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Preface

In this book I will study defeasible reasoning. There are many facts of reasoning
that are captured under the term defeasible. Sometimes we argue on the basis of
typicality, normality, sometimes we make inductive generalizations, etc. We
‘‘jump to conclusions’’ in different ways. It is not my intention to give an
exhaustive characterization of all possible forms of defeasible reasoning. Hence I
will paradigmatically examine various contexts in which defeasible reasoning is
useful, such as default reasoning (Part II), reasoning in the context of argumen-
tation (Part III), and normative reasoning (Part IV).

Still, my perspective is a unificatory one. It is gained by the choice of a specific
formal logical framework. With the help of this framework I will develop logical
models of forms of defeasible reasoning. The framework is that of adaptive logics
which originates in the work of Diderik Batens. The standard format of adaptive
logics provides a unified characterization of a class of logics that, as will be
demonstrated and argued for in this manuscript, are decent tools in order to model
defeasible reasoning.

The merits of the study offered in this book are two-fold.
First, it offers a deeper understanding of (forms of) defeasible reasoning. On the

one hand, the logics that are introduced in this manuscript deepen our under-
standing of the formal properties (particular forms) of defeasible inferences, of
retracting inferences, etc. On the other hand, formulating them in a unificatory
framework offers possibilities to compare them and to identify formal properties
they have in common.

Second, the book affirms and substantiates the status of adaptive logics as a
generic formal framework for defeasible reasoning. It does so by offering case
studies stemming from various contexts of defeasible reasoning. In addition, as
will be shown, there are various metatheoretic advantages of adaptive logics
compared to many other logics or logical frameworks that model defeasible
reasoning.
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The Structure of the Book

This book is structured as follows:
In Part I we begin with a general introduction into defeasible reasoning (Chap. 1).

After that, adaptive logics (in short, ALs) are introduced (Chap. 2). It is demon-
strated that they offer an intuitive and powerful framework to model defeasible
reasoning. ALs are discussed in their standard format. It is argued that the standard
format comes with an attractive meta-theory. In Chap. 3, it is shown how ALs can be
combined. Chapter 4 contains joint work with Diderik Batens and Peter Verdée. We
argue that ALs offer a transparent model for defeasible reasoning since elegant and
intuitive criteria are available to decide whether (extensions of) premise sets are
equivalent. Finally, in Chap. 5, it is demonstrated how the standard format can be
generalized while keeping its metatheoretic merits intact. This is joint work with
Frederik Van De Putte.

Part II contains two applications of ALs in the context of default reasoning. Let
A  B express that from A normally/usually/typically/etc. (depending on the
application) follows B. Note that Modus Ponens is not unrestrictedly valid in such
a context. This is due to cases of specificity. Where b stands for ‘‘being a bird’’ and
f for ‘‘flying’’, we have b [ f (‘‘Birds usually fly’’). However, where p stands for
‘‘being a penguin’’, we also have (p^b)  : f. Now suppose we have both
premises, p and b. If Modus Ponens would be valid we would be able to derive
both f and : f. Obviously this is not desired. In Chap. 6, I will propose a defeasible
handling of Modus Ponens by means of ALs.

In [1] Lehmann, Magidor and Kraus tackle the question ‘‘What does a condi-
tional knowledge base entail?’’ by means of a sophisticated semantic selection
procedure, the so-called Rational Closure of a knowledge base. Chapter 7 offers an
AL interpretation of Rational Closure. This way we gain a full logic for Rational
Closure, one that is equipped with a (dynamic) proof theory. The semantic
selection of [1] is very much in the spirit of Shoham’s semantic selections (see
e.g., [2]). Hence, the logic developed in Chap. 7 offers a paradigmatic demon-
stration that ALs are able to represent logics defined by semantic selections in the
style of Shoham. This in turn substantiates the claim that ALs offer a very generic
and unifying framework for defeasible reasoning.

In Part III, ALs are used for the modeling of argumentations. Dung presented in
[3] a highly influential account of abstract argumentation. Arguments are repre-
sented as abstract entities and the relationships between arguments are modeled by
an attack relation. The two elements define abstract argumentation systems. Dung
offered a number of clear and intuitive semantics for selecting arguments from
argumentation systems. Chapter 8 presents joint work with Dunja Šešelja in which
we develop a unifying AL framework for abstract argumentation. Our family of
logics models all the semantics proposed by Dung and moreover provides a
dynamic proof-theory for each. In Chap. 9 I generalize the AL framework in
accordance with Nielsen and Parsons’ generalization of Dung’s framework [4] in
such a way that joint attacks are possible, i.e., attacks in which several arguments
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attack several arguments. This paradigmatically presents one of many possible
enhancements to the systems introduced in Chap. 8.

Part IV features various applications of ALs in the context of deontic logics.
Most of the systems presented in this part are heavily influenced by the work of
Lou Goble. One of the main challenges for deontic logicians is to develop systems
that are conflict-tolerant. That is to say, logics that do not exhibit explosive
behavior when confronted with conflicting norms such as ‘‘You’re obliged to bring
about A’’ and ‘‘You’re obliged to bring about not-A’’. Goble suggested an
attractive way of tackling this problem, namely by restricting the so-called
inheritance rule that allows to derive from the obligation to bring about A the
obligation to bring about B in the case in which A necessitates B. Chapter 10
presents joint work with Joke Meheus and Mathieu Beirlaen in which we point out
certain problems with Goble’s systems and improve on them by strengthening
them by means of ALs.

The remaining sections in Part IV feature applications in the context of con-
ditional deontic logics. Chapter 11 generalizes and enhances the results of
Chap. 10 for the conditional setting. In Chap. 12, I tackle a similar problem as in
Chap. 6. The majority of conditional deontic logics does not allow for the factual
detachment of conditional obligations. That is to say, given the commitment
A under the condition B and the factual information B, in many circumstances it is
desired that we derive the ‘actual’ and unconditional obligation to bring about
A. However, similar as in the context of default reasoning, here we have to deal
with cases of specificity as well. Moreover, we also have to take into consideration
contrary-to-duty obligations. This motivates a defeasible handling of detachment.
It is realized by means of ALs.

Ghent, March 2013 Christian Straßer
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Part I
Adaptive Logics as a Framework for

Defeasible Logics



Chapter 1
Introduction

The purpose of this introduction is to familiarize the reader with defeasible reasoning.
It will, on the one hand, answer the questions what defeasible reasoning is and how
it is different from deductive reasoning. On the other hand, I will introduce some
themes concerning the formalization of defeasible reasoning that will recur frequently
in this book. I will close the section by indicating some gaps in the formal treatment
of defeasible reasoning which will bridge to the central topic of this manuscript: the
use of adaptive logics as a unifying formal framework for defeasible reasoning.

1.1 Defeasible Reasoning

Where we deductively infer from some premises A1, . . . , An a conclusion C , the truth
of the premises warrants the truth of the conclusion. The truth of the propositions (i)
“n is a prime number.” and (ii) “n > 2” guarantees the truth of the statement “n is
odd.” The situation is different in the case of defeasible reasoning. When we infer
from (i) “Tweety is a bird.” and (ii) “Birds fly.” the conclusion “Tweety flies.”, the
truth of the premises does not warrant the truth of the conclusion. This is due to the
fact that Tweety may be a kiwi or a penguin.

What distinguishes the supportive character of the premises in the deductive case
from the defeasible case is that in the former we have an unconditional support. As
a consequence, if a conclusion gained by deductive reasoning turns out to be false,
then we can infer that one of the premises is false as well: the unconditional character
of the support does not allow for exceptional circumstances. Not so in the defeasible
case. All premises may be true and still the conclusion may be false. This may seem
to undermine the status of these inferences as valid forms of reasoning. Hence, we
arrive at the question what compensates for this lack of truth-conduciveness in order
to make defeasible inferences rationally compelling? After all, following Toulmin
[1], any argument relies on a “warrant” or inference license.

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 3
DOI: 10.1007/978-3-319-00792-2_1, © Springer International Publishing Switzerland 2014
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Fig. 1.1 A defeasible
inference Premises Conclusion

ceteris
normalibus

support

Note first that there are many different types of defeasible reasoning. Different
defeasible reasoning forms provide different rationales behind the support relation
between the premises and the conclusion. We may for instance reason on the basis
of normality, typicality, probability, etc.

Given such a defeasible inference type, although inferences do not always arrive
at truthful conclusions from truthful premises, they are nevertheless “usually”, “in
most cases”, “typically” or “normally” truth-conductive. Otherwise the given infer-
ence type would hardly be justified. Hence, the support provided by the premises has a
certain, often tacit ceteris normalibus character (see Fig. 1.1). In the idealized “usual”
resp. “normal” resp. “typical” etc. case, the inference is indeed truth-conductive.
Hence, we may speak of an idealized truth-conduciveness, or a truth-conduciveness
ceteris normalibus. The rationale given by a specific defeasible reasoning type expli-
cates the exact character of the ceteris normalibus condition for the respective type.
Let me give some examples.

The nature of the ceteris normalibus condition is obvious for defeasible reasoning
on the basis of normality or typicality. The conclusion that Tweety flies is justified
on the basis of our premises unless we also have the information that Tweety is a bird
with rather exceptional or abnormal properties such as being a kiwi or a penguin,
both of which cannot fly.

In inductive generalizations we may infer from the fact that a certain property
common to a restricted number of samples of a certain class of objects is common
to all objects in the class. What makes such an inference compelling is the tacit
assumption that the sample class is normal in the sense that the homogeneity of the
observed property does not just apply to the samples but rather that it is characteristic
for the whole class.

In probabilistic reasoning we may apply what Pollock [2] dubbed “the statistical
syllogism”: “From ‘X is an A and the probability of an A being a B is high’, infer
defeasibly, ‘X is a B’”. The tacit assumption here is that X is not abnormal or
exceptional with respect to the given probabilities.

The fact that defeasible inferences are linked to a ceteris normalibus assumption
that serves as its inference license is essentially connected to another feature of
defeasible reasoning, namely its tentative character.1 In strictly deductive logical
systems the reasoning process has the following two distinctive properties.

1 I agree with Blair that “an argument’s warrant is not a premise, but instead an assumption” that
warrants “inferences from such grounds to such conclusions”: were the warrant a premise we would
face a “vicious regress” ([3, p. 127] , see also Hitchcock [4]).
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Fig. 1.2 Abnormalities and
retraction Premises / Conclusion

abnormal

case

• due to internal dynamics

• due to external dynamics

withdrawal

1. We infer in a monotonic manner, i.e. if we conclude A on the basis of a set of
premises Ω , then we can deduce A also from the extended premise set Ω ∪ Ω ′.

2. We reason statically, i.e. if we infer at some point in the reasoning process A, we
will not withdraw A due to the insights won in any extension of this reasoning
process.

Defeasible reasoning differs from deductive reasoning at least in the latter, and
usually in both aspects.

Note first that a defeasible inference is supported or justified as long as the infor-
mation available to an agent does not give rise to certain abnormalities that interrupt
the ceteris normalibus assumption and hence the support provided by the premises.
In such cases defeasible inferences are withdrawn (see Fig. 1.2). For instance, Pol-
lock points out that “[d]efeasibility arises from the fact that not all reasons are con-
clusive. Those that are not are prima facie reasons. Prima facie reasons create a
presumption in favor of their conclusion, but it is defeasible” [5, p. 2]. Also Rescher
argues that probative reasoning is “presumptive rather than deductively airtight”
[6, p. 8] and the presumptions concerning “the usual, normal, customary course
of things” (pp. 30–31) are “subject to defeat in being overthrown by sufficiently
weighty countervailing considerations” whence “usually tentative and provisional”
(p. 31).

The information available to an agent is on the one hand (a) explicit information
presented to our agent by various external sources (such as perception, reliable agents,
etc.) or on the other hand (b) the insight our agent has gained by analyzing and
reasoning on the basis of this information.

It is important to notice that both factors, (a) and (b), have a certain dynamic
character. Let us contrast the two types of dynamics with the characteristics of strictly
deductive reasoning pointed out in 1. and 2. above.

1’. It is often the case that for defeasible reasoning processes the addition of new
information leads to the retraction of previously drawn inferences. Pollock calls
this the synchronic defeasibility of defeasible inferences [7]. If we obtain, for
instance, the new information that Tweety is a penguin, we will withdraw the
previous inference that Tweety flies, since, after all, penguins are exceptional
to the default rule that birds fly. This corresponds to what we call the external
dynamics of defeasible reasoning (see [8, 9]).
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Hence, logics modeling defeasible reasoning are often nonmonotonic, i.e. what
is derivable from a set of premises Ω may not be derivable from an enhancement
of Ω with additional premises.2

2’. New information is not the only dynamic factor for defeasible reasoning. The
growing insight into the given information may as well cause the withdrawal of
previously drawn defeasible inferences even if no new information is available.
Pollock dubs this the diachronic defeasiblity of defeasible inferences [7]. Often
the given information is complex and interwoven. Only acute analyzing and
reasoning may reveal new essential information with respect to previously drawn
inferences. This corresponds to what we call the internal dynamics of defeasible
reasoning (see [8, 9]).

1.2 Towards the Formalization of Defeasible Reasoning

The importance of defeasible reasoning for practical matters has already been noted
and studied by Aristotle, for instance in the Topics. However, in the rise of non-
defeasible mathematical logic, monotonicity provided a large bedrock for the main-
stream of formal logic in the shadow of which defeasible enterprises were rather
exotic and sparse for a long time. The term “defeasible” was introduced by Hart in
1948 in the philosophy of law [13]. But we have to wait until after the heyday of the
Vienna Circle when the realization of the limitations of the purely deductive method
grew widely, while at the same time the importance of the notion of defeasibility was
emphasized. In epistemology defeasibility began to be a more widely discussed issue
especially in the aftermath of Gettier’s landmark article “Is true belief knowledge?”
[14] (see for instance Lehrer and Paxson’s [15], Annis’ [16], Klein’s [17], Swain’s
[18]). Two of the pioneers of defeasible reasoning are Chisholm (see e.g., [19]) and
Pollock.

For instance Pollock’s Knowledge and Justification [20] was one of the most suc-
cessful landmarks in establishing defeasibility as a central notion in epistemology
such that philosophical logicians could no longer turn a blind eye on it. Especially
his distinction between two types of defeaters of defeasible arguments became para-
digmatic. Rebutting defeaters, on the one hand, provide reasons supporting the belief
in the negated conclusion of the given argument. On the other hand, there are under-
cutting defeaters that challenge the support that is provided by the premises of the
given argument (see Fig. 1.3).

Soon researchers in artificial intelligence as well as philosophers began to develop
first systems aiming at getting a formal grasp on defeasible reasoning. Nonmonotonic
logics became its own research branch uniting scholars from philosophy, logic, arti-
ficial intelligence and computer science. Nowadays, about 30 years after the first

2 There are exceptions such as the Weak Rescher-Manor inference relation [10] which is monotonic
but which can be modeled by means of a dynamic proof theory that explicates internal dynamics
(see point 2’ below): this has been done in [11] and [12].
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Fig. 1.3 Undercuts and
Rebuttals

Premises Conclusion

undercut rebuttal

pioneering systems such as McCarthy’s circumscription [21] or Reiter’s default
logic [22], we are facing a huge variety of systems. However, the evolutionary tree
of nonmonotonic logics is multifarious and complicated. Most importantly it lacks a
bedrock comparable to the one predicate logic provides for mathematical reasoning.

Nonmonotonicity is one of the central notions in the formal representation of
defeasible reasoning. (Non)Monotonicity is a property of consequence relations.
The latter are usually characterized as functions that map sets of formulas in a given
language L into sets of formulas in L. While some of the properties that are satisfied
by the consequence relation of classical (propositional or predicate) logic, henceforth
CL, are also desirable for consequence relations that model defeasible inferences,
scholars agree that others have to be given up or have to be sufficiently altered. Let
henceforth CnL (Ω ) denote the set of L-consequences of the premise set Ω . For a
nonmonotonic logic L, properties such as

Ω ⊆ CnL (Ω ) (Reflexivity)

CnCL (Ω ) ⊆ CnL (Ω ) (Supraclassicality)

are for many applications desirable. As has been already demonstrated by means
of our Tweety example, the following central property of CL is abandoned in non-
monotonic systems:

CnL (Ω ) ⊆ CnL
(
Ω ∪ Ω ′) (Monotonicity)

However, instead of totally abandoning the intuition behind monotonicity, it is
one of the big challenges to develop a formal weakening of monotonicity that is
adequate for certain forms of defeasible reasoning. Nowadays most scholars agree
that the following cautious form of monotonicity is part of what forms the core
properties of nonmonotonic consequence relations:

If Ω ′ ⊆ CnL (Ω ) , then CnL (Ω ) ⊆ CnL
(
Ω ∪ Ω ′) (CM)

Cautious monotonicity is indeed an important and very intuitive notion. Suppose we
have derived some A from a set of premises Ω . Adding A to our premise set Ω should
in no way lead to less consequences than we have with Ω alone.

Such monotonicity-related properties of the consequence relation only reflect
certain features of the external dynamics of the defeasible reasoning that is modeled.
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Nonmonotonicity expresses that the arrival of new information, in some cases, gives
rise to external dynamics. Properties such as cautious monotonicity resp. rational
monotonicity (see Sect. 2.6.3.1) specify for a logic L enhancements of premise sets
for which L does not give rise to external dynamics and hence behaves monotonic.

I have pointed out above that the internal dynamics plays an essential role in
defeasible reasoning. The consequence relation itself does not give us any insight
about the ways a logic models this aspect. After all, the consequence relation just
informs us that a certain set of formulas Ω ′ is derivable from another set of formulas
Ω if Ω ′ ⊆ CnL (Ω ). The internal dynamics, however, concerns the path we take
when we reason towards consequences. Due to the growing insight in the given
premises we may retract certain defeasible inferences. The internal dynamics is not
modeled by the consequence relation since the latter only offers a static view on the
consequences of a given set of premises but doesn’t inform us about the way in which
we arrive at these consequences. The latter is offered by the proof theory of a logic.
Static proofs3 as they are usual for logics that model strictly deductive reasoning are
obviously not able to display the internal dynamics of defeasible reasoning processes.

It is remarkable that most of the available systems that model defeasible reason-
ing lack a proof theory. That is to say, most of the proposed systems are not “full
logics” in the sense of providing a proof theory that is complete with respect to a
given semantics. Hence, it is also not surprising that scholars mostly emphasize the
external dynamics and the nonmonotonic character of consequence relations while
neglecting the explication of the internal dynamics of defeasible reasoning. Indeed,
it is challenging to develop proof calculi that model defeasible reasoning. This is due
to the internal and external dynamics of defeasible reasoning. The static proof format
that is characteristic of classical logic is not apt to model the internal dynamics and
has to be altered in favor of a dynamic format.

Another problem in the research done on the formalization of defeasible rea-
soning is the lack of a unificatory framework. Currently the various systems are
formulated by means of a vast variety of formal frameworks. What is missing is
a framework that is powerful enough to embed the given systems. This would be
useful for various purposes. For instance, by bridging the different formalisms in
which the proposals are expressed, we may get better means to compare or combine
systems. Generic unificatory research programs and corresponding frameworks such
as universal algebra or category theory in mathematics are still in a rather immature
state for nonmonotonic logics.

β β β

This discussion marks the grounds and horizon from which this book emerges. In
the next section I will introduce the reader to a logical framework, namely adaptive
logics, that offers an, as I will argue, attractive contribution to the research on formal-
izations of defeasible reasoning forms. It has been developed by Diderik Batens in
the early eighties. While the first application was to interpret (possibly) inconsistent

3 A proof from some premises Ω is static if for any A that is derived on a line of it, A is a consequence.
The reader will be introduced to the dynamic proof format of ALs in Part 2 of this book.

http://dx.doi.org/10.1007/978-3-319-00792-2_2
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theories as consistently as possible [23], the family of adaptive logics has been grow-
ing rapidly and nowadays it covers many application contexts such as the modeling
of induction, abduction, discussions, etc.4

It is a central claim and purpose of this manuscript to demonstrate

(a) that adaptive logics offer a unifying generic framework that is powerful enough
to embed various well-known nonmonotonic systems;

(b) that adaptive logics are able to nonmonotonically strengthen, improve upon and
enrich monotonic systems; and

(c) that adaptive logics offer a dynamic proof theory that explicates the dynamics
of defeasible reasoning.

I will give examples from various fields, such as default reasoning, argumentative
reasoning and normative reasoning.
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Chapter 2
The Standard Format for Adaptive Logics

The purpose of this section is to introduce the reader to ALs with a special eye on the
modeling of defeasible reasoning. The standard format of ALs has been introduced
by Diderik Batens (see e.g. [1, 2] for a systematic study). As will be shown in the
following, for the standard format a rich meta-theory is available which equips ALs
with many desirable properties and at the same time provides a unifying framework
to ALs.

2.1 The Standard Format

The basic idea behind ALs is to interpret a given set of premises “as normally as
possible”. Depending on the application this may have different meanings. Let me
give some examples:

(i) In applications in which we are confronted with inconsistent information we
may want to interpret the premises as consistently as possible.

(ii) In applications in which we are confronted with conflicting norms and obligations
we may want to interpret the premises as non-conflicting as possible.

There are three elements that constitute ALs in the standard format:

1. the lower limit logic LLL,
2. the set of abnormalities Ω , and
3. the adaptive strategy: reliability or minimal abnormality.

ALr denotes the AL defined by ∪LLL,Ω, reliability〉 and ALm denotes the AL
defined by ∪LLL,Ω, minimal abnormality〉. By AL I will refer to either of the two.

In the following sections I will introduce each element of the standard format,
beginning with the lower limit logic.

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 11
DOI: 10.1007/978-3-319-00792-2_2, © Springer International Publishing Switzerland 2014
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2.2 The Lower Limit Logic

ALs employ and strengthen a monotonic logic LLL, their so-called lower limit
logic. This logic is a reflexive, transitive, monotonic and compact logic that has a
characteristic semantics. Hence we have:

• Reflexivity: Γ ⊆ CnLLL (Γ ).
• Transitivity: If Γ ′ ⊆ CnLLL (Γ ) then CnLLL

(
Γ ′) ⊆ CnLLL (Γ ).

• Monotonicity: CnLLL (Γ ) ⊆ CnLLL
(
Γ ∪ Γ ′).

• Compactness: If A ∈ CnLLL (Γ ) then there is a finite Γ ′ ⊆ Γ such that A ∈
CnLLL

(
Γ ′).

For instance in application (i) lower limit logics are of interest that are
inconsistency-tolerant. That is to say, logics that do not validate the ‘ex contradictione
quodlibet’ principle:

(A ∧ ¬A) ⊃ B (ECQ)

Were we to employ a logic as the lower limit logic that validates (ECQ) then AL
would trivialize premise sets that contain A ∧ ¬A.

Candidates serving as lower limit logic are for instance CLuN (see [3]), CLuNs
(see [4]) or da Costa’s Ci systems (see [5, 6]). Note though that not all ALs that model
reasoning on the basis of conflicting information are based on subclassical lower limit
logics. Indeed, by translating the input Γ for instance to Γ ♦ = {♦A | A ∈ Γ } one
can use classical modal logics as lower limits (see e.g., [7, 8]). We offer a more simple
non-modal approach with a “dummy operator” that precedes premises in Sect. 2.4
and in [9].1

For application (ii) systems of interest are deontic logics that are conflict-tolerant,
i.e. logics that do not cause deontic explosion given deontic conflicts. Where OA
indicates the obligation to bring about A, the deontic explosion principle (D-EX) is
given by

(OA ∧ O¬A) ⊃ OB (D-EX)

Examples of logics that do not validate (D-EX) are Lou Goble’s P (see e.g. [10–12])
or his DPM systems (see e.g. [13–15]).

The lower limit logic constitutes the core of an AL in two senses. Semantically, an
AL selects from the LLL-models of a given premise set models that are “sufficiently
normal” according to a given standard of normality. The latter is characterized by
the other two elements of ALs, the abnormalities and the adaptive strategy as will be
demonstrated below.

Syntactically, all the rules of the proof theory of LLL are applicable. As a conse-
quence, everything that is provable in LLL is also provable in the adaptive system.
As will be explicated later, ALs enhance the static proof theory of LLL by a dynamic
element, that in many cases allows for additional consequences.

1 Note also that all lower limit logics used in applications in parts II-IV of this book are supraclassical.
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Where LLL is defined over a language L, we write W for the set of well-formed
formulas in L. The consequence relation of LLL is hence a mapping ℘(W) →
℘(W).

For the adaptive meta-theory it is very useful to extend the language of LLL
by classical connectives, written in a “checked way”, e.g. ¬̌ and ∨̌. We denote the
enriched language by L+ and the corresponding set of well-formed formulas by
W+, where W+ is the ∪¬̌ , ∨̌, ∧̌, ⊃̌, ⊕̌〉-closure of W . Note that this means that
none of the “checked connectives” occurs within the scope of the connectives of L.
For instance, where → is a connective of L, ¬̌ (A → B) is a formula in W+, but
(¬̌ A) → B is not.

Let LLL+ be the logic that is the result of superimposing the classical symbols
on LLL. Namely, LLL+ takes over the axiomatization of LLL and restricts the rules
and axioms of LLL to formulas inW . Moreover, the classical axioms for the checked
connectives are defined for all formulas in W+.2 Semantically the internal structure
of the LLL-models may be kept. Similarly as for the axiomatization, the semantic
clauses of LLL are restricted to formulas of L, while for the checked symbols we
have M |= ¬̌ A iff M 
|= A, M |= A ∨̌ B iff M |= A or M |= B, etc. Thus, it will
not be necessary to formally distinguish between LLL-models and LLL+-models.

In the adaptive meta-theory the derivability relation �LLL+ plays an essential
role. However, it is customarily denoted by “�LLL”. Hence, the reader should not be
surprised to find formulas inW+\W on the left- or right-hand-side of �LLL. In order
not to depart too much from the literature on ALs, I will adopt this convention while
providing the reader unfamiliar with ALs with this warning.3 Similarly there are two
consequence relations corresponding to LLL and LLL+. We define, where Γ ⊆ W ,
CnLLLL (Γ ) =df {A ∈ W | Γ �LLL A} and, where Γ ⊆ W+, CnL+

LLL (Γ ) =df {A ∈
W+ | Γ �LLL+ A}. Where I skip the superscript either of the two readings may be
applied.

2.3 The Abnormalities

In Sect. 1.1, I have characterized a defeasible inference as an inference that is sup-
ported by its premises ‘ceteris normalibus’ (cf. Fig. 1.1). The inference is warranted
if and as long as there is no reason to suppose that certain abnormalities that vio-
late the ceteris normalibus condition are the case (cf. Fig. 1.2). ALs formalize this
principle.

2 Often bridge principles need to be added. E.g., where ∨ is a classical disjunction in L, the axiom
(A ∨̌ B)⊕̌(A ∨ B) is added to ensure the equivalence between the two classical disjunctions.
3 Note that the “checked” classical connectives are added even in the case that LLL already contains
classical corresponding symbols. The reason is of a rather technical nature: it is to ensure that a
formula is derivable already at a finite stage of an adaptive proof (cf. Section 2.7 and the discussion
in Section 4.9.3 of [2]).

http://dx.doi.org/10.1007/978-3-319-00792-2_1
http://dx.doi.org/10.1007/978-3-319-00792-2_1
http://dx.doi.org/10.1007/978-3-319-00792-2_1
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Abnormalities are characterized by a logical form F in the enriched language L+.
Formulas of this form are supposed to be LLL-contingent, i.e. �LLL F and �LLL ¬̌ F.
By Ω we denote the set of all formulas of the form F.

For our application (i) abnormalities may have the form of inconsistencies,
A ∧¬ A. For application (ii) abnormalities may have the form of deontic conflicts,
OA ∧ O¬A.

To interpret the premises “as normally as possible” means to interpret the premises
in such a way that as few abnormalities as possible are validated. We will see that
semantically ALs select LLL-models of a given premise set that are “sufficiently
normal” in terms of the abnormalities they validate. Proof-theoretically the idea is
to apply certain rules conditionally, namely on the condition that certain abnormal-
ities are false. These points are realized and disambiguated by the last element, the
adaptive strategy.

2.4 The Adaptive Strategy

Adaptive strategies are the technically most involving aspect of ALs. Currently two
strategies are part of the standard format: the minimal abnormality strategy and the
reliability strategy. Together with the abnormalities they substantiate what it means
to interpret premises as “normally as possible”.

I will introduce a “toy” application in order to explicate the different intuitions
behind the two strategies.

Let us model the defeasible reasoning of a detective. Suppose a murder happened.
There are two witnesses. One states that the major suspect Mr. X entered the scene
of crime right before the lethal shot was heard throughout the whole neighborhood.
Another one states that he saw the major suspect leaving the scene of crime directly
after the shot was heard. Moreover, our detective has the information that nobody
else was at the scene of crime shortly before and shortly after the time of the killing.

We model the fact that there is evidence available for A by ◦A (e.g., some witness
may state A, A may be the result of forensic investigations, etc.). A ◦-less formula
A expresses that A is a fact, or that there is definite proof for A, or that our detective
accepts A as fact. Since we want to keep things simple we treat ◦ as a dummy
operator and hence don’t attach any logical properties to ◦. As a lower limit logic we
employ classical propositional logic CL equipped with ◦. Let this logic be named
CL◦.4 The semantics of CL◦ is like the semantics for CL, just besides the usual
assignment function v that assigns to each propositional letter a truth value, we also
use an enhanced assignment function v◦ that (independently from v) associates each
well-formed formula with a truth-value. Truth in a model M is defined as usual for
the classical operators:

4 In [9] we show that CL◦ gives rise to very simple ALs that represent the Rescher-Manor conse-
quence relations [16].
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• M |= A where A is a propositional letter iff v(A) = 1
• M |= ¬A iff M 
|= A
• M |= A ∨ B iff M |= A or M |= B
• and similar for the other classical connectives.

The ◦ operator is characterized by

• M |= ◦A iff v◦(A) = 1.

The idea is that

(a) if our detective has evidence for A,— ◦A;
(b) and as long as there is no reason to assume that A is not the case,— ¬ ◦ ¬A,

then the detective is warranted to defeasibly infer that A is the case. Of course, CL◦ is
a monotonic system. We will in a moment strengthen it in a nonmonotonic adaptive
way.

But let us return to our detective. Assume he has the following evidence:

• shortly before and shortly after the time of death nobody but the victim was at the
scene of crime,— ◦n;

• that Mr. X entered the scene of crime alone right before the shot,— ◦a;
• that Mr. X left the scene of crime alone right after the shot,— ◦b.

Moreover, we presuppose that for some reason our detective accepts that if nobody
else was at the scene of crime shortly before and shortly after the crime, but Mr. X
entered the scene of crime alone right before the shot was heard, then he must be the
murderer: (a ∧ n) ⊃ c. Similarly, (b ∧ n) ⊃ c.

What makes the situation more complicated is that our detective has definite proof
that at least one of the witnesses has been bribed by one of Mr. X’s enemies in order
to fake a witness statement. Hence, since one of the witnesses lies, we have ¬a ∨¬b.
What should our detective conclude?5

2.4.1 The Reliability Strategy

If she takes a cautious stance, she will not conclude that Mr. X is the murderer since
after all, both of the witnesses may be bribed. Let us elaborate a bit on this stance.

I have already mentioned that semantically ALs select from the lower limit logic
models of the given premises the ones that are “sufficiently normal” with respect to
a certain standard of normality. The latter is characterized by the abnormalities and
the adaptive strategy.

