

Essentials of Neonatal Ventilation

With Best Regards
Dr. Alhaytham Dahdal
MBBS, MRCPCH UK, PABHS, PSCMS
Paediatric Senior Registrar
KSAFHNWR – Tabuk – KSA
For more books :
Alhaytham59@yahoo.com
nwafhpaededuc@gmail.com
Page left intentionally blank

Essentials of

Neonatal Ventilation

P.K. Rajiv

DCH, MD

Fellowship in Neonatology (Australia), Prime Hospitals and Clinics, Burjuman Centre, Dubai, United Arab Emirates (ex Professor of Neonatology Amrita Institute of Medical Sciences, Kochi, Kerala, India)

Dharmapuri Vidyasagar

MD, FAAP, FCCM, PhD(Hon)

Professor Emeritus Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL, United States

Satyan Lakshminrusimha

MD, FAAP

Professor and Dennis and Nancy Marks Chair of Pediatrics, Pediatrician-in-Chief, UC Davis Children's Hospital, University of California, Davis, Sacramento, CA, United States

Foreword by

Richard A. Polin

MD

William T. Speck, Professor of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, United States

Director, Division of Neonatology, Morgan Stanley Children's Hospital of New York-Presbyterian, New York, NY, United States

ELSEVIER

RELX India Pvt. Ltd.

Registered Office: 818, Indraprakash Building, 8th Floor, 21, Barakhamba Road, New

Delhi-110001 Corporate Office: 14th Floor, Building No. 10B, DLF Cyber City, Phase II, Gurgaon-122 002, Haryana, India

Essentials of Neonatal Ventilation, 1e, P.K. Rajiv, Dharmapuri

Vidyasagar, Satyan Lakshminrusimha

Copyright © 2019 by RELX India Pvt. Ltd.
All rights reserved.

ISBN: 978-81-312-4998-7

e-Book ISBN: 978-81-312-4999-4

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

Notice

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds or experiments described herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made. To the fullest extent of the law, no responsibility is assumed by Elsevier, authors, editors or contributors in relation to the adaptation or for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Content Strategist: Sheenam Aggarwal

Content Project Manager: Ayan Dhar

Cover Designer: Milind Majgaonkar

Senior Production Executive (India and SEA): Ravinder Sharma

Typeset by: Thomson Digital

Printed in India by

Thouseef Ahmed, MD
Specialist Neonatologist, NMC
Hospital, Dubai, United Arab
Emirates

Said A. Al-kindī, BHSc, MD,
DCH, MRCPCH, FRACP
Armed Forces Hospital,
Muscat, Sultanate of Oman

Namasivayam Ambalavanan, MD
Professor of Pediatrics, University of
Alabama at Birmingham, Birmingham,
AL, United States

K. Shreedhara Avabrahata, MD,
DNB (Pediatrics)
Professor, Dept of Pediatrics,
Fr.Muller Medical College, Mangaluru,
Karnataka, India

Rakhi Balachandran, MD Amrita
Institute of Medical Sciences and
Research Centre, Amrita Vishwa
Vidya Peetham, Kochi, Kerala, India

Jeya Balaji, MD
Fellowship in Neonatology,
Professor, Department of
Pediatrics and
Neonatology, Velammal Medical
College and Research Institute,
Madurai, Tamil Nadu, India

Dushyant Batra, MRCPCH
Nottingham University Hospitals
NHS Trust, Nottingham, United
Kingdom

Catherine C. Beaulieu, MD UT
Health McGovern Medical School,
Houston, TX, United States

Nagamani Beligere, MD, MPH
Associate Professor, University of
Illinois Medical Center, Chicago, IL,
United States

Anita Bhandari, MD
University of Pennsylvania,
Children's Hospital of Philadelphia,
Philadelphia, PA, United States
Vineet Bhandari, MD, DNB, DM
Professor and Division Chief, Drexel
University College of Medicine, St.
Christopher's Hospital for Children,
Philadelphia, PA, United States

Rama Bhat, MD, FAAP
Professor Emeritus Pediatrics,
University of Illinois, Chicago, IL,
United States

Manoj Biniwale, MBBS, MD,
MRCP, MRCPCH, FAAP
Keck School of Medicine of USC,
LAC+USC Medical Center, Los
Angeles, CA, United States

John P. Breinholt, III, MD UT
Health McGovern Medical School,
Houston, TX, United States

Ilia Bresesti, MD
"V. Buzzi" Children's Hospital,
Milan, Italy

Bert Bunnell, ScD, FAIMBE
Biomedical Engineering, University
of Utah, Salt Lake City, UT, United
States

Dinesh K. Chirla, MD, DM,
MRCPCH, CCST
Rainbow Children's Hospital,
Hyderabad, Telangana, India
Swarup K. Dash, MD, DNB
Senior Neonatologist, Latifa
Women and Children Hospital,
DHA – Dubai, United Arab
Emirates

Narendra Dereddy, MD, FAAP
Associate Professor, University of
Central Florida, Associate Medical
Director, Neonatology at Advent
Health Hospital for Children,
Orlando, FL, United States

Ramasubba Reddy Dhanireddy, MD
University Distinguished Professor,
Professor of Pediatrics, Obstetrics
and Gynecology, University of
Tennessee Health Science Center,
Memphis, TN, United States

Vikramaditya Dampa, MD, FAAP
NYU Winthrop Hospital, Mineola, NY,
United States

Khaled El-Atawi, Mb.Bch, M.Sc.,
PhD, iFAAP, FRCPCH (Pediatrics) &
M.Sc. (HCM)
Consultant Neonatologist, Latifa
Women and Children Hospital,
DHA – Dubai, United Arab
Emirates

Mahmoud Saleh Elhalik, MD,
DCH, ABP, FAAP, FRCPCH

Latifa Women and Children Hospital, Dubai, United Arab Emirates
Ahmed Zakaria Elmorsy, Mb.Bch, M.Sc. (Pediatrics) Senior Neonatologist, Latifa Women and Children Hospital, DHA – Dubai, United Arab Emirates

Kimberly S. Firestone, MSc, RRT Akron Children's Hospital, Akron, OH, United States
Regan E. Giesinger, MD, FRCPC University of Iowa, Iowa City, IA, United States
Hariram M., MD, DCH Neonatologist and Head of

Pediatrics Fortis Hospital, Bannerghatta Road, Bangalore, India

Helmut D. Hummler, MD, MBA Chief Division of Neonatology, Department of Pediatrics, Professor of Pediatrics adj., University of Ulm, Germany

Contributors

Abbas Hyderi, MD, FRCPC, FAAP University of Alberta, Stollery Children's Hospital, Edmonton, AB, Canada

Lucky Jain, MD, MBA Richard W. Blumberg Professor and Chair of Pediatrics, Chief Academic Officer, Children's Healthcare of Atlanta

Jegen Kandasamy, MD University of Alabama at Birmingham, Birmingham, AL, United States

Martin Keszler, MD, FAAP Professor of Pediatrics, Brown University, Women and Infants Hospital, Providence, RI, United States

Abrar A. Khan, MD Latifa Women and Children Hospital, Dubai, United Arab Emirates

Junaid Muhib Khan, MD, FRCP, FFAF, FAAP, CMQ Al-Rahba Hospital/Johns Hopkins Medicine International, Abu Dhabi, United Arab Emirates

Sai Sunil Kishore M., MD (Pediatrics), DM (Neonatology) Mycure Hospital, Visakhapatnam, Andhra Pradesh, India

G. Ganesh Konduri, MD Professor of Pediatrics and Chief of Neonatology Division, Muma Endowed Chair of Neonatology, Children's Research Institute, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI, United States

Mathew Kripail, MD Neonatologist, Sultan Qaboos University Hospital, Muscat, Oman

Raman Krishna Kumar, MD, DM

Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India

Praveen Kumar, DCH, MD Associate Chair, Department of Pediatrics, Visiting Professor of Pediatrics, University of Illinois, Children's Hospital of Illinois, Peoria, IL, United States

Satyan Lakshminrusimha, MD, FAAP Professor and Dennis and Nancy Marks Chair of Pediatrics, Pediatrician -In-Chief, UC Davis Children's Hospital, University of California, Davis, Sacramento, CA, United States

Laurence Lequier, MD, FRCPC Stollery Children's Hospital, University of Alberta, Edmonton, AB, Canada

Gianluca Lista, MD, PhD "V. Buzzi" Children's Hospital, Milan, Italy

Suzanne M. Lopez, MD UT Health McGovern Medical School, Houston, TX, United States

Mohamed M A Soliman, MBBCh, MSc, MRCPCH, EPIC Specialist Paediatrics and Neonatology, National Research Centre, Giza, Egypt

Manoj N. Malviya, MBBS, MRCP (UK) Khoula Hospital, Muscat, Sultanate of Oman

Mark C. Mammel, MD, FAAP Professor of pediatrics, University of Minnesota Medical Center, Saint Paul, MN, United States

Prakash Manikoth, MBBS, DCH, MRCP (UK), FRCPCH The Royal Hospital, Muscat, Sultanate of Oman

Bobby Mathew, MRCP

Assistant Professor of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, United States

Patrick J. McNamara, MB, BCh, BAO, MRCP, MRCPCH Professor and Division Chief of Neonatology, Stead Family Children's Hospital, University of Iowa, Iowa City, IA, United States

Rafique Memon, Md(Ped) Fellowship Neonatology, Specialist Pediatrician, NMC Speciality Hospital, Dubai, United Arab Emirates

Srinivas Murki, MD, DM Fernandez Hospital, Hyderabad, Telangana, India

K.Y. Ashok Murthy, BE Mg Director, Erkadi Medical Systems

Durga P. Naidu, MD Children's Heart Clinic of Louisiana, Lafayette, LA, United States

Arun Nair, MBBS, MD (Paed), DCH, MRCP, FRCPCH, FRACP Waikato Hospital, Hamilton; Auckland University, Auckland, New Zealand

Jayasree Nair, MD Assistant Professor of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States

Elaine Neary, MD, PhD The Hospital of Sick Kids, Toronto, ON, Canada

Josef Neu, MD Professor of Pediatrics, University of Florida Health Shands Children's Hospital, Gainesville, FL, United States

Donald M. Null, MD University of California, Davis; UC Davis Children's Hospital,

Sacramento, CA, United States	Reserve University, Cleveland, OH, United States	Medical Sciences, Kochi, Kerala, India
Nalinikant Panigrahy, MD, DNB Rainbow Children's Hospital, Hyderabad, Telangana, India	P.K. Rajiv, DCH, MD Fellowship in Neonatology (Australia), Prime Hospitals and Clinics, Burjuman Centre, Dubai, United Arab Emirates (ex Professor of Neonatology Amrita Institute of	Aiman Rahmani, MD, MBA, FAAP Chief Medical Officer Consultant, Division of Neonatology, Clinical Professor, Faculty of Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
Merlin Pinto, MD Fellowship in Neonatology (Canada), NIDCAP certified Professional, MetroHealth Hospital, Case Western		
vi		
Manimaran Ramani, MBBS, MD University of Alabama at Birmingham, Birmingham, AL, United States	Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom	PhD, MBBS Centenary Hospital, Canberra, ACT, Australia
Rangasamy Ramanathan, MD, FAAP Professor of Pediatrics at the Keck School of Medicine and Division Chief, Director of Neonatal Respiratory therapy program, Program director, Neonatal Perinatal Fellowship Program, University of Southern California, Los Angeles, CA, United States	Augusto Sola, MD Director Medico Ejecutivo, SIBEN, Por los recién nacidos	Kirtikumar Upadhyay, MD, FAAP University of Tennessee Health Science Center, Memphis, TN, United States
P. Syamasundar Rao, MD, FAAP, FACC, FSCAI Professor of Pediatrics, Division of Pediatric Cardiology, UT Health McGovern Medical School, Houston, TX, United States	Howard Stein, MD, FAAP Promedica Toledo Children's Hospital, University of Toledo Health Science Campus, Toledo, OH, United States	Karunakar Vadlamudi, MD Stollery Children's Hospital, University of Alberta, Edmonton, AB, Canada
Maura Helena Ferrari Resende, MD Clinical Fellow, The Hospital for Sick Children, Toronto, ON, Canada	RoseMary S. Stocks, MD, PharmD Department of Otolaryngology, Head and Neck Surgery, University of Tennessee Health Sciences Center, Memphis, TN, United States	Payam Vali, MD University of California, Davis; UC Davis Children's Hospital, Sacramento, CA, United States
Rakesh Sahni, MD Professor of Pediatrics, Columbia University College of Physicians and Surgeons, New York-Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, United States	Sreeram Subramanian, MD, DM Consultant, Paramitha Children's Hospital; NEOBBC Children's Hospital, Hyderabad, Telangana, India	Máximo Vento, MD, PhD University and Polytechnic Hospital La Fe Valencia, València, Spain
Mitali Sahni, MD Fellow in Neonatal-Perinatal Medicine, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, United States	Gautham Suresh, MD, DM, MS, FAAP Section Head and Service Chief, Neonatology, Professor of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States	Sudeep Verma, MD, FNB KIMS-Institute of cardiac Sciences, Secunderabad-Hyderabad, Telangana, India
Marwa al Sayyed, MBBS, MSc Neonatal Registrar, NMC speciality Hospital, Dubai, United Arab Emirates	Ru-Jeng Teng, MD Children's Research Institute, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI, United States	Dharmapuri Vidyasagar, MD, FAAP, FCCM, PhD(Hon) Professor Emeritus Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL, United States
Bernard Schoonakker, MRCPCH Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom	Vikrum A. Thimmappa, MD Department of Otolaryngology, Head and Neck Surgery, University of Tennessee Health Sciences Center, Memphis, TN, United States	Koert de Waal, PhD, FRACP John Hunter Children's Hospital, Newcastle, NSW, Australia
Craig Smith, MRCPCH	Jerome W. Thompson, MD, MBA Department of Otolaryngology, Head and Neck Surgery, University of Tennessee Health Sciences Center, Memphis, TN, United States	Mark F. Weems, MD, FAAP University of Tennessee Health Science Center, Memphis, TN, United States
	David A. Todd, FIMLS, MSc,	Jen-Tien Wung, MD Professor of Pediatrics, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
		Hakam Yaseen, MD, CES (Paed), DUN (Neonat) [France], CCST (UK), FRCPCH [UK] University of Sharjah, Medical

Contributors

Page left intentionally blank

vii

Since the late 1960s, there has been considerable debate about the best way to provide respiratory support for preterm infants with RDS. Early attempts to ventilate infants met with limited success and survivors often suffered from chronic lung disease. In the early 1970s, Gregory et al. reported success in using CPAP to care for preterm infants with RDS; however, despite its simplicity, there was little interest in using that technology. As ventilators increased in sophistication (and complexity), noninvasive ventilation was viewed as a modality that could supplement invasive ventilation, but not as a primary mode. Furthermore, the randomized clinical trials of surfactant suggested that most premature infants with RDS should be intubated and administered surfactant. The pendulum began to swing back toward noninvasive ventilation in the last decade as randomized clinical trials demonstrated that early application of CPAP was better than routinely intubating infants and given surfactant. In 2018, the choices for respiratory support are even greater. Not only are there newer generation of ventilators, but the choices for noninvasive support commonly include nasal

intermittent positive pressure ventilation and high-flow nasal cannula. This textbook, *Essentials of Neonatal Ventilation*, edited by Rajiv, Satyan, and Vidysagar, offers clinicians a complete source for the latest developments in respiratory care of critically ill newborn infants. This book is a unique addition because of its comprehensive nature and practical approach to respiratory care. The authors for each chapter are leaders in their fields. It is noteworthy that the book also addresses complications of mechanical ventilation (e.g., bronchopulmonary dysplasia) and includes sections on common neonatal problems, ECMO and nursing care. The editors should be congratulated on assembling such a wonderful book.

Richard A. Polin, MD

William T. Speck, Professor of Pediatrics,
College of Physicians and Surgeons,
Columbia University, New York, NY, United States
Director, Division of Neonatology, Morgan Stanley
Children's Hospital of New York-Presbyterian, New
York, NY, United States

Page left intentionally blank

The evolution of assisted ventilation in newborn intensive care has made a unique paradigm shift. Noninvasive ventilation, a significant milestone in the 1970s, has made a comeback in the current decade. Newer methods of synchronization, gentle ventilation, and permissive hypercapnia using both invasive and noninvasive modes are the standard of care in neonatal intensive care today. This book is a Herculean attempt to standardize and optimize ventilatory care at the bedside. Each chapter is written by international experts in the field, hoping to ignite a path to the successful resolution of the pulmonary dysfunction, without lung and brain morbidity. Technologies of promise of the future are incorporated, and noninvasive monitoring and assessment are given significant emphasis. The neonatal intensivist is currently exposed to a huge arena of ever evolving technologies. The bedside practitioner will find this book helpful in knowing the benefits and limitations of these technologies and support neonatal gas exchange without compromising neurodevelopmental outcome. More advanced technology is not always better. Simple techniques such as nasal CPAP with noninvasive

monitoring have great outcomes in preterm and term infants with lung injury. This book gives great emphasis to this basic technology.

The chapters are designed to evolve from the basics to applied physiology and graduate through the assisted ventilation technologies. A section on cardiac issues in respiratory care, nutritional support, and ancillary care is deliberately magnified for the intensivist to manage accurately and objectively a critical neonate with respiratory distress.

This book with E-Book facilities of videos on critical chapters supplemented by lecture presentations would prove to be a handy and reliable bedside companion for all NICUs all over the world. The presentations and illustrations are provided to assist in education of a new generation of neonatal providers. We gratefully acknowledge the authors for contributing to these chapters, and providing videos and illustrations to enhance the book.

P.K. Rajiv
Dharmapuri Vidyasagar
Satyan Lakshminrusimha

Page left intentionally blank

Rajiv gratefully acknowledges the didactic teaching of his fellow teacher Dr. Elizabeth John, whose extreme sensitivities to the adjustment of CPAP up or down still ring a bell in his ears. This singular caution to optimize continuous positive airway pressure or positive end-expiratory pressure laid the foundation of his strategy in any critical lung disease. This was the fulcrum of his success in neonatal ventilation in the last 30 years.

Rajiv acknowledges the heartfelt help of his teachers Dr. Vidyasagar, Dr. Georg Simbrunner, Dr. Ramanathan, Dr. Martin Keszler, and Dr. Dhanireddy for teaching him and for being authors of many chapters and reviewing many more of them. Dr. Vidyasagar was the first to agree to the concept of this book many years ago and has been the guiding light in the evolution of this book. Rajiv's close associates Dr. Prakash, Dr. Arun, and Dr. David Todd gave him exceptional chapters at a short notice. His junior associates Dr. Nalinikant and Dr. Srinivas provided very unique, well-researched chapters. He is indebted to coeditor Satyan who joined the team in 2016 for his immortal illustrations and editorial stewardship. His illustrations offer an additional tool for neonatal providers to educate students and parents.

Rajiv also thanks his team members Iftekhar, Jason,

and Sherly for uncompromising secretarial and artwork. He further thanks Dr. Karunakar, his associate, for responding to the perennial demands of perfection of the chapters, without any hesitation.

This book is a unique joint effort of a highly talented provider-publisher team. Last but not the least, Rajiv thanks his wife Bindoo for silently bearing with him all the time less lapses at home while he was playing Archimedes for the development of this book.

Dr. Vidyasagar gratefully acknowledges his men tors, Dr. Thomas Boggs, Dr. Jack Downes, and Dr. Victor Chernick who introduced him to neonatal ventilation. He thanks his wife Dr. Nagamani Beligere for her support all through his career. His children Sahana, Sadhana, and Sanjay and grandchildren Kavi, Anika, and Maaya have been the source of his energy.

Satyan thanks his children (Ananya, Aniruddha, and Arun for posing as models during their neonatal period for his illustrations) and his wife Veena Manja, MD, MSc, for her unrelenting support. He expresses gratitude to his parents, sisters, parents-in-law, teachers, and mentors for supporting and guiding him throughout his career. All the editors sincerely appreciate the exceptional support by Mr. Ayan Dhar and Ms. Sheenam Aggarwal at Elsevier India. Above all, the editors are thankful to all the babies and their parents who contributed to our understanding of neonatal physiology and the functioning of assisted ventilation.

P.K. Rajiv
Dharmapuri Vidyasagar
Satyan Lakshminrusimha

Contributors

.....	v	Foreword
.....	ix	
Preface		
.....	xi	
Acknowledgment		
.....	xiii	

3. Pathophysiology of Fetal Lung

Development.....	
------------------	--

.....19 **Bobby Mathew,
Lucky Jain,
Satyan
Lakshminrusimha**

4. Transition in the Delivery Room: Current

NRP Recommendations.....	31
--------------------------	----

Maximo Vento

5. Sustained Lung	
-------------------	--

Inflation.....45
**Gianluca Listi, Ilia
Bresesti**

: SLI

1. Introduction

.....3	P.M.
--------	-------------

**Rajiv, Dharmapuri
VidyaSagar,
Satyan
Lakshminrusimha**

2. Evolution of Neonatal Ventilation a

Retrospective

View.....	5
-----------	---

**Dharmapuri
VidyaSagar**

6. Introduction to Lung Mechanics.....	53	Jegan Kandasamy, Namasiwayam Ambalavanan
7. Genesis of Lung Injury.....	69	Nitaii Sahni, Vineet Bhandari
8. Hypoxic Respiratory Failure.....	81	Praveen Kumar
9A. Comparison of Ventilators	102	Augusto Sola
9B. The Importance of Heating and Humidifying the Inspired Gases During Mechanical Ventilation: Identifying the Ideal		

Contents

12. Extubation	155	Craig Smith, Dushyant Batra, Bernard Schoonakker
Complications of Ventilation		
13A. Complications of Mechanical Ventilation	161	Gianluca Lisca, Ida Brescetti
13B. Pulmonary Air Leaks.....	170	14. Various Modes of Mechanical Ventilation
Srinivas Murki, Sai Sunil Kishore, Sreeram Subramanian	205
13C. Pulmonary Edema and Pulmonary Hemorrhage.....	19	15A. Patient-Triggered Ventilation: Synchronized Intermittent Mandatory Ventilation (SIMV), Assist-Control, Pressure-Support Ventilation (PSV), Neurally Adjusted Ventilatory Assist (NAVA).....215
3 Srinivas Murki, Sreeram Subramanian		Helmut Humpler
13D. Neonatal Necrotizing		15B. Neurally Adjusted Ventilatory Assist (NAVA) in Neonates
	227 Howard

Settings and Circuit Configuration During Ventilation.....	
.....113 David R. Todd, K.Y. Ashok Murthy, P.H. Rajiv	10.
Ventilator Graphics.....	124
Manoj Biniwale, Rangasamy Ramanathan, Mark C. Hammel	
11A. Initiation of Mechanical Ventilation	
.....143 Dushyant Batra, Craig Smith, Bernard Schoonakker	
11B. Deterioration on the Ventilator.....	149
Craig Smith, Dushyant Batra, Bernard Schoonakker	

**Stein, Kimberly S.
Firestone**

16. Volume-Targeted and Volume-Controlled Ventilation 238

Martin Keszler

17. Noninvasive Ventilation and High-Flow Nasal Cannula 250

**Rangasamy Ramanathan,
Manoj Biniwale** Nasal High Frequency ventilation

18A. Continuous Positive Airway Pressure for Respiratory Failure in Newborn Infants 280

**Rakesh Sahni,
Jen-Tien Wung**

CPAP
CPAP on 480gm preemie
18B. Continuous Positive Airway Pressure in the Treatment of Meconium Aspiration Syndrome 292 **Rakesh Sahni, Jen-Tien Wung**

19. Nasal Intermittent Positive Pressure Ventilation 296

**Vikramaditya Dumpy,
Vineet Bhandari**

NIPPV RAM Cannula
20A. High Frequency Ventilation 306 **Payam Valli, Donald H. Hull**

20B. High-Frequency Oscillatory Ventilation

25A. Meconium Aspiration Syndrome—Part 1: Epidemiology, Pathophysiology, Signs and Symptoms, and Diagnosis 413 **Rama Bhag, Dharmapuri Vidyasagar**

Management
Strategy 316

Dushyant Batra, Craig Smith,

Bernard Schoonakker, P.H. Rajiv

20C. High-Frequency Jet Ventilation: Guide to Patient Management 325 **J. Bert Bunnell**

21. Pulmonary Vasodilators in the Treatment of Persistent Pulmonary Hypertension of the Newborn 330

Ru-Jeng Teng, G. Ganesh Konduri

22. Extracorporeal Membrane Oxygenation for Refractory Respiratory Failure 349

**Laurence Lequier,
Harunakar Vadlamudi**

23. Principles of Mechanical Ventilation and Strategies of Ventilatory Support in Neonatal Lung Disease 365

**Manimaran Ramani,
Namasivayam Ambalavanan**

24. Respiratory Distress Syndrome and Surfactant Therapy 375

**Manoj Biniwale,
Rangasamy Ramanathan**

25B. Meconium Aspiration Syndrome—Part 2: Clinical Management 423

**Mark F. Weems,
Ramasubbarao Dhanireddy**

26. Persistent Pulmonary Hypertension of the Newborn (PPHN) 444

**Satyan
Lakshminrusimha, P.H.
Rajiv**

27. Bronchopulmonary Dysplasia461
	Vineet Bhandari, Anita Bhandari, P.H. Rajiv
28. Congenital Diaphragmatic Hernia.....491	Jayasree Nair, Satyan Lakshminrusimha
29. Care of Extremely Low Birth Weight Infants.....5	Narendra Dereddy, Kirtikumar Upadhyay, Ramasubbareddy Dhanireddy

30A. Echocardiography and Hemodynamics.....	Regan E. Giesinger, Laura H.F. Resende, Elaine Neary, Patrick J. McNamara
--	--

LV hypertrophy	
PDA	
Assessment	
Pulmonary Hypertension on Echocardiography	
RV Dysfunction	

30B. Patent Ductus Arteriosus.....585	Durga P. Naidu, John P. Breinholt III, P. Syamasundar Rao
--	--

Pre PDA closure	
MMVP implant PDA Closure	
AVP II implant PDA Closure	
MMVP Release PDA	
AVP Release PDA	

Contents

30C. Cyanotic Heart Disease in a

Neonate.....621	Rakhi Balachandran, Karunakar Vadlamudi, Raman Krishna Kumar
30D. Neonatal Arrhythmias633
	Sudeep Verma, Karunakar Vadlamudi, Matthew Kripalii, Hariram Malakunte

Management of Shock

31A. Neonatal Shock Management656
	Abbas Hyderi, Jeya Balaji, Karunakar Vadlamudi
31B. Hypotension and Shock in Preterm Newborns.....67	
	Merlin Pinto, P.H. Rajiv, Jeya Balaji, Thouseree Ahmed
31C. Hypotension and Poor Circulation in Neonates.....	
	..689 Koert de Waal

32. Monitoring of Gas Exchange in the NICU699
	Bobby Mathew, Junaid Muhib Khan, Satyan Lakshminrusimha

33. Nursing Care and Endotracheal Suction722
	Prakash Hanikoth, Manoj N. Malviya, Said R Al-Khaldi

Noninvasive Nasopharyngeal Suctioning	
Closed Endotracheal Suctioning	
Open Endotracheal Suctioning	
34. Neonatal Airway	
Management.....747	Wikrum R. Thimmappa,

**Ramasubbareddy
Dhanireddy,
Rosemary S. Stocks,
Jerome W. Thompson**

Neonatal Airway Pathology

35. Ventilator-Associated Pneumonia and

Contents

36. Nutrition in the Preterm Neonate

Requiring Respiratory

Support.....785

Mahmoud Saleh

Elnaik, Josef Neu,

Abrar Ahmed Khan,

Swarup Kumar Dash 37A.

Neonatal Procedures Involving Catheters and

Tubes.....803 **Khaled**

El-Ngawi, Swarup Kumar

Dash, Ahmed Zakaria

Elmorsy

37B. Neonatal Limb Ischemia Due to Arterial

Catheters.....

.....819 **Catherine C.**

Beaullieu, Suzanne M.

Lopez, P.

Syamasundar Rao

38. Neonatal Developmental Follow-Up

Infection
Control.....765

Nanoj N. Halviya,
Prakash Manikoth,
Hakam Yaseen

Program

.....829

Nagamani Belligere

39. Management of Ethical Challenges in

Neonatal Intensive Care

.....836 **Gautham**

Suresh

40. Normal Reference Values

.....843 **M.**

Shreedhara Ravabrahma,

P.K. Rajiv,

Mohamed Soliman M,

Marwa al Sayyed,

Rafique Nemon, Karunakar

Vadlamudi

Online supplementary materials

Please visit MedEnact

(<https://www.medenact.com/Home>) to access the videos and lecture PPTs.

Introduction and History of Ventilation

- 1** Introduction 3
- 2** Evolution of Neonatal Ventilation
a Retrospective View 5

Introduction

This book was conceived several years ago, when there appeared to be a distinct lacuna of comprehensive bedside ventilatory management guides in neonatal care history. Currently, there are excellent textbooks to refer to and obtain broad concepts on the approach to providing respiratory assistance to a baby in distress, but a detailed evidence-based book on bedside management is missing. In this book we attempted to provide the readers an evidence-based practice bedside guidelines. In doing so, we sought the contributions from the most experienced leaders in the field. This book is an honest attempt to get the world's best pioneers in each area to contribute their signature chapters of their research to give the neonatal intensivist, detailed bedside ventilation navigation in critical situations. We earnestly hope readers will find these guidelines useful in managing critically ill neonates.

