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It is a pleasure to write the foreword to this excellent book on the evidence
behind radiological investigations and biostatistics in radiology. This is an area
which is not widely appreciated by radiologists and it would be an invaluable
book for those in training who should become fully versed about terminology
such as technical performance, diagnostic performance, diagnostic impact,
therapeutic impact, patient impact, patient outcomes and societal impact. They
should also know that the widely (and often erroneously) used term ‘accuracy’
may not be the best assessment!

This very readable book should not only be useful for radiologists but also
administrators who are now beginning to realise that an effective imaging
department underpins all high quality cost-efficient modern medicine. The his-
tory and development of evidence-based radiology (from Fryback and
Thornbury’s original paper right up to date with recent contributions from
Hollingworth, Hunink, Jarvik and Malone) is very well presented.

Lorenzo Mannelli, an excellent Italian Radiologist working in Cambridge,
says of the Italian Edition: “The book is easy to read and the short paragraph
titles on the side of the pages make it easy to use for future reviewing of “hot
topics” when needed. All the examples and vocabulary are from the radiolog-
ical world, making the statistics easier to understand. Although after reading
this book, you will still need statistical advice, at least you will be able to
understand what the statistician is speaking about! The final chapter on
impact factors is interesting and helps the reader to understand the dynamics
of journals. I definitely recommend this book as an easy reading for residents
in radiology”.

I am sure that this new English language edition will fill a very major void
in the radiological literature. The authors have done us a great service.

Cambridge, UK, October 2008 Adrian K. Dixon, MD

Foreword



Preface to the Italian Edition

For many years “Biostatistics for Radiologists” was an unrealized dream of the
senior author. Since that dream is now coming true, I have taken on the task of
writing this preface, which offers the opportunity for an appraisal of the years
leading up to the genesis of this book. I hope it can be useful to young col-
leagues who intend to devote themselves to radiologic research.

More than twenty-five years ago, [ was a resident at the Postgraduate School
in Radiodiagnostics of the University of Genoa, directed by Professor Luigi
Oliva. My supervisor was Professor Giorgio Cittadini, Director of the Chair
“R” of Radiology of the University. He was the chairman of my medical grad-
uation thesis, entitled “Colonic hypotonic effect of fenoverine and hyoscine
N-butyl bromide: analysis of variance with nonparametric tests”. Already then
there was an attention to statistical methods predicting the events of my future
before me.

In 1984, after several years mainly dedicated to gastrointestinal double-
contrast studies, I was included in a small team made up of physicians,
physicists, and engineers who had the good fortune to work on one of the
first magnetic resonance imaging scanners installed in Italy. It was a proto-
type with a resistive magnet operating at only 0.15 T. For the best use of this
new diagnostic technology, the radiologist had to understand the NMR phe-
nomenon, the radiofrequency pulse sequences, and the role of the field gra-
dients which generate the images. At that time, physicists were teaching
magnetic resonance in courses and congresses using formal demonstrations
based on Bloch’s equations, combining both classic and quantum models.
These lessons were very hard to follow. Only when formulas and equations
were translated into a different language, positively associated with the clin-
ical meaning of the images, did the attending radiologists open their eyes
and grasp the practical sense of that theory. For the first time I understood
that scientific communication was a crucial process requiring intellect, fan-
tasy, and creativity.

Better to light a candle
than to curse the darkness.

Conrucius

Science deals with discovery

but also with communication.

It's hard to say you have an idea

if you are not able to evoke the same idea
in the mind of your listener.

Marcus Du Satoy
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In the same year, I was involved as author in a small paper entitled
“Sensitivity, specificity, overall accuracy. What is the meaning of these three
words commonly used in scientific radiologic language?”'. This paper was the
result of an interesting discussion which had begun in Cittadini’s room late one
evening and lasted for two-three hours. The topic — how to quantify diagnostic
performance — seemed highly intriguing to me. I promised myself to gain a
deeper insight into the matter. It was a new world waiting to be explored: how
to evaluate the uncertainty intrinsic to biologic phenomena and measurements
and, as a consequence, medical diagnosis. At the time I was only a resident
cooperating towards writing an article, but I began to add some substance to
the immaterial dream of writing a book. The chapter dedicated to “Indices of
Diagnostic Performance” included in the Italian textbook “Diagnostic Imaging
and Radiotherapy”, recently published in its sixth edition, would be the embry-
onic stage of “Biostatistics for Radiologists”.

Some years later, in 1987, I became a staff radiologist of the Chair R of
Radiology at the Genoa University and San Martino Hospital. I began to add a
planned research activity to the clinical routine. The areas of research involv-
ing high-level cooperation with clinicians produced the most interesting
results. This was the case with Giuseppe Molinari (cardiologist at the Genoa
University) and Giuseppe Canavese, breast surgeon at the Genoa Cancer
Research Institute. In this period I submitted my first manuscripts to peer-
reviewed journals. Immediately, I understood that good technical knowledge
and updated clinical experience are not enough for writing an article enough
good to be accepted for publication. The crux of the matter is given by study
design, data presentation and analysis, and, in particular, statistical methods
which demonstrate the significance of the results.

Around this time I began to interact with statisticians. Once again communi-
cation was stifled. Radiologists were on one side of a wall and statisticians on
the other, as it had been earlier with the physicists for magnetic resonance. In
my personal experience, however, this wall crumbled thanks to research con-
duced on multiple sclerosis. In this field, magnetic resonance imaging was
playing an increasingly important role. My relations with Gianluigi Mancardi
(Department of Neurology, University of Genoa) and Paolo Bruzzi (Clinical
Epidemiology, Genoa Cancer Research Institute) were a turning point. Each of
us wanted to learn what the other two colleagues already knew and would
spend hours and hours to reach... understanding.

At the same time, another apparently impersonal factor was in action — the
reviewers analyzing the manuscripts I submitted to the journals. Their criti-
cisms were sometimes very harsh. However, the higher the rank of the jour-
nal, the greater the knowledge in methodology I could obtain by interacting
with the reviewers, even though the manuscript was rejected. This was anoth-
er way I begun to accumulate a limited know-how in biostatistics and
research methodology applied to radiology. While I was (and still am) learn-

" Sardanelli F, Garlaschi G, Cittadini G (1984) Sensibilita, specificita, accuratezza diagnostica.
Quale significato attribuire a queste tre parole cosi spesso usate nel linguaggio scientifico radio-
logico? Il Radiologo 23:58-59.



ing from my errors, a long line of textbooks on medical statistics began to
grow in my bookcase.

At the beginning of the 1990s, I became head of Diagnostic Imaging at the
Breast Unit of the San Martino University Hospital and the Genoa Research
Cancer Institute. By that time, Italian breast radiologists were involved in a
flourishing debate: clinical mammography on the one hand, organized screen-
ing mammography on the other. Which was the key-point? The majority of
Italian women who asked for a mammographic examination in radiology
departments were asymptomatic. Their request was one of spontaneous period-
ic control. This gave rise to a kind of oxymoron: clinical mammography (with
physical examination and frequent accessorial ultrasound examination) in an
asymptomatic population. Radiologists with lengthy clinical experience of
breast imaging on patients with symptoms were conditioned by a practice of
“first of all, sensitivity”” which attained acceptable levels of specificity with fur-
ther work-up in a relevant fraction of patients. The application of this logic to
asymptomatic women resulted in the medicalization of a healthy population. It
was a typical problem generated by low disease prevalence. In asymptomatic
women sensitivity must be combined with a sufficiently high specificity and
positive predictive value. On the other hand, we knew that ultrasound enabled
us to detect breast cancers in women with high breast density and negative
mammography and that periodical mammography is also useful in women
under 50 and over 70. However, once again there was a wall. Clinical mam-
mography on one side, screening mammography on the other. This experience
gave me new incentive to flesh out that dream.

In the meantime, I begun to serve as a reviewer for international journals.
This gave me the opportunity to compare my evaluation of a manuscript with
those of other reviewers. Moreover, at the end of that decade I started to coop-
erate with Franca Podo from the Istituto Superiore di Sanita (Rome), a physi-
cist and world-renowned expert in magnetic resonance imaging and spec-
troscopy. Working together we conducted the HIBCRIT study for multimodal-
ity surveillance of women at high genetic-familial risk of breast cancer. Here
the high disease prevalence justified an intensive surveillance including phys-
ical examination, mammography, ultrasound, and contrast-enhanced magnetic
resonance imaging. It was a fantastic experience from which I learned a lot,
especially on the management of multicenter trials, an intense and effective
cooperation without the need of breaking down walls, with a follow-on now
extending to new topics.

From 1999 to 2000 I was Director of the Department of Radiology at the
Biomedical Institute in Genoa. This role broadened the spectrum of my expe-
rience. The higher levels of productivity in clinical radiologic activity was a
preparation for the upcoming events.

In fact, in 2001 I was assigned the Direction of the Department of Radiology
at the Policlinico San Donato near Milan. In my opinion, the principal aim was
to have a radiologic team with high levels of clinical efficiency and scientific
research. The administrators gave me free reign to start a process of training
and selection of young colleagues. Some of the fruits of this process can
already be appreciated. I have to thank several persons who have been and con-
tinue to be keystones in the day-to-day operation of the system: the radiologists
Alberto Aliprandi, Bijan Babaei and Pietro Bertolotti and the coordinators of

Preface to the Italian Edition
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radiographers Francesco Gerra and Eleonora Norma Lupo. Recently we were
joined by Carlo Ottonello, who was resident in Radiodiagnostics at the Genoa
University at the beginning of the 1990s. Our younger colleagues have the
opportunity to show their abilities in clinics and research, in part thanks to
many projects we have in cooperation with the clinical departments of our
institution.

In recent years, I combined the Direction of the Unit of Radiology of the
Policlinico San Donato (from 2006, appointed as Istituto di Ricovero e Cura
a Carattere Scientifico, IRCCS, by the Ministry of Health) with the position
of Associate Professor of Radiology at the University of Milan School of
Medicine. This new context favored my study on research methodology. The
last chapter of this book arose from a lesson entitled “How to Write a
Scientific Paper?”. I held with the residents of the Postgraduate School in
Radiodiagnostics on the express request of the Director of the School,
Professor Gianpaolo Cornalba, in a framework of close cooperation and com-
mon rationale.

At the same time I served on the National Board of the Councilors of the
Italian Society of Medical Radiology as a President’s Delegate for Scientific
Research. Over the past four years, Alessandro Del Maschio (at that time
President’s Delegate for Scientific Research) promoted a course on
Methodology of Scientific Research. It was held by Irene Floriani and Valter
Torri, from the “Mario Negri” Institute (Milan) and then repeated in several
Italian cities. The aim was to increase the level of knowledge in research
methodology among Italian radiologists, a need which had already emerged
during the first multicenter studies promoted by the Italian Society of Medical
Radiology (SIRM) on breast MR imaging. My involvement only enlarged the
scale of the audience by introducing several radiologists and a young physicist
(the second author of this book) to the faculty. We all worked together in the
preparation of the lessons during multiple meetings and long discussions, in
particular with Irene Floriani and Valter Torri. This was a new stimulus for real-
izing my dream. So they too deserve my heartfelt thanks.

However, something was still missing: I had no solid mathematical back-
ground. Giving prominence to logics over computing could not exempt me
from formal correctness. I therefore decided to associate a clever physicist
from the Naples School and full-time researcher at the Radiology Unit of the
IRCCS Policlinico San Donato, Giovanni Di Leo, with the project of this book.
Both of us worked on all the chapters, even though he drafted the first version
of the chapters with a higher mathematical content while I drafted the first ver-
sion of the chapters with a higher logical and methodologic content, with each
of us providing the other with constructive criticism.

Lastly, I would like to thank Antonella Cerri from Springer. She enthusiasti-
cally latched on to the idea of this book when I described the project to her sev-
eral years ago during a friendly chat at the end of a meeting of the editorial
board of European Radiology.

We really hope to communicate to radiologists the methodologic know-how
which is taking on an increasingly important role. Many years ago a surgeon
asked me: “Do you know what the difference is between a radiologist and a
surgeon?”. Before I could answer, he said: “You say ‘my CT scanner’, I say
‘my patient’”. It was true. We must give clear demonstrations that the images
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of higher and higher quality we are able to produce have a significant impact
on patient outcome and the population health status.

This book is a small contribution towards this challenge.

As I stated at the beginning of this preface, younger colleagues could heed the
advice from this personal history. When you wake up in the morning, keep on
dreaming. Then sooner or later, flesh out those dreams and bring them to life.

San Donato Milanese, April 2008 Francesco Sardanelli
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Preface to the English Edition

We enthusiastically accepted the proposal from Springer to do an English ver-
sion of this book, based on the advantage that radiologists (and more general-
ly experts in medical imaging) were unable to find a volume where the basics
of research methodology were presented as applied to diagnostic imaging.
Conversely, we had the large disadvantage related to the difficulty of explain-
ing complex matters such as biostatistics which have been extensively devel-
oped in many other splendid books written by real experts in the field.

However, insofar as we went ahead in rewriting the text in English, we real-
ized that not only was the meaning retained, but the message also became
clearer and less redundant. This was probably due not only to the effect of the
different language, but also the result of a rethinking of the content of chapters
and paragraphs several months after publishing the Italian edition. Now, our
general impression is that the Italian version has been written for ourselves (to
hone our thinking, to render it more analytic and detailed, to better understand
the subject matter) and that the English version has been written for the reader
(to provide her/him with a clearer message). We hope that this is true.
Obviously, small errors and imperfections have been corrected and some points
specifically written for Italian radiologists have been omitted.

The major change made in this English version is an expanded Introduction
with more emphasis on evidence-based medicine and evidence based radiology.

At any rate, we would like to emphasize that this book is nothing more than
an introduction to the topic, a portal to the realm of research methodology, with
the words “radiology and medical imaging” emblazoned upon it.

A sincere word of thanks to Alexander Cormack, the English copyeditor who
had the patience to transform our text into real English.

San Donato Milanese, October 2008 Francesco Sardanelli
Giovanni Di Leo
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Introduction

The practice of evidence-based medicine means
integrating individual clinical expertise

with the best available external evidence

from systematic research.

DAVE L. SACKETT

The creative principle of science
resides in mathematics.

ALBERT EINSTEIN

After all, to understand

is the intrinsic purpose of science,
and science is really much more
than mechanical computing.

ROGER PENROSE

Evidence-Based Medicine (EBM)

Over the past three decades, the following view has gained increasing favor
throughout the medical community: clinical practice should be based on the
critical evaluation of the results obtained from medical scientific research.
Today this evaluation is greatly favored by Internet which provides instanta-
neous online access to the most recent studies even before they appear in print
form. The possibility of instantaneously accessing quality-filtered and rele-
vance-filtered secondary publications (meta-analyses, systematic reviews, and
guidelines) has become real in routine practice.

This notion — a clinical practice based on the results (the evidence) given by
the research — has engendered a discipline: evidence-based medicine (EBM),
also referred to as evidence-based healthcare, or evidence-based practice
[MALONE, 2007]. In this context the term evidence is more closely associated
with the concepts of proof, demonstration, or testability than simply with visi-
bility or clarity. In fact, the general meaning of the new discipline suggests a
clinical practice no longer based on bequeathed knowledge, on opinions,
impressions, and perceptions, but on demonstrable proofs. EBM has been
defined as “the systematic application of the best evidence to evaluate the avail-
able options and decision making in clinical management and policy settings”,
i.e. “integrating clinical expertise with the best available external clinical evi-
dence from research” [EVIDENCE-BASED RADIOLOGY WORKING GROUP, 2001].

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

Evidence-based medicine (EBM)
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Biostatistics for Radiologists

Origins of EBM

EBM definitions

Patient’s values and choice

Top-down EBM

Bottom-up EBM

This concept is not new. The basis for this way of thinking was developed in
the 19th century (Pierre C.A. Luis) and during the 20th century (Ronald A.
Fisher, Austin Bradford Hill, Richard Doll, and Archie Cochrane). However, it
was not until the second half of the last century that the Canadian School led
by Gordon Guyatt and Dave L. Sackett at McMaster University (Hamilton,
Ontario, Canada) promoted the tendency to guide clinical practice using the
best results — the evidence — produced by scientific research [EVIDENCE-BASED
RADIOLOGY WORKING GROUP, 2001; Greenhalgh, 2006a]. This approach was
subsequently refined also by the Center for Evidence-Based Medicine (CEBM)
at University of Oxford, England [CENTRE FOR EVIDENCE-BASED MEDICINE
(http://cebm.net); MALONE, 2007].

Dave L. Sackett and coworkers stated that:

Evidence based medicine is the conscientious, explicit, and judicious use of
current best evidence in making decisions about the care of individual patients.
The practice of evidence-based medicine means integrating individual clinical
expertise with the best available external evidence from systematic research
[SACKETT ET AL, 1996].

A highly attractive alternative but more technical definition, explicitly
including diagnosis and investigation, has been proposed by Anna Donald and
Trisha Greenhalgh:

Evidence-based medicine is the use of mathematical estimates of the risk, of
benefit and harm, derived from high-quality research on population samples,
to inform clinical decision making in the diagnosis, investigation or manage-
ment of individual patients [ GREENHALGH, 2006b].

However, EBM is not only the combination of current best available exter-
nal evidence and individual clinical expertise. A third factor must be included
in EBM: the patient’s values and choice. “It cannot result in slavish, cookbook
approaches to individual patient care” [SACKETT ET AL, 1996]. Thus, EBM is
the integration of: (i) research evidence; (ii) clinical expertise; and (iii)
patient’s values and preferences [SACKETT ET AL, 1996; HUNINK ET AL, 2001;
MALONE AND STAUNTON, 2007]. Clinical expertise “decides whether the exter-
nal evidence applies to the individual patient”, evaluating “how it matches the
patient’s clinical state, predicament, and preferences” [SACKETT ET AL, 1996].
A synopsis of this process is given in Figure 0.1.

Two general methods are generally proposed for applying EBM [DobpD,
2007; MALONE AND STAUNTON, 2007; VAN BEEK AND MALONE, 2007]
(Figure 0.2):

— the fop-down method, when academic centers, special groups of experts on
behalf of medical bodies, or specialized organizations (e.g. the Cochrane col-
laboration; http://www.cochrane.org) provide high-quality primary studies
(original research studies), systematic reviews and meta-analyses, applica-
tions of decision analysis, or issue evidence-based guidelines and make
efforts to put them into practice;

— the bottom-up method, when practitioners or other physicians working in
routine practice are able “to ask a question, search and appraise the literature,
and then apply best current evidence in a local setting”, opening a so-called
audit cycle.
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Figure 0.1. The general scheme of evidence based medicine. See Figure 0.2 for the top-down and bot-
tom-up approaches to the best external evidence.

TWO-WAY EBM

Government-sponsored  institutions
Working groups of professional bodies
Academic institutions

Systematic reviews/meta-analyses
Decisional analysis, Guidelines*
High-quality original research studies
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1. Formulate an answerable question

2. Search for the best current evidence
3. Appraise critically

4. Apply findings to practice

5. Evaluate performance

Local (GPs or specialized) physicians

Figure 0.2. Top-down and bottom-up processes for evidence based medicine.

*Appropriateness criteria are not included in the top-down EBM method since they are based on expert
opinion, even though formalized procedures (such as the Delphi protocol) are frequently used and experts
commonly base their opinion on systematic reviews and meta-analyses [MEepiNA AND BLACKMORE, 2007].
EBM = Evidence Based Medicine.
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EBM limitations

We should note that the top-down method involves a small number of peo-
ple considered experts and does not involve physicians acting at the local
level. However, there is a difference between the production of systematic
reviews and meta-analyses (which are welcome as an important source of
information by local physicians who want to practice the bottom-up model)
and the production of guidelines which could be considered as an external
cookbook (mistaken for a mandatory standard of practice) by physicians who
feel themselves removed from the decision-making process [VAN BEEK AND
MALONE, 2007]. On the other hand, the bottom-up method (which was consid-
ered an EBM method before the top-down method [HOLLINGWORTH AND
JARVIK, 2007]) implies a higher level of knowledge of medical research
methodology and EBM techniques by local physicians than that demanded by
the top-down method. In either case, a qualitative improvement in patient care
is expected. At any rate, clinical expertise must play a pivotal role as integra-
tor of external evidence and patient’s values and choice. When decision analy-
ses, meta-analyses and guidelines provide only part of the external evidence
found by the local physicians, the two models act together, as hopefully
should happen in practice. Moreover, a particular aim of the top-down method
is the identification of gaps in knowledge to be filled by future research. In
this way, EBM becomes a method for redirecting medical research towards
improved medical practice [HOLLINGWORTH AND JARVIK, 2007].

However, EBM is burdened by limitations and beset by criticisms. It has been
judged as unproven, very time-consuming (and therefore expensive), narrowing
the research agenda and patients’ options, facilitating cost cutting, threatening pro-
fessional autonomy and clinical freedom [SACKETT ET AL, 1996; TRINDER, 2000;
MALONE AND STAUNTON, 2007]. At an objective evaluation, these criticisms seem
to be substantially weak due to the pivotal role attributed to “individual clinical
expertise” by EBM and to the general EBM aim “to maximize the quality and
quantity of life for the individual patient” which “may raise rather than lower the
cost of their care” as pointed out by Dave L. Sackett in 1996 [SACKETT ET AL, 1996].

Other limitations seem to be more relevant. On the one hand, large clinical
areas — radiology being one of them — have not been sufficiently explored by
studies according to EBM criteria. On the other hand, real patients can be total-
ly different from those described in the literature, especially due to the presence
of comorbidities, making the conclusions of clinical trials not directly applica-
ble. This event is the day-to-day reality in geriatric medicine. The ageing pop-
ulation in Western countries has created a hard benchmark for EBM. These
limitations may be related to a general criticism which suggests that the central
feature in the EBM perspective is the patient population and not the individual
patient [TONELLI, 1998; RAYMOND AND TroP, 2007]. Lastly, we should avoid
unbridled enthusiasm for clinical guidelines, especially if they are issued with
questionable methods [WOOLF ET AL, 1999].

However, all these limitations appear more as problems due to a still limited
development and application of EBM than intrinsic EBM limitations.
Basically, the correctness of EBM should be borne in mind, in that EBM aims
to provide the best choice for the individual real patient with the use of proba-
bilistic reasoning. EBM is investing significant effort towards improving con-
temporary medicine.



Delayed Diffusion of EBM in Radiology and Peculiar Features
of Evidence-Based Radiology

Radiology is not outside of EBM, as stated by David L. Sackett and coworkers
in 1996: “EBM is not restricted to randomised trials and meta-analyses [...]. To
find out about the accuracy of a diagnostic test, we need to find proper cross
sectional studies of patients clinically suspected of harboring the relevant dis-
order, not a randomised trial” [SACKETT ET AL, 1996]. Evidence-based radiolo-
gy (EBR), also called evidence-based imaging, first appeared in the literature
only in recent years.

Until 2000, few papers on EBR were published in nonradiologic journals
[ACHESON AND MITCHELL, 1993; NO AUTHORS LISTED (British Columbia Office
of Health Technology Assessment), 1997; NO AUTHORS LISTED, Int J Assess
Health Care, 1997; DixoN, 1997; MUKERJEE, 1999] and in one journal special-
ized in dentomaxillofacial radiology [LIEDBERG ET AL, 1996]. From 2001 to
2005, several papers introduced the EBM approach in radiology [EVIDENCE-
BASED RADIOLOGY WORKING GROUP, 2001; TAIEB AND VENNIN, 2001; ARRIVE
AND TUBIANA, 2002; Bul ET AL, 2002; GUILLERMAN ET AL, 2002; KAINBERGER
ET AL, 2002; BENNETT, 2003; BLACKMORE, 2003; COHEN ET AL, 2003; GOERGEN
ET AL, 2003; MEDINA ET AL, 2003; BLACKMORE, 2004; DopD ET AL, 2004;
ERDEN, 2004; GILBERT ET AL, 2004; MATOWE AND GILBERT, 2004; GIOVAGNONI
ET AL, 2005]. Not until 2006 was the first edition of the book entitled Evidence-
Based Imaging published by L. Santiago Medina and C. Craig Blackmore
[MEDINA AND BLACKMORE, 2006]. The diffusion of EBM in radiology was
delayed. From this viewpoint, radiology is “behind other specialties” [MEDINA
AND BLACKMORE, 2007].

As a matter of fact, according to L. Santiago Medina and C. Craig Blackmore,
“only around 30% of what constitutes ‘imaging knowledge’ is substantiated by
reliable scientific inquiry”” [MEDINA AND BLACKMORE, 2006]. Other authors esti-
mate that less than 10% of standard imaging procedures is supported by suffi-
cient randomized controlled trials, meta-analyses or systematic reviews [DIXON,
1997; RCR WORKING PARTY, 1998; KAINBERGER ET AL, 2002].

The EBR delay may also be linked to several particular traits of our discipline.
In fact, the comparison between two diagnostic imaging modalities is markedly
different from the well-known comparison between two treatments, typically
between a new drug and a placebo or standard care. Thus, the classic design of
the randomized controlled trial is not the standard for radiologic studies. What
are the peculiar features of radiology which need to be considered?

First of all, the evaluation of the diagnostic performance of imaging modal-
ities must be based on a deep insight of the technologies used for image gener-
ation and postprocessing. Technical expertise has to be combined with clinical
expertise in judging when and how the best available external evidence can be
applied in clinical practice. This aspect is just as important as “clinical expert-
ise” (knowledge of indications for an imaging procedure, imaging interpreta-
tion and reporting, etc). Dodd and coworkers showed the consequences of
ignoring a technical detail such as slice thickness in evaluating the diagnostic
performance of magnetic resonance (MR) cholangiopancreatography: using a
3-mm instead of a 5-mm thickness, the diagnostic performance for the detec-
tion of choledocholithiasis changed from 0.57 sensitivity and 1.0 specificity to
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0.92 sensitivity and 0.97 specificity [DoDD ET AL, 2004]. If the results of tech-
nically inadequate imaging protocols are included in a meta-analysis, the con-
sequence will be the underestimation of diagnostic performance.

At times progress in clinical imaging is essentially driven by the develop-
ment of new technology, as was the case for imaging at the beginning of the
1980s. However, more frequently, an important gain in spatial or temporal res-
olution, in signal-to-noise or contrast-to-noise ratio is attained through hard-
ware and/or software innovations in pre-existing technology. This new step
broadens the clinical applicability of the technology, as was the case for com-
puted tomography (CT) which evolved from helical single-slice to multidetec-
tor row scanners, thus opening the way to cardiac CT and CT angiography of
the coronary arteries. Keeping up to date with technologic development is a
hard task for radiologists, and a relevant part of the time not spent with imag-
ing interpretation should be dedicated to the study of new imaging modalities
or techniques. For radiologic research, each new technology appearing on the
market should be tested with studies on its technical performance (image reso-
lution, etc.).