The abnormalities for our application are cases where our detective has evidence
for A but A is not the case. Hence Ω◦ = {◦A ∧ ¬A}. Let henceforth CL◦r be the
AL defined by the triple:

5 I do of course not claim that the modeling of the defeasible reasoning of our detective by CL◦
is by any means optimal. It is however sufficiently intuitive and simple in order to serve as a toy
application for introducing the basic concepts and mechanisms of ALs.
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1. lower limit logic: CL◦
2. abnormalities: Ω◦
3. strategy: reliability

2.4.1.1 The Semantics

Let us first take a look at the semantics. What CL◦-models of the premise set

Γ1 = {◦n, (a ∧ n) ⊃ c, (b ∧ n) ⊃ c, ◦a, ◦b,¬a ∨ ¬b}

should be selected according to the cautious rationale of our detective?
An important notion is the so-called abnormal part of a model. It consists of all

the abnormalities validated by a given model M , in symbols

Ab(M) = {A ∈ Ω | M |= A}

For our applications the abnormal part of an CL◦-model M is thus, Ab(M) =
{A ∈ Ω◦ | M |= A}. I will in the remainder of this section abbreviate abnormalities
◦A ∧ ¬A by !A. Note that in CL◦ we have the following:

◦A, ◦B,¬A ∨ ¬B �CL◦ !A ∨̌ !B

Hence, in every CL◦-model of Γ1 at least one of the abnormalities !a and !b is valid.
Let us focus for our discussion on the following models of Γ1:6

The abnormal part imposes a strict partial order �Γ
Ab on the lower limit logic

models of a given premise set Γ where M �Γ
Ab M ′ iff Ab(M) ↓ Ab(M ′). Similarly,

we define the partial order �Γ
Ab on the lower limit logic models of Γ by: M � M ′

iff Ab(M) ⊆ Ab(M ′). For our six models this is illustrated in Fig. 2.1a.
Interpreting the premises “as normally as possible” first of all means that in cases

in which we have no reason to suppose that an abnormality !A occurs, we should

Fig. 2.1 a An excerpt of
the partial order �Γ

Ab on the
CL◦-models of Γ1; b under
the line are reliable models;
c under the line are minimal
abnormal models

M6

M4 M5

M3

M1 M2

(a)
M6

M4 M5

M3

M1 M2

(b)
M6

M4 M5

M3

M1 M2

(c)

6 I do not exhaustively characterize these models by means of what formulas they validate. However,
it is obvious that models such as M1 to M6 exist.
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presume that !A is not the case. Take for instance our premise ◦n. Since the premises
give no reason for supposing ¬n (we will make this formally precise in a moment) the
semantic selection corresponding to the reasoning of our detective neglects models
M4, M5 and M6 since these models validate the abnormality ◦n ∧ ¬n.

This can be made more precise by introducing another central notion for ALs: min-
imal Dab-consequences. Where Δ ⊆ Ω is a finite and non-empty set of abnormali-
ties, adaptive logicians use Dab(Δ) as a notation for the classical disjunction of mem-
bers in Δ:

∨̌
Δ. Where Δ = ∅ the string ‘∨̌ Dab(Δ)’ denotes the empty string. The

minimal Dab-consequences derivable from a given premise set Γ are all Dab(Δ) for
which (i) Γ �LLL Dab(Δ) and (ii) there is no Δ′ ↓ Δ such that Γ �LLL Dab(Δ′).
For a minimal Dab-consequence Dab(Δ) we know that in each LLL-model of Γ at
least one of the abnormalities in Δ is validated. Due to the minimality of Δ there is
no Δ′ ↓ Δ with the same property. Where Dab(Δ1), Dab(Δ2), . . . are the minimal
Dab-consequences, the set of unreliable abnormalities is U (Γ ) = Δ1 ∪ Δ2 . . .

Indeed, there is no reason to assume that an abnormality is true in case it is not
unreliable. After all, in this case it is not a disjunct of any minimal Dab-consequence.
Of course, it may still be a disjunct of a non-minimal Dab-consequence. However,
just as there is no reason to believe that it rains just because we can derive “It rains
or it is windy” from “It is windy”, there is no reason to believe that an abnormality is
true just because by means of addition we can add it as a disjunct to a Dab-formula.

In our example the only minimal Dab-consequence is !a ∨̌ !b. Hence, U (Γ1) =
{!a, !b}. Note that !n /∈ U (Γ1). The idea is to select only lower limit models that
validate only abnormalities in U (Γ ), i.e. models M that satisfy Ab(M) ⊆ U (Γ ).
We call these models the reliable models of Γ . Models M1, M2 and M3 satisfy this
requirement with respect to our premise set Γ1 (see Fig. 2.1b).

As discussed above, the cautious rationale underlying the reliability strategy also
takes into account the possibility that both of our witnesses have been bribed. Hence
both abnormalities, !a and !b may be valid. Models M1, M2 and M3 validate at least
one of the two abnormalities. M3 validates both of them. Note that in the model M3,
c is not validated. After all, the interpretation offered by M3 treats both a and b as
unreliable and thus in this interpretation neither (a ∧ n) ⊃ c nor (b ∧ n) ⊃ c can
be used for deriving c. Hence, our cautious detective does not (tentatively) conclude
that Mr. X is the murderer.

Generically the semantic consequence relation for the reliability strategy is defined
as follows.

Definition 2.4.1. Where MALr (Γ ) is the set of all reliable LLL-models of Γ ,

Γ �ALr A iff for all M ∈ MALr (Γ ) , M |= A.

Note that we have Γ1 
�CL◦r c since the reliable model M3 does not validate c.
Given the definition of reliable models we immediately get the following repre-

sentational theorem (where Γ ¬̌ =df { ¬̌ A | A ∈ Γ }):
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Theorem 2.4.1. Where Γ ⊆ W+: Γ �ALr A iff Γ ∪ (Ω \ U (Γ ))¬̌ �LLL A.

By the compactness of LLL this implies:

Corollary 2.4.1. Where Γ ⊆ W+: Γ �ALr A iff there is a Δ ⊆ Ω \ U (Γ ) such
that Γ �LLL A ∨̌ Dab(Δ).

2.4.1.2 The Proof Theory

Let me now show how the reliability strategy is realized by adaptive proofs. The
adaptive proof format enhances the static proofs of the lower limit logic by an addi-
tional column in which conditions are attached to proof lines. Conditions are finite
and possibly empty sets of abnormalities. A line in a proof consists of a line number, a
formula, a justification, and a condition. The central feature of adaptive proofs is that
they apply certain rules conditionally. Let me explicate this again by our example.

Note first that in CL◦ the following rules are not valid:

If ◦ A, then A. (2.1)

If ◦ A and A ⊃ B, then B. (2.2)

However, the following is valid7:

◦A �CL◦ A ∨̌ !A (2.3)

◦A, A ⊃ B �CL◦ B ∨̌ !A (2.4)

Hence, by (2.3), given ◦A either A or the abnormality !A is the case. Our AL enables
conditional applications of rules (2.1) and (2.2). That is to say, from ◦A, A is derived
“on the condition {!A}”, or from ◦A and A ⊃ B, B is derived “on the condition
{!A}”. Roughly the idea is to apply rules (2.1) and (2.2) on the condition that !A can
be considered not to be the case (see Fig. 2.2). This is still an ambiguous phrase and
has different readings according to the two strategies.

Fig. 2.2 Conditional
inference

A A

defeasible
assumption:

¬( A ∧ ¬A )

7 In order to reduce notational clutter I will often omit set brackets on the left hand side of �.
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For the reliability strategy this is spelled out as follows: deriving A “on the condi-
tion Δ” means that A is derived on the condition that no member of Δ is unreliable.
Let us have a look at a proof fragment:

1 ◦n PREM ∅
2 (a ∧ n) ⊃ c PREM ∅
3 (b ∧ n) ⊃ c PREM ∅
4 ◦a PREM ∅
5 ◦b PREM ∅
6 ¬a ∨ ¬b PREM ∅

107 a 4; RC
{!a}

8 n 1; RC
{!n}

109 c 2, 7, 8; RU
{!a, !n}

10 !a ∨̌ !b 4, 5, 6; RU ∅
The first thing to notice is that, although for our applications we are interested in

the adaptive consequence relation over the language L that characterizes our lower
limit logic, the adaptive proofs are formulated in the enriched language L+. As the
reader will see, this plays an important role in the modeling of defeasible reasoning
in adaptive proofs. The proofs are governed by three generic rules: PREM, RU, and
RC. Let us have a look at them separately.

At lines 1–6 premises are introduced. This is enabled by a generic premise intro-
duction rule:

If A ∈ Γ :
...

...

A ∅
(PREM)

Beside the premise introduction rule there are two other generic rules characterizing
adaptive proofs: the unconditional rule RU and the conditional rule RC. Via RU the
adaptive proofs come with all of the deductive power of the lower limit logic:

If A1, . . . , An �LLL B :
A1 Δ1
...

...

An Δn

B Δ1 ∪ · · · ∪ Δn

(RU)

Note that the conditions of the used lines are carried forward.
The core and finesse of adaptive proofs comes with the conditional rule. It has

been illustrated by means of the rules (2.1) and (2.2) above. In general the rule reads
as follows8:

8 Note that, as already mentioned earlier, I stick with the customary usage of �LLL in RU and RC
as denoting the derivability relation �LLL+ characterizing the strengthened lower limit logic that
operates on L+.
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1 P1 . . . ; PREM ∅ Premises

...
...

...

n Pn . . . ; PREM ∅

...
...

...
Ceteris

normalibus

l1 A 1 . . . ; RU 1

...
...

...

l A . . . ; RC 1 ∪ 2 ∪ 3 Conclusion

support

Fig. 2.3 Schematic illustration of an adaptive proof

If A1, . . . , An �LLL B ∨̌ Dab(Θ) :
A1 Δ1
...

...

An Δn

B Δ1 ∪ · · · ∪ Δn ∪ Θ

(RC)

At lines 7 and 8 we have conditional applications of rule (2.1). Take for instance
line 7: the idea here is to derive defeasibly a from ◦a on the condition {◦a∧¬a}. That
is to say, from the fact that our detective has a good reason to assume a she derives a
on the condition that not-a is not the case. The ceteris normalibus condition of this
type of defeasible inference is that whenever there is a good reason to assume some
a then, normally, ¬a should not hold. In Fig. 2.3 our generic scheme for defeasible
inferencing from Fig. 1.1 is related to the proof format of ALs.

At line 10 in our proof from Γ1 the only minimal Dab-consequence is derived
on the empty condition. At this point something important happens: the conditions
of lines 7 and 9 are violated. After all, !a turned out to be unreliable at line 10. In
adaptive proofs, lines the conditions of which have been violated, are marked. The
marking indicates that the second elements of these lines are not considered to be
derived. Indeed, as long as the marking persists, the ceteris normalibus condition that
guarantees the support from the premises is violated.

Before I give a formal definition of the marking, it is important to note that
markings are dynamic. They may come and go. In order to see this, suppose for the
moment that our detective has definite proof that the second witness has been bribed
and thus has been lying. Where Γ2 = Γ1 ∪ {¬b}, we add the following lines to the
proof from Γ2:

11 ¬b PREM ∅
12 !b 5, 11; RU ∅

http://dx.doi.org/10.1007/978-3-319-00792-2_1
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What is remarkable here is that adding ¬b to our premises leads to an alteration
of the unreliable abnormalities. Now !b is the only minimal Dab-consequence and
U (Γ2) = {!b}. Hence, the conditions of lines 7 and 9 can now be considered to be
reliable. Consequently, these lines are unmarked at line 12.

At different stages of the proof the ‘minimal Dab-formulas’9 that are derivable
are different. By analyzing a premise set in a proof, our insight in the premises grows
and hence what is considered as an unreliable formula at a certain stage of the proof
may change. Hence, in order to define the marking in such a way that it mirrors the
dynamics of the defeasible reasoning that is modeled, we need to define the set of
unreliable formulas such that it is relative to the stage of the current proof.

We say Dab(Δ) is a minimal Dab-formula at stage s of a proof iff

(i) Dab(Δ) has been derived on the empty condition at stage s, and
(ii) for all Δ′ ↓ Δ, Dab(Δ′) has not been derived on the empty condition at stage s.

Moreover, where Dab(Δ1), Dab(Δ2), . . . are the minimal Dab-formulas at stage s,
the set of unreliable formulas at stage s is Us(Γ ) = Δ1 ∪ Δ2 ∪ . . . The marking for
the reliability strategy is defined as follows:

Definition 2.4.2 (Marking for the Reliability Strategy). Line i is marked at
stage s iff, where Δ is its condition, Δ ≥ Us(Γ ) 
= ∅.

Note that, on the one hand, marked lines may be unmarked at a later stage of a
proof. On the other hand, unmarked lines may be marked at a later stage. Suppose
our detective has definite proof that also the first witness has been bribed. In this case
the conditions of line 7 and 9 are violated again.

13 ¬a PREM ∅
14 !a 4, 13; RU ∅

At this stage of the proof, U14(Γ3) = {!a, !b}, where Γ3 = Γ2 ∪ {¬a}. Hence,
according to Definition 2.4.2, lines 7 and 9 are marked again at line 14.

Given a marking definition (the one for reliability introduced above or the one for
minimal abnormality that is going to be introduced in the next section), the following
definitions characterize the notion of derivation in adaptive dynamic proofs. The first
definition concerns a dynamic notion of derivation:

Definition 2.4.3. A formula A has been derived at stage s of an adaptive proof, iff,
at that stage, A is the second element of some unmarked line i .

In order to define a syntactic consequence relation we need a static, non-relative
notion of derivability. This is provided by the following definition.

Definition 2.4.4 (Final derivability). A is finally derived from Γ on a finite
line i of a proof at stage s iff

(i) A has been derived at stage s at line i ;

9 A precise meaning will be given to this notion in a moment.
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(ii) every extension of the proof in which line i is marked may be further extended
in such a way that line i is unmarked.

This definition can be interpreted in terms of an argumentation game where the
proponent has a winning strategy in case her argument is able to withstand criticism
(see [17]). Condition (i) says that the proponent is supposed to produce an argument
for A by means of deriving it with an assumption that is not violated at some line l
(otherwise the corresponding line would be marked). Now the opponent may respond
and offer criticism. That is, he may derive Dab-formulas such that the proponent’s
argument is retracted (i.e., marked). However, our proponent is given the chance to
reply: she repels the criticism in case she can further extend the proof such that her
assumption is safe again and hence line l is unmarked. In case she is able to repel
any possible criticism, she has a winning strategy and A is said to be finally derived.

This account fits in nicely with dialectical accounts of defeasible reasoning. For
instance, Blair argued in his [18] that the view that “a valid inference is one whose
justifying warrant can withstand criticism” (p. 116) and that “[t]he concepts of defea-
sibility and presumption are dialectical concepts” (p. 115) is common among many
prominent theorists that deal with defeasible arguments such as Toulmin (see [19]),
Wellman (see [20]), Rescher (see [21, chapter 3]), Pollock (see [22]), and Walton
(see [23]).

Definition 2.4.5. Γ �ALr A iff A is finally ALr-derivable from Γ .

Take for instance line 8 of our proof from Γ1. There is no possible extension of the
proof from Γ1 that leads to the marking of this line. Hence, n is finally derivable
from Γ1. However, there is no way to finally derive a or b from Γ1.

Note that for the reliability strategy the extensions referred to in point (ii) of
Definition 2.4.4 can be restricted to the finite ones (see e.g. [2]).

The following theorem shows that A is derivable from Γ iff it is derivable on a
condition Δ consisting of reliable formulas.

Theorem 2.4.2. Where Γ ⊆ W: Γ �ALr A iff there is a Δ ⊆ Ω for which Γ �LLL
A ∨̌ Dab(Δ) and Δ ≥ U (Γ ) = ∅.

I will not provide any meta-proofs for the theorems and lemmas in this chapter
for the following two reasons. On the one hand, the meta-theory for the stan-
dard format that is presented in this chapter has been proven by Diderik Batens
(e.g., in his seminal [1]). On the other hand, most of these results will follow
as corollaries of the results presented in Chap. 5: there we introduce a general-
ization of the standard format and provide all the proofs for the meta-theory.

http://dx.doi.org/10.1007/978-3-319-00792-2_5
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By making use of some basic properties of LLL we can alternatively characterize
ALr as follows (where Γ ¬̌ =df { ¬̌ A | A ∈ Γ })10:

Corollary 2.4.2. Where Γ ⊆ W: Γ �ALr A iff Γ ∪ (Ω \ U (Γ ))¬̌ �LLL A.

Finally, we have the following completeness and soundness result:

Theorem 2.4.3. Where Γ ⊆ W: Γ �ALr A iff Γ �ALr A.

Although the derivability relation �AL is defined over L+, for applications we
are mainly interested in the consequence set restricted to premises and consequences
over the language L that characterizes our lower limit logic. However, for meta-
theoretical insights also the enhanced consequence relation is of interest. Hence, we
define, where Γ ⊆ W , CnLAL (Γ ) =df {A ∈ W | Γ �AL A} and, where Γ ⊆ W+,

CnL+
AL (Γ ) =df {A ∈ W+ | Γ �AL A}. I will also often omit the superscript, namely

in cases in which both readings apply.

2.4.2 The Minimal Abnormality Strategy

We proceed analogous to the discussion of the reliability strategy: we first have a look
at the semantics and then at the proof theory for the minimal abnormality strategy.

2.4.2.1 The Semantics

The minimal abnormality strategy is ‘bolder’ in comparison to the reliability strategy.
Semantically the name is nearly self-explanatory. The minimally abnormal models
are selected, i.e. the minimal elements of the partial order �Γ

Ab. In yet other words, all
the LLL-models of a given premise set Γ that validate a minimal set of abnormalities.
An LLL-model of Γ is a minimally abnormal model of Γ iff for all LLL-models
M ′ of Γ , Ab(M ′) 
↓ Ab(M). Note that Ab(M1), Ab(M2) ↓ Ab(M3) (see Fig. 2.1c).
Hence, for the minimal abnormality strategy the reliable model M3 is not selected.

For the minimal abnormality strategy “interpreting the premises as normally as
possible” is read in a more rigorous way compared to the reliability strategy. The
idea is to select CL◦-models that validate as few abnormalities as possible. Given
our (only) minimal Dab-consequence of Γ1, !a ∨̌ !b, models are selected that validate
only one of the two unreliable abnormalities.

The semantic consequence relation for minimal abnormality is defined as follows.

10 There is a Δ ⊆ Ω \ U (Γ ) for which Γ �LLL A ∨̌ Dab(Δ) iff [by the deduction theorem] there
is a Δ ⊆ Ω \ U (Γ ) for which Γ ∪ Δ¬̌�LLL A iff [by the compactness and monotonicity of LLL]
Γ ∪ (Ω \ U (Γ ))¬̌�LLL A.
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Definition 2.4.6. Where MALm (Γ ) is the set of all minimally abnormal LLL-
models of Γ ,

Γ �ALm A iff for all M ∈ MALm (Γ ) , M |= A.

It is important to notice that the existence of minimally abnormal models is
guaranteed.

Theorem 2.4.4. �Γ
Ab is smooth (alias stoppered).11

Immediate consequences of this are:

Corollary 2.4.3.

(i) If Γ has LLL-models then there are minimally abnormal models of Γ . (Reas-
surance)

(ii) For every LLL-model M of Γ either M is minimally abnormal or there is an
LLL-model M ′ of Γ that is minimally abnormal and for which Ab(M ′) ↓
Ab(M). (Strong Reassurance)

Moreover, it can be shown that every minimally abnormal model of Γ is also
reliable. That is to say,

Theorem 2.4.5. MALm (Γ ) ⊆ MALr (Γ ).

Hence, points (i) and (ii) in Corollary 2.4.3 also apply to reliable models.
Note that in our example all the minimally abnormal models of Γ1 either validate

!a or !b as the only abnormality. Hence, in all minimally abnormal models c is
validated. This demonstrates that the minimal abnormality strategy is ‘bolder’ than
the reliability strategy since Γ1 �CL◦m c while Γ1 
�CL◦r c.

Before I introduce the proof theory for minimal abnormality let me draw the
reader’s attention to a remarkable fact. Where Dab(Δ1), Dab(Δ2), . . . are the min-
imal Dab-consequences of Γ , let Σ(Γ ) = {Δ1,Δ2, . . . }. A choice set of Σ(Γ ) is
a set that contains a member from each Δi . Let Φ(Γ ) be set of the minimal choice
sets of Σ(Γ ), i.e. all choice sets ϕ ⊆ Ω of Σ(Γ ) such that there is no choice set
ϕ′ ⊆ Ω of Σ(Γ ) for which ϕ′ ↓ ϕ.12

The next theorem shows that each minimally abnormal model validates a minimal
choice set as its abnormal part and vice versa, for each minimal choice set ϕ there is
a minimally abnormal model that validates ϕ as its abnormal part.

Theorem 2.4.6. Where Γ ⊆ W+ and MLLL (Γ ) is non-empty.

11 A binary relation ≺ ⊆ X × X is smooth (resp. stoppered) iff for every a ∈ X , either a is
minimal or there is a ≺-minimal b ∈ X for which b ≺ a. The smoothness property will also play an
important role when the standard format is generalized in Chap. 5 where we will—inter alia—prove
this statement.
12 Properties of choice sets that are useful in the context of ALs are inquired in the technical
Appendix A.

http://dx.doi.org/10.1007/978-3-319-00792-2_5
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(i) MALm (Γ ) = ⋃
ϕ∈Φ(Γ ){M ∈ MLLL (Γ ) | Ab(M) = ϕ}.

(ii) ϕ ∈ Φ(Γ ) iff there is an M ∈ MALm (Γ ) for which Ab(M) = ϕ.

This immediately implies a representational theorem:

Theorem 2.4.7. Where Γ ⊆ W+: Γ �ALm A iff for each ϕ ∈ Φ(Γ ), Γ ∪
(Ω \ ϕ)¬̌ �LLL A.

By the compactness of LLL this implies:

Corollary 2.4.4. Where Γ ⊆ W+: Γ �ALm A iff for each ϕ ∈ Φ(Γ ) there is a
Δ ⊆ Ω \ ϕ for which Γ �LLL A ∨̌ Dab(Δ).

With the help of the minimally abnormal models we are able to give an alternative
definition for the semantic selection for the reliability strategy.

Lemma 2.4.1. Where M is a set of LLL-models, define

Ψ (M) =
⋃

{Ab(M) | M is minimally abnormal in M}.

Where Γ ⊆ W+: M is a reliable LLL-model of Γ iff Ab(M) ⊆ Ψ (MLLL (Γ )).

This characterization is attractive from a model-theoretic perspective since it is
formulated independent of the consequence relation of the LLL which was used in
the original definition in order to characterize the set U (Γ ). It is formulated only in
terms of properties of the LLL-models of Γ , just like the definition of the semantic
selection for the minimal abnormality strategy.

2.4.2.2 The Proof Theory

The proof theory for minimal abnormality differs from the one for reliability only
with respect to the marking definition. We again employ the generic rules PREM,
RU and RC.

As we have seen above, there is a direct link between the minimal choice sets
(of Σ(Γ )) and the minimally abnormal interpretations of Γ provided by the mini-
mally abnormal models. Also in the proof theory we will make use of this link. At
any stage of the proof we are interested in the question which assumptions can be
considered justified and which not. The information that we use in order to judge
this is given by the minimal Dab-formulas that have been derived so far. While the
reliability strategy considered each disjunct of a minimal Dab-formula as “unreli-
able”, the minimal abnormality strategy is less skeptical. Let us first illustrate this
by means of a simple example, and then make things more precise by making use of
the notion of choice sets.

Suppose we have the following excerpt from a proof at some stage s (where we
denote abnormalities by preceding them with “!”):

l C … {!A}
l ′ C … {!B}
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Table 2.1 Possible
interpretations of
{!A ∨̌ !B, !A ∨̌ !C}

!A !B !C
I1 1 0 0
I2 1 1 0
I3 1 0 1
I4 1 1 1
I5 0 1 1

Fig. 2.4 Ordering of the
interpretations in Table 2.1 in
terms of abnormal parts

I 4

I 2 I 3

I 1 I 5

l ′′ !A ∨̌ !B … ∅
l ′′′ !A ∨̌ !C … ∅

Suppose further that !A ∨̌ !B and !A ∨̌ !C are the only minimal Dab-formulas
derived at stage s. The possible interpretations of these formulas are listed in
Table 2.1. The corresponding ordering in terms of abnormal parts is illustrated in
Fig. 2.4.

We have two minimally abnormal interpretations of these formulas: one I1 accord-
ing to which !A is true, another one I5 according to which !B is true. Let us have a
look at the formula C . Since both conditions on which it is derived contain unreliable
abnormalities these lines are marked according to the reliability strategy. The situa-
tion is different for the minimal abnormality strategy. The reason is that the assump-
tion expressed by the condition {!A} is true in I5 and the assumption expressed by the
condition {!B} is true in I1. In other words, in each minimal abnormal interpretation
of our minimal Dab-formulas derived so far C is justified.

Now, how does that relate to choice sets? Where Dab(Δ1), Dab(Δ2), . . . are
the minimal Dab-formulas at stage s of a proof from Γ , the choice sets of
Σs(Γ ) = {Δ1,Δ2, . . .} give us exactly the possible interpretations of the minimal
Dab-formulas derived so far. Hence, the minimal of these choice sets exactly corre-
spond to the minimally abnormal interpretations of these minimal Dab-formulas.

In view of this, the marking of the minimal abnormality strategy will exactly
mirror the idea of the semantics: we only take into account the minimally abnormal
interpretations of the given premises—now contextualized to a given stage of the
proof—and only claims that are justified in each of these interpretations are taken
to be consequences at a given stage of the proof. This is realized by the following
marking definition: where Φs(Γ ) is the set of all minimal choice sets of Σs(Γ ) we
define
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Definition 2.4.7 (Marking for the Minimal Abnormality Strategy). Line i is
marked at stage s iff, where A is derived on the condition Δ at line i ,

(i) there is no ϕ ∈ Φs(Γ ) such that ϕ ≥ Δ = ∅, or
(ii) for some ϕ ∈ Φs(Γ ), there is no line at which A is derived on a condition Θ for

which ϕ ≥ Θ = ∅.

Another way to interpret the marking definition is in terms of an argumentation
game. Suppose the proponent derives a formula A on a line with conditionΔ at stage s.
Each minimal choice set ϕ ∈ Φs(Γ ) represents a minimally abnormal interpretation
of the Dab-formulas derived at stage s: each B ∈ ϕ is true in this interpretation
while each B ∈ Ω \ϕ is false. Each minimal choice set ϕ thus represents a potential
counter-argument against the defeasible assumption used by our proponent in order
to derive A (namely that all members of Δ are false). ϕ is a counter-argument in case
the defeasible assumption, i.e. the condition of line l, contains elements of ϕ. In this
case the assumption of line l is not valid in the interpretation offered by ϕ.

In case there is no minimally abnormal interpretation ϕ in which the assumption
holds (see point (i)), the proponent cannot defend herself and her inference to A is
retracted in terms of being marked. But suppose there is a ϕ such that Δ ≥ ϕ = ∅.
In this case there is at least one minimally abnormal interpretation in which the
assumption of our proponent holds. But what about minimally abnormal interpre-
tations in which the assumption does not hold, i.e. some ϕ ∈ Φs(Γ ) for which
ϕ ≥Δ 
= ∅? In this case the proponent has to offer for each such ϕ another argument
whose assumption is valid in ϕ (see point (ii)). If she is able to do so, i.e. if she is
able to defend herself against all counter-arguments, then her argument is justified
and hence line l is not marked at stage s.

In sum: suppose our proponent derived A on the assumption Δ at line l.

• Is the argument at line l defensible?
Our proponent should be able to at least pinpoint one minimal abnormal interpre-
tation of the Dab-formulas derived so far in which the assumption Δ holds.

• Is the claim A justifiable?
For each counter-argument of our opponent, i.e. each minimally abnormal inter-
pretation I of the Dab-formulas derived so far, she has to have an argument for A
with an assumption that is valid in I .

If both questions are answered to the positive, our proponent wins the argumentation
game at this stage. Otherwise, the opponent wins and line l is marked.13

13 The terminological distinction between defensible and justified arguments is borrowed from
abstract argumentation. Given a set of abstract entities (arguments) and an attack relation between
them, there are various rationales according to which we can select arguments. (These rationales are
called extension types in Part III.) If an argument is in all selections (that satisfy the criteria imposed
by the rationale) it is called justified, if it is in some selection it is called defensible, if it is in no
selection it is called overruled. See also the detailed discussion in [24]. The situation is analogous
in our case: an argument for the claim A offered at a line l with an assumption expressed by the
condition Δ is called justified if the assumption is valid in all minimally abnormal interpretations of
the Dab-formulas (at the present stage), it is defensible if the assumption is valid in some minimally
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Let us close this discussion by having another look at a proof from Γ1, this time
applying the marking definition for minimal abnormality.

1 ◦n PREM ∅
2 (a ∧ n) ⊃ c PREM ∅
3 (b ∧ n) ⊃ c PREM ∅
4 ◦a PREM ∅
5 ◦b PREM ∅
6 ¬a ∨ ¬b PREM ∅

107 a 4; RC
{!a}

108 b 5; RC
{!b}

9 n 1; RC
{!n}

10 !a ∨̌ !b 4, 5, 6; RU ∅
11 c 2, 4, 9; RC

{!a, !n}

12 c 3, 5, 9; RC
{!b, !n}

Note that lines 11 and 12 are not marked as they would be according to the
reliability strategy. For instance the condition of line 11 does (i) not intersect with
all minimal choice sets in Φ12(Γ1) = {{!a}, {!b}} and (ii) it is not the case that there
is a minimal choice set ϕ ∈ Φ12(Γ1) such that all conditions on which c has been
derived intersect with ϕ. The reason for (ii) is that c is also derived on the condition
{!b, !n} at line 12. Indeed, c is valid in all minimally abnormal models of Γ1.

A different situation occurs with respect to line 7. Its condition, and in fact all
conditions on which a can be derived, intersect with the minimal choice set {!a}.
Indeed, in the minimally abnormal model M1 with abnormal part {!a}, a is not
validated. An analogous argument applies to line 8.

Note that for our example the minimal choice sets Φ(Γ1) are {!a} and {!b}. Hence
c is finally derivable.

The following theorem makes the link between the minimal choice sets and the
adaptive consequences.

Theorem 2.4.8. Where Γ ⊆ W: Γ �ALm A iff for every ϕ ∈ Φ(Γ ) there is a
Δ ⊆ Ω for which Δ ≥ ϕ = ∅ and Γ �LLL A ∨̌ Dab(Δ).

Finally, we have the following completeness and soundness result:

Theorem 2.4.9. Where Γ ⊆ W: Γ �ALm A iff Γ �ALm A.

(Footnote 13 continued)
abnormal interpretation of the Dab-formulas. The line is marked in case its argument is not justified.
In Sect. 2.8 we present an alternative approach where the marking takes place in case an argument is
not defensible and relate the two approaches to what is often called the skeptical and the credulous
approach to defeasible reasoning.
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2.4.3 A Special Case: The Simple Strategy

Sometimes we deal with cases in which both standard strategies, reliability and min-
imal abnormality, coincide. These are cases in which all minimal Dab-consequences
of the lower limit logic LLL are abnormalities. That is to say, every minimal Dab-
consequence Dab(Δ) is such that Δ is a singleton. Let us call a premise set Γ for
which all Dab-consequences are abnormalities, a simple premise set.

Where Γ is a simple premise set, it is straightforward to check that in this case
Φ(Γ ) = {U (Γ )} and, moreover, that in this case both strategies lead to the same
consequence set.

Simple premise sets allow for a simplification of the adaptive strategy: the so-
called simple strategy.

2.4.3.1 The Semantics

Let us first take a look at the semantics. Given a simple premise set Γ it is easy
to see that all the minimally abnormal LLL-models M of Γ are such that A ∈
Ab(M) iff A is verified by every LLL-model of Γ . This is equivalent to: Ab(M) =
{A ∈ Ω | Γ �LLL A} resp. Ab(M) = {A ∈ Ω | Γ �LLL A} resp. Ab(M) =⋂

M ′∈MLLL(Γ ) Ab(M ′). The same holds for all the reliable LLL-models of Γ . This
motivates the following definition:

Definition 2.4.8. An LLL-model M of Γ is simple iff Ab(M) = {A ∈ Ω |
Γ �LLL A}.
Theorem 2.4.10. Where Γ is a simple premise set, the following points are equiv-
alent:

(i) A is verified by all simple models of Γ

(ii) A is verified by all reliable models of Γ

(iii) A is verified by all minimally abnormal models of Γ

Definition 2.4.9. Γ �ALs A iff A is verified by all simple models of Γ .