This book is divided into eight sections. Here are some of the highlights of these sections. **Section I** reviews the history of neonatal ventilation. **Section II** deals with basic chapters covering embryology and physiology of pulmonary disease, with the time frame from extreme prematurity at the limits of viability to dysmorphology in the full-term infant. The delivery process and golden first hour are addressed in detail, due to its long-term impact on respiratory and neurological morbidity.

Section III deals with the *basics of neonatal ventilation* and evolves through the genesis of lung injury to lung mechanics. The chapters on ventilator give deep insight to the reader on the limitations and benefits of its application. The chapters progress to the provision of mechanical ventilation and its attendant complications, which are again discussed in detail.

Section IV is an in-depth analysis in real time of the various *respiratory care devices* currently available for the neonate. These chapters give an operating framework and the bedside navigation in critically ill babies with trouble shooting algorithms by authentic authors.

Section V is the heart of this book with *comprehensive bedside management guidelines* of the common respiratory conditions faced in neonatal intensive care. They offer detailed flowcharts, algorithms, and case scenarios in complicated respiratory care management. There is a separate chapter on the management of the 23–25 weeks' gestation babies: "micropremies"—a challenge for any intensivist.

Section VI deals in-depth for all the *common cardiac conditions* complicating respiratory care. Management of shock and cyanotic heart disease, PDA, and arrhythmias are discussed. Functional echo is comprehensively discussed as it is evolving as the new standard of care.

No ventilator support will be successful without strong ancillary support. **Section VII** details all critical aspects of *ancillary care* of the ventilated neonate, including monitoring, infection control, nutrition, and procedures.

It is heartening to note that there is emergence of an increasing number of neonatal intensive care units (NICUs) to improve survival among low- and middle-income countries (LMCs). Ventilatory support is an essential part of the neonatal intensive care. Proper ventilator care requires a combination of skilled personnel, appropriate equipment, and ancillary support which are the prerequisites for optimal outcome but are difficult to fulfill in some LMCs. Several chapters in the book offer guidelines to assist pioneers in LMCs in establishing ventilatory support in their prospective units and teach physicians, trainees, and nurses.

Besides the rich evidence-based content of the book, it has several unique features to help the practitioner better manage infants requiring ventilatory care. This book is *digitaly enhanced* with illustrations and videos linked to their respective chapters and *lecture PowerPoint* to most chapters of this book to give the intensivist a 360-degree comprehension of neonatal ventilation.

This book is intended for neonatologists, intensivists, postgraduates (residents and fellows), respiratory therapists, and neonatal nurses as a ready bedside reckoner for urgent consult.

educational tools valuable in their practice.

I want to thank my secretarial staff Mr. Iftekhar, Mr. Jason, and Mrs. Serly for their sincere commitment to the development of this book. We thank ELSEVIER publisher and its staff Ayan Dhar and Sheenam Aggarwal for their innovation, receptivity and patience during the publication of this book.

Warm regards,

P.K. Rajiv MBBS, DCH, MD

Fellowship in Neonatology (Australia)

(formerly Professor of Neonatology)

Amrita Institute of Medical Sciences

Kochi, Kerala, India

Prime Hospitals and Clinics

Dubai, United Arab Emirates

Dharmapuri Vidyasagar MD, FAAP, FCCM Professor

Emeritus Pediatrics

Division of Neonatology

University of Illinois at Chicago

Chicago, IL, United States

Satyan Lakshminrusimha MD, FAAP Dennis and Nancy

Marks Chair of Pediatrics Professor of Pediatrics

University of California, Davis

Sacramento, CA, United States

Evolution of Neonatal Ventilation a Retrospective View

Dharmapuri Vidyasagar, PhD (Hon)

Introduction 5 The development of neonatology 7 The birth of modern neonatal intensive care unit (NICU) 8 The birth of a new specialty: neonatology—the newborn medicine 8 The evolution of ventilator care of the newborn 8 Oxygen therapy 10 Usher regime 11 History of neonatal ventilation 11 Ross symposium on neonatal intensive care 11 Introduction of surfactant therapy in HMD/RDS 12 The modern neonatal ventilators 12 Summary 13 References 14

Introduction

The author of this article is fortunate to have personally seen the evolution of improved neonatal intensive care and neonatal ventilation in the United States over last half century [1]. He along with Dr. George F. Smith, a geneticist and Head of the Department of Pediatrics at the Illinois Masonic Hospital and Professor at the University of Illinois, Chicago, were interested in medical history and organized a symposium on “Historical Perspective of Perinatal Medicine in 1980.” Many giants in the field of neonatology

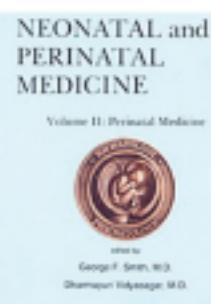
participated in this symposium. The proceedings were supported and published by the Mead Johnson, Nutritional Division in two volumes (Fig. 2.1A–B); however, they were not copyrighted [2]. Fortunately, later they were placed on the website “Neonatology on the Web” created by Dr. Ray Duncan of Mount Sinai Hospital, Los Angeles. The two volumes on the Internet are readily available for interested readers at the website [3] (permission to reproduce figures by personal communication).


These books contain valuable historical information that would have been lost but for the ingenious method of placing the proceedings on the web. I am grateful to Dr. Duncan for this innovative method of preserving the historical volumes. The material from these books in part form the basis of the current chapter.

The history of assisted ventilation of a newborn is closely intertwined with evolution of neonatology. Therefore, it would be appropriate first to review the evolution of the specialty of neonatology then delve into the evolution of neonatal ventilation.

The story of development of neonatology and respiratory care of a newborn, particularly of the premature babies, has been told by several authors in the past [1,4–10].

The chapter is written from the perspective of both a witness and participant of these developments over the past 50 years. Following narration is based on the above referenced material. The material related to the development of neonatal ventilation is based on several reports [4–8] and three major symposia: Ross symposium in 1968, Paris symposium in 1969, and the Chicago symposium in 1980 [2].


(A)

Recent Advances in Neonatal and Perinatal Medicine

Edited by George F. Smith, MD
and Dharmapuri Vidyasagar, MD
Published by Mead Johnson
Nutritional Division, 1980

This [Book](#) Was Not Copyrighted

Introduction

1. [Perinatal Medicine](#)
2. [Perspectives in Neonatology](#)
3. [Thermoregulation in the Newborn Infant](#)

Nicholas M. Nelson
Thomas E. Cone, Jr.
Leo Stern

(B)

THE CONTENTS OF THE SYMPOSIUM

Introduction	Nicholas M. Nelson
1. Perinatal Medicine	Thomas E. Cone, Jr.
2. Perspectives in Neonatology	Leo Stern
3. Thermoregulation in the Newborn Infant	Martin H. Greenberg
4. Neonatal Feeding	Lewis A. Barness
5. The Nutrition of Premature Infants	Lawrence M. Gartner
6. Neonatal Jaundice: A Selected Retrospective	A. Zipursky
7. The Rise and Fall of Rb Disease	Mitzi L. Duxbury
8. Nursing in Neonatology	Roberto Sosa
9. Maternal Bonding: An Overview	M. Yusoff Dawood
10. The Obstetric View of Premature Labor	Phillip J. Goldstein
11. Birth Asphyxia	Jerome O. Klein
12. Infectious Diseases of the Newborn Infant -- Historical Perspectives	Aditya Kaul and George F. Smith
13. Immunobiology of the Fetus and Newborn -- Historical Perspectives and Recent Advances	John Lind
14. Researches in Perinatal Circulation	Mildred T. Stahlman
15. Assisted Ventilation in Newborn Infants	Victor Chernick
16. The Treatment of Hyaline Membrane Disease	Richard L. Day
17. Retrosternal Fibroplasia: A Medical and Legal Tragedy	Dharmapuri Vidyasagar
18. Historical Perspectives and Recent Advances of Neonatal Monitoring	Parvin Justice, Shanta Nath, and Dharmapuri Vidyasagar
19. Biochemical Monitoring	George F. Smith
20. Congenital Abnormalities and Genetic Concepts in Neonatology	Kevin C. Pringle
21. Neonatal Surgery: Historical Perspectives and a Glimpse of the Future	L. Joseph Butterfield
22. The Impact of Regionalization on Neonatal Outcome	Lila O. Lubchenco
23. The Developmental Outcome of Premature Infants	Donald Dye and Karen Tarpey
24. Maternity and Infant Care Services in Chicago Retrospectus: Our Legacy, Our Challenge	Alwin C. Ramber
25. Julius Hess, M.D.	Billy F. Andrews
26. William Harvey in Perinatal Perspective	T. N. K. Raju
27. Soranus of Ephesus: Who Was He and What Did He Do?	T. N. K. Raju
28. Some Famous "High Risk" Newborn Babies	

Fig. 2.1 (A) Images of the cover pages of two volumes of symposium; Historical Perspectives and Recent Advances in Neonatal and Perinatal Medicine held in Chicago 1980, published by Mead Johnson Nutritional Division. Columbus OHIO. (B) The list of contents and presenters of two volumes. Note the list of illustrious personalities who participated in the symposium. Neonatology on the web. Available from: <http://www.neonatology.org/classics/mj1980/> [3].

mid-20th century, pediatricians began to take care of the newborn. The premature babies were viewed as a medical curiosity and exhibited for public view at various exhibits [11].

However, the excellent scientific work of many investigators, both in the United States and Europe, led to better understanding of physiology and pathology of the mature term newborn and premature babies. These studies showed that a premature newborn required special thermal and nutritional care. These understandings lead to the development of premature care centers. Dr. Julius Hess in Chicago [12] was the leading authority on premature care in those days [13]. In 1914, he opened the first 24-bed premature care center at the Sarah Morris Hospital of Michael Reese Hospital (now defunct). Dr. Hess (Fig. 2.2) was the head of Department of Pediatrics at University of Illinois, Chicago and the head of pediatrics at Michael Reese hospital. He along with the help of his nurse Evelyn Lundeen provided the state of

The Chicago Board of Health had established several centers in the city for the care of premature babies. Premature babies born in the community hospitals were mandated to be transported to one of these centers, if they survived the first 24 h after birth. Dr. Hess developed an incubator with the help of an engineer, "the Hess incubator" (Fig. 2.3) [14]. He also developed a transport incubator (Fig. 2.4), which could be plugged into taxis of Chicago for electric power for transportation of the babies to premature care centers within Chicago.

Both Dr. Hess and nurse Lundeen wrote several papers and books [13] on the care of premature babies, mainly on care of the newborn, particularly the premature babies and their feedings. With these advances, the care of the pre

mature infants in Chicago improved greatly. Indeed, the premature care center at the Sarah Morris Hospital gained national and international fame. It became the center of academic learning in premature baby care for doctors and nurses from around the world.

Fig. 2.2

Photograph of Dr. Julius Hess (1876–1953) Who was In-Charge of the Premature Care Center at Sarah Morris Hospital/Michael Reese Hospital in Chicago.

Neonatology on the web. Available from:

<http://www.neonatology.org/classics/mj1980/> [3].

the art care of its time for premature babies. With their expert care, they showed increased survival of premature babies.

Fig. 2.3 **The Hess Incubator Designed for Care of Premature Babies, Developed by Dr. Hess With the Help of an Engineer.** Neonatology on the web. Available from: <http://www.neonatology.org/classics/mj1980/> [3].

| I | Introduction and History of Ventilation

Dr. Geoffrey Dawes in Oxford, England [18–20] and investigators in the laboratories of Julius Comroe, United States studied neonatal physiology extensively. Dr. Clement Smith, Professor of Pediatrics at Harvard Medical School, published his book on the physiology of a newborn infant

Fig. 2.4 The Hess Transport Incubator. Dr. Hess also developed a portable incubator for transporting babies from community hospitals to designated Premature Care Centers in Chicago. Note: the incubator had an adopter to be connected to taxis of Chicago for power during transport. Neonatology on the web. Available from: <http://www.neonatology.org/classics/mj1980/> [3].

The birth of modern neonatal intensive care unit (NICU)

In October 1960, Dr. Louis Gluck established the first known neonatal intensive care unit (NICU) at Yale-New Haven Hospital, United States. Prior to this time, premature infants were often isolated in small cubicles and had little direct contact with doctors and parents because of fear of infections. With focus on hand washing, Dr. Gluck's design for NICU took shape with the help of US\$ 3 million from a benefactor whose premature grandson he had saved [15]. It was set up as a one big open room, filled with newborns in their incubators. This development had a profound influence on the subsequent direction of care of the sick newborn, including premature babies in the United States and rest of the world.

The birth of a new specialty: neonatology—the newborn medicine

The scientific basis of newborn care improved significantly with the work of several physiologists: the work of Joseph Barcroft brought new understanding of the fetus [16,17];

[21]. These seminal developments in understanding of the fetal and neonatal physiology laid the foundation for the clinicians to develop an evidence-based neonatal care in coming decades.

Dr. Alexander Schaffer [22] was the first one to coin the term *Neonatology* as the science of newborn medicine and *Neonatologist* as one practicing neonatal medicine in the preface to his book *Diseases of the Newborn* (published by Saunders in 1960). It is interesting to note that in a short span of 15 years of coining the term *Neonatology*, it became an established Board Certifiable Pediatric sub specialty. The first *Neonatal-Perinatal Medicine* specialty

board examination was conducted in 1975. The author was one of the 355 candidates certified at the first board examination.

The growth of neonatology continued by leaps and bounds from 1970 onward (Fig. 2.5). The scientific exploration of neonatal illnesses and developing evidence-based therapeutic interventions also grew exponentially leading to steady decrease in neonatal mortality rates (NMR) as shown in Fig. 2.5.

Fig. 2.5 highlights the advances made in different areas of neonatology during the 20th century and also shows the impact of these developments on steady decline of NMR in the United States and the United Kingdom. It shows development in six major areas of neonatology:

(1) improved thermal care, (2) improved nutrition, (3) improved nursing care and opening of premature care centers and NICUs, (4) prevention of infections, (5) improved care of infants in respiratory distress and finally, (6) improved perinatal care and resuscitation in the delivery room and ventilation. In the past century, these improvements have resulted in increased neonatal survival.

The evolution of ventilator care of the newborn

As prematurity was the major contributing factor to high NMR and the respiratory problems particularly hyaline membrane disease (HMD) was the major cause of NMR, they received greatest attention in basic and clinical research. These investigative efforts were further boosted with the tragic death of prematurely born son of the then President Kennedy.

| I | Introduction and History of Ventilation

in respiratory distress. The use of oxygen in the treatment of neonates with respiratory distress has been reported for more than a century. In 1907, Budin recommended

oxygen “supplied through a funnel, the large opening of which is placed beside the infant’s face,” for the treatment of cyanotic episodes in newborns [23]. In the 1930s, Hess developed an incubator capable of delivering approximately 40% oxygen for extended periods of time [12,23]. By the 1940s, a commercially available incubator capable of providing a high concentration of oxygen facilitated the liberal use of oxygen for the treatment of cyanosis, apnea, and periodic breathing of newborns.

monitoring became available. Pulse oximetry [25] and CO_2

Fig. 2.6 The News of Death of Prematurely Born Baby Kennedy Printed in Boston Globe.

On August 7, 1963, Jacqueline Kennedy, wife of President Kennedy, gave birth to a premature baby (34-week GA, birth weight of 2.1 kg) [2] (Fig. 2.6, Boston Globe News item) in Boston who developed breathing difficulties, now what is known as the HMD. Usher's regime [3], infusion of 10% dextrose water with NaHCO_3 was the only known treatment for HMD. Neonatal ventilator care was not available even for the President's baby in the United States in 1963. Moreover, sending the President's baby to neighboring Canada where neonatal ventilation was available was not an option. The baby died after 2 days on August 9, 1963. The death of President Kennedy's baby was a day for national mourning. As the story of demise of baby Kennedy unfolded HMD, a disease of premature babies, became known to all in America. It was estimated that in 1960s about 25,000 babies died of HMD annually in the United States. With the death of baby Kennedy, the interest in research on disease HMD accelerated. The interest in newborn care increased.

Oxygen therapy

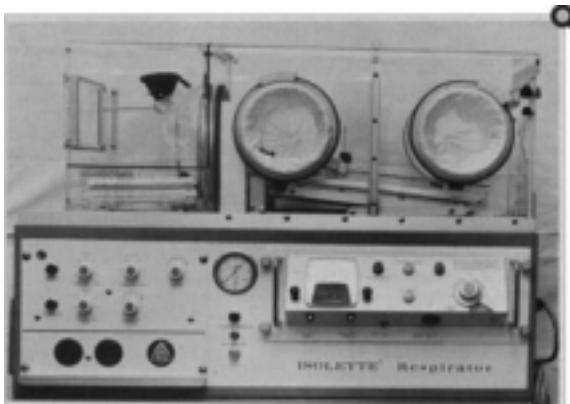
Prior to use of any form of assisted ventilation, administration of oxygen was the **only** available therapy for infants requiring delivery room resuscitation and infants standard method of monitoring blood oxygenation in a

10

Evolution of Neonatal Ventilation a Retrospective View

| 2 |

Usher regime


Prior to the introduction of neonatal ventilation in late 1950s and early 1960s, Dr. Robert Usher of Montreal, Canada after extensive studies in premature infants with HMD showed that they suffer from metabolic acidosis and hyperkalemia [35]. To counteract these changes he proposed a treatment regime of administering NaHCO_3 in 10% dextrose to infants in respiratory distress [35]. This

Throughout this time, oxygen administration was guided by the clinical observations of skin color, as well as the respiratory rate, regularity, and work of breathing. It wasn't until the 1960s and 1970s that the technology of microsampling of blood gases was available [24]. In 1980s, noninvasive methods of transcutaneous oxygen monitoring [26] became available in 1980s for more precise monitoring of oxygen saturation in the blood. It remains the newborn.

The overall goal of oxygen therapy was to achieve adequate oxygenation using the lowest concentration of inspired oxygen. However, achieving this goal is complicated due to a number of factors. Routine administration of oxygen to all premature infants led to the catastrophic results of the development of retinopathy of prematurity (ROP) and related blindness [24,27]. However, a study to curtail oxygen therapy was associated with increased cerebral palsy [28–32].

Despite over 75 years of routine oxygen administration to newborn infants, administering optimal level of oxygenation and monitoring—one that avoids the detrimental effects of hypoxia on the one hand, and those caused by hyperoxia on the other hand—has been very difficult [33]. Current recommendations for oxygen saturation targets are different between the United States and Europe. The European recommendations are to keep the target oxygen saturations between 90% and 94% for premature infants requiring supplemental oxygen [34]. The American Academy of Pediatrics states that the ideal target oxygen saturation is not known and in some preterm infants, 91%–95% target may be safer than 85%–89% [33].

In order to achieve the goals of neonatal oxygen therapy, we need to develop and evaluate appropriate devices of oxygen delivery systems. The clinicians today need to have an adequate knowledge of the use of oxygen delivery equipment, and have the training on the concepts of neonatal oxygenation and equipment used to monitor the effects of oxygen therapy.

therapy became known as Usher regime resulted in significant (50%) reduction of mortality in infants with HMD. The Usher regime was one of the major milestones in the treatment of HMD prior to initiation of assisted ventilation.

At this point, a retrospective view of experience with neonatal ventilation and neonatal ventilators is in order.

History of neonatal ventilation

Several reviewers have stated that it is difficult to time exactly when ventilation of the newborn was initiated and probably occurred in the late 1950s and 60s [10,36,37]. Downes in an editorial [38] refers to the work of Smythe and Bull from South Africa to have used successful long-term neonatal ventilation in infants afflicted with tetanus. These infants were treated with α -tubocurarine, tracheostomy, and ventilation; and the mortality was reduced from nearly 100% to 20%. However, these infants had normal lungs [38]. Initial reports of mechanical ventilation of newborns with pulmonary insufficiency were reported by Benson et al. and Donald et al. in 1958 [39,40]. The first highly successful use of mechanical ventilation in premature infants with HMD was reported by Maria Delivoria-Papadopoulos in 1965 [41–43]. In this series, out of 20 infants with severe HMD, 7 survived (35%) and 6 of them were neurologically intact. Since then, several other investigators reported use of assisted ventilation in HMD with increasing success. Some used positive pressure ventilation, including Strang and Reynolds in London [44], Thomas et al. at Stanford [45], and de Heese et al. in Cape Town [46]. Historically, negative pressure ventilation was designed earlier in 1889 by Alexander Graham Bell [47,48]. He presented a paper to the American Association for the advancement of science in Montreal on the use of ventilator for newborn babies and was "met with little enthusiasm." The design and device are preserved at The Alexander Graham Bell museum in Nova Scotia, Canada [49]. Later in 1960s, Dr. Stahlman in Nashville, Tennessee [50], and Stern in Montreal, Canada [51] used negative pressure ventilation (Fig. 2.7) to treat babies with RDS. Chernick and Vidyasagar in Winnipeg, Canada [52,53] modified negative pressure ventilator to

create

Fig. 2.7 Photograph of Air-Shield Negative Pressure Respirator.

Respirator. Note the respirator has two arts: the closed chamber wherein the baby's body is placed with the head lays outside open to atmospheric pressure. An adjustable sleeve around the neck seals the body chamber. The incubator is fitted with a vacuum creator underneath the body. Turning the knobs in front allow to create desired negative pressure and adjust the respiratory cycle (operated by vacuum creating machine and a solenoid valve underneath the body).

constant negative distend pressure (similar to continuous positive airway pressure [CPAP]) without an endotracheal tube with success in the management of respiratory failure in newborn.

Readers should note that negative pressure ventilation is no more in use as we have developed several simpler non invasive methods of ventilation (see chapter on noninvasive ventilation in this book). However, the use of negative pressure respirator to support babies in respiratory distress remains an important phase in the history of neonatal ventilation.

Ross symposium on neonatal intensive care

In 1968, a conference was organized on neonatal intensive care in Vermont by Ross laboratories. Several aspects of neonatal intensive care including design of these units and ventilation techniques were discussed at the conference [54]. Several leading neonatologists of the time from the United States and Canada participated in this conference. The conference was intended to share the experiences of different units and learn the problems of neonatal intensive care units of the day. Presentations by various speakers showed the impact of intensive care on improved survival, complications, and long-term intact survival of babies cared in their respective units.

|| Introduction and History of Ventilation

Survival with assisted ventilation was highest among infants with tetanus neonatorum who had no lung disease. It reversed the 80% mortality in tetanus prior to assisted ventilation to 80% survival with assisted ventilation. Survival rate in RDS although improved was still at 28%. The results of assisted ventilation in other respiratory conditions were not so encouraging. At the end Dr. Lucey, the chairman of the conference, summarized the conference as follows: "Now that you have read the proceedings of this conference some will be frustrated and discouraged. Others will be encouraged to try to

improve the care in their own nurseries. Hopefully this conference will have supplied with early but firm data to encourage you in these efforts and warn you of the problems involved" and cautioned "whereas intensive care is effective we still do not have a clear idea about the key elements of success. The construction of a new nursery or the purchase of a blood gas machine and respirator do not an intensive care nursery make!". The key elements are intelligent personnel or as one participant put it "people who care intensely" (Dr. Nick Nelson of Harvard).

This is one of the earliest reports on the impact of modern neonatal intensive care including the results

of neonatal ventilation.

In 1969, another conference solely on assisted ventilation was organized in Paris by Professor Alex Minkowski. In this symposium, clinician researchers from different countries shared their experiences with neonatal ventilation. Representatives from France, Belgium, England, South Africa, Finland, Canada, and the United States participated in the symposium. A review of published proceedings in *Biology of the Neonate* (current name of this journal is “*Neonatology*”) shows the struggles faced by the clinician researchers of the day in finding the right ventilator for the user in newborn, the optimal time for initiating ventilation, monitoring babies on ventilation, and improving outcomes at this time [55–58].

In writing the summary of the symposium, Dr. Paul Swyer from Toronto, Canada who conducted the meeting **raised the big question: whether neonatologists should continue to provide assisted ventilation! (Perhaps, more aggressively) or whether the possible complications outweighed neonatal ventilation.**

However, the efforts to improve the clinical practice of providing assisted ventilation to the sick newborn continued.

The introduction of CPAP in managing infants with HMD by Gregory et al. in 1967 was a major breakthrough in neonatal respiratory management [59]. Using this approach he showed a significant improvement in survival of infants with HMD (16 of the 20 infants survived—including 10 less than 1500 g) [59].

Introduction of surfactant therapy in HMD/RDS

The invention of CPAP and the discovery [60–64] and production of surfactant further reduced mechanical complications of ventilation in preterm newborns [65,66].

In 1959, Avery and Mead [63] reported that the low surface tension in the lining of the lung permits stability of the alveoli at end expiration. Lacking such material, immature infants and infants dying with HMD, surface tension was higher than expected. They speculated that

deficiency of surface-active material might be significant in the pathogenesis of HMD. This article was cited 376 times in the period 1961–77.

In 1980, Fujiwara et al. from Japan reported successful use of an artificial surfactant in 10 preterm infants severely ill with HMD [67,68]. Following instillation of artificial surfactant, alveolar–arterial gradients decreased, the levels of inspired oxygen and peak inspiratory pressures decreased, and radiological abnormalities resolved. All survived. Raju et al. [69] reported that replacement therapy with surfactant in a randomized trial significantly improved oxygenation, reduced complications of neonatal ventilation such as air leak syndromes (pneumothorax and pulmonary interstitial emphysema), and improved survival without BPD. Soon after multiple randomized clinical trials of surfactant replacement therapy substantiating improvement in survival of infants with RDS treated with surfactant [70]. These studies led to FDA approval of a surfactant “Survanta” for clinical use in 1993. Introduction of surfactant in the treatment of RDS remains a major milestone in the history of neonatology

The modern neonatal ventilators

Prior to 1970s, neonatologists had to use modified adult ventilators providing intermittent positive pressure ventilation. However, these ventilators could not match the physiologic pattern of breathing at higher rates. Ventilators designed specifically for the newborn appeared during mid-1970s–90s. Dr. Sola in this book discusses currently available ventilators incorporated with various functional modalities for use by the clinician. Goldsmith et al. [71] describe the milestones of technological developments in designing ventilators specifically for the newborns and premature infants—starting from the modified adult ventilators to current highly sophisticated incorporation of space age technology into ventilators used currently in the NICUs.

The rhetoric question raised at the Paris symposium in 1969 regarding the value of assisted ventilation has been answered by the continued efforts to improve technological, perinatal, and neonatal therapeutic advances to treat babies with HMD. Undoubtedly, assisted ventilation has improved overall survival of tiniest babies with HMD (24% mortality among extremely preterm infants <29 weeks of gestation and 2.9% mortality among moderately preterm infants, 29–33 weeks of gestation) [72], but the persistence of associated complications of ventilator-induced lung injury continue to vex the clinician and stimulate further research.

Summary

In summary technological innovations—the *likes of Hess incubator*—of early 20th century were the precursors of modern incubators. The premature care centers of early 20th century were the beginning of modern neonatal intensive care units. The evolution of incubator care of the premature infants, combined with the extensive basic and clinical research on fetal and neonatal physiology in the last century, gave birth to the subspecialty of neonatology.

Modern ventilatory care evolved from earlier efforts to save babies dying of neonatal tetanus. Similar earlier

efforts to ventilate premature babies with lung disease (HMD) were discouragingly poor. Persistent and continued efforts

to develop ventilators to match neonatal physiology combined with modern space age microprocessors resulted in the modern neonatal ventilators. It was also realized that machines alone do not make an intensive care. It is the people (skilled nurses/doctors/respiratory therapists, support staff) who care "intensively" and make the intensive care unit.

With these principles of care the outcome results of modern ventilation in the premature newborn, supplemented with surfactant therapy, nutritional support and nursing care are exceedingly high even in the extreme pre mature babies (over 92% survival at 28 weeks) [73].

Today, it is estimated that in the United States alone 65,000 babies are ventilated annually [74]. Further, with

global efforts of technology transfer to the developing countries, the practice of neonatal ventilator support particularly of the premature baby is widely used even in low- and middle-income countries [75]. While these developments are a very nice welcome, the novice should be cautioned in venturing into this territory without the expertise or the total organizational support needed for the operation of neonatal ventilation.

However, long-term ventilation is associated with pulmonary morbidity (CLD/BPD). Experts in the field have discussed various preventive aspects of ventilator-induced lung injury in this book. *Prevention of ventilation-induced lung injury (VILI) remains the major challenge for the future generation of neonatologists.* A summary of evolution of neonatal ventilation is shown in Fig. 2.8.