Second, we need to perform studies on the reproducibility of the results of
imaging modalities (intraobserver, interobserver, and interstudy variability), an
emerging research area which requires dedicated study design and statistical
methods (e.g. Cohen k statistics and Bland-Altman analysis). In fact, if a test
shows poor reproducibility, it will never provide good diagnostic performance,
i.e. sensitivity and specificity. Good reproducibility is a necessary (but not suf-
ficient) condition for a test to be useful.

Third, the increasing availability of multiple options in diagnostic imaging
should be taken into consideration along with their continuous and sometimes
unexpected technologic development and sophistication. Thus, the high speed
of technologic evolution has created not only the need to study theory and prac-
tical applications of new tools, but also to repeatedly start with studies on tech-
nical performance, reproducibility, and diagnostic performance. The faster the
advances in technical development, the more difficult it is to do the job in time.
This development is often much more rapid than the time required for perform-
ing clinical studies for the basic evaluation of diagnostic performance. From
this viewpoint, we are always too late with our assessment studies.

However, the most important problem to be considered with new diagnostic
technology is that “a balance must be struck between apparent (e.g. diagnostic)
benefit and real benefit to the patient” [DIXoN, 1997]. In fact, a qualitative leap
in radiologic research is now expected: from the demonstration of the increas-
ing ability to see more and better, to the demonstration of a significant change
in treatment planning or, at best, a significant gain in patient health and/or qual-
ity of life — the patient outcome.

Lastly, we should specifically integrate a new aspect in EBR, i.e. the need to
avoid unnecessary exposure to ionizing radiation, according to the as low as
reasonably achievable (ALARA) principle [NO AUTHORS LISTED, Proceedings
of the Second ALARA Conference, 2004; PRASAD ET AL, 2004; SEMELKA ET AL,
2007] and to governmental regulations [COUNCIL OF THE EUROPEAN UNION,
1997; BARR ET AL, 2006; FDA RabpioLoGICAL HEALTH PROGRAM, 2008]. The
ALARA principle might be considered as embedded in radiologic “technical
and clinical expertise”. However, in our opinion, it should be regarded as a



EVIDENCE BASED RADIOLOGY

ALARA

r

Technical and clinical

expertise
Top-down
Best external Patient’s
evidence values
Bottom-up Decision
making

Figure 0.3. The process of evidence based radiology. ALARA = "as low as reasonably achievable”, with
reference to ionizing radiation exposure.

fourth dimension of EBR, due to the increasing relevance of radioprotection
issues in radiologic thinking and practice. A graphical representation of the
EBR process, including the ALARA principle, is provided in Figure 0.3.

Health Technology Assessment in Radiology and Hierarchy
of Studies on Diagnostic Tests

In the framework described above, EBM and EBR are based on the possibility
of obtaining the best external evidence for a specific clinical question. Now the
question is: how is this evidence produced? In other words, which methods
should be used to demonstrate the value of a diagnostic imaging technology?
This field is what we name health technology assessment (HTA) and particular
features of HTA are important in radiology. Thus, EBR may exist only if a good
radiologic HTA is available. As stated by William Hollingworth and Jeffry G.
Jarvik, “the tricky part, as with boring a tunnel through a mountain, is making
sure that the two ends meet in the middle” [HOLLINGWORTH AND JARVIK, 2007].

According to the United Kingdom HTA Programme, HTA should answer the
following four fundamental questions on a given technology [WHITE ET AL,
2000; HOLLINGWORTH AND JARVIK, 2007]:

1. does it work?

2. for whom?

3. at what cost?

4. how does it compare with alternatives?
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In this context, increasing importance has been gained by the use of three dif-
ferent terms. While efficacy reflects the performance of medical technology
under ideal conditions, effectiveness evaluates the same performance under
ordinary conditions, and efficiency measures the cost-effectiveness [HILLMAN
AND GATSONIS, 2008]. In this way the development of a procedure in special-
ized or academic centers is distinguished by its application to routine clinical
practice and from the inevitable role played by the economic costs associated
with implementation of a procedure.

To evaluate the impact of the results of studies, i.e. the level at which the
HTA was performed, we need a hierarchy of values. Such a hierarchy has been
proposed for diagnostic tests and also accepted for diagnostic imaging modal-
ities. During the 1970s, the first classification proposed five levels for the
analysis of the diagnostic and therapeutic impact of cranial CT [FINEBERG ET
AL, 1977]. By the 1990s [FRYBACK AND THORNBURY, 1991], this classification
had evolved into a six-level scale, thanks to the addition of a top level called
societal impact [THORNBURY, 1994; MACKENZIE AND DIXON, 1995;
THORNBURY, 1999]. A description of this scale was presented more recently in
the radiologic literature [EVIDENCE-BASED RADIOLOGY WORKING GROUP, 2001;
SUNSHINE AND APPLEGATE, 2004].

This six-level hierarchy scale (Table 0.1) is currently widely accepted as a
foundation for HTA of diagnostic tools. This framework provides an opportu-
nity to assess a technology from differing viewpoints. Studies on technical per-
formance (level 1) are of key importance to the imaging community and the
evaluation of diagnostic performance and reproducibility (level 2) are the basis
for adopting a new technique by radiologists and clinicians. However, radiolo-
gists and clinicians are also interested in how an imaging technique impacts
patient management (levels 3 and 4) and patient outcomes (level 5) while
healthcare providers wish to ascertain the costs and benefits of reimbursing a
new technique, from a societal perspective (level 6). Governments are mainly
concerned about the societal impact of new technologies in comparison to that
of other initiatives they may be considering.

Note that this hierarchical order is a one-way logical chain. A positive effect
at any level generally implies a positive effect at all preceding levels but not
vice versa [HOLLINGWORTH AND JARVIK, 2007]. While a new diagnostic tech-
nology with a positive impact on patient outcome probably has a better techni-
cal performance, higher diagnostic accuracy, etc. compared with the standard
technology, there is no certainty that a radiologic test with a higher diagnostic
accuracy results in a better patient outcome. If we have demonstrated an effec-
tive diagnostic performance of a new test (level 2), the impact on a higher level
depends on the clinical setting and frequently also on conditions external to
radiology. This must be demonstrated with specifically designed studies. As a
matter of fact, we might have a fantastic test for the early diagnosis of disease
X but, if no therapy exists for that disease, no impact on patient outcomes can
be obtained. HTA should examine the link between each level and the next in
the chain of this hierarchy to establish the clinical value of a radiologic test.

Cost-effectiveness should be included in HTA at any level of the hierarchic
scale as cost per examination (level 1), per correct diagnosis (level 2), per inva-
sive test avoided (level 3), per changed therapeutic plan (level 4), per gained



Table 0.1. Hierarchy of studies on diagnostic tests

Level Parameters under investigation
6. Societal impact Cost-benefit and cost-effectiveness analysis from a social perspective
5. Patient outcomes Fraction of patients improved with the test compared with fraction

improved without the test; difference in morbidity between the patients
with the test and those without the test; gain in quality-adjusted life
years (QALYs) obtained by the patients with the test compared with
those without the test

4. Therapeutic impact Fraction of patients for whom the test is judged useful for treatment
planning or for whom the treatment planning is modified on the basis
of the information supplied by the test

3. Diagnostic impact Fraction of patients for whom the test is judged useful for reaching the
diagnosis or for whom the diagnosis is substantially modified after the
test; positive and negative likelihood ratios

2. Diagnostic performance  Sensitivity, specificity, accuracy, positive predictive value, negative predic-
tive value and receiver operator characteristic (ROC) analysis; intraobserv-
er, interobserver and interstudy reproducibility

1. Technical performance  Gray scale range; modulation transfer function change; sharpness; spa-
tial resolution, in-plane (line pairs per mm, pixel size) and through-the-
plane (slice thickness), integrated in voxel size; signal-to-noise ratio; con-
trast resolution (contrast-to-noise ratio); time resolution (images/sec) etc

Sources: THORNBURY, 1994; SUNSHINE AND APPLEGATE, 2004; with modifications. In particular, reproducibility studies were
added at level 2.

quality-adjusted life expectancy or per saved life (levels 5-6) [HOLLINGWORTH
AND JARVIK, 2007].

New equipment or a new imaging procedure should have extensive HTA
assessment before it is adopted in routine practice. Thereafter a period of clin-
ical evaluation follows where diagnostic accuracy is assessed against a known
gold standard. Indeed, the radiologic literature is mainly composed of level 1
(technical performance) and level 2 (diagnostic performance) studies. This is
partly inevitable. The evaluation of the technical and diagnostic performance
of medical imaging is a typical function of radiologic research. However, radi-
ologists less frequently study the diagnostic impact (level 3) or therapeutic
impact (level 4) of medical imaging, while outcome (level 5) and societal
impact (level 6) analysis is positively rare in radiologic research. A “shortage
of coherent and consistent scientific evidence in the radiology literature” to be
used for a wide application of EBR was noted in 2001 [EVIDENCE-BASED
RapIOLOGY WORKING GROUP, 2001]. In recent years, several papers have
appeared exploring levels higher than those concerning technical and diagnos-
tic performance, such as the Scottish Low Back Pain Trial, the DAMASK
study, and others [GILBERT FJ ET AL, 2004; BREALEY ET AL, for the DAMASK
TriaL TEAM, 2007; OEI ET AL, 2008; OUWENDIK ET AL, 2008].

This lack of evidence on patient outcomes is a void also for well established
technologies. This is the case for cranial CT for head injuries, even though the
diagnostic information yielded by CT was “obviously so much better than [that]
of alternative strategies that equipoise (genuine uncertainty about the efficacy of
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a new medical technology) was never present” and “there was an effective treat-
ment for patients with subdural or epidural hematomas — i.e. neurosurgical evac-
uation” [HOLLINGWORTH AND JARVIK, 2007]. However, cases like this are very
rare, and “in general, new imaging modalities and interventional procedures
should be viewed with a degree of healthy skepticism to preserve equipoise until
evidence dictates otherwise” [HOLLINGWORTH AND JARVIK, 2007].

This urgent problem was recently highlighted by Christiane K. Kuhl and
coworkers for the clinical value of 3.0-T MR imaging. They state: “Although
for most neurologic and angiographic applications 3.0 T yields technical
advantages compared to 1.5 T, the evidence regarding the added clinical value
of high-field strength MR is very limited. There is no paucity of articles that
focus on the technical evaluation of neurologic and angiographic applications
at 3.0 T. This technology-driven science absorbs a lot of time and energy —
energy that is not available for research on the actual clinical utility of high-
field MR imaging” [KUHL ET AL, 2008]. The same can be said for MR spec-
troscopy of brain tumors [JORDAN ET AL, 2003; HOLLINGWORTH AND JARVIK,
2007], with only one [MOLLER-HARTMANN ET AL, 2002] of 96 reviewed articles
evaluating the additional value of MR spectroscopy which compared this tech-
nology with MR imaging alone.

There are genuine reasons for rarely attaining the highest impact levels of
efficacy by radiologic research. On the one hand, increasingly rapid technolog-
ic development forces an endless return to low impact levels. Radiology was
judged as the most rapidly evolving specialty in medicine [DixoN, 1997]. On
the other hand, level 5 and 6 studies entail long performance times, huge eco-
nomic costs, a high degree of organization and management for longitudinal
data gathering on patient outcomes, and often require a randomized study
design (by way of example, the average time for 59 studies in radiation oncol-
ogy up to publication of the results reviewed in 2005 was about 11 years
[SOARES ET AL, 2005]). In this setting, there are two essential needs: full coop-
eration with clinicians who manage the patient before and after a diagnostic
examination, and methodologic and statistical expertise regarding randomized
controlled trials. Radiologists should not be afraid of this, as it is not unfamil-
iar territory for radiology. More than three decades ago, mammographic
screening created a scenario in which the early diagnosis by imaging con-
tributed to a worldwide reduction in mortality from breast cancer, with a high
societal impact.

Lastly, alternatives to clinical trials and meta-analyses exist. They are the so-
called “pragmatic” or “quasi-experimental” studies and “decision analysis”.

A pragmatic study proposes the concurrent development, assessment, and
implementation of new diagnostic technologies [HUNINK AND KRESTIN, 2002].
An empirically based study, preferably using controlled randomization, inte-
grates research aims in clinical practice, using outcome measures reflecting the
clinical decision-making process and acceptance of the new test. Outcome
measures include: additional imaging studies requested; costs of diagnostic
work-up and treatments; confidence in therapeutic decision-making; recruit-
ment rate; and patient outcome measures. Importantly, time is used as a funda-
mental dimension, as an explanatory variable in data analysis to model the
learning curve, technical developments, and interpretation skill. Limitations of
this approach can be the need of dedicated and specifically trained personnel



and the related economic costs to be covered by presumably governmental
agencies [JARVIK, 2002]. However, this seems to demonstrate the potential for
responding to the dual demand of the increasing pace of technologic develop-
ment in radiology and the need to attain higher levels of radiologic studies, thus
in a single approach obtaining data on diagnostic confidence, effect on therapy
planning, patient outcome measures and cost-effectiveness analysis.

Decision analysis, based on deductive reasoning, tries to overcome the lim-
ited external validity associated with clinical trials [HUNINK ET AL, 2001;
Launors, 2003]. It is a tool for evaluating a diagnostic test on the basis of
patient outcome using intermediate outcome measures such as sensitivity and
specificity obtained by already published studies. Different diagnostic or ther-
apeutic alternatives are visually represented by means of a decision tree and
dedicated statistical methods are used (e.g. Markov model, Monte Carlo simu-
lation) [PLEVRITIS, 2005; HUNINK ET AL, 2001]. This method is typically used
for cost-effectiveness analysis. For instance, it was recently used for simulat-
ing the effectiveness of mammography, MR imaging, or both for screening of
breast cancer in women carriers of BRCA1 mutations [LEE ET AL, 2008].

A simple way to appraise the intrinsic difficulty in HTA of radiologic proce-
dures is to compare radiologic with pharmacologic research (see Chapter 8).
After the chemical discovery of an active molecule, its development, cell and
animal testing, the phase I and phase II studies are carried out by the industry
with the participation of very few clinicians (for phase I and II studies). Very
few academic institutions and large hospitals are involved in this long phase
(commonly about ten years). When clinicians become involved in phase III
studies, i.e. large randomized trials for registration, the study aims have already
reached level 5 (outcome impact). Radiologists have to climb 4 levels of
impact before reaching the outcome level. Of course it is possible to imagine a
world in which even radiologic procedures are tested for outcome endpoints
before entering clinical practice, but the real world is different, such that we
have much more technology-driven research from radiologists than radiolo-
gist-driven research on technology.

Why do we Need Biostatistics?

The application of EBM implies a fundamental difficulty. Not only producing
scientific evidence but also reading and correctly understanding the medical lit-
erature, in particular summaries of the best results such as systematic reviews
and meta-analyses, requires a basic knowledge of and confidence with the prin-
ciples and techniques of biostatistics. In fact, this is the only way to quantify the
uncertainty associated with biological variability and the changes brought about
by the patient’s disease. This theoretical background is now emerging as very
important expertise to be acquired by any physician of the new millennium.
Quantification of data variability and its presentation comprise the field of
descriptive statistics. This branch of statistics enables us to describe the sam-
ple under investigation by summarizing its features with diagrams or graphs
and various parameters (mean, standard deviation, median, etc.). The quantifi-
cation of uncertainty is needed to understand the probability we have if we
apply the results of a study to the general population from which the study sub-
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jects were drawn, i.e. when we use inferential statistics. This allows us to pro-
pose a general view and a theoretical model of the phenomenon under investi-
gation. In this way, we can anticipate future events, namely we can make an
inference. This is a deduction which evaluates whether the results of a study on
a sample size can be applied to the general population, with a controlled error
probability. As a consequence, there is a close proximity between inferential
statistics and probability theory.

Although biostatistics uses mathematical tools, which may be very simple or
quite sophisticated, the problem is never a question of simple mechanical com-
puting (today many software packages can adequately do the job). It is rather
a question of understanding the meaning of the figures we obtain and the way
we obtain them, both theoretically (what precisely do we mean by specificity
or likelihood ratio?) and practically, for clinical decision-making.

Note that while a statistically significant result can be lacking clinical rel-
evance, clinically relevant evidence should be based on statistical signifi-
cance. A study can produce very high statistical significance without having
any clinical utility. Who would use an anti-hypertensive drug which system-
atically (i.e. in all subjects) reduces arterial pressure by 1 mmHg compared
with standard treatment? On the other hand, the considerable effect of a new
drug against a form of cancer, if real, will be demonstrated in a controlled
study (i.e. compared with standard treatment) which shows a significant
increase in the disease-free interval or survival time. In other words, the size
of a statistically significant difference needs to be evaluated to conclude that
it is also clinically relevant, while a clinically relevant difference, to become
evidence, must produce a statistically significant difference in a high-quali-
ty study.

A particular aspect plays a role in clinical radiologic research. Even for sim-
ple studies on diagnostic performance (sensitivity, specificity etc.), the com-
mon lack of assumptions needed for applying parametric statistical methods
(based on the direct computing of measured data) makes nonparametric statis-
tical methods (based on qualitative classes or ranks, or other tools) frequently
needed. However, understanding nonparametric statistics requires preliminary
knowledge of basic parametric statistics.

There are several reasons for the prevalent use of nonparametric statistical
methods in radiology. The most important are as follows: the frequent use of
nominal scales of measurement, often simply dichotomous (positive or neg-
ative) or ordinal (a typical example is the Breast Imaging Reporting and Data
System, BI-RADS®, scale [AMERICAN COLLEGE OF RADIOLOGY, 2003]); the
limited possibility of demonstrating the normal distribution of continuous
numerical data in a small sample size (a necessary assumption for using para-
metric statistical methods); and the high frequency of a small sample size. As
a consequence, most books concerning general medical statistics appear
barely appropriate for radiologists. These texts commonly dedicate numerous
pages to parametric methods and very few pages to nonparametric methods,
and even when nonparametric methods are extensively explained, no specif-
ic reference to their use in diagnostic imaging is available. An exception to
this trend in Italy is Guida alla Statistica nelle Scienze Radiologiche by
Professor Guido Galli, a nuclear physician from the University of Rome
School of Medicine [GALLI, 2002].



The Structure of this Book

All these reasons explain the need for radiologists to possess knowledge in
applied biostatistics. In the following chapters we will propose such knowl-
edge, giving greater priority to logic than to computing.

In Chapter one we describe the classic tools for the quantification of diag-
nostic performance typically used in radiologic studies: sensitivity, specifici-
ty, predictive values, overall accuracy, and receiver operator characteristic
(ROC) curve. Moreover, we introduce here the likelihood ratios which quan-
tify the power of a diagnostic test, i.e. the ability of the test to modify the dis-
ease (or non-disease) probability, up to now rarely used in radiologic studies.
In this context, we show some aspects of probability theory and present
Bayes’ theorem.

In Chapter two we define the concept of variable and the different types
of variables with reference to their scales of measurement, as well as some
essential principles of descriptive statistics, normal distribution, and confi-
dence intervals. Indeed, understanding the scales of measurement is essen-
tial for choosing a statistical test applicable to the data to be analyzed. Being
familiar with normal distribution is a must for the use of all tools in biosta-
tistics. Confidence intervals can be thought of as a conceptual and practical
bridge between descriptive and inferential statistics: they define a range of
variability in the results in the event the same study were to be repeated for
a sample with the same size of patients having the same characteristics. An
important trend in recent times is the increasing emphasis radiologic jour-
nals have been giving to confidence intervals. The presentation of the 95%
confidence intervals should be considered mandatory for all indices of diag-
nostic performance.

Chapter three is dedicated to the theory of the scientific experiment, namely
to the null hypothesis and statistical significance. This topic has the greatest
philosophic and methodologic implications. We explain why the demonstration
of an experimental hypothesis (e.g. that two diagnostic options have a different
sensitivity for a given disease) must be obtained by working on an antithetical
hypothesis (i.e. that there is no difference in sensitivity between the two diag-
nostic options) which we name null hypothesis. The researcher’s aim is to
demonstrate that the null hypothesis is sufficiently improbable to accept the
indirect conclusion that the experimental hypothesis is probably true. However,
this conclusion is never demonstrated in a direct and definitive way.

While in Chapter four we provide some of the essentials of parametric sta-
tistics and the assumptions required for the application of parametric statisti-
cal tests, in Chapter five we describe the most important nonparametric statis-
tical tests and the assumptions needed for their application.

In Chapter six we define the concepts of association, correlation, and regres-
sion and propose the techniques for their quantification. Particular attention is
paid to the differentiation between association or correlation between two vari-
ables and the deduction of the cause-effect relationship, the latter never being
provable on the basis of a statistical calculation alone.

In Chapter seven we present the most important techniques for evaluating the
reproducibility of the result of a diagnostic test, either for continuous variables
(Bland-Altman analysis), or for nominal and ordinal variables (Cohen k). Here
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we introduce the concept of intraobserver and interobserver variability. These
kinds of studies are currently highly appreciated for their ability to define the
practical role of old and new imaging techniques.

In Chapter eight the reader will find the principal types of study in relation
to their design (observational or randomized experimental; prospective or ret-
rospective; longitudinal or transversal; etc.) as well as a general description of
the methods for calculating the sample size, i.e. the number of patients which
need to be enrolled in a prospective study in order to obtain an acceptable prob-
ability of demonstrating the experimental hypothesis. Here we also include a
short section on systematic reviews, namely those studies which gather togeth-
er the information contained in already published studies on a given topic, con-
duct a critical appraisal of the methods used in those studies, select the studies
according to predefined quality standards, and pool the results of the selected
studies to provide a new and more reliable overall result, using dedicated sta-
tistical methods (meta-analysis). Afterwards, we define the so-called levels of
evidence of radiologic studies.

In Chapter nine we present a list (without doubt incomplete) of the errors to
be avoided in radiologic studies. In other words, we list the potential sources
of bias that should be recognized as readers and avoided or, at least, limited and
explicitly acknowledged as authors.

Finally, in Chapter ten we provide a series of practical recommendations for
writing a radiologic study, with particular reference to the content of the four
sections of the body of the paper and its logical structure (Introduction,
Materials and Methods, Results, and Discussion) and the two essential accom-
panying items (Abstract and References).

The subject matter of this book clearly falls short of exhaustively treating
biostatistics in radiology, in part because radiology is transversally cross-linked
with all medical subspecialties. However, a number of statistical techniques
which can be used in radiologic research are not considered in this book. For
example, the reader will not find suggestions for statistical and graphical meth-
ods for describing data; moreover, logistic regression, multiple regression, the
concept of absolute and relative risk, survival curves, and non-inferiority stud-
ies are not treated. We have avoided these topics in order to produce a book
capable of introducing biostatistics to radiologists. While it is only a prelimi-
nary approach to biostatistics, the volume does have the advantage of present-
ing the topic from the particular viewpoint of radiology.

All the examples are progressively numbered in each chapter and drawn
from the radiologic literature or invented ad hoc to facilitate the reader’s under-
standing of the theoretical concepts. We recommend that the reader who has
grasped a theoretical definition should not skip the examples, as they could be
a useful aid for committing the theoretical concept to memory. Similarly, we
advise the reader who is having difficulty coming to grips with the theoretical
definition to go straight to the following example as this could immediately
shed light on the theoretical problem.

A final word of advice. Throughout the book the reader will find several
mathematical formulas. These have been included in their entirety for the read-
ers willing to understand the mechanism of computing. However, a thorough
understanding of the formulas is by no means required to grasp the general
sense of the concepts and their practical use.



It is far from our intention to educate radiologists so that they can replace
statisticians, as this appears neither possible nor useful. Instead it is our aim
educate radiologists so that they may interact with statisticians with proficien-
cy and critical judgment.
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Diagnostic Performance

Don't stop with an answer [...]

An answer is always the stretch of road that's behind you.

The performance of a diagnostic examination' can be basically considered as its
degree of accuracy, namely its ability to find the subjects affected with a given dis-
ease as positive and the subjects not affected with same disease as negative. The
indices which in different ways measure this performance are defined measures of
diagnostic performance and the studies aimed at measuring the diagnostic per-
formance of an examination or, more often, at comparing the diagnostic perform-
ance of two or more examinations, are defined studies of diagnostic performance.

Firstly we will present the five most commonly used indices of diagnostic
performance in radiologic papers: sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and overall accuracy.
Thereafter, we will consider receiver operator characteristic (ROC) curves,
which are also widely used in radiologic papers, and likelihood ratios, which
are special indices which quantify the ability of a diagnostic examination to
change the disease probability (i.e. the power of the diagnostic examination)
and which to date have been little used in radiologic papers. In this setting we
will show some features of probability theory and Bayes’ theorem. For the sake
of clarity, the likelihood ratio will be explained before ROC analysis.

' For the sake of clarity, we will avoid naming a radiologic examination as a fest as much as pos-
sible. Although this term is entirely correct, we prefer to use the term exam or examination in order
to avoid confusion with statistical tests. Exceptions will be pretest probability and post-test prob-
ability for a given disease which we will approach with Bayes’ theorem to represent the ability of
each diagnostic test to increase or decrease the probability of a given disease in the subjects who
underwent the examination with a positive or a negative result, respectively. Other rare exceptions
will be evident from the context.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

Only a question can point the way forward.

JOSTEIN GAARDER

Diagnostic performance

Measures of diagnostic
performance
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Cases, lesions, findings,
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1.1. The Results of an Examination Compared to a Reference Standard

If we want to evaluate the performance of a diagnostic examination, we need
to compare its results to a reference standard, a term which today is prefer-
able to gold standard, since the latter is considered exceedingly optimistic
(as in other fields, in Biostatistics all that glistens is not golden). In oncolog-
ic diagnostics, the typical example is to verify each result of a diagnostic
examination for a sample of n patients with the pathology report, both of
which refer to a defined lesion. Suppose that both the radiologist and the
pathologist are required to give a dichotomous judgment (yes/no) about the
malignancy of a lesion. In this case, the pathology examination is the refer-
ence standard and states whether each result of the diagnostic examination is
true or false. It will be frue positive when the radiologist has correctly
defined a pathologically proven malignant lesion as positive, true negative
when the radiologist has correctly defined a non-malignant finding as nega-
tive, false positive when the radiologist has incorrectly defined a non-malig-
nant finding as positive, and false negative when the radiologist has incor-
rectly defined a malignant lesion as negative. The n cases which make up the
sample of this comparison are distributed among these four possibilities
according to the rule that each case is assigned to only one of the four cate-
gories. Using these data, we can generate a two-by-two contingency table
where the number of true positives, false positives, false negatives, and true
negatives are reported (Table 1.1).