2.4.3.2 The Proof Theory

Derivations are again governed by the generic rules PREM, RU, and RC. What
changes and is simplified is the marking definition.

Definition 2.4.10 (Marking for the Simple Strategy). Line i is marked at stage s
iff, where Δ is its condition, stage s contains a line on which an A ∈ Δ has been
derived on the empty condition.
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Final derivability is defined as for reliability and minimal abnormality. Hence,
Γ �ALs A iff A is finally derivable from Γ (with respect to the marking for the
simple strategy).

Theorem 2.4.11. Where Γ ⊆ W is a simple premise set, Γ �ALr A iff Γ �ALm A
iff Γ �ALs A.

Theorem 2.4.12. Where Γ ⊆ W is a simple premise set, Γ �ALs A iff Γ �ALs A.

2.5 Modeling Defeasibility in Adaptive Proofs

In this section we enhance our understanding of how ALs model defeasible reasoning.
We start off with taking another look at dynamics in Sect. 2.5.1. Then, in Sect. 2.5.2,
we compare the derivative power of the two strategies in view of so-called floating
conclusions. Finally, in Sect. 2.5.3 we relate ALs to so-called plausible reasoning
and a related problem concerning contraposition.

2.5.1 Internal and External Dynamics

As has been demonstrated above, formulas are derived conditionally in adaptive
proofs. An unmarked line may be marked at a later stage of the proof and a marked line
may be unmarked.14 This is analogous to the tentative way of arriving at conclusions
in defeasible reasoning, where we infer some A from some premises presuming that
the circumstances satisfy some ceteris normalibus condition in order for the inference
to be warranted. In ALs this is made explicit, on the one hand, by specifying what
counts as an abnormality and, on the other hand, by specifying the exact nature of
the normality condition by the adaptive strategy. In the adaptive proofs formulas are
derived on conditions that are sets of abnormalities and the adaptive strategy specifies
when the condition is met or violated. The marking definition that is characterized
by the adaptive strategy determines when a formula counts as derived and when not.

We have distinguished between two types of dynamics. On the one hand, there is
the internal dynamics according to which we may have to retract inferences in view
of new insights gained by means of analyzing the given premises. On the other hand,
there is the external dynamics according to which we may have to retract inferences
in view of new information given by means of new premises.

The internal dynamics is modeled by the marking dynamics of AL proofs. We start
off with a specific set of premises and analyze and reason on the basis of them with
the help of the three generic rules PREM, RU, and RC. As we have seen, informed

14 Note that when I speak of lines “being/getting marked” this should in no way be misunderstood
as being an activity that is up to a decision by a user of the logic. The marking is characterized by
the marking definition in a perfectly deterministic way.
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by the minimal Dab-formulas derived at a specific stage, some inferences may be
retracted by means of marking the corresponding line, while some inferences which
were previously marked may be reinstated since the marking is removed. Since the
retraction mechanism is fully determined by the analysis of the given premise set
this is clearly an instance of the internal dynamics of defeasible reasoning.

As pointed out already, the external dynamics is mirrored by the nonmonotonicity
of the consequence relation: sometimes new information may lead to the situation
in which some formula that was previously a consequence is not anymore a conse-
quence as soon as the new information is considered. I already discussed that the
primary focus in the research on defeasible reasoning is on the external rather than
the internal dynamics. ALs are nonmonotonic, so they obviously reflect the external
dynamics as well. However, the question arises whether ALs add anything interesting
when explicating the external dynamics which distinguishes them from other formal
models. Here it is useful to distinguish between two ways in which a formal model
L exhibits an external dynamics:

1. L is nonmonotonic: some previous output may not anymore be output given
additional input. Hence, L can be said to be externally dynamic.

2. L models the rationale underlying the external dynamics by means of a pro-
cedural explication of the reasoning process that causes some previous conse-
quences to cease to be consequences given new input.

My claim is that it is point 2 where ALs offer an essential contribution. Suppose
our detective starts reasoning with the premise set Γ1 = {◦n, (a ∧ n) ⊃ c, (b ∧
n) ⊃ c, ◦a, ◦b}. The following proof P1 explicates her reasoning on the basis of the
reliability strategy and Γ1:

1 ◦n PREM ∅
2 (a ∧ n) ⊃ c PREM ∅
3 (b ∧ n) ⊃ c PREM ∅
4 ◦a PREM ∅
5 ◦b PREM ∅
6 c 1,2,4; RC {!a, !n}
7 c 1,3,5; RC {!b, !n}

Suppose at some point she gets new information which contains the definite proof
that one of the witnesses was bribed and thus lied, she just doesn’t know which one:
¬a or ¬b. Instead of starting her reasoning process again from scratch from the
enriched premise set Γ2 = Γ1 ∪ {¬a ∨ ¬b}, she can continue her reasoning process
P1 as follows in a proof P2 from Γ2:

...
...

...
...

96 c 1,2,4; RC {!a, !n}
97 c 1,3,5; RC {!b, !n}
8 ¬a ∨ ¬b PREM ∅
9 !a ∨ !b 4,5,8; RU ∅
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The new information causes the marking of lines 6 and 7: while c was a conse-
quence from Γ1 it ceases to be a consequence given the new information ¬a ∨ ¬b.
Reusing and extending the proof P1 resulting in P2 explicates the reasoning process
that leads to the retraction of the previous inferences resulting in c: hence it provides
an understanding as to why our detective previously inferred c (given only Γ1) and
then she gave up on it (given Γ2).

Moreover, ALs are also able to explicate cases of reinstatements: i.e., cases in
which c is a consequence of Γ1, ceases to be a consequence of Γ2, and then is
a consequence of Γ3 again (where Γ1 ↓ Γ2 ↓ Γ3). Let us demonstrate this by
extending our example further.

Suppose that some informant provides our detective with the information that
indeed the second witness has been bribed: ¬b. Hence, our premise set is now Γ3 =
Γ2 ∪ {¬b}. Again, our detective can base her reasoning on the previous reasoning
process and thus reuse P2 and extend it in the following way leading to a proof P3
from Γ3:

...
...

...
...

6 c 1,2,4; RC {!a, !n}
117 c 1,3,5; RC {!b, !n}

8 ¬a ∨ ¬b PREM ∅
9 !a ∨ !b 4,5,8; RU ∅

10 ¬b PREM ∅
11 !b 5,10; RU ∅

Note that c at line 6 is reinstated in view of the new evidence. The reason is that
!a∨!b is not anymore a minimal Dab-formula in view of !b at line 11. Again, looking
at the sequence P1, P2, P3 we see a detailed explication of the dynamics of her
reasoning process: in P1 we see the rationale behind accepting the inference at line 6
as finally derived since the condition was reliable (meaning it only contained reliable
abnormalities), in P2 the inference was retracted since the condition contained an
unreliable abnormality, finally in P3 the inference is safe again since the condition
is reliable again.

Note that where Γ ↓ Γ ′: an AL-proof from Γ is also an AL-proof from Γ ′. This
is the technical reason why our detective may reuse a previous proof (fragment) from
Γ when reasoning on the basis of an enriched premise set Γ ′, as happened in the
transition from P1 to P2 and from P2 to P3 in our example.

Note finally that, according to the given presentation, the way ALs explicate the
external dynamics of defeasible reasoning is analogous to the way they explicate the
internal dynamics: namely by a retraction mechanism that is implemented by means
of (un-)marking lines. The difference is that in the case of the external dynamics
we make a transition from a proof P from Γ to a proof P ′ from Γ ′ by reusing
P , while the internal dynamics occurs in one and the same proof. The analogous
treatment is in no way surprising: after all, both dynamics are based on the fact that
new insights may cause previous defeasible inferences to be retracted and the only
difference concerns the source of the new insights. In the case of internal dynamics it
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is based on a better understanding of the given premises, while in the case of external
dynamics it is based on new input. In practice both dynamics occur often as part of
the same reasoning activities: think for instance of learning processes. Hence, the fact
that there is a clear link between the nonmonotonicity of the consequence relation
of ALs and the internal dynamics is an argument in favor of the unifying power of
ALs as a formal model for defeasible reasoning.

2.5.2 Comparing the Strategies

We have seen that the standard format offers two strategies: the reliability and the
minimal abnormality strategy. The latter offers for many examples a ‘bolder type’ of
reasoning. That is to say, it offers a consequence relation that, in many examples, gives
rise to more consequences compared to the one for reliability. This was illustrated
by our example: while the reliability strategy corresponds to a rationale that refrains
from drawing the conclusion that Mr. X is the murderer, according to the minimal
abnormality strategy our detective concludes that Mr. X is the murderer.

We have distinguished the two strategies by means of their different handling of
minimal Dab-consequences. For the reliability strategy it was sufficient that (a part
of) the condition of a conditional application of a rule was unreliable, i.e. part of a
minimal Dab-consequence, in order to invalidate the application. In contrast, for the
bolder minimal abnormality strategy there are cases in which some A is derived on
a condition Δ that involves unreliable abnormalities but is nevertheless not marked.
Recall that by the minimal abnormality strategy our detective derives that Mr. X is
the murderer. We have seen that in each minimally abnormal model she can rely on
one of the two witnesses which is due to the fact that a ∨ b is valid in all minimally
abnormal models. In contrast, the fact that !a ∨̌ !b is a minimal Dab-consequence
of Γ1 makes all the conditions on which c is derived unreliable and hence it is not
derivable that Mr. X is the murderer according the the reliability strategy.

Scholars in defeasible reasoning sometimes distinguish between two basic types
of conflicts:

1. a conflict between a defeasible inference and a “hard fact” (i.e., a premise) or
any formula that can be inferred from the premises by means of non-defeasible
rules;

2. a conflict between two defeasible inferences.

The first type of conflict is to be resolved by retracting the defeasible inference.
Recall that in our proof from Γ1 we derived n at line 8 by a defeasible inference on
the basis of rule (2.1) on the condition {!n}:

8 n 1; RC {!n}

Now suppose we introduce ¬n as a hard fact by a new premise and let Γ4 = Γ1∪{¬n}:
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11 ¬n PREM ∅
12 !n 1, 11; RU ∅

In this case line 8 gets marked. It is easy to see that this generalizes for all ALs in
standard format. Say A has been derived conditionally at line i and some B has been
derived on the empty condition. Suppose moreover that B �LLL ¬̌ A. Then line i is
marked. This follows directly with the following derivable rule:

A Δ

¬̌ A Δ′
Dab(Δ ∪ Δ′) ∅

(RD)

It is easy to see that, where Δ is the condition of a line l, and Dab(Δ) is derived on
the condition ∅ then l is marked according to both adaptive strategies.

RD is a consequence of the following lemma:

Lemma 2.5.1 (Conditions Lemma). An AL-proof from Γ contains a line at
which A is derived on the condition Δ iff Γ �LLL A ∨̌ Dab(Δ).15

The lemma gives immediately rise to the following rule:

A Δ

A ∨̌ Dab(Δ) ∅ (RA)

We now discuss the second conflict type: conflicts between defeasible inferences.
Again, a look at the derived rule RD helps us to understand how ALs handle such
a conflict. It expresses that whenever we have a conflict between two claims, one
derived on the condition Δ on line l and another one derived on the condition Δ′ on
line l ′, then we can derive (unconditionally) that one of the abnormalities in Δ ∪ Δ′
is true. If there are no other minimal disjunctions of abnormalities in the proof and
if there are no alternative arguments for our two claims, this means that according to
both strategies both lines l and l ′ are retracted. However, the handling of such conflicts
is not fully analogous with respect to the two strategies. This will be demonstrated
in the following example.

Suppose a reliable although not infallible witness reports that

• Mr. X wore a long black coat in the bar in which he was seen half an hour before
the murder. — ◦l

Another reliable although not infallible source however witnesses that

• Mr. X wore a short dark blue jacket and black trousers at the same time. — ◦ j

Obviously ¬(l ∧ j), since both cannot be the case. Moreover, we have

• If Mr. X was dressed in a long black coat, then he wore dark clothes. — l ⊃ m

15 This is proven under the same name in [2, Chap. 4].
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• If Mr. X was dressed in a short dark blue jacket and black trousers, then he wore
dark clothes. — j ⊃ m

Let us have a look at a proof segment with the minimal abnormality strategy from
Γfc = {◦l, ◦ j,¬(l ∧ j), l ⊃ m, j ⊃ m}:

1 ◦l PREM ∅
2 ◦ j PREM ∅
3 ¬(l ∧ j) PREM ∅
4 l ⊃ m PREM ∅
5 j ⊃ m PREM ∅

126 l 1; RC
{!l}

7 m 4, 6; RU
{!l}

128 j 2; RC
{! j

}

9 m 5, 8; RU
{! j

}

1210 l ∧ j 6, 8; RU
{!l, ! j

}

11 ¬̌ (l ∧ j) 3; RU ∅
12 !l ∨̌ ! j 10, 11; RD ∅
13 l ∨ j 6; RU

{!l}
14 l ∨ j 8; RU

{! j
}

Note that lines 7, 9, 13 and 14 are marked according to the reliability strategy,
however they are unmarked according to the minimal abnormality strategy. Indeed,
l ∨ j as well as m are finally derivable according to the minimal abnormality strategy.
Note that for each choice set ϕ ∈ Φ14(Γfc) = {{!l}, {! j}}, l ∨ j is derived on a
condition that has an empty intersection with ϕ. It is easy to see that there is no
extension of the proof in which lines 13 and 14 are marked.

Conclusions such as m are often referred to as floating conclusions. Although
no sequence of defeasible inferences leading to the conclusion m is valid in every
selected model, in each of them at least one of these sequences is such that all
the conditions of the rules constituting the sequence are valid. Note that there are
two types of minimally abnormal models, one with abnormal part {!l} and one with
abnormal part {! j}. In the latter models none of the conditions of the sequence of
inferences leading to the derivation of m explicated at lines 1, 4, 6 and 7 are violated.
Similarly, in the former type of models none of the conditions of the sequence of
inferences leading to the derivation of m explicated at lines 2, 5, 8 and 9 are violated.

In sum, according to the minimal abnormality strategy we get floating conclusions,
while reliability blocks them.

2.5.3 Adaptive Logics and Plausible Reasoning

In this section we will demonstrate in which sense ALs model plausible reasoning
and discuss a related problem that has to do with contraposition.
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2.5.3.1 ALs Model Plausible Reasoning

As has become clear, ALs formally model defeasible reasoning by means of
inferences based on assumptions. In the literature we can see two approaches to
assumption-based reasoning:

(a) In the first approach the concrete assumption made in a defeasible inference is
left unspecified or implicit. What is used is a defeasible inference rule. One way
to realize this is for instance with a connective A → B to which a defeasible
Modus Ponens rule is applicable so that B is defeasibly derived given A.

(b) In the other approach the assumptions that are associated with a defeasible infer-
ence are made explicit. Often this is expressed in the object language, e.g.,
A ∧ ¬ab1 ⊃ B. Given A and ¬ab1 we can apply Modus Ponens to derive B.

Moreover, various scholars (see [25–27]) make a difference between two types
of reasoning:

(1) Defeasible Reasoning “as unsound (but still rational) reasoning on a solid basis”
[27, p. 262]; and

(2) Plausible Reasoning “as sound (i.e., deductive) reasoning on an uncertain basis”
[27, p. 262].

Hereby, (a) is often associated with (1), while (b) is associated with (2). The
reason for the latter is that once we have explicit abnormality assumptions we can
use the material implication as a conditional and Modus Ponens as an inference rule,
whereas the (uncertain) abnormality assumptions are added as additional premises
to the premise set. In the former case defeasible rules are applied to the premise set
which is taken for granted (i.e., certain).

By now it is obvious that ALs belong to category (b): after all, normality assump-
tions are made explicit in the fourth column of adaptive proofs. The assumptions
are generated by applications of the RC rule and stated in the fourth column of the
proof. We have seen that the minimal Dab-consequences together with a rationale
provided by the adaptive strategy determine which assumptions are considered safe
and which not.

Let us now take a closer look at where ALs fall according to the second distinction.
Recall that the consequence relation of ALs is reflexive and yet (most frequently)

nonmonotonic. This seems to indicate that we have a case of (1) where the reflexivity
mirrors the “solid basis” and the nonmonotonicity mirrors the “unsound (but still
rational)” reasoning.

But we should be more careful with our analysis. After all, the conditional infer-
ences by means of the RC rule can be thought of as having the form of a classi-
cal deduction, i.e., of disjunctive syllogism: from A ∨̌ Dab(Δ) and the assumption
¬̌ Dab(Δ) derive by means of disjunctive syllogism A. Under this perspective ALs
implement plausible reasoning in the following way. We have two premise sets, Γ and
Ω¬̌.16 Γ provides a solid basis, while Ω¬̌ is an uncertain basis consisting of normality

16 Recall that Ω¬̌ = {¬̌A | A ∈ Ω}.
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assumptions.17 Whereas PREM only allows for the introduction of premises from
the solid base, RC is a way of introducing premises from the uncertain base in such
a way that (i) a record is held of the used uncertain premises in the fourth column
of the proof, and (ii) the introduced normality assumptions are immediately applied
in an instance of disjunctive syllogism (as described above). Viewed in this way, we
only have a ‘deductive’ logic in which we formally distinguish between two types of
premises. The adaptive marking then handles which parts of the uncertain basis may
be considered safe in specific inferences and retracts inferences that are based on
unsafe assumptions. Let us demonstrate this with a familiar example. On the left side
we have a usual AL proof, on the right side a reconstruction that is more explicitly
in the style of plausible reasoning and in which RC is replaced by an argument that
makes use of disjunctive syllogism (DS) (where !A =df ◦A ∧ ¬A):

1 ◦n PREM ∅ ◦n PREM1 ∅
2 ◦a PREM ∅ ◦a PREM1 ∅
3 ◦b PREM ∅ ◦b PREM1 ∅
4 (a ∧ n) ⊃ c PREM ∅ (a ∧ n) ⊃ c PREM1 ∅
5 (b ∧ n) ⊃ c PREM ∅ (b ∧ n) ⊃ c PREM1 ∅
6’ n ∨̌ !n 1;RU ∅
6” ¬̌!n PREM2 {¬̌!n}
6 n 1; RC {!n} n 6’,6”;DS {¬̌!n}
7’ c ∨̌ !a ∨̌ !n 1,2,4;RU ∅
� 7” ¬̌!a PREM2 {!a}
7 c 2,4,6; RC {!a, !n} c 6”,7’,7”;DS {¬̌!a, ¬̌!n}
8’ a ∨̌ !a 2; RU ∅
� 8 a 2; RC {!a} a 7”,8’;DS {¬̌!a}
9’ c ∨̌!b ∨̌!n 1,3,5; RU ∅
� 9” ¬̌!b PREM2 {¬̌!b}
9 c 1,3,5; RC {!b, !n} c 6”,9’,9”;DS {¬̌!b, ¬̌!n}
10 ¬a ∨ ¬b PREM ∅ ¬a ∨ ¬b PREM1 ∅
11 !a ∨̌ !b 2,3,10;RU ∅ !a ∨̌ !b 2,3,10;RU ∅

On the right side we use two premise introduction rules: PREM1 for the premises
in the solid base Γ and PREM2 for the premises in the uncertain premise set Ω¬̌.
We use an additional “boxed” column to introduce these premises for the sake of
transparency. In the last column we keep a record of the used “uncertain” premises.
RU is a generic rule for all the non-defeasible (i.e., deductive) inferences that stem
from the lower limit logic. DS is disjunctive syllogism (we could have also just written
RU since DS is valid in the lower limit logic enriched by the “checked connectives”).
The question which parts of the uncertain premise set can be considered safe for
a given inference is analogous to the determination of the marking of lines. For
instance, according to the minimal abnormality strategy a line l with formula A and
a record Δ ↓ Ω¬̌ is marked at stage s iff, (i) there is no ϕ ∈ Φs(Γ ) for which

17 A similar distinction can be found for instance in the ASPIC+-framework [27, 28] where we find
an ‘ordinary’ knowledge base Kp that is uncertain and an ‘axiomatic’ solid knowledge base Kn .
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ϕ¬̌≥ Δ = ∅, or (ii) for some ϕ ∈ Φs(Γ ) there is no line l ′ with formula A and a
record Θ such that ϕ¬̌≥ Θ = ∅.

Altogether we now have a proof with only deductive inference steps and premise
introduction where the marking retracts inferences based on unsafe premises in the
uncertain premise set Ω¬̌. Given this perspective ALs explicate plausible reasoning.

2.5.3.2 A Problem with Contraposition?

Formal models that explicate plausible reasoning have come under some criticism
due to the fact that for the deductive rules which are used also their contraposition
is available (most recently in Prakken [27] and Caminada in [29]). For instance,
Prakken gives the following example (illustrated in Fig. 2.5a):

1. Birds normally fly: b ∧ ¬ab1 ⊃ f
2. Penguins normally don’t fly: p ∧ ¬ab2 ⊃ ¬ f
3. All penguins are birds: p ⊃ b
4. Penguins are abnormal birds with respect to flying: p ⊃ ab1
5. Tweety is observed as a penguin: o
6. Animals that are observed as penguins are normally penguins: o ∧ ¬ab3 ⊃ p

Now Prakken observes that we can construct an argument against applying 5 and
6 to infer p by means of applying contraposition to 4 and 6:

4’. ¬ab1 ⊃ ¬p
6’. o ∧ ¬p ⊃ ab3

Were contraposition not available this move would be blocked. Also Caminada states
that given contraposition is available for the defeasible inference rules the principle
“to keep the effects of possible conflicts as local as possible” [29, p. 113] (see also
Hage [30, p. 109]) is violated. Note that besides the obvious conflict between f and
¬ f , 4’ also introduces a conflict between p and ¬p. While Caminada argues that
contraposition should only be blocked in what he calls constitutive reasoning while
it is “perfectly reasonable” in epistemic reasoning,18 The example seems to indicate
that Prakken would go further. He argues in [27] that contraposition is “a property
which is too strong for default statements”.19

Given the above analysis of ALs as a formal model for plausible reasoning we
should expect a similar scenario. And indeed, contraposition is available for con-
ditional inferences in ALs in the following sense. Suppose we can derive B from
A defeasibly on the condition Δ by RC. That means: A �LLL B ∨̌ Dab(Δ). But

18 Caminada calls upon the distinction between epistemic and constitutive reasons in Hage [30,
p. 60]: “Epistemic reasons are reasons for believing in facts that obtain independent of the reasons
that plead for or against believing them. Constitutive reasons, on the contrary, influence the very
existence of their conclusions.”
19 In [27] Prakken also argues against ad hoc solutions such as to strictly prioritize perceptual
evidence since “the strength of perceptive inferences is highly context-dependent.” (see his footnote
10) or to model perceptual inferences in a non-defeasible way.
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then we also have ¬̌ B �LLL ¬̌ A ∨̌ Dab(Δ) and we can thus derive ¬̌ A from ¬̌ B
on the same condition Δ.

An obstacle in reconstructing examples as the one above by Prakken in an AL is
that there is not one unique way to express it in ALs. Both, defaults and a defeasible
Modus Ponens mechanism that models default inferencing, may be represented in
various ways: for instance, in Part II we use a conditional that satisfies the so-called
KLM properties. Alternatively we could use material implication A ⊃ B preceded
by a dummy operator ◦(A ⊃ B) and adaptively activate them as much as possible
by making use of the abnormality ◦(A ⊃ B) ∧ ¬(A ⊃ B).20 Let us thus stay on
a more schematic level: suppose we have the following proof fragment from some
premise set Γ (illustrated in Fig. 2.5b)

...
...

...
...

l0 p ⊃ b PREM ∅
l1 o PREM ∅
l2 p …, l1; RC {abp

o }
l3 b l0, l2; RU {abp

o }
l4 ¬ f …, l2; RC {abp

o , ab¬ f
p }

l5 f …, l3; RC {abp
o , ab f

b }
It is easy to see that in view of the lines l4 and l5 we can derive

l6 abp
o ∨̌ ab¬ f

p ∨̌ ab f
b l4, l5; RD ∅

In view of line l6 all our conditional derivations on lines l2, . . . , l5 are marked.

Moreover, in view of the proof fragment: Γ �LLL p ⊃̌
(
¬̌ f ∨̌ ab¬̌ f

p

)
and Γ �LLL

b ⊃̌
(

f ∨̌ ab f
b

)
. Since p ⊃ b ∈ Γ , Γ �LLL p ⊃̌

(
f ∨̌ ab f

b

)
. By simple manipula-

tions, Γ �LLL ¬̌ p ∨̌ ab¬̌ f
p ∨̌ ab f

b . Hence, we can produce the line

l7 ¬̌ p . . .
{
ab¬̌ f

p , ab f
b

}

In sum, the conflict between f and ¬ f is not isolated. Note that in view of line l6
all the conditional inferences, including line l2 with p, are marked. This shows that

20 Both, Joke Meheus and Erik Weber independently suggested this in a conversation.
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Fig. 2.6 Prakken’s problem:
abstract representation

a1 b1

a2 b2

...
...

an − 1 bm − 1

an bm⊥
(a)

a1 b1

a2 b2

...
...

an − 1 bm − 1

an bm

ab a 2
a 1

ab a n

a n − 1

ab b2
b1

ab bm
bm − 1

⊥
(b)

the conflict between f and ¬ f spreads by effecting the defeasible inferences at lines
l2 and l3 as well, since the corresponding abnormalities are involved in the minimal
Dab-formula. Moreover, other conflicts are derivable such as the one between p and
¬̌ p (however, the corresponding lines are marked).

Let us conclude this discussion with various remarks.

1. In a more abstract phrasing the problem Prakken points out for plausible rea-
soning (that makes use of rules for which contraposition is available) is as follows.
Suppose we have two sequences of rules a1 → a2 → · · · → an and b1 → b2 →
· · · → bm such that (i) � ¬(an ∧ bm) and (ii) we have both a1 and b1 (see Fig. 2.6a).
Due to the availability of contraposition we can construct an argument against any of
the ai (where 1 < i ∗ n): b1 → b2 → · · · → bm → ¬an → ¬an−1 → . . . → ¬ai .
Hence, instead of the obvious conflict in an resp. bm we suddenly end up with a
conflict in each ai . Since the same holds for all bi (where 1 < i ∗ m) and since we
are interested in a consistent consequence set we cannot—in view of symmetry—
conclude any ai nor any bi (given a1 and b1).

We have shown by means of an example that whenever we have analogous
sequences of conditional inferences in ALs (see Fig. 2.6b) we can (i) construct con-
ditional arguments for each ¬̌ ai and (ii) derive a Dab-formula which contains all
the abnormalities in the conditions in the sequences:

Dab
({

aba2
a1

, . . . aban
an−1

, abb2
b1

, . . . , abbm
bm−1

})
(2.5)

In case this Dab-formula is minimal and there are no alternative ways to obtain an
inference for ai , the conditional inference for ai is marked and hence ai is not a
consequence. In this sense, Prakken’s scenario is reproduced in ALs.

2. However, in many concrete ALs the problem is nevertheless avoided. Take for
instance the ALs for default inferencing in Chap. 6. A default rule is represented by
a � b where � is axiomatized by means of the KLM-properties. Moreover, the logic
models a defeasible Modus Ponens as follows: from A and A � B infer B unless

http://dx.doi.org/10.1007/978-3-319-00792-2_6
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we have •A. The latter, •A, expresses that the given circumstances are unusual for
the proposition A which may be witnessed by the truth of some C that is less normal
than A (this can be expressed by (A ∨ C) � ¬C in view of the KLM-properties).21

A proof for Prakken’s example may look as follows:

1 o � p PREM ∅
2 p ⊃ b PREM ∅
3 p � ¬ f PREM ∅
4 b � f PREM ∅
5 o PREM ∅

126 p 1,5; RC {•o}
127 b 2,6; RU {•o}
128 ¬ f 3,6; RC {•o, •p}
129 f 4,7; RC {•o, •b}
10 •o ∨̌ •p ∨̌ •b 8,9; RD ∅

So far it seems as if the problem is reproduced since in view of the minimal
Dab-formula at line 12 our conditional inferences at lines 6–9 are marked.

The way the problem is avoided in this system is that • is ‘inherited’ along �-
sequences: if A � B and •A then •B. Indeed, according to the KLM-properties,
if A � B then B is at least as normal as A. Hence, if A is excepted (i.e., we have
an abnormal situation relative to A) then B is excepted as well (see Fig. 2.5c for an
illustration: the dotted line indicates the ‘inheritance’). Thus, the Dab-formula at line
12 is not minimal, but can be shortened to •p ∨̌ •b (and if we accept that p � b we
can further shorten it to •b). In any case this will lead to the unmarking of lines 6
and 7 (resp. also to the unmarking of line 8).

We can conclude from this that although—in principle—the fact that contrapo-
sition is available for the conditional inferences in adaptive logics can cause the
problem pointed out by Prakken, in concrete ALs it may nevertheless be avoided due
to specific properties of the lower limit logic that may lead to the shortening of the
Dab-formula (2.5).

3. Although we do get the “right” consequences in the example above (such
as p), some may still argue that some of the inferences for which the logic allows
(irrespective whether the corresponding lines are marked) are based on contrapositing
default inferencing. E.g., the logic allows for the following inference:

13 ¬p 2–4; RU {•p, •b}
Of course, given our discussion above, this line gets marked. However, the mere

fact that the logic allows for the inference may for some already be counter-intuitive.
In view of this it is a research challenge to see whether the standard format for
ALs can be adjusted in a way that allows for defeasible inferences that cannot be
contraposed.

21 For a detailed technical definition of the system see Chap. 6. An intuitive demonstration is enough
for the purpose of the current section.

http://dx.doi.org/10.1007/978-3-319-00792-2_6
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4. More research needs to be done on the question in which application con-
texts contraposition is a desired property of defeasible inferences. Caminada did an
important step in clarifying this issue in [29]: it seems very plausible that in many
contexts of epistemic reasoning contraposition is applicable while in many contexts
of constitutive reasoning it is not. Nevertheless, examples such as the one by Prakken
discussed above may indicate that the demarcation is not that smooth (see also [31]).

2.6 Some Properties of ALs in Standard Format

One of the merits of the standard format for ALs is that it comes along with many
nice properties. For any concrete logic formulated in this format, these properties do
not have to be proven since they have been shown generically to hold for any AL in
standard format. Let me introduce some of these properties in this section. Later, in
Chap. 4, I will point out some more specific properties related to premise sets. Most
of the properties that are presented in this section will be shown to hold for a more
general setting in Chap. 5. There and in the respective Appendix the reader can find
meta-proofs.

2.6.1 Properties of the Adaptive Consequence Relations

The first result shows that the semantic and the syntactic consequence relations
define identical relations. Indeed, by Theorem 2.4.3 and Theorem 2.4.9 we have the
following soundness and completeness result for both adaptive strategies:

Theorem 2.6.1. (Soundness and Completeness of AL). Where Γ ⊆ W: Γ �AL A
iff Γ �AL A.

Soundness even holds for premise sets with “checked connectives”22:

Theorem 2.6.2. Where Γ ⊆ W+: Γ �AL A implies Γ �AL A.

The completeness doesn’t hold for premise sets with “checked connectives”, as
is shown in Sect. 2.7.

By Definition 2.4.4, final derivability concerns finite stages of an adaptive proof.
However, it is important to notice that it is essential for the minimal abnormality
strategy that the extensions of the proof referred to in Definition 2.4.4ii may be
infinite. Indeed, as demonstrated in [1, p. 229], there are premise sets for which it is
true that for every way to finally derive some A at some line i there is an extension of
the proof that leads to the marking of line i such that only an infinite further extension
leads to the unmarking of line i .

22 We prove the corresponding theorem for the generalized standard format in Chap. 5 (see Corollary
5.4.3).

http://dx.doi.org/10.1007/978-3-319-00792-2_4
http://dx.doi.org/10.1007/978-3-319-00792-2_5
http://dx.doi.org/10.1007/978-3-319-00792-2_5
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Although final derivability does not ensure the stability of a line i at which some
A is finally derived with respect to its marking, for infinite proofs it is guaranteed
that there is a stage from which on line i is unmarked and remains so.