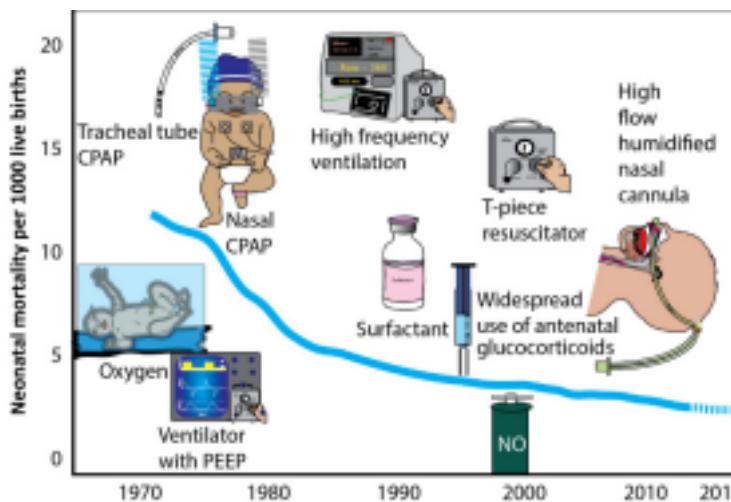


Fig. 2.8 Graph Showing Neonatal Mortality Rate and Various Innovations in Neonatal Respiratory Care. CPAP, Continuous positive airway pressure. Copyright: Satyan Lakshminrusimha.

| I | Introduction and History of Ventilation

References

- [1] Vidyasagar D. "Half a century of evolution of neonatology: a witness's story": Dr. K. C. Chaudhuri Lifetime Achievement Award Oration delivered at AIIMS, New Delhi on 7th September 2014. *Indian J Pediatr* 2015;82(12):1117–1125.
- [2] Smith GF, Vidyasagar D. Historical review and recent advances in neonatal and perinatal medicine. Mead Johnson Nutritional Division, Evansville, IN; 1983.
- [3] Neonatology on the web. Available from: <http://www.neonatology.org/>
- [4] Butterfield LJ. Historical perspectives of neonatal transport. *Pediatr Clin North Am* 1993;40(2):221–239.
- [5] Obladen M. History of neonatal resuscitation. Part 1: Artificial ventilation. *Neonatology* 2008;94(3):144–149.
- [6] Raju TN. History of neonatal resuscitation. Tales of heroism and desperation. *Clin Perinatol* 1999;26(3):629–640.
- [7] Vidyasagar D. Editorial: advances in neonatology—III. *Indian J Pediatr* 2015;82(1):44–45.
- [8] Vidyasagar D. Editorial: advances in neonatology—II. *Indian J Pediatr* 2014;81(6):568–569.
- [9] Vidyasagar D. Editorial: advances in neonatology. *Indian J Pediatr* 2014;81(5):464–465.
- [10] Philip AG. The evolution of neonatology. *Pediatr Res* 2005;58(4):799–815.
- [11] Silverman WA. Incubator-baby side shows (Dr. Martin A. Couney). *Pediatrics* 1979;64(2):127–141.

[12] Dunn PM. Perinatal lessons from the past. Julius Hess, MD, (1876– 1955) and the premature infant. *Arch Dis Child Fetal Neonatal Ed* 2001;85(2):F141–F144.

[13] Hess JH. Experiences gained in a thirty year study of prematurely born infants. *Pediatrics* 1953;11(5):425–434.

[14] Raju TN. An extant Hess incubator on display. *Pediatrics* 2001;107(4):805.

[15] Fountain N. Louis Gluck, 73, pediatrician who advanced neonatal care. *New York Times*, 1997, Dec 15.

[16] Barcroft J, Barron DH, Cowie AT, Forsham PH. The oxygen supply of the foetal brain of the sheep and the effect of asphyxia on foetal respiratory movement. *J Physiol* 1940;97(3):338–346.

[17] Barcroft J, Kennedy JA, Mason MF. Oxygen in the blood of the umbilical vessels of the sheep. *J Physiol* 1940;97(3):347–356.

[18] Dawes GS. Foetal and neonatal physiology—a comparative study of the changes at birth. Chicago: Year book Medical Publishers Inc; 1968.

[19] Dawes GS. Pulmonary circulation in the foetus and new-born. *British medical bulletin* 1966;22(1):61–65.

[20] Ardran G, Dawes GS, Prichard MM, Reynolds SR, Eyatt DG. The effect of ventilation of the foetal lungs upon the pulmonary circulation. *J Physiol* 1952;118(1):12–22.

[21] Smith CA, Nelson NM. The physiology of the newborn infant. Springfield, IL, 1976.

[22] Schaffer AJ, Avery ME, Taeusch HW. Schaffer's diseases of the newborn. W.B. Saunders, Philadelphia, PA; 1984.

[23] Walsh BK, Brooks TM, Grenier BM. Oxygen therapy in the neonatal care environment. *Respir Care* 2009;54(9):1193–1202.

[24] Kinsey VE, Arnold HJ, Kalina RE, Stern L, Stahlman M, Odell G, et al. PaO₂ levels and retroental fibroplasia: a report of the cooperative study. *Pediatrics* 1977;60(5):655–668.

[25] Huch A, Huch R. Transcutaneous, noninvasive monitoring of pO₂. *Hosp Pract* 1976;11(6):43–52.

[26] Severinghaus JW, Honda Y. History of blood gas analysis. VII. Pulse oximetry. *J Clin Monit* 1987;3(2):135–138.

[27] James S, Lanman JT. History of oxygen therapy and retroental fibroplasia. Prepared by the American Academy of Pediatrics, Committee on Fetus and Newborn with the collaboration of special consultants. *Pediatrics* 1976;57(Suppl. 2):591–642.

[28] Silverman WA, Blodi FC, Locke JC, Day RL, Reese AB. Incidence of retroental fibroplasia in a New York nursery. *AMA Arch Ophthalmol* 1952;48(6):698–711.

[29] Silverman WA. The lesson of retroental fibroplasia. *Sci Am* 1977;236(6):100–107.

[30] Silverman WA. Oxygen and retroental fibroplasia in neonates. *Public Health Rep* 1969;84(1):16–17.

[31] Genn MM, Silverman WA. The mental development of ex-premature children with retroental fibroplasia. *J Nerv Ment Dis* 1964;138:79–86.

[32] Silverman W. A cautionary tale about supplemental oxygen: the albatross of neonatal medicine. *Pediatrics* 2004;113:394–396.

[33] Cummings JJ, Polin RA. Committee on Fetus and Newborn. Oxygen targeting in extremely low birth weight infants. *Pediatrics* 2016;138(2):e20161576.

[34] Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European Consensus Guidelines on the management of respiratory distress syndrome—2016 update. *Neonatology* 2016;111(2):107–125.

[35] Usher R. Reduction of mortality from respiratory distress syndrome of prematurity with early administration of intravenous glucose and sodium bicarbonate. *Pediatrics* 1963;32:966–975.

[36] Daily WJ, Sunshine P, Smith PC. Mechanical ventilation of newborn infants. V. Five years' experience. *Anesthesiology* 1971;34(2):132–138. [37] Daily WJ, Meyer HB, Sunshine P, Smith PC. Mechanical ventilation of newborn infants. 3. Historical comments and development of a scoring system for selection of infants. *Anesthesiology* 1971;34(2):119–126.

[38] Downes JJ. Mechanical ventilation of the newborn. *Anesthesiology* 1971;34(2):116–118.

[39] Benson F, Celander O, Haglund G, Nilsson L, Paulsen L, Renck L. Positive-pressure respirator treatment of severe pulmonary insufficiency in the newborn infant; a clinical report. *Acta Anaesthesiol Scand* 1958;2(1):37–43.

[40] Donald I, Kerr MM, Macdonald IR. Respiratory phenomena in the newborn; experiments in their measurement and assistance. *Scott Med J* 1958;3(4):151–164.

[41] Delivoria-Papadopoulos M, Swyer PR. Assisted ventilation in terminal hyaline membrane disease. *Arch Dis Child* 1964;39:481–484.

[42] Delivoria-Papadopoulos M, Levison H, Swyer PR. Intermittent positive pressure respiration as a treatment in severe respiratory distress syndrome. *Arch Dis Child* 1965;40(213):474–479.

Evolution of Neonatal Ventilation a Retrospective View

[43] Swyer PR, Levison H. The current status of the respiratory distress syndrome of the newly born. *Can Med Assoc J* 1965;93:335–342.

[44] Adamson TM, Collins LM, Dehan M, Hawker JM, Reynolds EO, Strang LB. Mechanical ventilation in newborn infants with respiratory failure. *Lancet* 1968;2(7562):227–231.

[45] Thomas DV, Fletcher G, Sunshine P, Schafer IA, Klaus MH. Prolonged respiratory use in pulmonary insufficiency of newborn. *JAMA* 1965;193:183–190.

[46] de Heese HV, Harrison VC, Klein M, Malan AF. Intermittent positive pressure ventilation in hyaline membrane disease. *J Pediatr* 1970;76(2):183–193.

[47] Woollam CH. The development of apparatus for intermittent negative pressure respiration. (2) 1919–1976, with special reference to the development and uses of cuirass respirators. *Anaesthesia* 1976;31(5):666–685.

[48] Woollam CH. The development of apparatus for intermittent negative pressure respiration. *Anaesthesia* 1976;31(4):537–547.

[49] Stern L. Results of artificial ventilation in the newborn. *Biol Neonate* 1970;16(1):155–163.

[50] Stahlman MT, Malan AF, Shepard FM, Blankenship WJ, Young WC, Gray J. Negative pressure assisted ventilation in infants with hyaline membrane disease. *J Pediatr* 1971;76(2):174–182.

[51] Stern L, Ramos AD, Outerbridge EW, Beaudry PH. Negative pressure artificial respiration: use in treatment of respiratory failure of the newborn. *Can Med Assoc J* 1970;102(6):595–601.

[52] Chernick V, Vidyasagar D. Continuous negative chest wall pressure in hyaline membrane disease: one year experience. *Pediatrics* 1972;49(5):753–760.

[53] Vidyasagar D, Chernick V. Continuous positive transpulmonary pressure in hyaline membrane disease: a simple device. *Pediatrics* 1971;48(2):296–299.

[54] Problems of neonatal intensive care units. Report of the fifty-ninth

Ross Conference on Pediatric Research. Lucey JF, editor. 1969: Ross Laboratories; 1969.

[55] Swyer PR. Patient monitoring during artificial ventilation. *Biol Neonate* 1970;16(1):88–91.

[56] Swyer PR. Results of artificial ventilation. Experience at the Hospital for Sick Children, Toronto. *Biol Neonate* 1970;16(1):148–154.

[57] Swyer PR. Methods of artificial ventilation in the newborn (IPPV). *Biol Neonate* 1970;16(1):3–15.

[58] Swyer PR. Symposium on artificial ventilation. Summary of conference proceedings. *Biol Neonate* 1970;16(1):191–195.

[59] Gregory GA, Kitterman JA, Phibbs RH, Tooley WH, Hamilton WK. Treatment of the idiopathic respiratory-distress syndrome with continuous positive airway pressure. *N Engl J Med* 1971;284(24):1333–1340.

[60] Avery ME. Surfactant deficiency in hyaline membrane disease: the story of discovery. *Am J Respir Crit Care Med* 2000;161(4 Pt. 1):1074–1075.

[61] Avery ME. Chevalier Jackson Lecture: in quest of the prevention of hyaline membrane disease. *Ann Otol Rhinol Laryngol* 1977;86(5 Pt. 1):573–576.

[62] Brumley GW, Hodson WA, Avery ME. Lung phospholipids and surface tension correlations in infants with and without hyaline membrane disease and in adults. *Pediatrics* 1967;40(1):13–19.

[63] Avery GB. Recent concepts of pulmonary hyaline membrane disease. *Med Ann Dist Columbia* 1962;31: 92–94.

[64] Avery ME. Recent increase in mortality from hyaline membrane disease. *J Pediatr* 1960;57:553–559.

[65] Halliday HL. History of surfactant from 1980. *Biol Neonate* 2005;87(4):317–322.

[66] Obladen M. History of surfactant up to 1980. *Biol Neonate* 2005;87(4):308–316.

[67] Fujiwara T, Adams FH. Surfactant for hyaline membrane disease. *Pediatrics* 1980;66(5):795–798.

[68] Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T. Artificial surfactant therapy in hyaline-membrane disease. *Lancet* 1980;1(8159):55–59.

[69] Raju TN, Vidyasagar D, Bhat R, Sobel D, McCulloch KM, Anderson M, et al. Double-blind controlled trial of single-dose treatment with bovine surfactant in severe hyaline membrane disease. *Lancet* 1987;1(8534):651–656.

[70] Seger N, Soll R. Animal derived surfactant extract for treatment of respiratory distress syndrome. *Cochrane Database Syst Rev* 2009;(2):CD007836.

[71] Goldsmith JP, Karotkin E, Suresh G, Keszler M. Assisted ventilation of the neonate: evidence-based approach to newborn respiratory care. *Saunders Elsevier*, St. Louis, MO; 2016.

[72] Walsh MC, Bell EF, Kandefer S, Saha S, Carlo WA, D'Angio CT, et al. Neonatal outcomes of moderately preterm infants compared to extremely preterm infants. *Pediatr Res* 2017;82(2):297–304.

[73] Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. *Pediatrics* 2010;126(3):443–456.

[74] Clark RH. The epidemiology of respiratory failure in neonates born at an estimated gestational age of 34 weeks or more. *J Perinatol* 2005;25(4):251–257.

[75] Vidyasagar D, Singh N. Neonatal ventilator care in resource limited countries. In: Goldsmith JP, Karotkin E, editors. *Assisted ventilation of the neonate*. Philadelphia: Elsevier; 2011. p. 521–530.

Page left intentionally blank

15

Lung Development and Interventions in the Prenatal and Perinatal Period

Development 19

4 Transition in the Delivery Room:
Current NRP Recommendations 31

5 Sustained Lung Inflation 45

Pathophysiology of Fetal Lung Development

Bobby Mathew, MBBS, MRCP, Lucky Jain, MD, MBA, Satyan Lakshminrusimha, MD

Introduction 19 **Embryology 19** **Pulmonary vascular development 22** **Transcription factors and growth factors in lung development 23** **Maturation of pulmonary surfactant system 23** **Intrauterine exposures and its effect on lung development 24** **Physical factors: lung liquid and fetal breathing movements 26** **References 28**

- Fetal lung development is a highly complex developmental process orchestrated by genetic, hormonal, and physical factors.
- Lung development proceeds from 4 weeks of gestation through childhood in five continuous but overlapping stages
- Specific disorders are associated with derangements, insults and exposures at various developmental stages and following preterm birth.
- Studies in animal models have significantly advanced our understanding of the molecular mechanisms of lung development.
- Recent studies with stem cells hold promise to further our knowledge towards development of potential therapeutic interventions in this vulnerable patient population.

Introduction

The primary function of the respiratory system is oxygenation. This is accomplished through a highly complex system of airways and blood vessels that are closely related from an anatomical, functional, and developmental perspective. Generation and removal of carbon dioxide from the blood.

During gestation, the lungs undergo several developmental stages (Fig. 3.1 and Table 3.1). 19

perspective. Gas exchange between the atmospheric air and the blood occurs across the double-layered alveolar–capillary membrane. The lungs consist of extensive airway conducting system, with many different specialized epithelial lining cells, neuroendocrine cells, and an expansive gas exchange zone composed of intricately arranged pulmonary epithelial cells and capillaries. Fetal lung development is a highly complex developmental process orchestrated by genetic, hormonal, and physical factors. This chapter briefly describes the development of the lungs, the disorders associated with derangements at various developmental stages, and the effects of exposure to adverse intrauterine environment from various insults during gestation and following preterm birth [1].

Embryology

The lungs develop from the primitive foregut endoderm and the surrounding mesoderm. All of the three germ layers give origin to the different tissues of the lung. The pulmonary epithelium is derived from the endoderm. The pulmonary vasculature, the cartilage, the airway, and vascular smooth muscle and connective tissues are of mesodermal origin. The neural innervation of the lung is of ectodermal origin. Reciprocal mesenchymal–epithelial inductive interactions are mediated through direct cell-to-cell contact, soluble factors, and spatiotemporal- and concentration dependent activation of different growth factors and genes lead to coordinated development of the lungs. Mesenchyme influences epithelial growth and morphology, patterning of ductal branching, and activates specific patterns of epithelial cytodifferentiation and functional activities [2]. Fetal lung development proceeds from 4 weeks of gestation through childhood in five continuous but overlapping stages (Fig. 3.1 and Table 3.1). 19

Table 3.1 Stages of lung development and timing based on postmenstrual age (PMA)

Stages	Weeks (PMA)	Main events	Examples of anomalies resulting from disruption at this stage
Embryonic	5–9	Tracheobronchial branching	Tracheoesophageal fistula, esophageal atresia, pulmonary agenesis/aplasia.
Pseudoglandular	6–17	Elongation and repetitive branching of airways and pulmonary vascular development	of alveolar and capillary membranes Bronchogenic cysts, pulmonary hypoplasia, tracheobronchomalacia, intralobar pulmonary sequestration, alveolar capillary dysplasia, congenital diaphragmatic hernia and pulmonary vascular lymphangiectasis
Canalicular	16–26	Differentiation of type I and II cells, surfactant and lung liquid production; alveolar–capillary interface begins to form	Pulmonary hypoplasia, alveolar capillary dysplasia Bronchopulmonary dysplasia following preterm birth
Saccular	24–38	Formation of air sacs and better apposition	Secondary septa formation and fusion and thinning of double-capillary network
Alveolar	36 weeks to postnatal age (2–8 years)		

Disruption of each stage can lead to specific congenital or developmental anomalies of the lung.

esophagogastric atresia, and pulmonary agenesis/aplasia.

Embryonic stage

This stage extends from 5 to 9 weeks of postmenstrual age (PMA). The major events during the embryonic stage are the formation of the lung bud and the development of the major airways to the level of segmental bronchi. At 28 days of gestation a group of cells in the ventral foregut endoderm are committed to become respiratory epithelial progenitors by localized expression of the homeobox gene Nkx2-1 [3]. At 5 weeks of PMA, these cells give rise to lung buds that appear as a ventral outpouchings from the primitive gut endoderm and grows into the surrounding mesoderm.

Derivatives anterior to and parallel to the developing esophagus. The trachea is formed by the fusion of lung buds by 6 weeks of PMA. Epithelial cells (endodermal origin) invade the surrounding mesoderm and undergo a series of branching giving rise to the tracheobronchial tree. By the 7th week of PMA, bifurcation of the lung buds occurs, two on the left and three on the right. In the subsequent week, a further round of branching occurs which gives rise to segmental branches, 8–9 on the left and 10 on the right and establishes the bronchopulmonary segments of the lung. The separation of trachea and esophagus is complete by the end of this stage. The pulmonary artery branches from the sixth aortic arch and the pulmonary veins emerging from the left atrium are established. Perturbations in development during this stage can lead to tracheoesophageal fistula,

This stage extends from 6 to 18 weeks of PMA. During this stage the developing lungs assumes a glandular appearance with multiple branching epithelial tubes surrounded by abundant mesenchyme. The main event that occurs during this stage is the elongation and repetitive branching of the airways, differentiation of the epithelial linings of the respiratory tree, and the development of airway smooth muscle and cartilage. Branching morphogenesis is tightly controlled temporally and spatially with proximal-distal (P-D) patterning, resulting in generation of proximal epithelial progenitors giving rise to neuroendocrine, mucociliary, and basal cells of the conducting airways and distal epithelial progenitors yielding pneumocytes in the periphery of the lungs [4–6]. The P-D patterning is brought about by differential expression of transcription factors, Sox2 in the proximal airway lining cells and Sox9 in the distal epithelium of the lungs [7,8]. The cartilage extends into the segmental bronchi and smooth muscle to the respiratory bronchioles. Vascular development during this stage includes the development of pulmonary arterial system in parallel to the airway branching and the pulmonary veins and lymphatics extending into the interlobular septa. Closure of the pleuroperitoneal cavity occurs during this stage. Breathing movements are first noted around 10 weeks of PMA. Congenital abnormalities during this stage of development include bronchogenic cysts, pulmonary

21

| II | Lung Development and Interventions in the Prenatal and Perinatal Period

hypoplasia, tracheobronchomalacia, intralobar pulmonary sequestration, alveolar capillary dysplasia, congenital dia phragmatic hernia, and pulmonary vascular lymphangiectasis.

Canalicular stage

This stage extends between 16 and 26 weeks of gestation. Canalization of the lung parenchyma with increasing pulmonary capillary network, formation of the air–blood barrier, differentiation of the epithelial cells in the lung are the main events in this stage. The alveolar lining cells—the type 1 and 2 alveolar cells appear in the second half of this stage. The lumen of the airways enlarge, with thinning of the alveolar septa and an exponential increase in development of the capillary bed with greater apposition of the airway and the vasculature resulting in the formation of the immature yet functional air–blood barrier. The conducting airways are lined by fully differentiated ciliated cells, submucosal glands, smooth muscle, and cartilage as far distally as in the mature lung. Respiratory bronchioles and alveolar ducts develop during this stage. The epithelial cells secrete fetal lung fluid and the alveolar type 2 cells begin to produce surfactant. Infants

born toward the end of this stage have severe respiratory insufficiency but can survive with surfactant replacement therapy and intensive care. Abnormalities associated with this stage of lung development are pulmonary hypoplasia due to impairment of the thoracic cavity or loss of fetal lung fluid as in oligohydramnios and alveolar capillary dysplasia.

Saccular stage

This stage extends between 24 and 38 weeks of gestation. Formation of alveolar ducts and saccules occurs by the expansion and dilation of the terminal clusters of the acinar tubules. Intersaccular and interductal septa develop which contain a double capillary network. Greater apposition of the capillaries and the type 1 alveolar epithelial cells with fusion of the basal lamina of the type 1 alveolar epithelial cells and the endothelium of the capillary results in the formation of alveolar–capillary membrane. Further maturation of the type 2 alveolar epithelial cells occurs as evidenced by increase in number and size of the lamellar bodies and increase in amounts of tubular myelin in the airspaces.

Alveolar stage

The alveolar stage of lung development extends from 36 weeks of PMA to 2 years postnatal and is characterized by the maturation of the alveolar–capillary membrane and the formation of secondary septa, which divide the terminal saccules into alveolar ducts and alveoli. The alveolar septum is thick and contains a double capillary network at the beginning of this stage. Development of secondary septa/crests with further lengthening, thinning, and fusion of the double capillary network leads to closer apposition of the alveolar capillary interface and increase in surface area for gas exchange and the formation of the mature alveolus. Alveolarization occurs in two phases. The initial phase in the first 2 years of life of rapid increase in alveolar numbers with decreased volumetric expansion is termed bulk alveolarization. This is followed in childhood through young adolescence by a period of slower increase in number and increased growth of the alveoli resulting in increased lung volumes [9,10]. At term gestation, the mature lung has approximately 150 million alveoli and this increases to about 480 million by adulthood.

Pulmonary vascular development

The pulmonary vascular system consists of the pulmonary arterial and venous systems and pulmonary lymphatics. Contrary to what was believed earlier, vascular morphogenesis starts early in the embryonic

phase with the development of a primitive vascular plexus around the lung bud [11]. The pulmonary vasculature develops from mesodermal progenitor cells, which are committed to endothelial lineage with specific markers, such as VEGFR2, CD31, and Sox17. The two major processes through which pulmonary blood vessels develop are vasculogenesis and angiogenesis.

Vasculogenesis involves the de novo formation of blood vessels through primitive endothelial cells forming tubes or sinusoids. Angiogenesis is the process by which new vessels are formed by sprouting or branching from preexisting vessels. The main pulmonary artery is formed by vasculogenesis and so are the blood vessels at periphery of the lung. Angiogenesis accounts for the formation of the proximal pulmonary arteries and veins [12]. The development of the pulmonary arterial system closely mirrors the airway system. All the preacinar arteries and veins are formed by the end of the pseudoglandular stage. In the canalicular stage, there is a rapid increase in blood vessel formation and closer apposition of the blood vessels to the pulmonary epithelium. During the saccular and alveolar stages, fusion of the basement membrane of the alveolar epithelial cells to the pulmonary endothelial cell further decreases the diffusion distance and increases the efficiency of gas exchange of the alveolar–capillary membrane. Alveolar and pulmonary vascular development is exceedingly interdependent processes and perturbation of pulmonary vascular development leads to impairment of alveolarization [13–15].

22

Pathophysiology of Fetal Lung Development

| 3 |

Transcription factors and growth factors in lung development

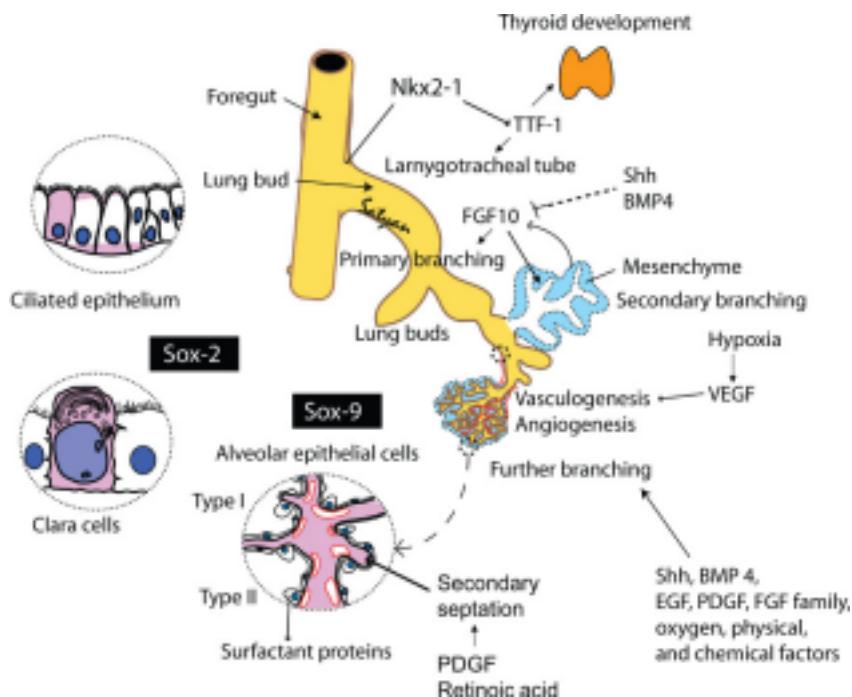
Lung development is dependent on interactions between the epithelium and the mesenchyme and modulated by multiple signaling pathways. Several transcription factors, growth factors, and their receptors with specific temporal and spatial profiles play vital role in different stages of lung development. The role of different factors in lung development has been elucidated by gain or loss of function studies in null, mutant, and transgenic mouse models. The progenitors for the future respiratory tract are first identified around 28-day gestation by localized expression of homeobox gene Nkx2-1 in a subset of cells in the ventral foregut endoderm. Nkx2-1/Thyroid transcription factor (TTF1) is a key regulator involved in all stages of lung development from the embryonic stage through to alveolarization in the postnatal period. In experimental animals, disruption of Nkx2-1 results in nonseparation of the trachea from the esophagus, severe lung hypoplasia, impairment of branching morphogenesis and epithelial differentiation, and abnormalities in surfactant homeostasis [16,17]. In the earliest stage of development, Forkhead box A1 and 2 (FOXA) is

expressed in the ventral foregut endoderm at the initiation of lung bud formation along with the NKX2-1. Mutation of the Foxf1 is the underlying genetic abnormality in alveolar–capillary dysplasia [18,19]. Fibroblast growth factors (FGF) regulate an array of functions, including migration, cellular proliferation, and differentiation. FGF10, a mitogen, and chemoattractant for the epithelium and its receptor FGFR2IIIb play an important role in the branching morphogenesis. FGF10 deficient mice have arrested development at the stage of the trachea with no pulmonary branching [20,21]. Sonic hedgehog (Shh) plays an important role in epithelial mesenchymal signaling with deficiency leading to decreased cell proliferation and increased apoptosis and overexpression resulting in mesenchymal hypercellularity and smaller lungs with dysfunctional alveoli [22,23]. Other genes and transcription factors, such as HOX, Myc, GATA, Wnts, BMPs, play crucial roles in the branching morphogenesis [24–28]. Elastogenesis is critical for secondary septation in the stage of alveolarization. Elastin deposition occurs at the sites of interalveolar septa formation.

Platelet-derived growth factor, a key chemoattractant for myofibroblasts, FGF18, retinoic acid have an important role in elastogenesis, secondary septation, and alveolarization. Retinoic acid upregulates tropoelastin gene expression and mRNA expression of FGF18, PGDF, and its receptors. Vitamin A deficiency has been shown to delay alveolar development, and supplementation results in increasing number of alveoli in rat pups [29]. Vitamin A

supplementation has been shown to decrease mortality and the risk of bronchopulmonary dysplasia in preterm infants [30]. Remodeling of the extracellular matrix is brought about by the matrix metalloproteinases (MMP2 and MMP14) and the tissue inhibitors of metalloproteinases (TIMP). Low levels of MMP2 in tracheal secretions were found to be associated with an increased risk of bronchopulmonary dysplasia in preterm infants [31].

Vascular endothelial growth factor (VEGF) plays a major role both in blood vessel formation and alveolarization (Fig. 3.2). In experimental animals, ablation of the VEGF gene caused abnormal spatial organization of blood vessels, severe cardiovascular abnormalities, and in utero death. VEGF-mediated angiogenesis is brought about in part through nitric oxide. In newborn mice, treatment with VEGF inhibitor SU5416 decreased lung endothelial nitric oxide synthase (eNOS) activity resulting in right ventricular hypertrophy (RVH) and decreased radial alveolar count (RAC). Inhaled nitric oxide treatment prevented the development of RVH and improved the RAC [32]. VEGF expression is tightly controlled during lung development, as seen in experimental studies in mice; overexpression of VEGF resulted in pulmonary vascular leak and hemorrhage, alveolar inflammation and death [33]. Other important mediators of pulmonary vascular development include epidermal growth factor (EGF), transforming growth factor, angiopoietins, BMPs, platelet-derived growth factors, and transcription factors such as HIF,


Hox, Fox, and Sox that play a critical role in lung development.

Maturation of pulmonary surfactant system

Pulmonary surfactant is synthesized and secreted by the type 2 alveolar cells. Type 2 cells are first recognized in the late canalicular stage. In utero, type 2 cells secrete only small amounts of surfactant even at term gestation. Surfactant synthesis and secretion are tightly regulated by hormonal, physical, and chemical stimuli. Regulation of type 2 alveolar epithelial cells, maturation, and surfactant release are influenced by late-term elevations of intracellular cyclic 3'-5' adenosine monophosphate (cAMP), cortisol, thyroid hormone, catecholamines, and through stimulation of beta adrenoceptors and natriuretic peptide receptors [34,35] (Fig. 3.3). Lamellar bodies, the storage form of surfactant, first appear in the fetal lungs between 20 and 24 weeks of gestation. The surfactant pool size of preterm infants with RDS is about 10 mg/kg as compared to 100 mg/kg in term infants [36]. The rate of synthesis and clearance of surfactant is about 10-fold less than in the adult [37]. However, birth even at extreme preterm gestation, the surfactant system is turned on and these infants are able to

23

II | Lung Development and Interventions in the Prenatal and Perinatal Period

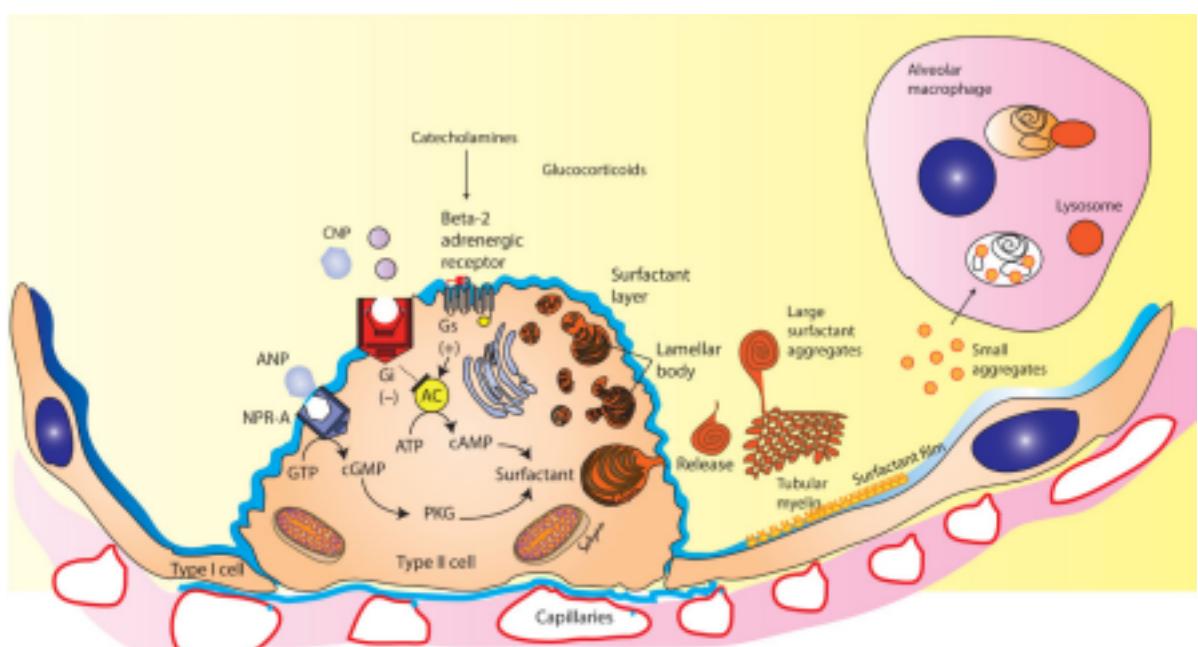
Fig. 3.2 Development of the Respiratory System —Role of Genes, Growth Factors and Transcription Factors. Localized expression of Nkx2-1 on the endodermal cells on the ventral surface of the primitive foregut commits them to respiratory cell

lineage. At 5-week PMA, lung buds appear as two ventral outpouchings and grow into the surrounding mesoderm. Positive signaling by fibroblast growth factor 10 (FGF 10) and negative signaling by Sonic Hedgehog (Shh), bone morphogenetic protein 4 (BMP4), Sprouty 2 (spry2) facilitate primary and secondary branching. Further branching is facilitated by Shh, BMP4, spry2, transforming growth factor β (TGF β), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and fibroblast growth factors (FGFs). PDGF and retinoic acid (RA) have important role in secondary septation and alveolarization. Thyroid transcription factor-1 (TTF-1) and GATA-6 are important in cell differentiation and the development of the surfactant system. Forkhead homolog 4 (HFH-4) plays an important role in differentiation of ciliated epithelial cell lineage. Differential expression of the Sox2 and Sox9 leads to the proximal distal patterning of airway development. VEGF, Vascular endothelial growth factor. Copyright: Satyan Lakshminrusimha.

produce though lower but adequate amounts of surfactant by 4–7 days of life without the need for further exogenous surfactant replacement therapy [38]. Changes in composition of surfactant also occur with advancing gestation, and are the basis of tests for lung maturity in fetus, such as lecithin to sphingomyelin (L:S) ratio [39]. The phospholipid composition of the surfactant also changes with gestation with an increase in content of phosphatidylcholine and the ratio of phosphatidylglycerol to phosphatidylinositol [40]. The presence of phosphatidylglycerol in the amniotic fluid is considered as positive test for lung maturity. The preterm lung is also deficient in surfactant proteins (SPs) [41,42]. The decreased level of SPs in the preterm decreases its efficiency at improving the lung compliance and increases the susceptibility to inactivation. SP-A and SP-D are water-soluble collectins, decreased levels of which lead to impairment of host defense from decreased phagocytic and opsonization functions [43]. SP-B and SP-C are hydrophobic

24

Pathophysiology of Fetal Lung Development


| 3 |

peptides associated with surfactant phospholipids and are stored in the lamellar bodies. SP-B is absolutely critical to surfactant function, as it is an essential for synthesis, assembly and functioning of surfactant, and deficiency leads to death in the newborn period. They have antiinflammatory and antioxidant properties, and a lower level in preterm infants translates to increased susceptibility to infection, inflammation, and hyperoxia-mediated lung injury [44].

Intrauterine exposures and its effect on lung development

Smoking

The fetus is indirectly exposed to many environmental pollutants through the transplacental route. Maternal smoking

Fig. 3.3 Control of Surfactant Secretion. Catecholamines act through the adenylyl cyclase stimulate surfactant secretion. ANP at lower doses binds to the NPR-A receptor and stimulates surfactant release. At higher doses, ANP also binds to the NPR-C receptor and inhibits beta-2 agonist stimulation of surfactant release. CNP, C-type natriuretic peptide. Copyright: Satyan Lakshminrusimha.

during pregnancy has been the most extensively studied among toxic exposures to the fetus. Cigarette smoking in pregnancy leads to premature birth, poor intrauterine growth, and increases perinatal mortality. Nicotine in cigarette smoke crosses the placenta and through binding to the nicotinic acetylcholine receptors in the developing lung leads to long-term structural and functional abnormalities. In animal models, antenatal nicotine exposure is associated with decreased alveolar septation, elastin content, and lung volume and increased lamellar bodies and collagen [45,46]. Abnormalities in lung function include decrease in functional residual capacity, forced expiratory volume and compliance [47,48]. Abnormalities in airways with increased number airways of smaller diameter result in increased resistance to airflow [49]. This translates to an increased incidence of lower respiratory illness, such as reactive airways disease and asthma in childhood [50].

Intrauterine growth restriction (IUGR)/maternal undernutrition

Intrauterine growth restriction (IUGR) results from multiple etiologic factors, disorders of abnormal placental function, decreased fetal perfusion resulting in deficient oxygen and nutrient delivery, maternal undernutrition,

systemic

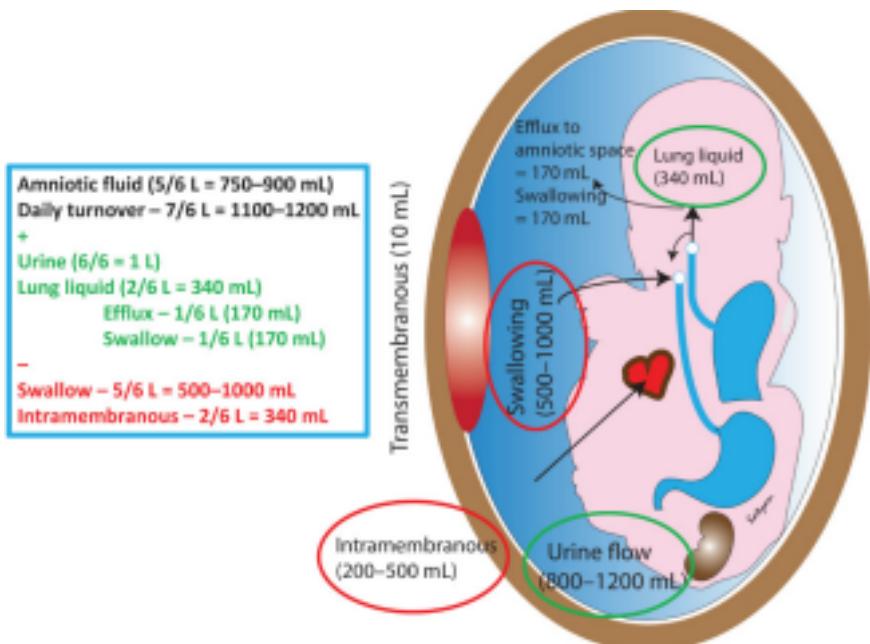
illness, exposures to drugs and toxins or from factors intrinsic to the fetus. In animal models, fetal growth restriction has been shown to decrease the overall lung volume, the alveolar surface area and increase the thickness of the alveolar–capillary membrane resulting in decreased diffusing capacity [51–53]. In a maternal hyperthermia model of IUGR in fetal sheep, decreased pulmonary alveolar and vascular growth and endothelial dysfunction were shown to be the underlying mechanisms for pulmonary hypertension. In a retrospective study of infants' ≤ 28 weeks gestation at birth with moderate to severe BPD, birth weight below 25th percentile was found to be an independent predictor for pulmonary hypertension [54]. Studies in animal models have also shown an increased risk of development of pulmonary hypertension and cardiac dysfunction with age in IUGR [55].

Chorioamnionitis

Ascending infection from the lower genital tract spreads to the amniotic cavity through the chorio decidua plane. Common etiologic agents causing chorioamnionitis and precipitating preterm labor are *Ureaplasma*, *Mycoplasma*, and *Fusobacterium*. Studies of intraamniotic injections with bacterial products, such as lipopolysaccharide (LPS)

25

| II | Lung Development and Interventions in the Prenatal and Perinatal Period


or proinflammatory cytokines (IL-1 Beta IL-1 alpha), lead to increase in pulmonary surfactant, lung maturation, and improved compliance [56,57]. This functional maturation is brought about at the expense of structural lung development with decrease in the number and increase in size of the alveoli leading to decreased surface area for gas exchange [58]. Intraamniotic injection of LPS in fetal sheep leads to hypertrophy of the smooth muscle and fibroblast proliferation in the adventitia resulting in pulmonary vascular remodeling and increased pulmonary vascular resistance contributing to the development of pulmonary hypertension [59,60]. The effect of chorioamnionitis on long-term pulmonary outcomes is not well established. However, the available evidence in preterm infants with chorioamnionitis suggests an increased risk of bronchopulmonary dysplasia in newborn period and reactive airways disease in childhood [61,62].

Physical factors: lung liquid and fetal breathing movements

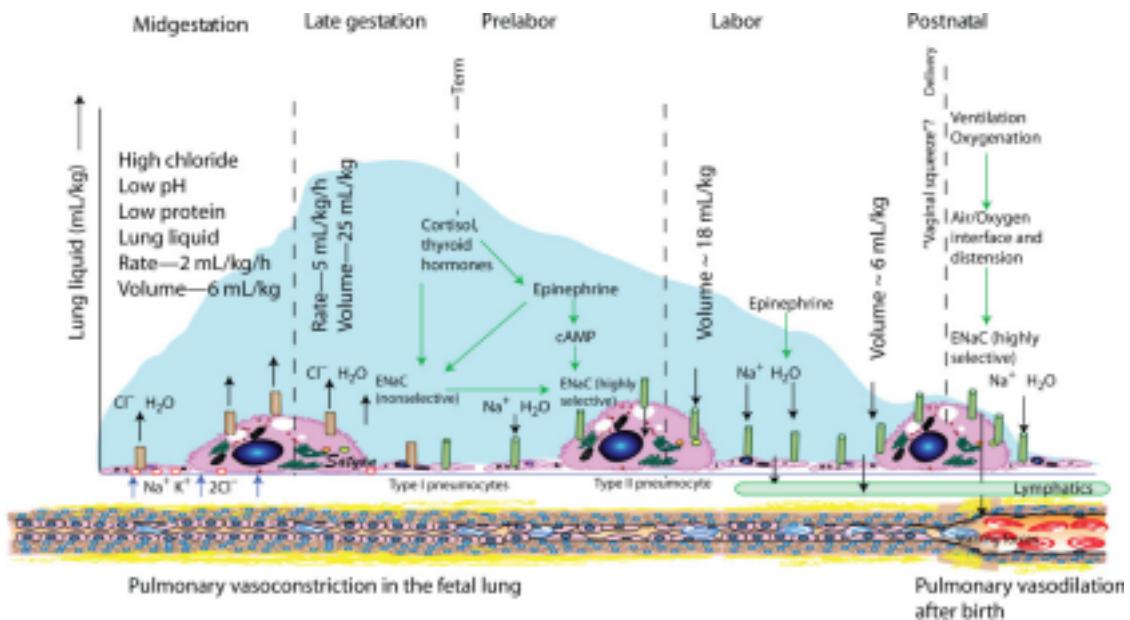
Lung fluid is secreted by the epithelial cells by active transport of chloride ions into the lumen of the lung. The near term fetal lung in sheep secretes about 4–5 mL/kg/h of fetal lung

fluid and the lungs contain about 25–40 mL/kg body weight, which is approximately equal to or slightly higher than the functional residual capacity of the term lung. The intraluminal pressure in the lungs is higher than the intraamniotic pressure by about 2 mmHg and fetal lung fluid drains intermittently with breathing movements into the amniotic cavity (Fig. 3.4). This distending pressure is vital and promotes the development of the lungs in the fetus. Moessinger et al. have demonstrated that the loss of fetal lung fluid results in lung hypoplasia in fetal lambs [63]. Oligohydramnios as it occurs in fetuses with renal agenesis (Potter's syndrome), preterm prelabor rupture of membranes leads to an increased risk of pulmonary hypoplasia and the risk increases with the time and duration of oligohydramnios. The increased volume of fetal lung liquid causes lung hyperplasia, and this is the basis of the fetal endoluminal tracheal occlusion (FETO) procedure in fetuses with antenatal diagnosis of congenital diaphragmatic hernia. (NCT02710968 and others at clinicaltrials.gov).

Fetal breathing movements are required for optimal lung development. In human fetuses, breathing movements start around 10-week gestation and the frequency increases with advancing gestation. At term gestation, breathing movements occur about 30% of the time. In utero transection of the phrenic nerve during in utero development on day 24.5 in rabbit fetus resulted in hypoplastic lungs [64].

Fig. 3.4 Amniotic Fluid and Lung liquid dynamics. Green—indicates factors contributing to increase in amniotic fluid. Red indicates factors depleting amniotic fluid. Fetal lung liquid is the second most important contributor to amniotic fluid volume (the primary contributor being fetal urine). The volumes are shown as fractions with a denominator of 6 for ease. Copyright: Satyan Lakshminrusimha.

Peristaltic contractile activity of the airway propagates distal movement of the lung fluid, expansion of the lung buds, and promotes lung growth and development. Restriction of chest cavity impairs lung growth. This could result from extrinsic restriction, as it occurs with abnormalities of chest shape, for example, thoracic dystrophies, severe kyphoscoliosis or congenital diaphragmatic hernia, lung masses/ cysts, or effusions.


In preparation for postnatal gas exchange, the alveolar epithelium shifts from a fluid secreting to a reabsorbing membrane (Fig. 3.5). This is brought about through changes in transmembrane transport channels, humoral factors, and changes in oxygen tension. The effects of these are also modified by the gestational age at birth, labor, and mode of delivery. During late gestation, an increase in circulating catecholamines and elevation in intracellular cAMP levels result in maturation of the pulmonary epithelium preparing the lungs for surfactant secretion and fluid clearance. At the onset of labor, active transcellular movement of sodium from the lumen to the interstitial space and further into the pulmonary lymphatics and to the venous system is facilitated by the epithelial sodium channel (ENaC) on the luminal side and the sodium potassium ATPase (Na,K-ATPase) and sodium potassium chloride cotransporter (NaKCC1) on the basolateral membrane [65]. This effect is blocked by the sodium channel blocker amiloride [66]. ENaC knockout mice have delayed alveolar

fluid clearance in the newborn period with improvement on rescue with α ENaC transgene [67]. Epinephrine causes lung fluid resorption through beta adrenergic pathway and this effect is blocked by propranolol [68]. Thyroid hor

mone and glucocorticoids play a key role in advancing the absorptive response of the pulmonary epithelium to cat echolamines [69]. Exposure to prenatal steroids has been shown to increase the levels of α ENaC mRNA in the fetal rat lungs [70]. The increase in PaO_2 as seen following birth inhibits fluid secretion in lung explants from late gestation but not in early gestations [71]. However, this effect can be induced at earlier gestation on treatment with thyroid or steroid hormones. Preterm premature rupture of membranes leads to fetal lung maturation as evidenced by rapid acceleration of the rate of increased L/S ratio to levels seen with lung maturity.

Glucocorticoids

Glucocorticoids induce accelerated maturation of the lung with thinning of the alveolar wall and fusion of the double capillary network and maturation of the surfactant system resulting in decreased severity of respiratory distress syndrome in infants born preterm. However, this also causes inhibition of vascular development and earlier termination of the septation leading to fewer and larger alveoli with decrease in lung surface area for gas exchange [72,73].

Fig. 3.5 Changes in lung liquid volume during various phases of gestation, term birth, and postnatal period. Factors contributing to secretion and resorption of lung liquid are shown. The vertical axis represents lung liquid volume in mL/kg. cAMP, Cyclic 3'-5' adenosine monophosphate; ENaC, epithelial sodium channel. Copyright: Satyan Lakshminrusimha.

27

II | Lung Development and Interventions in the Prenatal and Perinatal Period

Expectant mothers with threatened preterm labor before 34 weeks of gestation are routinely given a single course of antenatal steroids. Infants born 24 h to 7 days following complete course of antenatal steroids have decreased severity of respiratory distress syndrome, intraventricular hemorrhage and mortality. However, infants whose mothers received multiple courses of antenatal steroids had decreased birth weight, length, and head circumference with no improvement in neonatal morbidities [74].

Premature birth and oxygen exposure

The fetal lung develops in a hypoxic environment. Low oxygen tension promotes optimal fetal lung development through hypoxia inducible factor (HIF) and its effect on VEGF. Extremely preterm infants born toward the end of the canalicular stage of lung development are capable of surviving with intensive care, surfactant replacement therapy, and assisted ventilation. The gas exchange units at this stage consist of terminal clusters of acinar tubules, alveolar ducts, and saccules and a primitive alveolar–capillary membrane. Exposure to hyperoxia and ventilator-induced lung injury are inevitable consequences of extreme preterm birth. Inhibition of VEGF (due to hyperoxia) leads to impairment of both vascularization and alveolarization. Exposure to hyperoxia also causes oxidative stress-mediated lung damage, which overwhelms the immature antioxidant capabilities of the preterm lungs that lead to the

References

bronchopulmonary dysplasia and long-term pulmonary morbidity in survivors of preterm birth.

Conclusions

Arrest of lung development, intrauterine/perinatal and postnatal infections, and iatrogenic lung injury remains the cause of major morbidity and mortality in infants born extremely preterm. Current treatment modalities are targeted at decreasing ventilator-induced lung injury, optimizing nutrition, prevention and treatment of infections, gastroesophageal reflux, which cause impaired lung development and deterioration of lung function. Timely and effective antenatal care, minimizing noxious exposures, and ensuring adequate fetal and postnatal growth can to a degree mitigate the developmental consequences to the lung of preterm birth. Studies in animal models have significantly advanced our understanding of the molecular mechanisms of lung development. However, significant gaps in our knowledge remain. Inaccessibility to the lung during fetal development has limited our ability to study their role in human lung development. The emerging field of study using induced pluripotent stem cells (iPSCs) offers the potential to recapitulate the molecular mechanisms *in vitro*. Further advances in these techniques is likely to provide an *in vitro* model to study lung development and derangements associated with disease states, design

physical mechanisms of branching morphogenesis. *Development* 2014;141(14):2750–2759.

[6] Metzger RJ, Klein OD, Martin GR, Krasnow MA. The branching programme of mouse lung development. *Nature* 2008;453(7196):745–750.

[7] Tompkins DH, Besnard V, Lange AW, Keiser AR, Wert SE, Bruno MD, et al. Sox2 activates cell proliferation and differentiation in the respiratory epithelium. *Am J Respir Cell Mol Biol* 2011;45(1):101–110.

[8] Rockich BE, Hrycay SM, Shih HP, Nagy MS, Ferguson MA, Kopp JL, et al. Sox9 plays multiple roles in the lung epithelium during branching morphogenesis. *Proc Natl Acad Sci* 2013;110(47):E4456–E4464.

[9] Tschanz SA, Salm LA, Roth-Kleiner M, Barre SF, Burri PH, Schitney JC. Rat lungs show a biphasic formation of new alveoli during postnatal development. *J Appl Physiol* 2014;117(1):89–95.

[10] Burri PH. Structural aspects of postnatal lung development—alveolar formation and growth. *Biol Neonate* 2006;89(4):313–322.

[11] Schachter SK, Wang Y, Scott Baldwin H. Qualitative and quantitative analysis of embryonic pulmonary vessel formation. *Am J Respir Cell Mol Biol* 2000;22(2):157–165.

[12] deMello DE, Sawyer D, Galvin N, Reid LM. Early fetal development of lung vasculature. *Am J Respir Cell Mol Biol* 1997;16(5):568–581.

[13] Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. *Circulation* 2005;112(16):2477–2486.

Pathophysiology of Fetal Lung Development

| 3 |

[14] Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. *Am J Physiol Lung Cell Mol Physiol* 2000;279(3):L600–L607.

[15] Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. *Am J Respir Crit Care Med* 2001;164(10 Pt 1):1971–1980.

[16] Kimura S. Thyroid-specific enhancer binding protein role in thyroid function and organogenesis. *Trends Endocrinol Metab* 1996;7(7):247–252.

[17] DeFelice M, Silberschmidt D, DiLauro R, Xu Y, Wert SE, Weaver TE, et al. TTF-1 phosphorylation is required for peripheral lung morphogenesis, perinatal survival, and tissue-specific gene expression. *J Biol Chem* 2003;278(37):35574–35583.

[18] Miranda J, Rocha G, Soares P, Morgado H, Baptista MJ, Azevedo I, et al. A novel mutation in FOXF1 gene associated with alveolar capillary dysplasia with misalignment of pulmonary veins, intestinal malrotation and annular pancreas. *Neonatology* 2013;103(4):241–245. [19] Sen P, Yang Y, Navarro C, Silva I, Szafranski P, Kolodziejska KE, et al. Novel FOXF1 mutations in sporadic and familial cases of alveolar capillary dysplasia with misaligned pulmonary veins imply a role for its DNA binding domain. *Hum Mutat* 2013;34(6):801–811.

[20] Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, et al. Fgf10 is essential for limb and lung formation. *Nat Genet* 1999;21(1):138–141.

[21] Arman E, Haffner-Krausz R, Gorivodsky M, Lonai P. Fgf2 is required for limb outgrowth and lung branching morphogenesis. *Proc Natl Acad Sci* 1999;96(21):11895–11899.

[22] Pepicelli CV, Lewis PM, McMahon AP. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. *Curr Biol* 1998;8(19):1083–1086.

[23] Litington Y, Lei L, Westphal H, Chiang C. Sonic hedgehog is essential to foregut development. *Nat Genet* 1998;20(1):58–61.

[24] Hyatt BA, Shangguan X, Shannon JM. FGF-10 induces SP-C and Bmp4 and regulates proximal-distal patterning in embryonic tracheal epithelium. *Am J Physiol Lung Cell Mol Physiol* 2004;287(6):L1116–L1126.

[25] Rajagopal J, Carroll TJ, Gusek JS, Bores SA, Blank LJ, Anderson WJ, et al. Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme. *Development* 2008;135(9):1625–1634.

[26] Krumlauf R. Hox genes in vertebrate development. *Cell* 1994;78(2):191–201.

[27] Moens CB, Auerbach AB, Conlon RA, Joyner AL, Rossant J. A targeted mutation reveals a role for N-myc in branching morphogenesis in the embryonic mouse lung. *Genes Dev* 1992;6(5):691–704.

[28] Okubo T, Knoepfler PS, Eisenman RN, Hogan BL. Nmyc plays an essential role during lung development as a dosage-sensitive regulator of progenitor cell proliferation and differentiation. *Development* 2005;132(6):1363–1374.

[29] Massaro GD, Massaro D. Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats. *Am J Physiol* 1996;270(2 Pt 1):L305–L310.

[30] Darlow BA, Graham PJ. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants. *Cochrane Database Syst Rev* 2011;(10):CD000501.

[31] Danan C, Jarreau PH, Franco ML, Dassieu G, Grillon C, Abd Alsamad I, et al. Gelatinase activities in the airways of premature infants and development of bronchopulmonary dysplasia. *Am J Physiol Lung Cell Mol Physiol* 2002;283(5):L1086–L1093.

[32] Tang JR, Markham NE, Lin YJ, McMurtry IF, Maxey A, Kinsella JP, et al. Inhaled nitric oxide attenuates pulmonary hypertension and improves lung growth in infant rats after neonatal treatment with a VEGF receptor inhibitor. *Am J Physiol Lung Cell Mol Physiol* 2004;287(2):L344–L351.

[33] Le Cras TD, Spitzmiller RE, Albertine KH, Greenberg JM, Whitsett JA,

Akeson AL. VEGF causes pulmonary hemorrhage, hemosiderosis, and air space enlargement in neonatal mice. *Am J Physiol Lung Cell Mol Physiol* 2004;287(1):L134–L142.

[34] Chander A, Fisher AB. Regulation of lung surfactant secretion. *Am J Physiol* 1990;258(6 Pt 1):L241–L253.

[35] Mathew B, D'Angelis CA, Lakshminrusimha S, Nickerson PA, Sokolowski JJ, Kumar VHS, et al. Natriuretic peptide C receptor in the developing sheep lung: role in perinatal transition. *Pediatr Res* 2017;82(2):349–355.

[36] Torresin M, Zimmermann LJ, Cogo PE, Cavicchioli P, Badon T, Giordano G, et al. Exogenous surfactant kinetics in infant respiratory distress syndrome: a novel method with stable isotopes. *Am J Respir Crit Care Med* 2000;161(5):1584–1589.

[37] Jacobs H, Jobe A, Ikegami M, Jones S. Surfactant phosphatidylcholine source, fluxes, and turnover times in 3-day-old, 10-day-old, and adult rabbits. *J Biol Chem* 1982;257(4):1805–1810.

[38] Jackson JC, Palmer S, Truog WE, Standaert TA, Murphy JH, Hodson WA. Surfactant quantity and composition during recovery from hyaline membrane disease. *Pediatr Res* 1986;20(12):1243–1247.

[39] Gluck L, Kulovich MV, Borer RC Jr, Brenner PH, Anderson GG, Spellacy WN. Diagnosis of the respiratory distress syndrome by amniocentesis. *Am J Obstet Gynecol* 1971;109(3):440–445.

[40] Hallman M, Kulovich M, Kirkpatrick E, Sugarman RG, Gluck L. Phosphatidylinositol and phosphatidylglycerol in amniotic fluid: indices of lung maturity. *Am J Obstet Gynecol* 1976;125(5):613–617.

[41] Snyder JM, Mendelson CR. Induction

and characterization of the major surfactant apoprotein during rabbit fetal lung development. *Biochim Biophys Acta* 1987;920(3):226–236. [42] Ross GF, Ikegami M, Steinhiber WV, Jobe AH. Surfactant protein C in fetal and ventilated preterm rabbit lungs. *Am J Physiol* 1999;277(6 Pt 1):L1104–L1108.

[43] Crouch EC. Collectins and pulmonary host defense. *Am J Respir Cell Mol Biol* 1998;19(2):177–201.

[44] Ikegami M, Whitsett JA, Martis PC, Weaver TE. Reversibility of lung inflammation caused by SP-B deficiency. *Am J Physiol Lung Cell Mol Physiol* 2005;289(6):L962–L970.

[45] Collins MH, Moessinger AC, Kleinerman J, Bassi J, Rosso P, Collins AM, et al. Fetal lung hypoplasia associated with maternal smoking: a

29

| II | Lung Development and Interventions in the Prenatal and Perinatal Period

morphometric analysis. *Pediatr Res* 1985;19(4):408–412.

[46] Sekhon HS, Jia Y, Raab R, Kuryatov A, Pankow JF, Whitsett JA, et al. Prenatal nicotine increases pulmonary alpha7 nicotinic receptor expression and alters fetal lung development in monkeys. *J Clin Invest* 1999;103(5): 637–647.

[47] Milner AD, Marsh MJ, Ingram DM, Fox GF, Susiva C. Effects of smoking in pregnancy on neonatal lung function. *Arch Dis Child Fetal Neonatal Ed* 1999;80(1):F8–14.

[48] Hayatbakhsh MR, Sadasivam S, Mamun AA, Najman JM, Williams GM, O'Callaghan MJ. Maternal smoking during and after pregnancy and lung function in early adulthood: a prospective study. *Thorax* 2009;64(9):810–814.

[49] Wongtrakool C, Roser-Page S, Rivera HN, Roman J. Nicotine alters lung branching morphogenesis through the alpha7 nicotinic acetylcholine receptor. *Am J Physiol Lung Cell Mol Physiol* 2007;293(3):L611–L618.

[50] Neuman A, Hohmann C, Orsini N, Pershagen G, Eller E, Kjaer HF, et al. Maternal smoking in pregnancy and asthma in preschool children: a pooled analysis of eight birth cohorts. *Am J Respir Crit Care Med* 2012;186(10):1037–1043.

[51] Lechner AJ. Perinatal age determines the severity of retarded lung development induced by starvation. *Am Rev Respir Dis* 1985;131(4): 638–643.

[52] Maritz GS, Cock ML, Louey S, Suzuki K, Harding R. Fetal growth restriction has long-term effects on postnatal lung structure in sheep. *Pediatr Res* 2004;55(2):287–295.

[53] Kalenga M, Tschanz SA, Burri PH. Protein deficiency and the growing rat lung. I. Nutritional findings and related lung volumes. *Pediatr Res* 1995;37(6):783–788.

[54] Check J, Gotteiner N, Liu X, Su E, Porta N, Steinhorn R, et al. Fetal growth restriction and pulmonary hypertension in premature infants with bronchopulmonary dysplasia. *J Perinatol* 2013;33(7): 553–557.

[55] Rueda-Clausen CF, Morton JS, Davidge ST. Effects of hypoxia-induced intrauterine growth restriction on cardiopulmonary structure and function during adulthood. *Cardiovasc Res* 2009;81(4):713–722.

[56] Kallapur SG, Willet KE, Jobe AH, Ikegami M, Bachurski CJ. Intra-amniotic endotoxin: chorioamnionitis precedes lung maturation in preterm lambs. *Am J Physiol Lung Cell Mol Physiol* 2001;280(3):L527–L536.

[57] Bachurski CJ, Ross GF, Ikegami M, Kramer BW, Jobe AH. Intra-amniotic endotoxin increases pulmonary surfactant proteins and induces SP-B processing in fetal sheep. *Am J Physiol Lung Cell Mol Physiol* 2001;280(2):L279–L285.

[58] Willet KE, Jobe AH, Ikegami M, Newnham J, Brennan S, Sly PD. Antenatal endotoxin and glucocorticoid effects on lung morphometry in preterm lambs. *Pediatr Res* 2000;48(6):782–788. [59] Kallapur SG, Bachurski CJ, Le Cras TD, Joshi SN, Ikegami M, Jobe AH. Vascular changes after intra-amniotic endotoxin in preterm lamb lungs. *Am J Physiol Lung Cell Mol Physiol* 2004;287(6):L1178–L1185.

[60] Polglase GR, Hooper SB, Gill AW, Alison BJ, Crossley KJ, Moss TJ, et al. Intrauterine inflammation causes pulmonary hypertension and cardiovascular sequelae in preterm lambs. *J Appl Physiol* (1985) 2010;108(6):1757–1765.

[61] Lowe J, Watkins WJ, Edwards MO, Spiller OB, Jacqz-Aigrain E, Kotecha SJ, et al. Association between pulmonary ureaplasma colonization and bronchopulmonary dysplasia in preterm infants: updated systematic review and meta-analysis. *Pediatr Infect Dis J* 2014;33(7):697–702. [62] Kumar R, Yu Y, Story RE, Pongracic JA, Gupta R, Pearson C, et al. Prematurity, chorioamnionitis, and the development of recurrent wheezing: a prospective birth cohort study. *J Allergy Clin Immunol* 2008;121(4): 878–84 e6.

[63] Moessinger AC, Harding R, Adamson TM, Singh M, Kiu GT. Role of lung fluid volume in growth and maturation of the fetal sheep lung. *J Clin Invest* 1990;86(4):1270–1277.

[64] Wigglesworth JS, Desai R. Effect on lung growth of cervical cord section in the rabbit fetus. *Early Hum Dev* 1979;3(1):51–65.

[65] Hummler E, Barker P, Gatzky J, Beermann F, Verdumo C, Schmidt A, et al. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. *Nat Genet* 1996;12(3):325–328.

[66] O'Brodovich H, Hannam V, Seear M, Mullen JB. Amiloride impairs lung

water clearance in newborn guinea pigs. *J Appl Physiol* (1985) 1990;68(4):1758–1762.

[67] Hummler E, Barker P, Talbot C, Wang Q, Verdugo C, Grubb B, et al. A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism. *Proc Natl Acad Sci* 1997;94(21):11710–11715.

[68] Olver RE, Ramsden CA, Strang LB, Walters DV. The role of amiloride blockable sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lamb. *J Physiol* 1986;376:321–340.

[69] Barker PM, Markiewicz M, Parker KA, Walters DV, Strang LB. Synergistic action of triiodothyronine and hydrocortisone on epinephrine induced reabsorption of fetal lung liquid. *Pediatr Res* 1990;27(6): 588–591.

[70] Champigny G, Voilley N, Lingueglia E, Friend V, Barbry P, Lazdunski M. Regulation of expression of the lung amiloride-sensitive Na^+ channel by steroid hormones. *EMBO J* 1994;13(9):2177–2181.

[71] Barker PM, Gatzy JT. Effect of gas composition on liquid secretion by explants of distal lung of fetal rat in submersion culture. *Am J Physiol* 1993;265(5 Pt 1):L512–L517.

[72] Tschanz SA, Damke BM, Burri PH. Influence of postnatally administered glucocorticoids on rat lung growth. *Biol Neonate* 1995;68(4):229–245.

[73] Willet KE, Jobe AH, Ikegami M, Kovar J, Sly PD. Lung morphometry after repetitive antenatal glucocorticoid treatment in preterm sheep. *Am J Respir Crit Care Med* 2001;163(6):1437–1443.

[74] Murphy KE, Hannah ME, Willan AR, Hewson SA, Ohlsson A, Kelly EN, et al. Multiple courses of antenatal corticosteroids for preterm birth (MACS): a randomised controlled trial. *Lancet* 2008;372(9656): 2143–2151.

30

4

Transition in the Delivery Room: Current NRP Recommendations

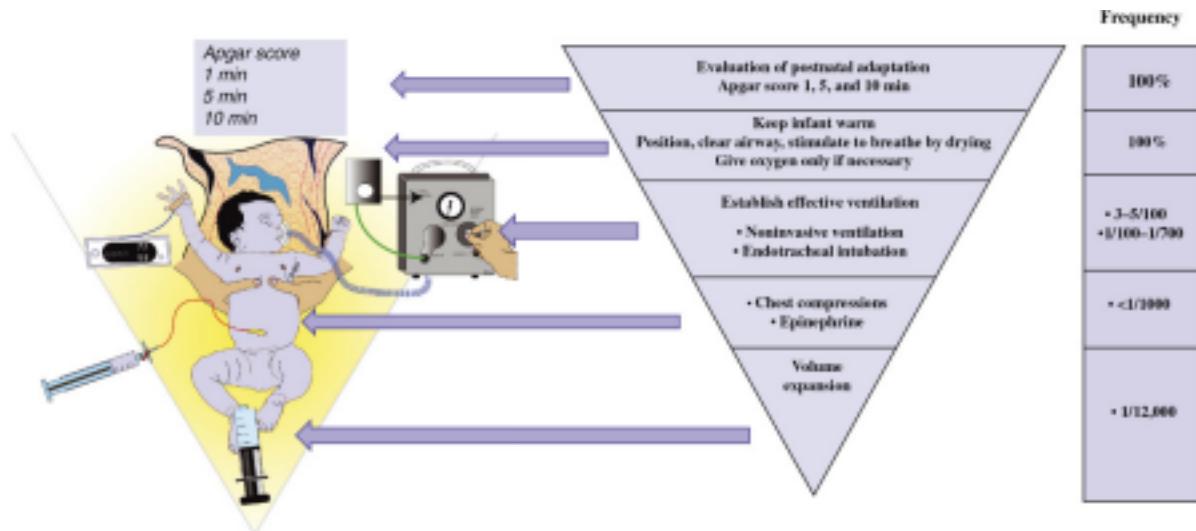
Máximo Vento, MD, PhD

Introduction [31](#) **Physiologic changes in the fetal-to-neonatal transition** [32](#) **Transition in the delivery room** [33](#) **Current NRP recommendations** [34](#) **References** [42](#)

- Both anticipation and debriefing are vital for a good resuscitation.
- Keep the delivery room at 26°C.
 - The team should have a leader, taking care of the respiratory airways, and caregivers taking care of monitoring and providing drugs if necessary.
 - Allow for delayed cord clamping at least 1 min except in an extreme emergency when stripping of the cord could be performed by the obstetrician in 20 seconds.
- Initiate pulse oximetry monitoring immediately after birth.
- Initiate respiratory support with noninvasive ventilation (bag & mask; nasal route) with a rhythm of 30 breaths per minute.

- Use of oxygen:
 - In term infants and preterm infants with a gestational age of >32 weeks, use an inspired fraction of oxygen (FiO_2) of .21
 - In preterm infants with 28–32 weeks' gestation use an initial FiO_2 of 0.21–0.3
 - In preterm infants <28 weeks' gestation use an initial FiO_2 of 0.3
 - titrate FiO_2 according to SpO_2 and heart rate response
 - If drug (epinephrine) administration

Introduction


The achievement of a significant reduction in maternal and child mortality in the last 25 years has been widely acknowledged. However, it is striking that the reduction in mortality in the neonatal period (<28 days after birth) has lagged significantly as compared with the postneonatal mortality (>28 days and 5 years of age) [\[1\]](#). Worldwide 130 million babies are born every year and approximately 2.8 million of newborn infants die during the neonatal period, and 73% of these deaths occur during the first week of postnatal life and represent early neonatal deaths (ENND). Out of these ENND, almost

40% die in the first hours as a consequence of birth-related complications. Birth asphyxia still represents 11% of ENND in high-income countries but reaches 30%–40% in low-income countries, especially in rural areas [2,3].

Overall, 10% of all newborn infant require some form of intervention in the first minutes after birth (Fig. 4.1). New born infants undergo complex respiratory and cardiocirculatory changes during fetal-to-neonatal transition, and failure to achieve these changes

represents the most frequent cause of postnatal maladaptation. Therefore, the essential goal of neonatal resuscitation is ventilation of the lungs as opposed to the adult resuscitation focusing on cardiac activity [4]. Breathing initiates a sequence of events that lead to increased oxygenation, decreased pulmonary vascular resistance (PVR), increased pulmonary blood flow, and closure of intra- and extracardiac shunts in the first minutes after birth [5].

| II | Lung Development and Interventions in the Prenatal and Perinatal Period

Fig. 4.1 Frequency of the Different Interventions Performed in the Delivery Room in the Newborn infant. Modified from Vento M, Saugstad OD. Resuscitation of the term and preterm infant. Semin Fetal Neonatal Med 2010;15:216–222 [6]. Copyright: Satyan Lakshminrusimha.

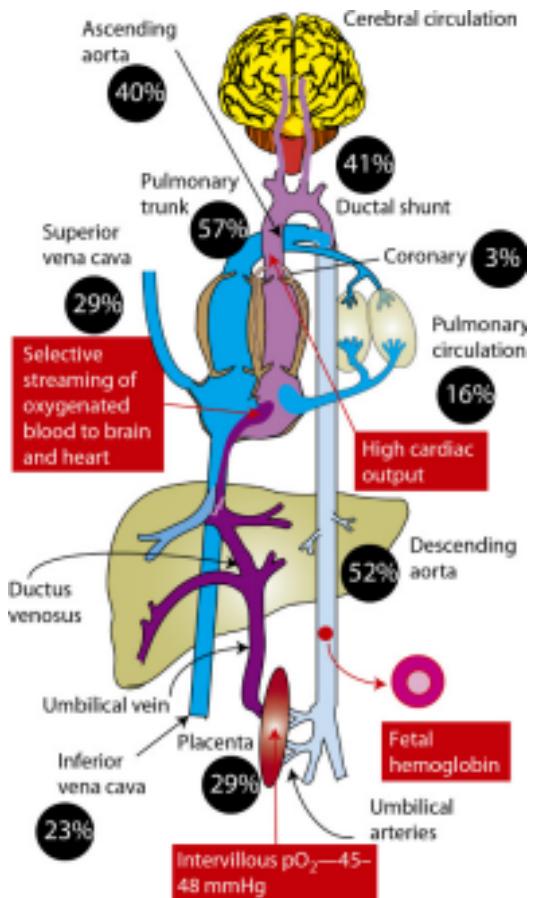
Physiologic changes in the fetal-to-neonatal transition

Fetal circulation

In the fetus, gas exchange does not occur in the lungs but in the placenta. Deoxygenated blood from the systemic circulation reaches the placental circulation via the umbilical arteries where gas exchange takes place and returns oxygenated via the umbilical vein to the fetal arterial circulation. The fetal circulation is designed in such a way that the preferential streaming of oxygenated blood is directed to brain and myocardium due to the presence of intracardiac (*foramen ovale*) and extracardiac (*ductus arteriosus*) shunts. Hence, the oxygenated blood bypasses the hepatic circulation via the *ductus venosus*, and reaches the right atrium via the inferior vena cava and the left atrium across the *foramen ovale*. Oxygenated blood reaches the left ventricle and is

ejected into the aorta, thus reaching myocardium and brain. In addition, deoxygenated blood coming from the lower part of the body reaches the right auricle via inferior vena cava and is ejected by the right ventricle through the pulmonary artery. The high PVR drives the right ventricular output to the descending aorta via the *ductus arteriosus*. Thus, the deoxygenated blood is directed to the placenta. Of note, during fetal life the lung only receives 16% of the combined ventricular output [7,8] (Fig. 4.2).

Fetal gas exchange


During gestation, gas exchange is driven by the differential partial pressures of oxygen and carbon dioxide between the mother and fetus blood across the placental intervillous space. The fetal arterial partial pressure of oxygen (P_aO_2) *in utero* at the end of gestation is approximately 25–30 mmHg (3.0–3.5 kPa). Immediately after birth, P_aO_2 rises to 80–90 mmHg (10.5–12.0 kPa) and stays within this range until the adult life. Despite the great difference in P_aO_2 , oxygen delivery to tissue does not substantially differ between the fetus and the newborn. First, the fetus is endowed

with fetal-type hemoglobin that has a greater affinity for oxygen and provides with increased oxygen saturation (SpO_2) for a given P_aO_2 . In addition, the cardiac output in the fetus is significantly greater than during infancy or childhood (250–300 mL/kg/min). Moreover, venous return coming from the placenta is redirected to organs with high oxygen needs *ex utero*. At the end of gestation the intervillous partial pressure of oxygen reaches 45–48 mmHg, and these values correspond to an SpO_2 of 50%–60% in the fetus [9,10].

32

Transition in the Delivery Room: Current NRP Recommendations

| 4 |

Fig. 4.2 Diagram Representing Fetal Circulation.
Copyright Satyan Lakshminrusimha.

such as superoxide dismutases (SOD), catalase (CAT), and glutathione peroxidases (GPx) develop in the last weeks of gestation [11] paralleling the maturation pattern of surfactant. Moreover, pulmonary surfactant contains substantial amounts of these antioxidant enzymes to help prevent oxidative damage to lung structures by reactive oxygen species (ROS) [12]. In addition, the limiting enzyme for the synthesis of glutathione (GSH) is γ -cystathionase which converts cystathione in *l*-cysteine and is not expressed until late in gestation. GSH is a ubiquitous tripeptide (γ -glutamyl

Antioxidant defenses and surfactant production during fetal life

The genes that express the enzymatic machinery responsible for the synthesis of surfactant, antioxidant enzymes, and sulfur disulfide couples only get activated late in gestation preparing the fetus for aerobic respiration. Experimental studies in rabbits have shown that antioxidant enzymes

rendering *l*-cysteine a conditionally essential amino acid for extremely preterm infants [13,14].

Surfactant is a complex macroaggregate of phospholipids and specific proteins that has tensioactive and anti-infective properties. Surfactant drastically reduces alveolar surface tension opposing to alveolar collapse during the expiratory phase of respiration, promoting the acquisition of a lung function residual capacity, and also contributing to the lung's defense system. Surfactant synthesis and secretion are first detected in the human fetus type II pneumocytes in the canalicular stage of lung development at 20–22 weeks of gestation. However, secretion of surfactant into the amniotic fluid is detectable only after 30–32 weeks of gestation. Consequently, babies born before 32 weeks of gestation are at a greater risk of developing respiratory distress syndrome secondary to surfactant deficiency [15,16].

Transition in the delivery room

Cardiorespiratory changes in the first minutes after birth in the term infant

Immediately after birth, term babies cry and initiate respiratory efforts. Ventilation causes immediate dilatation of the pulmonary vessels, the right ventricular output is redirected toward the pulmonary circulation, and oxygenated venous blood returns to the left atrium via pulmonary veins providing left ventricular preload. Circulatory changes lead to closure of the intra- and extracardiac shunts. Few minutes (cysteinyl-glycine) present in the cytoplasm of the cells and the most relevant cytoplasmic nonenzymatic antioxidant. Under normal conditions, two molecules of reduced GSH can combine to form a disulfide bond (GS=SG) and reduce ROS with two electrons. GSH is also the main determinant of the redox status of cell cytoplasm. Remarkably, studies performed in preterm infants have shown that the expression of γ -cystathionase also occurs late in gestation

after birth, the newborn baby establishes an adult-type circulation with two circuits in parallel, pulmonary and systemic, without admixture of oxygenated and deoxygenated blood [17]. During the first breaths, term infants generate very high inspiratory and expiratory pressures with a mean of (~) 50 cmH₂O during

inspiration and +60 to 70 cmH₂O during expiration [18]. In addition, at the end of expiration braking maneuvers such as closure of the glottis avoid alveolar collapse by keeping a positive end-expiratory pressure (PEEP). The negative hydrostatic pressure created during inspiration constitutes the physical force that thrusts the fluid filling the lung to the surrounding tissue and contributes to lung aeration [19,20]. The surfactant layer expands on the alveolar surface acting as a tensioactive factor that

counteracts the elastic recoil forces that tend to collapse the alveoli during expiration. The gas remaining at the end of expiration in the lung constitutes the functional residual capacity (FRC). FRC notably enhances gas exchange and reduces the amount of pressure needed to open the lung in the following inspiratory movements. Hence, after initial lung expansion and establishment of FRC, subsequent respirations in the newborn infant will only need to reach

| II | Lung Development and Interventions in the Prenatal and Perinatal Period

negative thoracic pressures of -20 to -25 cmH₂O to allow sufficient air to reach the alveolar space and achieve stable gas exchange. Such negative intrathoracic pressures can be accomplished with gentle contractions of the diaphragm [20].

Consequences of preterm birth on postnatal adaptation

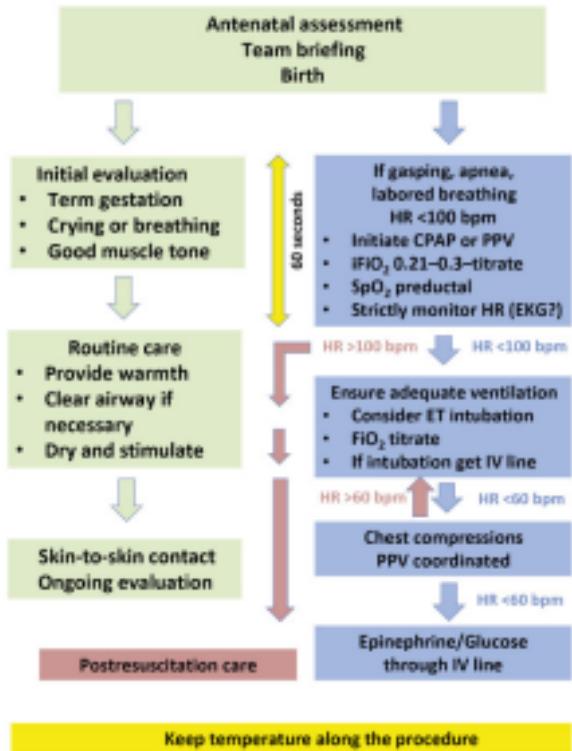
Circumstances surrounding the preterm delivery are somewhat different. Both the immaturity of the thoracic cage and the weakness of the thoracic muscles hinder the achievement of high negative intrathoracic pressures during inspiration and the enhanced elastic recoil and lack of surfactant that prompt lung collapse during expiration. The consequences are the limitation of lung aeration and fluid reabsorption during inspiration and the tendency toward atelectasis during expiration and avoidance of the establishment of FRC. Altogether, these circumstances hamper effective gas exchange and lead to respiratory insufficiency with tendency to hypoxemia and hypercarbia. Therefore, one of the principal efforts of the caregivers in the delivery room (DR) is to establish an effective ventilation and oxygenation, especially in the very preterm infants (<32 weeks of gestation) [16].

Oxidative stress during the fetal-to-neonatal transition

Even with a mature antioxidant defense system and breathing room air, the burden of oxygen free radicals generated during the fetal-to-neonatal transition will inevitably cause an oxidative stress in the immediate postnatal period. In experiments performed with term rat pups, it was shown that normal deliveries cause oxidative stress as evidenced by a significant reduction of the reduced to oxidized (GSH/ GSSG) GSH ratio in isolated hepatocytes [21]. GSH, the most relevant nonenzymatic antioxidant, is further reduced in the fetal-to-neonatal transition when rat pups are oxygenated with higher oxygen concentrations and proapoptotic and proinflammatory pathways are secondarily activated in brain and lung [22,23]. However, offspring of pregnant mice delivered and kept in a low oxygen atmosphere mimicking *in utero* milieu ($\text{FiO}_2 = 0.14$) exhibited an increased GSH/GSSG ratio in lung on day 1 and in the brain on day 7 after birth as compared with pups born in room air ($\text{FiO}_2 = 0.21$). The activation of the

NRF-2-related antioxidant genes was significantly increased in lung and brain. Apparently, a smooth transition from the lower oxygen milieu *in utero* to the relatively hyperoxic milieu *ex utero* seemed to be protective [24].

Studies in a hypoxic piglet model of hypoxia-reoxygenation showed that the use of pure oxygen caused not only an increased concentration of extracellular glycerol in the brain striatum but also increased matrix metalloproteinases in lung, liver, heart, and brain compared with the use of room air. Interestingly, there is clear dose-dependent oxygen toxicity, and elimination of biomarkers of oxidative damage caused to protein and DNA significantly correlated to the FiO_2 provided during resuscitation [25]. Translating these findings in experimental animals into the clinical setting would imply avoiding targeting high saturations too rapidly in preterm infants after birth. Stabilization with high oxygen concentrations is not only toxic to the lungs but also to different organs such as heart, liver, and brain.


Current NRP recommendations

International guidelines have set up algorithms to guide caregivers in the DR and to take decisions when difficulties in postnatal adaptation arise. The most relevant clinical parameters that need to be assessed immediately after birth by caregivers are breathing, heart rate (HR), and peripheral oxygen saturation measured by pulse oximetry (SpO_2) [26]. Fig. 4.3 summarizes the resuscitation flow diagram.

Anticipation

Information provided by the obstetric team before birth is important to anticipate the necessary personnel and material needed and design the best strategy for an effective resuscitation. Ideally, at every delivery there should be at least one caregiver responsible for the newly born with the adequate skills to assess the infant's status, initiate resuscitation, apply positive pressure ventilation, perform endotracheal intubation (ET) and chest compressions, and administer medication. Of note, most of the babies (but not all) requiring active resuscitation are to be identified before birth allowing for the recruitment of a team of skilled professionals under the leadership of an expert neonatologist and briefing of the expected difficulties

according to the type and circumstances of the delivery [28]. The Delivery Room Intensive Care Unit (DRICU) concept recommends that referral centers, where high-risk pregnancies are centralized, trained caregivers as well as monitoring and ventilatory devices should be available round the clock all year through to provide optimal resuscitation [29]. Interventions that have proven to improve outcomes of

Fig. 4.3 Flow Diagram of the Interventions Performed in the Delivery Room According to the Infant's Clinical Status and Response Following the ILCOR 2015 Guidelines [27].

3. Antibiotics in case of preterm rupture of membranes to avoid fetal infections.
4. Antenatal steroids to mature fetal lung.
5. Magnesium sulfate administered to the mother shortly before birth as an efficacious neuroprotective drug to the fetus [26].

Initial steps in stabilization: assessment and intervention

Newborn infants should be evaluated in the DR in the first 60 s after birth during the so-called "golden minute." Gestational age, the presence of spontaneous breathing or crying and good tone and active movements should be immediately assessed. Cord clamping should be delayed between 30 and 60 s in all babies unless

extremely preterm low birth weight (ELBW) infants should be considered before birth. Such interventions include the following:

1. The use of tocolytics to prevent preterm birth to allow fetal maturation.
2. Transfer to a regional referral center with expertise in the treatment of ELBW infants.

and have a good tone (flexed extremities) should be briefly dried with a warm towel, gently stimulated and immediately put in skin-to-skin contact with the mother and covered with a warm blanket. Importantly, baby's head should be slightly hyperextended to facilitate breathing and if oral secretions are adverted, they could be wiped with gauze. Breastfeeding should be promoted immediately after birth.

Approximately after one 1 h vitamin K and erythromycin eye drops should be administered [31].

Delayed cord clamping or umbilical cord milking

Delayed cord clamping (DCC) for at least 60 s after birth is now recommended for term infants. It provides an additional blood volume that increases hemoglobin concentrations at 24–48 h and iron stores at 3–6 months. However, DCC is associated with an increased rate and intensity of neonatal hyperbilirubinemia and the need for phototherapy [32]. The driving forces for blood flow from the placenta to the baby are respiratory movements, crying, and uterine contractions, and these factors play a more important role than time to cord clamping. Physiology based cord clamping has recently emerged whereby the timing of cord clamping should be based on the infant's physiology rather than time [26]. DCC in preterm infants increases blood volumes by up to 25%, especially after

immediate resuscitation is needed. The benefits of placental transfusion in babies that require active resuscitation are being actively investigated in translational animal models and clinical trials. The time of birth should be recorded when the body of the baby is expelled from the *introitus* or uterine incision [30]. Babies at term who breathe or cry spontaneously and vigorously vaginal birth. Moreover, if the blood flow is allowed for 180 s, there is a substantial reduction in intraventricular hemorrhage (IVH), necrotizing enterocolitis (NEC), and/or need for transfusion while no negative side effects for mother or infant have been described [33]. Umbilical cord milking (UCM) from the placental end of the cord toward the baby can be a valid alternative to delayed cord clamping and especially useful for preterm infants who need resuscitation. UCM is achieved by stripping the cord toward the infant 2–4 times before it is clamped. UCM is performed within 20 s and allows for an earlier access for resuscitation. In preterm infants, UCM increases superior vena cava flow, right ventricular output, blood pressure, and urine output and hemoglobin concentration. However, no differences with DCC have

been found in relation to death, cardiovascular stability, IVH, and long-term neurodevelopmental outcomes.

Despite these potential benefits, ILCOR 2015 recommended against the routine use of DCC or UCM for infants born at ≤ 28 weeks of gestation considering that the available evidence was still too weak to openly recommend these techniques. However, they supported both

techniques on an individual basis or in a research setting. In the latter years after the publication of the guidelines, new and supportive information has been reported. In a recent meta-analyses, seven randomized controlled trials (RCTs) comparing immediate UCM in preterm infants <33 weeks with immediate cord clamping were analyzed

| II | Lung Development and Interventions in the Prenatal and Perinatal Period

and showed that UCM reduced the risk of IVH of all grades and chronic lung disease. Moreover, UCM offered advantages over delayed cord clamping in newborn infant that were deemed too unstable and were at highest risk of severe IVH and death. However, although some studies have shown similar long-term follow-up outcomes in babies undergoing DCC, UCM, or immediate cord clamping, they were not adequately powered for neurodevelopmental follow-up. Further ongoing trials will soon provide us with relevant information in this regard [34].

Heart rate monitoring

Bradycardia (HR <100 bpm) is probably the most reliable clinical sign that informs the caregiver on the severity of neonatal depression. Persistence of low HR indicates the need for chest compression and administration of epinephrine, while a rapid increase in HR reveals successful ventilation and a better prognosis [6,35]. Traditionally, HR has been assessed by auscultation. More recently, HR is routinely assessed using a pulse oximeter and a reference range put together in healthy term and preterm babies not needing resuscitation at birth [36]. However, HR estimate by auscultation and/or pulse oximetry may be inaccurate, and detection of HR by pulse oximeter can be delayed by several minutes. New ECG devices easy to adhere to the newborn's skin, giving accurate readings in few seconds, are being developed and will be routinely used in the future. Meanwhile, according to ILCOR 2015 HR monitoring by auscultation and/or pulse oximetry still remains crucial to inform of the infant's response to resuscitation [27].

Temperature control

Maintaining newly born babies within a normothermic range ($36.5-37.5^{\circ}\text{C}$) is a strong recommendation because hyper- and/or hypothermia has been associated with negative outcomes, especially in preterm infants [37]. Term newborn infants should be resuscitated under a radiant heater. ELBW infants are especially prone to heat loss and therefore during resuscitation the room temperature should be kept at $23-25^{\circ}\text{C}$, and babies should be wrapped in a polyethylene bag without being dried and with a thermal mattress underneath. However, there is an inherent risk for hyperthermia with the use of exothermic mattresses in addition to plastic covers. Hyperthermia increases the risk of subsequent adverse neurological outcome. If babies need ventilation, the gas source should also be heated and humidified because

cold gases may be injurious to the lungs. Once the babies are adequately protected from heat loss, skin-to-skin contact and kangaroo care can be safely performed in babies >30 weeks of gestation [27]. In asphyxiated term or near-term infants, therapeutic hypothermia should be initiated within 6 h after birth. Although evidence for

turning off the radiant heater is lacking, this procedure is widely spread among neonatologists. There is an inherent risk in this practice to provoke severe hypothermia with severe negative consequences, and frequent or continuous monitoring of core body temperature is important. Therefore, hypothermia should only be initiated in the DR when infants' meet clinical, neurological, and electrophysiological criteria recommended in RCTs [38].

Clearing the airway

Routine suction of the upper airways should be avoided for it may stimulate a vagal reflex and induce bradycardia. In addition, repeated suctioning of the trachea in the absence of secretions can deteriorate pulmonary compliance and oxygenation and reduction in cerebral blood flow velocity. Contrarily, in the presence of secretions there is an increase in respiratory resistance and subsequent increase in work of breathing [28]. Distressed fetuses, however, can pass meconium into the amniotic fluid that can pass into the lower respiratory airway if fetus gasps as a response to hypoxia. Meconium aspiration syndrome occurs when meconium aspirated into the lower respiratory airways causes obstruction and severe respiratory failure and frequently persistent pulmonary hypertension with severe hypoxemia. In RCTs, the incidence of mortality in the meconium aspiration syndrome was not improved by early tracheal intubation and suctioning neither in vigorous nor in nonvigorous newborn infants with meconium-stained amniotic fluid. Therefore, intubation and aspiration of the trachea immediately after birth is not further recommended despite the presence of meconium-stained amniotic fluid [39,40].

Normal oxygen saturation ranges in the delivery room

Whenever resuscitation is anticipated, the use of a pulse oximeter with a preductal location (right hand or wrist) to inform about cerebral oxygen saturation (SpO_2) has become a standard of care. Reliable SpO_2 and HR are achieved after 90–120 s after birth [31]. Of note, assess

ment of the infant's color has been withdrawn from the initial evaluation because of the lack of reliability, although tongue inspection has been proposed as an alternative for deliveries in rural areas of developing countries [41,42].

Oxygen toxicity limits the use of color for the stabilization of term or preterm infants. The relative hypoxia *in utero* followed by a sudden increase in the oxygen availability

to tissues after birth causes a physiologic oxidative stress. However, during severe ischemia reperfusion in perinatal asphyxia or as a consequence of the immaturity of the lungs and antioxidant defenses in preterm infants, a burst of oxygen free radicals is generated. Free radicals cause significant direct damage to tissue/organs and trigger a generalized

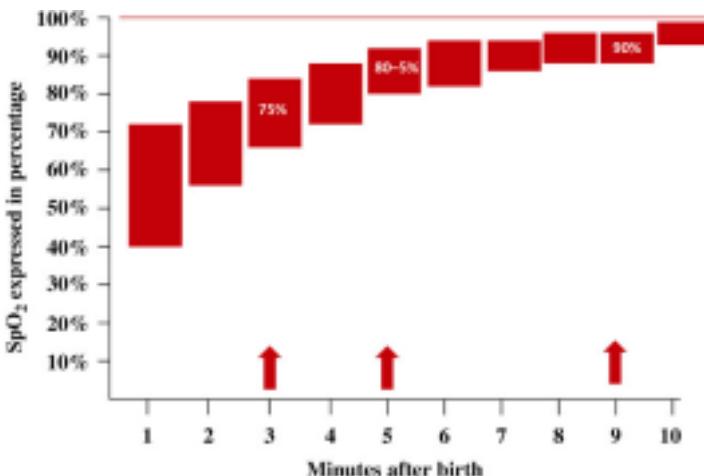


Fig. 4.4 Centiles of Preductal Oxygen Saturation Measured by Pulse Oximetry (SpO₂) in the First Minutes After Birth According to Dawson et al. [43].

inflammatory response with deleterious consequences [23].

To avoid the negative consequences of hypo- or hyperoxia,

recommended ranges for SpO₂ and HR for the first 10 min

after birth have been defined (Figs. 4.4 and 4.5) [43,44].

These centile charts were developed retrieving oxygen saturation and pulse from healthy term and preterm babies not needing resuscitation after birth. Keeping the newly born

term or preterm infants within the 10th–90th centile of these charts provides with the best available reference to

optimize oxygen supplementation [36,43]. DR caregivers

should adjust FiO₂ every 15–30 s according to the pulse

oximeter readings, increasing or decreasing FiO₂ by 0.1

every 15–30 s to keep SpO₂ within the chosen centiles for

a given time after birth. It is extremely important to keep

HR always above 100 bpm avoiding bradycardia. Persistent bradycardia requires the assessment of an adequate mask positioning and adjustment, evaluation of chest excursions, and rapid increase of FiO_2 . The lack of response after performing these maneuvers requires immediate

Oxygen supplementation in term and preterm infants

Traditionally, 100% oxygen was systematically used for resuscitation irrespective of gestational age or severity of depression [6]. In a meta-analysis performed including more than 2000 asphyxiated patients, it was shown that the use of 100% oxygen upon resuscitation significantly increased mortality as compared to the use of room air [47]. Since 2010 ILCOR guidelines recommend the initial use of room air in the resuscitation of term and near term in the first minutes and oxygen titration according to the infant's response [28].

Fig. 4.5 Flow Chart Describing the Interventions in

Preterm Infants With Severe Depression at Birth Based on ILCOR 2015 guidelines and experts' recommendations [27,45,46].

| II | Lung Development and Interventions in the Prenatal and Perinatal Period

In very preterm infants below 32 weeks of gestation, however, there is an ongoing uncertainty regarding the optimal initial FiO_2 . Preterm infants have immature lungs lacking surfactant that frequently require positive pressure ventilation and supplemental oxygen. However, preterm infants are especially sensitive to both hyperoxia and hypoxia [48]. The use of higher initial FiO_2 (>0.9) during resuscitation has been associated with increased biomarkers of oxidative stress and chronic lung disease [49–52]. The first study that compared the use of 0.21 versus 1.0 as initial FiO_2 in preterm infants with gestational age ≤ 28 weeks showed that after 2 min, 30% of the patients were switched to 1.0 FiO_2 because of persistent bradycardia, and at 3 min, the remaining 60% needed also a FiO_2 of 1.0 because they did not achieve targeted SpO_2 of 70% at 3 min [53]. In two recent studies, the use of room air in extremely preterm infants has been associated with an increased mortality. The Canadian Neonatal Network published a retrospective cohort study comparing infant's ≤ 27 weeks' gestation before and after the recommendations regarding the initial FiO_2 switched from 1.0 to <1.0 titrated oxygen supplementation. Remarkably, the lower oxygen group showed a significantly higher incidence of severe neurologic injury or death. However, data about oxygen exposure for each individual infant, and therefore, the cumulative oxygen exposure received during resuscitation, were not available and it could be misleading to attribute specific outcomes to the initial FiO_2 used at delivery. The investigators cautioned that a policy of initial stabilization with lower oxygen could be linked to a higher risk of severe neurologic injury or death in very preterm infants compared to starting with 100% oxygen [54]. More recently, Oei et al. [55] reported results of a randomized controlled unmasked trial performed in preterm infants comparing initial FiO_2 of

0.21 versus 1.0 in preterm infants <32 weeks of gestation. The primary outcome of this study was death and/or major disability at 2 years with a targeted SpO_2 of 65%–95% at 5 min and 85%–95% until NICU admission. This study showed unexpectedly that babies <28 weeks of gestation who received an initial FiO_2 of 0.21 had a higher mortality during hospitalization (risk ratio = 3.9; CI: 1.1–13.4; $P = 0.01$). However, although the study was underpowered for the post hoc analysis because many participants rejected to initiate resuscitation with a $\text{FiO}_2 = 1.0$, the final results have drawn attention toward the apparent increased risk of using air to initiate resuscitation especially in very preterm infants [55].

Aiming to narrow the limits of initial FiO_2 to balance the risk of oxidative stress and lung complications when supplementing with 100% oxygen versus prolonged bradycardia, hemodynamic instability and risk of mortality when using room air have launched studies comparing lower (<0.3) or higher (>0.6) initial FiO_2 . Oei et al. [56] have summarized results in a recent updated review and meta-analysis. The study has reviewed the outcomes of

RCTs that included preterm infants ≤ 28 weeks of gestation assigned to receive an initial FiO_2 of ≤ 0.3 (low) or ≥ 0.6 (high) fraction of inspired oxygen at delivery. A total of 251 infants in the low oxygen and 253 in the high oxygen group with a mean gestational age of 26 weeks were assessed from 8 studies. The main outcome measures were death in hospital, BPD, ROP, IVH, PDA, and NEC. No differences for the main outcomes were found. Of note, mortality was lower in the low oxygen arms of masked studies and higher in low oxygen arms of unmasked studies, but taking all studies together there were no differences in the overall risk of death or other major morbidities when resuscitation is initiated with higher (>0.6) or lower (<0.3) FiO_2 [56]. At present, the initial FiO_2 recommended for term and near-term infants is 0.21 and for preterm infants is 0.3.

However, it is extremely important to adequately titrate oxygen to achieve SpO_2 values shown in Dawson's nomogram. Hence, achievement of SpO_2 of 80%–85% at 5 min and 90%–95% at 10 min while keeping HR >100 bpm is essential to avoid prolonged hypoxemia and/or bradycardia that could be deleterious for the newborn infant [57].

Ventilation: continuous positive airway pressure and intermittent positive pressure ventilation

Ventilation is required in about 3%–5% of all newborn infants. Remarkably, the lesser the gestational age the greater the proportion of infants needing respiratory support at birth. Immaturity of the lung, muscle weakness, lack of surfactant, increased elastic recoil, and compliant chest wall all contribute to make it difficult for the preterm infant to establish an effective ventilation and gas exchange [6]. The respiratory management of the newborn infant will greatly depend on whether the infant

breathes spontaneously and therefore just needs additional support or does not breathe at all, in which case the entire respiratory process will have to be supported by the resuscitating team.

Noninvasive ventilation (nasal or mask continuous positive airway pressure [CPAP]) has rendered efficacious avoiding many of the complications traditionally associated with endotracheal ventilation that included BPD, neurodevelopmental impairment, or death as has been shown in a recent meta-analysis [58]. The ILCOR 2015 guidelines recommend for spontaneously breathing pre term infants requiring respiratory support in the DR to start with CPAP instead of intubation and intermittent positive pressure ventilation (IPPV). However, there is a great variability between babies even with similar gestational ages. Therefore, caregivers in the DR should take into consideration gestational age, gender, antenatal steroid administration, FiO_2 needed to keep SpO_2 within accepted ranges, and intensity of work of breathing [27]. European guidelines

lines recommend to stabilize preterm infants with face mask CPAP of at least 6 cmH_2O and maximum around 8–10 cmH_2O via mask or nasal prongs. During the procedure, careful attention should be given to chest excursions and rapid increase in HR and SpO_2 . Inspired oxygen should be adjusted as described before. In persistently apneic and/ or bradycardic patients, peak positive inspiratory pressure (PIP) of 20–25 cmH_2O should be provided. If the patient does not respond, intubation is indicated [16]. HR is the most reliable clinical parameter revealing a successful resuscitation. It increases immediately after the initiation of effective ventilation [35]. In fact, it is more reliable than observing chest movements. Chest rise may be a reflection of an excessive tidal volume that may injure the lung [6]. In preterm infant needing positive pressure ventilation it is recommended that PEEP of 5 cmH_2O is provided; no recommendations in this regard have been made in relation to term infants. However, it is a routine practice in many hospitals to provide PEEP always when IPPV is given independent of the gestational age of the newborn infant.

Ventilation of the newborn infant can be performed with a self-inflating bag, flow-inflating bag, or a T-piece resuscitator (for a review, see Ref. [59]). Of note, the use of T-piece resuscitator is progressively replacing self-inflating and flow-inflating bags as shown in recent surveys [60–

62]. T-piece device consists of an inlet arm to the patient through which the gas flows into an interface (facemask, nasal prongs, or endotracheal tube) (Fig. 4.6). PIP is achieved by occluding the escape of gas through the outlet hole using a thumb or a finger. The pressure is displayed in a manometer and can be adjusted with the

release valve.

Moreover, the inflation time can be regulated adjusting the duration of the occlusion of the outlet hole. CPAP or PEEP is delivered automatically and the pressure varied by adjusting the outlet valve. This controls the rate of escape of gas when the outlet is not occluded and generates a preset level of CPAP or PEEP [6]. Studies performed in manikins have shown that T-piece resuscitator ensures the inspiratory pressure, PEEP, tidal volume, and inspiratory time are administered more consistently compared with the self inflating bag [63]. However, previous clinical trials were not sufficiently compelling to consider T-piece superior to self-inflating bag [27]. In a recent prospective observational study performed in 1962 preterm infants from 23 to 33 weeks of gestation, the use of T-piece (74.2%) or self inflating bag (25.8%) was compared. Neonatologists chose freely to use either one or the other device. The major outcomes were survival to hospital discharge, BPD, IVH, and PVL. The logistic regression analysis adjusted for maternal characteristics, obstetric, and neonatal morbidities showed that T-piece resuscitation increased the chance of survival to hospital discharge without major morbidities [64]. As an interface, masks (round or anatomically shaped), mono nasal tubes, or binasal prongs can be used. Some studies suggest that a nasal interface may be superior to the oral route in newborn infant anticipating less airway obstruction; however, no comparative data are available for DR care. PPV via a mask may be difficult and is often hampered by leak and airway obstruction, resulting in low tidal volumes and thereby inadequate ventilation. Therefore, one of the most important skills of caregivers in this field is an optimal mask holding technique. Correct placement of

Fig. 4.6 Scheme of the T-Piece Resuscitator Setup.

39

| II | Lung Development and Interventions in the Prenatal and Perinatal Period

the mask and an adequate chin lift are necessary. The rim of the mask should be placed on the tip of the chin and the mask should cover both mouth and nose, but not the eyes. Apparently, the best hold is achieved by the OK-rim hold (thumb and index finger form a C-shape) technique (Figs. 4.7 and 4.8) [65].

Endotracheal intubation and/or laryngeal mask

ET is indicated when noninvasive ventilation is rendered ineffective, when chest compressions are performed or in special situations such as diaphragmatic hernia [28]. The

Fig. 4.7 Photograph Showing the Positioning of the Face Mask [64].

Fig. 4.8 Outcomes After Extremely Severe Depression at Birth With Apgar Score 0 at 1, 5, and 10 min and Ulterior Moderate Body Hypothermia [66].

ILCOR 2015 guidelines do not recommend routine tracheal intubation for meconium suctioning even in depressed infants born through meconium-stained amniotic fluid [27]. Successful tracheal intubation immediately increases HR and air entry can be assessed by auscultation over both lung fields. In addition, CO₂ detectors can be used to confirm that the tracheal tube is in the right position. A positive detection of CO₂ exhalation accompanied by a good car diac output confirms placement of the tube, and a negative test result strongly suggests esophageal intubation. Occasionally, low lung perfusion can give a negative result despite the tube being in the trachea. A Cochrane review in 2014 did not find any studies specifically addressing this issue and therefore the pretended

advantages of using CO₂ detectors rely on the individual experience of caregivers or teams [67].

The increasing use of noninvasive ventilation has substantially reduced the need for ET both in the DR and in the NICU and subsequently the opportunity to learn and the skills of providers. ET is considered the most difficult technique to teach and learn in neonatal resuscitation. In this scenario the use of laryngeal mask (LM) has been suggested as a valid alternative to access the lower respiratory airways, especially in late preterm and term infants. Several RCTs in late preterm and term infants have evidenced the feasibility, efficacy, and safety of using the LM to resuscitate late preterm (>34 weeks of gestation) and term infants when mask ventilation rendered ineffective and ET was not feasible or unsuccessful. Studies comparing resuscitation with LM versus bag and mask ventilation showed a greater resuscitation rate with LM. Moreover, the total ventilation time was shorter with LM than with bag and mask, and the success with the first attempt was 98.5% with a short insertion time of <10 s. In addition, the use of LM has also been compared with ET and no differences in

successfully performing the technique and in the clinical recovery of depressed neonatal patients in the DR have been found. Therefore, it has been concluded that LM is a valid alternative when ET is not feasible or the providers have not acquired or maintained the necessary skills to successfully and rapidly perform ET [68–70].

Circulatory support

Chest compressions (CC) are indicated when HR remains <60 bpm despite adequate ventilation and oxygen supplementation for 30 s. As ventilation is the mainstay of neonatal resuscitation, before initiating CC the resuscitating team should ensure that effective ventilation is being performed without increase in HR [28]. The aim of CC is to improve cerebral and myocardial perfusion. The former improves neurological outcome and the latter increases the likelihood of a faster return of spontaneous circulation (ROSC). The quality of CC depends upon the rate, the ratio CC to

ventilation, and applied force by the provider. Although increased rate would be apparently more efficient as shown in mathematical modeling or in experimental studies with manikins or piglet models, increasing and unavoidable fatigue in the provider render higher rates ineffective. Therefore, during the process of CC, although respirations, HR, and SpO₂ should be closely monitored, reassessed, and coordinated, compressions should be continuously performed as interruptions will compromise maintenance of systemic and coronary perfusion and worsen prognosis [71]. ILCOR 2015 guidelines

recommend to deliver CC on the lower third of the sternum and to a depth of approximately one-third of the anterior–posterior diameter of the chest using both thumbs to compress the sternum and the rest of the fingers encircling the thorax and supporting the back. The rate compression to ventilation should be 3:1 allowing the chest to re-expand during relaxation for a total of 90 compressions and 30 ventilations/min. Oxygen supplementation during CC has not been studied in the human. Experiments in animal models have shown

different results regarding the levels of oxidative stress biomarkers or histological damage to organs such as CNS, heart, or lung. Of note, none of the studies showed an advantage in the use of 100% oxygen during CC. However, from a clinical point of view, when during resuscitation the provider has reached the stage of needing CC to overcome bradycardia, it seems prudent to use effective ventilation and increase oxygen concentration to try to achieve ROSC. However, when the HR recovers, high FiO₂ should be rapidly weaned based on preductal SpO₂ to avoid additional oxidative damage [27].

Drugs: epinephrine

Only seldom are drugs used during resuscitation. Drugs are indicated when the newborn infant remains bradycardic and profoundly hypoxic despite being adequately ventilated through an endotracheal tube with 100% oxygen and receiving chest compressions. Under these circumstances, administration of epinephrine and/or volume expansion may be indicated [6]. The use of bicarbonate, naloxone, or vasopressors is not currently considered part of the acute resuscitation but can, under special circumstances, be used in the postresuscitation [72,73].

Epinephrine causes an intense peripheral vasoconstriction, thus increasing aortic flow pressure gradient. During chest compression, oxygenated blood pumped by the left ventricle is redirected toward the dilated coronary arteries with less pressure gradient contributing to mitochondrial ATP synthesis, activation of myocardial contractions, and ROSC [45]. Intravenous administration, and especially through the umbilical vein which is easily accessible, is the preferred and the most efficacious route for epinephrine administration during neonatal resuscitation.

Following the principles of DRICU of providing maximal care in the DR, a group of neonatal providers should be available for complex resuscitations involving drugs. One neonatal provider secures the airway, one provides chest compressions, and another gains access to the umbilical vein [29,74]. Another accessible route is via endotracheal tube. Of note, the plasma concentration achieved is lower and the time to reach the peak concentration is slower as compared to the intravenous route. Notwithstanding, it is a valid alternative when the patient is severely bradycardic and there is no intravenous line accessible. Finally, the last possible alternatives are the intraosseous or the intramuscular access. However, there is very

limited information and most of the caregivers are not comfortable with these techniques and prefer the tracheal route. Remarkably, the intramuscular route causes significant tissue damage at the site of injection [45]. The current recommendations indicate that epinephrine should be repeated every 3–5 min if the HR remains bradycardic (<60 bpm) [74]. Occasion

ally, repeated and high doses of epinephrine are needed to overcome a severe neonatal depression. The consequence is a generalized vasoconstriction causing hypertension and tachycardia. Moreover, vasoconstriction reduces blood flow in renal and mesenteric territories, elevation of pul

monary arterial pressure, and increase myocardial oxygen consumption. All these complications may lead to long term morbidities such as intestinal perforation, renal insufficiency, or persistent pulmonary hypertension. Finally, an imbalance of various neurotransmitters has been described reducing the threshold for seizures [28].

Volume expansion

Volume expansion should be provided when evidence or

suspicion of blood loss is present and the infant does not overcome bradycardia despite the application of other resuscitative measures. As mentioned it is mandatory that the resuscitation team early anticipates the need for a peripheral or central (cord vein) route for volume administration. An isotonic crystalloid solution or blood may be considered for volume expansion. The recommended dose is 10 mL/kg, which may need to be repeated. Remarkably, when resuscitating premature infants, it is reasonable to avoid giving volume expanders too rapidly because rapid infusions of large volumes could cause IVH [74].

Ethical considerations

When should resuscitation not be initiated?

Resuscitation efforts after delivery are not indicated under certain circumstance in which there is no possibility of survival. Although infrequent, caregiver in the DR may have to confront this situation. In such cases, initiation

| II | Lung Development and Interventions in the Prenatal and Perinatal Period

of neonatal resuscitation is not ethical and should not be offered. The most frequent circumstance is extreme prematurity. To date, newborn infants <22 weeks of gestation do not have a chance of survival as opposed to previous guidelines that put the limit at 23 weeks and birth weight of 400 g. However, limiting the resuscitation efforts based on the gestational age frequently depends on the traditions or beliefs in different countries or cultures and guidelines may vary from one country to another. Moreover, assessment of gestational age may also incur errors that may preclude resuscitation in a baby who is really within an acceptable gestational age for initiating resuscitation maneuvers. Therefore, caregivers in the DR confronted with a baby around 22 weeks of gestational should also consider other factors such as physical maturity, heartbeat, or reactivity before deciding not to initiate resuscitation. Other cases include chromosomal abnormalities and severe congenital malformations. In cases where there is uncertainty about survival or a high risk of severe morbidity, the parents should be included in decisions regarding resuscitation plans. It is very relevant that each hospital has its own statistical information regarding these different clinical conditions. This facilitates neonatologist to provide parents with accurate and homogenous information. In these cases, after appropriate prenatal counseling, the parent's desires should be taken into account to guide resuscitation efforts [74].

When should resuscitation be withdrawn?

The current international neonatal resuscitation guidelines uniformly suggest ceasing resuscitation efforts after 10 min of effective resuscitation that includes ventilation, chest compressions, and the use of intravenous epineph-

rine without achieving ROSC. The ILCOR 2015 guidelines indicate that the outcome of infants with Apgar of zero at 10 min was "almost universally poor" and supported the cessation of resuscitation at 10 min of no detectable heartbeat [27]. Similar recommendations are indicated by the European Resuscitation Council and the American Heart Association [45,46,74]. This guidance is based on previously published retrospective data that revealed that

References

babies with 0 Apgar score at 10 min resuscitated for more than 10 min either died or had severe neurodevelopmental impairment [75,76]. However, the improvement in resuscitation and postresuscitation care and the introduction of therapeutic hypothermia have drastically changed the prognosis of extremely depressed newly born babies. Fig. 4.6 summarizes the outcomes of babies who had Apgar score of 0 at 10 min and were transferred to the NICU and treated with therapeutic hypothermia. Out of a total of 79, 21% of these infants survived without neurological impairment while 23% had poor outcomes, and 51% of them died [66]. These numbers, however, should be analyzed with caution as they refer only to babies who made it to the NICU and not to those who died in the DR.

Outcomes of severely depressed extremely preterm infants showed a completely different scenario. In a recent review study, outcome of preterm infants <28 weeks of gestation with severe depression were analyzed. Only 0.6% of infants with an Apgar score of 0 at 1 min survived to the NICU and 0.09% were discharged from the hospital. Remarkably, none of the infants with an Apgar score of 0 at 5 min survived [77]. Ethical considerations are extremely important when taking the decision to continue or withdraw resuscitation

procedures in the DR. The “best interest” of the infant should always be a priority. If survival would imply severe limitations in life's quality or assuring only a very short survival, it is generally considered ethical to withhold or withdraw resuscitation efforts. In the case of an uncertain prognosis as it frequently happens, either with holding or withdrawing is ethically equivalent. However, withholding treatment has the advantage of retrieving additional information in the NICU that will allow better judgment of the infants' prognosis. Parents should be

always informed about ongoing resuscitation and should give their consent regarding withdrawal of therapeutic efforts. However, when the resuscitation team has already decided that withholding resuscitation is medically unacceptable it would be arguable if the parents should give their consent for ceasing therapeutic efforts [78]. It is important to communicate with the parents and involve them in the decision-making process to provide family-centered care in the DRNICU.

- [1] Lehtonen L, Gimeno A, Parra-Llorca A, et al. Early neonatal death: a challenge worldwide. *Semin Fetal Neonat Med* 2017;22:153–160.
- [2] World Health Organization/UNICEF/

- UNFPA/World Bank/United Nations Population Division. Trends in maternal mortality: 1990–2013. Geneva: WHO; 2014.
- [3] Lawn JE, Blencowe H, Oza S, et al. Every newborn: progress, priorities, and potential beyond survival. *Lancet* 2014;384:189–205.
- [4] Kattwinkel J. Textbook of neonatal resuscitation. 6th ed. Elk Grove

- Village, IL: American Academy of Pediatrics; 2011.
- [5] Hooper SB, te Pas AB, Lang J, et al. Cardiovascular transition at birth: a physiological sequence. *Pediatr Res* 2015;77:608–614.
- [6] Vento M, Saugstad OD. Resuscitation of the term and preterm infant. *Semin Fetal Neonatal Med* 2010;15: 216–222.

Transition in the Delivery Room: Current NRP Recommendations

- [7] Murphy PJ. The fetal circulation. *Cont Educ Anaesth Crit Care Pain* 2005;5:107–112.
- [8] Gao Y, Raj JU. Regulation of pulmonary circulation in the fetus and newborn. *Physiol Rev* 2010;90:1291–1335.
- [9] Schneider H. Oxygenation of the placental-fetal unit in humans. *Respir Physiol Neurobiol* 2011;178:51e8.
- [10] Vento M, Teramo K. Evaluating the fetus at risk for cardiopulmonary compromise. *Semin Fetal Neonatal Med* 2013;18:324–329.
- [11] Frank L, Groseclose EE. Preparation for birth into an O₂-rich environment: the antioxidant enzymes in the developing rabbit lung. *Pediatr Res* 1984;18:240e4.
- [12] Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. *Semin Fetal Neonatal Med* 2010;15:191–195.
- [13] Viña J, Vento M, García-Sala F, et al. i-Cysteine and glutathione metabolism are impaired in premature infants due to cystathionase deficiency. *Am J Clin Nutr* 1995;61:1067–1069.
- [14] Martín JA, Perea J, Martínez-López I, et al. Oxidative stress as a signal to up-regulate gamma-cystathionase in the fetal-to-neonatal transition in rats. *Cell Mol Biol (Noisy-le-grand)* 2007;53(Suppl.). OL1010-7.
- [15] Mendelson CR, Boggaram V. Hormonal control of the surfactant system in fetal lung. *Annu Rev Physiol* 1991;53:415–440.
- [16] Sweet DG, Carnielli V, Greisen G, et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome—2016 Update. *Neonatology* 2017;111:107–125.
- [17] Vali P, Mathew B, Laskhminrusimha S. Neonatal resuscitation: evolving strategies. *Matern Health Neonatol Perinatol* 2015;1:4.
- [18] Vyas H, Field D, Milner AD, et al. Determinants of the first inspiratory volume and functional residual capacity at birth. *Pediatr Pulmonol* 1986;2:189–193.
- [19] Siew ML, Wallace MJ, Kitchen MJ, et al. Inspiration regulates the rate and temporal pattern of lung liquid clearance and lung aeration at birth. *J Appl Physiol* 2009;106:1888–1895.
- [20] Hooper SB, Te Pas AB, Kitchen MJ. Respiratory transition in the newborn: a three-phase process. *Arch Dis Child Fetal Neonatal Ed* 2016;101:F266–F271.
- [21] Pallardo FV, Sastre J, Asensi M, et al. Physiological changes in glutathione metabolism in foetal and newborn rat liver. *Biochem J* 1991;274:891–893. [22] Gelfand SL, Vento M, Sastre J, et al. A new model of oxidative stress in rat pups. *Neonatology* 2008;94:293–299. [23] Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A, et al. Oxygen and oxidative stress in the perinatal period. *Redox Biol* 2017;12:674–681.
- [24] Escobar J, Cubells E, Enomoto M, et al. Prolonging in utero-like oxygenation after birth diminishes oxidative stress in the lung and brain of mice pups. *Redox Biol* 2013;1:297–303.
- [25] Saugstad OD, Sejersted Y, Solberg R, et al. Oxygenation of the newborn: a molecular approach. *Neonatology* 2012;101:315–325.
- [26] Manley BJ, Owen L, Hooper SB, et al. Towards evidence-based resuscitation of the newborn. *Lancet* 2017;389:1639–1648.
- [27] Perlman JM, Wyllie J, Kattwinkel J, et al. Part 7: neonatal resuscitation: 2015 International Consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. *Circulation* 2015;132(Suppl. 1):S204–S241.
- [28] Kattwinkel J, Perlman JM, Aziz K, et al. Part 15: neonatal resuscitation: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. *Circulation* 2010;122(Suppl. 3):S909–S919.
- [29] Vento M, Aguar M, Leone TA, et al. Using intensive care technology in the delivery room: a new concept for the resuscitation of extremely preterm neonates. *Pediatrics* 2008;122:1113–1116.
- [30] Saugstad OD, Robertson NJ, Vento M. A critical review of the 2015 International Liaison Committee on Resuscitation treatment recommendations for resuscitating the newly born infant. *Acta Paediatr* 2016;105:442–444.
- [31] Pino-Vazquez A, Ruiz-Campillo CW, Sánchez-Mateos M. Pasos iniciales en reanimación neonatal. In: Iriondo Sanz M, Grupo de Reanimación Neonatal de la Sociedad Española de Neonatología, editors. 4th ed. Madrid: Ergón Editores; 2017. p. 59–69.
- [32] McDonald SJ, Middleton P, Dowswell T, et al. Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. *Cochrane Database Syst Rev* 2013;7:CD004074.
- [33] Rabe H, Diaz-Rosello JL, Duley L, et al. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. *Cochrane Database Syst Rev* 2012;8:CD003248.
- [34] Katheria AC, Laskhminrusimha S,

Rabe H, et al. Placental transfusion: a review. *J Perinatol* 2017;37:105–111.

[35] Saugstad OD, Ramji S, Rootwelt T, et al. Response to resuscitation of the newborn: early prognostic variables. *Acta Paediatr* 2005;94:890–895.

[36] Dawson JA, Kamlin CO, Wong C, et al. Changes in heart rate in the first minutes after birth. *Arch Dis Child Fetal Neonatal Ed* 2010;95:F177–F181. [37] Lyu Y, Shah PS, Ye XY, et al. Association between admission temperature and mortality and major morbidity in preterm infants born at fewer than 33 weeks' gestation. *JAMA Pediatr* 2015;169:e150277.

[38] Jacobs SE, Berg M, Hunt R, Tarnow Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy.

[39] Vain NE, Szyld EG, Prudent LM, et al. Oropharyngeal and nasopharyngeal suctioning of meconium-stained neonates before delivery of their shoulders: multicentre, randomised controlled trial. *Lancet* 2004;364(9434):597–602.

[40] Chettri S, Adhisivam B, Bhat BV. Endotracheal suction for nonvigorous neonates born through meconium stained amniotic fluid: a randomized controlled trial. *J Pediatr* 2015;166:1208–1213.e1.

[41] Dawson JA, Ekström A, Frisk C, et al. Assessing the tongue colour of newly born infants may help to predict the need for supplemental oxygen in the delivery room. *Acta Paediatr* 2015;104:356–359.

[42] Vento M. What does the colour of the tongue tells us in the delivery room? *Acta Paediatr* 2015;104:329–330.

[43] Dawson JA, Kamlin CO, Vento M, et al. Defining the reference range for oxygen saturation for infants after birth. *Pediatrics* 2010;125:e1340–e1347.

[44] Dawson JA, Vento M, Finer NN, et al. Managing oxygen therapy during delivery room stabilization of preterm infants. *J Pediatr* 2012;160:158–161.

[45] Kapadia VS, Wyckoff MH. Epinephrine use during newborn resuscitation. *Front Pediatr* 2017;5:97.

43

II | Lung Development and Interventions in the Prenatal and Perinatal Period

[46] Sawyer T, Umoren RA, Gray MM. Neonatal resuscitation: advances in training and practice. *Adv Med Educ Pract* 2016;8:11–19.

[47] Saugstad OD, Ramji S, Soll RF, et al. Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. *Neonatology* 2008;94:176–182.

[48] Torres-Cuevas I, Cernada M, Nuñez A, et al. Oxygen supplementation to stabilize preterm infants in the fetal to neonatal transition: no satisfactory answer. *Front Pediatr* 2016;4:29.

[49] Ezaki S, Suzuki K, Kurishima C, et al. Resuscitation of preterm infants with reduced oxygen results in less oxidative stress than resuscitation with 100% oxygen. *J Clin Biochem Nutr* 2009;44:111–118.

[50] Vento M, Moro M, Escrig R, et al. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. *Pediatrics* 2009;124: e439–e449.

[51] Kapadia VS, Chalak LF, Sparks JE, et al. Resuscitation of preterm neonates with limited versus high oxygen strategy. *Pediatrics* 2013;132:e1488–e1496.

[52] Tataranno ML, Oei JL, Perrone S, et al. Resuscitating preterm infants with 100% oxygen is associated with higher oxidative stress than room air. *Acta Paediatr* 2015;104:759–765.

[53] Wang CL, Anderson C, Leone TA, et al. Resuscitation of preterm neonates by using room air or 100% oxygen. *Pediatrics* 2008;121:1083–1089.

[54] Rabi Y, Lodha A, Soraisham A, et al. Outcomes of preterm infants following the introduction of room air resuscitation. *Resuscitation* 2015;96:252–259.

[55] Oei JL, Saugstad OD, Lui K, et al. Targeted oxygen in the resuscitation of preterm infants: a randomized controlled trial. *Pediatrics* 2017;140:e111–e118.

[56] Oei JL, Vento M, Rabi Y, et al. Higher or lower oxygen for delivery room resuscitation of preterm infants below 28 completed weeks gestation: a meta-analysis. *Arch Dis Child Fetal Neonatal Ed* 2017;102:F24–F30.

[57] Oei JL, Finer NN, Saugstad OD, Wright IM, Rabi Y, Tarnow-Mordi W, et al. Outcomes of oxygen saturation targeting during delivery room stabilisation of preterm infants. *Arch Dis Child Fetal Neonatal Ed* 2018 Sep;103(5):F446–F454.

[58] Schmoelzer GM, Kumar M, Pichler G, et al. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta analysis. *BMJ* 2013;347:f5980.

[59] O'Donnell CP, Davis PG, Lau R, et al. Neonatal resuscitation 2: an evaluation of manual ventilation devices and face masks. *Arch Dis Child Fetal Neonatal Ed* 2005;90: F392–F396.

[60] Iriondo M, Thio M, Burón E, et al. A survey of neonatal resuscitation in Spain: gaps between guidelines and practice. *Acta Paediatr* 2009;98: 786–791.

[61] Roehr CC, Gröbe S, Rüdiger M, et al. Delivery room management of very low birth weight infants in Germany, Austria and Switzerland—a comparison of protocols. *Eur J Med Res* 2010;15:493–503.

[62] Mann C, Ward C, Grubb M, et al. Marked variation in newborn resuscitation practice: a national survey in the UK. *Resuscitation* 2012;83:607–611.

[63] Hawkes CP, Ryan CA, Dempsey EM. Comparison of the T-piece resuscitator with other neonatal manual ventilation devices: a qualitative publication. *BMC Pediatr* 2016;16:17. [71] Solevåg AL, Schmölzer GM. Optimal chest compression rate and compression to ventilation ratio in delivery room resuscitation: evidence from newborn piglets and neonatal manikins. *Front Pediatr* 2017;5:3.

[64] Harrington DJ, Redman CW, Moulden M, et al. The long-term outcome in surviving infants with Apgar zero at 10 minutes: a systematic review of the literature and hospital-based cohort. *Am J Obstet Gynecol* 2007;196(463):e1–e5.

[65] Fuchs H, Schilleman K, Hummler HD, te Pas AB. Techniques and devices to improve noninvasive ventilation in the delivery room. *Neoreviews* 2012;13:e353.

[66] Guinsburg R, de Almeida MFB, de Castro JS, et al. T-piece versus self inflating bag ventilation in preterm neonates at birth. *Arch Dis Child Fetal Neonatal Ed* 2018;103:F49–F55.

[67] Schmölzer GM, Roehr CC. Techniques to ascertain correct endotracheal tube placement in neonates. *Cochrane Database Syst Rev* 2014;9:CD010221.

[68] Zhu XY, Lin BC, Zhang QS, et al. A prospective evaluation of the efficacy of the laryngeal mask airway during neonatal resuscitation. *Resuscitation* 2011;82:1405–1409.

[69] Trevisanuto D, Cavallin F, Nguyen LN, et al. Supreme laryngeal mask airway versus face mask during neonatal resuscitation: a randomized controlled trial. *J Pediatr* 2015;167:286–291.e1. [70] Yang C, Zhu X, Lin W, et al. Randomized, controlled trial comparing laryngeal mask versus endotracheal intubation during neonatal resuscitation—a secondary publication. *BMC Pediatr* 2016;16:17. [71] Solevåg AL, Schmölzer GM. Optimal chest compression rate and compression to ventilation ratio in delivery room resuscitation: evidence from newborn piglets and neonatal manikins. *Front Pediatr* 2017;5:3.

[72] Wyllie J, Niermeyer S. The role of

resuscitation drugs and
placental
transfusion in the delivery room
management of newborn infants.
Semin Fetal Neonatal Med
2008;13:416–423.

[73] Sáenz P, Brugada M, de Jongh B, Sola A, Torres E, Moreno L, Vento M. A survey of intravenous sodium bicarbonate in neonatal asphyxia among European neonatologists: gaps between scientific evidence and clinical practice. *Neonatology* 2011;99:170–176.

[74] Wyckoff MH, Aziz K, Escobedo MB, Kapadia VS, Kattwinkel J, Perlman JM, et al. Part 13: neonatal resuscitation: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. *Pediatrics* 2015;136(Suppl. 2):S196–S218.

[75] Wyllie J, Bruienberg J, Roehr CC, et al. European resuscitation council guidelines for resuscitation 2015: Section 7. Resuscitation and support of transition of babies at birth. *Resuscitation* 2015;95:249–263.

[76] Jain L, Ferre C, Vidyasagar D, et al. Cardiopulmonary resuscitation of apparently stillborn infants: survival and long-term outcome. *J Pediatr* 1991;118:778–782.

[77] McGrath JS, Roehr CC, Wilkinson DJ. When should resuscitation at birth cease? *Early Hum Dev* 2016;102:31–36.

[78] Haines M, Wright IM, Bajuk B, et al. Population-based study shows that resuscitating apparently stillborn extremely preterm babies is associated with poor outcomes. *Acta Paediatr* 2016;105:1305–1311.

44

5

Sustained Lung Inflation

Gianluca Lista, MD, PhD, Ilia Bresesti, MD

Physiology of the respiratory transition after birth **45** **Definition and rationale for sustained inflations** **46** **What literature says** **46** **Current recommendations** **48** **Unresolved issues about SI** **48** **References** **48**

- Transpulmonary pressure following the first breaths plays an important role in fluid removal from the lung at birth.
- Sustained inflation (SI), in which an initial inflating pressure is held for a prolonged duration may assist in lung fluid clearance and establishment of functional residual capacity (FRC).
- Data from experimental animal studies suggest that SI results in uniform lung aeration, better lung function, and stable cerebral oxygen delivery when compared to conventional ventilation.
- In randomized clinical trials (Italian SLI trial and international SAIL trial), some safety concerns arose. SLI trial demonstrated a higher but nonsignificant incidence of pneumothorax in very preterm infants (25–29 weeks gestation). Preliminary data from the SAIL trial showed an excess of early deaths (<48 h of age) in the SI arm (7.5% vs. 1.4%) but no difference in pneumothorax and intraventricular hemorrhage in extremely preterm infants (23–26 weeks gestation) who required resuscitation at birth.

- Further studies of this promising technique evaluating differences in mortality and long-term outcomes are needed.

Physiology of the respiratory transition after birth

In the physiological transition from intra- to extrauterine life, aeration of the lung and clearance of fetal lung liquid from the alveoli are crucial steps during initial adaptation of the newborn, especially in the preterm infant, whose lungs are immature and extremely fragile. Therefore, facilitating the neonatal adaptation while minimizing lung injury is an enormous challenge for the neonatologist. The respiratory transition is usually recognized as a three-phase process [1], which reflects the three physiological status of the lung during transition to extrauterine life. In the first phase of the respiratory transition, the lungs are fluid-filled, and for this reason no gas exchange can occur. Immediately after birth, the term infant usually takes a few deep breaths, which generate a large tidal volume and trigger a cascade of physiological events promoting the clearance of the fluid from the lungs and the establishment of pulmonary gas exchanges. All these changes are critical for initiating postnatal circulation and for the achievement of an early and adequate functional residual capacity (FRC).

The mechanism of lung fluid reabsorption and lung aeration at birth has been recently clarified, as the activation of epithelial sodium channels could not completely explain the rate of fluid clearance observed at birth in healthy newborns. Experimental studies, in fact, showed

that the transpulmonary pressure following the first breaths can overcome the airflow resistance, and is indeed the main determinant of the fluid removal from the lung.

During the second phase, lung fluid should be

prevented from reentering the lung. In order to maintain the lung volume without a continuous opening and closing of the alveoli, endogenous surfactant and positive end-expiratory

45

| II | Lung Development and Interventions in the Prenatal and Perinatal Period

pressure (PEEP) play an important role in reducing surface tension and preventing alveoli collapse, respectively. The third phase, then, is characterized by the initiation of gas exchange and the subsequent establishment of car diorespiratory homeostasis.

While all these transitions are made by the full-term healthy newborn by himself within a few minutes after birth, preterm infants must deal with several physiological impairments to properly aerate the lung. These include a high compliance of the chest wall and a weak respiratory musculature, ineffective function of epithelial channels, structural immaturity of the lungs, and insufficient surfactant composition, production, and storage. Accordingly, almost all extremely preterm babies require respiratory support during neonatal transition [2].

When infants fail to create the transepithelial pressure gradient necessary for the lung liquid clearance, applying positive pressure to the airways helps in achieving this goal. After a preterm infant has cleared the liquid from the lungs, gas exchange becomes possible in the recruited alveoli. This liquid, however, initially remains in the surrounding interstitial tissues with a great risk of reentering the alveoli and interfering with gas exchange. For this reason, maintaining a constant distending pressure in the airway using continuous positive airway pressure (CPAP) is important in this early phase to avoid losing the acquired FRC.

rounding interstitial tissues with a great risk of reentering the alveoli and interfering with gas exchange. For this reason, maintaining a constant distending pressure in the airway using continuous positive airway pressure (CPAP) is important in this early phase to avoid losing the acquired FRC.

Definition and rationale for sustained inflations

As we have previously mentioned, preterm infants, especially those of extremely low gestational age, are not capable of generating a subatmospheric pressure around the distal airways.

These infants, however, need a more uniform lung aeration to avoid wide and dangerous ventilation-perfusion mismatches, which are responsible for the ineffective increase in pulmonary blood flow and heart rate after birth.

The standard practice to promote lung aeration is intermittent positive pressure ventilation (IPPV) with PEEP and/or CPAP in apneic or spontaneously breathing infants, respectively.

However, to date the best method to favor lung aeration while avoiding harmful trauma to the fragile preterm lung still remains under investigation.

Using large transpulmonary peak pressure with short inflation times certainly contributes to heterogeneity of

lung aeration, but could result in overdistention and injury to already aerated regions [3]. This is the reason why an alternative approach has been proposed. It is the so-called "sustained inflation" (SI), in which an initial inflating

pressure is held for a prolonged duration (15–20 s) using the physiological time constant of the lungs.

Several decades ago, Boon et al. [4], studying the formation of FRC and tidal volume in asphyxiated intubated neonates, demonstrated that 13–32 cmH₂O was the necessary pressure to move air from trachea to distal airways. In the same period, Vyas et al. [5] described the effects of prolonged inflations (5 s) in the same population, and showed that time, rather than pressure, was responsible for the establishment of an adequate FRC.

Although these initial findings were of great interest, SI remained understudied for many years.

Recently, there is a renewed interest in this technique and its potential effects on premature babies.

What literature says

Experimental animal studies

Several studies were conducted on animals about the effects of SI, both in asphyxiated and premature models. In these experiments, SI seems to provide satisfactory results in improving respiratory transition, contributing in establishing FRC and in enhancing gas exchange immediately after birth.

Using preterm rabbit model, te Pas et al. [3] demonstrated that a combination of SI and PEEP was the most effective to uniformly aerate the lung and fully recruit an adequate FRC. Moreover, they also showed that using longer inspiration times contributes significantly in the uniformity of lung aeration. Sobotka et al. [6] demonstrated better lung function in lamb model treated with SI and more stable cerebral oxygen delivery without adverse circulatory effects.

Klingenbergs et al. [7] found that in asphyxiated lambs an initial SI lasting 30 s shortens the time necessary to recover adequate heart rate, blood pressure, and oxygenation when compared with standard duration inflations.

Human studies

van Vonderen et al. [8] observed that SI was not effective unless the preterm infants were spontaneously breathing.

As most of the FRC gain occurs when the baby breathes, the role of spontaneous breathing and active glottis adduction appears to be crucial to make SI effective. Similar results are described by Lista et al. [9] using respiratory function monitoring.

46

Fuchs et al. [10] used NIRS to measure preductal arterial oxygen saturation and cerebral tissue oxygenation in a group of preterm infants treated with SI and compared results with a group of preterm infants requiring CPAP only. Increase in cerebral oxygen saturation in the SI group was almost as rapid, suggesting that the intrathoracic pressure increase imposed by SI does not affect gas exchange and brain perfusion.

Schwaberger et al. [11] randomized 40 preterm infants comparing the effects of SI with "standard" respiratory care on cerebral blood volume. It remained essentially unchanged in the SI-treated infants, while decreased in the first 15 min after birth in the control group with no adverse neurological effects.

A few observational studies have been conducted comparing outcomes of preterm infants treated with SI with a control group. Even if these studies are not homogeneous in terms of population, definition of SI, respiratory management in the control group, and main outcomes, they showed the feasibility and safety of treating preterm infants with SI. Moreover, although they are all limited by the use of historical controls, they suggest essential preliminary data for the design of randomized controlled trials (RCTs).

Randomized clinical trials

Given the lack of a standardized definition of SI in terms of duration, peak pressure to apply, and number of inflations to perform, there is no homogeneity in the use of SI itself in all of the RCTs currently available. To date, there are five published RCTs of SI in preterm neonates, the results of which can be used to assume a provisional conclusion on its efficacy and safety. The recently concluded multicenter international trial, the SAIL trial [12], compared IPPV and SI in extremely preterm infants with BPD and death as primary outcomes (details below).

One of the main concerns that has arisen in regard to SI is the safety of this maneuver, and specifically the risk for air leaks.

In the Italian SLI trial (Lista et al.) [13], there was a higher but nonsignificant incidence of pneumothorax in very preterm infants (25–29 weeks of gestational age) who underwent SI, in respect to the control group. Similar findings in a population of late preterm infants characterized the study of Mercadante et al. [14]. In both these trials, SI was performed regardless of respiratory status, and infants belonging to the SI arm received this procedure prophylactically. Nevertheless, of note, in the SLI trial the incidence of pneumothorax occurred at a median age of 70 h. It is possible, then, that other factors influenced the incidence of air leaks (i.e., surfactant administration timing). It must be underlined that if SI is

The use of near-infrared spectroscopy (NIRS) during SI has led to interesting results, which highlight the need for further studies including physiological and clinical outcomes in premature babies.

effective, it dramatically changes lung mechanics and therefore neonatologists have to be very careful in setting Sustained Lung Inflation

| 5 |

the respiratory parameters. Theoretically, it is possible that the caregivers may not have paid enough attention to this issue and this could explain the tendency toward increased incidence of air leaks and pneumothorax in the following days. In addition, the last Cochrane Review [15] did not mention in the main results any concerns about air leaks or pneumothorax related to SI.

Harling et al. [16] enrolled 52 preterm infants to receive either a 5-s SI or a 2-s conventional lung inflation (IPPV). They collected bronchoalveolar lavage fluid immediately after intubation and after 12 h, and then they measured cytokine concentration. They did not find any significant differences between the two groups, neither in cytokine lev

els nor in other clinical outcomes (mortality, BPD). te Pas and Walther randomized 207 preterm infants comparing two DR protocols. SIs (10-s inflation with 20 cmH₂O, which could be increased to 25 cmH₂O for another 10 s depending on individual response) were delivered with a T-piece via nasopharyngeal tube, and nasal CPAP was started after 1–2 SIs. In the control group, infants were treated with IPPV via self-inflating bag and facemask, and CPAP was not used in the DR. The primary outcome was the need for mechanical ventilation in the first 72 h of life, which was significantly lower in the SI group. Surfactant was administered less in the SI arm, and moderate-severe BPD rate seemed to favor the SI-treated infants. However, as these protocols were a package of interventions, it is difficult to isolate the individual effect of SI on clinical outcomes [17].

Two systematic reviews about the use of SI in preterm infants have been recently published [15,18]. Schmolzer et al. found a significant reduction in the intubation and need of mechanical ventilation rate in the first 72 h of life in SI groups, with no differences in mortality, BPD rate, IVH, or air leaks.

The last Cochrane Review did not find any significant difference in terms of mortality or BPD, but only in the duration of MV, which was shortened in the SI group. The authors concluded suggesting caution in the interpretation of this result, as it could be influenced by study characteristics other than the intervention.

Preliminary data from the SAIL trial showed an excess of early deaths (<48 h of age) in the SI arm (7.5% vs. 1.4%) but no difference in pneumothorax and intraventricular hemorrhage in extremely preterm infants (23–26 weeks gestation) who required resuscitation at birth. DSMB upon review halted the trial for harm after recruiting 460 infants (out of a total desired sample of

592). The detailed analysis of the early mortality causes still needs to be clarified in order to understand which could be the possible link between SI and early death. Anyway long-term outcome

(death and BPD occurrence) were similar between SI and control group. According to the results of the SAIL trial and the SLI trial, it seems that further researches are warranted

| II | Lung Development and Interventions in the Prenatal and Perinatal Period

visit [MedEnact](#) to access the video on

to better understand the effect of SI and its use in delivery room management of preterm infants with signs of RDS or at risk of respiratory failure.

Current recommendations

Given the current evidence available, SI seems to be a promising technique to optimize neonatal transition after birth. However, it must be considered still an experimental therapy, as there is insufficient data to advocate its use in clinical settings. The latest ERC guidelines on neonatal resuscitation argue against the routine use of initial SI for preterm infants without spontaneous respiration immediately after birth, but allow SI to be considered in individual clinical circumstances or research settings [19]. However, they recommend maintaining the initial pressure for 2–3 s for the first five positive pressure inflations during resuscitation.

Despite the lack of strong evidence, we suggest some key practical points for performing SIs in the delivery room. The parameters are chosen according to those set in clinical studies.

- **Peak pressure:** It would be desirable to start with 20–30 cmH₂O according to gestational age.
- **Duration of SI:** It ranges from 5 to 20 s. Animal studies have shown that inflations lasting less than 5 s are not effective to clear the fluid from the lungs.
- **Number of SIs:** There is no consensus about it. Most clinical studies have performed 1–3 SIs, with different approaches in terms of delivered pressure (same peak pressure for all SIs or progressively increased peak pressures from 20 to 25 cmH₂O if no response was obtained after the first maneuver).
- **Time between SIs:** Even if there is lack of evidence regarding this aspect, it is reasonable to suggest to leave enough time between one SI and the next one to observe the infant's response. However, observation time should be limited to avoid

SLI. References

reducing the efficacy of the second SLI due to airway obstruction.

- **Monitoring of SI's efficacy:** Verifying the effects of SI in real time remains quite challenging in the delivery room. As chest expansion could be difficult to evaluate, the efficacy of the SI maneuver should be judged based on heart rate and SpO₂ response. The routine use of devices targeted at the measurement of respiratory patterns and tidal volume and/or end-tidal CO₂ may be helpful to verify the efficacy of this intervention as well.

It is indeed clear that further evidence from well designed RCTs is needed to determine in more detail how, and in which clinical circumstances, SI should be used.

Unresolved issues about SI

At present, there are still several aspects of SI that need to be better clarified in order to recommend the use of this maneuver as a routine care procedure.

- What is the ideal and safest SI peak to deliver?
- What is the ideal duration of SI?
- What is the optimal number of SIs to perform?
- Might we use different parameters for different GA?
- Should SI be used as a prophylactic or rescue maneuver?
- What is the role of spontaneous breathing on the efficacy of SI?
- How can the SI maneuver be monitored and how can it be tailored to individual response?
- What is the best interface to deliver SI?
- Should surfactant replacement therapy be administered prior to, or after, SI?
- Is SI use feasible in asphyxiated infants?
- How can we minimize the risk of air leak related to SI?
- What are the effects of SI on tissue oxygenation (cerebral, pulmonary, cardiac, etc.)?
- Does SI have a significant impact on relevant clinical outcomes (death, BPD, etc.)?

Online Supplementary Material Please

expiratory pressure in a preterm rabbit model. *Pediatr Res* 2009;65:537–541. [4] Boon AW, Milner AD, Hopkin IE. Lung expansion, tidal exchange, and formation of the functional residual capacity during resuscitation of asphyxiated neonates. *J Pediatr* 1979;95:1031–1036.

[5] Vyas H, Field D, Milner AD, Hopkin IE. Determinants of the first inspiratory volume and functional residual capacity at birth. *Pediatr Pulmonol* 1986;2:189–193.

[6] Sobotka KS, Hooper SB, Allison BJ, Te Pas AB, Davis PG, Morley CJ, et al. An initial sustained inflation improves the respiratory and cardiovascular transition at birth in preterm lambs. *Pediatr Res* 2011;70:56–60.

[7] Klingenberg C, Sobotka KS, Ong T, Allison BJ, Schmolzer GM, Moss TJ, et al. Effect of sustained inflation duration; resuscitation of near-term asphyxiated lambs. *Arch Dis Child Fetal Neonatal Ed* 2013;98:F222–F227.

[8] van Vonderen JJ, Hooper SB, Hummeler HD, Lopriore E, te Pas AB. Effects of a sustained inflation in preterm infants at birth. *J Pediatr* 2014;165:903–908.e1.

[9] Lista G, Cavigioli F, La Verde PA,

Respiratory transition in the newborn: a three-phase process. *Arch Dis Child Fetal Neonatal Ed* 2016;101:F266–F271.

[2] Aziz K, Chadwick M, Baker M, Andrews W. Ante- and intra-partum factors that predict increased need for neonatal resuscitation. *Resuscitation* 2008;79:444–452.

[3] te Pas AB, Siew M, Wallace MJ, Kitchen MJ, Fouras A, Lewis RA, et al. Establishing functional residual

capacity at birth: the effect of sustained inflation and positive end

Sustained Lung Inflation

| 5 |

Castoldi F, Bresesti I, Morley CJ. Effects of breathing and apnoea during sustained inflations in resuscitation of preterm infants. *Neonatology* 2017;111:360–366.

[10] Fuchs H, Lindner W, Buschko A, Trischberger T, Schmid M, Hummeler HD. Cerebral oxygenation in very low birth weight infants supported with sustained lung inflations after birth. *Pediatr Res* 2011;70:176–180.

[11] Schwaberger B, Pichler G, Avian A, Binder-Heschl C, Baik N, Urlesberger B. Do sustained lung inflations during neonatal resuscitation affect cerebral blood volume in preterm infants? A randomized controlled pilot study. *PLoS One* 2015;10:e0138964.

[12] Foglia EE, Owen LS, Thio M, Ratcliffe SJ, Lista G, Te Pas A, et al. Sustained Aeration of Infant Lungs (SAIL) trial: study protocol for a randomized controlled trial. *Trials* 2015;16:95. [13] Lista G, Boni L, Scopesi F, Mosca F, Trevisanuto D, Messner H, et al. Sustained lung inflation at birth for preterm infants: a randomized clinical trial. *Pediatrics* 2015;135:e457–e464. [14] Mercadante D, Colnaghi M, Polimeni V, Ghezzi E, Fumagalli M, Consonni D, et al. Sustained lung inflation in late preterm infants: a randomized controlled trial. *J Perinatol* 2016;36:443–447.

[15] Bruschettini M, O'Donnell CP, Davis PG, Morley CJ, Moja L, Zappettini S, et al. Sustained versus standard inflations during neonatal resuscitation to prevent mortality and improve respiratory outcomes. *Cochrane Database Syst Rev* 2017;7:CD004953. [16] Harling AE, Beresford MW, Vince GS, Bates M, Yoxall CW. Does sustained lung inflation at resuscitation reduce lung injury in the preterm infant? *Arch Dis Child Fetal Neonatal Ed* 2005;90:F406–F410.

[17] te Pas AB, Walther FJ. A randomized, controlled trial of respiratory management in very preterm infants. *Pediatrics* 2007;120:322–329.

[18] Schmolzer GM, Kumar M, Aziz K, Pichler G, O'Reilly M, Lista G, et al. Sustained inflation versus positive pressure ventilation at birth: a systematic review and meta-analysis. *Arch Dis Child Fetal Neonatal Ed* 2015;100:F361–F368.

[19] Wyllie J, Bruinenberg J, Roehr CC, Rudiger M, Trevisanuto D, Urlesberger B. European Resuscitation Council Guidelines for Resuscitation 2015: Section 7. Resuscitation and support of transition of babies at birth. *Resuscitation* 2015;95:249–263.

Page left intentionally blank

Applied Physiology, and Ventilator Support: General Considerations

Ventilator Graphics 124

11A Initiation of Mechanical Ventilation 143

11B Deterioration on the Ventilator 149 **12**

Extubation 155

13A Complications of Mechanical
Ventilation 161

13B Pulmonary Air Leaks 170

13C Pulmonary Edema and
Pulmonary Hemorrhage 193

13D Neonatal Necrotizing Tracheobronchitis 197

- 6** Introduction to Lung Mechanics 53
- 7** Genesis of Lung Injury 69
- 8** Hypoxic Respiratory Failure 81
- 9A** Comparison of Ventilators 102
- 9B** The Importance of Heating and Humidifying
the Inspired Gases During Mechanical
Ventilation: Identifying the Ideal Settings and
Circuit Configuration During Ventilation 113 **10**

Page left intentionally blank

Introduction to Lung Mechanics

Jegen Kandasamy, MD, Namasivayam Ambalavanan, MD

Introduction 53 **Overview of respiratory mechanics** 53 **Physical principles of respiratory**

mechanics 54 **Mechanics of the respiratory pump** 57 **Elastic properties of the respiratory system** 60 **Resistive properties of the respiratory system** 62 **Respiratory mechanics in disease states** 63 **References** 66

- Overview of respiratory mechanics
- Mechanics of the respiratory pump
- Elastic and resistive properties of the respiratory system
- Respiratory mechanics in disease

Introduction

The primary function of the respiratory system is translation of neural output into mechanical events that allow air to flow in and out of the lungs and facilitate gas exchange at the alveolar–vascular interface [1]. The conversion of force generated by respiratory muscles into pressure changes across the respiratory system is dependent on the mechanical characteristics of the respiratory system. Tidal changes in lung volume are created by stretching elastic components in the respiratory system, and resistive elements in

the airway and lung tissue are overcome to create flow of air through the respiratory tree. This chapter will detail the mechanical characteristics of the respiratory system, their interactions with one another, and their role in the function of the neonatal respiratory system during various disease states.

Overview of respiratory mechanics

The mechanical elements of the respiratory system can be described as consisting of a pump and a load. The pump is made up of structures in the thoracoabdominal wall including the ribs, sternum, and the muscles of inspira

tion and expiration. The load that the respiratory pump acts on consists of the elastic and resistive properties of the chest wall, lungs, and airways. Elastic recoil of the chest wall and the lungs are opposing forces that determine the resting (end-expiratory) volume of the respiratory system (Fig. 6.1). At this point of the respiratory cycle, the inwardly directed elastic recoil of the lung is balanced by the elastic recoil of the chest wall which is directed outward to create a small negative intrapleural pressure (P_{pl}) of -3 to -6 cm H₂O with respect to the atmospheric pressure (P_{atm}) which is assumed to be zero in this setting. The volume of air left in the alveoli at the end of normal expiration largely depends on the magnitude of this negative P_{pl} (see Section: Elastic properties of the respiratory system).

In this resting state, the pressure at the airway opening (P_{ao}) as well as the alveolar pressure (P_{al}) are both at equilibrium with P_{atm} and therefore zero as well. During inspiration, the respiratory muscles contract to expand intrathoracic volume. This outward chest wall movement

Fig. 6.1 The Resting State of the Respiratory System. Atmospheric pressure is assumed to be 0 mmHg in lung mechanics. Functional residual capacity is generated by the negative intrapleural pressure created by the opposing recoils of the chest wall and the lung.

decreases P_{pl} further and expands the alveoli and terminal airways. This creates a pressure differential between P_{ao} (which remains zero) and P_{al} (which is now negative) that drives air into the lungs. At the end of inspiration, the respiratory muscles relax and the chest wall collapses inward. This increases P_{pl} back to its baseline and releases the expansionary force placed on the alveoli that recoil back toward their resting volume. The positive P_{al} created in this process overcomes the resistance to flow created by the terminal airways and forces air out of the lungs, thereby completing the cycle and returning the respiratory system to its resting state [2–4].

The pressure differential that opens the alveoli ($P_{al} - P_{pl}$) and the driving pressure for airflow ($P_{ao} - P_{al}$) are both required to create the volume and airflow changes necessary to permit normal respiration. The total pressure that is required to drive respiration—referred to as the transpulmonary pressure (P_{tp})—is traditionally $P_{alv} - P_{pl}$ (difference between alveolar pressure and pleural pressure), but as we can more readily measure alveolar opening pressure (P_{ao}) but not P_{alv} , which approximates P_{alv} at end inspiration, P_{tp} is usually estimated $P_{ao} - P_{pl}$ (difference between airway opening pressure and

intrapleural pressure).

Physical principles of respiratory mechanics

The mechanical properties that determine lung volume and airflow changes through the respiratory system during inspiration and expiration in the manner described earlier are elastance, conductance, and inertance [5]. Elastance is the tendency of a hollow organ to recoil to its initial size after removal of the distending pressure. Elastance of the entire respiratory system includes the elastance of the chest wall and that of the lungs. Compliance is the reciprocal of elastance and measures distensibility. It is defined as the change in volume (V) of a hollow organ per unit change in the distending pressure (P).

$$\text{Compliance } (C_V) / = \Delta \Delta P$$

Respiratory conductance represents the instantaneous amount of airflow in the lungs (Q), defined as the volume of air moved per unit time (t) per unit amount of pressure difference between the airway opening and the alveoli.

Resistance, which measures the impedance to airflow

$$\text{Resistance } (R) / = \Delta P / (dV/dt) = \Delta P / Q$$

The total pressure difference that is required to overcome inertia during motion in the respiratory system and accelerate airflow is called total respiratory

inertance.

$$\text{Inertance (I P) } / = \Delta dQ / dt$$

Very minimal pressure is required to accelerate airflow through the respiratory tract. Respiratory system inertance becomes a significant factor only when respiratory frequency is high.

Introduction to Lung Mechanics

| 6 |

each breath can be obtained by rearranging and adding the first two equations mentioned previously.

Frequency is as high as those used in high-frequency ventilation; during tidal breathing and conventional ventilation, $P_{\text{PE}} = P_{\text{PE}} + R_{\text{Q}_t}$

this factor can be safely ignored [6].

Lung mechanics can be highly heterogeneous and vary in different regions, especially during disease states. However, a single-compartment model can be used to simplify

+ overcome airway resistance) or

the various concepts of lung mechanics [7]. In one such model (Fig. 6.2), the alveolar compartment (with a volume of V) is represented by a pair of canisters that slide against each other and are connected to each other by a spring with elastic recoil of E and a resistive element R_t . The spring represents the elastic recoil (elastance) stored in the respiratory system when it is stretched beyond its resting volume. This recoil is used by the respiratory system for lung deflation during expiration which is usually passive during normal tidal breathing and does not require additional work by the respiratory pump. R_t represents the resistance to airflow offered by the tissues that make up the lungs and the chest wall (viscous resistance). Inflow to this system is through a tube that represents the airways and offers its own resistance (R_{aw}) to airflow.

The pressures required to overcome elastance (P_{el}) and resistance (P_{res}) and allow ventilation to proceed during

$$P_{\text{PE}} = +_1 P_{\text{V}} = + / * C R Q$$

P_{tp} which was described in the previous section and P_{total} represent the same entity, namely the pressure that needs to be generated by the respiratory pump to overcome respiratory system elasticity and resistance (offered by the airways as well as lung tissue) and allow ventilation to proceed unimpeded. These mechanical concepts can be summed up into one equation, which is referred to as the equation of motion for the respiratory system.

* (pressure required to

tp to overcome elastance) * (pressure required to overcome

viscous or tissue resistance) * (pressure required to more simply,

R_{Q_t}

represents elastance of the lung, and R_t and R_{aw} represent resistance of the lung tissue and airway, respectively.

$$P_{\text{PE}} = + * * V R_{\text{ta}} Q R_{\text{aw}} * Q$$

Airflow in the respiratory system is terminated when P_{ao} equilibrates with P_{al} . The time taken for this pressure equilibration to be achieved determines the rate of emptying and filling of alveoli and therefore determines the duration of a single breath. If all respiration was passive and the lung an ideal single-compartment model, the rate of filling or emptying of the lung can be determined using its compliance and resistance to calculate the time constant of the respiratory system (τ) [8].

$$\tau = C R = \Delta V P / * \Delta \Delta P Q / = \Delta V Q$$

In other words, τ is the rate of change of volume for a given airflow rate within the idealized respiratory system. Based on this model, lung inflation and deflation is an exponential process that is 63% complete after one τ , 87% complete after two τ , and almost fully complete after three time constants (95%) have elapsed (Fig. 6.3). Smaller τ

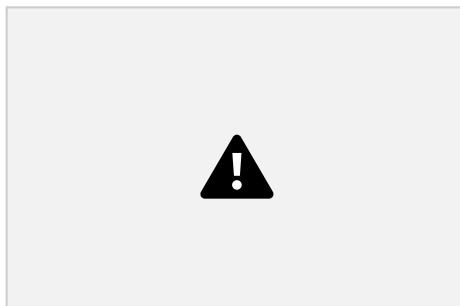
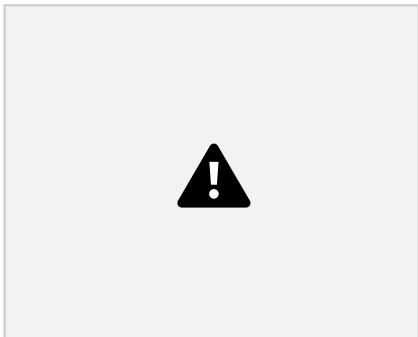



Fig. 6.2 An Idealized Single-Compartment Model of the Respiratory System. V represents lung volume, E

| III | Applied Physiology, and Ventilator Support: General Considerations

values allow for quicker $P_{ao} - P_{al}$ equilibration and completion of the respiratory cycle and correspondingly faster respiratory rates. Studies have shown that the respiratory rates of various animal species correlate closely with their τ values. Larger mammals have longer τ and slower respiratory rates and smaller bird species have shorter τ and faster rates [9]. The τ varies in infants with various respiratory diseases. Knowledge of these variations can help clinicians determine the appropriate inspiratory time (I-time) and respiratory rate that will permit lung inflation and deflation to be fully complete with every breath. Since inspiration is an active process, it is not strictly a linear time-invariant model and time constants often overestimate the time lungs take to inflate.

Energy is expended for the work of the respiratory pump that moves air through the respiratory system. The total work (force \times displacement) done by the respiratory system over a single breath can be derived from the pressure required (the force component) to effect changes in the volume of the respiratory system (the displacement component). Assuming that work of breathing is constant for every breath, work of breathing per minute can be calculated if the respiratory rate (RR) is known [5].

Clinical scenario 1

A 7-day-old 26-week gestational age (GA) newborn infant who is being mechanically ventilated is noted to have metabolic acidosis on the latest blood gas. The nurse also tells you that the infant has been hypotensive and responded minimally to vasopressors. When you review the previous blood gases you notice that in the last 4 h the infant had respiratory acidosis and that his ventilator rates were increased to correct this, without much success. You notice the flow waveform on the ventilator that is shown in Fig. 6.4A. What is the cause of this infant's worsening blood gases, how can this be confirmed, and what corrective and preventive measures can be taken?

Answer

The ventilator waveform depicts incomplete emptying of the lungs during expiration (Fig. 6.4B). As discussed earlier, any increase in the time constant can increase the time required to complete exhalation. Mucus plugs can obstruct endotracheal tubes (ETTs), increase airway resistance, and increase τ values. If respiratory rates are increased without ensuring that the inspiratory time:expiratory time (I:E) ratio is appropriate to allow expiration to be complete, breaths can "stack" and cause air trapping in the lungs. This can create increased positive pressure on the mediastinal

structures, such as the right heart, and reduce venous fill

ing and cardiac output leading to metabolic acidosis. Paying attention to the ventilator flow waveforms to ensure that adequate time is being provided for exhalation to be complete will allow for quicker detection of this phenomenon. Other clues could be a measured positive end-expiratory pressure (PEEP) on the ventilator that is higher than the "set" PEEP (so-called "auto"-PEEP), and chest X-ray findings of flattened diaphragms and horizontally aligned ribs that indicate overdistended lungs. Decreasing the I-time can increase lung emptying and tidal volume changes and decrease the hypercarbia and respiratory acidosis. When lungs are overdistended, increasing lung emptying will also relieve right heart pressure and improve cardiac output and oxygenation.

$$\text{Work of breathing/minute work of breathing/breath} =$$

$$\begin{aligned} *RR * *RR \\ = \Delta \Delta \\ PV \end{aligned}$$

As illustrated in Fig. 6.5, energy is required for work done to overcome elastic forces (portion ABCA) and resistive forces during inspiration (ADCA) as well as for resistive work during expiration (ACEA). Most of the work required to overcome the frictional airway and tissue resistive forces is dissipated as heat. Under conditions of normal tidal breathing, the expiratory phase is non-energy requiring and passive. However, during pathologic states, such as airway obstruction that lead to flow limitation, expiration can require active contraction of the abdominal wall and internal intercostal muscles, a process that consumes energy and increases work of breathing, as is often noted in infants with bronchopulmonary dysplasia (BPD) [10].

Newborn infants have high respiratory rates and work of breathing due to their smaller body sizes [11]. They have high body surface area to volume ratios due to which they lose heat excessively through the convective and evaporative routes, a phenomenon that is more severe in prematurely born infants. Increased metabolic rates are therefore necessary to generate more heat to maintain their body temperature. To sustain such high metabolic rates, their oxygen consumption needs be increased, which requires increased minute ventilation (tidal volume \times RR). Since their small lung volumes prevent them from being able to greatly increase their tidal volume, newborn infants achieve higher minute ventilation by breathing at faster rates which increases their work of breathing significantly. However, when corrected for such high metabolic rates, newborn infants have similar work of breathing when compared to adults [12].

Fig. 6.4 (A) and (B) show a waveform with incomplete expiration that

when unrecognized can lead to auto-PEEP.

Mechanics of the respiratory pump

All the mechanical work that is required for breathing is performed by the structures that make up the respiratory pump which is comprised of the inspiratory and expiratory muscles that act like levers and the skeletal and connective tissue structures of the thoracoabdominal cage that function like a fulcrum around which respiratory motion occurs (Fig. 6.6).

Muscles of inspiration

These include the diaphragm and the external intercostal muscles. The diaphragm is the primary generator of the pressure changes required for inspiration. Its muscle fibers originate from the lumbar spine, the xiphoid process of the sternum, and lower six rib pairs and insert into a central tendon that is pulled downward and forward during contraction of the diaphragm. This downward

Fig. 6.5 A Typical Dynamic Pressure–Volume (PV) Plot That Illustrates Work of Breathing. The area shaded in gray (ADCA) represents the work done to overcome resistance during inspiration, while the yellow-shaded areas represent work done to overcome elastic forces during inspiration (ABCA) and to overcome resistive forces during

motion of the diaphragm increases the anteroposterior and vertical dimensions of the thorax, generates negative P_{pl} , and causes air to flow into the lungs [13]. The area of the lowermost rib cage that is in direct contact with the diaphragm is called the appositional area.

| III | Applied Physiology, and Ventilator Support: General Considerations

Fig. 6.6 Mechanics of Neonatal Breathing Compared to Breathing in Older Children and Adults. Copyright: Satyan Lakshminrusimha.

The larger this area, the greater is the ability of the diaphragm to expand intrathoracic volume. A larger zone of apposition also allows the increased intra-abdominal pressure generated by the downward diaphragmatic movement to be transmitted more efficiently to the chest wall. This effect “splints” the chest wall and increases its outward motion during inspiration [14]. The tension generated by a muscle fiber is directly proportional to its initial length. Diaphragmatic flattening, often caused by overdistended lungs, shortens the diaphragm.

Diaphragmatic muscle fibers and decreases its contractile strength. At birth, the diaphragm has a low muscle mass and is composed of fewer fatigue-resistant fast-oxidative fibers (10% at 24 weeks, 20% at term gestation) compared to the adult (60%), though its dimensions increase rapidly with postnatal growth and body weight gain [1,15,16]. Therefore, the newborn's diaphragm has low contractile strength. Despite these disadvantages the newborn's diaphragm can generate pressures that are adequate for tidal breathing. During the first several

breaths after birth, negative intrapleural pressures as high as 100 cm H₂O are achieved when the newborn cries. In addition, tidal P_{pl} swings during normal respiration are similar in magnitude (5–7 cm H₂O) to that generated by older infants and adults [17]. This is made possible by the mechanical laws that govern the motion of contractile spherical structures. For a given radius of curvature (r), the pressure generated (P) by a spherical structure with wall tension (T) is given by the law of Laplace as follows:

$$P = T / r$$

According to this principle, the pressure generated by the newborn's diaphragm with its small radius of curvature is higher for any given wall tension than the adult's diaphragm whose radius of curvature is larger. In addition, any such pressure generated by the neonatal diaphragm is also applied to a proportionally smaller thoracic area when compared to older children and adults. Recent studies have also shown that muscle fiber composition does not always correlate well with diaphragmatic fatigability and that the neonatal diaphragm can indeed generate high pressures when

required [9]. In the absence of other pathology, these factors allow the diaphragm of even the most premature infant to function without being fatigued for long periods

of time. Therefore, diaphragmatic function is usually not a limiting factor in the neonatal respiratory system.

58

The external intercostal muscles run between ribs and slope downward and anteriorly. Due to their course in the intercostal spaces and the angular inclination of the ribs in the thoracic cage, external intercostal muscle activity is great

est in the dorsal portions of the anterior intercostal spaces. During contraction, they elevate the ribs and pull them to a more anterior position to increase the lateral and antero posterior diameters of the thorax. This stabilizing action of the intercostal muscles minimizes the inward collapse of the highly compliant neonatal chest wall with diaphragmatic contraction. They also reduce diaphragmatic shortening and improve its mechanical efficiency [18]. However, in the new born, the intercostal muscles run a shorter distance from their origin on the upper rib to their insertion to the lower rib reducing their length and therefore their contractility when compared to adults. In addition, newborns, especially premature infants, spend 80% of their sleep in the rapid eye movement (REM) phase; they also sleep longer (>18–20 h/ day). During this sleep phase, intercostal muscle tone is subjected to both phasic and tonic inhibition which causes these muscles to become inactive and significantly decreases chest wall stability and movement in the newborn [19].

Muscles of expiration

Expiration is mostly passive. However, during conditions that cause airflow obstruction, the muscles of the abdominal wall—the internal and external oblique as well as the rectus and transversus abdominis—contract to raise intra-abdominal pressure and push up the diaphragm to cause forced expiratory flow [20]. The internal intercostal muscles which run between ribs in the opposite direction to the external intercostals also contract to cause the ribs to move down ward and inward to decrease thoracic volume. Their contraction also stabilizes the chest wall and prevents it from moving forward when expiration is actively forced [18].

Chest wall

At birth, the ribs articulate at almost right angles to their corresponding vertebral bodies. This creates a circular thoracic configuration in which the diaphragm is flatter and operates over a less efficient portion of its force-length curve. The rounded shape of the infant thorax also leads to a decreased surface area of the zone of apposition. Due to this, there is inefficient transmission of intra-abdominal pressure that is generated during inspiration to the thorax. In addition, the newborn's chest wall is made of pliable ribs, thin muscles, and is primarily cartilaginous rather than

skeletal in composition. These features are even more pronounced at lower GAs, which causes the preterm new born's chest wall to be highly compliant and paradoxically move inward when P_{pl} becomes more negative during inspiration. Therefore, the premature infant's inspiratory

Introduction to Lung Mechanics

| 6 |

muscles need to work harder to generate additional negative pressure in the intrapleural space to achieve adequate tidal volumes. The newborn attempts to improve chest wall stability during such conditions by recruiting the accessory muscles of inspiration, such as the scalene muscles, sternomastoids, and alae nasea. The active contraction of these muscles is responsible for the characteristic signs of respiratory distress that are often noted in young infants, such as sternal and intercostal retractions and head bobbing [21]. This abnormally high chest wall compliance (C_{cw}) is one of the most important factors that prevent pre-mature infants from being able to establish normal lung function. C_{cw} slowly decreases in infancy and lung compliance (C_l) which is low at birth increases with age. C_{cw} and C_l become nearly equal by 2 years of age [22].

Clinical scenario 2

The nurse taking care of a mechanically ventilated infant informs you during morning rounds that turning him to the prone position improves the infant's oxygenation. The student physician on rounds with you wants to know the physiologic mechanism behind this phenomenon. While you both are at the infant's bedside you notice that the infant's oxygen saturation is decreasing again and he requires increased ventilator settings to improve his oxygenation. Why would prone positioning cause only a transient improvement of this infant's oxygenation?

Answer

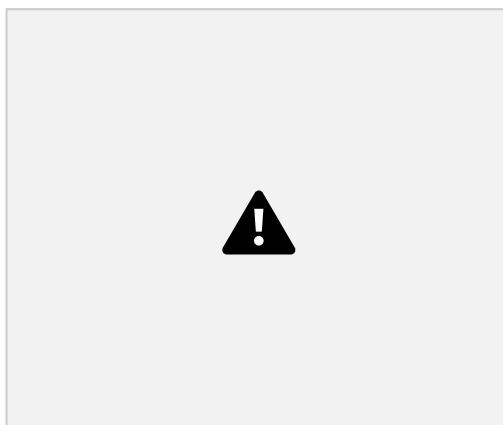
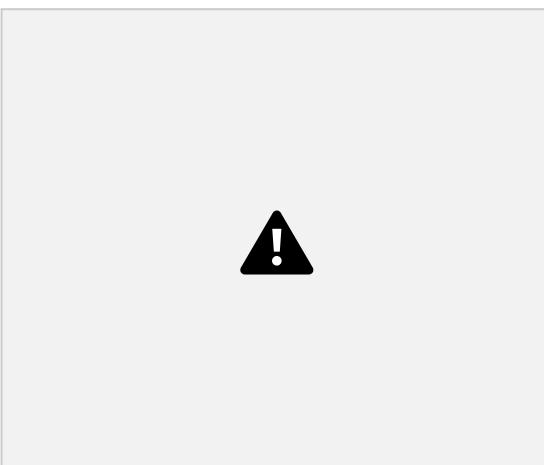
Newborn infants have a thin anterior abdominal wall musculature that can accommodate a large volume without generating much intra-abdominal pressure. In addition, the lower appositional area of the diaphragm reduces intra-abdominal pressure transmission to the diaphragm. These two factors lead to insufficient expansion of the lower ribs and decrease the mechanical efficiency of inspiration. In the prone position, the protuberant infant's abdomen is effectively splinted, leading to increased intra-abdominal pressure generation that causes increased diaphragmatic efficiency and improved ventilation overall. Additionally, the superior (anterior) diaphragm moves better in the supine position when compared to the inferior (posterior) diaphragm, but perfusion is preferentially directed to the dependent portions of the lungs (the inferior regions). This creates increased ventilation-perfusion (mis match) and decreased oxygenation. When the infant is turned to the

prone position, the posterior diaphragmatic portion is now able to move better leading to better ventilation and perfusion, though any such effect is likely to be transient since prolonged prone position will tend to lead to better perfusion in the anterior (and now inferior) regions of the

lung. A recent study of prone positioning (which is commonly done for infants in neonatal intensive care units) showed that there are no consistent short- or long-term benefits from this practice for infants with respiratory distress syndrome (RDS) [23].

| III | Applied Physiology, and Ventilator Support: General Considerations

Elastic properties of the respiratory system



Elastic properties of the alveoli, chest wall, and airways determine changes in lung volume for a given amount of pressure in the respiratory system [24]. The slope of a pressure-volume (PV) curve between P_{tp} measurements made in a lung that is distended to various known volumes of air represents the *static* compliance of the lung (C_l). Slopes of PV plots of lung volumes against transthoracic pressure (the difference between P_{pl} and P_{atm}) represent the compliance of the chest wall (Fig. 6.7). Similarly, the slope of a plot of the difference between P_{ao} and P_{atm} against lung volumes represents the compliance of the entire respiratory system (C_{rs}) [25]. C_{l-dyn} measurements can closely approximate static compliance measurements. PV plots are available on most modern ventilators and can be useful to calculate dynamic compliance of the lung (C_{l-dyn}) in the very tilted infant [26,27].

For any given pressure on a dynamic PV plot, lung volume is always greater during deflation than during inflation (Fig. 6.2). This implies that lung compliance is greater during expiration than inspiration. This phenomenon is called hysteresis and is commonly observed in nonlinear systems, such as the lungs, which have different mechanical properties during different states of operation. Hysteresis can be exaggerated in the preterm newborn due to abnormally high expiratory air trapping within the lungs [28]. This is because negative

P_{pl} is required during end-expiration to maintain the patency of smaller airways that lack the cartilaginous support available in the walls of the larger airways. Since premature infants cannot generate adequate negative P_{pl} due to their high C_{cw} , they are often unable to maintain smaller airway patency in the dependent regions of the lung during end-expiration. This leads to incomplete expiration and increases lung closing volumes (maximal lung volume at which airway closure can be detected in the dependent parts of the lungs). This process can worsen further at higher breathing frequencies since expiratory time is reduced at such high frequencies leading to increased air trapping.

Functional residual capacity (FRC) of the lung is defined as the volume of air that is in communication with the upper airway at end-expiration. FRC is low in preterm infants, since they are unable to create negative P_{pl} which is also required to establish an adequate FRC [29,30]. The low FRC of preterm infant lungs causes them to operate at a significant mechanical disadvantage. As shown in Fig. 6.8, dynamic PV plots of the normal lung assume a sigmoidal shape. Therefore, the slope of these plots is highest (and compliance is optimal) when lungs are inflated and deflated within the range of their FRC. Underinflation and atelectasis (low FRC) or air trapping and overexpansion (high FRC) both cause C_{l-dyn} to shift to the ends of the sigmoidal curve where it is low.

Preterm infants use several corrective measures that attempt to limit FRC loss. These include post-inspiratory activation of the diaphragm which can terminate expiration before it is complete, high respiratory rates with a short expiratory time that increases alveolar air trapping even in

6.7 Static Pressure–Volume Curves of the Newborn

Respiratory System. Lung compliance is very low and chest wall compliance is much higher than in adults. Respiratory system compliance which is the sum of these two compliances is low.

60

nondependent areas as well as expiratory braking of the glottis that generates additional PEEP and is responsible for the characteristic grunting that is associated with premature infant breathing [31].

The pattern of low FRC and higher closing volumes seen in premature infants is the inverse of that seen in older children and adults and is associated with clinical consequences that include atelectasis, increased ventilation–perfusion mismatch, and hypoxia. Lung compliance corrected for FRC is referred to as *specific* compliance. Specific compliance increases rapidly in the days after the newborn is born and approaches adult values, as intra

alveolar pulmonary fluid is resorbed and replaced by air [32]. Specific compliance values are much lower in preterm infants than in older infants and adults despite their low FRCs since their lung compliance is disproportionately lower.

While low FRC is usually the cause for their abnormally low C_{l-dyn} , premature infants ventilated at high respiratory rates can also have increased, rather than decreased FRC, as the cause for decreased dynamic lung compliance. This is because their developing lungs are still immature and have high heterogeneity of time constant values in different regions and air trapping can occur in regions of the lung with longer time constants, a phenomenon referred to as frequency dependence of dynamic compliance.

In addition to these dynamic factors, physical components of the lung architecture also play a major role in determining lung compliance. These include surface tension forces in the alveoli, interstitial and intra-alveolar fluid content (which is usually not a major influence on lung compliance beyond the first several hours to days of life), and the amount of elastic connective tissue in the lung. At birth, the airways and the alveoli of the lung contain a larger amount of elastic tissue with correspondingly higher amounts of collagen and elastin. With postnatal growth and maturation, connective tissue volume in the lung decreases and alveolar membranes become thinner which allows the lung to become more compliant [33].

The most important determinant of lung compliance is the physical force of surface tension (ST). The alveolus can be considered a spherical structure with an air–fluid interface covering its interior surface. At this interface, the polar molecules of water that line the alveolar epithelium are attracted more strongly to each other than to the molecules of the gases in the air that they interface with. This can lead to alveolar contraction and volume reduction that can become severe enough to cause lung atelectasis. Based on the law of Laplace discussed earlier, an alveolus with radius r would require a

Fig. 6.8 Pressure–Volume Curves at Different Levels of FRC. Underinflated lungs and overdistended lungs both lead to poor lung compliance.

distending pressure that is equal to ST/r to counteract these inward-directed surface tension forces. As can be deduced from this relationship, the smaller the alveolar size, the higher the pressure that is required to keep

Introduction to Lung Mechanics

| 6 |

it open. This surface tension effect causes the alveoli to have a strong tendency to collapse when their radius is small, a state that exists during expiration. Therefore, unopposed surface tension forces would cause alveoli to become atelectatic at end-expiration. At the beginning of inspiration, these collapsed alveoli would require high pressures to be generated through increased work by the respiratory pump to air to reopen and allow gas exchange to be carried out (Fig. 6.9).

The increased work of breathing that is required to overcome surface tension–induced atelectasis can overwhelm the respiratory system and lead to respiratory failure [24]. Type II alveolar epithelial cells produce a surface-active phospholipid called surfactant that counteracts and reduces the effects of surface tension in the alveoli and terminal airways. Its structure has hydrophilic ends that coat the surface of water molecules and prevent cohesive forces from bringing them closer to each other and lower surface tension. As the alveoli reduce in size during expiration, surfactant molecular density increases and its effectiveness increases when surface tension effects are at their highest in the air–fluid interface that lines the alveolar inner surface. In addition, when the alveoli expand during inspiration, surfactant function is reduced, leaving residual surface tension that is required to prevent alveolar overdistension.

Fig. 6.9 Illustration of Laplace's Law. An alveolus of radius r requires a distending pressure equal to surface tension (T)/ r to counteract inward-directed surface tension forces. Smaller the alveolar size, the higher the pressure that is required to keep it open. Copyright: Satyan Lakshminrusimha.