Note that this table can be completed with the total of the lines and with the
total of the columns, namely with a series of marginal totals (all the positive
cases at the diagnostic examination; all the negative cases at the diagnostic
examination; all the positive cases at the reference standard; and all the nega-
tive cases at the reference standard), and with the grand total of the n patients
or subjects under investigation, as shown in Table 1.2.

The careful reader has probably realized that we have intermingled different
terms: cases, lesions, findings, patients, and subjects. Pay attention to the
meaning of these words. In a scientific paper, these terms cannot be inter-
changed and one of them (cases) should be carefully avoided. We can proper-
ly consider the study subjects as patients when they present with symptoms or
signs for a disease. On the other hand, we name the asymptomatic persons
enrolled in population screening program only as subjects. However, it is cor-

Table 1.1. Two-by-two contingency table for the comparison between the results of a radiologic
examination and those of a reference standard

Reference standard

Positive Negative

. " Positive True positives (TP) False positives (FP)
Radiologic examination

Negative False negatives (FN) True negatives (TN)
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Table 1.2. Two-by-two contingency table for the comparison between the results of a radiologic examina-
tion and those of a reference standard in a series of subjects, completed with marginal totals and grand totals

Reference standard

Affected Nonaffected Total
Positive True positives False positives All positives
Radiologic (TP) (FP) (TP + FP)
examination Negative False negatives True negatives All negatives
(FN) (TN) (FN +TN)
Total All affected All nonaffected Grand total
(TP + FN) (FP +TN) (TP +FP +FN + TN)

rect to name a group of patients as subjects. Words mean things: the frequency
of disease is certainly greater in patients than in symptomatic subjects, with rel-
evant practical consequences which we will see. However, the distinction
between patients and subjects is relatively trivial.

More importantly, we should fully understand what changes when the szatis-
tical unit is no longer the patient (or the subject) but each lesion (or finding).
Of course, if each patient has no lesions or only one lesion, we have no conse-
quences in statistical calculations. But a patient can have more than one lesion,
as typically we find in the study of liver metastases. The same reasoning can
be applied to each of the two kidneys, breasts, lungs, or to a single lobe or seg-
ment of the brain, liver, lung, prostate, coronary tree, etc. We should always be
extremely clear regarding the application of the indices of diagnostic perform-
ance. On what basis are they calculated? Patient by patient? Organ by organ?
Segment by segment? Lesion by lesion? Note that the term case is ambiguous
because it can be used for both patients and lesions. It should therefore be
strictly avoided in a scientific context. Refer your description to the real statis-
tical units under investigation.

We can at this point note the value of a general principle. The initial studies on
the diagnostic performance of a new imaging modality or technique benefit great-
ly from the reporting of indices on a lesion-by-lesion basis: we can have a small
number of patients and obtain a measure of what happens for each of the lesions.
Afterwards, more conclusive information on the value of the clinical application
of a new modality or technique can be obtained with a patient-by-patient analy-
sis. In the latter situation, we sometimes have to solve relevant conceptual prob-
lems (implying the clinical relevance of radiologic findings) for the definition of
true positive, false positive, true negative, and false negative patient when multi-
ple lesions are present and lobes, segments or organs are affected by the disease.

1.2. Measures of Diagnostic Performance

Using the figures of the true positives, false positives, true negatives, and false
negatives, we can calculate a series of indices which measure the diagnostic per-
formance. Table 1.3 reports definitions and formulas of these indices, as well as
their dependence or independence on disease prevalence.

The statistical unit
to be measured

Avoid the term case in a
scientific context

Initial studies versus large
clinical studies
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Sensitivity: the ability to
identify the presence of a disease

Table 1.3. Indices measuring diagnostic performance

Index Definition Formula Dependence on
disease prevalence

1. Sensitivity Ability to identify the TPATP+FN) No

(or TP rate) presence of disease

2. Specificity Ability to identify the TN/(TN+FP) No

(or TN rate) absence of disease

3. Positive predictive Reliability of the TP/(TP+FP) Yes

value (PPV) positive result

4. Negative predictive  Reliability of the TN/(TN+FN) Yes

value (NPV) negative result

5. Overall accuracy Global reliability (TP+TN)/(TP+TN+FP+FN) Yes

6. FN rate Proportion between FN/(FN+TP) = (1 - Sensitivity) No
FN and all affected
7. FP rate Proportion between FP/(FP+TN) = (1 - Specificity) No
FP and all nonaffected
8. Positive Increase in disease Sensitivity/(1 - Specificity) No
likelihood ratio probability when the result
is positive
9. Negative Decrease in disease probability (1 - Sensitivity)/Specificity No

likelihood ratio when the result is negative

Note that disease prevalence is equal to (TP+FN) / (TP+TN+FP+FN), being the ratio between the number of subjects affect-
ed by the disease and the grand total of sample of subjects under investigation.

All of these are simple proportions or ratios which differently combine the four
quantities of the two-by-two contingency table. The first seven indices range
between 0 and 1 and frequently are reported as percentages. The first five indices
indicate an increasingly high diagnostic performance of the examination under
investigation the closer they are to 1. The sixth and seventh indices indicate an
increasingly high diagnostic performance of the examination under investigation
the closer they are to 0. Moreover, they are frequently defined as 1 — sensitivity
and / — specificity, respectively. The meaning of the last two indices, i.e. the like-
lihood ratios (LRs), is a bit more complex. They theoretically range between O
and infinity but practically indicate an increasingly high diagnostic performance
the further they move away from 1, with the positive LR moving towards values
higher than 1 and the negative LR towards values lower than 1.

1.3. Sensitivity, Specificity, FN Rate and FP Rate

The meaning of sensitivity is intuitive: it is the ability of an examination to
identify the presence of a given disease. It can also be considered as the pro-
portion between the number of positive subjects with the disease and the total
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number of subjects with the disease, namely the proportion of subjects with
the disease who were correctly detected by the radiologist. Sensitivity is given
by the ratio TP/(TP + FN), i.e. the proportion of positives among the subjects
with the disease.

If the number of true positives is unchanged, sensitivity is inversely related
to the number of false negatives. In fact, the false negative rate, namely the
proportion of subjects falsely considered nonaffected by the disease, summed
with the sensitivity gives a result equal to 1. In other words, the false negative
rate is the complement to 1 of sensitivity.

Example 1.1. Sensitivity of mammography and dynamic contrast
enhanced magnetic resonance (MR) imaging for the detection of malig-
nant lesions in patients candidate for mastectomy. The authors investi-
gate 99 breasts in 90 candidates for unilateral (n = 81) or bilateral (n = 9)
mastectomy. The reference standard, i.e. the pathology examination of the
whole excised breast, establishes the presence of 188 malignant lesions.
Mammography has 124 true positives and 64 false negatives, MR imaging
152 true positives and 36 false negatives. As a consequence, sensitivity is
124/(124+64) = 0.660 for mammography and 152/(152+36) = 0.809 for
MR imaging. The lesion-by-lesion sensitivity of mammography is 66.0%,
that of MR imaging is 80.9%. The FN rate is 0.340 or 34.0% and 0.191 or
19.1%, respectively. Note that the statistical unit is the lesion and not the
patient or the breast [SARDANELLI ET AL, 2004].

The meaning of specificity is evident less immediately. It refers to the abili-
ty of the examination to identify the absence of a given disease, given by the
ratio TN/(TN + FP), i.e. the proportion of the negatives among the subjects not
affected with the disease. If the number of true negatives is unchanged, it is
inversely related to the number of false positives. In fact, the false positive rate,
i.e. the proportion of subjects falsely considered to be affected by the disease,
summed with specificity gives 1. In other words, the false positive rate is the
complement to 1 of specificity.

The less immediate understanding of the term specificity is due to its com-
mon improper use, at least in spoken language, to indicate the ability of an
examination to make a certain diagnosis. This improper use often implies
several logical mistakes. For instance, if we state that computed tomography
(CT) is highly “specific” for the diagnosis of intracranial hemorrhage, we
would mean that this imaging modality can reliably identify a hyperattenu-
ation on nonenhanced scans as a hemorrhage. However, this statement has
two different meanings: if really there is an intracranial hemorrhage, it is
highly probable that CT can detect it; a CT diagnosis of intracranial hemor-
rhage is rarely a false positive.

Using correct scientific terminology, these two sentences are the same as
saying that CT has both high sensitivity and high positive predictive value for
intracranial hemorrhage. As both specificity and positive predictive value are
inversely related to false positives, if we have very few false positives, it will
be true that the examination will also be highly specific (under the condition of
having a suitable number of true negatives). At any rate, we cannot say that an
examination is highly specific thinking that our audience also understands it to

False negative rate

Specificity: the ability
to identify the absence
of a disease

False positive rate

"Specificity” in common
language
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Sensitivity and specificity:
answers to pretest questions

be highly sensitive. This is a conceptual error. If both sensitivity and specifici-
ty are high, the examination is highly accurate (not only highly specific), as CT
actually is for intracranial hemorrhage.

Care must be taken, since an examination could have few false positives and
many false negatives, thus at the same time being highly specific but not very
sensitive. As a consequence, it will be of little use as a diagnostic tool in symp-
tomatic patients, despite being highly specific.

Moreover, if we say CT is highly specific for the differentiation between
acute intracranial hemorrhage and acute brain ischemia, we fall into a deeper
complication. This sentence should imply a high sensitivity for both condi-
tions, probably relatively higher for the former than for the latter due to the
false negatives associated with tiny ischemias. Similarly, the specificity of CT
will be different due to the relatively large number of hypoattenuations caused
by previous infarcts in elderly patients or due to artifacts, etc, when compared
with the hyperattenuations which can be falsely attributed to hemorrhage. The
key point is that high CT specificity for acute intracranial hemorrhage does not
imply high specificity for acute brain ischemia. The same reasoning can be
applied to sensitivity. For the sake of clarity, we should always distinguish
between CT sensitivity and CT specificity for each of the two conditions.

Example 1.2. Specificity. Low-dose CT screening for lung cancer. Of a
total of 1611 asymptomatic subjects who undergo the first screening event,
186 are found to be positive and are further studied with high-resolution
scanning; 21 of these undergo biopsy. Thirteen subjects are found to be
affected by lung cancer. There are no interval cancers (cancers detected
between the first and the second screening event). As a result there are 1425
true negatives (the total of 1611 minus 186 positives) and 173 false positives
(186 positives minus 13 true positives). Specificity is 1425/(1425+173) =
1425/1598 = 0.892 = 89.2% [SOBUE ET AL, 2002]. In this series only one pos-
sible lesion is considered for each subject. Lesion and subject are coincident
as a statistical unit.

Sensitivity and specificity answer questions which can be raised before
requesting or performing an examination. They therefore provide answers to
aprioristic’ questions:

— If the patient is affected by the disease, what is the probability that the exam-
ination produces a positive result (sensitivity)?

— If the patient is not affected by the disease, what is the probability that the
examination produces a negative result (specificity)?

* The differentiation between sensitivity and specificity as answers to pre-examination questions on
the one hand and predictive values as answers to post-examination questions on the other hand
underlines the different logic of these indices of diagnostic performance. Sensitivity and specifici-
ty should be used to refer to the intrinsic diagnostic performance of a given examination while pre-
dictive values enable us to evaluate the reliability of the results of the same examination once it is
permormed. It should be borne in mind that these are not the same thing, as we will explain by
demonstrating the influence of disease prevalence on predictive values. Notice that another pre-
/post-examination differentiation is related to the concepts of pretest probability and post-test prob-
ability which we will introduce for the application of Bayes’ theorem (see Section 1.5).
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Sensitivity and specificity (as well as the false negative rate and the false pos-
itive rate) depend on the technical characteristics of the examination, on the
capability of the radiologist and her/his team (radiographers, nurses, etc.) to per-
form the examination, and on the radiologist’s skill in interpreting the examina-
tion. Sensitivity and specificity are not influenced by the disease prevalence in
the study population (they are instead influenced by the degree, the stage of the
disease, as we will demonstrate in the next section). The term prevalence indi-
cates the proportion between the number of subjects affected by a disease and
the total number of subjects of an entire population (or of a sample, frequently
named study population) for a defined time interval, whereas the term incidence
indicates the number of subjects newly diagnosed as affected by the disease dur-
ing a defined time interval (see the Note to Table 1.3).

As a matter of fact, the optimal situation in clinical practice is when a single
diagnostic examination is available with levels of sensitivity or specificity high
enough to produce conclusive decision-making. These two extreme conditions are
defined as follows: an examination is SNOUT when its negative result excludes the
possibility of the presence of the disease (when a test has a very high Sensitivity, a
Negative result rules OUT the diagnosis); it is instead SPIN when its positive result
definitely confirms the presence of the disease (when a test has a very high
SPecificity, a positive result rules IN the diagnosis). In most situations, a certain
degree of certainty can be reached with a single diagnostic examination but not a
definitive conclusion. More than one examination is generally needed. They are
ordered according to a flow-chart which takes into account sex, age, familial and
personal history, clinical history, previous examinations, etc.

In other words, sensitivity and specificity alone cannot translate the result of
a radiologic examination into clinical practice.

1.4. Predictive Values, Diagnostic Accuracy and Disease Prevalence

A first possibility for the translation of the result of an examination in clinical
practice is provided by predictive values. These indicate the reliability of the
positive or negative result and answer questions posed after having performed
the examination:

— If the result of the examination is positive, what is the probability that the
patient really is affected by the disease (positive predictive value)?

— If the result of the examination is negative, what is the probability that the
patient is really not affected by the disease (negative predictive value)?

The predictive values depend not only on technical parameters and on the abil-
ity to perform the examination and interpret the results. In fact, if sensitivity and
specificity are kept unchanged, predictive values change in relation with disease
prevalence: the positive predictive value is directly related to disease prevalence
whereas the negative predictive value is inversely related to disease prevalence.

Predictive values depend on disease prevalence. This is not intuitive and
implies important practical consequences. Let us reflect upon this statement for
a moment: when the disease prevalence is very low, a very high sensitivity is
associated with a very low positive predictive value.

Sensitivity and specificity
do not depend on
disease prevalence

Prevalence

Incidence

SNOUT and SPIN

Predictive values:
answers to post-test questions

Predictive values depend
on disease prevalence
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The reliability of our
reports also depends
on patient selection by
the referring physicians

Overall accuracy:

the ability to correctly
identify the presence and the
absence of a disease

A useful way of envisaging this situation is provided by the following example.
If all the sample subjects have the disease, the positive predictive value is always
1.0 (i.e. 100%) even with very low sensitivity (but not 0) and the negative predic-
tive value is always 0.0 (i.e. 0%) even with very high specificity (even equal to
1.0, i.e. 100%). Similarly, if all the sample subjects do not have the disease, the
negative predictive value is always 1.0 (i.e. 100%) even with very low sensitivity
(but not 0) and the positive predictive value is always 0.0 (i.e. 0%) even with very
high specificity (even equal to 1.0, i.e. 100%). It therefore follows that an exami-
nation with the highest possible sensitivity cannot correctly diagnose a non-exis-
tent disease, and an examination with the highest possible specificity cannot cor-
rectly diagnose the absence of disease in subjects who have the disease.

We can obtain increasingly higher levels of sensitivity and specificity, but the
reliability of our reports (i.e. our predictive values) will depend on disease
prevalence, namely on the epidemiologic context and, in clinical practice, on
patient selection by the referring physician with a diagnostic query.

Now, we should at this point introduce a new variable to the system. A disease
can affect a patient with different levels of severity (or stage) and the probability
of a positive result of an examination increases with the level of severity. The level
of severity should be lower in subjects in whom the disease is diagnosed with peri-
odic screening than that found in symptomatic subjects in whom the disease is
diagnosed in clinical practice. In this way we observe a direct influence on sensi-
tivity and specificity: they are higher in symptomatic subjects than in asymptomatic
subjects in whom the disease is more likely in an early stage. This difference is
lower at the first round of an oncologic screening program (when we detect the
prevalent tumors, with numerous cases which could have been diagnosed even in
an earlier stage) and is higher in the later rounds (when we detect the incident
tumors, not present at the first round). Basically, subject selection, which deter-
mines the level of severity of the disease, also influences sensitivity and specificity.
We will return to this feature after introducing the concept of diagnostic threshold.

Overall accuracy is the ability of an examination to correctly diagnose both
subjects affected with the disease and subjects not affected with the disease as a
fraction of the total number of examined subjects. It answers the question: what is
the probability of a correct result? It is somewhat like a global index of diagnos-
tic performance, but its linear distribution ranges between the sensitivity value and
the specificity value. It approaches the higher of the two with increasing disease
prevalence and approaches the lower of the two with decreasing disease preva-
lence. In practice, it is a kind of “mean” between sensitivity and specificity which
is weighted for disease prevalence. Dependence on disease prevalence is the fea-
ture shared with the predictive values. The graphs in Figure 1.1. show the depend-
ence of predictive values and overall accuracy on disease prevalence.

Example 1.3. Predictive values of clinical and screening mammography.
Imagine 10,000 women with a palpable lump are studied (clinical mammog-
raphy), with 95% sensitivity and 80% specificity. With a disease prevalence
of 50%, we would have 4,750 true positives, 4,000 true negatives, 1,000
false positives, and 250 false negatives. The PPV would be
4,750/(4,750+1,000) = 0.826 = 82.6%; the NPV 4,000/(4,000+250) = 0.941
= 94.1%. For nearly every 5 women affected with cancer there would be a
healthy woman who undergoes diagnostic work-up with possible needle



Chapter 1 Diagnostic Performance

biopsy (4,750/1000 = 4.75). This woman with a benign palpable lump is
unlikely to consider invasive examinations as useless or dangerous.
However, if we were to study 10,000 asymptomatic women (screening
mammography) with the same levels of sensitivity and specificity (95% and
80%, respectively) with a disease prevalence of 3%, we would have 285 true
positives, 7,760 true negatives, 1,940 false positives, and 15 false negatives.
The NPV would go up to 7,760/(7,760+15) = 0.998 = 99.8%, PPV would go
down to 285/(285+1,940) = 0.128 = 12.8%. This means that nearly 7 healthy
women would be sent for diagnostic work-up with a possible needle biopsy
for every woman effectively diagnosed with cancer (1,940/285 = 6.8). The
recall rate would be very high, equivalent to 22.25% (2,225/10,000). The
overall effect would be a false alarm (if at every round we recall 20-25% of
the women, after 4-5 rounds on average all the women would be recalled).

1.0
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Disease prevalence Disease prevalence
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Figure 1.1. Distribution of positive predictive value (PPV), negative predictive value (NPV) and overall accuracy as a func-
tion of disease prevalence. The figure shows a series of paired graphs where the values of sensitivity and specificity are con-
stant and represented by a blue and a green line, respectively. For the sake of clarity, the absolute difference between sen-
sitivity and specificity is also constant, equal to 0.2. We present the following pairs of sensitivity and specificity values,
respectively: 0.3, 0.1 (A) and vice versa 0.1, 0.3 (panel B); and so on, 0.4, 0.2 (C) and 0.2, 0.4 (D); 0.5, 0.3 (E) and 0.3, 0.5 (F);
0.6, 0.4 (G) and 0.4, 0.6 (H); 0.7, 0.5 (1) and 0.5, 0.7 (L); 0.8, 0.6 (M) and 0.6, 0.8 (N); 0.9, 0.7 () and 0.7, 0.9 (P).

(continued)
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(continued)
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Note that: (i) the behaviour of the overall accuracy curve is linear between the sensitivity and specificity values, ascending
when sensitivity is higher than specificity (graphs on the left), descending when vice versa (graphs on the right); (ii) regard-
less of how high or low sensitivity and specificity are, PPV (yellow line) and NPV (pink line) always range between 0 and 1,
with linear behaviour of the curve only in the particular case where sensitivity and specificity are equidistant from the hor-
izontal middle line at 0.5 (G, H); (iii) PPV, NPV and overall accuracy intersect at 0.5 of disease prevalence when sensitivity
and specificity are equidistant from the 0.5-horizontal midline (G, H). In this case also PPV, NPV and overall accuracy are

(continued)
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(continued)

00 04 02 03 04 05 06 07 O4F 08 10 00 ©1 02 03 04 05 06 OF 08 09 10
M Disease prevalence N Disease prevalence

a0 01 02 03 04 05 06 07 08 08 10
Disease prevalence

00 01 02 03 04 05 068 OF 08 08 10

Disease prevalence

equal to 0.5 and the intersection is at the center of the graph (when sensitivity is equal to specificity, the intersection
between PPV, NPV, and accuracy is at a disease prevalence of 0.5 but at a y-coordinate corresponding to the value of sen-
sitivity and specificity, cases not shown); iv) for values of sensitivity and specificity near to those in clinical practice (i.e. over
0.5), PPV, NPV, and accuracy intersect with a prevalence higher than 0.5 (i.e. on the right) when sensitivity is higher than
specificity, while it is with a prevalence lower than 0.5 (i.e. on the left) with sensitivity lower than specificity. With refer-
ence to panels G and H, we can also note that: i) likelihood ratios (see Section 1.5), which depend on sensitivity and speci-
ficity, are constant and equal to 1.0, i.e. the examination has no power but the disease prevalence generates a range
between 0.0 and 1.0 for PPV and NPV, with linear curve behaviour; ii) if we were to progressively increase the difference
between sensitivity and specificity, the slope of the red line (overall) would tend to overlay that of the two predictive val-
ues. The extreme cases with sensitivity and/or specificity equal to 1.0 or 0.0 are not shown here.

Work-flow and economic costs would be huge. Above all, the women would
lose confidence with the screening program. The graph representing diag-
nostic performance of an examination with 95% sensitivity and 80% speci-
ficity as a function of disease prevalence is given in Figure 1.2.

Note that we hypothized a disease prevalence equal to 50% for clinical
mammography and to 3% for screening mammography to simplify calcu-
lations in this example. In the real world, the disease prevalence in screen-
ing mammography is about ten times lower (after the first round, only 0.3-
0.5% of incident cancers). Thus, the problems we would have in screening

29



30

Biostatistics for Radiologists

Figure 1.2. Distribution of posi-
tive predictive value (PPV), nega-
tive predictive value (NPV), and
overall accuracy as a function of
disease prevalence (constant sen-
sitivity and specificity, equal to
0.95 and 0.80, respectively). Note
that with increasing disease preva-
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mammography with a relatively low specificity (which could also be
accepted in clinical mammography) are also more relevant than those
shown by the figures of this example.

Example 1.4. Cardiac CT for diagnosing coronary stenoses. Let us sup-
pose that 64-row multislice CT scanners have a 95% sensitivity and a 95%
specificity for clinically significant (= 50% reduction in lumen diameter)
coronary stenoses. If we were to perform the examination (with intravenous
administration of iodinated contrast medium) on 100,000 subjects with a
high pretest probability of significant stenoses (80% disease prevalence),
we would negate a therapeutic coronary angiography (with stenting of the
stenosis) in all the false negative subjects, equal to 5% (4,000 patients). If
we were to study 100,000 subjects with a low pretest disease probability
(e.g. a screening program for asymptomatic subjects over 65), with the
same level of sensitivity and specificity, we would generate 4,750 useless
coronary angiographies. This clearly shows that to avoid useless coronary
angiographies, even in the presence of high levels of sensitivity and speci-
ficity, coronary CT can only be effectively employed with accurate patient
selection based on the pretest disease probability defined by means of clin-
ical history and electrocardiogram, stress test, etc. Patients with an interme-
diate risk (i.e. pretest probability) of significant coronary stenoses (30-
70%) are the best candidates for coronary CT. The reader can calculate the
predictive values from the data given here. Figure 1.3 shows the graph of
diagnostic performance of an examination with 95% sensitivity and 95%
specificity as a function of disease prevalence.

A general view of the influence of disease prevalence on predictive values can

be obtained looking at the post-test disease probability (i.e. the disease proba-



Figure 1.3. Distribution of posi-
tive predictive value (PPV), nega-
tive predictive value (NPV), and
overall accuracy as a function of
disease prevalence (constant sen-
sitivity and specificity, both of
them being equal to 0.95). Note
that: (i) the red line (overall accu-
racy) overlies the blue line of sen-
sitivity and the green line of
specificity; (ii) PPV (pink line) falls
drastically when the prevalence
falls below 30%; NPV (yellow
line) falls drastically when the
prevalence goes up above 70%.
Likelihood ratios (LRs), which
depend on sensitivity and speci-
ficity, are also constant, being
equal to 19.00 (positive LR) and
0.053 (negative LR).

Figure 1.4. Dependence of positive
predictive value (PPV) and negative
predictive value (NPV) on disease
prevalence. The x-axis represents
the pretest disease probability (dis-
ease prevalence before the exami-
nation), the y-axis indicates the
post-test disease probability (see
text). The curves of PPV (pink lines)
and of 1 minus NPV (yellow lines)
are given for pairs of values of sen-
sitivity and specificity, both of them
being equal to 0.99, 0.95, 0.90, 0.85,
0.75, 0.65, and 0.50 (from the outer
to the inner of the graph area). As
the pretest disease prevalence
increases, both PPV and 1 minus
NPV increase (i.e. NPV decreases).
The diagonal (mixed pink and yel-
low) line represents the linear
course of the two variables when
sensitivity and specificity are both
equal to a 0.50.
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bility after the examination has been performed) as a function of the pretest dis-
ease probability (i.e. the disease prevalence in the studied population). Of
course, the post-test probability after a positive result is equal to the PPV while
the post-test probability after a negative result is equal to 1 minus NPV. A series
of curves of PPV and 1 minus NPV are presented in Figure 1.4, each of them
obtained for a pair of sensitivity and specificity values.
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Always relate the measures
of diagnostic performance
to a defined disease

Two different scenarios:
clinical radiology
and screening radiology

Bayes' theorem

A first general comment on what we have presented so far is in order.
While the predictive values are clearly related to a defined disease (“predic-
tive of ... malignant tumor™), sensitivity and specificity may appear to be
properties intrinsic to the examination and independent of the disecase we
would like to confirm or to exclude. This is not the case. Sensitivity and
specificity of a radiologic examination do not depend on disease prevalence.
However, they must be related to a defined disease. Unfortunately, this rela-
tion is frequently omitted or considered implicit. This creates misunderstand-
ing and false expectations for patients and physicians who are non-radiolo-
gists. For example, see what we said above in relation to the CT diagnosis of
cerebral ischemia and hemorrhage.

A second comment is also required. Sensitivity and specificity have a differ-
ent importance according to disease prevalence and severity in the study popu-
lation. If we study symptomatic subjects (clinical radiology), we should try to
use examinations with a high sensitivity, even in the presence of a relatively low
specificity (this drawback will be compensated for in the following steps of the
diagnostic algorithm). In contrast, if we study asymptomatic subjects (screening
radiology), we should try to use examinations with a high specificity, also
accepting a trade-off for sensitivity. In fact, while in clinical radiology the major
priority is to diagnose a symptomatic disease (possibly in an advanced stage), in
screening radiology the diagnosis of an asymptomatic disease must be balanced
by the need of a limited amount of useless diagnostic work-up in the screened
population. The consequence is a different way of thinking by the radiologist in
the two settings. In clinical radiology, we emphasize even minimal signs as sus-
picious of disease (especially if related to symptoms), postponing the ultimate
diagnosis to the later steps. In screening radiology, we can ignore the minimal
signs in order to avoid too high a recall rate.

1.5. Bayes' Theorem, Likelihood Ratios
and Graphs of Conditional Probability

The pretest disease probability is the probability that a patient has the disease,
known before she/he undergoes the examination and the positive or negative
result is obtained. In the absence of additional information (personal, family and
clinical history, physical examination, and other examinations already performed),
the pretest probability is directly equal to disease prevalence, i.e. the proportion of
the population affected with the disease compared to the entire population. In
screening programs, the pretest disease probability is always equal to the disease
prevalence in the general population. In clinical radiology, the pretest disease
probability is equal to disease prevalence in the general population modified by
the selection applied by the referring physician on the basis of medical history and
clinical evaluation. In this way we take into account demographic risk factors
(age, sex, ethnic group), family history, exposure to other risk factors (e.g. alcohol
or smoking), previous and recent medical history, and physical examination.
Bayes’ theorem, also called theorem of subjective probability or theorem of
conditioned probability, enables us to calculate — step-by-step in the decision-
al algorithm — the pretest and post-test probability for a defined disease. It
states that the probability that the result of an examination is associated with
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the presence or the absence of the disease depends on the pretest probability
and on the “power” of the examination. Let us now try to understand what the
power of a diagnostic examination is.

The theorem was proposed by the Presbyterian pastor Thomas Bayes (1702-
1761) and published posthumously in 1763. Using probabilistic notation, the
probability that an event y occurs is defined as P(y); moreover, the symbol *|”
means “given that”, “if we suppose that”, namely that another event condition-
ing the P(y) has already occurred. Hence, to indicate the probability of the y
event, given that the x event has occurred, we write P(y | x). Bayes’ theorem
states that:

Bl P(x | y)P(y)
P(x)

where: P(y) is the a priori probability of y, P(x | y) is the likelihood function;
P(x) is the marginal probability, that is to say the probability of observing the
X event without any previous information and P(y | x) is the a posteriori
probability of y, given x. P(x | y) / P(x) is the coefficient that modifies P(y)
to give P(y | x). It can be shown that P(y | x) is always less than or equal to
1. If the x event is the positive result of a diagnostic examination and we
know the pretest disease probability, the theorem allows us to calculate the
disease probability (the y event) after having obtained a positive result, i.e.
the post-test probability.

The concept of probability as a degree of our believing that an event hap-
pens (subjective probability) is the foundation of Bayesian statistics and is in
opposition with the classic viewpoint of frequentist statistics, based on fre-
quencies and proportions (objective probability). The Bayesian school has
always been a minority among statisticians when compared with the frequen-
tist school. Frequentist methods are today mainly used in medical research, in
part due to the possibility of presenting the reliability of an investigated
hypothesis as a number (the well-known p value). However, especially with
regard to the evaluation of diagnostic performance, Bayes’ theorem has a
basic conceptual relevance, even though sensitivity, specificity, predictive val-
ues, etc are managed in the medical literature with classic frequentist statisti-
cal methods. The debate between the two schools is still open and animated,
in part thanks to the huge calculation power offered to Bayes’ supporters by
present-day computers.

An extended explanation of Bayes’ theorem (with the complication given by
the possibility of multiple alternative events) is beyond the aims of this book.
Here we shall introduce the concept of odds. This is probability in a different
sense with regard to the usual meaning of frequency as the number of events
of interest divided by the whole sample of events. In which sense? Here it is
useful to recall gambling odds, the probability of winning in a game of chance.
In fact the theory of probability was also born in the context of calculations for
crap and card games in the 15th and 16th centuries.

Let us consider a practical example. A sample of 10 subjects includes 3
patients affected by a disease. We could say that the frequency of the disease
in the whole sample is 3/10, i.e. 0.30, equivalent to 30%. The odds of disease
is the ratio between the subjects with the disease and the subjects without the

Bayes' theorem

Bayesian statistics
and frequentist statistics

Odds: a different way
of thinking probability
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The logical meaning
of likelihood ratios

Likelihood ratios as the
“power” of an examination

disease equal to 3/7, i.e. 0.43, or 43%. The odds tell us how many patients with
the disease we found for each subject without the disease.

There is a simple mathematic relationship between these two ways of repre-
senting the probability (or the risk) of a disease:

if odds = a/b
then frequency in the whole sample = a/(a+b)

Conversely,

if frequency in the whole sample = x
then odds = x/(1-x)

According to Bayes’ theorem:
odds of post-test disease = positive LR X odds of pretest disease

This is the equation of a straight line with an angular coefficient equal to the
positive LR.

As a consequence, if we have the odds of pretest disease and the positive LR
of an examination — which is equal to sensitivity/(1-specificity) — we can cal-
culate the odds of post-test disease. This can be ultimately changed into fre-
quency in the whole sample using the first of the three previous mathematic
relations. In practice, when the positive LR of a test is known, the clinician can
change the pretest probability into post-test probability, i.e. into the real diag-
nostic performance supplied by the test. Similar reasoning can be proposed for
the probability of the absence of disease and the negative LR, which is equal
to (1-sensitivity)/specificity.

The logical reasoning behind LRs is now clear. They answer the questions:

— To what extent does the positive result of the test increase disease probabili-
ty (positive LR)?

— To what extent does the negative result of the test reduce disease probability
(negative LR)?

These are two coefficients: when they are equal to 1, they state that the exam-
ination does not supply any new information. In fact, post-test probabilities
remain equal to the pretest probabilities. Conversely, values of positive LR pro-
gressively higher than 1 and values of negative LR progressively lower than 1
indicate increasing levels of diagnostic performance of an examination. In par-
ticular, a positive LR higher than 10 implies the examination is ultimately diag-
nostic for the presence of the disease while a negative LR lower than 0.1
implies that the examination is ultimately diagnostic for the absence of the dis-
ease. Intermediate values of LR imply an intermediate degree of diagnostic cer-
tainty. Basically, LRs quantify the power of an examination.

The reader might suggest that a similar function may also be proposed for
sensitivity and specificity. This is partly true, but it is not precisely the same
thing. The mathematic mechanism creates a substantial change. We really
obtain LRs by a particular mathematic combination of sensitivity and specifici-
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ty. However, LRs allow us to change pretest disease probability into post-test
disease probability, an important task which uncombined sensitivity and speci-
ficity are unable to do.

A simple way to obtain post-test disease probability from pre-test disease
probability using LRs is given by the use of a nomogram, a fantastic old
mathematic tool used before the advent of computers. It exploits the graph-
ic solution of an equation with multiple variables. Fagan’s Bayesian nomo-
gram [FAGAN, 1975] changes pretest disease probability into post-test dis-
ease probability using a geometric projection, without any need for calcula-
tion (Figure 1.5). The slope of the straight line on the nomogram allows us
to graphically see the power of the examination.

Another way of presenting the relation between pretest and post-test disease
probability is the graphs of conditional probability (GPCs) [MALONE AND
STAUNTON, 2007]. These graphs supply a visual representation of the change in
disease probability obtained using a diagnostic examination in a given clinical
setting. The diagnostic performance can be appreciated on the graphs in terms
of modification of disease probability for the positive and negative result of the
examination at all the points of the range of pretest disease probability and the
contribution of different techniques can be evaluated to design efficient diag-
nostic algorithms. An example is shown for a diagnostic algorithm including
D-dimer test, CT pulmonary angiography and indirect CT venography in diag-
nosing pulmonary embolism [Dobpp, 2007] (Figure 1.6).
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axis on the right side shows the 005 1 500 + 0es
post-test disease probability (post- | %% I [ %%
TP). The oblique green line shows
how a positive LR equal to +5 3; Eg
changes a pre-test disease proba- 04 08
bility of 0.5 (i.e. an absolute gg gj
uncertainty) into a post-test dis- 07 03
ease probability of about 0.83 (i.e. 08 02
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an examination with an LR equal b4 Lo
to 1 makes no change to disease 098 - 002
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probability of 0.5 into a post-test i T
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of the straight lines designed on
the Bayesian nomogram.

Fagan's Bayesian nomogram

Graphs of conditional
probability
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Figure 1.6. Graphs of conditional
probability. Diagnostic performance
of D-dimer (A), CT pulmonary
angiography (B), and indirect CT
venography (C) for pulmonary
embolism and deep venous throm-
bosis. Positive result of the examina-
tion = solid curve line; negative
result of the examination = dashed
curve line. For a pretest probability
(on the x-axis), the post-test proba-
bility of a positive or negative test is
derived by drawing a perpendicular 0.0 4221271
line up to the solid line or dashed 00 01 02 03 04 05 06 07 €8 09 1.0
line, respectively, and then acrossto | p Pre-Test Probability of Di
the y-axis. For a patient with a high
pretest probability of pulmonary
embolism, the prevalence is 78%
(solid arrow in A). Post-test probabil-
ity for a positive D-dimer result is g0
85% (open arrow in A), which war- 08 7
rants further investigation. This So7 -
post-test probability is then applied 206
as pretest probability to the graph 205
for CT pulmonary angiography S04
(solid arrow in B). If the result is pos-
itive, post-test probability is 99%
(open arrow in B) and the diagnosis 0.1 ]
is confirmed. If the result is negative, 0.0 PO i etk el 1
post-test probability is 30% (curved 00 04 02 03 0.4 05 06 07 089 1.0
arrow in B), which does not allow
the disease to be ruled out; further | B
investigation is warranted. This post-
test probability is finally applied as
pretest probability to the graph for
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1.6. Cutoff and ROC Curves

Thresholds and cutoff  In the logical development of our discussion we have left out a relevant aspect.
In fact, we supposed that both the radiologist and the pathologist are required
to give a dichotomous judgment (yes/no) about the malignancy of the lesion.
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Figure 1.7. Cutoff. Effect of the cut-
off positioning for a population
made up of two equivalent groups
of subjects with or without the dis-
ease. On the x-axis, a variable (also
radiologic) which has higher values
in subjects with the disease (invert-
ed Gaussian curve - red area) is
compared with the subjects without
the disease (Gaussian curve - green
area). The red area is inverted only
to facilitate the visual evaluation of
the cutoff effect. Due to the large
overlap of the two curves, the cut-
off (yellow vertical line) determines
not only the two large fractions of
true positives and true negatives,
but also the two minor but non-
negligible fractions of false positives
and false negatives. A cutoff shifted
towards the left reduces false nega-
tives but increases false positives,
and the opposite occurs with a cut-
off shifted towards the right.

However, we know that clinical radiology (and pathology, too) is not made up
only of black and white judgments. There is a large gray scale, i.e. multiple
levels of certainty when we are either more or less in favor of the presence or
absence of a disease. This problem is related to the threshold we choose for our
diagnostic decision, i.e. the cutoff. Above the cutoff a radiologic sign is consid-
ered predictive of a disease.

The cutoff is an intuitive concept when applied to laboratory blood sample
analysis. If the normal upper plasma glucose level is lowered from 120 mg/dL
to 100 mg/dL, the subjects with a plasma glucose level from 101 to 120 mg/dL
previously considered normal will now be considered abnormal. If a group of
these subjects are really abnormal, we would have increased the true positives
and reduced the false negatives, with a gain in sensitivity. On the other hand,
in the same time the remaining subjects are normal, we would have increased
the false positives and reduced the true negatives, thus losing specificity.

If we lower the cutoff, we gain in sensitivity and lose in specificity. If we raise
the cutoff, we gain in specificity and lose in sensitivity. This is clearly evident
when the variable under investigation is measured on a continuous scale (e.g.
blood sample analysis, radiologic lesion sizing in diameter or volume, CT den-
sitometry, bone densitometry, MR signal intensity, evaluation of absolute or
percentage contrast enhancement). A graphical representation of the cutoff def-
inition is given in Figure 1.7.

A typical example is the diagnosis of metastatic mediastinal lymph nodes on
CT scans on the basis of their size measured as maximal diameter. If we use the
classic cutoff which defines nodes larger than 10 mm in diameter as metastat-
ic, we cannot avoid either a fraction of false negatives (metastatic nodes small-

Effect of a modified cutoff
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Cutoff optimization

Role of disease spectrum

ROC curve

er than or equal to 10 mm in diameter) or a fraction of false positives (non-
metastatic nodes larger than 10 mm in diameter). By lowering the cutoff we
increase sensitivity but reduce specificity, whereas by increasing the cutoff we
increase specificity but reduce sensitivity.

The cutoff could be optimized by choosing the level which minimizes total
errors (the sum of false negatives and false positives). However, in clinical
practice we adjust — often unconsciously — the cutoff to distinguish normal
from abnormal findings in relation to the clinical history and the results of pre-
vious examinations which determine the pretest disease probability. For
instance, a history of previous malignancy will prompt the adoption of a lower
cutoff for the size of a mediastinal node considered suspicious of metastasis.
The presence of a deleterious mutation of BRCA1 or BRCA2 genes in women,
a relevant family history of breast or ovarian cancer, or the simple personal his-
tory of previous breast cancer in the patient prompts the adoption of a lower
cutoff reading for the mammography or MR breast examination. In this way a
radiologist unconsciously uses Bayes’ theorem, increasing sensitivity (and
probably losing specificity): s/he believes there is a higher pretest disease prob-
ability than would be expected in subjects without these risk factors.

We can now come back to the matter presented in Section 1.4, i.e. the influ-
ence of subject selection on diagnostic performance. We have already stated
that, even if the disease prevalence remains unchanged, if the spectrum of the
subjects with and without the disease changes, both sensitivity and specificity
may be significantly altered. A graphical representation of this phenomenon is
given in Figure 1.8.

If we do not change the value of variables such as disease prevalence, spec-
trum of disease severity, etc., can we represent the diagnostic performance of
an examination by taking into consideration what happens using different cut-
offs? The answer is yes. Note that again, as with the positive LR, we combine
“sensitivity” and “1 — specificity”, the last term being the false positive rate. As
stated above, the positive LR is the ratio between the first and the second term.
Now, sensitivity is graphed on the y-axis and 1 — specificity on the x-axis. The
points defined by the Cartesian coordinates using different (usually at least
five) cutoffs describe the receiver operator characteristic (ROC) curve.

As with ultrasonography and other medical imaging modalities, the ROC
curve is the result of a scientific development made in a military context. ROC
curves were introduced to optimize the signal detection after the Japanese
attack on Pearl Harbor, in order to understand why the radar receiver operators
failed to identify Japanese warplanes. Since the 1950s, ROC curves have been
used in psychophysiology and have entered the field of statistical methods.

The ROC curve is a tool able to represent the power of a diagnostic exami-
nation at virtually all possible cutoffs. In practice, at least five levels are need-
ed to obtain an acceptable curve, as with the BI-RADS® score [AMERICAN
COLLEGE OF RADIOLOGY, 2003] (Figure 1.9). The ROC curve intercepts the
oblique straight line between the upper left corner and the lower right corner of
the Cartesian quadrant. This interception point is the best affordable diagnostic
performance with a balance between specificity and sensitivity. However, as
stated above, in many situations we might prefer a higher sensitivity with a
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Standard i ; Disease in
clinical setting early stage
— (screening)

Disease Elderly healthy
in late stage subjects

Figure 1.8. Effect of changes in disease spectrum and healthy condition on diagnostic performance. The
area under the curve of the distribution of healthy subjects is colored green; the area under the curve of
the distribution of the patients affected with the disease is colored red. Upper left (standard clinical set-
ting for outpatients): only about 50% of the symptomatic subjects are actually affected by the disease;
few subjects produce false negative (high sensitivity) or false positive (high specificity). Upper right
(screening setting): the patients affected by the disease are lower in number and they also have a dis-
ease with a lower mean level of severity. As a consequence the red area under the curve is smaller in size
and shifted towards the left with a larger overlap on the green area of the healthy subjects: there are
more false negatives resulting in a lower sensitivity and negative predictive value. Lower left (clinical set-
ting for in-patients): the mean level of disease severity is higher; the red area is smaller (some patients
have died) and shifted towards the right; by shifting the cutoff towards the right, we can distinguish per-
fectly between patients with disease and healthy subjects (no false negatives or false positives). Lower
right (changed spectrum of healthy subjects): a more aged healthy population shifts the green area to
the right, producing more false positives and a lower specificity and positive predictive value.

tradeoff in specificity or vice versa. Figure 1.10 shows a series of ROC curves
with increasing diagnostic performance.

A relevant application of the ROC curve in radiology, in the setting of the
diagnosis of a defined disease, is the comparison between different imaging
modalities or different approaches (e.g. new or old techniques), or different
readers (e.g. with extensive or limited experience) for a single imaging modal-
ity. This comparison can be performed on the same sample of patients or in dif-
ferent samples of patients. It is noteworthy that in the latter case (different sam-
ples of patients), the comparison between the two AUCs gives a result equiva-
lent to the application of the Mann-Whitney U test, the typical non-parametric
test for unpaired data (see Chapter 5). This shows that apparently different
aspects of biostatistics are actually connected by a logical-mathematic relation.

Understanding one part of the image helps us to understand another part of
the image. In the end the whole picture will seem less complicated in compar-
ison with our first impression due to the initial difficulties.

ROC analysis in radiology
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Figure 1.9. ROC (receiver operator
characteristic) curve. The graph rep-
resenting the relation between sen-
sitivity and 1 - specificity (i.e. the
false positive rate) enables the quan-
tification of the power of a diagnos-
tic examination as the area under
the curve (AUQ). In the example, five
levels of cutoff are indicated on the
ROC (like the BI-RADS® score system).
The Cartesian coordinates of point 5
are the sensitivity and 1 - specificity

we obtain considering only the find- 5
ings scored as BI-RADS® 5 as positive
with low sensitivity and very high
specificity, and so on until point 1
with 100% sensitivity and 0% speci-
ficity (BI-RADS® 1 is the score for a
completely normal examination).

AUC =
Area Under the Curve

Sensitivity
o

1 - Specificity

Figure 1.10. ROC (receiver operator
characteristic) curves. Examinations
with larger areas under the ROC
curve have diagnostic performances
higher than those with smaller areas
under the ROC curve. Only the ROC
curves above the oblique straight
line between the upper right corner
and the lower left corner supply
useful diagnostic information. The
different degree of gray indicates
areas of poor, good, and excellent
ROC curves.

Sensitivity

1 - Specificity
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2

Variables and Measurement Scales,
Normal Distribution, and Confidence Intervals

Science is built up of facts, as a house is with stones.

The dilemma between sensitivity and specificity noted by the choice of thresh-
old arises from the intrinsic variability of biologic phenomena, both at the cel-
lular level and the organ level in the human body in the presence and absence
of pathologic processes. When one measures the same hallmark in a sample of
individuals there always appears a spectrum of values which is a more-or-less
wide numerical set characterizing that sample for the measured hallmark. It is
not by chance that in Figure 1.6 we used a bell-shaped curve to represent the
set of possible values of the measured variable. Such curves indicate that the
variable may take all the values within them, and that the most frequently
observed values correspond to the central part of the curves.

In other circumstances the variable of interest may assume only gualitative val-
ues. This happens, for example, in the presence or the absence of a radiologic sign:
if we study a sample of n individuals, only a part of them will show that sign.

The object we are measuring is termed a variable. The values that it may take
depend on a mathematical law called distribution. One of the goals of statistics
is the characterization and representation of variables and their distributions. In
this chapter we will discuss the main types of variables and the essential ele-
ments of Descriptive Statistics (statistics which describes the characteristics of
the data). Therefore, we will see the main features of Gaussian distribution.

The reader should note that the subjective perception of a radiologic sign also
has its own variability: it can be different for two or more observers in the same
study and different for the same observer in different conditions. This concerns
a special topic, the reproducibility of a diagnostic study, which will be given
particular attention in Chapter 7.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

But a collection of facts is no more a science
than a heap of stones is a house.

JULES HENRI POINCARE

Variables and distributions
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Statistical analysis mainly
depends on the variable type

Link between variable type
and measurement scale

Nominal variables

Ordinal variables

2.1. Variables and Measurement Scales

We define variable a feature that can be observed and/or measured and that
may take at least two different values. Common synonyms (also in this book)
include characteristic and quantity. A variable is a kind of container that can
contain any type of information, but the representation and processing of this
information depend on the type of the data.

An important point is the subtle difference between the variable, its type and
the measurement scale used to represent it. The measurement scale is depend-
ent on the values the variable may take and the procedure (instrumental meas-
urement or subjective judgment) with which these values are obtained.
Changing the measurement scale may switch the variable from one type to
another. For example, let us consider the degree of stenosis of the carotid arter-
ies. We can indicate this variable with a numerical value that represents the per-
centage of occlusion; otherwise, we can visually distinguish the degree of
stenosis as mild, moderate or severe. In both cases, the variable of interest is
the degree of stenosis, but in the former case we have a measurement scale
ranging from 0% to 100%, while in the latter case we may use only three cat-
egories. As we shall see, this change in the measurement scale makes the vari-
able (the degree of stenosis) switch from the continuous type to the ordinal
type. The measurement scale therefore clearly defines the type of variable. For
this reason, some authors believe that the classification we propose in Sections
2.1, 2.2 and 2.3 can be attributed to the measurement scale, with no distinction
between the type of variable and the measurement scale. Although in practice
the two concepts are equivalent, in some circumstances the difference between
the type of variable and the measurement scale is evident.

In what follows, we report a brief summary of the different types of variables
and measurement scales [SIEGEL AND CASTELLAN, 1992]. The difference
between types of variables is very often quite subtle and at a first glance this
difference may not be so clear. We therefore invite the reader to pay close atten-
tion, since the statistical analysis strongly depends on the type of the variables
of interest. The first important distinction is between categorical variables and
numerical variables.

2.1.1. Categorical Variables

Categorical variables are variables whose values define categories, i.e. charac-
teristics of the individual that have no natural order. Typical examples are race,
gender, imaging technique, radiologic subspecialty, etc. For these examples,
the values they may take represent only names (Asian, female, MR imaging,
interventional radiology, etc.) and for this reason these variables are also called
nominal. A special case of categorical data is the dichotomous variable, like the
result of a diagnostic study in “positive” or “negative”.

In some cases, for example in the BI-RADS® score system for reporting
mammograms [AMERICAN COLLEGE OF RADIOLOGY, 2003], there is an intrinsic
order in the data, even though the difference between different scores cannot
be quantified. In these cases the variable is called “ordinal”. Another example
is TNM cancer staging [UICC, 2002].
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The statistical analysis of ordinal data is often performed by converting
each category into ranks, i.e. with the association of progressive numerical
values which are easier to manage. Typically, a sequence of integer numbers
(1, 2, 3...) is assigned to the various values of the variable. The radiologist’s
judgment may, for example, be expressed using the BI-RADS® measurement
scale (from 1 to 5) instead of negative, benign, probably benign, suspicious
abnormality, highly suggestive of malignancy.

Converting the ordinal variables into ranks is the conceptual link between the
categorical and numerical variables. The statistical analysis for the latter is gen-
erally more powerful.

2.1.2. Discrete Numerical Variables

Discrete numerical variables may take only a limited number of numerical values.
Generally, they regard countable values such as age, the number of lesions, etc.

The difference between discrete numerical variables and ordinal variables is
an important one. For example, let us focus our attention on number of malig-
nant lesions (discrete numerical variable) and tumor staging (ordinal variable):
four malignant lesions are twice as many as two malignant lesions, but tumor
stage II cannot be considered as twice the value of tumor stage I.

With discrete numerical variables the difference between two consecutive val-
ues is constant (e.g. Hounsfield units in CT)' and this difference represents an
interval. For this reason, these variables are also known as interval variables.

2.1.3. Continuous Numerical Variables

Continuous numerical variables may take an infinite number of values which
are generally obtained by direct or indirect instrumental measurement. Due to
the possibility of being expressed with an arbitrary number of decimals, these
variables may, in theory, take every value in a given interval. In radiology, typ-
ical examples are lesion size, MR signal intensity, organ volume, artery diam-
eter, etc. These variables are often measured by dedicated computational tools
within the processing units.

In some circumstances, discrete variables can be managed as if they were contin-
uous variables, provided the sample has many different values. For example, let us
consider the age of a sample of 30 individuals, expressed in years: if the age distri-
bution covers a range from 20 to 80 years, then this variable can be considered as
continuous, even if it is a discrete variable. To do the same with children, age needs
to be expressed in months instead of years, and with a sample of newborns, in days
instead of months. Therefore, choosing the right measurement scale is important for
the statistical analysis one wants to perform. Moreover, the opposite procedure to the
one just explained can also be performed. Indeed, a continuous variable can be con-

' With Hounsfield units, the difference between the electron density of tissues and that of water is
divided by the water electron density and then multiplied by 1000. This approach distributes image
contrast over a wide range.

Ranks

Difference between discrete
numerical and ordinal variables

Interval variables

Dimensional measurements
are continuous variables

Continuous variables may
also be considered discrete
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sidered discrete if we divide its value interval into two or more subintervals. These
subintervals may have the same amplitude (the continuous variable becomes an
interval variable) or different amplitudes (the continuous variable becomes an ordi-
nal variable). For example, the NASCET criteria [NASCET, 1991] for the classifi-
cation of carotid artery stenosis uses the following categories:

<29% = mild stenosis;
30%-69% = moderate stenosis;
> 70% = severe stenosis.

In this case, a continuous variable like percentage occlusion is converted into
ordinal data thanks to the switch from one measurement scale to another.

2.1.4. Measurement Scales

The reader should have noted that the different data types have been defined in
relation to the possible values they may take, i.e. on the corresponding meas-
urement scales. As stated above, these are not independent concepts. The clas-
sification of measurement scales can be done in the same way as the classifi-
cation for variables, as Table 2.1 shows.

In medicine all types of variables and measurement scales are constantly in
use. A relevant part of the radiologist’s interpretation consists of converting

Table 2.1. Measurement scales

Type Definition Hallmarks Examples
Qualitative ~ Nominal Absence of a hierarchy Positive/negative
or categorical or order within categories (dichotomous variable); race,
gender, imaging technique,
radiologic subspecialty
Ordinal Presence of a hierarchy within BI-RADS® score for reporting
or ranked categories but the difference breast examinations
between two consecutive
values cannot be quantified
Quantitative  Interval Constant interval between two  Electron density in computed
consecutive values without tomography (Hounsfield
a starting zero point; the units), temperature
variable may take positive and measured in degrees Celsius,
negative values; it does not T-score in bone densitometry
allow proportional calculation
Rational Constant interval between Heart rate,

two consecutive values with a
starting zero point; the variable
may take only positive or
negative values; it allows
proportional calculation

signal-to-noise ratio
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continuous data into a categorical evaluation, up to defining the examination as
positive or negative for the presence of a given disease.

As stated above, recognizing the data type being analyzed is highly relevant
because, while under certain conditions numerical variables may be manipulat-
ed with parametric statistical techniques (see Chapter 4), categorical data must
always be analyzed with non-parametric methods (see Chapter 5).

2.2. Gaussian Distribution

In the previous section we learned about the classification of variables. Now
we shall introduce an extension of what was stated above regarding continuous
variables. The concept of a distribution is very intuitive. A complete explana-
tion of all possible distributions (both continuous and discrete) is beyond the
aims of this book. To this end the interested reader may consult specialized
texts [SoLiani, 2007]. However, the reader should pay particular attention to
this section given its importance for parametric statistics.

Let us suppose that a sample of 50 males, aged 20-50 years and without car-
diovascular diseases, undergo abdominal CT; for each subject the diameter of
the suprarenal abdominal aorta is measured. Table 2.2 shows the results.

In this sample the values of the abdominal aortic diameter are very close to
30 mm, with a minimum of 26.5 mm and a maximum of 33.4 mm. Data are
expressed using only a decimal place with the 50 individuals being distributed
over a range of 33.4-26.5 = 6.9 mm.

The observation of the raw data cannot provide a complete evaluation of all
the information contained. A more suitable way of handling the data is to divide
the observed value interval into subintervals and to determine how many meas-
urements lie in each. For example, we may consider the number of aortas

Table 2.2. Aortic diameter of a sample of 50 healthy individuals

No. Diameter (mm) No. Diameter (mm) No. Diameter (mm)
1 29.8 19 30.3 37 325
2 30.2 20 31.0 38 334
3 30.1 21 30.5 39 26.5
4 31.2 22 29.6 40 274
5 28.6 23 323 4 304
6 29.7 24 279 2 30.5
7 30.5 25 285 43 31.0
8 30.9 26 289 44 29.6
9 31.2 27 314 45 29.8
10 294 28 316 46 33.1
" 29.2 29 30.1 47 30.0
12 29.9 30 30.6 48 30.1
13 275 31 30.7 49 29.8
14 27.2 32 29.7 50 30.1
15 31.8 33 29.9

16 322 34 293

17 30.2 35 30.1

18 29.9 36 30.2

How Gaussian
distribution is built
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Histogram

Table 2.3. Number of aortic diameters in each subinterval

Interval (mm) Counts
26.0-26.9 1
27.0-27.9 4
28.0-28.9 3
29.0-29.9 13
30.0-30.9 17
31.0-31.9 7
32.0-32.9 3
33.0-33.9 2

Total 50

whose diameter lies in the subintervals 26.0-26.9 mm, 27.0-27.9 mm, 28.0-
28.9 mm, and so on. Table 2.3 summarizes the number of counts within each
subinterval.

There are no aortic diameters outside the interval 26.5-33.4 mm, while a
substantial proportion (30/50, 60%) of them lie within the two central subin-
tervals. The next step is to report the data of Table 2.3 as a graph, as shown
in Figure 2.1.

This type of graph is called a histogram and it provides an immediate insight
into the information contained in Table 2.2. Indeed, the more populated subin-
tervals are the central ones and the number of diameters diminishes rapidly
when moving away from the centre. The subdivision into subintervals is arbi-
trary and depends on the sample size; however, a good compromise between
number of subintervals and counts is advisable.

Let us now suppose we increase the sample size from 50 to 200. The reader
may easily see that in this new case many more subintervals with a reduced
amplitude may be taken into consideration. When instead of considering only

20—

Figure 2.1. Histogram of the
abdominal aortic diameter. The x-
axis reports the subdivision into
subintervals proposed in Table 2.3.
The y-axis indicates the number of
aortic diameters within each subin-
terval. The reader should note that
the x-axis does not start at zero.

20 22 24 26 28 30 32 34 36 38 40
Diameter (mm)
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a sample we consider the whole population® of males aged 20-50 years without  Difference between histogram
cardiovascular diseases in a given geographic area, we would reduce the subin-  and distribution
terval amplitude to such a point that the histogram will appear as a continuous®
bell-shaped curve, as showed in Figure 2.2.
The curve in Figure 2.2 is called population distribution and represents a  From the sample
limit case never encountered in practice. One of the most interesting aspects of  to the population
statistics is its capacity to extrapolate information obtained from a sample (nec-
essarily limited) to the entire population. This aspect is the goal of inferential
statistics and will be explained at length in the following chapters.

When analyzing data from more-or-less limited samples, the term of refer-  Histograms for samples,
ence will always be histograms. Often the word “distribution” is also used for  distributions for populations
limited samples, but it is important to stress the terminological difference: his-
tograms for samples; distributions for populations.

The reader may be wondering why patients with cardiovascular diseases and
those younger than 20 years and older than 50 years of age were excluded. This ~ Random variable
was done so that the trend in aortic diameter should be a random variable bare-
ly dependent on other factors (age, gender, diseases). Later we will come back
to this feature.

The distribution of a random variable is always bell-shaped, as shown in
Figure 2.2. From a rigorous point of view, this curve is described by a mathe-

250

Counts

Figure 2.2. Histogram of abdom-
inal suprarenal aorta diameter of
the entire population. Note the
bell-shaped curve which repre-
sents the limit condition when the
amplitude of each subinterval
becomes zero. Diameter (mm)

% % 2T ® 2 30 N 32 3 M B

? In statistics, the population is an ideal set made up of an infinite number of units. However, in
medical statistics population stands for a real set of individuals (persons) who have a common
characteristic such as a defined nationality, the whole set of patients with myocardial infarct or with
prostate cancer, or breast cancer, or patients studied with a certain contrast agent, etc.

* From a mathematical point of view, the histogram becomes a real continuous curve only when the
interval amplitude is reduced to zero.
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Gaussian distribution is also
defined normal
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Gaussian distribution

Asymmetric distributions

matical function introduced by Karl F. Gauss (1777-1855) who started his
investigation from the geodetic measurements of the German State of Hanover.
This function was then used by Gauss to describe the motion of heavenly bod-
ies. Francis Galton (1822-1911) then proposed its use to describe many natural
phenomena, arguing that this distribution was the “norm” in nature. For this
reason Gaussian distribution is also defined “normal™.

No formal demonstration of the fact that a random variable always has a nor-
mal distribution is available. Indeed, this is a principle, i.e. a law always empir-
ically verified and never contradicted. The reverse of this law is also used to
verify the randomness of a given variable: in practice, if we have a statistical
sample from which we measure a continuous variable, drawing up the corre-
sponding histogram and verifying that it has an almost Gaussian shape is
enough to conclude that the variable is random”.

The population distribution (built with counts) may be converted into a prob-
ability distribution, expressed by a mathematical function which allows us to
calculate the probability that the measured variable lies within a given interval.
This function is®:

e 20 .1)

1
R s

where | indicates the curve centre, i.e. the x-axis point where the distribution
takes its maximum value; G is a width parameter, such that if ¢ is small, the
curve is narrow and high, whereas if ¢ is large, the curve is short and wide’.

We have decided to introduce the mathematical equation of the normal curve in
order to discuss one of its most important features. With this function, 95% of the
observations lie within the interval [lL — 1.960, U + 1.966] (Figure 2.3). In prac-
tice, if we measure a characteristic (variable) of the whole population, 95% of
them would have a value lying within this interval. Therefore, the probability a
given individual has a measured value within [(L — 1.960, 1L + 1.966] is just 95%.
Only the remaining 5% of individuals will have a value of x within the two tails
of the curve. As we shall see in Section 2.6, the definition of the confidence inter-
vals is based on this feature.

Now let us reconsider the previous example of the abdominal aorta. If we add
children to the sample, we introduce a series of values lower than that report-
ed in Table 2.2 and the left tail of the histogram becomes closer to zero. If,
instead, we insert adult females, another maximum in the histogram will be

* The terms Gaussian and normal are synonymous.

* Note that the frequent occurrence of normal distributions in biologic phenomena is due to their
genesis being made up of a large number of factors (of which we know only a small part). Such
factors tend to both increase and decrease the value of the variable, thus determining the substan-
tial randomness of the result.

¢ This function gives the probability p(x) that the measured variable lies within the interval
[x, x+dx].

7 20 is the distance between the two curve points where the concavity changes its sign. It repre-
sents the curve width in a point placed at 60.7% of the maximum (see Figure 2.3).
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p(x)

Figure 2.3. Gaussian probability
distribution centered at u and
with width 26. The probability an
individual of the population has x
within the interval [ - 1.960, 1 +
1.960] is 95%.

u-1.960 i p+1.960

produced at a lower value than that observed in the adult males at about 30 mm.
Similarly, if we insert patients with cardiovascular diseases into the sample, we
have a percentage of individuals with a higher aorta diameter who tend to push
the right histogram tail to higher values. In these three cases, the histogram will
appear asymmetric and, as stated above, this means that the measured variable
is no longer random.

The Gaussian probability distribution is symmetric about W and its width
depends on © (see Fig. 2.3). Without going into the mathematical demonstra-
tion, it is easy to see that L coincides with the mean and & coincides with the
standard deviation of the variable we are measuring in the population.

To further elucidate this feature, let us consider once again the example of
the abdominal aorta and proceed step by step. In the data presented in Table 2.2
the aortic diameter tends to lie at about 30 mm and the arithmetic mean (which
will be defined in the next section) confirms this trend, being equal to 30.1 mm.
However, the sample of Table 2.2 includes only 50 individuals instead of the
entire population. The only way to obtain the real mean of the abdominal aorta
diameter is to measure this variable in the entire population; but this is practi-
cally impossible. However, as stated above, the probability distribution is ide-
ally built only for the entire population. It is therefore clear that the maximum
point of the histogram of samples with progressively increasing size, which
coincides with L, slowly becomes the mean of the entire population. Similarly,
the standard deviation (which will be defined in the next section) of the data in
Table 2.2 is a measure of the histogram width and it will become the standard
deviation of all the population as the sample size increases. Since the trend of
the histogram is to appear as a normal curve with width o, the standard devia-
tion will clearly become equal to G.

The normal probability distribution is completely defined by the two parame-
ters WL and G: once we know their values, the curve is obtained with Equation 2.1
and it is unequivocally defined. Two distributions with different | values are
displaced from each other on the x-axis, whereas if they have different ¢ val-
ues the two curves have different amplitudes and widths. In the example of the
abdominal aorta, the diameter distribution in the adult female population is

Sample mean and population
mean

Gaussian distribution
only depends on mean
and standard deviation
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Standard normal distribution

probably centered about a lower value, with a partial overlapping with the
curve representing adult males.

Figure 2.3 clearly shows that each point on the x-axis, i.e. each value of the
measured variable, may be expressed in terms of the distance from the mean
(x — ). For example, the point x = 1 + 1.960 is placed at a distance equal to
X — L = 1.960. Since this statement holds for each pair of parameters (U, G),
they can be made independent by considering the variable:

It can be demonstrated that if x is a random variable and, therefore, has nor-
mal distribution, then z is also a random variable with normal distribution
(called standard normal distribution), but unlike X it has a mean always equal
to 0 and a standard deviation always equal to 1. The z distribution graph is
shown in Figure 2.4.

In practice, for each random variable it is always possible to build the cor-
responding standard normal distribution which is always the same regardless
of the starting variable (aorta diameter, size of a lesion, renal volume, etc.).
Since x, W and ¢ have the same unit of measurement (mm in the case of the
aorta diameter), then z is a pure number, i.e. it has no unit of measurement.
For all these reasons, the standard normal distribution is universally used in
all inferential statistics. The reader should note that, with respect to Figure
2.3, in Figure 2.4 the x on the x-axis has been replaced with z, and the p(x)
on the y-axis has been replaced with p(z). The two points x = iU +1.966
become z = £1.96 and the interval [-1.96, 1.96] contains 95% of the observa-
tions. In terms of probability, the z value for each individual in the population
has 95% probability of lying within this interval.

It should be stressed that a deep mathematical understanding of this section
is not fundamental. For all practical purposes a number of easy-to-handle data
tables are available.

p(z)

Figure 2.4. Standard normal =
distribution.
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2.3. Basics of Descriptive Statistics

As stated in the Introduction, the goal of descriptive statistics is to describe the
data of a sample. The word “sample” identifies a set of statistical units (often,
in medicine, humans, but sometimes organs, anatomic structures or lesions)
extracted from a population with one or more features. For example, the pop-
ulation may be all the members of a country (epidemiology), the entire set of
newborns (neonatology), all cancer patients (oncology), all patients with a clin-
ical indication for a certain radiologic examination (radiology) etc. Although in
all these cases the size of the population is not actually infinite, this size is so
large that we can treat it as if it really were infinite.

The population from which the sample is extracted has a precise distribution
(not necessarily a normal distribution) and its features reflect that of the sam-
ple. If, for example, in a sample of n pulmonary nodules at CT screening we
observe a high fraction of benign lesions, this suggests that in the entire popu-
lation of nodules the observed variable (the fraction of benign lesions) will
have a value® close to that obtained in the sample, and the larger the sample is,
the more valid such a statement is.

The example just reported introduces a fundamental concept: random sam-
pling. This consists of extracting the sample from the population in a totally ran-
dom way, without selection or influence of any type’. Otherwise, the sample
characteristics do not reflect those of the population: in this case, the study is
affected by systematic distortion or bias (bias will be discussed in Chapter 9).

Descriptive statistics is extremely broad and a complete discussion goes
beyond the aims of this book. Instead, we shall introduce the most important
and most used parameters.

2.3.1. Measures of Central Tendency

Measures of central tendency are parameters that provide information about the
position of the distribution.

The first is the arithmetic mean, often simply called mean. Let x indicate a
continuous variable and let {X, X,,..., X } be a sample of x. The arithmetic
mean m is defined as:

x:
i=1
= 2.2
. 0 22

and is the ratio between the sum of all the measurements and the size of
the sample. The reader will have noted that we used the Latin letter “m”,
in contrast to the previous section where we used the Greek letter “p”.

® The mean value of the population is often called the true value, because it exists even if we do
not know what it is.

° It is not by chance we use the verb “to extract”, derived from the extraction procedure of a bal-
loon from a box.

The population

The population always has
an unknown true value

Random sampling

Arithmetic mean

um" and uuu
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The mean of ordinal variables
cannot be calculated

Median

Outliers

Mode

This notational difference is generally used to distinguish the estimation
of the mean (calculated from the sample) from its true value (that of the
entire population).

The arithmetic mean takes into account all the sample values and it is
strongly dependent on possible extreme, isolated (outlier) data typical of
asymmetric histograms. At this point the reader should recall that the mean
of ordinal variables cannot be calculated. If, for example, we use the BI-
RADS?® classification (0, 1, 2, 3, 4, 5 and 6) to describe a sample of mam-
malian lesions, we could be tempted to calculate the mean sample value.
However, although it is possible from a mathematical point of view, we
would obtain an absolutely nonsense value. A mean score equal, for example,
to 3.4 is not correctly interpretable, because we are unable to quantify the dif-
ference between two consecutive scores.

Another commonly used measure of central tendency in statistics is the medi-
an. It is not calculated from the sample data, as with the mean, but it is defined
as the value that divides the sample in two sub-samples with the same size, as
defined by the following operating procedure:

1. All values should be reorganized in ascending or descending order;

2. For an odd value of n, the median coincides with the central value;

3. For an even value of n, the median is the arithmetic mean of the two central
values.

Let us consider a practical example. Let the following samples be the age
(expressed in years) of two different groups made up of 15 patients:

18, 18, 23, 27, 32, 35, 36, 38, 38, 42, 47, 51, 52, 56, 57 Group I
18, 18, 23, 27, 32, 35, 36, 38, 38, 42, 47, 51, 52, 86, 87 Group II

The two groups are almost identical samples apart from the last two values
that are markedly different (outliers). We obtain:

mean = 38, median = 38 (years) Group 1
mean = 42, median = 38 (years) Group II

Because of an odd value of n for both groups, the median coincides with the
central value, in such a way that seven values are lower and seven values are
higher than the median. The mean is 38 years for Group I and 42 years for
Group II: it is clear how the mean is influenced by the two extreme values of
Group II (86 and 87 years), unlike the median which in contrast is the same
value for both groups. This effect depends on the definition of the mean, which
is calculated using all the sample data, while the median is a position index,
placed at the middle of an ordered series of values.

Lastly, let us introduce another measure of central tendency: mode. The
mode is the most frequent value of the sample, i.e. the value observed with the
highest frequency. It is not necessarily a single value (in the last example the
values 18 and 38 are observed twice). In the event of more than one mode the
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sample is called multimodal®. Generally the mode is rarely used, in part
because it may be very far from the distribution centre. However, it has great
conceptual significance: when we are dealing with a nominal scale of measure-
ment, the mode is the only index of what actually happens in the sample. We
usually think of it as the most frequently observed category. In other words,
when we have nominal data, asking which of two or more categories is more
frequent is the same as defining the mode.

In order to clarify the relationship between mean, median and mode let us
consider the following example.

Example 2.1. Let us consider the size of the mediastinal lymph nodes stud-
ied by CT in a sample of patients with lung cancer. The sample may con-
tain many small lymph nodes (healthy, inflamed and metastatic) and a pro-
gressively decreasing number of enlarged lymph nodes (these are especial-
ly, but not only, metastatic lymph nodes). An example of the possible pop-
ulation distribution from which the sample could be extracted is shown in
Figure 2.5A. For the purpose of comparison, the distribution of lymph node
diameter in the healthy population is also shown (Fig. 2.5B). Note that the
relative position among the three indices depends on the symmetry/asym-
metry of the distribution: they coincide only in the event of symmetrical
distribution.

Example 2.1 shows the importance of calculating both the mean and the
median of a sample. By comparing them we derive a fundamental bond for

Figure 2.5. Mean, median and
mode. The x-axis depicts the diam-
eter of lymph nodes and the y-axis
indicates the number of lymph
nodes in the population with lung
cancer (A) and in the healthy pop-
ulation (B). The reader should note
the difference between mean,
median and mode for asymmetric
distribution (A) whereas the three
indices coincide for the symmetric
curve (B).

' This can be adequately demonstrated with the abdominal aorta example introduced in Section
2.2. If the population from which the sample is extracted includes both males and females, the dis-
tribution has two maximum values: a maximum corresponding to the mean diameter of the abdom-

Number
of

lymph nodes

Mode Median Mean

Mode Median Mean

Diameter of lymph nodes

inal aorta in males, and another corresponding to that in females.
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When the arithmetic
mean is not suitable as
a measure of central tendency

Distribution shape indices

Variance

applying the methods of parametric statistics: the symmetry or asymmetry of
the population distribution'’. If the difference between mean and median is too
large, the median should be used as the measure of central tendency.

2.3.2 Data Spread about the Measurement of Central Tendency:
Variance and Standard Deviation

In the previous section we introduced some measurements of central tendency
which, when calculated on a sample, provide information about the position of
the distribution. If we measure the same variable in two samples extracted from
different populations (with different distributions), the two means will tell us
how much the two centroids? are separated. However, we do not have any
information about the shape of the distribution, i.e. the way data spread about
the distribution centroid. The reader will undoubtedly have realized that what
we are searching for is an index that measures the distribution width.

Let us reconsider the example of the abdominal aorta that we introduced in
Section 2.2. The arithmetic mean diameter is 30.1 mm, the minimum value is 26.5
mm and the maximum value is 33.4 mm. Both the minimum and the maximum
values define the range of the observed values, but do not provide information on
what happens within this interval: data could be distributed in several ways, but
we know that most of the values are grouped about the mean (see Fig. 2.2).

The starting point is to calculate the distance between each sample value and
the mean. Let x, be the i-th sample value and x be the sample mean. The dis-
tance between them is the difference d = x. — x. The difference d. is also called
“residual” and it is a positive value when x. > X, a negative value when x, < x
and it is zero when x, = x. For a well known theorem, the sum of all the resid-
uals is zero", so we need a different indicator. One possibility is to use the
square of the residuals, d*, = (x, — X)2. The variance is defined as:

Y ¥, -x)
— 1=l — 1=l

" n-l n-l

2

S

and is calculated as the sum of the square of all residuals divided by the degree
of freedom", i.e. (n-1). For variance (s*) we also used a Latin letter, in order to
differentiate the variance calculated in the sample' and the variance of the
entire population, expressed with ¢°.

' Actually, verifying the symmetry of the distribution is not enough. If we want to use the meth-
ods of parametric statistics we need to check for normal distribution.

2 We cannot speak of a center because asymmetric distributions do not have a true center.

" In fact, for each positive residual there is a corresponding negative residual.

' To better understand the degree of freedom concept the reader may like to consider the follow-
ing: if we know n-1 values of a sample whose size is n and we also know the sample mean, then
the remaining sample value is unequivocally determined and is not free to take any value. In this
case the degree of freedom is n-1.

" In the next section we shall see that the mean and the variance calculated from the sample are
also called sample mean and sample variance.
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The variance does not have the same unit of measurement as the measured
variable x, but it does have its square. For this reason it is more suitable to cal-
culate its square root. The standard deviation is defined as:

(2.3)

and is the square root of the variance. The standard deviation, often abbreviat-
ed as “SD”, has the same unit of measurement as x and it is a direct estimation
of the population distribution width, indicated with 6. The standard deviation
is the best known spread measure and it is commonly associated with the mean
as mean + SD.

The standard deviation always has positive values and it is a very good
indicator of the width of the symmetric distributions. As stated with regard
to the difference between mean and median, when we are dealing with
asymmetric distributions, we need more useful spread measures than the
standard deviation. The curves shown in Figure 2.5 will help to clarify this
point. In graph A the curve is asymmetric on its right side. Since the stan-
dard deviation is calculated on the entire data sample, it is significantly
influenced by the extreme values. On the other hand, although the curve
width in graph B is equally divided between the right and the left side of the
mean, this is not the case in graph A. So when we are dealing with asymmet-
ric distributions we have to consider quartiles rather than standard devia-
tion. We shall now provide a rigorous definition of quartiles followed by a
clarifying example.

Let n be the size of the sample and let the data be reorganized in ascending
order. The Ist quartile (or, alternatively, 25th percentile) is the value below
which we find the first quarter (n/4, 25%) of the observations; similarly, the
2nd quartile (50th percentile) is the value below which we find half (n/2, 50%)
of the observations; the 3rd quartile (75th percentile) is the value below which
we find 75% (3n/4) of the observations. The reader will have recognized that
the 50th percentile coincides with the median.

Let us consider the following example:

21, 36, 4, 85, 4, 56, 87, 65, 12, 24,2, 54, 9, 32, 30, 26

which indicate the age of n = 16 patients. The first step is to rewrite the data in
ascending order, as follows:

2,4,4,9,12, 21, 24, 26, 30, 32, 36, 54, 56, 65, 85, 87

Since n is an even number, the 50th percentile (median) is the arithmetic
mean of the two central values (26 and 30), i.e. 28. Let us look at the first half
of the sample. Since n/2 has again an even value, the 25th percentile is the
mean of the two central values 9 and 12, i.e. 10.5. In the second half of the
sample we calculate the mean of 54 and 56, i.e. 55, which represents the 75th
percentile.

Standard deviation

Quartiles and percentiles

50th percentile coincides
with median
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Difference between
estimator and estimation

Sample mean and sample SD

The arithmetic sample mean
is the best estimation of the
population true value

2.4. Standard Error of the Mean

In the previous section we introduced the two main parameters for describing
the hallmarks of a sample obtained measuring a continuous variable on n indi-
viduals randomly extracted from the population: mean and SD.

Both the mean and standard deviation of a sample only provide an estima-
tion of the true values of mean and SD. The two mathematical relations (2.2)
and (2.3) only represent the way by which these estimations are calculated. In
order to distinguish the formulas from the calculated values the term estimator
is often used. In practice, the two estimators mean and SD provide an estima-
tion (m and s, respectively) of the true values of the population (U and G,
respectively).

In the past many other estimators were proposed as central tendency and data
spread measurements and, to be perfectly honest, our preference for mean and
SD has not been justified. Without going into details, we may simply state that
mean and SD are the only estimators which have all the features that an esti-
mator must have.

Since they are only estimations, the numerical values of mean and SD
are imprecise evaluations. Their values depend on the sample considered;
if, for example, we extract a different sample from the same population
and recalculate the mean and SD of this new sample, we will clearly obtain
different values. In order to stress this link with the sample, the mean and
the SD calculated in (2.2) and (2.3) are also called sample mean and sam-
ple SD.

Example 2.2. Sample mean and sample SD. Let us consider the population
of all women with breast cancer and let us evaluate the mean size of the
tumor. Using the same instruments and diagnostic technique, two different
hospitals measure the mean diameter on two different samples made up of
100 patients. The findings of the first hospital are: m=2.3cmand s = 1.1 cm;
the findings of the second hospital are: m =2.5 cm and s = 1.0 cm. The results
obtained by the two hospitals represent two sample estimations of the true
mean and SD.

Example 2.2 demonstrates that even under the same conditions the sample
estimations depend on the particular extracted sample. At the same time, in the
medical literature we often find many studies reporting several different values
for the same variable. If the population from which the samples are extracted
is the same and if there are no errors in designing and performing the study, this
is simply the result of random sampling'®.

Although we have not demonstrated it, the arithmetic mean of a sample is the
best estimation that we have for the true mean value of the measured variable.
Let us now ask the following question: “To what extent is the sample mean a
good estimation of the population mean?” In order to answer this question we

'* The reader should also note that the different values of sensitivity, specificity, accuracy and pre-
dictive values of a diagnostic technique found in the literature for a given disease simply represent
estimations and have the same features of an arithmetic mean.
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have to know the uncertainty associated with our estimation: the higher this
uncertainty, the less precise our estimation becomes, and vice versa.

Now let us consider the following ideal experiment. We extract a large num-
ber of samples from the same population, all made up of » individuals", and
we calculate the mean for each sample. We build a histogram on which we
report the observed means on the x-axis, instead of the single observations.
Based on the central limit theorem, this histogram appears as Gaussian with
mean | (i.e. the same mean as the population) and SD equal to:

g

o

The SD of this ideal distribution is the ratio between the SD of the population
(o) and the mean square root of the sample size (n). Therefore, the result of the
previous ideal experiment clearly gives rise to a new normal distribution (the
distribution of the sample mean) with the same center as for the population, but
the greater the sample size, the lesser its width is. In fact, if the mean of a sam-
ple differs significantly from 1, it is true that by calculating the mean of many
samples and then the mean of the means we obtain a more precise estimation.

When we talk about the distribution of the sample mean we implicitly refer to
the result of the ideal experiment just developed, i.e. a distribution for which on
the x-axis we pose the mean of one of the extracted samples instead of the single
observations. Moreover, the central limit theorem shows that the distribution of
the sample mean appears approximately as Gaussian even if the measured data is
not a normal variable, and the larger n is, the better this approximation becomes.

The SD of the distribution of the sample mean is called standard error of the
mean, often simply called standard error (SE), defined as:

SE=-2_

5

As the reader may note, since the distribution of the sample mean is the result
of an ideal experiment, the SE depends on the true SD, which remains an
unknown parameter. On the other hand, in practice we only analyze one sam-
ple. All we can do is estimate the SE by substituting ¢ with the SD of the sin-
gle extracted sample, namely:

AL

Vn

Therefore, once we have a sample, the SE is a measure of the uncertainty
associated not with the single measurement but with the arithmetic mean since
it is the best estimation of the true value of the population: the lower the SE,
the higher the precision of the sample mean is, and vice versa.

The question we posed earlier (7o what extent is the sample mean a good
estimation of the population mean?) has not obtained a complete answer. Now

7 One could say “a sample of samples”.

Sample distributions;
the central limit theorem

Standard error of the mean (SE)

The standard error is a measure
of the precision of the sample
mean estimation
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Confidence intervals

we know how to calculate the uncertainty associated with the sample mean, but
we do not have a mathematical relationship between the two quantities. What
does it mean that the SE of the mean represents the uncertainty associated with
the sample mean? In other words, is the arithmetic mean equivalent to the true
value of the population? And if not, how much do they differ?

The sample mean, m, may differ significantly from the true value, L. Therefore,
we need a mathematical object able to calculate the probability that m does not
differ from 1 by more than an arbitrary chosen quantity. This approach focuses on
the true value and its goal is the calculation of a probability. Apart from the prac-
tical difficulties involved, there is a conceptual error based on the impossibility of
knowing the true value. The right approach is, in fact, the reverse one, i.e. to fix
a probability (confidence level) and obtain the interval that contains the true value
with that probability. This interval is called confidence interval.

Let us come back to example 2.2. The first hospital found a mean tumor size
equal to 2.30 cm with a SD equal to 1.10 cm. Since the size of the analyzed
sample is n = 100 patients, we may calculate the SE of the mean as:

s 11

Vo Jioo

As stated above, the best estimation of the mean tumor size of the population is
2.30 cm with an uncertainty equal to 0.11 cm. Now we want to calculate the inter-
val (in terms of tumor size) that, with a given confidence level, contains the true
value. The greater the a priori fixed probability, the greater is the width of the inter-
val we are seeking. If, to the limit, we would like o be sure and calculate the inter-
val containing the true value with a probability of 100%, the result should be from
zero to infinity, i.e. the set of all the values the variable may assume®. In recent
decades it has become widely accepted in the literature that the optimal confidence
level is equal to 95%, such that in most cases the 95% confidence interval is calcu-
lated (95%CI)”. Now we will see how to calculate the 95%CI.

We stated that the mean is the best estimation of the true value, so the confi-
dence interval is obtained summing and subtracting a certain quantity Am to
the mean. In this way we obtain the interval boundaries as:

SE= =0.11cm

95%CI = m + Am

We also saw that the uncertainty of the mean is represented by the SE, so Am
is proportional to the SE, that is:

Am =t SE
from which:

95%CI = m + t,, SE

'8 Note that the measured variable is the size of the breast cancer which obviously cannot have neg-
ative values.

” We will see the reasons (including historical reasons) for this choice in Chapter 3. However,
wider (e.g. with 99% confidence level) or narrower (e.g. with 90% confidence level) confidence
intervals can also be calculated.
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where t,, is a quantity that has a Student’s t distribution with n — 1 degree of
freedom. A complete description of the Student’s t distribution is beyond the
aims of this book. Here we simply state that t,,, represents a numerical value
easily retrievable from published datasheets [ALTMAN, 1991].

In Example 2.2 the sample size is n = 100 and, therefore, the degree of freedom

isn—1=99. From the published datasheets we obtain t,, = 1.984. Therefore:
95%CI = 2.3 + 1.984-0.11 = [2.08, 2.52] cm

Therefore, at the confidence level of 95%, the mean breast cancer size of
the entire population lies between 2.08 cm and 2.52 cm; at any rate, there
remains a 5% probability that the true value is lower than 2.08 cm or higher
than 2.52 cm. This statement represents a bridge between the features of the
sample and that of the population. Confidence intervals will be discussed in
more details in Section 2.6.

2.5. Standard Error of the Difference between Two Sample Means

Here we introduce a simple generalization of the standard error of the mean
which will be useful in Chapter 4.

In many circumstances encountered in medical research a comparison is
made between the means of two independent samples.

Example 2.3. Myocardial delayed enhancement measurement with car-
diac MR imaging. We want to evaluate the difference between two contrast
agents (CAs) in terms of delayed enhancement. For this reason, a sample of
21 post-ischemic patients undergo a cardiac MR examination with inversion
recovery turbo-gradient-echo sequence ten minutes after the injection of 0.1
mmol/kg of CA 1. We measure the signal intensity (SI), expressed in arbitrary
units (a.u.), in a region of interest placed in the infarcted myocardium. A sec-
ond sample of 7 post-ischemic patients is studied with the same technique but
with 0.1 mmol/kg of CA 2. Data are reported in Table 2.4.

Example 2.3 shows the typical situation in which two independent samples
(whose sizes are n, and n, and which were extracted from two different popu-
lations) are treated in different ways: with different drugs or CAs, with differ-
ent imaging modalities, or even with different techniques of the same imaging
modality, etc. In these cases, the question is: “If we find differences in the
results, is this effect due to the treatment difference or simply to chance?” In
Example 2.3, the mean signal intensity is 43.7 a.u. in the sample treated with
CA'1 and 20.4 a.u. in the sample treated with CA 2. It is correct to suspect that
this difference, even if large, is simply the result of sample diversity. In fact,
nobody may exclude that using both the CAs with the same sample one would
obtain very similar results (we will discuss this possibility in the next section).
The difference between the delayed enhancement obtained with both the CAs
is highly significant (p = 0.0004) if analyzed with a non-parametric statistical
test (Mann-Whitney U test), for which we refer to Chapter 5. Here we use the
data of this example to illustrate a fundamental mathematical parameter.
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Table 2.4. Signal intensity for the two contrast agents of Example 2.3

Sample1 Sl (a.u.)CA1 Sample2 Sl (a.u.) CA2
1 328 1 18.8
2 30.6 2 13.0
3 34.2 3 17.8
4 18.2 4 25.8
5 36.0 5 15.8
6 376 6 224
7 454 7 29.0
8 52.4
9 66.8 m, 20.4
10 67.8 5, 57
1 23.2 SE, 2.1
12 33.0
13 62.0
14 51.2
15 72.2
16 286
17 294
18 46.0
19 51.8
20 33.0
21 65.8
m, 837
s, 16.1

SE 3.5

Sl = signal intensity; CA = contrast agent; a.u. = arbitrary units.

Distribution In the previous section we introduced the standard error as the result of an
of the difference  ideal experiment in which one calculates the mean of several independent sam-
between two means  ples all with the same size, n. Now let us slightly modify this experiment by
extracting not one sample but couples of samples at a time; the two samples of
a couple have to be treated with the two different treatments that we are com-
paring. We calculate the mean of each sample of the couple and their differ-
ence. In this way we may build the distribution of the difference of the means
that has variance, 6°, equal to the sum of the two single variances ¢° and ¢°,.
Therefore, it is:

b g

c’ o
SE(;U] ""lluz)= —

n, n,

where SE(, — ) is the standard error of the difference between the means of
the two populations. Since the two true variances remain unknown, we substi-
tute 6°, and ©°, with their best estimations s’ and s°,, such that:

SE(mi—m:)=
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where SE(m, —m,) is the standard error of the difference between the two sam-
ple means m, and m, (in Section 4.2 we will see that there is another method
for calculating standard error). For Example 2.3:

2 2

SE(43.7-20.4) = ﬁ+i =4.1au.
21 7

In practice, our focus shifts from the two single means, m, and m,, to their dif-
ference m, —m, =43.7 — 20.4 = 23.3 a.u., which becomes a new variable whose
estimation has an uncertainty equal to 4.1 a.u. Similar to what we saw in the pre-
vious section, the confidence interval of the difference of the means is:

95%Cl = (m, - m,) £t SE(m —m,)

where t,,, has to be obtained in the datasheet of the Student’s ¢ distribution with
(n, - 1) + (n,— 1) =n +n, — 2 degree of freedom. For Example 2.3 =2.056 and:

’ t95"/n

95%CI = (43.7 — 20.4) + (2.056 x 4.1) = [14.8, 31.8] a.u.

that is, with a 95% confidence level, the true difference between the means of
the two populations lies between 14.8 a.u. and 31.8 a.u.

2.5.1. Paired Data

A particular case in comparing two sample means is when each statistical unit
of the sample undergoes the two treatments; this circumstance introduces the
denomination of paired data. For the comparison of the two contrast agents in
Example 2.3, the radiologist could repeat the diagnostic examination adminis-
tering both contrast agents (with a time delay of, for example, one day) to the
21 + 7 = 28 patients.

In this case the starting point for obtaining the confidence interval is to cal-
culate the subject-by-subject difference of the measured values. So our focus
shifts from each couple of values to their difference.

In Table 2.5 the column of the difference represents a variable with an almost
normal distribution centered about the true value of the difference between the
two means m, and m, with m being an estimation of the true value.

The procedure for the calculation of the confidence interval is similar to the
previous one. In fact, we have to calculate the SE in this case too and to use the
t,., value as follow:

95%

95%CIl=m+t_ _>_

95%
Vn
2.6. Confidence Intervals
In the previous sections we introduced the confidence intervals of the mean and

of the difference of two sample means. In this section we wish to provide a
broader view of the general concept of confidence intervals.

The confidence interval of the
difference between two means
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Table 2.5. Comparison of two sample means for paired data

Individual 1st measurement 2nd measurement Difference
1 a b a-b
2 4 d «d
n y z y-z
Mean m, m, m
SD S, s, s

s
SE= —
Jn

SD = standard deviation; SE = standard error.

Let us start our discussion by stressing an important hallmark of Gaussian
distribution. Under conditions of normal distribution with mean equal to i and
standard deviation equal to G, 95% of the observations lie in the interval:

u+ 1.960 2.4)

This result holds for all values of | and ¢ (i.e. for each continuous and random
variable) as it is based only on the particular mathematical shape of the Gaussian
curve. For example, if we measure a continuous variable for a sample of 500 indi-
viduals and calculate mean and SD, then, on average®, 95% of them (450) lie with-
in the interval mean + 1.96SD. We may also state that if we extract another individ-
ual from the population, this will have 95% probability of lying within that interval.

The general mathematical relation (2.4) keeps this feature even if we consid-
er the distribution of the sample mean, i.e. the hypothetical distribution we built
in Section 2.4 as the result of an ideal experiment. Thanks to the central limit
theorem, the distribution of the sample mean is almost normal, its mean (m)
coincides with that of the population and its SD is equal to that of the sample
(s) divided by the mean square root of the sample size (n). Then 95% of the
sample means lie in the interval:

S
m = 1.96 T =m= 1.96 SE
n
The format of the latter relationship is very similar to that of the CI95% of
the mean, that is:
95%CI =m + t,, SE
» The feature of normal distribution for which 95% of the observations lie in the interval pu +1.96c

holds rigorously only for the entire population. For a limited sample we have to state that the 95%
of the observations lies within this interval, on average.
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The two mathematical expressions are very close to one another. When the
degree of freedom (n — 1) is large enough (n > 100), the difference between the
Student’s t and Gaussian distributions is very small. In fact, if n = 101 the num-
ber of degree of freedom is n — 1 = 100 and t,, = 1.98, very close to 1.96. In
practice, with small samples (n < 100) one should use the t,_, coefficient, rather
than the value of 1.96, because the smaller the sample size, the higher the dif-
ference between the two coefficients. The reader should note that it is more cor-
rect to use the ¢ distribution (therefore the t,,, coefficient) than the normal dis-
tribution (therefore the 1.96 coefficient), because in the standard error formula
the SD of the population (o) is estimated by the SD of the sample (s).

What we stated with regard to the mean may also be said about the differ-
ence between two means. The reader will have noted that in Sections 2.4, 2.5
and 2.5.1 we followed the same procedure. The 95% confidence interval of
every estimation always has the following format:

95%CI = estimated value * coefficient,  SE

estimated value

The coefficient,,, depends on the case, but it is always retrievable from pub-
lished datasheets [GARDNER AND ALTMAN, 1990].

A limited sample provides an imprecise sample estimation of the true value of
the population and this imprecision is expressed by the width of the confidence
interval: the wider these intervals are, the less precise the estimation is, and vice
versa. An estimation with a very wide confidence interval casts more than a shad-
ow of doubt on the reliability of the observed value. Let us suppose, for exam-
ple, we have measured the specificity” of a certain diagnostic modality for the
detection of a given disease and have obtained the value of 0.75 with a confi-
dence interval equal to [0.57, 0.93]. Although 0.75 is the best estimation we have,
the true specificity could be as low as 0.57 or as large as 0.93, a very wide inter-
val indeed. In this case we cannot trust the obtained estimation because the prob-
ability of overestimating or underestimating the true specificity is very high.

The confidence intervals shift the focus from the variable estimation, also
called point estimation, to an interval of value considered as compatible with
the population. It is important to understand that confidence intervals depend
on the sample size and on the sample variability and do not provide any infor-
mation on possible errors of design, implementation and statistical analysis of
a study.

2.7. Confidence Interval of a Proportion

Each ratio between two numerical values is a proportion. Typical examples
are the sensitivity and the specificity (for the detection of a given disease),
the predictive values, the fraction of the subjects of a sample who have or do
not have a given characteristic, etc. On the other hand, this latter definition
represents the most general case: the sensitivity, for example, is defined as

' The specificity of a diagnostic modality is the ratio between the true negatives and the sum of the
true negatives and the false positives (see Chapter 1).

General form of a 95%
confidence interval

The confidence interval
width is a measure of the
point estimation precision

Confidence intervals do
not provide any information
on the estimation accuracy

Proportion
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The standard error
of a proportion

Use of a binomial distribution

the ratio between the number of individuals who obtained a positive test
result and actually had the disease and the number of all the individuals who
actually had the disease.

For the proportions we may also say that the numerical value calculated
for a limited sample only represents an estimation of the true proportion
and for this reason it is somewhat imprecise. The calculation of the confi-
dence interval of a proportion, p, follows the same general rule we saw in
the previous section. As in all cases, one needs to obtain the standard error
of p, SE(p), and the coefficient,,,. Based on an approximated procedure, we
may calculate the standard error using the hallmarks of normal distribution

and obtain:
|| 1-

Using coefficient,,, = 1.96:

]=
95%CI (p)=p £1.96, PU-P) - P)

The larger n is, the better the approximation. However, the latter formu-
la can only be used when p is not too far from 0.5 (50%); in the extreme
cases, namely when p is close to 0 (0%) or to 1 (100%), it may provide non-
sense results, with confidence intervals that contain negative values or val-
ues higher than 1. For example, if in a sample of 15 post-ischemic patients
undergoing contrast-enhanced cardiac MR two of them show delayed
enhancement, then p = 2/15 = 0.13 and 95%CI(0.13) = [-0.04, 0.30]: with
a 95% confidence level, the true proportion could even be -4%, which is
clearly impossible. Conversely, if for example p = 0.92, we could obtain an
interval like [0.80, 1.04], with the possibility that the true proportion
exceeds 100%.

With the diagnostic performance indices (sensitivity, specificity, etc.) we
very often observe values close to 1. In these cases, a calculation procedure
based on binomial distribution should be used. The formula for the calculation
of the confidence interval using binomial distribution is more complicated and,
for this reason, our advice is to always refer to a statistician or use a statistical
software package.
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Null Hypothesis,
Statistical Significance and Power

When you get new data,
be ready to change your hypothesis.

FrED TUREK

Observation and theory get on best when they are mixed together,
both helping one another in the pursuit of truth.

It is a good rule not to put overmuch confidence in a theory

until it has been confirmed by observation.

I'hope | shall not shock the experimental physicists too much

if | add that it is also a good rule not to put overmuch confidence
in the observational results that are put forward

until they have been confirmed by theory.

ARTHUR S. EDDINGTON

The strategic purpose of a scientific work is to demonstrate a hypothesis pro-
posed by the authors. The hypothesis arises from their own anecdotic observa-
tions or previous scientific works or from papers previously published by other
authors. The primary requirement for a scientific study is an idea we want to
verify by means of a series of facts. The facts could also be those which other
authors have already described (e.g. meta-analysis — see Chapter 8). Hence, we
can say that the only technology we absolutely need is the neuronal circuitry of
our brains as evolved primates.

This joke highlights that a scientific work must always arise from a clear
explicit hypothesis. In the classic case, in order to demonstrate that the hypoth-
esis is true, the scientist designs an ad hoc experiment. In this sense, we name
the hypothesis as experimental' hypothesis. We should note that the hypothesis
is almost always derived from previous observations and from the discussion
about them, thus confirming or failing to confirm previous well-established
knowledge. There is a continuous interaction between practical experience and
development of theories with deep philosophical implications [BELLONE, 2006].

' Note that here the adjective experimental is used with reference to the planning and performing of
an experiment which supplies new data to be analyzed with defined methods. In other contexts, it has
the restricted meaning of animal or phantom testing, to be distinguished from research on humans.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

The scientific experiment:
to test an idea using facts

We need a clear explicit
hypothesis

Experimental hypothesis

Experience and theory
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The logical flow of a scientific
report

An apparent paradox

Null hypothesis (H,)

Experimental hypothesis (H,)

Can we really accept
the experimental
hypothesis as true?

However, here we must make a clean break. We have to define a starting
point (the experimental hypothesis, whatever origin it has) and a goal to be
reached (the demonstration that the experimental hypothesis is true or false).
Between these two extremes there are crucial phases such as the design and
performance of the experiment, data collection, data analysis (and not only sta-
tistical analysis) and discussion. The structure of a scientific report implies the
following logical flow: definition of the experimental hypothesis (at the end of
the Introduction); design and implementation of the experiment (Materials and
methods); presentation of the results (Results); interpretation of the results
(Discussion). This matter will be expanded in Chapter 10.

Here we will describe the particular arrangement of the logic of scientific
demonstration (with particular reference to the biologic and medical field),
which has become relatively well-established in the last 50-60 years.

3.1. Null Hypothesis and Principle of Falsification

Now we are confronted with a paradox. The scientist who wishes to demon-
strate an experimental hypothesis must adopt the reverse hypothesis to the
experimental one. This reverse hypothesis is named statistical hypothesis
or null hypothesis (H ). Specialized calculations on the data resulting from
the experimental work quantify the probability that the null hypothesis is
true. These calculations (the technical core of statistics) can have different
logical and computational structure, suitable for the particular setting due
to the study design, the type of variables under investigation, and other
aspects. This is the crucial problem of choosing the right statistical test. If
the probability (the well-known p value) that the null hypothesis is true is
lower than a predefined threshold (usually 5%, frequently presented as a
fraction of the unit, therefore 0.05), we reject the null hypothesis. As an
indirect consequence, this rejection allows us to accept the reverse hypoth-
esis, i.e. the experimental hypothesis, which we name H,. This conceptual
system and its terminology were introduced by Ronald A. Fisher (1890-
1962) in the 1930s.

The debate on the “acceptance” of H, as a result of the rejection of H is
still open. Formally, obtaining a p value lower than 0.05 only states that
rejecting the experimental hypothesis is impossible. The overriding opin-
ion is that we can never consider the experimental hypothesis as demon-
strated, not even indirectly, at least with regard to the meaning we attrib-
ute to the word demonstration in mathematics. Statistical significance is a
long way from the mathematical demonstration of a theorem, such as in
the Elements by Euclid. According to some authors, a p < 0.05 only allows
the experimental hypothesis not to be rejected, keeping it available for fur-
ther experiments. Even if these experiments confirm the significance, the
degree of truth of the experimental hypothesis does not increase. Still
other authors argue that a series of experiments concordant for statistical
significance only tends towards the demonstration of H,, without reaching
an ultimate demonstration. There is a subtle difference between these two
ways of thinking. At any rate, the demonstration of H, is linked to the fal-
sification of H.
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The principle of falsification plays a well-known role in the philosophy
of science and is commonly attributed to Karl Popper. Actually, at least in
the logical context of statistical thought, it should be attributed to Ronald
A. Fisher. Moreover, while in Popper’s thinking it is derived from “simple
epistemological affirmations, mainly left to the reader’s intuition”, in
Fischer’s thinking it is based on “well-established mathematical-proba-
bilistic models” [CARACCIOLO, 1992]. According to Luca Cavalli-Sforza:

“Even all the recent epistemological work, from Kuhn to Popper, seems to
me overdone. The Vienna Circle [...] already stated the same things. In the last
fifty years all we have had is a great deal of popularization, with these ideas
perhaps being presented more clearly, more frequently with synonyms or more
popular neologisms (as with the idea that only «falsifiable» theories are scien-
tific” [CAVALLI-SFORZA L AND CAVALLI-SFORZA F, 2005].

What is the reason for this logical process that tests the reverse hypothesis
of the one we wish to demonstrate? To answer this question let us consider the
classical experimental design aimed at testing whether two samples are differ-
ent for a defined characteristic. Here the null hypothesis is that the two sam-
ples are drawn from the same population and that the observed difference is
caused only by random sampling. The hard core of the problem is the variabil-
ity intrinsic to all biologic phenomena. In fact, if we draw two random sam-
ples from the same population and we measure a defined characteristic, the
probability of observing a difference is very high. As a consequence, when we
observe a difference between two groups or two samples, the first thing we
should exclude is that this difference is simply due to the effect of variability
within the same population from which the two samples could have been
drawn. In other words, the observed difference would not have the meaning
that the two samples are different because they were drawn from two popula-
tions which actually are different for the feature under investigation. As we
will see, this difference due to random sampling has high probability of being
not significant. This is the reason for which we reject the null hypothesis when
the difference is significant and we accept the null hypothesis when the differ-
ence is not significant.

In this reasoning we did not consider the possibility that our data are flawed
by some bias (i.e. a systematic distortion or error). Bias may generate a signif-
icant but false distortion, as with a defect in random sampling or a systematic
error in measuring the variable under investigation in one of the two samples
we are comparing. This issue will be systematically examined in Chapter 9.

The reader should now understand the following general concept: some-
times we can correct for bias using statistical tools in data analysis but com-
monly there is no way to eliminate the effect of bias in study design or data
acquisition. Only correct study design (which should be carefully planned
together with the definition of H, and H, before starting with data acquisition)
enable us to minimize the sources of bias. Only in this way can we pose the
crucial question: Is the observed difference due to a real difference between
the two different populations from which the two samples have been drawn or
is it due to variability within the single population from which both samples
have been drawn?

Principle of falsification

Karl Popper or Ronald A. Fisher?

Why do we work against our
experimental hypothesis?

Biological variability

(and that related

to the measuring process)
is the basic problem

Significant and not significant
differences

Bias which cannot
be eliminated

The crucial question
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False positive =
type | error = o error

o =0.05

p <0.05

Relation with Gaussian
distribution

3.2. Cutoff for Significance, Type I or o Error and Type Il or [} Error

How should we define the cutoff, i.e. the decisional threshold, we use to
decide whether to accept or reject the null hypothesis? This problem is very
similar to the problem regarding the distinction between positives and nega-
tives of a diagnostic examination (see Chapter 1). In this case we also have
four possibilities:

— true positive, when we judge an existing difference as real, i.e. as not attrib-
utable to random sampling;

— true negative, when we judge a non-existing difference as not real, i.e. as
attributable to random sampling;

— false positive, when we judge a non-existing difference as real, i.e. as not
attributable to random sampling;

— false negative, when we judge an existing difference as not real, i.e. as attrib-
utable to random sampling.

However, in statistical test applications the false positive case and the false
negative case are given a different name:

— the false positive is named type I error or . error;
— the false negative is named type II error or B error.

The acceptable level of error (i.e. the cutoff definition) for both type I and
type II is represented as a probability.

The cutoff for type I error is conventionally fixed at 5%. The null
hypothesis is refused when the statistical test tells us that the probability
of obtaining a difference equal to or larger than the observed one is lower
than I in 20, i.e. 5% (o = 0.05). The cutoff is rarely more restrictive, for
instance equal to 1% (o = 0.01), or less restrictive, for instance equal to
10% (o = 0.1). The p value obtained with the statistical test, i.e. the
observed level of significance, defines the acceptability of the null hypoth-
esis (H)): if the cutoff (o) is chosen at 0.05, we consider the p values lower
than the cutoff (p < 0.05) as significant. The smaller the p value, the more
improbable H becomes, and as a consequence the experimental hypothe-
sis (H,) is more probably true, within the philosophical limitations exam-
ined in Section 3.1.

The definition of the probability of obtaining a difference equal to or larger
than the observed one implies the following reasoning: if I repeat the same
experiment n times randomly drawing two samples of subjects from the same
population, how many times do I observe a difference equal to that previously
observed or larger due to the combination of the intrinsic variability of the pop-
ulation with the random sampling?

The careful reader will have noticed that even though the cutoff level is
conventional and sometimes may be increased or reduced, the choice of 5%
(o0 = 0.05) can be related to a basic feature of Gaussian or “normal” distribu-
tion (see Section 2.4) whereby 95% of data are in the range mean + 1.96 stan-
dard deviation. Due to the bell shape of normal distribution, this 5% is even-
ly distributed between the two tails of the curve, as shown in Figure 3.1.
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Figure 3.1. The two tails of nor-
mal standard distribution. The
graph shows two tails at the
extremes of the distribution, posi-

tioned at the values of z = + 1.96, 2.5% e
each accounting for 2.5% of the
statistical units of the population 4 3 2 a4 0 1 2 3 a4

(total equal to 5%, i.e. 0.05).

The result of a two-tailed statistical test takes into consideration the possibility
that the two compared measurements of the same variable (e.g. a and b) can be sig-
nificantly different for either a > b or a < b, i.e. it takes into consideration both tails
of the distribution (2.5% for a > b and 2.5% for a < b). If the test driver can a pri-
ori exclude one of the two possibilities, one of the two tails of the distribution can
be ignored (one-tailed statistical test). As a consequence, the error probability is
halved and the significance of the test result is doubled. The same result which
gives p = 0.9 (not significant) using a two-tailed test, gives p = 0.045 (significant)
using a one-tailed test, since the cutoff remains unchanged (o = 0.05). However, if
the test driver is not absolutely certain that the difference between the data may
occur in only one direction, the use of a two-tailed test is recommended.

The cutoff for type II error should be commonly chosen equal to 80% or
90%. This means that we accept to not consider an existing difference as real
no more than one in five times (80% cutoff) or no more than one in ten times
(90% cutoff). In the first case the B error is 0.20, in the second case the [ error
is 0.10. However, the definition of the B error of a study is much less common
in the (radiologic) literature than the definition of the o error, as we shall see
in the next section and in Chapter 8 (Section 8.8).

3.3. Statistical Power

In published articles, the explicit declaration of the cutoff is very frequent for
o error (almost always o = 0.05) and much less common for B error. The rea-
son is that most published articles report results with at least one statistical-
ly significant difference. In these articles, the possibility of a B error is
excluded by the detection of one or multiple significances with p < 0.05. In
other words, if we have rejected the null hypothesis and not rejected (indi-
rectly accepted) the experimental hypothesis, this implies that the statistical
test has given a positive result with increasing probability that this is true, the
smaller is the p value (p is the residual probability of false positive). In all
these cases, given the positive result, there is no sense to questioning the
probability of false negative (3) and true negative (1 — B). If the result is pos-
itive, it cannot be negative.

One-tailed, two-tailed

False negative =
type Il error = B error

B=0.200r p=0.10

p as the residual probability of
false positive
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The B error problem

Power

Similarity between statistical
testing and clinical diagnosing

Four factors determing
the power

The [ error problem arises when we do not obtain any significance (p = 0.05).
In this case the null hypothesis is accepted and the experimental hypothesis
rejected. Here the question is: which B error (i.e. type II error, false negative)
was considered acceptable in the study? In other words, did the study have
sufficient power to detect a difference judged clinically relevant as signifi-
cant? If B is the probability of a II type error, the power is the complement to
1 of B:

power=1-f

We have already mentioned the useful similarity between true and false pos-
itives and negatives of a statistical test and those of a diagnostic examination.
In diagnostics, these numbers give rise to performance quantification in terms
of sensitivity, specificity etc. Even though there is a logical parallelism
between diagnostic sensitivity and statistical power (1 — B) just as there is
between diagnostic specificity and statistical complement to 1 of the o error
(1 — o), the diagnostic terminology classically does not apply to statistical
tests. In Table 3.1 we present the comparison between the 2 X 2 contingency
table of a diagnostic examination and that of a statistical test. Given the defi-
nitions of o error and [} error, the true positives become 1 — f3, i.e. a portion of
the unit, equal to sensitivity. Similarly, the true negatives become 1 — @, i.e. a
portion of the unit, equal to specificity.

What does power depend on? Basically, on four factors:

1. On the o error chosen by the authors. Larger o, less probable the acceptance
of the null hypothesis and lower the risk of type II error; smaller o, more
probable the acceptance of the null hypothesis and higher the risk of type II
error;

2. On the spread of the observed values, i.e. on the variability of the phe-
nomenon under investigation. When two samples are compared, this vari-
ability is added to the effect of random sampling: the lower the variabil-

Table 3.1. Comparison between the 2 x 2 contingency table of a diagnostic examination (A) and a sta-
tistical test (B)

A Truth
Disease present Disease absent
. . Positive True positives (TP) False positives (FP)
Diagnostic
examination Negative False negatives (FN) True negatives (TN)
B Truth
H, false; H, true H, true; H, false
Positive (1-p) Error o
Statistical (p < 0.05)
test
Negative

(p >0.05) Error B (1-0)
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ity, the lower the possibility that the two means of two samples drawn
from two different population are similar, causing a type II error; the
larger the variability, the larger the probability of a type II error. In fact,
the numerator of the standard error of the sample mean is the standard
deviation, i.e. a parameter measuring the spread of the observed values
(see Chapter 2);

3. On the amount of the minimal difference judged as clinically useful to
demonstrate. The larger this minimal difference, the smaller the probability
of type II error. This is simply due to the fact that detecting large differences
is easier than detecting small differences. Moreover, although real but unde-
tected, small differences are not a real type II error in medicine, since we
have a priori considered them as clinically irrelevant;

4. On the sample size. The larger the samples, the more frequently their
means tend to be the same as the single population from which they could
be drawn. As a consequence, the probability of detecting small real differ-
ences increases.

Now let us consider that: (1) o is almost always chosen equal to 0.05;
(2) the variability of the phenomenon under investigation cannot be sub-
stantially changed for the defined clinical and technical setting; (3) the
amount of minimal difference judged as clinically useful to demonstrate
depends on clinical considerations external to the study itself (a kind of
precondition of the study, as with pathophysiologic knowledge derived
from previous studies). Hence, the only factor we can handle to increase
the power of a study (i.e. to reduce the probability of type II error) is the
sample size. When we design a study, we should define not only the level
of o error, but also the amount of minimal difference judged as clinically
useful to demonstrate, the sample size, and the power of the study (1 — B).
Remember that the power of the study is basically determined by the sam-
ple size (see Chapter 8).

The similarity between the results of a diagnostic examination and the results
of a statistical test deserves one more comment. In the two fields the logical
path is inverted.

In diagnostics we put sensitivity in the front row, specificity in the second
row. In fact, diagnostic reasoning arose from clinical activity on symptomatic
subjects (the patients). In this setting the detection of an existing disease and
avoidance of false negatives is the main task. Only recently have we begun to
screen asymptomatic subjects where the first priority is to avoid false positives
(otherwise we would medicalize the normal population — see Section 1.3). In
diagnostic reasoning, sensitivity ([ error) comes first.

Conversely, statistical testing was introduced in medicine due to the need to
judge the efficacy of new treatments. In this setting the main aim is to avoid
falsely judging a new therapy as better than the placebo or standard of care, i.e.
we must avoid false positives. The calculation of the study power to quantify
(and minimize as much as possible) the risk of false negative (to judge an effec-
tive therapy as noneffective) is on a second line of reasoning. In medical sta-
tistical testing, o. error (specificity) comes first. Thus, we have an inverted log-
ical path in comparison with diagnostic reasoning. Statistical reasoning follows
alpha... betic order!

Sample size: the only factor
we can handle to increase the
power

Diagnostic versus statistical
reasoning

13
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Do we distinguish false
from true or improbable
from probable?

p < 0.05: historical and
methodologic reasons

p < 0.05 according
to R.A. Fisher

p < 0.05 according
to J. Neyman and E.S. Pearson

Decision-making

3.4. Why 0.05?

This is not a contrived question. We cannot simply answer the question by
stating that from around the 1960s onwards scientists increasingly chose o
= (0.05 as an established convention. In fact, this cutoff seems to have the
magic ability of distinguishing truth from untruth. This appears not very
“scientific”.

Firstly, a statistical cutoff separates what is probable from what is improb-
able as regards the null hypothesis, not untruth from truth. The philosophical
difference between the quantification of the uncertainty and the ultimate
demonstration of the experimental hypothesis was discussed above.
However, even if we remain in the field of probability, another question
needs to be asked: Why accept the null hypothesis with p > 0.05 and reject it
with p < 0.05? In other words, why does the scientific community universal-
ly accept that p < 0.05 implies statistical significance?

Historical and methodologic reasons explain this fact [SoLiaNt, 2007]. In the
early part of the last century, books on statistics reported many tables with long
series of p values. Ronald A. Fisher (1890-1962) shortened the tables previous-
ly published by Karl Pearson (1857-1936), not only for reasons of editorial
space but probably also for copyright reasons (Fisher and Pearson were not on
good terms). Some p values were selected and became more important. This
was due to the fact that Fisher wrote for researchers (the users) and not for
expert in statistics (the theoreticians). According to Soliani, Fisher “provides a
selection of probabilities which simplifies the choice and helps in decision
making” [SOLIANI, 2007]. Fisher himself attributed a special status to p = 0.05,
asserting explicitly: “The value for which p = 0.05, or 1 in 20, is 1.96 or near-
ly 2; it is convenient to take this point as a limit in judging whether a deviation
ought to be considered significant or not” [FISHER, 1956].

However, Fisher and his school (including Frank Yates, 1902-1994) were not
unshakeable for the use of the 0.05 cutoff. On numerous occasions, they pro-
posed a soft and problematic interpretation [SoLIANI, 2007], taking into
account factors of uncertainty, first of all the sample size. If n is small, the
interpretation of p values near the cutoff is uncertain.

From the late 1920s/early1930s, Jerzy Neyman (1894-1981) and Egon S.
Pearson (1896-1980), son of Karl, proposed a different approach — hypothesis
testing. In this conceptual framework, the cutoff value for p should be defined
before the experiment and the statistical result is taken into consideration only
as under the cutoff (significant) or equal to or over the cutoff (not significant).
The real value of p is barely relevant. Fisher was against this attribution of an
absolute value to the predefined cutoff and highlighted the need to report in
manuscripts the exact p value and to interpret its evidence. This conflict of
opinion can also be related to the debate between the frequentist statisticians
(like Fisher and Yates) and Bayesian statisticians (like Neyman and Pearson)
[SoLiant, 2007].

The Neyman-Pearson approach is useful in decision making, but it has evi-
dent limitations when we have small samples, especially when categorical vari-
ables make the use of non parametric tests mandatory. In these cases, changing
only one result may modify the p from values near to 0.01 to values over 0.05.
With large samples and asymptotic distributions we have more certainty.



Chapter 3 Null Hypothesis, Statistical Significance and Power 75

Moreover, modern computers permit the calculation of exact p values which
can be presented to the reader for an evaluation of the level of evidence.

What is the current practice in medical and radiologic journals? The o error
is almost always defined equal to 0.05. Hence, values of p < 0.05 are consid-
ered significant and values of p > 0.05 are considered not significant. The use
of a different cutoff (e.g. 0.1 or 0.01) should be explicitly justified (a job for a
professional statistician). It is recommended that exact p values always be pre-
sented, at least for the values which imply a significance (< 0.05), so that the
reviewer and the possible reader of the journal can evaluate the amount of
uncertainty associated with your p. Many journals accept that for p > 0.05 only
the non significance (n.s.) is reported. However, exact p values are increasing-
ly reported also for p > 0.05.

Therefore, we are in an intermediate situation between the rigid use of the
cutoff and a more debated evaluation of the p value we obtained. At any rate,
as we will see in the next section, even a rigid interpretation cannot ignore the
difference between statistical significance and clinical significance.

3.5. How to Read a p Value

The medical research conducted in recent decades has been characterized by
the application of this conceptual system (hypothesis H  and hypothesis H , sta-
tistical significance) and of technical statistical tools (parametric and non-para-
metric tests — see Chapters 4 and 5). Today, an original article (see Chapter 10)
without at least a minimal statistical analysis is barely acceptable by a peer-
reviewed journal. Moreover, original articles reporting one or multiple statisti-
cal significances (p < 0.05) and thus demonstrating the efficacy of new diag-
nostic or therapeutic procedures have a higher probability of being published
than articles reporting non significant results (p = 0.05)>. This implies a selec-
tion in publishing medical researches known as publication bias.

How then should a p value be interpreted?

The first rule is to evaluate its real amount. Knowing that “p < 0.05” is not
enough. There is a huge difference between p = 0.049 and p = 0.0049: the prob-
ability of being in error when stating there is a real difference between the two
samples changes from nearly 1 in 20 to nearly 1 in 200. We recommend always
giving the exact p value, with at least three decimals. This practice is increas-
ing even for p values = 0.05, which for a long time have simply been reported
as not significant (n.s.).

Remember that the p value directly measures the probability of a false posi-
tive result of the test, i.e. the probability of rejecting H, when H, is true and as
a consequence of accepting H, when H, is false. For example, suppose we com-
pare the sensitivity for a given disease of a new advanced imaging technique
(New) with that of the old technique (Old). If we obtain a p < 0.05 in favor of
a higher sensitivity of New compared with that of Old, the smaller the p value
is, the lower the error probability is which affirms that New is more sensitive

* In this book we do not examine the non-inferiority studies, for which we recommend the consul-
tation of specialized texts.

Always report the p values

Evaluate the real value of p

The p values directly measures
the probability

of a false positive result

of the statistical test



76  Biostatistics for Radiologists

Look at the raw data!

The p values does not quantify
the amount of the difference
between the two samples

than Old. It is counterintuitive that the amount of p does not measures the
amount of the difference in sensitivity between New and Old; p only measures
the reliability of our affirmation that New is more sensitive than Old, not the
extent to which New is more sensitive than Old.

A simple recommendation is to look at the data, the real raw numbers given
as results before any calculation or processing. For the example proposed
above, this involves asking how many true positives does New have compared
to Old. Compare the two sensitivities by evaluating the two ratios which gen-
erate them.

Example 3.1. Comparative study of the sensitivity of the New technique
versus the Old technique for disease X. Out of 1,000 patients, at the ref-
erence standard 682 are found to be affected and 318 not affected with X.
The sensitivity of Old is 0.72 (490/682), whereas the sensitivity of New is
0.73 (498/682). In fact, New detects all the 490 true positive at Old plus
another 8 which are false negative at Old. The sensitivity increases by about
1%, from 72% to 73%, with p = 0.008 (McNemar test — see Chapter 5), i.e.
lower than 0.01, and therefore with a high statistical significance. Thus, we
have less than 1% probability of being in error when stating that New is
more sensitive than Old for the disease X. However, the real amount of the
gain in sensitivity (only 1%) is clinically not relevant.

Always bear in mind that p does not quantify the amount of the difference
between two samples, rather p values quantify the reliability of our rejection of
H,. To see its practical meaning, we must look at the raw data. Use your common
sense to evaluate the real difference, even if this is statistically highly significant.
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Parametric Statistics

In Chapter 2 we introduced the fundamental hallmarks of Gaussian distribution,
thereby neglecting many other theoretical distributions which may also be found
in medical research. This preference is based on the simple fact that, even with
some limitations, almost all the other distributions tend to coincide with normal
distribution. The links between the theoretical distributions allow one to analyze
the sample data using, at the first level of approximation, statistical techniques
based on the hallmarks of Gaussian distribution. When, for example, we use the
coefficient 1.96 for the confidence interval calculation, we are implicitly using a
well known hallmark of normal distribution. If, on the other hand, we want to be
rigorous, we have to use the correct theoretical distribution, case by case.

The foundations of Statistics were mainly laid by Lambert A.J. Quetelet (1796-
1874), Francis Galton (1822-1911), Karl Pearson (1857-1936), William S.
Gossett (1876-1937), Ronald A. Fisher (1890-1962) and George W. Snedecor
(1881-1974). As stated in previous chapters, one of the goals of Statistics is to
infer the results observed in a limited sample to the entire population. However,
this approach was born around 1925, about 20 years after the publication of
research by William Sealy Gossett, in the journal Biometrika, conducted on sam-
ples of Guinness beer, the company he was working for due to the lack of an aca-
demic job [SoLiaNI, 2007]. So as not to reveal trade secrets to rival breweries,
Gossett’s employment contract restricted him from publishing the results of his
research. To circumvent this problem, he therefore published his results using the
pseudonym “A. Student”. These studies were published between 1907 and 1908.

"' In a controversial fashion about the academic world.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

Only naughty brewers deal in small samples.

KARL PEARSON

The importance of
Gaussian distribution

Statistics founding fathers
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The dispute which gave rise
to modern statistics

Differences between theoretical
and modern statistics

Before the publication of Gossett’s studies, statisticians were focused on the
exploration of theoretical distributions, namely the distribution of the entire
population®. Karl Pearson responded to the thesis of A. Student stating: “Only
naughty brewers deal in small samples”. Later, Ronald A. Fisher took up the
defense of Gossett replying:

“... the traditional machinery of statistical processes is wholly unsuited to the
needs of practical research. Not only does it take a cannon to shoot a sparrow,
but it misses the sparrow! The elaborate mechanism built on the theory of infi-
nitely large samples is not accurate enough for simple laboratory data. Only by
systematically tackling small sample problems on their merits does it seem pos-
sible to apply accurate tests to practical data” [quoted in SOLIANI, 2007].

We wanted to report this debate not only to provide an idea about the histor-
ical reasons that very often lie behind universally accepted theories, but also to
comment on the birth of modern statistics or practical statistics, which deals
with the methods suitable for analyzing small samples. Before this time,
nobody took into account the question of checking whether two samples
belonged to the same or to different populations, i.e. whether the two samples
were different for a variable, an effect, a treatment, etc. Before practical statis-
tics was born, the differences between two or more populations were studied
(when possible) by comparing the corresponding theoretical distributions.

In practical statistics, one of the most frequent practices is the comparison
between two or more samples initially considered as belonging to different popu-
lations. The typical example is that in which a group of individuals is treated with
the standard treatment and a second group with the experimental treatment. In this
case the logical approach is the following. One hypothesizes that the first group
belongs to the population treated in the standard way and that the second group
belongs to the population treated in the experimental way. If the diversity between
the two treatments produces a real statistically significant effect, then they actually
are different populations. On the other hand, if the two treatments do not produce
statistically significant differences, then the two populations coincide with each
other and the two samples have both been extracted from the same population.

In this chapter the main parametric statistical tests are presented. Student’s ¢
test will be given the broadest treatment because it is very easy to handle.
Moreover, it allows us to discuss the general approach which is adopted with
all parametric statistical tests.

4.1. The Foundations of Parametric Statistics
Gaussian distribution is characterized by only two parameters: mean and

standard deviation. Once we know these parameters, the distribution is
unequivocally defined. We saw in Chapter 2 how to obtain an estimation

? In theoretical statistics the population represents an infinitely large sample of statistical units, not
necessarily made up of human beings.



Table 4.1. Necessary conditions for applying parametric statistical tests

Object Description

Type of variables Continuous or at least interval variables
Distribution of the variables Normal or near-normal distribution

Variances Variances equal to each other (homoschedasticity)

of mean and standard deviation based on the sample data. The set of analy-
sis techniques whose logical approach is based on the features of normal
distribution make up parametric statistics. Alongside parametric statistics
is non-parametric statistics which does not rely on the features of normal
distribution.

Parametric statistics provides very powerful methods of analysis, but their
application requires that some hypotheses be verified, hypotheses which are
rarely encountered in radiologic research. A list of the necessary assumptions
for using parametric statistics is given in Table 4.1.

It is clear that parametric statistical tests can only be applied in the compar-
ison of continuous variables or variables measured with interval scales.
However, the classification of a radiologic examination is very often an ordi-
nal or dichotomous (positive/negative) result. The typical example of an ordi-
nal scale of measurement is the BI-RADS® [AMERICAN COLLEGE OF
RADIOLOGY, 2003] for mammography: 0, inconclusive; 1, negative; 2, benign;
3, probably benign; 4, suspicious abnormality; 5, highly suggestive of malig-
nancy; 6, already known malignancy. If we consider, for example, two samples
differing in the diagnostic examination used for their detection and for which
the measured variable is the BI-RADS® score, they cannot be compared using
parametric statistical tests. We shall see in the next chapter that the statistical
analysis of categorical data always requires non-parametric methods.

The second condition for applying parametric statistics involves the shape of
the distribution of the measured variable. In order to apply parametric statisti-
cal methods we always have to verify that the sample data have normal distri-
bution or, at least, provide some reasons for explicitly supposing this to be the
case. The use of parametrical methods with non-normally distributed samples
may provide false significant results. The further the data distribution is from
the Gaussian curve, the greater the error we make.

The third condition for using parametric methods, which is almost always
not verified, is homoschedasticity. This term indicates the situation in which
the compared variable has the same variance in the two populations. In prac-
tice we analyze the possible difference between, for example, two sample
means, even though our hypothesis is that the populations from which the
samples are extracted have the same variance. Let us suppose we extract two
random samples of breast cancers in symptomatic women (clinical mam-
mography) and asymptomatic women (screening mammography) and we
assess the difference of the mean tumor diameter. Even if we suspect that the
mean diameter is larger for clinical mammography than for screening mam-
mography, to use a parametric test we have to suppose (or to demonstrate)

Chapter 4 Parametric Statistics

Using parametric statistics
requires that some hypothesis
be verified

Requisition for continuous
variables

Requirement for normal

distribution

Requirement
for homoschedasticity
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Homoschedasticity hypothesis
simplifies the theory

that the variance is the same for the two samples, a condition which is not
necessarily true.

The characteristic of homoschedasticity is not an intuitive concept. The main
reason for taking this condition into account is the presence of the true vari-
ances at the numerator and at the denominator of the mathematical formula
developed in parametric methods. Although the true values are never known, if
they coincide with each other they disappear from the ratio, so leaving the for-
mula independent of them.

The reader should be aware that the concept of homoschedasticity may give
rise to confusion. Although this feature is among the necessary assumptions for
applying parametric methods, it is possible to modify the theory of Student’s ¢
test so as to include the most general case of non-homoschedasticity (het-
eroschedasticity). The inclusion of the general case is not intended to make the
discussion more difficult to understand, but it is necessary so that the reader
may understand the results provided by statistical software packages. In fact,
when performing Student’s ¢ test, these computer programs calculate the p
value both with and without the hypothesis of homoschedasticity.

Lastly, radiologic studies often deal with very small sample sizes which
makes checking the hypotheses reported in Table 4.1 all the more difficult.
Therefore, most of the time radiologists will prefer non-parametric statisti-
cal methods.

4.2. Comparison between Two Sample Means: Student’s t Test

In Chapter 3 we discussed the logical approach which lies behind the statisti-
cal tests for the verification of the null hypothesis H . There we stated that if
the probability of obtaining a result equal to or even larger than the observed
one (probability which is calculated with the null hypothesis being true) is
lower than the threshold value, conventionally chosen as 5%, then the null
hypothesis has to be rejected. Now let us consider how to calculate this proba-
bility when comparing two sample means.

We retrieve the definition of the 95% confidence interval of a sample mean m:

95%Cl =m = t, SE

where SE is the standard error of the mean, equal to the ratio between the sam-
ple standard deviation (s) from which m is calculated and the mean square root
of the sample size. Therefore, once we have a statistical sample, the width of
the 95%CI depends (other than on m and on s) on the t,, coefficient, which is
provided by suitable tables [ALTMAN, 1991].

By definition, 95%CI contains the true value of the population (also called
expected value) with a probability equal to 95% and we hope that the width of
this interval is as small as possible. As the width reduces we gradually have a
more precise estimation of the expected value; when to the limit, this width
becomes zero, the 95%CI coincides with the expected value. Without going
into the mathematical details, we may rewrite the previous equation as follows:

expected value = observed value -t SE



where the expected value takes the place of the 95%CI, while the observed
value is only an alternative way of indicating the sample mean m.
From the last equation we have:
t,.,SE = observed value — expected value

from which:

observed value — expected value
95% = SE

The aim of this mathematical process is not to propose a new way of cal-
culating confidence intervals; indeed, in the last equation the expected value
remains unknown. However, its utility becomes clear when we want to com-
pare two sample means, m, and m,. In this case we have a statistical test
whose null hypothesis is that the two means are not significantly different
from each other.

When comparing two sample means we focus on the difference (m, — m,)
which, if the null hypothesis H: m, = m, is true, produces an expected value
equal to zero. Now we have all we need to calculate t,,,, as:

t _ (m; —m,)—-0
o SE(m, —m,)

where SE(m, — m,) is the standard error of the difference of the two sample
means, whose calculation is illustrated in Sections 2.5 and 2.5.1. The t,,, value
has to be compared with the same tables used for the calculation of the confi-
dence intervals [ALTMAN, 1991], from which one obtains the probability p
which allows us to establish whether the difference (m, — m,) is statistically sig-
nificant. From a mathematical point of view, t,, can take positive or negative
values® and the larger its absolute value, the lower the corresponding p value is
and, therefore, the higher the significance of the difference between m, and m,
is. Conversely, the closer t,, is to zero, the larger the corresponding p value is
and the lower the significance of the difference is.

The theory reported here was developed by Gossett and the statistical test
performed by the calculation of the previous equation is known as Student’s t
test for the comparison of two sample means.

As we stated in the Sections 2.5 and 2.5.1, in practice we may encounter two
circumstances: the case of paired data and the case of independent data. In the first
case, the two compared statistical samples are obtained by measuring the same
continuous variable for a group of individuals before and after a certain treatment,
where the term treatment, as usual, has to be interpreted in the most general way.
The same is when two different treatments are applied to the sample. In the case
of independent data, the two sample means rely on different samples, namely on

* The reader should note that since Student’s ¢ distribution is symmetric about the zero, in the cor-
responding published tables only the positive values are reported, with which the absolute value of
t,,, should be compared.
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Verifying the conditions
for applying the t test

two groups made up of different individuals. At any rate, the logical approach of
Student’s t test is the same for the two cases and the sole difference is the calcula-
tion of the standard error of the two mean difference, SE(m, —m,).

Let us consider the following example.

Example 4.1. Measuring myocardial delayed enhancement in cardiac MR
imaging. Let us suppose we want to evaluate the difference in delayed enhance-
ment of the myocardium provided by two contrast agents (CAs). A sample of
50 post-ischemic patients undergo a cardiac MR with inversion recovery turbo-
gradient-echo sequence ten minutes after the injection of 0.1 mmol/kg of CA 1.
The signal intensity (SI), expressed in arbitrary units (a.u.), is measured in a
region of interest placed in the infarcted myocardium. A second sample made
up of another 50 post-ischemic patients is studied with the same technique but
using 0.1 mmol/kg of CA 2. Data are reported in Tables 4.2 and 4.3.

Now the question is: “Is the observed difference between the means 50.7 —
39.0 = 11.7 a.u. statistically significant? Or is this difference due to chance?”
In other words: “Should we accept or reject the alternative hypothesis H;: m =
39.0 au. # m, = 50.7 a.u.?” What we are proposing is a typical comparison
between two sample means for independent data in which n, = n, = 50.

The signal intensity is a continuos variable. Therefore, to apply Student’s ¢
test we have to verify that the data are normally distributed and that the vari-
ances of the two samples are approximately equal to each other. Figures 4.1
and 4.2 show the histograms of the signal intensity of Example 4.1. Since the
graphs have a near Gaussian shape, we are quite sure that signal intensity is a
random variable in both samples; moreover the two curves have about the same
width. The three assumptions reported in Table 4.1 for the application of the
parametric tests have all been verified.

Table 4.2. Signal intensity measurements after the administration of CA 1

Individual Sl (a.u.) Individual Sl (a.u.) Individual SI (a.u.)
1 38.74 19 39.39 37 42.25
2 39.26 20 40.30 38 36.40
3 39.13 21 39.65 39 36.50
4 40.56 22 38.48 40 35.62
5 37.18 23 41,99 4 39.52
6 38.61 24 36.27 42 39.65
7 37.40 25 37.05 43 40.30
8 40.17 26 37.57 44 38.48
9 40.56 27 40.82 45 38.74
10 38.22 28 41.08 46 38.60
" 37.96 29 39.13 47 39.00
12 38.87 30 39.78 48 39.13
13 38.30 31 39.91 49 38.74
14 37.18 32 38.61 50 39.13
15 4134 33 38.87
16 41.86 34 38.09 m, 39.0
17 39.26 35 39.13 s, 1.5
18 38.87 36 39.26 SE 0.2

Sl = signal intensity; CA = contrast agent; a.u. = arbitrary units.



Table 4.3. Signal intensity measurements after the administration of CA 2

Individual Sl (a.u.) Individual Sl (a.u.) Individual Sl (a.u.)
1 50.36 19 51.21 37 54.93
2 51.04 20 52.39 38 47.32
3 50.87 21 51.55 39 47.45
4 52.73 22 50.02 40 46.31
5 4833 23 54,59 4 51.38
6 50.19 24 47.15 42 51.55
7 48.62 25 48.17 43 52.39
8 52.22 26 48.84 44 50.02
9 52.73 27 53.07 45 50.36
10 49.69 28 53.40 46 50.18
" 49.35 29 50.87 47 50.70
12 50.53 30 51.71 48 50.87
13 49.79 31 51.88 49 50.36
14 4833 32 50.19 50 50.87
15 53.74 33 50.53
16 54.42 34 49,52 m, 50.7
17 51.04 35 50.87 s, 1.9
18 50.53 36 51.04 SE, 0.3
SI = signal intensity; CA = contrast agent; a.u. = arbitrary units.
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Variance pooled estimation

In order to calculate t,,, we now calculate the standard error of the difference.
Two possibilities are open to us. We can make the hypothesis of equal variance
in the two populations, or we can estimate such variance through the sample

variances s’ and s’,.

Homoschedasticity. If we have clear reasons to believe that the variances of
the two populations are the same or we have previously demonstrated that they
are not significantly different’, we can obtain a pooled estimation of the stan-
dard deviation, s, using both the sample variances as follows:

\j(n] —1)s? +(n, —1)s’
g o=

i+, —2

which represents the best estimation we have of the standard deviation of the
two pooled populations. In this way, the standard error to be used for the cal-

culation of t,, is:
1 1
SE(m, —m,)=s_|—+—
n, n,

Substituting each value we obtain:

SE(50.7-39.0) = /(50'1)]'5" FON=IY I el eidFan,
\ 50+ 50 -2 50 50

from which:

_(50.7-30.9)-0

os0s = =20.4
: 0.57

From the published tables of 7 distribution with (50 — 1) + (50 — 1) = 98
degrees of freedom [ALTMAN, 1991] we obtain p < 0.001 (p < 0.1%)°. Such a
value has to be interpreted as follows: if the null hypothesis H: m, = m, were
true, then we would have a probability less than 0.1% of observing a difference
as large as the observed one (11.7 a.u.) or larger. The advent of such a low prob-
ability leads us to reject the null hypothesis and to accept the alternative
hypothesis H,. The signal intensity of the delayed enhancement using CA 2 is
therefore significantly higher than that obtained using CA 1.

Heteroschedasticity. If we do not wish to make the hypothesis that the vari-
ances of the two populations are the same or we have previously demonstrated
that they are significantly different from one another, the standard error of the
difference is calculated as defined in Section 2.5:

* There is a specific statistical test, called F test, for verifying homoschedasticity. This test, how-
ever, is beyond the aims of this book.

* The reader should note that when values less than 0.001 are obtained the indication p < 0.001 is gen-
erally reported, which nonetheless fails to provide information on how much p is less than 0.001.



where s? and s*, are the two sample variances. Substituting each value we
obtain:

3

1.5 1.9°
SE(50.7-39.0)=,]—+——=0.34
( ) 35 T 50 a.u.
from which:
e (50.7-39.0)-0 —345
; 0.34

From the published tables of ¢ distribution with (50 — 1) + (50 — 1) = 98
degrees of freedom [ALTMAN, 1991] we obtain p < 0.001 (p < 0.1%). This value
should be interpreted in exactly the same way as in the case of homoschedas-
ticity: if the null hypothesis H: m = m, were true, then we would have a prob-
ability less than 0.1% of observing a difference as large as or larger than the
observed one (11.7 a.u.). The advent of such a low probability leads us to reject
the null hypothesis and to accept the alternative hypothesis H,.

The reader should note that the two methods provide almost identical results
and, in fact, the heteroschedasticity calculation produces even higher signifi-
cance (t,,, = 34.5 instead of t,, = 20.4). The greater the difference between the
two variances, the larger the difference is between the results of the two calcu-
lation methods. Conversely, if the two sample variances coincide with each
other, then the two methods provide exactly the same results.

Let us make another observation. We just saw that Student’s ¢ test may be
applied both to paired and independent data and that the sole difference for the
calculation of the t,, coefficient is the way of obtaining the corresponding
standard error of the difference SE(m, — m,). With independent data we also
saw how to differentiate between homoschedastic and heteroschedastic data.
The distinction between homoschedasticity and heteroschedasticity may also
be applied when calculating the confidence interval of the difference of the two
sample means. In fact, also for the calculation of the confidence interval, the
sole difference between the case of paired data and independent data is the cal-
culation of the standard error. In Section 2.5, for the sake of simplicity, we only
discussed the general case of heteroschedasticity.

4.2.1. The Link with Confidence Intervals

We wanted to introduce Student’s ¢ test starting from the definition of confi-
dence intervals in order to stress the strong link between the two concepts: a
probabilistic conceptual bridge.

Let us consider once again the comparison between two sample means, m,
and m,. Suppose we compare the mean electron density in CT of a certain
anatomic structure in two samples and we obtain a difference equal to 25
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Hounsfield units (HU) with a 95%CI = [10, 40] HU. For the observed dif-
ference to be statistically nonsignificant, the 95%CI would need to contain
zero, i.e. the expected value we would obtain if the null hypothesis were
true. In the proposed example zero is not contained in the 95%CI, so we may
conclude that the difference of 25 HU is statistically significant, even with-
out performing Student’s ¢ test. Conversely, if the 95%CI had been, for
example, [-5, 55] HU, then the observed difference should be statistically
nonsignificant.

Another way of comparing two sample means is to compare the correspon-
ding confidence intervals. In Example 4.1, the confidence intervals of the two
sample means are:

95%CI1(50.7) = 50.7 + 2.010x0.3 = [50.2, 52.7] a.u.
95%CI1(39.0) = 39.0 + 2.010x0.2 = [38.6, 41.0] a.u.

The two confidence intervals do not overlap each other, so again we can con-
clude that the difference of 11.7 a.u. is statistically significant.

Therefore, we have introduced three methods of checking whether the differ-
ence between two sample means is statistically significant:

— performing Student’s ¢ test;

— calculating the confidence interval of the difference and verifying whether
zero is contained in this interval;

— calculating the confidence intervals of the two sample means and verifying
whether they are overlapping.

Although these three methods may appear different from each other, from a
mathematical point of view they are all equivalent.

4.3. Comparing Three or More Sample Means:
the Analysis of Variance

In some circumstances one wants to compare three or more sample means, for
example, in cases where the overall group of individuals is subdivided into
three or more samples instead of two. Reconsidering Example 4.1, if we had
introduced a third contrast agent we would have divided the initial group of
100 patients in three independent samples with sizes n,, n, and n,; the null
hypothesis should be modified as follows:

H:m =m,=m,

The alternative hypothesis should involve at least one inequality between the
means.

The case just described concerns the comparison of three or more independ-
ent samples. Another possibility is the comparison between three or more treat-
ments in the same statistical sample. Let us suppose, for example, we measure
renal volume by ultrasound, MR and CT and we compare the observed results



to assess any differences between the three diagnostic methods. In order to do
so0, a sample made up of » individuals could undergo all the three examinations.

Can Student’s ¢ test be performed for all the possible combinations? With only
three sample means, for example, we could perform the ¢ test to compare m, and
m,, m, and m,, m, and m,. However, this approach, although possible, is unad-
visable. With both paired and independent data the right analysis method is the
analysis of variance (ANOVA, ANalysis Of VAriance) but the calculation proce-
dure is different for the two cases. In the next two sections we will see how to
approach and interpret the analysis of variance, referring the reader to special-
ized texts for the mathematical details. Obviously, the ANOVA method may also
be applied to the comparison of only two sample means: in this case it provides
the same results as Student’s ¢ test. Lastly, note that the application of the
ANOVA method also requires the verication of the conditions listed in Table 4.1.

4.3.1. ANOVA for Independent Groups

This type of analysis is applied to data organized as in Table 4.4.

As its name suggests, the analysis of variance consists of exploring the com-
ponents of the overall observed variance. The overall variance is calculated
pooling the data from all the groups, in such a way as to make a single sample
whose variance is indicated by s> and whose mean is indicated by m.
Remembering the definition of the variance, the overall variance is the sum of
the squares of the differences between each sample unit and the mean, divided
by the number of degrees of freedom (n,+ n,+ ... + n,— 1)°. Now we have to
introduce two other types of variability: the within groups variance and the
between groups variance. The within groups variance is calculated as the sum
of the squares of the differences between each statistical unit and the mean of
the corresponding group.

Now we shall apply the analysis of variance to the data of Example 4.1. The
overall mean (calculated on all 100 patients) is m = 44.9 a.u. with an overall
variance s> = 37.4 a.u.’. From the signal intensity of each patient treated with

Table 4.4. Data organization scheme for the analysis of variance*

Group 1 Group 2 Group N
Individual 1 Individual 1 Individual 1
Individual 2 Individual 2 Individual 2
Individual n, Individual n, Individual n,

m m m

1 2 N

5 5, Sy

*The measured variable has to be the same for all the groups.

¢ For the following discussion, it is convenient to express variance in this way, i.e. the sum of the
squares of the differences between each sample unit and the mean, divided by the number of
degrees of freedom.
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The overall variance is the
sum of the variances within
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true, F would tend to 1

The F distribution has two
types of degrees of freedom

CA 1 we subtract m = 39.0 a.u., while from the signal intensity of each patient
treated with CA 2 we subtract m, = 50.7 a.u.; each difference has to be squared
and, last of all, these squares have to be summed. The overall sum is divided
by the number of degrees of freedom (equal ton, +n, +...+n - N), 100 -2 =
98 for Example 4.1. The between groups variance is calculated as the sum of
the squares of the differences between each sample mean (m,) and the overall
mean m; this sum is then divided by the number of degrees of freedom N — 1
(i.e. the number of groups minus 1). Now we can demonstrate that the overall
variance is the sum of the variances within and between groups.

The logic of the analysis of variance for independent data is the following: if
the null hypothesis were true, i.e. if all the sample means m, were equal to each
other, then we would think of the data in Tables 4.2 and 4.3 as all extracted from
the same population and that there should be no differences between the two
types of variance. In other words: belonging to any group does not influence the
overall variability. For this reason, if the null hypothesis were true, the ratio

between groups variance
within groups variance

should be equal to 1. In response to the previous statement the reader may think
of the between groups variance as a measure of how much the individual
means differ from the overall mean, a variability that could depend on an actu-
al difference between the groups. In addition, the within groups variance is a
measure of the variance that we would observe if all individuals belonged to
the same population. Therefore, it is clear that if belonging to one group instead
of another has a real effect on the corresponding mean, then F increases, and
the larger the difference between the sample means, the larger the F value is.

As for Student’s ¢ test, the F value has to be compared with suitable published
tables [ALTMAN, 1991] from which one can obtain the corresponding p value,
namely the probability of observing an F value as large as or higher than the
observed one, if the null hypothesis were true. Since F is defined as a ratio, and
since the numerator and denominator have different degrees of freedom, the F
value is characterized by both the degrees of freedom, and the published tables
of F values are organized in such a way as to report the most common combi-
nations of degrees of freedom. Table 4.5 reports the results of the analysis of
variance applied to Example 4.1.

In this case, if the null hypothesis H: m, = m, were true, then the probabili-
ty of observing a difference equal to or higher than 50.7 — 39.0 = 11.7 a.u. is

Table 4.5. Result of the analysis of variance applied to Example 4.1*

Source of Degrees of Sum of Variance F ]
variation freedom  the squares (a.u.)? (a.u.)?
Between groups 1 3425.6 3425.6 1193.1 <0.001
Within groups 928 2814 2.87
Total 99 3707.0

*The variance is calculated as the sum of the squares divided by the number of degrees of freedom.



less than 0.1%. Since this possibility was actually observed despite the low
probability, we may conclude that the null hypothesis has to be rejected and
that the alternative hypothesis H: m, # m, may be accepted. Again, the read-
er should note that the p value is the same value obtained using Student’s # test
with the homoschedasticity hypothesis’.

4.3.2. ANOVA for Paired Data

The ANOVA method for independent data introduced in the previous section is
the natural generalization of the case of more than two sample means of
Student’s ¢ test for independent data. Now we shall see the corresponding gen-
eralization of the ¢ test for paired data.

Let us consider the following example.

Example 4.2. Comparison of four regimens of administration of contrast
agent for myocardial delayed enhancement. Suppose we wish to assess the
difference between the following four regimens of administration of contrast
agent for delayed enhancement of the myocardium with MR imaging®:

— injection of a dose equal to 0.05 mmol/kg of bodyweight;

— injection of a dose equal to 0.05 mmol/kg of bodyweight followed by a
second injection after ten minutes with the same dose;

— injection of a dose equal to 0.1 mmol/kg of bodyweight;

— injection of a dose equal to 0.1 mmol/kg of bodyweight followed by a
second injection after ten minutes with the same dose.

For this purpose the signal intensity (in arbitrary units) is measured in a
region of interest placed in the infarcted myocardium for a sample of 13 post-
ischemic patients undergoing an MR examination with inversion recovery
turbo-gradient-echo sequence. Data are reported in Table 4.6.

In Example 4.2 all 13 patients undergo four MR examinations, one for each
regimen of administration, unlike Example 4.1, where we extracted a different
sample for both contrast agents. This approach is much more powerful than that
used for independent data, because it allows us to focus on the differences with-
in each individual of the sample, differences due to the variable placed in
columns’. For the sake of clarity, we will not verify the conditions for the appli-
cation of the ANOVA analysis.

The reader may easily see that the distinction we introduced in the previous sec-
tion regarding between groups variance and within groups variance no longer holds

" To be rigorous, when the F numerator has only one degree of freedom (i.e. when we are compar-
ing only two sample means) it is F = t*

® Note that a study like this has been really performed by our research group. However, for ethical
reasons, to avoid the need of four examinations and four contrast injections in the same patient,
each patient underwent only two exams, each of them with two sequential contrast administrations
(0.05 mmol/kg followed by 0.05 mmol/kg and 0.1 mmol/kg followed by 0.1 mmol/kg, in random-
ized order of priority).

° Often, the variable placed in a column is called factor.
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Table 4.6. Signal intensity for the four regimens of administration of contrast agent of Example 4.2*

Patient  0.05 mmol/kg 0.05+0.05 mmol/kg 0.1 mmol/kg 0.1+0.1 mmollkg m s
1 51.0 485 321 45.1 44.2 84
2 21.5 57.2 55.5 75.2 53.9 19.7
3 66.9 457 54.0 81.6 62.1 15.7
4 15.2 54.6 394 49.8 39.8 17.6
5 484 49.1 3.7 52.1 483 3.5
6 12.1 243 45.2 49.9 329 17.8
7 29.1 30.6 433 75.3 44.6 215
8 38.6 34.0 25.2 503 37.0 10.5
9 51.6 36.2 371 26.2 37.8 105
10 11.6 37.0 22.7 36.3 26.9 121
" 416 26.9 30.6 28.1 31.8 6.7
12 38.2 421 41.0 38.7 40.0 19
13 243 52.8 29.0 536 39.9 15.5
m 35.1 415 384 50.9 415
s 17.0 10.8 10.2 175 9.4

*Data are signal intensities expressed in arbitrary units.
Note that the occurence of different standard deviation (s) should be considered as a contraindication to the use of para-
metric ANOVA. The reader can retain this table only as an example to show the logic of the method.

and that a new distinction has to be made regarding between subjects variance and
within subjects variance. This difference depends on the data symmetry (see Table
4.6) which allows for the calculation of the mean and of the variance both in a hor-
izontal and in a vertical way. However, while the overall variance with independ-
ent data is the sum of the between groups and within groups variances, with paired
data, in addition to the between subjects and within subjects variances there is also
a residual variance. Moreover, for Example 4.2 the within subjects variance may
also be considered as a kind of between regimens of administration variance. The
question is: “Does the mean signal intensity depend on the regimen of administra-
tion of the contrast agent?” In other words: “Are the differences between the means
calculated for each regimen of administration statistically significant?”’

For the mathematical details the reader should refer to specialized texts. Here
we report the results of the ANOVA method for the data in Example 4.2, as pro-
vided by a common statistical software package (Table 4.7).

Now we shall see how to interpret the data in Table 4.7.

As usual, each single variance is calculated by dividing the corresponding
sum of squares by the degrees of freedom, while the F value is obtained by
dividing the corresponding variance by the residual variance. From the pub-
lished tables [ALTMAN, 1991] of the F distribution with 12 and 36 degrees of
freedom and with 3 and 36 degrees of freedom we obtain the p value. The
first p value (p = 0.027) indicates that the differences between the patients (in
terms of signal intensity) are statistically significant; this result is of little
interest and does not answer the question we posed. The second and more
important p value (p = 0.016) indicates that also the differences between the
four regimens of administration of the contrast agent are statistically signifi-
cant, i.e. the mean signal intensity depends on dose and administration regi-
men of the contrast agent.



Table 4.7. Results of the analysis of variance for Example 4.2*

Source Degrees of Sum of Variance
of variation freedom the squares (a.u.)? (a.u.)? F P
Subjects 12 42453 353.8 2.30 0.027
Regimens of 3 1820.5 606.8 3.94 0.016
administration
Residuals 36 5540.9 153.9
Total 51 11606.7

*The variance is the ratio between the sum of the squares and the number of degrees of freedom. The F value is the
ratio between the corresponding variance and the residual variance. a.u. = arbitrary unit.

4.4. Parametric Statistics in Radiology

Due to the underlying assumptions related to normal distribution, parametric
techniques have a general meaning in biostatistics. In fact, it can be demon-
strated that all parametric techniques belong to the same mathematical scheme.
Moreover, they introduce the general conceptual scheme of the hypothesis
tests. These are very powerful tests, able to demonstrate the significance of
small differences and/or of differences found in small samples.

However, this power depends on stringent conditions, which include:

— the variable type (necessarily continuous);

— the data distribution (necessarily normal);

— the variance (which when comparing two or more sample means are neces-
sarily not statistically different from each other).

Therefore, parametric techniques depend on distribution.

In radiologic research we commonly measure categorical or ordinal vari-
ables. Moreover, even when measuring continuous variables, we often have
non-normal distributions (mean and median are far from each other) or the
sample size does not allow us to demonstrate if we are dealing with normal dis-
tributions. Therefore, rarely may we correctly use parametric methods; even
rarer are the cases in which the conditions for their application are verified (this
verification should always be performed by statisticians).

Despite their lower power than the corresponding parametric tests, non-paramet-
ric statistical tests are more frequently used in scientific radiologic studies because:

— they are able to handle non-continuous variables;
— they allow the radiologist to not verify the conditions described above.

However, the fundamental concepts of parametric statistics need to be under-
stood in order to understand those of non-parametric statistics.
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Non-Parametric Statistics

Mathematicians are like Frenchmen:
whatever you say to them
they translate into their own language

and forthwith it is something entirely different

The birth of non-parametric statistics is historically related to the solution of
methodologic problems in experimental psychology. It was Stanley S. Stevens
(1906-1973) who solved the question about the inappropriate use of measure-
ment scales; he also proposed a new classification that gave rise to the distinc-
tion between nominal scales, rank scales, interval scales and continuous scales, a
distinction we introduced in Chapter 2 (see Table 2.1). Based on this, behavioral
science statistics was developed in the 1940s, in part thanks to other researchers
such as Quinn McNemar (1900-1986), Frederick Mosteller (b., 1916) and
Anthony W.F. Edwards (b., 1935), with a large use of non-parametric methods
[CarAcciOLO, 1992]. Moreover, non-parametric statistics is also the result of a
broader discussion between the founding fathers of Theoretical Statistics and the
founding fathers of Modern Statistics (see Introduction to Chapter 4).

Since the studies of Francis Galton (1822-1911), statisticians have extensive-
ly applied the hallmarks of Gaussian distribution. In practice, they performed
calculations and arrived at conclusions without verifying the necessary condi-
tions for the use of parametric methods. They made many relevant errors such
as using the analysis of variance with dichotomous variables.

The definition of non-parametric statistics is based on the absence of bonds
related to normal distribution parameters. The logical link is the following:
parametric statistics is based on Gaussian distribution features which, in turn,
depends on only two parameters, the mean and standard deviation. Since the
new methods do not impose any conditions on the distribution shape, they are
called non-parametric tests, because they are not based on the mean and stan-
dard deviation.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

JOHANN WOLFANG GOETHE

Non-parametric statistics
poses fewer bonds
to data distribution
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This definition may be confusing for the reader, especially if we consider that,
when going into mathematical details, non-parametric statistics also uses many
indices and parameters. A more correct terminological framework sees the
absence of a priori assumptions regarding distribution shape. For example, a
more appropriate term may be distribution-free. However, the term “distribution
free” suggests the data distribution type has no importance. Actually, many non-
parametric methods also require that some less stringent assumptions on distri-
bution shape be satisfied. At any rate, regardless of the above considerations,
these tests are now most commonly referred to as “non-parametric tests”.

One very important advantage of these tests is their versatility — in fact they
have a wide range of applications. As stated in Chapter 4, we may only use
parametric statistics with continuous data. This limitation is due to the type of
the mathematical calculations that the data undergo, starting from the calcula-
tion of the mean and standard deviation; moreover, this limitation reduces the
number of parametric tests. On the other hand, non-parametric statistical tests
can be used to analyze all types of variables and measurement scales and this
important feature enabled the development of many statistical tests, each for a
specific task. This latter characteristic has an important impact on radiologic
research, where all types of variables appear. Another valuable advantage of
non-parametric statistics is its power with small samples.

This chapter, unlike the previous one, does not describe the mathematical
details of these tests. This decision was made on the one hand to give more
space to conceptual aspects, and on the other to provide the reader with a kind
of practical guide, i.e. a reference book to establish which is the more suitable
test on a case-by-case basis. Although for each test we briefly describe the cal-
culation procedure, our advice is to use dedicated statistical software. The dis-
cussion scheme is organized based on the various circumstances one can come
across in practice. For each test one or more examples are presented. We refer
to the systematic classification proposed by Sidney Siegel and N. John
Castellan Jr [SIEGEL AND CASTELLAN, 1992].

5.1. One Sample with Two Paired Measurements

The comparison between pairs of dependent measurements (paired data), typ-
ically two observations within the same individuals, may be performed by
many non-parametric tests. Examples of this include patients undergoing two
different imaging modalities or with two different techniques of the same imag-
ing modality (high and low spatial resolution, with and without contrast agent,
two different MR sequences, etc.) or before and after a certain therapy with the
same modality and technique.

5.1.1. Variables Measured with Dichotomous Scale

In this case the right test is the McNemar test on changes or, with small sam-
ples, the binomial test. These tests can be applied every time the measurement
has a dichotomous trait such as yes/no or positive/negative. This is the typical
case of studies of diagnostic performance, because a radiologic examination
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provides its result in terms of the presence (positive result) or absence (nega-
tive result) of disease. It is also possible to use the McNemar test with variables
measured with higher level measurement scales, after being dichotomized dis-
tinguishing values lower and higher than a certain threshold. In the following
example we consider the simple case of the presence/absence of a certain find-
ing in two mammograms performed by the same patient but with two different
breast compression techniques.

Example 5.1. One hundred women who undergo a periodically scheduled
mammography are enrolled in a prospective study aimed at evaluating a
new breast compression system called biphasic compression (BC). With
this technique the compression plate initially comes down at an angle of
22.5° to the film cassette and then finishes parallel to it. Following a ran-
domization protocol, 25 women undergo the craniocaudal (CC) view of the
right breast twice, once with the standard monophasic compression (MC)
system and once with the biphasic compression; similarly, 25 women
undergo the CC view of the left breast twice; 25 women undergo the medio-
lateral-oblique (MLO) view of the right breast twice; 25 women undergo
the MLO view of the left breast twice. Moreover, the performing order of
the two compression techniques and the execution of the mammogram
pairs by Radiographer 1 and Radiographer 2 are also randomized. During
the examinations measurements are made of the compressed breast thick-
ness and the distance between the anterior nipple surface and the posterior
margin of the film for the CC view and the distance between the anterior
nipple surface and the anterior margin of the pectoral muscle for the MLO
view (posterior nipple line). The visibility of the pectoral muscle for the CC
view and that of the submammary fold for the MLO view serve as quality
index [SARDANELLI ET AL, 2000].

The reader will have noted that example 5.1 deals with different variables. The
breast thickness and the exposure parameters are continuous variables; the visibil-
ity of the pectoral muscle and the submammary fold are dichotomous variables.

A part of the results is summarized in Table 5.1.

Now let us here consider the dichotomous variable. As shown in Table 5.1,
for the CC view the pectoral muscle was visible in 27 out of 50 mammograms
(54%) performed with biphasic compression and in 17 out of 50 mammo-
grams (34%) performed with standard compression. For the MLO view, the
submammary fold was visible in 45 out of 50 mammograms (90%) and in 36
out of 50 mammograms (72%), respectively. The McNemar test demonstrates
a significant difference in favor of the biphasic compression both for the CC
view (p = 0.006) and for the MLO view (p = 0.022).

Procedure. The McNemar test only considers changes, i.e. the sample units
whose two measures are different from each other. The null hypothesis expects
that the number of changes should be equiprobable in both directions and,
therefore, that half of the discrepancies concern individuals that pass from
“positive” to “negative” and that half pass from “negative” to “positive”
(expected discrepancies). The concordances, i.e. the statistical units whose

The McNemar test
only considers changes
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Table 5.1. Results of the study of the Example 5.1 (part one)
Findings With Breast BC versus Standard MC at X-ray Mammography

Findings BC MC
Posterior nipple line distance (cm)
cc
Mean = 5D 105 23 10222
Range 6.0-15.3 6.0-14.6
MLOT
Mean = SD 1.0+ 21 10.8 = 2.1
Range 6.4-15.1 6.2