Theorem 2.6.3. Where Γ ⊆ W: Γ �AL A iff A is derivable at an unmarked line
of an AL-proof from Γ that is stable with respect to that line.23

The next theorem states certain properties concerning the strength of the adaptive
consequence relation. It shows that AL is a reflexive and supraclassical (with respect
to the enriched language) strengthening of LLL. Moreover, the ‘bolder’ minimal
abnormality strategy leads indeed always to at least as many consequences (w.r.t. ↓)
as the reliability strategy.

Theorem 2.6.4. Where Γ ⊆ W+:

(i) Γ ⊆ CnAL (Γ ) (Reflexivity)
(ii) CnL+

CL (Γ ) ⊆ CnL+
AL (Γ ) (Supraclassicality)

(iii) CnLLL (Γ ) ⊆ CnALr (Γ ) ⊆ CnALm (Γ ).

The next theorem states some closure properties of the adaptive consequence set.
The central result is that the adaptive consequences are a fixed point. If the AL is
again applied to its own consequence set of some premise set Γ , nothing new will
be derived. This is a desirable property. Suppose the idealized case that our detective
at the end of the day reached all the final conclusions Γ ′ based on some premises
Γ . It would be rather strange if next morning the same reasoning applied to Γ ∪ Γ ′
would lead her to new conclusions since she did not gather any new evidence. If the
fixed point property would not hold she might never reach a final set of conclusions
for her case.

Theorem 2.6.5. Where Γ ⊆ W:

(i) CnLLL (CnAL (Γ )) = CnAL (Γ ) (Redundancy of LLL with respect to AL)
(ii) CnAL (CnLLL (Γ )) = CnAL (Γ ).

(iii) MAL (Γ ) = MAL (CnAL (Γ )) and hence CnAL (Γ ) = CnAL (CnAL (Γ )).
(Fixed Point/Idempotence)

Beside LLL that defines the monotonic core and the lower limit of the adaptive
strengthening, there is also an upper limit logic ULL. The upper limit logic explicates
the standard of normality of an AL. An AL can be seen as interpreting a premise
set in terms of its upper limit logic “as much as possible”. For premise sets that do
not give rise to abnormalities, i.e. premise sets Γ for which no Dab-formulas are
in the LLL-consequence set of Γ , the AL-consequences are identical to the ULL-
consequences. Such premise sets are called normal. This can be defined for instance
in the following way: Γ is normal iff U (Γ ) = ∅. Evidently, given a normal premise

23 A proof from Γ is stable with respect to a line l iff the status of the marking (marked vs. unmarked)
of line l remains the same for every possible extension of the proof. This is shown in Appendix B
for the more generic setting in which n ALs are sequentially combined (see Corollary B.2.3 ): ALs
in standard format are a border case in which n = 1.
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Fig. 2.7 The relationship between LLL, AL, and ULL

set, we expect an AL to realize its standard of normality. The upper limit logic is
defined as follows:

Definition 2.6.1. Where Ω¬̌ =df
{ ¬̌ A | A ∈ Ω

}
, ULL is characterized by the

following consequence relation:

CnL+
ULL(Γ ) =df CnL+

LLL

(
Γ ∪ Ω¬̌)

CnLULL =df W ≥ CnL+
LLL

(
Γ ∪ Ω¬̌)

Moreover, MULL (Γ ) =df MLLL

(
Γ ∪ Ω¬̌

)
.

The following results show that ULL is indeed an upper limit to AL.

Theorem 2.6.6. Where Γ ⊆ W+:

(i) CnAL (Γ ) ⊆ CnULL (Γ ).
(ii) MULL (Γ ) ⊆ MAL (Γ ).

(iii) If Γ is normal, then CnAL (Γ ) = CnULL (Γ ) and MAL (Γ ) = MULL (Γ ).

Altogether we have (see also the illustration in Fig. 2.7),

Corollary 2.6.1. Where Γ ⊆ W+:

(i) CnLLL (Γ ) ⊆ CnALr (Γ ) ⊆ CnALm (Γ ) ⊆ CnULL (Γ )

(ii) MULL (Γ ) ⊆ MALm (Γ ) ⊆ MALr (Γ ) ⊆ MLLL (Γ )

The properties featured in the next theorem are “cautious” weakenings of prop-
erties that often characterize monotonic logics.
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Theorem 2.6.7. Where Γ, Γ ′ ⊆ W:

(i) If Γ ′ ⊆ CnAL (Γ ) then CnAL
(
Γ ∪ Γ ′) ⊆ CnAL (Γ ). (Cautious Cut / Cumu-

lative Transitivity)
(ii) If Γ ′ ⊆ CnAL (Γ ) then CnAL (Γ ) ⊆ CnAL

(
Γ ∪ Γ ′). (Cautious Monotonicity

/ Cumulative Monotonicity)
(iii) If Γ ′ ⊆ CnAL (Γ ), then CnAL

(
Γ ∪ Γ ′) = CnAL (Γ ). (Cumulative Indiffer-

ence / Cumulativity)

Cumulative indifference is a strengthening of the Fixed-Point property since it
entails the latter (given the reflexivity of AL).24 Moreover, it is a very desirable
property itself. Suppose the case on which our detective is working is of a very
complicated nature. Let the given evidence be Γ . Suppose further that in the evening
she arrives at some—but due to the complicated nature of the case not all—final
conclusions Γ ′. That is to say, for every A ∈ Γ ′ she is able to guarantee that no
further analysis of Γ will lead to a withdrawal of A. For the adaptive proof this
means A is finally derivable. Cumulative indifference guarantees that in the next
morning she can reason on, on the basis of Γ ∪ Γ ′, i.e. she can rely on the insights
she won the day before. This has the advantage that, technically speaking, once she
established that some A is finally derivable, she doesn’t have to keep track of the
maybe very complicated conditions that enabled her to arrive at A, but rather she
may introduce A as a premise in an adaptive proof from Γ ∪ Γ ′.

The nonmonotonicity of ALs can easily be demonstrated by the case of our detec-
tive that was introduced in Sect. 2.4. Let in the following x ∈ {r, m}. Note that

Γ1 ∪ {¬b} �CL◦x c.

However, enhancing our premise set by {¬a}, we have

Γ1 ∪ {¬b} ∪ {¬a} �CL◦x c.

Also Cut/Transitivity is a property that does not hold for ALs in general. For instance
we have !a �CL◦x c ∨ !a and c ∨ !a �CL◦x c. However, !a �CL◦x c.

More generally the following can be proven.

Theorem 2.6.8. 25 Where Γ ⊆ W: If CnLLL (Γ ) ↓ CnAL (Γ ), then

(i) AL is nonmonotonic, and
(ii) AL is non-transitive.

There are other properties that are often discussed in the context of defeasible rea-
soning and nonmonotonic logics: Rational Monotonicity and Rational Distributivity.
The next section will demonstrate that these properties are not generically validated
in ALs. At the same time it will demonstrate that this is rather an advantage of ALs
since these properties are not without critical counter-examples.

24 The proof is trivial and left to the reader.
25 This is shown in [2].
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2.6.2 Some Remarks on Computational Complexity

In this section I offer only some brief remarks on the computational complexity
of ALs rather than providing a detailed survey of the given results. It would take
significant space to spell out the technical preliminaries of complexity studies in
the realm of the arithmetic hierarchy and hence lead us too far off the main course
of the present study. I will instead provide pointers to the relevant literature for the
interested reader.

While for most well-known formal accounts for nonmonotonic and defeasible
reasoning there are thorough studies investigating complexity-related issues, such
studies are sparse for ALs. Only rather recently some key results have been published.
There is the critical study by Horsten and Welch [32] which caused two replies by
adaptive logicians: [33] and [34]. Horsten and Welsh demonstrate that for some
premise sets the consequence relation of the inconsistency-adaptive logic CLuNr

is Σ0
3 -hard in the arithmetic hierarchy. They argue that in view of this result the

usefulness of ALs as a tool that explicates defeasible reasoning is put into question.
In the technical study [33] Verdée proves that the minimal abnormality variant of the
same inconsistency-adaptive logic CLuNm falls into an even higher complexity class
within the analytic hierarchy (he proves Π1

1 -completeness). Nevertheless, in a reply
to the philosophical worries of Horsten and Welsh in [34] Batens et. al argue that such
a high complexity class is to be expected from any serious formal attempt to capture
the complexity of actual defeasible reasoning. It is not surprising then that many
formal systems for defeasible reasoning fall in similar complexity classes (see e.g.,
[35, 36] for circumscription, [37, 38] for (generalized) closed world assumption).

Recently, Odintsov and Speranski contributed one paper [39] studying the com-
plexity of some inconsistency-adaptive logics where they reaffirm and generalize
some of the previous results. Finally, there is a forthcoming study [40] by them
where these complexity results for the CLuN-based ALs are shown to hold gener-
ally for ALs in the standard format. For instance, the complexity upper bound Σ0

3 -
for the reliability strategy and Π1

1 -for the minimal abnormality strategy are general-
ized for ALs in the standard format. The authors also investigate several interesting
special cases (such as the case where Φ(Γ ) is finite which is relevant for instance
for our study of sequential combinations of ALs in Sect. 3.2.2).

2.6.3 Excursus on the Rational Properties

2.6.3.1 Rational Monotonicity

Besides cautious monotonicity there is another, in comparison stronger, weakening
of monotonicity: rational monotonicity.

If A ∈ CnL (Γ ) and A /∈ CnL (Γ ∪ {B}) , then ¬̌ B ∈ CnL (Γ ) (RM)

http://dx.doi.org/10.1007/978-3-319-00792-2_3
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The idea behind Rational Monotonicity is that, if adding B to the premise set Γ leads
to nonmonotonicity, then ¬̌ B should be a consequence of Γ .

Rational Monotonicity is not a generic property of the consequence relation of
ALs in standard format. Counter-examples are easily found. Rational Monotonicity,
although an intuitive property in many cases, has also been criticized. In order to
demonstrate the criticism and the fact that ALs do not in general validate Rational
Monotonicity we “translate” an example by Stalnaker (see [41]) into the language
of CL◦. Suppose some reliable though not infallible source S1 tells us that

• Bizet is a French composer,— ◦ fB ;
• Satie is a French composer,— ◦ fS

• Verdi is an Italian composer,— ◦iV .

Another reliable though not infallible source S2 tells us that

• Verdi and Bizet are compatriots,— ◦cV,B .

According to yet another reliable though not infallible source S3,

• Verdi and Satie are compatriots,— ◦cV,S .

Obviously the following is valid: cV,B ⊃ (¬iV ∨ ¬ fB) and cV,S ⊃ (¬iV ∨ ¬ fS).
Let our premise set ΓRM comprise sources S1 and S2 and thus be

ΓRM = {◦ fB, ◦ fS, ◦iV , ◦cV,B , cV,B ⊃ (¬iV ∨ ¬ fB), cV,S ⊃ (¬iV ∨ ¬ fS)
}
.

The following proof fragment demonstrates how fS can be derived from ΓRM.

1 ◦ fB PREM ∅
2 ◦ fS PREM ∅
3 ◦iV PREM ∅
4 ◦cV,B PREM ∅
5 cV,B ⊃ (¬iV ∨ ¬ fB) PREM ∅
6 cV,S ⊃ (¬iV ∨ ¬ fS) PREM ∅
7 cV,B ⊃ (!iV ∨ ! fB) 1, 3, 5; RU ∅
8 !cV,B ∨̌ !iV ∨̌ ! fB 4, 7; RU ∅
9 fS 2; RC

{! fS
}

The minimal choice sets for ΓRM are Φ(ΓRM) = {{!cV,B}, {!iV }, {! fB}} and the
set of unreliable abnormalities is U (ΓRM) = {!cV,B, !iV , ! fB

}
. Hence,

ΓRM �CL◦m fS, and (2.6)

ΓRM �CL◦r fS . (2.7)

Note further that there is a minimal abnormal CL◦-model M of ΓRM such that
Ab(M) = {!iV } and M |= ◦cV,S . Hence
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ΓRM �CL◦m ¬̌ ◦ cV,S (2.8)

ΓRM �CL◦r ¬̌ ◦ cV,S (2.9)

Suppose now we take into account our source S3 and add ◦cV,S to our premise
set ΓRM. In this case we add the following lines to a proof from ΓRM ∪ {◦cV,S}:

10 ◦cV,S PREM ∅
11 cV,S ⊃ (!iV ∨ ! fS

)
2, 3, 6; RU ∅

12 !cV,S ∨̌ !iV ∨̌ ! fS 10, 11; RU ∅
Note that at line 12 we have the following minimal choice sets of ΓRM ∪ {◦cV,S},

Φ12
(
ΓRM ∪ {◦cV,S}) = {{!cV,B, !cV,S}, {!cV,B , ! fS}, {!iV }, {!cV,S, ! fB}}.

Moreover, the set of unreliable abnormalities is

U12
(
ΓRM ∪ {◦cV,S}) = {!cV,B, !cV,S, ! fS, !iV , ! fB

}
.

Hence, at this stage of the proof line 9 is marked according to both strategies. It is
easy to see that there is no extension of the proof that leads to the unmarking of
line 9. Since there is no other way to derive fS we have

ΓRM ∪ {◦cV,S} �CL◦m fS, and (2.10)

ΓRM ∪ {◦cV,S} �CL◦r fS . (2.11)

Altogether this shows that Rational Monotonicity is not valid in ALs. For reliabil-
ity this is demonstrated by (2.7), (2.9) and (2.11), for minimal abnormality strategy
it is demonstrated by (2.6), (2.8) and (2.10). As has been argued by Stalnaker, this is
also the intuitive behavior.

2.6.3.2 Rational Distributivity

Similarly, ALs do not in general validate Rational Distributivity:

If A /∈ CnL (Γ ∪ {B}) and A /∈ CnL (Γ ∪ {C}) , then A /∈ CnL
(
Γ ∪ {B ∨̌ C})

(RD)
Consider the following example. A usually reliable, though not infallible source

S1 tells us that

• Peter had 6 points at the exam,— ◦p6;
• Sue had 5 points at the exam,— ◦s5;
• Anne had 4 points at the exam,— ◦a4.

Another also reliable but not infallible source S2 informs us that

• Peter was the worst in the exam,— ◦pw.
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Now suppose that yet another reliable but not infallible source S3 states that

• Anne was the best in the exam,— ◦ab.

Obviously we have pw ⊃ (¬p6 ∨ (¬s5 ∧ ¬a4)
)

and ab ⊃ (¬a4 ∨ (¬p6 ∧ ¬s5)
)
.

Let ΓRD comprise only source S1. Hence,

ΓRD = {◦p6, ◦s5, ◦a4, pw ⊃ (¬p6 ∨ (¬s5 ∧ ¬a4)
)
, ab ⊃ (¬a4 ∨ (¬p6 ∧ ¬s5)

)}

The following proof fragment demonstrates that s5 is not derivable from ΓRD ∪
{◦pw}:

1 ◦p6 PREM ∅
2 ◦s5 PREM ∅
3 ◦a4 PREM ∅
4 ◦pw PREM ∅
5 pw ⊃ (¬p6 ∨ (¬s5 ∧ ¬a4)) PREM ∅
6 !pw ∨ !p6 ∨ (!s5 ∧ !a4) 1, 2, 3, 4, 5; RU ∅
7 !pw ∨̌ !p6 ∨̌ !s5 6; RU ∅
8 !pw ∨̌ !p6 ∨̌ !a4 6; RU ∅

79 s5 2; RC
{!s5

}

Note that the minimal choice sets at this stage of the proof are Φ9(ΓRD∪{◦pw}) =
{{!pw}, {!p6}, {!s5, !a4}}. It is easy to see that Φ(ΓRD ∪ {◦pw}) = Φ9(ΓRD ∪ {◦pw}).
Since the only way to derive s5 is on the condition {!s5}, s5 is not derivable. Thus,

ΓRD ∪ {◦pw} �CL◦m s5 (2.12)

Similarly as above, U (ΓRD ∪ {◦pw}) = {!pw, !p6, !a4, !s5} and hence

ΓRD ∪ {◦pw} �CL◦r s5 (2.13)

Analogously it can be shown that

ΓRD ∪ {◦ab} �CL◦m s5 (2.14)

ΓRD ∪ {◦ab} �CL◦r s5 (2.15)

The following proof fragment demonstrates that s5 is derivable from ΓRD ∪
{◦pw ∨̌ ◦ab} for both adaptive strategies and hence that Rational Distributivity does
not in general hold for ALs.

1 ◦p6 PREM ∅
2 ◦s5 PREM ∅
3 ◦a4 PREM ∅
4 ◦ab ∨̌ ◦pw PREM ∅
5 ab ⊃ (¬a4 ∨ (¬p6 ∧ ¬s5)) PREM ∅
6 pw ⊃ (¬p6 ∨ (¬s5 ∧ ¬a4)) PREM ∅
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7 !ab ∨ !a4 ∨ (!p6 ∧ !s5) ∨ !pw ∨
!p6 ∨ (!s5 ∧ !a4)

1, 2, 3, 4, 5, 6; RU ∅

8 !ab ∨̌ !a4 ∨̌ !pw ∨̌ !p6 7; RU ∅
9 s5 2; RC

{!s5
}

Note that Φ9(ΓRD ∪ {◦pw ∨̌ ◦ab}) = {{!ab}, {!a4}, {!pw}, {!p6}}. Again, it is
easy to show that Φ(ΓRD ∪ {◦pw ∨̌ ◦ab}) = Φ9(ΓRD ∪ {◦pw ∨̌ ◦ab}). Moreover
U (ΓRD ∪ {◦pw ∨̌ ◦ab}) = {!ab, !pw, !a4, !p6}. Hence, line 9 is finally derived.
Thus,

ΓRD ∪ {◦pw ∨̌ ◦ab} �CL◦m s5 (2.16)

ΓRD ∪ {◦pw ∨̌ ◦ab} �CL◦r s5 (2.17)

Note that (2.12), (2.14) and (2.16) show that Rational Distributivity does not
hold for CLm◦ and hence that it does not in general hold for ALs with minimal
abnormality strategy. Moreover, (2.13), (2.15) and (2.17) show that it also does not
hold for CLm◦ . Hence Rational Distributivity does not in general hold for ALs that
employ the reliability strategy. The example shows that in some cases this is as
desired. Although Rational Distributivity holds for a great variety of examples, there
are some where it fails. In order for ALs to be a generic framework for defeasible
reasoning it is desirable that ALs provide means to handle the latter cases in an
intuitive way.

The fact that properties such as Rational Monotonicity and Rational Distributivity
do no in general hold for ALs does not mean that ALs may not be used in order to
characterize reasoning forms that explicate such properties. It only means that the
characterization has to be realized under a translation (see Sect. 4.4).

2.7 The Necessity of Superimposing Classical Connectives

The reader may have the impression that, given a supraclassical lower limit logic
LLL, the superimposing of the classical “checked” connectives is redundant.26 Since
all the ALs introduced in the following parts of this book are based on supraclassical
lower limit logics it is important to avoid this confusion. For instance, some may think
that Dab-formulas Dab(Δ) = A1 ∨̌ . . . ∨̌ An can be simply expressed by A1∨. . .∨An

where ∨ is the classical disjunction that is expressible in LLL (due to it being
supraclassical). This impression may be further strengthened by the fact that in many
papers that feature supraclassical lower limit logics checked symbols do not occur.

I was convinced of the redundancy of the checked connectives in cases in which
LLL is supraclassical until I encountered the following example. It can be presented
in a schematic and abstract form. We only need to presuppose that LLL is supraclassi-
cal and that abnormalities are denoted by !A and formulated in L. Let {!A1, !A2, . . .}

26 See Sect. 2.2.

http://dx.doi.org/10.1007/978-3-319-00792-2_4
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be the set of all abnormalities in Ω . Let our premise set be Γ = Γ1 ∪ Γ2, where

Γ1 = {!Ai ∨ !A j | 1 ∗ i < j
}

Γ2 =
⎧
⎨

⎩

∧

1∗i< j∗n

(!Ai ∨ !A j ) ⊃ (A ∨ !An−1) | 1 < n

⎫
⎬

⎭

Note that Φ(Γ ) = {ϕi | i ∈ N} where ϕi = Ω \{!Ai }. Moreover Γ �LLL A∨!Ai

for every i ∈ N. Let M be a minimal abnormal model of Γ . By Theorem 2.4.6, there
is a ϕi such that Ab(M) = ϕi . Hence M |= ¬!Ai . Since M |= A ∨ !Ai , M |= A.
Hence Γ �ALm A.

In the following I will show that if formulas such as !A1 ∨ !A2 are treated as Dab-
formulas then the consequence set is not complete with respect to the semantics.

The reader is warned: In the following discussion I will incorrectly(!) treat
formulas of the type !A1 ∨ . . . ∨ !An as Dab-formulas.

The problem is the following: (†) A cannot be produced as the second element
of a finite line i such that at some finite stage s line i is unmarked. In other words,
at every finite stage s all conditional derivations of A are marked. Definition 2.4.4
requires (a) that A is the second element of a line i and (b) that there is a finite stage s
at which line i is unmarked. Hence, A is not finally derived in any ALm-proof from
Γ and thus Γ �ALm A. Thus, ALm is not complete for premise sets that contain
checked connectives.

To illustrate (†) let me go a bit through a sample proof from Γ 27:

1 !A1 ∨ !A2 PREM ∅
2 (!A1 ∨ !A2) ⊃ (A ∨ !A1) PREM ∅
3 A ∨ !A1 1, 2; RU ∅

14 A 3; RC
{!A1

}

5 !A1 ∨ !A3 PREM ∅
6 !A2 ∨ !A3 PREM ∅
7

∧
1∗i< j∗3(!Ai ∨ !A j ) ⊃ (A ∨ !A2) PREM ∅

8 A ∨ !A2 1, 5, 6, 7; RU ∅
69 A 8; RC

{!A2
}

Note that at line 4 the minimal choice sets are {{!A1}, {!A2}}. Since there is a
minimal choice set that intersects with all conditions on which A has been derived
so far, namely {!A1} line 4 is marked.

27 This example is formulated for the minimal abnormality strategy. A similar example was presented
by Frederik Van De Putte in [42].
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An analogous argument applies to line 9. The minimal choice sets are now
{{!A1, !A2}, {!A1, !A3}, {!A2, !A3}}. Again, the choice set {!A1, !A2} intersects with
all the conditions of lines at which A has been derived, namely {!A1} and {!A2}.

The problem is: it is only possible to derive A on the condition {!An} at some stage
s if all !Ai∨!A j ∈ Γ where 1 ∗ i, j ∗ n + 1 have been introduced in the proof. But
then some ϕn ⊇ {!A1, . . . , !An} is a minimal choice set in Φs(Γ ) and hence all the
conditions of lines at which A has been introduced are marked since they intersect
with ϕn .

This shows that at every finite stage of the proof every line that features A as
second element is marked. By Definition 2.4.4, A is not finally derived and hence
Γ �ALm A.

When I confronted Diderik Batens with this “problem” and the proof fragment
above, he reminded me of the role of the superimposed “checked” classical con-
nectives.28 Recall that (a) premises are supposed to be formulated in L, and (b)
Dab-formulas Dab(Δ) are defined by

∨̌
Δ. As a consequence, lines 4 and 9 are

unmarked in the proof above since for any stage s in the proof fragment above,
Φs(Γ ) = {∅}. Indeed, A is finally derived at line 4. In order to see this suppose line
4 is marked in an extension of the proof above. We extend the proof further in such
a way that all formulas in Γ1 are derived by PREM and that A is derived on any
condition !Ai where i ∈ N. It is easy to see that (i) there is such an extension, (ii)
that line 4 is unmarked at this stage, and (iii) that the marking remains stable from
this stage on.

Of course, given a supraclassical LLL, whenever
∨

Δ is produced at line l on
the empty condition in an AL-proof from some premise set Γ ′ then also Dab(Δ) is
derivable on the empty condition, say on the next line l ′. Hence, adaptive logicians
often conventionally formulate object-level proofs in such a way that the marking is
“shortcut”: the marking is as if at line l the Dab-formula Dab(Δ) has been derived and
the derivation of the actual Dab-formula Dab(Δ) is omitted in the presented proof.
By treating formulas of the type

∨
Δ as Dab-formulas, no ∨̌ connectives occur in the

proofs which simplifies the presentation. In most cases, unlike the example above,
this procedure is harmless in the sense that it produces the correct consequences.
Obviously such proofs can be translated in a straightforward way into formally
correct object-level proofs (by just adding a line l ′ featuring Dab(Δ) on the empty
condition, whenever at a line l,

∨
Δ has been derived on the empty condition).

I will follow this convention throughout most of the following parts of this book.
Finally, it should be mentioned that AL is always sound and complete for any

premise set Γ ⊆ W+ if we first close Γ under LLL+:

Theorem 2.7.1. Where Γ = CnL+
LLL (Γ ): Γ �AL A iff Γ �AL A.

Proof. “⇐”: this follows by Theorem 2.6.2.

28 Indeed, he had already written a draft for a section for his forthcoming book (see [2, Part 4]) that
discusses this problem with a similar example.
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“⇒”: Let Γ �ALr A. Hence, for all M ∈ MALr (Γ ), M |= A. Hence, for all
M ∈ MLLL (Γ ) for which Ab(M) ⊆ U (Γ ), M |= A. Thus, Γ ∪(Ω \U (Γ ))¬̌ �LLL
A. By the compactness of LLL there is a finite Δ ⊆ Ω \ U (Γ ) such that
Γ ∪ Δ¬̌ �LLL A. Thus, Γ �LLL A ∨̌ Dab(Δ). By the completeness of LLL,
A ∨̌ Dab(Δ) ∈ CnL+

LLL(Γ ) and thus also ¬̌ A⊃̌Dab(Δ) ∈ CnL+
LLL(Γ ). We now prove

A in an ALr-proof from Γ = CnL+
LLL(Γ ) as follows: We introduce ¬̌ A⊃̌Dab(Δ)

on line 1 by PREM. Then we derive A on the condition Δ by RC on line 2. Since
no Dab-formulas are derived at this stage, line 2 is unmarked. Suppose line 2 is
marked in an extension of the proof at some stage s. For each minimal Dab-formula
Θ at stage s for which Δ ≥ Θ 
= ∅ there is a Θ ′ ↓ Θ such that Dab(Θ ′) is
a minimal Dab-consequence of CnL+

LLL(Γ ) and Θ ′ ≥ Δ = ∅. This holds since

Δ ⊆ Ω \ U (Γ ) = Ω \ U (CnL+
LLL(Γ )). We extend the proof by introducing

Dab(Θ ′) for all these Θ’s. Let the resulting stage be s′. Obviously, by the con-
struction, Us′(Γ ) ≥ Δ = ∅.

The proof for minimal abnormality is similar and left to the reader. �

By Theorem 2.6.1 and Theorem 2.7.1 we immediately get:

Corollary 2.7.1. Where Γ ⊆ W or Γ = CnL+
LLL (Γ ): Γ �AL A iff Γ �AL A.

2.8 Normal Selections: A ‘Credulous’ Strategy that is not in the
Standard Format

The difference between the two standard strategies manifests itself in the fact that
one, reliability, models a more ‘cautious’ and the other one, minimal abnormality,
a ‘bolder’ style of defeasible reasoning. That is to say, the consequence relation for
minimal abnormality is in many cases stronger than the one for reliability. However,
there is also a more rigorous way of distinguishing between credulous and skeptical
reasoning in the context of logics that model defeasible reasoning which can be found
(under different names) in various well-known systems such as default logic, inheri-
tance networks, abstract argumentation, Input/Output logic, the maximal consistent
subset approach, etc.

Join Approach A is a skeptical consequence of Γ iff A is valid in/implied by/etc.
all models/extensions/maximal consistent subsets/etc. of Γ

Meet Approach A is a credulous consequence of Γ iff A is valid in/implied by/etc.
some interpretation/extension/maximal consistent subset/etc. of Γ .

Obviously, what is modeled by ALs in standard format (such as it is currently defined)
is the former, skeptical notion. However, there is also an adaptive strategy that is in
the spirit of the second, credulous notion.

According to the normal selections strategy A is a semantic consequence of Γ

iff it is valid in a specific set of selected models of Γ . The latter sets are equiva-
lence classes of LLL-models that have the same abnormal part. Where M ∼ M ′
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Fig. 2.8 The quotient
structure MALm (Γ ) /∼

Table 2.2 Equivalence class [M]∼ ∈ MALm (Γ ) /∼ represents a set of models

M1 M2 M3 M4 M5 M6

M |= ¬a, b, a,¬b, ¬a,¬b, ¬a, b, a,¬b, ¬a,¬b,

c, n c, n ¬c, n c,¬n c,¬n ¬c,¬n
Ab(M) = {!a} {!b} {!a, !b} {!a, !n} {!b, !n} {!a, !b, !n}

iff Ab(M) = Ab(M ′), MALm (Γ ) /∼ is the quotient structure defined by the
equivalence relation ∼ on the set of all ALm-models of Γ ,29 (see Fig. 2.8) and
[M]∼ = {M ′ ∈ MALm (Γ ) | M ∼ M ′} we can define

Definition 2.8.1. Γ �ALn A iff there is a [M]∼ ∈ MALm (Γ ) /∼ such that for all
M ′ ∈ [M]∼, M ′ |= A.

Alternatively this can be expressed by: Γ �ALn A iff there is a M ∈ MALm (Γ )

such that for all M ′ ∈ MLLL (Γ ) for which Ab(M ′) = Ab(M), M ′ |= A (Fig. 2.8).
Each equivalence class [M]∼ ∈ MALm (Γ ) /∼ represents a set of models that

interpret the premise set Γ “as normally as possible”. In each equivalence class this
is realized in a different way. In our example M1 and M2 (see Table 2.2) belong to
different equivalence classes. For instance a model M7 for which Ab(M7) = {!a}
belongs to the same equivalence class as M1. We have for instance Γ1 �CL◦n a since
for all M ∈ [M2]∼, M |= a.

Each equivalence class offers a specific minimally abnormal interpretation of
the given Dab-consequences. If we find one interpretation such that A is validated
by all models that share this interpretation, A is considered a consequence. This
distinguishes the normal selections strategy from both the reliability and the mini-
mal abnormality strategy where A had to be valid in all models that offer sufficiently
normal interpretations (so, the reliable resp. the minimally abnormal models). Thus,
this makes the normal selections strategy more similar to the ‘meet’-approach that is
characteristic for credulous consequence relations, while the strategies of the stan-

29 The fact that ∼ is a equivalence relation on MALm (Γ ) can be easily shown and is left to the
reader.
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dard format are more similar to the ‘join’-approach behind skeptical consequence
relations. For instance a is valid in all models that have the (minimally) abnormal
part {!b} and hence it is a consequence according to the normal selections strategy.
Note also that Γ 
�CL◦m A, i.e. a is not a consequence according to the mini-
mal abnormality strategy. For instance the minimally abnormal model M1 does not
verify a.

With Theorem 2.4.6 we immediately get:

Theorem 2.8.1. Γ �ALn A iff there is a ϕ ∈ Φ(Γ ) such that for all M ∈ {M ′ ∈
MLLL (Γ ) | Ab(M ′) = ϕ}, M |= A.

Similarly, in the proof theory the idea is, that if A is derivable on an assumption that
is not violated in some minimal abnormal interpretation of the Dab-consequences
then A can be considered a consequence. This is realized by means of the following
marking definition:

Definition 2.8.2 (Marking for normal selections, variant 1). A line l with
condition Δ is marked at stage s, iff for all ϕ ∈ Φs(Γ ), Δ ≥ ϕ 
= ∅.

In other words, a line with the condition Δ is unmarked in case there is a ϕ ∈ Φ(Γ )

such that Δ ≥ ϕ = ∅. In the terminology of Sect. 2.4.2.2 a line l is unmarked in case
the argument at line l is defensible.30

Otherwise the proof theory is the same as in the standard format: we again have
the three generic rules PREM, RU, and RC.

The good news is that this marking condition can be simplified in a way that no
reference need to be made to minimal choice sets:

Definition 2.8.3 (Marking for Normal Selections, variant 2). Line l is marked
at stage s iff, where Δ is the condition of line l, Dab(Δ′) has been derived on the
empty condition at stage s for some Δ′ ⊆ Δ. 31

In Appendix A we show (merely on the basis of set-theoretic insights into choice
sets) that

Corollary 2.8.1. Where Δ ⊆ Ω is finite and Γ ⊆ W+:

(i) there is a ϕ ∈ Φs(Γ ) such that Δ ≥ ϕ = ∅ iff there is no minimal Dab-formula
Dab(Θ) at stage s such that Θ ⊆ Δ;

(ii) there is a ϕ ∈ Φ(Γ ) such that Δ≥ϕ = ∅ iff there is no minimal Dab-consequence
Dab(Θ) such that Θ ⊆ Δ.

Note that (i) immediately implies the equivalence of the marking definitions.

30 The distinction between the skeptical and the credulous approach has been discussed in relation
to the distinction between justified and defensible arguments in [24, Sect. 4.3].
31 Yet another way of phrasing the marking definition in such a way that it leads to the same adaptive
consequences is by: Line l with condition Δ is marked at stage s iff Dab(Δ) is derived on the empty
condition at stage s. Obviously, if we can derive Dab(Δ′) for some Δ′ ⊆ Δ at stage s on the
empty condition we can also derive Dab(Δ) on the empty condition and so eventually mark line l
according to the marking definition, variant 2.



56 2 The Standard Format for Adaptive Logics

Considering the second marking definition it is evident that once a line is marked,
it will never be unmarked in a proof. Recall that this is unlike the marking in the
standard format where a line may be marked at some point of the proof but get
unmarked again at a later stage.

Let us have a simple demonstration by means of our detective case:

1 ◦n PREM ∅
2 (a ∧ n) ⊃ c PREM ∅
3 (b ∧ n) ⊃ c PREM ∅
4 ◦a PREM ∅
5 ◦b PREM ∅
6 ¬a ∨ ¬b PREM ∅
7 a 4; RC

{!a}

8 b 5; RC
{!b}

9 n 1; RC
{!n}

10 !a ∨̌ !b 4, 5, 6; RU ∅
11 c 2, 4, 9; RC

{!a, !n}

1012 a ∧ b 7, 8; RU
{!a, !b}

13 ¬b 6, 7; RU
{!a}

1014 b ∧ ¬b 8, 13; RU
{!a, !b}

The first difference to the strategies of the standard format concerns lines 7 and 8:
both are marked according to reliability and minimal abnormality but not according to
normal selections. Similar as in the standard format lines 12 and 14 get marked: after
all, the disjunction of the members of the condition of these lines has been derived
at line 10 (cf. marking variant 2). What is most remarkable is that by means of
normal selections we can derive both b (line 8) and ¬b (line 13): for each respective
condition Δ there is a minimal choice set (note that Φ14(Γ ) = {{!a}, {!b}}) that
has an empty intersection with Δ. However, line 14 with the formula b ∧ ¬b gets
marked. Obviously, there is no minimally abnormal interpretation which validates
both abnormalities in the conditions: !a and !b.

Final derivability is defined as usual (see Definition 2.4.4). Hence, we define
Γ �ALn A iff A is finally derivable in a ALn proof from Γ .

Given the equivalence of our two marking definitions, it is not surprising that
we get two corresponding representational theorems for the syntactic consequence
relation.

Theorem 2.8.2. Where Γ ⊆ W or Γ = CnL+
LLL (Γ ): Γ �ALn A iff there is a

Δ ⊆ Ω such that Γ �LLL A ∨̌ Dab(Δ) and Γ �LLL Dab(Δ).

Theorem 2.8.3. Where Γ ⊆ W or Γ = CnL+
LLL (Γ ): Γ �ALn A iff there is a

Δ ⊆ Ω such that (a) Γ �LLL A ∨̌ Dab(Δ), and (b) for some ϕ ∈ Φ(Γ ), ϕ ≥Δ = ∅.

Finally, this gives us soundness and completeness32:

32 The proof is straight-forward in view of Theorem 2.8.1 and Theorem 2.8.3. In Chap. 5 we prove
a generalized version of Theorem 2.8.4.

http://dx.doi.org/10.1007/978-3-319-00792-2_5
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Theorem 2.8.4. Where Γ ⊆ W or Γ = CnL+
LLL (Γ ): Γ �ALn A iff Γ �ALn A.

As a concluding remark it should be mentioned that the normal selections strategy
can be represented by means of the simple strategy under a translation. This will be
demonstrated in a future paper together with Joke Meheus.
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Chapter 3
Sequential Combinations of ALs

There are various ways to combine ALs.1 This section covers sequential combinations
under a generic perspective, i.e., the kind of combinations that are used in this book.
Sequential combinations are by far the most frequent combination type in the liter-
ature. In [3] the reader finds a study that compares sequential combinations of ALs
to other formats for ALs such as lexicographic ALs [4].

I will consider the case that some given ALs in the standard format ALx1
1 , . . . ,

ALxn
n are sequentially combined. In the remainder of this chapter, we have for all

i ∪ {1, . . . , n}, ALxi
i = 〈LLL,Ωi , strategy⊆ and the strategy is reliability if xi = r

and minimal abnormality if xi = m. Adaptive logics in the standard format will
sometimes be called flat ALs as opposed to the ALs that are the result of sequential
combinations of ALs.

The idea is to define a consequence set of the logic that we dub CAL by first
applying ALx1

1 to the premise set Γ , then as a second step to apply ALx2
2 to the

ALx1
1 -consequence set of Γ, . . . , and finally as a nth step to apply ALxn

n to the

ALxn−1
n−1 -consequences of the ALxn−2

n−2 -consequences of . . . of the ALx1
1 -consequences

of Γ . See Fig. 3.1 for an illustration.
Of course this raises the question whether such combinations are at all useful.

Suppose for instance that we are interested in making inductive generalizations on
the basis of possibly inconsistent information. This is a situation scientists sometimes
face: different experiments and other empirical data may be inconsistent. Still we
are interested in obtaining useful generalizations. In this situation we may first want
to interpret the given data as consistent as possible and hence use an inconsistency-
adaptive logic. Given this interpretation we proceed by means of an AL that helps
us to make inductive generalizations.

In this chapter I will investigate some meta-theory of such combinations of ALs
and hence stay on a technical and abstract level. This will serve as a theoretic

1 Many of them are covered by Diderik Batens in [1]. Moreover, Frederik Van De Putte discusses
some in [2].

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 59
DOI: 10.1007/978-3-319-00792-2_3, © Springer International Publishing Switzerland 2014
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Fig. 3.1 Sequential
combination of ALs CAL ( ) AL n . . . AL 2 AL 1

foundation for the concrete combinations of ALs that are presented later in this
book. For examples and applications the reader is hence referred to:

• Part III, where combinations of ALs are used in order to model Dung’s abstract
argumentation framework.

• Part IV, where combinations of ALs are used in the context of deontic logics (see
Sects. 11.6 and 12.7).

First, in Sect. 3.1 I will define a consequence relation for CAL. In Sect. 3.2 I will
present some intuitive semantics. CAL will be shown to be sound and complete
with respect to this semantics for certain cases, some of which are relevant for the
applications in the later parts of this book. In Sect. 3.3 I will present a proof theory
for the special case that the sets of abnormalities Ωi are mutually disjoint.

3.1 The Consequence Relation of CAL

A first way to formally grasp the idea above is to define a consequence relation as
follows:

CnLCAL (Γ ) =df CnLALxn
n

(
CnL

AL
xn−1
n−1

(
. . . CnL

AL
x1
1

(Γ ) . . .

))
(3.1)

CnL+
CAL (Γ ) =df CnL+

ALxn
n

(
CnL+

AL
xn−1
n−1

(
. . . CnL+

AL
x1
1

(Γ ) . . .

))
(3.2)

where (3.1) describes theL-consequences and (3.2) theL+-consequences. Of course,
in order for this to be adequate we expect that

CnLCAL (Γ ) = CnL+
CAL (Γ ) ∩ W (3.3)

As has been pointed out by Diderik Batens in [1] (see Part 6),2 this is not in general
warranted. Let me give an abstract example.

Example 3.1.1. Suppose we have two ALs in standard format: ALx1
1 and ALx2

2 where
x1, x2 ∪ {r, m}. Suppose LLL does not have means to express the classical negation,
∨ and ∈ have the classical meaning, ∧ is a dummy connective (as it was the case
for CL∧), and Modus Ponens (MP) is available in LLL. Let W be the 〈∨,∈, ∧⊆-
closure of the set of propositional atoms. Let moreover, Ω1 = {∧A | A ∪ W} and
Ω2 = {¬̌A | A ∪ Ω1}.

2 Diderik Batens remarks that Peter Verdée was the first to notice this problem.

http://dx.doi.org/10.1007/978-3-319-00792-2_11
http://dx.doi.org/10.1007/978-3-319-00792-2_12
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We take a look at the premise set Γ = {p ∨ ∧q, ∧q ∈ r} where p, r /∪ Ω1 ⊃ Ω2.
What is to be expected is that p is (finally) derivable by ALx1

1 , since it can be derived
on the condition {∧q}. Evidently ∧q is not unreliable with respect to ALx1

1 and hence

¬̌ ∧ q ∪ CnL+
AL

x1
1

(Γ ). Due to this we do not expect to derive r in ALx2
2 from the

ALx1
1 -consequences of Γ , since the only way to derive r is to apply MP to ∧q ∈ r

and ∧q. However, as argued, the latter should not be available.
Note that indeed ¬̌ ∧ q ∪ CnL+

AL
x1
1

(Γ ) and p ∪ CnAL
x1
1

(
Γ

)
. However,

∧q ∪ CnAL
x2
2

(
CnL

AL
x1
1

(Γ )

)
since ¬̌ ∧ q /∪ CnL

AL
x1
1

(Γ ),

In order to illustrate this let us take a look at a proof. We start with applying
ALx1

1 to Γ :

1 p ∨ ∧q PREM →
2 ∧q ∈ r PREM →
3 p 1; RC {∧q}
4 ¬̌q -; RC {∧q}

There is of course no way to mark either lines 3 or 4 and hence their respective
formulas are finally derivable. This shows that p,¬̌q ∪ CnL+

AL
x1
1

(Γ ). Note however

that ¬̌q contains a “checked connective” and hence ¬̌q /∪ CnL
AL

x1
1

(Γ ). Thus, we

have the following ALx2
2 -proof from CnL

AL
x1
1

(Γ ):

1 ∧q ∈ r PREM →
2 ∧q -; RC {¬̌ ∧ q}
3 r 1,2; RU {¬̌ ∧ q}

On the other hand, due to reflexivity of CnAL
x2
2

we have:

¬̌ ∧ q ∪ CnL+
AL

x2
2

(
CnL+

AL
x1
1

(Γ )

)

Hence we end up in an asymmetric situation:

r ∪ CnAL
x2
2

(
CnL

AL
x1
1

(Γ )

)
whereas r /∪ CnAL

x2
2

(
CnL+

AL
x1
1

(Γ )

)

One solution to the problem above is to use the cumbersome definition

CnLCAL(Γ ) =df W ∩
(

CnL+
ALxn

n

(
CnL+

AL
xn−1
n−1

(
. . . CnL+

AL
x1
1

(Γ ) . . .

)))
(3.4)

instead of (3.1). This way (3.3) is trivially satisfied.
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The good news is that for supraclassical lower limit logics both definitions (3.1)
and (3.4) are equivalent. In other words: given a supraclassical lower limit logic we
can define the consequence relations as in (3.1) and (3.2) while (3.3) is warranted.

The key is that for each ALxi
i the L+-based consequence relation is identical to

the closure of the L-based consequence relation under LLL+:

for all Γ ∨ W : CnL+
LLL

(
CnL

AL
xi
i
(Γ )

)
= CnL+

AL
xi
i
(Γ ) (3.5)

Note that it is sufficient if (3.5) is satisfied for premise sets without “checked con-
nectives”.

We have seen in our example that (3.5) is not always satisfied. However, if (3.5) is
guaranteed then we immediately get the equivalence of (3.1) and (3.4) (see Theorem
3.1.1 below), i.e., in that case we have:

CnL+
ALxn

n

(
CnL+

AL
xn−1
n−1

(
. . . CnL+

AL
x1
1

(Γ ) . . .

))
=

CnL+
ALxn

n

(
CnL

AL
xn−1
n−1

(
. . . CnL

AL
x1
1

(Γ ) . . .

))
(3.6)

and hence,

A ∪ W ∩ CnL+
ALxn

n

(
CnL+

AL
xn−1
n−1

(
. . . CnL+

AL
x1
1

(Γ ) . . .

))
iff

A ∪ CnLALxn
n

(
CnL

AL
xn−1
n−1

(
. . . CnL

AL
x1
1

(Γ ) . . .

))

(3.7)

Lemma 3.1.2 below shows that the supraclassicality of LLL indeed guarantees (3.5)
and as a consequence (3.1) and (3.4) are equivalent whenever we are dealing with
a supraclassical LLL (see Corollary 3.1.1). As a reminder: LLL is supraclassical
in case CnLLLL (Γ ) is at least as strong as classical logic. Note that this trivially
holds for LLL+ (the lower limit logic LLL enriched by the “check connectives”).
But, as our example shows, not all lower limit logics LLL are supraclassical. All
the lower limit logics used in applications presented in this book are supraclassical
while non-supraclassical lower limits are sometimes used for inconsistency-adaptive
logics.

Theorem 3.1.1. Where Γ ∨ W: If for every i < n, (3.5) holds, then (3.6) and (3.7).

Proof. Suppose that for every i ∪ {1, . . . , n−1}, (3.5) holds. I show by induction
that for all i ∪ {2, . . . , n},
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CnL+
AL

xi
i

(
CnL+

AL
xi−1
i−1

(
. . . CnL+

AL
x1
1

(Γ ) . . .

))
=

CnL+
AL

xi
i

(
CnL

AL
xi−1
i−1

(
. . . CnL

AL
x1
1

(Γ ) . . .

))

“i = 2”: By Theorem 2.6.5ii and since CnL
AL

x1
1

(Γ ) ∨ W ,

CnL+
AL

x2
2

(
CnL

AL
x1
1

(Γ )

)
= CnL+

AL
x2
2

(
CnL+

LLL

(
CnL

AL
x1
1

(Γ )

))

By (3.5) the latter is identical to CnL+
AL

x2
2

(
CnL+

AL
x1
1

(Γ )

)
.

“i−1 ⊕ i”: By Theorem 2.6.5ii, CnL+
AL

xi
i

(
CnL

AL
xi−1
i−1

(
. . . CnL

AL
x1
1

(Γ ) . . .

))
=

CnL+
AL

xi
i

(
CnL+

LLL

(
CnL

AL
xi−1
i−1

(
. . . CnL

AL
x1
1

(Γ ) . . .

)))
. (†)

(†) is by (3.5) identical to

CnL+
AL

xi
i

(
CnL+

AL
xi−1
i−1

(
CnL

AL
xi−2
i−2

(
. . . CnL

AL
x1
1

(Γ ) . . .

)))
(‡)

By the induction hypothesis (‡) is identical to

CnL+
AL

xi
i

(
CnL+

AL
xi−1
i−1

(
. . . CnL+

AL
x1
1

(Γ ) . . .

))

�

The following lemma will be crucial to establish in Lemma 3.1.2 that ALs with
supraclassical lower limits satisfy (3.5).3

Lemma 3.1.1. Where Γ = CnL+
LLL (Γ ) or Γ ∨ W:

CnL+
AL (Γ ) = CnL+

LLL

(
CnL+

AL (Γ )
)

.

Proof. “∨” follows by the reflexivity of LLL.

“⊇”: Let A ∪ CnL+
LLL

(
CnL+

AL (Γ )
)

. By the compactness of LLL, there are

A1, . . . , An ∪ CnL+
AL (Γ ) such that {A1, . . . , An} �LLL+ A. Hence, by Corol-

lary 2.7.1, Γ �AL A1, . . . , An . Thus, for all M ∪ MAL(Γ ), M |= A1, . . . , An .

3 We prove a slightly more generic version than we need for Lemma 3.1.2 where we only make use
of the case Γ ∨ W . However, the gained generality will be useful in the next Section.
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Hence, since each such M is an LLL-model, for all M ∪ MAL(Γ ), M |= A. Thus,
Γ �AL A. Again by Corollary 2.7.1, Γ �AL A. �

The next lemma shows that ALs with supraclassical lower limit logics do indeed
satisfy (3.5).

Lemma 3.1.2. Let LLL be supraclassical. Where Γ ∨ W , we have

CnL+
LLL

(
CnLAL(Γ )

) = CnL+
LLL

(
CnL+

AL(Γ )
) = CnL+

AL(Γ )

Proof. Since CnLAL(Γ ) ∨ CnL+
AL(Γ ), CnL+

LLL

(
CnLAL(Γ )

) ∨ CnL+
LLL

(
CnL+

AL(Γ )
)

due
to the monotonicity of LLL+. Moreover, by Lemma 3.1.1,

CnL+
LLL

(
CnL+

AL(Γ )
) = CnL+

AL(Γ ) (†)

Suppose AL employs the reliability strategy. Suppose further that A ∪ CnL+
LLL

(
CnL+

AL
(Γ )

)
. Due to (†) there is by Theorem 2.4.2 a Δ ∨ Ω for which A ∨̌ Dab(Δ) ∪

CnL+
LLL(Γ ) and Δ ∩ U (Γ ) ◦= →. Let for a formula B ∪ W+, B ↓ ∪ W be the result

of replacing all occurrences of checked symbols by their classical equivalents in L
(this is possible since LLL is supraclassical). Since �LLL+ A≡̌A↓, A↓ ∨̌ Dab(Δ) ∪
CnL+

LLL(Γ ) and hence A↓ ∪ CnLAL(Γ ). Hence, A ∪ CnL+
LLL

(
CnLAL(Γ )

)
.

The case for minimal abnormality is similar and left to the reader. �

Corollary 3.1.1. Where Γ ∨ W and LLL is supraclassical we have (3.6) and
hence (3.7).

Proof. Follows by Lemma 3.1.2 and Theorem 3.1.1. �

Since the concrete sequential ALs that are introduced in Part III and Part IV
of this book employ supraclassical lower limit logics, I will be able to stick
with the more simple definition offered in (3.1) for the consequence relation
of sequentially combined ALs. For the remainder of this Chapter however,
CnLCAL is defined as in (3.4) by W ∩ CnL+

CAL.

In order to reduce the notational clutter in the remainder of this chapter, we will
from now on make use of the following abbreviation: where i ∅ n,

CnL+
CALi

(Γ ) =df CnL+
AL

xi
i

(
CnL+

AL
xi−1
i−1

(
. . . CnL+

AL
x1
1

(Γ ) . . .

))

We close this section with an observation that will be useful for proving the
adequacy of the semantics and the adequacy of the proof theory in the following
sections. Lemma 3.1.1 generalizes to CAL: i.e., the consequence relation of CAL is
closed under LLL.
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Lemma 3.1.3. Where Γ ∨ W: CnL+
AL

x1
1

(Γ ) = CnL+
LLL

(
CnL+

AL
x1
1

(Γ )

)
and for each

i ∪ {2, . . . , n}: CnL+
CALi

(Γ ) = CnL+
LLL

(
CnL+

CALi
(Γ )

)
.

Proof. We show this by induction. “i = 1” has been shown in Lemma 3.1.1.
“i ⊕ i+1”: By the induction hypothesis we have:

CnL+
AL

xi+1
i+1

(
CnL+

CALi
(Γ )

)
= CnL+

AL
xi+1
i+1

(
CnL+

LLL

(
CnL+

CALi
(Γ )

))

The rest follows with Lemma 3.1.1 and the idempotence of LLL+. ≥≺
This immediately shows that CAL is closed under LLL+.

Corollary 3.1.2. Where Γ ∨ W: CnL+
CAL (Γ ) = CnL+

LLL

(
CnL+

CAL (Γ )
)

.

3.2 Semantics for Sequential ALs

The most intuitive approach to define a semantics for CAL is to first select all the
adaptive (reliable resp. minimally abnormal) LLL-models of Γ with respect to ALx1

1 ,
then out of these the adaptive models with respect to ALx2

2 , and so on. This is formally
defined in Definition 3.2.1 and illustrated in Fig. 3.2.

Definition 3.2.1. For an LLL-model M of Γ let Abi (M) = {A ∪ Ωi | M |= A}.
Given a premise set Γ , we define:

• M1(Γ ) = Mx1
1 (Γ ) where Mr

1(Γ ) is the set of all reliable LLL-models of Γ

(w.r.t. Ω1) and Mm
1 (Γ ) is the set of all minimally abnormal LLL-models of Γ

(w.r.t. Ω1);

LLL ( )

1

2

etc.

Fig. 3.2 Illustration of the semantic selection of CAL
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• Where 1 < i ∅ n, Mi (Γ ) = Mxi
i (Γ ) where Mm

i (Γ ) is the set of all minimally
abnormal models in Mi−1(Γ ) (w.r.t. Ωi ) and Mr

i (Γ ) is the set of all models in
Mi−1(Γ ) for which Abi (M) ∨ Ψ i (Mi−1(Γ )) where4

Ψ i (Mi−1(Γ )
) =

⋃{
Abi (M) | M ∪ Mm

i (Γ )
}

Let MCAL(Γ ) = Mn(Γ ). Let �CAL be defined by: Γ �CAL A iff for all M ∪
MCAL(Γ ), M |= A.

Note that the consequence relation defined in (3.4) is neither sound nor complete
with respect to the semantics above. Let me demonstrate this for completeness by an
example Diderik Batens offers in [1].

Example 3.2.1. Let ALm
1 and ALx

2 (where x ∪ {m, r}) be two ALs in standard format
that employ the same lower limit logic LLL and the minimal abnormality strategy.
Let Ω1 = {A1

1, A1
2, . . .} be the set of abnormalities of ALm

1 and Ω2 = {A2
1, A2

2, . . .}
be the set of abnormalities of ALx

2. Let

Γ = {
A1

i ∨ A1
j | i, j ∪ N, i ◦= j

} ⊃ {
B ∨ A1

i ∨ A2
i | i ∪ N

}

It is easy to see that B /∪ CnALx
2

(
CnL+

ALm
1
(Γ )

)
.

Let us take a look at the adaptive models. Note that for each minimally abnormal
LLL-model (with respect to Ω1) of Γ the abnormal part consists of all but one of
the abnormalities in Ω1. More formal, for each M ∪ MALm

1
(Γ ) there is an i ∪ N

such that Ab1(M) = Ω1 \ {
A1

i

}
. Hence (†) for each of these models M there is an

i ∪ N for which M |= B ∨ A2
i . The minimally abnormal resp. reliable models with

respect to Ω2 in MALm
1
(Γ ) are the ones that do no validate any abnormalities in Ω2.

Hence, due to (†), in all selected models B is valid.5

The example is stated for the minimal abnormality strategy. Indeed, things look
better for the reliability strategy, as will be shown in Sect. 3.2.1 and for other special
cases, as will be shown in Sect. 3.2.2.

In Theorem 3.2.1 I will now present a generic criterion that warrants soundness
and completeness with respect to the intuitive semantics. The criterion states that for
each i < n the ALxi

i -models of

CnL+
AL

xi−1
i−1

(
. . . CnL+

AL
x1
1

(Γ ) . . .

)

are uniquely specified by the ALxi
i -consequences, in signs

4 See Lemma 2.4.1.
5 Frederik Van De Putte was the first to come up with a very similar counter-example concerning
the lack of soundness. Let Γ ↓ = {A1

i ∨ A1
j | i, j ∪ N, i ◦= j} ⊃ {B ∨ A1

i ∨ A2
i | i ∪ N} and take

ALm
1 and ALm

2 from above. It can be shown that B is a syntactic consequence but not a semantic
one with respect to the semantics defined above.
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MAL
xi
i

(
CnL+

CALi−1
(Γ )

)
= MLLL

(
CnL+

CALi
(Γ )

)
(3.8)

In this case we get soundness and completeness: Γ �CAL A iff A ∪ CnCAL
(
Γ

)
.

Theorem 3.2.1. If (3.8) then, Γ �CAL A iff A ∪ CnCAL
(
Γ

)
.

We will prove this theorem below.
In our example we have seen that there are cases in which criterion (3.8) is violated.

As mentioned, each M ∪ MALm
1
(Γ ) is such that Ab1(M) = {

A1
i | i ∪ N \ { j}}

for some j ∪ N. However, there are M ∪ MLLL

(
CnL+

ALm
1
(Γ )

)
such that Ab1(M) =

{
A1

i | i ∪ N
}
. The reason is that although some A1

i is false in every minimally

abnormal model, we cannot express the infinite disjunction
∨̌

i∪N ¬̌A1
i in our object

language.
We will see in the next section that (3.8) is fulfilled for sequences of ALs that

only use the reliability strategy.
Let us now prove Theorem 3.2.1. First we need a technical lemma:

Lemma 3.2.1. If (3.8) then

MCAL(Γ ) = MALxn
n

(
CnL+

CALn−1
(Γ )

)
= MLLL

(
CnL+

CAL (Γ )
)

Proof. Suppose (3.8) holds. Let N x1
1 (Γ ) =df MAL

x1
1

(Γ ) and, where 1 < i ∅ n,

N xi
i (Γ ) =df MAL

xi
i

(
CnL+

CALi−1
(Γ )

)

I will show by induction that Mxi
i (Γ ) = N xi

i (Γ ) for all i ∪ {1, . . . , n}.
“i = 1”: This is so by definition.
“i ⊕ i + 1”: Suppose xi+1 = r .

Mr
i+1(Γ ) = {

M ∪ Mxi
i (Γ ) | Abi+1(M) ∨ Ψ i+1(Mxi

i (Γ )
)}

By the induction hypothesis,

Mr
i+1(Γ ) = {

M ∪ N xi
i (Γ ) | Abi+1(M) ∨ Ψ i+1(N xi

i (Γ )
)}

(‡)

By Lemma 2.4.1, N r
i+1(Γ ) = MALr

i+1

(
CnL+

CALi
(Γ )

)
=

{
M ∪ MLLL

(
CnL+

CALi
(Γ )

)∣∣∣ Abi+1(M) ∨ Ψ i+1
(
MLLL

(
CnL+

CALi
(Γ )

))}

By (3.8) we have thus,
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N r
i+1(Γ ) = {

M ∪ N xi
i (Γ ) | Abi+1(M) ∨ Ψ i+1(N xi

i (Γ )
)}

Hence, by (‡), Mr
i+1(Γ ) = N r

i+1(Γ ).
The case for xi+1 = m is similar and left to the reader.
Thus, by our induction, N xn

n (Γ ) = Mxn
n (Γ ) = MCAL(Γ ). �

Proof (Proof of Theorem 3.2.1). Suppose (3.8). A ∪ CnL+
CAL (Γ ) iff [by Corollary

3.1.2] A ∪ CnL+
LLL

(
CnL+

CAL (Γ )
)

iff [by the soundness and completeness of LLL]

CnL+
CAL (Γ ) �LLL+ A iff [by Lemma 3.2.1 and (3.8)] Γ �CAL A. �

3.2.1 Soundness and Completeness for Reliability

In this section I will show that soundness and completeness is warranted for sequ-
ential combinations of ALs that employ the reliability strategy. As discussed in the
previous section, it is sufficient to show that such sequences fulfill criterion (3.8).

In order to show this we first prove some useful lemmas.

Lemma 3.2.2. Where Γ = CnL+
LLL(Γ ) or Γ ∨ W , CnL+

ALr (Γ ) = CnL+
LLL(Γ ⊃

(Ω \ U (Γ ))¬̌).

Proof. Γ �ALr A, iff [by Corollary 2.7.1], Γ �ALr A, iff [by Theorem 2.4.1],
Γ ⊃ (Ω \ U (Γ )) ¬̌ �LLL A, iff [by the soundness and completeness of LLL],
Γ ⊃ (Ω \ U (Γ ))¬̌ �LLL A. �

Lemma 3.2.3. Where Γ = CnL+
LLL(Γ ) or Γ ∨ W,MLLL

(
CnL+

ALr (Γ )
)

=
MALr (Γ ).

Proof. Let M ∪ MLLL

(
CnL+

ALr (Γ )
)

. Assume M |= A for some A ∪ U (Γ ).

By Lemma 3.2.2, ¬̌A ∪ CnL+
ALr (Γ ), —a contradiction. Hence, M is reliable. Let

M ∪ MALr (Γ ). By Corollary 2.7.1, M ∪ MLLL

(
CnL+

ALr (Γ )
)

. �

The next result provides a representational theorem: it shows that the syntactic
consequence relation of CAL can be expressed by means of LLL in case each AL
in the sequence uses the reliability strategy.

Theorem 3.2.2. Where Γ ∨ W and

Γ 1 =df Γ ⊃ (Ω \ U1(Γ ))¬̌

for all i ∪ {1, . . . , n−1} : Γ i+1 =df Γ i ⊃ (Ω \ Ui+1(Γ
i ))¬̌

we have: CnL+
ALr

n

(
CnL+

ALr
n−1

(
. . . CnL+

ALr
1
(Γ ) . . .

))
= CnL+

LLL(Γ n).
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Proof. We show this by induction.“i = 1”: This is Corollary 2.4.2.
“i ⊕ i+1”: By the induction hypothesis,

CnL+
ALr

i

(
CnL+

ALr
i−1

(
. . . CnL+

ALr
1
(Γ ) . . .

))
= CnL+

LLL

(
Γ i

)
.

Hence,

CnL+
ALr

i+1

(
CnL+

ALr
i

(
. . . CnL+

ALr
1
(Γ ) . . .

))
= CnL+

ALr
i+1

(
CnL+

LLL(Γ i )
)

. (3.9)

By Lemma 3.2.2 and the idempotence of LLL+,

CnL+
ALr

i+1

(
CnL+

LLL(Γ i )
)

=

CnL+
LLL

(
CnL+

LLL(Γ i ) ⊃
(
Ωi+1 \ Ui+1

(
CnL+

LLL(Γ i )
))¬̌)

=

CnL+
LLL

(
Γ i ⊃

(
Ωi+1 \ Ui+1(Γ

i )
)¬̌)

= CnL+
LLL

(
Γ i+1

)
.

Hence, together with (3.9) our induction step is finished. �

The next lemma shows that we indeed have (3.8) for sequences with the reliability
strategy.

Lemma 3.2.4. Where Γ ∨ W: MALr
1
Γ = MLLL

(
CnL+

ALr
1
(Γ )

)
and for each i ∪

{2, . . . , n}

MALr
i

(
CnL+

ALr
i−1

(
. . . CnL+

ALr
1
(Γ ) . . .

))
=

MLLL

(
CnL+

ALr
i

(
CnL+

ALr
i−1

(
. . . CnL+

ALr
1
(Γ ) . . .

)))

Proof. This follows immediately by Lemma 3.2.4, Theorem 3.2.1, and the idempo-
tence of LLL+. �

The following corollary follows immediately with Lemma 3.2.4 and Theorem
3.2.1. It shows that we get soundness and completeness for sequences that only use
the reliability strategy.

Corollary 3.2.1. Where xi = r for all i ∅ n and Γ ∨ W: A ∪ CnL+
CAL (Γ )

iff Γ �CAL A.

We also get soundness and completeness in case the outermost AL uses the min-
imal abnormality strategy, while all other ALs use reliability.

Theorem 3.2.3. Where Γ ∨ W , xi = r for all i < n and xn = m: A ∪ CnL+
CAL (Γ )

iff Γ �CAL A.
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Proof. A ∪ CnL+
ALm

n

(
CnL+

ALr
n−1

(
. . . CnL+

ALr
1
(Γ ) . . .

))
, iff [by the idempotence of

LLL+, Theorem 3.2.2 and Corollary 2.7.1],

for all M ∪ MALm
n

(
CnL+

ALr
n−1

(
. . . CnL+

ALr
1
(Γ ) . . .

))
, M |= A, iff,

for all M ∪
{

M ↓ ∪ MLLL

(
CnL+

ALr
n−1

(
. . . CnL+

ALr
1
(Γ ) . . .

))∣∣∣

M ↓ is minimally abnormal w.r.t. Ωn
}
, M |= A,

iff [by Lemma 3.2.4 and Lemma 3.2.1], for all M ∪ {M ↓ ∪ Mn−1 | M ↓ is minimally
abnormal w.r.t. Ωn}, M |= A, iff, for all M ∪ Mn , M |= A, iff, Γ �CAL A. �

3.2.2 Soundness and Completeness for Some Other Special Cases

There are other applications in which completeness is guaranteed. For instance in
case the sets of abnormalities are finite. Let me highlight some in the following.

Where Ω∗ = Ω1 ⊃ . . .⊃Ωn and Γ ∨ W+ is some premise set, U∗(Γ ) ∨ Ω∗ are
the unreliable formulas with respect to Ω∗ and LLL, and Φ∗(Γ ) ∨ ℘(Ω∗) is the set
of minimal choice sets with respect to Ω∗ and LLL. We can specify specific special
cases in view of the cardinality of Φ∗(Γ ), the cardinality of the members of Φ∗(Γ ),
the cardinality of Ω∗, and the cardinality of U∗(Γ ). In Fig. 3.3 some relationships
are illustrated. We show in this section that whenever any of these criteria is fulfilled,
we get soundness and completeness.

In Appendix A we show by means of purely set-theoretic considerations about
choice sets that:

Fact 3.2.1. Where Γ ∨ W+:

(i) if every ϕ ∪ Φ∗(Γ ) is finite then Φ∗(Γ ) is finite (Corollary A.3)
(ii) every ϕ ∪ Φ∗(Γ ) is finite iff U∗(Γ ) is finite (Corollary A.4)

As Fig. 3.3 illustrates, it is enough to show that we have soundness and complete-
ness for the case that Φ∗(Γ ) is finite, since it is implied by all other cases.

The following two lemmas will be useful in what follows. Both show that the set
of ALm-models is uniquely determined by a specific set of formulas and LLL in
case Φ(Γ ) is finite.

Lemma 3.2.5. Where Γ ∨ W+, Φ(Γ ) = {ϕ1, . . . , ϕn}, and Υ = {Dab(Δ) | Δ is
a choice set of Φ(Γ )}: MALm(Γ ) = MLLL(Γ ⊃ Υ )

∗ finite U∗ ( ) finite each ∈ ∗ ( ) finite ∗ ( ) finite

Fig. 3.3 Criteria that guarantee the soundness and completeness of CAL
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Proof. Let M ∪ MALm(Γ ). Hence, by Theorem 2.4.6, Ab(M) = ϕi for some
i ∅ n. Hence, M |= Υ . Thus, M ∪ MLLL(Γ ⊃ Υ ).

Let M ∪ MLLL(Γ ⊃ Υ ). Assume M /∪ MALm(Γ ). Hence, for all ϕi ∪ Φ(Γ ),
Ab(M) ◦= ϕi . Hence, for each ϕi there is a Ai ∪ ϕi such that M ◦|= Ai . Note however
that {Ai | i ∅ n} ∪ Υ ,—a contradiction. �

Lemma 3.2.6. Where Γ = CnL+
LLL (Γ ) or Γ ∨ W and Φ(Γ ) is finite:

MLLL

(
CnL+

AL (Γ )
)

= MAL(Γ ).

Proof. The case for reliability was already shown in Lemma 3.2.3. Suppose thus
that AL uses minimal abnormality.

By Lemma 3.2.5, Γ �AL Υ . Hence, by Lemma 3.2.2, (†) Υ ∨ CnL+
AL (Γ ).

Let M ∪ MLLL

(
CnL+

ALm (Γ )
)

. By (†), M ∪ MLLL(Γ ⊃ Υ ). By Lemma 3.2.5,

M ∪ MALm(Γ ). Let M ∪ MALm(Γ ). Since by Lemma 3.2.2, Γ �ALm CnL+
ALm (Γ ),

also M ∪ MLLL

(
CnL+

ALm (Γ )
)

. �

In the following we need a few more notational conventions.
Let U1(Γ ) ∨ Ω1 be the set of unreliable formulas with respect to ALx1

1 and
the premise set Γ , let for all i ∪ {2, . . . , n}, U i (Γ ) ∨ Ωi be the set of unreliable

formulas with respect to ALxi
i and the premise set CnL+

AL
xi−1
i−1

(
. . . CnL+

AL
x1
1

(Γ ) . . .

)
.

Similarly let Φ1(Γ ) ∨ ℘(Ω1) be the set of minimal choice sets with respect
to ALx1

1 and the premise set Γ . For all i ∪ {2, . . . , n} let Φ i (Γ ) ∨ ℘(Ωi )

be the set of minimal choice sets with respect to ALxi
i and the premise set

CnL+
AL

xi−1
i−1

(
. . . CnL+

AL
x1
1

(Γ ) . . .

)
.

The following technical lemma is crucial in what follows.6

Lemma 3.2.7. Where i ∪ {1, . . . , n}, Φ∗(Γ ) is finite, and Γ ∨ W:

(i) Φ

(
CnL+

AL
xi
i

(
CnL+

AL
xi−1
i−1

(. . . CnL+
AL

x1
1

(Γ ))

))
∨ Φ∗(Γ )

(ii) For all ϕ ∪ Φ i (Γ ) there is a ϕ↓ ∪ Φ∗(Γ ) such that ϕ ∨ ϕ↓.
(iii) |Φ i (Γ )| ∅ |Φ∗(Γ )|
Corollary 3.2.2. Where i ∪ {1, . . . , n} and Γ ∨ W . If Φ∗(Γ ) is finite, then Φ i (Γ )

is finite.

The next theorem is the central result of this section: it shows that whenever
Φ∗(Γ ) is finite we get soundness and completeness.

First we show that (3.8) holds whenever Φ∗(Γ ) is finite.

6 The rather technical and lengthy proof can be found in Appendix B.1.
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Lemma 3.2.8. Where Φ∗(Γ ) is finite: (3.8) holds.

Proof. For i = 1 this follows directly with Corollary 3.2.2 and Lemma 3.2.6.
“i ⊕ i+1”: Note that

MAL
xi+1
i+1

(
CnL+

CALi
(Γ )

)
= MLLL

(
CnL+

CALi+1
(Γ )

)

by Corollary 3.2.2, Lemma 3.2.6 and since by Lemma 3.1.3,

CnL+
CALi

(Γ ) = CnL+
LLL

(
CnL+

CALi
(Γ )

)

�

Theorem 3.2.4. Where Φ∗(Γ ) is finite and Γ ∨ W: A ∪ CnCAL
(
Γ

)
iff Γ �CAL A.

Proof. This follows immediately with Lemma 3.2.8 and Theorem 3.2.1. �

As illustrated in Fig. 3.3 this result immediately applies to some other cases as
well:

Corollary 3.2.3. Where Γ ∨ W and either of the following holds:

1. Ω∗ is finite
2. U∗(Γ ) is finite
3. each ϕ ∪ Φ∗(Γ ) is finite

then: A ∪ CnCAL
(
Γ

)
iff Γ �CAL A.

In the last two sections I have presented cases in which completeness and sound-
ness is warranted with respect to the intuitive semantics in terms of sequential selec-
tions that was explicated in the beginning of this section. As demonstrated in the
example, not in all cases the consequence relation is complete with respect to this
semantics. In such cases the semantic selection has to be defined in a more cumber-
some way. For instance in the following way: Let Γ �↓

CAL A iff M |= A for all

M ∪ MALxn
n

(
CnL+

AL
xn−1
n−1

(
CnL+

AL
xn−2
n−2

(
. . . CnL+

AL
x1
1

(Γ ) . . .

)))
.

Theorem 3.2.5. Where Γ ∨ W: Γ �↓
CAL A iff A ∪ CnCAL

(
Γ

)
.

Proof. For n = 1 this holds by the soundness and completeness of ALs in the stan-

dard format. Let n > 1. By Lemma 3.1.3, CnL+
CALn−1

(Γ ) = CnL+
LLL

(
CnL+

CALn−1
(Γ )

)
.

Hence, by Corollary 2.7.1, A ∪ CnL+
CAL (Γ ) iff CnL+

CALn−1
(Γ ) �ALxn

n
A iff

Γ �↓
CAL A. �
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3.3 A Proof Theory for CAL

So far we have only discussed the consequence relation and the semantics of
CAL. While a consequence relation may inform us of the outcome of a reasoning
process, it doesn’t explicate the reasoning process. One way to do so is by means of a
proof theory. We have already seen how the proof theory of ALs in the standard for-
mat explicates the internal dynamics of defeasible reasoning. Our task in this section
is to introduce a similar proof theory for the sequential combinations of ALs CAL.

In this section I presuppose that the Ωi ’s are disjoint, i.e., for all i, j for which
1 ∅ i < j ∅ n, Ωi ∩ Ω j = →.

The reader can find more generic—but also more involving—proof theories where
this requirement is dropped in [5].

3.3.1 The Proof Format

The proof format of sequential superpositions which we present here is nearly iden-
tical to the one of flat ALs. Again, a line is a quadruple consisting of a line number,
a formula, a justification and a condition. The only difference concerns the last ele-
ment. While in the proof theory for flat ALs only formulas in the logical form of
abnormalities with respect to a specific AL are part of the condition, in the sequential
case abnormalities belonging to different Ωi ’s can be part of the condition.

Suppose we have the following line in a proof7:

l A k1, . . . , kn; R Δ1 ⊃ Δ2

where Δ1 ∨ Ω1 and Δ2 ∨ Ω2. The idea is that A is derived on the assumption that
no abnormality in Δ1 ⊃ Δ2 is true. Hence, we make use of the defeasible reasoning
forms represented by both ALx1

1 and ALx2
2 . Moreover, in case A is finally derived at

line l (see Definition 3.3.4 below), then A is a consequence of the superposition of
ALx2

2 on ALx1
1 , since no defeasible assumptions were made that correspond to ALs

higher in the sequence of SAL.
In order to realize this idea we will again make use of three generic rules and

marking definitions.
The generic rule for premise introduction, PREM, and the unconditional rule, RU,

are the same as for flat ALs (see page 19).
In what follows we introduce the generic conditional rule RC. For each ALxi

i in
the sequence it allows to make inferences that make use of the defeasible reasoning

7 We use R as a metavariable for a generic inference rule.
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corresponding to ALxi
i . Where i ∅ n, Θ ∨ Ωi , and for each Δ j (1 ∅ j ∅ m),

Δ j ∨ Ω1 ⊃ . . . ⊃ Ωi , we have:

If A1, . . . , Am �LLL B ∨̌ Dab(Θ) :
A1 Δ1
...

...

Am Δm

B Δ1 ⊃ . . . ⊃ Δm ⊃ Θ

(RC)

Remark 3.3.1. Note that RCdoes not allow to introduce defeasible assumption
corresponding to different ALxi

i ’s in the sequence in one inference step. After
introducing the marking definitions we will give an example that illustrates
why allowing for many defeasible assumptions in one inference step leads to
trouble.

Hence the following is not a correct application of RC: Where A1 ∪ Ω1 and
A2 ∪ Ω2,

l B ∨̌(A1 ∨̌ A2) . . . →
l ↓ B l; RC (!) {A1, A2}

Neither is the second application of RC in the following proof correct:

l B ∨̌(A1 ∨̌ A2) . . . →
l ↓ B ∨̌ A1 l; RC {A2}
l ↓↓ B l ↓; RC (!) {A1, A2}

B can be derived on the condition {A1, A2}, however the applications of RC have
to respect the order of the sets of abnormalities in the sequence. The following proof
is correct:

l B ∨̌(A1 ∨̌ A2) . . . →
l ↓ B ∨̌ A2 l; RC {A1}
l ↓↓ B l ↓; RC {A1, A2}

More general, suppose we are able to derive B ∨̌ Dab(Θ1 ⊃ . . . ⊃ Θm) in LLL
from A1, . . . , Ak , where each Θi ⊇ Ωi . In that case the proof theory allows us to
defeasibly derive B from A1, . . . , Ak step-wise:

l1 B ∨̌ Dab(Θ1 ⊃ . . . ⊃ Θm)
... →

l2 B ∨̌ Dab(Θ2 ⊃ . . . ⊃ Θm) l1; RC Θ1
...
...

...
...

lm B ∨̌ Dab(Θm) lm−1; RC Θ1 ⊃ . . . ⊃ Θm−1
lm+1 B lm; RC Θ1 ⊃ . . . ⊃ Θm
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3.3.2 Preparing for the Marking Definitions

Of course, in order to explicate defeasible reasoning it is not enough to be able to
apply certain rules conditionally. What is still missing is a mechanism that makes
it possible to retract defeasible inferences. As in the case of flat ALs, lines in an
CAL-proof are marked at a certain stage of the proof in order to signify that the
corresponding inference is retracted at that stage.

The marking definitions reflect the hierarchical structure of the superposition. For
each level i ∅ n we will state i-marking definitions. That a line is not i-marked for
any i ∅ n indicates that we have no reason to suspect the assumption of this line. If
a line in an CAL-proof is i-marked for an i ∅ n, then this means the line is retracted
at the given stage of the proof.

Since either xi = r or xi = m, and since we also include superpositions of ALs
with mixed strategies, we need to state i-marking definitions for both strategies. In
order to do so it is useful to define sequential counter-parts to various notions that
play a central role for the marking definitions in Chap. 2.

We first give a sequential account of minimal Dab-formulas resulting in the notion
of a minimal Dabi -formula for each i ∅ n, i.e. a minimal disjunction of members of
Ωi . Just as the marking at stage s for flat ALs was determined by a set of minimal
Dab-formulas relative to s, the i-marking in the sequential case will be determined
by a set of Dabi -formulas relative to s.

Definition 3.3.1. Let s be the stage of an CAL-proof from Γ and i ∅ n.

• A proof line l with condition Δ is a [∅0]-line iff Δ = →.
• A proof line l with condition Δ is a [∅i]-line iff Δ ∨ Ω1 ⊃ . . . ⊃ Ωi .
• A proof line l is an i -line iff it is a [∅i]-line and not a [∅i−1]-line.
• Dab(Δ) is a Dabi -formula iff Δ ∨ Ωi .
• Where Δ ∨ Ωi , Dab(Δ) is a minimal Dabi -formula at stage s in case

(i) Dab(Δ) is derived at some [∅i−1]-line l at stage s,
(ii) line l is not marked at stage s (see below for the marking definition), and

(iii) for no Δ↓ ⊇ Δ, Dab(Δ↓) is derived at an unmarked [∅i−1]-line at stage s.

• Where {Dab(Δ j ) | j ∪ J } is the set of the minimal Dabi -formulas at stage s, let
Σ i

s (Γ ) =df {Δ j | j ∪ J }.
• Ui

s (Γ ) =df
⋃

Σ i
s (Γ )

• A Dabi -formula Dab(Δ) is a minimal Dabi -consequence of Γ iff Γ �LLL
Dab(Δ) and for all Θ ⊇ Δ, Γ ◦�LLL Dab(Θ).

There is an important difference when comparing minimal Dabi -formulas at some
stage s to minimal Dab-formulas in proofs of flat ALs: while the latter are always
derived on the condition →, the condition Δ on which a minimal Dabi -formula is
derived may be non-empty. However, the abnormalities in Δ are always lower than i .

http://dx.doi.org/10.1007/978-3-319-00792-2_2


76 3 Sequential Combinations of ALs

3.3.3 The i-Marking for the Reliability Strategy

Now we are able to define the i-marking at a stage s. Let us begin with the marking
definition for the reliability strategy.

Definition 3.3.2 (i-marking for reliability). An i-line l with condition Δ is
i-marked at stage s iff Δ ∩ Ui

s (Γ ) ◦= →.

Note that the i-marking only concerns i-lines, i.e., lines for which the highest abnor-
malities in the condition are in Ωi . Of course, it may be that an i-line l is derived
from some j-line l ↓ (where j < i) that is j-marked. In this case also the inference
at line l is supposed to be retracted since it relies on a retracted inference. This is
achieved by means of the following marking definition:

Definition 3.3.3 (inh-marking of lines). An i-line l with condition Δ and justification
l1, . . . , lm; R is inh-marked in case some l j (where 1 ∅ j ∅ m) is (i) k-marked for
some k < i , or (ii) inh-marked.

We say a line is marked in case it is i-marked for some i ∅ n (see also the
i-marking Definition 3.3.5 for minimal abnormality below) or it is inh-marked.

Before we turn to the i-marking definition for minimal abnormality, let us illustrate
the generic inference rules and the above marking definition by means of a simple
example.

Recall the logic CL∧ from Chap. 2. Let us give a prioritized twist to it by enhancing
its expressiveness: we prefix formulas with sequences of ∧’s in order to indicate the
trustworthiness of the information resp. source. Where A is a formula without ∧’s,
we indicate that A is preceded by i many ∧’s by means of ∧i A. The more ∧’s that
precede A the less trustworthy is the information resp. the source that states it. Of
course, in case of conflicting statements we prefer the more trustworthy information.
We realize this idea by means of a sequential combination of ALs. We combine
the logics CL∧xi

i where CL∧xi
i is characterized by the lower limit CL∧, the set of

abnormalities Ωi = {∧i A ⇐ ¬A | A is ∧-free, and the strategy xi ∪ {r, m}.
For the sake of the example let us combine CL∧r

1 and CL∧r
2. Now consider the

premise set Γp1 = {∧p, ∧∧q, ∧∧r,¬p ∨ ¬r}. According to this premise set, we have
evidence for p, q and r , but p is more trustworthy than the other two propositions.
However, we also know that either p or r is false. Hence we can expect that the
prioritized logic will only allow us to finally derive p, and hence by disjunctive
syllogism ¬r . Also, since q is not involved in the conflict, we expect it to be finally
derivable. This can be done as follows.

We start by introducing the premises on the condition →:

1 ∧p PREM →
2 ∧∧q PREM →
3 ∧∧r PREM →
4 ¬p ∨ ¬r PREM →

http://dx.doi.org/10.1007/978-3-319-00792-2_2
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By the rule RC, we may subsequently derive p, q and r from the first three
premises. In order to avoid notational clutter let us from now on abbreviate abnor-
malities ∧i A ⇐ ¬A by !i A. Note that Γp1 �CL∧ p ∨̌ !1 p, Γp1 �CL∧ q ∨̌ !2q and
Γp1 �CL∧ r ∨̌ !2r . Hence we can derive e.g. p on the assumption that !1 p is false. In
the adaptive proof this means that we derive p on the condition {!1 p} and similar for
q and r :

5 p 1; RC {!1 p}
6 q 2; RC {!2q}
7 r 3; RC {!2r}

To understand the rule RU, consider the following continuation of the proof, in
which the conditions of lines 5 and 6 are merged:

8 p ⇐ q 5,6; RU {!1 p, !2q}
Let us now turn to the marking. We use �i to denote that a line is i-marked. To

avoid clutter, we only represent the marks at one stage: where k is the last line in the
example proof the displayed marks represent the marking at stage k.

In order to render line 7 marked, we first have to derive the Dab2-formula !2r .
This is done as follows:

...
...

...
...

5 p 1; RC {!1 p}
6 q 2; RC {!2q}

�2 7 r 3; RC {!2r}
8 p ⇐ q 5,6; RU {!1 p, !2q}
9 !1 p ∨̌ !2r 1,3,4; RU →

10 !2r 9; RC {!1 p}
Let us discuss the marking at stage 10 step by step. First of all, note that at

stage 10, no Dab1-formula has been derived on the condition →.8 This means that
Σ1

10(Γp1) = →, whence also U 1
10(Γp1) = →. As a result, no line is 1-marked at

stage 10.
Now consider line 10 and its formula !2r . This is a Dab2-formula. Moreover, line

10 is not 1-marked. As a result, !2r is a minimal Dab2-formula at stage 10. This
implies that Σ2

10(Γp1) = {{!2r}}, whence U 2
10(Γp1) = {!2r}. As a result, line 7 is

2-marked at stage 10, as indicated by the symbol �2.
We define final derivability for our proof theory exactly in the same way as it was

defined for flat ALs in Definition 2.4.4.9

8 The formula on line 9 is not a Dab1-formula, since it contains the abnormality !2r which is not a
member of Ω1.
9 In case some xi = m this definition also makes reference to the i-marking for minimal abnormality
which we define in Sect. 3.3.4.
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Definition 3.3.4. A is finally derived at a line l of a finite stage s in an CAL-proof,
iff (i) line l is unmarked at stage s, and (ii) every extension of the proof in which l is
marked can be further extended in such a way that l is unmarked.

A is finally derivable from Γ in CAL iff there is a proof from Γ in which A is
finally derived. We write Γ �CAL A in case A is finally derivable from Γ .

As a matter of fact, p, q and p ⇐ q are finally derived in the proof from Γp1

above. Note that no Dab1-consequence is derivable from this premise set, and the
only minimal Dab2-consequence that can be derived from Γp1 is !2r . This means
that in every extension of the proof, the marking of lines 1–10 remains unchanged.

3.3.4 The i-Marking for the Minimal Abnormality Strategy

The i-marking for minimal abnormality is slightly more complicated. Where Φ i
s(Γ )

is the set of minimal choice sets of Σ i
s (Γ ) we define:

Definition 3.3.5 (i-marking for minimal abnormality). An i-line l with formula
A and condition Δ is i-marked at stage s iff one of the following conditions hold:

(i) there is no ϕ ∪ Φ i
s(Γ ) such that Δ ∩ ϕ ◦= →

(ii) for a ϕ ∪ Φ i
s(Γ ): there is no unmarked [∅i]-line l ↓ at stage s with formula A

and condition Θ such that Θ ∩ ϕ = →.

Recall that final derivability as defined in Definition 3.3.4 also applies to super-
positions that feature ALs with minimal abnormality. This completes the technical
characterization of our first proof theory for CAL. In Appendix B we prove its
adequacy:

Theorem 3.3.1. Where Γ ∨ W: Γ �CAL A iff A ∪ CnCAL
(
Γ

)

Let us in the remainder of this section illustrate the proof theory and discuss some
noteworthy point concerning the marking for minimal abnormality.

Let us interpret Definition 3.3.5 in terms of an argumentation game (see also
the discussion of Definition 2.4.7 on page 26). Suppose our proponent derives for-
mula A on the condition Δ at stage s. The i-marking concerns the question whether
the defeasible assumption that corresponds to level i in the superposition is feasi-
ble. The minimal choice sets of Σ i

s (Γ ) offer minimally abnormal interpretations (in
terms of abnormalities in Ωi ) of the premises with respect to the Dabi -formulas at
the given stage s. That is, they offer possible counter-arguments against the defea-
sible assumption Δ of line l. In case her assumption intersects with one of these
minimally abnormal interpretations ϕ she has to offer an alternative argument for A
whose assumption doesn’t intersect with ϕ (condition (ii)). Moreover, there should
be at least one ϕ such that her assumption doesn’t intersect with ϕ (condition (i)).
In Sect. 2.4.2.2 we said that her argument has to be justifiable (condition (ii)) and
defensible (condition (i)). However, there is a slight complication involved.

http://dx.doi.org/10.1007/978-3-319-00792-2_2
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The assumptions used in order to derive A may involve abnormalities of lower
levels than i . Concerning the lower levels we adopt a bottom-up approach. In case
one of the defeasible assumptions at a lower level is not feasible we rely on the
marking corresponding to the lower level to retract the line. This is realized by (a)
allowing only for one type of defeasible assumption in each inference step by means
of RC, and (b) by using the inh-marking to “inherit” markings from a lower level line
to a higher level line that calls upon the former in its justification. In this sense the
i-marking procedure safely ignores the defeasible assumptions belonging to lower
levels.

Let us demonstrate this by a simple example. As before, we use an CL∧-based
prioritized logic with only two levels of abnormalities. This time however, we con-
sider the minimal abnormality-variant, i.e. characterized by the sequence
〈CL∧m

1 , CL∧m
2 ⊆.

Let Γp2 = {∧p, ∧q, ∧∧r, ∧∧s,¬p ∨ ¬q,¬p ∨ ¬r,¬q ∨ ¬s}. Note that the
following disjunctions of abnormalities are CL∧-derivable from Γp2:

(i) !1 p ∨̌ !1q
(ii) !1 p ∨̌ !2r
(iii) !1q ∨̌ !2s

However, (ii) and (iii) are neither Dab1-formulas nor Dab2-formulas. The follow-
ing proof shows how we can derive Dab2-formulas from Γp2:

1 ∧p PREM →
2 ∧q PREM →
3 ∧∧r PREM →
4 ∧∧s PREM →
5 ¬p ∨ ¬q PREM →
6 ¬p ∨ ¬r PREM →
7 ¬q ∨ ¬s PREM →
8 !1 p ∨̌ !1q 1,2,5; RU →
9 !1 p ∨̌ !2r 1,3,6; RU →

10 !1q ∨̌ !2s 2,4,7; RU →
�1 11 !2r 9; RC {!1 p}
�1 12 !2s 10; RC {!1q}

13 !2r ∨̌ !2s 11; RU {!1 p}
14 !2r ∨̌ !2s 12; RU {!1q}

Note that Σ1
14(Γp2) = {{!1 p, !1q}}, whence Φ1

14(Γp2) = {{!1 p}, {!1q}}. Hence,
at the current stage of our proof there are two minimally abnormal interpretations
with respect to the abnormalities in Ω1: one according to which !1 p is the only true
abnormality, and another one according to which !1q is the only true abnormality.
This means that we cannot finally derive !2r on the condition {!1 p}, since we cannot
derive !2r on an assumption that is valid in the minimally abnormal interpretation
offered by means of the minimal choice set {!1q} (see condition (ii) in Definition
3.3.5).
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For the same reason, we cannot finally derive !2s. Both lines 11 and 12 are
1-marked. However, the disjunction of both level 2-abnormalities is finally derived
at stage 14. This follows immediately from the fact that Dab(Δ1) where Δ1 =
{!1 p, !1q} is the only minimal Dab1-consequence of Γp2. Also, it can easily be veri-
fied that Dab(Δ2) where Δ2 = {!2r, !2s} is the only minimal Dab2-consequence of
CnCL∧m

1
(Γp2).

In view of the preceding, it is easy to see that the sets Σ1
s (Γp2) and Σ2

s (Γp2)

remain stable from stage 14 on. Put differently, in every further stage s of the proof,

(†1) Φ1
s (Γp2) = Φ1

14(Γp2) = {{!1 p}, {!1q}}
(†2) Φ2

s (Γp2) = Φ2
14(Γp2) = {{!2r}, {!2s}}

Let us now return to the iterative character of the conditional rule and the inheri-
tance marking.

Were we to allow for a more generic RC-rule—let’s call it RC↓—that allows for
the introduction of abnormalities that belong to different levels at the same time, we
would be able to produce the following extension of our proof above in which the
(arbitrarily chosen) formula t is derived:

Note that this is not a correct CAL-proof fragment.

9 !1 p ∨̌ !2r 1,3,6; RU →
10 !1q ∨̌ !2s 2,4,7; RU →

...
...

...
...

15 t ∨̌ !1 p ∨̌ !2r 9; RU →
16 t 15; RC↓ {!1 p, !2r}
17 t ∨̌ !1q ∨̌ !2s 10; RU →
18 t 17; RC↓ {!1q, !2s}

Note that according to our marking Definition 3.3.5, neither line 16 nor line 18
is 1-marked or 2-marked. However, the arbitrarily chosen t is not a consequence.
A proper CAL-proof in which t is derived looks as follows:

9 !1 p ∨̌ !2r 1,3,6; RU →
10 !1q ∨̌ !2s 2,4,7; RU →

...
...

...
...

15 t ∨̌ !1 p ∨̌ !2r 9; RU →
�1 16 t ∨̌ !2r 15; RC {!1 p}
inh 17 t 16; RC {!1 p, !2r}

18 t ∨̌ !1q ∨̌ !2s 10; RU →
�1 19 t ∨̌ !2s 18; RC {!1q}
inh 20 t 19; RC {!1q, !2s}



3.3 A Proof Theory for CAL 81

Note that neither t ∨̌ !2r nor t ∨̌ !2s is a consequence of the first AL in the sequence.
Accordingly, lines 16 and 19 both get 1-marked. Again, here it is important to notice
that lines 17 and 20 are neither 1-, nor 2-marked. However, they get inh-marked due
to the fact that they call upon a 1-marked line in their justification. This shows that the
marking for minimal abnormality needs to be complemented by the inh-marking.10

Note that the proof theory proposed in [6] is not adequate with respect to the
consequence relation of sequences of ALs with the minimal abnormality strategy
and even trivializes some premise sets. The above example is one of those cases.
As we have seen, this problem is solved by the current proof theory in terms of (a)
allowing only for defeasible assumptions of one level to be introduced at a time by
means of RC and (b) by supplementing the marking with the inh-marking.

3.3.5 An Alternative to the inh-Marking for Some Special Cases

In the special case where for an initial sequence of ALs in our combination—say
〈ALx1

1 , . . . , ALxm
m ⊆ where m ∅ n—all ALs make use of the reliability strategy (i.e.,

xi = r for all i ∅ m) we can do without the inh-marking for [∅m]-lines. In order to
do so we generalize the marking Definition 3.3.2 in the following way:

Definition 3.3.6 ([∅i]-marking for reliability). A line l with condition Δ is [∅i]-
marked at stage s iff Δ ∩ ⋃

j∅i U j
s (Γ ) ◦= →.

It is easy to see that the following holds:

Lemma 3.3.1. Where m ∅ n and xi = r for all i ∅ m:

(i) a [∅m]-line is [∅m]-marked at stage s, iff it is either inh-marked or i-marked
for some i ∅ m at stage s,

(ii) where m < n: a (m+1)-line is [∅m]-marked at stage s iff it is inh-marked at
stage s.

Proof. Let l be some line at stage s of the proof with condition Δ. Ad (i): Where l is a
0-line or a 1-line this is obvious. “i ⊕ i +1” where i +1 ∅ m: Suppose l is an (i +1)-
line. Suppose it is inh-marked. Hence, there is an [∅i]-line l ↓ that is called upon in
the justification of l and that is marked. Hence, by the induction hypothesis l ↓ is also
[∅m]-marked. Hence, where Δ↓ is the condition of line l ↓, Δ↓ ∩ ⋃

j∅m U j
s (Γ ) ◦= →.

Since Δ↓ ∨ Δ, also Δ ∩ ⋃
j∅m U j

s (Γ ) ◦= →. Hence, l is also [∅m]-marked. If l is

(i + 1)-marked then Δ ∩ Ui+1
s (Γ ) ◦= → and hence, l is also [∅m]-marked.

The other direction and the proof for (ii) is analogous and left to the reader. �

Some useful applications of this lemma are:

10 In [5] we present another sequential proof theory where this is not necessary. However, the price
to pay is that the marking definition for minimal abnormality is more complicated.
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For the special case where each logic in the sequence uses the reliability strategy,
we can use the [∅n]-marking defined in Definition 3.3.6 instead of using i-markings
for reliability for each i ∅ n and inh-marking.

For the special case in which only xn = m while xi = r for all i < n we can use
the [∅n]-marking and n-marking according to minimal abnormality.

3.4 Normal Selections

In this section we investigate the case in which ALn uses the normal selections
strategy. Let us call this logic CALns.11 It has the following consequence relation:

CnL+
CALns (Γ ) =df CnL+

ALns
n

(
CnL+

AL
xn−1
n−1

(
. . . CnL+

AL
x1
1

(Γ ) . . .

))

The meta-theory will be useful for instance in Chap. 8.
Let us first define the semantics. This is done analogously to the way we defined

it in Sect. 3.2. Only the last selection is different. We define:

Definition 3.4.1. Where Γ ∨ W+: Γ �CALns A iff there is a M ∪ Mm
n such that

for all M ↓ ∪ Mm
n (Γ ) for which Abn(M) = Abn(M ↓), M ↓ |= A.

We have analogous soundness and completeness results as before.

Theorem 3.4.1. If (3.8) then, Γ �CALns A iff A ∪ CnCALns
(
Γ

)
.

Proof. Suppose (3.8). A ∪ CnL+
CALns (Γ ), iff, A ∪ CnL+

ALns
n

(
CnL+

CALn−1
(Γ )

)
, iff

[since by Corollary 3.1.2. CnL+
CALn−1

(Γ ) = CnL+
LLL

(
CnL+

CALn−1
(Γ )

)
and by Theorem

2.8.4], CnL+
CALn−1

(Γ ) �ALns
n

A, iff, there is a

M ∪ MALm
n

(
(CnL+

CALn−1
(Γ )

)

such that for all M ↓ ∪ MALm
n

(
CnL+

CALn−1
(Γ )

)
for which Abn(M ↓) = Abn(M),

M ↓ |= A, iff [by Lemma 3.2.1 and (3.8)], there is a M ∪ Mm
n (Γ ) such that for all

M ↓ ∪ Mm
n (Γ ) for which Abn(M ↓) = Abn(M), M ↓ |= A, iff, Γ �CALns A. �

We also get soundness and completeness in case the outermost AL uses the normal
selections strategy, while all other ALs use reliability.

11 Usually the superscript n is used in order to indicate the normal selections strategy. However,
since we use the subscript n in order to indicate the n-th logic in our sequence and in order to avoid
needless ambiguities, we use ns for the normal selections strategy in this section.

http://dx.doi.org/10.1007/978-3-319-00792-2_8
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Corollary 3.4.1. Where Γ ∨ W , xi = r for all i < n: Γ �CALns A iff Γ �CALns A.

This follows by Lemma 3.2.4 and Theorem 3.4.1.
Moreover, we have soundness and completeness in the finitary cases of Sect. 3.2.2:

Corollary 3.4.2. Where Γ ∨ W and either of the following holds:

1. Ω∗ is finite
2. U∗(Γ ) is finite
3. each ϕ ∪ Φ∗(Γ ) is finite

then: A ∪ CnCALns
(
Γ

)
iff Γ �CALns A.

The follows by Lemma 3.2.8 and Theorem 3.4.1.
Let us close this section with a look at the proof theory for CALns. The i-marking

for i < n is defined as before. We only alter the n-marking accordingly:

Definition 3.4.2 (n-marking for normal selections). An n-line l with condition Δ is
n-marked iff there is an unmarked [∅n−1]-line on which Dab(Δ∩Ωn) is derived.12

Finally derivability is defined as before. In Appendix B we prove that this proof
theory is adequate:

Theorem 3.4.2. Where Γ ∨ W: Γ �CALns A iff A ∪ CnCALns
(
Γ

)
.

3.5 Conclusion

In this chapter we have discussed sequential combinations of ALs. First we investi-
gated some meta-theory for the syntactic consequence relation. Then we proposed
an intuitive semantics and proved its adequacy for several special cases. We got
soundness and completeness in case all the logics use the reliability strategy, or for
cases in which Φ(Γ ) is finite, or each member of Φ(Γ ) is finite, or U (Γ ) is finite.
Finally we presented a dynamic proof theory that is very much in the tradition of the
dynamic proof theory for flat ALs that we discussed before.

Acknowledgments The research in this chapter is inspired by the work on combinations of ALs
by Diderik Batens and by Frederik Van De Putte. I also thank both of them for valuable comments.

12 Note that in Sect. 2.8 we present several variants of a marking definition for normal selections.
We do not spell out the corresponding variants in this section, but the necessary adjustments are
obvious.
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Chapter 4
On the Transparency of Defeasible Logics:
Equivalent Premise Sets, Equivalence of Their
Extensions, and Maximality of the Lower Limit

For Tarski logics, there are simple criteria that enable one to conclude that two premise
sets are equivalent. We shall show that the very same criteria hold for ALs, which is
a major advantage in comparison to other approaches to defeasible reasoning forms.

A related property of Tarski logics is that the extensions of equivalent premise
sets with the same set of formulas are equivalent premise sets. This does not hold for
ALs. However a very similar criterion does.

We also shall show that every monotonic logic weaker than an AL is weaker than
the lower limit logic of the AL or identical to it. This highlights the role of the lower
limit for settling the adaptive equivalence of extensions of equivalent premise sets.

4.1 Formats for Logics for Defeasible Reasoning

This chapter has a specific and a more general aim. The specific aim is related
to determining whether two premise sets are equivalent with respect to logics that
explicate defeasible reasoning forms—henceforth DRFs. We shall show that ALs
are superior to other formats in this respect. The more general aim is to highlight the
advantages of the AL program with respect to other approaches to DRFs.

Let us compare the situation with Tarski logics, logics the consequence relation
of which is Reflexive, Transitive and Monotonic. A variety of formulations has
been developed: axiomatic, Fitch-style, Gentzen-style, etc. Each of these have their
stronger points. The variety, however, is only apparent. First, there are relatively
standard procedures that, for most logics, enable one to turn one formulation into
another. Next, the different formulations are at best different ways to characterize

A previous version of this chapter has been published under the name “On the Transparency of
Defeasible Logics: Equivalent Premise Sets, Equivalence of Their Extensions, and Maximality
of the Lower Limit” in Logique et Analyse [1]. The paper is co-authored by Diderik Batens and
Peter Verdée. Any mistakes in the new material that has been added are alone my responsibility.

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 85
DOI: 10.1007/978-3-319-00792-2_4, © Springer International Publishing Switzerland 2014
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the same basic entity, viz. the consequence relation, which assigns to every premise
set a consequence set. There are some differences in semantic styles as well. Again,
these may be reduced to each other, except that some logics require a more complex
semantics than others.

The situation is drastically different for logics that explicate DRFs. Here a variety
of syntactic formulations have been tried out, each of them often for some specific
cases only. Many of these explications have no semantics, others require unusual
techniques.1 All this raises two central questions.

A first question is whether DRFs require a variety of formulations. It is indeed
possible that the domain comprises reasoning forms that are so different from each
other, that it is uninteresting or even impossible to forge them into the same format.
Suppose, however, that it is possible to characterize all DRFs by the same type of logic
or logical approach. Then, presumably, there will be several such approaches. If this
is so, a second question should be raised: Which are the advantages and weaknesses
of the different approaches?

It is the aim of the AL program to characterize all DRFs in terms of an AL
in standard format (see Chap. 2). This was realized for a variety of DRFs, mostly
by tackling such reasoning forms from scratch. Many DRFs have been decently
described independently of the AL program. Quite a few of these were characterized
by an AL in standard format—[5–8] for handling inconsistent knowledge bases as
in [9–11]; [12] for the signed consequence relations from [13]; [14, 15] for default
reasoning and circumscription,2 documented in [16–18]; [19] for rational closure
from [20]; [21] for abstract argumentation from [22, 23]; [24] for the belief merging
protocols from [25]. Similarly for consequence relations not described as such in
the literature—[26, 27] for question evocation from [28]; [29–33] for abduction as
described in [34]; [35, 36] for diagnosis from [37]; [38] for the notion of empirical
progress from [39]; [40] for belief revision. For several Tarski logics, an AL was
developed to circumvent adding new premises (by tinkering)—[41] for the pragmatic
structures from [42, 43]; [44] and [45] on causality as in [46]; [47, 48] for the deontic
logics from [49, 50], and [51] for fuzzy logics. Those characterizations and extensions
often require a translation to a different language. Where L is the original ‘logic’ and
AL is an AL, the characterization may have the form: Ω ∪L A iff f (Ω ) ∪AL f (A)

where f is a function mapping formulas from the native language (for example
the standard predicative language) to a different language (for example a modal
language).

The successes on the adaptive side do not entail that the first question should be
answered in the negative. All that follows is that adaptive logicians were successful
where one attempted to find such a characterization. The attempts were not exhaustive
with respect to the present literature and new forms of defeasible logics may be
discovered in the future. So the situation seems to justify that adaptive logicians

1 With respect to the semantics, useful unifying work was done by Shoham and associates, for
example [2–4].
2 These are older results, not in standard format, that soon will be improved upon.
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continue their efforts, but it is possible that they will only be able to unify part of all
DRFs.

Let us now turn to the second question. One of the arguments adduced in favour
of characterizations in terms of ALs was precisely that this enterprise has a strong
unifying effect, especially as the standard format provides ALs with a proof theory, a
semantics, and all the interesting parts of the metatheory. But obviously, unification
is not the only consideration that should be taken into account.

In the present chapter we shall consider a type of argument that is related to
transparency. To be more precise, the argument concerns criteria for the equivalence
of premise sets. This requires some explanation.

Theories may have different formulations: the same theory may be presented in
different ways. To make the matter more precise, let a theory T be a couple 〈Ω, L⊆,
in which Ω is a set of statements (the non-logical axioms of T ) and L is a logic. The
claims made by the theory are CnL (Ω ) = {A | Ω ∪L A}. That T = 〈Ω, L⊆ and
T ′ = 〈Ω ′, L⊆ are different formulations of the same theory obviously means that
CnL (Ω ) = CnL

(
Ω ′). Similarly, people talking to each other about some subject

may come to the conclusion that they fully agree on the topic. If they are serious
about the matter, they mean to say that all one person believes on the subject is
derivable from the statements made (or agreed to) by the other. We may safely take
it that the agreeing parties share the underlying logic L, at least in the context of
their present communication. So their agreement may be formally expressed by a
statement of the form CnL (Ω ) = CnL

(
Ω ′). Where this statement holds true, we

shall say that Ω and Ω ′ are L-equivalent premise sets.
Sameness of theories and mutual agreement are important matters. If two theories

are the same, everything proven from one of them may be carried over immediately
to the other. If two people actually agree about some subject, they are able to predict
everything the other believes about the subject and they may rely on this, for example
in arguments about other topics. Yet, it is obvious that offering a direct proof of
CnL (Ω ) = CnL

(
Ω ′) is out of the question. Put in a more precise way, it is impossible

for humans to enumerate all members of CnL (Ω ) and to demonstrate for each of
them that it is also a member of CnL

(
Ω ′).3 Humans rely on shortcuts in order to

establish CnL (Ω ) = CnL
(
Ω ′).

In Sect. 4.2, we shall consider three common criteria for deciding that CnL (Ω )

= CnL
(
Ω ′). These criteria will be shown to be correct for Tarski logics. We shall

show, however, that these criteria cannot be applied to certain popular formulations
of DRFs and that no alternatives for the criteria seem available. This will lead to
the question whether there are corresponding criteria for ALs. The answer is rather
astonishing: the very same criteria may be applied in the case of ALs. This seems a
strong argument in favour of the adaptive program.

In Sect. 4.5, we shall also consider a related question. Suppose that Ω and Ω ′ are
L-equivalent. Does it follow that Ω ∪ β and Ω ′ ∪ β are L-equivalent premise sets?
If two people study the same theory, but possibly a different formulation of it, and

3 In the text, we neglect some border cases, which are irrelevant to the present discussion, for
example the case in which CnL (Ω ) is either empty or trivial.
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both extend their formulation with the same set of statements, we might expect that
the extensions are also L-equivalent. The answer to the question will be shown to
be positive for Tarski logics, but negative for most defeasible logics presented in
the literature. It will turn out that the answer is also negative for ALs. However, in
the case of ALs, the answer is positive for a criterion that is extremely close to the
considered one. Let L′ be weaker than L iff CnL′ (Ω ) ∈ CnL (Ω ) for some Ω and
CnL′ (Ω ) ∧ CnL (Ω ) for all Ω . We write L′ ⊃ L to denote that L is weaker than L′,
and L′ ♦ L to denote that CnL′ (Ω ) ∧ CnL (Ω ) for all Ω .

The L-equivalence of the extensions is warranted if the two premise sets are
L′-equivalent, where L′ is any Tarski logic weaker than L. We shall also present a
criterion that is specific for ALs and comes very handy for many premise sets.

The lower limit logic of ALs is always a Tarski logic. As it is a constitutive element
of the AL, it is natural to inquire whether it plays a specific role with respect to the
criteria for equivalence of premise sets and for the equivalence of their extension. In
Sect. 4.6, we shall show that the lower limit logic plays indeed a privileged role: if
L is a monotonic logic and L is weaker than (or identical to) the AL or the adaptive
consequence set is closed under L, then L is weaker than the AL’s lower limit logic
or identical to it.

The conclusion will be that ALs are not only attractive because of their unifying
power, but also because they have certain properties which warrant a transparent
handling of premise sets.

This chapter does not and cannot aim at establishing a final conclusion. As we said
before, new DRFs may be discovered in the future. Still, the chapter offers a strong
argument for ALs (and against some other approaches to DRFs) and the argument
relies on the best present insights.

4.2 Equivalent Premise Sets

Let us start with some conventions. The set of closed formulas of the considered
language will be called W . A logic L is a function L : Λ(W) → Λ(W), in other
words a logic L assigns to every premise set Ω a consequence set, which is denoted
by CnL (Ω ). We presuppose that W does not contain any “checked connectives”
and denote—as before (see Sects. 2.2 and 2.7)—the set of wffs that are the result of
superimposing the “check connectives” on W by W+.

A logic is a Tarski logic iff it fulfills the following three properties:

• Reflexivity: Ω ∧ CnL (Ω ).
• Transitivity: If Ω ′ ∧ CnL (Ω ) then CnL

(
Ω ′) ∧ CnL (Ω ).

• Monotonicity: CnL (Ω ) ∧ CnL
(
Ω ∪ Ω ′).

Definition 4.2.1. Ω and Ω ′ are L-equivalent premise sets iff CnL (Ω ) = CnL
(
Ω ′).

We write Ω ∨L Ω ′.

We propose the following criteria for the L-equivalence of premise sets:

http://dx.doi.org/10.1007/978-3-319-00792-2_2
http://dx.doi.org/10.1007/978-3-319-00792-2_2
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C1 If Ω ′ ∧ CnL (Ω ) and Ω ∧ CnL
(
Ω ′), then Ω ∨L Ω ′.

C2 Where L′ is a Tarski logic for which L′ ♦ L: Ω ∨L′ Ω ′ implies Ω ∨L Ω ′.

C2(Props) Where L′ ♦ L and L′ fulfills properties Props: Ω ∨L′ Ω ′ implies
Ω ∨L Ω ′.

C3 Where L is closed under a Tarski logic L′ (viz. CnL′ (CnL (Δ)) = CnL (Δ)

for all Δ ∧ W): Ω ∨L′ Ω ′ implies Ω ∨L Ω ′.

C3(Props) Where L is closed under a logic L′ that fulfills the properties
Props: Ω ∨L′ Ω ′ implies Ω ∨L Ω ′.

Note that obviously where Props implies Props’ then Ci(Props) implies
Ci(Props’) (where i ⊕ {2, 3}).

Criterion C1 states that, in order for Ω and Ω ′ to be L-equivalent, it is sufficient
that all members of Ω are L-derivable from Ω ′ and vice versa. In terms of theories:
if T and T ′ have the same underlying logic L and all axioms of T are L-derivable
from T ′ and vice versa, then the two axiom sets are L-equivalent—T and T ′, if
different, are different formulations of the same theory. A still different rendering
proceeds in terms of mutual agreement. Suppose that two persons state their views
about some subject in an exhaustive way—all one of them holds true about that
subject is derivable from the statements made by this party. If each party then agrees
with everything the other said on the subject, one may conclude that they have the
same view on the subject. C1 is an immediate consequence of the Transitivity of L.

Criterion C2 states that if two premise sets are equivalent with respect to a Tarski
logic weaker than L, then they are equivalent with respect to L. It is easily seen
that C2 holds for all Tarski logics L. Suppose indeed that the antecedent of C2
is true. As CnL′ (Ω ) ∧ CnL (Ω ), CnL′ (Ω ) ∪ Ω ∧ CnL (Ω ) by the reflexivity of
L and hence CnL (CnL′ (Ω ) ∪ Ω ) ∧ CnL (Ω ) by the transitivity of L. So, by the
monotonicity of L, CnL (CnL′ (Ω ) ∪ Ω ) = CnL (Ω ). Finally, as CnL′ (Ω ) ∪ Ω =
CnL′ (Ω ) by the reflexivity of L′, CnL (CnL′ (Ω )) = CnL (Ω ). By the same reasoning
CnL

(
CnL′

(
Ω ′)) = CnL

(
Ω ′). As CnL′ (Ω ) = CnL′

(
Ω ′), CnL (Ω ) = CnL

(
Ω ′).

Criterion C3 is related to the fact that we expect operations under which
L-consequence sets are closed to define a logic that is weaker than L or identical to it,
which triggers C2. If, for all β, A ∧ B ⊕ CnL (β) just in case A ⊕ CnL (β) and B ⊕
CnL (β), then we expect Ω ∪{p∧q} and Ω ∪{p, q} to be L-equivalent premise sets.

Incidentally, that L′ has certain basic properties and is not just any logic is essential
for both C2 and C3. If L′ were an arbitrary logic, these criteria would not hold. To see
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this, let W be the set of closed formulas of the standard language, let CL be classical
logic and let L′ be defined by CnL′ (Ω ) = {A ⊕ Ω | for all B ⊕ W , B /⊕ CnCL ({A})
or B ⊕ Ω }. In words, the L′-consequence set of Ω are those members of Ω of
which all CL-consequences are members of Ω . Obviously, it holds for all β that
CnL′ (β) ∧ CnCL (β) and also that CnL′ (CnCL (β)) = CnCL (β). However, there
are infinitely many Ω for which no A ⊕ Ω is such that CnCL (A) ∧ Ω . For all of
them CnL′ (Ω ) = CnL′ (∅) but CnCL (Ω ) ◦= CnCL (∅).

Note that, for instance, L′ does not satisfy reflexivity. Motivated by our example,
we state a variant of each C2 and C3 that is formulated relative to certain properties
of L′. We will see that for many logics L, L′ may have less properties than a Tarski
logic and the variants of C2 and C3 still hold (see Theorem 4.3.4 and Corollary 4.3.6
in Sect. 4.3).

Obviously, C1 may be combined with C2 or C3. Thus if L′ is a Tarski logic weaker
than L, Ω ′ ∧ CnL′ (Ω ) and Ω ∧ CnL′

(
Ω ′), then Ω and Ω ′ are L-equivalent.

Let us now turn to defeasible logics. Consider first the Strong (also called
Inevitable) and Weak consequence relations from [9]—see also [10]. Given a possi-
bly inconsistent set of premises Ω , β ∧ Ω is a maximal consistent subset of Ω iff,
for all A ⊕ Ω \ β, β ∪ {A} is inconsistent. Ω ∪Strong A iff A is a CL-consequence
of every maximal consistent subset of Ω and Ω ∪Weak A iff A is a CL-consequence
of some maximal consistent subset of Ω .

It is easily seen that C1 does not hold for the Weak consequence relation.
Here is an example: {p, q,¬p} ∧ CnWeak ({p ∧ q,¬p}) and {p ∧ q,¬p} ∧
CnWeak ({p, q,¬p}), but ¬p ∧ q ⊕ CnWeak ({p, q,¬p}) whereas ¬p ∧ q /⊕
CnWeak ({p ∧ q,¬p}).

It is also easily seen that C3 does not hold for the Strong consequence relation.
Let LC be the Tarski logic that consists, apart from the Premise rule, of the rules
Adjunction and Simplification. All Strong consequence sets are closed under LC,
viz. CnStrong (Ω ) = CnLC

(
CnStrong (Ω )

)
for all Ω . However, CnLC ({p, q,¬p}) =

CnLC ({p ∧ q,¬p}) but CnStrong ({p, q,¬p}) ◦= CnStrong ({p ∧ q,¬p}), for exam-
ple q ⊕ CnStrong ({p, q,¬p}) whereas q /⊕ CnStrong ({p ∧ q,¬p}).

For an example of a logic for which C2 does not hold, we shall remain close to the
Rescher-Manor consequence relations, adding a (weak) Schotch-Jennings flavour—
see for example [52]. A partition of Ω is a (possibly finite) set of sets {Ω1, Ω2, . . .}
such that Ω = Ω1 ∪ Ω2 ∪ . . . and Ωi ↓ Ω j = ∅ where i ◦= j . A partition {Ω1, Ω2, . . .}
of Ω is consistent iff every Ωi is consistent. Obviously, Ω has a consistent partition
iff all A ⊕ Ω are consistent. The regular partitions of Ω are the consistent ones or,
if there are no consistent ones, all partitions of Ω . Define: A ⊕ CnR (Ω ) iff there
is a regular partition {Ω1, Ω2, . . .} of Ω and an i such that A ⊕ CnCL (Ωi ). Define
CnQ (Ω ) = CnP (CnR (Ω )), in which P is full positive CL. If {Ω } is a regular
partition of Ω , CnQ (Ω ) = CnCL (Ω ); if some A ⊕ Ω is inconsistent, CnQ (Ω ) is
trivial; if Ω is inconsistent but all A ⊕ Ω are consistent, CnQ (Ω ) is inconsistent but
non-trivial, border cases aside. Note that P is a Tarski logic and that it is weaker than
Q, viz. CnP (Ω ) ∧ CnQ (Ω ) for all Ω .
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C2 does not hold for the defeasible logic Q. Indeed, P is a Tarski logic weaker
than Q and CnP ({p,¬p}) = CnP ({p ∧ ¬p}), but CnQ ({p ∧ ¬p}) is trivial whereas
CnQ ({p,¬p}) is not.

These examples are rather ‘generous’ because the situation is actually worse for
certain systems describing DRFs. For example for the many kinds of default logics
the criteria C1–C3 should be reformulated in order to make a chance to be applicable.
The set of defaults has to enter the picture and ‘facts’ and defaults are to some extend
exchangeable. The situation is similar for many other logics that characterize DRFs,
even for the very transparent pivotal-assumption consequences defined in [53].

4.3 Equivalent Premise Sets and ALs

It was proven that all ALs have the properties reflexivity (Theorem 2.6.4i), cumula-
tivity (Theorem 2.6.7iii), and idempotency (Theorem 2.6.5iii). From this it is easily
provable that C1–C3 hold for all of them. We will also show that some weakenings
of C2 and C3 hold for ALs. Note that each of the three criteria greatly simplifies the
identification of equivalent premise sets (or theories). An illustration of the following
results is given in Fig. 4.1.

Theorem 4.3.1. If L is cumulative, then C1 holds for L.

Proof. Suppose that Ω ′ ∧ CnL (Ω ) and Ω ∧ CnL
(
Ω ′). By cumulativity, CnL (Ω )

= CnL
(
Ω ∪ Ω ′) and CnL

(
Ω ′) = CnL

(
Ω ∪ Ω ′). So CnL (Ω ) = CnL

(
Ω ′) . �

Hence, since ALs are cumulative we immediately get:

Corollary 4.3.1. C1 holds for all ALs.

Before we continue with the other criteria it is important to point out that we are
considering CnLAL as opposed to i tCnL+

AL in Corollary 4.3.1 and the results that follow

below. Indeed, Theorem 4.3.1 is not applicable to CnL+
AL since the latter is not cumu-

lative. We can show that C1 doesn’t hold for CnL+
AL by means of the Ω from our exam-

ple in Sect. 2.7. We have: CnL+
LLL (Ω ) ∧ CnL+

ALm (Ω ) and Ω ∧ CnL+
ALm

(
CnL+

LLL (Ω )
)

.

However, A ⊕ CnL+
ALm

(
CnL+

LLL (Ω )
)

\ CnL+
ALm (Ω ) as can easily be verified.4

The following technical fact will be useful for some of our proofs below:

Fact 4.3.1. Where L is reflexive and L′ is monotonic:

4 One way to show this is as follows. We already argued in Sect. 2.7. that Ω �ALm A and that
A /⊕ CnL+

ALm (Ω ). Obviously, MLLL
(
Ω

) = MLLL
(
CnL+

LLL (Ω )
)

and hence both premise sets have

the same minimally abnormal models. This implies, CnL+
LLL (Ω ) �ALm A. Thus, by Theorem 2.7.1,

A ⊕ CnL+
ALm

(
CnL+

LLL (Ω )
)

.

http://dx.doi.org/10.1007/978-3-319-00792-2_2
http://dx.doi.org/10.1007/978-3-319-00792-2_2
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Fig. 4.1 Overview of the criteria with the abbreviations: ref = reflexivity, mon = monotonicity,
cum = cumulativity, idem = idempotency. Omitted are for instance the arrows from PEi(Props)
to Ci(Props) and from PEi to Ci (where i ⊕ {2, 3})

CnL′ (CnL (Ω )) ∧ CnL (Ω ) implies CnL′ (Ω ) ∧ CnL (Ω ) .

Proof. Suppose that L is reflexive, L′ is monotonic and CnL′ (CnL (Ω )) ∧ CnL (Ω ).
We have Ω ∧ CnL (Ω ) by the reflexivity of L. Hence, CnL′ (Ω ) ∧ CnL′ (CnL (Ω ))

by the monotonicity of L′. From this and the supposition follows that CnL′ (Ω ) ∧
CnL (Ω ) . �

Theorem 4.3.2. Where L is reflexive

(i) if Props contains at least monotonicity, C2(Props) implies C3(Props) for L.
(ii) C2 implies C3 for L.

Proof. Ad (i): Suppose L is reflexive, monotonicity is in Props and C2(Props)
holds for L. Now let L′ be a monotonic logic for which Ω ∨L′ Ω ′ and for which
CnL′ (CnL (Δ)) = CnL (Δ) for all Δ ∧ W . By Fact 4.3.1, L′ ♦ L. By C2(Props),
Ω ∨L Ω ′. (ii) follows immediately. �

Fact 4.3.2. Where L is idempotent and L′ is reflexive: L′ ♦ L implies CnL′ (CnL (Ω ))

= CnL (Ω ) for all Ω ∧ W .
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Proof. Let L be idempotent, L′ be reflexive, L′ ♦ L, and Ω ∧ W arbitrary. Thus,
CnL′ (CnL (Ω )) ∧ CnL (CnL (Ω )). By the idempotency of L, CnL′ (CnL (Ω )) ∧
CnL (Ω ). By the reflexivity of L′ CnL′ (CnL (Ω )) ⊇ CnL (Ω ) . �

Theorem 4.3.3. Where L is idempotent:

(i) if Props contains at least reflexivity then C3(Props) implies C2(Props) for L.
(ii) C3 implies C2 for L.

Proof. Ad (i): Suppose L is idempotent, Props contains reflexivity, L′ is reflexive,
L′ ♦ L, and Ω ∨L′ Ω ′. By Fact 4.3.2, CnL′ (CnL (Δ)) = CnL (Δ) for all Δ ∧ W .
Hence, by C3(Props), Ω ∨L Ω ′. (ii) follows immediately. �

By Facts 4.3.1 and 4.3.2 we get:

Corollary 4.3.2. Where L is reflexive and idempotent, and L′ is monotonic and
reflexive: CnL′ (CnL (Ω )) = CnL (Ω ) for all Ω ∧ W iff L′ ♦ L.

The following corollary establishes that C2 (resp. C2(Props)) and C3 (resp.
C3(Props)) are coextensive whenever L is reflexive and idempotent (and Props
contains at least monotonicity and reflexivity).

Corollary 4.3.3. Where L is reflexive and idempotent:

(i) if Props contains at least monotonicity and reflexivity then C2(Props) and
C3(Props) are coextensive for L

(ii) C2 and C3 are coextensive for L.

By the reflexivity and idempotency of ALs we get:

Corollary 4.3.4. (i) Where Props contains at least monotonicity and reflexivity:
C2(Props) and C3(Props) are coextensive for AL. (ii) C2 and C3 are coextensive
for AL.

Theorem 4.3.4. Where L is cumulative:

(i) if Props contains at least reflexivity, C2(Props) holds for L.
(ii) C2 holds for L.

Proof. Ad (i): Suppose that L′ ♦ L, Ω ∨L′ Ω ′, L′ is reflexive, and L is cumulative.
By the reflexivity of L′, Ω ∧ CnL′ (Ω ) and Ω ′ ∧ CnL′

(
Ω ′). Hence, since Ω ∨L′

Ω ′ also Ω ∧ CnL′
(
Ω ′) and Ω ′ ∧ CnL′ (Ω ). By L′ ♦ L, Ω ∧ CnL

(
Ω ′) and

Ω ′ ∧ CnL (Ω ). By the cumulativity of L and Theorem 4.3.1, Ω ∨L Ω ′. (ii) follows
immediately. �

Since ALs are cumulative we get:

Corollary 4.3.5. (i) Where Props contains at least reflexivity: AL satisfies C2
(Props). (ii) AL satisfies C2.
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In other words, if L is a reflexive logic weaker than AL and Ω is L-equivalent with
Ω ′, then Ω is also AL-equivalent with Ω ′.

Fact 4.3.3. Reflexivity and cumulativity imply idempotency.

This can easily be seen. Suppose L is reflexive and cumulative. Then, since
CnL (Ω ) ∧ CnL (Ω ), by cumulativity CnL (Ω ) = CnL (Ω ∪ CnL (Ω )). By reflexiv-
ity, CnL (Ω ) = CnL (CnL (Ω )).

By Fact 4.3.3, Corollary 4.3.3 and Theorem 4.3.4 we immediately get:

Corollary 4.3.6. Where L is cumulative and reflexive:

(i) if Props contains at least monotonicity and reflexivity, C3(Props) holds for L.
(ii) C3 holds for L.

Of course, alternatively this can easily be shown directly:

Proof. Ad (i) Suppose L is cumulative and reflexive, L′ is monotonic and reflexive,
that for all Δ , CnL′ (CnL (Δ)) = CnL (Δ), andΩ ∨L′ Ω ′. Hence, CnL′ (CnL (Ω )) =
CnL (Ω ) and CnL′

(
CnL

(
Ω ′)) = CnL

(
Ω ′). By Fact 4.3.1, CnL′ (Ω ) ∧ CnL (Ω ) and

CnL′
(
Ω ′) ∧ CnL

(
Ω ′). By the reflexivity of L′ and since Ω ∨L′ Ω ′, Ω ∧ CnL

(
Ω ′)

and Ω ′ ∧ CnL (Ω ). By the cumulativity of L and Theorem 4.3.1, Ω ∨L Ω ′. (ii)
follows immediately. �

Since ALs are cumulative and reflexive we immediately get:

Corollary 4.3.7. (i) Where Props contains at least reflexivity and monotonicity: AL
satisfies C3(Props). (ii) AL satisfies C3.

In other words, if L is a reflexive and monotonic logic under which AL is closed
then: Ω is L-equivalent with Ω ′ implies Ω is also AL-equivalent with Ω ′.

In order to give an example let us have a look at two typical examples of ALs,
namely the inconsistency-ALs CLuNr and CLuNm. They are defined as follows.
The lower limit logic is CLuN (Classical Logic allowing for gluts with respect to
Negation), viz. full positive CL with (A ∅ ¬A) ∅ ¬A added as the only axiom for
the standard negation, and extended with classical negation¬̌.5 While A ≥ ¬A is a
CLuN-theorem, A∧¬A is CLuN-contingent. The set of abnormalities Θ comprises
all formulas of the form ≺(A∧¬A) (the existential closure of A∧¬A). The strategies
are respectively reliability and minimal abnormality—see below. The resulting ALs
will be called CLuNr and CLuNm.

Note that, for every adaptive logic AL, LLL is a Tarski logic weaker than AL.
So if two premise sets are LLL-equivalent, they are also AL-equivalent in view of
C2. For some premise sets, however, one needs to rely directly on C1. An exam-
ple is that CnCLuNm ({p}) = CnCLuNm ({p ≥ (q ∧ ¬q)}). While CnCLuN ({p}) ◦=
CnCLuN ({p ≥ (q ∧ ¬q)}), it is easy enough to show that {p} ∪CLuNm p ≥ (q ∧ ¬q)

and that {p ≥ (q ∧ ¬q)} ∪CLuNm p.

5 Suitable axioms are (A ∅ ¬̌A) ∅ ¬̌A and A ∅ (¬̌A ∅ B). The other classical symbols are
stipulated to be identical to the corresponding standard symbols.
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4.4 Characterizations Under a Translation

Some readers may be puzzled by our claim that criteria C1–C3 hold for the characteri-
zation of a DRF in terms of an AL while they do not hold for other characterizations—
see Sect. 4.1. The reason is that the former characterizations are realized under a
translation. Let us present two examples. Consider first the logic Q from Sect. 4.2,
restricting the discussion to the propositional level.

Let � abbreviate �♦. Where T is the well-known modal logic of Feys—see, for
example, [54]6—let the modal logic Tm be defined by (i) the lower limit T, (ii) the
set of abnormalities Θ = {(�A∧�B)∧¬�(A∧ B) | A, B ⊕ W}, and (iii) minimal
abnormality. It is provable that, where B1 ∧ . . . ∧ Bn is the conjunctive normal form
of A and Ω � = {�C | C ⊕ Ω }, Ω ∪Q A iff Ω � ∪Tm �B1 ∧ . . . ∧ �Bn .

Note that every minimal Dab-formula that is T-derivable from Ω � comprises only
one disjunct.7 This means that, for statements of the form Ω � ∪Tm �B1∧. . .∧�Bn ,
minimal abnormality and reliability boil down to the Simple strategy. Thus, the
marking definition may be simplified to: a line is marked iff some member of its
condition has been derived on the empty condition. Similarly, a T-model M of Ω �
is a Tm-model of Ω � iff Ab(M) = ⋂{Ab(M ′) | M ′ is a T-model of Ω �} = {A ⊕
Θ | Ω � ∪T A}.

Let us now turn to the fact that C2 does not hold for Q—for example P-equivalence
does not warrant Q-equivalence—whereas C2 holds for Tm in view of Theorem
4.3.4. This opposition obviously derives from the fact that Tm distinguishes between
�(p∧¬p), which has no T-models, and �p∧�¬p, which does, whereas Q blurs this
distinction. For example {p,¬p} is P-equivalent to {p ∧ ¬p}, whereas {�p,�¬p}
is not T-equivalent to {�(p ∧ ¬p)}.

The situation is similar for the Strong and Weak consequence relations, which were
employed to illustrate the non-applicability of C1 and C3. Here we only consider the
Strong consequence relation. Let the premises be formulated with classical negation,
¬̌. Let Ω ¬¬̌ = {¬¬̌A | A ⊕ Ω } and let W ◦¬ be the set of closed formulas that
do not contain ¬ (but may contain ¬̌). It was proven in [5]8 that CnStrong (Ω ) =
CnCLuNm

(
Ω ¬¬̌

)
↓W ◦¬. Note that, although Reflexivity (Theorem 2.6.4i), the fixed

point property (Theorem 2.6.5iii) and cumulative indifference (Theorem 2.6.7iii)
hold for the adaptive consequence relation CnCLuNm (Ω ), but that they do not hold for

the consequence relation that maps Ω to CnCLuNm

(
Ω ¬¬̌

)
↓W ◦¬. Thus if p∧q,¬̌p ⊕

Ω , neither of them will be in CnStrong (Ω ); ¬ ¬̌(p∧q) and ¬ ¬̌ ¬̌p will be members

of both Ω ¬¬̌ and CnCLuNm

(
Ω ¬¬̌

)
but obviously not of CnCLuNm

(
Ω ¬¬̌

)
↓ W ◦¬.

Note also that the required translation does not complicate the applicability of C1–C3.

6 Except that, in order to define Ω �T A, a T-model is defined as M = 〈W, w0, R, v⊆ with w0 ⊕ W
and M is said to verify A iff vM (A, w0) = 1.
7 The property does not hold for all premise sets but is typical for premise sets Ω � with Ω a set of
modal-free formulas.
8 The paraconsistent negation is there written as ∨ (here as ¬) and the classical negation as ¬ (here
as¬̌).
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4.5 Extensions of Equivalent Premise Sets

Let us turn to the announced related problem: the equivalence of extensions of equiv-
alent premise sets. We state similar criteria as in Sect. 4.2:

PE1 If Ω ∨L Ω ′ implies Ω ∪ Δ ∨L Ω ′ ∪ Δ .

PE2 Where L′ is a Tarski logic and L′ ♦ L: Ω ∨L′ Ω ′ implies
Ω ∪ Δ ∨L Ω ′ ∪ Δ .

PE2(Props) Where L′ fulfills properties Props and L′ ♦ L: Ω ∨L′ Ω ′ implies
Ω ∪ Δ ∨L Ω ′ ∪ Δ .

PE3 Where L is closed under a Tarski logic L′: Ω ∨L′ Ω ′ implies
Ω ∪ Δ ∨L Ω ′ ∪ Δ .

PE3(Props) Where L is closed under a logic L′ that fulfills the properties
Props: Ω ∨L′ Ω ′ implies Ω ∪ Δ ∨L Ω ′ ∪ Δ .

PE1 is a strong criterion that is e.g. fulfilled by Tarski logics, but not by ALs.

Fact 4.5.1. If L is a Tarski logic, then PE1 holds.

It follows immediately from the following example that PE1 does not hold for
ALs:

CnCLuNm ({p}) = CnCLuNm ({p ≥ (q ∧ ¬q)}) but

CnCLuNm ({p, q ∧ ¬q}) ◦= CnCLuNm ({p ≥ (q ∧ ¬q), q ∧ ¬q}) .

Note that the example may be adjusted to any AL in which classical disjunction is
present or definable. The example clearly indicates the most straightforward reason
why the fact holds. The formula q ∧ ¬q is an abnormality and hence is supposed to
be false ‘unless and until proven otherwise’. The original premise sets are equivalent
because p ≥ (q ∧¬q) is the only premise of the second premise set and its minimally
abnormal interpretation leads to p. If, however, q ∧ ¬q is added to the premise sets,
{p, q ∧ ¬q} still gives us p because CLuNm is reflexive, but p is not derivable
from {p ≥ (q ∧ ¬q), q ∧ ¬q} because this extended premise set requires q ∧ ¬q to
be true and has the same CLuNm-consequences as {q ∧ ¬q}. To the negative fact
corresponds a positive result which is very similar to it.

Theorem 4.5.1. Where L is cumulative:

(i) if Props contains at least reflexivity and monotonicity: L satisfies PE2(Props).
(ii) L satisfies PE2.
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Proof. Ad (i): Suppose L is cumulative, L′ is reflexive and monotonic, L′ ♦ L,
and Ω1 ∨L′ Ω2. In view of the reflexivity of L′, (i) β ∧ CnL′ (Ω1 ∪ β) and
(ii) CnL′ (Ω1) = CnL′ (Ω2) warrants that Ω2 ∧ CnL′ (Ω1). As L′ is monotonic, it
follows that Ω2 ∪ β ∧ CnL′ (Ω1 ∪ β). So Ω2 ∪ β ∧ CnL (Ω1 ∪ β) in view of
CnL′ (Ω1 ∪ β) ∧ CnL (Ω1 ∪ β). By the same reasoning Ω1 ∪ β ∧ CnL (Ω2 ∪ β).
But then, in view of Theorem 4.3.1 and since L is cumulative, CnL (Ω1 ∪ β) =
CnL (Ω2 ∪ β). (ii) follows immediately. �

Since ALs are cumulative, we immediately get:

Corollary 4.5.1. (i) Where Props contains at least reflexivity and monotonicity: AL
satisfies PE2(Props). (ii) AL satisfies PE2.

Theorem 4.5.2. Where L is reflexive

(i) if Props contains at least monotonicity, PE2(Props) implies PE3(Props) for L.
(ii) PE2 implies PE3 for L.

The proof is analogous to the proof for Theorem 4.3.2.

Theorem 4.5.3. Where L is idempotent:

(i) if Props contains at least reflexivity then PE3(Props) implies PE2(Props) for
L.

(ii) PE3 implies PE2 for L.

The proof is analogous to the proof for Theorem 4.3.3.
By Theorem 4.5.2 and 4.5.3 we immediately get:

Corollary 4.5.2. Where L is reflexive and idempotent:

(i) if Props contains at least monotonicity and reflexivity then PE2(Props) and
PE3(Props) are coextensive for L

(ii) PE2 and PE3 are coextensive for L.

By Fact 4.3.3, Theorem 4.5.1, and Corollary 4.5.2:

Corollary 4.5.3. Where L is cumulative and reflexive:

(i) if Props contains at least reflexivity and monotonicity then L satisfies
PE3 (Props).

(ii) L satisfies PE3.

Of course, this can easily be proven directly.

Proof. Ad (i): Suppose that L is cumulative and reflexive, that L′ is reflexive and
monotonic, that for all Δ , CnL′ (CnL (Δ)) = CnL (Δ), and that Ω ∨L′ Ω ′. Note
first that due to the monotonicity and reflexivity of L′, also Ω ∪ β ∧ CnL′

(
Ω ′ ∪ β

)

and Ω ′ ∪ β ∧ CnL′ (Ω ∪ β). Since CnL is closed under CnL′ and by Fact 4.3.1,
CnL′ (Ω ∪ β) ∧ CnL (Ω ∪ β) and CnL′

(
Ω ′ ∪ β

) ∧ CnL
(
Ω ′ ∪ β

)
. Altogether,

Ω ∪ β ∧ CnL
(
Ω ′ ∪ β

)
and Ω ′ ∪ β ∧ CnL (Ω ∪ β) and hence by the cumulativity

of L and Theorem 4.3.1, Ω ∪ β ∨L Ω ′ ∪ β. (ii) follows immediately. �
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Note that this result improves on our previous result presented in Corollary 4.3.6
since obviously PE3(Props) implies C3(Props).

Corollary 4.5.4. (i) Where Props contains at least reflexivity and monotonicity: AL
satisfies PE3(Props). (ii) AL satisfies PE3.

For ALs there is a weaker alternative for Fact 4.5.1. For this, we need another
definition.

Definition 4.5.1. A set of formulas Δ ∧ W is an AL-monotonic extension of a set
of formulas Ω iff Ω ∈ Δ and CnAL (Ω ) ∧ CnAL (Δ).

Theorem 4.5.4. If Ω1 ∪ β is an AL-monotonic extension of Ω1 and Ω2 ∪ β is
an AL-monotonic extension of Ω2, then CnAL (Ω1) = CnAL (Ω2) warrants that
CnAL (Ω1 ∪ β) = CnAL (Ω2 ∪ β)

Proof. Suppose CnAL (Ω1) = CnAL (Ω2), Ω1 ∪β is an AL-monotonic extension of
Ω1 and Ω2 ∪ β is an AL-monotonic extension of Ω2. By Definition 4.5.1, the second
supposition implies that

CnAL (Ω1) ∧ CnAL (Ω1 ∪ β).

In view of the reflexivity of ALs

β ∧ CnAL (Ω1 ∪ β).

From the two previous results, one obtains immediately that

CnAL (Ω1) ∪ β ∧ CnAL (Ω1 ∪ β),

and with Theorem 2.6.7iii

CnAL (Ω1 ∪ β) = CnAL

(
CnLAL (Ω1) ∪ β ∪ Ω1

)
.

In view of the reflexivity of AL, Ω1 ∧ CnAL (Ω1), hence:

CnAL (Ω1 ∪ β) = CnAL

(
CnLAL (Ω1) ∪ β

)
.

With the same reasoning, the following is provable

CnAL (Ω2 ∪ β) = CnAL

(
CnLAL (Ω2) ∪ β

)
.

Since CnAL (Ω1) = CnAL (Ω2),

CnAL

(
CnLAL (Ω1) ∪ β

)
= CnAL

(
CnLAL (Ω2) ∪ β

)
.



4.5 Extensions of Equivalent Premise Sets 99

Thus, CnAL (Ω1 ∪ β) = CnAL (Ω2 ∪ β). �

There are criteria for deciding whether an extension is AL-monotonic. The criteria
depend on the strategy, which is the third element of the adaptive logic AL. The
criteria we introduce below may be not the sharpest possible ones, but it is obvious
that they are correct. Let Ω be the original premise set and Ω ′ the extended premise
set.

For the reliability strategy, the criterium reads: If Ω ∈ Ω ′ and U (Ω ′) ∧ U (Ω )

then Ω ′ is an AL-monotonic extension of Ω . In words: if every abnormality that
is unreliable with respect to Ω ′ is also unreliable with respect to Ω , then Ω ′ is an
AL-monotonic extension of Ω . In terms of the proof theory, this means that every
unmarked line in a proof from Ω remains unmarked if the premise set is extended
to Ω ′. This warrants that the final consequences of Ω are also final consequences of
Ω ′. Obviously, some lines that are marked in a proof from Ω may be unmarked in a
proof from Ω ′. The effect of this is that the latter premise set has more, but not less,
consequences than the former.

For the minimal abnormality strategy, the criterion reads: If Ω ∈ Ω ′ and Σ(Ω ′) ∧
Σ(Ω ), then Ω ′ is an AL-monotonic extension of Ω . This criterium is most easily
understood from a semantic point of view. The antecedent warrants that every AL-
model of Ω ′ is an AL-model of Ω and hence verifies every formula verified by all
AL-models of Ω .

It is instructive to illustrate the difference between the two criteria in terms of
CLuNr and CLuNm. Let Ω = {(p ∧¬p)≥ (q ∧¬q), (p ∧¬p)≥ (r ∧¬r), s ≥ (p ∧
¬p), s ≥ (q ∧¬q)} and let Ω ′ = Ω ∪{q ∧¬q}. As U (Ω ) = U (Ω ′) = {p ∧¬p, q ∧
¬q, r ∧¬r}, Ω ′ is a CLuNr-monotonic extension of Ω . Note, however, that Σ(Ω ) =
{{p∧¬p}, {q∧¬q, r ∧¬r}} whereas Σ(Ω ′) = {{q∧¬q, p∧¬p}, {q∧¬q, r ∧¬r}}.
So Ω ′ is not a CLuNm-monotonic extension of Ω and actually Ω ∪CLuNm s whereas
Ω ′

�CLuNm s.

4.6 Maximality of the Lower Limit Logic

As LLL is a Tarski logic weaker than AL, Corollary 4.5.1 entails the following.

Corollary 4.6.1. Where CnLLL (Ω1) = CnLLL (Ω2): for all β,

CnAL (Ω1 ∪ β) = CnAL (Ω2 ∪ β) .

We shall now prove that the lower limit logic LLL of an adaptive logic AL is not
only a Tarski logic that is weaker than AL but that actually every monotonic logic L
that is weaker than AL is weaker than LLL or identical to LLL. In the proof of the
following theorem we rely on the compactness of LLL, but do not require L to be
compact.
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Lemma 4.6.1. Where Ω ′ = {
Dab(β) | Ω ∪LLL B ≥̌ Dab(β)

}
. If Ω �LLL B, then

Ω ∪ Ω ′
�LLL B.

Proof. Suppose Ω �LLL B. Assume Ω ∪Ω ′ ∪LLL B. Hence, by the compactness of
LLL, there is a finite Ω ′′ ∧ Ω ′ such that Ω ∪Ω ′′ ∪LLL B. Hence, Ω ∪{∧̌

Ω ′′} ∪LLL

B. By the Deduction Theorem, Ω ∪LLL
(∧̌

Ω ′′)∅̌B. Hence,

Ω ∪LLL ¬̌
(∧̌

Ω ′′
)

≥̌ B (4.1)

By the definition of Ω ′, for each Dab(β) ⊕ Ω ′, Ω ∪LLL Dab(β) ≥̌ B and hence,

Ω ∪LLL

(∧̌
Ω ′′

)
≥̌ B (4.2)

By (4.1) and (4.2), Ω ∪LLL B,—a contradiction. �

Theorem 4.6.1. Where L is a monotonic logic for which CnL+
L (Δ) ∧ CnL+

ALm (Δ)

for all Δ ∧ W+: CnL+
L (Ω ) ∧ CnL+

LLL (Ω ) for all Ω ∧ W+.

Proof. Suppose the antecedent holds and that there is a Ω and a B for which the
following three hold.

Ω �LLL B (4.3)

Ω ∪L B (4.4)

Ω ∪ALm B (4.5)

Let Ω ′ = {Dab(β) | Ω ∪LLL B ≥̌ Dab(β)}. By Lemma 4.6.1, (4.3) entails (4.6);
(4.7) follows from (4.4) by the monotonicity of L, and (4.8) follows from (4.7) by
the supposition.

Ω ∪ Ω ′
�LLL B (4.6)

Ω ∪ Ω ′ ∪L B (4.7)

Ω ∪ Ω ′ ∪ALm B (4.8)

Note first that due to (4.3) and (4.5), Ω ′ ◦= ∅ (otherwise there is obviously no way
to finally derive B in an ALm-proof from Ω ). Thus, ∅ /⊕ Σ(Ω ∪ Ω ′). Moreover,
by Theorem 2.4.4 and Theorem 2.4.6, Σ(Ω ∪ Ω ′) ◦= ∅. By Theorem 2.6.2 and
Corollary 2.4.4 there is a Φ ⊕ Σ(Ω ∪ Ω ′) and a βΦ ∧ Θ \ Φ such that Ω ∪ Ω ′ ∪LLL
B ≥̌ Dab(βΦ).

In view of the compactness and monotonicity of LLL there are Dab(β1), . . . ,

Dab(βn) ⊕ Ω ′ such that

Ω ∪ {Dab(β1), . . . , Dab(βn)} ∪LLL B ≥̌ Dab(βΦ) . (4.9)
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As Ω ∪LLL B ≥̌ Dab(βi ) for every i ⊕ {1, . . . , n},

Ω ∪LLL B ≥̌
(∧̌n

i=1
Dab(βi )

)
. (4.10)

From (4.9) follows

Ω ∪
{∧̌n

i=1
Dab(βi )

}
∪LLL B ≥̌ Dab(βΦ), (4.11)

whence, by the Deduction Theorem,

Ω ∪LLL

(∧̌n

i=1
Dab(βi )

)
∅̌(B ≥̌ Dab(βΦ)) . (4.12)

From (4.10) and (4.12) follows

Ω ∪LLL B ≥̌ Dab(βΦ) , (4.13)

whence Dab(βΦ) ⊕ Ω ′. But then Φ contains at least one member of βΦ ,—a contra-
diction to the fact that βΦ ∧ Θ \ Φ. �

It follows from Theorem 2.6.iii that this result also holds when the third element
of AL is reliability. Hence we obtain the following corollary.

Corollary 4.6.2. Where L is a monotonic logic such that CnL+
L (Δ) ∧ CnL+

AL (Δ)

for all Δ ∧ W+: CnL+
L (Ω ) ∧ CnL+

LLL (Ω ) for all Ω ∧ W+.

Fact 4.3.1 gives us a further corollary.

Corollary 4.6.3. If CnL+
AL (Ω ) is closed under a monotonic logic L, then CnL+

L (Ω ) ∧
CnL+

LLL (Ω ) for all Ω ∧ W+.

We close this section with a cautionary remark. Note that in Theorem 4.6.1 it is
crucial that L is weaker or equal to AL relative to the language L+ that is enriched
with the “checked connectives”.9 If we were to replace the antecedent of the theorem
by

(†) “Where L is a monotonic logic for which CnLL (Δ) ∧ CnLALm (Δ) for all Δ ∧
W”

the conclusion would not hold in general. In other words, (†) warrants

1. neither: CnL+
L (Ω ) ∧ CnL+

LLL (Ω ) for all Ω ∧ W+
2. nor: CnLL (Ω ) ∧ CnLLLL (Ω ) for all Ω ∧ W

9 It is for instance used in order to derive (4.8).
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We can illustrate this by a simple example. Let L only consist of propositional
atoms and a unary connective •. Let LLL be the logic that only allows for premise
introduction: CnLLLL (Ω ) = Ω . L is LLL enriched by the rule that allows to detach
propositional atoms from •: if •A then A, where A is a propositional atom. The
consequence relations CnL+

LLL and CnL+
L are obtained in the usual way: we add the

classical axioms and rules for the “checked connectives”.
We now define an adaptive logic AL• by the triple 〈LLL,Θ, x⊆ where Θ =

{•A∧̌ ¬̌A | A is a propositional atom} and x represents any of the two standard
strategies.

Note that we have the following (where p is a propositional atom):

for all Ω ∧ W : CnLL (Ω ) ∧ CnLAL• (Ω ) (4.14)

CnLLLL ({•p}) ∈ CnLL ({•p}) (4.15)

CnL+
LLL ({•p}) ∈ CnL+

L ({•p}) (4.16)

Equation (4.14) holds since both L and AL• rigorously apply detachment to propo-
sitional atoms preceded by a •. Indeed, L is the upper limit logic of AL• and any
Ω ∧ W is a normal premise set (see page 43). (4.15) and (4.16) are exemplified by
p ⊕ CnL ({•p}) \ CnLLL ({•p}).10

Now, does this give a counter-example to Theorem 4.6.1? Only if the antecedent
of Theorem 4.6.1 is fulfilled by L. But it is not, since

CnL+
AL

({•p,¬̌p}) ∈ CnL+
L

({•p,¬̌p}) = W+.

4.7 In Conclusion

We have proven that criteria C1–C3 and some weaker versions, which are standard
for identifying equivalent premise sets with respect to Tarski logics, also apply to
ALs. This is a major advantage of ALs in comparison to other formal approaches to
defeasible reasoning forms because the criteria are transparent and easy to check.

With respect to extensions of equivalent premise sets, ALs do not behave like
Tarski logics, but we have located a criterion that is simple and close to that for
Tarski logics.

Let us summarize our central results. Where Ω, Ω ′ ∧ W we have,

10 Since it is easy to observe that CnL
AL• is monotonic, the reader may conjecture Theorem 4.6.1

equipped with the antecedent (†) may hold at least for ALs for which CnL
AL is non-monotonic.

But this is not true either. Suppose we add two logical constants to our language L: Υ and ∗. LLL
and L are defined as before. We alter our AL by defining Θ by: {•A∧̌¬̌A | A is a propositional
atom} ∪ {Υ} ∪ {Υ ≥̌ ¬̌∗}. Note that ∅ ∪AL ∗ (each minimally abnormal model has the abnormal part
∅ and hence validates ¬̌Υ and ∗) but {Υ} ◦∪AL ∗ (note that the minimally abnormal models all have
the abnormal part {Υ, Υ ≥̌¬̌∗} due to Υ being a premise: some also validate ¬̌∗). This demonstrates
that AL is non-monotonic (relative to L). Furthermore, as before (4.14)–(4.16) hold.
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(i) if Ω ∧ CnAL
(
Ω ′) and Ω ′ ∧ CnAL (Ω ) then CnAL (Ω ) = CnAL

(
Ω ′)

(ii) where L is a reflexive logic weaker than AL then CnL (Ω ) = CnL
(
Ω ′) implies

CnAL (Ω ) = CnAL
(
Ω ′)

(iii) where L is monotonic and reflexive and AL is closed under L (i.e., for
all Δ , CnL (CnAL (Δ)) = CnAL (Δ)), then CnL (Ω ) = CnL

(
Ω ′) implies

CnAL (Ω ∪ Δ) = CnAL
(
Ω ′ ∪ Δ

)

(iv) where L is a reflexive and monotonic logic weaker than AL then CnL (Ω ) =
CnL

(
Ω ′) implies CnAL (Ω ∪ Δ) = CnAL

(
Ω ′ ∪ Δ

)

We have also shown that the strongest monotonic logic weaker than an AL in
standard format is its lower limit and that the lower limit logic is the strongest
monotonic logic under which the adaptive consequence set is closed.
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Chapter 5
Generalizing the Standard Format

5.1 Introduction

While the standard format for ALs provides a highly unifying framework for the
modeling of defeasible reasoning, it has limitations. Let me mention two:

1. Recall that the basic idea behind ALs is to interpret a given set of premises “as
normally as possible”. Semantically this is realized by means of comparing and
selecting models in view of their abnormal parts (i.e., the set of abnormalities
they verify). Note that the underlying rationale behind these comparisons in the
standard format is qualitative: a model M is preferable to another model M ∪ in
case the abnormal part of M is a subset of the abnormal part of M ∪. Besides these
qualitative considerations also quantitative considerations are sometimes useful:
e.g., the abnormal part of M may—according to this quantitative rationale—
preferable to the abnormal part of M ∪ in case it contains quantitatively less
abnormalities. Indeed, there are ALs with so-called counting strategies (see e.g.,
[1–3]): however these systems are not in the standard format.

2. The standard format has also been criticized for offering a suboptimal framework
to express priorities among abnormalities. In order to improve on this, a general-
ization of the standard format has been proposed in [4]: so-called lexicographic
ALs. This format works with a stratified set of abnormalities Ω = 〈Ωi ⊆I (where
I is an index-set) where abnormalities in Ω1 are more abnormal than abnor-
malities in Ω2, and so on. Abnormal parts of models are compared by means
of a lexicographic order. Lexicographic ALs have been applied to normative
reasoning in [5], to belief revision [6], and to the handling of inconsistencies in
[7]. Note however that lexicographic ALs also only model qualitative consider-
ations (see point 1) and that the handling of priorities is limited to lexicographic
comparisons of stratified sets of abnormalities.

In this chapter we generalize the standard format of ALs and thereby introduce
an interesting larger class of ALs that can be characterized in a simple and intuitive
way. We demonstrate that the new format overcomes the two shortcomings mentioned

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 107
DOI: 10.1007/978-3-319-00792-2_5, © Springer International Publishing Switzerland 2014
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above. On the one hand, logics with both qualitative and quantitative rationales can
be expressed in it. On the other hand, the format is expressive enough to allow for
the handling of priorities in various ways.

We show that many ALs that have been considered in the literature fall within this
larger class—for instance ALs in the standard format, ALs with counting strategies,
lexicographic ALs—and that the characterization of this class offers many possibil-
ities to formulate new logics.

One of the advantages of the format studied in this chapter is that a lot of meta-
theory comes for free for any logic formulated in it. We show that ALs formulated in it
are always sound and complete. Furthermore, many of the meta-theoretic properties
that are usually associated with the standard format (such as cumulativity, fixed point
property, (strong) reassurance, etc.) also hold for rich subclasses of logics formulated
in the new format.

Recall that ALs in the standard format are characterized by a triple: (a) the lower
limit logic LLL which is the monotonic, reflexive and transitive core logic, (b) a set
of abnormalities Ω that is characterized by a (or some) logical form(s), and (c) an
adaptive strategy.

Semantically speaking, the driving force behind ALs in the standard format is a
selection semantics1:

1. We (partially) order the models of the lower limit logic according to their abnor-
mal parts by means of set-inclusion ⊂.

2. Then we select (“prefer”) models whose abnormal part is lower than a given
threshold that is determined by the adaptive strategy that is chosen. For instance,
in case the strategy is minimal abnormality we simply choose the minimal models
(i.e., the models whose abnormal part is minimal with respect to ⊂): an LLL-
model M of β is selected iff Ab(M) ∈ min⊂

(
Abβ

LLL

)
where

Abβ
LLL =df

{
Ab(M ∪) | M ∪ ∈MLLL

(
β

)}

This idea can be generalized (see also Table 5.1).

1. First, instead of ordering LLL-models by means of their abnormal parts with
respect to ⊂ we may use another partial order ∈.2 Throughout this chapter we
will suppose that∈ ∧ ⊂. Obviously, if Ab(M) ⊂ Ab(M ∪) then M offers a more
normal interpretation than M ∪ which should be expressed by ∈.

2. Second, instead of determining the threshold for the selection in terms of mini-
mally abnormal models or reliable models, we can specify other threshold func-
tions Λ.

1 The idea of selecting a certain set of models and then to define a semantic consequence relation
on the basis of this selection is an integral part of many formal systems. Variants of it can be found
in e.g., Shoham [8, 9], McCarthy [10], Schlechta [11], etc. Lindström [12] and Makinson [13] offer
systematic overviews.
2 In this chapter we will use ∈ to denote a strict partial order. Of course, one can easily define
the corresponding non-strict ⊃ by a ⊃ b iff a ∈ b or a = b. Hence, this is a purely conventional
choice.
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Table 5.1 Generalizing the standard format for ALs

Standard format Generalization

Ordering of the abnormal ⊂ ∈
parts of models w.r.t.

Threshold for the min⊂
(
Abβ

LLL

)
Λ

(
Abβ

LLL

)

selection of models (minimal abnormality){
ϕ | ϕ ∧⋃

min⊂
(
Abβ

LLL

)}

(reliability)

The second point is especially important in cases in which the order∈ that is imposed
on the LLL-models is not smooth. In these cases there are models M for which there
are no models M ∪ with minimal abnormal part (relative to ∈) that are “better”. We
will also suggest different ways of specifying selection thresholds for such situations.

Besides the semantics we will introduce a dynamic proof theory for ALs in this
generalized setting. Also the proof theory is a straight-forward generalization of the
proof theory of ALs in the standard format. It is adequate with respect to the semantic
consequence relation, equips us with a syntactic consequence relation, and mirrors
the semantic selections in view of Λ by means of a defeasible retraction mechanism.

The chapter is structured as follows: In Sect. 5.2 we introduce several examples
of ALs in the generalized setting. In Sect. 5.3 we present our generalized format:
the selection semantics and the dynamic proof theory. Section 5.4 contains repre-
sentational results for the semantic and syntactic consequence relations of our ALs
including soundness and completeness. Section 5.5 contains a study of other meta-
theoretic properties such as Cumulativity and Reassurance. In Sect. 5.6 we show that
the proof theory can be simplified for a rich subclass of the generalized class of ALs.
In Sect. 5.7 we show how the normal selections strategy can be expressed in the new
format. Finally, in Sect. 5.8 we wrap things up and relate our meta-theoretic insights to
the examples introduced in Sect. 5.2. Section 5.9 contains some final remarks includ-
ing some additonal motivation of the new format and replies to possible objections.
Many technical results are proven in the Appendix C.

5.2 Some Examples

In this section we will introduce some motivating examples for ALs that fall within
the enriched class of logics whose meta-theory is studied in this paper.

There are three ways in which we make the presentation in this section more
coherent and free of digressions. First, all the presented ALs are based on the logic
CL→ (or simple variants of it). Recall that this logic is obtained by adding a “dummy”
operator to classical propositional logic CL. Second, the applications we study in
this paper are organized around discussive applications inspired e.g., by the research
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on Rescher-Manor consequence relations (see e.g., [14]). Third, in this section we
will only focus on semantic considerations.

Most of the applications we mention would deserve a deeper discussion were we
interested in developing a fully elaborated formal account for them. However, our
aim is more modest: it is to make the reader aware of a variety of possibilities to
define useful selection semantics. This in turn motivates the generic perspective on
ALs which is introduced in the further run of this paper.

5.2.1 The Standard Format: Minimal Abnormality

Suppose we are to logically model a discussion. When some participant states A we
represent this by →A. Hence, given a set of statements β we translate it to β → =
{→A | A ∈ β }. A statement →A counts as accepted in a model M of β → in case A
is valid in M . The idea is to select models in which as many statements as possible
are accepted (while preserving consistency). Note that there are cases in which we
cannot accept all given statements since some of these may be conflicting. We will
give an example below.

We use the adaptive logic AL→min⊂ that has the lower limit logic CL→ and the set
of abnormalities

Ω→ = {→A ∨ ¬A | A has no occurrences of ‘ → ’}

Finally, we use the minimal abnormality strategy. We order the models of the lower
limit logic with respect to their abnormal parts and according to ⊂. Our semantic
selection selects all CL→-models of β whose abnormal part is minimal with respect
to ⊂ and hence in

min⊂
(
Abβ

CL→
)

where Abβ
CL→ =df

{
Ab(M) | M ∈ MCL→

(
β

)}
and Ab(M) =df {A ∈ Ω→ |

M |= A}.
The idea is very simple: a model M is “sufficiently normal” iff it is “minimally

abnormal”: i.e., there is no model whose abnormal part is a subset of the abnormal
part of M .

We define the set of AL→min⊂ -models of β by

MAL→min⊂
(
β

) =df
{

M ∈MCL→
(
β

) | Ab(M) ∈ min⊂
(
Abβ

CL→
)}

The semantic consequence relation is then defined by

β �AL→min⊂ A iff M |= A for all M ∈MAL→min⊂
(
β

)
(Δ)
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Suppose for instance that β = {p ∨ q,¬p ∨ q, r}. Consider the following CL→-
models of β →:

Model M Ab(M) M |=
M1 →(p ∨ q) ∨ ¬(p ∨ q), →r ∨ ¬r ¬p, q,¬r
M2 →(¬p ∨ q) ∨ ¬(¬p ∨ q) p, q, r
M3 →(p ∨ q) ∨ ¬(p ∨ q) ¬p, q, r
M4 →(p ∨ q) ∨ ¬(p ∨ q), →(¬p ∨ q) ∨ ¬(¬p ∨ q) p,¬q, r

The models are ordered with respect to their abnormal parts according to⊂ as follows:

Ab( M 4) Ab( M 1)

Ab( M 2) Ab( M 3)

It is easy to see that all the models in MAL→min⊂
(
β →

)
have an abnormal part that is

either identical to Ab(M2) or identical to Ab(M3). Thus β → �AL→min⊂ q, r but for
instance β → ