ton. It allows any firm to
sell some or all of its right to pollute to the other firm. Determine the
resulting equilibrium values of x and y and the profit realized by each
firm before adding or subtracting money from the sale or purchase
of pollution rights.

B. Answer questions 5C and 5D for the situation of 6A (with the inequal-
ities of part D appropriately modified).

3 INCENTIVE REGULATION OF THE TELECOMMUNICATIONS
INDUSTRY

Incentive regulation allows the regulated party a choice from a menu that is
governed by the regulatory authority. We use the telecommunications industry
to illustrate. Rate of return regulation has been used for decades to curtail the
market power of the suppliers of telephone services. It allows the regulated firm
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to set prices high enough for its revenue to cover all costs of production and to
provide a reasonable return on capital as well. But the return on capital cannot
exceed the limit set by the regulatory authority. The implicit restraint on the
firm’s price reduces the consumer welfare losses that arise when a firm with
substantial market power sets a price well above marginal cost. However, the
firm that is governed by rate of return regulation has little incentive to innovate
or reduce cost if it is a monopolist, because the resulting increase in profit would
result in a rate of return above the limit, which in turn would force a reduction
in price.

The failure to take advantage of productivity gains, or cost reductions in
general, can result in consumer welfare losses that swamp any gains from lower
prices. Allowing the firm to operate as an unregulated monopolist would seem
to eliminate that problem because a reduction in cost of a dollar results in an
increase in profit of a dollar. However, the discipline of competition is an impor-
tant factor in driving a firm to reduce cost or to innovate. Monopolies tend to
be sluggish, in spite of the fact that a dollar in the pocket of a shareholder of a
monopoly is no less welcome than a dollar in the pocket of an owner of a firm
operating under intense competition.

Price cap regulation eliminates the excessively high prices associated with
monopoly power without eliminating the incentive to reduce cost or improve
product quality. The regulated firm is required to reduce prices annually by a
fraction x determined by the regulatory authority. This fraction, called the pro-
ductivity offset, is an estimate of the industry’s future productivity growth. If the
value of input required per unit of output falls by x% then the price can decrease
by that same x%, without causing revenue to fall short of cost. This gives the
firm a strong incentive to innovate, in order to realize the productivity gain
that will keep it from insolvency. Moreover, once that goal is reached, any addi-
tional dollar of profit—from further cost reductions or product improvements—
is retained by the firm. Hence there is a strong incentive to innovate and cut costs
under price cap regulation, which was imposed on British Telecom in 1984 and
AT&T in the United States in 1989. The drawback is that the regulatory authority
cannot predict future productivity increases with certainty. If they impose too
stringent a price reduction on the firm it may be plunged into insolvency. The
result is job loss and perhaps a disruption in supply.

The dilemma can be solved by giving the firm a choice between a price cap
and rate of return regulation. If a firm cannot achieve a satisfactory rate of return
on capital under a price cap, it will choose rate of return regulation because it not
only allows the firm to raise prices to a level sufficient to cover costs—and hence
avoid insolvency—but also a modest rate of return is allowed. The firm that
would not have its rate of return driven below an acceptable level under price
cap regulation will choose a price cap: If r is the maximum return allowed under
rate of return regulation, and the firm can obtain a higher return under price
cap regulation, it will obviously choose the price cap. The superior consumer
benefits of price cap regulation will be realized in most cases but not at the cost
of killing off the firms that would go bankrupt under the price cap.
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Here is a simple model that shows that adding the option of returning to rate
of return regulation delivers higher consumer welfare than mandatory price
cap regulation: Let F(x) be the probability that the firm’s actual productivity
gain is less than the productivity offset x imposed by the regulatory authority.
If a price cap is mandated, and the firm is rendered insolvent, the level of con-
sumer welfare will be A. However, if the firm remains healthy under the price
cap, the benefit to consumers will be B × (1 + x). Quantity B is greater than A,
and B(1 + x) is higher when the productivity offset x is higher. If the firm that
would be insolvent under a price cap chooses to be governed by rate of return
then the consumer benefit level is B, which is less than B(1 + x) but greater
than A.

The probability that the firm would be insolvent under price cap is F(x), the
probability that its actual productivity increase is smaller than the mandated
price reduction x. Therefore, 1 − F (x) is the probability that the firm would be
solvent under a price cap. The expected consumer benefit under a mandatory
price cap is

V (x) = F (x)A + [1 − F (x)]B(1 + x).

The expected consumer benefit if the firm has the option of choosing rate of
return regulation when it would otherwise go broke is

W(x) = F (x)B + [1 − F (x)]B(1 + x).

If price cap is mandatory, the regulatory authority chooses x to maximize V (x).
Let xM denote the solution. If price cap is optional, the authority chooses x to
maximize W(x),and we let xO be the solution. W(xO) is larger than V(xM). In other
words, consumer welfare is higher when a price cap is optional. That follows
from the fact that W(xO) ≥ W(xM) > V (xM). We have W(xO) ≥ W(xM) because
xO maximizes W. And W(xM) > V (xM) follows from the fact that B > A.

Example 3.1: F is the uniform distribution

We suppose that x is uniformly distributed on the interval 0 to β, with β > 1.
Therefore, F (x) = x/β. (Review Section 6.5 of Chapter 2.) Consequently

V (x) = x
β

× A +
(

1 − x
β

)
B(1 + x)

= 1
β

[Ax + B(β − x)(1 + x)] = B + 1
β

[(A + Bβ − B)x − Bx2].

Because B and β are constant, V (x) and Ax + B(β − x)(1 + x) will be maximized
at a common value of x. The formula for maximizing a quadratic (Section 1 of
Chapter 2) yields the solution value

xM = A
2B

+ β − 1
2

.
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Now we maximize

W(x) = x
β

× B +
(

1 − x
β

)
B(1 + x)

= B
β

[x + (β − x)(1 + x)] = B + B
β

[βx − x2].

W(x) and βx − x2 are maximized at a common value of x because B and β are
constant. The solution is

xO = β

2
.

When a firm that is in danger of going broke can choose rate of return, the
regulatory authority can impose a more stringent (higher) productivity offset,
resulting in lower prices set by firms operating under price cap. That is reflected
in this example, because xO > xM. That is a consequence of the fact that A < B
and thus A/2B < 1/2. Therefore, xM < 1/2 + (β − 1)/2 = β/2 = xO .

Source
Much of this section is based on Sappington and Weisman (1996).

Links
Leibenstein (1966, 1976) discusses the effect that the discipline of competition
has on innovation.

4 THE SAVINGS AND LOAN DEBACLE

A savings and loan firm (S&L, or thrift), like a bank, takes in depositors’ money,
paying interest on those deposits, and then lends their money for a fee. Until the
early 1980s its profit came mainly from the difference between the interest rates
on lending and borrowing. Loans by an S&L were essentially limited to residen-
tial mortgages until the Depository Institutions Act of 1982 eased restrictions.
Maximization of general consumer welfare requires monitoring of borrowers to
ensure that the funds are devoted to the installation of capital equipment with
the highest rate of return to society. And it is certainly in the interest of deposi-
tors as a whole to monitor their creditors to ensure that the funds will yield the
maximum monetary return. However, no individual has an incentive to do the
monitoring.

Deposit insurance eliminates the lender’s (i.e., depositor’s) incentive to com-
parison shop. Deposit insurance means that even if the institution holding your
money fails, the balance in your account will be covered by the insurer. Con-
sequently, depositors have no incentive to shop for a bank or S&L that will be
careful with their money, thereby diminishing the borrower’s incentive to avoid
excessive risk. So why not eliminate deposit insurance? Because it is key to pre-
venting bank runs. (There was an epidemic of them after the 1929 stock market
crash.) If I anticipate that many of my bank’s depositors are going to withdraw
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their money, and my deposit is not insured, then it is in my interest to try to
get to the bank first to withdraw my deposit, before the bank’s cash reserves are
exhausted. This is true whether or not I think that the others are foolish for want-
ing to withdraw their money in the first place. Thus, deposit insurance provides
a clear social benefit—stability of the banking system. But there is a cost: Even
solvent banks or S&Ls will undertake more risky loans if their depositors do not
penalize them for doing so—by withdrawing their money. And, as we discuss,
S&Ls that are insolvent but that are allowed to continue operating have a very
strong incentive to assume risks that significantly diminish social welfare.

Prior to 1980 the thrift industry was a sleepy one, protected and coddled by
Congress and state governments. A thrift’s primary—almost exclusive—source
of income was long-term home mortgages. The loan paid a fixed interest rate
for a thirty-year period—sometimes for a shorter period—determined when the
mortgage was obtained. The thrift’s deposit liabilities were primarily savings
accounts that could be withdrawn at any time. This made it vulnerable to an
interest rate squeeze: If rates increased significantly, competition for deposits
forced the institution to raise the interest paid on deposits, while the bulk of its
income came from low-interest mortgage loans many years from maturity. Some
breathing room was provided by the fact that competition with other lenders was
limited by a law that restricted a thrift’s lending ability to a 100-mile radius. In fact,
post–World War II economic growth, especially in housing construction, kept the
industry fairly healthy. S&L failures were rare. When interest rates increased in
the 1960s and the thrifts were squeezed, Congress responded by placing a ceiling
on the rate that an S&L could pay on deposits. This eliminated price competition
within the industry—as long as the equilibrium rate was above the ceiling—and
the firms then competed by offering gifts to anyone who would open a deposit.
When Congress limited the value of those gifts, the thrifts competed by staying
open longer. The interest rate ceiling protected the industry from the interest
rate squeeze for the rest of the 1960s and most of the 1970s.

By 1980 30% of the nation’s thrifts reported losses as a result of sharply ris-
ing interest rates during the period 1979 to 1982. The worst year was 1982, in
which 80% reported losses. Congress responded by deregulating the industry,
allowing a thrift to make a wide variety of new loans. An S&L could now offer
variable rate mortgages, make car loans, and issue credit cards, among other
new opportunities. They were also allowed to have a higher fraction of their
loans in the business sector. The interest rate ceiling was phased out, thrifts
were allowed to pay interest on checking deposits, and the amount of deposit
insurance was increased to $100,000 per account. All of this would have rescued
the industry if deregulation had not been accompanied by incentives to assume
excessive risk. Accounting standards were relaxed. For instance, an asset pur-
chased with depositors’ money could be kept on the books at its original value
for several years after a drop in that value, and a thrift could record $11,000 as
current income if a borrower seeking $100,000 for a project was given $110,000
on the understanding that the extra $11,000 was to be used to pay the first year’s
interest. S&L deregulation also meant a reduction in monitoring by the gov-
ernment board charged with overseeing the industry. (The term deregulation
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refers not to the elimination of all kinds of oversight but to the substitution of
regulation by consumers for regulation by a government agency. As we have
noted, consumers—that is, depositors—had no incentive to monitor the S&Ls.)

Diversification gave a thrift new opportunities for increasing its income but
also new opportunities for risk taking. The wave of failures in the 1980s included
a disproportionate number of S&Ls with heavy investments in land loans, direct
equity (i.e., the purchase of stocks), and commercial mortgages. Fraud also
played a role but in a minority of cases: False statements were made to the
regulatory authority, inappropriate loans were made to relatives and business
partners of the thrift’s officers, a borrower’s assets were dishonestly valued to
justify large loans, and sometimes excessive amounts of money were spent on
the offices and other amenities of the thrift’s chief executives.

The Federal Savings and Loan Insurance Corporation (FSLIC) is the federal
program that guaranteed customers’ deposits. If a thrift failed then FSLIC cov-
ered any part of a deposit that couldn’t be collected from the failed institution.
The wave of S&L failures beginning in the 1970s led to a crisis in which more
than $30 billion of deposits had to be redeemed in this way. Depositors who had
to be bailed out had placed their money in S&Ls, which had used the money
to purchase assets that subsequently fell in value. In fact, these assets collec-
tively fell by more than $30 billion in market value. This was an enormous waste
in resources. For instance, if a thrift used $10 million of depositors’ money to
finance the construction of an apartment building for which few tenants could
be found, then the market value of the building would be far less than $10 mil-
lion. If the money had been invested more wisely, the value of consumer goods
and services would have increased not decreased.

The initial S&L failures have their explanation primarily in the drop in oil
prices, which had serious implications for real estate values and business activ-
ity in the “oil patch,” particularly Oklahoma and Texas; a slump in real estate
generally; and a rise in interest rates that left many S&Ls locked into long-term
mortgages yielding low rates of return while paying high interest rates to current
depositors. In this section we do not examine the onset of the crisis. Rather, we
ask, “Given the original conflagration, why was gasoline poured on the flames
instead of water?”

In 1981 almost 4000 thrifts were insured by FSLIC. Seventy percent of
U.S. thrifts reported losses that year, and the whole industry’s net worth was
negative—the market value of assets fell short of the dollar deposit liabilities.
Here was a clear warning sign. Yet in 1986 the President’s Council of Economic
Advisors was still trying to get the attention of the president, the Congress, and
the country, calling for reform and warning of the potential bill that would be
presented to taxpayers.

Here is the key to understanding how we managed to pour gasoline on the
flames: Zombie institutions—thrifts that were insolvent and should have been
pronounced dead—were allowed to gamble for resurrection. They took in more
money from depositors and sunk it into risky investments in desperation. The
risky investment would likely turn sour, but in the unlikely event that it suc-
ceeded it would restore the company to financial health. Let’s look at this from
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the standpoint of incentives. Why did depositors entrust their wealth to zombie
institutions? Why did the regulatory agency overseeing the thrift industry (the
Federal Home Loan Bank Board) permit zombie thrifts to continue gambling?
And finally, why did the owners of the S&Ls want their firms involved in wildcat
schemes?

First, why didn’t depositors do a better job of monitoring the thrifts that
borrowed from them? Because the federal deposit insurance program removed
the incentive for depositors to do comparison shopping. Lenders still had a
strong incentive to look for the highest interest on their deposit, but they had
little reason to care about financial insolvency or imprudent thrift mangers. If the
deposit were lost as a result of the thrift’s insolvency then U.S. taxpayers, through
the federal government, would replace the money. The Canadian banking system
did not have a formal deposit insurance scheme until 1967. The stability of
the Canadian system before 1967 can be partly attributed to the incentive for
monitoring by lenders and to market discipline on the part of the individual
bank. There is little incentive for lenders to monitor U.S. banks—in addition
to the family of savings and loan institutions. The crisis was confined mainly
to the thrift industry because banks were subject to more stringent regulation.
However, the value of outstanding loans to Latin America by nine giant U.S.
banks was almost double the capital of those banks, and repayment of the loans
was problematic. The U.S. government and Federal Reserve indirectly rescued
the banks by assisting Mexico and other Latin American countries.

Between 1890 and 1966 only twelve
Canadian chartered banks failed, and
in only six of those failures did depos-
itors lose any money. The stability can
be traced to the monitoring incentive,
as well as to portfolio and geographi-
cal diversification of Canadian branch
banks. (Nationwide branch banking is
severely limited by regulation in the
United States; Carr, Mathewson, and
Quigley, 1995.)

Why was the regulation of the thrift industry
much more permissive than that of the bank-
ing industry? In particular, why did the regula-
tory agency (FHLBB) not put a stop to gambling
for resurrection in the thrift industry? Because
Congress generally favored regulatory forbear-
ance. Why would a federal regulatory agency
be sensitive to the mood of Congress? Because
congress can restrict the powers of a regula-
tory agency. Also, many who serve on the reg-
ulatory board look forward to lucrative careers
in Washington when they leave the agency—
counseling firms on how to approach Congress,

for example. So, even an independent agency is wary about defying Congress.
Congress can cut the agency’s budget as well as its powers. In fact it refused
to increase the fund that FSLIC used to redeem the deposit liabilities of failed
thrifts, even though the fund was not large enough to cover the deposits held
in zombie S&Ls. The regulators faced a dilemma: If they shut down the zombie
S&Ls there would not be enough money to rescue the stranded depositors. If they
allowed the zombies to continue operating the crisis would deepen. They chose
the latter. Finally, the 1982 Depository Institutions Act changed the accounting
rules to allow ailing S&Ls to hide their insolvency, making them appear healthy.
Before we consider why Congress wanted a permissive regulatory climate, let’s
see why the owners of a thrift would be in favor of gambling for resurrection in
the first place.
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Table 3.7. Prudent investment (PI )

Values Depositors Owners FSLIC Society

Initial outlay 1000 40 0 1040
High return 1050 46 0 1096
Low return 1050 42 0 1092
Average return 1050 44 0 1094
Rate of return 5% 10% 5.2%

Consider a prudent investment (PI). It requires an initial capital outlay of
$1040 and it pays off exactly one year after the project is undertaken. PI will
provide a return of $1096 to the S&L, net of labor and materials costs, with
probability 1/2. And with probability 1/2 the net return is $1092. If the S&L invests
in the project the owners will put up $40 of their own money, and the remaining
$1000 will be money entrusted to them by depositors. We assume that the market
rate of interest is 5%, so depositors will be paid $1050 before the owners can
claim their profit. The net return for the owners then is 46 = 1096 − 1050 with
probability 1/2, and 42 = 1092 − 1050 with probability 1/2. The expected (i.e.,
average) return to the shareholders is 44 = 1/2 × 46 + 1/2 × 42. Because they put
up $40 to begin with, their return on capital is 10%. This is summarized in
Table 3.7, which shows the return to a thrift from PI, whether it is undertaken by
a zombie or a solvent firm.

The Society column is just the total of the other columns and shows what
happens to the economy as a whole. The FSLIC column gives the amount
that the insurer has to pay to depositors. Of course, the prudent invest-
ment does not require any outlay by FSLIC. The owners might find PI’s 10%
return attractive, but we have yet to compare PI with WS, the wildcat scheme,
which is represented by Table 3.8. Table 3.8 gives the point of view of a
zombie.

WS requires an initial outlay of $1040, of which $1000 is funded by deposits—
the same starting position as PI. With WS the high and low returns also occur
with equal probability, but the investment is much riskier than PI. WS returns
only $150 (gross) with probability 1/2, although it will yield $1450 with probability
1/2. The low return of $150 does not come close to allowing the S&L to discharge

Table 3.8. Wildcat scheme (WS) undertaken by a zombie

Values Depositors Owners FSLIC Society

Initial outlay 1000 40 0 1040
High return 1050 400 0 1450
Low return 1050 0 −900 150
Average return 1050 200 −450 800
Rate of return 5% 400% −23%
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Table 3.9. WS when undertaken by a solvent thrift

Values Depositors Owners FSLIC Society

Initial outlay 1000 40 0 1040
High return 1050 400 0 1450
Low return 1050 −900 0 150
Average return 1050 −250 0 800
Rate of return 5% −725% −23%

its deposit liabilities. If disaster occurs, the owners must turn over all of the
$150 recovered to the depositors. This is far short of their initial deposit, so the
deposit insurance kicks in and pays the remaining $900. The owners lose all of
their invested capital, but they do not have to tap into their private wealth to
pay off depositors; the insurance fund makes up the difference. Therefore, the
average return to the owners from WS is not

1
2

× 400 + 1
2

× −900 = −250,

which would be a negative rate of return of more than 700%. With FSLIC covering
the shortfall when the investment turns sour, the average return to the owners is

1
2

× 400 + 1
2

× 0 = 200,

a positive rate of return of 400%. It is clear that the owners of a zombie firm will
prefer WS, although the return to society is negative (−23%) with WS, and it is a
respectable + 5.2% with PI.

The selling of naked call options on
bonds is a good example of a wildcat
scheme. When A sells a naked call option
to buyer B, B has the right to purchase
bonds from A at any time in the future,
at a fixed price determined when the call
option is sold. It is a naked call option if
A doesn’t actually own any bonds! This
was the only “asset” of an S&L that failed
after only a year in business (Milgrom
and Roberts, 1992, p. 174).

The WS is valuable to the zombie S&L only
because it has no assets that can be used to
honor its deposit liabilities in case the project
fails. Calculation of the rate of return for the
solvent S&L is quite different because it would
have to reduce its asset holdings by enough to
pay its depositors. Table 3.9 shows how dras-
tically that affects the owners’ rate of return.
Given a choice between PI and WS, the zom-
bie chooses WS but the solvent bank chooses
PI.

Return to our examination of the zombie
firm. The deposits that are used for either of

these schemes would be fresh deposits, brought in to allow the S&L to undertake
new investments. If the firm has outstanding deposit liabilities that it is unable to
honor and it is in danger of being shut down by the FHLBB, then the WS scheme
offers the zombie S&L a last chance for financial health. In the unlikely event
that the risky investments pay off, there will be plenty for everyone—depositors
and owners. If they fail to pay off, the owners do not lose because the institution
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is already insolvent, which means that they could not recoup any of the wealth
they invested in their firm, even without WS. Gambling for resurrection is com-
parable to a basketball team deliberately fouling when it is behind by three
points with twenty seconds remaining in the game. If the opposing team fails
to make either of its free throws, then the other team has a chance of taking
the ball down court and sinking a three-point basket. The strategy rarely works,
but it gives the trailing team some chance of staying alive by sending the game
into overtime. There is a high probability that the strategy will fail, but losing by
four or five points is no worse than losing by three points. There is no chance
of winning without a desperation move and some slight chance with it. This
logic made things tougher on responsible thrifts. The firms that were gambling
heavily offered higher interest rates on deposits to attract new funds to finance
the wildcat schemes. Competition forced the responsible firms to pay higher
interest rates too, making them more vulnerable.

If depositors had cared how an S&L was managed, many would have accepted
lower interest rates to have their money stored in a safer place. As it was, the
higher interest rates even influenced the size of the national debt. This consid-
eration apart, gambling for resurrection constitutes a significant welfare loss for
consumers because valuable resources are employed in ways that yield a much
lower return to society than they are capable of providing. If only one firm gam-
bled for resurrection it would be difficult to claim that the decision was bad from
an overall social welfare perspective. It might turn out very badly, but it might
turn out very well. But when more than a thousand S&Ls undertake this sort of
plunge, we can say that the outcome will be harmful for sure. Consider the case
of 1000 firms each adopting WS, which returns 1450 with probability 1/2 but only
150 with probability 1/2. The law of large numbers tells us that, with very high
probability, close to 500 of the firms will see the investment turn sour. The total
value of these 1000 investments will then be 500 × 150 + 500 × 1450 = 800,000.
Each firm began with $1040 worth of assets, for a total of $1,040,000. The bor-
rowers collectively turned that into $800,000 worth of assets, a very bad deal for
society.

Now, why would members of Congress want a milder regulatory climate? We
have to assume that they failed to understand the impact on the efficacy of mar-
kets when the incentive for comparison shopping is diminished. And Congress
itself would have had more incentive to work at understanding the banking
industry if it they had not been playing a version of the prisoner’s dilemma
game. To simplify, we suppose that a member of Congress simply has to choose
between stringent regulation of the thrift industry and mild regulation. Consider
the implications of these two strategies for the legislator’s own constituency. With
WS, U.S. taxpayers have to shell out $900 when the scheme fails. The scheme
will fail half the time, so if there is a large number of gambling S&Ls in the leg-
islator’s state the actual number of failures per investment will be close to the
average. Therefore, we can assume that U.S. taxpayers have to contribute $450
per WS. But only one-fiftieth of that will come out of the pockets of the legisla-
tor’s constituents—the other forty-nine states receive 98% of the bill. So, when
WS is successful it will rescue an S&L in the legislator’s home state, and when it



162 Hidden Action

fails 98% of the costs are passed on to other states. This argument may explain
the temptation that induced some members of Congress to intervene in the reg-
ulatory process on behalf on local thrifts, especially when it is coupled with the
intense lobbying for regulatory forbearance by the thrift industry. However, it
does not fully explain the creation of a milder regulatory climate via legislation.
When it comes to the framing of legislation, we must think in terms of group
decision making rather than the independent individual choice that can lead
to the prisoner’s dilemma. (But don’t lose sight of the fact the legislation results
from individual voting behavior.)

New regulations were introduced at the end of the 1980s. One effect was
to increase the deposit insurance premiums paid by individual thrifts. (These
premiums are used to build up the fund that is tapped when an S&L fails and
depositors have to be bailed out.) However, thrifts that take bigger risks are
still not charged higher premiums. The life insurance counterpart would be to
charge smokers the same premium as nonsmokers or to charge drivers who
have speeding tickets and accidents on their records the same premium for car
insurance as people with clean records. The careful person would be subsidizing
the careless. More significantly, society would lose an opportunity to give risky
decision makers incentive to modify their behavior.

There is an important hidden characteristic element to the thrift debacle. The
1982 Depository Institutions Act broadened the scope of activities available to
an S&L. At the same time the thrift regulators lowered the capital-asset require-
ments on individual thrifts. The new regulatory climate attracted entrepreneurs
who saw an opportunity to raise easy money to finance their personal get-rich-
quick schemes. This is the adverse selection phenomenon: The incentives are
such that characteristics that are least beneficial to society are selected.

In addition to exacerbating the adverse selection problem, the new regula-
tory environment made it easier to profit through fraud. In some cases, an S &L
that was managed by its largest shareholder would make a loan to a friend of the
manager on terms guaranteed to result in a loss to the thrift. But the borrower
would make a secret payment to the manager, resulting in a net gain for both—
at the expense of the other owners, of course. This is referred to as looting, to
distinguish it from gambling for resurrection, which at least offered some hope
of restoring the health of the S&L.

Source
The introduction to this section is based on White (1991). Although they were
not the first to highlight the critical role of gambling for resurrection, Romer
and Weingast (1991) take the analysis further than others in tracing the problem
back to Congress. Part of this section is based on their article.

Links
For additional discussion of the S&L debacle, see Kane (1989), Demirgüç-Kunt
and Kane (2002), Milgrom and Roberts (1992, pp. 170–6), Chapter 11 in Mishkin
(1992) on the crisis in banking regulation, and Litan (1991), a comment on
Romer and Weingast (1991). Dewatripont and Tirole (1994, p. 95) discuss the
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regulators’ dilemma: allow the crisis to deepen or shut down the zombie S&Ls
at a time when the insurance fund was insufficient to meet all the deposit lia-
bilities. See Mishkin (1992, p. 260) on the scandal surrounding Charles H. Keat-
ing Jr. and Lincoln Savings & Loan for a case of adverse selection. Akerlof and
Romer (1994) discuss looting. Dewatripont and Tirole (1994, p. 94) touch on the
indirect rescue of U.S. banks by the U.S. government and the Federal Reserve
when they assisted Latin American countries. Shoven, Smart, and Waldfogel
(1992) show that the increases in interest rates caused by zombie S&Ls attracting
new deposits even increased the national debt.

Problem set

1. How would a private insurance carrier respond to a client that always took
extreme risks and frequently submitted large claims?

2. Rework Tables 3.7–3.9 when the high return occurs with probability 0.25
and the low return occurs with probability 0.75. Which investment would a
solvent S&L choose and which would be chosen by a zombie?

3. Rework Tables 3.7–3.9 when the high return occurs with probability 0.75
and the low return occurs with probability 0.25. Which investment would a
solvent S&L choose and which would be chosen by a zombie?

Questions 4 and 5 each pertain to a pair of investments, X and Y. Each
investment requires a $1000 capital outlay, $100 of which must be funded
by the owners of the S&L, with the rest coming from the cash entrusted to
the S&L by depositors. An interest rate of 10% is paid on deposits. For each
investment, prepare a table (similar to the ones in this section) and fill in
the cells. Determine which of the pair of investments would be selected by a
solvent S&L and which would be selected by a zombie firm.

4. The investments X and Y are given by Tables 3.10 and 3.11 respectively.

Table 3.10. Investment X

Return Probability Payoff

Low 0.4 500
High 0.6 1500

Table 3.11. Investment Y

Return Probability Payoff

Low 0.2 1100
High 0.8 1200

5. The investments X and Y are given by Tables 3.12 and 3.13 respectively.

Table 3.12. Return on investment X

Probability Payoff

1.0 1200

Table 3.13. Investment Y

Return Probability Payoff

Low 0.5 600
High 0.5 2000
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5 PERSONAL BANKRUPTCY

Personal bankruptcy filings in the United States have increased fourfold in the
past twenty years. At present about 5% of consumer loans will not be repaid. The
default of some borrowers raises the cost to those who repay their loans. (If half
of all borrowers defaulted then lenders would have to double the interest rate
charged to get the same return on loans as they would if there were no default.)

To the extent that default is a consequence of a loss of income beyond the
control of the borrower—due to ill health or unemployment, for example—we
can think of the higher interest charge as an insurance premium. Moreover, the
availability of such insurance—via the right to file for bankruptcy—enhances
individual welfare, just as automobile or health insurance does. And it’s financed
in the same way. Those who do not make a claim pay a tiny amount of money—
the insurance premium or the increase in the interest rate—that’s pooled and
used to pay a large sum to those who do have a claim. In the case of a dras-
tic loss of income, the claim payment is the discharge of the debt. We choose
to buy car insurance because we’re better off giving up the small annual fee
in return for the guarantee of receiving a large sum in case of a serious loss.

If insurance against being unable to pay
one’s debts is a good thing, why isn’t it
provided by the private sector? Because
if an individual’s income were guaran-
teed by insurance there would be a severe
moral hazard problem: One would have
very little incentive to work effectively.
An insurance contract that paid a claim
only on the condition that the individ-
ual supplied appropriate effort on the job
could not be enforced because there is no
way for a third party—a judge—to verify
the policyholder’s effort level. If the con-
tract couldn’t be enforced it wouldn’t be
offered.

If default only occurred after a loss of
income due to events beyond the control of
the borrower then the higher interest charge
is the insurance premium, and the availability
of a bankruptcy procedure enhances individual
welfare. However, a large fraction of bankruptcy
filings are made by individuals who have not
suffered a severe financial setback. These indi-
viduals file simply because the financial bene-
fits of doing so exceed the financial costs. How
can that be?

The cost of filing for bankruptcy is the $400
filing fee and the increased difficulty of bor-
rowing in the future. To compute the benefit of
filing we need to examine the U.S. bankruptcy
law. It is a federal law, and one can file under
Chapter 7 or Chapter 13. Chapter 7 leaves future

income untouched but requires the individuals to turn over their assets to
their creditors—up to the value of the outstanding debts. Chapter 13 leaves
assets untouched but requires the individuals to submit a plan to commit a
share of future income to repay debts. However, individual states are allowed to
impose asset exemptions for Chapter 7 filings. Some states exempt the entire
value of one’s house. Most states have some level of exemption on retirement
accounts and the cash value of life insurance, in addition to the homestead
exemption.

Suppose state X has an unlimited homestead exemption and a borrower can
cash in other assets and put them into housing just before filing for bankruptcy.
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Suppose also that courts do not check to see whether an individual is in dire
financial straits. Then an individual in state X with $200,000 worth of stocks and
bonds, a $300,000 house, and $500,000 of debt can sell his assets for $500,000,
purchase a new $500,000 house, and then file for bankruptcy. The entire debt
will be discharged, and the house will not be touched. Seventy percent of all
bankruptcies are filed under Chapter 7.

If the individuals who purchased automobile collision insurance took advan-
tage of the fact that any damage was covered by the insurer and drove carelessly
in parking lots, there would be a great many more dented fenders to be repaired.
The overall increase in claims would increase everyone’s premium. That’s why
the deductible is part of the insurance contract. Otherwise, individuals would

Since 1998 twenty American steel com-
panies have declared bankruptcy. Beth-
lehem Steel, the second-largest U.S. steel
firm, did so because it was able to
receive additional bank financing and
other benefits (The Economist, October
20, 2001, p. 62).

devote far less than the efficient amount of
effort to preventive care. Similarly, the fact that
bankruptcy filing can be beneficial for some-
one who has not suffered a financial setback
means that more than the socially optimal
amount of “bankruptcy insurance” is supplied.
Note that these strategic bankruptcy filings
increase the default rate on loans and result
in an additional increase in interest rates. One

might expect to see lenders offering lower interest rates to borrowers who waived
their right to file for bankruptcy, but that waiver could not be enforced because
it is contrary to the bankruptcy act. (Chapter 7 has recently been modified to
make bankruptcy less attactive.)

Source
This section is based on White (1999) and Fay, Hurst, and White (2002).

6 MANDATORY RETIREMENT

Mandatory retirement is the practice of an employer preventing employees from
working beyond a specified age. Employees must retire at that time, no matter
how able they are to work or how eager they are to continue working. For the
first three-quarters of the twentieth century, U.S. firms typically required work-
ers to retire at age sixty-five. The 1978 Age Discrimination in Employment Act
outlawed compulsory retirement before seventy. The 1987 amendment to the
act eliminated the practice for most U.S. employers, regardless of the worker’s
age. (Coverage was extended to college and university professors in 1994.) It is
doubtful that involuntary retirement at age sixty-five or seventy is discrimina-
tory. A worker obviously cares about the entire profile of lifetime earnings, and if
all workers coming on stream are treated in the same way—as far as retirement
is concerned—where is the discrimination? However, we won’t debate the issue.
Our main purpose is to reveal an economic rationale for mandatory retirement
in a society in which there are hidden action and hidden characteristic problems
on the job.
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6.1 Posting a bond
Hidden action problems arise whenever work is performed in a team and it is
difficult or impossible to identify the contribution made by a particular member
of the team, as is the case with modern manufacturing processes. In the long run,
malingerers can be detected in a number of ways. However, firing malingerers
when they are identified is not by itself enough to discourage shirking if workers
can switch jobs with impunity. But by accepting employment in a firm that
pays its workers less than the competitive wage (i.e., the value of the marginal
product) in the early years and more than the competitive wage in later years the
worker is in effect posting a bond. The bond is forfeited if the worker is caught
persistently shirking, because he or she will then be fired. And if a worker is fired,
he or she won’t be around to collect the deferred pay. The boss must monitor
occasionally for the threat of bond forfeiture to have force, but the existence of
the threat substantially reduces monitoring costs.

DEFINITION: Compensation
The worker’s compensation is his or her annual income plus other benefits
such as the employer’s contributions to the employee’s health insurance
plan.

In an economy that did not solve this hidden action problem, workers in
general would perform poorly, total output would be low, and everyone’s util-
ity would be far below what it would have been if everyone had contributed
more effort and had more consumer goods and services in return. How do we
know? After all, an increase in individual effort involves a cost—lower leisure
consumption—in addition to the benefit of increased consumption of other
goods. But when workers in general have no disincentive to shirk, the cost to an
individual of reducing effort is zero. But the cost to the society—reduced output
of goods and services—is positive and large. When social cost pricing is not used,
outcomes are typically inefficient.

Even when there is a single worker, such as a hired hand on a farm, it is
impossible to determine the extent of the worker’s contribution by observing
output if that output is affected by random events (weather, insects, etc.) in
addition to the worker’s effort. Over a long period of time the law of large numbers
can be used by the employer to determine the worker’s average effort from
average output. In other words, the worker’s actions do not remain hidden in
the long run, and shirking is penalized by forfeiture of the “bond.” Posting a
bond in the form of deferred compensation also brings the labor market closer
to the efficient level of on-the-job training. An otherwise profitable investment
in worker training will be unprofitable if workers leave the firm after the new
skills have been acquired. This problem will be mitigated if the worker posts a
bond with the firm that pays for the training.

Inefficiency can still result if effort levels are observable but not verifiable.
It may be quite evident to a manager that a worker is shirking, even though the
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manager is unable to prove this with objective evidence that would convince a
judge or jury. In that case, it will not be possible to employ a contract that directly
penalizes a worker for shirking. The contract could not be enforced because the
employer could not prove in court that shirking did in fact occur. An example of
an observable but unverifiable shirking is discourteous behavior by a waiter to
a restaurant customer.

There is also a hidden characteristic element to the employer-employee rela-
tionship. Even if there were no shirking there would be more talented and less
talented workers. Again, team production makes it impossible to identify less
talented workers in the short run. These workers may know who they are but they
would not voluntarily identify themselves and accept less pay. However, if com-
pensation is below the competitive level in the early years and above the com-
petitive level in later years a less talented worker would not accept a contract
designed for a talented worker. Such a contract would be beneficial only if the
worker collected the late-career high pay, but the worker would be dismissed or
kept on at lower pay when it became clear that he or she were not a high-quality
worker. The compensation profile can be used to sort less talented workers from
talented workers even though the former attempt to conceal their identity. The
compensation profile induces the less talented workers to self-select. This also
promotes efficiency.

The fact that pay is low at the beginning of the career, when young people
want to start a family and buy a home, might prevent the deferred compensation
formula from persisting in equilibrium were it not for the possibility of borrowing
against future income by taking out a home mortgage. Lenders will know that
compensation increases over time and take that into account when reviewing
the loan application.

We have argued that the standard compensation profile, paying below com-
petitive levels early and above competitive levels later in one’s tenure in the
firm, has an economic rationale. However, this compensation profile would be
unprofitable for employers if workers were able to collect the high late-career
pay indefinitely into old age, hence the mandated cut-off age.

Now, let’s illustrate with a simple model of labor supply.

6.2 The formal argument
There are two goods, leisure consumption X and a composite commodity Y,
which is total expenditure on all goods other than X. Let x and y denote the
respective amounts consumed of the two goods. The consumer has utility func-
tion U(x, y) = B(x) + y. It is assumed that MBX, the marginal utility of X, is pos-
itive but diminishing. That is, MBX(x) is positive for all x ≥ 0, but x′ > x′′ implies
MBX (x′) < MBX (x′′). The production of Y is represented by a production func-
tion f(E), with labor as the input, and E as the total labor employed (over all
workers). Thus, E is the number of years worth of labor used in production. It is
assumed that MP(E), the marginal product of labor, is positive for all E ≥ 0, but
beyond some value of labor input it is diminishing in the sense E ′ > E ′′ implies
MP(E ′) < MP(E ′′) for values of E ′ and E ′′ beyond some threshold. (When dis-
cussing retirement it is convenient to measure time in years.)
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We put the spotlight on a particular individual J, so we let LJ denote J’s labor
supply. An individual can’t control the amount of labor supplied by others, so
we take that as given and denote it by LO. Therefore, E = L J + L O and thus
f (E) = f (L J + L O). Because we are treating LO as a constant, we can view f as a
function of LJ, which means that MP is also a function of LJ. In fact, we simplify by
writing MP(L), which is the increase in output when individual J works one more
year, given that J worked for L years and that the total amount of additional labor
employed is LO. We begin by showing that efficiency requires MBX (x) = MP(L).

If MBX (x) < MP(L) we can have individual J supply an additional unit of
labor, resulting in the production of MP(L) additional units of Y, which we give
to that same consumer. This will increase utility, but the net change in J’s utility
must reflect the loss in one unit of leisure consumption. The reduction in the
utility derived from leisure is – MBX(x), and hence the net change in utility is

−MBX (x) + y = −MBX (x) + MP(L),

which is positive when MBX (x) < MP(L). We have increased one individual’s
utility without affecting the utility of anyone else. The worker’s extra consump-
tion of Y was generated by increasing that worker’s time on the job. No one else’s
consumption changed, and no one else’s labor supply changed.

Suppose, now that MBX (x) > MP(L). Then we can increase individual J’s util-
ity without affecting anyone else by increasing J’s leisure consumption by one
unit and letting J’s consumption of Y fall by the resulting drop in output, which is
MP(L) because an increase in leisure of one hour reduces labor input by one hour.
Again, we made one person better off without harming anyone else. Therefore,
efficiency is incompatible with MBX (x) < MP(L) and also with MBX (x) > MP(L).
It follows that efficiency requires MBX (x) = MP(L) for an arbitrary individual J.
Assume that ninety is the time endowment. That is, the individual does not
anticipate living longer than ninety years. Then once we specify J’s leisure con-
sumption x we have determined J’s labor supply L. It’s 90 − x. Consequently,
MBX (x) = MP(L) can be written MBX (x) = MP(90 − x). Let x∗ be the solution of
this equation. We can say that x∗ is the efficient leisure consumption for J, and
L∗ = 90 − x∗ is J’s efficient retirement date. (Different consumers would have
different B functions, and hence different efficient levels of X , even with the
same production function.)

If in every period the worker’s compensation equals the worker’s marginal
product in that period then that worker will choose the efficient retirement
date.

(Here is the calculus derivation of x∗: The utility function of individual J is
U(x, y) = B(x) + y. Let LO denote total amount of labor contributed by everyone
but J. If the outcome is efficient it must maximize U given the labor supply and
the consumption plan of every other individual. Therefore, we can derive a
necessary condition for efficiency by maximizing

V (x) = B(x) + f (L + L O) − yO
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where yO is the total Y consumption of everyone but individual J. Use the chain
rule and the fact that dL/dx = −1 to take the derivative of V with respect to x.
The first derivative is B′(x) − f ′(L O + L), and when we set this equal to zero we
get equality between the marginal utility of X and the marginal product of J’s
labor, and we let x∗ denote the solution of that equation. We know that the first
derivative will equal zero at the maximum because we can assume that x = 0
won’t maximize the individual’s utility nor will L = 0. That is, there will not be a
corner solution.)

The efficient labor supply is 90 − x∗, which is represented as L∗ in Figure 3.1.
Because MBX falls as leisure consumption increases, when the marginal utility of
leisure is plotted as a function of L (which is on the horizontal axis), it increases
as L increases. MP(L), the marginal product of labor, increases early in the career,
as the individual learns on the job, and then declines after a point, as age takes
its toll.

If there were no hidden information problems, a compensation profile equal
to the marginal product of labor schedule would induce the individual to retire
at the efficient date L∗. Consider: When the compensation C equals MP(L), the
marginal product of labor, at each date L, if the worker were to retire at date
L < L∗ then x > x∗. An increase in L of one year would cause the worker’s utility
to increase by

−MBX (x) + C.

(Remember, J’s utility function is B(x) + y, and y = C if time on the job
were to increase by one year.) C − MBX (x) is positive when x > x∗ because
C = MP(L), MBX (x∗) = MP(L∗), and MBX (x) decreases as x increases and MP(L)
increases as L decreases. Therefore, if J were free to choose, J would not retire
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before L∗. However, if L > L∗ J can increase utility by reducing L by one year.
The change in utility is MBX (x) − C , which is positive when x < x∗. J would
not retire later than L∗ if the decision were J’s to make. We have shown that if at
each point in time the worker’s compensation is equal to the marginal product of
labor, then the utility-maximizing consumer will choose the efficient retirement
date L∗.

The compensation profile represented by MP(L), the marginal product of
labor, in Figure 3.1 is rarely observed. Much more typical is the upward sloping
compensation profile represented by the curve UCP. We can find an upward
sloping UCP such that the consumer is indifferent between UCP and retirement
at L∗ on the one hand, and on the other hand always having a compensation
package equal in value to the current marginal product of labor and retirement
at L∗. Just find some UCP with the same present value as the marginal product
compensation schedule. (See the next section.) If the individual faces a different
interest rate as a borrower than as a lender, then the present value calculation
is somewhat misleading. But there is some UCP that gives exactly the same
utility as the profile MP(L). The proof of that claim follows from the fact that if
UCP is sufficiently low the individual will prefer MP(L) and if UCP is sufficiently
high the individual will prefer UCP. There must be some intermediate upward
sloping compensation profile to which the individual is indifferent, and this is
represented in Figure 3.1.

At L∗ the actual compensation (located on UCP) is above MBX (x∗) and the
individual will want to keep working at the current rate of pay. An upward sloping
compensation profile is in society’s interest, because it helps solve hidden infor-
mation problems, leaving everyone with more utility. Consequently, mandatory
retirement is in society’s interest because the upward sloping profile will not be
offered by profit-maximizing firms if workers continue on the job beyond L∗.
Because UCP and the marginal product compensation profile MP(L) have the
same present value when each is truncated at L∗, the firm will prefer the marginal
product schedule to the UCP schedule if the worker chooses the retirement date.
The worker will choose to retire at LA with compensation schedule UCP. Between
L∗ and LA the value of compensation is above the marginal product of labor and
the firm loses the compensation minus MP(L) on each unit of additional labor
employed.

The overall outcome could be very unprofitable with UCP and no mandated
retirement date. Therefore, the equilibrium will not include firms offering an
upward sloping compensation profile without specifying the retirement date. If
we look at labor supply only, we see that the equilibrium could include firms
that offer the marginal product compensation profile with the retirement date
chosen by the worker and contracts that offered an upward sloping compensa-
tion profile with retirement mandated at L∗. Firms that employ the latter will
be more profitable because they will have fewer hidden information problems.
These firms will be able to set lower prices and drive the other firms out of the
market. Therefore, when we look at labor demand as well as supply, we see that
the equilibrium will feature only firms that offer an upward sloping compensa-
tion profile with mandatory retirement at L∗.
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Have we seen a change in U.S. compensation profiles since the end of manda-
tory retirement? No, because there are other reasons for requiring the employee
to post a bond. Moreover, workers often choose to retire before seventy and even
before sixty-five. Decades of economic growth have made that possible.

6.3 The intertemporal budget constraint
This section shows why there are many compensation profiles that provide the
same level of utility to a given worker. Initially, assume that there are only two
periods: period 0 (the present) and period 1 (which is one year from now). Let
C0 be the number of dollars available for consumption now and let C1 be the
number of dollars available for consumption one year from now. We assume an
interest rate of r that is the same for lenders and borrowers. We express r as a
decimal fraction. (If the interest rate is 7%, then r = 0.07.) To specify the budget
constraint we need to know current income, which we denote by I0, and income
one year from now I1.

To derive the intertemporal budget constraint put yourself in the position
of the consumer one year from now, and ask simply, “How much money can I
spend on goods and services in period 1?” If the consumer saved in period zero
there will be

Savings + Interest on Savings + Period 1 Income.

Saving is, by definition, equal to the amount of income not spent on consump-
tion. Therefore, saving equals I0 − C0. Interest earned on saving is the amount
saved multiplied by the interest rate, which is (I0 − C0) × r in this case. Therefore,
the amount that a saver can spend on consumption in period 1 is

I1 + I0 − C0 + (I0 − C0) × r = I1 + (I0 − C0)(1 + r).

Therefore, a saver is constrained by the following equation in period 1:

C1 = I1 + (I0 − C0)(1 + r).

What about someone who borrows initially? How much money can someone
who borrowed in period 0 spend in period 1? The answer is clearly

Period 1 Income − Amount of the Loan − Interest on the Loan.

The principle has to be repaid in period 1 in a two-period model, and so does
the interest on the loan. It is easy to determine the amount borrowed; it will be
equal to the amount spent on consumption in period zero in excess of period
zero income. That is, borrowing = C0 − I0. The interest charge is the interest
rate times the amount of the loan, or (C0 − I0) × r . Therefore, the amount that a
borrower can spend on consumption in period 1 is

I1 − (C0 − I0)(1 + r) = I1 + (I0 − C0)(1 + r).

Therefore, borrowers and savers are governed by the same intertemporal budget
constraint:

C1 = I1 + (I0 − C0)(1 + r). [1]



172 Hidden Action

Of course, if the individual neither lends nor borrows in period 0 we will have
C0 = I0 and henceC1 = I1, which also satisfies [1]. Therefore, [1] is the two-period
intertemporal budget constraint.

Suppose the individual will live T + 1 periods. We claim that the individual’s
consumption opportunities are governed by

CT = IT + (1 + r)(IT−1 − CT−1) + (1 + r)2(IT−2 − CT−2)

+ (1 + r)3(IT−3 − CT−3) + · · · + (1 + r)T−1(I1 − C1)

+ (1 + r)T (I0 − C0). [2]

To prove that [2] is the correct representation of the constraint that the market
places on the individual’s lifetime consumption plan (C0, C1, . . . , CT−1, CT ) we
suppose that we have already proved it for T = t. We then demonstrate that that
supposition implies the claim for T = t + 1. Because we have already established
the claim for T = 1, we will then have proved by induction that [2] holds for any
finite number of years.

If the right-hand side of [2] is the available purchasing power in period t,
given the previous consumption levels C0, C1, . . . , Ct−2, Ct−1, then the amount
of purchasing power Rt left over after Ct is spent in period t is the right-hand
side of [2] minus Ct. That is,

Rt = It − Ct + (1 + r)(It−1 − Ct−1) + (1 + r)2(It−2 − Ct−2)

+ (1 + r)3(It−3 − Ct−3) + · · · + (1 + r)t−1 (I1 − C1) + (1 + r)t(I0 − C0).

If Rt is positive it will add to the individual’s purchasing power in the next period.
In other words, saving is carried over to the next period, with interest of course.
If Rt is negative, debt is carried forward to the next period and will have to be
paid back, with interest. In either case, the purchasing power available in the
next period is It+1 + (1 + r)Rt. When we set Ct+1 = It+1 + (1 + r)Rt we get [2] for
T = t + 1. Therefore, [2] is the intertemporal budget constraint for any lifetime
T + 1, for any value of T .

If we divide both sides of [2] by (1 + r)T and gather the consumption terms
to the left of the equality sign we get

C0 + C1

1 + r
+ C2

(1 + r)2
+ C3

(1 + r)3
+ · · · + CT−1

(1 + r)T−1
+ CT

(1 + r)T

= I0 + I1

(1 + r)
+ I2

(1 + r)2
+ I3

(1 + r)3
+ · · · + IT−1

(1 + r)T−1
+ IT

(1 + r)T
. [3]

We refer to [3] as the present value form of the intertemporal budget con-
straint. The right-hand side is the present value of the income stream
(I0, I1, . . . , IT−1, IT ), and the left-hand side is the present value of the consump-
tion stream (C0, C1, . . . , CT−1, CT ). Clearly, there are many different income
streams that will produce the same number on the right-hand side of [3]. All
such streams provide the consumer with the same consumption opportunities.
If two income streams A and B have the same present value, then a consumption
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stream will be affordable with A if and only if it is affordable with B. Suppose
A delivers high levels of income in the early years and relatively low levels later
on. If it’s the other way around with B but they have the same present value, then
by borrowing and lending the consumer can finance a particular consumption
stream with A if and only the consumer can finance that consumption stream
with B. Consequently, a particular consumer will wind up with the same utility
with either income stream.

Source
The economic rationale for mandatory retirement is based on Lazear (1979).

Links
See Carmichael (1989) for more on this problem. The mandatory retirement
story doesn’t fit U.S. data perfectly. See Stern and Todd (1992). For example,
pension funds should be included in the model because they also play the role of
bonds posted by the employees. See Lazear (1992). Since mandatory retirement
was outlawed in 1978 for U.S. workers under the age of seventy, the increase in
the average retirement age has been slight (Costa, 1998, p. 24).

Problem set
All of the questions refer to the Figure 3.2.

1. What is the efficient retirement age if H is the value of the worker’s marginal
product as a function of time K is the marginal utility of leisure, and J is the
compensation profile?
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2. What is the efficient retirement age if H is the value of the worker’s marginal
product as a function of time J is the marginal utility of leisure, and K is the
compensation profile?

3. What is the efficient retirement age if K is the value of the worker’s marginal
product as a function of time J is the marginal utility of leisure, and H is the
compensation profile?

4. What retirement age would the worker choose if H is the value of the worker’s
marginal product as a function of time J is the marginal utility of leisure, and
K is the compensation profile?

5. What retirement age would the worker choose if H is the worker’s compen-
sation profile, J is the value of the worker’s marginal product as a function of
time, and K is the marginal utility of leisure?

7 TENURE AND THE PERFORMANCE OF PROFESSORS

This section briefly considers a hidden action problem in which the agent who
is carrying out a task for the principal is a university professor. The spotlight is
on the professor’s hiring, promotion, and sometimes dismissal. The promotion
regimen employed in colleges and universities in Canada, the United States, and
many other countries is an example of the up-or-out policy, which is also used
in most firms that are organized as partnerships. After a probationary period
of six or seven years, the employee is either given permanent employment or is
released. But why up or out? If workers are found to be of low quality, why not
offer them a lower wage? Why terminate employment? In general, the up-or-out
policy gets around the problem of the employer giving the worker a false low
rating to cut labor costs. If other firms could observe the worker’s quality, this
wouldn’t work. But because information is hidden it would be a serious possibil-
ity and a serious problem: If the university administration were to systematically
underrate professors, they might respond by working less, because the return
to hard work is reduced.

In the case of colleges and universities, a professor’s performance is reviewed
after six years by members of his or her own department. Outside evaluations
of the candidate’s research are obtained. Evidence of teaching effectiveness is
also examined, but the candidate’s contributions to scholarship receive almost
all of the weight in the top research universities. If the decision is negative, the
teacher must leave the university. Even if he or she offers to stay on at a big cut
in pay, the teacher will not be retained after a negative tenure decision. If the
decision is favorable, the professor is granted lifetime tenure in the department.
This means that the professor can never be fired for incompetence—only for
moral turpitude. The only other way that a university can dismiss a tenured
professor is to close down the entire department. Assuming no serious moral
lapses, a tenured professor has a lifetime job; his or her position in the depart-
ment is terminated only by death—the professor’s death (or retirement) or the
department’s, whichever comes first.
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What benefit could come from a policy that prevented an employer from
firing a worker for incompetence? Given the roster of faculty members in a par-
ticular university department, it would seem to be in society’s interest to allow
the employer to fire low-quality workers at any time and replace them with
higher quality faculty. The university would decide the relative weight to place
on teaching and research and then rank the members of a department. The
poor performers could then be identified and released. However, if this policy
were adopted by universities, the departments themselves would make different
hiring decisions in the first place. The established department members would
be reluctant to hire the best young people available. These high-quality young
people might outperform the original department members by such a wide
margin that the university would want to reduce the pay of the incumbents or
even fire them. Therefore, there would be a strong incentive for departments
to hire low-quality newcomers. The net result of allowing the university to fire
low-quality professors at any time and replace them with higher quality faculty
would be departments with very low-quality workers! The overall result of abol-
ishing tenure could well be lower quality colleges and universities. But why let
the department members themselves hire their new colleagues? Because the
members of a particular department are the only people in the university com-
munity capable of judging the candidates for an opening in that department.

Compare the university system with professional sports: In both cases per-
formance declines significantly with age. The public has an interest in seeing
that workers are replaced when the quality of their performance falls below that
of newcomers waiting in the wings who not only have the benefit of youth but
also the most up-to-date tools. In athletics, management can replace one worker
with a superior one—it is relatively easy for management to evaluate new talent.
There is no efficiency argument for awarding tenure to professional athletes. The
case for academic tenure does not apply here. In academe the weak performers
can be identified by the administration with the passage of sufficient time—a
decade or two, say. Why not allow the university to replace them at that point?
We come back to the hiring decision. Professors will have a strong incentive
to hire weak newcomers if there is a possibility that a strong candidate could
eventually replace the incumbent.

How about comparing university hiring with the way it’s done in the legal
profession? The senior partners in a law firm do not seem to be reluctant to hire
the best young people. But this is a field in which newcomers bring revenue to
the firm in addition to talent. The better the lawyers the more their clients will
be billed for their services. The new lawyers create room for themselves without
displacing the incumbents. A university department, on the other hand, has a
limited number of positions. In a law firm, a bad hire will diminish the firm’s
revenue and hence the income of those making the hiring decision. In a univer-
sity, a bad hire may eventually diminish the quality of the students admitted,
but if the original department members get to keep their jobs by making bad
hires they will realize a net gain. They may notice the deterioration in student
quality, but that is more than compensated for by the increased probability of
holding onto their jobs.
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Granting lifetime job security to professors may be necessary to ensure that
they do not have an incentive to hire weak newcomers. But that should not
prevent the university from periodically examining the performance of a faculty
member to ensure that the individual’s own rate of productivity is maintained
or from having departments compete for their shares of the pay raise pot.

Although lifetime tenure is desirable, why base teachers’ promotion deci-
sions even partly on their research output? If the creation of new knowledge is
not an important part of teachers’ jobs, as in the case of preuniversity education,
then the instructor is just passing on the discoveries of others. New hires can be
evaluated by the administration and the case for tenure vanishes. At the univer-
sity level, research is an important part of the professor’s job—not just because
it adds to the stockpile of knowledge. Professors who are not sufficiently inter-
ested in their subjects to go beyond what is already known will probably be less
than inspiring in the classroom. Moreover, if the instructors are not engaged in
intensive research it is very hard to for them to pick up the new tools that allow
them to pass breakthroughs on to students.

In general, writing a paper for publication in a leading scholarly journal
requires skills that are closely related to the talents needed for effective teaching
at the university level: intelligence, thorough knowledge of one’s field, intellec-
tual discipline, creativity, and an interest in the subject. Less talented scholars
take a lot longer to prepare an article that’s suitable for the high-quality journals.
Therefore, it is less costly for the high-quality workers to signal their quality—
in this instance, a signal is publication of an article in a high-prestige journal.
Basing hiring, firing, and promotion decisions heavily on the individual’s publi-
cation record has a rationale as a partial solution to a principal-agent problem,
which in this case has both hidden characteristic and hidden action elements.
The university could not take job applicants’ word that they are diligent schol-
ars with a keen interest in the discipline, a determination to work long hours
learning more about the subject, and the intelligence to keep up with the other
scholars in the field. Even if the university and society in general had no interest
in scholarly research there would be a signaling rationale for using publication
records in employment decisions. (Of course, if research had no social value it
would receive much less funding and there would be less of it.) If you wish to
test the proposition that publication has its uses apart from the scientific value
of the output, you need to go well beyond estimating the correlation between
teaching ability and success in publishing that you observe at your own col-
lege. You want to compare the present situation with what you would expect to
find if universities were unable to use a fairly objective quality signal such as
publication.

Source
This function of the up-or-out contract to solve the problem of the princi-
pal (employer) falsifying information was pointed out by Kahn and Huberman
(1988). The economic argument for awarding tenure to professors is based on
Carmichael (1988).
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Links
Carmichael (2001) explains why professors’ unions are highly undesirable if
professors also have tenure.

8 PAY AND PERFORMANCE IN U.S. PUBLIC SCHOOLS

American public schools have a dismal reputation. American universities are the
envy of the world. Students from around the world come to the United States for
their postsecondary education. The situation for grades 1 through 12 is remark-
ably different. In 1995, American seventh- and eighth-grade students ranked
twenty-third in mathematics and twelfth in science out of the forty countries
involved in the third International Math and Science Study. (Ireland ranked sev-
enteenth in math, and Canada ranked eighteenth.) Moreover, the standing of
American students is lower at the higher grade levels. High school seniors ranked
below those of every country except Lithuania, Cyprus, and South Africa. In
addition to these data we have a steady stream of media reports of egregious
conditions in public schools.

Between two-thirds and 75% of the
world’s top research universities are
located in the United States (Rosovsky,
1990, Chapter 2). In 1997, 29% of the
PhDs awarded by American universi-
ties were earned by noncitizens, and
43% of the degrees in mathematics and
computer science went to noncitizens
(Ehrenberg, 2000, p. 4). Contrast those
data with the reputation of U.S. schools
in the grade range 1 through 12: 67% of
low-income parents say that they would
be inclined to take their children out of
the public school system if the alterna-
tives were not so costly (Moe, 2001).

This section argues that the way that teach-
ers are paid in the public school system cre-
ates serious moral hazard and averse selec-
tion problems that exacerbate the performance
problem—and may be the main obstacle to cor-
rection. (There is strong evidence that increas-
ing expenditure on education will not lead to
improved student performance.) We begin with
the hidden action element.

In the vast majority of school districts in
the United States, teachers’ pay depends on the
number of years of college attained, the num-
ber of graduate courses taken, and especially
the number of years they have been employed
as teachers. The quality of the colleges that the
teachers attended is irrelevant in determining
their salary, as is the nature of the courses taken.

The teacher’s performance in the classroom is not part of the salary formula. The
largest teacher’s union, the NEA (National Education Association), has always
resisted—very successfully—the idea that good performance be rewarded and
bad performance be punished. This creates a severe moral hazard problem:
Two things that have a profound effect on the performance of workers in other
sectors of the economy—the carrot and the stick—are not employed in the pub-
lic school system. Instead, teacher pay is determined by factors that have little
bearing on the quality of teaching.

Most professionals—physicians, professors, public school teachers, lawyers,
and so forth—claim to do the best job that they can as a matter of pride and
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ethics, whether or not that is reflected in their pay. There is strong evidence to
the contrary. For instance, physicians recommend more expensive treatments
in cities with more doctors per capita. (See Section 9.1 of this chapter.)

In addition to the moral hazard problem that is created when pay is inde-
pendent of performance, there is a serious adverse selection problem. Highly
motivated, hard working, and talented individuals are discouraged from enter-
ing a field that does not increase the person’s pay when those qualities are mani-
fest in superior performance. (The educational quality of U.S. teachers has been
steadily declining over the past quarter century.) The problem is compounded in
the public school system because science and math teachers are paid no more
than others, although they receive an 8% bonus in the private sector. Many
school districts are forced to hire unqualified math and science teachers.

The core of the NEA’s attack on pay-for-performance is that good perfor-
mance by teachers is very hard to measure. However, it can’t be any harder to
measure the quality of teaching by American college and university instructors,
although merit pay is a crucial part of their salary formula. In fact, 90% of large
public and private sector organizations attempt to measure the quality of an indi-
vidual’s work and adjust pay accordingly, in spite of the measurement problems.
Inequities are inevitable, but there is far more harm done by the inefficiency of
a pay schedule that includes no incentive for good work.

The performance of American students on international tests, the argument
that moral hazard and adverse selection problems are built into the pay formula
of American teachers, and the groundswell of parental dissatisfaction with the
performance of public schools have prompted the NEA to propose an additional
program of certification. Mastery of certain skills and/or knowledge would be
certified and a teacher’s pay would increase with the number of certificates
presented. However, less that three-tenths of 1% of North American firms use
certification in that way. The NEA proposal is not an improvement on the present
system but just more of the same. It is noteworthy that only 1% of private school
teachers have the certification demanded by public school boards.

How do we know the system would respond to a change in the incentive
environment? One type of evidence comes from a comparison of the perfor-
mance of public schools that face serious competition with schools that do not.
The city of Boston has seventy school districts accessible from the city center
within half an hour, whereas Miami has but a single district. Some public schools
face competition from relatively inexpensive Catholic schools, and many do not.
Some school districts employ the voucher system or have a charter schools pro-
gram, both of which provide stiff competition for the local public school. Public
schools that face competition perform better than those that do not, after adjust-
ing for factors such as the level of parental education and income that would
otherwise cloud the results. Competition provides disincentive to the public
schools authorities to stand pat, for fear of losing enrollment and then govern-
ment revenue. Presumably, one of the consequences is the provision of better
incentives for teachers.

Concluding note on the voucher system and charter schools: The voucher
system gives parents the right to transfer the amount of money that would have
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been given to a public school for the child’s education to the private school
of their choice. Any difference between the private school fee and value of the
voucher comes out of the parents’ pockets. The system greatly expands the
family’s range of choice, especially if the difference between the private fee and
the value of the voucher is small. The NEA claims that vouchers will drain the
public school system of the best students and consequently further disadvantage
those left behind. That has not happened. In Michigan and Milwaukee the poor
and minority students remaining in the public system have made impressive
gains—presumably as a result of the schools responding to competition. And
the fraction of poor students in the public system has not changed. Charter
schools are largely publicly funded but have considerable autonomy and find it
much easier to respond to parental concerns.

Source
The lack of a meaningful link between teacher pay and teacher performance has
been thoroughly studied by Dale Ballou and Michael Podgursky. See for exam-
ple, Ballou and Podgursky (1997, 2001). Data on the standing of U.S. students
in international tests is taken from Hanushek (2002) and Woessman (2001).
The effect of competition on public schools has been intensively researched by
Caroline Hoxby (2001a, 2001b, 2002).

Links
See Hanushek (2002) for a review of the evidence revealing that increasing expen-
diture on education will not lead to improved student performance. Lazear
(2003) points out that the educational quality of U.S. teachers has been steadily
declining over the past quarter century.

9 MORAL HAZARD AND INSURANCE

The term moral hazard was first used in the insurance industry to refer to the fact
that individuals with insurance coverage have diminished incentive to devote
effort to preventive care. Preventive care reduces the probability of the kind
of accident that is covered by insurance. This is a concern for insurance com-
panies because diminished preventive care results in a larger number of acci-
dents and hence more claims paid by the insurer. It is a concern for society
as a whole because, although insurance coverage increases individual welfare,
it also induces individuals to devote less than the efficient amount of effort to
preventive care.

Effort is costly to the individual, and efficiency calculations always require
benefits to be weighed against costs. Why would expected utility-maximizing
individual decisions not lead to an efficient outcome? After all, this book does not
consider the effort that people devote to vacuuming their carpets to determine
whether an efficient outcome results from self-regarding individual decisions.
That’s because when I vacuum my carpet there are no direct effects on the
welfare of anyone else. Admittedly, there is an indirect effect on your welfare.
The electrical energy that I used might have been used instead by you to prepare



180 Hidden Action

your dinner. But I pay a price for the electricity that I use, and that price reflects
the value of electricity to you.

Now, return to the case of accident insurance. I could lower the probability
of an accident by increasing the effort that I devote to prevention, but the cost to
me of the extra effort is not accompanied by an increased benefit. If I do have an
accident, the loss will be financed by the other policyholders. Their premiums
provide the money with which the insurance company pays my claim. But every
policyholder has diminished incentive to invest in prevention, and that increases
the total number of accidents and the total value of claims paid. That in turn
results in a higher insurance premium. No individual can reduce his or her
premium by investing in prevention, however. It is easy to construct examples
in which everyone would have been better off if each devoted more effort to
preventive care, although no one has an incentive to do so. That is precisely
what we do in Sections 9.3 and 9.4.

DEFINITION: Moral hazard with insurance coverage
Moral hazard refers to the fact that insurance coverage drives a wedge
between the net benefit to the individual and the net benefit to the soci-
ety when the individual acts to reduce risk. The former falls far short of the
latter. Contracts that condition a claim payment on the individual’s actions
cannot be enforced because the amount of effort devoted to preventive care
could not be verified in court.

You may feel that an individual has sufficient incentive to invest in preventive
care even with insurance coverage when there is also the potential for personal
injury or even loss of life—burglary, fire, automobile insurance, and so forth.
Don’t jump to the conclusion that a person would employ every available device
for minimizing the chance of accident and injury, independent of any financial
incentive. You probably drive a car that is not as safe as a more expensive car
that you might have purchased instead—perhaps with the aid of a car loan. You
chose a less expensive car because, even after factoring in the probability of
an accident and injury, you have higher expected utility with that vehicle and
a larger basket of other goods and services. It is obviously not in our interest
to spend all our money, or all our time, on preventive care. If we did, each
household would want to live next to a hospital, and no one would ever take a
vacation because the money saved on vacations could be devoted to increased
fire protection for the home. Why not hire a night watchman for your home to
reduce the probability that you will die in your bed in a fire?

When drivers of police cars and rescue vehicles are monitored by means of
devices similar to the “black box” (flight data recorder) installed on commercial
aircraft, the frequency of accidents goes down dramatically, giving us additional
evidence that individuals left on their own do not devote maximum effort to
preventive care—not even when life and limb are at stake. (Monitoring is effective
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even when it takes the relatively primitive form of a loud noise going off inside
the vehicle when speed is excessive.)

We first look at some examples of moral hazard and then offer a formal model
(in Section 9.2). Sections 9.3 and 9.4 calculate the equilibrium level of prevention
resulting from individual choice and then the efficient level of preventive care.
We see that the latter is substantially higher.

9.1 Overview
The most striking example of moral hazard is the case of an individual who
commits suicide so that his family can collect the life insurance benefits. This
possibility is in fact eliminated by the insurance contract, which releases the
insurance company from its obligation to pay when death is the result of suicide.
(That provision usually lapses a year or two after the insurance is purchased.
Why?) It is costly for the company to determine if the insured did commit suicide,
but the costs are typically small relative to potential claim.

In many cases the costs of verifying moral hazard are too high for it to be
part of the contractual relationship: Homeowners insurance pays the cost of
replacing objects stolen when your home is robbed. The most severe loss is
sometimes the utility destroyed when an article with extremely high sentimental
value but low market value is taken. Why can’t the policyholder be compensated
financially for the loss in sentimental value? Because there would be no way for
the insurance company to verify that it would take $25,000 to compensate for
the loss of great grandmother’s button collection. It would be extremely costly—
and in most cases impossible—to determine if an object really was treasured by
the policyholder.

Why can’t you buy insurance to protect against a loss of home equity should
the market value of your house fall below the price you paid for it? Because of
the extreme moral hazard. The insurance would all but eliminate the incentive
to keep your house in good repair. It would also diminish the incentive to work
hard to get a good price when selling it. (Writing the insurance contract so that
a claim is paid only when the home owner has maintained the house well and
fought to get the best price wouldn’t work. Why?) However, basing the coverage
on the average value of houses in the surrounding neighborhood will restore
appropriate incentives: If the average value falls by 10% then you can claim 10%
of the original purchase price of your house when you sell it. If the owner has
actually increased the value of the house through maintenance and renovation
then the owner will realize the fruits of that effort because the claim is based
on the neighborhood average selling price. This type of equity insurance is only
available in a few areas in the United States at present, but it will likely become
commonplace.

“Christopher and Laurie: I had to go out for an hour. The key is under the
mat. Make yourself at home.” Would you leave this note on your front door if you
weren’t covered by burglary insurance? Some homeowners with fire insurance
will burn leaves in the driveway but would not do so if they were not insured
against fire.
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I once went to the emergency ward of
an Ottawa hospital to get a prescription
for our son’s medication. We had forgot-
ten the medicine at home in Toronto.
The hospital visit was covered by insur-
ance. We’re not that careless in Virginia
because our present health insurance
provider would not reimburse us for that
kind of “emergency,” and rightfully so.
My hospital trip could have been avoided
by taking a tiny amount of preventive
care—checking to make sure we had the
medicine before leaving home. Sensible
insurance coverage would not allow me
to pass the costs of that visit on to the
rest of the community. I want to make
it clear that I’m not proud of this exam-
ple, and also that the Canadian health
insurance system produces better over-
all outcomes than the American system.
In Canada, health care insurance is pro-
vided to everyone by the government
and funded through income taxation.

Health insurance is fraught with moral haz-
ard. I don’t mean to say that people who
have health insurance allow their health to
deteriorate. But given that one has a health
problem, there are often a number of ways
of successfully treating it. If the alternative
methods impose different burdens on the com-
munity’s resources and these social costs are
not reflected in the private costs incurred by the
individual making the decision then the private
decisions will not contribute to efficiency.

What exacerbates moral hazard in health
care is that the key decisions are usually made
by a third party—the physician. Doctors know
that the patient will pass the costs of health care
onto the insurance carrier and that patients
typically have almost no expertise in determin-
ing the appropriate treatment of their condi-
tion. Economists use the term induced demand
to refer to a treatment prescribed by a physician
that does not benefit the patient but which aug-
ments the physician’s income. It is difficult to
interpret the data on inducement. If patients
receive more medical treatment in areas with a

high ratio of doctors per capita, is this because doctors have fewer patients and
regulate their incomes by prescribing unnecessary procedures or is it the case
that communities with a high demand for medical care attract more physicians
per capita?

There tends to be a higher frequency of
baby deliveries by Caesarian section in
communities that have more obstetri-
cians relative to the number of women of
child-bearing age (Gruber and Owings,
1996).

In the 1980s escalating heath care costs—
due in part to the moral hazard and perceived
induced demand—motivated insurance com-
panies to play a small role in the selection of
the method of treatment. Until then, the typical
scenario was that the physician would recom-
mend a course of treatment, the patient would
approve, and the insurance company would
pay whatever costs were incurred. Patients still

had little incentive to shop for the least expensive provider of a specific treatment
or to elect a simple procedure when a more complicated one has been urged by
the doctor. This remains true today, and it can lead to the doctor overprescrib-
ing medical care. According to one medical study, 20% of the heart pacemaker
implants in the United States were not endorsed in retrospect as the most appro-
priate treatment, and 36% of the implants were recommended on the basis of
an extremely optimistic forecast of expected benefits (Hsiao, 1988).

Medical practitioners in Western Europe often rely on drug therapy to treat
heart disease and Americans are more likely to recommend surgery. Of course,
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surgery is more expensive. Americans spend far more per capita on health care
than Canadians but have about the same health status. (Canadians have a slightly
higher life expectancy in fact. And virtually all Canadians are covered by some
form of comprehensive health insurance, whereas 15% of Americans are not
covered at all.) And because the direct cost to the recipient of medical services
is typically very low, hospitals have very little incentive to compete on the price
dimension. They tend to appeal to consumers by publicizing the acquisition
of high-cost, high-tech equipment, even when it has little overall effect on the
community’s health status. The equipment does have a big impact on health
care costs, of course.

Insurance companies try to mitigate moral hazard by requiring the insured
party to pay a small fraction of the loss. Very often the patient will have to pay
20% of the health care costs—the copayment—while the insurance company
pays 80%. This lightens the patient’s financial burden considerably—compared
to someone without any health care insurance—but at the same time imposes a
charge on the patient that is proportional to the social cost of medical care. This
makes it costly for individuals to incur expenses that add little to their utility. If
medical care is free to individuals then they have an incentive to consume any
health care service as long as it adds something to their utility, regardless of the
cost to society.

An influential study by the RAND cor-
poration tracked more than six thou-
sand individuals. Some of them received
free medical care and the others were
charged significant copayments. The
two groups were equally healthy after
five years, in spite of the fact that the
group receiving free care incurred 30%
more treatment costs. (See Dranove,
2000, pp. 30–1, for a discussion of this
research.)

Deductibles also diminish the gap between
private and social costs for small losses. The
deductible clause makes the insured party
liable for any expenses under the deductible
limit, which is usually around $200 for automo-
bile collision coverage. The individual is pro-
tected against big losses, which is really what
one needs, but for small losses, which are often
the ones that are most easily avoidable, the
individual suffering the loss is the one who
pays. This means that private costs are equal to
social costs for small losses—that is, for losses
below the deductible limit. In addition, the

deductible is used by the insurance carrier as a screening device. If two poli-
cies are offered, one with a low premium and a high deductible and one with a
high premium and a low deductible, the people who know they are good drivers
will choose the former. This menu also provides some incentive for motorists to
improve their driving habits. The high-deductible, low-premium policy could
provide drivers with more expected utility if they drive safely.

Automobile insurance companies use experience rating to encourage care-
ful driving. Drivers pay higher premiums if they have speeding tickets or acci-
dents on their records. Some companies won’t accept business at any price from
drivers with very poor records. This gives individuals direct financial incentive
to take preventive care. Health insurance companies use experience rating to
determine the amount of premium paid by firms that purchase group policies.
Firms in industries in which the incidence of AIDS is unusually high sometimes
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cannot purchase health insurance at all. If insurance companies were able to
sort us into risk categories with perfect precision and charge higher premiums
to individuals in higher risk groups they would do so. Any firm that didn’t do
this would not be very profitable if the other firms did sort. And if other firms
did not sort, then a typical firm could increase its profit by sorting according to
risk.

Up to a point, sorting by risk is socially beneficial because it reduces the
moral hazard problem. But if it is taken too far then each risk category cantains
relatively few individuals, and the law of large numbers will not apply. That
diminishes the social benefit of insurance. In a large pool of insured individuals
the number of accidents varies little from year to year. (If twenty classmates
each tossed a coin 1000 times, there is a very high probability that very close to
10,000 heads would be recorded.) Therefore, the premium can be more or less
constant and still generate just enough revenue for the insurance carrier to pay
off on claims. In a small pool, the number of accidents would vary considerably
from year to year, requiring significant changes in the premium from one year
to the next. The individual is less insulated against risk. If everyone belongs to
a small pool then everyone’s expected utility could be increased by aggregating
many of the pools.

However, if insurance companies did not sort into risk categories they would
face a serious adverse selection problem. Consider health insurance: If all pol-
icyholders paid a common premium the most healthy of them might find that
their expected utility was higher without insurance (or with a small amount of
coverage). Then the remaining policyholders would have a higher probability
of submitting a claim, and the premium would have to rise to cover the value of
claims paid. In that case, healthy policyholders who benefitted from insurance
under the lower premium might find that their expected utility is now higher
without insurance. When they opt out, the riskiness of the remaining group
increases yet again, resulting another increase in claims. And so on. This unrav-
eling is prevented by group insurance coverage, which requires a participating
firm to enroll all of its employees.

Experience rating and risk sorting for health care insurance can go well
beyond a due consideration of incentives. On one hand, it is in society’s interest
to make individuals who choose to smoke pay higher health insurance premi-
ums. On the other hand, an individual with a genetic predisposition to breast
cancer should be treated as a victim of bad luck, rather than as someone who has
made unwise choices. “Genetic testing may become the most potent argument
for state-financed universal health care” (The Economist, October 19, 2000, cited
in Wheelan, 2002, p. 90). Society should insure risks over the individual’s lifetime,
but at the same time charge higher premiums to individuals who are in a higher
risk category because of behavior over which the individual has control.

If one were able to get more than 100% fire insurance coverage, the moral
hazard problem would be particularly acute: If the building were completely
destroyed by fire then the value of the insurance claim would exceed the market
value of the building. The owners would have a strong financial incentive to
torch their own buildings. This would definitely affect the probability of a loss
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and would have a big impact on the size of fire insurance premiums. Insurance
companies will not give more than 100% coverage.

Very often the market system provides its own solution to a hidden action
problem. We have discussed the example of taxi fares (Section 2 of Chapter 1).
Health maintenance organizations (HMOs) came into prominence in the 1980s
and 1990s in response to rapidly rising health care costs. HMOs provide compre-
hensive medical care to the individual in return for a fixed annual fee. The HMO
monitors costs—and hence claims—by giving the physician a strong financial
incentive to keep the patient in good health, in part by heading off problems
before they require expensive treatment by specialists. The pay of a physician
under contract to an HMO has two components. First, the HMO pays the doctor
a fixed monthly fee for each patient registered with that doctor. Second, there
is an adjustment based on the frequency with which the doctor’s patients visit
specialists or hospitals: The doctor is given a monthly allowance of F dollars. The
HMO reduces that allowance by C dollars for every such visit by a patient. At the
end of the month the doctor is paid a bonus equal to F minus all these deductions.
This may be a negative number, in which case the physician pays that amount
to the HMO. This discourages the physician from making too many referrals to
specialists. But it also discourages the doctor from delaying a vital referral—the
illness could become more severe and require more expensive treatment.

Are patients getting lower quality care under HMOs? The evidence is mixed.
Has the HMO system (and other managed care programs) had a mitigating effect
on U.S. health care costs? There was indeed a drop in the rate of growth of health
care expenses in the early 1990s, so that it was roughly the same as the rate of
growth of the U.S. gross domestic product. However, by 2000 the differential was
again positive—and widening (Reinhardt, Hussey, and Anderson, 2004).

The United States is the only major
industrial country without publicly pro-
vided universal health care insurance.
Nevertheless, administrative costs ac-
count for 24% of total U.S. health
spending. Astonishingly, administrative
expenses for health insurance in the pri-
vate sector are 150% higher per dollar of
coverage than for public programs (Rein-
hardt, Hussey, and Anderson, 2004).

Sometimes the government can nudge con-
sumers toward the efficient effort supply. A law
requiring insurance companies to give a pre-
mium discount if a silent alarm is installed
can enhance social welfare. Consider burglary
insurance. A homeowner with insurance is less
inclined to check that the windows are locked
before leaving the house and certainly less
likely to install an expensive security device—
unless the insurance contract provides some
inducement. Even the type of security device
has efficiency implications. Some provide pro-
tection for others, and some shift criminal

activity to others. On one hand, if bars are placed on the windows, burglars
will pass up that house and move on to another one. On the other hand, a silent
burglar alarm, which rings in the police station, may discourage thieves from
attempting to rob any house in the neighborhood because they will not know
which houses have silent alarms. If a thief breaks into two houses per week in
a particular neighborhood, then even if 1% of the houses have silent alarms
the probability is 0.65 that he will be caught before the year is out. That is, the
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probability is only 0.35 that all the houses he enters will not have a silent alarm.
If 5% of the houses have a silent alarm then the probability of not entering a
house with an alarm in 104 burglaries is 0.005.

These calculations show that invisible security devices provide a substantial
spillover benefit to individuals in addition to the one installing the device. Sup-
pose that the homeowner has a choice between visible security that costs $200
and an invisible device that costs $400 but provides a total of $4000 of benefit
to everyone, including the individual who installs it. If the visible device merely
shifts criminal activity to others then it provides a net social benefit of zero but
has a positive social cost. The invisible device adds $3600 to social benefit, net
of cost. The individual has a strong incentive to purchase the cheaper, crime-
shifting technology, and thus society has an interest in promoting the invisible,
crime-reducing technology.

In fact it has been estimated that a $400 investment in the silent car alarm
Lojack results in an average $4000 reduction in losses due to automobile theft.
One alternative is the much less expensive Club, which attaches to the steering
wheel and primarily shifts crime to others because it is visible to the thief. Auto-
mobile theft in Boston, Massachusetts, has fallen by 50% since the enactment
of a state law requiring insurance companies to provide a 25% discount to any
policyholder with Lojack. (Why haven’t insurance companies introduced the
discount on their own? If an insurance provider has only a small fraction of the
business in a neighborhood then only a small fraction of the claims saved by
a silent alarm would have been paid by that company. But surely a number of
firms have a large enough share of the business for the discount to precipitate
an increase in profit.)

Many insurance companies have
stopped covering Hollywood films.
The insurance usually takes the form
of underwriting the loans used to
finance the movie’s production. Such
coverage diminishes the incentive to
control spending on the projects (The
Economist, March 31, 2001, p. 71).

We conclude with a moral hazard story from
a very different industry. In the 1940s Ameri-
can movie producers began giving major stars
a share in the profits from their movies. This
gave the stars an incentive to avoid the silly
temper tantrums that cause production delays
and escalate the costs of the movie. When
profit sharing became a common practice
some movie producers began disguising the
profit earned by the most lucrative movies—for

instance by charging them with some of the fixed costs, such as set construction,
from other projects. Contracts that offered the performers a cut of the profits
were less rewarding as a result, and many responded by holding out for a percent
of the gross—that is, they demanded a cut of the picture’s revenue instead of its
profit.

9.2 The formal model
We investigate the conditions for efficiency when there is moral hazard by means
of a simple model. There are only two commodities, W, wealth, and L, leisure.
Preferences are quasi-linear, and thus

U(w, �) = B(w) + �,



9. Moral Hazard and Insurance 187

where B(w) is the utility of w dollars of wealth, and � is the amount of leisure
consumed. We assume that the individual is risk averse, so that the marginal
utility of wealth is positive but diminishes as wealth increases. The individual
is endowed with T units of leisure but if he or she devotes e units of effort to
preventing accidents then � = T − e. Because we want to highlight effort supply
we express utility as

U = B(w) + T − e.

The effort supply e is determined by the individual and is not a random variable.
Of course uncertainty does affect the individual’s wealth, which is either partially
destroyed with probability π(e) or remains intact with probability 1 − π(e). Note
that the probability that the individual suffers a loss in wealth is a function of
his or her effort supply e. We assume that π(e′′) < π(e′) for all e′′ > e′. In other
words, an increase in effort reduces the probability of an accident.

Let a represent the value of an individual’s wealth when there is an accident
but no insurance has been purchased, and let z represent the value of the same
individual’s wealth when there is no accident and no insurance. Of course, a < z.
The actual wealth will be different from both a and z if insurance is purchased.
Let x denote the individual’s actual wealth when he or she suffers an accident,
taking into account any insurance benefits that may be paid. Let y denote wealth
when there is no accident but the individual has paid an insurance premium.
The individual’s expected utility (EU) is

EU = π(e)B(x) + [1 − π(e)]B(y) + T − e.

The individual will choose e, x, and y to maximize EU. The values of x and y are
subject to the individual’s market opportunity equation, but the market places
no restrictions on the choice of effort level e. Section 9.3 simplifies the calcula-
tions by assuming that e can be set equal to zero or one but nothing in between.
(The individual either does or does not devote effort to preventive care.) In the
final two sections (9.4 and 9.5) the individual chooses from a continuum of effort
supply levels.

DEFINITION: The individual variables and parameters
Without insurance, an individual’s wealth is a if he or she has an accident
and z otherwise. With insurance, the individual’s wealth is x if he or she has
an accident and y otherwise. The individual’s EU is

EU = π(e)B(x) + [1 − π(e)]B(y) + T − e,

where e is the amount of effort that the individual devotes to preventive care,
and π(e) is the probability of an accident as a function of e. T is the maximum
possible effort supply.

The next two sections show that the individual will set e = 0 if he or she is
insured, and that the resulting outcome is inefficient. Devoting zero effort to
preventive care is a consequence of the fact that we are abstracting from the
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possibility of personal injury—by carelessly operating a chain saw, say. In our
model, an accident merely reduces individual wealth. There are lots of situations
in which an injury can occur with positive probability and the individual devotes
some effort to preventive care as a result. However, our analysis of the extreme
case can be applied here to demonstrate that the level of preventive care chosen
by individuals will not result in an efficient outcome. Without insurance, the
individual will invest in preventive care, even if only wealth is at risk, but that
will yield less expected utility than complete insurance and zero investment in
preventive care.

Section 7.4 of Chapter 2 proves that individuals will demand and obtain com-
plete insurance (x = y) under competitive conditions. This theorem is exploited
in the next two sections (9.3 and 9.4), although the value of x will depend on the
amount of preventive care supplied by individuals. In employing the complete
insurance theorem in this way we greatly simplify the calculations. However,
doing so requires us to ignore the fact that insurance companies will provide
less than complete insurance to partially offset the diminished incentive to take
care. This oversight is corrected in the last section, 9.5.

9.3 The binary choice model of moral hazard
This subsection assumes that you are familiar with the economics of insur-
ance without moral hazard—that is, the material in Sections 7.1, 7.2, and 7.4
of Chapter 2. To obtain quick insight, we initially suppose that there are only
two possible effort supply levels: Either e = 1, which means that the individ-
ual devotes effort to prevention, or e = 0, which means that no effort is made.
Assume a competitive insurance market and hence that the individual purchas-
ing insurance faces fair odds. Competition forces insurance companies to offer
the contract on the fair odds line that maximizes EU, as we showed in Section 7.4
of Chapter 2. Therefore, x = y by the complete insurance theorem. The fair odds
line is

π(e)x + [1 − π(e)]y = π(e)a + [1 − π(e)]z.

When we set x = y we get x = y = π(e)a + [1 − π(e)]z. Set

w(e) = π(e)a + [1 − π(e)]z.

Then w(e) is the individual’s wealth, whether there is an accident or not,
when insurance is purchased under fair odds. Note that π(e)B[w(e)] + [1 −
π(e)]B[w(e)] = B[w(e)]. Therefore, the individual’s utility after purchasing insur-
ance is

μ(e) = B[w(e)] + T − e.

We have implicitly assumed that individuals are identical. This is unrealistic,
but it simplifies our calculations without generating any misleading conclusions.
All that remains is to calculate individual effort supply and to determine if we
have an efficient supply of effort at the market equilibrium. If the individual sets
e = 0 we have

μ(0) = B(w) + T.
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We have used w instead of w(0) as the argument of B because the effort supply
of the other policyholders will determine their probability of an accident, which
in turn influences the number of dollars in claims that have to be paid and hence
the level of wealth w that is available with insurance. Now, before working out
the individual’s utility when e = 1 we introduce one more assumption: There is
a large number of policyholders, and hence a change in one individual’s proba-
bility of an accident does not appreciably affect the premium charged because
it does not appreciably affect the value of claims paid per capita. Hence, if our
individual sets e = 1 his or her wealth with insurance will still be w. Therefore,
if e = 1 we have

μ(1) = B(w) + T − 1.

Clearly, B(w) + T is larger than B(w) + T − 1, so the individual will set e = 0.
Then everyone will set e = 0, and hence w = w(0) = π(0)a + [1 − π(0)]z.

No individual has an incentive to devote effort to prevention, and thus each
individual’s utility will be B(π(0)a + [1 − π(0)]z) + T at the market equilib-
rium.

Because the individual is risk averse, this utility level will be significantly
higher than π(1)B(a) + [1 − π(1)]B(z) + T − 1, the utility without insurance.
(Note that without insurance the individual typically does have incentive to set
e = 1.)

Will the market equilibrium be efficient? If everyone were to set e = 1,
then with complete insurance the individual utility level would be B(π(1)a +
[1 − π(1)]z) + T − 1. For many real-world applications (and for the example to
follow) we would have

B(π(1)a + [1 − π(1)]z) + T − 1 > B(π(0)a + [1 − π(0)]z) + T,

in which case the market equilibrium is not efficient.

Example 9.1: An inefficient effort supply at equilibrium

LetB(w) = 2.4
√

w and T = 1. Therefore, U = 2.4
√

w + 1 − e. If e = 1 suppose
that the probability of an accident is 1/3, but if e = 0 the probability of an accident
is 1/2. That is, π(1) = 1/3 and π(0) = 1/2. Finally, a = 30 (individual wealth is 30
if there is an accident but no insurance), and z = 72 (individual wealth is 72
if there is no accident and no insurance). There are n identical individuals,
where n is a large number. Now, w(0) = 1/2 × 30 + 1/2 × 72 = 51. Therefore at the
market equilibrium (where everyone sets e = 0) individual utility is 2.4

√
51 +

1 − 0 = 18.14. If everyone were to set e = 1 then individual wealth would be
w(1) = 1/3 × 30 + 2/3 × 72 = 58, and individual utility would be 2.4

√
58 + 1 − 1 =

18.28. Because each individual’s utility is higher when each sets e = 1, the market
equilibrium is inefficient.
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We conclude by demonstrating that if there is no insurance the individual
will set e = 1. He or she will maximize π(e) × B(30) + [1 − π(e)] × B(72) + 1 − e.
Because the only choice is e = 1 or e = 0 we just have to compare 1/3 × 2.4

√
30 +

2/3 × 2.4
√

72 + 0 with 1/2 × 2.4
√

30 + 1/2 × 2.4
√

72 + 1. The former is 17.96, and
the latter is 17.75. Therefore, when there is no insurance the individual chooses
e = 1, the efficient amount of preventive care. That does not mean that we get
an efficient outcome without insurance. Note that individual utility is 18.14 at
the market equilibrium, which is higher than 17.96, the utility without insur-
ance. Therefore, everyone is better off with insurance—because individual risk
is diminished—even though the individual has no incentive to invest in preven-
tive care when insured and when there is no insurance the individual supplies
maximum effort.

∂9.4 A continuum of effort supply levels
Again, we assume that you are familiar with the material in Sections 7.1, 7.2,
and 7.4 of Chapter 2. We employ the model of Section 9.2 but this time with
effort continuously variable between zero and one. That is, e can be any fraction
between zero and one inclusive. The individual’s EU is

EU = π(e)B(x) + [1 − π(e)]B(y) + T − e.

The derivative of π with respect to e is negative because preventive care reduces
the probability of an accident.

As in the previous subsection, we exploit the fact that the competitive insur-
ance market results in the individual receiving the contract on the fair odds
line that maximizes EU, given that the individuals are identical and everyone
chooses the same level of e. Therefore, x = y by the complete insurance theorem,
and hence the individual’s wealth is

w(e) = π(e)a + [1 − π(e)]z

whether there is an accident or not. (This is explained at the beginning of the pre-
vious subsection.) Because π(e)B[w(e)] + [1 − π(e)]B[w(e)] = B[w(e)], the indi-
vidual’s utility after purchasing insurance is

μ(e) = B[w(e)] + T − e.

To determine the choice of effort supply by the individual at equilibrium, we
set wealth equal to w, independent of one individual’s effort supply, because a
change in the probability of an accident by a single individual will not have an
appreciable effect on the terms on which insurance can be offered to the market.
Therefore, the individual will choose e to maximize B(w) + T − e. Obviously, this
is achieved by e = 0. Everyone is in the same position, so each individual sets
e = 0. Therefore, at the market equilibrium individual wealth is w(0) = π(0)a +
[1 − π(0)]z, whether or not the individual has an accident. Then each individual’s
utility is B[w(0)] + T . This will be inefficient if there is an effort level e such that

B[w(e)] + T − e > B[w(0)] + T.
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∂Example 9.2: Calculating the efficient effort supply

B(w) = 4 ln(w + 3) and T = 1. Therefore, U = 4 ln(w + 3) + 1 − e. Note that we
have B′ > 0 and B′′ < 0 for all w. Assume that a = 24, z = 96, and π(e) = 1/2 −
1/4e, with 0 ≤ e ≤ 1. At equilibrium, e = 0 and thus expected wealth is 1/2 × 24 +
1/2 × 96 = 60. Individual utility at equilibrium is 4 ln 63 + 1 = 17.57.

Now, let’s calculate the efficient level of preventive care: The end of Sec-
tion 7.2 of Chapter 2 shows why setting x = y maximizes EU on the individual
fair odds line. We are assuming that the probability of an accident is the same
for everyone, and that a and z are the same for everyone. Given e, the probability
π(e) of an accident is determined. Given the probability of an accident, individ-
ual EU is maximized by complete insurance. Therefore, the individual’s wealth
will be

w(e) = 24π(e) + 96[1 − π(e)] = 24(1/2 − 1/4e) + 96(1/2 + 1/4e) = 60 + 18e

whether there is an accident or not. Hence, individual utility is

G(e) = 4 ln(60 + 18e + 3) + 1 − e.

Now, choose e to maximize G(e). We have G ′(e) = (4 × 18)/(63 + 18e) − 1.
Then G ′(e) = 72(63 + 18e)−1 − 1, and thus the second derivative is G ′′(e) =
−72(63 + 18e)−2 × 18, which is negative for all e. Therefore, if G ′(e) = 0 gives
us a value of e between 0 and 1 it will maximize G subject to 0 ≤ e ≤ 1.

The statement 72/(63 + 18e) − 1 = 0 implies 72 = 63 + 18e, the solution of
which is e = 1/2. Therefore, the equilibrium, with e = 0, is not efficient. To verify
this we compute individual utility when e = 0 and utility when e = 1/2. (Recall
that w(e) = 60 + 18e.)

G(0) = 4 ln[w(0) + 3] + 1 − 0 = 4 ln(63) + 1 = 17.57.

G(1/2) = 4 ln[w(1/2) + 3] + 1 − 1/2 = 4 ln(72) + 1/2 = 17.61.

Individual EU is 17.57 at equilibrium but would be 17.61 if everyone could
be induced to set e = 1/2. The market equilibrium is not efficient.

If insurance were not available at all then the individual would choose e to
maximize

(1/2 − 1/4e)4 ln 27 + (1/2 + 1/4e)4 ln 99 + 1 − e.

The first derivative of this function is−ln 27 + ln 99 − 1 = +0.299. The individual
will increase e until it reaches the upper bound of one. In other words, if insurance
is not available then the individual will set e = 1, in which case the probability of
an accident is 1/4 and EU is 1/4 × 4 ln 27 + 3/4 × 4 ln 99 + 1 − 1 = 17.08. Note that
individual EU is higher when insurance is purchased in a competitive market,
even though the individual then has a strong incentive not to devote effort to
preventive care.
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∂9.5 Incomplete insurance
With fair odds the individual will devote no effort to prevention. We can expect
insurance companies to modify the contract to give individuals some incentive
to devote effort to prevention. Let c denote the net insurance coverage. That is,
x = a + c. If p is the cost of insurance per dollar of net coverage, then pc is the
policy premium and thus y = z − pc.

The consumer will choose e and c to maximize EU, which is

V (e, c) = π(e)B(a + c) + [1 − π(e)]B(z − pc) + T − e,

subject to the constraints 0 ≤ c ≤ z/p and 0 ≤ e ≤ T . We will simply assume that
the solution value of c lies strictly between 0 and z/p.

Let’s rewrite EU as V (e, c) = π(e)B(x) + [1 − π(e)]B(y) + T − e, with x =
a + c and y = z − pc. We will use the chain rule, and the fact that dx/dc = 1
and dy/dc = −p. Then

∂V
∂c

= π(e)B′(x) + [1 − π(e)]B′(y) × −p

and
∂V
∂e

= π ′(e)B(x) − π ′(e)B(y) − 1 = −π ′(e)[B(y) − B(x)] − 1.

When p = π/(1 − π) the individual faces fair odds. Let’s check: We have x = a + c
and y = z − pc. The first equation implies c = x − a, and when we substitute x −
a for c in the second equation we get y = z − p(x − a). This can be expressed as
px + y = pa + z. And if p = π/(1 − π) we can multiply both sides of the equation
by 1 − π yielding πx + (1 − π)y = πa + (1 − π)z. In summary, if p = π/(1 − π)
then the individual’s market opportunity line embodies fair odds.

We know that with fair odds a risk-averse individual will maximize EU at the
point where x = y. In that case ∂V/∂e = −1. In other words, the individual can
always increase expected utility by reducing e. Therefore, the individual will set
e = 0, as we discovered in the two previous subsections.

With moral hazard, fair odds will not likely be offered, even under com-
petitive conditions. However, if p is close to fair—that is, close to the ratio of
probabilities—then x will be close to y and −π ′(0)[B(y) − B(x)] will be positive
but small. (Recall that π ′ is negative at all effort levels. We have y > x because
without complete insurance the individual’s wealth will be smaller when he or
she suffers an accident, even with insurance.) Then ∂V/∂e will be negative when
e = 0. If we assume diminishing returns to effort supply (or just nonincreasing
returns), then ∂V/∂e will be negative for all e. In that case, the individual will
still set e = 0 to maximize expected utility.

We have discovered that, even without fair odds, the individual will not devote
any effort to prevention if the odds are close to fair. What is the efficient effort
supply? Again, we maximize per capita EU. Efficiency implies fair odds. (Review
the first two paragraphs of Section 7.5 of Chapter 2.) Fair odds and risk aver-
sion imply complete insurance, and hence x = y. Then the individual will have
wealth w(e) = π(e)a + [1 − π(e)]z, whether or not there is an accident. Note that
dw/de = −π ′(e)(z − a). We maximize

G(e) = B[w(e)] + T − e.
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The first derivative is G ′(e) = B′[w(e)] × −π ′(e)(z − a) − 1. Because B′, −π ′, and
(z − a) are all positive, we would expect −B′[w(0)]π(0)[z − a] to be large and
positive. That is, G ′(0) is positive in all but rare cases, and the efficient effort
supply is positive (where G ′(e) = 0).

The difference between the maximization of V and the maximization of G
is that in the former case we are modeling individual decision making, and we
have to be careful not to give the individual control over the effort supply of oth-
ers. Consequently, we don’t have x and y change when the individual changes e.
However, when we maximize G we are not modeling individual decisions but
rather determining the highest level of per capita expected utility that the econ-
omy is capable of producing. Therefore we are free to change everyone’s effort
supply simultaneously.

Example 9.3: The efficient effort supply when odds are not fair

U = 4 ln(w + 3) + 1 − e as in Example 9.2, with a = 24, z = 96, and π(e) =
1/2 − 1/4e. (0 ≤ e ≤ 1.) In Example 9.2 we calculated the efficient effort sup-
ply by maximizing G(e) = 4 ln(63 + 18e) + 1 − e. We concluded that G(e) is
maximized at e = 1/2. Will the individual set e = 1/2 when the odds are not
fair? Note that π(1/2) = 3/8 and 1 − π(1/2) = 5/8. Fair odds would require p =
(3/8)/(5/8) = 0.6. Suppose, instead, that p = 0.8. What effort will the individ-
ual supply? Because B(w) = 4 ln(w + 3), π ′(e) = −1/4 for all e, and π(1/2) = 3/8

we have

∂V (1/2, c)
∂c

= 3
8

B′(x) + 5
8

B′(y) × −0.8 = 0.375B′(x) − 0.5B′(y)

= 0.375 × 4
27 + c

− 0.5 × 4
99 − 0.8c

.

∂V (1/2, c)
∂e

= 1
4

[B(y) − B(x)] − 1 = 1
4

[4 ln(y + 3) − 4 ln(x + 3)] − 1

= ln(99 − 0.8c) − ln(27 + c) − 1.

If we set ∂V/∂c = 0 we get [1.5/(27 + c)] − [2/(99 − 0.8c)] = 0, the solution of
which is c = 29.5. When we substitute c = 29.5 into∂V/∂e we get∂V/∂e = −0.71.
That is, at e = 1/2 we have ∂V/∂e < 0, which means that the individual would not
set e = 1/2 but would reduce effort supply.

Do we have an equilibrium with e = 0 when the odds are not fair? With e = 0
and fair odds we would have p = 0.5/0.5 = 1. Suppose that p actually equals 1.2.
Now we have

∂V (0, c)
∂c

= 0.5 × 4
27 + c

− 1.2 × 0.5 × 4
99 − 1.2c

= 2
27 + c

− 2.4
99 − 1.2c

.

∂V (0, c)
∂e

= 1
2

[4 ln(y + 3) − 4 ln(x + 3)] − 1

= 2 ln(99 − 1.2c) − 2 ln(27 + c) − 1.
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Setting ∂V/∂c = 0 yields c = 27.75, and thus x = 51.75 and y = 62.7. When we
substitute c = 27.75 into ∂V/∂e we get ∂V/∂e = −0.64. Therefore, the individual
has no incentive to raise e above 0, even if the odds are not fair, although the
efficient effort supply is e = 1/2.

Source
The claim that the frequency of accidents goes way down when the drivers of
police cars and rescue vehicles are electronically monitored is based on Nalebuff
and Ayres (2003, p. 107–8). Data on the net social benefit of the silent alarm Lojack
is taken from Ayres and Levitt (1998). The notion that home equity insurance
would be viable if the claim were based on average house prices originated with
Shiller and Weiss (1994). The sketch of HMOs is based on Dutta (2000, pp. 304–5.)
Reinhardt, Hussey, and Anderson (2004) track the rate of change of health care
expenditure as a fraction of GDP.

Links
See Zeckhauser (1970) for an important early contribution to the study of
deductibles and similar devices. Lazear (1992) contains additional examples
of market-generated solutions to hidden action problems. Dranove (2000) pro-
vides a thorough (and nontechnical) economic analysis of the U.S. health care
industry. See Diamond (1992) for a thorough discussion of the social significance
of the difference between risks that individuals can modify with their behavior
and those that they cannot. See Dranove (2000) for a review of the evidence on
the quality of care under HMOs. See Chapter 5 (especially pages 131 and 132) of
Kotlikoff and Burns (2004) to see why the U.S. government’s attempt to control
Medicare and Medicaid costs by enrolling participants in HMOs has not worked.

Problem set
The first two questions assume that T = 1 and each individual can set e = 0 or
e = 1 but not any intermediate value. If e = 0 then the probability of an accident
is 1/2 but if e = 1 the probability of an accident is 1/4.

1. B(w) = 2.5
√

w, a = 30, and z = 72 for each individual. Find the competitive
equilibrium and determine whether it is efficient.

2. Each individual’s utility-of-wealth function is B(w) = 5 ln(w + 1). If there is
an accident then the individual’s wealth will be 40 but if there is no accident
wealth will be 120.

A. If insurance is not available determine the value of e chosen by the
individual, the individual’s wealth if there is an accident, wealth if
there is no accident, expected wealth, and EU.

B. If insurance is available in a competitive market determine the value
of e chosen by the individual, the individual’s wealth if there is an
accident, wealth if there is no accident, expected wealth, and EU.

C. What is the efficient level of effort? Determine the resulting wealth if
there is an accident, wealth if there is no accident, expected wealth,
and EU utility.
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The remaining questions assume that T = 1 and e can assume any value
between 0 and 1, inclusive.

3. If an individual devotes e units of effort to preventive care then the proba-
bility of an accident is 1 – e. Each individual has the expected utility function

π(0.2
√

x) + (1 − π)(0.2
√

y) + 1 − e

where π is the probability of an accident, x represents wealth if there is
an accident, and y represents wealth if there is no accident. If there is no
insurance then x = 50 and y = 150.

A. Assuming that the values of x and y are determined in a competitive
insurance market, show how x depends on e (that is, display x as a
function of e).

B. Assuming that everyone can be made to employ the same level of
preventive care, find the value of e that maximizes per capita EU.

C. Explain briefly why the competitive equilibrium is not efficient. (A
verbal argument will suffice, but a calculus-based explanation is also
perfectly satisfactory.)

4. Each individual’s utility-of-wealth function is B(w) = 2.5
√

w. If there is an
accident then the individual’s wealth will be 36 but if there is no accident
then wealth will be 72. The probability of an accident is 1/2 − e/6. Answer
questions A, B, and C of question 3 for this model.

5. Let B(w) = 10 ln(w + 1), and π(e) = 1/2 − 1/4e. Show that the individual will
set x = y and e = 0 at the competitive equilibrium.

6. Let B(w) = β ln(w + 1), π(e) = 1/2 − 1/4e, and U(x, y, �) = π B(x) + (1 − π)
B(y) + α�. Find a condition on the positive parameters α, β, a, and z that
implies inefficiency of the competitive equilibrium of the insurance market.

The last four questions do not assume fair odds.

7. Prove that the individual will set x < y if p > π/(1 − π).

8. If B(w) = 4 ln(w + 3), a = 24, z = 96, and π(e) = 1/2 − 1/4e, for what values
of p will the individual set e > 0?

9. Prove that if p < π/(1 − π) then the policy will not generate enough pre-
mium revenue to pay all of the claims submitted.

10. For Example 9.3, show that the individual will set e = 1 if p is sufficiently
high.
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This chapter investigates incentives in firms. We explore the hidden action
problems of a modern corporation. Section 1 compares firms in several lead-
ing industrialized countries. Section 2 examines the relationship between two
senior executives who share the firm’s profits and is followed by a brief look at
the relationship between the owner and employees in an owner-managed firm
(Section 3). The rest of the chapter is devoted to the hidden action problem
confronting a widely dispersed group of shareholders whose objective is to have
the firm that they jointly own maximize the value of their shares. Can they rely
on the board of directors to provide the appropriate incentives to the company’s
management team, even though it is extremely costly for the shareholders to
monitor the management and the board members themselves?

1 A BRIEF TOUR OF SEVERAL COUNTRIES

We are primarily concerned with the attempt of a firm’s owners to obtain a
satisfactory return on the capital they supply to the firm. The owners provide
financing through the purchase of shares in the firm and also when the firm
uses retained earnings for replacement of, or addition to, the capital equipment.
Firms also borrow financial capital, and in many industrialized countries bank
loans are a much more important source of finance than in the United States.
All of the firm’s suppliers of finance wish to ensure that management runs the
firm in a way that brings them a high return. We refer to this as the agency
problem.

DEFINITION: The modern corporation’s agency problem
The firm’s owners and creditors seek a high return on their money but the
daily decisions that determine that rate of return are made by the firm’s
management team, and the managers may be assumed to have their own
welfare at heart.

One striking difference between the pattern of ownership across countries
lies in the role of the financial sector. U.S. banks were prohibited from holding
equity in corporations until the repeal of the Glass-Steagall Act in 1999. In the
United States only 5% of shares are held by banks and other financial institu-
tions, but in France, Germany, Japan, and the United Kingdom the fraction is
closer to 30%. In fact, a Japanese corporation has a long-term relationship with
a particular bank, called its main bank. The main bank is expected to play a
significant role in monitoring the firm with which it is associated. In practice,
the bank lets the firm have its way, except in times of crisis. The United States
and United Kingdom are quite similar in that a firm’s owners are expected to do
the monitoring through their representatives, the board of directors. Apart from
those in Canada, Britain, and the United States most corporations are private—
their shares are not traded on a public exchange—and even the ownership
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of some public firms is highly concentrated, often with family ownership and
control.

The fraction of shares held by individuals is much higher in the United States
than in other countries. And the level of top executive pay is much higher in the
United States, as is the fraction of executive pay that is received in the form
of bonuses. (It may not be a coincidence that 43% of the total investment in
research and development—R&D—by the leading industrial countries comes
from the United States. See Baumol, 2002, for data on R&D.)

German firms have a supervisory board of directors, half of whom are elected
by shareholders and half of whom are elected by employees. Daily operations are
directed by a management board, appointed by the supervisory board. Firms in
Canada, the United States, and Great Britain have a single board of directors with
outside members, elected by shareholders, and inside members, the firm’s top
executives. The CEO (chief executive officer) is the head of the management
team and is often the chairman of the board. Because the outside directors are
typically nominated by the incumbent management they usually remain loyal
to those chief executives. French law allows a firm to choose between the Anglo-
Saxon corporate form and the German form. Japanese law makes it relatively
easy for shareholders to nominate and elect directors, but the board is large and
unwieldy, and in practice the owners have less influence over management than
in the United States. In part that is because Japanese management is expected to
give higher priority to stable employment for the firm’s workers than dividends
for the owners.

Allen and Gale (2000) conclude that the agency problem is substantial regard-
less of the form of corporate governance or corporate finance. “Managers seem
to get their way most of the time” (Vives, 2000, p. 2). However, Carlin and Mayer
(2000) find considerable evidence that corporate governance and finance can
be a significant factor for a country’s economic performance.

In the next section we begin our in-depth study of the agency problem by
examining a simple two-person production team. By cooperating with each
other, the pair can take advantage of a production of technology that is richer
than the one available to an individual working alone. But as soon as two or more
individuals are involved, incentives come into play. Is one worker motivated
to consider the effect that his or her actions have on the welfare of the other
members of the team?

Source
Allen and Gale (2000) and Vives (2000).

2 PARTNERSHIPS

In this section we discover why few firms are organized as partnerships. The key
workers in a partnership are also the firm’s residual claimants, who share the
profits. Sometimes one partner puts more capital into the firm than the others
and receives a larger share of the profits, but the essential point is that each
partner shares in the income created by the effort of the other partners. By the
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same token, the partner receives only a fraction of the income generated by his or
her own effort and thus each partner contributes less than the efficient amount
of effort. The owner-employee relationship (Section 3) results in each person

In the 1960s the Cuban government used
state stores to provide citizens with equal
rations of food and clothing. Housing
was almost free, and every family was
provided with a free vacation at the
beach. Absenteeism on the job soared
and productivity and product quality
declined precipitously. The government
reluctantly implemented a complicated
and comprehensive system of monitor-
ing (Kohler, 1977).

receiving a leisure-income package that he or
she prefers to the one obtained in a partner-
ship. Why, then, are partnerships are observed
at all? We provide the answer at the end of the
next section.

Why does production take place in teams in
the first place? Because there is more output per
worker in a team than when individuals work
independently. That is, one-person firms gen-
erate far less output per unit of labor input than
do multiperson firms. We examine these issues
by means of a simple framework.

2.1 The Model
There are two consumer goods, leisure and income. Income is a composite
commodity—the total number of dollars available for expenditure on goods
other than leisure. Let x be the amount of leisure consumed and let y be the
income level. U(x, y) is the individual’s utility function. Let T denote the length of
a period, in hours. (T = 168 if the time period is a week.) The income generated
by a production team depends on the amount of effort expended by each of
the team members. If e is the amount of effort contributed by an individual,
then x = T − e. Note that x is not just T less the number of hours “worked.” An
individual may show up for work but not put in much effort, consuming leisure
on the job. This will affect the amount of output and income generated by the
firm and also the individual’s utility through its effect on leisure. Therefore, we
need to keep track of effort, not hours on the job. (The quality of effort is just as
important as the quantity, but we simplify the analysis by focusing on only one
dimension of the principal-agent problem, the incentive to work rather than
shirk.)

When individuals work on their own (in one-person firms) the equation
y = αe represents the production technology of a single firm. It expresses the
income available when e units of effort are expended. The positive constant α is
the income generated per unit of effort. Because x = T − e we have y = α(T − x)
for a one-person firm. The individual chooses the bundle (x, y) to maximize U
subject to the production constraint y = α(T − x), or αx + y = αT . The chosen
point Cα = (xα , yα), illustrated in Figure 4.1, is a point of tangency of the indif-
ference curve and the production line Lα . In economic terms the marginal rate
of substitution at Cα equals α, which is the opportunity cost of leisure—that
is, the amount of income sacrificed per hour of leisure consumed. (Of course,
individuals can observe their own effort levels.)

Now consider a two-person firm. Let β denote the income generated per unit
of effort when two individuals cooperate in production. Let ei denote the effort
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expended by i, xi the leisure consumed by i, and yi the income of individual i
(i = 1, 2). Then y1 + y2 = β(e1 + e2). Of course β > α.

We abstract from a lot of real-world phenomena to focus on the role of incen-
tives. For one thing, we assume that the individuals in our firm have identical
preferences, and U(x, y) will again represent the individual’s preference scheme.
And we study only two-person firms, although the generalization to n persons
is straightforward. If the individuals have identical consumption then we will
have x1 = x2 and y1 = y2, and hence e1 = e2. Then y1 + y2 = β(e1 + e2) implies
2yi = β(2ei) and thus yi = βei . This allows us to contrast the two-person firm
with the one-person firm (Figure 4.1). Because β > α the per capita production
line yi = βei = β(T − xi), denoted Lβ , lies above its one-person counterpart Lα .
Therefore, the two-person firm can provide a higher level of per capita income
than the one-person firm.

DEFINITION: Ingredients of the partnership model
Let x, e, and y denote, respectively, individual leisure consumption, effort,
and income. The time endowment is T and thus e = T − x. Individual utility
U is a function of x and y. The per capita production function is y = βe.
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Let Cβ = (xβ , yβ) denote the utility-maximizing bundle available with a two-
person firm assuming that the team members consume the same bundle. That is,
Cβ maximizes U(x, y) subject to y = β(T − x). The marginal rate of substitution
at Cβ equals β, which is the opportunity cost of leisure per person in a two-
person team. Note that we can also say that Cβ maximizes U(x, y) subject to
y ≤ β(T − x): If y < β(T − x) we can increase utility by increasing both x and y
without violating y ≤ β(T − x).

We can call the outcome that gives each person the bundle Cβ fair precisely
because both people have identical bundles and identical preferences. Because
the outcome is also efficient it is a reasonable standard by which to measure the
performance of a particular contractual arrangement.

For any number of identical workers, the outcome that gives Cβ to each person
is fair and efficient.

Proof
As we have said, the outcome is fair by definition. To prove efficiency, let (x1, y1)
and (x2, y2) be two bundles that give one person more utility than Cβ and the
other person at least as much. Say,

U(x1, y1) > U(xβ , yβ) and U(x2, y2) ≥ U(xβ , yβ).

Now, Cβ maximizes U subject to yi ≤ β(T − xi) so anything that gives higher
utility than Cβ must violate the inequality yi ≤ β(T − xi). Therefore y1 > β(T −
x1). If we actually had y2 < β(T − x2) then we could increase both y2 and x2 to
satisfy y2 = β(T − x2), and that would result in an increase in utility for person
2. This new utility level would be higher than U(xβ , yβ) because we already have
U(x2, y2) ≥ U(xβ , yβ). In that case we have contradicted the fact that (xβ , yβ)
maximizes U subject to y = β(T − x). Therefore we have

y1 > β(T − x1) and y2 ≥ β(T − x2),

and hence y1 + y2 > β(T − x1 + T − x2) = β(e1 + e2). Then the new outcome
that assigns (xi , yi) to each i is not feasible: The total income allocated exceeds
the total available income β(e1 + e2) generated by the effort that would be sup-
plied. Similarly, U(x1, y1) ≥ U(xβ , yβ) and U(x2, y2) > U(xβ , yβ) cannot hold for
any feasible pair (x1, y1) and (x2, y2). Therefore, the outcome assigning Cβ to
each is efficient—there is no feasible outcome that gives both persons at least as
much utility as Cβ and one person strictly more. (Note that this argument easily
extends to a team of more than two individuals.)

Can Cβ in fact be realized? Cβ is feasible, but only when the two persons
cooperate. But then one person’s income depends on the total income of the
team, which in turn depends on the amount of effort contributed by both per-
sons. Will there be incentive for each to contribute the required amount of effort?
Consider the partnership case.
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2.2 A two-person partnership
The rules of partnership are simple. The partners share equally in the income that
is created by their joint effort, and any losses are absorbed equally by the indi-
vidual partners. Professional service industries employ the partnership method
of team organization more than any other contractual form. Partnership is the
typical form for accounting firms, law firms, and medical clinics. Apart from
professional services, however, large firms are rarely organized as partnerships.
(Investment banking has largely converted from partnerships to the standard
corporate owner-employee form.) Why are partnerships widely employed in
the professional service industries but rarely in evidence elsewhere? To answer
that question we need to focus on the amount of effort contributed by a utility-
maximizing partner.

We assume n = 2 until further notice. If effort is unobservable, how can a team
member determine the effort supplied by the other partner at equilibrium? By
working out the utility-maximizing responses to the incentives governing the
partner’s behavior. Also, the individual can determine the total effort supplied
by others simply by observing total output y, inferring the total effort supplied,
and then subtracting the person’s own effort.

We put the spotlight on partner 1. Person 1 chooses (x1, y1) to maximize
U(x1, y1) subject to the sharing rule y1 = 1/2β(e1 + e2) that determines a partner’s
income. Partner 1 cannot control e2, so we take it as fixed, at c. That is, when
partner 1 changes her effort supply we assume that partner 2’s effort level does
not change. But y1 changes as a result of the change in e1. We will be at equilib-
rium if each partner’s effort level maximizes his or her own utility given the other
partner’s effort level. We have e1 = T − x1 so partner 1 will endeavor to maxi-
mize U(x1, y1) subject to y1 = 1/2β(T − x1 + c). The constraint can be expressed
as 1/2βx1 + y1 = 1/2β(T + c), which is L0.5β in Figure 4.2. This is a budget line. The
individual opportunity cost of leisure is 1/2β under the partnership sharing rule.
It is the ratio of the “prices” of the two goods. If person i consumes one more
hour of leisure the firm loses one hour of effort and thus β dollars of income,
but individual i loses only 1/2β dollars of income because the β dollars of income
generated would have been shared with the other person. Therefore, utility max-
imization requires equality between the marginal rate of substitution (MRS) and
the opportunity cost 1/2β. Compare this with our derivation of Cβ : In that case
the constraint line was y1 = βe1, or y1 = β(T − x1), or βx1 + y1 = βT . Because at
Cβ the social (or team) opportunity cost of leisure is β, and the marginal rate of
substitution equals β.

Because the partners are identical, we can drop the subscript. The vari-
ables will pertain to a single individual. Let C P = (xP , yP ) be the individual’s
choice at equilibrium under the partnership arrangement. The partners will
have the same consumption at equilibrium because they have the same pref-
erences and are confronted with the same incentives. We know that C P �= Cβ

because the MRS is 1/2β at C P and double that at Cβ . We also know that the
utility of Cβ exceeds the utility of C P because Cβ maximizes utility subject to
y ≤ βe, and C P is one of the bundles that satisfies y ≤ βe. To prove the lat-
ter claim note that yP + yP ≤ β(eP + eP ) because the partnership outcome is
feasible. (Recall that the partners make the same choices at equilibrium, and
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whenever we fail to employ a subscript it is implicit that the variable applies to
each individual.) Therefore, yP ≤ βeP . So the partnership outcome gives each
person less utility than Cβ , which is feasible. Not only that, C P provides more
leisure but less income than Cβ . The increased consumption of leisure at C P is
due to the fact that the opportunity cost of leisure to the individual in a part-
nership is half of the opportunity cost to the firm: Half of the β dollars lost to
the firm when i consumes another unit of leisure would have been given to the
other partner.

To prove that leisure consumption is higher under C P than under Cβ , try
placing C P above Cβ on Lβ . Now draw the indifference curve through C P . It has
an MRS of 1/2β at C P so the curve is flatter than Lβ at C P . The indifference curve
through C P is flatter than Lβ at C P , and it gets flatter as we move to the right. The
MRS at Cβ is equal to β, and thus the indifference curve through Cβ is tangent
to Lβ at Cβ , and it gets steeper as we move to the left. Consequently, the two
indifference curves would have to intersect, which is impossible.

Here is a formal proof that leisure consumption is higher at C P than at Cβ :
Suppose to the contrary that xβ > xP . Then C P is above Cβ on Lβ . Therefore L0.5β ,
the line representing the partnership income formula, which is the individual’s
partner’s budget constraint, cuts Lβ above Cβ . Then there will be a point S on
L0.5β that is northeast of Cβ . (Mentally shift L0.5β up in Figure 4.2, until it cuts Lβ

above Cβ .) But then the value of x at S exceeds xβ , and the value of y at S exceeds
yβ . It follows that U(S) > U(Cβ). We have U(C P ) ≥ U(S) because C P maximizes
U on the line L0.5β . Therefore, U(C P ) > U(Cβ), contradicting the fact that Cβ

maximizes U on Lβ . Therefore, we have to drop the supposition that xβ ≥ xP .
(Why can we rule out xβ = xP ?)

Individual utility is higher at the fair and efficient outcome Cβ than at the
partnership equilibrium C P , and each partner supplies less effort than at the
fair and efficient outcome.
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We used the theory of consumer choice to derive C P . We did so by determin-
ing the individual’s demand for each commodity. But commodity 2 is income.
Why doesn’t the individual have an infinite demand for income? Because at the
margin the individual has to pay for each dollar of income with an increased
supply of effort and hence a sacrifice of leisure.

Example 2.1: A specific case with two partners

Let U(x, y) = xy, β = 2, and T = 24. (We’ll ignore the subscript at first.) To find
Cβ we maximize U subject to y = 2 × e = 2(24 − x). Replace y in the utility func-
tion with 48 − 2x and then maximize x[48 − 2x] = 48x − 2x2. This quadratic is
maximized at xβ = 48/4 = 12. Then yβ = 48 − 24 = 24. We have Cβ = (12, 24).

To find C P , the partnership equilibrium, we solve

maximize x1 y1 subject to y1 = 1/2 × 2(24 − x1 + e2).

Substitute 24 − x1 + e2 for y1 in the utility function, and then maximize x1(24 −
x1 + e2), treating e2 as a constant. Then we maximize x1(24 − x1 + e2) = (24 +
e2)x1 − x2

1 . This quadratic is maximized when x1 = (24 + e2)/2. Setting e2 = e1 =
24 − x1 and substituting 24 − x1 for e2 yields x1 = 12 + 12 − 1/2x1 and hence x1 =
16. Therefore, y1 = y2 = 16. At the partnership equilibrium, xP = 16, yP = 16,
and eP = 8 for each person.

Let’s compare utility levels: At the fair and efficient allocation Cβ each per-
son’s utility equals xβ × yβ = 12 × 24 = 288. At the partnership equilibrium C P

utility equals xP × yP = 16 × 16 = 256 for each, which is about 11% less than
the utility at Cβ .

The partnership outcome is not efficient; there is another feasible outcome
that would give each more utility. Section 3 shows that a different contractual
arrangement can give each team member the incentive to supply the amount of
effort required by the fair and efficient outcome Cβ . First, we consider whether
incentives are different in a long-term partnership relationship.

2.3 Reputation and repeated interaction
Subsection 7.3 of Chapter 1 showed that an efficient level of cooperation can
be sustained in a relationship that is repeated indefinitely. We now apply this
reasoning to partnerships. (This section is self-contained, but it might be wise to
read the concluding section of Chapter 1—particularly 7.3.) The infinite horizon
assumption is a good way to model a long-term business relationship in which
the finite lifetime of a business has no bearing on individual decision making in
the early stages or even the intermediate term.

The two partners interact repeatedly for an infinite number of periods,
1, 2, . . . , t, . . . . We represent the individual’s preferences by discounting the sum
of the single period utilities. If δ is the discount factor and ut is the partner’s
period t utility, then the individual maximizes

u1 + δu2 + δ2u3 + · · · + δt−1ut + · · ·
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where 0 < δ < 1. Because δ < 1, the discount factor will be close to zero if t is
very large and hence periods that are very remote will get almost no weight in
the decision. Recall that the infinite sum a + aδ + aδ2 + · · · + aδt + · · · equals
a/(1 − δ) when 0 < δ < 1 (Section 7.2 of Chapter 1).

As in the static partnership model we simplify the analysis by assuming that
the partners have identical utility functions. In the static (one-shot) case we
found that there is an efficient individual effort supply eβ that is larger than the
effort supply eP at the partnership equilibrium. The individual partner max-
imizes utility by choosing eP < eβ because the individual opportunity cost of
leisure consumption is only half the opportunity cost to the two-person team.
The effort supply eP by each partner results in each consuming C P = (xP , yP )
where xP = 24 − eP and yP = 1/2β(eP + eP ). The efficient effort supply eβ sup-
ports the commodity bundle Cβ . Although U(Cβ) > U(C P ), the consumption
plan Cβ does not emerge at equilibrium because eβ is not a best response by
one partner to the supply of eβ by the other. However, when the partnership
relationship is repeated period after period, one partner has an opportunity to
punish the other for deviating from the efficient effort supply. The punishment
takes place in future periods of course and, unless the discount factor is very
low, the one-period gain to a deviating partner will not be large enough to offset
the infinite number of rounds of future punishment.

Specifically, if the discount factor is sufficiently large then we have a Nash
equilibrium when each partner supplies eβ in the first period, and eβ in any
period t provided that the other supplied eβ in the previous t − 1 periods, and a
partner threatens to supply eP every period following any period t in which the
other partner failed to supply eβ .

Example 2.2: Infinitely repeated version of Example 2.1

Let U(x, y) = xy, β = 2, and T = 24. We derived Cβ = (12, 24) with eβ = 12 in
the one-shot case (Example 2.1). At the partnership equilibrium, eP = 8 with
C P = (16, 16). Note that U(Cβ) = 288 and U(C P ) = 256. One Nash equilibrium
for the infinitely repeated partnership has each partner supply 12 hours of effort
in the first period and every subsequent period as long as the other partner
supplied 12 hours in each previous period, but will supply 8 hours of effort in
period t and every subsequent period if the other partner did not supply 12 hours
of effort in period t − 1.

Suppose that partner 1 deviates from e = 12 in period t. What’s the highest
one-period utility that a partner can achieve when the other partner supplies
12 hours of effort? The answer is obtained by maximizing U(x, y) when y = 1/2 ×
2 × (24 − x + 12). That is, we maximize x × (24 − x + 12) = 36x − x2. Using the
formula for maximizing a quadratic (Section 1 of Chapter 2) or calculus yields x =
36/2 = 18. Then partner 1 will supply 6 hours of effort. Each individual’s income
will be 1/2 × 2(6 + 12) = 18 and partner 1’s period t utility will be U(18, 18) = 324.
(One can also solve for x by setting the MRS, which is y/x, equal to partner 1’s
opportunity cost of leisure, which is 1/2 × 2, and then using the budget constraint
y = 24 − x + 12.)
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By deviating in period t, partner 1 gets an increase in utility of at most
324 − 288 = 36. But he is then punished by partner 2 in period t + 1 and every
subsequent period. Partner 2 supplies 8 hours of effort in period t + 1 and
beyond. We already know what partner 1’s best one-shot response is because
we have a unique Nash equilibrium of the one-shot game when each supplies
8 hours of effort. Therefore, each will supply 8 hours of effort from period t + 1
on. Hence the deviating partner will get a utility of at most 256 in each of those
periods. Had he not deviated, utility would have been 288 each period. There-
fore, by deviating partner 1 gets a utility bonus of at most 36 in period t but
suffers a utility penalty of at least 288 − 256 = 32 in every period after the tth.
Discounting to period t, we find that deviating will not be profitable if

36 − 32δ − 32δ2 − 32δ3 − · · · ≤ 0.

and this simplifies to 36 ≤ 32δ/(1 − δ). Therefore, deviating cannot benefit
either player if 36 − 36δ ≤ 32δ, or δ ≥ 36/68 = 0.53. If the discount factor is 0.53
or higher then the trigger strategy specified in the first paragraph is a Nash
equilibrium.

The efficient outcome can be sustained if the partnership lasts many periods
and the partners are not too impatient. However, it is just one of the Nash equi-
libria in the infinitely repeated partnership. There are many other equilibria. At
the other extreme, if both announce their intentions to supply in each period
of the repeated game the amount of effort that emerges in the one-shot Nash
equilibrium whatever the other does, then we have a Nash equilibrium of the
repeated game. (This is true whatever the discount factor.)

Source
Alchian and Demsetz (1972). The discussion of repeated interaction in a part-
nership is based on Radner (1991).

Links
See Milgrom and Roberts (1992, pp. 522–3) on the conversion of investment
banks from partnerships. See Kandel and Lazear (1992) on the role of peer pres-
sure in partnerships. See Aoki (2000) for a perspective on the computer industry
in the Silicon Valley. Levin and Tadelis (2002) provide an in-depth examination
of a partnership extending over time. Williams and Radner (1995) show how
the introduction of uncertainty improves the prospects for risk-neutral partners
achieving an efficient outcome.

Problem set

1. Find the fair and efficient outcome and the partnership equilibrium for
Example 2.1 by using the theory of consumer choice. This means that you
have to set the MRS equal to the price ratio for the appropriate budget line.
For the utility function U = xy, the MRS at generic bundle (x, y) is y/x.
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2. Find the partnership equilibrium in a two-person firm with the follow-
ing features: T = 24, and each individual has the utility function U =5 ln(x +
1) + y. Each dollar of income generated by the firm requires a total of two
hours of effort per day as input.

3. Determine the equilibrium of a two-partner firm in which each partner has
the utility function U(x, y) = 8

√
x + y, T = 24, and the output/input ratio is

two. Show that the outcome is inefficient.

4. Determine the equilibrium of a two-partner firm in which each partner has
the utility function U(x, y) = 16

√
x + y, T = 24, and the output/input ratio

is two. Show that the outcome is inefficient.

5. A firm has four partners and each has the utility function U(x, y) = √
x ×

y, with T = 24. An individual’s MRS at the bundle (x, y) is y/2x. The firm’s
profit, before deducting the partners’ pay, is $50 multiplied by the total effort
supplied. Prove that the partnership equilibrium is C P = (16, 400). That is,
prove that at the equilibrium, each partner has x = 16 and y = 400.

6. Consider a model of team production in which total income is four times the
total amount of effort supplied. There are two individuals on the team and
each individual i has the utility function U(x, y) = x2 y and T = 24.

A. Determine the commodity bundle that maximizes person 1’s utility
subject to the production technology constraint and the requirement
that the partners wind up with identical utility levels.

B. Determine the partnership equilibrium. Make sure you identify the
amount of each good consumed by each person.

7. Using the parameters of Example 2.2 show that there is a Nash equilibrium of
the infinitely repeated partnership in which each partner supplies 10 hours
of effort each period.

8. Translate the condition on δ into a condition on the interest rate, guarantee-
ing that the Nash equilibrium of Example 2.2 is in fact a Nash equilibrium
of the infinitely repeated partnership. Do the same for the equilibrium of
question 7.

3 THE OWNER-EMPLOYEE RELATIONSHIP

We continue with the simple case of a two-person production team without rep-
etition. The previous section showed that the partnership sharing rule resulted
in an inefficient outcome. Under that formula, the individual’s opportunity cost
of leisure consumption is half of the opportunity cost to the team. Therefore,
each partner overconsumes leisure—in the sense that the resulting outcome
is inefficient. We are about to see that an efficient outcome can be reached if
one of the team members is singled out as the owner, and then pays the other
person—the worker—a high income, but only if the worker supplies a high level
of effort. The owner then keeps every dollar of profit after paying the worker. That
makes the owner the residual claimant, with an individual opportunity cost of
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leisure consumption of β, which is the opportunity cost to the team. Because the
individual and the social (i.e., team) opportunity costs of leisure consumption
are identical, the owner is motivated to supply the amount of effort that leads to
the fair and efficient outcome. The worker is also induced to deliver that effort
supply because he or she doesn’t get paid otherwise.

DEFINITION: Residual claimant
A member of a production team (typically a profit-seeking firm) is the resid-
ual claimant if that person has title to all of the revenue left over after all
contractual obligations are met. In everyday language, the residual claimant
gets the enterprise’s profit.

Suppose that person 1 is the sole owner of the two-person firm of Section 2,
and she hires individual 2 as the second member of the team. The two individ-
uals work together as in a partnership but the reward scheme is quite different:
Person 1 pays person 2 an income of y2 with the residual income going to the
owner person 1. That is y1 = β(e1 + e2) − y2. To determine e1 and e2 we need to
be more explicit about the worker’s contract. The owner agrees to pay the worker
exactly yβ , no more and no less, provided that the worker, person 2, supplies at
least eβ units of effort. Recall that Cβ = (xβ , yβ) is the bundle that maximizes
individual utility on the per capita production line y = βe = β(T − x). If person
2’s effort supply is less than eβ he is not paid at all.

Definition: The worker’s contract
The worker’s pay y2 equals yβ if e2 ≥ eβ and y2 = 0 if e2 < eβ .

Note that this contract requires monitoring by the owner to ensure that
the threshold effort level eβ is reached. We assume initially that monitoring is
costless. When we turn to the case of significant monitoring costs, at the end of
this section, we will see that the higher these costs are, the more likely it is that
the firm will be organized as a partnership.

Assuming that the worker’s utility at (xβ , yβ) is at least as high as he can
obtain by working elsewhere—or by staying home and consuming leisure—it
is in the worker’s interest to supply exactly eβ units of effort and receive the
income yβ . If e2 < eβ the worker is dismissed. Even if he gets a new job, there will
be costs associated with the transition, and consequently the worker’s utility will
fall below Cβ .

Now consider the owner’s situation. The owner wishes to maximize U(x1, y1)
subject to the two constraints y1 = β(e1 + eβ) − yβ and x1 = T − e1. Recall that
yβ = βeβ . Then person 1 will maximizeU(x1, y1) subject to y1 = βe1 + βeβ − yβ =
βe1 = β(T − x1). But y1 = β(T − x1) is the equation of the line Lβ in Figure 4.1,
and we already know that Cβ maximizes utility on that line. Therefore, it is in the
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owner’s interest to choose Cβ , which means that she supplies eβ units of effort.
We have designed a contract regime such that each person has an incentive to
supply eβ units of effort and as a result each receives the bundle Cβ , and this
outcome is efficient. (Efficiency was proved in Subsection 2.1.)

Instead of a contract that pays the worker yβ if his effort is eβ or more and
zero otherwise, the owner could simply offer a wage of β and let the worker
choose his utility-maximizing basket (x2, y2) subject to the budget constraint
βx + y = βT . The line representing this budget constraint is Lβ of Figure 4.2.
Therefore, the offer of a wage of β leads the worker to choose Cβ as in the case
of the “contribute eβ or else” contract. Either contract is effective, although they
have slightly different monitoring consequences. (What are the differences?)

The fair and efficient outcome will be implemented by a contract that makes
one member of the team the residual claimant, whereas the other gets paid
the fair and efficient income level, but only if he or she supplies the fair and
efficient level of effort.

Why do the owner and employee receive the same level of utility, U(xβ , yβ),
at equilibrium? The owner does not get a bonus for risk taking, because there

The reason why the benefits of techno-
logical progress are not all captured by
suppliers of capital is that the owners of
firms compete with each other for the
skilled labor needed to implement the
technological innovations. This drives
up wages, passing on part of the fruits
of progress to workers.

is no risk in our simple model. Imagine a com-
munity in which many of the individuals have
access to the technology that converts input
into output at the rate of β dollars of income
per unit of effort. If all firms pay their workers
less than yβ then owners must get more than yβ .
Workers can leave the firm and start their own
businesses in which they receive U(xβ , yβ) as
owner. The Silicon Valley of California is cel-
ebrated for this. However, if the workers do

better than the owners, the latter can be expected to sell their businesses
and seek jobs as workers. This will increase the supply of workers and lower
their pay.

Very few firms are organized as partnerships. That’s because each partner
receives only a fraction—(1/n)th if there are n partners—of the income gen-
erated by his or her own effort. Thus there is an incentive to undersupply
effort, and hence the equilibrium leisure-income bundle consumed by each
partner provides a lower level of utility than the ideal plan Cβ , which can be
realized by the owner-worker regime. This utility differential is greater the larger
is the number of partners, because the individual’s opportunity cost of leisure
consumption falls as n increases. Then why do partnerships exist at all? The
answer has to do with the costs of monitoring the worker to ensure that the
threshold level of effort eβ has been supplied. In some enterprises the manager
(or the manager’s agent) need do little more than ascertain that the worker is
on the job and at the appropriate workstation to determine that there is no
shirking (i.e., that ei ≥ eβ). If bicycle wheels are being produced and a sample
reveals wheels with missing spokes it is a relatively easy matter to determine
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the source of the problem. The costs of monitoring are low in these cases. (A
worker’s output can be tracked electronically in some production processes.)
Even when the per capita monitoring cost m is subtracted from Cβ there is still
substantially higher utility, U(xβ , yβ − m), than is provided by the partnership
outcome C P .

However, monitoring costs are very high in firms that provide sophisticated
consulting or diagnostic services. Consider a team of accountants, lawyers, or
physicians. If one member of the team is to verify that another has done a good
job for a client then the former would essentially have to retrace the latter’s
steps. In that case the per capita technological income-leisure trade-off line Lm

for the owner-worker regime will be parallel to Lβ but strictly below it, the vertical
distance between the two providing a measure of the per capita monitoring cost
m. The utility-maximizing bundle on Lm is Cm, assuming that the two individuals
receive the same bundle (Figure 4.3). The partnership scheme does not require
monitoring so Lβ remains the appropriate trade-off line in that case. Figure 4.3
shows that U(C P ) will exceed U(Cm) if m is sufficiently large. However, given
the per capita monitoring cost m, the per capita partnership utility level U(C P )
falls as n increases. Therefore, large firms are much less likely to be organized as
partnerships than small firms. (Do you tend to study in a team of two or three
people or in a larger group?)

Example 3.1: A large number of workers

Let U(x, y) = xy, β = 2, and T = 24, as in Example 2.1, but this time we assume
that there are n workers. With n team members the per capita production line
is still y = 2e = 2(24 − x), and thus we still have Cβ = (12, 24). If person 1 is the
residual claimant and pays each of the other n − 1 individuals $24 provided that
they supply 12 units of effort, then each worker will accept such a contract.
(Suppose that the only alternative is staying home and consuming the bundle
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(24, 0), which delivers zero units of utility.) The owner then chooses x and y to
maximize U = xy subject to

y = 2[e + 12(n − 1)] − (n − 1)24.

This equation reflects the fact that the total effort supply is e + 12 (n − 1), where
e is the owner’s effort, and the owner has to pay $24 to each of the n − 1 workers,
hence the subtraction of 24(n − 1) from the team revenue of 2[e + 12(n − 1)].
The equation y = 2[e + 12(n − 1)] − (n − 1) 24 clearly reduces to y = 2e, and we
know that Cβ = (12, 24) maximizes U = xy on the line y = 2(24 − x). Therefore,
the owner also supplies 12 units of effort. Each team member receives the fair
and efficient bundle (12, 24).

Next we work out the partnership equilibrium: To find C P we solve

maximize x1 y1 subject to y1 = 1
n

× 2(24 − x1 + c)

where c is the sum of everyone’s effort supply except the individual in question.
That’s not something that person 1 can control, so we treat c as a constant.
Replace y1 in the utility function with (1/n) × 2(24 − x1 + c) and maximize

V (x1) = x1 × 1
n

× 2(24 − x1 + c) = 2
n

× (24 + c)x1 − 2
n

× x2
1 .

This quadratic is maximized at

x = (48 + 2c)/n
4/n

= 12 + c
2
.

(We can drop the subscript now.)
At equilibrium everyone supplies the same effort and hence consumes the

same amount of leisure. Therefore, c = (n − 1)(24 − x). We now have

x = 12 + (n − 1)(24 − x)
2

,

the solution of which is x = 24n/(n + 1). (Confirm that x = 16 when n = 2.)
Because T = 24, effort supply is zero when x1 = 24. Therefore, for large n an
individual partner’s leisure consumption is close to 24 and effort supply is close
to zero. Specifically, e = 24/(n + 1). Total effort supply is n × 24/(n + 1). There-
fore, the total profit to be shared by the partners is 2 × [n/(n + 1)] × 24. Individual
income is thus 48/(n + 1). What is individual utility at C P where

xP = 24n
n + 1

and yP = 48
n + 1

?

U(C P ) = [24n/(n + 1)] × [48/(n + 1)] = 12 × 24 × 4n/[(n + 1)(n + 1)]. Recall that
12 × 24 is individual utility at the fair and efficient bundle (Example 2.1). Because
n < n + 1 we have

4n
(n + 1)(n + 1)

<
4

n + 1
.

Therefore, U(C P ) is less than U(Cβ) × 4/(n + 1). When n is large, U(C P ) is a small
fraction of U(Cβ). The differential between U(C P ) and U(Cβ) increases with n.
In fact, U(C P ) is close to zero for large n.
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Professional service firms do not require enormously large teams, in contrast
to most manufacturing processes. Therefore, U(C P ) > U(Cm) is plausible in the
professional service field where the partnership format is employed. In fact, there
will be some minimal monitoring in a partnership. Why would the partners in a
medical clinic invest the time necessary to monitor each other even a little? The
cost of malpractice can be very costly to the client, and hence to the partnership,
and because the partners share losses as well as profits, each member is very
vulnerable to the shirking of the others. This gives the partners a strong incentive
to monitor each other, in contrast to the position of senior executives in a limited
liability corporation. The personal assets of an owner cannot be tapped to pay
the creditors or legal penalties of a limited liability corporation.

Source
Alchian and Demsetz (1972) provides the key insight for this section.

Problem set

1. Compute the equilibrium outcome for a firm that has ten workers, one of
whom is the owner who manages the firm. The firm’s net income (net of
the cost of materials, etc.) is always five times the total amount of effort con-
tributed. (The total effort includes the effort contributed by the owner.) Each
individual has the utility function Ui(xi , yi) = x2

i yi . Where xi is the number
of hours of leisure consumed by i per week, and yi is i’s income per week.
Assume that monitoring is costless.

2. Suppose that the owner of the firm described in question 1 offered each
worker a contract that paid exactly $230 per week as long as 40 units of effort
or more were contributed, and paid $0 if less than 40 units of effort were
observed. Show that this is not an equilibrium contract.

3. Here is a more subtle version of question 2. Suppose that the owner of the
firm described in question 1 offered each worker a contract that paid exactly
$200 per week as long as 40 units of effort or more were contributed, and
paid $0 if less than 40 units of effort were observed. Show that this is not
consistent with long-run equilibrium.

4. Let the monitoring cost per person m be a function m(n) of the number n of
team members, with m increasing as n increases. How does this affect the
analysis?

4 THE OWNER-MANAGER RELATIONSHIP IN PRACTICE

In the next section we derive the managerial contract that maximizes the own-
ers’ return. This section surveys the U.S. corporate landscape. A modern U.S.
corporation has many shareholders. To take advantage of the economies of
scale in production and advertising, the contemporary firm must be extremely
large, beyond the capacity of all but a handful of individuals to finance on their
own. Even if most firms could have single owners, risk aversion would motivate
providers of capital to diversify their portfolios—in other words, to own a small
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fraction of many different companies rather than large fractions of a few com-
panies. Therefore, our starting point is the fact that a firm is owned by a large
number of unrelated shareholders.

A firm’s owners appoint a manager to run the company on their behalf. The
owners do not make the daily decisions that determine how successful the firm
will be. Those are made by the managerial team, which answers to a board
of directors, who are supposed to represent the owners. The directors and the
managers are agents of the owners, and we speak of an agency problem because
the managers and the directors will, at least to some extent, act so as to enhance
their own welfare, not that of the owners. The shareholders want the managers to
make decisions that lead to the maximum value of shares on the stock exchange,
and that requires high annual profits. However, the owners will not know when
the highest possible profit is attained. If it were obvious how to maximize profit
then the shareholders could issue the appropriate orders directly to the workers.
As it is, the shareholders need to hire an agent.

The shareholders want the board to design a contract that provides every
incentive for the manager to maximize shareholder value, even though the
manager’s immediate concern is his or her own material well-being, which will
depend on factors that are not perfectly correlated with the firm’s profit, such
as the manager’s future prospects. Even if a portion of the managers’ wealth is
held in the form of shares in the firms that they manage, the other sharehold-
ers cannot be sure that the managers will do all they can to maximize profits.
The firm’s long-run profitability will not be the only aspect of the managers’
stewardship that affects their welfare. For example, the managers’ prospects for
future employment and income may be enhanced if they increase the size of
their present enterprise, and this may induce them to increase the firm’s out-
put beyond the point at which profit is maximized. The managers may expose
the firm to more risk than is in the best interest of the owners. They may even
negotiate a merger that provides them with tens of millions of dollars in con-
sulting fees but does nothing (or less than nothing) for the owners of the firm
that spearheads the merger.

4.1 How managers are disciplined
The severity of the agency problem is mitigated in a variety of ways that impose
discipline on the managers. The devices by which managers are regulated can
be grouped into four categories:

Regulation by shareholders—through contracts that provide performance
incentives and via direct oversight by the board of directors.

Regulation by the capital market: If the firm performs poorly, a financier
can buy a controlling interest in the company and replace the incum-
bent management. This is called a hostile takeover. The motivation for the
takeover springs from the fact that if the company subsequently does well,
the market value of the financier’s shares will increase. The implicit threat
of a hostile takeover gives managers substantial incentive for doing their
jobs well.
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Regulation by the legal system: In most countries the manager of a firm is
legally responsible to the firm’s owners. The degree of investor and creditor
protection afforded by the legal system varies appreciably across countries,
although it is usually substantial, at least in theory.

Regulation by product markets: If competition is intense, profit margins will
be small and a firm can be driven out of business if cost (and hence price)
increases or product quality declines because of management shirking.
The probability of bad decisions costing the top executives their jobs if the
firm goes under will factor into managerial decision making.

We discuss each of these sources of discipline in turn, but most of our attention
is given to regulation by shareholders and by capital markets.

The legal system
The U.S. legal system may place managers under more intense scrutiny than
in any other country, but its role is still rather limited. First, American courts

Before the reunification of Germany,
some East German automobile manu-
facturing plants were so poorly run that
the value of the cars that they produced
fell short of the value of the inputs used. A
fertilizer plant in India operated for more
than twelve years without producing a
single ounce of fertilizer, yet twelve hun-
dred employees came to work every day.
The plant was funded by the government
and managed by public officials (Whee-
lan, 2002, p. 27).

do not intervene in a company’s internal busi-
ness decisions. Shareholders can sue the direc-
tors if the directors do a bad job of oversight.
American courts are also willing to adjudi-
cate allegations of self-dealing and challenges
to the CEO’s compensation package. However,
practical obstacles stand in the way of signif-
icant judicial review of compensation pack-
ages. Nevertheless, relative to other countries,
both the U.K. and the U.S. legal systems give
investors and creditors substantial protection.
One fairly simple technique by which owners
of firms in other countries can purchase Amer-
ican or British legal protection is by listing their

stock on the exchanges of those two countries. Some firms in emerging markets
and in the European Union have done this (Shleifer, 2000).

Alternatively, a firm operating in a country whose legal system affords
investors little protection from mismanagement can adopt the legal environ-
ment of a country that is more protective of investors by being acquired by
another firm that already operates in such an environment. This becoming quite
common in Western Europe (Shleifer, 2000). Suppose for instance that firm X is
controlled by a small group of owners who also manage the firm. Suppose also
that the managers of X are diverting a significant fraction of the profits from the
rest of X’s shareholders into their own bank accounts. If shareholder wealth is
diverted at a cost—so that a dollar lost by the other shareholders results in a gain
of less than a dollar to management—then a takeover firm can buy a control-
ling interest in X at a price that will leave the incumbent owner-management
team better off and still leave a net gain for the company that takes over
firm X.
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Example 4.1: Transplanting the legal system

Iliad Corp. is managed by Homer, the founder of the company, who also owns
60% of the shares. The annual profit is $1000 of which Homer is entitled to
$600. Not all of the $400 to which the outside shareholders are entitled reaches
them. They get only $100, because Homer diverts $300 of their share to himself.
However, the diverted funds are used to buy luxury boxes at a baseball stadium.
In term’s of Homer’s utility, these box seats are equivalent to only $120 in cash. If
Virgil purchased the firm for the equivalent of an annual payment of $900, with
$760 of that going to Homer and $140 going to the incumbent outside owners
then everyone gains. Virgil pays $900 for something worth $1000. The outside
owners get $140 instead of $100, and Homer gets $760 instead of $720.

Why can’t the shareholders pay the incumbent manager $150 to leave the
$300 in the firm? Even assuming that the owners could do the math (and that is
problematic, with the manager controlling the flow of information), we would
then have a situation in which the manager could repeatedly threaten to act
adversely to the owners’ interest, inviting them to bribe him not to do so.

Product markets
How important is competition in product markets in disciplining top executives?
The manager will lose his or her job if the firm suffers losses year after year, and
this gives the manager incentive to avoid losses. This is a long way from claiming
that the manager will make every effort to maximize profit, but it will prevent
extreme abuse. Moreover, the more intense is the firm’s competitive environ-
ment the more efficient the management team has to be for the firm to stay
afloat. Each of the world’s major industrialized countries is host to firms that
are among the world’s leaders—even countries that do not appear to provide
managers with strong motivation. This suggests that product market competi-
tion has substantial impact. But note that even if competition in the product
market does prevent profit from declining, it doesn’t stop the top executives
from adopting strategies that transfer profit from the owners to management.

Performance bonuses
We now turn to the possibility of paying managers in ways that motivate them to
look out for the owners’ interests, even though the managers cannot be closely
monitored. In the United States, not only are CEOs paid twice as much on average
as their counterparts in other countries, but they also receive a much higher
fraction of that pay in the form of performance bonuses—50% in the United
States. Other countries are slowly approaching U.S. practice, however (Murphy,
1999).

It is important to understand that a performance bonus doesn’t necessarily
provide an incentive to perform. When the CEO or the board announces, “We
had a great year so everyone gets a big bonus,” it is past performance—or perhaps
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good luck—that is being rewarded, and that is not necessarily an inducement
to do well in the future. A contract that permanently ties senior executives’ pay

The Walt Disney Corporation was run by
family members for several years after
the death of the founder, and the fam-
ily members did a poor job. Profits were
dismal, and the managers even used
$31 million of the owners’ wealth to
repurchase the shares of a financier
attempting to buy a controlling interest
in the company in hopes of being able
to turn it around. (They paid $31 million
more than the shares were worth on the
stock market.) When Michael J. Eisner
was hired to run the company in 1984 he
was given a bonus of 2% of all prof-
its in excess of a 9% return on equity.
Under Eisner’s leadership, the return on
equity soared to 25%. (It was well below
9% when he was hired.) Over a five-year
period, Eisner received about $10 million
a year in performance bonuses, a tiny
fraction of what he delivered to the com-
pany’s owners (Milgrom and Roberts,
1992).

to profit is a much better incentive device.
What kind of performance bonus would

induce a manager to maximize profit? A sub-
stantial bonus that is paid only if the manager
realizes maximum profit would provide the
appropriate incentive. However, if the share-
holders know how much profit the firm is capa-
ble of generating they can simply write a con-
tract so the manager’s continued employment
is conditional on the firm reaching its potential.
How can the owners induce profit maximiza-
tion when they don’t know what the maximum
profit is?

Stock options are a partial answer. A stock
option is a commitment by the shareholders to
the manager, allowing the latter to purchase a
specified number of shares in the company in
a specified time interval and at a fixed price,
usually the price of the stock at the time the
option is granted. This gives the manager a
strong incentive to take actions that lead to the
largest increase in the value of the stock over
that time interval, and this is usually accom-
plished by generating the maximum profit for
the firm. Increases in the firm’s profit will be

noticed by investors and will result in an increase in the demand for the firm’s
shares. That in turn cause the share price to increase.

Example 4.2. Stock options and managerial incentive

Suppose the share price of firm X is currently $100 and firm X’s CEO is given the
option to buy shares at that price. Then if the share price were to increase to $250
in one year, the CEO can buy shares for $100 each and sell them immediately
for $250 each.

Stock options can be abused, however, especially because managers are not
usually required to hold the stock for any period of time. The chief executives
can cause a temporary increase in the share price by temporarily overstating
profit. They can exercise their stock options and sell their stock before the actual
profit is discovered. When the truth is revealed, investor confidence can be
undermined to an extend that the resulting collapse in the share price can bring
many shareholders to ruin. Also, the board of directors sometimes weakens the
incentive effect of stock options by repricing them after a fall in the share price.
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(If the price was $100 a share two years ago when the option was offered to the
CEO, and the price is currently $90, the option price may be lowered to $90!)
Repricing can benefit owners if it is done after a drop in the share price that is
unrelated to the manager’s performance. In that case, repricing would restore
the incentive effect of stock options. (If the price decline was sufficiently large,
it may be extremely unlikely that the stock price would rise above the exercise
price of the option, no matter how hard the manager strives to increase profit.)

Too often bonuses and stock options are given to reward service in the past.
But it is future performance that the shareholders want to inspire; it is too late to
affect past performance. In fact, poor performance may be the result of unfavor-
able random events—changes in exchange rates and so forth—that are beyond
the control of the manager. The manager may have been exceptionally industri-
ous and creative. The aim is to reward effort, and effort is imperfectly correlated
with performance and profit. Paradoxically, it may be smart to give a stock option
to a manager after a period of low profits, giving the manager a strong incentive to
work more effectively in the future. That won’t work with cash bonuses of course.
In fact, cash bonuses are usually tied to the office—with a chairman receiving
more than a vice president. So, performance bonuses are a potentially useful
tool in the shareholders’ attempt to induce the manager to maximize profit, but
they are not often used appropriately. Moreover, shareholders often view these
sort of financial devices as bribes to get the managers to do something that they
are paid salaries to do in the first place. Accordingly, shareholders sometimes
oppose the use of stock options on ethical grounds and will sometimes sue the
manager if the firm’s board of directors agrees to this type of compensation.
Nevertheless, performance bonuses of one kind or another are ubiquitous.

When the price of the company’s shares is used to connect the manager’s
pay to managerial performance—whether or not a stock option is used—the
manager can profit from an economy-wide increase in share price levels. This
happened during the bull market of the 1990s. The median pay of the CEOs of
the top 500 firms (the Standard and Poor’s 500) increased by about 150% from
1992 to 1998 (Perry and Zenner, 2000). Tying the manager’s performance to the
differential between the firm’s share price and a general stock market price index
might be a more effective incentive device.

Why aren’t incentive schemes that condition the manager’s pay on the firm’s
performance more widespread? On average, an increase of $1000 in the market
value of a company’s shares increases the CEO’s compensation by only about
$3.25, most of which is attributable to stock ownership (Jensen and Murphy,
1990a, 1990b). Using more recent data (from the period 1980 to 1994) and tak-
ing the stock option component of pay into account, Hall and Liebman (1998)
discover that pay is substantially more sensitive to performance. (See also Perry
and Zenner, 2000.) Moreover, Haubrich (1994) demonstrates that when the man-
ager’s risk aversion is taken into account, contracts come much closer to the
predictions of theory—the theory of Section 5, that is.

It may not be necessary to have close to maximum incentive to induce close
to maximum CEO performance. It might be appropriate to divide the set of
managers into good guys and bad guys. Even the good guys will disappoint the
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owners if they are not rewarded for walking the extra mile—but they certainly
won’t ruin their principals by driving the firm into bankruptcy, even if that would
add significantly to the agents’ wealth. The good guys will deliver maximum
performance if they are generously rewarded for doing so, even if they get much
less than a dollar at the margin for every dollar of extra profit realized by the
firm. The bad guys, however, are governed only by material incentives, and if
they can increase their wealth from extremely high to obscene by exploiting a
loophole in their contract, they will do so—even if that impoverishes many of
the firm’s owners.

Shleifer and Vishny (1988) suggest that the members of the board of directors
be paid in the form of stock in the company rather than salary. The practice of
tying a director’s pay to the company’s stock is making significant inroads. In
1997, 81% of the Standard and Poor’s 500 firms awarded either stock or stock
options (or both) to their board members (Bebchuk, Fried, and Walker, 2001). In
theory this would align the interests of the board and the shareholders. Although
the board of directors represents the shareholders, and shareholders sit on the
board, it is often dominated by the manager. (In fact, managers often control
the selection of the board members. And they can arrange to have their firms
award lavish consulting contracts to board members. Brickley, Coles, and Terry,
1994, marshal evidence suggesting that shareholders do better when the board
contains a large number of directors who have no significant business ties with
the company.) However, “it has been widely agreed that the board of directors
is an ineffective way of dealing with this [agency] problem” (Allen and Gale,
2000, p. 76).

An increasingly commonplace device for inducing performance that gener-
ates the maximum increase in the value of the company’s shares is the franchise
arrangement. A company provides a standardized product: hamburgers, fried
chicken, automobile parts, retail drug outlets, and so forth. When a new out-
let is opened, should the existing shareholders operate it themselves or license
someone else (the franchisee) to do it according to the standard formula? If the
shareholders operate it themselves they must hire a manager, in which case
profit maximization cannot be taken for granted. The franchise arrangement
requires the licensees (or franchisees) to put up some of their own capital and
manage the outlets themselves. The franchisee must also pay a substantial fee
to the parent company in return for permission to use its brand label and enjoy
the benefits of its reputation and national advertising. The franchisee becomes
the residual claimant, keeping every dollar of profit after paying the license fee.
This gives the local manager maximum incentive to run the firm efficiently. The
parent is in the business of selling franchises instead of hamburgers (etc.). The
franchise fees bring in more profit than would a chain of parent-managed outlets
because managers would not perform as well under the latter system—because
they would have less at stake personally.

Why would an entrepreneur pay a fee to the parent and agree to follow the
company formula strictly in return for the right to produce something that the
entrepreneur could legally sell without paying the fee? Because the identification
with the parent’s brand is a source of extra profit, justifying the hefty licensing
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fee. But the extra profit depends upon consumer confidence in the brand, which
in turn depends upon other outlets strictly adhering to the company formula,
so each franchisee agrees to the limitations because the brand identification is
not worth anything unless it is clear that the parent will enforce its standards
generally. Nor will there be extra profit if the franchisee is not given the exclusive
right to operate in a specified area, so the parent agrees not to allow anyone else
to use the brand name in the franchisee’s neighborhood. Without accepting this
limitation the parent would have nothing valuable to sell. Each side agrees to
restrict its activities because the configuration leads to maximum profit for all
the participants.

There are many situations, however, in which franchising would not solve
the problem of divorce between ownership (by shareholders) and control (by
management): The product may be produced at only a few locations or sold
only at the wholesale level. Most significantly, the firm may be too large to be
purchased by a single individual, which is essentially what franchising requires.

Capital markets
How do capital markets discipline top executives? We do not discuss the role of
debt financing, although it has the potential for disciplining the management
team: The idea is that if the firm were committed to pay out substantial interest
on debt, the executives would be forced to avoid shirking and also to mini-
mize the amount of revenue diverted to their own bank accounts (Grosssman
and Hart, 1982; Jensen, 1986). However, American corporations rely on retained
earnings to finance expansion far more than debt.

When an outside interest purchases a controlling interest in a firm we refer
to this as a takeover. When the incumbent management is replaced we refer to
it as a hostile takeover. If the firm’s performance had been poor, then the price
of its shares will be low. If the new owners replace the management team with a
more effective one, and there is a big increase in the flow of profits as a result, the
share price will increase. The new owners will have realized a handsome return,
justifying the takeover. The possibility of dismissal may provide an incentive for
managers to maximize profit in the first place. (This process can also correct
deviations from profit maximization caused by management error, as opposed
to management shirking.) Hostile takeovers were relatively rare until the 1960s
(Hansmann, 1996). They remain rare outside of Anglo-Saxon countries.

If an outsider can determine when the management team is underperform-
ing, why can’t the firm’s current owners? The research required to evaluate a
firm’s performance is costly. If each owner has a small fraction of the shares, the
cost of research to an individual will be greater than any increase in the value of
the individual’s holdings as result of that research. However, if an outside interest
purchases a significant fraction of the shares, it will realize a net gain if the firm’s
performance does in fact improve. (See Examples 4.3 and 4.4 in Subsection 4.4.)

Takeovers are not inevitable when the management team does a bad job.
Easterbrook (1984) estimates that it takes an anticipated 20% increase in the
value of shares to trigger a takeover. In that case, the threat of a takeover does
little to discourage management from diverting profit away from the owners: A
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15% increase in the CEO’s pay would result in a tiny drop in the value of shares
(Bebchuk, Fried, and Walker, 2001, p. 26). Also, managers often restrict the flow of
information concerning the internal operation of the firm, making it even harder
to determine its potential. Moreover, it often happens that dismissed managers
have contracts with the original owners that provide them with multimillion-
dollar parting gifts (a golden parachute) in case they are fired as a result of a
takeover. The fact that boards of directors offer this sort of compensation may
point to the unwillingness of directors to properly monitor managers. However,
golden parachutes can be socially beneficial if they induce managers to accept
hostile takeovers.

Some acquisitions serve the managers’ interests by entrenching their posi-
tions. Shleifer and Vishny (1988) report that managers sometimes initiate
takeovers. If some managers have strong reputations in the railroad industry,
say, and their firm acquires a railroad, then they will be much more valuable to
the shareholders. They have strengthened their positions at the head of the firm,
even if the acquisition diminishes the present value of shareholder wealth.

In spite of the obstacles, takeovers are far from rare in the United States (and
the United Kingdom). Almost 10% of the U.S. firms listed in the Fortune 500 in
1980 have since been taken over in a hostile transaction—or one that started out
hostile (Prowse, 1995). These takeovers left a trail of data that should allow us
to determine if takeovers have provided a significant corrective. For takeovers
during the period 1976 to 1990, the increase in the value of shares in the target
companies was about $750 billion according to Jensen (1993). Scherer (1988) is
skeptical about the social value of takeovers, but Lichtenberg (1992) finds strong
evidence that a firm’s total factor productivity increased after a takeover. And
in a review of the empirical work on this question, Jarrell, Brickley, and Netter
(1988) conclude that takeovers induce a beneficial restructuring of real capital.
According to Jensen (1986), restructuring of the firm following a merger some-
times eliminates projects with negative net present value. The contemporary
consensus is that the takeovers of the 1980s precipitated significant efficiency
gains (Holmström and Kaplan, 2001).

There is a free rider problem that could undermine takeovers as a device to
discipline managers. Existing shareholders stand to benefit from any improve-
ment in profitability that a takeover would bring. This could make them reluctant
to sell to the takeover group at the current market price or at a price low enough to
render the takeover profitable to the new owners. Consequently, it could become
difficult or impossible to find enough current shareholders willing to sell their
shares (Grossman and Hart, 1980). That is why the constitutions of many firms
include a dilution provision. This allows the new owner to sell part of the firm’s
assets to another company belonging to the new owner at terms that are benefi-
cial to takeover group and disadvantageous to the firm’s minority shareholders.
Dilution can also take the form of the new owners issuing themselves new shares.
Why would the original owners of the firm place such a provision in their consti-
tution when it is potentially to their disadvantage? Because it makes takeovers
more credible and thus serves to discipline the firm’s manager. If the discipline
is strict enough then the incumbent manager will work assiduously to maximize
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profit, vitiating the need for dilution. A two-tiered offer can also eliminated the
free rider problem, as we showed in Subsection 6.7 of Chapter 1.

Are there any other techniques that can be used to provide managers with
appropriate incentives? One surprising possibility is insider trading (Manne,
1965, 1966). This term refers to the managers of firm A using important informa-
tion about A’s prospects that is not available to the general public or even to trad-
ing specialists. If this information is used to purchase or sell A’s shares in a way
that benefits the managers or their friends we have an instance of insider trading.
It seems very unfair for those on the inside to profit from their privileged position.
Indeed, the U.S. Securities and Exchanges Commission declared insider trading
unlawful in 1961, and the courts have ratified this position. (Insider trading is
not unlawful if it is based on information that is available to the general public.)
Is it harmful enough to outsiders to warrant its prohibition? Banerjee and Eckard
(2001) examine data from mergers that took place during “the first great merger
wave” (1897 to 1903), before insider trading was outlawed. They discovered that
outsiders appear not to have benefitted significantly from the ban on insider
trading.

One form of insider trading is clearly harmful to society in general. If man-
agers were able to take short positions in the shares of their own company they
would have a strong incentive to ensure that their firms did badly. Selling short
consists in selling something you don’t own (shares in this case) at a price agreed
upon now for delivery at a specified time in the future. The person selling short
is betting that the asset will fall in value. When it is time to deliver the promised
number of units of the asset and the price has fallen, the seller simply buys the
required number of units on the “spot” market and delivers them, collecting

In July 1929 the head of the large Chase
bank sold short more than 42,000 shares
of Chase stock in advance of the October
crash (Malkiel, 2003, pp. 47–8).

the high price specified in the original con-
tract. If managers could do this with shares in
the companies then they run they could get
rich by mismanaging their companies so that
the stock falls in value. The flow of goods and
service to consumers would be correspond-

ingly diminished. It is clearly in our interest to have short sales by managers
declared illegal. Short sales by insiders have been prohibited in the United States
since 1936.

What about ordinary (spot) trading by insiders? Some claim that this gives
managers a strong incentive to do their utmost for the shareholders. If the com-
pany performs substantially better than expected then the price of its shares will
rise on the stock exchange. Once this superior performance is public knowledge
the shares will be immediately bid up in price and it will be too late for a man-
ager to benefit from purchasing his or her company’s shares. But if the manager
purchases his or her company’s stock at the current price in the light of advance,
inside information on the company’s unexpected performance then substantial
capital gains are made when the share price is bid up in the wake of public realiza-
tion of the enhanced profitability. This suggests that insider trading—with short
sales disallowed—can help align the interests of manager and shareholder. (You
might ask yourself why stockholders do not insist that managers agree to abstain
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from insider trading as part of the contractual agreement between shareholder
and manager.)

4.2 Examples of managerial shirking
Managers’ immediate concern is their long-run well-being. Unless incentives or
personal integrity take them in a different direction, their performance will be
designed to enhance their present income, nonmonetary rewards, and future
monetary rewards on the job (involving the use of a company airplane, etc.),
perceived value to other companies (to enhance job prospects elsewhere), and
retirement package. Studies of the agency problem have uncovered a long list of
avoidable deviations from profit maximization. Some are deliberate, and some
are the result of poor judgment. Ideally, both can be corrected by means of
contracts that provide appropriate incentives to the decision makers.

We have grouped a variety examples of departures from profit maximiza-
tion into four categories: Deliberate mismanagement, wealth diversion from
the owners to the manager, bad judgement, and sins of omission. It is usually
easy to rationalize the first two in terms of the manager’s welfare.

Deliberate mismanagement
Managers have been known to restrict the flow of information to the board of
directors to make it harder to determine when the managers are acting in the
interest of the shareholders. Managers may even reduce the present value of the
annual profit stream by tapping a source of profit slowly, so that it provides a
steady flow of comfortable returns over the long haul. This can yield an annual
profit that is high enough to survive owner scrutiny but not so high as to raise
expectations for a repeat of the previous year’s record return. (This form of
shirking was said to be a common practice of managers in the former Soviet
Union.) In the 1970s the management of H. J. Heinz delayed declaring some
of its profit in one year so that profit in subsequent years would be artificially
higher, to allow bonuses to kick in. (If a bonus is paid in any year in which
profit increases by 5%, and profit is increasing at the rate of 4% a year, then by
declaring a 2% increase in one year and a 6% increase the next, the executives
qualify for a bonus in the second year.) It is not uncommon for managers to
delay an announcement that would have a positive effect on the share price—
for instance, the discovery of a new drug—until after they have been granted
stock options (Yermack, 1997).

We have seen that the threat of a hostile takeover imposes considerable
discipline on managers. That discipline is undermined when managers adopt
strategies to make takeovers costly. In some cases they can even block them.
There is evidence that their defensive strategies often work (Jarrell, Brickley,
and Netter, 1988). Because managers control the flow of information, they may
be able to persuade shareholders that the company attempting a takeover is not
offering enough for the shares and that they should continue with the present
management or wait for a better offer. Managers can use shareholder wealth—
that is, company cash—to buy back the shares acquired by a firm attempting a
takeover. This usually requires a payment in excess of the market value of the
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shares. In the 1980s the Disney management (prior to the arrival of Michael J.
Eisner) paid $31 million in excess of market value to buy back shares. This is
called greenmail. Managers have also used their time and shareholder wealth
to lobby state governments for antitakeover legislation. They have been enor-
mously successful. More than 50% of U.S. states have recently passed legislation
making hostile takeovers more costly.

The constitutions of many firms include provisions that are activated when
the firm is taken over without the endorsement of the board of directors. The
purpose of these poison pill clauses is to preempt a hostile takeover by substan-
tially reducing the value of the company to an outsider. Poison pills appeared for
the first time in 1982. By making hostile takeovers excessively costly, poison pills
entrench management at the expense of shareholders, as Malatesta and Walking
(1988) and Ryngaert (1988) have demonstrated. (Both papers are good introduc-
tions to the poison pill technique; in particular they have insightful examples.)
One poison pill strategy requires the new owner to make large payments to the
incumbent management of the company. By far the most common strategy is
dilution—a clause in the firm’s constitution that permits the board of directors
of the target firm to sell new shares to incumbent owners, at 50% of current mar-
ket price, when an offer is made for the company. With more outstanding shares,
the firm attempting the takeover finds that control of the target company would
be worth less because it gets a smaller fraction of profits. Some have argued that
this benefits the shareholders of the target firm because it gives its management
bargaining power: Management can threaten dilution unless the shareholders
are given a better deal by the takeover firm. If that were the case we would expect
to see a company’s shares rise in value after the adoption of a dilution clause,
but the share price usually falls on the stock market. Another significant poison
pill strategy gives the board the power to reject any offer that it considers not
in the company’s interest. If the board is in thrall to incumbent management it
may use that provision to block a takeover that would benefit the shareholders
but cause the incumbent management to be dismissed. (These examples are
taken from Dutta, 2000, p. 172.) Comment and Schwert (1995) report that 87%
of firms listed on the New York Stock Exchange have a poison pill statute of
some kind on the books. A recent court decision in the state of Delaware (where
many U.S. corporations are based) did away with dead hand pills that remained
in effect even after an entire board was dismissed (The Economist, June 1,
2002, p. 61).

Self-dealing
Even when the managers are doing everything to maximize profit, there is much
that they can do to increase the share of that profit going to the top executives
by decreasing the share going to owners. In 1985 Victor Posner of Miami held a
controlling interest in DWG, but he was not the sole shareholder. He extracted
$8 million in salary from DWG that year, even though the firm did not make a
profit (Shleifer and Vishny, 1997, p. 742). However, most of the U.S. examples of
wealth diversion from shareholders to CEOs are less direct, thanks in part to the
intervention of the courts.
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Management may buy an expensive fleet of corporate jets and use them
primarily to fly executives to a trendy resort, or buy an expensive apartment in
Manhattan for the use of the executives when in New York on business. Both
purchases can often be justified as sound business practice but sometimes they
are made to enhance the executives’ leisure consumption. It is not unheard
of for corporate jets to be used to fly executives to Superbowl games, baseball
spring training sessions, and the like (McMillan, 1992, p. 121). As head of RJR
Nabisco in the 1980s F. Ross Johnson bought ten corporate jets and hired thirty-
six pilots, and that was just the tip of the Johnson iceberg (Milgrom and Roberts,
1992, p. 493). In some firms the executives reward themselves with exquisite
amenities, such as an opulent executive dining room, that cost the company
millions of dollars a year. At least one CEO is known to have kept celebrities and
athletes on the payroll for retainers of a million dollars a year, apparently for
no other reason than to give the executives an opportunity to play golf with the
luminaries.

Armand Hammer, the founder and CEO of Occidental Petroleum, used $120
million of company funds to build a museum to house his personal art collection
despite being challenged in court by the shareholders (Milgrom and Roberts,
1992, p. 493). (The dispute was settled out of court.) The direct approach is for
a manager to persuade the firm’s board to grant an enormous pay raise, far
beyond what has been established by convention or is required for appropriate
incentives. There are a number of reasons why this strategy often succeeds. For
one thing, the board members are often CEOs of other companies, and if they
grant an extravagant raise to the manager under their aegis, the bar is raised and
thus so is the probability that their own salary will be matched. (The manner
in which CEO pay is determined is intensively studied in Bebchuk, Fried, and
Walker, 2002.)

Suppose a bank manager, who is also the bank’s largest shareholder, makes
a loan to a friend on terms guaranteed to result in a loss to the bank. If the
borrower makes a secret payment to the manager there can be a net gain for
both—at the expense of the other owners, of course. See Akerlof and Romer
(1994) for evidence of this kind of fraud. The manager of manufacturing firm M
can establish a company to supply M with key inputs. If these are priced above
the market level—that is, more than other suppliers charge—then the manager
will have successfully transferred some of the profit from M to the company
the manager owns (Vives, 2000, p. 4). Russian oil companies have been known
to sell their oil at absurdly low prices to companies owned by the managers
of the oil companies. Korean conglomerates (called chaebols) have sold entire
subsidiaries to relatives of the founder at low prices. Similar stories have surfaced
from Italy (Shleifer and Vishny, 1997, p. 742). For the most part, American courts
thwart this extreme form of self-dealing.

As Section 4.3 on the Enron story demonstrates, the top executives can
manipulate the price of their company’s stock to take advantage of stock options.
This is not a new practice. Early in the history of the Ford Motor Company, Henry
Ford announced that the company would soon cease paying dividends so that
it could provide enhanced benefits to the firm’s workers. This maneuver was
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successfully challenged in court by the shareholders. It appears that Ford had
no intention of carrying out his plan but was attempting to manipulate the price
of shares so that he could purchase Ford stock at a reduced price (Allen and Gale,
2000, p. 26).

Bad judgement
In 1921 Ford made 55% of the cars sold in the United States and General Motors
(GM) made 11%. GM’s business strategy had a number of fundamental flaws.
The divisions (Chevrolet, Pontiac, Buick, Oldsmobile, and Cadillac) made very
similar cars, so the divisions were competing with each other. The economy was
in recession, and car sales were sluggish. Nevertheless, each division continued
to overproduce, resulting in unprofitable inventory accumulation. The company
did not have a strategy for making division managers take into consideration
the cost that inventory accumulation imposed upon GM.

When Alfred P. Sloane took over the helm at GM the company was trans-
formed. Decision making was decentralized. The head of GM made policy—for
instance, each division was told to make a car targeted to a particular segment of
the market—and each division manager was required to maximize the division’s
profit subject to guidelines set by the head. In particular, the division’s inventory
was charged to the division as a cost. Henry Ford, who was still the chairman
of Ford and its largest stockholder in the 1920s, vigorously resisted the notion
of decentralization. Ford felt that absolute control should flow from the top
down. However, a large firm runs more efficiently if it takes advantage of the
reduction in agency costs when decentralization is used. (All large modern cor-
porations decentralize, at least to some extent.) By 1940 Ford’s market share had
fallen to16% and GM’s had risen to 45%. (The last two paragraphs are based on
Milgrom and Roberts, 1992, pp. 2–4.)

Between 1980 and 1990 GM spent $67.2 billion on research and development.
GM could have purchased Toyota plus Honda for that, but by 1990 equity in
GM was only $26.2 billion. The CEO was fired in 1992. General Tire (owned by
General Corporation) had substantial excess capacity in 1985 due primarily to
the introduction of radial tires, which last three to five times longer than bias-ply
tires. Nevertheless, the General Tire management expanded capacity.

Incentives can be too strong. Consider the case of Salomon Brothers, the
bond trading firm. In the 1980s they had a very comprehensive bonus system
involving employees from top to bottom. The firm calculated an employee’s
contribution to profit from almost every transaction, and bonuses were based
to a great extent on an employee’s annual contribution to profit. This induced
people to work very hard, but it did not yield the best outcome for the firm as
a whole. Department A might withhold key information from Department B if
disclosure would benefit B. On occasion, a department would “steal” another
department’s profit. In 1990 Salomon hired Myron Scholes, a Stanford professor
who would win the Nobel Prize in Economics seven years later, to reform the
incentive system. Scholes’s key innovation was to have the employee’s bonus
money used to buy company stock, with the proviso that it could not be sold for
five years. This gives the employee a sufficient interest in the profit of the firm
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as a whole, eliminating the incentive for dysfunctional behavior. (This story is
from Milgrom and Roberts, 1992, pp. 10–1.)

We explain in Section 5 why a firm’s owners may be assumed to be risk neutral:
They want the firm to maximize the expected value of profit. The managers,
however, are risk averse because a large fraction of their income comes from
the firm that they manage. If the managers’ pay is a function of their firms’
profit, they may avoid decisions that increase the expected value of profit when
that would result in a big increase in the variability of profit. This may be the
rationale behind golden parachutes, which give a manager who is dismissed
a huge severance payment. However, if the manager’s pay is not sufficiently
sensitive to profit then he or she may cause the firm to take excessive risk. In
the 1980s, managers in the oil industry spent billions of dollars exploring for
oil when proven reserves could have been purchased for less than a third of
the money. Alternatively, the money could have been passed on to shareholders
(Jensen, 1986; see also, McConnell and Muscarella, 1986).

Inertia—sins of omission
Managers who sacrifice shareholder value for personal gain are more likely to
take it easy than engage in empire building (Bertrand and Mullainathan, 2003).
Profit maximization is a journey into uncharted territory. Managers have to
put pressure on themselves to be creative in many dimensions. They have to
be on the lookout for new products, new production techniques, and so on.
Just because profit is high doesn’t mean it has been maximized. Sometimes,
an opportunity for increasing profit has already been demonstrated by another
firm, yet the manager doesn’t adopt it. For instance, banks in Australia and the
United Kingdom offer personal accounts that automatically move a customer’s
money into the highest yielding account—including paying down one’s mort-
gage. This service is available to business customers in the United States but
not to individuals (Nalebuff and Ayres, 2003). This personal service has been a
great success in countries that have tried it. One would think that an American
bank could attract customers away from rivals by introducing it. Why don’t they?
Surely a bank’s owners would favor such an innovation.

Providing appropriate incentives to the firm’s other workers is a key part of
the management team’s assignment. Managers can be considered to be shirking
if they do not put much effort into solving the problem of shirking by the firm’s
other employees. Here are two examples: The Safelite Glass Corporation, which
installs car windshields, began using piece rates in the mid-1990s. It now pays a
worker according to the number of windshields installed. The firm’s productivity
(output per worker) increased by 44% as a result, and profit also went up. This was
due in part to the incentive to work quickly, and in part to self-selection because
workers who knew themselves to be unwilling or unable to pick up the pace left
the firm for jobs that did not involve piece rates. The danger with piece rates is
that workers might skimp on quality to increase the rate of output. But Safelite
used a computer chip to tag a windshield so that the worker who installed it could
be identified. U.S. shoe manufacturers switched away from piece rates to an
hourly wage because of problems such as unreliable quality. (The Safelite story
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is based on Lazear, 2000, and the shoe manufacturing story is based on Freeman
and Kleiner, 1998.) Motivating workers is becoming increasingly important to
the modern firm because human capital is becoming more and more central to
the firm’s operations (Rajan and Zingales, 2000).

Less than half of the value of stock options granted to employees in the
United States are awarded to individuals in or near the top executive category.
This means that more than half of the stock options are granted to workers
who have little or no ability to affect the firm’s overall performance. Moreover,
this is an expensive form of compensation for the firm. Hall and Murphy (2000,
2002) estimate a firm’s cost of granting an option to one of its employees—
essentially, the revenue that would have been earned by selling the option on

In which category would you put the pro-
duction of defective tires by Firestone in
the mid-1990s? The defects resulted in
271 deaths and 800 injuries. The problem
has been traced to the hiring of replace-
ment workers at the company’s Decatur
plant during a labor dispute (Krueger
and Mas, 2004).

the market—and compare it to the value to
the employee receiving the option, which is
roughly half of the cost to the firm. Why is the
value to the employee so much lower? Because
the employee is undiversified and is prevented
by law and employer policy from hedging the
risk of holding so much in the stock of one com-
pany. Why are stock options granted to subex-
ecutive workers when they are so costly to the
firm and have no incentive effect? Hall and

Murphy (2003) argue that it is because managers and boards of directors are
too enamored of the fact that granting options does not require an immediate
cash outlay. (Other accounting considerations play a role as well.)

4.3 The Enron debacle
According to its own financial statements, Enron was the seventh-largest Amer-
ican corporation in December of 2000 when its shares were trading for $84.87.
By November 28, 2001, the share price was below $1 and the company filed for
bankruptcy a few days later.

Enron’s profit came primarily from arbitrage—buying energy where it
was priced low and selling it where it commanded a high price. The Enron

Arbitrage per se is socially valuable: A
commodity will command a high price
in a market where it is in short supply. It
is more abundant in a market where the
price is low. By buying in a low-price mar-
ket and selling in a high-price market the
arbitrageur moves some of the good from
the high-supply area to the low-supply
area.

management team explicitly adopted the arbi-
trage strategy, in preference to actually produc-
ing electricity, which requires a large stock of
expensive equipment.

Arbitrage can be very profitable, as it was
initially for Enron. Enron got a head start in
newly formed energy markets of the 1980s, as
countries around the world restructured their
former state monopoly energy industries—the
United States included, of course. However, as
other companies followed suit, learning from

their own experience and from Enron’s, the opportunities for Enron to buy cheap
and sell dear greatly diminished. Couple that with the emphasis that Wall Street
placed on revenue growth in the 1990s, and you have the seeds of the debacle.



228 Corporate Governance

Enron executives exploited the considerable discretion available to them
under GAAP (generally accepted accounting practices). For instance, they
reported gross revenue from future electricity deliveries as if it were net
revenue—that is, they did not deduct the cost of buying the electricity. They made
a large sale to at least one company while promising to reverse the transaction
at a future date but recorded the proceeds of the sale as revenue. They produced
an indecipherable balance sheet and took advantage of Wall Street’s preoccupa-
tion with revenue growth. In many cases, Enron covered losses from particular
ventures by borrowing hundreds of millions of dollars, adding the proceeds of
the loan to reported profit while keeping the loss off its books by attributing it to
a “partnership” (Malkiel, 2003, pp. 99–100). “The desire of Enron’s management
to maintain initial revenue and profit growth rates despite the growing sophis-
tication of its competitors created very strong incentives for its management to
engage in many of the dubious accounting practices and risky business ventures
that ultimately led to Enron’s bankruptcy” (Wolak, 2002).

Because Enron’s management strategy led to bankruptcy it was certainly not
in the owners’ long-run interest. How did it benefit the top executives? Enron’s
spurious claims of high revenue growth led initially to large increases in the price
of Enron shares. That made it enormously profitable for management to exercise
stock options, making the top executives fabulously wealthy. In principle, stock
options give management the incentive to maximize profit because increases in
profit lead to increases in the price of the shares on the stock exchange. Because
managers are rarely required to hold their shares for any length of time, they have
an inordinate interest in short-run profit maximization. They can “earn” tens
of millions of dollars in a few years, and when that is a possibility the interests
of the executives and the owners diverge. Not that every CEO will exploit the
opportunity to acquire vast wealth with reckless disregard for the value and long-
run viability of the firm. Presumably, most executives strive to carry out their
responsibilities faithfully, and the stock option carrot works in the shareholders’
interest if management feels itself ethically constrained to exploit stock options
in a way that also enhances the welfare of the firm’s owners. However, the stock
option carrot can attract unscrupulous individuals whose guiding principle in
life is to take as much as they can get away with.

Source
The subsection is based on Wolak (2002).

Link
Holmström and Kaplan (2003) demonstrate that in spite of the corporate board
and governance scandals that shook the public’s faith in the management of
American companies, the system has performed well overall, both in compari-
son with the periods before and after the scandals broke in 2001 and relative to
other countries.

4.4 Why shareholders allow managerial shirking
Why are managers able to take decisions that enhance their own financial posi-
tions at the expense of the owners? Why don’t the directors prevent it? In part
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because executives control the flow of information about their company and
can sometimes withhold information from the board if it reflects adversely on
management. Also, managers often award consulting contracts to directors and
the firms with which they are associated. CEOs often select the directors them-
selves, and these directors are often CEOs of other companies. Moreover, they
frequently serve on a large number of boards and are stretched thin. Directors
with a reputation for challenging CEOs will find their invitations to serve on
boards drying up (Bebchuk, Fried, and Walker, 2001).

A key point is that a shareholder who owns a small fraction of the company
has no incentive to incur the costs of monitoring a management team—the
potential benefit to the group of shareholders as a whole is enormous, but the
gain to a small individual shareholder will be small. This is an instance of the free
rider problem: If monitoring requires a high fixed cost and yields a relatively small
benefit to the individual, then no owner can gain by absorbing the monitoring
cost. But the net gain to the owners as a whole can be vast.

Example 4.3: No owner has an incentive to monitor the manager

Firm X has a large number of shareholders, each of whom owns 2500 shares. The
shares of firm X are currently trading for $40. Therefore, the value of each person’s
holding is 2500 × $40 = $100,000. Monitoring the manager would increase the
value of shares by 50%, but monitoring would cost $120,000. (A consulting firm
would have to be engaged to conduct in-depth research.) No single shareholder
is willing to pay $120,000 to increase his or her wealth by $50,000.

Clearly, if an individual had enough at stake the entire cost of monitoring
could be absorbed by that person and still leave a net gain.

Example 4.4: A firm with a large stakeholder

Firm Y has many shareholders, one of whom (individual J ) holds 12,500 shares.
Y ’s shares are currently trading for $40, and thus J ’s holdings are worth 12,500 ×
$40 = $500,000. If J incurred the $120,000 monitoring cost, and the value of each
share rose by 50% as a result, J’s wealth would increase by $250,000 − $120,000 =
$130,000.

Firm Y will be monitored by one of the owners, but firm X will not be. Is there
evidence for this? Bertrand and Mullainathan (2000) examined CEO contracts
before and after the introduction of legislation that made it more costly for an
outsider to mount a successful hostile takeover. (More than half of the states
in the United States have adopted such laws.) When hostile takeovers become
more costly, managers are subject to weaker discipline. Will the owners substi-
tute another form of discipline, or will the CEOs seize the opportunity to increase
their pay? Firms with at least one owner holding a fairly substantial fraction of the
shares responded to the change in the legal environment that diminishes the
market discipline on CEOs by increasing the incentive component of executive
contracts, but other firms tended not to do so. In fact, in firms without a large
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shareholder the salary part of the manager’s pay tends to increase when exter-
nal discipline weakens. (See also Shleifer and Vishny, 1986, and Bertrand and
Mullainathan, 2001.)

Performance bonuses have some effect on pay and hence on performance. In
the United States, however, the effect on performance is too narrowly focused on
the short run. From the standpoint of both consumer and shareholder welfare, it
is long-run profit that should be maximized. If the U.S. stock market is sensitive
to short-run profit maximization more than long run, then to the extent that
changes in the value of a company’s stock affect its managers’ performance,
it is short-run profit maximization that is encouraged. (We might expect to
see a reduction in research and development spending by newly acquired U.S.
firms. The evidence is mixed, according to Hall, 1988.) Why might the U.S. stock
market be too insensitive to the long run? More than 50% of the common stock is
held by pension funds, mutual funds, educational endowments, and charitable
foundations, and these institutions account for 80% of the trading (Bernstein,
1992). A mutual fund seldom holds more than 1% of the outstanding stock of
a company, and—to ensure diversification—it is illegal for a mutual fund or
pension fund to hold more than 10% of the stock of its sponsoring company.
The significance of this is demonstrated by Examples 4.3 and 4.4. Management
would be more intensely scrutinized if ownership were more concentrated.

In short, most of the stock in a large U.S. company is held by institutions who
hold only a tiny fraction of its shares and who trade them frequently. This means
that the majority of owners have only a very short-run interest in the company,
and the executives themselves stay with the company for only five years on
average. (In Japan it is typically a lifetime. Worker-managed firms are springing
up across the United States, and the worker-managers typically have a long-
term interest in their business. See Harrison, 1993.) Who, then, will put pressure
on management to consider the long view? In the United States only 21% of
research and development funding in the private sector is targeted for long-run
projects; this contrasts with 47% in Japan and 61% in Europe. (The profitability
of a randomly selected firm may not increase by anything close to 10% as a
result of an investigation of management practices. But firms that are suspected
of being poorly managed may well be capable of yielding 10% more profit.)

Sources
Because more than a hundred articles were used in preparing Section 4, the
citations have been inserted into the text at the relevant points.

Links
Kotowitz (1989) is a general but brief introduction to hidden action problems.
Radner (1992) examines the role of hierarchy in the managerial process. See
Easterbrook (1986); Jarrell, Brickley, and Netter (1988); Jensen (1988); Leland
(1992); Scherer (1988); and Shleifer and Vishny (1988) for more on takeovers.
Hall and Murphy (2003) provide a thorough examination of the role of stock
options in American executive compensation and employee compensation in
general. See Kanter (1989) for examples of other devices for motivating workers.
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Carmichael and McLeod (2000) is a superb treatment of one aspect of this issue.
Bebchuk, Fried, and Walker (2002) consider the extent to which managers are
governed by incentives and the extent to which they are able to get their own
way. They conclude that managers often set the terms of their own compensa-
tion, constrained only by the fear of provoking public outrage. Murphy (2002)
examines their argument carefully and finds it inadequate.

5 AGENCY THEORY

Consider fictional Hightech Corporation. The manager is the agent, and the
set of shareholders constitute the principal. Each owner holds a fraction of the
outstanding shares of Hightech, as well as ownership shares in other firms. That
is, each Hightech owner has a diversified portfolio. Thus, we assume that “the”
principal is risk neutral and simply wants the manager to maximize expected
profit.

Example 5.1: The benefits of diversification

A risk-averse individual owns one share each in 50 identical but separate firms.
In the case of any firm, if a manager’s strategy is passive the profit will be 105 with
probability 1/2 and 95 with probability 1/2. However, if the manager’s strategy is
aggressive a firm’s profit will be 180 with probability 1/2 and 60 with probability 1/2.
A passive strategy is less risky but it results in an expected value of 100, whereas
the expected value of the aggressive strategy is 120. On one hand, if the manager
of each firm is aggressive, then with very high probability close to half of the
firms will have profit of 180 and the rest will have 60. Therefore, with very high
probability the profit per firm will be close to 120. With very high probability
the owner will get a share in a total profit of 50 × 120 = 6000 if each manager is
aggressive. On the other hand, if each manager is passive, the total profit will be
very close to 50 × 100 = 5000. The owner is much better off when each manager
pursues the risky strategy, even though the owner is risk averse. Diversification
reduces the risk of the portfolio, even when the individual shares incorporate a
lot of risk. Therefore, the diversified owner is risk neutral from the standpoint of
the performance of the firms in which he or she owns a share.

In most cases, the manager’s consumption and utility depends crucially on
the pay received for managing the firm. Hence, the manager is typically risk-
averse. The manager’s effort has a strong influence on the firm’s profit but so do
random forces. If the manager’s pay went up by a dollar every time profit went
up by a dollar, and went down by a dollar every time profit fell by a dollar, then
the manager would have the strongest possible incentive to maximize expected
profit. We say that the manager has maximum incentive in that case. But when
the manager’s pay moves perfectly in step with the firm’s profit, that pay is most
strongly influenced by the random component of profit. Because the manager
is risk averse, that will lower his or her expected utility (EU) unless the manager
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is compensated in the form of higher expected pay. The higher expected pay can
lower the expected return to the firm’s owners.

With maximum incentive, the gross expected profit is highest, but the man-
ager’s share of that profit would have to be higher on average because of the man-
ager’s exposure to risk. The owner’s net expected profit—net of the manager’s
compensation—is not maximized under maximum incentives. Shareholders
face a trade-off between incentives and risk spreading. Compared to a contract
in which variations in profit have their full effect on the manager’s pay, the share-
holders do better when they reduce the manager’s exposure to risk by providing
an insurance element in the pay package. This weakens the manager’s incentive,
of course. The insurance market provides an extreme example. The consumer
who purchases health insurance can influence the size of claims submitted by
means of preventive medicine and by eschewing frills when illness does strike.
But the random forces that select one person as a victim of ill health rather than
another play a vastly more important role in determining individual medical
expenses. Therefore, insurance contracts give relatively little scope for incen-
tives and go a long way toward protecting the individual from random events.
(This is discussed in more detail in Section 9 of Chapter 3.) At the other extreme,
fast food chains commonly employ franchising: The manager of the local outlet
absorbs most of the risk to enable incentives to have a big impact.

When we model the principal-agent relationship, we assume that effort is
one dimensional. The agent can supply an additional unit of effort by reducing
leisure consumption by one unit. This is the only way that the manager can affect
the firm’s profit in our formal model. In the real world, managers’ activities can
deviate substantially from maximizing the owner’s return even when managers
put in long hours. For instance, a manager can devote considerable effort to
concealing data from the directors and shareholders, knowingly undermining
the principal’s welfare. Happily, we can draw a great deal of insight from a model
in which the manager has a simple one-dimensional trade-off between effort
and leisure.

5.1 A diagrammatic introduction
We model the principal-agent relationship by abstracting from everything but
the inability of shareholders to determine the amount of effort contributed by
the manager of their firm, even though effort is correlated with profit. Because
profit is also influenced by random forces, the correlation between managerial
effort and the firm’s profit is not perfect. The owner can only observe profit
and thus has to offer the manager a wage schedule that features a dependence
of the compensation package on profit alone and will endeavor to structure
compensation in a way that induces the manager to apply a high level of effort—
not the highest possible level of effort, but the level that maximizes the return
to the owners.

Although we speak in terms of a manager in relation to the firm’s owners, the
analysis applies just as well to any principal-agent relationship. The principal can
be a university designing a contract for its agent, a football coach. The manager
of a privately owned firm is the principal when he or she employs a salesperson.
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Figure 4.4

Should the salesperson be paid on commission, and if so at what rate? The
agent could be a professor hired by a university, the principal, and so on. In
any principal-agent relationship there will be a wide variety of opportunities for
shirking. In spite of the fact that shirking is multifaceted, it is modeled here as a
one-dimensional sacrifice of effort in return for increased leisure consumption.

We begin by supposing that profit has no random component. It is easy to
adapt the argument to cover uncertainty with risk-neutral individuals when we
have analyzed the deterministic case. The firm’s profit R is βe if the manager
supplies e units of effort. T is the time endowment, and x is the manager’s con-
sumption of leisure. Of course x = T − e.

DEFINITION: Profit in the agency model
When we use the term profit (R) in this section we mean revenue minus all
costs except the manager’s pay. The owner’s net return N is profit in the usual
sense—revenue minus all costs, including the manager’s pay.

Figure 4.4 shows the profit function R = βe as line L. The owner’s net
return N is the difference between R and the payment y to the manager. Profit
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maximization by the owner keeps the manager on the indifference curve u0,
representing the utility that would be realized by the manager in his or her best
alternative. (This is explained carefully in Section 5.2.) The diagram shows three
net return levels N1, N2, and N3 corresponding to three respective budget con-
straints for the manager, B1, B2, and B3. For any budget line B, the owner’s net
return N is the vertical distance between L and the point where B is tangent to the
indifference curve; this gives us R − y. If −p is the slope of the budget line then
the line can be expressed as px + y = C , or y = p(T − x) + F, or y = pe + F ,
where F is the constant C − pT .

It is clear that the owner’s net return is highest with budget line B2 parallel
to L. Here’s why: Assume for a moment that effort is observable and can be
mandated in a contract offered by the owner. Consider B1, which is tangent to
u0 at C1. In other words, the manager will choose basket C1 if his or her budget
line is B1. The owner’s net return is N1. Now, increase the manager’s input of
effort by changing the budget line, making it steeper, so that the manager has a
new consumption plan C ′ along u0 to the left of C1. B1 is flatter than L, which
means that beginning at C1, an increase in effort will increase income more
quickly along L than along u0. In other words, a reduction in x (caused by an
increase in effort) will cause R to increase faster than y. (R is on L, and y is on
the indifference curve u0.) This means that profit R increases faster than the
manager’s pay y. Therefore, the owner’s net return will increase. This argument
applies at any point on u0 to the right of C2, where the tangent to u0 is parallel to
L. Therefore, to the right of C2 the owner’s net return N = R − y increases with e
because the manager’s consumption plan moves along u0 from right to left but
R increases at a faster rate.

To the right of C2 on u0, the tangent to u0 (the manager’s budget line) gets
steeper as we move toward C2 by increasing the amount of effort required by
the agent. Increasing p for budget line y = pe = p(T − x) + F is equivalent to
increasing the manager’s reward per unit of effort supplied. This increase in
p is advantageous to the principal because it allows N = R − y to increase.
But if we move beyond C2 by making p larger than β, the owner’s profit
will fall. Why? Because u0 is steeper than L to the left of C2, and thus as we
move the manager along u0 to the left of C2 the manager’s consumption y will
increase faster than R. Even though R increases, because the manager supplies
more effort, y increases at a faster rate so the owner’s net return falls to the
left of C2.

The owner’s net return is highest with budget line B2 parallel to L. (Exercises
8–10 at the end of this section take you through an algebraic proof.) L is the
line R = βe = β(T − x). Lines B2 and L have the same slope, so B2 has slope
−β. Then we can write B2 as y = β(T − x) + F = βe + F = R + F where R is the
firm’s realized profit. R depends on the manager’s effort, and the manager knows
the functional relationship between R and e. Therefore, the contract y = R + F
offered by the owner will induce the manager to supply the amount of effort
that leaves N2 for the owner, even if the owner cannot observe and enforce e. The
contract y = R + F reads “the manager gets all the profit R after delivering the
fixed amount −F to the owner.”
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We can now drop the assumption that effort is observable, because the con-
tract y = R + F transfers all of the social gains or losses from a change in the man-
ager’s effort level directly to the manager, who is now the sole residual claimant
on the firm’s profit. In other words, y = R + F is optimal for the owners because,
under that contract, the cost of leisure consumption to the manager is equal to
the cost to the firm.

Note that F is negative (Figure 4.4). The manager pays a franchise fee of −F
to the owner and then keeps all profit net of the fee.

DEFINITION: Residual claimant
If two individuals share an amount of revenue that is a function of the input
of one or both of those individuals, and the share of one of them is fixed
independently of the amount of revenue generated, then the other individual
is the residual claimant, receiving whatever revenue is left over after the fixed
payment is made to the other person.

This argument applies to production with uncertainty as long as the manager
and the owner are risk neutral and the expected value of the random component

Recall the story of Chinese agricultural
reform of the 1980s (p. 7 in Chapter 1).
Before the reform, the farm had to
deliver all of its surplus to the state
and hence agricultural output was very
low. When the rule changed, allowing
the farm to keep the surplus after deliv-
ering a fixed amount to the central
government, output soared. Under the
new rule the agent—the farmer—is the
residual claimant and hence has maxi-
mum incentive to work efficiently. Con-
sequently, the central government col-
lects more output because it can require
a fairly high fixed quota to be supplied
by the farm. The same principle explains
contemporary amusement park pricing
in the United States: The rides are free, so
visitors to the park derive a high level of
consumer benefit. This allows the park
owner to collect a high entry fee at the
gate. The owner receives more revenue
by giving the rides away and collecting
a large fixed fee as the patron passes
through the park gate.

is zero. Suppose that R = βe + ξ , where ξ is
a random variable with expected value zero.
Then the expected value of R is βe, and we
apply the analysis to the expected value of R,
which the owner wants to maximize, net of the
payment to the manager. If the manager is risk
neutral then y enters the manager’s utility func-
tion linearly. That is, U(x, y) = B(x) + y. If y is
the expected value of the manager’s pay then
B(x) + y is the manager’s expected utility, and
the argument above goes through. In fact, this
holds even if E(ξ ) is not zero. We assume that
E(ξ ) = 0 to simplify the calculations.

We can apply this discussion to any of the
firm’s workers. The optimal contract requires
a wage W = R + F , where F is negative. But
would we really expect the worker to pay the
employer? This incentive scheme would actu-
ally provide more utility for the worker. Because
it induces efficiency there would be more out-
put per capita in the economy, and compe-
tition among employers for workers would
result in a higher u0 (utility from alternative
employment). But suppose there is a cash con-
straint preventing a payment by workers to
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Fruit pickers in orange groves are paid a
piece rate—a fee per box of oranges. This
motivates them to pick quickly. (If they
were on salary they would have an incen-
tive to dawdle.) They supply maximum
effort in the everyday sense of the word.
But the piece rate formula gives work-
ers an incentive to pick the ground fruit
first, although oranges on the ground
are high in bacteria. Also there is a ten-
dency to take the most accessible fruit
from the branches and leave the rest to
rot on the tree. Hence, there is shirking
in a more general sense, and it is han-
dled by direct monitoring of the workers
(McPhee, 1966, p. 55).

employers, or hidden information problems
standing in the way of a loan of F dollars from
the owner to the worker. We can achieve the
same outcome by means of progressive piece
rates. This is illustrated in Figure 4.5 with bud-
get line ACD. The worker receives a basic salary
of S. For (gross) profit levels less than RC the
worker is paid p dollars per unit of additional
effort supplied. (The slope of the AC segment of
the budget line is −p.) For profit above RC the
worker receives β dollars per unit of additional
effort supplied. The contract would actually be
written so that for output levels less than RC

the worker is paid p/β dollars per dollar of addi-
tional profit generated, and for output above RC

the worker receives the whole of each dollar of
additional profit generated. That way, the con-

tract does not mention the unobservable e. This progressive piece rate system
and the contract y = R + F induce identical decisions. But the progressive piece
rate system has a serious hidden action defect. Unless the quality of output can
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be easily verified—bushels of wheat, for example—the worker has an incentive
to work quickly, sacrificing quality, to reach the output level RC where the higher
piece rate is available. There is no danger of this with the contract y = R + F
because the agent bears the full brunt of any production decision that affects
profitability.

5.2 The basic agency model
We assume that the owner of the firm is risk neutral. The manager contributes a
level of effort e that is unobservable. Before making a payment to the manager
the firm’s profit is R(e, ξ ), a function of the effort e supplied by the manager and
of a random variable ξ . The firm offers the manager a compensation package
w that is a function w(R) of the realized profit. Although R will depend in part
on e, the effort level e is unobservable so the manager’s contract will depend
only on the actual, observable profit R. The manger can achieve a utility level u0

by working elsewhere so the compensation schedule must allow the manager
to achieve a level of expected utility at least as high as u0. This is called the
participation constraint.

DEFINITION: The participation constraint
Managers will not accept contracts if they do not allow them to reach the
highest expected utility level u0 that can be attained by working elsewhere.

The manager’s utility is U(x, y), where x is leisure consumption and y is
monetary compensation—think of it as income. We let EU denote the manager’s
expected utility. We let T represent the initial endowment of time, a constant.
Therefore, x = T − e. Note that y is a random variable, because it equals W(R),
and R depends on e and ξ . (Assume for convenience that the manager does not
have an endowment of Y.) The manager will maximize EU—that is, the expected
value of

U(x, y) = U(T − e, w[R(e, ξ )]),

subject to EU being at least u0. The maximization exercise induces a dependence
of effort on the compensation schedule, and the owner can use that relationship
in designing a contract.

Suppose that U(x, y) = B(x) + y and the compensation schedule is a mem-
ber of the linear family θ R + F , where θ and F are constants. (Think of θ as
the commission rate paid to a salesperson, the share of taxi revenues going
to the driver, or the royalty rate paid to a textbook author. In each case, the
individual in question appears in our model as the manager.) The manager is
risk neutral in this case, because x does not depend on the random variable
ξ , so the manger’s EU is B(x) + E(y), where E is the expectation operator. Let
E(y) = E(θ R + F ) = θ E(R) + F . Now, maximize

EU = B(T − e) + θ E [R(e, ξ )] + F.
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This is a function of e, which the manager controls, given the owner’s choice of
θ and F . (The random variable ξ disappears when we take the expected value.)

DEFINITION: The agency model
Variables x, e, and y denote, respectively, the manager’s leisure consumption,
effort, and income. R = βe + ξ , where R is the firm’s profit before deducting
the manager’s pay, β is a given positive constant, and ξ is a random vari-
able. The time endowment is T, and thus e = T − x. If the manager’s utility
function U(x, y) is quasi linear, with U = B(x) + y, then the manager is risk
neutral. The manager’s best alternative employment yields an expected util-
ity of u0. The manager will be offered a contract that determines his or her
pay as a function w(R) of profit. If w(R) = θ R + F then it is a member of the
linear family of contracts.

Given θ , let eθ be the value of e that maximizes EU. (The constant F does not
influence the maximizing value of EU. But it does play a role via the participation
constraint.) Then eθ is the amount of effort supplied by the manager when facing
the compensation schedule θ R + F . If θ were increased then the manager’s
opportunity cost of leisure consumption increases because the manager now
gets a larger fraction of an additional dollar of profit generated by increased
effort. We would expect effort supply to increase.

Example 5.2: The effort supply function

Let U(x, y) = αx − 1/2x2 + y and R(e, ξ ) = βe + ξ . Assume also that E(ξ ) = 0.
Then E [R(e, ξ )] = βe. If y = θ R + F then E(y) = θ E [R(e, ξ )] + F and we have
E(y) = θβe + F , and thus

EU = αx − 1
2

x2 + θβe + F = α(T − e) − 1
2

(T − e)2 + θβe + F

because x = T − e. And α(T − e) − 1/2(T − e)2 = αT − αe − 1/2T 2 + Te − 1/2e2,
so we have

EU = (θβ − α + T)e − 1
2

e2 +
[
αT − 1

2
T 2 + F

]
.

The terms inside the square brackets are constant—that is, independent of the
manager’s choice of e. We maximize EU by employing calculus or the formula
for maximizing a quadratic. We get the effort supply function

e(θ) = θβ − α + T.

This does increase when θ , the manager’s share of a marginal dollar of profit,
increases.

Note that when the manager is offered the contract y = θ R + F , the param-
eters θ and F are constants from the manager’s perspective. From the owner’s
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standpoint, θ and F are variables, chosen by the owner to maximize the owner’s
net return subject to incentive compatibility (given the contract, the manager
will choose e to maximize EU) and the participation constraint (EU ≥ u0).
Because the maximization of the owner’s net return requires EU = u0, this
induces a functional dependence of F on θ because F is a part of y, which is
a part of EU.

Now, let’s relax the assumption that the manager’s contract belongs to the
linear family y = θ R + F . It can be any function of R. What is the owner’s
objective? The owner is risk neutral and supplies no effort, so the owner sim-
ply wants to maximize the expected value of R net of the payment to the
manager. In other words, the owner seeks to maximize the expected value of
N = R(e, ξ ) − w[R(e, ξ )]. We have seen that e depends on the compensation
schedule w, so we let e∗(w) denote the manager’s effort supply when the man-
ager is offered the contract w. Therefore, the owner chooses w to maximize the
expected value of

R[e∗(w), ξ ] − w(R[e∗(w), ξ ])

subject to EU ≥ u0. How do we solve for e? Effort depends on the compensation
schedule via the manager’s optimization problem, but the owner’s optimization
problem causes the compensation schedule to depend on the manager’s effort
supply function. We’ll start with an easy case, that of a risk-neutral manager.

5.3 Risk-neutral managers
The owner of the firm is risk neutral, and in this subsection we suppose that the
manager is risk neutral as well. Then U(x, y) = B(x) + y for some function B. We
start by observing that E (R) is a function of e. The random variable influences the
value of the expected value E(R), and E(R) itself depends on e. The participation
constraint is E [B(x) + y] ≥ u0. Note that E [B(x) + y] = B(x) + E(y).

Profit maximization implies that the owner will choose a compensation
schedule that equates the manager’s EU with u0. Why? We know that EU ≥
u0 must hold. If the manager’s EU actually exceeded u0 the owner could reduce
the compensation offered for each realization of the random variable without
violating the participation constraint EU ≥ u0. This would increase the owner’s
return. Therefore, at equilibrium we must have EU = u0.

We assume temporarily that the owner can observe and mandate e. This
allows us to find e∗, the level of effort that maximizes the owner’s net return sub-
ject to the participation constraint (but without imposing the incentive com-
patibility constraint, which recognizes that the agent must have an incentive
to set e = e∗). Then we will discover that there is a contract that induces the
manager to choose e∗ even though e is not observable and the manager knows
it. Because profit maximization implies EU = u0, we have B(x) + E (y) = u0,
and thus −E (y) = B(x) − u0. The owner then will maximize E(N) subject to
−E(y) = B(x) − u0. Now, E(N) = E(R) − E(y) = E(R) + B(x) − u0. Because x =
T − e, this can be considered a function of e. The owner wants to maximize

f (e) = E (R) + B(T − e) − u0.
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If the manager receives the contract y = R + F , where F is a constant, then the
manager will maximize EU = E [B(x) + y] = B(x) + E(y) = B(x) + E (R + F ) =
B(x) + E(R) + E(F ) = B(x) + E(R) + F . That is, the manager will maximize

g(e) = B(x) + E(R) + F.

Again, x = T − e, so g really is a function of e.
Compare f and g. They differ by a constant: g(e) = f (e) + F + u0. Therefore,

e∗ maximizes f if and only if e∗ maximizes g. This means that the contract
y = R + F induces the manager to select the effort level that the owner would
insist on if the owner could observe and enforce e. With effort supply determined,
F is the solution to B(T − e∗) + E [R(e∗, ξ )] + F = u0.

The effort supply e∗ that maximizes both f and g satisfies the participation
constraint because it is built into g. Therefore, the manager would accept the
contract y = R + F . Having done so, the manager maximizes her expected util-
ity by setting e = e∗. Even though e∗ is the level of effort that would be mandated
if the owner had full information, it is chosen by the manager even when effort is
not observable. Let M = −F . Then M = E [R(e∗, ξ )] − u0 + B(T − e∗). The com-
pensation schedule would give the manager the actual realized profit minus the
constant M. To verify that it would be in the manager’s interest to supply e∗ if
she accepted the contract let’s compute the manager’s EU for the compensation
schedule w(R) − M:

EU = B(T − e) + E [R(e, ξ )] − M.

Although the actual return R varies with ξ , M is a number—an expected value—
so any value of e that maximizes the manager’s EU also maximizes the owner’s
profit f (e). Because e∗ was defined as the value of e that maximizes B(T − e) +
E [R(e, ξ )] it is in the manager’s interest to set e = e∗. If the manger accepts the
contract she will choose the effort level e∗. But will she accept? By definition of
M we have

B(T − e∗) + E [R(e∗, ξ )] − M = u0,

so the compensation contract w(R) = R − M does allow the manger to achieve
the EU level u0. Note that the profit-maximizing pay schedule is y = θ R + F for
F = −M and θ = 1. In practice, the compensation contract would offer slightly
more utility than u0 to ensure that the manager will accept the contract in pref-
erence to the best alternative, which yields a utility level of u0.

Optimal contract for risk-neutral managers

The manager pays a lump sum to the owner and keeps all remaining profit. In
other words, the manager becomes the residual claimant. But the payment
to the owner is set so that the manager’s participation constraint is satisfied
as an equality.



5. Agency Theory 241

Here is a simple example that allows us to explicitly solve for the manager’s
choice of e as a function of w and then to solve for the profit-maximizing pay
schedule w.

Example 5.3: Deriving the optimal contract

The manager’s utility function is U(x, y) = 20x − 1/2 x2 + y. That is, B(x) = 20x −
1/2 x2. Set T = 24. (The manager is endowed with 24 units of X and 0 units of Y.)
We assume that the manager’s best alternative is to consume 24 units of X ,
so u0 = 20(24) − 1/2(24)2 = 192. The production function is R = 10e + ξ , with
E(ξ ) = 0. Then E(R) = 10e. Assume for a moment that the owner can observe
and mandate the effort level e. What e would he select? We know that the contract
that maximizes the expected value of the owner’s net return satisfies EU = u0. In
this case we have EU = B(x) + E (y) = 192. Then E(N) = E(R) − E(y) = E (R) +
B(x) − 192. Therefore, the owner maximizes

f (e) = 10e + B(x) − 192 = 10e + 20(24 − e) − 1
2

(24 − e)2 − 192

= 14e − 1
2

e2.

Note that f is a quadratic, and when we apply the formula for maximizing a
quadratic we get e∗ = 14. (Here is the calculus derivation: f ′(e) = 14 − e, and
f ′′(e) < 0. Therefore, we set f ′(e) = 0 to maximize the owner’s expected profit.
This yields e∗ = 14.)

Return to the case of unobservable effort. We show that the contract y =
R + F induces the manager to set e = 14: If y = R + F then the manager’s EU is

EU = B(x) + E (y)

= B(x) + 10e + F

= 20(24 − e) − 1
2

(24 − e)2 + 10e + F

= 14e − 1
2

e2 + 192 + F.

This function is maximized at e∗ = 14. (We could have employed a shortcut.
In Example 5.2 we derived the effort supply function. It is e = 4 + 10 θ when
α = 20, T = 24, and β = 10. Therefore, when θ = 1 the manager will supply the
effort e∗ = 14 that maximizes the owner’s profit, even though the owner cannot
observe or enforce e.)

Now, compute F under the profit-maximizing contract: E (w) = 10e + F =
140 + F and x = 24 − 14 = 10. Therefore, the manager’s EU is

20(10) − 1
2

(10)2 + 140 + F = 192.

Then F = −98. The manager pays the owner a license fee of $98 and then keeps
the remaining profit.

The manager’s contract is y = R − 98. We have E(R) = 10e, so the contract is
equivalent to ȳ = 10e − 98, where ȳ is the expected value of y. (The manager can
observe her own effort supply of course.) If ȳ = 10e − 98 then ȳ = 10(24 − x)−
98. Therefore, ȳ = 240 − 10x − 98, and thus the contract that maximizes the
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owner’s net return allows the manager to choose a commodity bundle from the
budget line 10x + ȳ = 142. Now, show that an individual with utility function
U(x, ȳ) = 20x − 1/2 x2 + ȳ and budget constraint 10x + ȳ = 142 will choose the
bundle (x, ȳ) = (10, 42).

Note that for Example 5.3 we have proved that the contract y = R − 98 yields
a higher expected profit to the owner than any other contract. This is much
stronger than merely proving that y = R − 98 is profit maximizing within the
family of linear contracts. Nevertheless, you might benefit from solving directly
for the profit-maximizing values of θ and F within the linear family.

Example 5.4: Using the effort supply function to derive
the optimal contract

Assume the setup of Example 5.3. The effort supply function is e = 4 + 10 θ when
y = θ R + F . (Recall Example 5.2.) Profit maximization and the participation
constraint imply B(x) + E(y) = u0 = 192. Therefore,

E(y) = 192 − B(x) = 192 − 20x + 1
2

x2

= 192 − 20(24 − e) + 1
2

(24 − e)2

= 192 − 20(24 − 4 − 10 θ) + 1
2

(24 − 4 − 10 θ)2

because e = 4 + 10 θ . Therefore,

E(y) = 192 − 20(20 − 10 θ) + 1
2

(20 − 10 θ)2 = −8 + 50 θ2.

Now, the owner wants to maximize E(R) − E(y). Using the last equation and the
fact that E(R) = 10e,

E(R) − E(y) = 10e + 8 − 50 θ2

= 10(4 + 10 θ) + 8 − 50 θ2

= 48 + 100 θ − 50 θ2.

This is a function of one variable, θ . Using the formula for maximizing a
quadratic, we get a maximum at θ = 100/100 = 1. (The first derivative of
E(R) − E(y) is 100 − 100 θ , and the second derivative is negative. Therefore, we
achieve a maximum by setting 100 − 100 θ = 0.) We see that θ = 1 maximizes
the owner’s expected profit. We solve for F = −98 as in Example 5.3.

The manager bears all the risk; the owners receive a constant return of
M(= −F ). This is equivalent to an arrangement in which the owners sell the
firm to the manager for a price of M dollars. The incentive scheme that induces
the optimal effort is equivalent to having the owner manage the firm herself.
Is this plausible? Risk neutrality itself is plausible only if the manager’s income



5. Agency Theory 243

from the firm is a small component of her portfolio (or income sources). In other
words, the manager is diversified and M represents a small fraction of her assets.

In the Middle Ages, when a monarch
wanted to collect taxes from subjects in
remote regions, he or she would some-
times give the job to a senior church
official, who would pay the monarch a
fee for the privilege and then keep the
taxes that the official collected. This is
clearly an early example of franchising
(Thompson, 1971).

This is implausible in the case of a typical firm
and a typical manager. It is usually the other
way around. The value of a typical firm is many
times greater than an executive’s wealth.

Franchises, however, are relatively small.
The franchise situation, in which the manager
pays a fee M to the parent and keeps the residual
profit, comes close to the outcome outlined in
this section. Moreover, it is more important for
the manager to be the residual claimant in the
case of a chain of franchises because the pro-

duction units—the local franchises—are widely scattered and hence difficult for
the head office to monitor. In the United States, 10% of consumer all retail spend-
ing is received by franchises, which employ more than 6% of the workforce.

With risk-neutral management, the equilibrium resulting from maximiza-
tion of the manager’s utility and of the owner’s profit will be efficient.

The optimal contract y = R + F is efficient if the manager is risk neutral.

We have three ways of demonstrating this:

� We show that the equilibrium e∗ maximizes the sum of the expected util-
ities. (There may be other efficient outcomes, but anything that maxi-
mizes the sum of utilities will belong to the set of efficient outcomes.)
The owner’s EU is just the expected value of y1, the net return to the
owner. The manager’s EU is B(x2) + E(y2), where y2 is the payment from
the owner to the manager, and E(y2) is its expected value. Therefore, we can
find an efficient outcome by maximizing E(y1) + B(x2) + E(y2) = B(T − e) +
E(y2 + y1). Now, y1 + y2 is R(e, ξ ), the gross return to effort. We get an effi-
cient level of e when we maximize B(T − e) + E(R). But this differs from f
and g only by a constant, so all three functions are maximized by the same
e∗. Hence, e∗ is efficient.

� The optimal contract is efficient because the social cost of leisure consump-
tion equals the private cost of leisure consumption when θ = 1. The social
cost of leisure consumption is always the change in E (R) when the man-
ager reduces e by one unit. Of course, when θ = 1 this is also the cost to the
manager of increasing her leisure consumption by one unit.

� The optimal contract is obtained by maximizing the owner’s utility subject
to the manager’s utility not falling below a specified level. In any context, any
solution s∗ to the problem “maximize U1 subject to Uh ≥ u0

h for all h �= 1” is
efficient. (Note that u0

h is a constant for each h.) If s∗ were not efficient there
would either be an alternative s such that U1(s) > U1(s∗) and Uh(s) ≥ Uh(s∗)
for all h �= 1, contradicting the fact that s∗ solves the constrained maximiza-
tion problem, or else an alternative s such that U1(s) ≥ U1(s∗), Uh(s) ≥ Uh(s∗)
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for all h �= 1, Uj (s) > Uj (s∗) for some j �= 1. In the latter case, we could trans-
fer a positive but sufficiently small amount of money from j to 1, resulting
in an alternative s ′ such that U1(s ′) > U1(s) ≥ U1(s∗) and Uh(s ′) ≥ Uh(s∗) for
all h �= 1, contradicting the fact that s∗ solves the constrained maximization
problem. Therefore, s∗ is efficient.

Finally, we can drop the assumption that effort is one dimensional. Because
the optimal contract makes the manager the residual claimant, the manager

Suppose that effort has two dimensions,
quality and quantity. If the agent is not
the residual claimant, giving a strong
quantity incentive can result in severe
shirking on quality. Consider this report
from a worker in a Baltic firm producing
television sets. It describes conditions—
prior to the collapse of communism—
toward the end of the month as the
employees strive to earn bonuses: “We
never use a screwdriver in the last week.
We hammer the screws in. We slam
solder on the connections, cannibalize
parts from other televisions if we run out
of the right ones, use glue or hammers
to fix switches that were never meant for
that model. All the time the management
is pressing us to work faster, to make the
target so we all get our bonuses” (Cook,
1990, quoted in Milgrom and Roberts,
1992, p. 14).

has an incentive to adopt any measure, and to
modify any part of her decision strategy, that
will increase profit.

To highlight the significance of making the
agent the residual claimant we have oversim-
plified the relationship between the franchise
and the parent corporation. In fact, the parent
supplies important inputs, primarily national
advertising and the enforcement of standards.
It’s obvious why the franchisee benefits from an
advertising campaign. The franchisee also ben-
efits when the parent enforces standards across
the board because the customer then comes to
expect a uniform product at each of the fran-
chise outlets. In other words, risk-averse con-
sumers benefit from the reduced uncertainty
that results from the parent enforcing stan-
dards, and this makes each franchise’s output
more valuable to consumers. In return for sup-
plying these inputs the parent receives a roy-
alty of 2% or 3% of the franchisee’s revenue, in
addition to the fixed franchise fee. The royalty

payment gives the parent a direct financial stake in the franchise and hence an
incentive to supply advertising and standards enforcement optimally—or close
to optimally.

5.4 Risk-averse managers and binary effort supply
We now turn to the case of a risk-averse manager of a large corporation. If you
are unfamiliar with the elements of decision making under uncertainty you will
need to read Section 6 of Chapter 2 before continuing.

To give us a point of comparison, suppose (temporarily) that e can be
observed by the owner and verified by a court. This means that a contract can
specify the effort level contributed by the manager. The owner can insist on a par-
ticular effort level e∗. Let w(e∗, ξ ) represent the compensation package offered
to the manager. If this is not a constant, independent of ξ , let C = E [w(e∗, ξ )],
which is a constant. If the risk-averse manager had a choice between w(e∗, ξ )
and a constant salary that paid C whether profit was high or low then she would
choose C because it has a higher expected utility. That follows from risk aversion
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Table 4.1

e = 1 e = 0

State 1 State 2 State 1 State 2

R 70 46 29 22
Probability 1/2

1/2
1/2

1/2

and fact that the constant salary C has the same expected monetary value as w
but C offers complete certainty. Therefore, for δ > 0 sufficiently small, a con-
stant wage of C − δ would yield a higher expected utility than w(e∗, ξ ), and
it would satisfy the participation constraint for δ sufficiently small, because
U(T − e∗, C) is higher than the expected utility yielded by the contract w(e∗, ξ )
which itself satisfies the participation constraint. The return to the owner from
w(e∗, ξ ) is E [R(e∗, ξ )] − E [w(e∗, ξ )] = E [R(e∗, ξ )] − C , and the return from C − δ

is E [R(e∗, ξ )] − C + δ. The constant salary C − δ would give the owner a higher
expected profit than a variable schedule that gave the manager C in expectation.
Therefore, the manager’s compensation would be constant if monitoring were
costless.

With observable and verifiable effort, incentives play no role because the
profit-maximizing effort level can be mandated by the owner. Therefore, the
manager receives a fixed payment (the constant salary), independent of random
forces, and hence is fully insured. At the other extreme, with unobservable effort
and risk-neutral management, the owner’s return is fixed and the manager bears
the full brunt of the vicissitudes of nature. This gives the manager the optimal
incentive, from the standpoint of both society and the owner. We expect that if
the manager were just a tiny bit risk averse then there would be a small constant
element to the compensation, with the manager bearing almost all of the brunt
of uncertainty.

We begin with a binary version of the model: The time endowment is T = 1,
and the manager can either work (e = 1) or shirk (e = 0). We present an example
in which the manager is risk averse and the contract that maximizes the owner’s
return does not make the manager the residual claimant. In fact, the optimal
contract will pay the manager a fixed salary, to which the manager’s best response
is to set e = 0. After proving this we will go on to a richer model in which the
optimal contract offers that manager a share θ of the profits strictly between 0
and 1.

Example 5.5: Binary choice of effort level

A risk-averse manager has the utility function U = 4x + √
y, where x is leisure

consumption and y is the manager’s pay. The time endowment (i.e., the leisure
consumption when effort is 0) is 1. Effort, e, supplied by the manager is either 0
or 1. The manager’s reservation utility u0 is 6. Recall that R denotes profit before
deducting the manager’s pay or the return to the owner. Table 4.1 specifies the
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return to the manager’s effort. (If e = 1 then R = 70 with probability 1/2 and
R = 46 with probability 1/2. If e = 0 then R = 29 with probability 1/2 and R = 22
with probability 1/2.)

To confirm that the manager is risk averse consider an asset that pays $64
with probability 1/2 and $36 with probability 1/2. The expected monetary value
is $50. Given x, the EU from $50 for sure is 4x + 7.07 and the EU from the asset
is 4x + 1/2

√
64 + 1/2

√
36 = 4x + 7.0, which is less than the EU of $50 for sure,

as required by risk aversion. (The derivative of utility with respect to wealth is
1/2 y−0.5, given x, and thus the second derivative is −1/4 y−1.5 which is negative.)

Which linear contract y = θ R + F maximizes the owner’s net return subject
to the participation and incentive compatibility constraints? If e = 0 then incen-
tives play no role, in which case E(N) is maximized by a constant salary, with
θ = 0. The participation constraint then requires EU = 4 + √

F = 6. Therefore,
F = 4. When e = 0 we have E(R) = 1/2 × 29 + 1/2 × 22 = 25.5. Therefore, if e = 0
the owner’s maximum net return is 25.5 − 4 = 21.5. Of course, θ = 0 implies
e = 0. Therefore, it remains to determine if there is a contract with θ > 0 that
yields an expected net return to the owner that is greater than 21.5. That can be
the case only if it induces the manager to set e = 1.

If e = 1 and EU = 6 then we have

EU = 0 + 1/2
√

70 θ + F + 1/2
√

46 θ + F = 6.

Then
√

70 θ + F = 12 − √
46 θ + F . Squaring both sides yields 70 θ + F = 144 −

24
√

46 θ + F + 46 θ + F , and hence
√

46 θ + F = 6 − θ . Thus we have 46 θ + F =
36 − 12θ + θ2. Finally,

F = θ2 − 58 θ + 36.

Now that we have solved for F as a function of θ we can express E(N) as a function
of θ :

E(N) = 1/2 × 70 + 1/2 × 46 − 1/2 × [70 θ + F ] − 1/2 × [46 θ + F ]

= 58 − 58 θ − θ2 + 58 θ − 36 = 22 − θ2.

Because e = 1 and the participation constraint imply E (N) = 22 − θ2, we see
that E (N) increases as θ decreases. However, when θ = 0 the manager will set
e = 0. And when θ2 > 1/2 we have E(N) = 22 − θ2 < 21.5, which is the owner’s
maximum expected return when e = 0. Therefore, we just need to determine
whether we can find θ2 ≤ 1/2 such that the manager’s EU is higher with e = 1
than with e = 0. To this end we calculate EU with e = 0 and θ2 = 1/2. This will
exceed 6, which is EU with e = 1 and F = θ2 − 58 θ + 36. When θ2 = 1/2 we have
θ = 0.707. When θ = 0.707 and F = θ2 − 58θ + 36 we have F = 0.5 − 41.012 +
36 = −4.512. Therefore,

EU = 4 + 0.5
√

29 × 0.707 − 4.512 + 0.5
√

22 × 0.707 − 4.512 = 7.66.

Therefore, if y = θ R + F , and F is set at the value for which EU = 6 when e = 1,
the manager will actually choose e = 0 if θ2 = 1/2. If θ2 > 1/2 then the owner’s net
return will be higher with θ = 0 and e = 0.
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What about θ2 < 1/2? Recall that F = θ2 − 58 θ + 36 when e = 1 and EU =
6. If e = 0 then when R = 29 we have y = 29 θ + θ2 − 58 θ + 36 = θ2 − 29 θ +
36. If e = 0 and R = 22 we have y = 22 θ + θ2 − 58 θ + 36 = θ2 − 36 θ + 36. The
quadratic θ2 − 29 θ + 36 is minimized when θ = 29/2 = 14.5 and the quadratic
θ2 − 36 θ + 36 is minimized when θ = 36/2 = 18. The graph of each quadratic
is a valley, so with the constraint θ2 ≤ 1/2 we reach the constrained minimum in
each case whenθ2 = 1/2. Therefore, ifθ2 < 1/2 the manager’s EU from e = 0 cannot
be any lower than it is when θ2 = 1/2, and we already know that for θ2 = 1/2 the
manager’s EU is higher with e = 0 than with e = 1 (which results in EU = 6).

We have shown that if the participation constraint is satisfied as a strict
equality then the owner’s net return is maximized by the contract y = 4, a con-
stant. Is it possible to have the participation constraint satisfied as an inequality,
with the manager choosing e = 1 and E(N) > 21.5? Given θ , when we increase
the manager’s EU by (algebraically) increasing F we increase the EU that results
from e = 0 faster than we increase the EU that results from e = 1. That is a con-
sequence of the fact that the

√
C increases faster as C is smaller. (You really

need calculus to establish that, but try some examples if you’re not convinced.)
Therefore, the manager’s EU will still be higher with e = 0. If we hold F constant
and reduce θ then that increases the manager’s incentive to set e = 0 because
her pay becomes less sensitive to profit.

The manager will be offered the contract y = 4 for the firm of Example 5.5
and that means that the contract will not be efficient. The optimal contract will
give the manager an EU of 6. If the manager could be relied on to set e = 1 and
were paid a fixed salary of $36, then the manager’s EU would still be 6, but the
return to the owner would be 1/2 × 70 + 1/2 × 46 − 36 = 22, which is higher than
21.5, the owner’s net return from the optimal contract.

Our search for the optimal contract in Example 5.5 was confined to the linear
family y = θ R + F . But there is a nonlinear contract that will give the owner an
even higher return than 21.5 and will also induce the manager to supply the
efficient level of effort. (The manager’s utility will remain at the reservation level
u0 = 6. If we increase E(N) we will have made the owner better off without
lowering the manager’s utility.)

Example 5.6: A nonlinear contract for Example 5.5

Consider the contract

y = 36 if R = 70 or 46,

y = 8 if R = 29,

and

y = 1 if R = 22.

If e = 1 then the manager gets 36 for sure, in which case her utility will be 0 +√
36 = 6. The participation constraint is satisfied. But will the manager set e = 1?



248 Corporate Governance

If e = 0 then we will have R = 29 with probability 1/2 and R = 22 with probability
1/2. In that case the manager’s EU will be 4 + 1/2

√
8 + 1/2

√
1 = 5.914. Therefore,

the manager’s EU is higher when e = 1. Then E(R) = 1/2 × 70 + 1/2 × 46 = 58.
Therefore, this nonlinear contract yields E(N) = 58 − 36 = 22, which is higher
than 21.5, the return to the owner from the best linear contract.

Note that the optimal nonlinear contract requires the owner to know the
distribution of R. This is an extreme assumption, and for the rest of this section
we restrict our attention to contracts of the form y = θ R + F .

There is a trade-off between incentives and insurance. As the degree of risk
aversion increases, the amount of insurance afforded to the manager by the
optimal contract also increases. Let’s return to production function of Example
5.5 to investigate this. We assume that the firm is managed by someone who is
less risk averse than the CEO of Example 5.5. The new manager will be given a
contract for which θ = 1 and the resulting effort supply is one.

Example 5.7: A less risk-averse manager

The manager’s utility function is U = 21x + √
y + y and u0 = 33.2, but the prob-

lem is otherwise the same as in Example 5.5: If e = 1 then R = 70 with probability
1/2 and R = 46 with probability 1/2. If e = 0 then R = 29 with probability 1/2 and
R = 22 with probability 1/2. (To confirm that this manager is risk averse, con-
sider an asset that pays $64 with probability 1/2 and $36 with probability 1/2. The
expected monetary value is $50. Given x, the EU from the asset is 21x + 57, but
the EU from $50 for sure is 21x + 57.07.)

Suppose that the manager is offered the contract y = R − 30. The manager
cannot set e = 0 because that will not result in enough profit for the $30 payment
to the owner. She will set e = 1 and her EU will be

0 + 1/2
√

70 − 30 + 1/2(70 − 30) + 1/2
√

46 − 30 + 1/2(46 − 30) = 33.2.

In that case, E(N) = 30.
If y = S, a constant, then the manager will set e = 0. If S = 9 then EU =

21 + √
9 + 9 = 33. Thus, S is not quite high enough to satisfy the participation

constraint. Therefore, S will have to be greater than 9, which means that E(N)
will be less than 25.5 − 9 = 16.5. Therefore, θ = 1 results in a higher return to
the owner than θ = 0. The optimal contract will induce the manager to set e = 1.
(Given e = 0, the owner will maximize E(N) by offering a constant salary. We
have seen that a constant salary cannot provide a higher return to the owners
than 16.5.)

Even though the optimal contract has the manager choosing e = 1 in Exam-
ple 5.7, it is not efficient. Under the optimal contract the manager’s expected
pay is E(R) − 30 = 28 and the owner’s expected return is 30. If the manager had
a constant salary of 28 and were to set e = 1 then E (N) would still be 30 but EU
would be

√
28 + 28 = 33.3, which exceeds her utility under the optimal contract.
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5.5 Risk-averse managers and a continuum of effort levels
We continue to assume that only linear contracts are practicable, but we now
allow e to vary along a continuum.

We simplify the expression of the manager’s expected utility, to make the
model more amenable to the realistic case of costly monitoring of a risk-averse
manager. If w is a compensation package let E(w) denote its expected monetary
value (EMV). This expected value depends on the effort supplied by the manager,
because effort influences profit R, which has a bearing on the manager’s pay.
Now, instead of explicitly writing utility in terms of x (the amount of leisure
consumption) and y (income from w and a particular realization of the random
variable ξ ), we write the manager’s expected utility as

EU = E (w) − θ2 K − 1/2e2.

E(w) is the EMV of the compensation contract, and that is affected by e. A
contribution of e units of effort by the manager causes her utility to fall on
that account, because leisure consumption falls by e. We subtract this loss of
utility, 1/2 e2, directly from the expected pay to determine the manager’s net
utility. Similarly, the manager’s exposure to risk diminishes her utility, and the
term −θ2 K reflects the utility cost of this risk. The larger is K the more risk
averse is the manager. (Here K is a nonnegative parameter and is constant for
a particular manager.) We assume that the contract has the form y = θ R + F ,
where R = βe + ξ . As usual, ξ is the random component and has expected value
zero. The larger is θ the greater are the swings in the manager’s realized pay as the
random variable moves up and down. Therefore, the larger is θ the greater is the
negative impact of risk on utility. Let’s determine the contract that maximizes
the owner’s net return. (We do not specify the time endowment but simply
assume that the solution value of e is feasible.)

Example 5.8: A continuum of effort levels

Incentive compatibility is incorporated by maximizing the manager’s EU. If R =
10e + ξ and y = θ R + F then E(y) = θ10e + F , so

EU = 10 θe + F − θ2 K − 1/2 e2,

which is a function V (e) of e. The parameter θ is determined by the owner.
The manager responds by selecting e, the only variable that she can control.
Therefore, from the manager’s standpoint, V (e) is a simple quadratic function
of e. From the formula for maximizing a quadratic we get e = 10 θ , the effort
supply function. Of course, e increases as θ increases. (In calculus terms, V ′(e) =
10 θ − e. Obviously, V ′′ < 0 at every point, so we want to set V ′(e) = 0, and this
yields e = 10 θ .)

To calculate the owner’s profit-maximizing values of F and θ we again recog-
nize that profit maximization causes the participation constraint to be satisfied
as a strict equality at equilibrium. (If EU > u0 the owner can reduce F and that
will reduce EU by the same amount for every value of e. Hence, the manager’s
choice of e will not be affected, but E (N) will increase, and the participation
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constraint will still be satisfied if the reduction in F is not too large.) Because
EU = E(y) − θ2 K − 1/2e2 = u0 we have

−E(y) = −θ2 K − 1/2e2 − u0.

Because E(R) = 10e, the owner’s expected profit is

E (R) − E(y) = 10e − θ2 K − 1/2 e2 − u0

= 10(10 θ) − θ2 K − 1/2(10 θ)2 − u0

= 100 θ − (50 + K )θ2 − u0,

a quadratic function G(θ) of θ . By the formula for maximizing a quadratic, the
function is maximized at

θ∗ = 100
100 + 2K

.

(Alternatively, G ′(θ) = 100 − 2 θ K − 100 θ and G ′′(θ) < 0 at every point. There-
fore, we set G ′(θ) = 100 − 2(50 + K )θ = 0.) If the manager is not risk averse then
K = 0 and hence θ∗ = 1. But for all K > 0 we have 0 < θ∗ < 1. Because G is a
quadratic, profit rises as θ increases to θ * and then falls as θ increases beyond
that point (Figure 4.6). The expected return E (R) is higher for θ greater than
θ * because more effort is supplied. But the manager is exposed to greater risk
when θ is higher, and the participation constraint forces the owner to com-
pensate the risk-averse manager for the increased risk. The expected return is
higher but the manager’s pay is higher still when θ > θ∗. We no longer have
maximum incentive (θ = 1) because the owner has to trade off insurance and
incentive. Note that θ falls as K increases: The greater the degree of risk aver-
sion the lower is the profit-maximizing value of θ and the more insurance
is provided to the manager by the profit-maximizing owner. To determine F
we return to the participation constraint, EU = E(y) − θ2 K − 1/2 e2 = u0 and
E(y) = θ∗ E(R) + F . Expected gross profit E(R) depends on e, which in turn is a
function of θ , which equals θ *. Therefore, with θ * and u0 specified we can solve
for F .

To summarize, when effort is unobservable the shareholders will have to pro-
vide the manger with an incentive to supply effort, and this means that the man-
ager’s compensation must be correlated with observed profit. Because profit is
influenced by random forces as well as the manager’s effort, the incentive effect
prevents her from being fully insured against risk, even though the owners bear
all the risk in the ideal case of costlessly observable effort. Because the manager
is not fully insured, her expected pay must be higher than in the full information
case to elicit her participation. Accordingly, the owner’s expected return is lower.
The manager is not fully insured but does not assume all risk—much of it falls
on the shoulders of the owners. To the extent that the manager is insured, the
contract diminishes the manager’s incentive to maximize the owner’s expected
profit. The agent is no longer the sole residual claimant. Because she is insured
against bad outcomes she will work less assiduously to avoid bad outcomes.
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Ken O’Brien was a National Foot-
ball League quarterback in the 1980s.
Because he threw a lot of interceptions
early in his career he was given a con-
tract that penalized him every time an
opponent caught one of his passes. This
incentive clause succeeded in reducing
the number of interceptions, but that
was probably because he rarely passed
(Prendergast, 1999).

(This explains why managers are not paid solely
in the form of stock options.) In short, there is
a trade-off between insurance and incentives.

We saw in Section 5.3 that when the man-
ager is the residual claimant she has an incen-
tive to supply the efficient amount of effort
in every dimension. When the manager is risk
neutral, it is the owner’s interest to modify the
managerial incentives to shelter the manager
from risk, at least to a degree. That means that
it cannot be taken for granted that the man-

ager will do a reasonable job of looking out for shareholder welfare in every
dimension.

Sources
The foundations of optimal incentive contracts were laid by Ross (1973), Mirlees
(1974, 1976), Stiglitz (1975), and Holmström (1979a). Example 5.8 is from McMil-
lan (1992, pp. 205–8). The progressive piece rate idea is due to Olson (1993).

Links
The following parallel treatments of agency theory are listed in order of increas-
ing difficulty: Chapters 8–10 in McMillan (1992); Sappington (1991); Chapter 1
in Tirole (1988); Laffont and Martimort (2002). Baker (2002) and Baker, Gibbons,
and Murphy (2002) consider optimal contract design when profit is not verifi-
able. Their model and results are also presented in Dixit (2004), beginning on
page 32.
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Problem set

1. A risk-neutral manager has utility function U(x, y) = 20 ln(x + 1) + y. Units
have been chosen so that T = 3. (The individual is endowed with 3 units of
X and 0 units of Y. We could have a positive endowment of Y but we assume
that it has been netted out of both F and u0.) The manager’s best alternative
opportunity is to consume 3 units of leisure and not work. If the manager
supplies e units of effort then the firm’s profit R will be 10e + ξ , where ξ is a
random variable with expected value zero. (R is profit before deducting the
manager’s pay.)

A. Suppose that the owner offers the manager the compensation con-
tract y = θ R + F . Determine the manager’s effort supply function.
Show that e increases when θ increases.

B. Solve for the contract that maximizes the owner’s expected profit.

C. What is the owner’s expected profit, the manager’s expected utility,
and the effort supplied by the manager under the contract that max-
imizes the owner’s expected profit?

D. Is the outcome that maximizes the owner’s expected profit efficient?
Explain.

2. A risk-neutral manager has utility function U(x, y) = 2
√

x + y. The time
endowment is T. (The manager is endowed with T units of X and 0 units
of Y.) The manager’s best alternative opportunity provides a level of utility
of u0 = 2

√
T . If the manger supplies e units of effort then the firm’s profit R

will be βe + ξ , where ξ is a random variable with expected value zero and R
is profit before deducting the manager’s pay.

A. Suppose that the owner offers the manager the compensation con-
tract y = θ R + F . Determine the manager’s effort supply function.
Show that e increases when θ increases.

B. Solve for the contract that maximizes the owner’s expected profit
when the manager cannot be monitored.

C. What is the owner’s expected profit, the manager’s expected utility,
and the effort supplied by the manager under the contract that max-
imizes the owner’s expected profit?

3. Figure 4.7 shows the indifference curve for a risk-neutral manager when the
participation constraint is satisfied as an equality. (The two straight lines
are parallel.) What is the output per unit of input coefficient β? Assuming
that the manager is offered the contract that maximizes the owner’s net
return, determine the manager’s effort supply, the firm’s expected profit
R, the manager’s expected income, and the owner’s expected net return,
at the effort level of the manager that maximizes the owner’s expected
net return subject to the participation constraint. What is the form of
the contract? Whose income is uncertain, the manager’s, the owner’s,
or both?
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4. Figure 4.8 shows the indifference curve for a risk-neutral manager when
the participation constraint is satisfied as an equality. Use the diagram
to determine the manager’s effort supply, the firm’s expected profit, the
manager’s expected income, and the owner’s expected net return, at the
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effort level of the manager that maximizes the owner’s expected net return
subject to the participation constraint. (AB is parallel to FD.) Now, write the
contract represented by the budget line ABCD. Write it as it would appear in
the real world with unobservable effort.

5. A risk-neutral manager has utility function U(x, y) = 2000 − 1690/x +
y. Set T = 24. The manager’s best alternative opportunity provides a level
of utility of u0 = 1910. The firm’s profit R is 10e + ξ , where ξ is a random vari-
able with expected value zero and R is profit before deducting the manager’s
pay.

A. Solve for the contract that maximizes the owner’s expected profit,
even though the manager cannot be monitored.

B. Derive the manager’s budget line, expressed in terms of x and y, that
the optimal contract induces.

6. A risk-neutral manager has utility function U(x, y) = 10 ln(x + 1) + y.

Set T = 2. The manager’s best alternative opportunity provides a level of
utility of u0 = 9.93. The firm’s profit R is 5e + ξ , where ξ is a random variable
with expected value zero and R is profit before deducting the manager’s pay.

A. Solve for the contract that maximizes the owner’s expected profit,
even though the manager cannot be monitored.

B. Now derive the optimal contract by employing the manager’s effort
supply function.

7. Prove that any solution to the problem “maximize u1 subject to uh ≥ u0
h for

all h �= 1” is weakly efficient in any context, where u0
h is a constant for each h.

Prove that the solution is fully efficient if each utility function is continuous
and every individual has a positive amount of some divisible private good.
(Divisibility means that one individual can give an arbitrarily small amount
of the good to any other person. If the good is private then only the utility of
the donor and the recipient is affected.) Now show that with a risk-neutral
manager and a risk-neutral owner, the owner’s profit-maximizing contract
solves “maximize u1 subject to u2 ≥ u0

2” where u1 is the owner’s EU and u2 is
the manager’s EU.

8. This question features a manager whose utility function is nonlinear in Y but
there are no random variables affecting production. The manager’s utility
function is U(x, y) = xy, and the manager’s best alternative yields u0 = 1.
Profit is R = 4e, where R is profit before deducting the manager’s pay. T = 2:
The manager has an endowment of 2 units of X and 0 units of Y. Find the
contract that maximizes the owner’s profit. What is the owner’s net return,
the manager’s consumption of X and Y , the manager’s utility, and the effort
supplied by the manager under the contract that maximizes the owner’s net
return?

9. Again we have a manager whose utility function is nonlinear in Y and no
randomness in production. The manager’s utility function is U(x, y) = xy,
and the manager’s best alternative yields u0 = 1. Profit is R = βe, where β

is a positive constant and R is profit before deducting the manager’s pay.



5. Agency Theory 255

The manager’s time endowment is T. Find the contract that maximizes the
owner’s net return. What is the owner’s profit, the manager’s consumption
of X and Y , the manager’s utility, and the effort supplied by the manager
under the contract that maximizes the owner’s net return?

∂∂∂10. This question features a manager whose utility function is nonlinear in Y,
but there are no random variables affecting production. Let U(x, y) repre-
sent the manager’s utility function. The manager’s best alternative yields
u0. Profit is R = βe, where β is a positive constant and R is profit before
deducting the manager’s pay. The manager’s time endowment is T. Ini-
tially, the manager has 0 units of Y. Show that the contract that maximizes
the owner’s profit has the form y = R + F , where F is fixed, independently
of the profit R. Hint: Use the implicit function theorem and the participa-
tion constraint to solve for dy/dx in terms of the partial derivatives of U.
Then compare the first-order condition from the owner’s maximization
problem to the solution of

maximize U(x, y) subject to p1x + p2 y = C.

11. Solve for the contract that maximizes the owner’s net return in the model
of Section 5.5 with R = 4e + ξ , K = 8, and u0 = 5. Calculate F as well as θ .
What is the owner’s expected return?

12. Solve for the contract that maximizes the owner’s net return in the model
of Section 5.5 when the manager’s utility function is EU = 24x − 1/2 x2 +
E(y) − 192 θ2 with R = 16e + ξ and u0 = 320. Calculate F as well as θ . What
is the owner’s expected return?

13. Section 5.5 represents the agent’s utility indirectly, as y − C(e), where C is
the cost of effort to the agent, with positive marginal cost that increases as e
increases. Show that this leads to the same behavior as when we take U =
B(x) + y, with positive marginal benefit B(x) but with marginal benefit
decreasing as x increases. Of course x = T − e. In particular, show that in
both cases, utility declines as effort increases, and that the rate of decline
is higher when effort is greater.

14. The manager of a firm has the utility function U = 50x − x2 + y. The man-
ager will cease to work for the firm if the manager’s utility falls below 624.
Set T = 24 and the manager’s initial wealth is zero. The profit R realized
by the owner, before deducting the manager’s pay, is given by R = 30e + ξ ,
where e is effort supplied by the manager and ξ is a random variable with an
expected value of zero. The owner cannot enforce a contract that mandates
a specific input of effort. Show that the owner’s net return is maximized if
the owner offers the manager a contract that requires a payment of $196
from the manager to the owner with the manager keeping any additional
profit realized by the firm.
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This and the remaining chapters investigate hidden characteristic problems,
from voting to used-car markets to kidney exchanges. We see that market forces
have spawned contracts and other devices that induce agents to reveal their
hidden characteristics. This does not mean that the equilibrium outcome is
efficient in each case, however. There are incentive schemes that do induce
truthful revelation of the hidden information while at the same time bringing
the system close to efficiency—the Vickrey auction of Chapter 6 for instance.

Markets are wonderfully creative in circumventing hidden information prob-
lems. Warranties on consumer durables provide a nice example of the mar-
ket system generating its own solution to a hidden characteristic problem. The
producer of a shoddy appliance cannot afford to offer a substantial warranty.

It can be in society’s interest to have the
hidden information remain hidden. It is
often essential for communication about
financial transactions to be encoded so
that eavesdroppers cannot profit from
the information. Electronic messages are
encoded using an asymmetric form of
encryption: The recipient R of the mes-
sage publishes the key to encoding the
text that R will receive. This key is the
product of two very large prime num-
bers p and q. But only the product is pub-
lished. To decode the message it is nec-
essary to know both p and q, and only R
knows these prime factors. If they are suf-
ficiently large, it will be well beyond the
ability of even a network of huge comput-
ers to determine them in anyone’s life-
time, even though the product is known.

The point of producing a low-quality item is to
get more profit by keeping costs down, but if
many appliances are being returned for refund
or repair then costs will be high, not low. A
producer who deliberately sets out to profit
by misleading consumers about the quality
of the product will not be able to offer the
same kind of warranty as the producer of a
high-quality product. The producer of the high-
quality item is signaling high quality to the con-
sumer by offering a substantial warranty. Rep-
utable manufacturers often make good on a
warranty even after it has expired, as long as
the appliance is returned a month or less after
the expiration date.

Although not always delivering an efficient
outcome, the market system often goes a long
way toward eliciting the hidden information.
The next section begins with a standard exam-
ple of the hidden characteristic phenomenon.

Links
See Mann and Wissink (1988, 1990a, 1990b) for a more thorough discussion
of warranties. For more on the technique of asymmetric encryption see Singh
(1999), which is a superb history and analysis of coding and decoding from
ancient Egypt to the present.

1 PRICE DISCRIMINATION

Suppose that a firm’s consumers can be divided into two categories, high-
demand-elasticity and low-demand-elasticity types. In that case the firm’s profit
can be increased by charging a higher price to the latter group. Because of this, the
low-elasticity customers cannot be expected to voluntarily disclose their (elas-
ticity) characteristic. Consequently, suppliers will endeavor to find something
that is both observable and correlated with the hidden demand characteristics.
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Example 1.1: Haircuts

We can simplify the analysis by selecting a commodity for which no unit after
the first has utility. A haircut, for instance. To make our job really easy, suppose
that everyone wants a haircut every thirty days but not more frequently. The
community consists of A types who would be willing to pay $20 for a haircut,
but no more, and B types who would pay a maximum of $9 for a haircut. There
are n of each. There is only one barber in town, and the opportunity cost of the
barber’s time is $7 per haircut. If the barber has no way of distinguishing A types
from Bs then the barber must charge one price P. If P = 20 then the barber’s
profit per haircut is 20 − 7, and because only the A types will come to the shop,
the profit will be 13n. (The B types will get a friend or relative to do the job, or
drive to another town.) If P = 9 then the profit per haircut would be 9 − 7 = 2.
Everyone would be a customer at P = 9, resulting in a total profit of 4n. Clearly,
if the barber can’t distinguish A types from B types then the profit-maximizing
price is P = 20.

Suppose, however, that all the B types are sixty-five years of age or older. If
the barber charges $9 per haircut to anyone older than sixty-four and $20 to
everyone else the profit will be 2n + 13n, which is 15% higher than the profit of
13n without price discrimination. (It is essential to our story that a B type is not
able to buy a $9 haircut and sell it to an A type for, say, $15.)

Consider plane travel: On average, business travelers have a lower demand
elasticity than recreation travelers. The former pass their travel expenses on to
their companies, who in turn pass on part of the cost to taxpayers. And business
trips often have an urgency that nonbusiness travel seldom does. That makes
the business traveler much less responsive to a price increase. Vacationers have
lots of close substitutes, which makes their demand much more price sensitive.
All of this results in a relatively low elasticity of demand for plane tickets by
business travelers. By charging a higher fare for travelers who don’t stay over at
least one Saturday night an airline company can force most business travelers
to pay the higher fare. Most business trips do not extend through Saturday. A
Saturday stayover is very costly to a business traveler because of the need to be
back in the office as soon as the purpose of the trip has been accomplished and
the desire to spend the weekend with the family.

Xerox Corporation introduced the first push-button electrostatic copying
machine in 1960 and for many years the company faced very little competition.
Price discriminating profit maximization implies a higher charge for machines
purchased by firms that intend to use them intensively. But these firms would
not willingly admit that they are high-intensity users (and the machines can
be resold anyway). The chief rival to Xerox in the 1960s was Electrofax, which
produced a copier that required a special coated paper. Initially, Electrofax held
a monopoly on the sale of the special paper. By charging a price for the paper
that was significantly above marginal cost, the company in effect charged a
higher price for copying machines purchased by high-intensity users. A similar
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principle applies to the charges for Polaroid film during the period when Polaroid
Corporation had a monopoly on the production of self-developing film and the
complementary camera. And again in the case of the early IBM computers, the
punch cards sold by IBM and used to enter input provided a way for IBM to
meter the use of IBM machines. Initially, IBM had a monopoly on the sale of
punch cards and they were priced above marginal cost to allow IBM to extract
more revenue from the high-intensity users of its computers.

The Xerox copier did not require special paper, so the Xerox Corporation
solved its hidden characteristic problem by refusing to sell the copiers; the
machines had to be leased from Xerox. The rental fee was based on the number
of copies made, so Xerox was able to meter its customers’ usage and thus force
high-intensity users to pay more for the use of the copier.

There is a tension between price discrimination and the extraction of con-
sumer surplus. If all consumers had identical demand functions for the services
generated by the machines and their variable input (paper, film, punch cards)
then the monopolist would want to price the variable input at marginal cost to
induce the buyer to use the equipment more intensively, which in turn allows
a higher price to be charged for the equipment because of the larger consumer
surplus. (One can show that profit is maximized when the price of the vari-
able input is set at marginal cost and the price of the machine is set equal to
the resulting consumer surplus. In this case there is only one demand curve to
consider—the demand for the services of the machine.)

Source
The copying machine details are from Phlips (1981).

Links
To see why price discrimination can emerge in a competitive environment see
Dana (1998) and Varian (2000).

Problem set

1. Assume that all consumers are of the same type—they all have the same
demand function. Prove that profit is maximized when the price of the vari-
able input is set at marginal cost and the price of the machine required to
turn this input into the desired product is set equal to the resulting consumer
surplus.

2 TWO-PERSON EXCHANGE

A brother B and a sister S have jointly inherited a house. Each has a family, so
they are not willing to share the house, which they suspect is worth more to B
than to S. If it were worth, say, $100,000 to B and only $20,000 to S it doesn’t seem
fair for B to pay his sister only $25,000 for her share. Moreover, S would not have
an incentive to reveal her reservation value truthfully if the price will be 125% of
the seller’s value. However, the arbitration rule that has B paying half of what the
house is worth to him gives B a strong incentive to understate his reservation
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value. But if the parties do not reveal their true reservation values we have no
guarantee that the house will be used by the family that values it most—that
is, gets the most benefit from it. The same problem arises when two business
partners B and S have decided that they cannot continue working together.
One of them will take over the business by buying the other’s share. They have
different abilities and different expectations about the future profitability of the
enterprise. How should they dissolve the partnership?

2.1 Dominant strategy equilibrium
Formally, there is a single asset, owned by individual S, and a potential buyer B.
The asset is worth a minimum of VS to S and a maximum of VB to B. These are
the respective reservation values. We seek a recipe for deciding when the asset
should be transferred from S to B and at what price. An exchange mechanism is
a decision rule under which each party reports its reservation value and then
determines whether B gets the asset. The exchange mechanism also specifies a
price paid by the buyer and an amount of money received by the seller.

DEFINITION: Exchange mechanism
The buyer’s reservation value VB is the maximum that B would be willing
to pay for the asset. The seller’s reservation value VS is the minimum that
S would accept to relinquish the asset. An exchange mechanism requires
them both to report their reservation values and determines when the asset
changes hands, as a function of the reservation value RB reported by B and
the reservation value RS reported by S. If it is exchanged then the mechanism
specifies the amount P(RB, RS) paid by the buyer and the amount Q(RB, RS)
received by the seller.

We want to employ a mechanism that has three properties: incentive com-
patibility, which means that truthful revelation is a dominant strategy for each
party; asset efficiency, which means that B gets the asset if it is worth more to B
than to S, otherwise S keeps the asset; and the participation constraint, which
means that neither B nor S winds up with lower utility than he or she started with.

DEFINITION: Incentive compatibility, asset efficiency, and the participation
constraint

An exchange mechanism is incentive compatible if for each pair (VB, VS) (i)
no reported value RB gives the buyer B a higher payoff than reporting the
true value VB and (ii) no reported value RS gives the seller S a higher payoff
than reporting the true value VS. The mechanism is asset efficient if B gets
the asset when VB > VS and S keeps the asset if VB ≤ VS. The mechanism
satisfies the participation constraint if neither S nor B pays anything when
no trade takes place.
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VB

L M H

VS

Figure 5.1

We prove that the only mechanism with these three properties requires the
buyer to make a payment equal to the seller’s reservation value, and the seller
to receive an amount equal to the buyer’s reservation value. When the seller’s
reservation value is at least as high as the buyer’s then the asset stays with the
seller, and no one pays any money or receives any money. This is called the
Groves bargaining mechanism (GBM).

DEFINITION: Groves bargaining mechanism (GBM)
When VB > VS the asset is transferred from the seller to the buyer, with
P(VB , VS) = VS and Q(VB , VS) = VB . When VB ≤ VS the seller keeps the asset
and P(VB , VS) = 0 = Q(VB , VS).

Notice that the definition anticipates our proof that both agents will report their
true reservation values: VB for the buyer and VS for the seller.

Before proving that the GBM is the only one that satisfies asset efficiency, the
participation constraint, and incentive compatibility, we demonstrate that the
GBM actually does have our three properties. GBM satisfies asset efficiency and
the participation constraint by definition. Now, consider incentive compatibility.
We begin with the case VB < VS (Figure 5.1). Under truthful revelation there is
no trade and no payment by B. Would it ever be to B’s advantage to misrepresent
B’s reservation value? What would happen if B reported a reservation value RB

in region H, where RB is higher than VS? B would get the asset and would be
required to pay VS, which exceeds the true worth VB of the asset to B, resulting
in a loss to B. Truthful revelation would have resulted in no gain or loss to B, and
hence would be preferred by B to reporting RB in region H. However, suppose B
were to report a reservation value RB in region L or M where RB < VS. This yields
the same outcome as VB because both are below VS. Therefore, when VB < VS

the buyer B can never profit from misrepresenting the true reservation value,
but can lose by doing so. In other words, truthful revelation is a best response
by B to any VS for which VB < VS.

We continue to assume that VB < VS, as in Figure 5.1, and now consider the
incentive of the seller S. Suppose that the seller reports a reservation value RS in
region L below VB. In that case trade will take place, and the seller will receive
VB, which is less than the seller’s true value VS, resulting in a loss of VS − VB to
the seller. But had the seller revealed her reservation value VS truthfully there
would have been no trade and hence no loss. If the seller were to report a value
RS in the region M or H above VB then the buyer’s reservation value will still be
below the reported reservation value of the seller, and there will be no trade.
That’s the same outcome that results from truthful revelation. Hence, when VB
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is less than VS the GBM induces truthful revelation by both the buyer and the
seller. That is, neither can benefit from deviating from the truth, but either can
be hurt by doing so.

Now, we consider the more interesting case of potential gains from trade:
VB > VS (Figure 5.2). Can the buyer ever gain by misrepresenting B’s reservation
value? What would happen if B reported a reservation value RB in region L where
RB is below VS? B would not get the asset and would forgo the profit of VB − VS

that would have resulted from truthful revelation. If B were to report any reser-
vation value RB in region M or H then we would still have RB > VS, and B would
acquire the asset, just as in the case of truthful revelation. Moreover, the pay-
ment that B would have to make is the same for any RB in M or H, because that
payment equals VS, which is independent of RB, for any RB > VS. Therefore,
the buyer cannot profit by deviating from truthful revelation when VB > VS and
would be hurt by any deviation in region L.

On one hand, suppose that VB > VS and the seller reports a reservation value
RS in region H above VB. Then no trade will take place, in which case the seller
forfeits the profit of VB − VS that would have accompanied truthful revelation.
On the other hand, if the seller were to report a value RS in the region L or M
below VB then trade will still take place and the seller will receive the same profit
VS − VB that results from truthful revelation. That’s because when RS is less than
VB, the seller receives a payment VB that is independent of RS. Hence, when VB

is greater than VS the GBM induces truthful revelation by both the buyer and the
seller—truthful revelation is a dominant strategy for each.

Proving that the GBM is the only mechanism with our three properties is a
little more demanding.

Uniqueness of the GBM

The GBM is the only incentive-compatible mechanism that satisfies asset
efficiency and the participation constraint.

To prove this we have to begin by examining the price and revenue functions
of a mechanism that we know almost nothing about. All we know is that it satisfies
asset efficiency, incentive compatibility, and the participation constraint. We
show that the three properties imply that the price and revenue functions are
precisely those of the GBM. We let P(VB, VS) denote the price that our mystery
mechanism requires the buyer to pay when the asset changes hands, and we
let Q(VB, VS) denote the amount received by the seller. If we can show that
P(VB , VS) = VS and Q(VB , VS) = VB then we have proved that this mechanism
must be the GBM.
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Before presenting the proof, we give an informal demonstration that our
three properties force the price and revenue functions to be identical to the
ones specified by GBM. Suppose that asset is worth more to the buyer than the
seller. Consider two different possible buyer reservation values V 1

B and V 2
B , both

of which are greater than VS. Asset efficiency implies that when B reports V 1
B then

B gets the asset for a price of P(V 1
B , VS), and when B reports V 2

B then B gets the
asset and pays P(V 2

B , VS). If P(V 1
B , VS) > P(V 2

B , VS) then when B’s true reservation
value is V 1

B the buyer is better off reporting V 2
B and paying the smaller amount

P(V 2
B , VS). Similarly, P(V 1

B , VS) < P(V 2
B , VS) leads to a violation of incentive com-

patibility. Therefore, P(V 1
B , VS) = P(V 2

B , VS) must hold for any two reservation
values V 1

B and V 2
B that exceed VS.

Why does the price have to equal VS? The price can’t be below VS if VB > VS.
Otherwise, there would be a situation in which the asset is worth more to the
seller than the buyer, but the buyer could misrepresent and report VB and get
the asset for a price below VS and below B’s true reservation value. Therefore,
P(VB , VS) ≥ VS if VB > VS. However, if P(VB , VS) > VS we can replace VB with
any V 1

B above VS. The price will not change by the argument of the previous
paragraph. Now bring V 1

B closer and closer to VS, but keep it above VS. The
price will still not change, but it can’t be above V 1

B or else the participation
constraint will be violated. And it can’t exceed VS. This rules out every possi-
bility except P(VB , VS) = VS. Similarly, one can show that Q(VB , V 1

S ) must equal
Q(VB , V 2

S ) for any two seller reservation values V 1
S and V 2

S that are below VB

and then use that fact to establish Q(VB , VS) = VB . Now let’s turn to the formal
proof.

We want to prove that if the participation constraint is satisfied then incen-
tive compatibility and asset efficiency imply P(VB , VS) = VS and Q(VB , VS) = VB .
We begin by showing that the price paid by the buyer can never exceed the
buyer’s reported reservation value. That is, P(VB , VS) ≤ VB must hold for every
combination of VB and VS such that VB > VS. If we actually had P(VB , VS) > VB

then truthful revelation would not be a dominant strategy for the buyer, who
could report a reservation value of zero, resulting in no trade and no payment
by the buyer. But when P(VB , VS) > VB , truthful revelation would result in the
buyer acquiring the asset worth VB and having to pay a larger amount P(VB , VS)
for it. Therefore, incentive compatibility implies P(VB , VS) ≤ VB . Similarly, if
Q(VB , VS) < VS < VB then the asset would change hands under truthful rev-
elation (because VB > VS), but the seller would be paid less than the mini-
mum VS that S would be willing to accept to part with the asset, resulting in
a loss of VS − Q(VB , VS). The seller could avoid that loss by reporting a reser-
vation value of 2 × VB , in which case no exchange would take place. There-
fore, if truthful revelation is a dominant strategy for the seller for all possi-
ble values of VS we must have Q(VB , VS) ≥ VS for arbitrary VS and VB such
that VS < VB .

Now, suppose that P(VB , VS) < VS as in Figure 5.3. In that case when the
buyer’s true reservation value is TB between P(VB, VS) and VS then asset efficiency
requires that no trade take place, leaving no profit for the buyer with reservation
value TB. But if that buyer were to report a reservation value of VB then trade
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P(VB, VS) TB VS VB

Figure 5.3

would take place and the buyer would pay P(VB, VS), which is less than TB, leaving
a positive profit of TB − P(VB , VS). Therefore, incentive compatibility requires
P(VB , VS) ≥ VS for every combination of VB and VS such that VB > VS.

To prove that P(VB, VS) cannot actually be larger than VS, we suppose the
contrary and show that one or more of the required properties must be vio-
lated as a result. Suppose, then, that P(VB , VS) > VS as in Figure 5.4. When
the buyer’s true reservation value is VB, B can report a value RB between VS

and P(VB, VS). Agent B will still get the asset because RB > VS but will pay
some price P(RB , VS) ≤ RB . This price P(RB, VS) must be less than P(VB, VS)
because P(RB, VS) cannot exceed RB, as we have already discovered. The result-
ing profit to the buyer will be at least VB − RB , which is greater than the
profit of VB − P(VB , VS) that results from truthful revelation. Therefore, incen-
tive compatibility requires P(VB , VS) ≤ VS. Because we have also established
P(VB , VS) ≥ VS, we have proved that P(VB , VS) = VS for all reservation values
such that VB > VS. It remains to prove that Q(VB , VS) = VB when VB > VS.

Suppose that Q(VB , VS) > VB as in Figure 5.5. In that case when the seller’s
true reservation value is TS between VB and Q(VB, VS) then asset efficiency
requires that no trade take place. But if the seller were to misrepresent and report
VS, then trade would take place and the seller would receive Q(VB, VS), which is
more than TS, yielding a positive profit for the seller of Q(VB , VS) − TS. There-
fore, incentive compatibility requires Q(VB , VS) ≤ VB for every combination of
VB and VS such that VB > VS.

Finally, we show that Q(VB , VS) < VB cannot hold for any combination of
VB and VS such that VB > VS as shown in Figure 5.6. If we did have Q(VB , VS) <

VB , then when the seller’s true reservation value is VS S can report a value RS

between Q(VB, VS) and VB. There will still be a sale, but S will receive at least RS,
which is higher than Q(VB, VS). (Recall that our three conditions require that the
seller receives at least as much as his or her own reservation value.) Therefore,
incentive compatibility requires Q(VB , VS) ≥ VB . But we have already ruled out
Q(VB , VS) > VB , so we have proved that Q(VB , VS) = VB holds for all reservation
values such that VB > VS. Because we know that P(VB , VS) = VS also holds we
have proved that the mechanism must be the GBM if it satisfies asset efficiency,
incentive compatibility, and the participation constraint.

Applications
In the case of two heirs splitting an indivisible asset (such as a house) we begin
by assuming that heir B will buy out the other heir, individual S. Then VB is

P(VB, VS)RBVS VB

Figure 5.4
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Q(VB, VS)TSVS VB

Figure 5.5

the value to B of S’s share—specifically, the difference between the value to B
of outright ownership of the asset and the value if it is shared with S. Then
VS is the value of the asset to S when ownership is shared. Assuming that the
GBM is employed, if VB > VS then B gets the asset and pays VS with person S
receiving VB.

If players S and B are business partners dissolving their firm, with partner B
buying out partner S—perhaps because the business would be more profitable
under the stewardship of B—then VB is the difference between the value to B of
outright ownership of the firm and the value of continuing the partnership, and
VS is the value to S continuing the partnership.

The budget imbalance problem
When VB is larger than VS the GBM requires B to pay VS for the asset but S receives
the larger amount VB. Is it possible that a third party would supply the difference
VB − VS? Instead of using a mechanism such as the GBM, the two parties could
battle each other in court and perhaps dissipate 50% of the value of the asset that
is in dispute. Because that often happens, they should be willing to pay a modest
fee to an arbiter—if they could be sure that the arbiter would settle the matter
efficiently and fairly. That would certainly happen if the arbiter used the GBM.
The arbiter could charge a fee that yielded a positive annual profit, although
there would be a loss on some cases that could be covered by a profit from
other cases. The fee could be set high enough so that the arbiter could supply
the difference between Q(VB, VS) and P(VB, VS) in each case. The two parties
would be willing to pay the fee because the alternative would be a costly legal
battle.

This scheme has a fatal flaw: The two parties B and S would have a strong
incentive to collude and have the buyer submit a very high (untruthful) VB so
that they could split Q(VB , VS) − P(VB , VS).

Remark on the participation constraint
Suppose that the two parties did each pay a fee F to an arbiter who then
applied the GBM. That would be equivalent to the following mechanism:
P(VB , VS) = VS + F and Q(VB , VS) = VB − F when VB > VS, with P(VB , VS) = F
and Q(VB , VS) = −F when VB ≤ VS. In words, each pays a fee F, whatever hap-
pens, and then the GBM is applied. Truthful revelation is a dominant strategy for
this mechanism: Consider the buyer. Given VS, the difference between P(V 1

B , VS)
and P(V 2

B , VS) for any two reported reservation values V 1
B and V 2

B above VS is

Q(VB, VS) RSVS VB

Figure 5.6
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the same for this mechanism as for the GBM. We’ve just added a constant to
each of the GBM prices. Similarly, given VB, the difference between Q(VB , V 1

S )
and Q(VB , V 2

S ) is the same for this mechanism as for the GBM, for any V 1
S and

V 2
S below VB. Of course this new mechanism does not satisfy the participation

constraint but, problems of collusion aside, one can imagine individuals being
willing to participate anyway.

∂2.2 Nash equilibrium
We now constrain the exchange mechanism by requiring the payment received
by the seller to equal the amount paid by the buyer. Also, we now suppose that the
buyer is uncertain about the value of the asset. We also relax the incentive com-
patibility requirement and merely require the existence of a Nash equilibrium
that is efficient. Because of the buyer’s uncertainty, B’s payoffs will be evaluated
in terms of expected utility (EU).

A risk-neutral buyer and a risk-neutral seller must agree on the price at which
the seller is to deliver a single asset to the buyer. The two agree that the asset is
worth more to the buyer than the seller, but the buyer does not know the actual
value of the asset. The value is known to the seller, though. We have a hidden
characteristic problem. Even though the seller knows the value of the asset to
himself before negotiation takes place, that value is a random variable from the
buyer’s perspective. The asset may be a firm that the seller owns. The buyer is
a better manager than the seller, so the firm would generate more profit if it
were managed by the buyer. But the actual profit depends upon a technological
innovation for which the seller is seeking a patent, and the seller knows much
more about the discovery than the buyer.

To be specific, let v denote the value of the asset to the seller. The random
variable v is assumed to be uniformly distributed on the interval 0 to 1, inclusive.
(This distribution is introduced in Section 6.5 of Chapter 2.) The value to the
buyer is assumed to be 1.5v. Although both people know that the value to the
buyer is 50% higher than its value to the seller, the buyer does not know v itself
until the sale is complete and the asset is in her hands. The seller knows v before
negotiations take place, though.

Because
∫

x dx = 0.5x2, the expected value of v is

∫ 1

0
v dv = 1

2
(12 − 0) = 1

2
.

Suppose that the following simple bargaining scheme is adopted. The buyer
submits a bid for the asset, which the seller either accepts or rejects. If the
buyer’s bid of b is accepted by the seller then the asset changes hands at that
price. The seller’s payoff is the selling price minus the seller’s value v, and the
buyer’s payoff is the difference between the value to the buyer and the price paid.
However, the buyer’s bid has to be determined before the asset changes hands
and before the value is known to her. Therefore, the payoff used by the buyer to
determine her optimal bid is the expected value of the difference between the
value to her and the price that she pays, conditional on acceptance of the offer
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by the seller. If the buyer’s offer is rejected there is no exchange and no further
negotiation.

DEFINITION: A take-it-or-leave-it offer by the buyer
The buyer bids b. If the seller accepts, his payoff is b − v, and the buyer’s
payoff is the expected value of 1.5v − b, conditional on acceptance. If the
offer is rejected there is no further negotiation, in which case the seller’s
payoff is zero and the buyer’s is zero.

The seller will accept b only if v ≤ b. If v > b then his payoff is higher if he
keeps the asset. The buyer knows this, although she doesn’t know v itself. Let’s
determine the expected value to the buyer resulting from a bid of b. If v > b the
buyer’s payoff is 0. If v ≤ b the asset will change hands and the buyer’s profit
is 1.5v − b. Because

∫
1.5x dx = 0.75x2, for any bid b the expected payoff to the

buyer is

∫ b

0
(1.5v − b)dv = 0.75b2 − b2 = −0.25b2.

Note that we have integrated over the subinterval [0, b]. That’s because the seller
keeps the asset when v > b, and hence the buyer’s payoff is 0.

Whatever the buyer bids, the expect value will be negative. Even though the
asset has more value to the buyer than the seller, and both know that, there is
no price that the buyer would be willing to pay that the seller would accept.
Because the asset stays with the individual who values it least, the outcome is
inefficient.

No trade will ever take place if the buyer makes a take-it-or-leave-it offer.

The inefficiency of this mechanism is a direct consequence of asymmetric
information. A bid of b is accepted by the seller only when v is below b, which
means that the value to the buyer is 1.5b at most. However, the buyer pays b
dollars for certain when an offer of b is accepted. She pays $b for something
worth less on average—a losing proposition. Therefore, the buyer will bid 0
and the sale will never take place even though both parties are aware that the
asset is worth 50% more to the buyer than the seller. This is surely inefficient.
If both parties knew v they could split the profit—that is, trade at the price
1.25v.

Consider another bargaining mechanism: The seller makes an offer s, which
the buyer can either accept or reject. If the buyer accepts the seller’s bid s then
the asset changes hands at that price, in which case the seller’s payoff is s − v
and the buyer’s payoff is the expected difference between the value to the buyer
and the price paid. If the offer is rejected there is no exchange and no further
negotiation.
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DEFINITION: A take-it-or-leave-it offer by the seller
The seller bids s, and if the buyer accepts she pays s to the seller in return
for the asset. In that case the seller’s payoff is s − v and the buyer’s payoff
is the expected value of 1.5v − s. If the offer is rejected there is no further
negotiation, in which case the seller’s payoff is 0 and the buyer’s is 0.

Let’s work out the equilibrium value of s. The seller knows v so he would not
set s below v. (The seller’s payoff is higher when he keeps the asset than when
he gives it up for s < v.) We know that s ≥ v, and so does the buyer, although the
buyer does not know v. If v < s < 1.5v then both parties gain by a sale at s dollars
because the asset is worth 1.5v to the buyer. The buyer does not know v but she
knows that the seller knows that the asset is worth 1.5v to the buyer. Then the
buyer should accept s, anticipating that the seller will set s between v and 1.5v.
But this cannot be an equilibrium strategy. The seller has an incentive to charge
a high s even when v is very low, relying on the buyer to assume that v > s/1.5.

The expected value of the asset to the buyer is
∫ 1

0
1.5v dv = 0.75 × (12 − 02) = 0.75.

Therefore, the expected payoff to the buyer when the seller charges s is simply
0.75 − s.

There is no Nash equilibrium: The seller will set s above 1 and the buyer will
only accept s below 0.75.

No trade will ever take place if the seller makes a take-it-or-leave-it offer.

Is there any bargaining mechanism that will permit the realization of the
gains from trade, which both parties know to be positive for each? No! The most
favorable scheme from the buyer’s standpoint is the one where she makes a final
offer that the seller has no authority to modify and can only accept or reject it. As
we have seen, even that fails to leave the buyer with a positive expected profit.

Sources
Section 2.1 is based on Danilov and Sotskov (2002). Section 2.2 is based on
Samuelson (1984, 1985).

Links
See Farrell (1987) and Maskin (1994) on laissez-faire and efficiency.

Problem set

1. Section 2.1 doesn’t acknowledge the possibility of a tie, in the sense that
VB = VS. Show that truthful revelation is a dominant strategy for the GBM,
whatever the tie-breaking rule—the asset goes to B in the case of a tie, or the
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asset goes to S in case of a tie, or a coin is flipped, and so forth—assuming
that P(V, V ) = V = Q(V, V ) for all V.

2. Demonstrate how profitable it is for B and S to collude if they pay a fee F to
an arbiter, who collects VS from the buyer and pays VB to the seller.

3. Prove the claim of the last paragraph of Section 2.1: Truthful revelation is a
dominant strategy for the mechanism that requires each agent to pay a fee
F and then applies the GBM.

4. For the model of Section 2.1, prove that truthful revelation is a dominant
strategy for any mechanism for which VS is the difference between what the
buyer pays when the asset changes hands and when it doesn’t, and VB is the
difference between what the seller receives when the asset changes hands
and when it doesn’t.

5. Show that the GBM (of Section 2.1) is not the pivotal mechanism (of Section
2 of Chapter 8), although it is a Groves mechanism (of Section 3 of Chapter 8).

∂3 THE USED-CAR MARKET

The used-car market is one of the hidden characteristic problems for which the
market system has not developed a completely satisfactory solution. Many used
cars on the market are “lemons”—cars that frequently require expensive repairs.
Individuals who purchase new cars often try to sell them when they are discov-
ered to be lemons, and hence the used-car market contains a disproportionately
high number of low-quality cars. This depresses the price of used cars because
the buyer can’t tell which are lemons. There is asymmetric information. Many
car owners who would otherwise put their good cars up for sale find that the
selling price of their cars is too low. They are better off continuing to drive their
high-quality automobiles than selling them for a low price that reflects the low
average quality in the used-car market. This further lowers the average quality
of used cars at equilibrium, resulting in an even lower equilibrium price. And so
on. In terms of the economist’s jargon, many car owners find that the reservation
value of their cars is higher than the price that the car will fetch on the market.

DEFINITION: Reservation value
The car owner’s reservation value is the minimum that he of she would be
willing to accept to part with the car. The buyer’s reservation value is the
maximum that he or she would be willing to pay.

Sellers’ utility will increase if and only if they sell their cars for more than
their reservation values. Buyers’ utility will increase if and only if they buy their
cars for less than their reservation values. These observations follow from the
definition of “willing.” (Read the definition of reservation value again.)
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The used-car market exhibits a degree of market failure: There are owners of
high-quality automobiles who would be willing to sell their cars at prices that
buyers would be prepared to pay if they could be certain of the quality. However,
one cannot distinguish high-quality cars from lemons before purchasing, so
the price of high-quality used cars reflects the large fraction of lemons in the
market. Consequently, there are buyers and sellers of the high-quality cars who
are not able to strike a deal. The highest price that the seller could obtain is often
below the seller’s reservation price. The outcome is not efficient. To drive this
point home—pun intended—consider what happens the day after you accept
delivery of your new car. The car’s value on the used-car market is already well
below the price you paid on the previous day and is thus below your reservation
value. (Why has the car’s market price fallen so much in one day? This question
has already been answered.)

The difference between the job-market example (Section 6) and the present
model of the used-car market is that signaling occurs in the former and this can
ensure that high-quality goods or services are credibly identified. (The outcome
is not fully efficient in the job-market scenario because signaling consumes
resources.) When it is possible for high-quality sellers to signal at a relatively low
cost, the market can force low-quality sellers to reveal themselves.

We conclude with a numerical illustration of market failure when there is no
signaling. Assume that there are many more buyers in the used-car market than
sellers; competition among the latter will result in all sellers charging the same
price if there is no possibility of signaling (no warranties, etc.).

Example 3.1: The car is worth 50% more to the buyer than
to the seller

For a given quality level q the seller’s reservation value is q and the buyers’
reservation value is 1.5q. The buyers are risk neutral and they do not know q,
and they do not expect owners of low-quality cars to truthfully reveal q. Quality
is uniformly distributed over the interval from 0 to 1, as explained in Section 6.5
of Chapter 2. Because ∫ x dx = 0.5x2, the expected value of a car from the buyer’s
perspective is

∫ 1

0
q dq = 1

2

(
12 − 0

) = 1
2
.

In the absence of signaling all cars sell for the same price p. Therefore, if q < p a
seller will put her car on the market, receiving a payoff of p, which is higher than
the payoff of q from keeping the car. If q > p the seller will not offer the car for
sale. This enables us to determine the average quality of used cars on the market
when buyers observe the price p: To do so we first compute the density function
for the distribution of cars q satisfying 0 ≤ q ≤ p. The density function for 0 ≤
q ≤ 1 is f (q) = 1. Therefore, the density function for 0 ≤ q ≤ p is f (q) divided by
the probability that q falls between 0 and p, and that is (1/p) f (q) = 1/p. (See
the following box.)
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The average quality of cars on the market at a price of p is

1
p

∫ p

0
q dq = 1

p

(
1
2

p2 − 0
)

= 1
2

p.

The risk-neutral buyer maximizes his expected payoff, and hence there will be
no sale at any positive price p, because the expected payoff to a buyer would be
(1/2) p − p, a negative number. There are no trades, even though every agent
knows that mutually beneficial trades are possible in principle: The value of any
owner’s car is two-thirds of what it is worth to any buyer. If quality could be
costlessly discerned then competition among buyers would bid up the price of
a car of quality q to just about q and trade would take place.

The quality q is uniformly distributed on the interval [0, 1]. But only cars
with q ≤ p are on the market, so the used cars on the market are uniformly
distributed on the interval [0, p], which has length p. The probability of a
car on the market being somewhere in that interval must be 1. Therefore the
density d must solve d × p = 1. Note that

1
p

∫ p

0
f (q) dq = 1

p

∫ p

0
dq = 1

p
( p − 0) = 1.

We have calculated the density function for 0 ≤ q ≤ p in Example 3.1 correctly.

As Example 3.1 demonstrates, complete collapse of a market is a theoretical
possibility when one side of the market has information that is hidden from
the other side. In fact, the market will be active, but will function with less
than perfect efficiency. For instance, used-car dealers offer limited warranties
on good-quality cars, and that mitigates the asymmetric information problem
to some extent. But there will still be trades that could increase the utility of
buyer and seller but that will not take place because of the hidden information
problem. For instance, someone who buys a new car one week and then finds
the next week that he or she has to move two thousand miles away would sell the
new car and buy another in the new locale if a potential buyer could verify that
the car is not being sold because it is a lemon. As it is, the individual will spend
the time and money required to drive it to the new home, because net of those
expenses the reservation value of the car exceeds the price for which it could be
sold. One of the many applications of Example 3.1 is the market for cars that are
only a few weeks or months old but are owned by people who would like to sell,
but not because they have discovered their cars to be of low quality.

Source
Akerlof (1970), a seminal contribution to the theory of asymmetric information,
is the basis of this section. In separate contributions, George Akerlof, Michael
Spence, and Joseph Stiglitz showed that the presence of asymmetric information
in real-world markets required a new way of modeling economic exchange. They
were awarded the Nobel Prize in Economics for 2001.
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Links
Molho (1997) has an extensive discussion of the lemons problem. Hendel and
Lizzeri (1999) analyze a model that incorporates interaction between new and
used-car markets over time and manufacturers whose products differ with
respect to reliability. That article includes many references to the literature.

Problem set

1. Rework Example 3.1 with the buyer’s reservation value set at λq instead of
1.5q. (λ is some constant larger than 1.)

4 CREDIT RATIONING

The central paradigm of economic analysis is the notion that in any market oper-
ating under competitive conditions, the price will adjust until demand equals
supply. This entails two principles: There will be a price P∗ at which demand
equals supply, and market forces will drive the price to P∗ over time. How quickly
the prevailing price moves close to its equilibrium value depends on the nature
of the market, but in the case of financial markets we would expect fairly quick
convergence to equilibrium.

In fact, credit markets are an important exception to the central paradigm
because of a significant asymmetric information problem: The borrower knows
considerably more about the riskiness of the project for which funding is being
sought than the lender does. (Borrowers also know a lot more about their will-
ingness to work hard to bring the project to successful completion.) This can
prevent the lender from raising interest rates when the demand for loans exceeds
the supply: An increase in the interest rate can induce an increase in the riskiness
of the pool of applicants for loans, thereby reducing the lender’s profit. If interest
rates don’t rise, and hence demand continues to exceed supply, the lender will
screen applicants by investigating their background and examining in detail the
business venture that will be financed by the loan. (The firm that sells me a stove
doesn’t care about my background.)

Asymmetry information by itself would not create problems were it not for
the asymmetry in the return to the lender. On one hand, if the project flops then
the lender will not be repaid at all or will only be paid a fraction of the amount
borrowed. On the other hand, when the project is very successful, the lender’s
payoff is not proportionally high—it can never be more than the amount of
the loan plus interest charges. Limited liability constrains the amount that the
borrower repays when the project is a failure, but there is also a restriction on
the amount to be repaid when the project is successful. Both limits are in the
borrower’s favor.

The asymmetry in the lender’s payoff forces the lender to worry about the
probability of default. By the same token, the possibility of default changes the
pool of loan applications when the interest rate changes. There tend to be more
very risky projects seeking funding when the interest rate is high, and hence a
larger fraction of the projects would fail if all were to be funded. Assuming for
the minute that that is true, it follows that when the demand for loanable funds
exceeds the supply, an increase in the interest rate—which is possible, because of
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the excess demand at the current rate—will not necessarily increase the lender’s
profit. The higher interest rate yields the lender a higher payoff when a project
is successful, but the higher interest rate also raises the number of loans that
default. Therefore, beyond a certain point, the lender will stop raising the interest
rate, even though there is excess demand, and will instead devote resources to
investigating the project for which an applicant is seeking funding to try and
weed out the very risky ones. We refer to this as credit rationing. (In the market
for home loans, the lender can often require the borrower to put up collateral,
but there is limited scope for collateral in business loans.)

DEFINITION: Credit rationing
Credit rationing occurs at equilibrium if some borrowers’ loan applications
are turned down, even if they are willing to pay the market interest rate and
fulfill all other requirements of the loan contract—putting up collateral, for
instance.

As Figure 5.7 illustrates, credit rationing causes the supply of credit to dimin-
ish as the interest rate r increases beyond a certain level. Because the supply
curve bends back at interest rates above r0, the demand exceeds the supply at
every interest rate. Consequently, the market rate of interest will settle at a level
r∗ at which demand exceeds supply. Even at equilibrium the total amount of
money for which borrowers apply is greater than the amount that lenders are
willing to part with. The lenders then have to ration, and they typically use some
measure of the degree of riskiness to screen out applications that they consider
undesirable. But note that there is scope for pernicious screening devices, such
as racial preferences.

The next subsection shows why there will be proportionally more risky
projects seeking funding when the interest rate is high.
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Table 5.1

Tyler’s project Samantha’s project

Return Probability Payoff Probability Payoff

High 1/2 110 1/2 120
Low 1/2 100 1/2 90

4.1 The borrower’s point of view
We explore the credit market by means of simple examples. It is assumed
throughout that both borrowers and lenders are risk neutral. That doesn’t mean
that lenders don’t worry about risk. An increase in the riskiness of loans can
reduce the lender’s expected monetary value.

Example 4.1: Two borrowers

Two individuals, Tyler and Samantha, each seek financing for their projects,
which are specified by Table 5.1. Assume that in both cases the project requires
$100 of capital to initiate, and each entrepreneur has applied for a $100 loan.
Tyler is hoping to finance a project that will pay $110 with probability 1/2 and will
return only $100 with probability 1/2. In Samantha’s case, the project will yield
more than Tyler’s high payoff if it is successful but will yield less than Tyler’s
low payoff in case of failure. The return in the payoff column is the profit from
a project, net of all economic costs except the cost of borrowing the necessary
funds. Assume for simplicity that the money is only borrowed for one year—and
that the project lasts only one year. (Alternatively, we could assume that the
numbers are discounted to the end of the first year.)

Note that the two projects yield the same return on average. Confirm this by
calculating the EMV (expected monetary value):

EMV for Tyler = 1
2

× 110 + 1
2

× 100 = 105.

EMV for Sam = 1
2

× 120 + 1
2

× 90 = 105.

But Samantha’s project is riskier, because the spread between the high and low
payoffs is greater.

DEFINITION: Degree of risk
If projects A and B have the same EMV and the same probability of success,
we say that A is riskier than B if the high payoff from A is larger than the
high payoff from B, but the low payoff from A is smaller than the low payoff
from B.
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Suppose that the current interest rate is 8%. Would Tyler be willing to borrow
at that rate? The answer is “yes” if and only if the profit net of all costs, including
borrowing costs, is positive. Let’s calculate Tyler’s EP (expected profit):

EP at 8% for Tyler = 1
2

× (110 − 100 − 100 × 0.08) + 1
2

× (100 − 100) = 1.

The borrowing cost is the principal ($100) plus the interest ($100 × 8%),
but when the project is unsuccessful Tyler can only pay back the principal.
The entrepreneur’s profit can never be lower than zero. The expected profit
is positive, so Tyler would be one of the loan applicants at an interest rate
of 8%. What if the rate were to rise to 11%? Even the high return of 110 is
insufficient to cover the principal and the $11 interest charge on the loan.
Tyler’s payoff would be zero whether the project succeeded or failed. Tyler
would not seek funding for his project at an interest rate of 11%. (Tyler’s
return would actually be negative if this project were one part of an ongo-
ing concern and the interest had to be covered by profit from the firm’s other
activities.)

Now let’s see what Samantha would decide at the two interest rates:

EP at 8% for Sam = 1
2

× (120 − 100 − 100 × 0.08) + 1
2

× (90 − 90) = 6.

When Samantha’s project is unsuccessful she can only repay 90% of the principal
and none of the interest. The expected profit is positive, so Samantha would
apply for a loan at an interest rate of 8%.

EP at 11% for Sam = 1
2

× (120 − 100 − 100 × 0.11) + 1
2

× (90 − 90) = +4.5.

Profit is again positive, so Samantha would seek funding for her project at an
interest rate of 11%. But Tyler would not, at that higher rate, illustrating our
point that the riskiness of the loan applicant pool increases when the interest
rate increases. Why does Samantha stay in the hunt for funding but Tyler does
not when the interest rate rises? Because, even though the payoff to the project
is lower for Samantha than for Tyler when their projects turn sour, the two
entrepreneurs get the same payoff in that state—zero. But Samantha gets a higher
payoff than Tyler when the projects succeed. Therefore, Samantha can make a
profit for herself at a higher interest rate than Tyler can.

Let’s find the watershed interest rate, above which Tyler will not apply for a
loan: Let r denote the interest rate expressed as a decimal fraction. (When the
interest rate is 7% we have r = 0.07.) Then

EP at 100 r% for Tyler = 1
2

× (110 − 100 − 100 r) + 1
2

× (100 − 100)

= 1
2

× (10 − 100 r).

This will be positive if and only if 10 − 100 r > 0, which is equivalent to
100 r < 10. At interest rates above 10% it will not be profitable for Tyler to
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undertake his project. Similarly,

EP at 100 r% for Sam = 1
2

× (120 − 100 − 100 r) + 1
2

× (90 − 90)

= 1
2

× (20 − 100 r).

Table 5.2

Return Probability Payoff

High 1/2 105 + α

Low 1/2 105 − α

The EP for Samantha will be positive if and only
if 20—100 r < 0, which is equivalent to saying
that the interest rate is less than 20%. Therefore,
at interest rates between 10 and 20%, Samantha
will apply for a loan but Tyler will not. In that
range, only the riskier of the two projects will
attempt to get funding.

Now we consider a general version of our example. Again, let r denote the
interest rate expressed as a decimal fraction.

Example 4.2: A generic version of Example 4.1

Each value of α identifies a different project (see Table 5.2). Assume again
that a project requires $100 of capital, whatever the value of α. Project α pays
$105 + α with probability 1/2 and only $105 − α with probability 1/2. As before,
the return is net of all economic costs except the cost of borrowing the necessary
funds.

Note that all projects yield the same return on average:

EMV of project α = 1
2

× (105 + α) + 1
2

× (105 − α) = 105.

However, as α increases the risk of the project increases, because the spread
between the high and low payoffs increases with α. To determine if an
entrepreneur who is seeking funding for project α will actually apply for a loan
when the interest rate is r, we have to consider two cases.

Case 1: Even when the project fails it yields enough to repay the loan and
cover all the interest charges. In that case

EP for project α = 1
2

× (105 + α − 100 − 100 r)

+ 1
2

× (105 − α − 100 − 100 r)

= 5 − 100 r.

As we expect, the borrower’s profit falls as the interest rate rises. Why is profit
independent of α in this case? Because the entrepreneur (borrower) gains α with
probability 1/2 but also loses α with probability 1/2.

Things are different when the borrower has to default on the loan if the project
turns sour, because in that case the higher α imposes costs on the lender, who
gets a smaller faction of the principal repaid on average as α increases. But when
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the project is successful, the higher the α the more the borrower gets to keep.
That’s why higher interest rates cause a reduction in the fraction of low-risk loans
in the applicant pool.

Case 2: The borrower only pays back 105 − α when the project fails, because
105 − α is less than 100 + 100 r :

EP for project α at r = 1
2

× (105 + α − 100 − 100 r)

+1
2

× [105 − α − (105 − α)]

= 1
2

× (5 + α − 100 r).

In this case, when a project fails, the entrepreneur gets zero—but no less.
In either case the entrepreneur’s expected profit is

1
2

× (5 + α − 100 r) + 1
2

× max{(5 − α − 100 r), 0}.

If 5 − α − 100 r is negative, then expected profit is 1/2 × (5 + α − 100 r) + 1/2 ×
0, and if 5 − α − 100 r is positive then expected profit is 1/2 × (5 + α − 100 r) +
1/2 × (5 − α − 100 r). Note that expected profit is positive if and only if 5 + α −
100 r is positive. Therefore, the entrepreneur behind project α will apply for a
loan if and only if

5 + α − 100 r > 0.

(If 5 + α − 100 r is negative then 5 − α − 100 r will certainly be negative.) If
100 r < 5 then 5 + α − 100 r is positive for all α, so everyone will apply for a
loan when the interest rate is less than 5%. When 100 r ≥ 5 then α will apply for
a loan if and only if 5 + α − 100 r > 0 or α > 100 r − 5. The threshold value of α,
which is 100 r − 5, increases with the interest rate. Projects for which α is below
100 r − 5 will not apply for a loan, but projects for which α is above 100 r − 5 will
seek funding. In short, the range of α values for which a loan is sought shrinks as
the interest rate increases, with the safer projects (α < 100 r − 5) withdrawing
their loan applications. In other words, the riskier the project the more likely it
is that the entrepreneur will apply for a loan at a given interest rate.

4.2 The lender’s point of view
At a given interest rate r, a risky project will always be less profitable for the
lender than a safer one for Example 4.2. That is because the lender’s profit is
100 r when the project is successful, whatever the value of α. But in the case of
failure, the lender’s loss increases with the riskiness of the project. The lender
has advanced $100 but only gets back 105 − α when 100 + 100 r > 105 − α, and
105 − α is smaller the larger isα. Therefore, the lender has an interest in screening
projects to estimate the riskiness of each application when α > 5 − 100 r .

There is more to the story. We have learned that the entrepreneurs backing
less risky projects will not apply for a loan if the interest rate is sufficiently high.
Therefore, the lender can’t simply raise the interest rate and then accept only
the safe applications: There may not be any. For Example 4.1, both Tyler and
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Samantha will apply for a loan when the interest rate is 8%, but only Samantha
will apply at 11%.

Suppose that there are two applicants, Tyler and Samantha of Example 4.1,
when the interest rate is 8%. What is the lender’s profit? When a project suc-
ceeds the lender gets the principal back and an interest payment of $8 from
each borrower. When Tyler’s project fails the lender gets the principal back but
there is no interest payment. When Samantha’s project fails then the lender only
gets $90. There is a loss of $10. Assuming that the two projects are statistically
independent, the lender’s expected profit is

EP of lender at 8% = 1
2

× 8 + 1
2

× 0 + 1
2

× 8 + 1
2

× −10 = +3.

There is a profit of $3.
At an interest rate of 6% we have

EP of lender at 6% = 1
2

× 6 + 1
2

× 0 + 1
2

× 6 + 1
2

× −10 = +1,

which is lower than the lender’s profit at 8%. (Confirm that both Tyler and Saman-
tha would apply for a loan when the interest rate is 6%.) Therefore, we know that
there will be a range of interest rates at which profit increases as the interest rate
increases. In other words, there is a range of interest rates in which the lender
has an incentive to raise the rate if demand for credit exceeds supply. Hence,
there will be an upward sloping segment of the supply of credit curve—the piece
below r0 in Figure 5.7.

Now consider the situation when the interest rate is 11%. Tyler will not apply
for a loan! If Samantha’s project were to succeed the lender gets the principal
back and an interest payment of $11, but when it flops the lender loses $10. The
lender’s expected profit is

EP of lender at 11% = 1
2

× 11 + 1
2

× −10 = +0.5.

The lender’s profit is lower at 11% than at 8% because of the change in the set
of projects seeking credit. We refer to this as adverse selection. This accounts for
the downward sloping part of the supply curve—that is, the piece above r0 in
Figure 5.7.

Return to Example 4.2. Assume temporarily that when the project fails there
is not enough money to cover both the principal and the interest on the loan.
When the interest rate is 100 r% and project α succeeds the lender gets the
principal back along with an interest payment of 100 r. But when project α fails
the lender only gets 105 − α. There is a loss of 100 − (105 − α) = α − 5.

EP of lender from α = 1
2

× 100 r + 1
2

× (5 − α) = 1
2

× (100 r + 5 − α).

This will be positive if and only if 100 r + 5 − α > 0. That is equivalent to

α < 100 r + 5.

In other words, given the interest rate r , only projects whose risk parameter α

is below 100 r + 5 will be profitable for the lender, who will want to screen out
projects for which α exceeds 100 r + 5.
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But what about cases where the borrower can repay both principal and inter-
est, even when the low payoff is realized? Could any of these projects have a risk
parameter α that violated the inequality α < 100 r + 5? No. If 5 − α − 100 r ≥ 0
then α ≤ 5 − 100 r , which certainly implies α < 5 + 100 r . Therefore, for all
projects the entrepreneur backing the project will apply for a loan if and only
if α < 100 r + 5. The higher the interest rate the higher the proportion of risky
projects in the loan application pool.

Source
Stiglitz and Weiss (1981) worked out the theory that is sketched in this section.

Links
Jaffee and Stiglitz (1990) and Chapter 1 of Freixas and Rochet (1997) provide
comprehensive discussions of credit rationing.

Problem set

1. This question involves a set of entrepreneurs, each of whom is seeking fund-
ing for a project. Each project requires an initial $100 investment. To keep the
calculations simple we assume that each project will be 100% loan financed if
the entrepreneur decides to carry it out. Each entrepreneur is identified with
a number α: Entrepreneur α’s project will return 100 + α with probability 2/3

and will return 100 − 0.5α with probability 1/3.

A. For each combination of interest rate r (expressed as a decimal frac-
tion) and α represented in Table 5.3, determine if entrepreneur α will
apply for a loan to fund the project at the specified interest rate.

Table 5.3

α = 5 and r = 0.04 α = 5 and r = 0.08 α = 5 and r = 0.10

α = 9 and r = 0.04 α = 9 and r = 0.08 α = 9 and r = 0.10

α = 12 and r = 0.04 α = 12 and r = 0.08 α = 12 and r = 0.10

B. As a function of α, what is the threshold rate of interest, above which
project α will not seek funding?

2. This question concerns a set of projects that return $120 when successful
and $60 otherwise. What makes one project riskier than another in this case
is the fact that the probability π of success is lower for riskier projects. Each
project requires an initial $100 bank loan. The bank charges an interest rate
of 100 r% on loans. As a function of r, what is the value of π below which the
bank will not make a profit by funding the project?

3. What is the economic rationale for limited liability, which protects the bor-
rower but not the lender?



280 Hidden Characteristics

4. Why doesn’t the lender insist on an equity stake in the project that would
allow the lender to get a proportionally higher payoff when the project is
proportionally more successful?

5. Why does the lender usually insist that the borrowers put some of their own
money into their projects?

∂5 BUNDLING AND PRODUCT QUALITY

The manufacturer of an appliance or a car knows that some consumers have a
high willingness to pay for a luxury model but would buy the economy version
if the sticker price on the luxury model is too high. Because many consumers
aren’t prepared to buy a luxury model at any price that would be profitable
for the manufacturer, the firm may have to supply two models—luxury and
economy—to maximize profit. However, the existence of the economy version
puts a constraint on the sticker price of the luxury model. This section demon-
strates how to solve for the profit-maximizing menu of models and associated
prices.

If the individual’s willingness to pay for each model were actually known
to the manufacturer, the firm could charge each consumer the maximum the
consumer would be willing to pay for the model—the one that is most profitable
for the firm to sell to that individual—given the consumer’s willingness to pay
for each model. As it is, willingness to pay is hidden from the supplier.

Assume that quality can be measured. We let x denote the amount of quality
embedded in the model. Then higher values of x represent higher quality. Of
course quality is really multidimensional, particularly in the case of a sophisti-
cated product such as a car. But even a one-dimensional quality parameter gives
us a framework from which we can draw much insight.

DEFINITION: Quality
We let x denote the level of quality in a particular unit of a good. A package
(x, C) consists of a model embodying x units of quality that sells for C.

It is also possible to interpret x as the quantity of some good. We begin with that
interpretation, and when the analysis is complete we reinterpret our findings in
terms of quality choice by the firm.

A monopoly is attempting to price discriminate by offering its output in the
form of sealed packages with fixed prices. A package containing more output
bears a higher price tag, but the price is not a linear function of quantity. If pack-
age B has twice as much output as package A its price will be more than double
that of A if the larger package is targeted for consumers who get more bene-
fit from the good and are willing to pay proportionally more. This will generate
more profit than a linear pricing schedule. (A linear schedule can be represented
by a single number—the price. If Q units cost Q times as much as one unit let P
denote the cost of one unit. For arbitrary Q the total cost is P × Q. With linear
pricing the seller merely has to announced P.)
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There are two potential problems for a monopolist attempting to impose a
nonlinear, price-discriminating schedule. We illustrate the first with a simple
example.

Example 5.1: Unbundling

Suppose package A contains ten units of output and sells for $10, and B contains
twenty units of output and is priced at $30. Even if the manufacturer won’t let
a particular consumer buy two A packages, an arbitrageur can purchase two
A packages and sell them for a total of $25 to someone who otherwise would
have to buy a B package from the monopolist. Similarly, if there is a quantity
discount, with A selling for $10 and B selling for $15, an entrepreneur might be
able to buy a B package and divide it into two ten-unit packages and sell each
for $9 to individuals who might otherwise have to pay $10 to the monopolist.

Note that quality cannot be unbundled. A garage cannot take apart a $50,000
automobile and use the parts to make two cars that sell for $30,000 each. When
we apply the analysis of this section to quantity bundling we must confine our
attention to goods that cannot be resold. (Or goods such as airline travel for which
resale can be blocked by the seller, in this case by checking the traveler’s identity.)
The case of a public utility producing electricity will provide the motivation. It is
possible to store electricity for future resale but it is very costly to do so. We can
assume that our public utility monopoly does not have to worry about resale.

The second difficulty arises from the fact that the monopolist cannot iden-
tify the consumers who are willing to pay more for electricity. Those individuals
cannot be expected to voluntarily disclose their identity, knowing that they will
be charged more when they do. In fact a consumer for whom the product pro-
vides a high level of benefit and for whom the B package is targeted can buy
two “A packages.” The monopolist can rule this out simply by offering this con-
sumer an all-or-nothing proposition: “Either you buy one B package or we will
not sell you anything.” But there is a hidden characteristic problem. The firm
cannot directly identify the individuals who derive a high level of benefit from
the product. The best that the monopolist can do is to design the packages so
that high-benefit consumers will not want to buy package A even though it costs
less per unit than B. They will want to purchase B at the proportionally higher
price because it provides more of the good. Of course they will not want B if the
cost per unit is too high. Designing the packages and choosing the price tags is
not a simple task. The trick is to design the packages and select the prices so that
a high-benefit customer will choose to buy the package the monopolist designed
for that person.

Of course, our analysis applies only to cases for which the high-benefit con-
sumer is unable to buy multiple A packages, and thereby get the same quantity as
in a B package, but at a lower total cost. For instance, the monopoly public utility
can control delivery and will offer a consumer an all-or-nothing choice between
the two packages. When “quantity” actually refers to the “amount of quality”
our assumption is satisfied because two low-quality appliances do not amount



282 Hidden Characteristics

to the same thing as a single high-quality appliance. We begin the analysis by
specifying production costs and consumer preferences.

5.1 The Model
The model has two commodities, X and Y. The former is the one that we’re inter-
ested in, and we can interpret it as an automobile or electricity and so forth. In
fact, X is anything that can’t be unbundled. Y denotes money, or generalized pur-
chasing power. That is, Y is a composite commodity, representing expenditure
on goods other than commodity X.

Customer i’s utility function is Ui = Bi(xi) + yi where xi and yi are the
amounts of X and Y, respectively, consumed by individual i. The benefit that
i derives from xi units of X is Bi(xi). That is, Bi is a benefit function. We assume
that the marginal benefit of X is positive for all xi but that marginal benefit
decreases and as xi increases. Suppose that each individual is endowed with
(begins with) ωi units of Y. If i pays a total of Ci dollars for xi units of commodity
than X then i’s utility will be Ui = Bi(xi) + ωi − Ci . Because ωi is constant we
need only compute the change in utility, which is Ui = Bi(xi) − Ci assuming
that Bi(0) = 0. If Ui is positive then i will purchase the package (xi , Ci) or some
more attractive package if one is available, but if Ui < 0 then i will not purchase
(xi , Ci) because it would cause utility to decline. This takes us to the participation
constraint.

DEFINITION: The participation constraint
If the monopolist’s profit-maximizing strategy involves consumer i purchas-
ing package (xi , Ci) then Bi(xi) − Ci ≥ 0 must hold.

Finally, we choose units so that one unit of X costs $1 to produce. Then
if there are n individuals, and each individual i, purchases xi units of X, the
producer’s cost will be x1 + x2 + · · · + xn. Its revenue is the total amount paid:
C1 + C2 + · · · + Cn. The profit-maximizing menu may contain many packages
for which xi = 0 = Ci .

DEFINITION: The firm’s profit
There are n consumers. If the monopolist offers the menu of packages (x1, C1),
(x2, C2), . . . , (xn, Cn) and each consumer buys exactly one of the packages,
then profit is

C1 + C2 + · · · + Cn − x1 − x2 − · · · − xn

because one unit of X costs $1 to produce.

There are n consumers, but there will typically be fewer than n types. For
instance, consumers 1, 2, . . . , m may be of one type and consumers m+1,
m+ 2, . . . , n another.
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∂5.2 Full information equilibrium
To give us a point of comparison, begin with the full information assumption
that the monopolist knows each person’s benefit function Bi . What package
should be offered to person i? Let x0

i be the value of xi that maximizes Bi(xi) −
xi , which is the consumer’s benefit less the monopolist’s cost of producing xi .
That is, x0

i solves B′
i(xi) = 1. (Note that diminishing marginal benefit means that

the second derivative of the function that we are maximizing is negative, and
hence the first-order condition is sufficient for a global maximum.) Suppose
the monopolist offers i the package (x0

i , Bi(x0
i ) − ε). That is, the total cost to i

of x0
i units of X is C0

i = Bi(x0
i ) − ε. Here ε is a very small positive number, so

the charge is just slightly less than the total benefit. Person i faces a take-it-
or-leave-it proposition. Because Ui = Bi(x0

i ) − Ci = Bi(x0
i ) − [Bi(x0

i ) − ε] = ε,
which is positive, the monopolist’s offer will be accepted. This is the profit-
maximizing strategy under the full information assumption that there is no
hidden characteristic problem.

Why is it profit maximizing under full information? If Ui < 0 then i will not
buy the package and the monopolist will receive zero profit from i. Therefore, the
monopolist must respect the participation constraint Bi(xi) − Ci ≥ 0. As long as
Ci is substantially below Bi(xi) the monopolist can raise Ci without violating
iUi > 0 and sell the same xi units at a higher price. Therefore, profit maxi-
mization requires Ci almost equal to Bi(xi). Let’s approximate and set Ci exactly
equal to Bi(xi). But we do not know what xi is. The monopolist wants to maximize
Ci − xi but Ci = Bi(xi) under profit maximization. Because x0

i denotes the level
of xi that maximizes Bi(xi) − xi we have indeed found the profit-maximizing set
of take-it-or-leave-it offers.

Surprisingly, we have an efficient outcome even though the monopolist has
succeeded in extracting all the benefit from each consumer. (Set ε = 0 for con-
venience.) Ui = Bi(x0

i ) − C0
i = Bi(x0

i ) − Bi(x0
i ) = 0. Therefore, each consumer

pays a charge equal to the benefit the consumer derives from the X received and
there is no net gain in utility. Nevertheless, the outcome is efficient if all the prof-
its are returned to the community. (The company’s shareholders are members
of the community.) To prove this, we show that any outcome satisfying xi = x0

i

for all i actually maximizes total utility,
∑

i Ui , as long as
∑

yi , the total amount
of Y consumed, equals the total amount left over after the required

∑
x0

i units
are used in the production of X. That is, as long as

∑
yi = ∑

ωi − ∑
x0

i holds.
(
∑

denotes summation over all individuals.)
∑

Ui =
∑

[Bi(xi) + yi] =
∑

Bi(xi) +
∑

yi

=
∑

Bi(xi) +
∑

ωi −
∑

xi ,

and this is maximized by setting B′
i(xi) − 1 = 0 for arbitrary i. We know that x0

i

is the unique solution to this equation.
Now set

∑
Ui = ∑

[Bi(x0
i ) + yi]. Then

∑
Ui = ∑

Bi(x0
i ) + ∑

yi , and this total
is preserved if we redistribute commodity Y among the consumers as long as the
total

∑
yi is unchanged. Therefore, any outcome maximizes total utility if xi = x0

i

for each i and
∑

yi = ∑
ωi − ∑

x0
i . Therefore, any such outcome is efficient: If
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we could make one person’s utility higher without lowering anyone else’s we
could make the sum higher, which is impossible. (See Section 5.1 of Chapter 2
on this point.)

In general, any outcome that has one of the agents extracting all of the surplus
from the other agents is efficient. Once we specify formally what we mean by
“extracting all the surplus” it is easy to prove efficiency. Suppose that each agent
i has some initial level of utility μi. Agent 1 extracts all of the surplus from each of
the other agents if, for all i > 1, the final level of utility is equal to μi, the starting
level. In symbols, agent 1 chooses the outcome so as to maximize U1 subject
to the constraint Ui ≥ μi for all i > 1. The solution s∗ to this problem must be
efficient: If s∗ is not efficient then there is a feasible outcome t∗ that gives one
person more utility than s∗ and gives everyone at least as much utility as s∗. If
U1(t∗) > U1(s∗) we contradict the fact that s∗ maximizes U1 subject to Ui ≥ μi

for all i > 1, because Ui(t∗) ≥ Ui(s∗) ≥ μi for i > 1. If Uj (t∗) > Uj (s∗) for some
j > 1 then we can extract a tiny amount of commodity Y from person j and
still have Uj > Uj (s∗), provided that we are careful to confiscate a sufficiently
small amount of Y. If we then give this tiny amount of Y to person 1 we will
have U1 > U1(s∗), again contradicting the fact that s∗ solves the constrained
maximization problem, because Ui(t∗) ≥ Ui(s∗) for i > 1.

Before determining the equilibrium outcome in the real-world interpretation
of our model, with asymmetric information, we present the simple example that
is used to illustrate the theory.

Example 5.1: Two preference types

There are exactly two types of consumers, H (high benefit) and L (low ben-
efit). Suppose UH = 4

√
xH + yH and UL = 2

√
xL + yL . At the full information

profit-maximizing equilibrium we have Ci = Bi for i = H and i = L. There-
fore, a firm chooses xH to maximize 4

√
xH − xH . The first derivative of this

function is (2/
√

xH ) − 1, and the second derivative is negative. Therefore, we
solve (2/

√
xH ) − 1 = 0 to get x∗

H = 4. Similarly, x∗
L maximizes 2

√
xL − xL . The

first derivative is (1/
√

xL ) − 1, and when we set that equal to zero we get x∗
L = 1.

Then C∗
H = BH(x∗

H) = 4
√

4 = 8 and C∗
L = BL (x∗

L ) = 2
√

1 = 2. The full informa-
tion equilibrium has the monopolist selling 4 units of X to each H type, on a
take-it-or-leave-it basis, at a price of $8 for all 4 units, and selling 1 unit of X to
each L type at a price of $2, also on a take-it-or-leave-it basis. If the number of
H types and L types is nH and nL , respectively, then the firm’s profit is

nH × (8 − 4) + nL × (2 − 1) = 4nH + nL .

Verify that nH × UH + nL × UL (total utility) is maximized however the total profit
is divided between the individuals. (If nH = 1 = nL then profit is 5.)

Example 5.1 will be the subject of our inquiry for the rest of Section 5.
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∂5.3 Asymmetric information equilibrium
We continue our investigation of Example 5.1, but we now drop the full infor-
mation assumption that the individual with utility function BH(x) + y can be
identified. We do assume, however, that the monopolist knows the functional
forms BH and BL . Of course, it does not know which person has which function.
We also assume (for convenience) that there are exactly as many H types as L
types. Consequently, total profit is maximized when the firm has maximized the
profit from a pair of individuals consisting of one H and one L. When we use the
word profit from now on we will be referring to the profit from sales to one H-L
pair. If it helps, you can assume that the market consists of one H person and
one L person.

An offer (α, β) is a specification of the amount α of X in the package and
the price β of the package. What is the profit-maximizing menu of offers? If
the monopolist simply offers each person a choice of (1, 2) and (4, 8), the profit-
maximizing strategy under full information, the H types will choose the former:

UH(1, 2) = 4
√

1 − 2 = 2 but UH(4, 8) = 4
√

4 − 8 = 0.

The L types will choose (1, 2) also:

UL (1, 2) = 2
√

1 − 2 = 0 but UL (4, 8) = 2
√

4 − 8 = −4.

The monopolist’s profit will be 2 + 2 − (1 + 1) = 2, which is not a maximum even
under the assumption that BH and BL cannot be identified by the monopolist.
The monopolist can continue to offer (1, 2), the contract that extracts all the
surplus from the L types, but design a contract (xH , CH) such that the H types
will not prefer (1, 2), and it will otherwise extract as much surplus as possible.
The first consideration requires

4
√

xH − CH ≥ 4
√

1 − 2.

This is called a self-selection, or incentive compatibility, constraint.

DEFINITION: Self-selection constraints
If the producer wants the H type to choose xH and the L type to choose xL

then the respective package costs CH and CL must satisfy

UH(xH , CH) ≥ UH(xL , CL )

and

UL (xL , CL ) ≥ UL (xH , CH).

We justify this later, but let’s assume that in computing the profit-maximizing
strategy, we don’t have to worry about the L types buying the package designed
for the H types. (“If they want to buy the upscale package, let ’em.”) The monop-
olist will maximize CH − xH subject to 4

√
xH − CH ≥ 2. If 4

√
xH − CH > 2 then

CH can be increased without violating the self-selection constraint and without
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changing xH . This will increase profit, so profit maximization requires 4
√

xH −
CH = 2, or CH = 4

√
xH − 2. Then the monopolist maximizes 4

√
xH − 2 − xH .

Setting the first derivative equal to zero gives us 2/
√

xH = 1, and thus xH = 4.
(This does yield a maximum because the second derivative is negative.) The
same level of service is provided (this is a consequence of our simple utility func-
tions) but this time at a charge of CH = 4

√
xH − 2 = 6. The monopolist’s profit is

6 + 2 − (4 + 1) = 3, which is lower than under the full information assumption
of voluntary disclosure of one’s type (5) but higher than 2, which is the profit that
results when the “full information” solutions are packaged and the consumers
are allowed to choose between them.

The strategy of placing packages (1, 2) and (4, 6) on the market and letting the
individual choose results in an efficient outcome: We have already shown that
xL = 1 and xH = 4 maximizes UL + UH . We still haven’t reached the maximum
profit, however. Suppose the monopolist offers only one package, (4, 8). Four
units of X at a total cost of $8, take it or leave it:

UL (4, 8) = 2
√

4 − 8 = −4 and UH(4, 8) = 4
√

4 − 8 = 0.

Consumer L will be better off not buying the package and would not buy even
if the cost were reduced slightly. Consumer H would buy the package because
it satisfies H’s participation constraint—with no room to spare: UH(4, 8) = 0.
The firm sells one package—to consumer H—and its profit is 8—4 = 4. This is the
highest profit yet, apart from the full information solution. (In fact, to induce the
H type to buy, the cost of $8 would be reduced slightly, and the resulting profit
would be slightly less than $4, say $3.99.)

To show that the strategy of offering only one package, (4, 8), actually
maximizes profit, subject to the participation and self-selection constraints,
we begin at the beginning: Maximize CL + CH − xL − xH subject to H’s self-
selection constraint 4

√
xH − CH ≥ 4

√
xL − CL and the participation constraints

4
√

xH − CH ≥ 0 and 2
√

xL − CL ≥ 0.
Why don’t we have to worry about L’s self-selection constraint? Because

2
√

xL − CL ≥ 0 by the participation constraint, and thus 2
√

xL − CL ≥ 2
√

xH −
CH is automatically satisfied if 2

√
xH − CH ≤ 0. But suppose that CH < 2

√
xH .

Then CH < 4
√

xH and 2
√

xL − CL ≥ 2
√

xH − CH > 0, and thus CL < 2
√

xL .
Because CH < 4

√
xH and CL < 2

√
xL we can increase both CL and CH by the

same amount (keeping xL and xH fixed) without violating the participation con-
straints, provided that the increase is sufficiently small. Moreover, the H and L
self-selection constraints will still be satisfied because the left-hand and right-
hand sides will fall by the same amount in each one. Profit will have increased
without violating any of the constraints. Therefore, we will not have CH < 2

√
xH

at the profit-maximizing outcome. Consequently, in searching for the profit-
maximizing decision we can ignore L’s self-selection constraint.

The next step is to show that profit maximization implies CL = 2
√

xL . If
2
√

xL − CL > 0 then we can increase CL without violating 2
√

xL − CL ≥ 0. If we
don’t change any of the other variables we will have increased profit, and H’s
self-selection constraint will still hold as a consequence of increasing CL alone.
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Therefore, profit maximization requires 2
√

xL − CL = 0, and hence CL = 2
√

xL .
In that case, H’s self-selection constraint reduces to

4
√

xH − CH ≥ 4
√

xL − 2
√

xL = 2
√

xL .

It follows from 4
√

xH − CH ≥ 2
√

xL that H’s self-selection constraint must hold
as an equality, and hence CH = 4

√
xH − 2

√
xL . If, to the contrary, 4

√
xH − CH >

2
√

xL holds then profit could be increased by increasing CH without changing
xH or xL , and this could be done without violating H’s self-selection constraint.
(Note that H’s participation constraint 4

√
xH − CH ≥ 0 will automatically hold if

2
√

xL − CL ≥ 0 and H’s self-selection constraint is satisfied.) Now that we have
CH = 4

√
xH − 2

√
xL we can express profit as

CH + CL − xH − xL = 4
√

xH − 2
√

xL + 2
√

xL − xH − xL

= 4
√

xH − xH − xL .

All of the constraints have been embodied in the objective function 4
√

xH − xH −
xL . Obviously, maximization of this expression requires xL = 0, and hence the
participation constraint implies CL = 0. Then we want to maximize 4

√
xH − xH .

The first derivative is 2/
√

xH − 1. When we set that equal to zero we get xH = 4.
Then CH = 4

√
xH − 2

√
xL = 8.

The asymmetric information equilibrium of the market of Example 5.1

The equilibrium has xH = 4, CH = 8, and xL = 0 = CL . Profit is 8 − 4 = 4.

Interpret xi as the model designed for the consumers in market group i, with
the model identified by the “amount” of quality that it provides. We can see why

Volkswagen stopped producing the Bee-
tle for export to the United States and
Canada in the 1970s at the height of
its popularity. The decision came in the
wake of legislation in both countries
that introduced strict safety and emis-
sion standards that would have substan-
tially increased the cost of producing the
Beetle. The fourth problem set question
asks you to show that an increase in the
cost of production can result in the man-
ufacturer canceling a popular product
line, retaining only the more expensive
version.

profit-maximizing firms sometimes discon-
tinue production of a popular model if it is at
the low quality end of the spectrum. Doing so
relaxes the constraint on the price of the luxury
model. This gives a new interpretation to the
automobile manufacturer’s boast that features
that used to be optional are now standard. (In
this case, low quality does not mean unreliable;
it simply means less luxurious.)

Does the material in this section shed any
light on why publishers of textbooks stop sell-
ing the first edition of a book after the second
edition appears, even when they have a stock of
first editions that could be sold at a discounted
price?

The profit-maximizing solution is not efficient. We don’t know the utility
level of each individual because we don’t know the share of profit received by
each. But we can compute the change in utility for each as a result of an increase
in the production of X by one unit, if that unit is delivered to person L and at
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the same time L’s consumption of Y is reduced by one unit. If we do not change
xH or yH we have a feasible outcome. Certainly, H’s utility will not change. The
change in L’s utility is 2

√
1 − 1 = 1, so L is better off and H’s utility is unchanged.

Note that profit is unchanged: The unit of Y needed to finance the production
of the additional unit of X is contributed by L, who also receives the extra unit
of X. Because profit is unchanged, there is no change in the income of the firm’s
shareholders, and hence no change in the utility of anyone in society, other
than L.

This is a special case of a general phenomenon. The strategy that maximizes
profit subject to self-selection constraints typically results in inefficiency. If we
ignore the self-selection constraints and simply maximize profit subject to the
participation constraints then we get an efficient outcome because we are maxi-
mizing one agent’s payoff subject to preventing the payoff of everyone else from
falling below a given level. (See the argument just prior to Example 5.1.) How-
ever, in the real (asymmetric information) world, we must add self-selection
constraints, and hence the resulting profit-maximizing solution is constrained
away from an efficient one.

There is a defect in our argument that the asymmetric information equi-
librium can be modified to increase one person’s utility without diminishing
anyone else’s utility. We assumed that the government or some central agency
could identify the consumer with utility function UL . But if this is possible
then the firm can do so as well, and it will impose the full information profit-
maximizing outcome which is efficient. (The identity of H is known after the
individual choices are made, but if H knows in advance that this disclosure will
be used to modify the outcome then H would have behaved differently in the
first place.)

Can we find a way of giving individuals more utility than they enjoy at the
asymmetric information equilibrium without employing the full information
assumption? Let’s try: Let R be the share of the profit received by H at the asym-
metric information equilibrium. The total profit is 4, so the share of the profit that
goes to L is 4 − R. The utility levels at the asymmetric information equilibrium
are

UL = 2
√

0 + ωL + 4 − R = ωL + 4 − R

and

UH = 4
√

4 + ωH + R − 8 = ωH + R.

(Note that R could be negative.) If we set xH = 4 and xL = 1 can we satisfy the
self-selection constraints 4

√
4 − CH ≥ 4

√
1 − CL and 2

√
4 − CH ≤ 2

√
1 − CL ?

Both will hold if and only if we have 2 ≤ CH − CL ≤ 4. Set CL = 1 and see what
happens. Then CH = 4 will satisfy the constraints, and we have each person
paying for what he or she consumes.

The government doesn’t have to identify the individuals; it just has to make
the two packages available, and in their self-interest consumer H will choose the
package with 4 units of X and a price tag of $4 and L will choose the package with
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1 unit of X and a price tag of $1. (A profit-seeking firm wouldn’t do this because
it yields a profit of 0.) The resulting utility levels will be

UL = 2
√

1 + ωL − 1 = 1 + ωL

and

UH = 4
√

4 + ωH − 4 = 4 + ωH .

Do we have 1 + ωL > ωL + 4 − R and 4 + ωH > ωH + R? If so, the utility of both
L and H has increased.

The inequalities hold if 3 < R < 4, but how can R be determined? How can the
government determine what share of the profit goes to the individual with utility
function UH under the asymmetric information assumption? Of course, after
the individuals are observed to make their choices the government will know
who’s who, and then it can transfer some Y between the consumers to ensure
that both have a higher level of utility than under the asymmetric information
equilibrium. That is, the government can choose yL and yH so that

UL = 2
√

1 + yL and UH = 4
√

4 + yH ,

yL + yH = ωL + ωH − 5,

2 + yL > ωL + 4 − R and 8 + yH > ωH + R.

If we set yL = −yH + ωL + ωH − 5 then the desired inequalities are

2 − yH + ωL + ωH − 5 > ωL + 4 − R

and

8 + yH > ωH + R.

Set yH = ωH + R − 7.5. Now we have UH > ωH + R. (Assume ωH ≥ 7.5 to
ensure yH ≥ 0.) Also, yL = −yH + ωL + ωH − 5 = ωL + 2.5 − R, and hence

UL = 2 + yL = ωL + 4.5 − R > ωL + 4 − R.

So, we can find transfers that do the job. However, if the consumers know that
the transfers are part of the utility-enhancing change, and they know that the
size and direction of the transfers depend on their choices, the incentives for
both to choose the package targeted for each of them are undermined.

Asymmetric information induces an equilibrium that is not efficient, but
we’re not sure how to modify the rules of the game to guide the community
to an efficient outcome that leaves everyone better off than under the profit-
maximizing asymmetric information equilibrium or even if it is possible to do so.

Source
The example of this section is based on Arrow (1984).

Problem set

1. Let UH = 8
√

xH + yH and UL = 6
√

xL + yL . The monopolist offers two pack-
ages on a take-it-or-leave-it basis. Package ML is designed for consumer L



290 Hidden Characteristics

and offers 9 units of X at a total cost of $18. Package MH is designed so that
consumer H will not prefer ML , and MH maximizes profit given that selection
constraint. Derive MH .

2. Electricity is provided by a monopoly. There are two consumers, H and L, with
utility functions UH = 6 ln(xH + 1) + yH and UL = 4 ln(xL + 1) + yL . Each
unit of X costs $1 to produce.

A. Compute the full information equilibrium. Determine the monopo-
list’s profit.

B. Assume that the monopolist continues to offer the package designed
for consumer L in your solution to A. What is then the profit-
maximizing package associated with consumer H, assuming that the
monopolist cannot determine who H is or who L is? What is the asso-
ciated profit?

C. Determine the asymmetric information equilibrium and the monop-
olist’s profit.

D. Rank the three profit levels.

3. Rework question 2 when each unit of X costs $2 to produce, leaving all other
features of the model unchanged.

4. There are two consumers, H and L, with utility functions UH = 20 ln(xH +
5) + yH and UL = 15 ln(xL + 5) + yL . It costs x dollars to produce x units of
commodity X. Show that xL > 0 at the asymmetric information equilibrium
but xL = 0 when the cost of production doubles. Is the framework of this
section appropriate if commodity X is an automobile?

6 JOB-MARKET SIGNALING

When the hidden characteristic is a quality variable, and quality can be either
good or bad, producers of the high-quality version have an incentive to signal
their quality. But would the signal be credible? Only if the low-quality supplier
cannot gain by transmitting the same signal. When would this be possible?
Typically signaling consumes resources, and it is substantially more costly for
the supplier of the low-quality commodity to transmit the same signal as the
supplier of the high-quality commodity. Under the right conditions, the addi-
tional cost to those who have only low-quality items to sell motivates them
to provide a weaker signal and hence reveal their type. However, because the
signal imposes real costs on the individual and on society, truthful revelation
comes at a price: The resources consumed in signaling do not provide any
direct utility. We show that there is a range of signals consistent with equilib-
rium, and often the same result could have been obtained with a lower invest-
ment in signaling. There are even cases in which everyone invests in signal-
ing but the signaling doesn’t distinguish the high-quality from the low-quality
producers.
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We use the labor market to illustrate. The signal is the amount of training
that an individual has undergone. Training is costly and individuals who know
themselves to be innately intelligent and hard working (relatively speaking) are
more likely to graduate and be certified. Therefore, the population of gradu-
ates contains a disproportionately high number of individuals who are innately
productive—that is, intelligent and hard working. In other words, training can
be used to sort workers into H types, who have relatively high ability and pro-
ductivity, and L types, who have relatively low ability and productivity. A simple
model makes the point.

6.1 To make a long story short
High-quality (H type) workers generate substantially more profit for the firm
than low-quality workers (L types) because H types are more productive.
Although individuals (and their parents) make choices during the formative
years that help to determine a person’s type, at the time an employer makes a
hiring decision the worker’s type has been determined. Therefore, the employer
faces a hidden characteristic problem. To attract H types a firm can offer a
higher wage: WH > WL , where WH is the wage paid to H types and WL is
the wage paid to L types. (We refer to the payment to the worker as a wage,
but it is in fact the present value of the expected compensation—including
benefits—over the lifetime of the job.) But the L types cannot be expected
to truthfully identify themselves, claiming the lower wage WL . If we suppose
that production takes place in teams in a setting that makes it impossible to
identify the contribution of individuals in the short run, then it is not possible
for a manager to directly separate the L types from the H types when they are
hired.

Suppose, however, it costs H types CH dollars to graduate from college and
it costs L types a higher amount, CL . The L types may take one or two extra
semesters to graduate. They will also have to work much harder in high school
to get admitted to a good college. Then it is possible to induce the L types to
reveal themselves in spite of their preference for anonymity. The firm simply
pays a salary WH to anyone who has a graduation certificate and a salary WL to
workers without a certificate. If WH − CL < WL the L types will not pay the cost
CL necessary to obtain a certificate; it is more advantageous to obtain the lower
salary WL without the additional education required to qualify for the higher
wage. (To simplify, we initially assume that training is not productive; it serves
only to sort the two types.) If WH − CH > WL then H types will incur the cost CH

of obtaining a graduate certificate, obtaining the higher net salary WH − CH .
Note that both conditions hold if CH < WH − WL < CL . In particular, CH must
be less than CL . (All monetary amounts are discounted present values.) If
WH = 1000 and WL = 600 then CH < 400 < CL is required for signaling to reveal
a worker’s characteristic. This gives a range of equilibria, many of which will
be inefficient because the signaling could be done at lower cost to society.
This phenomenon will be encountered in the more sophisticated model to
follow.
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A firm will pay a huge sum for a celebrity
to advertise its product, even when con-
sumers know that the testimony has
been paid for and probably does not rep-
resent the celebrity’s true opinion. The
point is to signal the firm’s confidence in
the quality of its product. The producer
cannot recover its advertising expendi-
ture if consumers find that its product is
inferior and hence stop buying it. Intro-
ductory offers at very low prices have
the same effect, but in that case there is
a danger that the consumer will inter-
pret the low price as evidence of low
quality.

We have shown that workers can pay for
and receive training in equilibrium, even when
that training does not enhance productivity.
What’s missing from the story is a discussion
of employer profit maximization, which will
depend in part on employer beliefs about the
relationship between the amount of training
attained and the worker’s ability. Therefore, we
now consider a more elaborate model with an
explicit role for firms. The amount of training
(measured in years) can have more than two
values, and training can contribute directly to
productivity. The richer model will also exhibit
different kinds of equilibria, and equilibria with
different levels of educational attainment.

6.2 A general model
There are two types of workers, H types and L types. It is common knowledge
that the fraction ρ of the population is type H. Worker i(= H or L) has the utility
function

Ui(x, y) = Bi(x) + y

where x is leisure consumption and y the total market value of all other goods
and services. Although x and y will typically be different for H and L, we do not
often use subscripts on x or y. The identity of the worker will be clear from the
context. We assume that the marginal utility of leisure consumption is positive
for all x, but if x′′ > x′ then the marginal utility of leisure is lower at x′′ than at x′.
(You can follow this section without knowing any calculus, but if you do know
calculus a few shortcuts are available. We assume B′

i(x) > 0 and B′′
i (x) < 0 for all

x.)
We let T denote the individual’s time endowment. For instance, if the basic

period is a day and we measure time in hours, then T = 24. If e is the amount
of time it takes for the individual to acquire an education, then x = T − e. This
means that Ui will fall as e increases at an increasing rate because of the dimin-
ishing marginal utility of leisure assumption. If e ′′ > e ′ then the marginal utility
of leisure is higher at e′′ than at e′ because leisure consumption is lower at e′′. That
is, the marginal cost of education is positive, and the marginal cost increases as
education increases. The cost of acquiring an education will play a central role,
so we simplify and write

Ui = w(e) − ci(e)

where w is income, as a function of years of education e, and ci(e) is the amount
of leisure sacrificed when e years of education are attained. The function w(e) is
the compensation schedule posted by firms.
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Example 6.1: A simple utility function

Let U = 3
√

x + y. That is, B(x) = 3
√

x. We have B(0) = 0 and B(4) = 6. Then
B = 6, and B/x = 6/4 = 1.5. And B(9) = 9, so when we increase x from
4 to 9 we have B/x = 3/5 = 0.6. The marginal utility of leisure is lower at
higher values of x. If T = 24 then c(8) = B(24) − B(16) = 14.7 − 12 = 2.7. And
c(10) = B(24) − B(14) = 3.47. Consequently, c/e = 0.76/2 = 0.38. However,
when e = 12 we have c(12) = B(24) − B(12) = 4.30. When e increases from 10 to
12 we have c/e = 0.83/2 = 0.415. The marginal cost of acquiring an educa-
tion has increased.

A key assumption is that it is more costly for an L type to achieve a given
education level because an L type has to put in more hours studying (over more
semesters, perhaps) than an H type. Let mi(e) be the value of the marginal prod-
uct of individual i. We can have mi increasing with e, to reflect the fact that
productivity increases with education. By definition, for any level of education
e, the high-ability (H) type has a higher marginal product than the low-ability
(L) type.

DEFINITION: The basic model
Type i’s utility function is Ui = w(e) − ci(e) where w(e) is the pay offered by
the employer as a function of e, the level of education attained, and ci(e) is
the cost of acquiring e. We assume that for any education level e we have
cH(e) < cL (e) and mH(e) > mL (e), where mi(e) is the value of the marginal
product of type i.

Example 6.2: Two simple cost functions

We use the following cost functions for the rest of Section 6:

cH(e) = 1/2 e2 and cL (e) = 3/4 e2.

We can derive these cost functions from the function B(x). For instance,
suppose that BH = xT − 1/2 x2, where T is the time endowment. Then

cH(e) = B(T) − B(T − e) = T 2 − 1/2T 2 − [(T − e)T − 1/2(T − e)2]

= 1/2 e2.

Of course, education is more than a signal; it also enhances productivity.
However, to get some quick insight we temporarily assume that each type’s
value of the marginal product is independent of the highest level of education
reached. This assumption is dropped in Section 6.3.
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Example 6.3: Education is not productive

Let mL = mand mH = 2m, where m is some positive constant. What is the
equilibrium? There are many equilibria; in fact there are two types of equilibria,
pooling and separating, as we are about to see.

DEFINITION: The two kinds of equilibria
In a pooling equilibrium the two types of workers get the same amount
of education, and each receives the same pay, namely the weighted average
marginal product, weighted by the proportion of each type in the work force.
In a separating equilibrium, the H types get more education than the L types,
and the firms pay more to the workers with the higher level of education.

Pooling equilibria
All workers obtain the same number of years of schooling and are paid the
same wage. What values of the wage and of e are consistent with worker utility
maximization and firm profit maximization?

Recall that the proportion ρ of the population is H type, so the expected (or
mean) productivity is ρ × 2m+ (1 − ρ) × m = mρ + m. At this point we import
a classical result from the theory of competitive labor markets: The workers are
paid the value of their marginal product. Therefore, in this model mρ + m is
paid to each worker at equilibrium if the same wage is paid to all.

Pooling equilibrium wage schedule offered by each firm, based on a given
critical level g of education:

� If e < g assume that the worker is L type and pay him or her m.
� If e ≥ g, assume that the worker is H type with probability ρ and L type

with probability 1 − ρ and offer the wage mρ + m.

What we have here is an equilibrium system of beliefs in addition to the usual
market clearance property of equilibrium. The employers’ demand schedules for
workers are functions of their beliefs. At equilibrium, employers’ beliefs must
be confirmed by observation—of the amount of output produced, which in
turn is a function of the wage schedule, via worker’s decisions about how much
education to acquire. At equilibrium, we have a completed circle.

What decision will an H-type individual make when confronted with this
wage schedule? There is no point in choosing e > g because that would increase
training costs without bringing any increase in pay. Therefore, H and L will each
set e = g if the following conditions hold for H and L respectively:

mρ + m− 1
2

g2 > m and mρ + m− 3
4

g2 > m.

Obviously, the first inequality will hold if the second does.
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Example 6.4: A third of the labor force is H type

We continue with the basic example but explicitly examine the case ρ = 1/3. Then
L types will acquire g units of education if 1/3 m+ m− 3/4 g2 > m, or

g2 <
4
9

m, or g <
2
3

√
m.

H types will also set e = g if this inequality holds.
Suppose that m = 9. Then we have a pooling equilibrium for any value of

g satisfying 0 ≤ g < 2, with a wage of 12 to each worker. Each worker will be
optimizing by setting e = g and taking a wage of 12 instead of 9. (Verify: Because
g < 2, UH is greater than 12 − 1/2(2 × 2) = 10 > 9 when eH = g, and similarly UL

is greater than 12 − 3/4(2 × 2) = 9 when eL = g.) Under competitive conditions
each firm pays a wage equal to 12, the expected value of the per capita marginal
product. The firm’s subsequent observations confirm this expectation. Every-
one obtains g years of schooling, so the productivity of the group with g years of
schooling will be observed to be 12 per capita. We are at equilibrium. This corre-
sponds to a cohort of individuals with the same undergraduate degree earning
the same pay in spite of their different abilities.

With full information, every worker would be required to set e = 0 for effi-
ciency, if education makes no contribution to productivity. With asymmetric
information we can have an equilibrium with each worker spending a substan-
tial amount of time in higher education. (If average productivity per worker is 12,
then even g = 1 is a substantial investment in education.) But we’re not finished
with the analysis. Continue to assume that education is not productive.

Separating equilibria
Suppose H types obtain more education in equilibrium than L types. Let eH and
eL denote the equilibrium education levels of H types and L types, respectively.

Separating equilibrium wage schedule offered by each firm, based on a given
critical level g of education

� If e < g assume that the worker is L type with probability 1 and pay m.
� If e ≥ g, assume that the worker is H type with probability 1 and pay 2m.

What is the worker’s response? Setting e > g just increases the worker’s costs
without any reward in terms of higher salary, so no worker will choose more
than g years of schooling. Similarly, if 0 < e < g then the worker will receive
the same wage as someone who sets e = 0. Therefore, regardless of type, the
worker will set e = 0 or e = g. Table 5.4 displays the ingredients of a worker’s
decision.
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A separating equilibrium must satisfy the self-selection constraints: Each type
must find it advantageous to send a signal that is different from the one trans-
mitted by the other type.

Table 5.4

e UH UL

0 m m
g 2m− 1/2g2 2m− 3/4g2

DEFINITION: Self-selection (or incentive compatibility) constraints
At a separating equilibrium the outcome obtained by the H types is not
preferred by the L types to the outcome they receive. Similarly, the outcome
obtained by the L types is not preferred by the H types to the outcome they
receive.

A separating equilibrium then implies the following incentive compatibility
constraints:

2m− 1
2

g2 > m and m >2m− 3
4

g2.

To have a separating equilibrium, an H type must get higher utility with e = g
than with e = 0, and the L type must get higher utility with e = 0 than with e = g.
The two inequalities reduce to

3
4

g2 > m >
1
2

g2.

Example 6.5: The L type’s value of marginal product is nine

If m = 9 then the last inequality becomes
√

12 < g <
√

18. If g is between 3.464
and 4.243 then H types will set e = g, and the L types will set e = 0. Each H is
paid 18 and each L is paid 9.

The critical g has to be large, to discourage L types from setting e = g, but
not so large as to induce H types to forego higher education. But if 3/4 g2 > m >
1/2 g2 then only H types will obtain higher education (i.e., will set e = g) and
firms’ expectations will be confirmed. Again we have a range of equilibria in
which there is investment in education even though education does not enhance
productivity. In a model in which education does contribute to productivity, one
would expect to find investment beyond the point justified by considerations of
productive efficiency. This is what we encounter in the next section.
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6.3 When education is productive
For both the H types and the L types value added increases with e, but an addi-
tional unit of higher education adds more to the productivity of an H type than
it does to the productivity of an L type.

Example 6.6: Marginal product is a function of education

We work out the equilibria for the case mH(e) = 6e and mL (e) = 3e. We continue
to assume that the cost functions are cH(e) = 1/2 e2 and cL (e) = 3/4 e2.

To establish a benchmark case, assume temporarily that the worker’s type
(ability) is directly observable—the full information case.

Full information equilibrium
Each worker i will be confronted with the wage schedule mi(e), because the
worker’s type is known and competition ensures that the wage will equal the
value of the individual’s marginal product. If workers’ utility is not maximized
at e then we can’t be at equilibrium. Another firm will offer the worker a contract
that requires the utility-maximizing value of e. This can be done in a way that
increases the worker’s utility and also the profit of that firm attempting to attract
the worker.

The H-type worker’s utility-maximizing level of e is obtained by solving

maximize w − c = 6e − 1/2 e2.

Table 5.5

e Pay UH UL

6 36 18 9
2 6 4 3

To maximize this quadratic we set
e = 6/(2 × 1/2) = 6. (The first derivative is 6 − e.
Because the second derivative is negative,
utility maximization requires e = 6.) Then wH ,
the H type’s pay, is 36 because mH(6) = 36. Sim-
ilarly, at equilibrium the L-type worker’s edu-
cation level will maximize w − c = 3e − 3/4 e2

and hence will set e = 3/(2 × 3/4) = 2. (The firstThe gap between the average earnings
of high school and college graduates
almost doubled between 1979 and 1991
(Mishel and Bernstein, 1992). Much of
this increase in the rate of return to
education is attributable to training in
the use of computers. The proliferation
of computers accounts for at least one-
third, and perhaps as much as one-half,
of the increase in the rate of return to
education (Krueger, 1993).

derivative of the objective function is 3 − 1.5e,
so e = 2 at the maximum.) Then wL = 6
because mL (2) = 3 × 2. All of this is displayed
in Table 5.5.

Note that if we drop the full information
assumption, L types would masquerade as H
types because they prefer a wage of 36, even
though it would cost 3/4 × 6 × 6 = 27 to obtain
the 6 years of education necessary to pass as
H types (36 − 27 = 9, which is greater than
6 − 3/4 × 2 × 2 = 3). Therefore, the full infor-

mation outcome is not an equilibrium in an asymmetric information world.
The firms could not pay a wage of 36 to everyone with 6 years of higher



298 Hidden Characteristics

education because, when ρ = 1/3, the average value of marginal product is only
1/3 × 36 + 2/3 × 18 = 24. Therefore, we need to work out the asymmetric infor-
mation equilibria.

Pooling equilibria
Both H and L types choose g years of education, with g to be determined. Because
education is the only observable variable that depends on ability, each worker
is paid the same wage, the expected value of marginal product when everyone
sets e = g. We need to work out the implications of worker utility maximization
and firm profit maximization. We use the formula for maximizing a quadratic
repeatedly (Section 1 of Chapter 2).

The fraction ρ of the entire population is H type, so the expected productivity
at e = g is

ρmH(g) + (1 − ρ)mL (g) = 1/3(6g) + 2/3(3g) = 4g.

When the wage is same for each worker then each is paid 4g at equilibrium as a
consequence of competition among firms for workers.

Pooling equilibrium wage schedule offered by each firm, based on a given
critical level g of education

If e < g assume that the worker is L type, and pay 3e.

If e ≥ g assume that the worker is H type with probability ρ, and pay 4g.

Will the H type choose the wage 4g or the wage 3e for some e < g? Because
4e − 1/2 e2 is maximized at e = 4, and hence the graph of 4e − 1/2 e2 is a hill with
peak at 4, if e < g ≤ 4 then

3e − 1/2 e2 < 4e − 1/2 e2 < 4g − 1/2 g2.

Therefore, the H type sets e = g and receives a wage of 4g when g ≤ 4.
Consider L’s decision: 4e − 3/4e2 is maximized at e = 4/(2 × 3/4) = 22/3 (Fig-

ure 5.8). Hence e < g ≤ 22/3 implies

3e − 3/4 e2 < 4e − 3/4 e2 < 4g − 3/4 g2.

Therefore, L sets e = g and receives a wage of 4g when g ≤ 22/3.
What about L’s decision at g > 22/3? The function 3e − 3/4 e2 is maximized at

e = 2, where UL = 3. Consequently, g > 22/3 and 4g − 3/4 g2 > 3 implies that L
will set e = g. Now, 4e − 3/4 e2 − 3 = 0 implies g = 0.9 or 4.43 (Figure 5.8 again).
Because the graph of 4e − 3/4 e2 − 3 is a hill that reaches its peak at g = 22/3, if
0.9 ≤ g ≤ 4.43 we have UL ≥ 3, and hence L sets e = g and receives a wage of 4g.
Therefore, if g > 2(2/3) we can have a pooling equilibrium only if g ≤ 4.43.

Will H set e = g if g ≤ 4.43? We have already demonstrated that H sets e =
g if g ≤ 4. Can we have 3e − 1/2 e2 > 4g − 1/2 g2 if e < g and 4 ≤ g ≤ 4.43? The
maximum value of 3e − 1/2 e2 is 4.5, which occurs at e = 3. But for g = 4.43 we
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uL

3

0.9 22/3 4.43

4e − 0.75e2

e

Figure 5.8

have 4g − 1/2 g2 = 7.9, and that’s the lowest value of 4g − 1/2 g2 over all g satisfying
4 ≤ g ≤ 4.43. (See Figure 5.9: Note that 4g − 1/2 g2 = 4.5 if g = 1.35 or g = 6.65.)
Therefore, H will choose g and receive a wage of 4g if g ≤ 4.43.

There is a pooling equilibrium for each value of g ≤ 4.43.

Whatever value of g emerges at equilibrium, we don’t have the full informa-
tion choices eL = 2 and eH = 6 that would be mandated by efficiency consider-
ations alone.

Separating equilibria
Suppose H types obtain more education in equilibrium than L types. Could we
have eH = 6 and eL = 2 (the full information equilibrium choices from Table 5.5)
at equilibrium? No. An L type would prefer setting e = 6 and a having a wage
of 36, on the one hand, to e = 2 with a wage of 6, on the other hand. Everyone
would choose e = 6. This cannot be sustained as an equilibrium because the

uH

4.5

1.35 4 6.65
e

4e − 0.5e2

Figure 5.9
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average product is 1/3 × 36 + 2/3 × 3 × 6 = 24: Cost per worker (to the firm) is 36
and revenue per worker is 24. Then what are the possible equilibrium values of
eH and eL ?

Separation requires that the workers’ choices reveal their types. Hence, a
worker choosing eL will receive a wage of 3eL , and a worker choosing eH will
receive a wage of 6eH . Both are consequences of competition among produc-
ers for workers. The equilibrium will then have to satisfy the self-selection
constraints—also called the incentive compatibility constraints. The following
are the self-selection conditions for H and L respectively:

6eH − 1/2 e2
H ≥ 3eL − 1/2e2

L , [1]

3eL − 3/4 e2
L ≥ 6eH − 3/4 e2

H . [2]

Statement [1] says that an H type prefers obtaining eH years of training and
a wage of 6eH to a wage of 3eL with eL years of training. And [2] says that L
prefers obtaining eL years of training and a subsequent wage of 3eL to eH years
of training with a wage of 6eH . In short, if [1] and [2] hold then no worker will have
an incentive to conceal his or her true type. We already know that the maximum
value of the left-hand side of [2] is 3, occurring when eL = 2.

If L-types do not get individual utility of at least 3 at equilibrium they could set
up their own firm. They could each set eL = 2 in this new firm and pay themselves
a wage of 6, yielding UL = 3. If they received applications from H-types wanting
to work for a wage of 6 the L-type owners of the firm would gladly welcome them
aboard, realizing a profit of 6 × 2 − 6 = 6 per H-type worker. (This argument will
not work for H types. If they form their own firm they will face the same problem
as existing employers: L types will attempt to masquerade as high-productivity
workers. In that case, a wage that would be viable if the firm were staffed by
H types alone would not be viable if L types joined the firm and received the
same wage.) Therefore, UL ≥ 3 at a separating equilibrium. The only way that an
employer could provide UL ≥ 3 would be to offer a wage of 6 and insist on 2 years
of training. (That’s because 3eL − 3/4 e2

L is maximized at eL = 2.) Therefore, eL = 2
at the equilibrium, which must satisfy

6eH − 1/2 e2
H ≥ 3 × 2 − 1/2 × 2 × 2 = 4 and 3 ≥ 6eH − 3/4 e2

H . [3]

Now, maximize UH subject to [3]. Consider the second part of [3]. The func-
tion 6eH − 3/4 e2

H is maximized at eH = 4. Starting at eH = 4, the value of the
function decreases as eH increases or decreases (Figure 5.10). Now, eH = 0.54
and eH = 7.46 are the solutions to the equation 6eH − 3/4 e2

H = 3. Therefore, the
second part of [3] will be violated if 0.54 < eH < 7.46, and it will be satisfied
otherwise. Therefore, [3] can be replaced by

6eH − 1/2 e2
H ≥ 4 and either eH ≤ 0.54 or eH ≥ 7.46. [4]

The function 6eH − 1/2 e2
H is maximized at eH = 6, and so UH falls as eH increases

beyond 7.46 or falls below 0.54. Therefore, if we maximizeUH subject to [4] we will
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have either eH = 0.54 or eH = 7.46. It is easy to see that 7.46 gives the higher value
of UH . (Besides, 0.54 < eL = 2.) We get UH = 6 × 7.46 − 1/2 × (7.46)2 = 16.9, so
[4] is satisfied. We have a separating equilibrium.

At a separating equilibrium we have eH = 7.46 and eL = 2. Firms pay a wage
of 3e if e < 7.46 and pay 6e if e ≥ 7.46. H types receive a wage of 44.76, and L
types receive a wage of 6.

Confirm that we have an equilibrium by computing the worker’s response:
Consider an L type’s decision. Because 6e − 3/4 e2 is maximized at e =
6/(2 × 3/4) = 4, when e > 4 the value of the function declines as e increases.
Therefore, an L type would never set e > 7.46. Similarly, 6e − 1/2 e2 is maxi-
mized at e = 6/(2 × 1/2) = 6, so that function decreases as e increases, if e > 6
initially. Consequently, an H type would not set e > 7.46. Therefore, an L type’s
decision reduces to a choice between eL = 2 (which provides the maximum
utility available with the wage schedule 3e) and eL = 7.46. Now, UL (7.46) =
6 × 7.46 − 3/4(7.46)2 = 3, which does not exceed the utility of 3 realized by L
when eL = 2 and the wage is 3 × 2.

An H type will set eH = 7.46 because UH = 6 × 7.46 − 1/2(7.46)2 = 16.9, which
is larger than 3 × 3 − 1/2(3)2 = 4.5, the highest level of utility attainable by H with
the schedule 3e.

We have confirmed that each H type maximizes utility by setting eH = 7.46,
and each L type maximizes utility by setting eL = 2. If no firm wants to depart
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from the wage schedule “pay 3e if e < 7.46 and 6e if e ≥ 7.46” then we are indeed
at equilibrium. Each firm expects that a worker presenting a certificate for 2
years of training is an L type and that each worker with a certificate for 7.46
years of training is an H type. If the firm hires nL of the former and nH of the
latter it will expect its output to be 3 × 2 × nL + 6 × 7.46 × nH and of course that
is exactly what it will be. Employers’ expectations are confirmed, and they have
no reason to modify the wage schedule.

Note that L types make the same investment in education as in the full
information efficient outcome, but H types invest more than they would in
full information. Surprisingly, the proportion ρ of H types plays no role in the
computation of a separating equilibrium. Asymmetric information results in
more investment in education than can be justified by considerations of the
return to society from enhanced productivity, even if the fraction of L types is
small. (Given that workers in industrialized economies do not have a uniform
educational background we can conclude that the separating equilibrium is the
applicable one.)

Sources
Spence (1973) was the first to show how signaling could emerge as a solu-
tion to the asymmetric information (hidden characteristic) problem introduced
into the literature by Akerlof (1970). In separate contributions, George Akerlof,
Michael Spence, and Joseph Stiglitz showed that the presence of asymmetric
information in real-world markets required a new way of modeling economic
exchange. They were awarded the Nobel Prize in Economics for the year 2001.

Links
Cameron and Heckman (1993) find that workers who enter the labor market
with a high school equivalency degree are paid 10% less on average than workers
who enter with a conventional high school diploma. Riley (2000) and Chapter
13 of McAfee (2002) give an overview of the economics of signaling. The latter
is decidedly nontechnical, and the former is intended for readers with a good
economics background. Riley (1989) fits between the two.

Problem set

1. Use the technique of Example 6.2 to derive the cost function cL (e) = 3/4 e2

from a utility function of the form UL = BL (x) + y.

2. For the model of Section 6.3, show explicitly that there is a pooling equilib-
rium for g = 1.5 and also for g = 3.5.

3. There are two types of workers, H and L. The value of the marginal product
of an H type is 30e and the value of the marginal product of an L type is 12e,
where e is the level of education attained. One-third of the workers are H
types, but an employer cannot directly distinguish an H from an L. The cost
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to an H type of e units of education is 1/2 e2, and the cost to an L type of e units
of education is e2.

A. Find a separating equilibrium, and characterize it.

B. For what range of values of g would a pooling equilibrium exist?
Describe a pooling equilibrium.

4. There are two types of workers, H and L. The value of the marginal product
of an H type is 25e, and the value of the marginal product of an L type is 10e.
Half of the workers are H types, but an employer cannot directly distinguish
an H from an L. The cost to an H type of e units of education is 0.6e2, and the
cost to an L type of e units of education is 0.8e2.

A. Find a separating equilibrium, and characterize it.

B. For what range of values of g would a pooling equilibrium exist?
Describe a pooling equilibrium.

5. When will the producer of a high-quality product be able to use a warranty
to signal that its output is superior to that of its low-quality rival even though
consumers cannot directly determine quality?

7 COMPETITIVE INSURANCE MARKETS

This section highlights the difficulties of eliciting hidden information when
agents differ with respect to their information about the likelihood of events. The
hidden characteristic in this case is the probability that an individual will suffer
a mishap—have a car accident, be burglarized, be hospitalized, and so forth.
We assume that the individual knows the probability of this happening, but no
one else does. Moreover, this person cannot be expected to willingly disclose
this hidden characteristic, especially if those who report a higher probability
of accident are charged higher insurance premiums. We embed these facts in a
model of a competitive insurance market in a mature capitalist economy. We see
that there exists no competitive equilibrium for some values of the parameters.
When an equilibrium does exist, individuals will reveal their accident probability
by their choice of insurance contract. Nevertheless, the competitive equilibrium
may not be efficient when it does exist, although it is not easy to determine when
government regulation can improve on the market outcome.

7.1 The model
Christopher knows more about the likelihood of his having an accident in a cer-
tain situation than others do. This means that some of the information about the
probability of an accident is hidden from the company offering him an insur-
ance contract. In the case of automobile insurance, there is a lot of information
about our driving habits that is available to insurance companies. Young men are
more likely to be risky drivers than young women, and this observation is used
by companies in determining rates. The correlation is far from perfect, however,
but to the extent that a riskier driver is identified and charged a higher premium
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we can say that prices reflect costs to society—part of the cost in this case is the
possibility of you or I being the dangerous driver’s victim. Information about

I was driving home one day, correct-
ing the manuscript for this section, try-
ing to think of a good example of pri-
vate information in this context. Then
I realized that my practice of correct-
ing manuscripts while driving is the per-
fect illustration. My insurance company
would love to know about this dangerous
habit.

speeding tickets and prior accidents are also
used in determining automobile insurance
premiums. This is called experience rating.

Suppose that an insurance company has
already used all available information to cat-
egorize drivers by risk and has determined that
Christopher and Laurie are in the same risk
category. There is additional private informa-
tion that Christopher has about his driving
habits and Laurie has about hers that is hid-
den from the insurance provider. Given the evi-

dence available to insurance companies, there will still be differences in risk that
cannot be directly observed, and it is these additional, private characteristics that
are the subject of this section.

To abstract from most of the other issues, assume that there is only one
basic commodity, which we call wealth. Uncertainty concerns the status of an
individual’s wealth, which is either partly destroyed—by accident or fire, say—
or remains intact. We let a represent the value of an individual’s wealth after an
accident when no insurance is purchased and let z represent the value of the
same individual’s wealth without insurance and also without an accident. The
actual wealth level may be different from both a and z. If the individual buys
insurance but there is no accident, then his or her wealth will be lower than z by
the amount of the premium. And if the individual has an accident after buying
insurance then his or her wealth will be higher than a because he or she will
receive a claim check from the insurance company to partly compensate for the
loss z − a.

Let x denote the amount of wealth available to finance consumption when
the individual suffers an accident, and let y denote the amount of wealth avail-
able for consumption when there is no accident. An insurance contract or policy,
P, requires the purchaser to pay a stipulated fee (the premium) of f dollars before
the resolution of uncertainty. If the person does not have an accident then no
further exchange takes place, but if he or she is involved in an accident then
the insurance company pays c dollars net. The amount of the claim check is
actually c + f , but the net claim is c because the individual must pay the annual
premium whether he or she has an accident or not. Therefore, if the individual
purchases a policy charging a premium f and paying the net claim c we have

x = a + c and y = z − f.

We allow f = 0 = c, which represents the case when no insurance is purchased.
The number π is the probability that the individual has an accident (or a fire

in his or her house, etc.). To make the model really simple, we assume there are
only two possible values of π and hence only two types of individuals: low risk, L,
and high risk, H, so we write πL and πH, respectively. The hidden characteristic
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is the value of π . Of course, πH > πL , 1 − πL is the probability that an L type
does not have an accident, and 1 − πH is the probability that an H type does
not have an accident. (The event “Christopher has an accident” is statistically
independent of the event “Laurie has an accident.” Don’t jump to the conclusion
that they have accidents simultaneously.)

For analytical convenience all individuals are assumed to have the same
utility-of-wealth function U(w). They are risk averse: The marginal utility of
wealth is positive, but it diminishes as wealth increases. (In terms of calculus,
U′(w) > 0 and U′′(w) < 0, for all w > 0.) Each individual has the same endow-
ment allocation: a if there is an accident, and z if there is no accident. And z > a
because an accident destroys wealth. We are assuming that individuals are iden-
tical, except for the value of π . There are nL low-risk individuals and nH high-risk
individuals. Although U(w) is the same for each individual, it is not the case that
expected utility is the same for an L type and an H type because the probabilities
differ. Expected utility for L and H respectively is

uL (x, y) = πLU(x) + (1 − πL )U(y),

uH(x, y) = πHU(x) + (1 − πH)U(y).

We assume that U is monotonic: If w > w′ then U(w) > U(w′). Therefore, uL will
increase if x increases and y does not decrease, or if y increases and x does not
decrease. The same can be said of uH . (The utility derived from leisure is not
needed for this model because we assume that there is no opportunity for the
individual to affect the probability of an accident by sacrificing leisure to devote
effort to preventive care.)

Risk aversion implies diminishing marginal rate of substitution (MRS) for
the indifference curve “expected utility = a constant”

To confirm that the indifference curve has the shape of the one in Figure
5.11, note that the MRS at (x, y) for type i (i = L or H) is

πiU′(x)
(1 − πi)U′(y)

where U′(x) and U′(y) denote the marginal utility of wealth at x and y respec-
tively. As we move down the indifference curve, increasing x and decreasing y,
U′(x) will fall and U′(y) will increase because marginal utility diminishes with
wealth as a consequence of risk aversion. Therefore, we have diminishing
MRS.

The crucial assumption is that insurance companies cannot identify L types
and H types directly. They can distinguish them only by observing their choices,
and then only if the H types have no incentive to purchase the contract designed
for the L types and vice versa. Consequently, even within our very abstract frame-
work, in which individuals are identical in all but one respect and only wealth
available for consumption affects well-being, there are potential difficulties in
terms of the satisfactory performance of competitive markets.
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DEFINITION: The individual variables and parameters
Without insurance, an individual’s wealth is a if he or she has an accident
and z otherwise. With insurance, the individual’s wealth is x if he or she has
an accident and y otherwise. If the insurance premium is f then y = z − f ,
and x = a − f + v, where v is the value of the claim check. The number of L
types is nL , and the number of H types is nH . The probabilities of an accident
for L types and H types are, respectively, πL and πH.

Assume that nL and nH are both large in absolute value, although one number
might be small relative to the other. If nL is large, then the total number of
accidents suffered by L types will be close to the expected number, πLnL .

The law of large numbers: If n statistically independent experiments are per-
formed, and π is the probability of success in a single experiment, then for
any positive number ε however small, there is a value of n sufficiently large
so that the probability is greater than 1 − ε that the average number of suc-
cesses in n trials will be arbitrarily close to π . If you haven’t encountered this
fundamental law, convince yourself of its truth by tossing a coin. With a large
number of tosses the fraction of heads will be very close to the expected num-
ber, one-half. I can safely make this claim, because the probability of it being
contradicted is very small if the number of tosses is very large.
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We assume that the total number of accidents is always exactly equal to the
expected number so we don’t have to keep saying that the results hold only
approximately but with high probability.

DEFINITION: The number of accidents
We assume that nH is large, and use the law of large numbers to assume that
the total number of accidents suffered by H types is exactly πHnH . Similarly,
we assume that nL is large, and that the total number of accidents suffered
by L types is exactly πLnL .

Let’s also assume, for simplicity, that administration costs are constant and
relatively small. This permits us to assume zero administrative costs without
affecting the results. In that case, competition among insurance companies will
ensure that the value of premiums taken in at equilibrium equals the value of
gross claims paid out at equilibrium. (This is derived with care in Section 7.4 of
Chapter 2.)

7.2 The number of contracts in equilibrium
H types are identical to each other, so they will make the same choices. Suppose
not, and some H types choose policy P1 and some choose P2, different from P1. If
one yields a higher value of uH than the other, we can’t be at equilibrium. Some H
types will switch from the low-utility policy to the high-utility policy. Therefore
uH(P1) = uH(P2) at equilibrium. Further, P1 and P2 yield the same expected
profit to the insurance company. If, say, P1 provided higher expected profit per
policy than P2 then insurance companies would all offer P1 in preference to P2.
Their customers wouldn’t object because uH(P1) = uH(P2).

To summarize, if there are two different policies P1 and P2 purchased by H
types in equilibrium then they yield the same utility and the same profit. Suppose
P1 �= P2, and they charge premiums of f 1 and f 2 and pay net claims of c1 and
c2, respectively. The insurance company’s per capita profit from P1 is f 1 − πH ×
(c1 + f 1). (The policy brings in a premium revenue of f 1 with certainty and
disburses a claim check of c1+ f 1 with probability πH .) Similarly, the per
capita profit from P2 is f 2−πH × (c2+ f 2). Then f 1−πH × (c1+ f 1) = f 2 − πH ×
(c2+ f 2). Consider policy P3 constructed by averaging P1 and P2. That is, P3

charges a premium f 3 = 1/2 f 1 + 1/2 f 2 and pays a net claim of c3 = 1/2 c1 + 1/2 c2.
Then the expected profit per policy from P3 is equal to 1/2 f 1 + 1/2 f 2 −
1/2 πH(c1 + f 1) − 1/2 πH(c2 + f 2) = 1/2[ f 1 − πH(c1 + f 1)] + 1/2[ f 2 − πH(c2 + f 2)],
the average of the expected profits from P1 and P2.

At equilibrium, P1 and P2 yield the same per capita expected profit. Then
P3 must generate the same profit as P1 and P2 because the profit from P3 is
the average of the profit from P1 and P2. Then all three policies yield the same
per capita profit. But P3 affords higher expected utility ! A glance at Figure 5.11
makes this evident. P3 is on the straight line between P1 and P2, which are on the
same indifference curve, and hence P3 is on a higher indifference curve. Now, P3

will yield the same profit as P1 and P2 but will afford more utility. Therefore, the



308 Hidden Characteristics

insurance company could modify P3 slightly, raising the premium and providing
the same claim, c3. This new policy will certainly bring in more profit than P1

or P2 and H types will prefer it to either P1 or P2—as long as the increase in
premium is not too large. Both insurance companies and their clients will prefer
this new outcome to the one in which only P1 and P2 were available, so the
original situation cannot be an equilibrium. We have proved that there is only
one contract offered to the H types in equilibrium. Obviously, the same argument
will establish that the L types will all choose the same contract at equilibrium.

At equilibrium, a contract will have nH, nL, or nH + nL buyers.

Now, let π denote the probability that an individual randomly selected from
the entire population has an accident. Then π is the expected number of acci-
dents divided by the total population. That is,

π = πH × nH + πL × nL

nH + nL
.

Recall that x = a + c and y = z − f when an individual purchases policy P with
premium f and net claim c. Because the individual ultimately cares only about
x and y, we think of an insurance contract as a specification of x and y. If we
need to, we can recover the premium and net claim by setting f = z − y and
c = x − a.

DEFINITION: An insurance policy
An insurance policy specifies the values of x and y. Given those values we
can recover the actual premium f and net claim c, because f = z − y and
c = x − a.

The condition that all money taken in from a contract is paid out in the form
of claim checks is

n(z − y) = ρn(x − a + z − y) [5]

where n = nH (in which case ρ = πH), or n = nL and ρ = πL , or n = nH + nL

and ρ = π . The term on the left-hand side of equation [5] is the total amount
of money collected in premiums from policyholders, and the term on the right
is the amount of the claim check (the net claim x—a plus the premium z—y)
sent to each policyholder having an accident multiplied by ρn, the number of
accidents. We can divide both sides of [5] by n and rewrite the zero-profit con-
ditions as

πL x + (1 − πL )y = πL a + (1 − πL )z, [6]

πH x + (1 − πH)y = πHa + (1 − πH)z, [7]

πx + (1 − π)y = πa + (1 − π)z. [8]
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Equation [6] is the zero-profit condition for a group composed exclusively
of L types. It equates the expected market value (EMV) of wealth with insurance
to the EMV of wealth without insurance. Why bother buying insurance then?
Because (x, y) delivers higher expected utility than (a, z). Equation [7] is the
zero-profit condition for a group composed exclusively of H types, and [8] is
the zero-profit condition when the two types buy the same policy. Consider
Figure 5.12. If the L types had a contract that left them above line [6] then it
would not generate enough premium income to pay all the claims. If they had
a contract below line [6] then it would yield a positive profit because it takes
in more premium income than required to honor the claims, and that is not
consistent with equilibrium. The analogous statement holds for [7] with respect
to H, of course.

If ρx + (1 − ρ)y > ρa + (1 − ρ)z then (x, y) is not feasible. If ρx + (1 − ρ)y <

ρa + (1 − ρ)z then (x, y) is not consistent with equilibrium. Therefore,
ρx + (1 − ρ)y = ρa + (1 − ρ)z at equilibrium (n = nH and ρ = πH , or n =
nL and ρ = πL , or n = nH + nL and ρ = π).

∂7.3 Full information equilibrium
To establish a benchmark case, suppose that insurance companies are able
to distinguish H types from L types. Assume, for instance, that all can
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be relied on to answer truthfully when asked to which risk group they
belong.

There will be no cross-subsidization at equilibrium: All claims made by H
types are paid out of premiums contributed by H types, and all claims made by
L types are paid out of premiums contributed by L types. Here’s why: We can’t
have L above [6] and H above [7] in Figure 5.12 because neither policies would
collect enough revenue to pay the claims presented.

What about a cross subsidy? Could the L types wind up below [6] with the Hs
above [7]? This means that the policy obtained by L types collects more premium
income than is required to finance claims by L types. The surplus is used to
finance the deficit from the H policy. But this is inconsistent with equilibrium.
A company could offer a policy to Ls that cut the surplus in half. This would
be preferred by the Ls, and it would be profitable for the company offering it.
(The company would not have to worry that H types would buy it as well. We
are temporarily assuming that insurance companies know who the Hs are: They
would not be allowed to purchase the contract designed for the Ls.) The original
policy would quickly be driven off the market. A similar argument will show that
the H types will not subsidize the L types at equilibrium. Therefore, there is no
cross subsidy at equilibrium.

Because there is no cross-subsidization, H types and L types will buy differ-
ent contracts at equilibrium because equation [6] must hold for P L , the contract
obtained by L types at equilibrium, and [7] must hold for the H types’ contract
P H . If the left-hand side of equation [6] exceeds the right-side, the contract is
not feasible because the value of gross claims paid out will exceed the value
of premiums collected. If the right-hand side exceeds the left-hand side, then
insurance companies are earning excess profits and competition will force pre-
miums to fall, and hence the original state was not in equilibrium. Similarly for
[7]. Therefore, we can apply the complete insurance theorem of Section 7.4 of
Chapter 2 to each risk type: The policy P L obtained by the L types solves [6] and
x = y. The H types will get the policy P H that solves [7] and x = y, as shown in
Figure 5.12.

At the full information equilibrium the L types obtain x = y =πL a + (1 − πL )z,
and the H types get x = y = πHa + (1 − πH)z.

The full information equilibrium is efficient: As we demonstrated in Section
7.5 of Chapter 2, the outcome x = y = πL a + (1 − πL )z would be efficient if the
economy consisted only of L types. And the outcome x = y = πHa + (1 − πH)z
would be efficient if the economy consisted only of H types. Therefore, we can’t
increase anyone’s expected utility without harming someone else if we are lim-
ited to rearrangements within the L group or within the H group, or both. If
we shifted some wealth from one group to another we would obviously have to
reduce the expected utility of someone within the former group. Hence, it is not
possible to increase one person’s expected utility without diminishing someone
else’s.
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Example 7.1: Full information equilibrium in a special case

The probability that L has an accident is 1/4, and 1/2 is the probability that H has
an accident. Then 3/4 is the probability that an L type does not have an accident,
and 1/2 is the probability that an H type does not have an accident. Each individual
has the utility-of-wealth function

U(w) = ln(w + 1).

Then U′(w) = (w + 1)−1, and hence U′′(w) = −(w + 1)−2 < 0 for all w ≥ 0, so
the individuals are risk averse. Each person’s endowment is a = 4 if there is an
accident and z = 12 when there is no accident. The relevant expected utility
functions are

uL (x, y) = 1
4

ln (x + 1) + 3
4

ln (y + 1),

uH(x, y) = 1
2

ln (x + 1) + 1
2

ln (y + 1).

Let’s determine the basket P L = (x, y) that would be chosen by L types if the
amount of money they paid into insurance companies in premiums were paid
out in claims. The premium per capita is 12 − y and the claim check per capita
is x − 4 + 12 − y, the net claim plus the premium. Assuming that nL is large,
the total number of accidents suffered by L types will be close to the expected
number, 1/4 nL . For convenience, assume that it is exactly equal to 1/4 nL . Then
we have

nL × (12 − y) = 1
4

nL × (x − 4 + 12 − y), or
1
4

x + 3
4

y = 10, [9]

after dividing both sides by nL and rearranging. Note that equation [9] says that
the EMV of consumption with insurance equals the EMV of wealth without
insurance, namely 1/4 × 4 + 3/4 × 12. That is what we would expect to see if all
premium money received by insurance carriers were paid out as claims. Now, to
find P L we maximize uL subject to [9]. (If you prefer a shortcut, use the complete
insurance theorem of Section 7.4 of Chapter 2.) We have y = 40/3 − x/3 from
[9], and substituting this into uL yields

V (x) = 1
4

ln (x + 1) + 3
4

ln (40/3 − x/3 + 1),

which we want to maximize. V ′(x) = 1/4(x + 1)−1 + 3/4(y + 1)−1 × −1/3 = 1/4(x +
1)−1 − 1/4(y + 1)−1. Note that V ′′ < 0 at all points. Therefore, if V ′(x) = 0 yields
nonnegative values of x and y the equation V ′(x) = 0 will characterize the solu-
tion to our problem. But V ′(x) = 0 implies x = y, and substituting this into [9]
yields x = y = 10. Therefore, P L = (10, 10), and uL (P L ) = 2.40. This means that,
subject to constraint [9], L would want a policy with a premium of 2 = 12 − 10
and a net claim of 6 = 10 − 4 in case of an accident. Note that the value of
the claim check is $8 when L suffers an accident, but L still has to pay the
premium in a year when L makes a claim, so the net addition to consump-
tion is $6.
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Similarly, to find P H , the choice of H types when the amount of money paid
in as premiums by H types is paid out in claims to H types, we maximize uH

subject to

1
2

x + 1
2

y = 1
2

× 4 + 1
2

× 12 = 8. [10]

We know we will have x = y (the individuals are risk averse), in which case [10]
implies x = y = 8. Therefore, P H = (8, 8), with uH(P H) = 2.20. The premium per
capita is 12 − 8 = 4 and the net payment in case of accident is 8 − 4 = 4. Note
that in the full information world, the H types pay a higher premium and get
less coverage than L types.

Even though H’s net claim equals the premium, it would not be true to say that
the insurance contract provides nothing of value. The expected utility of an H
type without insurance is uH(4, 12) = 2.087, and expected utility with insurance
is uH(8, 8) = 2.20, which is significantly higher.

Life insurance policies have a suicide
clause that exempts the insurance com-
pany from its obligation to pay off if death
is self-inflicted and occurs 365 days or
less from the date of issue of the policy.
(Some contracts have a two-year limit.)
The suicide rate is lowest in the twelfth
month of the life of the policy and high-
est in the thirteenth month—the twenty-
fourth and twenty-fifth months, respec-
tively, for policies with a two-year limit
(Milgrom and Roberts, 1992, p. 178). Evi-
dently, some people insure their lives
knowing that suicide is a serious possi-
bility. (There is undoubtedly a moral haz-
ard element as well. Some insured indi-
viduals commit suicide in the thirteenth
month who would not end their lives at
all if their heirs weren’t going to collect
on a life insurance policy.)

The competitive equilibrium is efficient if
all individuals disclose their risk category truth-
fully. A problem arises only when there are two
risk categories and the insurer does not know
to which group a client belongs. This is the sit-
uation that insurers actually face. H types have
no incentive to reveal their true characteristic
because they prefer the policy P L intended for
L types to policy P H . The former provides more
of each good: The H types will have much more
wealth if they masquerade as L types. Every-
one will declare herself to be in risk category L
and will purchase P L . This outcome is not fea-
sible, however, because P L yields zero profit
only when H types are excluded. If P L is pur-
chased by some H types, who file more claims
per dollar of premium than L types, there will
not be enough premium income to honor each
claim.

∂7.4 Asymmetric information equilibrium
Assume from now on that high-risk individuals will not directly reveal their
identity and only individual i knows i’s risk parameter π i. There are only two
possible equilibria, one in which everyone has the same policy and one in which
the different types make different decisions.

DEFINITION: Pooling and separating equilibria
A pooling equilibrium is one in which the same contract is obtained by both
risk categories.
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A separating equilibrium is one in which the H types are separated out by
providing the L types with a contract that less desirable to the H types than
the contract designed for them.

The constraint that incorporates feasibility and the zero-profit condition for
a pooling equilibrium is [8] from Section 7.2. Recall that π , the probability that an
individual randomly selected from the entire population does have an accident,
is given by

π = πH × nH + πL × nL

nH + nL
. [11]

Let MRSH and MRSL denote the MRS of an H type and an L type, respectively:

MRSH = πHU′(x)
(1 − πH)U′(y)

,

MRSL = πLU′(x)
(1 − πL )U′(y)

.

Now, MRSL < MRSH at any point because πL < πH and 1 − πL > 1 − πH (Fig-
ure 5.13). (We’re computing the MRS at the same values of x and y for the two
individuals.) Intuitively, the high-risk types are willing to sacrifice more y (con-
sumption in the “no accident” state) to get an additional unit of x (consumption
in case of an accident) because they have a higher probability of an accident.

P

(x, y)

uL = constant

uH = constant

Figure 5.13
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Because MRSL < MRSH , at the exchange rate ξ = 1/2 MRSL + 1/2 MRSH there
is a number δ small enough in absolute value so that

uL (x − δ, y + ξδ) > uL (x, y) and uH(x − δ, y + ξδ) < uH(x, y).

Suppose that we claim to have a pooling equilibrium with each consumer,
regardless of type, obtaining the basket (x, y). If an insurance company offered
a different contract P giving rise to (x − δ, y + ξδ) it would be preferred to (x, y)
by L types but not by H types (Figure 5.13). The insurance company could offer
P and be sure that L types would purchase it in preference to (x, y) but that H
types would not. Even though the company would not be able to distinguish an
L-type individual from an H type, by judicious contract design a company could
rely on the H types to reveal themselves by their choice.

An insurance company that catered exclusively to L-type risks would have
to pay claims to the fraction πL of its policyholders. Before P was available,
both types purchased (x, y) and the fraction π of policyholders filed claims.
If δ > 0 is small, then (x, y) and P are almost the same, but πL < πH , and a
company offering P will pay a smaller fraction of its premium receipts in claims,
though the premium and net claim per person will be almost the same as for
(x, y). Therefore, P will yield more profit to the insurance companies offering
it, and this means that the original situation in which each person purchased
(x, y) is not in equilibrium. Companies would have incentive to offer a new
contract P, and it would be more profitable if the individuals who preferred it
in preference to (x, y) purchased it. (We still won’t have equilibrium when P is
introduced because the viability of (x, y) depends, through equation [8], on its
being purchased by L types as well as by H types, but the former will defect to
P as soon as it is offered. The companies that continue to offer (x, y) will take a
loss, and that is not consistent with equilibrium.)

What we have discovered is that an equilibrium must separate H types from
L types by offering different contracts such that

� neither risk type would want to buy the contract intended for the other,
� the contract designed for L types satisfies equation [6], and
� the contract designed for H types satisfies equation [7].

There must be separate contracts at equilibrium. And individuals of the same
risk type will buy the same contract. Therefore, only two contracts will be offered
at equilibrium because there are two risk categories.

If the contract BL available to L types is below the line representing equation
[6], then the L types are subsidizing the H types. But this is inconsistent with
equilibrium, because a new firm could enter and obtain a positive profit by
offering a contract close to BL but below the line representing [6]. This could be
done in such a way that L types prefer the new contract and H types still prefer
their original choice. Therefore, equation [6] must be satisfied at equilibrium
by the contract designed for L types. (The new contract might not be more
profitable than BL , but it would provide a positive economic profit and hence
would be offered by a new entrant to the industry.)
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uH = constant

uL = constant
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z
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[7]

[6]

Figure 5.14

If H types wind up below the line representing [7] an entrepreneur could
enter the market and offer a contract that yields higher x and higher y, but still
yielding the entrant a positive profit—that is, the new value of x and y would
also be below [7]. It would be profitable even if it were purchased only by H
types. Therefore, at equilibrium, the contract purchased by H types must sat-
isfy [7] and, as the previous paragraph established, the contract purchased by
L types must satisfy [6]. And each type must have an incentive to purchase the
contract designed for it by the insurance company. This incentive compatibil-
ity, or self-selection condition, is a constraint on a firm’s profit-maximization
calculation: If the firm makes high profit when the H types purchase policy
BH but the H types get higher expected utility from the policy BL intended for
the L types, then the firm has not maximized profit because the H types won’t
buy BH .

DEFINITION: Self-selection constraints
If L types purchase BL at equilibrium, and H types purchase BH , then
uL (BL ) ≥ uL (BH) and uH(BH) ≥ uH(BL ).

Conditions [6] and [7] are represented geometrically as straight lines in Fig-
ure 5.14. Because (a, z) satisfies both equations, it is on both lines. Because the
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individuals are risk averse, we need not be concerned with any (x, y) for which
x < a. (Why?) Is there any reason why the H types can’t have their most-preferred
contract subject to [7]? No. If any other contract BH were offered, a company
would have incentive to offer the most-preferred contract P H consistent with
[7], and this would be purchased by H types in preference to BH . Both would
give rise to the same profit (zero), but because PH is preferred, a company could
actually raise the premium slightly and make more profit (even if purchased
only by H types) than with BH , and H types would still prefer the new contract
to BH . Therefore, P H , depicted in Figure 5.14, is offered to H types and chosen
by them at equilibrium. BH = P H , in short.

Now, P H imposes a constraint on BL , the contract offered to L types. BL must
satisfy

uH(P H) ≥ uH(BL ), [12]

the self-selection constraint for an H type. At equilibrium BL will maximize uL

subject to conditions [6] and [12]. This means that the L types will not be offered
their most-preferred contract P L subject to [6], because that would be preferred
by H types to P H , and P L is feasible if and only if it is purchased exclusively by L
types. Note that the equilibrium pair of contracts is determined independently
of nH and nL , the number of H types and L types respectively.

The asymmetric information equilibrium provides the H types with the con-
tract P H that they would obtain in a full information world, but the L types get
less utility than they would in the full information equilibrium. The L types
get their most-preferred contract subject to the zero-profit condition and the
constraint that it is not preferred to P H by the H types.

The contract BL offered to L types at equilibrium is depicted in Figure 5.14.
The H types are exactly as well off as they would be if the L types did not exist,
but the L types are worse off as result of the presence of individuals with a
higher accident probability! Without the H types the L types would have P L at
equilibrium, but as it is, they wind up with BL . The existence of a tiny group of
H types can have a strong negative impact on the welfare of the L types, but the
loss in welfare to the latter is not balanced by any gain in welfare to the former
group.

Example 7.2: Asymmetric equilibrium in the market of Example 7.1

We know that there will be a separating equilibrium, and H types will get the
bundle (8, 8) at equilibrium. To find BL , the bundle obtained by L types at equi-
librium, we solve [9] and uH(x, y) = uH(8, 8). That is

1/4 x + 3/4 y = 10 and 1/2ln(x + 1) + 1/2ln(y + 1) = 1/2ln(8 + 1) + 1/2ln(8 + 1).

The first equation yields x = 40 − 3y. Multiply both sides of the second
equation by 2. We get ln(x + 1) + ln(y + 1) = ln(8 + 1) + ln(8 + 1), and hence
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Figure 5.15

ln(x + 1)(y + 1) = ln(9 × 9) because the logarithm of a product is the sum of the
logarithms. Then (x + 1)(y + 1) = 81. Now substitute 40 − 3y for x:

(40 − 3y + 1)(y + 1) = 81.

Then 3y2 − 38y + 40 = 0 and hence y = (38 ± 31.048)/6. The smaller value won’t
do (why?) so we must have y = 11.51, and thus x = 5.47. Then BL = (5.47, 11.51),
which gives H slightly less utility than P H . (We have rounded off.) And uL (BL ) =
2.36 < 2.40 = uL (P L ). Finally, uH(BL ) = 2.19685 < 2.1972 = uH(P H). Therefore,
H would choose P H in preference to BL .

The pair consisting of P H and BL of Figure 5.14 is the only candidate for equi-
librium, but even this may not be an equilibrium. Suppose that nH is relatively
small. Then the line corresponding to equation [8] is close to the line depicting
equation [6] as shown in Figure 5.15. Then there is a profitable contract C that
the H types prefer to P H and the L types prefer to BL . (Contract C in Figure
5.15 is profitable because it provides the same net claim as C0 but requires a
larger premium than C0, which is on the zero-profit line.) Therefore, (P H , BL )
is not an equilibrium. But we have just established that it is the only candidate
for equilibrium. (We haven’t got the wrong equilibrium; we’ve discovered that
there is no equilibrium.) Therefore, we have proved the following.

If πH > πL and nH/nL is sufficiently small, then there does not exist a com-
petitive insurance market equilibrium.
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How small is small? The next example shows that the ratio does not have to
be tiny for equilibrium to be ruled out.

Example 7.3: Nonexistence of equilibrium for a special
case of Example 7.2

We show that both H and L prefer the bundle C = (9.8, 9.8) to P H and BL , respec-
tively. We then determine the values of nH and nL that would allow each person
to have bundle C. Certainly, H prefers C to P H because C = (9.8, 9.8) provides
more of each good than P H = (8, 8). And uL (9.8, 9.8) = 1/4 ln 10.8 + 3/4 ln 10.8 =
ln 10.8 = 2.3795 > 2.3617 = uL (BL ). If there is a competitive equilibrium, then H
will get P H and L will get BL , but both prefer C to their own equilibrium bundle.
If the outcome that gives each person the bundle C is feasible it will satisfy

πn × (9.8 − 4 + 12 − 9.8) ≤ n × (12 − 9.8),

which is equivalent to

π ≤ 0.275. [13]

(As usual π is the probability that an individual chosen at random from the
entire population has an accident, and n = nH + nL is the total population.
Note that [13] is equivalent to πx + (1 − π)y ≤ π4 + (1 − π)12 for x = 9.8 = y.
In words, the expected consumption per individual cannot exceed an individ-
ual’s expected wealth, π4 + (1 − π)12, a condition that must hold if everyone
winds up with the same bundle.) Recall that

π =
1/2 × nH + 1/4 × nL

nH + nL
.

Therefore, statement [13] becomes:

1
2

nH + 1
4

nL ≤ 0.275(nH + nL ), or 2nH + nL ≤ 1.1nH + 1.1nL , or nH ≤ nL

9
.

A small group of H types (10% or less of the population in this case) can spoil
the possibilities for a competitive equilibrium in the insurance market.

What condition would ensure the existence of equilibrium for Example 7.2?
We need an L-type indifference curve through BL that lies above the line [8],
which is πx + (1 − π)y = π4 + (1 − π)12 = 12 − 8π . This would mean that no
feasible pooling contract is preferred by L types to BL .

Example 7.4: Existence of equilibrium for a special case
of Example 7.2

We find the bundle on πx + (1 − π)y = 12 − 8π that maximizes uL . Solv-
ing this equation for y yields y = (12 − 8π)/(1 − π) − πx/(1 − π). Then
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dy/dx = −π/(1 − π). Set

V (x) = 1
4

ln(x + 1) + 3
4

ln(y + 1)

with y treated as a function of x.
We want to maximize V(x). If this yields less expected utility than uL (BL ) we

will know that no bundle on [8] is preferred by L to BL . We have

V ′(x) = 1
4(x + 1)

+ 3
4(y + 1)

× dy
dx

= 1
4(x + 1)

+ 3
4(y + 1)

× − π

1 − π
.

Confirm that V ′′(x) < 0 for all x ≥ 0. If we set V ′(x) = 0 we have

3π(x + 1) = (y + 1)(1 − π).

Now substitute y = (12 − 8π)/(1 − π) − πx/(1 − π) into this equation and solve
for x. We get x = 3.25/π − 3, and hence y = (12 − 8π)/(1 − π) − [3.25/π − 3] ×
π/(1 − π) = (8.75 − 5π)/(1 − π). These two values are functions of π , so we can
state

x(π) = 3.25
π

− 3 and y(π) = 8.75 − 5π

1 − π
.

Recall that uL (BL ) = 2.36169. We want 1/4 ln[x(π) + 1] + 3/4 ln[y(π) + 1] <

2.36169. Try π = 0.4, which is close to πH = 0.5. Confirm that

x(0.4) = 5.125 and y(0.4) = 11.25.

But uL (5.125, 11.25) = 1/4 ln(6.125) + 3/4 ln(12.25) = 2.3322, which is less than
uL (BL ), as desired. Now, π ≥ 0.4 implies

2nH + nL

4nH + 4nL
≥ 0.4,

and hence nH ≥ 1.5nL is sufficient for existence of equilibrium. If, for example,
nL = k and nH = 2k, an equilibrium exists, and it will be the one that gives each
H the bundle P H and each L the bundle BL .

When a competitive equilibrium exists is the assignment of P H to H and BL

to L efficient? Assuming knowledge of each individual’s accident probability it
is not difficult to find a scheme that would make everyone better off. If L types
consume P L and H types continue to consume P H then we have a feasible
allocation that makes the former better off without affecting the utility of the
latter. (Of course, we can modify this outcome slightly so that everyone is better
off.) But how would a planner or government offer P L to low-risk individuals
without the high-risk individuals claiming to be low-risk and also lining up for
P L ? Even though (P H , P L ) is feasible and each L prefers it to (P H , BL ) and each
H is indifferent, it would impossible to implement the former. Is there a superior
feasible allocation that could be implemented? Such an allocation exists if nH/nL

is not too large.
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Figure 5.16

An example, giving SH to the H types and SL to the L types, is depicted in
Figure 5.16. First, note that H types prefer SH to P H , but they also prefer SH to SL ,
so they would choose SH if the government offered SH and SL . They would not
choose to masquerade as low-risk individuals. Second, the low-risk individuals
themselves prefer SL to BL and to SH . Third, SL yields a positive profit because
it requires a higher premium than A, which pays the same net claim and yields
a zero profit. Finally, SH entails a loss because it requires a lower premium than
Q while paying the same net claim as Q, which breaks even. But the government
could use the profit from SL to cover the loss from SH as long as

nL × [value of y at A − value of y at SL ] ≥ nH × [value of y at SH

− value of y at Q].

This will be possible if nH/nL is not too large. (Note that the value of y at A less
the value of y at SL will be very small, because SL must be near BL to ensure that
uH(SH) > uH(SL ).

The pair (SH , SL ) is not consistent with equilibrium in competitive markets
because it involves cross-subsidization. But (SH , SL ) could be implemented by
the government if nH/nL is not too large. (Given nL , the larger is nH the more
high-risk individuals there are to be subsidized by the low-risk group.) The plan
(SH , SL ) is feasible if the H types chose SH and the L types chose SL . As we have
seen, the individuals do have an incentive to make those choices. Therefore, the
competitive equilibrium is not efficient.
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Table 5.6

Policy UL UH

SL = (7, 10.8) 2.3709 2.2738
SH = (8, 10) 2.3477 2.2976

If πH > πL and nH/nL is sufficiently small, then the competitive insurance
market equilibrium is not efficient even if one exists.

Example 7.5: Efficiency of equilibrium in the market of Example 7.2

Let’s see if we can find conditions under which the competitive equilibrium,
with BL = (5.47, 11.51) and P L = (8, 8), is inefficient. Set SL = (7, 10.8): The gov-
ernment offers a contract that results in x = 7 and y = 10.8. If we set x = 7 in
equation [6] and then solve for y we get y = 11. That is, x = 7 and y = 11 sat-
isfies the zero-profit condition for L types. Therefore, if L types consume x = 7
and y = 10.8 they generate a surplus that can be used to subsidize the H types.
The L types are better off with SL than with BL because uL (BL ) = 2.36169 and
uL (SL ) = 2.37. What would it take to make the H types better off than they would
be with P H? If we set SH = (8, 10) then we certainly have uH(P H) < uH(SH)
because SL provides the same amount of x as P L and provides 2 more units
of y. But that also means that SL is above the line representing equation [7]. In
other words, SL operates at a loss, and that will have to be covered by the surplus
from SH . If nH is sufficiently small relative to nL then no matter how small the
per capita surplus from SL it will cover the deficit from SH . Finally, Table 5.6
shows that the self-selection constraints are satisfied. We have uL (SL ) > uL (SH)
and uH(SH) > uH(SL ).

In determining whether the market outcome can be improved we have been
careful to impose the same informational constraint on the government that
private insurance companies face. What additional information would the gov-
ernment have to possess to verify that (SH , SL ) is feasible? It would have to know
nH and nL to be sure that the surplus collected from the L types is sufficient to
cover the subsidy to the H types. But how could it know the number of H types
without being able to identify the H types? One answer is that the H types reveal
themselves by their choice of P H at equilibrium. But suppose that insurance is
provided initially by the government and not private insurance companies. The
numbers nH and nL can actually be determined from data that is available to
the government. Recall the definition of π from [11]. If we let n denote the total
population, nH + nL , then the expected number of accidents for the population
as a whole is πn. This will be very close to ω, the actual number of accidents.
Then ω = πHnH + πL nL = πHnH + πL (n − nH). Because ω is known, if πH and πL
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are known we can solve for nH , which will then also give us nL . However, U will
also have to be known, to ensure that the H types will choose SH in preference
to SL and to ensure that each group is better off than it would be under a com-
petitive equilibrium. It’s not clear that the government can obtain the relevant
information, but it is also not clear that the market outcome is the best that can
be achieved, given the hidden information problem.

Source
Rothschild and Stiglitz (1976) found some limitations in the Spence (1973) notion
of asymmetric information equilibrium and used competitive insurance mar-
kets to illustrate. This section is based on the Rothschild-Stiglitz analysis. In sep-
arate contributions, George Akerlof, Michael Spence, and Joseph Stiglitz showed
that the presence of asymmetric information in real-world markets required a
new way of modeling economic exchange. They were awarded the Nobel Prize
in Economics for the year 2001.

Links
Molho (1997) and Hirshleifer and Riley (1992) are similar to this section’s treat-
ment of competitive insurance markets, but different issues are highlighted. The
latter is the more technical of the two.

Problem set

1. In Section 7.2 we proved that a particular type will not purchase two distinct
contracts in equilibrium. Prove that for any positive integer K, if each of the
policies P1, P2, . . . , P K is purchased by at least one member of a particular
risk group in equilibrium, then P1 = P2 = · · · = P K .

2. Prove that if the expected profit per policyholder is the same for P1 and P2

then the expected profit per policy of 1/2P1 + 1/2P2 is identical to the expected
profit per policy of P1.

3. Explain why (πH × nH + πL × nL )/(nH + nL ) is the probability that an indi-
vidual randomly selected from the entire population will have an accident.

4. In uncovering the properties of a competitive equilibrium, why didn’t we
have to worry about the possibility that the insurance contract would make
an individual worse off, and hence the individual would not buy a policy at
all? (Hint: Show that L’s expected utility increases as we move along [6] and
away from the endowment point, and similarly for H and [7].)

5. Show that at the separating equilibrium uL increases as πH falls.

6. Using the definitions of x(π) and y(π) from Example 7.4, find a necessary and
sufficient condition on π such that UL (BL ) is at least as high as UL (x, y) for
any (x, y) on [8].

7. For the setup of Example 7.5, find values of nH and nL such that an asym-
metric information equilibrium exists, and there exist SH and SL such that
UH(SH) > UH(P H), UL (SL ) > UL (BL ), and any loss from SH is covered by a
surplus from SL .
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8. Find the point in the derivation of the competitive equilibrium at which
we use the assumption that the two types have the same utility-of-wealth
function. How would the argument be modified to handle the general case?

9. There are two types of individuals, and there is the same number of each
type. The probability that one type has an accident is 0.10, and the prob-
ability is 0.40 for the other type. Each individual has the utility-of-wealth
function

√
w, where w is wealth. If an individual has an accident his or her

wealth is 1000, but if there is no accident wealth is 2000. This is true of either
type.

A. What is each type’s expected utility function? Write down the com-
petitive insurance market’s zero-profit condition for a society con-
sisting only of individuals with the probability of accident of 0.10.
Write down the zero-profit condition for a society consisting only
of individuals with the probability of accident of 0.40. Now, give the
zero-profit condition for a competitive insurance market that offers
everyone, regardless of type, the same contract.

B. Find the full information competitive equilibrium. (You may use
the complete insurance theorem.) State the expected utility of each
individual at equilibrium and the expected profit of the insurance
companies.

C. Determine the pooling contract P0 for which x = y. Now find a new
contract P that would provide positive expected profit for any firm
offering it if only P0 were initially available. Show that the individuals
purchasing P would have more utility than with P0. Calculate the
expected profit for the firm selling P.

D. Identify the asymmetric information competitive equilibrium. Cal-
culate the expected utility of an individual of each type, and calcu-
late a firm’s expected profit. Explain why the equilibrium really is an
equilibrium. (Hint: Compare the expected utility at the endowment
point with expected utility at equilibrium for the relevant type. Now,
starting at the endowment point, show that this type’s expected util-
ity falls as y increases. If you have to solve an equation of the form
ay + b

√
y + c = 0, set q = √

y and q2 = y and use the formula for solv-
ing a quadratic equation:

a = −b ± √
b2 − 4ac

2a
.

10. Each of n individuals has utility-of-wealth function U(w) = 50w − w2. Let x
represent wealth if there is an accident and let y denote wealth if there is no
accident. If the individual buys no insurance then x = 10 and y = 20.

A. Is the individual risk averse? Explain.

B. Show that when the odds are fair and the individual is risk averse he
or she will set x = y. You may use a general argument, or the utility-
of-wealth function U(w) = 50w − w2.
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C. Find the competitive equilibrium insurance contract assuming that
everyone has a probability of accident of 0.10.

D. Find the competitive equilibrium insurance contract assuming that
everyone has a probability of accident of 0.20.

E. By means of a diagram, identify the full information competitive equi-
librium and also the asymmetric information competitive equilib-
rium when some individuals have a probability of accident of 0.10
and some have a probability of accident of 0.20.
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Auctions have been used for more than 2500 years to allocate a single indivisible
asset. They are also used to sell multiple units of some commodities, such as
rare wine or a new crop of tulip bulbs. There are many different types of auctions
in use, and far more that have never been tried but could be employed if we felt
that they served some purpose. The aim of this chapter is to determine which
type of auction should be used in a particular situation. Accordingly, we need
to determine which bidder would get the asset that is up for sale and then how
much would be paid for it.

1 INTRODUCTION

When the government sells things at auction—treasury bills and oil-drilling
rights, for instance—the appropriate criterion for determining which type of
auction should be used is the maximization of general consumer welfare.
Because the bidders are usually firms, we recommend the auction type that
would put the asset in the hands of the firm that would use it to produce the
highest level of consumer welfare. Fortunately, this is correlated with the value
of the asset to a bidder: The more valuable the asset is to consumers when it
is used by firm X , the more profit X anticipates from owning the asset, and
thus the higher the value that X itself places on the asset. The individual firm
reservation values are hidden characteristics. On one hand, if the government
simply asked the firms to report their reservation values it would get noth-
ing resembling truthful revelation. Each firm would have a strong incentive to
overstate its value to increase the probability of it being awarded the asset. On
the other hand, if each firm is asked to report its reservation value and then
the asset is awarded to the high-value firm at a price that is proportional to
its reported value, then a firm can be expected to understate the maximum
that it would be willing to pay for the asset. This chapter identifies the one

A sample of things that are auctioned:
Estates, wine, art, jewelry, memorabilia,
estate furniture, used cars to dealers,
foreclosed houses, repossessed goods,
import quotas in Australia and New
Zealand, oil-drilling rights, assets from
failed banks, confirmed seats on over-
booked flights, contract jobs, govern-
ment surplus goods, tulip bulbs, race-
horses, and tobacco.

auction mechanism that gives bidders an
incentive to reveal their precise reservation val-
ues truthfully.

Private individuals and firms also use auc-
tions to sell things, of course, and in those cases
the seller’s objective is to maximize its revenue.
The private seller also has a hidden characteris-
tic problem because the potential buyers have
no incentive to truthfully reveal the maximum
they would be willing to pay. Otherwise, the
seller could simply select the buyer with the
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highest reservation value and charge that buyer a price a little below that value
on a take-it-or-leave-it basis. We identify the auction formula that maximizes
the seller’s revenue.

1.1 Ten significant auctions
T-Rex skeleton: In October 1997, a Tyrannosaurus Rex skeleton that was 90%
complete was sold for $8.36 million at an auction conducted by Sotheby’s. The
winning bidder was the Field Museum of Natural History in Chicago. Paleon-
tologists had worried about the sale, fearing that the winner would not make
the skeleton available for research. (Perhaps someone with enormous inherited
wealth would outbid the museums and then allow children to use the skeleton
as a climbing apparatus.) However, it transpired that the highest 50% of the bids
were from institutions. The Field Museum’s supporters had raised more than $7
million from private (anonymous) donors specifically for the T-Rex auction.

Radio spectrum: During the second half of the 1990s and first few years of
the twenty-first century, previously unallocated portions of the radio spectrum
were sold in a large number of auctions around the world. More than $100 billion
flowed into government treasuries. Academic economists played a leading role
in designing these auctions, which were considered a big success, particularly
in Britain and America. The initial U.S. auctions allocated narrowbands, used
for pagers, and the later ones involved broadbands, for voice and data trans-
mission. In 2000 the British government sold airwaves licenses for a total of $34
billion or 2.5% of the British GNP. Similar sales were conducted in other Euro-
pean countries. The European licenses were for frequencies to be used by the
third-generation mobile phones, which will allow high-speed access to the Inter-
net. Other European countries also sold portions of the radio spectrum, with
varying degrees of success. In terms of the money raised per capita, the Swiss
auction realized only 20 Euros whereas the German and U.K. auctions yielded
615 and 650 Euros, respectively. Poor auction design accounts for the low yield
in Switzerland and some other countries. Surprisingly, Spain and Sweden used
the traditional “beauty contest” method to allocate licenses. This means that a
jury of experts appointed by the government looked over the applications and
selected the ones that they deemed best. Not only does this not solve the hidden
information problem, it is susceptible to favoritism and corruption. (The vast
sums that would have been paid had an auction been used are available to bribe
the members of the selection committee.)

Pollution permits: Since 1990 the U.S. Environmental Protection Agency
(EPA) has been auctioning permits for dumping sulphur dioxide (SO2) into the
air, resulting in a 50% reduction in the amount of SO2 released into the air.
This is significant because SO2 is a prime ingredient in acid rain. The buyers of
the pollution permits are firms that produce electricity by burning fossil fuel. An
electric utility must surrender one permit to the EPA for each ton of SO2 released.
These permits have a high opportunity cost because they can be sold at auction
to other electric utilities. This gives the firm an incentive to invest in cleaner
production processes. By restricting the number of permits issued, the EPA can
reduce the total amount of SO2 released as a by-product of electricity generation.
By allowing the permits to be traded, the EPA can achieve the reduction at lowest
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cost: Firms that can find a low-cost way of modifying the production process
to reduce SO2 output will sell pollution permits to firms that can reduce SO2

output only by switching to high-cost techniques. The additional permits allow
the purchasing firm to escape some of the costly adjustments that would other-
wise be required. The auction of pollution permits was initially run by the EPA,
but private markets have taken over. (The EPA auction now handles only 3% of
the transactions.) Auctioning pollution permits solves the hidden characteristic
problem: A firm would not willing disclose the cost of reducing its SO2 output
if firms were to be required to adjust their production processes on the basis of
that information. (See Section 2 of Chapter 3 for an extended discussion.)

Jobs: Because the managerial labor market is not well developed in China, the
Chinese government has auctioned off top management jobs in some industries.
Poland has also auctioned managerial jobs in some firms, as have other former
communist countries. Jobs are auctioned in firms that are doing poorly. The
bid consists of the promise of a bond, which the winner of the job must post
and which is forfeited if the firm does not perform up to expectations. The
bonds are about 5% of the firm’s value at the time of the auction. The need
for such an allocation scheme is due to a hidden characteristic problem. In
transition economies, individuals often know more about their abilities as chief
executives than the agency that chooses the new manager. Individuals with more
confidence in their own abilities are likely to submit higher bids. Of course, this
has a hidden action dimension: Having posted a bond, there is greater incentive
to run the firm well.

Offshore oil: The U.S. federal government raised $560 million in 1990 by
auctioning licenses to drill for oil in the Gulf of Mexico.

Bank assets: In the 1980s and 1990s, the federal government auctioned off
the assets of hundreds of failed banks and savings and loan institutions. These
financial firms failed because the value of their assets was far below the value
of their obligations to depositors. The assets were claimed by the government
because it had to honor the deposit liabilities of the failed lending institutions.
It could at least sell their assets to the private sector for whatever they would
fetch. The auctions were not a great success because the government was too
anxious and typically did not wait until more than a few bidders participated.

Kidneys: Each year about 100,000 people around the world are told that they
will have to continue to wait for a kidney transplant. In the year 2002, 55,000
people were on the waiting list in the United States, and more than a quarter
of them had been waiting for more than three years. Each year, about 6% of
those on the waiting list will die, and almost 2% of the others will become too
ill to qualify for a transplant. In 1999 a citizen of the United States attempted to
auction one of his kidneys on the Internet. Such a transaction is illegal in the
United States, and it was annulled by the firm operating the auction, but by that
point the bidding had reached $5.7 million.

Privatization: Since 1961 when the German government sold a majority
ownership of Volkswagen to the public, removing it from state control, a large
number of state-owned enterprises have been transferred to public owner-
ship in Europe and Japan. In Britain, the value of state-owned enterprises
decreased from about 10% of GDP to virtually zero in the 1980s. Transition
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economies—primarily, the former Soviet Union countries and Eastern Euro-
pean satellites—have privatized much of the production sector. In some of
these transition economies, the assets have been sold at auction. In the case
of the Czech Republic and Russia, some of these auctions involved the use of
vouchers that were fairly evenly distributed to the public. The shares in each
firm would have a voucher price, and each bidder would have to allocate a
limited number of vouchers across the available shares. The voucher auctions
typically did not lead to a high level of performance for the firms involved,
primarily because the insiders managed to retain control of a firm’s operations.

Electricity: For almost all of the twentieth century, the production of electric-
ity in the United States was largely undertaken by local monopolies that were
regulated by state governments. Most of the European producers were state
enterprises. There was a wave of deregulation of electricity markets in the Euro-
pean Union and the United States at the end of the century, with Britain leading
the way in 1990 when it substituted an electricity auction for state manage-
ment. In country after country, the new industrial structure featured competition
between private suppliers of electric power, with an auction mechanism used
to allocate electricity among consumers of electric power. In Britain, France, the
United States, and other countries the auction rules were designed by leading
economists. They are revised when defects are detected.

Google’s initial public offering: The term initial public offering (IPO) refers
to the offer of shares to the general public by a firm owned by a handful of
individuals—usually the founders—whose ownership shares were not previ-
ously traded on any stock exchange. The buyers become shareholders in the
firm and the money they pay goes into the bank accounts of the original own-
ers. An IPO is traditionally marketed by one of a handful of select investment
banks, which charge a fee of 7% of the proceeds of the sale. In return for this
substantial fee, the investment bank guarantees that the shares will be sold at
the asking price. The fees and asking prices are not competitively determined—
the banks act like a cartel. Google, which runs one of the leading Internet search
engines, broke tradition by offering its initial shares by auction over the Internet.
A Dutch auction (see Section 3.1) collected more than $1.6 billion for the shares
in August 2004. The advantage of the auction over the traditional method is that
the latter is too vulnerable to manipulation. The investment bank handling the
IPO can price the shares below their market value, in return for some form of
(implicit) future compensation from the firms purchasing large blocks of the
shares. Google used the online auction created by WR Hambrecht & Co.

1.2 Auctions and efficiency
When the government sells assets to the public its goal should not be to maxi-
mize its revenue. Its objective should be to see that the asset goes to the agent
with the highest reservation value. Let’s see why.

Suppose first that no production is involved. An antique of some sort—say a
painting—is being allocated. Suppose also that individual preferences are quasi
linear. Thus the individual’s utility function has the form U(x, y) = B(x) + y,
where commodity X is the good being auctioned and Y is generalized pur-
chasing power—that is, dollars of expenditure on everything but X . Assume for
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convenience that B(0) = 0. Then one unit of X obtained without cost would
cause the individual’s utility to increase from zero to B(1). If the individual

How to maximize government revenue: If
the government auctioned the right to
supply each commodity as a monopoly
it would take in far more revenue than it
could by any other fund-raising activity.
Monopoly profits are very high, so bid-
ders would pay lavishly for the right to
be the sole supplier of a particular good.
But then we’d have an economy full of
monopolies, hardly the way to promote
general consumer welfare.

actually paid P for the unit of X then the change
in utility would be U = B(1) + y = B(1) −
P. If P < B(1) then U is positive. The indi-
vidual would be willing to pay any price P less
than B(1) for one unit of X because that would
increase utility. (A lower price is preferred to
a higher price, of course.) But any price above
B(1) would cause utility to fall. (U = B(1) −
P < 0 when P > B(1).) Therefore, B(1) is the
maximum that the individual would pay for
one unit of X . That is, B(1) is the individual’s
reservation value for one unit of X .

DEFINITION: Reservation value
A bidder’s reservation value is the maximum that the bidder would be willing
to pay for the asset.

If the individual already has x units of X then the reservation value for the next
unit is B(x + 1) − B(x). One of the factors influencing the reservation value is
the degree to which close substitutes are available. The function B is different for
different individuals, so we need one reservation value Bi(1) for each individual
i. To simplify the notation, we’ll let Vi denote that value.

Now we show that efficiency requires that the asset be awarded to the
individual with the highest reservation value. Suppose to the contrary that
Vi < Vj and i has the asset. But then Ui and Uj will both increase if i trans-
fers the asset to j in return for 1/2Vi + 1/2Vj dollars: The change in i’s utility is
Ui = −Vi + 1/2Vi + 1/2Vj = 1/2Vj − 1/2Vi , which is positive because Vj > Vi . And
the change in j’s utility is Uj = +Vj − (1/2Vi + 1/2Vj ) = 1/2Vj − 1/2Vi > 0. We have
increased the utility of both i and j, without affecting the utility of anyone else.
Therefore, the original outcome was not efficient. (We have implicitly assumed
that individual j has 1/2Vi + 1/2Vj dollars.)

If VH is the highest reservation value, and every individual i �= H has at least
1/2Vi + 1/2VH units of commodity Y , then efficiency requires that the asset be
held by an individual whose reservation value is VH .

Note that the sum of utilities is maximized when we give the asset to the
individual with the highest reservation value, assuming that there is no change
in the total consumption of Y . That’s because there is a single indivisible asset,
and hence the sum of utilities is

α1V1 + y1 + α2V2 + y2 + α3V3 + y3 · · · + αnVn + yn

= α1V1 + α2V2 + α3V3 + · · · + αnVn + y1 + y2 + y3 + · · · + yn
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where αi = 1 if individual i gets the asset and αi = 0 if i does not receive the asset.
If y1 + y2 + y3 + · · · + yn does not change then this sum is obviously maximized
by setting αi = 1 for the individual i with the highest Vi .

The outcome that assigns the asset to the individual with the highest Vi is
efficient whether or not money changes hands, as long as y1 + y2 + y3 + · · · + yn

is unaffected. That’s because any outcome that maximizes total utility is effi-
cient. (See Section 5.1 of Chapter 2.) In the interest of fairness we might require
that the individual acquiring the asset make a payment that is some func-
tion of the reservation values of the individuals in the community. In Section
2.3, we demonstrate that because the individual reservation values are hidden
information, efficiency considerations require that a payment be made by the
individual receiving the asset. Moreover, we determine precisely how that pay-
ment must be related to the reservation values of the other members of the
community.

We have assumed away the possibility of a trade after the auction. But does it
really matter who gets the asset initially? If Rosie gets the asset and her reserva-
tion value is 600 but Soren’s reservation value is 1000, can’t they strike a mutually
profitable trade, resulting in an efficient outcome? That assumes that both would
disclose their reservation values willingly. Soren has an incentive to understate
his, to keep the negotiated price down. But because he does not know Rosie’s
reservation value there is a possibility that he will claim that his value is, say,
500. But there is no price below $500 at which Rosie is willing to trade. The nego-
tiations might break down at this point. Note also that Rosie has an interest in
overstating her reservation value. The efficient postauction trade might not take
place.

We are back to the original hidden characteristic problem. Think of two
heirs who squander the majority of a disputed legacy as they battle each other
in court. A more common instance is that of a firm’s owners and workers endur-
ing a lengthy strike that does considerable harm to both, as management tries to
convince workers that the owners’ reservation value is too low to permit it accept
their demands, and the workers try to convince management that their reser-
vation value is too high to permit them to accept the owners’ offer. Therefore,
we must employ a mechanism to generate an efficient outcome when individ-
uals are motivated by self-interest. We cannot rely on self-interest to lead to an
efficient outcome without a framework of appropriate incentives.

Example 1.1: A bargaining breakdown

Individual J owns an asset that J wishes to sell to individual K . J ’s reservation
value is 2, but J does not know K ’s reservation value. As far as J is concerned, K ’s
value is drawn from the uniform probability distribution on [0, 5], the interval
from 0 to 5. By definition, this distribution is such that the probability that K ’s
reservation value is less than the number P is equal to the fraction of the interval
[0, 5] that is covered by the subinterval [0, P]. (See Section 6.5 of Chapter 2.) In
other words, the probability that the random value is less than P is P/5. Now,
J offers to sell the asset to K at price P. This is a take-it-or-leave-it offer, so
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K will accept the offer if and only if K’s reservation value VK is greater than
P. The probability that VK > P is 1 minus the probability that VK < P. Hence,
the probability that VK > P is 1 − P/5. The expected payoff to the seller J is
the probability of the offer’s acceptance multiplied by the payoff to J in case of
acceptance, which is P − VJ . Therefore, J ’s expected payoff is(

1 − P
5

)
× (P − 2) =

(
1 + 2

5

)
P − 1

5
P2 − 2.

This is a quadratic, which we wish to maximize. The value of P that maximizes
J ’s expected payoff is

P∗ = 1 + 2/5
2/5

= 3.5.

Therefore, J will offer to sell the asset to K at a price of 3.5. However, if VK < 3.5
the offer will be rejected by K . But if VK > 2 = VJ efficiency requires that the
asset be held by K . Therefore, if J owns the asset and 2 < VK < 3.5, the outcome
will not be efficient, and the inefficiency will not be corrected by a voluntary
exchange between J and K .

Now, suppose that the asset is up for auction because it is used in a production
process. The bidders are firms, and Vi is the firm i’s economic profit: If the firm
were to use the asset in combination with other inputs it would be able to earn
enough revenue to cover all the production costs, including a normal return on
capital, and have Vi dollars left over. (Specifically, Vi is the present value of the
stream of profits.) If firm i were to obtain the asset at any price P less than Vi it
would still obtain a positive economic profit, and hence would be willing to pay
any price less than Vi . (Of course, lower prices are more profitable than higher
prices.) However, if it paid more than Vi , ownership of the asset would not yield
enough revenue to cover all production costs and provide a normal return on
capital. Therefore, Vi is the maximum that firm i would be prepared to pay for
the asset, and hence is the firm’s reservation value.

We establish that it is in consumers’ interest to have the asset awarded to the
firm with the highest reservation value by showing that Vi is the net benefit that
firm i would provide to consumers by employing the asset in production. Vi is
economic profit, which in turn equals revenue minus cost. Revenue is a measure
of consumers’ willingness to pay for the firm’s output. Consumers wouldn’t pay a
lot for the good if it didn’t deliver a corresponding high level of benefit. Therefore,
the revenue that a firm takes in can be used as a measure of the gross benefit that
consumers derive from the firm’s activities. But a good may provide a high level
of benefit only at a very high cost in terms of foregone output of other goods
and services. A yacht, for example uses a lot of scarce resources—skilled labor
and highly productive equipment—so the resources employed in producing the
yacht could have been employed in producing other goods and services that
generate a lot of consumer benefit. The more productive firm i’s inputs would
be if employed somewhere else in the economy, the higher the demand for
those inputs and hence the higher the market value of the inputs—as a result
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of competition by all firms for their use. Therefore, the cost of inputs used by
firm i is a measure of the value of the goods and services that could be produced

Negotiations don’t always break down,
particularly when the difference in reser-
vation values is extreme. Spectrum
licenses were allocated by lottery in the
United States from 1982 to 1993. In 1991
the lucky winner of a cellular telephone
license subsequently sold it to South-
western Bell for $41.5 million (New York
Times, May 30, 1991, p. A1). However,
the lotteries spawned serious inefficien-
cies that were not quickly rectified by
the market. The individual communica-
tions provider served a relatively small
territory, significantly delaying the cre-
ation of a nationwide network that
would allow cell phone users to “roam”
(Milgrom, 2004, pp. 3, 20).

if the inputs were employed elsewhere. This
means that the market value (i.e., cost) of the
inputs used by firm i are a measure of the
value of consumer goods and services lost to
the economy by employing the inputs in firm
i. The firm’s cost is equal to the cost to con-
sumers of the firm’s activities. Therefore, “rev-
enue minus cost” equals “gross benefit to con-
sumers of firm i’s activities minus the cost to
consumers of those activities.” That is,

revenue − cost = net benefit to consumers.

We want the asset to be awarded to the
firm that delivers the highest net benefit to
consumers. Therefore, we want to employ an
auction mechanism that always allocates an
asset to the firm with the highest reservation
value, even when the firms bid strategically. We
reached the same conclusion for assets that are

not involved in production and the bidders are households. We refer to this as
asset efficiency.

DEFINITION: Asset efficiency
We say that the asset is allocated efficiently if it is assigned to the agent with
the highest reservation value.

If the government simply asked each firm to report its reservation value, on
the understanding that the asset would go to the firm with the highest value,
we wouldn’t get anything resembling truthful revelation. Every firm would have
a strong incentive to vastly overstate its value, to increase its chance of obtain-
ing the asset. But perhaps there is an auction that would give each firm an
incentive to reveal its value truthfully. There is, and it is the subject of the next
section.

Sources
The T-Rex auction is reported in Science News, December 13, 1997, vol. 152,
pp. 382–3. The discussion of the European airwaves auctions is based on
Binmore and Klemperer (2002) and Klemperer (2002b). For a discussion of the
allocation of top managerial jobs in China see p. 217 in McMillan (1997). The
data on the kidney transplant waiting list is from Roth, Sönmez, and Ünver
(2004). The brief sketch of privatization is based on Megginson and Netter (2001).
Example 1.1 is from Maskin (2003). Support for the claim that investment banks
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exploit their substantial market power can be found in The Economist, May 8,
2004, p. 14: “Acting like a cartel, these banks rarely compete on price.” See also
Nalebuff and Ayres (2003, p. 198): In effect they give gifts to “favored clients
and executives whose business they are courting” in return for (implicit) future
considerations.

Links
McMillan (1994, 2002) are good accounts of the auctioning of radio frequencies.
Kirby, Santiesteban, and Whinston (2003) use the Vickrey auction in an exper-
iment designed to determine if students who are more patient perform better.
Demsetz (1968) suggested that the government auction the right to be the sole
supplier of a particular good in the case of a natural monopoly. The winner would
be the firm proposing the lowest output price. Laffont and Tirole (1987) extend
this to the auctioning of the right to complete a government project. (Alterna-
tively, see Chapter 7 of Laffont and Tirole, 1993.) Arrow (1979) and d’Aspremont
and Gerard-Varet (1979) extend the analysis of resource allocation under uncer-
tainty well beyond the single indivisible asset case.

Problem set

1. The proof that an outcome is efficient only if the asset has been awarded
to the individual with the highest reservation value implicitly assumed that
individual j has 1/2Vi + 1/2Vj dollars. Show that the outcome in which the
individual with the lowest reservation value has both the asset and all of the
commodity Y is in fact efficient.

2. Example 1.1 assumed that VJ = 2. Rework Example 1.1 with the individual
J ’s reservation value represented as a variable VJ , known to J of course. For
what values of VJ and VK will there be an inefficient outcome?

2 THE VICKREY AUCTION

Assume that a piece of physical capital—an asset—is to be sold, and there are sev-
eral potential buyers. Each buyer attaches a different value to the asset because
the bidders have different opportunities for combining it with other real assets
that they own. This reservation value is the maximum sum of money that the
individual or institution would be willing to pay for the asset. The reservation val-
ues are unknown to the seller. If they were known, the seller would simply sell the
asset to the party with the highest reservation value for a price just under that
reservation value. And because of that, buyers would not willingly and truth-
fully disclose their reservation values. The seller faces a hidden characteristic
problem. Is there a scheme by which the seller could discover the individual
reservation values and thereby sell the asset to the individual (or company) with
the highest reservation value?

In the language of auction theory, we are assuming private values. At the
other extreme is the common values case in which the asset has one specific
value—its equilibrium market price—and every bidder accepts this, but they
have different estimates of that market value.
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DEFINITION: Private versus common values
Reservation values are private if each bidder’s value is independent of the
others’. In a common values auction, each bidder knows that the asset is
worth the same to each bidder, but each has only a rough estimate of what
that common value is.

Everyone is familiar with the oral auction with ascending bids. The auction-
eer calls out a price until someone accepts that price, whereupon the auctioneer

Until very recently it was widely believed
by economists that the second-price,
sealed-bid auction was invented by
William Vickrey in 1961. In fact, this auc-
tion has been used to sell stamps to
collectors since at least 1893 (Lucking-
Reiley, 2000).

raises the price again. He then asks for a new
bid—that is, acceptance of the new price—and
so on until no one is willing to accept the price,
at which point the article is sold to the bidder
who accepted the last price, which will be the
price actually paid by the winner. This is the
standard English auction. However, we begin by
investigating a close relative, the second-price
auction, and show that it induces truthful rev-

elation of an individual’s reservation value: The asset goes to the highest bidder
who then pays a fee equal to the second-highest bid.

DEFINITION: The Vickrey or second-price auction
Each individual submits one bid, usually without knowing what anyone else
has bid. The asset is awarded to the high bidder at a price equal to the second-
highest bid. If there are two or more individuals with the same high bid, the
tie can be broken in any fashion, including randomly.

2.1 Equilibrium bids
If the Vickrey auction is used it is in a person’s self-interest to enter a bid equal
to his or her true reservation value. Let’s prove this. First, consider a simple
example.

Example 2.1: Four bidders

The reservation values of bidders A, B, C , and D are displayed in Table 6.1. What
should individual B bid if the Vickrey auction is used? Will it depend on what the
others bid? Suppose B bids 125. If that were the highest bid and the next highest
bid is 100 then B would be awarded the asset at a price of 100. With any bid over
$100, B would wind up paying $100 for something worth only $70 to him. So,
submitting a bid above one’s reservation value can be very unprofitable. What
if B bids below 70, and the highest bid is 100? From the standpoint of B, the
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Table 6.1

Bidder A B C D

Reservation value 100 70 40 20

outcome would be the same as if B bid 70 (or anything below 100): The asset
would go to someone else. The same reasoning will show that neither C nor D
could benefit from submitting a bid different from their own reservation values
but could be made worse off as a result. Now, consider A’s bid. If the highest bid
submitted by anyone else is 70, then A gets the asset at a price of $70 with a bid
of $100 or anything higher than $70, leaving A with a profit of 100 − 70 = 30. If
A’s bid is below 70, and someone else has submitted a bid of 70, then A will not
be awarded the asset and will sacrifice the profit of 30. A bid different from A’s
reservation value cannot benefit but could harm A.

Now, we prove that for any number of bidders, and any set of reservation
values, no individual can profit from submitting a bid different from that person’s
reservation value if the asset is allocated by the Vickrey auction. In other words,
bidding one’s reservation value is a dominant strategy, regardless of what anyone
else bids.

DEFINITION: Incentive compatibility
An auction mechanism is incentive compatible if for each participant,
submitting a bid equal to the individual’s reservation value is a dominant
strategy.

Suppose that person X has a (true) reservation value of V and that U is the
highest of all the bids except for X’s own bid. What should X bid? First, suppose
that U is less than V (Figure 6.1). Under truthful revelation, X will bid V , will
win the asset as the high bidder, and will pay U for it, because U would be the
second highest bid. Can X benefit by submitting a bid other than V ? There are
three possibilities, illustrated in Figure 6.1: A bid such as L in the region below
U, a bid M somewhere between U and V , and a bid H above V . With either M
or H individual X will still be the high bidder, will still get the asset, and will still
pay U for it because U would be the second-highest bid. Therefore, M and H
have the same effect on X’s payoff as V . However, if X bids L below U then X
will not be the high bidder and will not get the asset, thereby forfeiting the profit
of V − U (the difference between the true value to X and the price paid) that

L U M V H

Figure 6.1
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L UMV H

Figure 6.2

would result from a bid of V . (A bid of L = U by individual X would create a tie,
which we suppose would be settled by the flip of a coin, in which case there is
a positive probability that X would forfeit the profit of V − U.) In short, when
V is higher than any other bid, deviating from a bid of V could never benefit X ,
but it can do harm.

Now let’s consider the strategy that maximizes X’s payoff when there is
another bid above V , the true reservation value of individual X . Let U denote
the highest bid of everyone but X . (Here in our lab we know that U is in fact the
highest bid of all.) Again, we need to consider three possibilities (Figure 6.2):
The alternative bid L is in the region below V , or the alternative bid M is some-
where between V and U, or it is at H above U. With either L or M individual X
will be outbid, just as with a bid of V , will not get the asset, and will not have to
make a payment. But if X bids H above U then X will be the high bidder and will
win the asset at the price U, the next highest bid. In that case X will have paid U
for something worth only V to X , resulting in a loss of U − V . That loss would
have been avoided by submitting a bid equal to X’s true reservation value. (A bid
H = U by individual X would create a tie, which we suppose would be settled
by the flip of a coin, in which case there is a positive probability that X would
suffer a loss of U − V .) In this case we see also that deviating from a bid of V
could never benefit X , but it can do harm.

We have demonstrated that submitting a bid equal to your reservation value
is a dominant strategy for the Vickrey auction. The argument appeared to assume
that individual X knew what the others would bid. To the contrary, we showed
that even if X could read everyone else’s mind, X could never profit by deviating
from truthful revelation. And this holds true whether others bid wisely or not.
(The proof didn’t require us to make any assumption about the soundness of
the other bidders’ strategies.) Whatever the other bids are, and however they
are arrived at, you can’t do better than bidding your own reservation value in a
Vickrey auction, whatever you know about the bids of others.

Because all individuals’ bids equal their true reservation values, the asset
will in fact be awarded to the individual with the highest value. Therefore, the
Vickrey auction is asset efficient.

In terms of Example 2.1, A will bid 100, B will bid 70, C will bid 40, and D will
bid 15. A will get the asset and pay 70 for it. But our argument was completely
general. It applies to the auctioning of any object among any number of indi-
viduals. And once the object is allocated it is not possible for two individuals to
engage in a mutually beneficial trade because the object goes to the person who
values it most.

2.2 Social cost pricing
A mechanism uses social cost pricing if the individual taking an action incurs
a cost equal to the cost that the action imposes on the rest of society. For the
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special case of the allocation of a single indivisible asset, if the asset is awarded
to individual A, then the cost of this allocation to the rest of society is the highest
payoff that would be realized if the asset were to go to someone else.

DEFINITION: Social cost
The cost to the rest of society of awarding the asset to one individual is the
highest payoff that could be generated by giving the asset to someone else.

In determining the cost of giving the asset to individual J we calculate the
payoff that would be realized by giving the asset to, say, individual K without
deducting any payment that K might have to make. That is because the payment
is a transfer from one person to another and thus is not a net loss to the group of
individuals as a whole. However, if K ’s reservation value is $800 and J ’s is $500
then there is a net loss to the economy in giving the asset to J : The society as a
whole loses $300 of benefit. We say that the cost of giving the asset to J is $800,
so the net gain to society is +500 − 800 = −300.

We consider seven different mechanisms in which social cost pricing plays
a central role, beginning with the Vickrey auction.

The Vickrey auction
The asset is awarded to the high bidder at a price equal to the second-highest
bid. Because truthful revelation of the individual’s reservation value is a dom-
inant strategy, the second-highest bid will be the second-highest reservation
value. Therefore, the price that the winner pays is equal to the second-highest
reservation value, which is the cost to the rest of society of giving the asset to the
winner of the Vickrey auction. In other words, the Vickrey auction uses social
cost pricing.

Example 2.2: Four bidders again

As in Table 6.1, A’s reservation value is 100, B’s is 70, C ’s is 40, and D’s is 30. If the
asset were given to individual A then the cost to the rest of society is 70, because
that is the highest payoff that could be generated by giving it to someone other
than A. If the asset were given to B or C or D then the cost to the rest of society
would be 100.

Before presenting the other six mechanisms we recall that social cost pric-
ing in general involves charging an individual a fee equal to the cost that the
individual’s action has imposed on the rest of society.

Resource allocation
A general equilibrium is a configuration of prices at which every market simulta-
neously clears. A general competitive equilibrium is a general equilibrium in an
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economy in which each industry is competitive. Consider a private ownership
market economy. At equilibrium, each consumer chooses a consumption plan
at which the marginal rate of substitution between goods X and Y is equal to the
ratio PX/PY of the respective prices. This holds for any two goods X and Y that
are consumed. The opportunity cost incurred by Jordan when he orders a unit
of X is PX/PY . It costs PX dollars to buy a unit of X ; each dollar will buy 1/PY units
of Y , so PX dollars spent on X could have been used to purchase PX × (1/PY )
units of commodity Y . Jordan takes the opportunity cost PX/PY of X into con-
sideration in determining his utility-maximizing consumption plan. Because
the ratio PX/PY also equals Leo’s marginal rate of substitution (MRSL ), Jordan
is being forced to take the preferences of Leo into consideration when Jordan
formulates his consumption plan. Every unit of X consumed by Jordan is worth
MRSL to Leo, in the sense that MRSL = PX/PY is the minimum amount of Y
that would compensate Leo for the loss of a unit of X . We can say that MRSL

is the cost to society of Jordan taking a unit of good X for himself. In other
words, PX/PY is the cost that one imposes on society by consuming a unit of
good X .

The ratio PX/PY is also the amount of Y that could have been produced,
given available technology, with the resources required to provide one more
unit of X to consumers. This is another sense in which PX/PY can be viewed as
the cost individuals impose on society by ordering a unit of commodity X for
their own use.

∂ Constrained optimization
Mathematical programming gives us another example of social cost pricing.
Consider the problem

maximize f (x, y) subject to g(x, y) ≤ a and h(x, y) ≤ b.

The function f represents the goal or objective, and we want to pick the values
of x and y that maximize f . But there are constraints g and h, and they restrict
the values of x and y that we can select.

The function f expresses the goals of society, but the society could be the
set of shareholders of a particular firm, with f (x, y) denoting the profit from the
production of x units of commodity X and y units of commodity Y . The con-
straints represent limitations such as warehouse and transportation capacity.
The point is, that the example has a wide range of interpretations. If f is the
value to society of the plan (x, y) then g and h reflect resource utilization by
the plan of two inputs A and B—labor and capital, say—with a and b denoting
the total amount available of A and B, respectively. The plan (x, y) uses g(x, y)
units of labor, and that cannot exceed the total amount of labor, a, in the econ-
omy. Similarly, the plan (x, y) uses h(x, y) units of capital, and the economy has
only b units of capital.

The solution of the constrained optimization program can be characterized
by means of two Lagrangian (or Kuhn-Tucker) variables, α and β, associated
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with the respective constraints g and h. If x0 and y0 constitute a solution to the
problem then there exist α ≥ 0 and β ≥ 0 such that

∂ f (x0, y0)
∂x

− α
∂g(x0, y0)

∂x
− β

∂h(x0, y0)
∂x

= 0, [1]

∂ f (x0, y0)
∂y

− α
∂g(x0, y0)

∂y
− β

∂h(x0, y0)
∂y

= 0. [2]

The variable α is a price in the sense that it is the value of the resource A under-
lying constraint g: If additional units of A can be obtained then α is the rate at
which f will increase per unit of A added. And ∂g(x0 y0)/∂x is the rate at which
A is consumed at the margin. B and β are interpreted similarly.

Notice that we arrive at the same optimal plan ( x0, y0) if we maximize

f (x, y) − αg(x, y) − βh(x, y)

treating α and β as given prices of A and B respectively. Therefore, α and β truly
are social cost prices. (See Section 3 of Chapter 2 for an extensive treatment.)

A computer network
Suppose that the society that we are studying is actually a network of com-
puters. Each computer is capable of carrying out a variety of tasks, but some
agent must assign tasks to the individual computers. Computer scientist C. A.
Waldspurger and colleagues at the Palo Alto Research Center (owned by Xerox)
have programmed another computer to assign the tasks. One could program
the central computer to gather data on the computational burden that each
computer is currently carrying and then do the complex job of computing the
optimal assignment of new jobs. Instead, the Xerox technicians have the central
computer auction computer time. An individual computer can bid for time on
other computers—each computer is given a “budget.” Computational capac-
ity is transferred from computers that “have time on their hands” to computers
that currently do not have enough capacity to complete their assigned tasks. The
price at which the transaction takes place is adjusted by the center in response
to demand and supply.

Tort damages
A tort is an instance of unintentional harm to person A as a result of the action
of person B. If the injury occurred because B did not exercise reasonable care

Millions of automobiles sold in the
United States have been recalled as a
result of safety defects that are then
repaired at the manufacturer’s expense.
Two forces are at work: If one car maker
does this the others have to follow suit to
protect their reputations. But why would
one manufacturer make the first move?
To forestall civil suits by injured cus-
tomers. That’s the second force at work.

then B can be held liable for the damages to
A according to U.S. law and the law of many
other countries. Frequently, the potential harm
to B can be avoided by means of a contract
between A and B. In such cases government
intervention is not required, except to enforce
the contract. For example, the contract signed
by professional athletes and their employer can
specify penalties in the event an athlete fails to
show up for a game or even a practice. But in
many cases, it would be too costly to arrange



2. The Vickrey Auction 341

all the contracts necessary for efficiency. I can’t enter into a contract with every
motorist who could possibly injure me as I walk down the sidewalk. By allowing
me to collect for damages in civil court, tort liability implicitly imposes costs
on anyone who unintentionally injures another. The closer the tort liability is to
the amount of harm inflicted the greater the incentive an individual has to take
decisions that incorporate the potential harm to others as a result of personal
negligence.

The pivotal mechanism
The pivotal mechanism discussed in Section 2 of Chapter 8 induces truthful
revelation of the benefit that an individual derives from a public project. It does
so by imposing a tax surcharge on person A that is equal to the loss in utility
suffered by everyone else as a result of A’s participation. If A’s participation has
no effect on the outcome then there is no loss suffered by others and hence
no surcharge paid by A. But if the outcome would have been F without A’s
participation and, as a result of A submitting A’s benefit function, the outcome
actually is G, then A’s tax surcharge is the difference between the total utility that
everyone but A would have derived from F and the total utility that everyone
but A will derive from G. This makes the tax surcharge equal to the cost that A’s
action (participation) imposes on the rest of society.

Franchises
What payment schedule should the owner of a firm offer to the firm’s manager to
maximize the firm’s contribution to the owner’s wealth? The franchise solution
comes closest to giving the manager maximum incentive. It does so by giving all
of the profit to the manager—all of the profit over and above a fixed payment to the
owner by the manager, that is. The manager then becomes the residual claimant:
After the fixed payment (franchise fee) is made, every dollar of profit realized by
the firm goes into the manager’s pocket. This is an example of social cost pricing
because the cost to the team—which you can think of as the manager-owner
duo, or even society—of shirking by the manager is exactly equal to the cost
borne by the manager. Even though the manager, not the firm’s owner, is the
residual claimant, the owner’s return is maximized because the high degree of
incentive under which the manager operates leads to high profits, and hence a
high franchise fee can be set. If uncertainty introduces a random component to
profit, then social cost pricing still maximizes the return to the owner of the firm
as long as the manager is risk neutral.

2.3 Incentives, efficiency, and social cost pricing
We have shown that the Vickrey auction satisfies incentive compatibility
and asset efficiency (defined in Sections 2.1 and 1.2, respectively). Now we
show that it is the only auction mechanism satisfying those two properties
plus the simple requirement that an individual who doesn’t get the asset
doesn’t have to pay anything. This new criterion is called the participation
constraint.
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DEFINITION: Participation constraint
An auction mechanism satisfies this condition if an individual who is not
awarded the asset doesn’t make or receive a payment.

Consequently, participating in the auction cannot make you worse off.
We begin by confining attention to direct auction mechanisms, which simply

ask all individuals to report their reservation values. Two simple rules identify a
particular direct mechanism: Selection of the individual who receives the asset
as a function of the reported reservation values and specification of how much
that individual pays, as a function of the reported reservation values.

DEFINITION: Direct auction mechanism
All individuals are asked to report their reservation values, and the asset
is awarded to one of these individuals, depending on the reported values
R1, R2, . . . , Rn of the n individuals. P(R1, R2, . . . , Rn) is the price paid by the
person to whom the asset is awarded, as a function of the reported values.

The Vickrey auction satisfies the participation constraint and asset efficiency
by definition. Section 2.1 demonstrated that it is incentive compatible. We now
prove that it is the only direct mechanism that has all three properties.

Uniqueness of the Vickrey auction

The Vickrey auction is the only direct auction mechanism satisfying incentive
compatibility, asset efficiency, and the participation constraint.

Here is the proof: Incentive compatibility means that each agent i reports his
or her true reservation value. In symbols, we have Ri = Vi , for each individual
i, where Vi denote’s i’s true reservation value, known only to i, and Ri is i’s
reported reservation value. Incentive compatibility and asset efficiency together
imply that the asset is awarded to the individual with the highest Ri . Therefore,
the only property of the auction mechanism to be determined is the payment
schedule P(R1, R2, . . . , Rn). We show that our three criteria imply that it has to
be the Vickrey payment schedule. That is, P(R1, R2, . . . , Rn) will be equal to the
second-highest Ri .

Consider an individual acting alone, as opposed to someone representing
a firm. That person’s payoff is captured by the quasi-linear utility function
U(x, y) = B(x) + y. An individual who is not awarded the asset pays nothing
(because the participation constraint is satisfied): The individual’s consump-
tion of X is unchanged, and consumption of Y does not go down. Therefore,



2. The Vickrey Auction 343

R2 T1 P(R1, R2 , . . . , Rn)

Figure 6.3

the change in utility of an individual who does not receive the asset cannot be
negative. If, say, person 1 does gets the asset then her change in utility is

U1 = B1(1) + y1 = B1(1) − P(R1, R2, . . . , Rn)

= V1 − P(R1, R2, . . . , Rn),

which is the benefit that she gets from the asset minus what she pays for it.
If the bidder is a firm, then its payoff is the effect of the auction on its profit,

and that is equal to the reservation value minus the price paid, if the firm winds
up with the asset. Therefore, whether agent 1 is a firm or an individual the
change in its payoff is V1 − P(R1, R2, . . . , Rn) if it wins the asset. For the rest of
this section we refer to a bidder as an agent.

For convenience, we assume that the agents have been labeled so that R2 ≥
Ri for all i > 2. In words, agent 2’s bid is the highest, with the possible exception of
agent 1. Suppose that V1 > R2, which means that agent 1’s bid would be highest
if she were to report truthfully. If she chooses some R1 < R2 she would not get the
asset and her payoff would not fall. Therefore, incentive compatibility requires
that agent 1’s payoff is not negative when she bids V1 > R2 and is awarded the
asset. A basic incentive compatibility condition, then, is

V1 − P(V1, R2, . . . , Rn) ≥ 0 whenever V1 > R2 and R2 ≥ Ri

for all i > 2.

In words, the price paid by the winner can never exceed the reservation value
reported by the winner. If we substitute the variable R1 for V1 this can be written
as follows:

R1 − P(R1, R2, . . . , Rn) ≥ 0 whenever R1 > R2 and R2 ≥ Ri

for all i > 2. [3]

Suppose that P(R1, R2, . . . , Rn) > R2 for R1 > R2 and R2 ≥ Ri for all i > 2,
with R1 = V1. Then agent 1 will get the asset and pay P(R1, R2, . . . , Rn) for
it. Intuitively, we see that it would be possible for 1 to lower her bid and still
be the high bidder. She could get the asset, but at a lower price than when
she reports truthfully, contradicting incentive compatibility. Therefore, incen-
tive compatibility would seem to imply that P(R1, R2, . . . , Rn) ≤ R2 when R1 >

R2 ≥ · · · ≥ Rn.
To establish this rigorously we suppose to the contrary that P(R1, R2, . . . ,

Rn) > R2 and R1 > R2 ≥ Ri for all i > 2. Let T1 be the average of P(R1, R2, . . . ,
Rn) and R2, as illustrated in Figure 6.3. That is, T1 = 1/2 P(R1, R2, . . . , Rn) + 1/2 R2.
This means that T1 will be less than P(R1, R2, . . . , Rn) but more than R2. We
have

P(R1, R2, . . . , Rn) > T1 > R2. [4]
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R1V1P(R1, R2 , . . . , Rn) R2

Figure 6.4

Therefore, [3] implies P(R1, R2, . . . , Rn) > T1 ≥ P(T1, R2, . . . , Rn). Therefore

P(R1, R2, . . . , Rn) > P(T1, R2, . . . , Rn).

But we also have T1 > R2. Therefore, the strategy T1 results in agent 1 getting
the asset but at a lower price than when she bids R1. This results in a higher
payoff for agent 1 than when she reports truthfully by bidding R1 = V1. Incentive
compatibility therefore requires, when R2 ≥ Ri for all i > 2,

P(R1, R2, . . . , Rn) ≤ R2 whenever R1 > R2.

Suppose that we actually have P(R1, R2, . . . , Rn) < R2 and R1 > R2 ≥ Ri for
all i > 2. Set V1 = 1/2 P(R1, R2, . . . , Rn) + 1/2 R2. That is, suppose that agent 1’s true
reservation value is halfway between P(R1, R2, . . . , Rn) and R2, as in Figure 6.4.
We have P(R1, R2, . . . , Rn) < V1 < R2. When agent 1 (untruthfully) reports R1

she gets the asset, and her payoff is V1 − P(R1, R2, . . . , Rn) > 0, which is greater
than the payoff of zero that she gets by truthfully reporting V1: When V1 < R2

she does not get the asset if her bid is V1. Therefore, incentive compatibility rules
out P(R1, R2, . . . , Rn) < R2 when R1 > R2 ≥ Ri for all i > 2. (We are allowed to
“choose” person 1’s reservation value because the mechanism is required to
work for all possible combinations of individual reservation values. Hence, it
has to satisfy the three criteria when V1 is between P(R1, R2, . . . , Rn) and R2.)

There is only one possibility left: We have to have P(R1, R2, . . . , Rn) = R2

whenever R1 > R2 ≥ Ri for all i > 2, confirming our intuition. The mechanism
must be the Vickrey auction. We started with an unknown mechanism. All we
knew was that it had our three properties. We proved that these properties
imply that it must actually be the Vickrey auction. We know that this scheme
induces truthful revelation, so we must have R2 = V2 and P(V1, V2, . . . , Vn) = V2,
which is the cost to society of giving the asset to agent 1. In general, if VH

is the highest reservation value and VJ is second highest, then we must have
P(V1, V2, . . . , Vn) = VJ with the asset going to H.

With the Vickrey auction the agent who gets the asset must pay a price equal
to the cost the agent imposes on the rest of society by making the asset unavail-
able for consumption by anyone else. Moreover, this social cost pricing scheme
has been derived from considerations of efficiency and incentive compatibility.

We can extend our result to a much wider family of auction mechanisms. A
general auction mechanism specifies for each agent i a set Mi of reports from
which that agent is able to choose. The mechanism also specifies for each agent
i a function σi that tells the agent what to report as a function of the agent’s
true reservation value. That is, if agent i’s true value is Vi then i is expected to
report σi(Vi), a member of Mi . For instance, if the mechanism is a direct one
then σi(Vi) = Vi .
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Example 2.3: Reporting a fraction of one’s reservation value

There are n bidders, and all are asked to report the fraction (n − 1)/n of
their reservation values. In symbols, σi(Vi) = [(n − 1)/n] × Vi . The high bidder
gets the asset at a price equal to the bid. Asset efficiency is satisfied by this
mechanism. (Why?) Incentive compatibility is not, however. For instance, if
n = 3, V1 = 300, V2 = 150, and V3 = 120, then under truthful revelation agent 1
will bid 200, 2 will bid 100, and 3 will bid 80. However, 1’s payoff would be higher
with a bid of 101.

Example 2.3 may make you wonder if there is any point to considering more
general auction mechanisms. By allowing a more detailed report by a bidder—
say the reservation value plus additional information—the additional informa-
tion may be used to arrive at an asset-efficient outcome in a way that satisfies
some properties that the Vickrey mechanism lacks. Because the true payoff
functions are still hidden information, the individual must have an incentive to
behave according to σi . We say that truthful revelation is a dominant strategy
if for each individual i and each Vi there is no message mi in Mi such that i’s
payoff is higher when i reports mi than when i reports σi(Vi).

Uniqueness of social cost pricing

If a general auction mechanism satisfies incentive compatibility, asset effi-
ciency, and the participation constraint then the winner of the auction must
be charged a price equal to the second-highest reservation value.

We prove this simply by constructing a direct auction mechanism from a
given general mechanism satisfying asset efficiency and the participation con-
straint, and for which truthful revelation is a dominant strategy. Given the general
mechanism G, construct a direct auction mechanism D by having each agent
report his or her reservation value Vi , awarding the asset to the person with
the highest Vi (as G must do, by asset efficiency), and then charging the winner
the price P(σ1(V1), σ2(V2), . . . , σn(Vn)), where n is the number of bidders and
P is the pricing formula used by G. By the uniqueness theorem for direct mecha-
nisms, P(σ1(V1), σ2(V2, . . . , σn(Vn)) must equal the second-highest Vi . Therefore,
at equilibrium, G must charge the winner a price equal to the second-highest
reported reservation value.

We could modify the Vickrey auction’s pricing rule so that individuals who
don’t receive the asset still have to pay a fee. But that would violate the par-
ticipation constraint. We could have payments made to individuals who do
not receive the asset. But who would make the payment? It can’t be the per-
son who is awarded the asset because that would increase the price that that
person would have to pay. But any higher price than the second-highest bid
would spoil the incentive to report truthfully, as we have seen. The payment
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can’t come from one of the losers if the participation constraint is to be
respected. Therefore, charging the losers precisely nothing and having the win-
ner pay a price equal to the second-highest bid—and hence equal to the cost
imposed on society by the winner’s participation—is the only pricing scheme
that satisfies asset efficiency, incentive compatibility, and the participation
constraint.

But do we really have efficiency? Who gets the payment made by the winner?
It can’t be one of the bidders. Otherwise, one of them would have an incentive to
submit a high bid, just under the winner’s reservation value, to increase the fee
paid by the winner and hence the amount of money going to those who don’t get
the asset. The problem with that is that individuals no longer have an incentive
to submit bids equal to their respective reservation values. Therefore, the pay-
ment by the winner can’t go to anyone. This represents waste and destroys the
efficiency of the system. In this setting, efficiency is equivalent to the maximiza-
tion of �n

t=1Ut subject to xt = 1 for one and only one individual t, and yt ≥ 0
for all t, and �n

t=1 yt = θ , where θ is the total initial amount of Y available. How-
ever, if the one who gets the asset makes a payment that doesn’t go to anyone
else in the society, then we have �n

t=1 yt < θ and hence an inefficient outcome.
Why don’t we give the payment to the person who owned the asset initially?

There are two objections to this. If we want to derive the efficient and incentive-
compatible pricing schedule, private ownership should emerge as part of the
solution; it shouldn’t be assumed at the outset. Moreover, as soon as we put
an original owner on stage and have the winner’s payment go to the owner
we again spoil the incentive for truthful revelation. Consider: Let agent 0 be
the seller, whose reservation value is V0. Suppose that the seller’s bid B0 is
used when determining the second-highest bid and hence the price to charge
the winner. If the winner’s payment goes to the seller then the seller has an
incentive to overstate the reservation value to increase the payment that the
seller will receive. However, suppose that B0 is not taken into consideration
when determining the price that the winner of the asset will pay. We just use
B0 to determine if the seller should keep the asset. Efficiency still demands that
the asset go to the agent with the highest reservation value. If B0 is higher than
every other reservation value, efficiency requires that agent 0 keep the asset. If
Bt > B0 then the asset goes to whichever t �= 0 has the highest Bt. But suppose
that B1 > V0 > B2. The asset will go to agent 1 at a price of B2. But the seller
has to part with the asset and receives less than its worth to him. In this case
the seller would have an incentive to misrepresent his reservation value and
report B0 > B1.

If there is an initial owner of the asset we cannot “close the system” so that the
winner’s payment goes to the seller without destroying the incentive for truthful
revelation. If, however, we have a large number of agents then there will be a
very low probability that one and only one person has a reservation value above
or close to that of a seller. In other words, the probability that B1 > V0 > Bi

for all i > 1 is very small if there is a large number of bidders. The probabil-
ity that there is a significant efficiency loss will be very low with social cost
pricing.
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Sources
Vickrey (1961) pioneered the study of auctions in economic theory and his sem-
inal article anticipated important discoveries in the theory of public goods in
addition to the contemporary literature on auctions and bidding. In 1996 Vickrey
was awarded the Nobel Prize in economics, along with James Mirlees, another
seminal contributor to the theory of incentives. The “computer network” para-
graph of Section 2.2 is based on Waldspurger et al. (1990).

Links
Milgrom (1987, 1989) provides introductions to the theory of auctions and bid-
ding. Ashenfelter (1989) discusses the particular cases of wine (excuse the pun)
and art. Makowski and Ostroy (1987) arrive at social cost pricing by a different
route. (See also Roberts, 1979, and Makowski and Ostroy, 1991, 1993). Sternberg
(1991) analyses the sale of the assets of failed banks under both the private values
and the common values assumptions. Green and Laffont (1979) derive incentive-
compatible mechanisms for allocating pure public goods. A more general result
is presented in Walker (1978). Holmström (1979b) treats divisible private goods.
There are artificial intelligence models that use market-like evaluation to direct
the transition of a computer from one state to another. See, for example, Waldrup
(1992, pp. 181–9). See Chapter 8 in Cooter and Ullen (1994) or Ullen (1994) for
an extended discuusion of the economics of tort damage awards. Hurwicz and
Walker (1990) prove that the inefficiency due to the inequality between the ini-
tial and final total Y consumption is almost inevitable. Their argument applies
to a wide variety of models of resource allocation.

Problem set

1. Suppose that when the Vickrey auction is used each bidder other than num-
ber 1 always (mistakenly) reports a reservation value equal to half his or her
true reservation value. Suppose also that bidder 1 knows that. Is truthful
revelation still a dominant strategy for bidder number 1? Explain.

2. Ten different direct allocation mechanisms are described. Each participant
i submits a bid Si . Any money paid by the individual who gets the asset does
not go to the other participants, unless there is an explicit statement to the
contrary. In each case determine if the mechanism would satisfy (i) asset effi-
ciency if the individuals reported truthfully, (ii) the participation constraint
if the individuals reported truthfully, and (iii) incentive compatibility. If a
criterion is not satisfied you have to give a numerical example to show that.
If the criterion is satisfied then you have to prove that it is.

A. The asset goes to the individual i submitting the highest Si at a price
equal to that Si . No one else pays anything or receives any money.

B. The asset goes to the individual submitting the highest Si at a price
equal to the second-highest Si . The other individuals each receive $5.

C. The Vickrey auction is used but there is an entry fee of $100. This fee
must be paid by each participant before the bidding starts.
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D. The asset goes to the individual submitting the second-highest Si at
a price equal to the third-highest Si . No one else pays anything or
receives any money.

E. The asset is always given to individual 1—and free of charge. No one
else pays anything or receives any money.

F. The asset is always given to individual 1, who is then taxed $100. No
one else pays anything or receives any money.

G. The asset goes to the individual submitting the highest Si at a price
equal to the average of the second-highest bid and the lowest bid. No
one else pays anything or receives any money.

H. The asset goes to the individual i submitting the highest bid at a price
equal to the average of the second-highest bid and the high bid itself.
No one else pays anything or receives any money.

I. For this part only, assume that there are three individuals (n = 3). The
asset goes to the individual submitting the highest bid at a price P
equal to second-highest bid. The other two individuals each receive
1/2 P.

J. For this part only, assume that there are two individuals (n = 2). A
fair coin is tossed, and the asset goes to person 1 if it turns up heads
and to person 2 if it turns up tails. Neither person pays any money or
receives any money.

3. A government agency is accepting tenders for the construction of a public
building. There are n firms with an interest in undertaking the project. Each
firm i has a minimum cost Ci that it would incur in construction. (Ci includes
the opportunity cost of capital.) The contract will be awarded by having the
firms submit sealed bids. Firm i’s bid Bi is the amount of money that it
requires to undertake the project. The contract will be awarded to the firm
submitting the lowest bid and that firm will be paid an amount of money
equal to the second-lowest bid. Prove that a bid of Ci is a dominant strategy
for arbitrary firm i.

4. This question pertains to the Vickrey auction when the asset to be auctioned
is owned by one of the participants, individual 0, whose true reservation value
is V0. Answer the following two questions by means of specific numerical
examples, one for A and one for B.

A. Show that if the owner’s bid B0 is used when determining the second-
highest bid (and hence the price to charge the winner) then the incen-
tive for truthful revelation is spoiled if the buyer’s payment goes to
the individual 0.

B. Now, suppose that B0 is not taken into consideration when determin-
ing the price that the winner of the asset will pay. We just use B0 to
determine if agent 0 gets to keep the asset. Show that efficiency may
be sacrificed.
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5. Prove the uniqueness of the Vickrey auction when we weaken the partici-
pation constraint to the following normalization rule: An individual whose
reservation value is zero will not see his or her utility change as a result of par-
ticipating in the auction. (Hint: All you have to do is show that asset efficiency,
incentive compatibility, and the normalization rule imply the participation
constraint.)

3 FOUR BASIC AUCTION MECHANISMS

We have already encountered the Vickrey auction. This section considers three
other auction formulas. Each of them is frequently employed. We compare all
four auction mechanisms and devote considerable time to working out the equi-
libria of two of them. (The other two have equilibria that are easy to identify.)

3.1 Vickrey, English, Dutch, and first-price auctions
The Vickrey auction was introduced in Section 2. It is a sealed-bid auction, as
is the first-price auction, which awards the asset to the highest bidder but at a
price equal to the winner’s bid.

DEFINITION: First-price, sealed-bid auction
Each individual submits a bid, the high bidder receives the asset, and the
high bidder pays a fee equal to that agent’s own bid.

For both the Vickrey and first-price auctions there is only one round of bid-
ding in which each agent submits his or her bid in a sealed envelope—that is,
without disclosing the bid to anyone else—and when the deadline for submis-
sion is reached the envelopes are opened and the winner is announced. Don’t
jump to the conclusion that the winner pays less in a Vickrey auction than in a
first-price auction. If Nan’s reservation value is $1000, Diane’s is $650, and every-
one else’s is below that, then in a Vickrey auction Nan will bid $1000, Diane will
bid $650, and Nan will win the asset at a price of $650. With a first-price auction
Nan would not bid $1000 because she would not gain anything by paying $1000
for something worth a maximum of $1000 to her. She would bid considerably
less than $1000 in a first-price auction. How much less? Sections 3.3 and 3.4
address that question.

The English oral auction is the one that we see in the movies. It has been used
by the English auction house Sotheby’s since 1744 and by Christie’s since 1766.
There are many quick rounds of bidding, and each round ends when someone
shouts out a bid that is above the previous high. This continues until no one is
willing to pay more for the asset than the previous high bid. It is then sold to the
individual who made the last bid at a price equal to that bid. Of course, when
this auction is used on the Internet—by eBay for instance—no one has to shout
out the bid; it is submitted electronically.
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DEFINITION: The English oral auction
The bidders interact directly with each other, in stages. Someone makes an
initial bid, and anyone can raise it. This process continues until no one is
willing to raise the bid. The asset goes to the last bidder at a price equal to
his or her bid.

The Dutch auction has been used for centuries to allocate tulip bulbs in the
Netherlands. It is the English auction turned upside down: The Dutch auction
begins with the auctioneer announcing a ridiculously high price. No one will
want the asset at that price, so it is lowered. And the price is lowered again and
again, until someone shouts “I’ll take it.” The asset is then sold to that individual
at that price.

DEFINITION: The Dutch auction
The auctioneer announces a very high price and then lowers it in small
increments until one of the bidders declares that he or she will buy the asset
at the current price. It is then sold to that agent at that price.

3.2 Outcome equivalence
Two auction mechanisms that look quite different, with different rules, can have
the same outcome in the sense that the winner would pay the same price in either
case. We say that the mechanisms are outcome equivalent if that would be true
whatever the individual reservation values.

Example 3.1: The Vickrey and English auctions

Again we use the reservation values of Table 6.1 of Example 2.1: A’s reservation
value is 100, B’s is 70, C ’s is 40, and D’s is 30. If the Vickrey auction were used
then A would win at a price of $70. If the English auction were used, the bidding
would not stop at a price below $70 because either A or B would be willing to
raise the bid. For either agent, there would be a new higher bid that is still below
that agent’s reservation value. If that new bid won, there would be a positive
profit for the bidder and that would be preferred to the profit of zero that results
when someone else gets the asset. Therefore, the bidding won’t stop below $70.
If A raised the bid to $70 then B would not be willing to bid more, because B’s
reservation value is only $70. Then A would get the asset for a price of $70. The
bidding would not stop below $70, and it would not go above $70. Therefore, the
asset would go to A at a price of $70. This is the same outcome as the Vickrey
auction.

It is clear that the argument of Example 3.1 goes through with any number
of bidders and any assignment of reservation values. However, it ignores one
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possibility. Suppose that B opens the bidding at $50. Then A will raise the bid, but
A won’t know B’s reservation value. If A bids $60 then B might respond with $65.
Then A will raise again, but A’s second bid might be $72 or $75. Strictly speaking,
the best that we can do is claim that the winner of an English auction will pay
something very close to the second-highest reservation value but not necessarily
precisely that value. For practical purposes the outcomes of the Vickrey and
English auctions are essentially the same, and from now one we speak as if they
are always identical—to simplify the discussion. In fact, most Internet auction
sites now use a technique that essentially turns their English auction into a
Vickrey auction. To obviate the need for a bidder to sit at a computer terminal
for hours, or even days, the software running the auction now allows a bidder to
enter the maximum that the bidder is willing to pay. The algorithm then raises
the bids submitted by others as long as the maximum has not been reached.
This is called proxy bidding.

DEFINITION: Outcome equivalence
Two auction mechanisms are outcome equivalent if, however many bidders
there are and whatever their reservation values, the same individual would be
awarded the asset with either mechanism, and at the same price. Moreover,
if the nonwinners have to make a payment it would be the same in the two
auctions for a given specification of the individual reservation values.

The Vickrey and English auctions are outcome equivalent.

One advantage of the Vickrey auction over its English twin is the fact that
the former does not require the bidders to assemble in the same place or even
submit their bids at the same time. This is a consequence of the fact that truthful
revelation is a dominant strategy for the Vickrey auction. Even if you knew what
every other participant was going to bid, you could not do better than bidding
your own reservation value. Consequently, information about the bidding of
anyone else is of no value to a bidder in a Vickrey auction, and thus a bidder can
submit a sealed bid at any time.

One defect of the Vickrey auction is that bidders may fear that the auctioneer
will cheat and announce a second-highest bid that is substantially above the
one that was actually submitted. This raises the selling price, of course, and thus
the auctioneer’s commission. This danger is even more acute if the auctioneer is
also the seller. This sort of overstatement is not possible with the English auction
because the bids come directly from the lips of the bidders. In addition, with a
Vickrey auction the bidders may fear that a very high bid will tip the seller off
to the asset’s true value, resulting in the item being withdrawn. In the case of
an English auction, neither the seller nor the auctioneer will find out how high
the winner was prepared to go. However, because the two auctions are outcome
equivalent, and the Vickrey auction is easier to analyze, we continue to give it
serious consideration.
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Surprisingly, the Dutch and the first-price auctions always lead to the same
outcome.

Example 3.2: The Dutch and first-price auctions

A’s reservation value is 100, B’s is 70, C ’s is 40, and D’s is 30. Suppose that the
first-price, sealed-bid auction is used. We’ll put ourselves in the shoes of agent
A. He wants to outbid the other three, but at the same time wants to get the
asset at the lowest possible price. He doesn’t know the reservation values of the
other three bidders, and even if he did he wouldn’t know how much each would
bid. Agents have to determine their bids as a function of their own reservation
values and as a function the bids they expect the others to make, knowing that
their bidding strategies will be based in part on what they think that others will
bid. Suppose that A decides that a bid of $75 maximizes his expected payoff
when the first-price auction is used. It follows that if a Dutch auction is used
instead, A would claim the asset when the price got down to $75, provided that
no one else claimed it at a higher price. Here’s why: In a Dutch auction bidder A
is in precisely the situation that he faces in deciding what to bid in a first-price
auction. In either case he doesn’t know what the others will bid, so he has to
decide how much he will pay if no one else outbids him. Granted, in a Dutch
auction the bidders get some information about what the others are prepared to
bid. As the auctioneer brings the price down from $200 to $175 to $150, and so
on, they learn that the maximum anyone is prepared to pay is below $150. But
that is no longer useful information to anyone who has decided that he or she
will not claim the asset at a price above $75. It would be valuable information to
someone who decided to claim the asset at a price of $175. If that bidder knew in
advance that no one else would pay more than $150 then that bidder wouldn’t
have to pay $175. But the only way to find that out in a Dutch auction is to let the
price fall below $175, and then the bidder might lose the asset to someone else
although he or she would have been prepared to pay $175. In short, the bidders
have more information in a Dutch auction than in a first-price auction, but by
the time they get that information it is no longer of value. With either auction,
the bidder has to decide the price at which he or she will buy the asset, should
that bidder be the high bidder, and he or she has to do it before the bidding
starts.

Given the individual reservation values, the amount that each decides to bid
in a first-price auction will be the same as in a Dutch auction. Therefore, the
same individual will win in both cases, and the price will be the same.

The Dutch and first-price auctions are outcome equivalent.

A good way to show that the Dutch and first-price auctions are outcome
equivalent is to turn one into the other. Imagine that n bidders have assembled
to participate in a first-price auction. The auctioneer begins by saying, “I’m
feeling too lazy to open a bunch of envelopes. I’ll call out numbers, starting very
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high, and then lower them in small increments. Shout when I call the number
that you have placed in your envelope. The first one to shout will be the high
bidder, and hence the winner of the first-price auction. I’ll check your envelope
to make sure that the price at which you claimed the asset is in fact the bid that
you inserted in your envelope.”

Now, suppose that the auctioneer omits the last sentence. No one will check
to see if the price at which you claim the asset is the same as the bid that you
decided on when you thought it would be a conventional first-price auction.
That means that you can claim the asset at any price you like, provided that
no one else has claimed it first. Would you claim the asset at a price that is
different from the bid that you wrote down before you knew about the rule
change? In other words, is the information that you get when the price falls, and
you discover that no one was willing to claim the asset at a higher price, of use to
you in revising your bid? No. The same number of bidders remain—no one has
claimed the asset—and you don’t know what their bids are. As soon as someone
does claim the asset you learn something, but it has no value; it’s too late to
be of use.

We’ve just shown that we can turn a first-price auction into a Dutch auc-
tion, and that the equilibrium bids will not change. Whatever bid is optimal for
someone in the former will be optimal in the latter. Now, imagine that n bidders
have assembled to participate in a Dutch auction. Before it gets under way the
auctioneer circulates the following memo: “I have laryngitis. Instead of calling
out prices, starting high and then slowly lower the price, I’m asking you to write
down the price at which you’ve decided to claim the asset—assuming that no
one has beaten you to it—and seal it in an envelope and hand it to me. I will
then open the envelopes to see who would have won the Dutch auction if I had
conducted it in the usual fashion.” Would this change in procedure cause you
to submit a price that is different from the one at which you had decided to
claim the asset when you thought it would be a conventional Dutch auction?
No, because you are in the same position in either case. Then we have shown that
a Dutch auction can be turned into a first-price auction. The price at which an
individual decides to claim the asset with the Dutch auction will be the bid that
the individual submits in the first-price version. The two schemes are outcome
equivalent.

We know that for both the Vickrey and English auctions the price paid by
the winner will be equal to the second-highest reservation value. The seller
won’t know what that value is, so the seller won’t know how much revenue
to expect if either of those auctions is used. However, we do at least have a
useful starting point. For the Dutch and first-price auctions we need to work
out the price paid by the winner as a function of the individual reservation
values.

3.3 Equilibrium bids in a first-price, sealed-bid auction
Suppose that you are one of the bidders in a first-price, sealed-bid auction of
a single asset. You know that your reservation value is v1, but you don’t know
anyone else’s. How should you bid? You don’t want to bid v1 because if you won
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then you would be paying v1 dollars for an asset that is worth no more that v1

to you. Your payoff-maximizing strategy is to bid something less than v1. But
how much less? To simplify our calculations, we’ll assume that there is only one
other bidder. We’ll also assume that bidder 2’s value v2 is somewhere between 0
and 1, and that from your point of view any value in that interval is just as likely
to be the actual v2 as is any other value in the interval. (We are really supposing
that both bidders agree that the asset has a maximum possible value of, say,
$10 million to anyone, and the value placed on the asset by bidder i is the fraction
vi of that number. Hence, if v2 = 0.72 we’re saying that bidder 2’s reservation
value is $7.2 million.)

In assuming that bidder 2’s value is a random draw from the interval from 0
to 1, with each value being as likely as any other, we are assuming the uniform
probability distribution for v2. (See Section 6.5 of Chapter 2.) In short, this means
that the probability that v2 is less than a given number β is β itself. This holds
for any value β in the interval. So, the probability that bidder 2’s value is less
than 0.8 is 0.8, the probability that bidder 2’s value is less than 0.35 is 0.35, and
so on. Now, the probability that your reservation value v1 is higher than bidder
2’s value is v1, because that’s the probability that v2 is less than v1. But you need
to know the probability that b2 is less than b1, where b1 and b2 are, respectively,
the bids of individuals 1 and 2.

Suppose that the optimal strategy is to submit a bid equal to the fraction λ

of one’s reservation value. Then b2 will equal λv2, but you still don’t know the
value of v2. But now you know that b2 will never exceed λ, because v2 cannot
be larger than 1, so λv2 cannot be larger than λ. That means that it is not payoff
maximizing for you to submit a bid greater than λ. Of course a bid of β > λ would
win for sure, because b2 ≤ λ. But a bid halfway between λ and β would also win
for sure, for the same reason. You’d still get the asset, but you’d pay less for if it
than if you had bid β. In general, no bid greater than λ can be payoff maximizing
for you. Therefore, you can restrict your attention to bids b1 ≤ λ. Because v2 is
uniformly distributed on the interval 0 to 1, we can think of b2 = λv2 as being
uniformly distributed on the interval 0 to λ.

What’s the probability that a random draw from the uniform distribution on
the interval 0 to λ is less than b1? It is just the distance from 0 to b1 as a fraction
of the length of the interval 0 to λ itself.

Example 3.3: The probability that you have the higher bid

If λ = 3/4 and b1 = 3/8 then λv2 will be less than b1 for half of the values of λv2

in the interval from 0 to 3/4. If λ = 3/4 and b1 = 1/4 then λv2 < b1 for one-third
of the values of λv2 in the interval from 0 to 3/4. Suppose that λ = 1/2. Then for
b1 = 3/8 (respectively, b1 = 1/4) we have λv2 < b1 for three-quarters (respectively,
one-half) of the values of λv2 in the interval from 0 to 1/2.

In general, the probability that λv2 is less than a given b1 is b1/λ. That’s the
probability that bidder 1’s bid is higher than bidder 2’s bid. Your payoff from a
bid of b1 is the probability of winning with b1 multiplied by the profit you get



3. Four Basic Auction Mechanisms 355

when you do win. If you win, the asset is worth v1 to you, but you paid b1 for it,
so your profit is v1 − b1. Therefore, your payoff from a bid of b1 is

b1

λ
× (v1 − b1)

because b1/λ is the probability of winning with a bid of b1. Note that we are
assuming that the individual is risk neutral. (See Section 6.2 of Chapter 2.)

To find your payoff-maximizing bid we merely have to determine the value
of b1 that maximizes (b1/λ)×(v1 − b1) = (v1/λ)b1 − (1/λ)b2

1, a simple quadratic.
Now, employ our formula for maximizing a quadratic. We get

b1 = v1/λ

2/λ
= v1

2
.

Therefore, if you expect bidder 2 to submit a bid equal to some fraction of her
reservation value, then you maximize your payoff by sending in a bid equal to
half your reservation value. Of course, because your bid is a fraction of your
reservation value, bidder 2 maximizes her payoff by setting her bid equal to half
her reservation value. (We’re assuming that bidder 2 is clever enough to deduce
that you will set b1 = 1/2v1.) We have a Nash equilibrium: Each person is playing
a best response to the other’s strategy.

Two bidders in a first-price auction

If the bidders are risk neutral and each models the other’s reservation value as
a random draw from the uniform probability distribution, then at a symmet-
ric Nash equilibrium both will submit bids equal to half of their respective
reservation values.

(We proved that for any λ, if bidder j sets bj = λvj then bidder i’s payoff will
be maximized by setting bi = 1/2vi . But it is possible that 1/2vi > λ, and we know
that that does not maximize i’s payoff. A slightly smaller bid will guarantee that
i wins, and the price paid will be slightly lower. Now, i’s payoff as a function of bi

is a hill-shaped quadratic, and thus if we maximize that payoff subject to bi ≤ λ

we get bi = 1/2vi if 1/2vi ≤ λ, but if 1/2vi > λ the solution must be bi = λ. However,
if λ = 1/2 then we will certainly have 1/2vi ≤ 1/2 because vi ≤ 1. Therefore, we really
do have a Nash equilibrium with two bidders when both submit bids equal to
half their respective reservation values.)

We have discovered that if there are two bidders in a first-price or a Dutch
auction then the seller’s revenue will be exactly half of the larger of the two
reservation values because that is the price paid by the winner.

Now, supppose that there are more than two bidders. The larger the number
of bidders, the greater the probability that someone else has a high reservation
value and hence is prepared to submit a high bid. Therefore, the more bidders
there are, the greater the probability that the high bid among all the others is
close to the maximum that you would be prepared to bid. That means that
the greater the number of bidders, the higher you will have to bid to maximize
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your payoff. With n bidders we have an equilibrium in which each individual
i sets

bi = n − 1
n

× vi .

n bidders in a first-price auction

If the bidders are risk neutral and each models the others’ reservation values
as random draws from the uniform probability distribution, then at a sym-
metric Nash equilibrium all will submit bids equal to the fraction (n − 1)/n
of their respective reservation values.

If you know a little calculus you can prove this with ease, as we do in the next
subsection.

It follows that if there are n bidders in a first-price or a Dutch auction then
the seller’s revenue will be the fraction (n − 1)/nof the largest reservation value.

∂3.4 The case of n bidders
Suppose that you are in competition with n − 1 other risk-neutral bidders in
a first-price, sealed-bid auction. We continue to refer to you as bidder 1. As
in Section 3.3, the probability that your bid is higher than individual i’s, when
bi = λvi , is b1/λ. The probability that b1 is higher than everyone else’s bid is the
probability that b1 is higher than b2, and b1 is higher than b3, and b1 is higher
than b4, . . . and b1 is higher than bn. The probability that b1 is higher than each
other bi is

b1

λ
× b1

λ
× b1

λ
× · · · × b1

λ
= bn−1

1

λn−1
.

Therefore, your payoff from a bid of b1 is

bn−1
1

λn−1
× (v1 − b1) = v1

λn−1
bn−1

1 − bn
1

λn−1
.

We want to maximize this function. The first derivative (with respect to b1) must
be zero at the maximum, because b1 = 0 can’t be the solution. (With a bid of zero
the probability if winning is zero, and hence the payoff is zero. But with v1 > 0
and a bid of even 0.1v1 there is a positive, but very small, probability of winning
and getting a positive profit of 0.9v1.) When we take the first derivative of bidder
1’s payoff function and set it equal to zero we get

(n − 1)
v1

λn−1
bn−2

1 − n
bn−1

1

λn−1
= 0.

Because b1 is positive (and hence nonzero) we can divide both sides by bn−2
1 ,

yielding

(n − 1)
v1

λn−1
− n

b1

λn−1
= 0,



3. Four Basic Auction Mechanisms 357

the solution of which is

b1 = n − 1
n

v1.

With n bidders we have an equilibrium when all individuals submit a bid
equal to the fraction (n − 1)/n of their reservation values. (Note that if every
i > 1 sets bi = (n − 1)vi/n then (n − 1)v1/n does not exceed λ for λ = (n − 1)/n.
Therefore, for each bidder j setting bj = (n − 1)vj/n clearly is a best response
by j to the strategy bi = (n − 1)vi/n for all i �= j.)

Source
The paragraph on proxy bidding is based on Lucking-Reiley (2000).

Link
Krishna (2002) is a very technical, but insightful, presentation of auction theory.

Problem set

1. Explain why the first-price, sealed-bid auction is not outcome equivalent to
the Vickrey auction.

2. Explain why the English auction is not outcome equivalent to the Dutch
auction.

3. There are two bidders in a first-price, sealed-bid auction. Bidder 1 has learned
that bidder 2 plans to bid $50. What is bidder 1’s payoff-maximizing response
as a function of his or her reservation value?

4. There are two bidders in a first-price, sealed-bid auction. Bidder 1 knows that
individual 2 will submit a bid of $19 with probability 1/2 and $49 with proba-
bility 1/2. Under each of the following four assumptions, calculate individual
1’s payoff-maximizing bid, determine the probability of person 1 winning
the asset, and calculate bidder 1’s payoff.

A. Bidder 1’s reservation value is $100.

B. Bidder 1’s reservation value is $60.

C. Bidder 1’s reservation value is $30.

D. Bidder 1’s reservation value is $15.

5. There are two bidders in a first-price, sealed-bid auction. Bidder 1 knows that
individual 2 will submit a bid of $29 with probability 2/3 and $59 with proba-
bility 1/3. Under each of the following four assumptions, calculate individual
1’s payoff-maximizing bid, determine the probability of person 1 winning
the asset, and calculate bidder 1’s payoff.

A. Bidder 1’s reservation value is $99.

B. Bidder 1’s reservation value is $60.

C. Bidder 1’s reservation value is $42.

D. Bidder 1’s reservation value is $15.
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6. There are two bidders in an English auction. Bidder 1’s reservation value is
$75. Determine bidder 1’s payoff-maximizing bid, the winner of the asset,
the price paid, and person 1’s payoff, under each of the following four
assumptions:

A. Bidder 2’s reservation value is $100.

B. Bidder 2’s reservation value is $60.

C. Bidder 2’s reservation value is $30.

D. Bidder 2’s reservation value is $15.

7. Determine an individual’s payoff-maximizing bidding strategy at equilib-
rium in a first-price, sealed-bid auction for the following four cases:

A. There are two bidders and each reservation value is drawn from the
uniform probability distribution on the interval from 0 to 5.

B. There are two bidders and each reservation value is drawn from the
uniform probability distribution on the interval from 2 to 5.

∂∂∂C. There are four bidders and each reservation value is drawn from the
uniform probability distribution on the interval 0 to 1.

∂∂∂D. There are four bidders and each reservation value is drawn from the
uniform probability distribution on the interval 1 to 11.

8. There are two bidders, A and B. Each bidder’s value is drawn from the uniform
probability distribution, with values between zero and unity, inclusive. Will
the first-price, sealed-bid auction and the Vickrey auction yield the same
revenue when VA = 3/4 and VB = 1/4, where Vi is the value that i places on the
asset?

9. There are two bidders, A and B. Each bidder’s value is drawn from the uniform
probability distribution, with values between zero and unity, inclusive. Will
the English auction and the first-price, sealed-bid auction yield the same
revenue when VA = 3/4 and VB = 1/4, where Vi is the value that i places on the
asset?

4 REVENUE EQUIVALENCE

The seller of an item at auction wants to make as much revenue as possible.
Therefore, many different types of auctions have to be considered, to see which
would be most profitable from the seller’s point of view. This is problematic
because auction A might be optimal for one range of buyer reservation values,
whereas auction B is best for a different range of values. The buyers know their
own reservation values, but these are unknown to the seller. From the seller’s
point of view, we can think of the buyer reservation values as random variables
drawn from some probability distribution. The seller will want to employ the
auction that maximizes the seller’s expected revenue. Note that we assume in this
section that buyers and seller are risk neutral.

The surprise is that there is a large family of auctions that generate the same
expected revenue. Each has its own set of formulas to determine who wins and
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how much each bidder pays but, astonishingly, the expected revenue is the
same for each auction in the family, which we refer to as the set of standard
auctions.

DEFINITION: Standard auction mechanism
If an agent with a reservation value of zero gets zero profit from participat-
ing in the auction, and the agent with the highest reservation value always
gets the asset at equilibrium, then we say that the auction mechanism is a
standard one.

A standard auction is not necessarily a direct mechanism. The first-price,
sealed bid auction is obviously standard: No one who places a zero value on the
asset will submit a positive bid, and the higher the reservation value the higher is
the individual’s optimal bid at equilibrium. Therefore, the high-value agent will
win the asset at an equilibrium of a first-price, sealed-bid auction. But it is not a
direct mechanism because individuals are not asked to report their reservation
values. At equilibrium, all individuals bid amounts equal to a fraction of their
respective reservation values. Fortunately, in proving the revenue equivalence
theorem, we do not have to go into detail as far as the bidding is concerned. We
map individuals’ reservation values into their payoffs at equilibrium, embedding
all the details in this mapping.

As is the case with the first-price auction, the agent with the highest reser-
vation value may not submit a bid equal to his or her reservation value. But as
long as the equilibrium strategies result in the asset going to the agent with the
highest reservation value, the second defining condition of a standard auction
will be satisfied.

The revenue equivalence theorem

If each of the n agents is risk neutral and each has a privately known value
independently drawn from a common probability distribution, then all stan-
dard auctions have the bidders making the same expected payments at equi-
librium, given their respective values, and thus the seller’s expected revenue
is the same for all standard auctions.

To see what’s behind the revenue equivalence theorem, compare the first-
price, sealed-bid auction with the all-pay auction. The all-pay auction requires
each participant to submit a sealed bid, and the high bidder gets the asset at a
price equal to his or her bid. However, all participants have to pay the seller the
amount of their bids. The fact that you pay whether you win or not depresses
your bid—for two reasons. First, you know that you will have to pay even if you
lose, so every dollar you bid has a higher expected cost than it would in a first-
price auction. Second, you know that others are in the same situation and hence
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Table 6.2

Seller’s revenue

Auction Case A Case B Average

Vickrey 200 70 135
First-price 120 150 135

will be submitting low bids, so the benefit of adding a dollar to your bid is also
lower—it’s not as likely to be key to winning. So, everyone will be paying the
seller a small amount of money in an all-pay auction, and the seller’s expected
revenue turns out to be the same as in a first-price auction. Before proving the
general theorem we’ll illustrate what revenue equivalence is with an elementary
situation.

Example 4.1: Two bidders and two pairs of reservation values

There are two bidders and only two possible scenarios: Case A, in which v1, agent
1’s reservation value, is 240 and v2 = 200. For Case B, v1 = 70 and v2 = 300. (See
Figure 6.5.) With the Vickrey auction all individuals’ bids are equal to their reser-
vation values. Hence, in Case A if the Vickrey auction were employed the asset
would go to agent 1 at a price of 200. However, if the first-price, sealed-bid
auction were used, agent 1 would bid 120 and agent 2 would bid 100. (All indi-
viduals will submit bids equal to half their reservation values.) Therefore, agent
1 would get the asset for 120. If the Vickrey auction were employed in Case B,
the asset would go to individual 2 at a price of 70, but if the first-price, sealed-bid
auction were used instead, agent 2 would get the asset for 150 because agent 1
would bid 35 and agent 2 would bid 150.

Now, suppose that Case A occurs with probability 1/2, and so does Case B.
Then the expected revenue from the Vickrey auction is 1/2 × 200 + 1/2 × 70 = 135,
and expected revenue from the first-price auction is 1/2 × 120 + 1/2 × 150 = 135
also, as shown in Table 6.2.

The two auctions provide the same expected revenue in Example 4.1. This is
not true in general when there are only two possible scenarios. The purpose

Case A:

Case B:

200 240

30070

v2

v2

v1

v1

Figure 6.5
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Figure 6.6

of the example is to show what revenue equivalence means: It’s weaker than
outcome equivalence because we’re only claiming that revenue will be the same
on average for any two standard auctions. To prove this we need to assume that
the possible reservation values stretch over a wide range.

4.1 Revenue equivalence for the four basic auctions
This subsection gives an intuitive explanation of revenue equivalence for a nar-
row but important family of cases. (The formal proof is in Subsections 4.5 and
4.6. The latter is shorter, but it employs integral calculus.)

Assume that all reservation values are drawn from the uniform distribution.
We show that Vickrey and first-price auctions are revenue equivalent. We begin
with the case of two bidders. Because the values are uniformly distributed in
the interval 0 to 1, the average high bid vH and the average low bid vL divide the
interval into three segments of equal length (Figure 6.6). The average second
price is 1/3, and hence the expected revenue from the Vickrey auction is 1/3.

Because bidders in a first-price auction submit bids equal to half their reser-
vation values, the average reservation value of the winner is 2/3 with a bid of half
that, or 1/3. Therefore, the expected revenue from the first-price auction is 1/3, the
same as for the Vickrey auction.

Now, let’s do the general case, with n bidders. Again, we assume that the
reservation values are uniformly distributed in the interval 0 to 1, but there are
n of them this time. They will divide the interval into n + 1 segments of equal
length, as shown in Figure 6.7. The average second high bid is (n − 1)/(n + 1),
and hence the expected revenue from the Vickrey auction is (n − 1)/(n + 1).

In a first-price auction with n bidders, payoff maximization requires the
individuals to submit bids equal to the fraction (n − 1)/n of their reservation
values. The average high value is n/(n + 1), and thus the average price paid by
the winner is [(n − 1)/n] × [n/(n + 1)] = (n − 1)/(n + 1), which is then the seller’s
expected revenue from the first-price auction. We see that the expected revenue
from the first-price auction is the same as it is for the Vickrey auction.

Finally, because the first-price auction is outcome equivalent to the Dutch
auction, and the Vickrey auction is outcome equivalent to the English auc-
tion, we have established the revenue equivalence of all four auctions when
the reservation values are drawn from the uniform distribution. (If two auc-
tion mechanisms are outcome equivalent, then for any specification of the

v1

10
n+1 n+1 n+1

n−1
n+1 n+1

1n2 3

v2 vn−1 vnv3

Figure 6.7
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individual reservation values, the price paid by the each agent will be the same
for either auction, and thus the seller’s actual revenue will be the same.) The
next subsection uses integral calculus to prove the revenue equivalence of the
four basic auctions when the reservation values have the uniform probability
distribution.

∂4.2 Expected revenue is equal for the Vickrey and first-price auctions
We again assume that there are two bidders, and that each treats the other’s reser-
vation value as a random draw from the interval 0 to 1. We begin by calculating
expected revenue for the Vickrey auction.

We know that all individuals will submit bids equal to their reservation values.
Let r denote the value of one of the bidders and let s denote the value of the other.
Then one person will bid r , and the other will bid s. Consider a particular value
of r . When s is less than r , the bidder who submitted r will win the asset and will
pay s, the second-highest bid. When s is more than r the second-highest bid will
be r , and that will be the price paid for that range of values of s. Therefore, given
r , the seller’s expected revenue from the Vickrey auction is

∫ r

0
s ds +

∫ 1

r
r ds = 0.5r2 + r(1 − r) = r − 0.5r2.

This is obviously a function of r , which is not fixed—it’s a random variable.
Therefore, the seller’s expected revenue (ER) is

E R =
∫ 1

0
(r − 0.5r2)dr.

Because
∫

rdr − ∫
1/2 r2dr = r2/2 − r3/6 we have E R = 12/2 − 13/6 − (02/2 −

03/6) = 1/2 − 1/6 = 1/3, as we claimed in the previous subsection.
Now let’s calculate ER for the first-price auction for which all individuals will

submit bids equal to half their reservation values. When r and s are the values
then the bids will be 1/2r and 1/2s, respectively. For a particular value of r , when s is
less than r the winner (the one bidding r) will pay 1/2r . When s is more than r the
winner (the one bidding s) will pay 1/2s. Therefore, given r , the seller’s expected
revenue from the first-price auction is

∫ r

0
0.5r ds +

∫ 1

r
0.5s ds.

Now,
∫

1/2r ds = 1/2rs and
∫

1/2s ds = 1/4s2. Therefore,
∫ r

0
0.5r ds +

∫ 1

r
0.5s ds = (0.5r × r − 0.5r × 0) + (0.25 × 12 − 0.25 × r2)

= 0.25r2 + 0.25.

This is obviously a function of the random variable r . Therefore, the seller’s
expected revenue is

E R =
∫ 1

0

(
0.25r2 + 0.25

)
dr .
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Because
∫

1/4r2dr = r3/12 and
∫

1/4dr = 1/4r , we have

E R = 13

12
+ 1

4
× 1 −

(
03

12
− 1

4
× 0

)
= 1

12
+ 1

4
= 1

3
,

the same as the expected revenue for the Vickrey auction.

4.3 Other probability distributions
Let’s assume that the reservation values are drawn from a distribution that is not
uniform. After all, we would expect relatively small probabilities for values that
are extremely high or extremely low. We won’t actually specify the distribution
in this section, but we do assume that it is known by all n individuals. Therefore,
we can’t calculate the equilibrium configuration of strategies for the first-price
auction. We merely let σ (vi) denote the optimal bid for an individual with reser-
vation value vi . Of course, σ (vi) will be higher as vi is higher. Therefore, the asset
will be won by the individual with the highest reservation value for a price of
σ (vH), where H denotes the individual with the highest vi .

Now, consider a sealed-bid auction in which the asset goes to the high bidder
for a price that is four times that bid. It is not hard to see that the optimal strategy
for someone participating in this auction is to bid 1/4σ (vi). Therefore, the winner
will pay 4 × 1/4 × σ (vH), which is the same as the price paid with the first-price
auction. Therefore, the two auctions are outcome equivalent, and hence they
generate the same revenue. We soon see that even standard auctions that are not
outcome equivalent are revenue equivalent. On average, the expected payments
by a given bidder will be the same in the two auctions. To prove this we have to
track the payments made by a bidder in equilibrium.

4.4 Equilibrium payoffs
We begin by reducing an auction to its bare essentials. To see what the seller has
to gain, we have to spend some time figuring out what the buyers will do. We
are going to highlight the strategy and the profit of a generic agent whose value
for the asset to be auctioned is represented by v. From the point of view of the
seller, v is a random variable drawn from a particular probability distribution:
The agent’s reservation value v is known precisely to the agent, but because v is
unknown to the seller, the seller will calculate his expected revenue as though
the individual reservation values were random variables.

Assume a particular auction mechanism, and let μ(v) denote the expected
payoff of our bidder when his or her reservation value is v. If the agent is a busi-
ness then μ(v) is expected profit in the ususal sense. If the agent is a household,
bidding on a painting for the home, say, then μ(v) will denote expected utility
net of the purchase price. We assume that all bidders are risk neutral, which
simply means that they seek to maximize μ(v).

Let p(v) be the probability that an agent with reservation value v gets the
asset. Given that the agent knows his or her own v, and that the agent knows
that the reservation values of the other agents are drawn from a probability
distribution, the agent can calculate the probability p(v) of getting the asset
after submitting the bid that is optimal at equilibrium, given what the agent
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knows. Therefore, the expected value of the asset is v × p(v). In words, it is the
value the agent places on the asset multiplied by the probability of getting it.
But if the agent wins the asset then he or she will have to make a payment to the
seller, and we let e(v) denote the expected value of the payment at equilibrium.
Finally, we have

μ(v) = vp(v) − e(v).

This is the basic identity on which everything else hinges. It merely says that an
agent’s expected profit is equal to expected revenue minus expected cost.

Example 4.2: μ(v) and e(v) for a first-price auction with two bidders

Suppose that there are two bidders, person 1’s reservation value is $120, and the
probability of winning is 1/3 with the bid that is payoff maximizing at equilibrium
for someone with v = 120. At equilibrium, a bid of 1/2 × 120 = 60 is payoff maxi-
mizing for this individual. When this individual wins, the profit is 120 − 60 = 60,
and that happens 1/3 of the time. Hence μ(120) = 1/3 × 60 = 20. Now let’s calcu-
late μ(120) by using μ(v) = vp(v) − e(v): We have p(120) = 1/3 by assumption.
Person 1’s payment when he or she wins is 60, so e(120) = 1/3 × 60 = 20. Then
μ(120) = 120 × 1/3 − 20 = 20.

There are auctions in which even the losers have to pay. An all-pay auction
requires each participant to submit a bid. The winner is the high bidder, and the
price is the amount that the winner bid. But all losers also pay the amounts that
they bid. In that case, all bids will be depressed relative to a first-price auction.
The fact that my bid is lower in an all-pay auction than it would have been in
a first-price auction is due to the fact that I have to pay my bid even if I lose,
and I know that the other bidders will be in the same position and hence will
discount their bids. According to the revenue equivalence theorem, the total
amount taken in by the seller on average will be the same in an all-pay auction
as in a first-price auction.

Example 4.3: The winner has to pay four times the bid

Suppose that there are n bidders in an auction that awards the asset to the
high bidder at a price equal to four times the winner’s bid. No one else pays
anything. It is easy to see why this auction will yield the same revenue as the first-
price, sealed-bid auction. (We do not necessarily assume the uniform probability
distribution.) Let b1, b2, b3, . . . , bn denote the equilibrium bids in a conventional
first-price auction. Then 1/4 b1, 1/4 b2, 1/4 b3, . . . , 1/4 bn will be the equilibrium bids
in the new auction. Here’s why: An individual’s probability of winning will be
the same with both auctions: The probability that bi > bj is the same as the
probability that 1/4 bi > 1/4 bj. Moreover, the profit if you win is the same, because
vi − bi = vi − 4 × 1/4 bi . Therefore, 1/4 bj maximizes i’s expected payoff in the new
auction if bi maximizes i’s payoff in the first-price auction.
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4.5 Proof of the revenue equivalence theorem
Assume a particular auction mechanism. (I’ll let you know when we use the
assumption that it is a standard one.) We put the spotlight on a particular bidder,
and begin by proving that for a given reservation value the bidder’s expected
payoff is the same in any two auctions. We do this by showing that expected
payoff depends only on the individual’s reservation value and on the details of
the probability distribution from which the reservation values are drawn, not
on any details of the auction mechanism itself.

We can solve the identity μ(v) = vp(v) − e(v) for e(v). We obtain

e(v) = vp(v) − μ(v).

In words, the difference between the expected value of the asset and the expected
payoff from owning the asset must be the expected payment that one must make
to have a chance of acquiring the asset.

So far we haven’t said much, but we begin to make progress by considering the
possibility that the agents can misrepresent their reservation values to increase
their expected payoff. But if μ(v) is an agent’s expected payoff at equilibrium, it
must be the highest payoff that the agent can get, given what this agent knows
about others. This agent may be misrepresenting his or her reservation value, but
at equilibrium the agent does so in a way that maximizes the return. Consider
a different strategy s, by which we mean adopting the strategy that would be
optimal for someone with reservation value s. Let μ(v|s) denote the expected
payoff to an agent with reservation value v given that this agent masquerades as
someone with reservation value s. We have

μ(v|s) = v × p(s) − e(s).

Let’s explain this formula. The agent is behaving as an s type, so he or she has to
pay the amount e(s) that an s type would be required to pay. And the agent will
win the asset with probability p(s). However, the agent’s true reservation value is
v, so her expected revenue is v × p(s). Consequently, μ(v|s) = v × p(s) − e(s).

Example 4.4: Misrepresentation with a first-price auction
with two bidders

Suppose that person 1’s reservation value is $120, in which case a bid of 1/2 ×
120 = 60 is payoff maximizing for this individual at equilibrium. If person 1 were
to bid 50 he or she would be masquerading as an individual whose reservation
value is s = 100. Therefore, μ(120|100) = 120 × p(100) − e(100).

We know that e(s) = s × p(s) − μ(s). Therefore

μ(v|s) = v × p(s) − s × p(s) + μ(s)

or

μ(v|s) = μ(s) + (v − s) × p(s).
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In words, the expected payoff to a v type from employing the strategy that would
be payoff maximizing for an s type is the payoff μ(s) that an s type would get,
plus the difference in the actual value of the asset to a v type (v − s) weighted by
the probability that the individual would get the asset by employing the strategy
of an s type.

Because μ(v) is the best that a type-v agent can do, we must have μ(v) ≥
μ(v|s). If we had μ(v|s) > μ(v) then the agent would do better masquerading as a
type-s agent than the agent does at equilibrium, contradicting the fact that μ(v)
is her expected return at equilibrium, where each agent maximizes her expected
payoff. (If the agent can do better, we can’t be at equilibrium.) Therefore, μ(v) ≥
μ(v|s). Because μ(v|s) = μ(s) + (v − s) × p(s), we have

μ(v) ≥ μ(s) + (v − s) × p(s). [5]

Given v, this is true for all s.
Before returning to the formal argument, we pause to highlight the intuition

behind our theorem: Suppose that we could establish μ(s + 1) = μ(s) + p(s) for
all s. Then for s = 0 we have

μ(1) = μ(0) + p(0)

and because μ(2) = μ(1) + p(1) we can state that

μ(2) = μ(0) + p(0) + p(1)

after replacing μ(1) with μ(0) + p(0). And because μ(3) = μ(2) + p(2) we have

μ(3) = μ(0) + p(0) + p(1) + p(2).

Continuing in this manner, we find that for any reservation value v we have

μ(v) = μ(0) + p(0) + p(1) + p(2) + p(v − 2) + p(v − 1).

This then gives us revenue equivalence because μ(0) is zero for all standard
auctions, and for any s the probability p(s) is the same for all standard auctions:
The probability of winning if your reservation value is s is just the probability
that s is higher than any other bidder’s reservation value.

But how do we prove that μ(s + 1) = μ(s) + p(s) holds? If μ(s + 1) > μ(s) +
p(s) then μ(s) is strictly less than μ(s + 1) − p(s), which is “almost” μ(s|s + 1),
the payoff to someone whose reservation value is s from adopting the equi-
librium behavior of someone whose value is s + 1. Note that μ(s|s + 1) =
μ(s + 1) − p(s + 1). If we had p(s) = p(s + 1) then we would have μ(s|s + 1) =
μ(s + 1) − p(s), in which case μ(s + 1) > μ(s) + p(s) is inconsistent with the
fact that μ(s) reflects optimizing behavior of someone with reservation value s.
If this person is optimizing, he or she can’t do better by pursuing another strat-
egy. Similarly, μ(s + 1) < μ(s) + p(s) leads to a contradiction. But this argument
depends on the equality of p(s) and p(s + 1). As it is, the two probabilities will
be almost identical. The difference will be tiny compared to μ(s + 1) and hence
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will not be large enough to invalidate the theorem. Now, return to the formal
argument.

Suppose s = v − 1. In other words, suppose that agent v masquerades as an
agent whose reservation value is v − 1. Then [5] becomes

μ(s + 1) ≥ μ(s) + p(s). [6]

When s = 0 we have

μ(1) ≥ μ(0) + p(0). [7]

When s = 1 statement [6] yields

μ(2) ≥ μ(1) + p(1) [8]

and because we already have inequality [7], we can replace μ(1) in [8] with
μ(0) + p(0), which will be equal to μ(1), or smaller, and thus we have

μ(2) ≥ μ(0) + p(0) + p(1). [9]

(Ifμ(2) is at least as large as μ(1) + p(1), andμ(1) is at least as large as μ(0) + p(0),
then μ(2) is at least as large as μ(0) + p(0) + p(1).)

Now suppose that s = 2. In that case inequality [6] reduces to μ(3) ≥ μ(2) +
p(2) and we can replace μ(2) by the right-hand side of [9] without invalidating
the inequality. Therefore

μ(3) ≥ μ(0) + p(0) + p(1) + p(2).

In general, for any reservation value v we will have

μ(v) ≥ μ(0) + p(0) + p(1) + p(2) + p(3) + · · · + p(v − 2) + p(v − 1). [10]

Proof of statement [10]
We know that [10] is true when v = 1 because we established this as [7].
Suppose that [10] is true for all reservation values up to and including t. We
want to show that it is also true for t + 1. From [6] we have

μ(t + 1) ≥ μ(t) + p(t). [11]

By hypothesis, [10] is true for t so we also have

μ(t) ≥ μ(0) + p(0) + p(1) + · · · + p(t − 2) + p(t − 1). [12]

Now, substitute the right-hand side of [12] for μ(t) in statement [11]. We then
get

μ(t + 1) ≥ μ(0) + p(0) + p(1) + · · · + p(t − 2) + p(t − 1) + p(t),

which is statement [10] when v = t + 1. We have established that [10] is true
for t = 1, and that if [10] is true for arbitrary reservation value v then it is true
for v + 1. This tells us that [10] is true for all values of v.
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We are trying to show that μ(v) depends only on μ(0) and on the probabilities
p(0), p(1), . . . , p(v − 2), p(v − 1), p(v). We are halfway there by virtue of [10].
What we need is a statement that puts an upper limit on the magnitude of μ(v).
Go back to [5] and suppose this time that s = v + 1. From [5] we get

μ(s) ≤ μ(s − 1) + p(s). [13]

If s = 1 for example, [13] tells us that

μ(1) ≤ μ(0) + p(1) [14]

and for s = 2 we get

μ(2) ≤ μ(1) + p(2). [15]

Now substitute the right-hand side of [14] for μ(1) in [15] to get

μ(2) ≤ μ(0) + p(1) + p(2). [16]

For s = 3 we get μ(3) ≤ μ(2) + p(2), and when we substitute the right-hand side
of [16] for μ(2) we get

μ(3) ≤ μ(0) + p(1) + p(2) + p(3).

In general, we have

μ(v) ≤ μ(0) + p(1) + p(2) + p(3) + · · · + p(v − 1) + p(v). [17]

It is left to you to prove [17] in the same way that we established [10]: We know
that [17] is true when v = 1, and thus proving that [17] is true for v + 1 if it is true
for v gives us the general result.

Statement [10] gives us a lower bound on μ(v) and [17] gives an upper bound.
Combining the two yields

μ(0) + p(0) + p(1) + p(2) + · · · + p(v − 2) + p(v − 1) ≤ μ(v)

≤ μ(0) + p(1) + p(2) + · · · + p(v − 1) + p(v).

Therefore

μ(0) + p(0) + p(1) + · · · + p(v − 1) ≤ μ(0) + p(1) + · · · + p(v − 1) + p(v).
[18]

The left-hand side of [18] is almost identical to the right-hand side. To get the
latter from the former we add p(v) and subtract p(0). Now p(0) is the probability
of winning when your reservation value is zero. That probability will be zero, so
the difference between the lower bound and the upper bound is the presence
of p(v) in the latter. But that is not a big number at all—not relative to the sum
of the other probabilities. Suppose that your reservation value is exactly $1 mil-
lion. Then p(1,000,000) is the probability of your winning when your reservation
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value is exactly 1 million. Even if that number is not close to zero, each of the
terms in the sum p(900,000) + p(900,001) + p(900,002) + · · · + p(999,998) +
p(999,999) will be fairly close to p(1,000,000). The sum of 100,000 positive num-
bers that are significantly greater than zero will be rather large. In other words,
p(v) will be tiny compared to the sum of the numbers that precede it. There-
fore, the difference between the right-hand and the left-hand sides of [18] is
very tiny.

Example 4.5: A simple illustration

Suppose that p(1,000,000) = 1/2 but p(900,000) = 1/4. Then the sum of the prob-
abilities for reservation values between 900,000 and 999,999 inclusive cannot
be smaller than 1/4 × 100,000 = 25,000, and this is extremely large compared to
p(1,000,000).

So we ignore the difference between the left-hand and the right-hand sides
of [18], and say that μ(v) is “equal” to

μ(0) + p(0) + p(1) + p(2) + p(3) + · · · + p(v − 1) + p(v).

Formally,

μ(v) = μ(0) + p(0) + p(1) + p(2) + p(3) + · · · + p(v − 1) + p(v). [19]

We have proved that [19] is true—well, approximately true—for every value
of v. Therefore, it is true for every bidder, whatever his or her reservation
value v.

Equation [19] takes us to the threshold of the revenue equivalence theorem.
Compare two auctions A and B that each award the asset to the buyer with
the highest reservation value at equilibrium. It follows that for any reservation
value v, the probability p(v) of winning is the same for the two auctions: If there
are n bidders, p(v) is just the probability that v is higher than the other n − 1
randomly drawn reservation values. That means that every term in the right-
hand side of [19] will be the same for the two auctions, except perhaps for μ(0).
But if μ(0) = 0 in both auctions, then that term will also be the same for A and B.
(Note that we have now assumed that A and B are standard auctions.) Therefore,
for any reservation value v the payoff μ(v) will be the same for each auction. This
tells us that a buyer’s expected payoff is the same in the two auctions, given his
or her reservation value.

Recall our starting point: The identity μ(v) = v × p(v) − e(v). We have proved
that μ(v) is identical for the two auctions, given v. Because, by assumption, p(v)
is the same for the two auctions, it follows that e(v) must be the same for the
two auctions. (For any six numbers a, b, c, x, y, z, if a = b − c, x = y − z, a = x,
and b = y, we must have c = z.) For a given bidder, for each possible value
v of that bidder the expected payment e(v) is the same for any two standard
auctions. Therefore, that bidder’s expected payment averaged over all possible
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reservation values must be the same for any two standard auctions. If every
bidder’s expected payment is the same for any two standard auctions, then
the total of those expected payments over all bidders must be the same for
the two auctions. But the total of the bidders’ payments is the seller’s rev-
enue. We have proved that standard auctions A and B yield the same expected
revenue.

Example 4.6: How good is the approximation?

There are two bidders, and the reservation value of each is no lower thanα and no
higher than ω. Let m be a large integer. Divide the set of numbers between α and
ω (inclusive) into m − 1 subintervals of equal length. Set λ = (ω − α)/(m− 1), the
length of each subinterval. Including the left and right endpoints, the numbers
α, α + λ, α + 2λ, α + 3λ, . . . , α + (m − 2)λ, ω are the endpoints of the subin-
tervals. We treat these m numbers as the possible reservation values. Assume
that the probability that any one of these is the agent’s reservation value is 1/m.
The probability that a particular agent with reservation value r will win is just
the probability that the other agent’s reservation value is not higher. (To sim-
plify the calculations we assume that a tie goes to the other agent.) If t denotes
the value of the other agent, then the probability that our agent wins the asset
when his or her reservation value is r is

prob(t = 0) + prob(t = 1) + prob(t = 2) + · · · + prob(t = r − 2)

+ prob(t = r − 1).

Each of these probabilities is 1/m, and there are r of these terms, so

prob(t < r) = r × 1
m

= r
m

.

This is the probability that our agent with reservation value r will win. Now,
suppose that our agent’s reservation value is actually v = α + kλ for some value
of k. Note for a given value if v, the larger is m, the smaller is λ, and hence
the larger is k. There are k reservation values below v, and thus the sum of the
probabilities of winning from r = 0 through r = v − 1 is

1
m

+ 2
m

+ 3
m

+ · · · + k − 1
m

+ k
m

= k
m

+ k(k − 1)
2m

= k2 + k
2m

.

(See the box following the example.) This approximates the sum of the prob-
abilities on the right-hand side of [18]. The difference is that we have added
p(0) and subtracted p(v). That is, we have added 1/m and subtracted k/m.
How much difference does the net subtraction of (k − 1)/m make? The ratio
of (k − 1)/m to the sum (k2 + k)/2m is less than 2/k. For a given value of v,
the integer k increases with m. Therefore, if m is sufficiently large the differ-
ence between the left-hand and the right-hand sides of [18] will be arbitrarily
small.
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Sum of an arithmetic progression

Let S denote the n-term sum a + (a + d) + (a + 2d) + · · · + [a + (n − 2)d ] +
[a + (n − 1)d. The first number is a, and every subsequent term is higher than
its predecessor by the amount d. The first term plus the last term equals a +
[a + (n − 1)d ] = 2a + (n − 1)d. The second term plus the second-last term
equals (a + d) + [a + (n − 2)d] = 2a + (n − 1)d. The third term plus the third-
last term equals (a + 2d) + [a + (n − 3)d ] = 2a + (n − 1)d. Continuing is this
fashion, we establish that

2S = n × [2a + (n − 1)d]

and thus S = an + [n(n − 1)d]/2.

∂4.6 Integral calculus proof of the revenue equivalence theorem
We begin with inequality [5] from the previous section:

μ(v) ≥ μ(s) + (v − s) × p(s). This holds for all v and s. Let v = s + ds. Then
v − s = ds, and we have μ(s + ds) ≥ μ(s) + ds × p(s); hence

μ(s + ds) − μ(s) ≥ ds × p(s).

If ds > 0 we can divide both sides of this inequality by ds without changing the
direction of the inequality: We get

μ(s + ds) − μ(s)
ds

≥ p(s).

As ds > 0 approaches zero, the left hand side of this inequality approaches the
derivative μ′(s). This establishes that μ′(s) ≥ p(s) holds for all s.

However, if ds < 0 then we do change the direction of the inequality when we
divide ds into both sides of μ(s + ds) − μ(s) ≥ ds × p(s). This yields

μ(s + ds) − μ(s)
ds

≤ p(s).

As ds < 0 approaches zero through negative values, the left-hand side of this last
inequality also approaches the derivative μ′(s), and thus μ′(s) ≤ p(s) for all s.

We have shown that p(s) ≤ μ′(s) ≤ p(s) for all s, and thus we must have
μ′(s) = p(s) for all s. By the fundamental theorem of calculus,

∫
μ′(s)ds = μ(s).

Therefore, μ(s) = ∫
μ′(s) ds = ∫

p(s) ds. It follows that

μ(v) =
∫ v

0
p(s) ds + C . [20]

C is a constant, which must be equal to μ(0) because, by [20], μ(0) = ∫ 0
0 p(s) ds +

C = 0 + C . Therefore,

μ(v) =
∫ v

0
p(s) ds + μ(0). [21]

By assumption μ(0) is zero for any standard auction. And because any two
standard auctions award the asset to the buyer with the highest reservation value
at equilibrium, the probability p(s) of winning is the same for the two auctions,
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for any value of s. It’s simply the probability that s is higher than the reservation
value of any other bidder. Therefore, μ(v) is the same for all standard auctions.

By definition, μ(v) = v × p(v) − e(v), and we now know that μ(v) is identical
for any two standard auctions. And because p(v) is the same for any two such
auctions, it follows that e(v) is the same. Finally, if for each reservation value v, a
bidder’s expected payment e(v) is the same for the two auctions, then the total
of those payments over all bidders must be the same for the two auctions. But
the total of the bidders’ payments is the seller’s revenue. We have proved that
any two standard auctions will yield the same expected revenue.

Sources
Section 4.6 is based on Klemperer (1999). The revenue equivalence theorem was
discovered (as a special case) by Vickrey (1961), where a proof was also given.
The general version first appeared simultaneously in Myerson (1981) and Riley
and Samuelson (1981).

Links
Klemperer (2004) and Illing and Klüh (2003) take you deeper into auction the-
ory and practice. The first book is a general treatment, and the second one is
specifically devoted to the recent auctions of the radio spectrum in Europe.

Problem set

1. Determine the seller’s expected revenue in a first-price, sealed-bid auction
for the following four cases:

A. There are two bidders and each reservation value is drawn from the
uniform probability distribution on the interval from 0 to 5.

B. There are two bidders and each reservation value is drawn from the
uniform probability distribution on the interval from 2 to 5.

C. There are four bidders and each reservation value is drawn from the
uniform probability distribution on the interval 0 to 1.

D. There are four bidders and each reservation value is drawn from the
uniform probability distribution on the interval 1 to 11.

2. There are n bidders in an auction that awards the asset to the high bidder at
a price equal to 20% of the winner’s bid. No one else pays anything. With-
out using mathematics, and without appealing to the revenue equivalence
theorem, explain why this auction yields the same revenue as the first-price,
sealed-bid auction. (You should be able to do this without assuming the
uniform probability distribution.)

3. The following questions pertain to a first-price, sealed-bid auction with
exactly two bidders. Each individual’s reservation value is drawn from the
uniform probability distribution on the interval 0 to 1. Calculate the three
quantities e(v), v × p(v), and μ(v) for each of the five values of v listed. Cal-
culate μ(v) in two different ways:

μ(v) = v × p(v) − e(v)
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and μ(v) = (v minus this individual’s bid) ×p(v).

A. v = 1.

B. v = 0.

C. v = 2/3.

D. v = 1/4.

E. Generic v. That is, leave the reservation value as v, so your answers
will be functions of v.

4. Why does the expected (i.e., average) revenue of the first-price, sealed-bid
auction increase when the number of bidders increases?

5. What is the expected (i.e., average) revenue from the first-price, sealed-bid
auction when there are four bidders and each reservation value is drawn
from the uniform probability distribution on the interval 0 to 1?

6. What is the expected (i.e., average) revenue from the Vickrey auction when
there are four bidders and each reservation value is drawn from the uniform
probability distribution on the interval 0 to 5?

7. What is the expected (i.e., average) revenue from the first-price, sealed-bid
auction when there are four bidders and each reservation value is drawn
from the uniform probability distribution on the interval from 1 to 11?

8. Why does the expected (i.e., average) revenue of the second-price (Vickrey)
auction increase when the number of bidders increases?

9. What is the expected (i.e., average) revenue from the Dutch auction when
there are two bidders and each reservation value is drawn from the uniform
probability distribution on the interval 0 to 1?

10. There are n bidders. What is the expected (i.e., average) revenue of the first-
price, sealed-bid auction, assuming that the reservation values are drawn
from the uniform probability distribution (with values between zero and
unity, inclusive)? Explain briefly.

11. Prove statement [11] in Section 4.5.

12. Assuming exactly two bidders, construct a simple example of revenue equiv-
alence between the first-price, sealed-bid auction and English auction when
there are two possible pairs of reservation values—case 1 and case 2—and
they are equally likely.

13. Assuming exactly two bidders, construct a simple example of a failure of
revenue equivalence between the first-price, sealed-bid and English auc-
tions when there are only two possible pairs of reservation values—case 1
and case 2—and they are equally likely.

14. Consider the following new auction mechanism: After the bidders have
gathered, the auctioneer flips a coin. If it turns up heads then the (English)
ascending auction is used, but if tails turns up then the (Dutch) descending
auction is used. Will this new auction be revenue equivalent to the first-
price, sealed-bid auction? Explain.
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5 APPLICATIONS OF THE REVENUE EQUIVALENCE THEOREM

If any two standard auctions yield the same expected revenue, should the seller
devote any effort to choosing or designing an auction mechanism? Yes. Many

The government (through the Resolu-
tion Trust Corporation) sold the assets of
almost 1000 failed banks and savings and
loan institutions in the 1980s and early
1990s. It solicited sealed bids but con-
ducted the auctions prematurely, hence
there were few bidders, and the auc-
tions yielded far less than their potential
(Sternberg, 1991).

practical issues do not arise within the abstract
framework employed in the previous section.
In particular, the revenue equivalence theorem
takes the number of bidders and the absence
of collusion for granted. In any particular sale,
both issues should receive careful considera-
tion. We deal with them in turn.

We expect the seller’s revenue to increase
with the number of bidders. All other things
being equal, the seller should employ the auc-
tion mechanism that attracts the most bidders.

A 1999 spectrum auction in Germany
used the ascending bid format, but
required a new bid to be at least 10%
more than its predecessor. Mannes-
man opened by bidding 18.18 million
deutschmarks on licenses 1 through 5,
and 20 million deutschmarks on licenses
6 through 10. The only other credible bid-
der was T-Mobil, and its opening bids
were lower. One of the T-Mobil man-
agers reported that there was no explicit
agreement with Mannesman, but the T-
Mobil team understood that if it did
not raise the bid on lots 6–10 then T-
Mobil could have lots 1–5 for 20 mil-
lion, which is slightly more that 10%
greater than 18.18 million. That is in fact
what happened: The auction ended after
two rounds of bidding (Klemperer, 2004,
pp. 104–5). A 1997 spectrum auction in
the United States was expected to raise
$1.8 billion but realized only $14 mil-
lion. Bidders used the final three dig-
its of their multimillion-dollar bids to
signal the market code of the area that
they intended to go after (Cramton and
Schwartz, 2000).

An English auction can discourage entry, par-
ticularly if it is known that there are one or
two bidders with very high reservation val-
ues. The weaker bidders know that they will be
outbid and thus will not even compete. This
leaves only two or three bidders, who will then
be tempted to collude. However, a first-price,
sealed-bid auction gives weak bidders at least
a chance of winning, because everyone knows
that every firm will submit a bid below its reser-
vation value. A sealed-bid auction might even
attract firms who have no intention of using the
asset but simply hope to sell the asset for a profit
after the auction. (It’s hard to profit from resale
in the case of an English auction. The winner
will be the high-value agent, and so no one else
would be willing to pay more than the asset is
worth to the winner of the auction.)

The very advantage of sealed-bid auctions
from the standpoint of encouraging entry—
low-value agents have a chance of winning—is
a disadvantage from an efficiency standpoint.
Paul Klemperer has proposed a middle ground,
the Anglo-Dutch auction. The first stage is an
English auction, which is allowed to run its
course until only two bidders remain. These
two then enter sealed bids, which must not be

less than the last bid from the English stage. The asset is sold to the high bid-
der in stage two for a price equal to that bid. (The sealed-bid stage is “Dutch”
because the Dutch auction is outcome equivalent to the first-price, sealed-bid
auction.)
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Collusion by the bidders can significantly depress the seller’s revenue. The
English auction is vulnerable to bidder collusion for two reasons: First, there
are several rounds of bidding, so members of a cartel have a chance to punish a
member who deviates from the cartel strategy. Second, the bids are not sealed
and thus can be used to signal information to other bidders.

The analysis of Section 4 applies even to mechanisms that are not auctions in
the conventional sense of the word. The revenue equivalence theorem is valid for
any two mechanisms that use a formula for allocating a single asset—or some-
thing of value—provided that an agent with a reservation value of zero gets zero
profit on average, and the agent with the highest reservation value always gets
the asset at equilibrium. The mechanism can even allocate the asset randomly,
as a function of the bids or messages submitted by the agents. Moreover, if you
go back and check the proof, you’ll see that we can weaken the assumption that
an agent with a reservation value of zero gets zero profit on average. As long
as the expected profit of an agent with the lowest possible reservation value
is the same across two auction mechanisms, then they will generate the same
expected revenue (provided that the agent with the highest reservation value
always wins). Here are five significant applications of the theorem.

5.1 Multistage auctions
The U.S. and British airwaves auctions were designed by academic economists
to allocate radio frequencies to companies selling personal communication
devices and broadcast licenses. Bidding takes place in several rounds, and bid-
ders can revise their bids after observing what happened on the previous round.
The revenue equivalence theorem doesn’t say anything, one way or another,
about how many stages an auction can take, so it applies to multistage auctions.
All that we need to know about an auction is the probability of winning, as a
function of the reservation value, and the expected payoff of an agent whose
reservation value is zero.

5.2 Adoption of a standard
There are auctions in which the losers have to make a payment, in addition to
the winner. This is true of a “war of attrition,” a term that covers a family of
allocation problems not normally thought of as auctions. Suppose that n firms
are lobbying the government, each to have its own technology adopted as the
standard for the industry. For example, telecommunications firms compete for
the prize of having their own technology for third-generation mobile phones
adopted as the industry standard. The amount spent on lobbying is the bidder’s
payment. If we assume that the standard that’s adopted is the one employed by
the company that spends the most on lobbying, then we have an auction—call
it auction A. The asset that the winner gets is the mandating of its technology for
all firms in the industry. Let B refer to the second-price (or Vickrey) auction. We
already know that B is standard. In the case of A, if you spend nothing then your
technology will not be chosen as the standard. A firm’s reservation value is the
profit it expects to make from the adoption of its own technology as the standard.
The higher the reservation value, the more a firm is willing to spend lobbying
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the government (or industry) committee that will make the decision. Therefore,
in equilibrium the agent with the highest reservation value will get the prize,
and hence A is also a standard auction. Therefore, the expected payment with
auction B must also be the expected total payment (over all firms) for auction B.
In other words, the total amount of money expected to be dissipated in the war
of attrition is equal to the expected payment by the winner in a Vickrey auction.
The latter will be much easier to compute.

5.3 Civil litigation
Currently, the laws governing civil suits in the United States require all con-
testants to pay their own expenses. If the law were changed so that the loser
were also required to pay the winner an additional amount equal to the loser’s
expenses, would expenditures on lawsuits be reduced? A party would have to
pay more if it lost, but every additional dollar paid by the loser is an additional
dollar gained by the winner, so the expected value of a lawsuit might not change.
In fact, even under the new rule, if a party spent nothing it would not win and
thus would gain nothing. So the first part of the definition of a standard auction
is confirmed. If we assume that the party that spends the most wins the suit, then
we also have the second part. Therefore, the two systems result in the same total
expenditure on civil suits. Because the expected profit from a lawsuit is the same
for the two systems, the incentive to bring an action is the same. Hence the same
number of lawsuits are contested in the two systems, so total expenditure really
would be the same.

5.4 Procurement
When a government or a firm puts a contract up for bids, the winning bidder
will have to deliver an asset (i.e., it will have to construct a hospital, road, or
office building, etc.), and in return the winner is paid an amount of money. This
is an auction in reverse. The bidder’s reservation value v is a cost (the cost of
construction) and thus it is a negative number. The winner’s payment is negative
(it is a receipt) so e(v) is negative. If we let c denote cost andr(c) denote the bidder’s
expected revenue as a function of the bidder’s cost c we have

μ(c) = r(c) − c × p(c),

which says that expected payoff is equal to the bidder’s expected revenue minus
expected cost.

Now, let c = −v and r(v) = −e(c). Then μ(c) = r(c) − c × p(c) becomes

μ(v) = v × p(v) − e(v),

which was the starting point for the revenue equivalence theorem, which now
tells us that the winner’s expected profit will be the same and the government’s
expected expenditure will be the same in any two procurement auctions in which
the low-cost supplier always wins the contract at equilibrium, and the highest
cost supplier will get zero profit at equilibrium.
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5.5 Car sales
There is great enthusiasm in Europe for Internet sales of automobiles as a substi-
tute for dealer sales. They are gaining popularity in the United States. Prices are
more transparent on the Internet, and the assumption is that consumers ben-
efit from this because of the reduction in search costs. The assumption may be
wrong. Certainly there are many more sellers competing for a given customer’s
favor in an Internet sale. This means that Internet sales approximate the stan-
dard English, oral ascending auction, whereas purchase at a dealership is similar
to a first-price, sealed-bid auction. The traditional dealership sale is a sealed-bid
auction because the buyer has no way of credibly reporting one dealer’s offer to
another, particularly when dealers so rarely put an offer in writing. The offers
are, in effect, sealed.

An internet sale to one customer can be treated as a separate auction. The
bidders are sellers, not buyers, and the bids are lowered until only one seller
remains—the car is then sold at that survivor’s bid. So it is a procurement auc-
tion and, after inserting minus signs, equivalent to an ascending auction. The
revenue equivalence theorem tells us that the expected outcome is the same in
the two situations. However, that theorem assumes away collusion on the part of
the bidders. Collusion among automobile sellers is much easier to orchestrate
in the case of Internet sales. Early rounds can be used to signal information
from one seller to another. Finally, sealed-bid procurement auctions typically
generate lower prices for the buyer.

Source
These examples are drawn from Klemperer (2003). Klemperer (1998) proposed
the Anglo-Dutch auction.

Links
Chapters 3 and 4 of Klemperer (2004) provide insight into the practical side of
designing an auction. The former is also available as Klemperer (2002a). Paul
Klemperer played a central role in the design of the British spectrum auctions.
John McMillan and Paul Milgrom played a key role in designing the U.S. spectrum
auction. Milgrom (2004, Chapter 1) discusses the practical side of auction design,
and McMillan (2002, Chapter 7) is a superb account of modern auctions.

6 INTERDEPENDENT VALUES

Up to this point we have assumed that the auctions in question apply to private
values cases, by which we mean each agent has a reservation value that is statisti-
cally independent of the reservation value of any other agent. The pure common
values case is the opposite: The asset has a market value that is the same for all
bidders, but no bidder knows the true value. Each bidder has some information
about the true value, but the information is different for different agents. The
intermediate case is encountered most often: The asset is worth more to some
firms than to others—perhaps because the former have other resources that
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combine well with the asset that is up for sale—but the values of the different
bidders are closely related, perhaps because the asset would be used to serve a

The value of a TV license is higher for
bidder A than bidder B because A owns
a baseball franchise and can use the
TV station to hide some of the profit
from baseball operations, say by buy-
ing broadcast rights from the baseball
team at below market value. This would
allow the owners of the baseball team
to tell the players that they can’t have a
salary increase because there is no profit
(Chapter 4 of Zimbalist, 2004).

particular consumer group, such as cell phone
users.

The standard example of the pure common
value situation is the competition between oil-
drilling firms for the right to extract crude oil
from a presently undeveloped tract of land.
Each firm will employ experts to estimate the
size of the underground reserve and the cost
of extracting it. The estimates won’t agree, and
the data will not be made public until the bid-
ding is over—if then. Each firm keeps its esti-
mate to itself. There will be some publicly avail-
able information—perhaps the amount of oil

pumped from nearby land. Hence, each firm has a signal (i.e., estimate) of the
value of the tract, based on public information and its private information, and
the signals are different for different firms.

DEFINITION: Bidder signal
Firm i’s signal σi is its estimate of the asset’s worth to i itself.

In a private values auction a firm’s signal is just its own reservation value.
Even if the firm knew the reservation values of the other firms, its own estimate

The techniques for estimating the oil
reserves trapped in a geological forma-
tion are significantly more reliable than
a hundred years ago, but geologists can
still disagree about a particular tract.
Thousands of licenses for drilling oil off
the coasts of Louisiana and Texas have
been auctioned by the U.S. Department
of the Interior, but many of the sales
attracted only one bid (McAfee, 2002,
pp. 307–8).

of the asset’s value would be unaffected. (But
the information would be useful in guessing
how much the other agents would bid.) In a
pure common value auction the firm’s signal
is its own particular estimate of the value of
the asset. The asset is worth the same amount
to each bidder—the common value—but that
number is not precisely known by any bidder.
Each bidder knows that the average of all the
bidders’ estimates would be a much more reli-
able indicator of the value of the asset, but no
firm will know any other firm’s estimate before
bidding begins.

In this last section we abandon the private values assumption and reconsider
auctions when one agent’s signal embodies information that is relevant to the
value of the asset to other agents. Happily, much of what we learned in the private
values case can be adapted to the general framework.

For the pure common value case, in which the asset has precisely the same
(unknown) value to all the bidders, asset efficiency is satisfied by any assignment
of the asset! This suggests that an auction is unnecessary; just allocate the asset
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by lottery. On the contrary, there are two reasons why an auction should still
be used. The first is a fairness argument. If the asset (e.g., oil reserves) belongs
to all citizens, it shouldn’t be given free to any of them. A competitive auction
would eliminate much (sometimes all) of the excess profit from asset ownership.
Second, even if the asset may have the same value to all bidders, this won’t be
the case for all firms in the economy. Firms that have no expertise in exploiting
the asset would not be able to realize the “common” value. An auction attracts
only firms that can realize the asset’s potential. But if the value is the same for
all bidders, then asset efficiency is satisfied, regardless of the outcome.

For situations that are intermediate between the pure private values and
the pure common value case, asset efficiency can be problematic, as the next
example demonstrates.

Example 6.1: Interdependent values

There are three bidders, called 1, 2, and 3. Their respective signals are σ1, σ2,
and σ3. The values v1 and v2 of the first two bidders each depend on all three
signals, but the value v3 of the asset to agent 3 is a function of 3’s signal only.
Specifically:

v1 = σ1 + 2
3
σ2 + 1

3
σ3, v2 = σ2 + 1

3
σ1 + 2

3
σ3, and v3 = σ3.

The asset is to be auctioned, and each firm has to submit a bid before knowing
the signal received by the other two. Suppose that σ1 = α = σ2 and σ3 = α + ε,
where α is positive, although the random variable ε can be positive or negative.
We have

v1 = 2α + 1
3
ε, v2 = 2α + 2

3
ε, and v3 = α + ε.

If ε < 0 then v1 > v2 > v3, in which case asset efficiency requires that agent 1
is the winning bidder. If 0 < ε < 1.5α then v2 > v1 > v3, and asset efficiency is
satisfied only if agent 2 is the winning bidder. Suppose that an agent’s bid can
depend only on his or her own signal. (That would be the case in any sealed-bid
auction.) Then when σ1 = α = σ2 neither the bid of 1 or 2 will be influenced by
the sign of ε. If agent 1 is the winning bidder then asset efficiency is violated when
1.5α > ε > 0, and if agent 2 is the winning bidder then ε < 0 is inconsistent with
asset efficiency, whatever sealed-bid auction is used.

From now on we will confine our attention to the common value case. The
asset has the same value to each bidder, but the common value is unknown to
each.

6.1 Revenue equivalence
For the family of sealed-bid auctions, the revenue equivalence theorem is valid
for the common value case. All we have to do to prove this is replace the agent’s
reservation value v in the proof of Section 4.5 (or 4.6) with the agent’s signal σ . (In
the case of an open auction, a bidder make inferences about the signals received
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by others when they hear their bids. Thus, replacing the reservation value by the
signal is invalid.) The bidder’s behavior is now based on σ instead of v, but the
mathematics will not have to be changed—after replacing v with σ (or even
better, interpreting v as the agent’s signal). It needs to be emphasized, though,
that the assumption that each bidder’s signal is statistically independent of any
other agent’s signal is crucial. This rules out intermediate interdependent values
cases, such as Example 6.1.

The common value version of the revenue equivalence theorem

If each of the n agents is risk neutral, and each has a privately known sig-
nal independently drawn from a common probability distribution, then all
standard sealed-bid auctions have each bidder making the same expected
payment at equilibrium, given his or her value, and thus the seller’s expected
revenue is the same for all standard auctions.

6.2 The winner’s curse
Before bidding, each potential buyer hires a team of experts. In the case of oil
drilling, the bidder will employ a team of geologists to determine how much oil
is under the tract of land up for auction and how difficult it will be to extract the
oil. Economists will also be called on to determine the future market value of
oil. Each bidder hires a different team of experts, and the estimates of the asset’s
market value will disagree. There are three reasons why the potential buyers will
not exchange their information before the auction is run. First, if they did then
each buyer would have little incentive to fund research because it would get
the results of others’ estimates for free. Second, bidder A’s estimate would help
bidder B, but A’s goal is to profit at the expense of B. Third, each bidder would
have an incentive to mislead the others.

Each bidder has an estimate of the common value—the value of the asset—
and no bidder will know the estimates obtained by the others. Some of the
estimates will be on the high side and some will be on the low side. The average of
all the estimates will be a good approximation to the common value, but the
highest estimate will not. But an agent’s bid will be proportional to the estimate
that that agent has obtained. It follows that the high bidder will be the one with
the highest estimate. Therefore, as soon as an agent learns that he has won, he
knows that he has paid too much, because he had the extreme estimate (on the
high side) of the value of the asset.

Example 6.2: Three hats

In this instance the asset is a hat containing five pieces of paper. Each of the
five slips has a number on it, and if you obtain the asset by outbidding your
rival you will be paid an amount of money equal to 100 times the average of
the five numbers. You are allowed to sample before deciding how much to bid.
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Specifically, you can draw one piece of paper at random from the hat and look
at it. You have to replace it before your rival, who cannot see what number you
drew, takes a sample. And you won’t know what number your rival drew before
entering your bid. Moreover, neither of you know which of three hats is the one
you are bidding for: Hat A contains the numbers 1, 2, 3, 4, and 5, so that asset is
worth $300. Hat B contains 2, 3, 4, 5, and 6, so it is worth $400. Hat C is worth
$500 because it contains the numbers 3, 4, 5, 6, and 7. You draw a 4. How much
should you bid? Four hundred dollars is the value of asset B, so it might be well
to suppose that you are bidding for hat B. Much more useful information would
be obtained by averaging your sample with the other person’s. (If the average of
the two draws is 6.5 then the asset is certainly hat C. If the average is 5.5 then it is
certainly not hat A.) But comparing sample values is against the rules. Now, you
submit your sealed bid, based solely on the information you possess, and you
are told that you won the asset because you are the high bidder. That means that
your rival drew a lower number than you and submitted a lower bid. Drawing
a number smaller than 4 is much more likely to happen when sampling from A
than from C. It is 50% more likely with A than with B. Conditional on winning
the first-price, sealed-bid auction a draw of 4 should lead to a bid below $300
because the chances are good that you are competing for asset A. If you draw
the number 4 and bid, say, $325 on the supposition that the asset is more likely
to be B than A or C you have a good chance of experiencing the winner’s curse.
(When two samples are taken from hat A the average low draw is 2.28 and the
average high is 3.8. When two samples are taken from B, the average high is 4.8,
although the mean of the numbers in hat B is 4.)

Any mechanism in which firms or individuals compete with each other for
a single asset, or a handful of assets, can be viewed as an auction. Accordingly,

Oil companies appear to have fallen vic-
tim to the winner’s curse during the auc-
tions for offshore oil-drilling rights. Book
publishers often feel that by outbidding
rivals for the right to publish a book
they have paid more than they will ever
recoup in profits from book sales. Base-
ball teams have often outbid other teams
for a free agent only to find that they
have paid too much for the player’s ser-
vices. The phenomenon also occurs in
corporate takeover battles (Thaler, 1992,
pp. 57–8 and Dyer and Kagel, 2002,
p. 349).

the winner’s curse can emerge in a wide variety
of market contexts.

If the bidders did exchange their informa-
tion before the auction they could produce a
common estimate of the asset’s market value.
The average of all the estimates can be expected
to be as close as anyone could forecast to the
actual market value of the asset. The buyer
whose team of experts produced the lowest
estimate of the asset’s value would know that its
team underestimated. More significantly, the
buyer whose team produced the highest esti-
mate of the asset’s value would know that its
team overestimated. But that buyer would be
the one with the highest reservation value going

into the auction and hence would be the winning bidder. Without an exchange
of information, the appropriate strategy is to adjust one’s estimate, and hence
one’s bid, to avoid falling victim to the winner’s curse.
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Example 6.3: Correcting for the overestimate

There are two bidders (to keep the calculations simple), and each draws a single
sample from a probability distribution. Each knows everything about the distri-
bution except the mean μ, which is also the common value of the asset. An indi-
vidual will draw μ + 0 with probability 0.4, μ + 100 with probability 0.2, μ − 100
with probability 0.2, μ + 200 with probability 0.1, and μ − 200 with probability
0.1 as summarized by Table 6.3. The average draw is μ, but typically one of the
bidders will have an above-average draw and the other will have a below-average
estimate. Because neither knows the value of μ, or the other’s estimate, neither
will know if his or her own estimate is too high or too low. Let’s calculate the
average high estimate. Table 6.4 displays the probability of every pair of draws.
For instance, A will draw μ − 100 with probability 0.2 and B will draw μ + 200
with probability 0.1. The probability of both happening is 0.2 × 0.1 = 0.02, and
when it does the high estimate is μ + 200. You can use Table 6.4 to calculate the
average high estimate, which is μ + 60. Therefore, bidders should neutralize the
winner’s curse by subtracting $60 from their estimates.

Note that the winner’s curse becomes more severe as the number of bid-
ders increases. That’s because as the number of bidders increases, so does the

Table 6.3

Draw Probablity

μ − 200 0.1
μ − 100 0.2
μ 0.4
μ + 100 0.2
μ + 200 0.1

probability of someone drawing an extremely high sam-
ple estimate. In the case of Example 6.3 the probabil-
ity of someone drawing either μ + 100 or μ + 200 when
there are only two agents is 1 minus the probability that
both individuals draw one of the other three numbers.
The probability of a single individual drawing one of the
three lowest numbers is 0.1 + 0.2 + 0.4 = 0.7. Therefore
the probability of one of the two bidders drawing an
estimate greater than μ is 1 − 0.7 × 0.7 = 0.51. (Alter-
natively, eliminate the last two columns and the last
two rows of Table 6.4, add the remaining numbers, and

then subtract the result from 1.) If there are three agents, the probability of
someone drawing μ + 100 or μ + 200 is 1 − 0.7 × 0.7 × 0.7 = 0.657. With four
bidders the probability increases to 0.7599.

Table 6.4

B ’s estimate

A’s estimate μ − 200 μ − 100 μ μ+ 100 μ+ 200

μ − 200 0.01 0.02 0.04 0.02 0.01
μ − 100 0.02 0.04 0.08 0.04 0.02
μ 0.04 0.08 0.16 0.08 0.04
μ + 100 0.02 0.04 0.08 0.04 0.02
μ + 200 0.01 0.02 0.04 0.02 0.01
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Is the winner’s curse more dangerous with the first-price, sealed-bid auction
or with the English auction? The former. If you seriously overestimate the asset’s
value in an English auction, you won’t pay too much if you are the only one
to overestimate, because you won’t have to pay more than the second-highest
estimate of its value. Moreover, as the auction proceeds you acquire information
about some of the other estimates. As bidders drop out, you get an upper bound
on their estimates of the asset’s value.

Sources
Example 6.1 is from Maskin (2003).

Links
McAfee (2002, pp. 307–1) has some valuable observations on the winner’s curse.
The winner’s curse emerges in laboratory experiments, but with experience the
subjects learn to mitigate its effects, so that the winner realizes some profit
while still bidding too high. Experimental subjects submit bids that are closer
to the Nash equilibrium levels in English auctions than in first-price, sealed-bid
auctions. See Kagel and Levin (2002b).
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This chapter examines decision making by a community (or any group) in a sim-
ple model: The community must choose from a finite set of mutually exclusive
alternatives. (The next chapter endows the model with much more structure by
specifying individual utility functions and a production function—and resource
constraints. The utility functions will have classical economic properties.)

We look at situations in which a group must make a decision that will be
binding on all of its members. For example, a class has to determine a time
for a review session, a town has to decide whether to build a new school, a
nation has to elect a legislature. The resulting choice will have no other impli-
cations for personal consumption—in this chapter. Think of the alternatives
X, Y, Z, and so forth from which a choice is to be made as alternative ways of
spending a fixed amount of government revenue, with the same individual tax
burdens in each case. In this setting we can’t rule out any ranking of the avail-
able options as a possible preference scheme for a member of the group. This
makes it very difficult to induce truthful revelation of the hidden characteristic,
which in this chapter and the next is the individual’s true preference scheme.
We want the individuals to reveal enough information about their preferences
to enable the system to select the outcome that best reflects those individual
preferences.

Clearly, one could write an entire book on the criteria for determining the
alternative that “best” reflects individual preferences. Hundreds have been writ-
ten on that theme. In this chapter we set that issue aside and simply determine
which selection rules elicit truthful information about individual preferences.
A selection rule is essentially a mapping from individual preferences into a
social choice, and it must be defined for each possible specification of indi-
vidual preferences.

1 VOTING SCHEMES

Although this section examines voting procedures, you are encouraged to think
of the candidates standing for election not as individuals seeking careers in
government but as alternative packages of public projects. Candidate (or alter-
native) X may, for example, be a proposal to reduce expenditure on the space
shuttle program by a specific amount and to use the proceeds to fund research
on the production of energy by nuclear fusion. Alternative Y may be a proposal
to maintain the level of expenditure on the space shuttle while increasing fed-
eral expenditure on health care at the expense of grants to university professors.
Other candidates or alternatives may present mixtures of X and Y, and each
would be identified by its own label, W, Z, and so forth. The voters may be the
members of the legislature or even the citizens themselves who are asked to vote
directly for public projects.

The fact that citizens do not presently vote directly on these matters should
not stand in our way. The observation that a particular voting scheme is not
widely used is not a persuasive argument against its introduction if it would serve
society better than the methods presently in use. When examining alternative
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voting systems our main concern is the extent to which a voting procedure
embodies incentives that induce individuals to mark their ballots to reflect their
preferences in the way prescribed by the systems rules. (Other criteria are impor-
tant, of course, but this book examines incentives.)

1.1 Majority rule
Our aim is to employ a voting scheme that induces individuals to reveal their
preferences truthfully. Majority rule meets the case when there are only two
alternatives on the agenda: Assume that there are two alternatives, X and Y, and
the one that is preferred by a majority will be selected. (Some tie-breaking rule
is employed when necessary.)

Majority rule theorem for two alternatives

Majority rule induces truthful preference revelation—even by coalitions—if
there are only two alternatives.

Proof
If X wins but Vince voted for Y because he prefers Y to X then Vince cannot
precipitate an outcome that he prefers to X by changing his vote. With only
two alternatives Vince can only change his vote to X, but X already wins even
when he votes for Y. Note that we can apply this argument to a coalition of
individuals: If everyone in group G prefers Y to X but X wins the election when
the members of G vote for Y over X, then there is nothing they can do individually
or as a group to secure the election of Y. If there are only two alternatives, then
majority rule always renders a decision that is invulnerable to manipulation by
misrepresentation of preference.

When the feasible set has only two alternatives, X and Y, the majority winner
is efficient: If alternative X is not efficient then no one strictly prefers X to Y and at
least one person strictly prefers Y to X. But then Y would defeat X in the election.

Even if there is a large number of alternatives we can induce truthful rev-
elation by selecting two alternatives, X∗ and Y∗, and have the rule select the
majority winner between X∗ and Y∗. According to this decision scheme, the
other alternatives (Z, A, B, etc.) don’t have a chance, even if everyone ranks
Z at the top and X∗ and Y∗ either last or second last. Disqualifying all but
two of the alternatives from ever receiving consideration, whatever the indi-
vidual preferences, is an extremely poor way to solve the hidden information
problem.

The majority rule theorem is of no comfort in an economic context because
there are always more than two alternatives. For one thing, a given public project
can be financed in an astronomically large number of ways, by adjusting indi-
vidual tax burdens. To see how this affects our evaluation of majority rule we
revisit the case of two alternatives but use utility functions to express individual
preferences.
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Example 1.1: Two projects F and G and three individuals

Table 7.1 represents individual preferences by means of the utility levels Ui (net
of any taxes paid). If the two projects come up for election then G will win
because Rosie and Edie both prefer G to F. (If you like, you can suppose there are
3 million individuals, with each voter of the table belonging to a group of 1 million
individuals with identical preferences.) Outcome G is inefficient, however, if we
expand the feasible set by allowing side payments. If Soren were to compensate

Table 7.1

Soren Rosie Edie

Ui (F ) 5000 100 150
Ui (G) 3000 105 160

Table 7.2

Soren Rosie Edie

Ui (F ) 5000 100 150
Ui (G) 3000 105 160
Ui (H) 4800 200 250

the other two individuals by paying them each $100 for throwing their support
to F we have a new outcome H, which everyone prefers to G, as illustrated
by Table 7.2. That is, we create H from F by reducing Soren’s consumption of
the private good by 200 and increasing the private good consumption of Rosie
and Edie by 100 each. (There is an implicit assumption here of quasi-linear
preferences that justifies the claim that $100 would be sufficient compensation.)

We have uncovered a general principle: If we are using majority rule in an
economic context, and we restrict the agenda to two alternatives to ensure truth-
ful revelation of individual preference, then we could wind up with an inefficient
outcome. Note that we could modify Example 1.1 so that the difference between
total utility from F and the total utility from G is as large as we like.

Majority voting with a two-alternative agenda can select an inefficient out-
come because an individual who cares very little about the choice between two
projects is given the same number of votes as an individual who has a great deal
at stake. The intensity of an individual’s preference is not recorded, and therefore
there is no way to ensure that the majority’s gain outweighs the minority’s loss.
We attempt to correct this defect by considering a voting scheme that allows
individual to cast a variable number of votes.

Example 1.2: A variable number of votes

Each individual i is required to report Ui(F) and Ui(G) when F and G are the two
projects on the ballot. The net benefit figure reported by i can be interpreted as
the number of votes cast by i for the project in question, and all individuals are
required to cast a number of votes equal to their net utility. If the project that
receives the largest total vote is selected and individuals report truthfully then
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an inefficient outcome will not survive this new voting process: If the private
goods consumption at F can be rearranged so that all individuals have more
utility than they have at outcome G then total utility at F exceeds total utility
at G.

Of course individuals have a strong incentive not to report truthfully. Suppose
the first table of Example 1.1 gives the true utility levels for the two alternatives
F and G on the agenda. If Rosie declares that her net utility from G is 5105 (i.e.,
casts 5105 votes for G) and in all other cases each individual reports truthfully,
the result is displayed in Table 7.3. Inefficient outcome G will receive the most

Table 7.3

Soren Rosie Edie

Ui (F ) 5000 100 150
Ui (G) 3000 5105 160

votes. (Remember, G is inefficient with respect to the true preferences if side
payments are allowed and preferences are quasilinear.) Of course this voting
pattern does not constitute an equilibrium. All individuals have an incentive
to overstate their preference for the project they prefer, however slight their
intensity of preference for one option over the other, and there is no limit to the
number of votes individuals would be willing to cast for their preferred outcome
in the case of this voting mechanism.

Suppose that we modify Example 1.2 by imposing an upper limit. Let’s con-
sider the implications of a cap of 10,000 on the number of votes that one can
cast for an outcome. An individual is asked to cast a number of votes for an alter-
native in accord with the net utility that the individual would receive from that
alternative, but in no case can he or she exceed 10,000 votes. Then all individuals
will cast exactly 10,000 votes for the option that they prefer and 0 votes for the
other project, so the mechanism imitates majority rule. (The number of votes
cast has no effect on the tax formula used to finance the winning project—the
financing formula is part of the definition of a project.) Each alternative will now
receive 10,000 times as many votes as under majority rule, so the two mecha-
nisms yield the same decision. The problem with this new scheme is that there
is still insufficient restraint on individuals’ desire to overstate the benefit derived
from their preferred alternative, even if it gives them only slightly more utility
than the other. Therefore, we want to consider a modification of the variable
number of votes model in which there is a built-in incentive not to exaggerate.
We don’t investigate this until Chapter 8.

To forestall the potential inefficiency of majority rule let’s have all of the fea-
sible alternatives on the ballot. From now on we assume that there are three or
more feasible alternatives. It is certain that a majority winner will be efficient if
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every feasible alternative is on the ballot: If X defeats every other alternative by
a majority then there is no other feasible alternative Y that everyone prefers
to X . If there were such an alternative then it would have defeated X by a
majority—an overwhelming majority. For the same reason, there can be no
other feasible alternative Y such that some people prefer it to X and the rest are
indifferent.

Efficiency of majority rule

If every feasible alternative is on the ballot and if there is an alternative that
defeats every other by a majority then that alternative is efficient.

The winner from Example 1.1 was not efficient because there were feasi-
ble alternatives not on the ballot, which offered only two outcomes, F and G.
However, even with only three alternatives, majority rule can fail to deliver a
clear winner, as we are about to see. For the rest of this chapter, we represent
individual preference as a ranking of the feasible alternatives.

DEFINITION: Individual preference ordering
We represent an individual’s preference scheme as a ranking of the alter-
natives in order of preference: most preferred, second most preferred, and
so on. We refer to it as an ordering (or ranking) and display it as a column,
with the most preferred alternative at the top and the other alternatives (or
outcomes) arranged below in order of preference.

Example 1.3: A majority rule cycle with three feasible alternatives

Table 7.4 illustrates how we use an ordering to represent individual preferences.
There are three voters. Person 1 prefers X to Y and Y to Z (and hence X to Z).

Table 7.4

Person 1 Person 2 Person 3

X Y Z
Y Z X
Z X Y

Person 2 prefers Y to the other two policy options and so on. There is such
diversity of individual preference here that it is far from obvious how one of these
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In 1956 the U.S. House of Represen-
tatives voted on a program of grants
for school construction—option G. An
amendment was introduced to deny
aid to any state with segregated pub-
lic schools—option A. The third alter-
native was the status quo, S. Southern
Democrats preferred G to the other two
but also preferred S to A. A second group,
mostly northern Democrats, preferred A
to G and G to S. The remaining rep-
resentatives, mostly Republicans, pre-
ferred S to either of the other alternatives
but preferred A to G. The three groups
were roughly equal in size; hence a vot-
ing cycle. The House voting rules pre-
cipitated S as the outcome in this case
(Brams, 1976, p. 44).

policies can be selected as the best for this
three-person group. Each person has a differ-
ent most-preferred alternative, and any indi-
vidual’s first choice is someone’s last choice.
The alternative that defeats the other two by
a clear majority is the one that will be selected.
Consider first the contest between Y and Z.
Persons 1 and 2 will vote for Y over Z. (You can
imagine three groups of roughly equal size if
you think the case of three individuals is too
unrealistic.) But Y will not defeat both of the
other two alternatives by a majority. Persons 1
and 3 will vote for X over Y . This seems to leave
us with X as the group choice. But alternative
Z defeats X by a clear majority, with persons 2
and 3 both voting for Z in preference to X . We
say that there is a majority rule cycle: X beats
Y , Y beats Z, and Z beats X .

We can fix the indecisiveness problem by augmenting majority voting to
incorporate a supplementary rule for selecting one of the alternatives in case
of a cycle. However, one of the implications of the theorem that we prove in
Section 3 is that there is no way of doing this without creating opportunities
for someone to profit by misrepresenting his or her individual preference, as
illustrated by the next example.

Example 1.4: The status quo receives special treatment

If there is an overall majority winner, then that will be the outcome. If there is a
cycle and hence no overall winner, as with Example 1.3, then the outcome will
be X, which we take to be the status quo. On one hand, suppose Table 7.5 gives

Table 7.5

Person 1 Person 2 Person 3

X Y Z
Z Z X
Y X Y

the true individual preferences. Then the outcome is Z because Z defeats X
by two votes to one (persons 2 and 3 prefer Z to X) and Z defeats Y by two
votes to one (persons 1 and 3 prefer Z to Y). But if individual 1 does not report
truthfully and declares a preference for X over Y and Y over Z then the reported
preference pattern is the one of Table 7.4: There will be no overall majority
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winner. Alternative Y defeats Z by two votes to one, X defeats Y by two votes to
one, and Z defeats X by two votes to one. According to the definition of our new
decision rule the outcome will be X. Because person 1 actually prefers X to Z
person 1 has profited by misrepresenting his or her preference scheme. (Note
that the preferences of persons 2 and 3 are identical in the two situations.) On the
other hand, suppose that Table 7.4 gives the true individual preferences. Then
the outcome is X if everyone reports truthfully. However, if person 2 reports an
ordering with Z on top then Z will be the majority winner because Z will be the
top alternative for 2 and 3. Then Z will be selected, and person 2 prefers Z to X
according to his or her true preferences. In that case person 2 has benefitted by
misrepresentation.

When the preferences are as in Table 7.4, whatever the outcome, it will
be someone’s last choice. That’s the source of the incentive to misrepresent.
(For instance, if person 3 were the chair and decided the outcome in case of a
cycle, then Z would be chosen and that is person 1’s lowest-ranked alternative.)

When an individual precipitates the election of a different alternative by
deviating from truthful revelation we say that the person has manipulated if he
or she prefers that alternative to the one that would have been selected had he
or she reported truthfully.

DEFINITION: Manipulation
We say that individual i can manipulate the voting rule if there is some
assignment p of individual preferences at which individual i can profit by
reporting a preference scheme that is not i’s true preference. That is, individ-
ual i can manipulate at p if, given i’s preferences at p, i prefers the outcome
that emerges when i reports a different preference to the one that is selected
when i truthfully reports his or her actual preference at p and everyone else
continues to report their preferences at p.

How do we know that the individual preference pattern of Table 7.4 will
arise? Hidden information requires us to define a rule that can handle any pref-
erence input because we don’t know what people’s preferences might be. Note
that even if we are committed to using majority rule, every specification of
the rule for selecting an outcome when there is a voting cycle defines a differ-
ent voting scheme. Moreover, we do not assume that public decisions have to
be made via a process that is based on majority rule. We do assume that the
process is fundamentally democratic, but we’re not sure yet exactly what that
means.

1.2 Other voting schemes
The Gibbard-Satterthwaite Theorem of Section 2 establishes that if there
are three or more alternatives, then every nondictatorial voting scheme can
be manipulated. (A dictatorial scheme selects an individual in advance, say



392 Voting and Preference Revelation

person J, and always selects the alternative that is at the top of J’s reported
preference scheme.) In spite of the theorem, there is much that we can learn
about preference revelation by attempting to find a scheme that is invulnerable
to manipulation. First, even if invulnerability to manipulation implies that one
individual has considerable power, why can’t that power ever be mitigated? The
next example shows what can go wrong.

Example 1.5: Sharing the power

There are two voters. Suppose that we let the mechanism select person 1’s top
alternative, unless it is ranked at the bottom by person 2, in which case per-
son 2’s top alternative is selected. Consider the situation of Table 7.6. The “True”

Table 7.6

True Reported

Person 1 Person 2 Person 1 Person 2

X Y X Y
Y X Y Z
Z Z Z X

cell gives the respective true preferences of the individuals. Under truthful
revelation, alternative X is top ranked by person 1 but is not bottom ranked
by person 2. Thus the rule requires that X be selected. But if individual 2 changes
her reported preference ordering to the one represented as the second column
in the “Reported” cell, then X will not be selected because it is bottom ranked
by person 2, and according to the rule, alternative Y will be selected. Note that
person 2 does not require 1’s cooperation. Person 1’s reported ordering is the
same in the two situations. Person 2 can do better than reporting her true prefer-
ence by reporting a different ordering. When person 2 does this she precipitates
the selection of an alternative that she prefers, according to her true preference
scheme, to the alternative that is selected when she reports truthfully.

We run into the same difficulty if we seek a compromise.

Example 1.6: Compromise

There are two individuals and three alternatives. If the individuals have the same
top-ranked alternative then that is selected. Suppose that they have different top
alternatives. If each person’s top is the other’s second-ranked alternative, or each
person’s top is the other’s third-ranked alternative, then select whichever of the
tops precedes the other in the alphabet. Otherwise, one person’s top will be
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the other’s second-ranked alternative and one person’s top is the other’s third-
ranked alternative, in which case select the alternative that ranks first for one
person and second for the other. Consider the situation of Table 7.6. Alternative
X is selected under truthful revelation, but if person 2 reports the ranking in
column 2 of the “Reported” cell instead then Y will be selected. Again, person 2
can misrepresent in a way that precipitates the selection of an alternative that
she prefers, according to her true preference scheme, to the alternative that is
selected when she reports truthfully.

The voting rule of Example 1.5 treats alternatives symmetrically but treats
individuals asymmetrically. Example 1.6 treats individuals symmetrically but
alternatives asymmetrically, as does the next example.

Example 1.7: Veto power

There are three feasible alternatives, and all voters are asked to name the one
they most prefer. If at least one person names X then X is adopted; otherwise Y
is selected, unless everyone nominates Z, in which case Z is adopted. In other
words, any individual can veto Z by naming either X or Y, and any individ-
ual can veto both Y and Z by naming X. Suppose that there are three voters 1,
2, and 3 with the true preference orderings given in Table 7.7. If each reports

Table 7.7

Person 1 Person 2 Person 3

Z Y Y
X Z Z
Y X X

truthfully then the outcome is Y. However, person 1 can profit from misrepresen-
tation. If person 1 nominates X then X will be selected, and person 1 prefers that
alternative to Y. When person 1 profits from misrepresenting his preferences
the resulting outcome X is less desirable than Z in terms of everyone’s true
preferences.

What about plurality rule? With this procedure the voters simply declare
their most-preferred alternative, and the one receiving the most votes is the
outcome. It is well known that this rule is not guaranteed to induce truthful
revelation. Before looking at an example, we specify a tie-breaking rule, because
we want the decision scheme to always select one and only one alternative. Let’s
agree that in case of a tie the alternative coming first in the alphabet is selected
from the tied alternatives receiving the most votes.
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Example 1.8: Plurality rule

There are three individuals and three alternatives. Again, think of the left-hand
cell of Table 7.8 as the true preferences of the respective individuals. Then the

Table 7.8

True Reported

Person 1 Person 2 Person 3 Person 1 Person 2 Person 3

X Y Z X Z Z
Y Z X Y Y X
Z X Y Z X Y

three alternatives are tied, with one vote each, so X is selected. But if person 2
reports the preference scheme of the middle column of the “Reported” cell the
winner will be Z with two votes, assuming that the other two report truthfully.
By misrepresenting her preference and claiming that she prefers Z to the other
alternatives, person 2 precipitates the selection of an outcome that she prefers
according to her true preference—the middle column of the “true” cell—which
ranks Z above X. This is a case of voting for your second choice instead of your first
choice, because your favorite candidate doesn’t have much chance of victory.

Suppose that we use plurality rule, but if there is a tie then we have a second
election involving only the first-round winners. The next example shows how
easily this scheme can be manipulated.

Example 1.9: Plurality rule with runoff

There are five individuals and four alternatives. The true preferences of each
person are given in the top half of Table 7.9. If everyone reports their most-
preferred alternative truthfully then X will receive two votes and Y, Z, and W
will receive one vote each. Then the outcome will be X, which is the alternative
preferred least by person 5. If 5 deviates from the truth and claims Y as his most-
preferred alternative—see the last column in the bottom half—then there will
be a tie between X and Y. Alternative Y will win the runoff, receiving votes from
3, 4, and 5, each of whom prefers Y to X. Individual 5 obviously prefers Y to X
according to his true preference ordering.

Consider now conventional rank order voting—also called the Borda rule
after the eighteenth-century French mathematician J.-C. Borda. If there are four
alternatives, all individuals cast four votes for the alternative that ranks at the top
of their preference ordering, three votes for the alternative that ranks second,
two votes for the alternative that ranks third, and one vote for the last-placed
alternative.
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Table 7.9

True

Person 1 Person 2 Person 3 Person 4 Person 5

X X Y Z W
Y Y Z Y Z
Z Z X X Y
W W W W X

Reported

Person 1 Person 2 Person 3 Person 4 Person 5

X X Y Z Y
Y Y Z Y W
Z Z X X Z
W W W W X

DEFINITION: The Borda (or rank order) rule
If there are m alternatives, all individuals cast m votes for the alternative that
ranks at the top of their preference ordering, m − 1 votes for the alternative
that ranks second, and so on. Then the alternative selected is the one with
the most total votes.

Example 1.10: Borda or rank order voting with four alternatives

There are three individuals and four alternatives (Table 7.10). Again, the left-
hand cell displays the true preferences of each person. Then for the true prefer-
ence pattern alternative X receives nine votes, Y receives eight, and Z and W get
seven and six votes respectively. Therefore, X would be selected by the Borda rule

Table 7.10

True Reported

Person 1 Person 2 Person 3 Person 1 Person 2 Person 3

X Z W X Z Y
Y X Y Y X W
Z Y X Z Y Z
W W Z W W X
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in this situation. The right-hand cell displays the reported preferences resulting
from a change in person 3’s reported preference ordering: This time Y receives
nine votes, X and Z each receive eight, and W gets five votes. Then Y would be
selected. Person 1’s ranking is the same in the two tables, and so is 2’s. If, instead
of reporting truthfully (the third column of the “True” cell), person 3 reports the
ranking in the third column of the “Reported” cell then the outcome will be Y,
which individual 3 prefers to X according to his true preference ordering.

We could investigate many more voting rules, but our search is destined to
fail. The Gibbard-Satterthwaite Theorem of Section 2 implies that any voting rule
can be manipulated unless it is sensitive to the preferences of only one individual
or only two of the feasible alternatives are ever allowed to be selected. Suppose,
however, that one of the three orderings of Table 7.4 could not possibly represent
an individual’s preferences for the chosen application. Perhaps the remaining
preference orderings could never give rise to a voting cycle. The next section
considers the possibility that majority rule is invulnerable to manipulation when
some restriction is placed on individual preference.

1.3 Value-restricted preferences
Suppose that the feasible alternatives can be arranged in some intrinsic order
that has significance for individual preferences. For instance, the three alter-
natives are L (left), M (middle), and R (right), as illustrated in Figure 7.1. They

L M R

Figure 7.1

may represent three different levels
of expenditure on a public fireworks
display, with L requiring the smallest
amount of money and R the largest.
Similarly, the alternatives could be

three different regulatory policies for a particular industry, with L requiring the
greatest amount of government regulation and R the least. In some contexts we
know in advance that anyone who prefers L to the other two alternatives would
never prefer R to M. Similarly, anyone who prefers R to the other two could not
conceivably have a preference for L over M. That means that we can rule out
any preference scheme that has M as the least-preferred alternative. (If neither
L or R is the most-preferred alternative then M must be preferred to the other
two.) If we restrict the true and the reported preferences to the set of all logically
possible orderings except the ones that have M ranked last then we can be sure
of two things:

� There will be an alternative that would not be defeated by any other alterna-
tive under majority rule.

� If a majority winner were selected as the outcome then no individual can
manipulate.

When the alternatives can be naturally ordered on a line, and an alternative
is never ranked below one to its right and one to its left we say that individual
preferences are single peaked. However, we can prove statements 1 and 2 under a
much weaker restriction on individual preference. A set of preference orderings
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is value restricted if we cannot find three preference orderings in that set and
three alternatives that generate the preference pattern of Table 7.4.

DEFINITION: Value-restricted preferences
Given three alternatives x, y, and z, a set of preference orderings is x restricted
if alternative x does not rank above both y and z for any of the orderings in
the set, or x does not rank below both y and z, for any of the orderings in
the set, or x does not rank in between y and z any of the orderings in the
set. We say that the set of preference orderings is value restricted if for any
three alternatives, x, y, and z, the set is either x restricted, y restricted, or z
restricted.

The three preferences of Table 7.4 are not value restricted because each of the
three alternatives is first for one individual preference, last for one individual,
and ranked in between the other two for the remaining individual.

For the rest of this section we assume an odd number of voters. The results go
through with an even number of voters and some rule to select a winner in case
of a tie, but by restricting attention to an odd number of individuals we are able
to greatly simplify the argument. Up to this point we have implicitly assumed
away ties at an individual level. That is, an individual is never indifferent between
distinct alternatives. We maintain this assumption—for convenience. With an
odd number of individuals and the absence of individual indifference, then for
any two alternatives x and y, either a majority of individuals prefers x to y or a
majority prefers y to x.

Sen’s majority rule theorem

If the number of individuals is odd, the number of alternatives is finite,
individual indifference is ruled out, and individual preferences are value
restricted, then there is one and only one alternative that defeats every other
alternative by a clear majority. We call this alternative the unique majority
winner.

Proof
We begin by showing that there cannot be a majority cycle. Suppose to the
contrary that x defeats y by a majority, y defeats z by a majority, and z defeats
x by a majority. Let J be the set of individuals who prefer x to y, and let K be
the set of individuals who prefer y to z. Then J contains more than 50% of the
individuals, and so does K . Therefore, J and K must have at least one individual
in common. (If J is a majority, then the individuals not in J constitute a minority.)
Therefore, there is at least one individual who prefers x to y and y to z. Now, let
H be the set of individuals who prefer z to x. We know that H is a majority. The
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individuals in K prefer y to z, and the individuals in H prefer z to x. Because K
and H each contain a majority of individuals the two sets must have at least one
individual in common. Therefore, there is someone who prefers y to z and z to
x. Similarly, because H and J are each majorities there is at least one individual
who prefers z to x and x to y. But now we have the three preference orderings of
Table 7.4, contradicting value restriction.

The previous paragraph rules out majority cycles. Now we show that this
implies that there is a unique majority winner. That is certainly the case if there
are only two feasible alternatives. Suppose that there is a unique majority winner
whenever there are m or fewer feasible alternatives, but we are investigating a
set A containing exactly m + 1 feasible alternatives. Choose any member x of A.
Let B denote the set of all alternatives in A apart from x. Then B has m members,
so it has a unique majority winner y. Either y defeats x by a majority or x defeats
y by a majority. If y defeats x by a majority then y is clearly the unique majority
winner in A. If x defeats y by a majority, but x is not the unique majority winner
in A then there is an alternative z in B that defeats x by a majority. But y defeats
z by a majority because y is the unique majority winner from B. Now we have a
cycle: x defeats y, y defeats z, and z defeats x. But there are no cycles with value-
restricted preferences, so we are forced to drop the assumption that x is not the
unique majority winner in A when x defeats y by a majority. We are finished our
proof of Sen’s theorem.

Now that we know that there is always a unique majority winner when-
ever the individual preferences belong to the value-restricted family, we are
ready to show that no individual or group can profit by deviating from truth-
ful revelation, provided that the reported preferences must also belong to this
family. First we extend the definition of manipulability to groups of individu-
als. They can manipulate if they can jointly deviate from truthful revelation in
a way that leaves all members of the group better off according to their true
preferences.

DEFINITION: Manipulation by a group
We say that the individuals in group C can manipulate the voting rule if there
are two different assignments p and q of individual preferences such that,
for any individual i not belonging to C, p and q assign the same preference
ordering to i and, according to the individual preferences at p, everyone in C
prefers the outcome that emerges when they report the preference assigned
to them at q to the alternative that is selected when all members of C truthfully
report their actual preferences at p.

Group C could consist of a single individual, so the definition covers manip-
ulation by an individual. We think of the preferences assigned by p as the true
preferences of the respective individuals. The members of C can manipulate
if they can coordinate their strategies by reporting the preferences assigned to
them at some q, and each member of C prefers the resulting outcome to the one
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that emerges when each reports truthfully, and each individual not in C has the
same preference at q that the individual has at p. The individuals not in coalition
C cannot be expected to assist the coalition, hence the assumption that no one
outside of C reports a different preference at q than the one reported at p.

Suppose that some family F of value-restricted preferences is known to con-
tain the true preference ordering of each individual in the community, although
the actual preference of an individual is still hidden information. If the reported
preference of each individual must belong to F then majority rule cannot be
manipulated by any individual or group, as we now prove.

Nonmanipulability of majority rule for value-restricted preferences

Suppose that the number of individuals is odd, the number of alternatives
is finite, individual indifference is ruled out, and both the true and reported
individual preferences belong to some set F that is value restricted. Then
majority rule cannot be manipulated by any individual or coalition.

In other words, truthful revelation is a dominant strategy for groups as well as
individuals.

Proof
Suppose that under truthful revelation alternative x is the unique majority win-
ner but everyone in group C prefers y to x. If no one outside of C changes his or
her reported preference ordering then there is nothing the members of C can
do to precipitate the selection of y, because x defeats y by a clear majority even
when everyone in C truthfully declares a preference of y over x. Whatever pref-
erences are reported by the members of C, they must belong to F, so there will
be a unique majority winner by Sen’s theorem. But that winner cannot be y as
we have just demonstrated. We have finished the proof.

The assumption that the reported preferences must also belong to the family
F is essential. Otherwise a voting cycle could be precipitated, in which case the
definition of majority rule would have to be augmented to specify the alternative
selected when there is a cycle, and that opens the door to manipulation by an
individual. That fact is a consequence of the striking theorem introduced and
proved in the next section.

Source
The possibility of a majority voting cycle appears to have been noticed first in
Condorcet (1785). The rank order method of voting was advocated in Borda
(1781). Sen’s theorem is from Sen (1966).

Links
Neufeld, Hausman, and Rapoport (1994) present an example of a voting cycle
from the U.S. Senate. Brams (1976, pp. 43–7) discusses the strategic dimensions
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of the U.S. House voting cycle presented in this section. Campbell and Kelly
(2000, 2003) explore the normative and strategic properties of majority rule in
some depth. Arrow (1951a, 1963a) began the formal study of the criteria for
determining how an alternative should be selected as a function of individual
preferences, and his impossibility theorem is one of the most significant discov-
eries in the history of ideas. Campbell and Kelly (2002) prove that theorem and
its close relatives and review the literature since Arrow.

Problem set

1. Prove that in the case of two alternatives, if majority rule is used to select one
of the alternatives, supplemented by some tie-breaking rule, when necessary,
then whatever tie-breaking rule is employed, no individual (or coalition) can
every profit by misrepresenting preference.

2. Example 1.3 presented a majority rule cycle with three alternatives and three
individuals. Explain how one can construct a cycle with three alternatives
and any odd number of individuals (except one).

3. List all the logically possible linear orders of the three alternatives x, y, z. (A
linear order is one that can be represented as a column, with higher alter-
natives being preferred to lower ones; a linear order rules out the possibility
that two distinct alternatives are indifferent to each other.) Now, identify all
the families of single-peaked subsets of preferences.

4. Does the following family of preferences over the three alternatives x, y, z
have the single-peak property? Explain.

x z z y
z x y z
y y x x

(There are four preference orderings, each represented by a column, and a
higher alternative is preferred to a lower one.)

5. Suppose that an odd number of individuals have single-peaked preferences.
Explain why the most-preferred alternative of the median voter—the one
whose peak lies between the peaks of the other two voters—will defeat every
other proposal by a majority of votes.

6. Show that there are many families of preferences that are value restricted. In
particular, for the case of three feasible alternatives, identify all the families
of value-restricted preferences that are maximal in the sense that one can’t
introduce another preference ordering without precipitating a violation of
value restriction.

7. Consider the following voting scheme for selecting an outcome from a set of
three available alternatives, x, y, and z: All individuals report their preference
ordering to a referee. If according to the reported preferences one alternative
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defeats each of the two others by a majority then that alternative is the
chosen outcome. If there is no such majority winner then the outcome
is either x or y, whichever of those two alternatives defeats the other by
a majority. Is reporting one’s true preference ordering always a dominant
strategy in the case of this particular mechanism? If it is, explain briefly why
it is. If it is not, prove that truthful revelation is not a dominant strategy by
means of an example.

8. Consider majority rule with six people. Because there is an even number
of individuals there is a possibility of ties. We will say that α is a unique
majority winner if there is no feasible alternative that defeats α by a majority,
and for every other feasible alternative β there is at least one other feasible
alternative that defeats β by some majority. Use Tables 7.11 and 7.12 to show
that the rule that selects the unique majority winner can be manipulated
by a single individual.

Table 7.11

Person 1 Person 2 Person 3 Person 4 Person 5 Person 6

x x w y z z
y w y z x w
z y x w w y
w z z x y x

Table 7.12

Person 1 Person 2 Person 3 Person 4 Person 5 Person 6

x x y y z z
y w z z x w
z y w w w y
w z x x y x

9. For the voting rule of Example 1.7, for each configuration p of individual
preference orderings, determine the outcome that emerges at a Nash equi-
librium when each individual reports a preference ordering that is a best
response—in terms of the individual’s preference ordering at p—to the pref-
erences reported by the others.

10. Assume that the number of individuals is odd, that there are exactly three
alternatives, and that individuals are never indifferent between distinct
alternatives. Prove that if the subset of preference orderings F has the prop-
erty that for every assignment of preferences to individuals there is a unique
majority winner then F is value restricted.
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2 PREFERENCE REVELATION IN GENERAL

The previous section featured a number of voting rules. With unrestricted indi-
vidual preferences, almost every rule gave individuals an incentive to profit from
misrepresenting their preferences in some situations. Only two things worked:
restricting the number of alternatives on the ballot and restricting the set of
admissible individual preferences. If there are only two alternatives on the bal-
lot then conventional majority rule induces truthful revelation of individual
preference. But that approach will—except by accident—run afoul of efficiency
when there are actually three or more feasible alternatives.

What about arbitrarily restricting individual preferences? If we have a priori
information establishing that each person’s preference ranking belongs to a
particular family of single-peaked or value-restricted preferences, then we can
apply majority rule and know that there will be an alternative that will survive an
election when paired with any other alternative and that truthful revelation is a
dominant strategy for each person. Specifically, truthful revelation is a dominant
strategy if no one is allowed to report a preference scheme that is outside of the
restricted family.

This section investigates the possibilities for truthful revelation when there
are three or more alternatives and we are unable to rule out any ranking of the
alternatives as a possible preference scheme for any individual. We prove that
if each alternative is selected in at least one situation—perhaps when everyone
ranks that alternative at the top—then the only rules that induce truthful rev-
elation are dictatorial. Before stating this formally, we specify our social choice
framework.

At the very least, democracy means that decisions that have widespread
social consequences should be the result of a process in which individual assess-
ments of the alternatives have a bearing on the outcome—in a positive way. The
society that we wish to study can be anything from a small committee to an
entire nation. Once we have identified the society, the next step is to identify the
policy options at issue. These alternatives have a different character in different
applications. If a college class is selecting a president then the alternatives are the
names of the eligible candidates. If we are interested in a nation selecting a health
care policy, then the options are the various proposals under consideration. In
most situations, one of the options will be “no policy”—that is, the status quo.
We can even model the market system in this abstract way, with each alternative
being a particular configuration of production and consumption activities. The
framework will be flexible enough to embrace a panel of physicians deciding
which patient is to receive a kidney transplant when the next organ becomes
available, or NASA determining which experiments will be performed by a space
probe of Saturn, or the board of directors of a modern corporation deliberating
on a proposed merger. The analysis pertains to any group decision in which
the individuals care about the alternatives but where there is rarely unanimous
agreement about what should be done.

The group’s decision should be a function of the individual preferences of
the group members. Therefore, we need to model the individual assessments
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of the policy options, and we do this by representing the order in which each
individual ranks the alternatives, as we did in Section 1. In this chapter, the
social choice process does not use any information about the intensity of an
individual’s preference for one alternative over another. Consequently we only
require information about the order of individual preference—how one alter-
native ranks relative to another. Does x rank above or below y in individual i’s
preference scheme? In the next chapter we see that allowing additional prefer-
ence input—specifically, information about intensity of preference—opens the
door to a social choice procedure that induces truthful revelation even though it
is sensitive to everyone’s preferences. This procedure has significant drawbacks,
however.

We say nothing about why the individuals have the preferences that they
have. One person will be very selfish and rank the policy options according
to their impact on the basket of goods and services that person will consume.
Another may be altruistic, taking into account the impact on those less fortu-
nate. Some individuals will not rank alternatives according to what they want
but according to what they think society should have; in some people this nor-
mative judgment is selfishly based, and in others it is not. Whatever the basis
of the individual’s preference ordering of the alternatives, this is what moti-
vates the individual’s participation in the decision process, and these order-
ings are the basic input in our model. The output is the decision rendered; a
selection of one of the options as the decision taken by society. In other words,
the social choice rule selects a feasible alternative as a function of individual
preferences.

DEFINITION: The social choice framework
There are n individuals and a given set X of feasible alternatives. A pro-
file p assigns an ordering p(i) of the members of X to each individual i.
A social choice rule g selects a member g( p) of X for each profile p. We
require g(p) to be defined for every logically possible profile p for which
no individual is ever indifferent between two distinct alternatives and for
which every individual’s preference is transitive. This is the unrestricted pref-
erences assumption. (Transitivity means that if x is preferred to y and y is
preferred to z then it must be the case that x is preferred to z.) The rule g
is nonimposed if for each member x of X there is some profile p such that
g(p) = x.

A profile is interpreted as a record of the individual preferences in a partic-
ular situation. Sometimes the profile will represent the true preferences of the
respective individuals, and sometimes it will represent the preferences reported
by the individuals. No restriction is placed on the either the true or the reported
preferences. In other words, the social choice rule must render a decision for
each logically possible assignment of preference orderings to individuals. We
would expect a social choice rule to select x at any profile for which everyone
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ranked x at the top. Nonimposition merely requires that there be some profile at
which x is selected.

The social choice rule g is not necessarily a voting system—and we are cer-
tainly not restricting attention to rules that have actually been tried. In principle
g could represent the market system, with g(p) being the market equilibrium for
the configuration of preferences represented by p. However, the theorem that we
prove in this section applies only when the unrestricted preferences assumption
is appropriate—that is, when every logically possible ordering of the feasible set
is a conceivable individual ordering. This is certainly not the case for the allo-
cation of private goods. Let x denote the feasible allocation that delivers every
unit of every good to individual 1. Then the social choice rule does not have to
be defined for a profile that has x on the top of person 2’s preference ordering.
However, our proof in this chapter makes use of this ordering. Therefore, the
theorem is relevant only for situations in which the unrestricted preferences
assumption is appropriate. For instance, if the members of X represent different
mixes of public projects that are financed with a given amount of tax revenue,
then we cannot a priori rule out any ordering of X as a possible preference that
an individual might have.

2.1 The Gibbard-Satterthwaite Theorem
We seek a nonimposed social choice rule that induces individuals to report their
preferences truthfully. In other words, no individual can manipulate. A social
choice rule for which truthful preference revelation is a dominant strategy is
said to be strategy proof.

DEFINITION: Strategy proofness
Individual i can manipulate the social choice rule g if there are two profiles
p and q such that q(j) = p(j) for all j �= i and g(q) ranks higher in p(i) than g(p)
does. The social choice rule g is strategy proof if no individual can manipulate.

In interpreting the definition of manipulation we think of p(i) as the true
preference of individual i. By reporting q(i) instead of p(i) individual i precipitates
the selection of an alternative g(q) that i prefers to the alternative g(p) that is
selected when i reports truthfully. We require q( j ) = p( j ) for all j �= i because
we cannot assume that others will change their reported preferences to suit
individual i.

Here are two strategy-proof social choice rules: (i) Select two specific alterna-
tives and label them x∗ and y∗. The outcome is x∗ unless the reported individual
preference orderings have y∗ ranking above x∗ in a majority of cases, in which
case y∗ is the outcome. There may be many available alternatives other than
these two, but only x∗ and y∗ can ever be selected. Why is this scheme strategy
proof? Suppose that x∗ wins under truthful revelation, but individual j prefers



2. Preference Revelation in General 405

y∗ to x∗. Then j has voted for y∗ but x∗ won nonetheless. Misrepresentation by
j would result in another vote being cast for x∗, in which case x∗ will still win.
Similarly, if y∗ wins under truthful revelation, but j prefers x∗ there is nothing
that j can do to prevent the election of y∗. In most situations there are more than
two alternatives to consider but with this voting scheme the outcome must be
either x∗ or y∗ in every case. Suppose there is a third alternative z, and everyone
ranks z as most preferred. The outcome will not be efficient; everyone prefers
z to the winner, which must be either x∗ or y∗. This procedure is strategy proof
but very unsatisfactory on efficiency grounds.

Our second procedure is efficient: (ii) There are any number of alterna-
tives and the outcome is always the most-preferred alternative according to
the reported preference scheme of person 1. No one other than person 1 can
affect the outcome so no one other than person 1 has an incentive to manipulate.
And it is in person 1’s self-interest to ensure the selection of 1’s most-preferred
alternative so person 1 will always report truthfully. The procedure is strategy
proof. It is obviously dictatorial and therefore completely unsatisfactory.

DEFINITION: Dictatorship
The social choice rule g is dictatorial if there is some individual i such that, for
each profile p, g(p) is the top-ranked member of p(i). We say that individual
i is a dictator in that case.

In plain words, an individual is a dictator if the rule always selects the alter-
native that the individual most prefers. If there are at least three feasible alter-
natives, a nonimposed social choice rule cannot be strategy proof if it is not
dictatorial.

The Gibbard-Satterthwaite Theorem

Suppose that the feasible set has three or more members, preferences are
unrestricted, and the social choice rule g is nonimposed. Then g is dictatorial
if it is strategy proof.

Proof of this theorem for the case of two individuals and three alternatives
is quite easy, and we take care of that in the next section. You may wish to stop
there, in which case you will have a good grasp of the import of the theorem and
a good idea of how the general proof works.

2.2 Proof for two individuals and three alternatives
We assume in this section that the feasible alternatives are x, y, and z, and no
others, and that persons 1 and 2 are the only individuals whose preferences are
to be considered. We show that either person 1 or person 2 must be a dictator.
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That means that a strategy-proof rule must select an individual in advance, say
individual 1, and always select 1’s top-ranked alternative at every profile. The
crux of the proof consists in presenting a profile at which either person 1 or
person 2’s top alternative must be selected—because the third alternative is
bottom ranked by both. (It is easy to show that an alternative can’t be selected
by a strategy proof rule if it is bottom ranked by everyone.) Then we show that
the individual whose top-ranked alternative is selected must inevitably have
absolute power. But even if strategy proofness implies that one individual has
considerable power, why can that power ever be mitigated? Example 1.5 in the
previous section shows what can go wrong.

The proof begins with the unanimity lemma: If both persons 1 and 2 have
a common top-ranked alternative then that alternative must be selected if g is
strategy proof. Then we use that lemma to show that strategy proofness implies
that z will not be selected at a profile at which both persons rank z at the bot-
tom. We use the symbol � at the end of an argument to show that the proof is
complete.

Step 1: The unanimity lemma
If both 1 and 2 have x ranked at the top at p then g(p) = x if g is strategy proof
and x is selected at some profile.

Proof
Let q be a profile at which x is selected, and let p be a profile at which both
persons 1 and 2 have x ranked at the top. Strategy proofness implies that g must
select x when person 1’s true preference ordering is p(1) and person 2 reports the
ordering q(2). That is, g(p(1), q(2)) = x. If we did not have g(p(1), q(2)) = x then
person 1 would have an opportunity to manipulate by reporting q(1) because
we know that g(q(1), q(2)) = x and x is ranked at the top of p(1). Therefore,
strategy proofness implies g(p(1), q(2)) = x. That fact itself implies that strategy
proofness requires that g select x when person 2’s true preference ordering is
p(2) and person 1 reports p(1). That is, g(p(1), p(2)) = x. If we did not have g(p(1),
p(2)) = x then person 2 would have an opportunity to manipulate by reporting
q(2) because we know that g(p(1), q(2)) = x. Therefore, strategy proofness implies
g(p) = g(p(1), p(2)) = x. �

Now we show that if both persons 1 and 2 have a common bottom-ranked
alternative then that alternative must not be selected if g is strategy proof.

Step 2
If both persons 1 and 2 have z ranked at the bottom then g(p) �= z if g is strategy
proof and nonimposed.

Proof
If the two individuals have the same top-ranked alternative, then that alternative
will be selected (by the unanimity lemma), and hence the common bottom-
ranked alternative will not be selected.
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What if the top-ranked alternatives are different? Consider profile p of
Table 7.13: If g( p) = z then person 2 would have an opportunity to manipu-

Table 7.13. Profile p

p(1) p(2)

x y
y x
z z

late by reporting an ordering with x at the top: The una-
nimity lemma (step 1) implies that x would then be selected,
and person 2 prefers x to z according to 2’s true prefer-
ence ordering p(2). Therefore, strategy proofness implies that
g( p) �= z. �

We have just discovered that g( p) = x or y at the profile p of
Table 7.13. We show that if g( p) = x then person 1 is a dictator
for g, and if g( p) = y then person 2 is a dictator for g. We suppose
until further notice that g( p) = x.

Step 3
If g( p) = x for the profile p of Table 7.13 then g(q) = x for the profile q of
Table 7.14.

Proof
If g(q) = z then person 1 would have an opportunity to manipulate when the
profile of true preferences is q, because, by the unanimity lemma, person 1

Table 7.14. Profile q

q(1) q(2)

x y
y z
z x

could then precipitate the selection of y by reporting an order-
ing with y at the top. Therefore, strategy proofness implies that
g(q) �= z.

If g(q) = y then person 2 would have an opportunity to
manipulate when the profile of true preferences is p of Table 7.13
because g( p) = x by assumption, at q person 1’s ordering is the
same as it is at p, and person 2 prefers y to x at p according to 2’s
true preference p(2). Therefore, strategy proofness implies that
g(q) �= y.

We have ruled out g(q) = z and also g(q) = y. Therefore, we must
have g(q) = x. �

Step 4
If g( p) = x for the profile p of Table 7.13, then g(r) = x for any profile r that has
x ranked at the top for person 1.

Proof
Note that x is ranked at the bottom by person 2 at the profile q of Table 7.14.
Therefore, strategy proofness implies that x will be selected at any profile for
which 1’s reported ordering is q(1)—that is, whenever person 1 has x at the
top and z at the bottom. If in that situation there is an ordering that person 2
could report to secure the selection of an alternative other than x then 2 could
manipulate at q, where person 2 prefers anything to x. Therefore, g(s) = x for
any profile s that has s(1) = q(1).
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Now, if g(r) �= x and x is ranked at the top for person 1 then person 1 can
manipulate at r by the argument of the previous paragraph, because person 1

Table 7.15. Profile t

t(1) t(2)

y z
x y
z x

can precipitate the selection of 1’s most-preferred alternative
by reporting the ordering q(1). (To make this claim we sup-
pose that r(1) is the true preference of person 1.) Therefore, we
must have g(r) = x, at any profile r for which x is top-ranked by
person 1. �

We haven’t established that person 1 is the dictator. So far,
we only know that alternative x will be selected at any profile
at which x is top ranked by person 1. Might we have x selected
in some situation in which it is bottom ranked for person 1?

That would disqualify person 1 as a dictator. We now proceed to show that this
can’t happen.

Step 5
If g( p) = x for the profile p of Table 7.13, then g(t) = y for profile t of Table 7.15.

Proof
If g(t) = x then person 2 would have an opportunity to manipulate when the
profile of true preferences is t, because, by the unanimity lemma (step 1), person
2 can precipitate the selection of y by reporting an ordering with y at the top.
Therefore, strategy proofness implies that g(t) �= x.

If g(t) = z then person 1 would have an opportunity to manipulate when
the profile of true preferences is t by reporting an ordering with x on top. That
would precipitate the selection of x (by step 4) and at t person 1 prefers x to z.
Therefore, strategy proofness implies that g(t) �= z.

We have ruled out g(t) = x and also g(t) = z. Therefore, we must have
g(t) = y. �

Step 6
If g( p) = x for the profile p of Table 7.13, then g(u) = y for profile u of Table 7.16.

Proof
If g(u) �= y then person 1 would manipulate when the profile of true preferences
is u by reporting t(1) of step 5. (Note that u(2) and t(2) are identical.) Therefore,
strategy proofness implies that g(u) = y. �

Now we complete the proof of the Gibbard-Satterthwaite Theorem by apply-
ing steps 2, 3, and 4 to the profile u (of step 6) to show that y is selected at any

Table 7.16. Profile u

u(1) u(2)

y z
z y
x x

profile for which person 1 has y ranked at the top. (This time, y
plays the role of x, and x plays the role of z. Note that x is bot-
tom ranked for both persons at u.) Having established that, we
use the arguments of steps 5 and 6 to show that z is selected at
the profile with y at the bottom for both persons, z at the top
for person 1, and x at the top for person 2. Having established
that, we can apply steps 2–4 again to show that z is selected at
any profile at which person 1 has z ranked at the top. Because
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x, y , and z are the only three alternatives, we then have proved that individual 1
is a dictator.

All of this has been predicated on the assumption that x is selected at profile
p of Table 7.13. We know that it has to be either x or y. What if it’s y? Then we
apply the same arguments to person 2, to show first that y will be selected at
any profile for which it is top ranked by person 2, then we go on to show that x
is selected at any profile for which it is top ranked by person 2, and then finally
we show that z is selected at any profile for which it is top ranked by person 2.
At that point we will have proved that either person 1 is a dictator or person 2
is a dictator. That is, every strategy-proof and nonimposed rule is dictatorial if
there are three alternatives and two individuals. �

Remark 1. Nonimposition played a role in the proof right at the beginning
when we assumed that x is selected at some profile. Similarly, the proof depends
on the assumption that y is selected at some profile, and so is z. (The rule that
selects x at every profile is obviously strategy proof, and so is the rule that never
selects z but selects x when both individuals prefer x to y and otherwise selects y.)

Remark 2. With only two individuals, there will be profiles at which x is first
and y is second for one person and the other has y first and x second, as in the
case of profile p of Table 7.13. One of the two individuals must be favored in
that instance, and once that happens strategy proofness forces the rule to give
that individual absolute power. However, the Gibbard-Satterthwaite Theorem is
not special to the case n = 2. If n > 2 there will be favoritism of some individual
at some profile, but it will be more subtle. Nevertheless, strategy proofness will
still force the rule to give the favored individual absolute power. For instance,
begin with profile α that has x at the top for everyone and y second. Then x
will be selected. Now, move y to the top and x down to second place for one
individual at a time. When we are finished we will be at profile β that has y first
and x second for everyone, and hence y will be selected at β. We started with
x being selected and finished with y. At some intermediate stage we must have
switched the ordering of x and y for one individual and caused the selection to
change from x to y. That individual is given special treatment at that point, and
strategy proofness will imply that that person is a dictator.

Sources
This remarkable theorem was discovered independently in the 1970s by the
philosopher Alan Gibbard and the economist Mark Satterthwaite (Gibbard,
1973; Satterthwaite, 1975). This section presented a different proof from either
of theirs. (Quite a number of different proofs of the Gibbard-Satterthwaite
Theorem are now available in the literature.)

Links
There is a vast literature on the preference revelation problem. Significant sur-
veys include Chapter 10 of Kelly (1988), Chapter 1 of Saari (1994), Barberà (2001,
2004), Jackson (2001), and Maskin and Sjöström (2002).



410 Voting and Preference Revelation

Problem set

1. Consider the following social choice rule defined for two individuals, 1 and
2, and three alternatives x, y, z: The individuals report a preference order-
ing of the three alternatives, and if one alternative is ranked at the top of
both reported preference orderings then that alternative is the selected out-
come; otherwise person 1’s top-ranked alternative is the outcome. (Assume
that two distinct alternatives are never indifferent in anyone’s preference
ordering.) Prove that truthful revelation is a dominant strategy for this
social choice rule. Does this contradict the Gibbard-Satterthwaite theorem?
Explain.

2. For the purposes of this question we expand the set of possible individual
preferences to include cases where an individual is indifferent between two
or more alternatives. Consider the following social choice rule defined for
two individuals, 1 and 2, and three alternatives x, y, z: The individuals report
a preference ordering of the three alternatives, and if there is a unique alter-
native that is ranked at the top of both reported preference orderings then
that alternative is selected, and otherwise person 1’s top-ranked alternative
is the outcome if there is a single alternative that is top ranked by person 1.
If there are two or more alternatives that are tied for top rank in person 1’s
reported preference scheme then the outcome is person 2’s most preferred
alternative (according to 2’s reported preference scheme) in the set of top-
ranked alternatives in the preference ordering reported by person 1. If there
are two or more alternatives that are top ranked in person 1’s reported prefer-
ence scheme and within that set there is not a unique outcome that is highest
ranked in person 2’s reported scheme then the outcome is x. Is truthful rev-
elation a dominant strategy for this social choice rule? Is person 1 a dictator
in this case? Explain.

3. There are three individuals and three alternatives, x, y, and z. Social choice
rule g1 selects the majority winner unless there is a voting cycle, in which
case the top-ranked alternative of person 1 is selected. Social choice rule g2

selects the majority winner unless there is a voting cycle, in which case x is
selected if a majority prefers x to y and y is selected if a majority prefers y to x.
Social choice rule g3 selects the majority winner unless there is a voting cycle,
in which case x is selected. For each of these three social choice rules, work
out the Nash equilibrium that results when there is a cycle and each person
reports a preference ordering strategically. At equilibrium it will be the case
that, given the preferences reported by others, no individual is able to modify
his or her reported preference scheme in a way that elicits an outcome that
person likes better according to his or her true preference scheme.

4. There are three feasible alternatives and three individuals. The rule is based
on the total number of votes received by each alternative when the Borda
rule (Example 1.10) is used to rank the alternatives. The alternative with
the largest total score is selected. If the three alternatives have the same
score then x is selected. If there are exactly two alternatives with the highest
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score, then whichever of those two alternatives comes before the other in
the alphabet is selected. Show that this rule can be manipulated.

5. There are three feasible alternatives, x, y, and z, and three individuals. The
rule is based on the total number of votes received by each alternative when
the Borda rule (Example 1.10) is used to rank the alternatives. The alternative
with the largest total score is selected. If there are two or more alternatives
with the highest score then whichever of those alternatives ranks highest in
the reported preference ordering of person 1 is selected. Show that this rule
can be manipulated.

Each of the next four questions pertains to a different social choice rule g
with unknown properties except that truthful revelation is a dominant strat-
egy. You can’t assume that the rule is dictatorial, or is majority rule, or any
other rule. You only know that the rule can’t be manipulated and whatever
additional properties I give you in stating the question. The profiles in ques-
tion are displayed in Table 7.17.

Table 7.17

P(1) P(2) Q(1) Q(2) R(1) R(2) S(1) S(2) T(1) T(2)

x y x y y x x x y z
y x y z x z y z x y
z z z x z y z y z x

6. Alternative x is selected at profile P, and whenever there is a common top
alternative that common top is selected. Determine the alternative that is
selected at profile Q and explain why it must be selected.

7. Alternative x is selected at profile R. Determine the alternative that is selected
at profile S and explain why it must be selected.

8. Alternative x is selected at any profile at which person 1 has x at the top, and
whenever there is a common top alternative that common top is selected.
Determine the alternative that is selected at profile T and explain why it must
be selected.

9. Alternative y is selected at profile R. Determine the alternative that is selected
at profile T and explain why it must be selected.

3 GENERAL PROOF OF THE GIBBARD-SATTERTHWAITE THEOREM

The most accessible evidence for the fact that people do attempt to manipulate
is the observation that in a three-candidate election we often choose not to vote
for our most-preferred candidate when that candidate has little chance of being
elected. In that situation we often vote for our second choice, in an attempt
to prevent the candidate who is our last choice from being elected. But what’s
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wrong with that? It probably makes the election more responsive to individual
preferences. OK. Then let’s take that kind of behavior as given and build it into
the definition of the rule g. In other words, let g(p) be the outcome as a result
of an equilibrium configuration of strategies by the n individuals. The Gibbard-
Satterthwaite Theorem tells us that even that rule is manipulable.

Section 2 proved the Gibbard-Satterthwaite Theorem for the case of two
individuals and three alternatives. In this section we complete the proof by
using that fact to show that the result holds for any number of individuals and any
number of alternatives greater than two. First we hold the number of individuals
at two and allow the number of alternatives to increase.

3.1 Proof for two individuals and three or more alternatives
First, note that the proof of the unanimity lemma in the previous section is valid
for any number of alternatives. Now, assume that there are more than three
feasible alternatives (but only two individuals).

Step 1
Choose any three of the alternatives, and let Y denote the set containing just
those three. Consider the family of profiles obtained by fixing the individual
ordering of the remaining alternatives with the members of Y ranked above
them all. (It doesn’t matter how we order the remaining alternatives, as long as
we stick to it and as long as they are all below Y.) As we change the individual
orderings of Y, with the others ranking below in a fixed way, we trace out the set of
all profiles on Y. In that way we can generate a social choice rule gY based on the
given strategy-proof rule g: At any profile π on Y we define gY by having gY select
the alternative that would be selected by g at the profile where the individual
orderings of Y are as specified by π and the other alternatives are ordered below
the members of Y in the fixed, predetermined way.

It is obvious that gY is strategy proof because g is. We can use the unanimity
lemma to prove that gY always selects a member of Y. Suppose that it did not, and
it selected some alternative b not belonging to Y. Then person 1 could manipulate
g at the profile in question by reporting an ordering with the same top alternative
as person 2. That alternative would be selected by g by the unanimity lemma, and
it would be preferred by person 1 to b because b ranks below every member of Y
(in the orderings of both persons 1 and 2). Therefore, strategy proofness implies
that gY always selects a member of Y. And every member of Y is selected by gY

at some profile because g will always select an alternative that is top ranked by
both individuals (by the unanimity lemma). Therefore, gY is a dictatorial rule, by
the previous section. �

Let i(Y) be the name of the dictator for gY. That is, set i(Y) = 1 if person 1 is
the dictator for gY and set i(Y) = 2 if person 2 is the dictator for gY .

Step 2
If x belongs to Y, then at any profile for which individual i(Y ) has x on top, the
original rule g will select x at that profile.
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Proof
We know that gY will select x if individual i(Y) has x above the other two members
of Y and the other person has x ranking below the other two members of Y.
Therefore, g itself will select x if i(Y ) has x ranking above the other two members
of Y and the other person has x ranking below the other two members of Y, and
the remaining alternatives are ordered in the agreed-upon way below Y. Let p
denote such a profile. Now, create a new profile from p simply by moving x down
to the bottom of the ordering of individual j, the one who is not the dictator for
gY. Call this new profile q.

Let Y consist of the three alternatives x, y , and z. Note that q will have either
y or z at the top of j’s ordering because, before we moved x to the bottom, we
had each member of Y ranking above every other alternative. It follows that g(q)
must be a member of Y. Suppose to the contrary that g(q) = b and b does not
belong to Y. Then individual i(Y) prefers both y and z to b. By the unanimity
lemma, individual i(Y) can precipitate the selection of y or z , whichever is at the
top of j’s ordering, simply by reporting an ordering with the same top alternative
as j. This contradicts strategy proofness, so g(q) must belong to Y. But individual
j prefers both y and z to x at p. Therefore, if g(q) is not equal to x then individual j
will have an opportunity to manipulate at p because q(i(Y)) = p(i(Y)). It follows
that g(q) = x.

Now, let r be any profile at which individual i(Y)’s ordering is the same as it is
at q (and p). If g(r) is not equal to x then individual j will prefer g(r) to g(q) = x at
profile q, contrary to the strategy proofness of g. (Alternative x is at the bottom
of j’s ordering at q, and person j is the only one whose preferences change in
going from q to r.) Therefore, g(r) = x. In words, the rule g selects x at any profile
at which person i(Y)’s ordering is the same as it is at p (and q). Because x is at
the top of i(Y)’s ordering at p, strategy proofness implies that g selects x at any
profile at which i(Y) has x at the top. (If, say, profile s has x at the top of i(Y )’s
ordering but g(s) is not x, then person i(Y ) could manipulate at s by reporting the
ordering person i(Y) has at profile p, because that would precipitate the selection
of x.) �

Let’s summarize what we have learned so far. For every three-element subset
Y of feasible alternatives there is an individual i(Y) such that whenever that
person has a member of Y at the top then that top-ranked alternative will be
selected. It is obvious that if i(Y) is the same individual for every three-element
subset Y then that individual is a dictator for g itself. We conclude this subsection
by proving that i(Y) is the same individual for every three-element subset Y.

Step 3
The rule g is dictatorial.

Proof
Let Y1, Y2, . . . , Y� be any list of three-element subsets of the basic set of feasible
alternatives such that every adjacent pair has two alternatives in common (for
instance Y1 = {a, b, c} and Y2 = {b, c, d}) and every feasible alternative belongs
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to at least one of the sets Yk. Suppose that x and y belong to both Y1 and Y2. If
individual i(Y1) is different from i(Y2), let p be any profile for which individual
i(Y1) has x at the top and i(Y2) has y at the top. By step 2 applied to i(Y1) we have
g( p) = x, but by step 2 applied to i(Y2) we get g( p) = y. The contradiction forces
us to conclude that i(Y1) = i(Y2). For the same reason, i(Y2) = i(Y3), and so on.
We have i(Y1) = i(Y2) = · · · = i(Y�). Let h denote this individual. Let q be any
profile, and let a be the alternative at the top of q(h), the ordering of individual
h at q. Alternative a belongs to some set Yk, and i(Yk) = h, so by step 2 g(q) = a,
the alternative at the top of h’s ordering at q. �

We now have a proof of the Gibbard-Satterthwaite Theorem for two individ-
uals and any number of alternatives greater than two.

3.2 Proof for two or more individuals and three or more alternatives
This section extends the proof to the three-person case by showing how to add
one more person. We do this by showing that if the theorem is true for n people
then it must be true for n + 1 individuals. This means that having gone from
two to three, we can then go from three to four, and hence from four to five,
and so on. By showing how to add one more individual we will have proved
the Gibbard-Satterthwaite Theorem for any number of individuals because we
already have a proof for the two-person case.

We begin by assuming that we can prove the theorem for arbitrary number
n ≥ 2 of persons. Then we investigate a strategy-proof social choice rule g for
n + 1 persons. If every member of X is selected by g at some profile, we wind up
demonstrating that g is dictatorial. The key is to use g to define a social choice
rule f for n persons. We can then be assured that f is dictatorial. Finally, we
show that the dictator for f must be a dictator for g. In that way we will have
demonstrated that any strategy-proof social choice rule for a society of n + 1
persons is dictatorial if it is not imposed. (Of course, we assume that X has three
or more alternatives.)

Step 1
Given the strategy-proof rule g, which is defined for a group of n + 1 individ-
uals, we define the rule f for an n-person society: If p = p(1), p(2), . . . , p(n)
is an arbitrary profile for n persons we define f by setting f ( p) =
g( p(1), p(2), . . . , p(n), p(n)). In words, we simply copy person n’s preference
ordering and let person n + 1 have that ordering also. Then we let the alterna-
tive selected by f at p be whatever alternative is selected by g when person n + 1
reports the same ordering as n.

Step 2
The rule f is nonimposed.

Proof
For any x in X, if all n + 1 persons have the same ordering with x on top then
g selects x. That is a consequence of the unanimity lemma and the strategy
proofness of g. Therefore, there is an n-person profile at which f selects x. Hence,
f is nonimposed. �
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Step 3
The rule f is strategy proof.

Proof
If individual i < n can manipulate f at some profile p(1), p(2), . . . , p(n) then
that individual can obviously manipulate g at profile p(1), p(2), . . . , p(n), p(n)
because

f ( p(1), p(2), . . . , p(n)) = g( p(1), p(2), . . . , p(n), p(n)).

Suppose for instance that i = 1 and person 1’s true preference ordering is p(1),
but when person 1 announces the ordering q(1) the rule f selects alternative
z, which ranks higher in p(1) than the alternative y that is selected by f when
person 1 reports the ordering p(1). By definition of f, we have

z = f (q(1), p(2), . . . , p(n)) = g(q(1), p(2), . . . , p(n), p(n))

and

y = f ( p(1), p(2), . . . , p(n)) = g( p(1), p(2), . . . , p(n), p(n)).

But this means that the rule g selects z when person 1 announces q(1) and g
selects y when person 1 announces p(1), although z ranks higher in p(1) than
y. Consequently, person 1 can manipulate g, contradicting the fact that g is
strategy proof. We have to drop the supposition that individual 1 can manipulate
f. Similarly, we can show that no individual i < n can manipulate f.

Now, consider person n. We want to show that person n cannot manip-
ulate f. This means that we have to show that when persons n and n + 1
both announce the same ordering q(n) the alternative selected by g does
not rank higher in p(n) than the alternative selected by g when n and n + 1
both submit the ordering p(n). In symbols, we have to show that for any
n-person profile p(1), p(2), . . . , p(n − 1), p(n) and any ordering q(n) we can-
not have the alternative f ( p(1), p(2), . . . , p(n − 1), q(n)) strictly preferred to
f ( p(1), p(2), . . . , p(n − 1), p(n)) according to p(n). This simply means that the
outcome that is selected by f when n reports q(n) does not rank higher in her
true preference p(n) than the outcome that is selected by f when she truthfully
reports p(n).

Let x denote the outcome g( p(1), p(2), . . . , p(n − 1), p(n), p(n)), with
y = g( p(1), p(2), . . . , p(n − 1), q(n), p(n)), and z = g( p(1), p(2), . . . , p(n − 1),
q(n), q(n)). Because g is strategy proof, if x �= y then x is preferred to y according
to p(n). Similarly, if y �= z then y is preferred to z according to p(n + 1), which
is identical to p(n). It follows (by transitivity of p(n)) that either x = z or x is
preferred to z. Because

x = g( p(1), p(2), . . . , p(n − 1), p(n), p(n)) = f ( p(1), p(2), . . . , p(n − 1), p(n))

and

z = g( p(1), p(2), . . . , p(n − 1), q(n), q(n)) = f ( p(1), p(2), . . . , p(n − 1), q(n))
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we have shown that person n cannot manipulate f when p(1), p(2), . . . ,
p(n − 1), p(n) is the profile of true preferences. Because p was chosen arbi-
trarily, we have proved that individual n cannot manipulate f. We have already
demonstrated that no i < n can manipulate f. Therefore, f is strategy proof. �

Step 4
The rule g is dictatorial.

Proof
It follows from steps 2 and 3 that f is dictatorial because we are assuming that the
Gibbard-Satterthwaite Theorem has been proved for n persons. (For instance,
we could have n = 2.) We prove that the dictator for f is a dictator for g: Suppose
that individual j < n is the dictator for f. Let x be an arbitrary member of X. Let
p be a profile for which person j ranks x at the top and everyone else ranks x
at the bottom. Then f ( p) = x because person j is a dictator for f. But f ( p) =
g( p(1), p(2), . . . , p(n), p(n)). Choose any individual i ≤ n + 1 different from j.
Let profile q be the same as p(1), p(2), . . . , p(n), p(n) except that we replace p(i)
with any other ordering q(i) on X. No matter what that ordering is, the rule g
must select x at the new profile because x is ranked at the bottom of p(i) and any
change in the outcome when person i changes i’s reported ordering would give
person i a chance to manipulate at the original profile p. Now, beginning with this
new profile we can replace any other individual’s ordering, other than that of the
dictator j, with any other ordering on X. The rule g must still select x, otherwise the
individual whose preference has been changed could manipulate g. Proceeding
one individual at a time, we can replace the ordering of any individual (other
than j) with any other ordering. Alternative x will still be selected. This proves
that x will be selected at any profile for which individual j has x ranked at the
top. Because x was selected arbitrarily, we have proved that person j is a dictator
for g.

Finally, suppose that individual n is the dictator for f. We show that either
person n or person n + 1 is a dictator for g. Let π(1), π(2), . . . , π(n − 1) be some
specific assignment (that we hold fixed until further notice) of preferences to
individuals 1 through n − 1. We show that either g selects the top-ranked alter-
native of person n for any specification of p(n) and p(n + 1), or else g selects the
top-ranked alternative of person n + 1 for any specification of p(n) and p(n + 1).
We do this by defining a new rule h for a two-person society:

h(α, β) = g(π(1), π(2), . . . , π(n − 1), α, β)

for any specification α and β of the preferences of individuals n and n + 1.
Because person n is a dictator for f, for arbitrary alternative x in X we must
have h(α, β) = x when β = α and x is ranked at the top of α. Therefore, the
rule h is not imposed. Obviously, h is strategy proof because g is. Therefore, h
is dictatorial. Suppose that h(α, β) is the alternative ranked at the top of α for
every choice of α and β. Then g selects the alternative ranked at the top of the
ordering reported by person n whenever p(i) = π(i) for all i < n. Let y denote the
alternative ranked at the top of π(1) and let z be any other alternative. Choose
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p(n) and p(n + 1) so that z is at the top of p(n) and y is at the top of p(n + 1).
Then z = h( p(n), p(n + 1)) = g(π(1), π(2), . . . , π(n − 1), p(n), p(n + 1)).

Let q(1) be any ordering of X. Define the two-person rule k by letting k(α, β)
be the alternative selected by g at profile q(1), π(2), . . . , π(n − 1), α, β. We can-
not have g(q(1), π(2), . . . , π(n − 1), p(n), p(n + 1)) = y or else person 1 could
manipulate g at profile (π(1), π(2), . . . , π(n − 1), p(n), p(n + 1)). Then the argu-
ment of the previous paragraph can be used to show that k(α, β) is the alternative
ranked at the top of α for any choice ofα and β. The rule kmust be dictatorial, and
the dictator cannot be the individual whose preference is listed second because
k( p(n), p(n + 1)) is not y.

This time we choose p(n) and p(n + 1) so that π(2) and p(n + 1) have the
same alternative ranked at the top, and p(n) has a different alternative at the
top. For any choice of q(2), at profile q(1), q(2), π(3), . . . , π(n − 1), p(n), p(n + 1)
the rule g cannot select the alternative ranked at the top of p(n + 1) or else
person 2 could manipulate g at profile q(1), π(2), . . . , π(n − 1), p(n), p(n + 1).
We continue in this fashion, at each step selecting the next individual i in line
and replacing π(i) with an arbitrary ordering q(i) on X. Having done so, we fix the
preferences of all other individuals up to n − 1 and let the preferences of persons
n and n + 1 vary. This defines a two-person rule, which must be strategy proof
because g is, and it must be nonimposed, because g selects the top alternative
of p(n) when p(n + 1) = p(n). (That’s just another way of saying that individual
n is a dictator for f.) This new two-person rule must be dictatorial, and person n
must be the dictator. When we have finished replacing the preference ordering
of every i < n, one person at a time, we will have established that g always selects
person n’s top alternative, and hence person n is a dictator for g.

Similarly, if h(α, β) always selects the alternative ranked at the top of β then
person n + 1 will turn out to be a dictator for g. �

We have proved the Gibbard-Satterthwaite Theorem for any number n of
individuals and any number of alternatives exceeding two. For the sake of logical
completeness we conclude with the case n = 1: If g is nonimposed then every
alternative x is selected at some ordering of the sole individual. Then if x is
on top of the individual’s true preference ordering, strategy proofness implies
that x must be selected under truthful disclosure, because the individual could
otherwise report an ordering at which x is selected.

Source
The extension from two individuals to any larger number is based on Sen (2001).

Problem set
Each of the questions defines a social choice rule. In each case determine
whether truthful revelation is a dominant strategy. If it is not, demonstrate that
fact with a simple example. If truthful revelation is a dominant strategy then
prove your claim by means of a simple, informal—but convincing—argument.

1. There are two feasible alternatives, x and y, and there are ten individuals.
The rule selects the majority winner if there is one, and if there is a tie the
rule selects the alternative that is preferred by person 1.
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2. There are two feasible alternatives, x and y, and there are n individuals. The
rule selects y if all persons declare that they prefer x to y; otherwise the rule
selects x.

3. There are two feasible alternatives, x and y, and there are n individuals. The
rule selects y if all persons declare that they prefer y to x; otherwise the rule
selects x.

4. There are two feasible alternatives, x and y, and there are six individuals.
The rule selects the alternative that gets the most votes, but individuals 1,
2, and 3 are each allowed to cast three votes for their preferred alternatives,
and individuals 4, 5, and 6 may each cast only two votes for their preferred
alternatives.

4 THE REVELATION PRINCIPLE

A social choice rule must elicit information about individual preferences so that
the outcome of the process will reflect these preferences in the appropriate way.
If individuals have an incentive to misrepresent their preference the purpose of
the rule is defeated. Is there any social choice procedure that is not vulnerable
to this kind of manipulation? To increase the chance of an affirmative answer
let us broaden the definition of a social choice rule to include mechanisms.

There are three or more alternatives. A mechanism requires individual i to
announce some message mi . This message could be a complete description of i’s
preference scheme; it could be the name of some alternative; it could be both; it
could be a list of numbers. Nothing is ruled out, but each particular mechanism
will be based on a particular kind of message. In addition, the mechanism spec-
ifies which message is to be reported by i for each possible preference scheme.
(For instance, the market system asks you to choose an affordable consump-
tion plan at which your marginal rate of substitution is equal to the price ratio.)
Let σi(R) denote the message that i is required to send when i’s true preference
ordering is R. Finally, the mechanism specifies the outcome, or winner, for each
possible configuration of messages transmitted by the voters. Let μ be the out-
come function. The function μ specifies an outcome μ(m) in X for each profile
m = (m1, m2, . . . , mn) of individual messages.

DEFINITION: Social choice mechanism
A mechanism specifies the type of message, and the set of available messages,
for each individual i, the behavioral rule σ i for each i, and the outcome
function μ to identify the winner. The social choice rules of Sections 1–3,
which require individuals to report their preference orderings, are direct
revelation mechanisms.

The referee observes i’s message mi, but cannot tell whether mi equals σ i (R)
when R is i’s true preference scheme. That is because R cannot be observed. If it
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were verifiable by an outside observer there would be no need for a mechanism
in the first place. The only way to ensure that individual i sets mi = σi(R) is to
design the mechanism so that i always has an incentive to do so. We want this
to be a dominant strategy. That is, for every possible preference scheme R that i
might have and whatever messages the others report, there is no message mi that
i could send that would result in an outcome that ranks higher in the ordering
R than the outcome that results when i reports σi(R), given the messages of
the others. A mechanism with this property (for each individual i) is said to be
strategy proof.

DEFINITION: Strategy-proof mechanism
The mechanism is strategy proof if for each individual i, and each admissible
preference scheme for that individual, submitting the message specified by
σ i is a dominant strategy.

Suppose that we have a strategy-proof mechanism μ. Then we can define
a strategy-proof social choice rule g (i.e., direct revelation mechanism) by set-
ting g(ψ) = μ(m) where mi = σi(ψ(i)) for each i. Suppose that μ is nondicta-
torial. This means that for any individual i there is an assignment ψ of pref-
erences to individuals such that μ(σ1(ψ(1)), σ2(ψ(2)), . . . , σn(ψ(n))) is not the
alternative ranked at the top of ψ(i). But then for any individual i there is an
assignment ψ of preferences such that g(ψ) is not the alternative ranked at
the top of ψ(i ). In other words, g is not dictatorial. Suppose that μ is nonim-
posed in the sense that for each feasible alternative x in X there is some ψ

such that μ(σ1(ψ(1)), σ2(ψ(2)), . . . , σn(ψ(n))) = x. Then g is nonimposed, con-
tradicting the Gibbard-Satterwthwaite Theorem. Therefore, every strategy-proof
mechanism is either imposed or dictatorial. This observation is known as the
revelation principle.

The revelation principle

The Gibbard-Satterwthwaite Theorem extends from direct revelation mech-
anisms to mechanisms in general.
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This chapter continues the exploration of hidden characteristic problems, with
attention confined to the problem of preference revelation in the presence
of a good that can be consumed jointly and simultaneously by the whole
community—a fireworks display, for instance.

Agent A’s action generates a positive spillover if some other agent B benefits
as a result of that action. For example, if A removes weeds from A’s own property,
then neighbor B’s grass will have fewer weeds because one source of seed has
been eliminated. In this case, most of the benefit of A’s effort is reaped by A,
so we say that the spillover is incomplete. However, if C produces a fireworks
display then everyone else in town will have just as good a view of it as C . The
spillover is complete in that case. When the agent creating the spillover benefit
is not compensated for the positive effect on the welfare of others, we refer to
it as an externality. Important examples include the containment of a virulent
disease by a health organization, the retardation of global warming or ozone
depletion by international treaty, and publication of information concerning
public safety.

Our aim is to provide the individual decision maker with incentive to consider
the benefit that others derive from his or her actions. The decision maker can
be a single individual or household, or a region within a country, or even a
country itself. When one country takes costly measures to reduce its output of
carbon dioxide any resulting retardation of global warming is a benefit that is
captured by every country. When a province or a state within a single country
imposes restrictions on the firms within its borders to reduce the amount of
sulphur dioxide dumped into the air, the benefits are enjoyed throughout the
country—to a degree. Pollution in the air above one region can flow to other
areas.

When the spillover is complete, as in the fireworks case, we refer to the
commodity generating it as a pure public good. A public good is created when
one individual or institution’s action generates widespread benefit, and it is
impossible (or very costly) for the agent creating the benefit to be compensated
by those receiving it. Most cases that economists treat as pure public goods fall
short of the ideal in one way or another, but the polar case is a useful laboratory
device for investigating noncooperative behavior.

DEFINITION: Pure public good versus pure private good
A commodity is a pure public good if it is possible for every member of
the community to consume every unit of the good that has been produced,
and the utility derived by anyone is independent of the number of indi-
viduals who avail themselves of the opportunity to consume the good. It
is a pure private good if the only person to benefit is the one doing the
consuming.

By definition, any amount of a public good that is made available to one indi-
vidual or group can be simultaneously enjoyed by everyone in the community,
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although not everyone receives the same level of benefit. The higher is the com-
munity’s level of consumption of the public good X the more input is devoted
to its production, and hence the larger is the community’s sacrifice of private
goods due to the diversion of resources to the production of X . However, the
production technology does not require the individual’s sacrifice to be propor-
tional to his or her benefit from consuming the public good. (An individual
who makes no contribution at all to the financing of X is said to be a free rider,
because that individual consumes the same amount of X as someone who did
contribute.)

Truthful preference revelation is very hard to elicit because efficiency
requires the amount of public good X produced to be a function of reported
preferences, and hence so is the share of the financing of X contributed by each
individual. Without very carefully designed incentives, individuals will be able
to misrepresent their preference scheme in a way that significantly reduces their
share of the cost of financing the public good—and hence leaves a lot of dis-
posable income for purchasing private goods—without appreciably reducing
the level of X available for consumption. This would give the individual a net
increase in utility, relative to truthful revelation. (With a large number of indi-
viduals, the loss of one person’s contribution to the financing of X will have a
tiny effect on the amount of X produced.)

The previous chapter examined public sector decision making in a very
abstract model. In this chapter we endow the model with much more structure
by specifying individual utility functions with classical economic properties, a
production function, and resource constraints.

1 THE ECONOMIC MODEL

The hypothesis of the Gibbard-Satterthwaite Theorem of Chapter 7 assumes
that any logically possible ordering of the alternatives is a plausible preference
scheme for any individual. In an explicitly economic model there are some
restrictive properties that individual preferences exhibit. For example, if x offers
everyone more of every good than y then we can rule out individual preferences
that have y ranking above x. Also, indifference curves can often be assumed to be
convex, which disqualifies many preference schemes. Perhaps such restrictions
on the domain of admissible preferences will lead to a model with more potential
for truthful revelation of preferences. We explore this possibility in a simple
model with one public good.

A public good is a commodity from which everyone in the community jointly
benefits. A pure public good is an ideal case in which every amount produced
is consumed in equal measure by all, even though varying levels of benefit are
realized. Consider, for example, street lights. In this case the community is the
group of residents on one street. Street lights reduce crime. Consider the place-
ment of lights on a typical city street. Would the residents be served best by
having one light in front of each house, one light for the entire street, or some
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intermediate number? The decision should depend on householders’ prefer-
ences. Preferences will take into consideration the benefit in terms of crime
reduction from the various plans and the nature and quantity of the goods and
services that could be produced instead of a street lamp.

Having the government take the initiative for the project does not automati-
cally solve the problem. The government must discover the extent of household
preferences for the public good and for other goods and services that could be
produced with the inputs required to manufacture the public good. This is by no
means a simple matter. It is one virtue of the market mechanism that for a wide
range or goods and services this process of accumulating essential information

Australia’s dog fence is 3307 continuous
miles of wire mesh, running essentially
from one Australian coast to the other.
The fence keeps the wild dingo dogs from
killing the sheep. The dingoes are on the
north side of the fence, and more than
120 million sheep are on the south side
(O’Neil, 1997). A failure to repair a hole
anywhere in the fence eventually puts all
of the sheep in jeopardy.

about household preferences is accomplished
simply and neatly. (See Chapter 10, or the brief
treatment in Section 1 of Chapter 3.)

In the case of any commodity for which
the benefits are confined to one individual—
that is, a private good—a consumer does not
derive any benefit unless the consumer pays for
the good, and the higher the price, the higher
the benefit that must be realized for the con-
sumer to justify the purchase decision. How-
ever, when a good provides benefits to the wider
community—not only the individual making

the purchase decision—a very high level of overall community benefit can be
sacrificed when each individual determines that his or her benefit is not great
enough to justify paying the purchase price.

1.1 A continuum of public projects
We investigate the possibility of achieving an efficient outcome in the presence
of public goods by means of a simple model with two commodities, a pure
public good X and a pure private good Y . Each individual i’s utility has the
quasi-linear form Ui(x, yi) = Bi(x) + yi where x is the level of output of the pub-
lic good and yi is individual i’s consumption of the private good. Therefore, if
yi changes to yi + yi but x remains the same, the change in the individual’s
utility is

Ui = Bi(x) + yi + yi − [Bi(x) + yi] = yi .

In brief, if x does not change, then for each individual i we have Ui = yi .
There are n individuals, and each individual i is endowed with ωi units of the

private good Y at the beginning of the period and zero units of the public good.
The private good can either be consumed or used as an input in the production
of the public good. (We could interpret x as an index number. Each value of x
identifies a particular allocation of resources in every detail except the amount
yi of the private good Y delivered to each individual i.) Let g(x) denote the
amount of good Y required to produce x units of the public good. The amount
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of the private good Y available for consumption is θ − g(x), where θ specifies
the amount of Y available initially. That is, θ = ω1 + ω2 + · · · + ωn.

DEFINITION: The public good model
There are n individuals, and each individual i has a utility function of the
form Ui = Bi(x) + yi , where x is the amount of the public good produced
and yi is i’s consumption of the private good. The production of x units of
the public good requires g(x) units of the private good as input, leaving a
total of θ − g(x) units of the private good available for consumption. (A total
of θ units of the private good are available initially.) We often let N denote
the set of all individuals.

∂1.2 Efficiency
Section 5.1 of Chapter 2 characterized efficiency with quasi-linear utility: An
outcome is efficient if and only if it maximizes total utility. But the proof of that
claim drives some individuals’ consumption of the private good below zero in
some situations. This section characterizes efficient outcomes subject to the
constraint that no one’s consumption of Y can fall below zero. That is, yi ≥ 0
must hold for each individual i at any feasible allocation. An allocation is said to
be interior if all consumption levels are strictly positive. We show that an interior
allocation is efficient if and only if it maximizes total utility.

DEFINITION: Interior allocation
If x > 0 and yi > 0 for each individual i we say that the allocation is interior.

Total utility is �i∈N Ui = �i∈N Bi(x) + �i∈N yi . When we maximize the sum of
individual utilities we have to respect the resource constraint, which is �i∈N yi ≤
θ − g(x). Efficiency obviously implies that this inequality will be satisfied as an
equality, and hence �i∈N yi = θ − g(x). Therefore, we want to maximize

�i∈N Bi(x) + θ − g(x),

which is a function of a single variable x. Let f (x) denote this function. That is,
f (x) is total individual utility after incorporating the resource constraint.

First-order condition for efficiency of an interior allocation when utility is
quasi-linear, with positive marginal utility of X

If x > 0, and for each individual i we have yi > 0 and B′
i(x) > 0, and the

allocation (x, y) is efficient, then f ′(x) = 0, where f (x) = �i∈N Bi(x) + θ −
g(x).
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Proof
Ui = Bi(x) + yi . We change x by an amount dx, and then yi by an amount dyi .
Then

dUi = B′
i(x) dx + dyi .

Suppose we can choose dyi so that �i∈N dyi = −g′(x) dx and dUi > 0 for each i.
Because −g′(x) dx is the change in the amount of Y available for consump-
tion when x changes by dx, we wind up with a feasible allocation. Conse-
quently, dUi > 0 for each individual i implies that the original allocation is not
efficient.

Note that f ′(x) = �i∈N B′
i(x) − g′(x). Suppose that f ′(x) > 0 at allocation

(x, y). We show that each individual’s utility can be increased. We have

�i∈N B′
i(x) − g′(x) > 0, [1]

and thus

1 − g′(x)
B′

1(x) + B′
2(x) + · · · + B′

n(x)
> 0. [2]

(There are n households. If g′(x) > 0 then then the sum of the B′
i(x) is positive.

And certainly, the sum of the B′
i(x) must be positive if each B′

i(x) is positive.
Therefore, we can divide [1] by the sum of the B′

i(x) without changing the direc-
tion of the inequality.)

For arbitrary individual i, multiply both sides of [2] by B′
i(x). Because B′

i(x) >

0 the direction of the inequality doesn’t change. We get

B′
i(x) − B′

1(x)

B′
1(x) + B′

2(x) + · · · + B′
n(x)

g′(x) > 0.

For dx > 0 we can multiply through by dx, yielding

B′
i(x) dx − B′

i(x)
B′

1(x) + B′
2(x) + · · · + B′

n(x)
g′(x) dx > 0. [3]

Now, let

ti = B′
i(x)

B′
1(x) + B′

2(x) + · · · + B′
n(x)

[4]

be individual i’s share of the cost of increasing x. That is, we let dyi = −ti ×
g′(x) dx. Note that [4] implies that �i∈N ti = 1. Therefore, �i∈N dyi = −g′(x) dx.
Moreover, [3] implies that dUi = B′

i(x) dx + dyi = B′
i(x) dx − ti g′(x) dx is strictly

positive. Therefore, we have constructed a new feasible allocation that gives
everyone more utility than the original allocation at which f ′(x) > 0. There-
fore, the original allocation is not efficient. (Strictly speaking, we have actually
proved that there is some dx > 0 sufficiently small such that the constructed
allocation is feasible and gives everyone more utility than the original alloca-
tion.)

Now, suppose that �i∈N B′
i(x) − g′(x) < 0. With ti given by [4], we reduce x

to x + dx and increase individual i’s consumption of Y by −ti × g′(x) dx. This
will be possible for some dx < 0 sufficiently small in absolute value, because
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x > 0. An argument parallel to the one of the previous paragraph shows that
everyone’s utility will increase if dx is sufficiently close to zero. The new level of
consumption of Y is guaranteed to be positive, because this time we are reducing
the amount of Y that is used in producing X , and this adds to an individual’s
private good consumption. This concludes the proof.

The cost shares specified by [4] are critical if we are to increase everyone’s
utility by moving from x toward x∗, the value of x at which f ′(x) = 0. If instead
we insist on equal cost shares, then those who derive little marginal benefit from
X will suffer a net decline in utility when we increase x. And with equal shares,
individuals who have a high marginal benefit from X will find their net utility
falling when x is reduced. But if f ′(x) is not zero there is some system of cost
shares that will allow everyone to benefit from a change in the allocation in the
appropriate direction. Making all individuals’ cost shares proportional to their
marginal benefits will always work.

Finally, we assume the classical second-order condition: decreasing marginal
benefit from X and increasing marginal cost of producing X .

The classical second-order condition

Assume that g′′(x) ≥ 0 for all x, and for every individual i, B′′
i (x) ≤ 0 holds

for all x. In addition, either g′′(x) > 0 for all x or else for some individual i,
B′′

i (x) < 0 holds for all x.

This condition implies that the value of x that maximizes total utility is unique,
and that f ′(x) = 0 must hold if f is maximized by an allocation for which x > 0
and yi > 0 for each i.

Characterization of efficiency of an interior allocation when utility is
quasi-linear

Assuming the classical second-order condition, an interior allocation (x, y)
for which B′

i(x) > 0 holds for all x and each individual i is efficient if and
only if it maximizes total utility. Moreover, there is a unique level x∗ such
that every efficient interior allocation satisfies x = x∗. We refer to x∗ as the
efficient level of x.

Proof
In any model, whether there is a divisible private good or not, and whether
preferences are quasi-linear or not, any allocation that maximizes total utility
is efficient. (If outcome F maximizes total utility then there can be no feasible
outcome G that gives one person more utility than F and does not leave anyone
else with less utility than F . If there were such an outcome G it would provide
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more total utility than F , contradicting the fact that F maximizes total utility.)
Therefore, it remains to prove that with a divisible private good and quasi-linear
individual utility, the only interior allocations that are efficient are the allocations
that maximize total utility.

We have seen that in this context efficiency implies that x maximizes
�i∈NUi = �i∈N Bi(x) + θ − g(x), and we let f (x) denote this function, as before.
Note that f ′(x) = �i∈N B′

i(x) − g′(x), and hence the classical second-order condi-
tion implies that f ′′(x) < 0 holds for all x. Therefore, f has a unique global max-
imum, say at x∗. In addition, f ′′ < 0 implies that f ′(x) > 0 holds if 0 < x < x∗.
Therefore, 0 < x < x∗ and yi > 0 for all i implies that allocation (x, y) is not
efficient via the first-order condition for efficiency. Similarly, f ′′ < 0 implies
f ′(x) < 0 if x > x∗, and thus x > x∗ and yi > 0 for all i implies that (x, y)
is not efficient, again by the first-order condition for efficiency. Therefore,
assuming yi > 0 for all i, allocation (x, y) is not efficient unless x = x∗ and
�i∈N yi = θ − g(x).

We have finished our proof of the efficiency theorem for the classical second-
order condition. We have demonstrated that f ′(x) = 0 is necessary and suffi-
cient for efficiency, given x > 0 and yi > 0 for each i and �i∈N yi = θ − g(x).
Because f (x) = �i∈N Bi(x) + θ − g(x), we have f ′(x) = �i∈N B′

i(x) − g′(x) = 0 at
an efficient outcome. This is known as the Samuelson efficiency condition. The
sum of the marginal utilities from X must equal the marginal cost of X at an
efficient allocation.

Samuelson efficiency condition

�i∈N B′
i(x) = g′(x).

If this condition is satisfied by a unique value of x we refer to that value as
the Samuelson level (or efficient level) of the public good.

If the classical second-order condition is satisfied, x∗ is the Samuelson level
of the public good, and �i∈N yi = θ − g(x∗), then �i∈NUi is maximized subject
to the resource constraint and thus the allocation is efficient. The amount of Y
available for consumption is θ − g(x∗), and if we redistribute it total utility is
unchanged. (For instance, if we increase y1 by δ units and reduce y2 by δ units
we don’t affect total utility.) Because total utility remains the same after the
redistribution, total utility is still maximized and hence the new allocation is
efficient. (Any allocation that maximizes total utility is efficient in any model.)
Therefore, assuming the classical second-order condition, an allocation at which
all consumption variables are positive is efficient if and only if it provides exactly
x∗ units of the public good, where x∗ satisfies the Samuelson condition, uses
exactly g(x∗) units of Y in producing the public good, and redistributes the
remaining amount of Y to consumers.
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Example 1.1: Two individuals and constant marginal cost

Individual 1’s utility function is U1(x, y1) = 10 − 10(x + 1)−1 + y1 and individual
2’s utility function is U2(x, y2) = 15 − 15(x + 1)−1 + y2. Each unit of the pub-
lic good is produced by employing 1 unit of the private good as input. Thus,
g(x) = x. A total of 120 units of the private good is available initially ( θ = 120):

U1 + U2 = 25 − 25
x + 1

+ y1 + y2 = 25 − 25
x + 1

+ 120 − x.

Therefore, we maximize f (x) = 25 − 25(x + 1)−1 + 120 − x. We have f ′(x) =
25(x + 1)−2 − 1. The second derivative of f is f ′(x) = −50(x + 1)−3, which is
negative for all x ≥ 0. Thus if we set f ′(x) = 0 we get a unique global maximum.

The statement 25(x + 1)−2 − 1 = 0 implies 25 = (x + 1)2 and hence x∗ = 4.

The efficient level of the public good is 4. Therefore, at an efficient outcome we
have y1 + y2 = 120 − 4 = 116. An interior allocation is efficient if and only if
x = 4 and y1 + y2 = 116.

∂1.3 Competitive market equilibrium
Why can’t we leave the selection of a public project to the market system? Com-
petitive markets will yield an efficient outcome if we create a market for each
spillover effect. For instance, there would have to be one market in which the
benefit conferred on agent 1 by agent 2’s actions would be priced. However, most
of these markets would be thin, with few agents. When markets are thin there will
be a strong incentive to deviate from the competitive rules. What about having
the public good itself traded in a conventional market? A simple example will
show why this usually leaves us far from an efficient outcome.

Example 1.2: Competitive equilibrium with three agents

Let U1 = ln(x + 1) + y1, U2 = 2 ln(x + 1) + y2, U3 = 3 ln(x + 1) + y3, and g(x) =
x. Each agent is endowed with eight units of the private good. The Samuelson
level of the public good solves

1
x + 1

+ 2
x + 1

+ 3
x + 1

= 1.

Hence, x∗ = 5.

What is the competitive equilibrium for Example 1.2? Let PX be the price of
the public good, with PY denoting the price of private good. The production of
x units of the public good will cost PY × x because x units of Y will be employed
as input. The revenue from x units of the public good will be PX × x. Therefore,
if a firm produces x units of the public good its profit will be

PX × x − PY × x = (PX − PY )x.
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On one hand, if PX > PY then profit can be made arbitrarily large by producing
an arbitrarily large amount of X . The supply of the public good will exceed the
demand, so we can’t have an equilibrium at which PX exceeds PY . On the other
hand, if PY > PX then the firm will take a loss if x is positive, and the loss is larger
the larger is x. When PY > PX the firm maximizes profit by setting x = 0. In that
case, the demand for the public good will exceed supply if even one consumer
has a positive demand for X . Therefore, competitive market equilibrium requires
PX = PY , and for convenience we let the price of each good be $1.

For the economy of Example 1.2, when PX = 1 = PY , and individual i pur-
chases xi units of the public good and consumes yi units of the private good, we
must have xi = 8 − yi . (The individual begins with 8 units of Y but sells 8 − yi

units at $1 each. The money from the sale is used to buy xi units of the public
good.) Because xi = 8 − yi we can replace yi in individual i’s utility function of
Example 1.2 with 8 − xi .

A competitive market equilibrium (x∗, x∗
1 , x∗

2 , x∗
3 , y∗

1 , y∗
2 , y∗

3 ) must satisfy the
following five conditions:

x∗
1 maximizes ln(x1 + x∗

2 + x∗
3 + 1) + 8 − x1 subject to 0 ≤ x1 ≤ 8.

x∗
2 maximizes 2 ln(x2 + x∗

1 + x∗
3 + 1) + 8 − x2 subject to 0 ≤ x2 ≤ 8.

x∗
3 maximizes 3 ln(x3 + x∗

1 + x∗
2 + 1) + 8 − x3 subject to 0 ≤ x3 ≤ 8.

y∗
1 = 8 − x∗

1 , y∗
2 = 8 − x∗

2 , y∗
3 = 8 − x∗

3 .

x∗ = x∗
1 + x∗

2 + x∗
3 .

If the inequality xi ≤ 8 doesn’t hold then yi is negative because yi = 8 − xi . Note
that the last two conditions imply that the total consumption of the private good
equals 24 minus the amount of the private good needed to produce x∗ units of the
public good. To maximize individual i’s utility subject to 0 ≤ xi ≤ 8 we exploit
the fact that if the marginal benefit to i of consuming another unit of X exceeds
the marginal cost to i (which is 1) then i will demand more X . However, if the
marginal benefit to i is less than i’s marginal cost then i will reduce xi , unless it
is already 0.

Set x∗ = 2, x∗
1 = 0 = x∗

2 , and x∗
3 = 2. If y∗

1 = 8 = y∗
2 and y∗

3 = 6, then the five
conditions are satisfied, and we have a competitive equilibrium. Moreover, this
is the only competitive equilibrium because the five necessary conditions for
market equilibrium imply that

1
x∗ + 1

≤ 1,
2

x∗ + 1
≤ 1, and

3
x∗ + 1

≤ 1,

with the first of these inequalities holding as an equality if x∗
1 > 0, the second

holding as an equality if x∗
2 > 0, and the third holding as an equality if x∗

3 > 0.
Obviously, only the third can hold as an equality if all three are satisfied. Can we
have all three holding as a strict inequality? If so, the five equilibrium conditions
imply that x∗

1 = x∗
2 = x∗

3 = 0 and hence x∗ = 0 and

3
x∗ + 1

> 1,
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Table 8.1

Competitive equilibrium Government outcome

U1 ln 3 + 8 = 9.099 ln 6 + 7.5 = 9.292
U2 2 ln 3 + 8 = 10.197 2 ln 6 + 7 = 10.584
U3 3 ln 3 + 6 = 9.296 3 ln 6 + 4.5 = 9.875

which is a contradiction. Therefore, 3/(x∗ + 1) = 1 and hence x∗ = 2. Then

1
x∗ + 1

< 1 and
2

x∗ + 1
< 1,

and thus x∗
1 = x∗

2 = 0.
The fact that x∗

1 = x∗
2 = 0 at equilibrium means that agents 1 and 2 are free

riders. They each benefit from the 2 units of the public good financed by agent
3 without contributing themselves.

The competitive equilibrium is not efficient. If the government knows the
agent utility functions, it could produce 5 units of the public good and impose
taxes of 0.5 units of the private good on agent 1, and 1 unit on agent 2, and
3.5 units on agent 3. Table 8.1 shows each agent’s utility at each allocation.
Utility is higher for each agent at the new allocation than it is at the competitive
equilibrium, confirming that the latter is not efficient. (Note that taxes of 0, 1,
and 4 on individuals 1, 2, and 3 respectively would also serve to demonstrate the
inefficiency of the competitive equilibrium.)

We have assumed that at a competitive equilibrium one agent cannot collect
a payment from another for the benefit that the former confers on the latter
by purchasing public goods. Therefore, all agents must pay the competitive
price if they want to contribute to the production of the public good. Agents for

In the seventeenth century the English
Crown gave a private firm the exclusive
right to collect a port tax if it erected and
maintained a lighthouse (Coase, 1974).
However, even though the private pro-
vision of the public good was viable
under this arrangement, the monopoly
firm would exclude ships that did not
derive enough benefit from using the
port to justify paying the fee. If those
firms were allowed to use the facility their
payoff would increase, and the payoffs
of other agents would be unchanged.
Therefore, the monopoly equilibrium is
inefficient—but not woefully so in this
case.

which the marginal benefit of the public good
is low will prefer to spend their income on other
commodities, and enjoy—for free—whatever
amount of the public good is financed by
others.

Under special circumstances, the market
system can provide close to the efficient level
of the public good. In the case of a lighthouse
there is a very narrow range of payoff func-
tions and technologies that need to be consid-
ered, and for each of these there is a unique
Samuelson number of lighthouses: Zero is too
little and two is too much. One lighthouse is
the socially optimal number. This means that
only the question of viability remains to be set-
tled. Any scheme that collects enough revenue
to finance the operation of the lighthouse will
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do. Typically, the Samuelson output level is a function of preferences and tech-
nology, there is a wide range of output levels that would be efficient for some
plausible configuration of individual preferences, and the market system will
often be far from the Samuelson level.

1.4 Voluntary contributions
The previous subsection demonstrated that when a public good is allocated by
the market system the outcome is usually inefficient. At some level of X below
the efficient level, no individual will want to purchase an additional unit of the
public good because the cost to the individual decision maker would exceed the
benefit to that individual. But because of the spillover effects, the total benefit to
the community of an additional unit of X will exceed the total cost. We run into
the same problem if individuals are asked to contribute voluntarily to a fund that
will be used to purchase the public good. If individuals determine how much
to contribute by comparing the benefit they gets from another dollar spent on
the public good to the utility they would have gained by using the dollar to buy
more private goods for themselves, then the fund will not collect enough money
to finance the efficient level of X .

We can prove our claim that voluntary contributions will not support the
efficient level of X by reinterpreting Example 1.2 of the previous subsection:
Instead of interpreting xi as the amount of X purchased by individual i, we can
view xi as the amount of money that individual i voluntarily contributes to the
fund. With either interpretation, the amount of the public good consumed by
each person is the sum of the xi , and individual i’s consumption of the private
good is the amount that i started with minus xi . For the utility functions of
Example 1.2, individuals 1 and 2 will contribute nothing and individual 3 will
contribute $2. Exactly two units of the public good will be made available but
the efficient level is five.

Here is a somewhat different example to illustrate the inefficiency of a system
of voluntary contributions.

Example 1.3: Cleaning up the neighborhood

A and B are neighbors. Each is bothered by the amount of debris (or carbon
dioxide, CO2, if A and B are countries) that motorists discharge. If A supplies eA

units of effort to cleaning up then A and B will each derive 2eA units of benefit.
Similarly, if B supplies eB units of effort to pollution abatement then A will receive
2eB units of benefit from that activity, and so will B. We assume that each unit
of effort expended by an agent reduces the agent’s utility by 3 units. Therefore,
the net payoff to A when B supplies eB units of effort to cleanup and A supplies
eA units of effort is

2(eA + eB) − 3eA = 2eB − eA,

and B’s net payoff is 2(eA + eB) − 3eB = 2eA − eB .



432 Public Goods and Preference Revelation

If eA = eB = 1, then the payoff to each is 2 × (1 + 1) − 3 × 1 = 1. However,
we have here a continuum version of the prisoner’s dilemma game: Each player
i chooses a number ei between 0 and 1 inclusive, and for any choice of e j by
the opponent j, the response that maximizes player i’s payoff is ei = 0, treating
e j as a constant. Clearly, eA = 0 is a dominant strategy for A, and eB = 0 is a
dominant strategy for B. However, if eA = 0 = eB then each player’s payoff is 0,
but each gets a payoff of 1 from the cooperative outcome eA = 1 = eB .

The pursuit of self-interest is self-defeating in this case. If the two individuals
interact repeatedly over time then the cooperative outcome can be sustained

On Earth Day (April 22, 1990), celebrants
in Central Park, New York City, left behind
150 tons of garbage.

as an equilibrium. (See Sections 5.7 and 7.2 of
Chapter 1.) However, Example 1.3 is intended
as a metaphor for the interaction of many indi-
viduals. If one commuter decides to take public
transportation instead of a car—to reduce air

pollution—that commuter cannot assume that it will motivate others to do the
same.

Many experiments have been designed to test the Nash prediction of zero
voluntary contributions. In fact, around half the efficient level of the public
good is typically reached in these experiments, although the level diminishes
somewhat when the subjects repeat the experiment.

∂1.5 Average cost taxation
Because an individual’s preference scheme is private information, hidden from
other agents and the government, if the outcome is guaranteed to be efficient
then any individual has the ability to determine the level of output of the public
good. That is a consequence of the Samuelson efficiency condition. Suppose, for
instance, that individual 1 wants exactly 9 units of X to be produced. Suppose
also that g′(9) = 15 and B′

2(9) + B′
3(9) + · · · + B′

n(9) = 13. Then if individual 1
reports a benefit function B1 such that B′

1(9) = 2 the Samuelson level of X is
9. There are lots of functions that would work—for instance, B1(x) = 12

√
x. We

refer to this ability of each individual to control the level of X as unilateral
decisiveness.

DEFINITION: Unilateral decisiveness
For any individual i and any level x of public good output, given the utility
functions reported by the other individuals, there is a utility function such
that i can guarantee that the Samuelson efficiency condition is satisfied at x
simply by reporting that utility function.

Why would we ever have an equilibrium—of any scheme for determining
the quantity of X produced—if each individual can control the level of output?
A successful allocation mechanism must give each individual an incentive to
demand the level of output of X that satisfies the Samuelson condition with
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respect to the true individual preferences, even though the individual cannot
know what those true preferences are, apart from his or her own. In short, indi-
viduals must have an incentive to report truthfully. This will not happen if the
individual cost shares are equal, as we are about to see. Suppose there are n
individuals, and each must sacrifice one-nth of the total amount of the private
good necessary to produce the public good.

DEFINITION: Average cost taxation
Each individual i reports his or her benefit function Bi , and the Samuelson
level x is then determined. Individual i’s consumption of the private good is
reduced by g(x)/n units if n is the total number of individuals.

The problem with average cost taxation is that individuals who derive rel-
atively little benefit from the public good will want relatively little of it to be
produced, if they have to pay the same share of the cost as everyone else. Con-
sequently, they will not report their true benefit functions. Similarly, those who
get a high level of benefit will submit benefit functions that impart an upward
bias to the output of the public good.

Example 1.4: Two individuals

Individual 1’s utility function is U1(x, y1) = 10 − 10(x + 1)−1 + y1, individual 2’s
utility function is U2(x, y2) = 15 − 15(x + 1)−1 + y2, and g(x) = x. Each individ-
ual begins with 60 units of the private good ( ω1 = ω2 = 60). This is the setup of
Example 1.1. The efficient level of X is 4. To see if truthful revelation is a domi-
nant strategy, we can exploit the unilateral decisiveness condition and see how
much X each individual will “demand.”

Maximize Ui = α − α(x + 1)−1 + 60 − 1/2 x. The first derivative isα(x + 1)−2−
1/2. The second derivative is negative for all x ≥ 0. When we set the first derivative
equal to 0 we get (x + 1)2 = 2α. Therefore, x = √

2α − 1. Individual 1, with α =
10, will want 3.47 units of X to be produced and individual 2, with α = 15, will
want 4.48 units. Will both reveal their benefit functions truthfully? Suppose that
individual 2 reports his true utility function. Because individual 1 wants

√
20 − 1

units of X and B′
2(

√
20 − 1) = 15/20 she only has to report the benefit function

B1(x) = 5 − 5(x + 1)−1, for which marginal benefit is 5/20 when x = √
20 − 1.

Hence, individual 1 will not report truthfully.

∂1.6 Benefit taxation
Absent positive or negative spillovers, a competitive market equilibrium is effi-
cient. All individuals choose a consumption plan at which their marginal rate
of substitution for any pair if goods is equal to the ratio of the respective prices.
Consequently, the price paid by consumers is proportional to the benefit that
they derive from the good at the margin. With a public good in our model, we
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can imitate the market system by imposing a tax on each individual that is pro-
portional to the benefit that is derived from the public good at the margin.

Specifically, we require individuals to report their benefit functions Bi , and
these are used to determine the level x∗ of the public good that satisfies the
Samuelson condition. This will require a total sacrifice of g(x∗) units of the pri-
vate good. Each individual i contributes the fraction ti of that cost by having i’s
consumption of the private good reduced by ti × g(x∗). We want ti to be propor-
tional to i’s marginal benefit of X at x∗, and we also want the cost shares to sum
to unity.

DEFINITION: Benefit taxation
Each individual i reports his or her benefit function Bi , and the Samuelson
level x∗ is then determined. Individual i’s consumption of the private good
is reduced by ti × g(x∗), where

ti = B′
i(x∗)

B′
1(x∗) + B′

2(x∗) + · · · + B′
n(x∗)

.

The benefit tax mechanism is successful on one level: Assuming truthful
revelation, each individual will want the efficient level of the public good to be
produced. To confirm this we maximize Ui = Bi(x) + ωi − ti × g(x). We have

dUi

dx
= B′

i(x) − B′
i(x∗)

B′
1(x∗) + B′

2(x′) + · · · + B′
n(x∗)

× g′(x).

The Samuelson condition implies B′
1(x∗) + B′

2(x∗) + · · · + B′
n(x∗) = g′(x∗), so we

can write
dUi(x∗)

dx
= B′

i(x∗) − B′
i(x∗),

which equals zero. Therefore, Ui is maximized at x∗, the efficient level of X ,
assuming that the benefit functions are reported truthfully. We will not get truth-
ful revelation, however, because an individual can report a benefit function for
which marginal benefit is zero at every value of x. In that case the individual’s
tax rate will be zero. The individual will get less benefit from the public good
because the level of X will be lower than if he or she had reported truthfully, but
in most cases that will be more than offset by the increased consumption of the
private good due to a reduced tax burden.

Example 1.5: The benefit tax mechanism with three agents

Let U1 = x + y1, U2 = 2x + y2, U3 = 5x + y3, and g(x) = 1/2 x2. Each agent is
endowed with 24 units of the private good. Because g′(x) = x, the Samuel-
son level x∗ of the public good solves 1 + 2 + 5 = x, and thus x∗ = 8. If each
i reports his or her benefit function truthfully, then 8 units of the public
good are produced, and person 1’s share of the cost is 1/8. Therefore, U1 =
8 + 24 − 1/8 × 1/2 × 82 = 28 under truthful revelation. To show that the three
individuals will not all report truthfully at equilibrium we suppose that persons
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2 and 3 do report their true benefit functions. Let’s calculate U1 when person 1
reports the benefit function “B1(x) = 0 for all x.” The resulting Samuelson value
of x will solve 0 + 2 + 5 = x, and hence 7 units of X will be produced. In that case
U1 = 7 + 24 − 0 × 1/2 × 72 = 31, which is higher than 1’s utility under truthful
revelation.

One might object that individuals 2 and 3 can also play the game. That’s true,
but we have at least shown that truthful revelation is not a dominant strategy for
each individual. But let’s see what happens when everyone plays strategically.
Perhaps a Nash equilibrium of the benefit tax mechanism will precipitate a level
of X that is not too far from the actual efficient level.

Example 1.6: Nash equilibrium of the benefit tax mechanism

There are n individuals, each with the utility function Ui = x + yi . We have
g(x) = 1/2 x2 and each agent is endowed with ωi units of the private good.
For computational convenience, we assume that each individual i is known
to have a utility function of the form Ui = αi x + yi , but the exact value of αi

is hidden information. Because g′(x) = x, the Samuelson level must satisfy
α1 + α2 + · · · + αn = x, where αi is the benefit parameter reported by individual
i. Therefore, x∗ = nunder truthful revelation, and that is the efficient level of the
public good. But we need to find the equilibrium level of X when each person
plays strategically. Our calculations will be simplified by the fact that the indi-
viduals have identical utility functions, but we can’t exploit that fact until after
we maximize individual utility. Otherwise we will ascribe to a single person the
ability to control the strategies of others.

Let α be the benefit parameter reported by person i, and we let β denote
the sum of the benefit parameters reported by everyone else. Then x = α + β.
Therefore, individual i will choose α to maximize

Ui = α + β + ωi − [α/(α + β)] × 1
2

(α + β)2 = α + β + ωi − 1
2
α(α + β)

because person i’s tax rate is α/(α + β). The first derivative of i’s utility as a
function α is 1 − α − 1/2 β and the second derivative is negative. Therefore,
we maximize Ui by setting 1 − α − 1/2 β = 0. Now we can exploit the fact that
the individuals are identical and will make identical decisions. Because β is the
sum of the n − 1 reported benefit parameters other than individual i’s we have
β = (n − 1)α. Therefore

1 − α − 1
2

(n − 1)α = 0,

the solution of which is α = 2/(n + 1). Each individual’s true benefit parame-
ter is 1 but each will report the benefit parameter 2/(n + 1) at equilibrium. As
a result, only n × [2/(n + 1)] = 2n/(n + 1) units of the public good will be pro-
duced. Fewer than 2 units of the public good will be available at the benefit
tax equilibrium, but the efficient level is n. For large n there is a vast difference
between the benefit tax equilibrium and the efficient allocation.
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We have tried the market system, average cost taxation, and the benefit tax
mechanism. Are there any public decision schemes that perform better than the
market system with respect to the allocation of public goods? The rest of this
chapter is devoted to this question. Although the model that we use is extremely
simple, it incorporates enough features of resource allocation with public goods
to enable us to bring out all the strategic nuances and complications.

Sources
The efficiency condition for public goods is derived by Samuelson (1954). Ander-
son (2001) reviews the experimental evidence on the provision of public goods.
Arrow (1970) demonstrated the competitive equilibrium is efficient if there is a
market for each spillover effect.

Links
Cornes and Sandler (1996, Chapter 8) thoroughly explores the inefficiency of
competitive equilibrium when there are positive spillovers. As the number of
players increases in Example 1.3, the gap between the individual payoff when
everyone cooperates and the individual payoff when each plays the dominant
strategy also increases (Sandler, 1992; Cornes and Sandler, 1996, p. 163).

Problem set
The first three questions pertain to the following simple model of pure public
goods production and consumption: X is the public good, and Y is a private
good that can either be consumed or used in the production of the public good.
There are three individuals. For the first three questions exactly 100 units of the
private good are available initially.

1. Let U1 = x + y1, U2 = 2x + y2, and U3 = 9x + y3. The production technology
is represented by the real cost function g(x) = x2. Determine the efficient
level of output of the public good.

2. Let U1 = 2
√

x + y1, U2 = 4
√

x + y2, and U3 = 6
√

x + y3. When 1 unit of Y
is used as input, 1 unit of X is obtained as output. Determine the effi-
cient level of output of the public good and characterize the set of efficient
outcomes.

3. Let U1 = 2
√

x + y1, U2 = 4
√

x + y2, and U3 = 18
√

x + y3. When 1 unit of Y is
used as input exactly 1/3 of a unit of X is obtained as output.

A. Determine the efficient level of output of the public good and char-
acterize the set of efficient outcomes.

B. Assume that the current allocation has x = 9, y1 = 18, y2 = 15, and
y3 = 40. The output level x = 9 is not consistent with efficiency. Show
that some individuals will be made worse off by a move to the efficient
level of X if the reduction in the consumption of the private good Y
resulting from the increase in the production of X is shared equally
by the individuals.
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C. Assume that the current allocation has x = 9, y1 = 18, y2 = 15, and
y3 = 40 as in part B. The output level x = 9 is not consistent with
efficiency. Show that everyone can be made better off by a move to
the efficient level of X by some assignment of cost shares to the indi-
viduals. That is, the reduction in the consumption of the private good
Y resulting from the increase in the production of X can be assigned
to individuals in a way that leaves everyone better off.

D. Assume that the current allocation has x = 9, y1 = 33, y2 = 30, and
y3 = 10. The output level x = 9 is not consistent with efficiency. Show
that it is not possible to make everyone better off by a move to the
efficient level if y3 is not allowed to fall below 0.

E. Assume that the current allocation has x = 9, y1 = 33, y2 = 30, and
y3 = 10 as in part D. The output level x = 9 is not consistent with
efficiency. Show that it is possible to increase x by some amount in a
way that leaves everyone better off than with x = 9.

For the next four questions (4–7) each of the three individuals has an endow-
ment of 40 units of the private good and 0 units of the public good.

4. Let U1 = 1
√

x + y1, U2 = 2
√

x + y2, and U3 = 3
√

x + y3. Each unit of the X
produced requires 1 unit of Y as input.

A. Characterize the allocation that is defined by transferring all of the
private good to person 3 and then choosing x to maximize 3’s utility
subject to the production constraint.

B. Is this allocation efficient? Explain.

C. Does this allocation satisfy the Samuelson condition? Support your
answer with a simple proof.

D. Explain how an allocation can be efficient without satisfying the
Samuelson condition.

5. Each individual’s preferences can be represented by the utility function
15 ln(x + 1) + yi . When 1 unit of Y is used as input exactly 1/3 unit of X
is obtained as output.

A. What is the marginal social cost of X?

B. Is an allocation for which x = 9 efficient if each individual has a pos-
itive amount of the private good? If so, explain why; if not, prove it
with a numerical example.

C. Is an allocation for which x = 29 efficient? If so, explain why; if not,
prove it with a numerical example.

6. Let U1 = α1
√

x + y1, U2 = α2
√

x + y2, and U3 = α3 ln(x + 1) + y3. The pro-
duction of 1 unit of X requires δ units of Y as input.

A. What is the marginal social cost of X?

B. Express the Samuelson condition as simply as you can, then further
simplify the condition for the case δ = α3.
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7. Let U1 = √
x + y1, U2 = 4

√
x + y2, U3 = 5 ln(x + 1) + y3. The real cost of

production is given by the function g(x) = 5x.

A. What is the marginal social cost of X?

B. Characterize the set of efficient allocations.

8. Let U1 = 6
√

x + y1, U2 = 12
√

x + y2, U3 = 18
√

x + y3, with ωi = 200 for
each i. Let P denote the price of X . Normalize so that the price of Y is
$1. When 1 unit of Y is used as input exactly 1/3 unit of X is obtained as
output.

A. What would be the equilibrium price of X in a private ownership mar-
ket economy with both goods being allocated by the market system?

B. Will the outcome be efficient? If so, explain why; if not, prove it with
a numerical example.

9. Explain why the Samuelson condition would not be satisfied at equilibrium
if the level of the pure public good were determined by demand and supply
forces in a competitive market—that is, if it were allocated the way private
goods are allocated in the market system.

10. Let Ui(x) = ln(x + 2) + yi for each i = 1, 2, . . . , nwith n ≥ 3. Let g(x) = x.

A. Find the efficient level of x.

B. Show that the situation in which each individual reports a benefit
function with a constant marginal benefit of zero constitutes a Nash
equilibrium if benefit taxation is employed to determine the output of
the public good. Is this Nash equilibrium outcome efficient? (Extend
the definition of benefit taxation so that when everyone’s marginal
benefit is constant at zero then no public goods are produced and no
taxes are levied.)

11. Let Bi(x) = 2
√

x for each i = 1, 2, . . . , n, with g(x) = x. Find the equilibrium
level of x under benefit taxation when each individual reports the benefit
function that gives him or her the maximum utility given the reports of
others.

12. There are two individuals, and each is endowed with 12 units of the private
good. Let U1 = 6x + y1, and U2 = 6x + y2. If g(x) = 1/2 x2 then the Samuel-
son condition is satisfied by x = 12. But 12 units of the public good require
72 units of the private good as input. The economy has only 24 units of the
private good. What has gone wrong with our reasoning?

13. Suppose that the benefit tax mechanism is used. Prove that for any spec-
ification of B1 and g, person 1 maximizes utility by reporting truthfully if
he or she is certain that every other individual i will report that Bi(x) is
constant—that is, that benefit does not increase when x increases.

Questions 14–18 concern the following special case of our model: Ui =
αi x + yi for each i. The production of x units of the public good requires
1/2 x2 units of the private good as input. An allocation is determined by
having each i report a benefit parameter βi , producing β1 + β2 + · · · + βn

units of the public good and collecting a total of 1/2(β1 + β2 + · · · + βn)2 units
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of the private goods from households. Specification of the mechanism is
complete when we determine by how much each household’s consumption
of the private good is reduced to obtain the 1/2(β1 + β2 + · · · + βn)2 units
that are needed for the production of the public good. (Note that we use
αi to denote individual i’s true benefit parameter, with βi representing the
reported benefit parameter.)

14. Suppose that each individual i’s consumption of the private good is reduced
by 1/2 βi(β1 + β2 + · · · + βn) units. Suppose that α2 + α3 + · · · + αn = 2. If 2 >

α1 > 0 then person 1 is better off reporting a benefit parameter of 0 than
reporting the true parameter α1. But what is person 1’s best strategy? What
value of β1, person 1’s reported benefit parameter, maximizes U1 given α1 >

0 and the fact that the benefit parameters reported by the others sum to 2?

15. Suppose that each individual i’s consumption of the private good is reduced
by 1/2βi(β1 + β2 + · · · + βn) units. Assume that α1 = 3 and αi = 1 for all i > 1.
Prove that we have a Nash equilibrium if person 1 reports a benefit param-
eter of 3 and everyone else reports a benefit parameter of 0.

16. Assume that α1 = α2 = · · · = αn. Suppose that each individual i’s consump-
tion of the private good is reduced by

1
2

× β1

β1 + β2 + · · · + βn
× x2

units if x units of the public good are produced. In Example 1.6 we saw that
a Nash equilibrium resulted in the production of 2x∗/(n + 1) units of the
public good, where x∗ = α1 + α2 + · · · + αn is the efficient level of x. Suppose
that the center anticipates this and changes the rules so that

(n + 1)(β1 + β2 + · · · + βn)
2

units of the public good are produced. Work out a Nash equilibrium for this
mechanism. Is it efficient? Does the equilibrium take the society closer to,
or farther away from, the original equilibrium at which β1 + β2 + · · · + βn

units of the public good are produced?

17. Assume that the required input of the private good is obtained by propor-
tional taxation, with household i paying the fraction ti of the total cost
of whatever level of x is provided. Assume also that n is odd and that
α1 > α2 > α3 > · · · > αn−1 > αn. Find the level of the public good that would
defeat every other level by a clear majority. Under what conditions would
this majority equilibrium be efficient?

18. Assume that n = 2, U1 = 4x + y1, U2 = 3x + y2, and ω1 = ω2 = 20. Each
consumer has a one-half share in the ownership of the economy’s only
firm, which uses Y as input to produce X . Specifically, x units of the public
good require 1/2 x2 units of the private good as input. Suppose that the pub-
lic good is allocated by the private market system, so that the public good is
supplied by a price-taking, profit-maximizing firm to utility-maximizing
individuals. Show that x = 4 at the competitive market equilibrium.
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(Hint: Begin by determining the firm’s supply as a function of the price
P of its output. For convenience, fix the price of the private good at unity.)

19. There are two individuals, with ω1 = 200 and ω2 = 100. The production of
x units of the public good requires 1.5x2 units of the private good as input.
The public good is produced by a single firm, and each individual gets half
the firm’s profit. Let U1 = 48

√
x + y1, and U2 = 30

√
x + y2. At a compet-

itive equilibrium of the private ownership market economy we have the
following: The price of X is 12, and the price of Y is 1. Individual 1 buys 4
units of X and individual 2 buys 0 units of X . Find the value of y1 and y2 at
equilibrium and confirm that we do indeed have an equilibrium.

20. Prove that the competitive market equilibrium of Section 1.3 really is an
equilibrium by showing that all consumers are maximizing utility given
their budget constraints, the firm is maximizing profit given the equilibrium
price, and demand equals supply for each good.

2 THE PIVOTAL MECHANISM

A successful mechanism for determining the output of the public good must
come to terms with the unilateral decisiveness principle. (See Section 1.5 for the
definition.) The pivotal mechanism succeeds by making it costly for an individ-
ual to shift the level of X away from the value that maximizes total utility under
truthful revelation. We see that the pivotal mechanism gives the individual the
incentive to seek the value of X that maximizes total utility even though the
individual does not know the benefit functions of the other agents!

What makes the pivotal mechanism work is that the cost to the individual of
changing the level of X is made equal to the cost imposed on the rest of society
by that change. Before defining this scheme we recall the role played by social
cost pricing in Vickrey’s second-price auction in allocating a single indivisible
asset (Section 2 of Chapter 6). There are n individuals i = 1, 2, . . . , n, and i’s
reservation value for the asset is Vi . Suppose that V1 > Vi for all i > 1. Submitting
a bid equal to one’s reservation value is a dominant strategy, so that each Vi will
be known to the auctioneer after the bids have been recorded. If the asset is
a Picasso painting then the costs of production are zero, and we don’t have to
worry about taxing the community to underwrite its production. But giving the
painting to individual i entails an opportunity cost because others are denied
the utility that it would have provided. The cost to the community is V1 when the
painting is given to anyone but person 1, because V1 is the maximum utility that
can be generated by an alternative assignment. If person 1 does get the asset
then the cost to the rest of the group is Vh, where h denotes the individual with
the second-highest reservation value. Moreover, Vh is the price that will be paid
by person 1 when everyone submits a bid equal to his or her true reservation
value. No one else pays anything. In that case, we can say that the Vickrey auction
requires all participants to pay a fee equal to the cost that their participation has
imposed on the rest of society. Anyone whose reservation value is not the highest
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pays nothing because the outcome would have been the same without his or her
participation. Without the high-reservation-value person the asset would have
gone to the one with the next highest reservation value so the second-highest
reservation value is the amount that the high-reservation-value person pays. The
pivotal mechanism for determining the output of a public good also imposes a
charge on each individual equal to the cost that his or her participation imposes
on the rest of society.

2.1 The model
As in Section 1, there are n individuals; each utility function has the quasi-
linear form Ui(x, yi) = Bi(x) + yi (i = 1, 2, . . . , n) where x is the level of output
of the public good and yi is individual i’s consumption of the private good. Each
individual i is endowed with ωi units of the private good Y , a unit of which can
either be consumed or used as an input in the production of the public good,
X . The production of x units of the public good requires g(x) units of Y as input.
The amount of the private good Y available for consumption is θ − g(x), where
θ specifies the amount of Y available initially. That is, θ = ω1 + ω2 + · · · + ωn.

Instead of explicitly tracking the level of the public good, we feature a public
project that not only specifies the level of X but also determines how much of
the cost of producing the public good is borne by each individual.

DEFINITION: Public project
A typical public project F specifies the menu xF of public goods produced
and, for each individual i, the amount ci(F ) by which i’s consumption of
the private good falls as a result of the fact that some of the private good is
diverted from consumption to use as input in producing the public good.

By focusing on public projects we simplify the analysis in two ways. First, fea-
sibility is implicit because we will assume that all the projects under consid-
eration can actually be carried out with available resources and technology.
Second, the utility of each individual from each project is determined because
Ui(F ) ≡ Bi(xF ) + ωi − ci(F ) is the utility derived from project F by individual i.
(If i’s share of the cost were not specified then i’s utility from a given level of X
would be unknown.) Clearly, i will prefer project F to project G if and only if
Ui(F ) > Ui(G). In words, i prefers F to G if and only if F yields more benefit to
i net of the effect on i’s consumption of the private good. Note that the project
need not specify only quantities of output—it might include a description of
how a particular industry is to be regulated.

It will not be necessary to explicitly specify how i’s private consumption is
reduced by a particular project, but to the extent that resources are diverted to
produce X there will have to be a reduction in the total community consumption
of Y , and this will inevitably be borne by individuals, although there is a wide
variety of ways in which the distribution of this burden can be determined.
Whatever specific formula is used is captured by the cost functions ci . The cost of
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producing the public good could be shared equally. Alternatively, each person’s
cost share could be proportional to his or her wealth, and so on. Different projects
could employ different cost sharing formulas. In fact the only difference between
projects F and G might be the cost functions employed. That is, F and G might
specify precisely the same set of governments activities, and hence the same
level of government expenditure, but employ different tax formulas to collect
the necessary revenue.

The public projects under consideration could generate negative individual
benefit. For instance, F and G could be alternative proposals for disposing of
nuclear waste. F might require the waste to be dumped in your neighborhood
and G proposes dumping it in my neighborhood. All of the claims that we make
for the pivotal mechanism are valid in cases where the public project reduces
the utility of some individuals.

The pivotal mechanism—which is defined in the next subsection—will col-
lect a surtax from each individual equal to the cost that the individual’s partici-
pation imposes on the rest of society. This surtax is over and above the share of
i’s cost of government activities determined by the cost function ci . Because the
surtax involves the private good, it has efficiency implications. Our initial goal is
project efficiency, by which we mean the selection of the project that maximizes
total utility before any surtaxes are imposed.

DEFINITION: Project efficiency
A mechanism for selecting a single public project from a given set of projects
satisfies project efficiency if it always selects the project that maximizes total
utility.

We are assuming quasi-linear preferences, so maximization of total utility is
necessary and sufficient for efficiency. (We assume that yi > 0 will hold for
each i.)

We use Vi(F ) to denote i’s net benefit Bi(xF ) − ci(F ) from project F . Because
Ui(F ) = Bi(xF ) + ωi − ci(F ) we have Ui(F ) = Vi(F ) + ωi . Let �n

i=1Vi(F ) denote
the sum of the net benefit levels Vi from project F . That is,

�n
i=1Vi(F ) = V1(F ) + V2(F ) + · · · + Vn(F ).

Then �n
i=1Ui(F ) = �n

i=1Vi(F ) + �n
i=1ωi . Therefore, for any two projects F and G

we have

�n
i=1Vi(F ) + �n

i=1 ωi > �n
i=1Vi(G) + �n

i=1 ωi

if and only if �n
i=1Vi(F ) > �n

i=1Vi(G). Therefore, project efficiency is equivalent
to maximizing �n

i=1Vi .

2.2 Two options
Two public projects have been presented to the community for consideration.
(Once we understand how the mechanism works in this setting we examine, in
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Section 2.4, the choice of x from a continuum.) The two proposals are F and G,
and each individual is asked to report the net benefit that she receives from each
project. The project that generates the higher level of total utility is adopted and
carried out.

DEFINITION: Project selection by the pivotal mechanism
Each i is asked to report Vi(F ) and Vi(G). Project F is adopted if �n

i=1Vi(F )
exceeds �n

i=1Vi(G), otherwise G is adopted.

Also each individual is required to pay a surtax equal to the cost that his
or her participation has imposed on the rest of society. Typically, individual i’s
surtax will be zero because the winning project would have generated more total
utility even if i’s net benefit function had not been included.

DEFINITION: The surtax imposed by the pivotal mechanism
Suppose that �n

i=1Vi(F ) > �n
i=1Vi(G), and hence F is selected. If �n

i=1Vi(G) −
Vj (G) > �n

i=1Vi(F ) − Vj (F ) then individual j pays a surtax equal to the dif-
ference. That is, j pays a surtax of

�n
i=1Vi(G) − Vj (G) − [�n

i=1Vi(F ) − Vj (F )].

If �n
i=1Vi(F ) − Vj (F ) ≥ �n

i=1Vi(G) − Vj (G) then j’s surtax is zero.

Note that �n
i=1Vi(F ) − Vj (F ) is the sum of everyone’s net benefit except individ-

ual j’s. The role of the surtax is to induce each individual to reveal his or her
net benefit function Vi truthfully. When the pivotal mechanism is employed,
truthful revelation is a dominant strategy for each individual, as we show.

Again, suppose that F is the winning project. That is, �n
i=1Vi(F ) > �n

i=1Vi(G).
Individual j would not have to pay a surtax if Vj (G) > Vj (F ). Then even without
j’s participation, total net benefit from F certainly exceeds total net benefit
from G because that is the case even when we include Vj . Therefore, j does not
pay a surtax. Nevertheless, the threat of a surtax will prevent this person from
overstating the net benefit that he or she gets from G in order to precipitate the
selection of G. Even when F is the winning project and Vj (F ) > Vj (G), individual
j will not have to pay a surtax if there is more total net benefit from F than from
G even without including Vj .

The only one who pays a surtax is the individual j who gets greater net utility
from the wining project, and the other project would have been selected had Vj

not been included. Even so, the surtax is not so large as to induce individual j
to deviate from truthful revelation to the extent of understating j’s net benefit
from the winning project to precipitate the selection of the other project and
thus escape the surtax. We test these claims with an example before providing a
proof.
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Table 8.2. True Net Benefit Levels

Soren Rosie Edie

Project F 10 19 30
Project G 15 10 40
Surtax 0 0 4

Example 2.1: A community of three individuals

The first two rows of Table 8.2 give the net benefit Vi derived by each person
from each project. If each individual reports truthfully, project G will be adopted
because it yields a total net benefit of 65, versus 59 for F . Although Soren prefers
G to F he does not pay a surtax because G would still win (by 50 to 49) without
Soren’s participation. Rosie does not pay a surtax because the outcome she
prefers was not selected. But Edie pays a surtax because without her participation
the outcome would have been F , which yields a total net benefit to the rest of
the community of 29, versus 25 for G. The surtax that Edie pays is the difference,
which is 4.

Clearly, Soren has no incentive to deviate from the truth: His preferred out-
come is selected without him having to pay a surtax. He can only change the
outcome by causing F to be selected, and then he would have to pay a surtax (of
1). Rosie could cause her preferred outcome F to be selected by overstating her
net utility from F by 7 or more, but then Rosie would have to pay a surtax of (15 +
40) − (10 + 30) = 15. Rosie’s net benefit is 10 when G is selected, and it would
be 19 − 15 = 4 if she misrepresented his or her preference to ensure the victory
of F . Clearly, this would not be to her advantage. Edie could avoid the surtax of
4 by understating her preference for G (or overstating her preference for F ) but
her net benefit when she tells the truth is 40 − 4 = 36, which is greater than her
net benefit when she misrepresents her preference to avoid the surtax. (Her net
benefit from F is only 30.)

In fact there is no situation in which anyone has an incentive to misrepresent
his or her preference.

Pivotal mechanism theorem
Truthful revelation is a dominant strategy for each individual and each spec-
ification of the individual net benefit functions.

Proof
Without loss of generality, assume that F is selected when everyone reports
truthfully. That is, �n

i=1Vi(F ) ≥ �n
i=1Vi(G). Therefore, if individual j has to pay

a surtax the payment will equal

�n
i=1Vi(G) − Vj (G) − [�n

i=1Vi(F ) − Vj (F )].
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We represent this surtax as �i �= j Vi(G) − �i �= j Vi(F ), the total net benefit from
G of everyone in society except j minus the total net benefit from F derived
by everyone in society except for j. We examine individual j’s decision in three
cases.

Case 1. Individual j gets at least as much net benefit from F as from G, and F
provides more total net benefit even when Vj is excluded.

In symbols, Vj (F ) ≥ Vj (G) and �i �= j Vi(F ) ≥ �i �= j Vi(G). There is no incentive
for j to change the reported Vj to ensure the selection of G. That would lower
j’s utility even without a surtax, although j would surely have to pay one if
�i �= j Vi(F ) > �i �= j Vi(G).

Case 2. Individual j gets more net benefit from F than from G, but G provides
more total net benefit when Vj is excluded.

That is, Vj (F ) > Vj (G) and �i �= j Vi(G) ≥ �i �= j Vi(F ). This means that under truth-
ful revelation individual j pays a surtax of �i �= j Vi(G) − �i �= j Vi(F ). Could indi-
vidual j increase his or her utility by deviating from truthful revelation suf-
ficiently to precipitate the selection of G? That would allow j to escape the
surtax, but j would realize less net benefit from G than from F . Because
�n

i=1Vi(F ) ≥ �n
i=1Vi(G) we have

�i �= j Vi(F ) + Vj (F ) ≥ �i �= j Vi(G) + Vj (G),

which implies

Vj (F ) − [�i �= j Vi(G) − �i �= j Vi (F )] ≥ Vj (G).

In words, the net benefit that j gets from F minus the tax surcharge is greater
than j’s net benefit from G. Therefore, j cannot improve on truthful revelation
by precipitating the selection of G.

Case 3. Individual j gets more net benefit from G than from F .

We have Vj (G) > Vj (F ). Individual j would prefer to see G adopted but if j
were to overstate the net benefit that he or she received from G, j would
surely have to pay a surtax if G were selected. That is because F wins when
i reports truthfully, even though Vj (G) > Vj (F ), and so it must be the case
that �i �= j Vi(F ) > �i �= j Vi(G), and thus j would have to pay a surtax equal to
�i �= j Vi(F ) − �i �= j Vi(G). Moreover,

�i �= j Vi(F ) + Vj (F ) ≥ �i �= j Vi(G) + Vj (G)

implies

Vj (F ) ≥ Vj (G) − [�i �= j Vi(F ) − �i �= j Vi(G)].
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Therefore, j will not get more net benefit from G after paying the surtax than j
gets from F . Therefore, j cannot improve on truthful revelation in this case.

We have demonstrated that truthful revelation is a dominant strategy for each
individual. Social cost pricing provides the incentive for individuals to submit
their true net benefit functions. In effect, the individual is induced to maximized
total net benefit. In both cases 2 and 3 the individual has an incentive to ensure
that F is selected because Vj (F ) − [�i �= j Vi(G) − �i �= j Vi(F )] ≥ Vj (G) in case 2
and Vj (F ) ≥ Vj (G) − [�i �= j Vi(F ) − �i �= j Vi(G)] in case 3. Both are equivalent to
�n

i=1Vi(F ) ≥ �n
i=1Vi(G).

2.3 Defects of the pivotal mechanism
The surtaxes provide just the right incentive for individuals to report their benefit
schedules truthfully. The surtax makes it costly for i to overstate i’s preference
for his or her preferred outcome in an attempt to prevent the other from being
selected. And because the surtax is independent of i’s report, as long as it does
not cause the outcome to change, there is no incentive to understate one’s benefit
as there is with benefit taxation. But the surtaxes result in the accumulation of
a government budget surplus. (The surplus is 4 in Example 2.1.)

This budget imbalance is inevitable if the incentive to report truthfully is to
be maintained! The government could return the surplus to the community but
that would alter the incentives and would in fact result in truthful revelation
being inferior to some other strategy in some situations. We can demonstrate
this by means of the net benefit functions of Example 2.1.

Example 2.2: Equal sharing of the surplus

Suppose that the budget surplus were shared equally by the three individu-
als. The true net benefit functions are as given in Table 8.2 of Example 2.1. If
Rosie were to report VR(F ) = 24 and VR(G) = 10 then G would still be selected,
this time by 65 votes to 64. However, the surtax paid by Edie would increase
by 5 to 9, and Soren would have to pay a surtax of 24 + 30 − (10 + 40) = 4.
This means that Rosie would receive a one-third share of a $13 surplus instead
of a one-third share of a $4 surplus. Her utility would increase from 10 + 4/3
to 10 + 13/3 as a result. Therefore, misrepresentation pays in this case. If, how-
ever, she overestimates the support for G from the rest of the community and
claims a net benefit of 26 from F (instead of 19, her true net benefit) then F would
be selected (by 66 to 65) and her net utility would be 19 − (55 − 40) + 5 = 9,
which is less than the net utility that she receives when G is selected, even with-
out considering her share of the budget surplus when G is selected. (By reporting
a net benefit of 26 she will obtain a net benefit from F of 19, but will pay a surtax
of 15 although one-third of that will be returned to her when the budget surplus
is paid out to the community.) Nevertheless, we have demonstrated that truthful
revelation is no longer a dominant strategy.
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Truthful revelation is a dominant strategy only when the government budget
surplus is not rebated to the community. This means that the pivotal mechanism
does not yield efficient outcomes even though it satisfies project efficiency:
The other efficiency requirement, �n

i=1 yi = �n
i=1ωi − g(x), is violated because

the surtaxes by individuals are payments over and above what is required

Table 8.3. True Net Benefit Levels

Soren Rosie Edie

Project F 20 30 40
Project G 30 25 31
Surtax 0 1 5

to purchase the input needed to produce the
public good. By definition, the government
budget surplus is the sum of the individual
surtaxes. Only g(x) units of Y are needed to
produce x units of X , but �n

i=1 yi falls short
of �n

i=1ωi − g(x) by the amount of the sur-
plus, which is positive or zero. However, if
the number of individuals is large then the
surplus will be close to zero on average—
because the probability that an individual’s

participation changes the outcome will be low if the number of voters is large. By
the same token, if the probability that an individual’s participation will have an
effect on the outcome is virtually zero then there is little incentive to participate
in the first place. Thus, the budget surplus problem vanishes only when a more
subtle incentive problem emerges.

Perhaps more serious is the fact that the pivotal mechanism can leave some-
one worse off than if the mechanism had not been used at all.

Example 2.3: Participation can be harmful

As usual, Table 8.3 reveals the true net benefit levels for the respective individuals.
Suppose that F is the status quo, with no change in the government’s provision
of public goods, and G is the consequence of a government project to land on
Mars. The status quo will be retained if the pivotal mechanism is used to elicit
information about individual preference, but the surtaxes that are necessary to
induce truthful revelation leave Edie worse off than if proposal G had not been
considered. There is no change in the status quo, but it costs Edie one-eighth
of her initial net benefit for the pivotal mechanism to determine that the status
quo should prevail.

Another problem is that the mechanism is vulnerable to manipulation by
coalitions—even coalitions of two people.

Example 2.4: Two-person manipulation of the pivotal mechanism

With the true net benefit functions of Table 8.4, if individuals reported truthfully
then G would win, with 90 “votes” to 80, even though the majority prefers F to G.
Although project efficiency is satisfied by the pivotal mechanism under truthful
revelation, if Rosie and Edie collude and each agree to cast 300 “votes” for F
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Table 8.4. True Net Benefit Levels

Soren Rosie Edie

Project F 20 30 30
Project G 40 25 25
Surtax 10 0 0

Table 8.5. Reported Net Benefit Levels

Soren Rosie Edie

Project F 20 300 300
Project G 40 25 25
Surtax 0 0 0

then F will be selected without either having to pay a surtax. This is confirmed
by Table 8.5. Rosie does not pay a surtax because F would win without her, and
Edie does not pay a surtax for the same reason. Each gets a net benefit of 30 as a
result of this ploy, and that is 20% higher than the net benefit that each receives
with truthful revelation and the outcome G.

Although a single individual cannot manipulate the pivotal mechanism, it is
extremely vulnerable to manipulation by a pair of individuals acting in concert.
We can augment Example 2.4 by adding a large number n of individuals who
have the same net benefit function as Soren. As long as Rosie and Edie each
report a net benefit for F of more than 20(n + 1) + 25 then F will be selected
and neither of the collaborators will have to pay a surtax. Rosie and Edie could
successfully collude even if there were millions of other voters.

We are unable to offer a single public decision mechanism that has almost all
of the properties that are important for efficient and democratic public policies.
In some cases the market mechanism may precipitate a better outcome than any

In the United States, the agencies
responsible for liquidating failed prop-
erty and casualty insurance companies
recover only 33% of the book value of the
companies’ assets on average and only
41% of the liquid assets. Part of the prob-
lem is that the state regulatory agents
whose job it is to liquidate the assets of an
insolvent insurance company pay their
own expenses first and do not have much
incentive to maximize the proceeds from
the sale of assets (Hall, 2000).

collective choice process, especially if the
degree of spillover is moderate and the cost of
exclusion is low. (The cost of exclusion is low
if, as in the case of a lake with a single access
road, individuals who don’t pay a user fee can
be prevented from enjoying the public good. In
the case of mosquito control, the cost of exclu-
sion is high.) However, if exclusion is costly and
the degree of spillover is high, then the politi-
cal process has a chance of outperforming the
market system, but a lot will depend the incen-
tives provided to key personnel: Public provi-
sion of the good will require appropriate effort
by the relevant government officials. This effort

cannot be taken for granted because of another private information problem—
hidden action. Just as there is a possibility that the mechanic hired to repair your
car will shirk and charge you for work that was not done, so government agents
can contribute less than their best effort.

This is not to suggest that the private ownership market economy does
not have its own hidden action problems. However, the preference revelation
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problem for the allocation of private goods—commodities with very limited
spillovers—disappears as the number of agents gets arbitrarily large, but it gets
worse when public goods are added to the model.

2.4 A continuum of options
We return to the case where x is a real number, interpreted as the level of output
of the public good. A project is a specification of the quantity x along with the
amount ci(x) by which each individual i’s consumption of the private good is
reduced to obtain the input of Y needed to produce x. Of course, �n

i=1ci(x) =
g(x), where g(x) is the amount of the private good Y required as input to produce
of x units of the public good. We wish to elicit an individual’s entire benefit
function Bi(x) so that the level of x that maximizes �n

i=1[Bi(x) + ωi − ci(x)], or
total utility, can be identified. Note that

�n
i=1 Bi(x) + �n

i=1ωi − �n
i=1ci(x) = �n

i=1 Bi(x) − g(x) + �n
i=1ωi(x),

so total utility is maximized by the Samuelson level of x.
Social cost pricing is the key to the success of the pivotal mechanism, which

requires each agent i to report i’s net benefit function Vi(x) = Bi(x) − ci(x) and
then produces the efficient project. When x varies along a continuum, the cal-
culation of the cost to the rest of society of an individual’s participation is more
complicated than in the two-option case, but the principal is the same. Note that
�n

i=1Vi(x) = �n
i=1 Bi(x) − g(x), so that �n

i=1Vi(x) is maximized by the Samuelson
level of x.

DEFINITION: The pivotal mechanism
If Rj is the net benefit function reported by agent j and x∗ maximizes the
sum of the reported net benefit functions, then x∗ units of X are produced,
each individual j’s consumption of Y is reduced by c j (x∗), and, in addition,
each individual j pays a surtax of

tj =
∑

i �= j
Ri(x j ) −

∑
i �= j

Ri(x∗),

where x j is the value of x that maximizes
∑

i �= j Ri(x).

When the reported net benefit functions are the true ones, the efficient
(Samuelson) level of the public good is produced. Therefore, the pivotal mecha-
nism satisfies project efficiency. (It would be fully efficient if it were not necessary
to collect the surtaxes.) It is easy to see that tj is the cost to the rest of society of
individual j’s participation: The surtax tj is equal to the maximum total utility
that the rest of society could realize without consulting j’s preferences minus
the total utility that the rest of society receives with j’s preferences included and
with the resulting project x∗ adopted.

It remains to show that truthful revelation is a dominant strategy for each
individual in every possible situation. That is, whatever benefit functions are
reported by others, arbitrary agent j cannot gain by reporting a net benefit
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function that is not j’s true Vj = Bj − c j . In other words, there is no function
Rj that will precipitate a higher level of utility for j according to j’s true benefit
function Vj than the utility level that results from reporting that true Vj .

To prove this we temporarily adopt the unilateral decisiveness principle of
Section 1.5: For any value of x, an arbitrary individual can guarantee that x is
selected as the level of the public good by reporting the appropriate net benefit
function. Consider arbitrary individual j. Let R1, R2, . . . , Rn be the reported
benefit functions, with Vj denoting agent j’s true benefit function. Given the
mechanism’s cost rules, which value of x maximizes j’s utility?

Uj = Vj (x) + ω j − tj = Vj (x) + ω j −
∑

i �= j
Ri(x j ) +

∑
i �= j

Ri(x)

= Vj (x) +
∑

i �= j
Ri(x) + ω j −

∑
i �= j

Ri(x j ).

Because ω j − ∑
i �= j Ri(x j ) is independent of j’s reported net benefit function,

it can be treated as a constant from the standpoint of j’s maximization prob-
lem. Therefore, the value of x that maximizes Uj is also the value of x that

The pivotal mechanism has been tested
in laboratory experiments. Surprisingly,
the efficient outcome emerged only 70%
of the time, even though truthful rev-
elation is a dominant strategy (Attiyeh,
Franciosi, and Isaac, 2000). This might
be due to the mechanism’s vulnerability
to collusion.

maximizes Vj (x) + ∑
i �= j Ri(x). What reported

net benefit function by individual j will lead
to the value of x that maximizes Vj (x) +∑

i �= j Ri(x)? If individual j submits Rj (x) then
the value of x selected will be the one that max-
imizes Rj (x) + ∑

i �= j Ri(x). Clearly, individual
j can do no better than setting Rj (x) = Vj (x).
This is the case even if individual j could force
any value of x to be produced. Therefore, with-
out unilateral decisiveness individual j would

still want the same x. In other words, reporting the true Vj (x) is a dominant strat-
egy (The dominant strategy property follows from the fact that we have demon-
strated that setting Rj (x) = Vj (x) is a best response by j whatever the net benefit
functions Ri(x) reported by the other individual, whatever their motivation.)

2.5 Relation to the Gibbard-Satterthwaite Theorem
Truthful revelation is a dominant strategy for each individual when the pivotal
mechanism is used to select a public project. Why does that not contradict the
Gibbard-Satterthwaite Theorem of Chapter 7 (Section 2)? That theorem estab-
lishes that there does not exist a nondictatorial incentive scheme for inducing
truthful revelation when there are more than two possible outcomes. The pivotal
mechanism is even invulnerable to manipulation when there is a continuum of
possible outcomes. And the pivotal mechanism is certainly not dictatorial. To
confirm that, suppose that there are n individuals and person j’s net benefit is
10 from project A and 0 from all other projects. Each of the other individuals
gets a net benefit of 20 from project Z and 0 from all other projects including
project A. Then Z will be selected by the pivotal mechanism, but j prefers A to
Z. Therefore, j is not a dictator.

The key difference between the framework of the Gibbard-Satterthwaite The-
orem and that of the pivotal mechanism is that the latter assumes quasi-linear
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preferences, with each person’s utility being independent of the private goods
consumption of other individuals. The Gibbard-Satterthwaite Theorem, how-
ever, requires a social choice rule to select an outcome for each logically possible
ordering of the feasible alternatives by the individuals. Because the success of
the pivotal mechanism depends on surtaxes, these additional payments must
be part of the model. Once they are included we can no longer assume that any
logically possible ordering is an admissible preference scheme for an individual.
For one thing, the outcome that sees project K carried out with individual j pay-
ing a surtax of $100 will never be preferred by j to the adoption of K without any
additional payment by j. However, the proof of the Gibbard-Satterthwaite The-
orem employs profiles in which the outcome “K plus a $100 payment by j” is at
the top of j’s preference ordering. In short, the proof of the Gibbard-Satterthwaite
Theorem does not go through on the domain of preference profiles for which
the pivotal mechanism induces truthful revelation.

Sources
The pivotal mechanism was discovered independently by Groves (1973) and
Clarke (1971). (See also Tideman and Tullock, 1976.)

Links
Rob (1982) proved that the budget surplus is virtually zero with a large number
of individuals. Green and Laffont (1979) have a simpler proof but they make
stronger assumptions about the probability distribution of voter utilities.

Problem set

1. In the case of two available (i.e., feasible) options, does the pivotal mecha-
nism select the option that is preferred by a majority ? Explain.

2. Consider the case of three individuals, Soren, Rosie, and Edie, and two public
projects F and G. Table 8.6 gives the benefit derived by each person from

Table 8.6. True Net Benefit Levels

Soren Rosie Edie

Project F 10 20 30
Project G 15 10 40

each project—that is, the benefit net of the taxes assessed to command the
resources necessary to construct the project.

A. What project would be undertaken if the pivotal mechanism
were employed and individuals reported their net benefit figures
truthfully? Calculate the surtax for each individual.
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B. Show that none of the three individuals has an incentive to misrep-
resent his or her benefit schedule in this setting of part A. What does
it mean to say that truthful revelation of preference is a dominant
strategy in this case?

C. What is the size of the government budget surplus associated with
your answer to question A?

3. Repeat question 2 for the payoffs of Table 8.7.

Table 8.7. True Net Benefit Levels

Soren Rosie Edie

Project F 4 30 24
Project G 10 20 30

4. Table 8.8 gives you the true net benefit levels for each of three public projects
F, G, and H for each of three individuals. Repeat question 2 for this case.

Table 8.8. True Net Benefit Levels

Soren Rosie Edie

Project F 5 18 33
Project G 10 25 18
Project H 15 10 28

5. Prove that when the Samuelson level of output of the public good is produced
the final allocation will be efficient if and only if the government budget is
balanced.

6. At the end of this section we proved that the budget surplus generated by the
pivotal mechanism is zero or positive. What can you say about the likelihood
of a strictly positive surplus?

7. Suppose that the pivotal mechanism is augmented by having the surplus
returned to the community by giving each individual a fraction of the surplus
that is proportional to the net benefit that the individual gets from the project
that is selected. By means of a specific numerical example, show that truthful
revelation is no longer a dominant strategy.

8. The pivotal mechanism is employed, and the individuals pay equal shares
of the cost of funding public projects (apart from any supplementary tax
employed to get them to reveal their true preferences). For the case Bi(x) =
αi x (i = 1, . . . , n) with αi > 0 and g(x) = 1/2 x2, show that the pivotal mecha-
nism induces individual 1 to report his or her true α1.
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9. The pivotal mechanism is employed, and the individuals pay equal shares
of the cost of funding public projects (apart from any supplementary tax
employed to get them to reveal their true preferences). There are three indi-
viduals, with B1(x) = 2

√
x, B2(x) = 4

√
x, and B3(x) = 12

√
x. For the two

cases, A and B, determine the outcome generated by the pivotal mecha-
nism when g(x) = x. Specify the level of output of the public good, the share
of the cost of financing that public good that is borne by each individual, and
the surtax paid by each person. Compute the utility of each person at the
pivotal equilibrium and compare it with the utility that each enjoys when
no public goods are produced and everyone simply consume his or her own
endowment. What does this comparison reveal about the properties of the
pivotal mechanism?

A. Let ω1 = ω2 = ω3 = 168.

B. Let ω1 = 40, ω2 = 100, and ω3 = 60.

10. The pivotal mechanism is employed, g(x) = x, and the individuals pay equal
shares of the cost of funding public projects (apart from any supplementary
tax employed to get them to reveal their true preferences). For n = 3 and
B1(x) = α

√
x, B2(x) = δ

√
x, B3(x) = λ

√
x, and arbitrary ωi show that person

2’s pivotal surtax is zero if δ = (α + λ). What is the underlying intuition?

11. Consider the following modification of the pivotal mechanism: Use the same
rule for determining the level of output of the public good but change the
surtax formula for each individual j by dropping the term �i �= j Ri(x j ). Prove
that truthful revelation is still a dominant strategy. Assume that the Samuel-
son value of x is positive. Now prove that the government budget is always
in deficit as a result of the modified tax formula.

12. Show that the pivotal mechanism defined in Section 2.2 is actually a special
case of the mechanism defined in Section 2.4. In other words, prove that
when there are only two options the surtax formula of Section 2.4 agrees
with that of Section 2.2.

13. Rework the problem of allocating a single indivisible object to a group of
n individuals by using the framework and notation of this section. Now,
show that the allocation rule and surtax rule defined by the Vickrey auction
coincides with the respective formulas of the pivotal mechanism.

3 GROVES MECHANISMS

Social cost pricing is the key to the success of the pivotal mechanism. Each
individual pays a surtax equal to the cost that the individual’s participation
imposes on the rest of society. Even when no one is pivotal, and no surtaxes
are collected, the threat of a surtax prevents individuals who are disappointed
with the outcome from tilting it in another direction. But it is not the level of the
surtax per se that provides the incentive for truthful revelation, it’s the fact that
the difference between the surtax paid by individual j when j reports truthfully
and surtax paid when j deviates is equal to the change in the cost that j imposes
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on the rest of society. This fact suggests a generalization of the pivotal mechanism
by adding surtaxes (that may be positive or negative) that are independent of
the agent’s own report.

3.1 The model
There are n individuals, indexed by i = 1, 2, . . . , n. There is a given (possibly
infinite) set Q = {q, q′, q′′, . . .} of available public projects. Each individual i has
a payoff function Ui = Vi(q) − ti , where Vi is a real valued function on Q and
ti is a payment by agent i to the government. If ti is negative then individual
i receives −ti dollars from the government. We refer to Vi as i’s net benefit
function—it is net of i’s share of the total cost of producing q. Our key assumption
is that Vi is known only to individual i.

Example 3.1: Retardation of global warming

Each individual is one of the countries of the world, and each q ∈ Q is a proposal
to reduce global warming by x(q) percent by imposing an adjustment cost ci(q)
on each i ∈ N. Then Vi(q) = Bi(q) − ci(q), where Bi(q) is the benefit that country
i receives from q. Suppose, for instance, that the function Bi is the same for each
i ∈ N (or that each Bi is known). The cost functions ci are unknown, however,
and a central authority wants to learn each country’s true cost function so that
the burden of adjustment can be imposed on the low-cost countries. We will see
that it is possible to design an incentive scheme to induce each agent to report
truthfully, in spite of the apparent incentive to claim to be a high-cost country
so that the burden will fall elsewhere.

In many applications there are only two projects under discussion, the status
quo and a new proposal:

Example 3.2: The binary choice model

The agents can be countries, at one extreme, or individuals in a small com-
munity, at the other. Q = {0,1}, where 0 represents the status quo and 1 is the
new proposal. We can let Vi be a number—the difference between i’s benefit at
the new proposal and at the status quo. If �i Vi > 0 then q∗ = 1 (only the new
proposal is efficient), and if �i Vi < 0 we have q∗ = 0 (only the status quo is
efficient).

An important special case of the general framework is the resource allocation
model with pure public goods.

Example 3.3: The public goods model of Section 1

Each individual i is characterized by a utility function Ui representing i’s prefer-
ences, and an endowmentωi of a private good. The utility function is defined over
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the space of consumption plans, and agent i’s plan (x, yi) specifies the amount
x ≥ 0 of a public good available to all and i’s consumption yi ≥ 0 of a single
private good Y . We further simplify by assuming that utility is quasi-linear: For
each i ∈ N there is a real-valued function Bi defined on the set of nonnegative
real numbers, such that

Ui(x, yi) = Bi(x) + yi .

We complete the specification of the fundamental data of the economy by
assuming a real cost function g that specifies the amount g(x) of the private
good required for the production of x units of the public good.

An allocation (x, y) identifies the level of the public good and the vector
y = (yi , y2, . . . , yn) of private good consumption levels. Allocation (x, y) is feasible
if x ≥ 0, y ≥ 0, and

�i yi + g(x) ≤ �iωi .

This is called the resource constraint. In words, the amount of the private good
allocated to agents plus the amount used up in producing the public good cannot
exceed the sum of the endowments.

Each feasible allocation (x, y) corresponds to the project q for which x(q) = x
and ci(q) = ωi − yi . Therefore, the set Q has been implicitly defined. The ben-
efit function is Vi(q) = Bi[x(q)] − ci(q). The Samuelson condition, of course, is
B′

1(x) + B′
2(x) + · · · + Bn(x) = g′(x).

Our framework can even be used to model the distribution of indivisible
private goods. We illustrate with the case of a single indivisible asset.

Example 3.4: Allocation of a single indivisible asset

Q is the set of n-tuples (q1, q2, . . . , qn) such that qi ∈ {0,1} for each i, and �iqi = 1.
(Agent i gets the asset if and only if qi = 1.) If vi is agent i’s reservation value
for the asset, then Vi(q) = vi if qi = 1, and Vi(q) = 0 if qi = 0. If the “asset”
is undesirable then vi is negative. For instance, qi = 1 means that garbage (or
nuclear waste) is stored in region i.

As in the previous section, we strive for project efficiency, which means the
selection of the project that maximizes the sum of the net benefit functions.

DEFINITION: Project efficiency
We say that q∗ is project efficient if it is feasible (i.e., it belongs to Q) and∑

i
Vi(q∗) ≥

∑
i

Vi(q)

for all q in Q.
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This definition is justified by Subsection 5.1 of Chapter 2: With quasi-linear
preferences an outcome is efficient if and only if it maximizes total utility. The
surtaxes that might be collected will render the entire outcome inefficient, but
it will still satisfy project efficiency.

3.2 The mechanisms
We can generalize the surtaxes of the pivotal mechanism to generate the large
family of Groves mechanisms. We preserve the property that the difference
between the surtaxes paid by arbitrary individual j arising from alternative
reported net benefit functions is equal to the difference between the respec-
tive costs imposed on the rest of society. That will allow us to apply the proof
that truthful revelation is a dominant strategy for the pivotal mechanism to this
much larger family. This more general approach employs marginal social cost
pricing.

DEFINITION: Marginal social cost pricing
Marginal social cost pricing is used if alternative decisions D′ and D′′ each
impose costs on the individual making the decision and the difference
between that individual’s cost arising from D′ and the cost arising from D′′

is equal to the total cost incurred by the rest of the group as a result of D′

minus the total cost incurred by the rest of the group as a result of D′′.

If the rest of the group derives benefit from j’s action, then the cost imposed on
j will be negative. That is, individual j receives a payment, and marginal social
cost pricing requires the difference between j’s stipend when j adopts D′ and
j’s stipend when j adopts D′′ to be equal to the total benefit realized by the rest
of the group as a result of D′ minus the total benefit realized by the rest of the
group as a result of D′′.

A Groves mechanism selects the project that maximizes total net benefit
according to the reported net benefit functions and then imposes surtaxes that
embody marginal social cost pricing. That gives us a great deal of latitude, how-
ever, in determining the surtax formulas, and that is why we get a large family
of mechanisms—one for each specification of the surtax formulas.

DEFINITION: Groves mechanism
Each individual i reports a net benefit function Ri , and the project q∗ that
maximizes �i Ri(q∗) is adopted. Each individual j pays a surtax

tj = � j (R1, R2, . . . , Rj−1, Rj+1, . . . , Rn) − �i �= j Ri(q∗)

where � j is independent of j’s report. Each specification of the � j defines a
different Groves mechanism.
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We can let � j depend on the messages of individuals other than i and the mech-
anism will still have the dominant strategy property. The key is that the social
cost of a change in an agent’s message will be reflected in a reduction in that
agent’s transfer.

It remains to show that truthful revelation is a dominant strategy for each
individual in every possible situation. That is, whatever benefit functions are
reported by others, arbitrary agent j cannot gain by reporting a net benefit func-
tion that is not j’s true Vj = Bj (q) − c j . In other words, there is no function
Rj that will precipitate a higher level of utility for j according to j’s true benefit
function Vj than the utility level that results from reporting that true Vj .

Consider the decision of individual 1. Let R1, R2, R3, . . . , Rn be the reported
net benefit functions, with V1 denoting agent 1’s true net benefit function. Given
the mechanism’s cost rules,

U1 = V1(q) − t1 = V1(q) − �1(R2, R3, . . . , Rn) + �i>1 Ri(q).

Because �1(R2, R3, . . . , Rn) is independent of 1’s reported net benefit function,
it can be treated as a constant from the standpoint of 1’s maximization prob-
lem. Therefore, the project q that maximizes U1 is also the q that maximizes
V1(q) + �i>1 Ri(q), and that can be achieved if agent 1 reports V1. Therefore,
individual 1 cannot profit from misrepresenting his or her net benefit function.
The same argument will work for the other individuals.

Source
This section is based on Groves (1973).

Links
For the public goods model of Section 1 (and Example 1.3) any mechanism
for which truthful revelation is a dominant strategy is a Groves mechanism for
some choice of the functions �i . This was established by Green and Laffont
(1977, 1979). Walker (1978) proved the same result for a much narrower family
of preferences. (Walker’s theorem is stronger because a mechanism is required
to operate successfully over a narrower range of cases.) Danilov and Sotskov
(2002, pp. 99–104), work out the extreme assumptions needed to guarantee the
existence of a Groves mechanism that always leads to a balanced government
budget.

4 EFFICIENCY AND INCENTIVE COMPATIBILITY

Because of the surtaxes that are collected in some situations, the pivotal mech-
anism does not guarantee budget balance, and hence it does not guarantee an
efficient outcome, even though it satisfies project efficiency. Now we consider
whether there exists any mechanism that induces truthful revelation and yields
efficient outcomes without sometimes leaving an individual with less utility
than if the mechanism had not been used at all. In Section 4.1, we prove that
there is no such mechanism. In Section 4.2, we relax the incentive compatibility
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requirement by merely asking that a Nash equilibrium exists and that it yield an
efficient outcome. This time we encounter a satisfactory mechanism.

We seek a mechanism for determining the level of output x of a single public
good, along with the consumption yi of a single private good by each individual i.
There are n individuals, and each i is endowed with ωi units of the private
good. (If the public good is not produced at all then individual i consumes
yi = ωi .) Individual i’s preferences are represented by a quasi-linear utility func-
tion Ui(x) = Bi(x) + yi . The production of x units of the public good requires
g(x) units of the private good to be used as input. Therefore, a feasible outcome
(or allocation) must satisfy

y1 + y2 + · · · + yn ≤ ω1 + ω2 + · · · + ωn − g(x).

Efficiency can be satisfied by giving all of the private good to one individ-
ual, say j, and then choosing the output of the public good that maximizes j’s
utility subject to the requirement that j’s consumption of the private good equal
the total amount available initially minus what has to be used as input in the
production of the public good. The outcome would be efficient because it max-
imizes j’s utility, and thus any change would lower it. In other words, it would
be impossible to increase anyone’s utility without making someone else worse
off. This procedure would also satisfy our requirement that truthful revelation
is a dominant strategy: Individual j clearly has no incentive to misrepresent his
or her preference scheme. No one else can profit from misrepresentation either,
because no one else’s preferences have any influence on the outcome. A simple
way of preventing a mechanism from going to such a dreadful extreme is to
require it to select a level of output of the public good in a way that leaves all
individuals at least as well off as they were before the mechanism was employed.
We refer to this as the participation constraint.

DEFINITION: Participation constraint
For each individual i, utility at equilibrium must be at least as high as i’s
utility when i consumes 0 units of the public good and ωi units of the private
good. That is,

Bi(x) + yi ≥ Bi(0) + ωi

where x is the output of the public good at equilibrium and yi is i’s consump-
tion of the private good at equilibrium.

The participation constraint disqualifies absurd mechanisms such as the
dictatorial scheme of the previous paragraph.

∂4.1 Dominant strategy equilibrium
We simplify by assuming that there are only two individuals and that the produc-
tion of x units of the public good requires x2 units of the private good as input.
In symbols, g(x) = x2. We also assume that ω1 = 2.5 = ω2. In addition, we limit
the benefit functions Bi(x) to those of the form βi ln(x + 1), where βi can be
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any positive constant. Note that the first derivative of i’s benefit function Bi(x)
is βi/(x + 1), which is positive for all x ≥ 0. Applying Section 1.2 to the present
case, if y1 > 0 and y2 > 0 then the outcome is efficient only if it maximizes total
utility subject to y1 + y2 = ω1 + ω2 − g(x) = 5 − x2. This gives us a very simple
model, but even so we prove that there exists no mechanism for which truthful
revelation is a dominant strategy, the participation constraint is satisfied, and
the outcome is efficient.

We prove that the participation constraint does in fact imply y1 > 0 and
y2 > 0, and thus to characterize the efficient outcomes we maximize

β1 ln(x + 1) + β2 ln(x + 1) + 5 − x2. [5]

The first derivative of this function is

β1

x + 1
+ β2

x + 1
− 2x, [6]

and the second derivative is therefore equal to

−β1(x + 1)−2 − β2(x + 1)−2 − 2

which is negative for all values of x. Therefore, setting [6] equal to 0 will lead to
a unique maximum of [5].

We have β1/(x + 1) + β2/(x + 1) − 2x = 0 and thus 2x2 + 2x − β1 − β2 = 0,
which yields

x∗ = −0.5 + 0.5
√

1 + 2β1 + 2β2, [7]

the Samuelson level of x. (There is a second root for which x < 0, but it is of
no interest in this case.) Therefore, an efficient allocation for which y1 > 0 and
y2 > 0 must satisfy x = x∗ and y1 + y2 = 5 − (x∗)2. And if those conditions are
satisfied the outcome is efficient because it maximizes total utility.

We now have enough background to consider whether it is possible to design
incentives in such a way that all individuals will report their benefit parameters
βi truthfully. We show that it is impossible to do so without violating efficiency
or else making someone worse off than he or she was before the public good
was provided.

Impossibility theorem:

If truthful revelation is a dominant strategy for a mechanism, it will either
fail to deliver an efficient outcome for some specifications of the individ-
ual benefit functions or else violate the participation constraint for some
specifications of the individual benefit functions.

Proof
We investigate the family of mechanisms that generate efficient outcomes and
which satisfy the participation constraint. We show that every member of that
family will provide opportunities for an individual to profit from misrepresenting
his or her preference in some situations.
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We begin with the case β1 = β2 = 2. Then by [7]

x∗ = −0.5 + 0.5
√

1 + 4 + 4 = 1.

Suppose that the mechanism delivers x units of the public good and leaves
individuals 1 and 2 with y1 and y2, respectively, of the private good. Because
we cannot yet rule out y1 = 0 or y2 = 0, at this stage we can only be sure that
efficiency implies x ≤ 1, as we now show.

Because the second derivative of [5] is negative it has a unique global max-
imum at x∗ = 1 of [7]. If x > 1 we can increase total utility by reducing x to
x∗ = 1. The private good thereby released can be divided equally between the
two individuals to increase the utility of each. (Consult Section 1.2 if necessary.)

We have x ≤ 1 at an efficient outcome. Suppose in addition that yi = 0. Then
i’s utility cannot be greater than

2 ln(1 + 1) < 1.4 < 2.5 = ωi .

Therefore, the participation constraint implies that y1 > 0 and y2 > 0. It follows
that efficiency implies x = x∗ = 1. This requires 1 unit of the private good as
input so we must have y1 + y2 = 5 − 1 = 4. Therefore, either y1 ≤ 2 or y2 ≤ 2.
Without loss of generality, assume that y1 ≤ 2.

We conclude the proof by showing that when individual 1’s benefit parameter
is β1 = 2 that individual can get a higher level of utility by reporting β1 = 2/9 than
by reporting truthfully. Let x′, y ′

1, and y ′
2 denote the equilibrium when β1 = 2/9

and β2 = 2. Note that when β1 = 2/9 and β2 = 2, condition [7] becomes x∗ = 2/3.
Therefore, efficiency implies x′ ≤ 2/3 in that case, because if x′ > x∗ total utility
can be increased by reducing x′ to 2/3. (The private good thereby released can
be divided between the two individuals to increase the utility of each.) The
participation constraint implies

2
9

ln
(

2
3

+ 1
)

+ y ′
1 ≥ 2

9
ln(x′ + 1) + y ′

1 ≥ 2.5 [8]

when person 1 reports β1 = 2/9. (The mechanism can do no better than work
with the benefit functions that it is given, and thus it must provide an outcome
that is efficient with respect to those functions.) Now, [8] implies

y ′
1 ≥ 2.5 − 2

9
ln

(
5
3

)
> 0.

But y ′
1 > 0 and efficiency imply x′ = 2/3. (Because β2 = 2 we have already estab-

lished y ′
2 > 0.) Finally, x = 2/3 and y1 ≥ 2.5 − (2/9) ln (5/3) imply

U1 = 2 ln(x′ + 1) + y ′
1 ≥ 2 ln

(
5
3

)
+ 2.5 − 2

9
ln

(
5
3

)
> 3.40. [9]

When person 1 truthfully reports β1 = 2 we have y1 ≤ 2 and x ≤ 1 and thus

U1 = 2 ln(x + 1) + y1 ≤ 2 ln 2 + 2 < 3.39. [10]

Statement [10] establishes that person 1’s utility is less than 3.39 when that per-
son reports the true benefit parameter β1 = 2, but [9] shows that his or her utility
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will be higher than 3.40 if that person claims that his or her benefit parameter is
β1 = 2/9. Therefore, person 1 can manipulate when β1 = 2 = β2.

Note that our proof is valid for any mechanism, whether it asks individuals to
report their benefit functions directly or uses a more subtle system of messages.
No mechanism can satisfy all three properties because efficiency and the par-
ticipation constraint imply that truthful revelation is not a dominant strategy
for all specifications of individual preferences. This is unfortunate because the
fact that an individual’s preference information is hidden from others means
that it must work well for a wide range of individual preferences—because
the true preferences are unknown when the community chooses or designs a
mechanism.

4.2 Nash equilibrium
A dominant strategy is a best response to anything that one’s rivals might do. A
strategy is a component of a Nash equilibrium if it is merely a best response to
what others are currently doing. Typically, a Nash equilibrium is not a dominant
strategy equilibrium. The latter is much more demanding. Therefore, we relax
the requirement that truthful revelation be a dominant strategy for each indi-
vidual and simply ask for a Nash equilibrium that is efficient. We also impose
the participation constraint.

We assume that for each output level q of the public good the cost share
ci(q) of each individual i is exogenously given. Then Vi(q) = Bi(q) − ci(q) is i’s
net benefit function. We assume that ci(0) = 0 for each i. In words, if the public
good is not produced, then no one is charged.

As in the case of the market process (studied in Section 1.3), each individual
i has an opportunity to add an amount xi to the amount of the public good
available to all. But we now employ a mechanism that differs from the market
mechanism in two important respects: First, the individual is allowed to reduce
the output of the public good. In other words, xi can be negative. At equilibrium,
x1 + x2 + · · · + xn units of the public good are provided. (There are n individuals,
and in this section we assume that n ≥ 3.) Second, individual i’s consumption of
the private good is not reduced by xi multiplied by the price of the public good.
That doesn’t lead to an efficient outcome, as we saw in Section 1.3. If q = x1 +
x2 + · · · + xn units of the public good are produced, individual i’s consumption of
the private good is reduced by ci(q) but i receives a transfer payment of xi+1 − xi−1

multiplied by the amount of the public good produced. An individual’s transfer
could be negative, in which case that individual pays that amount of money into
a fund that is used to give positive transfers to others. We use the term transfer
payment to emphasize that each dollar received by someone is a dollar paid by
someone else.

DEFINITION: Walker’s mechanism
Each individual i announces a real number xi and x1 + x2 + · · · + xn units
of the public good are produced, with each individual’s share of the cost
determined in advance. We will refer to xi as individual i’s demand for the
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public good. Given the demands, each individual i receives a transfer pay-
ment of

(xi+1 − xi−1) × (x1 + x2 + · · · + xn) .

(If i = n then i + 1 is interpreted as individual 1, and if i = 1 then individual
i − 1 is person n.)

We show that a Nash equilibrium of the Walker mechanism is efficient and
that it satisfies the participation constraint. The latter is satisfied because one of
the strategies available to individual i is to set xi equal to the negative of the sum
of the xj over all j �= i. That will result in x = 0, yi = ωi , and Ui = ωi . If the indi-
vidual adopts a different strategy, it must be because it will yield more utility. At a
Nash equilibrium, where each individual is employing a best response strategy,
individual i’s utility must be at least ωi . Hence, the participation constraint is sat-
isfied. For this subsection only we let x denote (x1, x2, . . . , xn), the list (or vector)
of demands. The total is denoted σ (x). That is, σ (x) = x1 + x2 + · · · + xn is the
total amount of the public good produced if x constitutes a Nash equilibrium.
Let mi(x) denote i’s transfer payment.

Now, let x = (x1, x2, . . . , xn) be a Nash equilibrium. We show that the outcome
is efficient. First, we show that we have budget balance, which means that the
transfer payments sum to 0. Individual i’s transfer is mi(x) = (xi+1 − xi−1) × σ (x).
Then for all x,

1
σ (x)

× [m1(x) + m2(x) + · · · + mn(x)]

= x2 − xn + x3 − x1 + · · · + x1 − xn−1

= x2 + x3 + x4 + · · · + xn−1 + xn + x1

− [xn + x1 + x2 + · · · + xn−3 + xn−2 + xn−1] = 0. [11]

The transfer payments do sum to 0.
We prove that the equilibrium is weakly efficient by showing that any out-

come that gives everyone more utility than the Nash equilibrium x is not feasible.
Consider the output level q of the public good, and transfer payments s1, s2, . . . sn.
Suppose that for each individual i

Vi(q) + si > Vi(σ (x)) + mi(x).

Individual i could have adopted a strategy that resulted in q units of the public
good being provided. Specifically, given the demand xj of each j �= i, if i demands
di

i = q − [σ (x) − xi] then we have σ (di) = q if we set di
j = xj for all j �= i. By

definition of Nash equilibrium, individual i chose to demand xi instead of di
i

and hence we must have Vi(σ (x)) − mi(x) ≥ Vi(σ (di)) − mi(di) = Vi(q) − mi(di).
Then we have for each i,

Vi(q) + si > Vi(σ (x)) + mi(x) ≥ Vi(q) + mi(di).
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Therefore, Vi(q) + si > Vi(q) + mi(di). It follows that si > mi(di) for each i. (The
output of the public good is the same in the two situations, so the preferred
outcome must give individual i a higher transfer payment.) Therefore,

s1 + s2 + · · · + sn > m1(d1) + m2(d2) + · · · + mn(dn). [12]

But we have σ (di) = q, di
i+1 = xi+1 , and di

i−1 = xi−1 for each individual i. There-
fore,

mi(di) = (xi+1 − xi−1) × q,

which implies that m1(d1) + m2(d 2) + · · · + mn(dn) = 0 by [11]. Therefore, [12]
implies

s1 + s2 + · · · + sn > 0.

The transfer payments s1, s2, . . . , sn are not feasible because they have a pos-
itive sum. Anyone who “receives” a negative transfer actually pays that amount
of money. Because s1 + s2 + · · · + sn > 0, the amount of money received exceeds
the amount paid in. This means that the outcome that provides q units of the
public good, along with transfer payments s1, s2, . . . , sn, is not feasible. We have
shown that no feasible outcome can give everyone more utility than the Nash
equilibrium.

Could there be a feasible outcome that gives, say, individual j more utility
without leaving anyone else with less utility? No. If that were possible, then
individual j could give a tiny amount of money to everyone else and we would
then have a feasible outcome that gave everyone strictly more utility than the
Nash equilibrium. But we have just proved that that is impossible. Therefore the
Nash equilibrium is efficient.

∂Example 4.1: Three individuals

The production of q units of the public good requires q units of the private good
as input. We have ci(q) = 1/3q for each i. In words, each individual pays a third of
the cost of the producing the public good. The respective utility functions are

U1 = ln(q + 1) + y1, U2 = 2 ln(q + 1) + y2, U3 = 3 ln(q + 1) + y3.

The transfers are

m1 = (x2 − x3)q, m2 = (x3 − x1)q, m3 = (x1 − x2)q.

The efficient level of the public good is value of q that maximizes

ln(q + 1) + 2 ln(q + 1) + 3 ln(q + 1) + ω1 + ω2 + ω3 − q.

The first derivative is 6/(q + 1) − 1, and when we set this equal to 0 we get
q = 5, which is the efficient amount of the public good. Person i pays 1/3 q
as i’s share of the cost of producing q, and i receives a transfer of ti × q.
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Therefore i pays a total of (1/3 − ti)q. At a Nash equilibrium of the Walker mech-
anism

x1 maximizes ln(x1 + x2 + x3 + 1) + ω1 +
[
−1

3
+ x2 − x3

]
× [x1 + x2 + x3],

x2 maximizes 2 ln(x1 + x2 + x3 + 1) + ω2 +
[
−1

3
+ x3 − x1

]
× [x1 + x2 + x3],

x3 maximizes 3 ln(x1 + x2 + x3 + 1) + ω3 +
[
−1

3
+ x1 − x2

]
× [x1 + x2 + x3].

The respective first order conditions are

1
x1 + x2 + x3 + 1

− 1
3

+ x2 − x3 = 0,

2
x1 + x2 + x3 + 1

− 1
3

+ x3 − x1 = 0,

3
x1 + x2 + x3 + 1

− 1
3

+ x1 − x2 = 0.

We know that the Nash equilibrium is efficient, and thus x1 + x2 + x3 = 5.

1
6

− 1
3

+ x2 − x3 = 0.

2
6

− 1
3

+ x3 − x1 = 0.

3
6

− 1
3

+ x1 − x2 = 0.

The second equation yields x3 = x1, and the third is x2 − x1 = 1/6. Because
x1 + x2 + x3 = 5 we need to solve

x2 − x1 = 1
6

and 2x1 + x2 = 5.

The solution is x1 = 29/18, x2 = 32/18, and x3 = 29/18. These values give us the
transfers m1 = (1/6)q, m2 = 0, and m3 = −(1/6)q. Now, substitute these trans-
fers into the respective individual utility functions and then show that q = 5
maximizes each of the functions

ln(q + 1) + ω1 +
(

−1
3

+ 1
6

)
× q,

2 ln(q + 1) + ω1 +
(

−1
3

+ 0
)

× q,

3 ln(q + 1) + ω1 +
(

−1
3

− 1
6

)
× q.

The purpose of the transfers is to adjust each individual’s marginal cost of
acquiring an additional unit of the public good so that everyone wants the same
amount of the public good. That guarantees that a Nash equilibrium exists. By
having the transfers sum to zero we not only balance the government’s budget,
we precipitate an efficient outcome at equilibrium. However, although the aver-
age cost taxation mechanism of Section 1.5 always yields an efficient outcome
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at equilibrium, a Nash equilibrium almost never exists, which in not the case for
the Walker mechanism. That’s because each individual’s marginal cost of acquir-
ing an additional unit of the public good is exogenously determined by average
cost taxation—independently of anyone’s preferences. We illustrate with a final
example.

∂Example 4.2: Average cost taxation

The setup is the same as for Example 4.1 except that we employ average cost
taxation instead of the Walker mechanism. We have ci(q) = 1/3 q for each indi-
vidual i but there are no transfers. If a Nash equilibrium exists and it leads to the
production of q units of output, then q maximizes each of the three functions

U1 = ln(q + 1) + ω1 − 1
3

q,

U2 = 2 ln(q + 1) + ω2 − 1
3

q,

and

U3 = 3 ln(q + 1) + ω3 − 1
3

q.

The respective first order conditions are:

1
q + 1

− 1
3

= 0,
2

q + 1
− 1

3
= 0, and

3
q + 1

− 1
3

= 0.

These three conditions can’t be satisfied simultaneously. Therefore, there is no
Nash equilibrium.

Sources
The impossibility theorem of Section 4.1 was discovered and proved by Leonid
Hurwicz (1972) for the case of pure private goods. It was Hurwicz who taught
economists how to investigate the role of incentives in general equilibrium
resource allocation. We actually employ the theorem presented by Roberts (1979)
for the standard public goods model. The mechanism of Section 4.2 was devised
by Walker (1981).

Links
See Walker (1980) for a more thorough investigation of the possibility of using
dominant strategies to identify an efficient outcome. The Nash equilibria for
Walker’s mechanism are Lindahl equilibria, and the existence of a Lindahl equi-
librium is proved in Foley (1970) and Milleron (1972). See Corchón (1996) and
Repullo (1987) for a general treatment of Nash implementation. Chen (2006)
discusses the performance of mechanisms in a laboratory setting.

Problem set

1. Design a mechanism that satisfies the participation constraint and is invul-
nerable to manipulation by any individual. (Of course, it won’t be the case
that the equilibria are always efficient.)
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2. Design a mechanism that satisfies the participation constraint and that
always yields equilibria that are efficient. (Of course, it has to be the case
that at least one individual can manipulate the mechanism in some situa-
tions.)

3. Rework Example 4.1 with c1(q) = 1/4 q instead of c1(q) = 1/3 q, c2(q) = 1/4 q
instead of c2 (q) = 1/3 q, and c3(q) = 1/2 q instead of c3(q) = 1/3 q.

4. Rework Example 4.2 with U1 = β1 ln(q + 1), U2 = β2 ln(q + 1), and U3 =
β3 ln(q + 1). Find a condition on the benefit parameters β1 , β2 , β3 for which
a Nash equilibrium of the average cost mechanism exists.

5. Repeat question 3 but with c1(q) = λ1q, c2(q) = λ2q, and c3(q) = λ3q, where
λ1, λ2, and λ3 are given fractions that sum to 1.
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This chapter examines allocation problems for which the scarce resources are
available only in discrete units, such as dormitory rooms, and each “consumer”
wants one unit and only one unit. The objective is to match students with rooms,
or available kidneys with the patients on a waiting list for a transplant, and so
forth. The entire family of matching problems can be subdivided in two different
ways. We can classify according to the nature of preferences. On one hand,
suppose that an economics department has a given number of students (i.e.,
majors) and professors, and the objective is to assign each student a professor-
advisor. In this case both sides of the match have preferences: Students like some
professors better than others, and the professors also have preferences over the
students. On the other hand, there are matching problems for which only one
side of the match has preferences: Students have preferences for dormitory
rooms, but the rooms don’t have preferences for students. A matching problem
for which only one side has preferences is referred to as an assignment problem.
The objective is to assign students to rooms, for instance.

The other way to classify matching problems is according to whether we can
have an outcome in which some agent is matched more than once. In the case
of college admissions, each student will be matched with at most one college,
but each college is matched with more than one student. In that case, we say
that we have an admissions problem. An admissions problem may or may not
be an assignment problem. In the case of college admissions, the colleges do
have preferences for students—if only for students with high test scores—and
the students certainly have preferences for colleges. So college admissions is not
an assignment problem.

If an allocation problem belongs neither to the admissions family nor the
assignment family we say that it is a marriage model. In other words, a marriage
model is one in which there are two types of agents: There is a set of W types and
a set of M types. Each member of each type has preferences for the members
of the other type, and each agent is matched with at most one member of the
other type. The problem of matching students and advisors can be a marriage
model. A student will have at most only one advisor, and if there is a department
rule limiting a professor to at most one advisee then we have a marriage model.
However, in the case of a department in which the professors know nothing
about the students—they are freshmen, for instance—the professors will not
have preferences for the students, so we have an assignment problem. And if
there are more students than professors it is also an admissions problem if some
professors are allowed to have more than one advisee. Our objective is not to
classify allocation problems, however, but to solve them by designing satisfactory
allocation procedures.

In general, there are two types of agents, As and Bs, and the objective is to
match the As with the Bs and vice versa. There will be many ways to do this.
If there are ten of each type then the marriage model has 36,288,000 different
solutions—not including cases where at least two agents are unmatched. (We
allow preferences that declare “I’d rather be unmatched than paired with him.”)
Some of the arrangements are efficient, but many will not be. Clearly, we want
an outcome that at least passes the efficiency test. We also want an economical
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procedure for matching the As and Bs. In particular, there will be very many
ways of matching, and we don’t want to employ an algorithm that consumes
vast amounts of time and money working itself out. Of course, we also want to
respect individual rights. We don’t want to match agent α with agent β if α would
prefer being unmatched to having β as a partner. Respecting rights opens the
door to the possibility of manipulation. By declaring that she would rather be
unmatched than paired withβ, when that is not in fact true, agentα may force the
procedure to give her a match that she prefers to the one that she would have had
if she had reported her preferences truthfully. Therefore, we look for matching
procedures that are incentive compatible, in the sense that they induce truthful
revelation of preferences.

To simplify the discussion we assume throughout that all agents have pref-
erences that are strict, in the sense that they are never indifferent between two
agents of the opposite type; one will be strictly preferred to the other. Of course,
in the case of assignment problems this applies only to the type with preferences.
For the most part, we assume that all agents care only about their own match.
In other words, agent α’s welfare is unaffected by matches that do not involve α.

1 STUDENTS AND ADVISORS

An economics department has a set M of majors, each of whom is referred
to as type M. There is also a set W of professors, the type W agents. Some of
the majors want to do an honors thesis, and that requires having a professor
as an advisor. Each thesis writer needs only one advisor, and the department
has a rule preventing a professor from advising more than one student. Each
professor has encountered each student in one or more classes, so the professors
have preferences for the students. And the students certainly have preferences
for the professors. Hence, we have a marriage model, the subject of this section.

1.1 One-to-one matching
In this section we use the evocative language of matching men and women for
expositional purposes, even though we actually are investigating institutional
procedures for determining satisfactory matches.

DEFINITION: Marriage model
There are two types of agents, W and M. Each W will be matched with at most
one M, and each M will be matched with at most one W. The Ws have prefer-
ences for the Ms and vice versa. A specific matching π = {(A, Z), (B, Y ), . . .}
is a set of pairs: Agent A belonging to W is matched with agent Z belonging
to M, and so on. A specific member of a matching, such as (A, Z), will be
termed a match. If an agent is not matched with anyone we say that the agent
is single.
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We are obviously using W and M as mnemonics for women and men. We do not
recommend our matching procedure for real-world marriages. Our objective is
to improve the matching procedure in cases such as the student-advisor rela-
tionship. This is problematic because, in general, there will be no obvious best
match, as our first example reveals.

Example 1.1: Two agents of each type

The two W types are A and B, and the two M types are Y and Z. A prefers Y to
Z and B prefers Z to Y . Therefore, it is possible to give each W her first choice.
However, Y prefers B to A and Z prefers A to B. It is also possible to give each M his
first choice. There are only two possible matchings, but neither gives all agents
their first choice. On one hand, the matching π = {(A, Y ), (B, Z)} gives each
W her first choice but each M gets his second choice. On the other hand, π ′ =
{(A, Z), (B, Y )} gives each M his first choice but each W gets her second choice.

When there are three (or more) agents of each type there will typically be
matchings that are efficient but which are not stable in the sense that there will
be an individual W and an individual M who would each prefer to be paired with
the other rather than with the partner assigned by the matching in question.

DEFINITION: Stable matching
A matching π is stable if no agent prefers being single to his or her match at
π , and if we cannot find two agents w and m of the opposite type such that
w prefers a match to m to her situation at π , and m prefers a match to w to
his situation at π . We say that w and m can upset the matching π if each does
prefer the match (w, m) to his or her situation under π .

If π is stable and (w, m′) is one of the matches specified by π , then neither w nor
m′ prefers being single to that match, and there is no other match (w ′, m) such
that w prefers a match with m to the match with m′ and m prefers a match with
w to his match with w ′.

All but two of our examples feature more than two members of each set, so
we display the preferences in tabular form, with each column representing the
preference ordering of the type that heads the column. The agent at the top will
be most preferred, with the others listed in descending order of preference.

Example 1.2: An unstable matching

W = {A, B, C} and M = {X, Y, Z} with the preferences as specified in Table 9.1.
Agent A prefers Y to X and X to Z (and of course, Y to Z). The preferences of
the others are interpreted similarly. The matching π = {(A, Y ), (B, Z), (C, X )}
is not stable because B would rather have X than Z, and X would rather have B
than C .
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Table 9.1

A B C X Y Z

Y X X B B A
X Z Z C A B
Z Y Y A C C

Every stable outcome is efficient, as we
now prove: Suppose that π = {(w1, m1), (w2, m2),
(w3, m3), . . . , (wn, mn)} is a stable matching, but π ′

is another matching that wi prefers to π . To estab-
lish that π is efficient, we need to show that some
agent is worse off at π ′ than at π . Suppose that
wi is single at π . Then wi must have a match at
π ′. Say wi is matched with mj at π ′. If mj is sin-
gle at π and mj prefers a match with wi to being

single then π cannot be stable because then wi and mj both would prefer the
match (wi , mj ) to their situations under π . Because π is stable, if mj is single at
π then he prefers being single to a match with wi and thus mj is worse off at π ′

than at π . Suppose, then, that mj is matched at π , to wj . If mj prefers wi to wj

then π cannot be stable because then wi and mj each prefer π ′ to π . Because
π is stable, it must be the case that mj prefers wj to wi , and it follows that mj

is worse off under π ′ than under π . Finally, suppose that wi is not single at π

and is matched, say to mi . Then wi must be matched at π ′, say to mj . (We know
that wi prefers mi to being single, because π is stable, and wi prefers π ′ to π .) If
mj prefers being matched with wi to his situation under π , then π wouldn’t be
stable. Therefore, stability of π implies that mj is worse off at π ′ than at π . We
have exhausted all the possibilities, so someone would be harmed by a move
from π to π ′, and hence π is efficient.

Every stable matching is efficient.

It is not the case that every efficient matching is stable, as we demonstrate
with the next example.

Example 1.3: An efficient matching that is not stable

W = {A, B, C} and M = {X, Y, Z} with the preferences as specified Table 9.2.
Consider the matching π = {(A, X ), (B, Y ), (C, Z)}. It is not stable because both
A and Y prefer the match (A, Y ) to the match that they each have at π . However,
it is efficient because if we begin with π and modify A’s match then A will be

Table 9.2

A B C X Y Z

Y Y Z A A Z
X B

worse off unless we replace (A, X) with (A, Y). But if we do that we make X worse
off. If we modify B’s match at π then we make B worse off, and if we modify
C ’s match at π we make C worse off. Note that π remains efficient and unstable
even if we add missing agents to any and all of the preference orderings, as long
as the inserted agents are ranked below those already listed.
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We have acknowledged the possibility that an agent may prefer to remain
single rather than to be matched with a particular agent of the opposite type.
This is captured by the column representing the agent’s preference ordering by
simply omitting the unacceptable agents. For the agent preferences as displayed
in Table 9.2, A finds Z unacceptable, B finds both X and Z unacceptable, and
so on.

DEFINITION: Acceptability
If agent α prefers being single to being paired with β we represent that fact
by showing α’s preference ordering without listing β at all, and we say that β

is unacceptable to α. We assume that no agent is indifferent between two
acceptable agents of the opposite type.

It is easy to specify a matching algorithm that always generates a stable
outcome. The deferred acceptance algorithm (DAA) is the one that we examine:
We select one of the types, say W. Each W type proposes to the M type at the top
of her preference ordering—the M that she most prefers, in other words. At the
next stage each M provisionally accepts the W agent that he most prefers of all
the acceptable agents that proposed to him and rejects all other proposals. At the
third stage each rejected W type proposes to the next type M on her preference
ordering. At that point there could be some Ms with two or more proposals.
Each M type then rejects all proposals but the one from an acceptable W that
ranks higher in his preference ordering than any other agent from which he has
received a proposal. This means that he may reject an agent that he provisionally
accepted at a previous stage. If an agent w is rejected by an agent m at some stage
then w cannot propose again to m at a later stage. The algorithm continues
alternating proposing by Ws and accepting or rejecting by Ms until

� every W type either has a provisional acceptance or else has proposed to,
and been rejected by, every M type that is acceptable to her, and

� every M has rejected all proposals from unacceptable Ws and has rejected all
proposals that rank lower in his preference ordering than some acceptable
W from whom he has received a proposal.

At this point each M firmly accepts the one proposal that has not been
rejected, if there is one, and remains single otherwise. This determines the
matching. The algorithm is a deferred acceptance procedure because accep-
tances are not binding until the terminal round. (Of course, we could start from
the beginning and have the M types doing the proposing and the Ws accepting
or rejecting.)

Example 1.4: Deferred acceptance with five agents of each type

Let W = {A, B, C, D, E} and M = {S, T, X, Y, Z} with the preferences as spec-
ified in Table 9.3. Note that each W is acceptable to some M and each M is
acceptable to some W. Note also that A would only consent to a match with Y .
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Table 9.3

A B C D E S T X Y Z

Y Z S X T D B E A D
T Z Y S A D C B A
S X S Z C C A C C
Y T B E E B
X E A D

Every other M is unacceptable to A. For D, E , and X there are only three accept-
able agents of the opposite type—agents who would be preferred to being single.
Now, let’s apply the DAA, with the Ms doing the proposing. After the first round
of proposals, and rejections or provisional acceptances, the matches are

(A, Y ), (B, T), and (D, S).

Note that both S and Z propose to D on the first round, and D responds by
rejecting Z and accepting S. Note also that X has proposed to E but was rejected
because E would prefer to be single. No M proposes to C at the first stage because
no M has C at the top of his preference ordering. Because X and Z were rejected
at the first stage, each now proposes again: X to his second choice, C , and Z to
his second choice A. But A rejects Z because she would prefers Y to being single
and being single to a match with Z. However, C accepts X , her only proposal, at
this stage. The preliminary matches are now

(A, Y ), (B, T), (C, X ), and (D, S).

Finally, Z proposes to his third choice, C , who now has proposals from both X
and Z. Because C prefers Z to X she accepts Z and rejects X , so we now have

π∗ = {(A, Y ), (B, T), (C, Z), (D, S)}.

This is the outcome of the DAA. Both E and X will remain single. X will propose
to A but will be rejected in favor of Y . X has now been rejected by all Ws that are
acceptable to him. It is clear that π∗ is the terminal stage of the DAA.

It is easy to confirm that π∗ of Example 1.4 is stable: A cannot find a preferred
match because she prefers being single to being paired with anyone but Y .
Similarly, S, T , and Y are each matched with the W that they most prefer, and so
none of them has an incentive to deviate from π∗. Can we find a pair from {B, C ,
D, E , X , Z}who would prefer each other to the partner assigned byπ∗? B is paired
with T , and would prefer Z who prefers C to B. Similarly, C would only prefer S to
the partner assigned by π∗, but S is assigned her first choice. Finally, can we find
a pair from {D, E , X , Z} who would prefer each other to the partner assigned
by π∗? There are only four possibilities: (D, X ), (D, Z), (E , X ), and (E , Z). But X
prefers being single to a match with D, and D prefers being single to a match
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with Z. Of course Z prefers being single to a match with E , and E prefers being
single to a match with X . Therefore, π∗ is stable.

1.2 The main results
It is quite easy to prove that in every application of the DAA the outcome will be
stable. Suppose that the Ws propose and the Ms accept or reject. Let π be the
outcome of the DAA. Suppose π is not stable, and that w and m are not matched
by π , but w prefers m to the match that she is assigned by π (or prefers m to being
single if π leaves her single). Then w must have proposed to m at some stage in
the operation of the DAA. Because (w, m) is not a match for π , then m must have
rejected w, preferring some other agent w ′ to w. If (w ′, m) is a match determined
by π then w and m cannot upset π . If (w ′, m) is not a match for π then m must
have rejected w ′ at some stage, preferring some other agent w ′′. If (w ′′, m) is the
match determined for m by π then we know that m prefers w ′′ to w ′ and w ′ to w.
Therefore, m prefers w ′′ to w, and hence prefers his match at π to (w, m). Then
w and m will not upset π . If (w ′′, m) is not the match determined for m by π then
m prefers some other agent in W to w ′′, and so on. When we do finally arrive at
the partner w∗ determined for m by π then we will have a chain in which agent
m prefers w∗ to some other member of W, who is preferred to another member
of W, and so on until we get to w ′′ who is preferred to w ′, who is preferred to
w. But then w∗ is preferred by m to w. Because (w∗, m) is a match for π , the pair
consisting of w and m will not upset π . Therefore, π must be stable. Obviously,
the same argument will establish that the outcome of the DAA is stable when
the Ms do the proposing.

The outcome of the DAA is a stable matching.

The matching generated by the DAA will typically be different when the roles
of proposer and acceptor are switched.

Example 1.5: The roles are switched

We apply the DAA to the agents and preferences of Example 1.1: The two W
types are A and B, and the two M types are Y and Z. Agent A prefers Y to Z
and B prefers Z to Y , and each prefers either M type to being single. Agent Y
prefers B to A, and Z prefers A to B. Each M type prefers either W type to being
single. If the Ws propose, then the DAA yields π∗ = {(A, Y ), (B, Z)} after one
round. If the Ms propose, then the DAA yields π∗∗ = {(A, Z), (B, Y )} after one
round.

For Example 1.5 the DAA yields two different matchings, depending on which
type does the proposing. If the Ws propose, then each W gets her most-preferred
match, and if the Ms propose then each M gets his most-preferred match. We
can generalize this: Suppose that the Ms do the proposing, and that each W
is the first choice of some M, but no W ranks at the top of more than one M’s
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preference ordering. Then if each M is acceptable to each W, the DAA termi-
nates at the first stage with each M being accepted by (and matched to) the
W to whom he proposed. In that case, the DAA matches each M with his first
choice.

It is not the case that for every marriage problem each proposer gets his or
her most preferred match. For Example 1.4, with the Ms doing the proposing,
only S, T , and Y are in that happy position. However, for every DAA outcome it
is not possible to find another stable matching that makes any proposer better
off. Here is the proof: For convenience, assume that the Ms do the proposing.
Say that an arbitrary w in W is possible for a member m of M if there is a stable
matching for which (w, m) is a match. We show that no member of M is rejected,
at any stage in the operation of the DAA, by any W that is possible for him. That
implies that each member m of M will be accepted by the member of W that
ranks higher in m’s preference ordering than any other member of W that is
possible for him—because an M type will propose in order of his preference. By
definition, every match for m that belongs to some stable matching is possible
for m. It follows that no member of M prefers any stable matching to the one
that is selected by the DAA when the Ms do the proposing. It remains to prove
that no member of M is ever rejected by a W that is possible for him if the DAA
is employed and the Ms do the proposing.

Assume that we cut in on the operation of the DAA at some stage t such that no
member of M has been rejected at any previous stage by a W type that is possible
for him. (Note that a particular W that is possible for m must be acceptable to
m.) Suppose that at stage t, agent w rejects a proposal from m because w also has
a proposal from some m′ in M that w prefers to m. We show that w is not possible
for m. (If m is unacceptable to w then w is clearly not possible for m.) We know
that m′ prefers w to any member of W that hasn’t already rejected him. (And we
also know that m′ prefers a match with w to being single.) By assumption, m′ has
not been rejected in a previous round by any member of W that is possible for
him. Therefore, m′ prefers w to any W type that is possible for him. Therefore, no
stable matching can contain (w, m) because if it did then m′ would be matched
with some w ′ that is possible for him (or else m′ will be single), and we know
that m′ prefers w to w ′ (and prefers w to being single) and w prefers m′ to m.
Therefore, w is not possible for m. We have proved that any rejection received
by a proposer comes from someone with whom the proposer is not matched in
any stable outcome.

We can’t claim that every proposer strictly prefers the outcome of the DAA to
every other stable matching, because there is typically at least one proposer who
has the same partner in more than one stable matching. But there is no stable
matching at which some proposer gets a match that he or she strictly prefers to
the one that results from the DAA.

Optimality theorem: If π∗ is the outcome of the DAA, then there is no other
stable matching that some proposer prefers to π∗.
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Table 9.4

A B C X Y Z

X Z X B A A
Z X Y A B B
Y Y Z C C C

Now we turn to the question of incentive com-
patibility. Is it possible for one of the agents to
profit by rejecting α and accepting α′ when that
agent actually prefers α to α′ or proposing to β

instead of β ′ when the agent prefers β ′ to β and β ′

has not yet rejected him or her? A simple way to
address this question is to suppose that all agents
submit their preference orderings to a referee who
then uses the reported preferences to work out the

outcome of the DAA. Would submitting the true preference ordering be a dom-
inant strategy?

DEFINITION: Strategy proofness
A matching algorithm is strategy proof if for each specification of the agent
preferences truthful revelation is a dominant strategy for each agent.

Not only is the DAA not strategy proof, but there is no strategy-proof algo-
rithm that always generates a stable matching, as we now prove.

Assume that there are three agents of each type, with W = {A, B, C} and
M = {X, Y, Z}. Consider the profile of agent preferences in Table 9.4. There are
only two stable matchings in this case:

π = {(A, Z), (B, X ), (C, Y ) } and π ′ = {(A, X ), (B, Z), (C, Y )}.

We begin by confirming that π is stable. Note that both X and Z get their most-
preferred W type. Therefore, neither X nor Z can be a member of a W-M pair that
upsets π . Agent Y prefers a match with A or B to the match (C, Y ), but both A and
B prefer π to a match with Y . Because each agent prefers a match with anyone of
the opposite type to being single, π cannot be upset. Therefore, the matching π

is stable. And π ′ is stable because A and B both get their most-preferred partners,
and (C, X ) is the only match preferred to π ′ by C , but X prefers π ′ to a match
with C .

Next we show that π and π ′ are the only stable matchings for these prefer-
ences. Consider a different matching π ′′. If π ′′ does not contain (C, Y ) then it
must contain either (A, Y ) or (B, Y ). (If A is single at π ′′ then π ′′ is not stable
because A prefers Y to being single and Y prefers A to anything else. If B is single
at π ′′ then π ′′ is not stable because B prefers X to being single and X prefers B
to anything else.) But if π ′′ contains (A, Y ) it is not stable because A prefers Z
to Y , and Z prefers A to anything else. And if π ′′ contains (B, Y ) it is not stable
either because B prefers X to Y , and X prefers B to anything else. We have shown
that π ′′ contains (C, Y ), and thus there are only two ways to match the agents
in {A, B} with the agents in {X, Z}, and one of these leads to π and the other
leads to π ′. (There can be no single agents in a matching that is stable for these
preferences, because each agent prefers a match to anyone of the opposite type
to being single.)



1. Students and Advisors 477

Note that A and B each prefer π ′ to π , and X and Z each prefer π to π ′.
Let M be any matching algorithm that generates a stable matching for each

Table 9.5

A B C X Y Z

X Z X B A A
Y X Y A B B
Z Y Z C C C

specification of agent preferences. Suppose that
M results in π when applied to the preferences
of Table 9.4. Now apply M to the preferences
of Table 9.5. Note that Table 9.5 is the same as
Table 9.4 except that we have changed the prefer-
ences of A. The only stable matching for Table 9.5 is
π ′, as we now show. Let π ′′ be a stable matching for
Table 9.5. If π ′′ does not contain (C, Y ) then it must
contain either (A, Y ) or (B, Y ). But if π ′′ contains
(B, Y ) it is not stable because B prefers X to Y , and

X prefers B to anything else. Therefore, π ′′ contains (A, Y ) if it doesn’t contain
(C, Y ), and hence either

π ′′ = {(A, Y ), (B, X ), (C, Z)} or π ′′ = {(A, Y ), (B, Z), (C, X )}.

The former is not stable for the preferences of Table 9.5 because Z prefers B to
C , and B prefers Z to X . The latter is not stable because X prefers A to C , and
A prefers X to Y . Therefore, π ′′ must contain (C, Y ). Consequently, π ′′ = π or
π ′′ = π ′. But π is not stable for Table 9.5 because A prefers Y to Z, and Y prefers
A to C . It follows that π ′ is the only stable matching for Table 9.5. Therefore,
M must lead to the selection of π ′ for the preferences of Table 9.5. Note that π

matches A with Z and π ′ matches A with X , and A prefers X to Z according
to A’s preference ranking in Table 9.4. Because the only difference between the
two tables is the reported preference scheme of agent A, it follows that M is not
strategy proof: When the true agent preferences are the ones given in Table 9.4,
and π is selected, agent A can profit by misrepresenting her preference ordering.
Specifically, if she were to report the preference scheme of the first column of
Table 9.5 then she would precipitate the selection of an outcome that she prefers
to the one that is generated by M under truthful revelation.

We know that π and π ′ are the only stable matchings for Table 9.4, and
strategy proofness implies that M cannot select π . Therefore, if M is strategy

Table 9.6

A B C X Y Z

X Z X B A A
Z X Y C B B
Y Y Z A C C

proof it must generate matching π ′ for Table 9.4.
Now, apply M to the preferences of Table 9.6.
Table 9.6 is the same as Table 9.4 except with
respect to the preferences of X . We show that π

is the only stable matching for Table 9.6 by sup-
posing that π ′′ is an arbitrary stable matching for
Table 9.6. If π ′′ does not contain (C, Y ) then it must
contain either (A, Y ) or (B, Y ). But if π ′′ contains
(A, Y ) it is not stable because A prefers Z to Y ,
and Z prefers A to anything else. Therefore, π ′′

contains (B, Y ) if it does not contain (C, Y), in which case either

π ′′ = {(A, X ), (B, Y ), (C, Z)} or π ′′ = {(A, Z), (B, Y ), (C, X )}.
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The former is not stable for Table 9.6 because Z prefers B to C , and B prefers
Z to Y . The latter is not stable because X prefers B to C , and B prefers X to Y .
Therefore, π ′′ must contain (C, Y ), and hence π ′′ = π or π ′′ = π ′. The previous
paragraph established that M must select π ′ at Table 9.4. But π ′ is not stable for
Table 9.6 because X prefers C to A, and C prefers X to Y . Therefore, π is the
only stable matching for Table 9.6, and thus M must select π for the preferences
of Table 9.6. But π ′ matches X with A and π matches X with B, and X prefers
B to A according to his preference ranking in Table 9.4. Tables 9.4 and 9.6 are
identical except for the reported preference scheme of agent X . Therefore, M is
not strategy proof because when the true agent preferences are the ones given
in Table 9.4, agent X can profit by misrepresenting his preference ordering.
Specifically, if he were to report the preference scheme of the forth column of
Table 9.6 then he would precipitate the selection of an outcome that he prefers
to the one that is selected under truthful revelation.

We have shown that M is not strategy proof. But M was an arbitrary pro-
cedure that always generated a stable matching for any specification of agent
preferences. Therefore, we have shown that every strategy-proof procedure will
precipitate an unstable outcome in some situations. Alternatively, if a proce-
dure always delivers a stable matching under truthful revelation then truthful
revelation cannot be a dominant strategy for every agent in every situation.

There is no strategy-proof allocation procedure for the marriage model that
yields a stable outcome in every case.

The optimality theorem comes close to establishing that no proposer can
profit by misrepresenting his or her preferences if a matching is determined by
the DAA. There is no stable matching that a proposer prefers to the DAA outcome,
so there is no deviation from truthful revelation by a proposer that leads to
a stable matching that he or she prefers to the one that results from truthful
revelation. However, when an agent contemplates a change in strategy, to see
if it will precipitate a preferred outcome, we cannot expect the agent to restrict
consideration only to strategies that lead to a stable matching. Nevertheless, it
is the case that the DAA is immune to manipulation by proposers, whether the
matching gives rise to a stable outcome or not.

If the DAA is employed then no proposer can benefit by deviating from truthful
revelation.

If all agents were to submit their preference orderings to a referee, and the referee
then applied the DAA to the stated preferences, resulting in the matching π∗,
then submitting the true preference ordering is a dominant strategy for every
proposer. We do not prove this because the optimality theorem reveals enough
of the intuition behind the proof that the DAA is invulnerable to manipulation
by any proposer.

We have only employed examples in which the number of W types equals the
number of M types. All of our arguments can be extended to the general case by
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adding “dummy” agents: If there are more Ws than Ms just add a sufficient num-
ber of Ms to make the two sets equal in size. Assign the degenerate preference
scheme to these new Ms, so that they prefer being single to being matched with
any W. Similarly, if the Ms outnumber the Ws we can add a sufficient number
of dummy Ws. Why does this work? Because none of the original arguments
depend on the absence of such agents. Also, no dummy agent will have a match
at any stable outcome, so it’s just as if the dummy agent didn’t exist.

Sources
This section is based on Roth (1982). The seminal contribution is Gale and
Shapley (1962).

Link
Roth and Sotomayor (1990) provides an extensives discussion of matching.

Problem set

1. Suppose there are three Ws and three Ms. Specify the preferences however
you like, except that each agent finds everyone of the opposite type to be
acceptable, and there is at least one inefficient outcome. Identify the efficient
outcomes and the inefficient ones.

2. Suppose that type W agent A prefers X to every other type M agent, and X
prefers A to every other type W agent. Explain why every stable matching
has to pair A with X .

3. Prove that the unstable matching π = {(A, Y ), (B, Z), (C, X )} of Example 1.2
is efficient.

4. Apply the DAA to Example 1.4, but with the Ws doing the proposing.

5. Assume that there are three Ws and three Ms. Specify the preferences of each
agent so that the DAA generates the same match when the Ms propose as
when the Ws propose.

6. For the special case of two agents of each type, prove that truthful revelation
is not a dominant strategy for each agent if the DAA is used to arrive at a
matching. (Hint: Agents can declare that they would rather be single than
matched with a particular agent of the opposite type, even when that is not
true.)

7. For each of the preferences of Tables 9.1, 9.2, and 9.3 determine the matching
precipitated by the DAA when the Ms propose.

8. In proving that there is no matching algorithm that always yields a stable
outcome and for which truthful revelation is a dominant strategy for every
agent for every specification of individual preferences, we employed a situ-
ation with exactly three agents of each type. Assume that every agent would
prefer to be matched with anyone of the opposite type to being single, and
extend the proof to the general case, with m > 3 type W agents and n > 3
type M agents.
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2 COLLEGE ADMISSIONS

The problem of matching students to colleges is a generalized marriage problem.
Each side has preferences, but colleges are matched with more than one student,
although each student can be matched with at most one college. There are
m colleges, named C1, C2, . . . , Cm. College C j has a capacity (or quota) qj . It
will admit fewer than qj students if it receives fewer than qj applications from
students that meet its admissions criteria, but it cannot admit more than qj .
There are nstudent applicants, and we let S denote the set of all such individuals.
A matching is an assignment of students to colleges such that no student is
assigned to more than one college and no college has a student intake that
exceeds its capacity. This section can be read independently of the others, but
familiarity with the previous section is recommended.

DEFINITION: The college admissions problem
C1, C2, . . . , Cm is the set of colleges, and each college C j has a capacity qj . S
is the set of students. Each college has a preference ordering for students,
and each student has a preference ordering for colleges. A matching π =
{(C1, S1), (C2, S2), . . . , (Cm, Sm)} assigns a set Sj of students to college C j (for
j = 1, 2, . . . , m) such that no student is assigned to more than one college
and Sj has no more than qj members for each college C j . The pair (C j , Sj )
itself is called a match.

If a college would not accept a particular student under any circumstances,
then we say that the student in question is unacceptable to the college. Similarly,
if a student would not be willing to attend a particular college, even if it meant
not attending college at all, then that college is unacceptable to that student.

DEFINITION: Acceptability
If a college C j would not admit student s even if its student population fell
short of its capacity, then we say that s is unacceptable to C j , and we incor-
porate that fact into the college’s preference ordering by omitting student
s from the ranking. Similarly, if a student s would prefer being unmatched
to attending college C j we say that C j is unacceptable to s, and C j will be
omitted from the student’s preference ranking.

We adapt the notion of stability to the college admissions problem in the
obvious way: A matching π is stable if there is no student-college pair such
that the student would prefer this college to the one to which the student was
assigned by π , and the college would prefer to admit that student to one of the
students assigned to it by π .
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DEFINITION: Stable matching
A matching π = {(C1, S1), (C2, S2), . . . , (Cm, Sm)} is stable if (i) every college
is acceptable to every student assigned to that college, and every student is
acceptable to the college to which the student is assigned, and (ii) we cannot
find a college C j and a student s such that s prefers college C j to the college Ci

to which s is assigned by π (or prefers C j to being unmatched if s unmatched
by π) and college C j prefers student s to one of the students in Sj (or s is
acceptable to C j if Sj has fewer than qj students). If s does prefer C j to the
college to which s is assigned by π and C j prefers student s to one of the stu-
dents in Sj we say that C j and s can upset π . Similarly, we say that student s
can upset π if s prefers being unmatched to the college to which s is assigned
by π . College C j can upset π if it is assigned an unacceptable student.

Note that if s prefers C j to the college Ci to which s is assigned by π , then C j

is different from Ci and thus s does not belong to Sj .
Suppose that the preferences are such that there is a student s and a college

C j such that s prefers C j to every other college, and C j prefers at most qj − 1
students to s. Then every stable matching π must assign s to C j . Otherwise, s
and C j could upset π . That fact sometimes makes it easier to identify stable
matchings.

Example 2.1: Finding the stable matchings

S = {A, B, C} is the set of students and the colleges are X , Y , and Z. Each col-
lege has room for exactly one student. (In other words, qX = qY = qZ = 1.) The
preferences are specified Table 9.7. Every stable matching must include (B, X )
because X is B’s top choice and B is X’s top choice. That leaves A and C to be
assigned to colleges Y and Z, and there are only two ways to do that, given the
unit capacity of each college. Therefore,

π S = {(A, Y ), (B, X ), (C, Z)}, and πC = {(A, Z), (B, X ), (C, Y )}

are the only matchings that could be stable. And π S is in fact stable, because
A and B each get their most-preferred match, and although C prefers X to Z,
college X does not prefer C to B. The matching πC is also stable, because X
and Z is each assigned its most prefered student, and although Y prefers B to
C , student B prefers X to Y . Note that πC favors the colleges and π S favors the
students, in a sense to be made precise in the next section.

2.1 Students apply to colleges
A simple extension of the deferred acceptance algorithm of the previous section
allows us to define an algorithm that always yields a stable matching: The student
optimal deferred acceptance (SODA) algorithm requires the students to do the
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Table 9.7

A B C X Y Z

Y X X B B A
X Z Z C C B
Z Y Y A A C

“proposing,” and of course the colleges respond by accepting or rejecting. In
standard terminology, students apply for admission to the colleges. Acceptance
is deferred in that it is not binding until the algorithm has terminated. (We will
prove that SODA delivers a matching that no student prefers to any other sta-
ble matching, hence the term “student optimal.”) At the outset, each student
applies to the student’s most-preferred college. Then each college C j provision-
ally accepts the qj students from its applicant pool that rank highest in that col-
lege’s preference ordering. (Remember: Unacceptable students are not included
in a college’s preference ranking.) If fewer than qj acceptable students have
applied then C j provisionally admits all of the applicants that it finds accept-
able. Applicants that are not provisionally admitted are rejected. Once a student
is rejected by a college the student cannot reapply to that college at a subsequent
stage. At the next stage, all rejected students apply to the college that ranks next
highest in their preference orderings—except in the case of a student who has
been rejected by all colleges that the student finds acceptable, in which case
he or she drops out of the running and will be unmatched. Each college will
now have a new, augmented, set of applicants, and it provisionally accepts the
qj students that rank highest in its preference ordering. (A college’s augmented
set of applicants includes all students who have been provisionally accepted by
that college in a previous round and who have not been subsequently rejected,
along with all new applicants to the college. If fewer than qj acceptable stu-
dents have applied then C j provisionally admits all of the applicants that it finds
acceptable.) The process continues in this fashion until every student is on some
college’s list of provisionally accepted applicants or has been rejected by every
college that is acceptable to her—that is, every college that the student finds
preferable to being unmatched. At this point each student that is currently pro-
visionally accepted by a college is firmly accepted by that college, resulting in a
stable matching.

Now we prove that the outcome of the SODA algorithm is in fact stable for
every specification of student and college preferences. First we establish that for
arbitrary college C j the number of provisional admissions by C j cannot decrease
over time; it can only increase. Let St

j be the set of provisional admissions by C j

at stage t. If St
j has exactly qj members, then the set of provisional admissions

will be different at the next stage only if some members of St
j are rejected by

C j and replaced with new applicants who are preferred by C j . This substitution
keeps the number of provisional admissions by C j at qj .

Let π be the matching generated by SODA. Suppose that student s prefers
college C j to the college to which s was assigned by π . If π does not fill C j to
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capacity then when C j rejects s at some stage it must be because s is unacceptable
to C j . (By the previous paragraph, if C j becomes full at some stage it remains
full.) Then s and C j cannot upset π in that case. Suppose then s is rejected by C j

at stage t, and St
j has exactly qj members. The previous paragraph establishes

that at each subsequent stage there will be exactly qj provisional acceptances
by college C j . Suppose that m ≥ t. Either Sm+1

j = Sm
j (because none of the new

applicants is preferred to any member of Sm
j or there are no new applicants), or

else some new applicant s ′′ is preferred by C j to some student s ′ in Sm
j . Then C j will

provisionally accept the qj highest-ranking members of Am
j , where Am

j consists
of all the students in Sm

j plus all the new applicants that C j finds acceptable.
Because some new applicant s ′′ is preferred by C j to some member of Sm

j , the qj

highest-ranking members of Am
j will not include the lowest-ranking member of

Sm
j (lowest ranking in terms of the preferences of C j ). Therefore, C j will prefer

the lowest-ranked member of Sm+1
j to the lowest-ranked member of Sm

j .
We have established the following: If Sm

j contains exactly qj members then
either Sm+1

j = Sm
j or else the lowest-ranked member of Sm+1

j is strictly preferred
to the lowest-ranked member of Sm

j by college C j . Now, student s was rejected by
C j at stage t when St

j had qj members, so college C j strictly prefers the lowest-
ranked member of St

j to student s. Let St
j , St+1

j , . . . , ST
j be the subsequence of

provisional acceptances by college C j from stage t to the final stage T . For each
such stage m, either Sm+1

j = Sm
j or else college C j strictly prefers the lowest-

ranking member of Sm+1
j to the lowest-ranking member of Sm

j . We know that C j

prefers the lowest-ranking member of St
j to student s. It follows that the lowest-

ranking member of ST
j is strictly preferred to student s by college C j . Because

ST
j is the list of actual (final) acceptances by C j , student s and college C j will not

upset π , which must be stable.

The outcome of the SODA algorithm is a stable matching.

In the previous section we discovered that a stable matching emerges
whichever type does the proposing. Similarly, we could adapt the DAA algo-
rithm of the previous section so that students don’t apply to colleges, but the
colleges offer admission to the students and the students respond by accepting
or rejecting. We’ll refer to this as the college optimal deferred acceptance (CODA)
algorithm. When a college is rejected by one or more students it has invited
to enroll it then moves down its preference ranking, inviting new students to
enroll, and so on. When the process terminates we will have a stable matching.
The CODA algorithm is closer to the procedure used in the United States for
recruiting student athletes.

In the case of the marriage model (Section 1) we saw that the DAA gives
the proposers an advantage in the sense that no proposer ever strictly prefers
another stable matching to the one that emerges from the DAA. For the college
admissions problem there is no stable matching that any student prefers to the
one that emerges from the SODA algorithm. The proof is fairly simple:

We say that college Ci is possible for student s if there is some stable match-
ing (not necessarily the one precipitated by the SODA algorithm) at which s is
assigned to Ci . (Note that if Ci is possible for s then s must be acceptable to Ci
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and vice versa.) We show that if the SODA algorithm assigns s to college Ci (with
the students “proposing”) then s does not prefer any possible college to Ci . It
follows that s does not prefer any other stable matching to the one precipitated
by the SODA algorithm.

Suppose that up to stage t of SODA no student has been rejected by a college
that is possible for that student. Suppose that s is rejected by C j at stage t. If
s is unacceptable to C j then C j is not possible for s. Suppose, then, that s is
acceptable to C j . Then C j must be at capacity qj when it rejects s, and any
student s ′ in St

j , the set of students that have provisional admission from C j at
stage t of SODA, must be preferred to s by C j . We show that C j is not possible
for s. Because no student has been rejected by a possible college prior to stage
t, every s ′ in St

j prefers C j to every other college that is possible for that student.
Now, let π ′ be any matching. If C j is not at capacity under π ′ then π ′ can’t be
stable because C j prefers each of the qj members of St

j to having an empty slot,
and all of the members of St

j prefer C j to any other college assigned to them by
any stable matching (and to being unmatched). Therefore, if π ′ is stable then C j

is at capacity under π ′. If s is assigned to C j by π ′ there will be a member s ′ of St
j

not assigned to C j by π ′, and s ′ prefers C j to any other match determined for s ′

by any stable matching, and C j prefers s ′ to s. Therefore, if π ′ is stable it cannot
assign s to C j , and hence C j is not possible for s.

Optimality theorem: If π∗ is the outcome of the SODA algorithm, then there
is no other stable matching that some student prefers to π∗.

Example 2.2: The SODA outcome

We begin with the agents and the preferences of Table 9.7 of Example 2.1.
The stable matchings are π S = {(A, Y ), (B, X ), (C, Z)} and πC = {(A, Z),
(B, X ), (C, Y )}. It is easy to see that SODA results in πS, which is stable, by
the argument of Example 2.1: In the first stage A applies to college Y , and B and
C both apply to X . Then X accepts B and rejects C , because X prefers B to C . At
the next stage C applies to Z, her second-ranked college. Z accepts C , its only
applicant. We now have A provisionally accepted by Y , B provisionally accepted
by X , and C provisionally accepted by Z. The algorithm terminates with these
becoming binding acceptances, resulting in πS.

Because the marriage model is a special case of the college admissions prob-
lem, it follows from the discussion of strategy proofness in the previous section
that there is no college admissions procedure that always yields a stable out-
come and which cannot be manipulated by a student or college deviating from
its true preference ordering. However, it’s unsatisfactory to have the proof based
on a system with only three students and three colleges. To generalize, begin
with the three students A, B, and C and the three colleges X , Y , and Z employed
in the proof in Section 1. Now add any number m of colleges C1, C2, . . . , Cm with
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respective capacities q1, q2, . . . , qm that can be as large as you like. We also add
n students s1, s2, . . . , sn such that n = q1 + q2 + · · · + qm. Have each new student
prefer each new college C j to X and Y and to Z. Have each new college C j prefer
each new student si to A and to B and to C . Therefore, every stable matching
will assign each new student to one of the new colleges, which are now full. It
remains to determine how A, B, and C are to be assigned to X , Y , and Z. At this
point we continue with the proof from Section 1.

For any college admissions procedure that always yields a stable outcome,
there will be some configuration of preferences for students and colleges such
that some student or college can benefit by deviating from its true preferences.

The optimality theorem demonstrates that no student can profit by mis-
representing his or her preferences if the outcome is determined by SODA if
the deviation from truthful revelation by the student results in another stable
matching. However, this is not the same as proving that no deviation from truth-
ful revelation by a student can precipitate a matching, whether stable or not, to
the one that emerges from truthful revelation. We merely state without proof
the more general result.

If the SODA algorithm is employed then no student can benefit by deviating
from truthful revelation.

If all students were to submit their preference orderings to a referee, and the
referee then applied the SODA algorithm to the stated preferences and to the
college preferences, then submitting the true preference ordering is a dominant
strategy for every student.

2.2 Student placement
In the previous subsection we adapted the DAA (of Section 1) to the college
admissions problem, for which one of the types can be matched with more

Many business schools (including those
of Columbia, Berkeley, Northwestern,
Michigan, and Yale) use bidding to assign
students to courses. All students are
given an endowment of 1000 points,
which they allocate across courses.
Because a student will bid low on a
course that the student ranks high if he
or she believes others will bid even lower,
the bids cannot be used to infer student
preferences. If students were to submit
their preference orderings in addition to
their bids, the SODA algorithm could be
used to supplement the allocation pro-
cess and improve the matching (Sönmez
and Ünver, 2003).

than one member of the opposite type, by hav-
ing the students “propose.” That is, the stu-
dents took the initiative by applying to col-
leges. Now we consider the college optimal
deferred acceptance (CODA) algorithm in which
the colleges do the “proposing.” That is, a col-
lege takes the initiative by offering admission
to the students that rank at the top of its pref-
erence ordering, until it has reached capacity.
Each student then responds by rejecting every
college except the one that the student most
prefers out of all the schools that have offered
admission. Some colleges will then have open-
ings and they will then offer admission to
the students, in order of college preference,
from whom they have not previously received
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rejections. Students with multiple admission offers will then choose the most
preferred offer and reject the others, and so on.

We are now in a position to explain why we call SODA student optimal and
refer to CODA as college optimal. No student prefers any stable matching to the
outcome of SODA, and no college prefers any stable matching to the outcome
of CODA, as the next example illustrates.

Example 2.3: The CODA outcome

We return to the set up of Table 9.7 of Example 2.1. The stable matchings are

π S = {(A, Y ), (B, X ), (C, Z)} and πC = {(A, Z), (B, X ), (C, Y )},

and we saw that SODA precipitates πS. Now we show that CODA precipitates
πC. In the first stage, colleges X and Y both offer admission to B, while Z offers
admission to A. Z is accepted by A, but Y is rejected by B in favor of X . At the
next stage college Y offers admission to C and will not be rejected because C
has no other offers. In that case, A is assigned to college Z, B is assigned to X ,
and C is assigned to Y , resulting in πC. Student B is indifferent between πC and
πS because they give B the same match. However, A and C each prefer πS to πC,
while colleges Y and Z each prefer πC to πS. College X is indifferent between the
two because its student intake is the same in either case.

We now investigate a special application of CODA, called the student place-
ment model, for which the college preferences are based on test scores only.
In their final year of high school students take a number of different tests. For
instance, there may be only two kinds of tests—quantitative and verbal. But
there may be more. Each college uses one of the tests to rank the students. For
this model, no student is unacceptable to any college, but some students may
prefer not to attend college rather than go to one of the schools from which the
student is offered to admission. In the first round of the CODA algorithm each
college C j offers admission (“proposes”) to the qj students that rank highest
in the test that it employs. Then each student accepts the college the student
most prefers from the set of colleges from which the student has received an
offer of admission. At the next stage, a college offers admission to the next r stu-
dents in its test score ranking, where r is the number of students who rejected
that college’s admission offer at the previous stage. The algorithm terminates
when

� every college C j either has been accepted by qj students or else has offered
admission to every student, and

� every student has rejected all offers of admission from colleges that the stu-
dent finds unacceptable and has rejected all offers of admission that rank
lower than some acceptable college from which the student has received an
offer of admission.
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At this point each student is actually admitted to the college that the student
has accepted.

DEFINITION: The student placement problem
There are m colleges, C1, C2, . . . , Cm. Each college C j has a capacity qj . S is
the set of students. Each student s writes m different tests, and we let σ j (s)
denote the score of student s on test j. Then college C j prefers student s to
student s ′ if and only if σ j (s) is higher than σ j (s ′).

If there are hundreds (perhaps thousands) of colleges, we are not suppos-
ing that each student has to write hundreds of tests before applying to college.
Several (perhaps a hundred or more) colleges can use the same test to rank the
students. Some of the “tests” can even be weighted averages of several conven-
tional tests.

Example 2.4: Four colleges and two tests

The four colleges are E (engineering school), H (humanities only), L (liberal
arts), and M (premedical). The two tests are quantitative and verbal. Let q(s)
and v(s) be the respective scores of student s on the quantitative and verbal
tests. A reasonable supposition is that

σE (s) = q(s), σH(s) = v(s), σL (s) = 0.5q(s) + 0.5v(s), and

σM(s) = 0.75q(s) + 0.25v(s).

Turkey uses a generalized version of
the SCA, in which a college’s preference
ordering is indeed the ranking of stu-
dents according to the test score used
by that college. This algorithm has sev-
eral defects: It can render an inefficient
outcome, and it is vulnerable to manipu-
lation by students misrepresenting their
preferences. It can also penalize stu-
dents for improving their test scores.
These deficiencies are overcome by the
SODA algorithm with students applying
to colleges and the colleges responding
by accepting or rejecting (Balinski and
Sönmez, 1999).

If the colleges rank students according to
the test scores, then the colleges really don’t
need to participate in the placement process.
The state (or some other agency) can act as
proxy for each college, assigning the qj students
with the top scores on test j to college C j , and
then have each student respond by rejecting the
admissions offers from all but one college—the
one that the student most prefers from the col-
leges to which he or she has been assigned, and
so on. For reasons that become apparent later
in this section, we call this placement version
of the CODA algorithm the serial choice algo-
rithm (SCA).

Does a student always have an incentive to
get the highest possible test score when the SCA

is used? No! The following is an example in which a reduction in a student’s test
score results in the student being reassigned to a college that he or she prefers
to the original assignment.
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Example 2.5: A lower test score can mean a better college

There are two colleges, X and Y , and two students, A and B. Each college has
room for only one student. Student A prefers X to Y and B prefers Y to X . There
are two tests, quantitative and verbal. College X uses the quantitative score and
Y uses the verbal score. The original test scores are displayed in Table 9.8. In the
first round student B is offered admission to X (because B’s quantitative score
is higher than A’s), and A is offered admission to Y (because A’s verbal score is
higher than B’s). Because A does not receive an offer of admission from a pre-
ferred college, A accepts Y , and B accepts X because B does not have any other
offer. That, then, is the final assignment.

Suppose, however, that A had done less well on the tests, resulting in the
scores reported in Table 9.9. Note that B’s scores have not changed. With this
second set of scores, student B is offered admission to both X and Y , because
B has a higher score than A on both the quantitative and verbal test. Both colleges

Table 9.8

Student
Quantitative
score

Verbal
score

A 80 90
B 90 80

Table 9.9

Student
Quantitative
score

Verbal
score

A 70 70
B 90 80

have reached capacity, so there are no initial offers to A. Then B responds by
choosing B’s preferred college, which is Y . Then X now has a vacancy, and it
makes an offer of admission to the student with the next highest quantitative
score, and that of course is A. Student A accepts X’s offer, and the algorithm
terminates with A going to X and B going to Y . With the original test scores A
was matched with Y . Clearly, student A prefers the match that results when A
gets lower test scores.

Note that the SCA doesn’t wind up assigning a student to two different col-
leges. A multiple assignment can occur only at an intermediate stage. Once it
does occur, the student in question will reject all but the assignment that he or
she prefers to all others.

We have serious reservations about a matching procedure that punishes
students for improving their test scores. We are also concerned about fairness.
We say that a student placement algorithm is unfair if some student prefers
some college to the one to which the student was admitted and the student has
a higher score on the test used by the preferred college than someone who was
actually admitted to that college. It is also unfair if the student was not assigned
to any college by the algorithm but has a higher test score for a college that is
acceptable to her than someone admitted to that college.
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DEFINITION: Fairness
A matching π is fair if there is no student s and no college C j such that s
prefers C j to the college to which s is assigned by π (or prefers C j to being
unmatched if π does not assign s to any college) and s has a higher score
on the test used by C j than some student actually admitted to C j . We say
that the student placement algorithm itself is fair if for every specification of
student preferences and test scores the resulting matching is fair.

Unfortunately, fairness and efficiency are sometimes incompatible, regard-
less of the algorithm employed. We demonstrate this by means of a simple
example.

Example 2.6: Fairness and efficiency cannot be
satisfied simultaneously

There are three students, A, B, and C , and two colleges, X and Y , each with room
for only one student. (We know that one of the students will not be able to attend
college.) Student A prefers Y to X , and the other two prefer X to Y as shown in
Table 9.10.

College X uses a quantitative test score and Y uses a verbal test score. The
student scores are displayed Table 9.11. We show that the only fair matching
π has A enrolled in X and C enrolled in Y . The matching is not fair if A isn’t
enrolled in any college because A has the highest quantitative score, and thus will

Table 9.10

A B C

Y X X
X Y Y

have a higher quantitative score than whoever is enrolled in college X . Similarly,
the matching can’t be fair if C is not enrolled in any college because C has the
highest verbal score. Therefore, a fair matching either assigns A to X and C to
Y , or else A to Y and C to X . But the latter isn’t fair because B has a higher
quantitative score than C . The matching π that assigns A to X and C to Y is the
only fair one in this case. However, π is not efficient because A prefers Y to X
and C prefers X to Y . Therefore, if A and C switch assignments they will each
be better off than at π . Student B is unaffected by the switch, so we will have
made two individuals better off without harming the other person, and hence π

is inefficient. If an algorithm precipitates the lone fair matching in this situation
it will not deliver an efficient outcome, and if it delivers an efficient outcome it
can’t be fair.
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The CODA algorithm selects the fair matching for Example 2.6: X will offer
admission to A, the high scorer on the quantitative test, and Y will offer admis-
sion to C , the high scorer on the verbal test. Because each of these students
has only one offer, each accepts and the algorithm terminates with A being
assigned to X and C assigned to Y . This is also the outcome of the SODA
algorithm, as we now show: In the first round A applies to Y and B and

Table 9.11

Student
Quantitative
score

Verbal
score

A 90 80
B 80 70
C 70 90

C each apply to X . College X will accept B
and reject C because B has a higher quanti-
tative score than C . Then C will apply to Y
on the second round, and Y will now have
applications from both A and C . Because C
has a higher verbal score than A, student A
will be rejected by Y , which will provisionally
accept C . Student A will now apply to X and
be accepted because A has a higher quantita-
tive score than B, its other applicant. Because B

is rejected by X , B will apply to Y and be rejected because C has a higher verbal
score than B. The algorithm now terminates because B has been rejected by
both schools, and A and C have both been rejected by their top-ranked schools.
SODA assigns A to X and C to Y , the only fair matching for this problem.

It’s easy to see why SODA always delivers a fair outcome. If student s prefers
college C j to Ci then s will apply to C j before Ci . If s has a higher score in the
test used by C j than student s ′ then C j would never reject s before rejecting s ′.
In other words, if C j rejects s then it will also reject s ′ before the SODA algorithm
terminates. As we have seen (Examples 2.2 and 2.3 for instance), SODA and
CODA typically will not precipitate the same outcome, but neither guarantees
an efficient outcome, as Example 2.6 and the subsequent paragraph establish.
However, in any situation the fair outcome πS generated by SODA will weakly
dominate every other fair matching π from an efficiency standpoint. That is,
every student will either prefer the school assigned to him or her by πS to the
one assigned to him or her by π , or else the student will be indifferent because
the student has the same match in both cases.

2.3 Single-test placement
An interesting special case of the student placement problem has the colleges all
using the same test score. We call this the single-test placement problem. In that
case there will be a single stable matching if we use the test scores to generate
a college’s ranking of students. A simple way of finding the stable matching is
by means of the serial choice algorithm: The student with the highest test score
announces his or her most-preferred college, and the student is permanently
assigned to that college. The student with the next highest ranking is assigned
to that student’s most-preferred college, and so on until a college is full—that
is, has reached its capacity. That college is dropped from the list of available
schools. The student with the highest score, of all those students who have
not yet been matched with a college, then chooses his or her most-preferred
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college from the set of schools that have not yet reached capacity. The algorithm
proceeds in this fashion, with the students choosing in order of test score and
with a college being removed from the list of available schools as soon as it
is full.

DEFINITION: The serial choice algorithm (SCA)
The nstudents are ranked s1, s2, . . . , sn according to their scores on the single
test σ . That is, σ (s1) > σ (s2) > · · · > σ (sn−1) > σ (sn). A is the set of all colleges,
and At is the set of available colleges at stage t. At stage t student st choose
the college that st most prefers from At. We have A1 = A, with At = At−1 if
no college in At−1 reached its capacity as a result of the choice of st−1. If
college C j did reach its capacity qj at stage t − 1 then we remove C j from
At−1 to arrive at At. The algorithm terminates when each of the n students
has chosen or each college has reached its capacity, whichever comes first.
Each student who has had an opportunity to choose is then matched with
the college that he or she selected.

Clearly, in this single-test model it never benefits students to lower their
scores. That would only result in a lower ranking, and a later choice, perhaps
from a smaller list of schools. Certainly, there would be no college added to
the list available by the time the student had a chance to select. The order of
choice by the higher ranking students will not have changed, so they will make
the same selections, and hence the set of schools available to a student will
either shrink or stay the same if the student’s test score falls. Given that a lower
score will give a student lower priority but will not otherwise affect the order in
which people choose, a student cannot profit from a lower score. Therefore, the
student’s incentive is to get the highest score possible. Now, given the test scores,
can there be any benefit to students from misrepresenting their preferences
when the SCA is employed? No. In this case, misrepresenting one’s preference
ranking of colleges can’t change the set of schools from which a student is able
to choose, because it can’t affect the order in which students choose. Therefore,
misrepresentation of preference will either have no affect on a student’s welfare,
because the school that ranks highest in the available set still ranks highest
according to the false preference ordering, or else it results in the student being
assigned to a less desirable college—less desirable in terms of the student’s true
preferences. We have proved that the SCA is strategy proof. However, this proof
is based on the assumption of a single test used by all colleges.

When applied to the student placement model with a single test score the
serial choice algorithm is strategy proof, and it never punishes students for
improving their test scores.

We conclude this section by proving that the student placement problem
in which all colleges use the same test score has only one stable matching,
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and that it is the one generated by the SCA. We already know that the match-
ings precipitated by the either SODA or CODA algorithms are stable. It follows
that the SODA and CODA algorithms yield the same outcome for this special
model.

The matching π∗ generated by the serial choice algorithm applied to the
student placement model with a single test score is the only stable match-
ing for that model. Also, π∗ is generated by both the SODA and CODA
algorithms.

We begin by proving that π∗ is stable, and then we show that it is the only
stable matching. Let s1, s2, . . . , sn be the ranking of students by test score, with
the lower numbered students getting higher scores. Because the SCA gives s1 his
or her most-preferred college out of the set of all colleges, no student-college
pair involving s1 can upset π∗. Suppose that for the first t students s1, s2, . . . , st

there is no college that can join with one of these t students to upset π∗. Could
student st+1 join with some college to upset π∗? No. None of the colleges that
receive one of the first t students would prefer to have st+1 instead of one of the
students with a higher score. Of the colleges still available at the time st+1 had an
opportunity to choose, none would be preferred by st+1 to the one assigned by π∗

because the SCA allowed st+1 to select the college that he or she most preferred
from among those available. Therefore, no college-student pair involving st+1

could upset π∗ because either st+1 would prefer the college assigned by π∗ or the
college would prefer each of the students assigned to it by π∗ to st+1. We have
proved that s1 cannot be part of a student-college pair that upsets π∗, and that if
none of the first t students can be part of a student-college pair that upsets π∗,
then that also must hold for the first t + 1 students—that is, the t + 1 students
with the highest scores. It follows that no student st, for any value of t, can upset
π∗ and hence π∗ is stable.

Next we show that π∗ is the only stable matching. We assume that π is an
arbitrary stable matching and prove thatπ = π∗: Obviously, stability implies that
s1 gets his or her most-preferred college—call it c∗. That follows from the fact
that s1 has the highest score and hence is at the top of the preference ranking of
every college. (If π does not assign c∗ to s1 then the pair consisting of s1 and c∗

can upset π .) Now suppose that we can prove that any stable matching π assigns
student sm to his or her most preferred college in Am, for m = 1, 2, . . . , t. (The
set Am of colleges available to sm is the set determined by the SCA, as defined
previously.) Then stability of π implies that st+1 can only be assigned to a college
in At+1. (If st+1 is assigned to C j not in At+1 then some higher ranking student si

must be assigned to C j by π∗ but not by π , in which case the student-college pair
consisting of si and C j can upset π , contrary to the supposition that π is stable.)
Because stability of π implies that π can only send student st+1 to a college in
At+1 (as we have just shown) andπ∗ sends st+1 to his or her most preferred college
in At+1, any other matching consistent with all of the top t students getting their
most-preferred colleges from their available sets (as determined by the SCA)
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would assign st+1 to a college that was less desirable to him or her than the col-
lege C j that st+1 is admitted to under π∗ and would leave C j with a student with
a lower test score than st+1, in which case st+1 and C j would upset π . Therefore,
π must also assign st+1 to the college in At+1 that st+1 most prefers.

Here’s what we have so far: If π is stable then it must assign s1 to s1’s most-
preferred college, and if for any t the matching π assigns sm to sm’s most-preferred
college in the set Am f or m = 1, 2, . . . , t (where Am is specified in the definition
of the SCA) then if π is stable it must assign st+1 to his or her most-preferred
college in At+1. It follows that a stable matching must assign students to colleges
in precisely the way that the SCA does. That is π = π∗.

We have proved that π∗, the matching generated by the SCA, is the unique
stable matching for the student placement model with a single test. Because
both SODA and CODA generate stable matchings, we then conclude that SODA,
CODA, and SCA precipitate the same outcome. However, it is a lot easier to prove
directly that the SODA and CODA algorithms result in π∗ than to prove stabil-
ity in general, so we conclude this section by proving the SODA and CODA
algorithms result in π∗ for the student placement model with a single test
score.

First, we prove that SODA generates π∗. Clearly s1 will wind up with s1’s most-
preferred college because he or she will apply to that college in stage 1 and will
be accepted. However many other students apply to that college in subsequent
rounds, the acceptance of s1 will never be withdrawn because every college ranks
s1 first in its “preference” ordering. Now we prove that if SODA assigns each of
the students s1, s2, . . . , st to the same college as π∗ does then SODA will also
assign student st+1 to the same college that π∗ does. It is clear that the colleges
in At+1 (which is defined by the SCA), and only those colleges, will have unused
capacity. Moreover, any college that is full after stage t of the SCA will, under
the SODA algorithm, eventually have enough applications from students with
higher test scores than st+1, and so will reject st+1 if and when he or she applies.
Therefore, the only colleges that would accept st+1 and never reject that student
are the colleges in At+1. Under the SODA algorithm student st+1 will eventually
apply to st+1’s most-preferred college in At+1 because he or she will eventually
be rejected if he or she applies to any other college. This student will be accepted
by his or her most-preferred college in At+1, and never be rejected, because any
student with a higher test score than st+1 will be assigned to the same college
by SODA as by π∗, and hence the college in At+1 that is most preferred by st+1

will have room for st+1 even after s1, s2, . . . , st have each been assigned to the
same college as π∗. Therefore, SODA assigns st+1 to the same college as the SCA.
Consequently, we can show that for every t, student st will be assigned the same
college by the SODA algorithm as by the SCA. Therefore, the two algorithms
generate the same matching.

Finally, we prove that the CODA algorithm generates π∗. At stage 1 of
CODA each college C j offers admission to the qj students with the highest
test scores. That means that s1 is offered admission by every college, and s1

will accept his or her most preferred school. Clearly, the CODA algorithm will
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In Boston, Cambridge, Denver, Min-
neapolis, Seattle, St. Petersburg-Tampa,
and other U.S. metropolitan areas, stu-
dents are matched with public schools
by a variant of the “Boston mechanism.”
For each school, public policies (instead
of test scores) are used to rank the stu-
dents. In round 1 each school C j accepts
the top qj students (in C j ’s ranking) who
listed C j as first choice, where qj is school
capacity. In round 2, all students not yet
assigned are admitted by their second-
ranked school if that school has a place
available after accepting higher ranked
students who listed that school first or
second. And so on. This mechanism is
unfair, in the sense that it can assign
student s to school C j even though s
prefers Ci and Ci has admitted a stu-
dent who is below s in the ranking of
students for Ci . The mechanism can also
lead to an inefficient outcome and gives
students a strong incentive to misrep-
resent their preferences (Abdulkadiroǧlu
and Sönmez, 2003.) Proponents of the
mechanism state that about 70% of stu-
dents are typically assigned their first
choice. However, preferences are often
misrepresented, and only about 30% of
the students are placed in the school that
ranks at the top of their true preference
ordering (Chen and Sönmez, 2003).

assign s1 to the same college as π∗. Also, s2

is offered admission by every college (except
those with room for only one student), so s2 will
accept his or her most-preferred school in A2,
where as usual At is specified in the definition of
the SCA. The school C j that s2 accepts will be s2’s
ultimate match because s2 will never receive an
offer from a school that he or she prefers: Either
s2 gets the school that ranks at the top of his or
her preference ordering, or the school at the
top of s2’s ordering is the one that is most pre-
ferred by s1 and that school has room for only
one student. Suppose that we can prove that
CODA assigns each of the students s1, s2, . . . , st

to the same college as π∗. Then as we showed
in the previous paragraph the only schools that
will not be full after we place all of the t stu-
dents with the highest scores in the college to
which they are assigned by π∗ are the ones in
At+1. These colleges, and only these colleges,
will offer admission to st+1. (The other col-
leges can fill their positions with higher ranking
students who will never withdraw their accep-
tance.) Then st+1 will accept the offer from the
college in At+1 that st+1 prefers to all the other
colleges in At+1, and that offer will never be
withdrawn because any student with a higher
score will already have been offered admission
by the college accepted by st+1 or by a col-
lege that he or she prefers to the one accepted
by st+1. It is clear that we can proceed from
t = 1 to t = 2 to t = 3 and so forth until we have

established that each student is assigned the same college by the CODA algo-
rithm as by the SCA.

Sources
This section is based on Gale and Shapley (1962) and Balinski and Sönmez (1999).
Examples 2.5 and 2.6 are from Balinski and Sönmez (1999), who prove, among
other things, that the fair outcome generated by SODA will weakly dominate
every other fair matching from an efficiency standpoint.

Links
See Ergin and Sönmez (2004) for more on the “Boston mechanism.” See Roth
and Sotomayor (1990) and Roth and Xing (1994) for additional discussions of
matching in general.
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Table 9.12

A B C D E F

X X Z Z Y X
Y Y Y Y X Z
Z Z X X Z Y

Problem set

1. There are six students, A, B, C , D, E , and F, and three colleges, X , Y , and
Z, each with room for two students. The student preferences are given in
Table 9.12 and the college preferences are given in Table 9.13. Work out the
matching generated by SODA. Demonstrate that it is stable.

Table 9.13

X Y Z

B A A
A F B
C C C
D E F
E D D
F B E

2. Work out the matching generated by CODA for the data of question 1.
Demonstrate that it is stable.

3. There are six students, A, B, C , D, E , and F, and three colleges, X , Y , and Z,
each with room for two students. The test scores are displayed in Table 9.14
and the student preferences are given in Table 9.15. Work out the matching
determined by the CODA if college X were to use the quantitative score and
Y and Z each used the verbal test score.

Table 9.14

Student Quantitative score Verbal score

A 90 80
B 85 90
C 80 70
D 75 60
E 70 75
F 65 85



496 Matching

Table 9.15

A B C D E F

X X Z Z Y X
Y Y Y Y X Z
Z Z X X Z Y

4. Assume the data of question 3, but this time assume that colleges X and Y
use the quantitative test score, and Z uses the verbal score. Work out the
matching determined by the CODA.

3 HOSPITALS AND DOCTORS

An obviously important matching problem is the pairing of physicians gradu-
ating from medical school with hospitals employing them as residents. This is
a variant of the college admissions problem because each doctor will wind up
at only one hospital, but most hospitals will employ more than one resident.
The medical labor market in the United States has used an effective matching
algorithm for half a century, although it has been patched from time to time in
response to pressure of various kinds. The algorithm requires each hospital to
rank the doctors in order of preference, and each doctor to rank the hospitals in
order of preference.

The modern U.S. internship program was instituted in the early 1900s when
the hospital demand for graduating doctors was significantly larger than the
supply. Until 1952 there was no algorithm and no central clearing house. Hos-
pitals negotiated directly with medical students, offering internships to some
and being either accepted or rejected by each student receiving an offer. Com-
petition for newly minted physicians resulted in hospitals approaching medical
students earlier and earlier in their programs. By 1944 appointments were being
made two years before graduation. This meant that matches between hospitals
and doctors were based on far less information than if the hospital waited until
late in the graduating year to approach a student. But no individual hospital
had an incentive to wait until then because other hospitals would have already
contracted with the best doctors. Because of the strong incentive to beat the
competition to a student’s door, efforts by the medical community to halt the
process did not avail. Adding to the overall dissatisfaction with this decentralized
market process was the fact that it was not uncommon for doctors to renounce
a contract when a better opportunity presented itself at a later date.

The notion of a centralized matching procedure became increasingly attrac-
tive, and in the academic year 1951–2 the algorithm made its first appearance.
Hospitals submitted their preference orderings of graduating medical students
to a centralized clearing house, and the students submitted their rankings of
hospitals. One important criterion was stability: When the final matching is
determined there should be no hospital and no doctor who would each prefer
being matched with the other to the assignment determined by the algorithm.
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Table 9.16

D E F H I J

H I H E D F
I J J F E E
J H I D F D

DEFINITION: Stable matching
Matching π is stable if we cannot find two matches (H, D) and (H′, D ′) spec-
ified by π such that H prefers D ′ to D and D ′ prefers H to H′. We say that
H and D ′ upset the matching π if both do prefer the match (H, D ′) to their
situations under π .

A complete ranking by either hospital or doctor would be prohibitively costly,
so the algorithm works with partial rankings. However, we illustrate with a small
number of doctors and hospitals, so we employ complete rankings. We begin by
illustrating the trial algorithm that was proposed by the National Intern Matching
Program (NIMP).

Example 3.1: Three hospitals and three doctors

The three doctors are D, E , and F , and the three hospitals are H, I , and J . We
assume that each hospital wishes to hire one and only one resident. Table 9.16
gives the preference rankings of each. Doctor D prefers H to I and I to J (and of
course, H to J ). The columns for E and F are interpreted similarly. Hospital H
ranks doctor E first, then F , and then D. And so on. The trial algorithm begins by
searching for a hospital-resident pair such that each gives the other first-place
rank. There are no such pairs for this table, so we proceed to the second stage
in which we search for a hospital that ranks a doctor second when that same
doctor ranks that hospital first. There are two such matches: E and I , and F and
H. Then doctor E is assigned to hospital I , and F is assigned to H. By default, J
and D are paired.

Note that hospital J is D’s last choice. D would have fared better to have
(untruthfully) ranked I in first place, as we now show.

Example 3.2: Preference misrepresentation by a doctor

Assume that the true preferences are as specified in Table 9.16 of Example 3.1,
but the reported preferences are those of Table 9.17. This is the same as Table
9.16 except for the fact that D has switched the ordering of H and I . Because the
trial algorithm begins by searching for a hospital-resident pair such that each
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Table 9.17

D E F H I J

I I H E D F
H J J F E E
J H I D F D

gives the other first-place rank, we now have D matched with I , and D prefers
I to hospital J to which D is assigned when D reports his or her true preference
ranking.

Because the trial algorithm sometimes gives physicians incentive to mis-
represent their first choice of hospital, it was revised in response to student
objections. The rule that was actually employed in the first year of centraliza-
tion begins by searching for a hospital-resident pair for which each ranks the
other first, as before. If there are no such pairs, the algorithm searches for a
match between a hospital’s first choice and a doctor’s second choice.

Example 3.3: Example 3.1 with the revised algorithm

The true preferences are the ones given in Table 9.16 of Example 3.1. There are
no hospital-resident pairs such that each ranks the other first. But hospital I
ranks D first and D ranks I second, so D and I are paired. Similarly, hospital J
ranks F first, and F ranks J second. Therefore F is assigned to J , leaving E and
H to be paired by default. The algorithm assigns E to H, D to I , and F to J . None
of the doctors has an incentive to misrepresent his or her first choice: Doctor
D prefers H to I , but already ranks H in first place and winds up at hospital I
nonetheless. Similarly, F ranks J in second place and is not assigned to H, F ’s
top-ranked hospital. How about doctor E? E does get H, but it is E ’s bottom-
ranked alternative. If E were to rank H at the top then E would still be assigned
to H because then H and E would be the only hospital-doctor pair for which
each ranked the other first. If E ranked J at the top then there would still be
no hospital-doctor pair for which each ranked the other first. And the next step
would still be to assign D to I and F to J because hospital I ranks D first and D
ranks I second, and hospital J ranks F first, and F ranks J second. This leaves E
and H to be paired by default, as with truthful revelation. Note also that there is
no hospital-resident pair that could upset the assignment by striking a mutually
advantageous contract, with each preferring its new partner to the one assigned
by the revised algorithm. In other words, the revised algorithm precipitates a
stable outcome. In this case, stability is confirmed simply by observing that
each hospital is assigned the physician that it most prefers, so no hospital wants
to be rematched—with anyone.
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The algorithm was modified from time to time to repair defects that came
to light. In the past thirty years, particularly, the increasing frequency of doctors
married to doctors has necessitated adjustments in the matching algorithm. We
do not specify any of these adjustments, but it would not be too far from the
truth to say that the NIMP used a variant of the CODA algorithm from 1951 to
1998. Of course, the hospitals played the role of the colleges. (See Section 2 for
a definition and discussion of CODA.)

In the mid-1990s there was another crisis of confidence in the matching
process. One of the factors related to changes in the financing of health care.
Specifically, students felt that the NIMP algorithm favored the hospitals to an
unreasonable degree. A new algorithm was commissioned in 1995 and used for
the first time in 1998. It would be fair to say that the new algorithm is closer to
the SODA procedure (of Section 2) than to CODA.

Source
This section is based on Roth (1984).

Links
See Roth (1990) for a discussion of the market for medical school graduates in
the United Kingdom. Roth and Peranson (1999) discuss recent changes in the
matching algorithm from several important perspectives.

Problem set

1. Determine all the stable matchings for the preferences of Example 3.1.

2. Assume that there are three doctors and three hospitals, with each hospital
intent on hiring exactly one doctor. Use the CODA algorithm of Section 2 to
represent the revised hospital-doctor matching. Show that it precipitates a
stable matching for every specification of hospital and doctor preferences.

3. Assume that there are three doctors and three hospitals, with each hospital
intent on hiring exactly one doctor. Use the CODA algorithm of Section 2 to
represent the revised hospital-doctor matching. Prove that physicians never
have incentive to rank their true most-preferred hospital lower than first.

4 ALLOCATING DORMITORY ROOMS

Assignment problems, in which only one type has preferences, are often called
one-sided matching problems. Obviously, the dormitory allocation problem
qualifies. There are n students and n dormitory rooms, and each student has a
preference ordering over the set of rooms. To simplify the discussion, we assume
that no student is indifferent between two different rooms.

The allocation problem is typically applied to a situation in which some of the
students already have rooms. If the student has to choose at some point between
retaining his or her present room for the next academic year or participating in
the new allocation of rooms and possibly winding up with one that ranks lower
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than the one given up then the student has to make a decision in the presence
of uncertainty. Therefore, individual preferences will be represented initially in
terms of utility functions, so that we can compute and compare the expected
utility (EU) of different strategies.

There are n students and n rooms. We let S denote the set of students and R
denote the set of rooms. Each student s in S has a utility function Us defined on
the set of rooms. Of course, for any two rooms r and r ′ in R we have Us(r) > Us(r ′)
if and only if s prefers r to r ′. Some of the rooms already have occupants, and we
let π0 denote the set of matches (s, r) such that room r is already occupied by
student s. We can refer to π0 as the status quo. Typically, π0 is not complete, in
the sense that there will be many s in S such that (r, s) does not belong to π0 for
any r in R. In that case, we think of s as a new student—new to the dormitory
allocation system, that is.

DEFINITION: The room assignment problem
S is the set of nstudents and R is the set of nrooms. Each student s has a utility
function Us defined over the rooms. Student s prefers strategy σ to strategy
σ ′ if and only if the expected utility from σ exceeds the expected utility from
σ ′. The (partial) matching π0, assigning some students to rooms, is the status
quo. If (s, r) belongs to π0 it means that r is already occupied by s.

If (s, r) belong to π0 then the room allocation scheme that we employ may or
may not give s the right to keep r , and if s does relinquish room r the allocation
scheme may or may not guarantee that s will wind up with a room that is at least
as good as r . That is, the room allocation scheme may or may not satisfy the
participation constraint.

DEFINITION: Participation constraint
The room allocation scheme satisfies the participation constraint if for every
(s, r) in π0 the expected utility realized by s when s participates in the scheme
is at least as high as Us(r).

4.1 A commonly used scheme
The first allocation scheme that we consider gives any student who already
occupies a room the right to hold on to that room. That means that the stu-
dents can choose not to participate in the allocation scheme, in which case they
are assigned their current rooms again. In that case we say that the allocation
scheme has no guarantees. A commonly used mechanism is serial choice with
no guarantee: Before this allocation scheme begins operating, all students who
already occupy rooms have to declare whether they want to participate. If they
do not participate then they are assigned the rooms they already occupy. The
students who do not presently occupy rooms or who have given up the rooms
they occupy are given numbers. The lowest-numbered student chooses a room
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Table 9.18

Room UA UB UC

X 3 4 3
Y 4 3 4
Z 1 1 1

from the set of available rooms, and the one that is chosen is removed from
the list of available rooms. The second student chooses from the set of currently
available rooms, and that choice is removed from the list. Then the third student
makes a choice, and so on.

DEFINITION: Serial choice with no guarantee (SCNG)
If (s, r) belongs toπ0 then s must decide whether to keep roomr or participate
in the allocation scheme. Let R1 denote the set of rooms that are either not
currently occupied or are presently occupied by a student who has agreed to
give up his or her room and participate in the scheme. S1 is the set of students
who do not have a room or who have given up the room that they had. The
members of S1 are numbered, s1, s2, . . . , sm. Student s1 has highest priority,
and s2 is next, and so on. Student s1 chooses his or her most-preferred room
from R1, and that room is removed from the list, resulting in the available set
R2. Then s2 chooses from R2, and the room selected is withdrawn, resulting
in the available set R3. At stage t student st chooses from Rt, where Rt is
obtained from Rt−1 by removing the room chosen by st−1.

The numbering of students can be determined entirely by chance, with each
having the same probability of being selected to go first. This random allocation
can be modified by giving seniors and/or those with a high GPA a higher proba-
bility of receiving a low number. In any case an assignment of priority numbers
can result in an inefficient assignment if a student has the right to hang onto a
room that the student already has but is not guaranteed an equally good room
if he or she gives it up, as our first example demonstrates.

Example 4.1: Inefficiency of the SCNG with three students
and three rooms

We allocate rooms using the SCNG algorithm. The three students are A, B, and
C . The rooms are X , Y , and Z. Student A currently occupies X , and the other
two rooms are unoccupied. The utility functions are given by Table 9.18. We
have UA(X ) = 3, UA(Y ) = 4, UA(Z) = 3, and so forth. A has to decide whether to
hold onto X or participate in the allocation scheme. We assume that the priority
ordering is determined by a draw from a uniform probability distribution. In
plain words, three pieces of paper are placed in a hat, each one bearing a name
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of a student. A slip of paper is removed at random, and the student whose name
is on the slip is first, and the second student is the one whose name is drawn
next. There are six different possible orderings, namely AB, AC, B A, BC, C A,
and C B. (AB means that A is first and B is second.) Each ordering has an equal
chance of being the one determining priority, so the probability of each ordering
is 1/6. If A holds on to room X then A’s utility will be 3, because UA(X ) = 3. If A
participates in the allocation scheme, then A will choose room Y , with UA(Y ) = 4
if the ordering of students is AB or AC , because A will go first and choose Y .
With B A or BC student B goes first and will take X . With B A student A gets the
next choice and will choose Y . With BC , student B chooses X and C chooses Y ,
so A is left with Z. With C A or C B student C will choose Y first, and A will get X
with C A and will get Z with C B. Student A will get Y in three of the cases, will
get Z in two of the cases, and will get X in only one case. Therefore, A’s expected
utility is

3
6

× UA(Y ) + 2
6

× UA(Z) + 1
6

× UA(X ) = 3
6

× 4 + 2
6

× 1 + 1
6

× 3 = 17
6

.

The expected utility from participating in the lottery is less than the utility of
holding onto X , so A will retain X . Therefore, only B and C participate, and the
available rooms are Y and Z. With probability 1/2 B will go first, in which case
B chooses Y . With probability 1/2 C will go first and will get Y . With probability
1/2 the room assignment will be π under which A will get X , B will get Y , and
C will get Z, resulting in the utility profile of the first row of Table 9.19. But if
assignment π ′ gives Y to A, X to B, and Z to C then the utility profile would be
that of the last row of Table 9.19. Clearly, assignment π is not efficient because
π ′ gives A and B more utility and C the same utility.

Versions of serial choice with random
determination of the order of choice
are employed at many U.S. univer-
sities, including Michigan, Princeton,
Rochester, and Stanford (in their grad-
uate residences) and Carnegie-Mellon,
Duke, Harvard, Northwestern, Univer-
sity of Pennsylvania, William and Mary,
and Yale (in their undergraduate dor-
mitories). Many different randomization
procedures are employed, with varia-
tions even across undergraduate col-
leges at Yale. At Duke, Harvard, North-
western, Pennsylvania, and William and
Mary incumbent students are permit-
ted to opt out of the allocation process
and retain their current rooms (Abdulka-
diroǧlu and Sönmez, 1999).

If there are no existing tenants, as would
be the case with a freshman dorm, then the
SCNG procedure always leads to an efficient
outcome. It’s easy to see why. Student s1 gets
his or her most-preferred room, so any change
in s1’s assignment will reduce his or her util-
ity. Given that we can’t change s1’s assignment
and that s2 gets s2’s first choice of all the rooms
available after s1 makes a selection, we can’t
change the assignment of rooms to s1 and s2

without making one of those students worse
off. In fact, suppose that π is the assignment
that results from the SCNG and that π ′ is some
other assignment. Let t be the smallest integer
such that the room assigned to st by π ′ is differ-
ent from the room assigned to st by π . Because
the rooms allocated to students s1, s2, . . . , st−1

are the same for π ′ as for π , the set of rooms Rt

still available for st is the same for π ′ as for π .
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Table 9.19

Assignment A’s utility B’s utility C ’s utility

π 3 3 1
π ′ 4 4 1

But π gives st his or her most-preferred room from Rt and π ′ gives st a different
room. Therefore, π ′ leaves st worse off than under π . Therefore, we can’t change
π without making someone worse off, and hence π is efficient.

If none of the rooms is already occupied then the outcome of the SCNG is
efficient.

It is obvious that no student can profit by misrepresenting his or her prefer-
ences if the SCNG is employed and there are no existing tenants—that is, none
of the rooms is already occupied. We formally test for strategy proofness by sup-
posing that all students submit their utility functions to a referee who then uses
these functions to work out the outcome of the SCNG. Would submitting the
true utility function be a dominant strategy?

DEFINITION: Strategy proofness
An algorithm for determining an assignment of rooms is strategy proof if for
each specification of the true student utility functions, reporting truthfully
is a dominant strategy for each student.

Student s1 gets his or her most-preferred room under truthful revelation, so s1

has no incentive to misrepresent his or her preferences. In general, student st gets
whichever room in Rt maximizes the utility function that st reports, and the utility
function that st reports has no effect on the priority ranking of students. Therefore,
the dominant strategy for st is to report his or her true utility function and get the
room in Rt that st actually likes best. We have proved that truthful revelation is
a dominant strategy for each student if there are no existing tenants. (Note that
it suffices for all students to report their preference orderings of rooms. A utility
representation is not necessary. But the students themselves make expected
utility calculations to see if they should participate if they currently occupy a
room.)

If none of the rooms is already occupied then the SCNG is strategy proof.

4.2 An efficient procedure
The possibility of winding up with an inferior room if you give up the one that
you currently hold can lead to inefficiency. Therefore, we modify the SCNG
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algorithm by removing the potential penalty for relinquishing a room. We begin
with the assumption that only one of the rooms is occupied before the matching
process begins. The new allocation scheme, called the serial choice with guar-
antee (SCG1) algorithm, proceeds in the same fashion as SCNG, except that all
students are numbered, perhaps by lottery, and all participate, and if at some
stage someone claims a room that you occupy you get to take that student’s
place in line, which means that it is now your turn to choose. You can reclaim
your own room or take a better one if one is available. It is the possibility of
getting a better room if someone takes yours, and the right to reclaim your room
if nothing better is available, that guarantees that the outcome will be efficient.

DEFINITION: Serial choice with guarantee (SCG1)
All students are numbered. Let s1, s2, . . . , sn be the resulting priority ranking.
Let R1 denote the set of all rooms. Let Rt be the set of rooms that have
not been selected prior to stage t. The algorithm proceeds according to the
SCNG, with student st choosing from Rt at stage t, until we reach a stage t at
which st claims a room that is already occupied, say by student s. At this point
the algorithm is suspended while the ordering of students is changed, with s
replacing st as the next student to choose. The priority ranking is otherwise
unaffected. The algorithm now resumes with s choosing from Rt.

The SCG1 circumvents SCNG’s potential inefficiency when there is only one
room that is currently occupied, as we now demonstrate.

Example 4.2: Efficiency of SCG1 for the utility functions
of Example 4.1

AB, AC, B A, BC, C A, and C B are the six different possible orderings of all three
students. The utility functions are the ones given in Table 9.18 of Example 4.1,
and A currently occupies room X . If the priority ranking is AB or AC , then A will
go first and choose Y . If B goes second B will choose X , and C will choose X if C
goes second. With B A or BC student B goes first and will take X . Because X is
occupied by A the ordering of students is changed from B A to AB or from BC
to AB. In either case A now goes first and chooses Y . Student B will go second
and choose X . With C A or C B student C will choose Y first and A will get X
with C A. With C B student B claims X after C chooses Y . But when B claims
X the ordering is changed, with A choosing after C and selecting X . Table 9.20
summarizes. Note that A’s expected utility with the SCG1 is

4
6

× UA(Y ) + 2
6

× UA(X ) = 4
6

× 4 + 2
6

× 3 = 22
6

,

which is greater than UA(X), the utility from opting out and holding on to A’s
original room.
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Each of the possible outcomes of the SCG1 is efficient. In four of the cases
student A gets the room (Y) that maximizes A’s utility. Therefore, any change
in A’s room assignment will make A worse off. And both B and C prefer X
to Z so any change in their assignments will result in someone being moved

Table 9.20

Priority ranking A B C

AB Y X Z
AC Y Z X
BA Y X Z
BC Y X Z
CA X Z Y
CB X Z Y

from X to Z, and that person will be made worse off. The last two assignments
in Table 9.20 give C his or her most preferred alternative, Y . Again, the other two
each prefer X to Z so any change in their assignments will move one of them
from X to Z, making that person worse off. Therefore, none of the assignments
can be changed without making someone worse off: The matching determined
by SCG1 is efficient.

Even if a student already in a room were allowed to opt out, the SCG1 would
precipitate an efficient outcome because of the guarantee that participation
would not diminish a student’s utility. That guarantee increases participation
and forestalls any inefficiency. Rather than proving this we generalize the SCG1
algorithm to the case where two or more rooms are already occupied and then
establish the efficiency of the more general version.

If there are two or more rooms that are already occupied we have to adjust
the SCG1 algorithm to deal with possible loops. A loop is a subset R′ of rooms
and a sequence s1, s2, . . . , st of students such that the first choice of s1 from R′ is
the room occupied by s2, the first choice of s2 from R′ is the room occupied by s3,
and so on, with the first choice of student st−1 from R′ being the room occupied
by st and the first choice of st from R′ being the room occupied by s1. When that
happens we give all of the t students in the loop their chosen rooms and then
remove all t students and all t of the chosen rooms from the process, continuing
with the algorithm applied to the rooms that have yet to be assigned and the
students who do not yet have rooms.

DEFINITION: Serial choice with guarantees (SCG) in general
Let s1, s2, . . . , sn denote the priority ranking (of all students), with R1 being
the set of all rooms. Let Rt be the set of rooms that have not been selected
prior to stage t. (Rooms that had already been occupied when the algorithm
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started will belong to Rt if and only if they have not yet been newly assigned
to someone by the algorithm.) The student s ′ with the highest rank in the
priority ordering who has not yet received a room chooses from Rt. If the
chosen room was originally unoccupied then it is assigned to s ′ and removed
from the set of available rooms resulting in Rt+1, the new set of available
rooms. If s ′ does choose a room that had already been occupied, say by s ′′,
the algorithm searches for a loop. If there is no loop, the ordering of students
is changed, with s ′′ now having highest priority and s ′ second. The algorithm
now resumes with s ′′ choosing from Rt. If a loop is found then all students in
the loop are assigned their chosen rooms, and all those rooms are removed
from Rt to constitute the set Rt+1 of rooms available at the next stage.

The outcome of the SCG is strategy proof because at each stage the student
whose turn it is to choose gets the room that ranks higher in his or her reported
preference ordering than any other available room, and no student can affect the
order in which he or she chooses or the set of rooms available by changing his or
her reported preference ordering. Therefore, choosing according to one’s true
preference ordering is a dominant strategy. This remains true for all students
that are part of a loop. They get their most-preferred rooms from the set of
rooms available when the loop is identified. What about the case of a student s ′

who slips one position in the queue because s ′ has chosen the room occupied
by student s ′′ but these students are not part of a loop? Instead of s ′ choosing
followed by s ′′, under truthful revelation student s ′′ will choose, followed by s ′.
If s ′ forestalls the switch in the ranking by choosing a room that is not s ′’s most
preferred (in the set of available rooms) s ′ will do no better than get the room
ranked second in s ′’s preference ordering, and s ′ is guaranteed at least that if s ′′

chooses first.
As we did in the earlier sections, we formally investigate incentive compati-

bility by supposing that all students give their preference ordering to a referee,
who then uses the reported preferences to work out the matching determined
by the algorithm in question. Would submitting the true preference ordering be
a dominant strategy?

DEFINITION: Strategy proofness
An algorithm for determining an assignment of rooms to students is strategy
proof if for each specification of the student preferences truthful revelation
is a dominant strategy for each agent.

We have informally demonstrated that the SCG passes this test:

The SCG is strategy proof, and it always generates an efficient outcome,
regardless of the number of rooms already occupied at the time it is employed.
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We begin by proving rigorously that for every specification of individual pref-
erences for rooms, truthful revelation is a dominant strategy for every student
when the SCG is employed. Consider arbitrary student σt, where σ1, σ2, . . . , σn is
the ordering in which the students actually chose as a result of applying the SCG
to the original priority ranking s1, s2, . . . , sn. Let Pt be the set of available rooms
when arbitrary student σ t has an opportunity to choose. All other rooms have
been assigned by the time σ t has his or her turn. Clearly, P1 is the set of all rooms,
so σ1 (who might not be s1) gets the room that is at the top of σ1’s true preference
ordering. Student σ1 has no incentive to reveal a preference ordering different
from his or her true one—that is, to choose a room that is not most preferred
according to σ1’s true preference scheme. Similarly, student σt has no incentive
to choose anything but his or her most-preferred alternative in Pt. Student σt

can’t do anything to change the set of available rooms when it is his or her turn
to choose. If student s chooses a room r ′ that was already occupied by a student
s ′ before the SCG algorithm began, and s ′ has not yet been assigned a room
and there is no loop, then s ′ gets the turn of student s, who then follows s ′. If s ′

elects to keep his or her room r ′ then it is removed from the list available to s.
Then s will choose room r , the one in Pt that ranks above every other member
of Pt except r ′. Had s not chosen r ′ initially then s’s choice from Pt could not
have ranked higher than r . In other words, student s has no incentive to reveal
a preference for rooms other than s’s true preference. Finally, suppose that σt is
the beginning of a loop. Then the SCG gives σt his or her most-preferred room
in Pt if σt reveals truthfully. Student σt could have made a different choice, to
prevent the loop from forming, but σt still would have been in the position of
choosing from Pt. Because σt’s declared preference can have no effect on the
set of rooms from which σt is allowed to choose, that student cannot profit by
deviating from truthful revelation. Can a student benefit by deviating from truth-
ful revelation to create a loop? No. That will not make any room available that
would not have been available under truthful revelation. We have established
that the SCG induces truthful revelation by all students, whatever their priority
rankings.

Now, we turn to the efficiency claim. Let s1, s2, . . . , sn and σ1, σ2, . . . , σn and
Pt be defined as in the previous paragraph. Let π∗ be the matching precipitated
by SCG. We show that we cannot alter π∗ without making one of the students
worse off. Clearly, student σ1 gets the room at the very top of σ1’s preference
ordering, whether or not σ1 and s1 are the same. Therefore, we can’t alter π∗

without making σ1 worse off. Suppose that we have proved that we cannot alter
π∗ without making one of the students σ1, σ2, . . . , σt worse off. We now show
how it follows from that supposition that we cannot alter π∗ without making
one of the students σ1, σ2, . . . , σt, σt+1 worse off. If we are not to make one of
the first t + 1 students worse off then we know that we can’t change the room
assigned by π∗ to one of the first t students. Therefore, if we are not to make one
of the first t + 1 students worse off, the set of rooms available for σt+1 is precisely
the same as the set available under the SCG. The previous paragraph showed
that σt+1 gets his or her most-preferred room from that set, and thus we can’t
change the room assigned by π∗ to σt+1 without making that person worse off,
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Table 9.21

A B C D E

W Z W W X
V Y Z Y

X W
V
Z

unless we give σt+1 one of the rooms assigned by
π∗ to one of the first t students. We have proved
that if we don’t change the assignment to one
of the first t students then we can’t change the
assignment to σt+1 without making one of the
first t + 1 students worse off. And we know that
we can’t change the assignment to σ1 without
making σ1 worse off. (Note: σt and st may not
be the same.) It follows that we can’t change
the room assigned by π∗ to any student without
making some student worse off. Therefore, π∗ is
efficient.

Example 4.3: Application of the SCG algorithm

There are five students, A, B, C , D, and E , and five rooms, V , W, X , Y , and Z.
Three of the rooms are presently occupied: W by student B, X by student C ,
and Y by student D. All five students will participate in the allocation scheme
because all three tenants are guaranteed rooms that are at least as attractive as
the ones they currently occupy. Assume that the priority ordering is ABCDE .
A partial list of the students’s preferences is presented in Table 9.21. We have
given only a partial preference ordering for the first four students because
we don’t need any more information to work out the details of the SCG in
this case.

Student A goes first and chooses W, which is already occupied by B, so
the priority immediately changes to B AC DE . Then B goes first and chooses Z,
which is not occupied, so room Z is assigned to B and removed from the list of
available rooms. A then choose W, which is not occupied by someone waiting
for a turn to choose, so W is assigned to A and removed from the list of available
rooms. The available rooms are now V , X , and Y with C , D, and E , in that order,
waiting to choose. Student C chooses Y , which is occupied by D, and D would
choose X , which is occupied by C . We have a loop, and thus room Y is assigned
to C and X is assigned to D. That leaves room V to be assigned to student E . The
resulting matching π is displayed as Table 9.22. Is this matching efficient? A and
B both wind up with the rooms that they prefer to every other room. Therefore,

Table 9.22

A B C D E

W Z Y X V

if we change the matching in a way that changes the room assigned to A we will
make A worse off, or if we assign a different room to B we will make B worse
off. Therefore, in searching for a matching that makes at least one person better
off than π and no one worse off we have to give W to A and Z to B. That leaves
rooms V , X , and Y to be assigned to C , D, and E . The SCG assignment π gives C
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the room that C most prefers, subject to the constraint that A and B have to get
W and Z, respectively. Therefore, if we change the room assignment of A, B, or
C then we will make one of those three worse off. Similarly, the SCG assignment
π gives D the room that D most prefers, subject to the constraint that A and B
have to get W and Z, respectively. Therefore, if we change the room assignment
of A, B, C , or D then we will make one of those students worse off. It follows that
if we do not assign room V to student E then we will inevitably leave A, B, C , or
D worse off than they are at the SCG matching π . Therefore, if π is our starting
point, we cannot make one of the five students better off without leaving at least
one of them worse off. Therefore, π is efficient.

Finally, we consider whether one of the students could have been assigned
a better room (according to his or her own preferences) by making a different
choice than the one that we ascribed to the student in the first part of the example.
Because A and B both wind up with the rooms that they prefer to every other
room, neither could have profited by deviating from truthful revelation. There is
nothing that C can do to change the set of rooms available when it is C ’s turn to
choose, and because the SCG gives C his or her most-preferred room from that
set individual C cannot profit by misrepresenting his or her preferences. The
same can be said of D. Student E goes last, and there is nothing that E can do
to get an earlier choice. Therefore, student E cannot profit by misrepresenting
E ’s preferences.

Source
The section is based on Abdulkadiroǧlu and Sönmez (1999). Example 4.1 is from
that article.

Links
Zhou (1990) proves that there is no strategy-proof allocation scheme that treats
individuals symmetrically and always yields an efficient outcome. Chen and
Sönmez (2002) test SCNG and SCG. The latter is significantly more likely to
result in an efficient allocation in laboratory settings with human subjects. See
also Chen and Sönmez (2004).

Problem set

1. We proved that if there are no existing tenants then the outcome of the
SCNG is always efficient. The proof was quite simple. Why doesn’t it work
when some of the rooms are already occupied?

2. For each possible priority ordering determine the matching generated by the
SCNG for Example 4.1 if none of the three rooms is originally occupied—the
case of a freshman dorm, for instance.

3. There are five students, A, B, C , D, and E , and five rooms, V , W, X , Y , and Z.
Agent A already occupies room Y , and no other room has a tenant before the
new room assignments are determined. The order in which students choose
is determined by a random draw from a uniform probability distribution, and
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then the SNGN algorithm is employed. Specify a utility function for student
A and preference orderings for the other students so that A decides not to
participate in the lottery and the resulting outcome of the SCNG is inefficient
for at least one priority ranking.

4. Prove that the student who chooses first is not a dictator (in the sense in which
that term is used for the Gibbard-Satterthwaite Theorem of Chapter 7) if the
SCG is used.

5. For the case of five students and five rooms, specify the student preferences
so that the SCG assigns all their most preferred rooms, regardless of how
many rooms are occupied and who occupies them. Explain your answer.

6. Work out the matching for the SCG when the priority ranking is E DC B A and
three of the rooms are already occupied—W by B, X by C , and Y by D. The
preferences of the five students for the five rooms are given as Table 9.23.

Table 9.23

A B C D E

W Z W W X
V X Y Z Y
Z Y V X W
X W X Y V
Y V Z V Z

7. Work out the matching for the SCG when the priority ranking is AC E B D and
three of the rooms are already occupied—W by B, X by C , and Y by D. The
preferences of the five students are given as Table 9.23.

5 KIDNEY TRANSPLANTS

End stage renal disease, also called chronic kidney disorder, can be treated with
dialysis or by transplanting another kidney into the patient. Transplant is the
better treatment method because it offers a greater probability of success. Most
transplanted kidneys are taken from cadavers, but a significant number are
provided by live donors. Of course, transplants depend on the availability of
kidneys from either a cadaver or a live donor. There is a substantial gap between
the demand and the supply, and the gap is growing.

In 2002 almost 55,000 patients in the United States were on the waiting list
for a transplant, and about 8,500 of these received a kidney from a cadaver
and about 6,200 received one from a live donor. Every year about 6% of the
people on the waiting list die before a kidney becomes available, and between
1% and 2% become too ill to qualify for a transplant. A particular kidney can be
transplanted into a particular patient only if two criteria are satisfied: the blood
types of recipient and donor have to be compatible (that’s not the same as saying



5. Kidney Transplants 511

that the types have to be identical), and the recipient must not have antibodies
that would attack the donor’s proteins.

Suppose (temporarily) that no cadaver kidneys are available. We begin the
analysis of matching patient and kidney donor with a set S = {s, s ′, s ′′, . . .} of
n patients requiring a transplant. Each patient s has a willing donor r(s) whose
kidney may or may not be a good match for s. Think of R = {r(s), r(s ′), r(s ′′), . . .}
as a set of kidneys. The suitability of the match between s and r(s) is not binary:
There are impossible matches, bad matches, good matches, better matches, and
ideal matches. We can think of a patient’s “preferences” as a list of the kidneys
in order of the suitability of their match with that patient.

We now have a parallel to the room allocation problem of the previous sec-
tion. The kidneys play the role of the rooms waiting to be attached to a student,
with the patients in the role of the students. We take our cue from the serial
choice with guarantees (SCG) algorithm to determine the matches between
patients and kidneys. Why do we need to have the guarantees? Because each
patient si already has a willing donor ri , and to participate in the scheme a patient
would have to be assured of receiving a kidney that is at least a good match for
the patient as the one that the donor—typically a relative—is able to provide. If
ri has some chance of being successfully transplanted in si then si is treated as
a student with an existing room. The extension of the SCG algorithm will pre-
cipitate a matching that is stable and efficient and gives all patients incentive to
reveal their preferences truthfully.

The algorithm begins by searching for a loop involving only the patients
who come paired with donors. There is a loop if some k of the patients can be

Table 9.24

A B C

Y Z X
X Y Z
Z X Y

numbered s1, s2, . . . , sk so that r(s2) is the kidney most preferred
by s1, r(s3) is the kidney most preferred by s2, r(s4) is the kid-
ney most preferred by s3, and so on, with r(s1) being the kid-
ney most preferred by sk. If there is a loop, all patients in the
loop are given their most-preferred kidneys, and then all of
these patients and kidneys are removed from further consider-
ation. The algorithm then searches for another loop, and so on,
until all loops have been identified and removed from further
consideration.

Example 5.1: No bilateral exchanges are possible

There are three patients, A, B, and C . All have siblings willing to donate kidneys
to them, but not directly interested in sacrificing kidneys for anyone else. Unfor-
tunately, A’s sibling X is a bad match for A, patient B’s sibling Y is a bad match for
B, and C ’s sibling Z is a bad match for C . Suppose also that X is a bad match for
B, Y is a bad match for C , and Z is a bad match for A. Assume that “bad match”
means virtually a zero chance of a successful transplant. None of the patients
can be matched with his or her sibling. We can’t even find two pairs of siblings
who can exchange kidneys with any chance of success. Suppose, however, that if
X gives a kidney to C , person Y gives a kidney to A, and Z gives a kidney to B then
each patient gets a viable kidney. This assignment would be achieved by the SCG
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with any priority ordering, as we now show: Table 9.24 gives the preferences of
the three patients. We have a single loop with A choosing “the room occupied
by B” and B choosing “the room occupied by C” and C choosing “the room
occupied by A.” The algorithm deals with that loop by giving all their choices.
In other words, X’s kidney is transplanted into C , Y ’s kidney is transplanted into
A, and Z’s kidney is transplanted into B.

Unless we make the bizarre assumption that each donor’s objective is to
have his or her kidney implanted in a sibling, rather than to extend the family
member’s life, a loop accomplishes the goal of each donor and patient, even
though no patient s receives the kidney of the original donor r(s).

Now let’s complicate the model by adding m patients on the waiting list for a
cadaver kidney. Their priority on the waiting list is expressed by w1, w2, . . . , wm,
with w1 first in line, w2 second, and so on. The patients on the cadaver waiting list
have “preferences” for the live donor kidneys r(s), r(s ′), r(s ′′), . . . , r(ŝ) just as the
patients in S do. Suppose, to take an extreme case, that r1 is incompatible with
each of the patients s1, s2, . . . , sn but r1 is at the top of w1’s preference ordering.
Then by extension of the SCG algorithm to the kidney allocation problem, r1 is
assigned to w1 but then s1 assumes w1’s place at the head of the waiting list for
a cadaver kidney. Let’s generalize this.

The algorithm searches for a loop (as defined in the previous section) involv-
ing the patients in S and their donors’s kidneys. All members of each loop are
assigned their “chosen” kidneys, and both are removed from the allocation prob-
lem for the next stage. When all the loops have been dealt with the algorithm
searches for a w-chain, which involves the patients in S, their donor partners’s
kidneys, and the cadaver waiting list. There is a w-chain if we can number some
k of the patients in S so that r(s2) is the kidney most preferred by s1, r(s3) is the
kidney most preferred by s2, r(s4) is the kidney most preferred by s3, and so on,
with none of the kidneys suitable for sk, for whom the waiting list is the preferred
option. At this point si is assigned the kidneyr(si+1) for i = 1, 2, . . . , k − 1, and sk

receives high priority on the cadaver waiting list. The kidney r(s1) is either offered
to the cadaver waiting list or to one of the patients in S. When this is done, the
algorithm searches for loops again. The procedure continues in this fashion until
no patient is left.

Source
This section is based on Roth, Sönmez, and Ünver. (2004).

Links
Su and Zenios (2003) and Votruba (2003) have other perspectives on kidney
allocation. Blair and Kaserman (1991) argue that the supply of cadaver kidneys
could be substantially increased by very simple (and ethical) changes in public
policies and law.
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This chapter examines a hidden characteristic problem of great significance:
We take an economy-wide perspective and ask if there is a mechanism that
will elicit private information about individual preferences and firm production
recipes in a way that allows an efficient allocation of private goods and services to
be identified and implemented. We assume away all other hidden information
problems. In particular, every consumer is assumed to know the quality of every
firm’s output, every employer knows the abilities of every prospective employee,
every lender knows the probability of default of every creditor, and so on. Every
manager can be relied on to maximize profit. In fact there is no shirking by
anyone.

The economy still has an impressive challenge—to induce truthful reve-
lation of the remaining hidden information, specifically the preferences and
production functions. In fact, three of the five sections even assume away this
hidden information problem, highlighting instead the transmission of infor-
mation. Recall that an outcome is efficient if there is no other arrangement of
production and consumption activities that makes one person better off without
lowering the utility of anyone else. Identification of an efficient outcome would
seem to require an enormous amount of information about all of the private
characteristics. Therefore, even with most of the hidden information problems
assumed away, identification of an efficient outcome by the market system is a
remarkable accomplishment. Marginal social cost pricing is the key.

In a private ownership market economy the consumer maximizes utility
subject to a budget constraint, and this results in a chosen consumption plan
at which the marginal rate of substitution (MRS) for each pair of commodities
equals the price ratio for those goods. Therefore, the price ratio transmits infor-
mation about one consumer’s MRS to every other consumer and every firm. The
budget constraint gives consumers the incentive to employ that information in
their utility maximization calculations, as Subsection 1.4 demonstrates. Profit
maximization by a firm in a competitive environment results in the equilibrium
price of a commodity that is also equal to the marginal cost of producing that
good. Therefore, prices transmit information about consumer preferences and
firm production recipes—marginal information.

In spite of the fact that prices transmit only marginal information, in Sec-
tions 2 and 3 we demonstrate that this marginal information suffices to allow
an efficient outcome to be identified in a wide range of circumstances. The first
section is an informal examination of incentives at work in a capitalist economy.
In Section 4, we look at one specific incentive issue—the ability of a trader to
advantageously manipulate prices. In the last section, we look at the perfor-
mance of the market system when there is a resource that is jointly and freely
employed by several firms.

1 COMPETITION, PROPERTY RIGHTS, AND PROSPERITY

Competition between political parties makes it very difficult for a ruling party
to conceal serious problems or to ignore them if the cat does get out of the bag.
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Competition between firms reduces the likelihood that a firm that attempts
to profit by deceiving consumers can survive. Competition among firms in
a private ownership market economy is also a key ingredient of efficiency
and economic growth. We examine these claims briefly and informally in this
section.

1.1 Competition and reputation
The producer of a commodity has two sets of rivals. The obvious group consists
of the other producers, but in a market economy consumers are the also firm’s
adversaries in the sense that, unless somehow constrained, the producer can
increase profit by misleading its customers—about product quality, in particu-
lar. Product quality has many dimensions—durability, versatility, performance,
operating cost, maintenance cost—and there are many opportunities for the
unscrupulous manufacturer to reduce production costs by sacrificing quality
while keeping up a good appearance. In a command economy, where profit
maximization may not be a firm’s chief goal, the workers in a production plant
can still gain by misleading consumers about quality. Their task is easier if they
do not have to maintain high-quality output.

What prevents a producer from succumbing to the temptation to gain at the
expense of consumers? Regulation by a government agency sometimes plays
an important role, even in a market economy. Far more important, typically,
is the discipline of competition under capitalism. Modern technology requires
a heavy initial capital outlay for the production of most goods and services.
Competition among the owners of capital keeps the rate of return on capital
low enough so that the initial expenditure can be recovered only after many (or
at least several) years of sustained production and sales. Therefore, the firm is
not just interested in profit today. High current profit will lead to heavy losses
in the future if present profits rest on duplicity, which is discovered and broad-
cast to consumers by word of mouth, by consumer research firms, and by the
media. When consumers have the option of buying from a firm’s competitors,
the temptation to sacrifice both consumer welfare and the firm’s future is held
in check to a great extent. Warranties also play a role. If other firms provide a
comprehensive warranty, then firm X must do the same to stay afloat. If X were
to deceive customers by manufacturing low-quality items and passing them off
as high-quality products, then X would suffer heavy losses in the future as items
are returned for replacement or repair under the warranty.

In some cases it is not easy to discover that the consumer has been misled.
Consider housing construction. Defects may not show up for years, but when
they do they can be extremely costly—wiring that causes fires, leaky roofs, and
so forth. It will be very difficult for consumers to determine that construction
company X produces houses that are more defect prone than those of other
firms. The same is true for the suppliers of health care. And warranties won’t
work well in either case. A meaningful warranty on a new house would have to
be long lived, but that presents the construction firm with a hidden information
problem. Warranties remain in force as long as the consumer undertakes proper
maintenance. This is easy to monitor in the case of new cars, which can be



516 General Competitive Equilibrium

brought back to the dealer for periodic inspections, but is very difficult in the
case of new houses. More significant is the fact that it becomes harder to define

In spite of the difficulties that we’ve
pointed to, construction companies are
not heedless of their reputation. Never-
theless, housing construction is typically
regulated by the government as well as by
the market. Because the cost of mistakes
or fraud can be enormous, there is a case
for government regulation even if defects
could be eventually attributed to the pro-
ducer. It is no coincidence that regu-
lation is more stringent in Florida and
California, where hurricanes and earth-
quakes are a constant worry.

“proper maintenance” the more time has
lapsed since purchase. And if maintenance
requirements can’t be specified, contracts can-
not be written conditional on maintenance tak-
ing place. But if the home owner is not penal-
ized for failure to keep the house in good repair
then the owner has little incentive to exercise
preventive care. A serious moral hazard prob-
lem prevents long-term warranties from being
offered.

But for a wide range of goods and services,
competition among producers forces the indi-
vidual firm to be concerned with its reputation.
It is the lack of competition in the manufacture
of appliances in the former Soviet Union that

accounts for the explosion of thousands of television sets per year in Russia (see
Milgrom and Roberts, 1992, p. 13).

Competition and reputation also have an important role to play in the politi-
cal realm, of course. One reason why pollution reached grim proportions in East-
ern Europe by 1990 is that the lack of political competition made it relatively easy
for ministers responsible for the environment to conceal problems and thereby
minimize the probability of being sacked. Politicians in multiparty, democratic
countries also have an interest in covering up, but political rivals and a compet-

In the 1980s in some areas of the for-
mer East Germany 90% of children
suffered respiratory disease. Pollution-
related cancers and infant mortality
soared in Czechoslovakia during the
1970s and 1980s. During the same
period, 95% of Polish rivers were polluted
and the leukemia rate was soaring (Busi-
ness Week, March 19, 1990, pp. 114, 115).

itive press make it much more difficult to
escape detection. “It is significant that no
democratic country with a relatively free press
has ever experienced a major famine. . . . This
generalization applies to poor democracies as
well as to rich ones” (Sen, 1993, p. 43). A. K. Sen
has demonstrated that even in severe famines
there is enough food to sustain the entire pop-
ulation of the affected region, and that leaders
who must seek reelection are far more likely
to take the steps necessary to see that food is

appropriately distributed. The incentives confronting political leaders have life
and death consequences for millions.

1.2 Responsiveness of competitive markets
A lot of creativity can be traced to market forces. A firm has to improve its product
and come up with new products, not just to respond to a rival’s innovation but
to anticipate what its rivals might do. “Catch-up” is a risky game to play. A firm is
much more likely to survive and prosper if it takes its rivals by surprise. Each firm
in an industry wants to be first with an innovation. The greater the competition
in the industry, the more desperately a firm will strive to be the front runner.
Several times a day you encounter evidence of the resulting creativity of markets.
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You can probably quickly recall quite a number of product innovations that owe
their existence as much to some firm’s fear of losing ground to others as to the
ingenuity of someone’s mind. Here’s my list:

� Major cities now have stores that sell used wedding gowns.
� Parents can obtain the services of reliable firms for educational testing and

for the provision of transcripts for children educated at home.
� In the 1990s Wall Street created catastrophe bonds to provide insurance to

insurance companies—against the correlated losses that can occur when,
for example, a natural disaster creates widespread damage in a particular
area. Catastrophe bonds pay a higher rate of interest than other corporate
bonds, but the insurance company doesn’t have to pay back the principal at
all if, say, a hurricane does more than $1.5 billion of damage. If the damage
is between $1 and 1.5 billion then only part of the principal has to be repaid
(Wheelan, 2002, p. 123). Is this a valuable service from the standpoint of
overall consumer welfare?

� A handful of parking lots have introduced bunk beds for parked cars to max-
imize the number of parking spots that a plot of land can support.

� Some firms have equipped trucks with document shredders, so that other
firms, too small to purchase their own shredders, can avail themselves of the
service at a price they can afford.

� Before the U.S. government broke AT&T’s monopoly hold on telephone ser-
vice, AT&T would not allow customers to use non-AT&T equipment. More
significantly, they were under no pressure to provide useful services to
customers—such as a telephone ringer that could be turned off when the
baby is asleep. (My wife and I put thick tape around the bell in the 1970s.)
Now that the suppliers of telephone services face vigorous competition, all
kinds of significant features are available. (Think about how the U.S. govern-
ment postal service has changed in response to competition from Federal
Express and UPS.)

� Some express highway lanes charge a fee by taking a picture of your licence
plate (e.g., Highway 407 in Toronto) and sending you a bill in the mail. At
least one firm has gone into business selling license plate covers that are
transparent to the eye—that is, to the eye of a police officer—but are opaque
to the lens of a camera.

� My son-in-law Tyler Cowie owns and operates his own computer graphics
business. He used to pick up jobs from the printer in a taxi, until one driver
offered to pick up his printing without Tyler having to be in the cab. University
bookstores now sell used textbooks, probably because of the pressure of
competition from firms that can ship new textbooks at discount prices within
a few days.

� A firm in Huntsville, Alabama, sells the contents of luggage that was lost by
airplane travelers.

� Firms have sprung into business to provide reliable evaluations of high
school and university transcripts from China, Singapore, and so forth for
American universities processing applications for admission to undergrad-
uate programs and graduate schools.
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� Television stations have been known to purchase unsold tickets to a football
game so that the local broadcasting blackout could be lifted.

Pre–Industrial Revolution economies of the late eighteenth century offered—
even to the wealthy—only goods that were also available in ancient Rome. The

Beverage cans are made from two pieces
of aluminum. A very thin disk is stamped
to form the bottom and sides. The top
is a separate disk that is crimped onto
the sides. Because the contents are under
pressure and the top is scored to allow
the pop top to tear open when the con-
sumer applies force, the top must be sub-
stantially thicker than the sides, adding
to the cost of producing the can. Con-
sequently, in the 1970s the sides of the
can were tapered near the top to reduce
the surface area of the top disk (Petrosky,
1996, p. 102). Think about the intricate
web of market forces that inspired this
innovation.

rate of economic growth over the 1500 years
prior to the Industrial Revolution was essen-
tially zero. Contrast that with the impressive
stream of innovations just hinted at in previ-
ous paragraphs. The flow of goods and services
per capita from the world’s mature capitalist
economies is from several hundred percent to
several thousand percent higher than 150 years
ago. Why?

Capitalist, or free market, economies
provide incentives that promote growth.
Entrepreneurs are motivated to devote their
energies to productive outlets, rather than
to activities that merely transfer wealth from
one pocket to another, as when an individual
acquires land from a grateful monarch for ser-
vices rendered. The rule of law plays a key role:

Contracts are enforced and property is protected from arbitrary expropriation.

1.3 Why not China?
Why did the Industrial Revolution start in England and a few other countries in
Western Europe in the late eighteenth century and not much earlier in China? So

Most of the following Chinese inven-
tions are from the T’ang and Sung
dynasties (618–906 ad and 960–1126 ad,
respectively): paper, movable type,
compasses, water wheels, sophisticated
water clocks, gunpowder, spinning
wheels, mechanical cotton gins, hydrau-
lic trip hammers, ship construction
techniques that permitted larger and
more seaworthy vessels, sternpost rud-
ders, superior sail designs, porcelain,
umbrellas, matches, toothbrushes, and
playing cards (Baumol, 1993, p. 42).

many fundamental technological break-
throughs are of ancient Chinese origin.

There is no question that China had suffi-
cient technical know-how for sustained eco-
nomic growth. But it lacked a political and
legal environment capable of nurturing and
sustaining private enterprise. The monarch
claimed the right to all property, and this
right was used by the monarch to raise money
to solve budget difficulties or finance wars.
“Private” property could be confiscated at any
time. Also, the state thwarted private enter-
prise, and when it didn’t succeed in stopping a
venture that had got under way it would often
confiscate the fruits of inventive activity, as it

did with paper, printing, and the bill of exchange. Consequently, any wealth that
a merchant did succeed in accumulating was typically used to purchase land or
invest in the enterprise of becoming a scholar-official. (English property owners
led the world in extracting property right guarantees from the monarch.)
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The Chinese scholar-official, called a Mandarin, held a position in what
we would today call the civil service. A Mandarin occupied a far more pres-
tigious position in Chinese society than even an extremely successful merchant
or industrialist. One could not become a Mandarin without passing the astonish-
ingly difficult civil service exams, and these required years of preparation, study,
and tutoring. Families devoted lavish amounts of effort and resources in the
attempt to get their children through these exams. The Mandarin’s pay was low,
however, and this led to corruption: He often extorted money from the people
under his jurisdiction to boost the return on the investment in his education.

1.4 To make a long story short
Let’s suppose that we have been hired as consultants to design an economic sys-
tem. Suppose also that we have never heard of the market system. The attempt
to design a system that elicits enough information about individual preferences
and firm production technologies to precipitate an efficient outcome will actu-
ally steer us toward the market system.

Example 1.1: Two individuals with straight-line indifference curves

Individual 1’s utility function is U1 = 4a + b, where a is the amount of good A and
b is the amount of good B consumed by person 1. Individual 2’s utility function is
U2 = 5x + 2.5y, where x and y denote person 2’s consumption of commodities
A and B, respectively. Suppose that a = 1. In words, person 1’s consumption
of A increases by 1 unit. Then

U1 = 4a + 4 + b + b − (4a + b) = 4 + b.

(The Greek letter  always denotes change.) Therefore, if b = −4 then U1 =
0. In other words, 4 units of commodity B is the maximum that person 1 would
be willing to sacrifice to obtain 1 more unit of A. Now, let x = −1. Then

U2 = 5x − 5 + 2.5y + 2.5y − (5x + 2.5y) = −5 + 2.5y.

If y = +2 then U2 = 0. We see that 2 units of commodity B are the minimum
compensation that person 2 needs for the loss of 1 unit of A. Finally, suppose
that

a = 1 = −x and b = −3 = −y.

In words, person 2 gives 1 unit of good A to person 1 in exchange for 3 units of
good B. Then person 1 sacrifices less than the maximum that person 1 would be
prepared to give up to get another unit of A. And person 2 receives more than
the minimum amount required to compensate him or her for the loss of a unit
of A. It follows that the utility of both increases: U1 > 0 and U2 > 0. We have
increased the utility of both consumers without affecting the consumption of
anyone else. (Production plans are unchanged—it’s just a matter of two people
trading.) We conclude that the original outcome was not efficient.
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The only thing that could undermine the argument of Example 1.1 is the
possibility that b < 3 or x < 1 initially. But suppose that b and x are both positive.
Then for some positive number δ we have b > 3δ and x > δ , and if

a = δ = −x and b = −3δ = −y

we still have

U1 = 4a + b = δ > 0 and U2 = 5x + 2.5y = 2.5δ > 0.

The assumption that both individuals have linear utility functions is quite
extreme, but it is very easy to generalize the argument, as we do now.

Example 1.2: Indifference curves that are curved

The commodity bundle (10, 8) provides 10 units of commodity A and 8 units
of B. Suppose that the straight line 4a + b = 48 is tangent at (10, 8) to person
1’s indifference curve through (10, 8). Suppose that the equation of the tangent
to individual 2’s indifference curve through (7, 6) at the bundle (7, 6) itself is
5x + 2.5y = 50. Therefore, for δ > 0 sufficiently small we can set

a = δ = −x and b = −3δ = −y

and thus U1 > 0 and U2 > 0. The tangent line approximates the indifference
curve, but it is an extremely good approximation in a region very close to the
tangency point. Therefore, we can use the argument of Example 1.1 if δ is suffi-
ciently small. We have increased the utility of both consumers without affecting
the consumption of anyone else, and hence the original outcome is not efficient.

By definition, an individual’s MRS at a commodity bundle is the negative of
slope of the tangent to the indifference curve at that bundle. For Examples 1.1 and
1.2, the slope of 4a + b = 48 is −4. The slope of 5x + 2.5y = 50 is −5/2.5 = −2.
Therefore, person 1’s MRS at (10, 8) is 4 and 2’s MRS at (7, 6) is 2. Because
these marginal rates are not equal we were able to engineer a trade between
the two individuals that made both better off and that had no effect on anyone
else’s consumption. If the original allocation of goods and services is efficient,
this won’t be possible. Therefore, we have discovered an important necessary
condition for efficiency.

If two consumers have a positive amount of each of two commodities then if
their marginal rates of substitution are not equal the economy-wide allocation
of goods and services is not efficient.

Why should we worry about inefficiency if individuals can get together and
trade, as in Examples 1.1 or 1.2, to rectify the situation? Because there are mil-
lions of consumers, and hence an astronomical number of trades that may have
to be arranged to move the economy toward an efficient outcome. Moreover, the
two individuals may be two thousand miles apart. It is vital that an economic
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system get the allocation of commodities right the first time. The market sys-
tem does: Each consumer maximizes utility subject to the budget constraint,
and that results in equality between the individual’s MRS and the price ratio.
At individual 1’s chosen consumption plan his or her MRS will equal pA/pB ,
where pA is the price of A and pB is the price of B. That means that when other
consumers determine their own utility-maximizing consumption plans they
will take individual 1’s MRS into consideration because the price ratio pA/pB

will play a central role. Because budget-constrained utility maximization implies
MRS1 = pA/pB = MRS2, where MRSi denotes individual i’s MRS, person 1’s MRS
plays a central role in person 2’s utility-maximization exercise and vice versa. Of
course, this can be said of any pair of consumers.

To summarize: The price ratio transmits information about one consumer’s
MRS to all other consumers, and the budget constraint gives each the incentive
to use this information in his or her planning. This incentive derives from the
fact that the price ratio pA/pB is the amount of commodity B that the individual
could have purchased with the amount of money it takes to purchase one unit
of commodity A. That opportunity cost will play a central role in the utility-
maximizing individual’s decision making. This information and incentive role
of prices is one reason for the high-level performance of the privaten ownership
market economy.

Now let’s consider the production of goods and services. Reinterpret Exam-
ples 1.1 and 1.2 with individual 1 as firm 1, and individual 2 as firm 2. In that case,
U1(a, b) is firm 1’s output when it employs a units of input A and b units of input
B. Similarly, U2(x, y) is firm 2’s output when it employs x units of A and y units
of B. (The two firms may supply very different commodities.) If the firms do not
have identical marginal rates of technical substitution (RTS; i.e., their isoquants
do not have identical slopes at the respective input bundles employed) then
they can trade inputs in a way that increases the output of both firms. This extra
output can be used to increase the utility of everyone—for instance, by dividing
the extra output evenly.

If two firms employ a positive amount of each of two inputs then if their
marginal rates of technical substitution (RTSs) are not equal, the economy-
wide configuration of production and consumption activities is not efficient.

Note that cost minimization—one consequence of profit maximization—
by a firm in the market system implies that each firm’s employment of inputs
equates the input price ratio pA/pB to the firm’s RTS. Efficiency requires RTS1 =
RTS2 for any two firms 1 and 2. In the market system, RTS1 = pA/pB = RTS2

and thus RTS1 = RTS2. The input price ratio transmits information to each firm
about the RTS of each other firm, and the profit motive—via cost minimization—
gives each firm the incentive to use that information. To activate the profit
motive, of course, we have to give consumers ownership shares in the firms.
They will then have an incentive to motivate the managers of firms to maximize
profit.

Now that we have decided to use the market system, suppose that we come
on the scene just after it reaches an equilibrium: Each consumer has maximized
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utility subject to the budget constraint, each firm has maximized profit, given the
prices, and demand equals supply for every good. Let’s test the efficiency of the
equilibrium by trying to divert resources from the production of commodity B to
the production of commodity A to see if we can make some individuals better off
without harming anyone else. Specifically, we’ll withdraw a specific package R
of resources (inputs) from the production of B and use them to produce more A.
Suppose that this results in the loss of ∇b units of B and an increase of a units
of A. Now, suppose that this change in the economy-wide output of goods and
services allows us to rearrange everyone’s consumption in a way that increases
everyone’s utility. But all consumers have maximized utility subject to their bud-
get constraints. It must be that the bundles, which yield higher utility, were not
chosen because they were not affordable—that is, too expensive. If this is true
for each consumer, it must be true in the aggregate. Therefore, pAa > pB∇b,
where pA and pB denote the equilibrium prices of A and B, respectively. In
words, the total amount of money that would have been saved by reducing B
consumption is insufficient to finance the total increase in A consumption.

We know that pAa > pB∇b and that the change in production was brought
about by moving a set R of resources from firms that produce B to firms that
produce A. This implies that firms have not maximized profit, contradicting the
supposition that we started from equilibrium. Why does pAa > pB∇b contra-
dict profit maximization? If each firm maximizes profit, given the prices, then
total, economy-wide profit must be maximized at equilibrium. However, the
transfer of the set R of resources from B firms to A firms will not change total cost
in the economy. Cost will be lower in the industry producing commodity B but
will be higher by the same amount in industry A. However, revenue has increased
because pAa > pB∇b. If we can increase total revenue in the economy without
increasing total cost, we can increase total profit. But if that is possible, at least
one firm must initially have fallen short of profit maximization. That contra-
dicts the definition of equilibrium, which requires, among other things, profit
maximization by each firm. (If each firm’s profit is maximized then total profit
is maximized.) Therefore, we have proved that, starting from an equilibrium of
the market system, it is not possible to make everyone better off by changing
the composition of goods and services produced.

We seem to have exhausted all the possibilities for improving on the out-
come of the market system, without finding a source of inefficiency. Nothing
succeeded, so the market equilibrium must be efficient. However, this subsec-
tion is far from rigorous enough to be called a proof. It does have the advantage
of bringing out some of the intuition behind the remarkable performance of the
private ownership market economy. The rigorous proof of efficiency comes in
the next section.

Sources
Milgrom and Roberts (1992, p. 13) recount the story of exploding television
sets in Russia. The paragraph on famines in Section 1.1 is based on Sen (1981).
Hammons (2001) notes the existence of educational testing services for children
educated at home. The discussion of economic growth in Section 1.2 is based
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on Chapter 1 of Baumol (2002). Section 1.3 on China is based on pages 31–44 in
Baumol (1993).

Links
See Drèze and Sen (1989) for a thorough examination of the problem of hunger.
Wheelan (2002, p. 123) provides a brief introduction to catastrophe bonds. Balazs
(1964) is a classic study of the Mandarin class.

Problem set

1. Individual 1’s utility function is U1 = αa + βb, where α and β are positive
constants, a is the amount of the good A consumed by person 1, and b is the
amount of good B. Individual 2’s utility function is U2 = ρx + σ y, where ρ

and σ are positive constants, and x and y denote person 2’s consumption of
commodities A and B, respectively.

A. Show that if α/β is not equal to ρ/σ then the two individuals have
indifference curves with different slopes.

B. Show that if a, b, x, and y are all positive and the two individuals have
different marginal rates of substitution then there is a trade between
the two that raises the utility of each.

2. The utility functions of individuals 1 and 2 are, respectively, U1 = ab and
U2 = xy, with a, b, x, and y as in question 1. Find the tangent to person 1’s
indifference curve through the commodity bundle (5, 3) at bundle (5, 3), and
the tangent to person 2’s indifference curve through (6, 9) at (6, 9). If you
don’t know calculus, a good approximation will suffice: Draw an accurate
indifference curve and use a ruler to construct the tangent. Then find the
equation that it represents. Use the arguments of Examples 1.1 and 1.2 to
devise a trade between the two individuals that leaves both better off. Plug the
new values of a, b, x, and y into the utility functions to confirm that U1(a, b)
is now higher than U1(5, 3) and that U2(x, y) is now higher than U2(6, 9).

3. Section 1.4 showed that if the transfer of resources from the production of
commodity A to commodity B results in a change in the total production of
A and B that could be used to make everyone better off, then pAa > pB∇b,
where pA and pB denote the equilibrium prices of A and B, a is the increase
in the output of A, and ∇b is the reduction in the output of B. Show that
pAa > pB∇b holds even if the change in production can be used to make
just one consumer better off without making any other consumer worse off,
assuming that before the change is made consumers have maximized utility
subject to their respective budget constraints.

2 THE ARROW-DEBREU ECONOMY

This section establishes the efficiency of the model of a private ownership market
economy developed by K. J. Arrow and G. Debreu, who first worked out the
fundamental properties of general equilibrium.
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2.1 The model
We begin with the pure exchange version: Production has already taken place. As
a result, each consumer has an abundance of some commodities and a dearth of
others. The individual supplies some goods to the market and uses the resulting
income to buy other goods. This exchange economy is at equilibrium when the
prices have adjusted to the point where supply equals demand in each market
simultaneously.

DEFINITION: n-person exchange economy
There are n consumers, indexed by i = 1, 2, . . . , n, and there are � commodi-
ties, named c = 1, 2, . . . , �. Individual i’s consumption plan is a vector (list)
xi = (xi1, xi2, . . . , xi�) that specifies the consumption of xic units of each com-
modity c. Individual i is endowed with the �-vector ωi = (ωi1, ωi2, . . . , ωi�)
that specifies the amount ωic of each commodity c that i possesses before
trade takes place. An allocation x is an assignment of a commodity bundle
xi to each individual i, and it is feasible if

x1c + x2c + · · · + xnc ≤ ω1c + ω2c + · · · + ωnc

holds for each commodity c. The preference scheme of individual i is repre-
sented by a utility function Ui.

To simplify the notation we let x1 + x2 + · · · + xn ≤ ω1 + ω2 + · · · + ωn

represent the statement “x1c + x2c + · · · + xnc ≤ ω1c + ω2c + · · · + ωnc for each
commodity c.”

A price system is an �-vector p = ( p1, p2, . . . , p�) specifying the price pc

of each commodity c. A competitive equilibrium of this economy is a price-
allocation pair (p, x) such that for each individual i the consumption plan spec-
ified for i by allocation x maximizes i’s utility subject to i’s budget constraint,
and the total consumption of each good equals the total endowment of that
good—that is, demand equals supply for each commodity. Individual i’s budget
constraint is

p1xi1 + p2xi2 + · · · + p�xi� ≤ p1ωi1 + p2ωi2 + · · · + p�ωi�.

We assume that the individual sells all of the goods in i’s endowment ωi for an
amount of money p1ωi1 + p2ωi2 + · · · + p�ωi�. This money is then used to buy
a new collection ( xi1, xi2, . . . , xi�) of goods and services.

Example 2.1: Buying back some of your endowment

There are two commodities, so � = 2. Individual 1’s endowment is ω1 = (12, 0).
That is, person 1 holds 12 units of the first good and 0 units of the second good
before markets open. If p1 = 2 and p2 = 5 then the individual’s budget con-
straint is 2x11 + 5x12 ≤ 24. The consumption plan (7, 2) is affordable because
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2 × 7 + 5 × 2 = 24. If the individual demands (7, 2) we portray him or her as
selling the entire endowment for $24 and then using $14 of that to buy back 7
units of commodity 1. The remaining $10 is used to purchase 2 units of com-
modity 2. In fact, the consumer would simply sell 5 units of commodity 1 for $10
and then use that money to buy 2 units of the second good.

DEFINITION: Competitive equilibrium of an exchange economy
The price system p and allocation x constitute a competitive equilibrium
if for each individual i the consumption plan xi maximizes Ui subject to i’s
budget constraint, and x1 + x2 + · · · + xn = ω1 + ω2 + · · · + ωn, which means
that demand equals supply for each commodity.

Now let’s add production to the model. There are � commodities and n indi-
vidual consumers (or households) as in the exchange economy. In addition
there are m firms. We let I = {1, 2, . . . , n} denote the set of households and let
J = {1, 2, . . . , m} denote the set of firms. An allocation assigns a consumption
plan to each individual and a production plan to each firm. Each individual has
an initial endowment and a preference scheme, represented by a utility func-
tion. Each firm j has a technology Tj that specifies the production plans that the
firm is able to carry out.

DEFINITION: The Arrow-Debreu economy with production
There are n consumers and � commodities. Each individual i has an initial
endowment ωi . Also, individual i may own shares in one or more firms. We let
αi j be the fraction of firm j owned by individual i. We let the utility function Ui

represent the preference scheme of individual i. An allocation (x, y) specifies
a consumption plan xi for each individual i and a production plan yj for each
firm j. The production plan yj = (yj1, yj2, . . . , yj�) specifies a positive, zero,
or negative number yjc for each commodity c. If yjc > 0 then the production
plan yj yields yjc units of commodity c as output but if yjc < 0 the plan yj

requires |yjc| units of commodity c as input. This sign convention allows us
to distinguish inputs and outputs, and to compute profit quite easily.

Given the price system p = ( p1, p2, . . . , p�) the production plan yj =
(yj1, yj2, . . . , yj�) yields a profit of

p1 yj1 + p2 yj2 + · · · + p� yj�,

which we write as pyj for short. If yjc > 0 then pc yjc is the revenue resulting
from the sale of yjc units of commodity c at price pc. If yjc < 0 then |yjc| units of
commodity c are employed as input at a cost of pc × |yjc|. When we add pc yjc

into the firm’s profit calculation we are subtracting pc × |yjc| from revenue.
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Example 2.2: The profit calculation

There are two commodities, and the firm’s technology is simply characterized:
Each unit of output of commodity 2 produced by the firm requires 2 units of
commodity 1 as input. The production plan y1 = (−10, 5) employs 10 units of
commodity 1 as input and produces 5 units of commodity 2 as output. If p1 = 3
and p2 = 9 then the firm’s profit is p1 y11 + p2 y12 = 3 × −10 + 9 × 5 = 15.

Let’s keep track of a particular commodity c. Given the allocation (x, y), the
net output of c is � j∈J yjc. Because yjc is a negative number when j uses c as an
input, the expression � j∈J yjc gives us the total output of c by the production
sector less the total amount of c used as input by firms. Therefore, � j∈J yjc is
indeed the net output of commodity c. It is possible to have � j∈J yjc < 0. This
would be inevitable if c were labor: All firms use labor as an input but it is not pro-
duced by any firm. Labor would be supplied by households, of course, and if ωic

denotes household i’s endowment of labor then �i∈I ωic + � j∈J yjc is equal to the
total endowment of labor in the economy less the total amount used as input.
Therefore, �i∈I ωic + � j∈J yjc is the total amount of labor available to house-
holds for consumption (as leisure). And �i∈I xic is obviously the total amount of
leisure consumed by the household sector. Therefore, any allocation (x, y) must
satisfy

�i∈I xic ≤ �i∈I ωic + � j∈J yjc

if commodity c is labor.
Consider another commodity c for which � j∈J yjc is positive. Then the allo-

cation (x, y) leads to a net output of c, and this can be added to the households’
endowment �i∈I ωic of c (if any) to determine the total amount of c available
for consumption. This total again is �i∈I ωic + � j∈J yjc and again we see that an
allocation must satisfy

�i∈I xic ≤ �i∈I ωic + � j∈J yjc.

We refer to this inequality as the material feasibility condition, and it must hold
for each commodity c.

An allocation must also satisfy the firm-level feasibility conditions. Firm j’s
technology must be capable of turning the inputs specified by yj into the outputs
specified by yj. Recall that Tj is the set of production plans that are technologi-
cally feasible for firm j. If yj belongs to Tj there is no guarantee that j will actually
be able to obtain the inputs required by yj. There might be excess demand for one
input, making it unavailable to some firms. This will not happen if the material
feasibility condition holds, but that is guaranteed to hold only at equilibrium.
The individual firm cannot be expected to worry about the economy-wide mate-
rial feasibility condition.
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DEFINITION: Feasibility
The allocation (x, y) is feasible if

�i∈I xic ≤ �i∈I ωic + � j∈J yjc

holds for every commodity c (material feasibility), and in addition the pro-
duction plan yj belongs to the technology set Tj , for each firm j (firm-level
feasibility).

Example 2.3: Feasibility in a simple economy

There are two commodities, one individual, and one firm. It follows that αi j = 1.
(Individual 1 owns the firm and hence the rights to the firm’s profit.) The individ-
ual’s endowment is ω1 = (48, 0). The firm’s production technology is specified
by the equation “output = 2

√
input.” Suppose the allocation (x, y) specifies the

consumption plan x1 = (32, 8) and the production plan y1 = (−16, 8), which
employs 16 units of commodity 1 as input and produces 8 units of commodity 2
as output ( 8 = 2

√
16). If p1 = 1 and p2 = 4 then the firm’s profit is 16, and the

consumer’s budget constraint x11 + 4x12 ≤ ω11 + 4ω12 + 16 is satisfied. The allo-
cation ((32, 8), ( −16, 8)) is feasible because ( −16, 8) is in the firm’s technology
set, and in addition

32 = 48 − 16 and 8 = 0 + 8.

At equilibrium, each firm maximizes profit, given prices and their technology
sets, all consumers maximize utility given their budget constraints, and every
market clears—in other words, the demand for each good equals the supply.
Suppose that the prices are given by p = ( p1, p2, . . . , p�).

Profit maximization is easy to characterize: Recall that p1 yj1 + p2 yj2 + · · · +
p� yj�, which we denote by pyj , is j’s profit from the production plan yj. Then
the plan yj maximizes profit if yj belongs to Tj and pyj ≥ pzj holds for all zj in
Tj. In words, the plan yj is feasible for the firm, and no other feasible plan yields
higher profit.

Derivation of the consumer’s budget constraint requires a little work. If xi is
individual i’s consumption plan then expenditure is clearly p1xi1 + p2xi2 + · · · +
p�xi�, which we write as pxi for short. What is i’s income? Income from the sale
of i’s endowment is just pωi = p1ωi1 + p2ωi2 + · · · + p�ωi� but i may also have
profit income. Household i owns the fraction αi j of firm j so i will receive that
fraction of j’s profit and hence will receive αi j pyj in total from firm j. If we add this
term over all firms j we get i’s total profit income, namely � j∈J αi j pyj . Therefore,
i’s total income is pωi + � j∈J αi j pyj , and hence i’s budget constraint is

pxi ≤ pωi + � j∈J αi j pyj .
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DEFINITION: General competitive equilibrium
The price system p and allocation (x, y) constitute a competitive equilibrium
if for each individual i the consumption plan xi maximizes Ui subject to i’s
budget constraint; for each firm j the production plan yj belongs to Tj, the set
of feasible production plans for firm j; and no member of Tj gives a higher
profit than yj given the price regime p. Finally, all markets clear, which means
that

�i∈I xic = �i∈I ωic + � j∈J yjc

holds for each commodity c. We refer to this last property as market clearance.

Before presenting an example of general equilibrium we identify a property
of a simple family of utility functions that is used frequently.

Cobb-Douglas utility and positive consumption

Cobb-Douglas utility functions are of the form U(a, b) = aαbβ , where a is the
consumption of the first good, b is the consumption of the second good, and
α andβ are positive constants. If the price of either good is zero then there will
be unlimited demand for that good and demand will certainly exceed supply.
Therefore, both prices will be positive at equilibrium. It follows that, unless
the individual’s endowment is zero, he or she will have a positive income and
hence can afford a positive amount of each good. Consequently, utility will
be positive. But if a = 0 or b = 0 then utility is zero. (With Cobb-Douglas
preferences, U(0, b) = 0 = U(a, 0).) That can’t be a utility-maximizing strat-
egy. Therefore, the consumer will demand a positive amount of each good
at equilibrium. It follows that the consumer’s marginal rate of substitution
will equal the price ratio at the bundle that the consumer demands.

We exploit this property (equality of the MRS and the price ratio), without explic-
itly invoking it, every time we use a Cobb-Douglas utility function.

∂ Example 2.4: Competitive equilibrium in a simple economy
with productuion

The setup is identical to that of Example 2.3: There are two commodities, one
individual, and one firm. Individual 1’s preference is represented by the util-
ity function U1 = x11 × x12, and 1’s endowment is ω1 = (48, 0). Individual 1
owns the firm, so it follows that αi j = 1. The firm’s production technology is
given by “output = 2

√
input.” We show that p1 = 1 and p2 = 4 are competi-

tive equilibrium prices. The production plan y1 = (−16, 8) results in a profit of
1 × −16 + 4 × 8 = 16. To confirm that ( −16, 8) is profit maximizing given the
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prices, let q denote the amount of input employed. Then the firm’s output of
commodity 2 is 2

√
q and hence the firm’s profit is

4 × 2
√

q − 1 × q

and the first derivative of profit is

4√
q

− 1.

(Note that the second derivative is negative.) When we set the first derivative
equal to 0 and solve for q we get q = 16. Then no other feasible production plan
gives a higher profit than ( −16, 8).

The budget constraint is x11 + 4x12 ≤ 1 × 48 + 16. (The right-hand side is
the value of the individual’s endowment plus profit.) The consumption plan
x1 = (32, 8) maximizes U1 subject to the budget constraint. To confirm this we
set

MRS = x12

x11
= p1

p2
= 1

4
.

Then x11 = 4x12 and hence the budget equation x11 + 4x12 = 64 reduces to
2x11 = 64, and thus the chosen consumption plan has x11 = 32. Because x11 =
4x12 we have x12 = 8. (If you don’t know calculus, you can take my word that the
MRS is the amount of the second good divided by the amount of the first good.
To use calculus to derive the MRS, begin with the utility function U = ab. Hold
utility constant at �. The equation of the associated indifference curve is ab = �,
and we can solve this for b, yielding b = �a−1. The derivative db/da is −�a−2.
Because � = ab we can write

db
da

= −�a−2 = −(ab)a−2 = −b
a

.

The MRS is the negative of this derivative. That is, the MRS is the negative of the
slope of the indifference curve. The derivative can also be computed by applying
the implicit function theorem to u(x, y) = �.)

The demand for commodity 1 is x11 = 32, and the supply is ω11 + y11 = 48 −
16. The demand for commodity 2 is x12 = 8, and the supply is ω12 + y13 = 0 + 8.
Therefore, both markets clear.

2.2 Welfare theorem for an exchange economy
We prove that every competitive equilibrium of the n-person exchange economy
is weakly efficient. That is, there is no feasible allocation that gives everyone
more utility than the equilibrium. An important implicit assumption is that
for each individual i the utility function Ui depends only on i’s consumption
plan xi = (xi1, xi2, . . . , xi�) and hence is independent of any other individual’s
consumption of any other commodity. A concluding remark shows that we can
actually claim that the equilibrium is efficient, not just weakly efficient.

A competitive equilibrium of the n-person exchange economy is efficient.
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Proof
We begin by showing that every allocation that gives everyone more utility than
the equilibrium violates the material feasibility condition x1 + x2 + · · · + xn ≤
ω1 + ω2 + · · · + ωn. Let the price system p and the allocation x constitute a com-
petitive equilibrium. Suppose that the allocation z satisfies Ui(zi) > Ui(xi) for
each individual i. Because xi maximizes Ui subject to i’s budget constraint

p1xi1 + p2xi2 + · · · + p�xi� ≤ p1ωi1 + p2ωi2 + · · · + p�ωi�,

the consumption plan zi was not affordable when xi was chosen. That is,

p1zi1 + p2zi2 + · · · + p�zi� > p1ωi1 + p2ωi2 + · · · + p�ωi�

for each individual i. It follows that

p1(z11 + z21 + · · · + zn1) + p2(z12 + z22 + · · · + zn2)

+ · · · + p�(z1� + z2� + · · · + zn�) > p1(ω11 + ω21 + · · · + ωn1)

+ p2(ω12 + ω22 + · · · + ωn2) + · · · + p�(ω1� + ω2� + · · · + ωn�).

In words, the total market value of consumption exceeds the total market value
of the commodities available for consumption. That strict inequality is incon-
sistent with the following material feasibility requirement:

z1c + z2c + · · · + znc ≤ ω1c + ω2c + · · · + ωnc,

which must hold for each commodity c. (If the total consumption of commodity
c is less than or equal to the total endowment of c, then the market value of
the amount of consumption of commodity c provided by z must be less than
or equal to the market value of the total endowed amount of c. In that case, the
total market value of consumption at z, over all commodities, cannot exceed
the total market value of all endowments.) We have proved that the competitive
equilibrium allocation is weakly efficient: There is no feasible allocation that
gives everyone more utility than the competitive equilibrium.

Suppose that we had a feasible allocation z that gave one individual i more
utility than the equilibrium allocation x and gave everyone else at least as much
utility as x. Then we can construct a feasible allocation z′ that gives everyone
strictly more utility than x, contradicting what we have just proved. To construct
z′ from z we merely take a small amount of some commodity away from indi-
vidual i, but we confiscate a sufficiently small amount so that i still has more
utility than at x. Then we divide the amount taken from i among the remaining
individuals. The resulting allocation z′ will give each more utility than at z, and
hence strictly more utility than at x. And z′ is feasible because it is constructed
from z simply by redistributing a little bit of one of the commodities. Because
we have already proved that there is no feasible allocation that makes everyone
better off than he is at the competitive equilibrium we have demonstrated that
the competitive equilibrium is in fact efficient, not just weakly efficient.

The previous paragraph incorporates two implicit assumptions: First, indi-
vidual i’s preference ordering is continuous: If i strictly prefers zi to xi and we
reduce zi by some sufficiently small amount the resulting consumption plan will
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still be strictly preferred to xi. Second, any individual’s utility will increase if that
person’s consumption of any commodity increases, however small the increase.

Note that our proof is valid even when one or more consumers is at a corner
of his or her budget line, with marginal rates of substitution unequal to the
equilibrium price ratio, and even when marginal rates of substitution are not
defined. The proof does not even depend on the representation of individual
preference by a utility function: If individual i prefers zi to xi, and xi was chosen at
equilibrium, then zi must have been too expensive. The rest of the proof follows
without modification. It is a very general argument. The key assumptions are
that agents take prices as given and that preferences are self-regarding—each
individual cares only about his or her own consumption.

2.3 The welfare theorem in the general model
Now we add production to the model and show that a competitive equilibrium
of the Arrow-Debreu economy is efficient, provided that every commodity that
affects individual utility is traded in a competitive market—the completeness of
markets assumption. Completeness of markets means that for every possible
realization of every random event there is a market in which one can purchase
or sell a unit of any good contingent on that realization. Complete markets also
require that for every future date there is a market in which anyone can purchase
or sell a unit of any good for delivery at that date. It also entails the assumption
that if individual or firm K’s actions affect the welfare of other agents—think of
pollution—then there is a market that causes this side effect to be brought to
bear on K’s decision making via K’s budget constraint (if K is a consumer) or K’s
profit (if K is a firm).

DEFINITION: Complete set of markets
Every commodity that affects some individual’s welfare is traded in a com-
petitive market.

A complete set of markets would be astronomical in number. We never
have anything close to completeness in the real world. Nevertheless, the Arrow-
Debreu economy with complete markets is a valuable framework within which to
study resource allocation. It is also an important benchmark case. For one thing,
it helps us identify what has gone wrong when the economy is not efficient.

If markets are complete then a competitive equilibrium of the Arrow-Debreu
economy is efficient.

Proof
We begin by showing that if an allocation gives everyone strictly more utility
than the competitive equilibrium then it cannot be feasible. Let (p, x, y) be
the competitive equilibrium. Suppose that the allocation (x ′, y ′) gives everyone
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more utility. Then Ui(x ′
i ) > Ui(xi) for each consumer i. But xi maximizes Ui

subject to the budget constraint. This means that x ′
i was not affordable when xi

was chosen. Therefore,

px ′
i > pωi + � j∈J αi j pyj .

This is true for each i, so it will remain true when we sum up over all individuals.
That is,

�i∈I px ′
i > �i∈I pωi + �i∈I � j∈J αi j pyj .

Now �i∈I � j∈J αi j pyj is equal to � j∈J pyj�i∈I αi j . But for any firm j the sum �i∈I αi j

is the sum of all the ownership shares in firm j and that total must equal 1. There-
fore, �i∈I � j∈J αi j pyj equals � j∈J pyj , which is the total profit in the economy at
equilibrium. Therefore, we can state

�i∈I px ′
i > �i∈I pωi + � j∈J pyj . [1]

If y ′
j does not belong to Tj for some firm j then the allocation (x ′, y ′) is not

feasible. If each y ′
j does belong to Tj, then because yj maximizes j’s profit given

p we must have pyj ≥ py ′
j for each firm j. Therefore, � j∈J pyj ≥ � j∈J py ′

j . This
inequality and [1] gives us

�i∈I px ′
i > �i∈I pωi + � j∈J py ′

j . [2]

However, [2] is inconsistent with material feasibility of ( x ′, y ′): If we did have
�i∈I x ′

ic ≤ �i∈I ωic + � j∈J y ′
jc for each commodity c, then by virtue of the fact that

pc ≥ 0 we would have

pc�i∈I x ′
ic ≤ pc�i∈I ωic + pc� j∈J y ′

jc [3]

for each c. When we add each side of [3] over all commodities we get

�i∈I px ′
i ≤ �i∈I pωi + � j∈J py ′

j , [4]

a direct contradiction of [2]. (Statements [3] and [4] are equivalent because
p�i∈I x ′

i is equal to p1�i∈I x ′
i1 + p2�i∈I x ′

i2 + · · · + p��i∈I x ′
i� , and the other terms

of [2] can be similarly expressed.) Therefore, there can be no feasible allocation
that gives everyone more utility than the competitive equilibrium.

We have shown that any allocation that gives everyone more utility than the
competitive equilibrium must violate one of the feasibility conditions. In other
words, there is no feasible allocation that would give everyone more utility than
the market equilibrium. If there were a feasible allocation (x ′, y ′) that gave one
individual i more utility than the equilibrium and gave no one any less utility,
then we could construct a feasible allocation (x ′′, y ′′) from (x ′, y ′) by taking
a sufficiently small amount of some commodity away from individual i in a
way that still leaves person i strictly better off than at the equilibrium. If we
divide the amount confiscated from i among the remaining individuals we will
have made everyone better off than at the equilibrium, contradicting what we
have just proved. Therefore, the competitive equilibrium is in fact efficient, not
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just weakly efficient. (The second-to-last paragraph of Section 2.2 discloses the
implicit assumptions that make this argument work.)

To complete the demonstration that the Arrow-Debreu economy performs
efficiently we must prove that an equilibrium actually exists. Example 3.1 of Sec-
tion 3 shows that existence cannot be taken for granted. However, if individual
preferences exhibit diminishing MRS and production processes have dimin-
ishing marginal products, then a competitive equilibrium will exist. That is, if
agents take prices as given, there will be an equilibrium and it will be efficient—
assuming complete markets. The existence question is explored briefly in Sec-
tion 3 and the assumption of price-taking behavior is the subject of Section 4.
We conclude this section by showing what goes wrong when markets are not
complete.

2.4 Externalities
A competitive equilibrium of the private ownership market economy need not
be efficient if one person’s consumption directly affects the welfare of someone
else, which we refer to as an externality.

DEFINITION: Externality
An externality is present when one agent’s actions affect the welfare of
another agent but the market system does not provide an incentive for the
former to include the effect on the latter in the former’s decision making.

Let’s see why externalities undermine the efficient operation of competitive
markets.

Example 2.5: A two-person exchange economy with externalities

The endowments are ω1 = (0, 16) and ω2 = (16, 0), with

U1 = x11 × x12 − 3x21 and U2 = x21 × x22.

Person 1’s utility is adversely affected by the other person’s consumption of the
first good. Person 1 cannot control the choice of person 2 so when 1 maximizes
utility he or she must take x21 as given. That is, x21 will be treated as a constant in
person 1’s decision making. Therefore, to find the chosen consumption plans we
can employ the utility functions U1 = x11 × x12 and U2 = x21 × x22. The MRSs
are x12/x11 for person 1 and x22/x21 for person 2. Each consumer will maximize
utility by setting the MRS equal to the price ratio. (The MRS is derived at the end
of Example 2.4. Note that individual utility would be 0 if the individual consumed
0 units of one of the goods.) Therefore we have

x12

x11
= p1

p2
= x22

x21
.



534 General Competitive Equilibrium

At a competitive equilibrium we have demand equaling supply, and thus

x11 + x21 = 16 and x12 + x22 = 16.

These equations and x12/x11 = x22/x21 give us

x12

x11
= 16 − x12

16 − x11
.

Cross multiplying yields x11 = x12. Because x12/x11 = p1/p2 we have p1/p2 = 1,
or p1 = p2. Consumer 1’s budget constraint is p1x11 + p2x12 = 16 p2 because
1’s endowment consists of 16 units of good 2. Because p1 = p2 and x11 = x12

the budget constraint reduces to 2 p1x11 = 16 p1, the solution of which is x11 =
8. Then x11 = 8 = x12. Because market clearance requires x11 + x21 = 16 and
x12 + x22 = 16 we also have x21 = 8 = x22. At equilibrium each individual’s con-
sumption plan is (8, 8), but U1 = 40 while U2 = 64.

Is the equilibrium of Example 2.5 efficient? Because 1’s utility increases when
2’s consumption of the first good falls, it should be possible to make both people
better off than they are at the equilibrium by transferring some of the first good
from person 2 to person 1 and some of the second good from person 1 to person
2. Specifically, transfer 0.5 units of the first good from person 2 to 1, and 0.6 units
of the second good from person 1 to 2. The new utility levels will be

U1 = 8.5 × 7.4 − 3 × 7.5 = 40.4 and U2 = 7.5 × 8.6 = 64.5.

Both individuals have a higher level of utility than at equilibrium, proving that
the equilibrium allocation was not even weakly efficient.

When there are consumption externalities the proof of the first welfare the-
orem breaks down right at the start. If Ui depends on the consumption of other
individuals as well as on i’s consumption then it is no longer true that if i prefers
the consumption plan b′ to the equilibrium then the market value of b′ must
exceed i’s income. It may be changes in the consumption of others, changes that
are beyond i’s control, that make b′ superior to x in i’s estimation. For example at
the equilibrium prices p1 = p2 the basket (8.5, 7.4) is cheaper for person 1 than
the equilibrium basket (8, 8). But the latter was the best that person 1 could do
given his or her budget constraint and given the choice (8, 8) of person 2. But 1
prefers (8.4, 7.4) to the equilibrium in part because of the changes in the other
person’s consumption.

In general, negative externalities are created when the decision of a consumer
or firm imposes costs on society that are not costs to the decision maker. In
most cases the market system uses prices to transmit information about social
costs and benefits. But when an agent’s decision imposes a cost on society that
is not incorporated in the price that the agent pays, then vital information,
necessary for efficiency, is not transmitted to the decision-making agent. Even
if the agent receives the information from other sources, if it does not reduce
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his or her spending power then the agent has no incentive to take those costs
into consideration.

Consider what happens when social costs are incorporated into the price:
Labor accounts for 70% to 75% of all costs of production in mature capitalist

Microevolution of antibiotic-resistant
microbes has resulted from the
widespread administration of antibi-
otics to humans. (We also indirectly
consume the antibiotics that are rou-
tinely given to livestock and used in
commercial food preparation.) When
a physician prescribes an antibiotic
the physician benefits the patient but
also does an imperceptible amount of
harm to the rest of the population. The
total harm done, by all physicians, is of
enormous significance. The excessive
prescribing of antibiotics in wealthy
nations has created a giant experiment
with a vast number of opportunities
for microbes to mutate. And they have
done so with great success. The World
Health Organization has warned that
the high level of resistance to drugs that
were once extremely effective in treating
common infectious diseases will soon
precipitate a global crisis. “Superbugs”
could render our antibiotics useless by
the year 2010 (Kmietowicz, 2000).

economies. The labor used by a firm is clearly
a cost to society—if it were not used by the firm
it could be productively employed elsewhere.
The firm using the labor has to pay wages that
are a function of its workers’ potential contribu-
tion to production in general—a consequence
of all firms bidding for the use of productive
factors. That gives the firm incentive to econ-
omize on the use of labor. This contributes
to efficiency. More strikingly, the firm has a
strong incentive to reduce the size of its wage
bill (more than 70% of total cost) by inventing
labor-saving equipment. If capital equipment
lowers the labor requirement per unit of out-
put, it raises the total output of a given labor
force. And of course, output per worker, and
hence consumption per worker, has risen dra-
matically over the decades and centuries. And
all because the firm’s use of labor is a cost to
society that is brought to bear on the firm’s deci-
sion by means of a price—the wage rate.

If the costs of pollution could be incorpo-
rated into the prices that confront firms and
consumers, the same powerful force for inno-
vation would be unleashed. Each household
would strive to avoid the social costs of its

polluting: by altering activities to reduce the amount of waste discharged into
the water and air and by purchasing products that lower total social cost by
incorporating pollution reduction technology. Knowing this, firms would have
a strong incentive to invent pollution abatement technology and to invest in
that technology when it became available. And to the extent that the activities of
firms result in waste being discharged into the water and air, if this cost to soci-
ety were converted to a cost paid by the polluting firms there would be a strong
incentive for firms to avoid these costs by investing in technology to reduce
waste by-products.

The presence of significant positive externalities also results in an inefficient
market equilibrium. For example, when someone considers purchasing fire-
works for a private independence day celebration that person doesn’t take into
consideration the benefit that his or her neighbors will derive from the display.
But that spillover benefit should clearly be counted—by someone—as a benefit
to society. But the decision makers consider only the benefit to themselves.
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∂ Example 2.6: One private good and one public good

Commodity 1 is a pure public good—any amount of it provided for one person
or group benefits everyone in the community. Commodity 2 is a conventional
private good that can be consumed directly or used to produce the public good.
Each unit of the public good requires 1 unit of the private good as input. If we let
the price of the private good be unity then the price of the public good will also
be unity in a competitive equilibrium, because the marginal cost of producing
the public good is constant at 1. Therefore, the equilibrium price ratio is 1. Now,
suppose that there are three consumers, each is endowed with 50 units of the
private good and 0 units of the public good, and each has the utility function
6
√

q + ti , where q is the amount of the public good produced and ti is the amount
of the private good consumed by individual i. If the public good—for example,
fireworks—were only available on the private market then each consumer would
optimize by equating marginal benefit and the price ratio. Therefore, 3/

√
q = 1

at equilibrium. We solve this for q = 9. The total amount of the public good
purchased in the community is 9 units, and everyone benefits from each of the
9 units, whether individuals purchased much or little of the good. Suppose that
each individual buys 3 units of the public good. Is this outcome efficient? Individ-
ual utility is Ui = 6

√
9 + 50 − 3 = 65 for each i. However, if the community could

somehow arrange for q = 81 and have each i’s consumption of the private good
reduced by an additional 1/3 × 72 = 24 to collect the input necessary to produce
72 additional units of the public good, then Ui = 6

√
81 + 50 − 27 = 77, which is

much higher for each individual than utility at the private market equilibrium.
The market equilibrium is not efficient.

Sources
The foundations of modern general equilibrium theory were laid by Kenneth
J. Arrow, Gerard Debreu, and Lionel McKenzie. See Arrow (1951b), Arrow and
Debreu (1954), McKenzie (1954), and Debreu (1959).

Links
McKenzie (2002) provides a superb treatment of modern general equilibrium
theory, from its inception in the middle of the twentieth century to the latest
research. See Stiglitz (1993) for more on why markets can’t even be approxi-
mately complete. For a fuller treatment of the technical side of the Arrow-Debreu
model—existence of equilibrium, in particular—see Campbell (1987), especially
pages pp. 39–47, Chapter 7, and Appendixes 2 and 3. To see why the completeness
of markets assumption rules out externalities see Campbell (1987, pp. 56–60).
Some economists claim that hidden information problems, particularly those
related to contract enforcement, are so severe that the Arrow-Debreu model has
nothing to teach us (see Gintis, 2000, pp. 46, 136, 140). This section does implic-
itly assume that contracts can be costlessly enforced. Even so, we learn that the
private ownership market economy orchestrates production and consumption
activities in a way that obviates the need for an astronomical number of welfare-
improving trades.
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Problem set
For the first six questions (a, b) denotes the bundle consumed by person 1 and
(x, y) is the bundle consumed by person 2.

1. Compute the competitive equilibrium of the two-person, two-commodity
exchange economy with utility functions

u1(a, b) = a2b and u2(x, y) = xy2

and endowments (0, 3) for person 1 and (3, 0) for person 2.

2. The second theorem of welfare economics asserts that under certain mod-
est conditions on preferences and technology sets, every efficient alloca-
tion is a competitive equilibrium allocation for some redistribution of ini-
tial endowments—and profit shares, if the model includes production. Verify
the second welfare theorem for the following two-person, two-commodity
exchange economy:

u1(a, b) = ab ω1 = (0, 1),

u2(x, y) = xy ω2 = (1, 0).

That is, identify all of the efficient allocations and then prove that each is a
competitive equilibrium outcome for some distribution of the total endow-
ment (1, 1).

3. Consider the following two-person, two-commodity exchange economy:
u1 = a + b, ω1 = (1, 1), u2 = 2x + y, ω2 = (1, 1).

A. Characterize the set of efficient allocations.

B. Show that the allocation that assigns (1, 2) to person 1 and (1, 0) to
person 2 is efficient.

C. Show that the allocation of B is a competitive equilibrium outcome
for some price system and some distribution of wealth.

4. Consider the following simple two-person, two-commodity exchange
economy:

u1(a, b) = ab and ω1 = (0, 1),

u2(x, y) = x + ln y and ω2 = (2, 2).

(Recall that ln y is the function whose first derivative is y−1.) Find the compet-
itive equilibrium for this economy. Is the competitive equilibrium allocation
efficient? Explain.

5. Solve the following two-person, two-commodity exchange economy for the
competitive equilibrium:

u1 = ab and ω1 = (1, 1),

u2 = xy + b and ω2 = (1, 0).

Is the equilibrium outcome efficient? Explain briefly.
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6. Consider the following simple two-person, two-commodity exchange
economy:

u1 = ab − x and ω1 = (0, 1),

u2 = xy + a and ω2 = (1, 0).

A. Explain carefully why p1 = 1 = p2 and a = b = x = y = 1/2 define a
competitive equilibrium.

B. Is this competitive equilibrium allocation efficient? Explain your
answer.

7. Consider a simple model of an economy with two private goods and many
consumers. Each individual has a utility function of the form Bi(ai) + bi ,
where ai is i’s consumption of good 1 and bi is i’s consumption of good 2. Let
P denote the price of the second good. Choose units so that the price of the
first good is $1. Good 1 can either be consumed or used to produce good 2,
and when one unit of commodity 1 is used as input exactly one-third of a
unit of commodity 2 is obtained as output.

A. What is the equilibrium price of commodity 2 if the two goods are
produced in a private ownership market economy with competitive
firms?

B. Suppose now that the government decides to subsidize the consump-
tion of the second good by paying $1 for each unit consumed. That
is, consumers pay P − 1 for a unit of good 2 but firms receive P a
unit. What will P be in this case ? Will the outcome be efficient? If so,
explain why; if not, prove it with an numerical example.

3 NONCONVEX ECONOMIES

What can we say about economies in which individual preferences do not have
the diminishing marginal rate of substitution property? The proof of the welfare
theorem does not make any assumptions about the MRS. As long as there is
a complete set of markets then a competitive equilibrium is efficient. But will
a competitive equilibrium exist? Yes, if preferences have the diminishing MRS
property. (Production functions also have to have a nonpositive second deriva-
tive, but we only look at exchange in the section.) The easiest way to uncover the
difficulties that can arise without the diminishing MRS property is to examine a
one-person exchange economy with two commodities.

Example 3.1: Nonexistence of equilibrium with increasing MRS

There are two commodities and one individual (and no production). The individ-
ual’s consumption plan is a bundle (a, b), and the utility function is U = a2 + b2.
The equation of an indifference curve is a2 + b2 = �, where � is a given positive
constant. This is the equation of a circle with center at the origin. Therefore,
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the MRS increases as we slide down the indifference curve (Figure 10.1). The
consumer is endowed with one unit of each good. Therefore, if demand equals
supply in each market, the consumer will demand one unit of each good. It is
easy to show that there is no price system at which this can happen.

Everything hinges on the fact that (α + β)2 = α2 + 2αβ + β2 > α2 + β2 if α

and β are both positive. This has implications for demand. The consumer will
want to spend all of his or her income on one of the goods. Accept the truth
of this assertion for a moment. Then there can be no equilibrium at any price
regime: The demand for one of the goods will be zero but there is a supply of
one unit of that good—Figure 10.1. (And there will be excess demand for the
commodity on which the consumer spends all of his or her income.) Therefore,
our demonstration that there is no equilibrium will be complete once we show
that all of the income will be spent on one good.

Suppose that p2 ≥ p1. (The second good is at least as expensive as the first
good.) Suppose also that b > 0. U = a2 + b2, but if the individual reduces b to
zero p2b dollars will be released that can be used to buy a = p2b/p1 additional
units of good 1. Because p2 ≥ p1, we have a ≥ b, which means that the new
level of consumption of the first good is at least a + b. Finally,

U(a + a, 0) ≥ (a + b)2 = a2 + b2 + 2ab > a2 + b2 = U(a, b).

Utility has increased. Similarly, if p1 > p2 and a > 0 then the consumer can
increase utility by reducing expenditure on the first good to zero and using
the money thereby released to buy more of the second good. Therefore, the
consumer will spend all of the money on the cheaper good, and if the prices
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are equal the consumer will not care which good he or she buys but will prefer
either extreme to any affordable consumption plan with a positive amount of
each good. The consumer will never demand a positive amount of both goods,
but the supply of each is positive. Therefore, there can be no price system at
which demand equals supply.

The problem revealed by Example 3.1 is a lot worse than the lack of existence
of an equilibrium: There is no price system at which supply and demand are
approximately equal in each market: If p1 < p2 then the consumer will spend all
income on the first good. The demand for the second good will then be zero,
but the supply is 1. The consumer’s income is p1 + p2, so the consumer will
buy ( p1 + p2)/p1 units of good 1. Therefore, the demand for the second good
will exceed 2 because p2/p1 > 1. Of course, if p2 < p1 then the individual will
demand 0 units of good 1 and more than 2 units of good 2. (If p1 = p2 the
consumer will get 2 units of one good and 0 units of the other.) For any price
system, the demand for one of the goods will be zero, which is well below the
supply, and the demand for the other good will be at least double the supply.

It is remarkable that we can exhibit a failure of markets to clear at any price
regime, even in an approximate sense, by means of a simple economy having
only one consumer and two goods. It is easy to extend this example to one that
has many commodities, and the reader is invited to do so. But how special is the
fact that there is only one consumer? This is far from realistic. Is it essential for
the nonexistence of equilibrium?

Example 3.2: Two consumers, each with increasing MRS

This exchange economy consists of two consumers, each identical to the indi-
vidual of Example 3.1. If p1 = p2 then the individual’s income is p1 + p2 = 2 p1.
(The individual’s endowment consists of 1 unit of each good.) The consumers
will spend all of that income on one of the goods and will receive 2 p1/p1 = 2
units of that commodity, whichever it is. Then the utility of the bundle that
maximizes utility subject to the budget constraint is 4 = 22 + 0 = 0 + 22. The
individuals will be indifferent between the affordable bundles (2, 0) and (0, 2). If
one of the consumers demands (2, 0) and the other demands (0, 2) then the total
demand for each good will be 2. The total supply of each good is also 2, because
each individual is endowed with 1 unit of each good. We have a competitive
equilibrium, because each individual is maximizing utility subject to the budget
constraint and each market clears.

For any even number of consumers, each identical to the individual of Exam-
ple 3.1, there will be a competitive equilibrium with p1 = p2. If half of the con-
sumers spend all of their income on the first good and the other half spend all of
their income on the other good, then demand will equal supply for each good.
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Table 10.1

Number who buy
only the first good

Demand for the
first good

Demand for the
second good

0 0 6
1 2 4
2 4 2
3 6 0

However, there can be no exact equilibrium with an odd number of consumers.
Consider first the case of a three-person economy.

Example 3.3: Three identical consumers, each with increasing MRS

Each of the three individuals are identical to the one of Example 3.1. If p1 > p2

or p1 < p2 then all individuals will spend all of their income on the cheaper
good. The demand for the other good will be 0, but its supply will be 3. The
demand for the cheaper good will be greater than 6, but the supply is only 3. (For
instance, if p1 = 2 and p2 = 3 then income is 5, so each person will demand
5/2 = 2.5 units of good 1. The demand for good 1 is 3 × 2.5 = 7.5.) If p1 = p2

then a consumer will either buy 2 units of good 1 and 0 units of good 2, or vice
versa. Table 10.1 shows that the closest we can get to market clearance is for one
consumer to spend all income on one of the goods and the other two to spend
all their income on the other good. We will get an excess supply of the former of
1 and an excess demand for the latter of 1 unit. The excess demand is a smaller
fraction of total demand than in the case of the one-person economy of Example
3.1. Also, excess supply is a smaller fraction of total supply than in the one-person
economy, but there is still a significant gap between demand and supply.

With an odd number n of identical consumers, we cannot have exact market
clearance with increasing MRS preferences. Here’s why: Let t be the number of
consumers who spend all of their income on good 1, and let s be the number
who spend all of their income on good 2. If p1 < p2 then t = n and s = 0, so
we are far from market clearance. Similarly, if p1 > p2 then t = 0 and s = n. If
p1 = p2 then t and s can both be positive. In fact, each individual is indifferent
between (2, 0) and (0, 2) so t and s can be any two integers such that t + s = n.
Because n is odd, we cannot have t = s. However, if demand equals supply for
the first good we will have

n = supply = demand = 2t

and thus t = 1/2 n, which is impossible because n is odd—we can’t have half a
consumer. Therefore, demand cannot be exactly equal to supply.
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Table 10.2

Number who buy
only the first good

Demand for the
first good

Demand for the
second good

t + 1/2 2t + 1 2t − 1
t − 1/2 2t − 1 2t + 1

Example 3.4: An odd but large number of consumers

Each of the n individuals is identical to the one of Example 3.1. Let t = 1/2 n. Then
both t + 1/2 and t − 1/2 are integers. If p1 = p2 we can have t + 1/2 individuals
each spend all of their income on one of the goods and t − 1/2 individuals each
spend all of their income on the other good (Table 10.2). The supply of each good
is n = 2t. Therefore, the closest we can get to market clearance involves demand
exceeding supply for one of the goods by 1 and supply exceeding demand by 1
unit for the other good. When the number n of individuals is large, the supply
n of each good is large, and hence a difference between demand and supply of
1 unit is trivial in the case of a large number of consumers. We have an approx-
imate equilibrium which, for practical purposes, is sufficiently close to market
clearance.

If the number of traders is large then we are guaranteed a general equilibrium
in a practical sense, if not in an exact sense, regardless of the nature of individual
preferences.

Links
Anderson, Kahn, and Rashid (1982) show that under very general conditions
there will be an approximate equilibrium of an n-person exchange economy,
and that the percent by which demand is less than supply or is greater than
supply approaches zero as n increases without limit. Even for modestly large
n, the gap between demand and supply is virtually zero (as a fraction of total
supply).

Problem set

1. Consider a one-person exchange economy with two goods, A and B. Let U1 =
a2 + b and ω1 = (1, 1) be the utility function and endowment, respectively.
Prove that this economy does not have a competitive equilibrium (Hint:
Write down the budget equation and then use it to solve for b as a function
of a. Substitute this expression for b in the utility function, and then draw
the graph of utility as a function of a.)

2. For each of the following one-person exchange economies determine
the efficient allocation (or allocations) and see if there is any price
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system and income level at which the consumer will choose an efficient
outcome.

A. U1 = 2a2 + b2 and ω1 = (1, 1).

B. U1 = a2 + b2 and ω1 = (1, 2).

3. For each of the three economies of the first two questions, demonstrate
that there is an approximate competitive equilibrium when there is a large
number of individuals identical to person 1.

4 EFFICIENCY AND INCENTIVE COMPATIBILITY

In showing that a complete set of markets results in a competitive equilibrium of
the private ownership market economy that is efficient, we assumed that each
individual and firm takes the prices as given. That means that each individual
or firm calculates a best response to the given prices, without considering how
a different response might affect prices, perhaps in a direction favorable to the
decision maker. In this section we consider the appropriateness of the price tak-
ing assumption. In Section 4.4 we establish that it is rational for each individual
to take market prices as given if there is a large number of suppliers of each
good.

In real-world market economies there are many goods that are produced by
only a handful of firms, and in such cases the individual producer can profit by
exploiting the fact that a change in its supply will have an effect on prices. This
is easy to understand, but we nevertheless work through a specific example in
Section 4.1, in part to clarify what we mean by price taking on the one hand and
exploiting one’s market power on the other hand.

As we see later, we can view a departure from price taking behavior as a
misrepresentation of the agent’s hidden characteristic—preference in the case
of a consumer and the production technology in the case of a firm. Because it is
possible for a supplier to profit from misrepresentation in the private ownership
market economy when there are few rival producers, we are led to ask if there
are alternative economic systems that are invulnerable to misrepresentation.
Sections 4.2 and 4.3 are devoted to this question, which is also addressed at the
end of Section 4.1.

The sensible approach would seem to be to put the spotlight on the individual
firm and trace the effects of a misrepresentation of its production technology
back to individual consumer welfare. For instance, in the case of the Arrow-
Debreu economy we would chart how a firm’s misrepresentation affected its
profit, then how the incomes of the firm’s shareholders were affected, and finally
how that impacted shareholder utility. That makes our task much more compli-
cated, however, so we confine attention to pure exchange. The suppliers, then,
are individual households, and the supplies are the individual endowments. This
gives us a much more direct connection between agents’ misrepresentations—
of preference schemes—and individual utility.
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4.1 Dominant strategy equilibrium
Consumers’ hidden (private) characteristics are their preference schemes. What
does misrepresentation of preference mean in the context of the market system?
Consumers are never asked to report their utility functions. They are asked to
submit a list of demands that maximize individual utility, given the current
prices. If a consumer misrepresents his or her preferences by demanding a basket
of goods that is not utility maximizing, there will be no way for any overseer of
the market system to detect this misrepresentation.

We can view the market system as a mechanism in which each consumer is
asked to submit his or her utility function to a referee, who then computes the
resulting demand functions. The individual demand functions are then fed into
a computer, which then calculates the equilibrium configuration of prices. The
demand functions are used once again to determine individual consumption
of each good at the equilibrium prices, and the resulting baskets of goods and
services are delivered to the consumers. The question we are addressing can
be stated this way: Would it ever be to anyone’s advantage to submit a false
utility function to the referee? We are about to see that the answer is yes. An
appropriately chosen false utility function will induce demands that cause prices
to change in a way that leaves the individual with more utility—according to her
true utility function—than she would have realized under truthful revelation.
The consumer will have benefitted by deviating from the rules of the game, and
no one will know that she has deviated.

Can an individual consumer in fact influence prices by altering his or her
demands? The intuition is that this power is negligible when there is a realistically
large number of consumers, as Section 4.4 confirms. This section shows how
misrepresentation can be profitable when the number of consumers is small.
This will prepare us for the large numbers case by clarifying what is meant by
misrepresentation of preference.

Example 4.1: A two-person, two-commodity exchange economy

Person 1’s endowment is ω1 = (0, 1) and 2’s endowment is ω2 = (1, 0). The utility
functions are

U1 = ab and U2 = xy,

assuming that a typical allocation assigns the consumption plan θ1 = (a, b) to
person 1 and the plan θ2 = (x, y) to person 2. The competitive equilibrium is
easy to compute: Individual 1’s MRS is b/a and individual 2’s MRS is y/x. (See
the end of Example 2.4 for the derivation of the MRS.)

At equilibrium each individual’s MRS is equal to the price ratio. Therefore,
b/a equals the price ratio, which equals y/x. Therefore, b/a = y/x. But a + x = 1
and b + y = 1 at equilibrium (market clearance). Therefore,

b
a

= 1 − b
1 − a

,

and if we cross multiply we get a − ab = b − ab, which implies a = b. Now, (a, b)
and the endowment point (0, 1) are both on 1’s budget line, so the slope of the
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line is (b − 1)/(a − 0) and this is the negative of the price ratio, which will equal
person 1’s MRS at equilibrium. Therefore,

b
a

= 1 − b
a

,

which implies b = 1/2, and therefore a = 1/2 because a=b. Therefore, x = y = 1/2.
The equilibrium price ratio is equal to each MRS at equilibrium, and b/a = 1
so the price ratio equals 1 at equilibrium. That is p1 = p2. For convenience,
set each price equal to unity. We have found the competitive equilibrium: The
prices are equal and each individual’s consumption plan is (1/2, 1/2). Note that
each individual’s income at equilibrium is p1 = p2.

DEFINITION: Price taking behavior
An individual is a price taker if at each price regime he or she demands
the consumption plan that maximizes utility subject to the budget con-
straint, without taking into consideration how different demands might have
affected prices.

By definition of a competitive equilibrium, each person takes the price regime
as given. That is, (1/2, 1/2) is the unique utility-maximizing consumption plan of
all those plans (a, b) satisfying the budget constraint 1a + 1b = 1. But each indi-
vidual has a monopoly in the supply of one of the goods, and each individual
supplies half of his or her endowment at the competitive equilibrium. Individ-
uals can be expected to know that the price of the goods that they supply will
increase if they restrict the supply. That is, the individuals will surely not behave
as price takers in this economy—our price taking assumption is unfounded. We
offer a proof by contradiction. The argument makes use of Figure 10.2.

Figure 10.2 represents person 2’s utility in terms of person 1’s consumption
(a, b). This means that an indifference curve for person 2 is the set of plans
(a, b) such that U2(1 − a, 1 − b) is constant. In the present case, U2 = xy, so an
indifference curve for person 2 is the set of plans (a, b) such that (1 − a) × (1 − b)
is constant.

Suppose that person 2 always acts as a price taker. This means that 2’s demand
vector (x, y) will always be the one that maximizes U2 subject to the budget con-
straint p1x + p2 y = p1. (Person 2’s income is p1 because 2 is endowed with
1 unit of the first good.) Let’s see if person 1 can profit from preference misrepre-
sentation. The intuition is simple. If person 1 demands the vector v1 and at that
point 1 demands more of good 2, the good that 1 supplies, than the straightfor-
ward utility-maximization exercise would predict, then the price of good 2 will
be kept high. This will be utility maximizing in a more sophisticated sense. Let’s
see why.

Suppose that p1 = 1 and p2 = 2.25, and person 2 demands v2 = (1, 1) − v1,
where v1 is given in Figure 10.2. (The budget line is the flatter of the two lines
in the diagram.) Both markets clear because v1 + v2 = (1, 1) = ω1 + ω2. Note,
however, that at the competitive demand vector θ1 person 1 would be on a
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Figure 10.2

higher indifference curve than the one through v1. If person 1 could be sure of
having the order θ1 filled then ordering θ1 would be the better strategy, given
the prices p1 = 1 and p2 = 2.25. But person 1 can be sure that the order θ1

won’t be filled. Markets clear when person 1 undersupplies the second good by
ordering v1 for him- or herself and because θ1 specifies a lower demand (i.e.,
higher supply) for the second good, we will have excess supply of the second
good when person 1 orders θ1 and person 2 orders v2. The price of the second
good will have to fall, and this means that individual 1 can’t have θ1 after all.

The competitive equilibrium allocation gives each person the basket (1/2, 1/2);
Example 4.1. The associated equilibrium prices are p1 = 1 = p2. At a higher
price for good 2, say p2 = 2.25 person 2 will demand less of good 2. Person 2’s
demand under price system p = (1, 2.25) is v2, which is identified by the point
v1 in Figure 10.2: v1 would be what is left over for person 1 if person 2 were
given the basket v2. If person 1 were to demand the vector that maximizes U1

given the price vector p = (1, 2.25) then 1 would demand θ1 as shown in Figure
10.2. As we have seen, markets won’t clear when person 1’s consumption plan
is θ1 and person 2’s plan is v2. If person 1 continued to behave competitively—
that is, take prices as given—then the economy would wind up back at the
competitive equilibrium with each person receiving (1/2, 1/2). But if person 1
were to demand v1 when p1 = 1 and p2 = 2.25 and person 2 demands v2 then
both markets would clear. That is because v1 is defined as the total supply minus
v2. The economy would be in equilibrium because there would be no tendency
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for prices to change: Demand and supply would be equal in both markets. And
because markets clear, all consumers would be able to carry out their plans.
Moreover, v1 gives individual 1 more utility than (1/2, 1/2) according to 1’s true
preferences! The next example makes this concrete by working out v2 and θ1.

Example 4.2: Misrepresentation in the economy of Example 4.1

To obtain v2 we want to maximize U2 = xy subject to 1x + 2.25y = 1, because
person 2 has 1 unit of good 1 to sell at a price of $1. Clearly, utility maximization
implies

MRS = y
x

= p1

p2
= 1

2.25
= 4

9
.

Then y/x = 4/9, and hence 9y = 4x. We also have 1x + 2.25y = 1, which is
equivalent to 4x + 9y = 4. When we substitute 4x for 9y we get 4x + 4x = 4,
which implies x = 1/2. Then y = 4x/9 = 2/9. Therefore, v2 = (1/2, 2/9). It fol-
lows that if consumer 1 demands v1 = (1/2, 7/9) when p1 = 1 and p2 = 2.25 and
2 demands v2 then both markets will clear and person 1’s utility will be

U1 = 1
2

× 7
9

= 7
18

,

which is more than

U1 = 1
2

× 1
2

= 1
4

,

the utility that person 1 realizes by announcing his or her true utility-maximizing
demand at every turn.

Had person 1 reported the true utility-maximizing demand θ1 when p1 = 1
and p2 = 2.25 then 1 would have set b/a = 4/9. This implies 9b = 4a, and
because individual 1’s budget constraint at this price regime is a + 2.25b = 2.25,
or 4a + 9b = 9, person 1 would set 8a = 9. In that case, a = 9/8 and thus
b = 1/2. The consumption plan (9/8, 1/2) yields U1 = 9/8 × 1/2 = 9/16, which
is even greater than 7/18. However, consumer 1 could never realize the utility
level 9/16 because markets wouldn’t clear. If the consumers continued to takes
prices as given, the excess demand for good 1 when person 1 demanded the
bundle (9/8, 1/2) would cause the price of the first commodity to rise relative
to the second, pushing the price regime toward the equilibrium where p1 = p2.
But when the two prices are equal person 1’s utility is considerable less than
9/16 or even 7/18. This explains why it is in person 1’s interest to demand v1

when p1 = 1 and p2 = 2.25, even though the indifference curve through v1 is not
tangent to the budget constraint, as Figure 10.2 shows. (There is some indiffer-
ence curve tangent to the budget line at v1—the broken curve of Figure 10.2—so
individual 1 can always claim that he or she is following the rules.)

Note that person 1 misrepresents U1 by demanding 7/9 of a unit of com-
modity 2, instead of 1/2 a unit that would be demanded if person 1 were pas-
sively maximizing utility subject to the budget constraint. Because person 1 is
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a monopoly supplier of good 2, by demanding 7/9 units person 1 is under sup-
plying commodity 2. That causes its price to be significantly higher than the
competitive level and allows person 1 to purchase a bundle that yields more
utility than the competitive equilibrium would yield.

Deviating from price taking behavior can be interpreted as preference
misrepresentation: By demanding v1, individual 1 is in effect claiming that
1’s preference scheme generates the broken indifference curve in Figure 10.2
instead of the solid curve. In terms of the algebra (Example 4.2), individual 1
is in effect announcing the utility function U1 = (4

√
2a)/9 + b. (Confirm that a

price taker with this utility function will demand v1 = (1/2, 7/9) when p1 = 1
and p2 = 2.25.) We have demonstrated that truthful revelation is not a domi-
nant strategy in the case of the Arrow-Debreu model of the private ownership
market economy.

Perhaps a different resource allocation mechanism would induce truthful
revelation of individual preference in a two-person exchange economy. We’ll be
wasting our time attempting to design one. There is no allocation mechanism for
which truthful revelation is a dominant strategy, equilibrium outcomes are effi-
cient, and all individuals are guaranteed at least as much utility as they would get
simply by consuming their endowments and not participating in the economy.
Section 4.1 of Chapter 8 proves this for economies that include a public good,
although we do not present the corresponding proof for exchange economies
with private goods only. Instead, we relax our incentive compatibility require-
ment and simply ask for a mechanism that yields efficient outcomes at each
Nash equilibrium.

4.2 Nash equilibrium
Instead of seeking a resource allocation mechanism for which truthful revelation
is a dominant strategy, let’s merely ask for one in which Nash equilibria always
exist and Nash equilibrium outcomes are always efficient.

Example 4.3: Two individuals and two feasible outcomes

There are two players and two possible outcomes, x and y. We only need to know
whether an individual prefers x to y or the converse. (For simplicity we ignore the
possibility that i is indifferent between x and y. We can think of each outcome
as specifying the amounts of a large number of commodities to be consumed
by each person.) Then there are four possible individual preference schemes:

(x, x), (x, y), (y, x), and (y, y).

We refer to each of these as an environment. At (x, x) each person prefers x to y.
At (x, y) person 1 prefers x to y, but 2 prefers y to x. Person 1 prefers y to x at (y,
x), but 2 prefers x to y. And they both prefer y to x at (y, y).

We show how demanding is the requirement that a Nash equilibrium exists
for every specification of individual preferences and that every equilibrium give
rise to an efficient outcome. Consider an arbitrary mechanism, which is simply
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a specification of the set of strategies available to each individual and a function
f, which determines whether the outcome is x or y, given the chosen strategies.
That is, if consumer 1 plays s1 and 2 plays s2 then the outcome f (s1, s2) is either
x or y. We require that for each of the four possible environments of Example 4.3
a Nash equilibrium (s1, s2) exists, and f (s1, s2) is efficient with respect to the
underlying preferences.

Note that efficiency is a very modest requirement in this context. Both out-
comes are efficient for the environments (x, y) and (y, x). Only x is efficient for
(x, x) and only y is efficient for (y, y).

The Hurwicz-Schmeidler Theorem

For the economy of Example 4.3, if a mechanism has a Nash equilibrium
for every environment, and every Nash equilibrium is efficient, then it must
give one individual the power to force the mechanism to produce his or her
most-preferred outcome in every environment, in which case we call that
person a dictator.

Proof
Let (s1, s2) be a Nash equilibrium for (x, y). Assume that f (s1, s2) = x. (We treat
the case f (s1, s2) = y last.) Because (s1, s2) is an equilibrium and 2 prefers y to
x = f (s1, s2) it must be the case that f (s1, β) = x for every strategy β available to
person 2. Now, let (t1, t2) be a Nash equilibrium for (y, x). If f (t1, t2) = y then we
must have f (t1, β) = y for every strategy β available to person 2 because (t1, t2)
is an equilibrium for (y, x) and 2 prefers x to y at (y, x). Therefore, person 1 can
ensure that the outcome is x by playing s1 and can guarantee that the outcome
is y by playing t1, in which case 1 is a dictator.

Suppose, then, that f (t1, t2) = x. Then (s1, s2) is a Nash equilibrium for (x, y),
with f (s1, s2) = x, and (t1, t2) is a Nash equilibrium for (y, x), with f (t1, t2) = x.
We now show that (s1, t2) is an equilibrium for (y, y), and that f (s1, t2) = x,
contradicting efficiency: If f (α, t2) = y for some strategy α available to person 1,
then (t1, t2) is not an equilibrium for (y, x) . Therefore, we have f (α, t2) = x for allα
available to person 1. In particular, f (s1, t2) = x. If f (s1, β) = y for some strategy
β available to person 2, then (s1, s2) is not an equilibrium for (x, y). Therefore,
f (s1, β) = x for all β. We have established that (s1, t2) is an equilibrium for (y, y),
although f (s1, t2) = x. Therefore, existence and efficiency of equilibrium require
f (t1, t2) = y and hence person 1 is a dictator.

We began the proof by assuming that f (s1, s2) = x and concluded that person
1 is a dictator. There is only one other possibility: f (s1, s2) = y. In that case, an
analogous argument will reveal that person 2 is a dictator.

4.3 Subgame-perfect Nash Equilibrium
We can circumvent the Hurwicz-Schmeidler Theorem of the previous section
by allowing one person to threaten to punish the other player for employing
a strategy that would precipitate an inefficient outcome. A threat has to be
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credible if we are to take the resulting equilibrium seriously. According, we
employ subgame-perfect Nash equilibrium. (See Subsection 5.7 of Chapter 1.)
This allows us to demand more of a resource allocation mechanism than mere
efficiency. We assume that a social choice function g is given. In other words, g
specifies the socially optimal outcome for each specification of individual pref-
erences.

Example 4.3: A very simple resource allocation problem

We assume an exchange economy with two people and two private goods. The
width of the box in Figure 10.3 is the total amount of good 1 available in this
economy, and the height of the box is the total amount of good 2. A point such
as B in the box specifies the consumption of each individual: Person 1 gets an
amount of good 1 equal to the distance of B from the left-hand edge of the
box, and an amount of good 2 equal to the height of B from the bottom of the
box. Person 2 gets everything not allocated to person 1. Specifically, person 2’s
consumption of good 1 is the distance of B from the right-hand edge of the box,
and 2’s consumption of good 2 is the distance of B from the top of the box.

The individual’s preferences can be represented by standard utility functions.
Suppose there are two possible scenarios, called environments:

Case C: Both individuals have the Cobb-Douglas utility function UC (x, y) = xy.

Case L: Both individuals have the Leontief utility function UL (x, y) = min{x, y}.

Person 1’s utility function UC is represented in Figure 10.3 by the solid indif-
ference curves that bend in toward the origin. UC is higher for person 1 at any
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point above an indifference curve than it is at any point on the curve. Person
2’s utility function UC is represented by the solid indifference curves that bend
up and away from the origin. As we move northeast in the diagram, person 2’s
utility decreases and 1’s utility increases.

UL for person 1 is represented in Figure 10.3 by means of the L-shaped
broken-line indifference curves, with UL increasing as we move northeast in the
box. For the environment L, person 2’s indifference curves are the broken line
curves that are L-shaped when the diagram is rotated 180◦. (Turn the book upside
down.) With the diagram in its normal position, person 2’s utility increases as
we move southwest.

The social choice function g designates the outcome g(C) in Figure 10.3 as
socially optimal in case C, and g(L) in case L.

The rest of this subsection examines the possibility for implementing g. That
is, we wish to design an economic system—a mechanism—whose equilibrium
for each environment E is the outcome g(E) specified by g.

DEFINITION: Implementation
A mechanism specifies a set of strategies available to each participant in the
economy. The mechanism implements the social choice rule g if, for each
environment E for which g specifies an outcome g(E), the equilibrium of the
mechanism at environment E is precisely g(E).

We begin by showing that it is impossible to implement the rule g defined by
Example 4.3 if we require each ordinary Nash equilibrium to precipitate g(C) in
case C and g(L) in case L.

Proof
Suppose to the contrary that we have a mechanism whose Nash equilibria in
cases C and L yield, respectively, outcomes g(C ) and g(L). Let (s1, s2) be a Nash
equilibrium for case C. Then (s1, s2) must be an equilibrium for case L as well.
If to the contrary there is some strategy α available to person 1 such that (α, s2)
gives person 1 higher utility than (s1, s2), that is, more utility than UL(g(C )),
then that must be true for UC also, contradicting the fact that (s1, s2) is a Nash
equilibrium for case C. This follows from the fact that person 1’s indifference
curve through g(C ) for the utility function UL (the broken curve) is strictly above
person 1’s indifference curve through g(C ) for the utility function UC (the solid
curve), except at g(C ) itself, of course (Figure 10.3). In other words, for any
consumption plan Z for person 1, if UL (Z) > UL (g(C )) then UC (Z) > UC (g(C )).
Therefore, if (s1, s2) is a Nash equilibrium for environment C then there is no α

available to person 1 such that (α, s2) gives person 1 higher utility than UL(g(C )).
Similarly, there can’t be any strategy β available to person 2 such that (s1,

β) results in 2 receiving more utility than UL(gC )): Figure 10.3 shows that any
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outcome Z that person 2 prefers to g(C ) according to UL is southwest of 2’s
broken-line indifference curve through g(C ) and hence southwest of 2’s solid
indifference curve through g(C ), and thus person 2 would prefer Z to g(C ) accord-
ing to UC. If (s1, β) gave person 2 more utility than g(C ) according to UL, then
(s1, β) would give person 2 more utility than g(C ) according to UC, contradicting
the supposition that (s1, s2) is a Nash equilibrium for C. Therefore, (s1, s2) must
be a Nash equilibrium for environment L as well.

We have contradicted the claim that the mechanism implements g: The strat-
egy pair (s1, s2) precipitates the outcome g(C ) and is a Nash equilibrium for L.
But g(C ) �= g(L) as shown by Figure 10.3. Therefore, there is no mechanism that
implements g in ordinary Nash equilibrium.

We now show that g can be implemented by an extensive form mechanism
with subgame-perfect Nash equilibrium as our equilibrium concept. Specifi-
cally, all subgame-perfect equilibria for case C precipitate the outcome g(C ),
and all subgame-perfect equilibria for case L precipitate the outcome g(L).

Example 4.4: A simple mechanism with subgame-perfect equilibria
that are optimal

Stage 1. Person 1 announces either L or C.
If person 1 announces L the outcome is g(L) and there is no

further play.
If person 1 announces C then player 2 makes a move at stage 2.

Stage 2. Person 2 agrees or disagrees with player 1.
If person 2 agrees that C is the true state then the outcome is g(C )

and there is no further play. If person 2 disagrees then player 1
makes the next and last move at stage 3.

Stage 3. Person 1 chooses outcome A or B.
The mechanism is represented as Figure 10.4.

Before working out the subgame-perfect Nash equilibria for each of the two
environments, L and C, we point out that in either situation both people will
know which is the true environment. That’s because each person knows that
they have identical preferences in each environment. The mechanism designer
(i.e., the consultant hired by the government) can exploit the fact that in each
environment each consumer knows the other’s utility function. That makes it
easier to design a successful mechanism. However, neither the designer nor
the government will know which of the environments is the true one—because
individual preference is hidden information.

Analysis of Example 4.4
First, suppose that the true state is L, which means that both have Leontief
preferences. Person 1 prefers g(C ) to g(L), but if 1 announces C at stage 1 then
player 2 will challenge, knowing that 1 will choose B over A at stage 3 because 1
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prefers B to A in case L. Because person 2 prefers B to g(C ) in case L, the challenge
would be 2’s best response. If person 1 threatened to choose A in stage 3 then
person 2 would be forced to accept g(C ) and we would have a Nash equilibrium.
But it is not subgame perfect—that is, it is not in person 1’s interest to carry
out this threat if stage 3 were actually reached. The only subgame-perfect Nash
equilibrium results in g(L). It has person 1 announcing L at stage 1 and declaring
that he or she would choose B if stage 3 were reached, while person 2 declares
her intention to challenge in stage 2 if person 1 announces C at stage 1.

Finally, suppose that the true state is C, and hence both consumers have
Cobb-Douglas preferences. Person 1 has no incentive to announce L and take
g(L) unless he fears that 2 would challenge at stage 2. But then person 1 would
be forced to choose between A and B, and he would pick A, which gives more
utility than B according to UC , and A is worse for 2 than g(C ). Therefore, even
if both A and B are worse for player 1 than g(L), a threat by 2 to challenge C at
stage 2 unless 1 announces L in stage 1 would not be credible, because if push
came to shove the challenge would precipitate A, which gives 2 less utility (in
terms of UC) than g(C ). Therefore, the only subgame-perfect equilibria in this
case results in g(C ). This is sustained by having person 1 announce C at stage 1,
declaring that he would choose A if stage 3 were reached, while 2 announces
that she would accept C at stage 2.

There are social choice functions that can be implemented in subgame-
perfect Nash equilibrium but not in Nash equilibrium.

The fact that there are social choice functions that can be implemented in
subgame-perfect Nash equilibrium but not in Nash equilibrium is established
by Example 4.3 and the following discussion.
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4.4 Price taking
Now we consider an individual consumer’s ability to manipulate prices in a
private ownership market economy when the total number of individuals is
large. Intuition tells us that an individual’s power is negligible when there is a
realistically large number of consumers.

Recall the definition of price taking behavior from Subsection 4.1: A trader is
a price taker if he or she always demands a basket that maximizes utility given the
price regime. Section 4.1 showed that price taking behavior is not a dominant
strategy. Now we show that the gain from deviating from price taking behavior
is virtually zero if the number of consumers is large. Specifically, we show that
the gain from deviating goes to zero as the number of traders gets arbitrarily
large. We demonstrate this by assuming a large number of individuals identical
to person 1 of Example 4.1, and a large number identical to person 2.

Example 4.5: Many traders of each type

There are t individuals i with Ui = ab and ωi = (0, 1) and t individuals j with
Uj = xy and ω j = (1, 0). We call the former type 1 and the latter type 2. We
show that the ability of a single type-1 consumer to manipulate prices becomes
negligible as t becomes sufficiently large. We begin by determining the demand
functions: For convenience, let’s normalize and set the price of the second good
equal to unity, with P denoting the price of the first good. For a type 1 individual,
utility maximization implies MRS = b/a = p1/p2 = P, and thus b = Pa. (Refer
back to Example 2.4 for the derivation of the MRS.) The budget constraint is
Pa + b = 1 because a type-1 person is endowed with 1 unit of the second good,
whose price is $1. The solution to b = Pa and Pa + b = 1 is

a = 1
2P

and b = 1
2
.

These are the demands of a type-1 person as a function of the price ratio P,
assuming price taking behavior. A type-2 consumer sets MRS = y/x = P. We
have y = Px. The budget constraint is Px + y = P. (A type-2 person has 1 unit
of good 1 to sell at price P.) Solving the two equations y = Px and Px + y = P
yields

x = 1
2

and y = P
2

,

the demand functions of a price taking type-2 person.
If everyone is a price taker, and P = 1, we have a = 1/2 = x, and thus the total

demand for commodity 1 would be t × 1/2 + t × 1/2 = t, which equals the total
supply, because there are t individuals (the type 2s), each supplying 1 unit of
good 1. And when P = 1 we have b = 1/2 = y. The total demand for commodity
2 would be t × 1/2 + t × 1/2 = t, which equals the total supply, because there are
t individuals (the type 1s), each supplying 1 unit of good 2. Therefore, P = 1 is
the market clearing price ratio, assuming price taking behavior.

Now, suppose that everyone takes price as given and announces their true
utility-maximizing demand vectors except for one type-1 person, whom we refer
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to as person m. Then the total demand for good 1 from everyone except person
m is (t − 1) × (1/2P) + t × 1/2. The total supply of the first good is exactly t,
so even before we add on the demand of person m we see that the following
inequality is a necessary condition for market equilibrium:

t − 1
2P

+ t
2

≤ t. [5]

This must hold because if (t − 1)/2P + t/2 > t then demand will exceed supply,
whatever m announces, and market forces will cause the price to change. Note
that statement [5] is equivalent to

P ≥ t − 1
t

. [6]

Similarly, the aggregate demand for the second good is at least (t − 1) × (1/2) +
t × P/2. Exactly t units of the second good are supplied, so even without the
demand of person m we must have

t − 1
2

+ t P
2

≤ t; [7]

otherwise the demand for good 2 would exceed the supply, even without includ-
ing person m, and the prices would change. Statement [7] is equivalent to

P ≤ t + 1
t

. [8]

Putting [6] and [8] together yields

t − 1
t

≤ P ≤ t + 1
t

. [9]

If t is even reasonably large, then both (t − 1)/t and (t + 1)/t will be very close
to unity. Therefore, whatever person m’s demands, the market price ratio P will
be very close to the competitive equilibrium price.

Example 4.1 featured an exchange economy with t = 1: One type-1 con-
sumer and one type-2 consumer. Each individual is a monopoly supplier of
one of the goods and hence has the ability to affect the market clearing price
to advantage. Example 4.5 shows that when there is a large number of sup-
pliers of each commodity, no individual can manipulate the price to any sig-
nificant degree. Inequality [9] shows that any utility gain to the individual
who deviates from price taking will be swallowed up by the cost of learning
enough about aggregate demand to be able to manipulate the price in an advan-
tageous way.

Sources
Hurwicz (1972) showed that price taking is not a dominant strategy and proved
that there is no allocation mechanism for which truthful revelation is a dominant
strategy, equilibrium outcomes are efficient, and each individual is guaranteed
at least as much utility as that individual would get simply by consuming his or
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her endowment and not participating in the economy. The theorem and proof
of Section 4.2 are due to Hurwicz and Schmeidler (1978). The mechanism of
Section 4.3 is from Moore and Repullo (1988). The proof that a single individual’s
ability to manipulate prices vanishes as the number of traders increases, which
we illustrated with an example in Section 4.4, is due to Roberts and Postlewaite
(1976).

Links
Jackson (2001) and Maskin and Sjöström (2002) provide extensive discussions
of the incentive issues that have been sketched in this section.

Problem set

1. Show that the ability of a type-2 person to manipulate prices in the economy
of Example 4.5 becomes negligible as t becomes sufficiently large.

2. Consider an exchange economy with two goods and n = 2t individuals. The
first t individuals have the utility function U = a2band endowment ω = (1, 0).
The other individuals have the utility function U = xy with endowment ω =
(0, 1). Show that the ability of a single individual to influence the price ratio
is negligible if t is sufficiently large.

5 COMMON PROPERTY RESOURCES

Suppose that each of n firms has free access to a resource from which it can extract
a marketable commodity, say fish. If we assume that the amount harvested by
any entrepreneur depends on the effort expended by that agent and also on the
effort of all others, and if we assume in addition that output per unit of effort
declines as the total effort of all fishers increases, then we have the classical
common property resource model in which the pursuit of self-interest leads to
an inefficient rate of extraction in the short run and insufficient conservation in
the long run. Let’s examine the short run problem.

First, we need to identify the efficient rate of extraction. Let ei be the effort
expended by firm i on the lake, which we take as the common resource. That is,
ei denotes the number of hours of fishing per week spent by the workers in boat
i. Let e = e1 + e2 + e3 + · · · + en represent the total effort. For simplicity, assume
that effort is undertaken at a constant opportunity cost of c. That is, one hour of
fishing on the lake involves the sacrifice of c fish that could have been obtaining
by fishing in the ocean for one hour. (Alternatively, c is the opportunity cost of
leisure.) If T(e) denotes the total number of units of output (e.g., fish harvested)
from all entrepreneurs as a function of total effort then A(e) = T(e)/e is the
average product, which we assume declines as e increases. Therefore, marginal
product M(e) is less than A(e) for each level of e. (You don’t need calculus to
follow this section, but if you want to use calculus then, of course, M(e) is the
first derivative of T(e).)
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∂ Let t(x) be any real-valued function. Then the average, t(x)/x, is itself a
function of x, which we name a(x). Take the derivative of a(x):

a ′(x) = x−1t ′(x) − t(x)x−2

= t ′(x) − [t(x)/x]
x

= t ′(x) − a(x)
x

.

Then the average is falling (a ′ is negative) if and only if t ′(x) < a(x). But t ′ is
the marginal. Therefore, the average is falling if and only if the marginal is less
than the average. This is quite intuitive. If the grade that you get in your next
course is higher than your GPA then your GPA will rise, but if the your next
grade is lower than your GPA then your GPA will fall.

The efficient level of effort e∗ is that value of e that equates marginal cost and
opportunity cost. This is depicted in Figure 10.5 where the intersection of the
marginal product curve M(e) and the constant opportunity cost line c identifies
the efficient level of effort e∗. The efficient rate of extraction of fish is x∗ = T(e∗).

Proof
If e is the actual amount of effort expended and M(e) < c then one unit of effort
transferred from the lake to the ocean will increase the community’s consump-
tion of fish by c − M(e). There won’t be any increase in cost in the form of
additional input employed. Therefore, everyone can be made better off by dis-
tributing the gain c − M(e) throughout the community. This means that M(e) ≥ c
must hold if the outcome is efficient. But if we actually have M(e) > c then one unit
of effort transferred from the ocean to the lake will increase fish consumption by
M(e)− c, and we can use the extra output to increase everyone’s utility. Therefore,
efficiency implies M(e) = c.
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The efficient level of effort equates marginal product and marginal opportu-
nity cost.

Now let’s determine the actual—that is, equilibrium—extraction rate when
the resource is available to anyone without a user charge, in which case the only
cost to an individual entrepreneur as a result of expending a unit of effort in
extraction is the opportunity cost c. It turns out that the equilibrium occurs at
e+ in Figure 10.5 where average product equals marginal cost, and that is above
the efficient level of input (or effort).

Proof
Suppose that the current total input level is some amount e0 below the point
where A(e) equals c. Suppose that firm i now increases its input slightly. The
addition to the total catch per unit of additional input will be M(e0), the marginal
product at e0. Society would be better off if that additional unit of effort were
employed in fishing the ocean where the yield would be c fish per unit of effort
instead of M(e0). But the individual firm owner has no incentive to maximize
social welfare. In the case of a common property resource the harvest per boat
tends to be the average harvest. Even though the average harvest falls as a single
firm increases its input level, the total harvest tends to be shared evenly by all
boat owners. If the individual boat’s catch equals the average output then it pays
the boat’s owner to increase the input level as long the extra harvest at the margin
by the particular boat, which will be close to the average output, is greater than
the private cost at the margin, which is c in this case. Therefore, harvesting will
continue until average product is equal to marginal cost, or A(e) = c. This defines
the equilibrium e+ in Figure 10.5.

If the resource is available for a user charge of zero then the equilibrium level
of effort equates average product and marginal opportunity cost, leading to
an inefficient outcome.

If the government imposed a user charge of g dollars per hour spent fishing
on the lake then the private marginal cost to an individual boat will now be
c + g and self-interest will drive entrepreneurs to harvest up to the point where
average product equals c + g. In other words, A(e) = c + g characterizes the
equilibrium that results when there is a user charge of g. If g is set equal to
A(e∗) − c then A(e) = c + g implies e = e∗ and the efficient outcome is attained.
(Figure 10.5 again).

∂ Example 5.1: Output is proportional to the square root of effort

Let q denote output. The production function is q = 20
√

e, where e is total
effort over all firms. The opportunity cost of a unit of effort is 1. Consumer wel-
fare is maximized by maximizing 20

√
e − e. The first derivative is 10/

√
e − 1,
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and when we set that equal to 0 we get e∗ = 100, the efficient level of effort.
(Confirm that the second derivative is negative for all e > 0.) To determine the
equilibrium effort level when the user cost of the resource is 0, we equate the
average product to 1. Average product = 20

√
e/e = 20/

√
e. When we equate this

to 1 we get e+ = 400. Suppose that we currently have e = 100. Consider the posi-
tion of entrepreneur F contemplating adding 200 units of effort. That would yield
200 units of output on the ocean. When devoted to fishing the lake it causes out-
put to increase from 20

√
100 to 20

√
300, an increase of only 146.4. However, F ’s

yield is determined by average product. Total output will be 20
√

300 of which F
gets two-thirds because F supplies two-thirds of the effort, 2/3 × 20

√
300 = 230.9,

which is better than the 200 available to F on the ocean.

The efficient outcome would be realized if the rights to the lake were held
by a profit-maximizing firm, which might be owned by a single individual or
perhaps the entire community. Let’s find the profit-maximizing fee f per unit
of effort—that is, per hour on the lake. Assume that the costs of setting and
collecting the fee are independent of the intensity of economic activity on the
lake. That is, the costs of the lake owner are fixed, at k, say. Then the lake owner’s
profit is fe − k. The functions fe and fe − k are maximized by the same value of e.

Let’s determine the equilibrium value of e when the users of the lake must
pay a user charge of f to the private owner: They will harvest up to the point
where A(e) = c + f . Therefore, the profit-maximizing owner of the lake will
set f = A(e) − c at equilibrium, and thus fe = A(e)e − ce. Because A(e)e is just
total product, T(e), the owner of the lake will want to maximize T(e) − ce,
which is just total product minus total variable cost. We have already exam-
ined this case. The funtion T(e) − ce will be maximized when marginal prod-
uct equals marginal cost, at e∗. Therefore, profit maximization by the owner
of the lake leads to the efficient outcome, unlike free, unrestricted use of the
lake.

Notice that the social optimum can be realized by private ownership or by
government directive. (Verify that f = g.) Which approach goes further toward
promoting social welfare? Perhaps it doesn’t matter whether society chooses
the public or private remedy for correcting the inefficiency. They yield the same
outcome, e∗. Is there any difference between the two regimes?

In both cases the principal delegates the crucial job to an agent. The public
approach requires the state to impose a user fee. The principal is the society, and
the agent is a government body that is given the job of computing the efficient fee
g and enforcing it. Let’s call this government agency the regulator. Acquiring the
necessary information about marginal and average product is not an easy task.
What assurance is there that the regulator will devote the necessary effort to this
task? Who monitors the regulator? We can ask the same question of the private
solution. It works only if the owner of the lake maximizes profit. But owners
typically hire an agent, called a manager, to carry out this task for them. The
manager’s personal welfare is his or her chief concern, and that is not perfectly
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aligned with the interests of the owners. But the manager is monitored by the
capital market in a capitalist economy. If the manager’s activities do not provide

Wild salmon feed and grow off the
southwest coast of Greenland and Faroe
Islands before returning to spawn in
their native rivers. The salmon popu-
lation in these rivers has declined pre-
cipitously as a result of ocean net fish-
ing. When salmon are caught they don’t
return to the rivers to spawn. Because
there are private property rights in the
ocean netting of salmon off Green-
land and Faroe Islands it is possible to
restore the wild salmon population with-
out impoverishing the ocean fishermen.
The property rights consist of individ-
ual boat quotas, which can be bought
and sold. A boat can’t harvest salmon
unless it holds a quota, which is an enti-
tlement to harvest a given number of fish.
The Atlantic Salmon Federation com-
pensates fishermen for not exercising
their netting rights, resulting in a much
greater number of salmon returning to
spawn. By contrast, the U.S. govern-
ment has spent more than $35 million
to restock Atlantic coastal rivers with
salmon, to little effect (Anderson and
Leal, 1997, pp. 156–7)

a satisfactory rate of return on the firm’s cap-
ital equipment and resources then a takeover
would be profitable for someone who has
access to an agent who can get the most out
of the inputs.

Moreover, there is usually better informa-
tion on the performance of agents in the private
sector than in the government sector. Almost
all of the relevant data can be reduced to a sin-
gle number: rate of return on capital. Another
reason why government agents can be harder
to motivate is that their budget constraints are
typically softer than those that govern firms in
the private sector. (However, if a private firm
anticipates that the government will come to
its rescue, the discipline effect of its budgets
constraint will soften. In the late 1970s the
U.S. government gave massive assistance to the
Chrysler Corporation when it was on the verge
of bankruptcy. Similarly, the government used
the “too big to fail” rationale to assist some large
U.S. banks in the 1980s.) This is just a very pre-
liminary look at the question of public versus
private regulation, but it gives an indication of
the kind of issues that have to be settled before
one can decide whether the public or private
remedy is better for society in a particular
case.)

Link
Ostrom (1990) is a thorough treatment of the theory and history of common
property resources.

Problem set

1. Confirm that the profit-maximizing fee f set by the monopoly owner of the
common property resource is equal to the fee g that the government would
charge to elicit an efficient outcome.

2. Suppose that 16
√

e units of output result when a total of e units of effort
are supplied. The opportunity cost of e units of effort is 1/2 e2. Determine the
efficient level of effort and the equilibrium level of effort when the resource
is freely available.

3. Show that the constant opportunity cost assumption is critical to our demon-
stration that profit maximization will lead to efficiency.
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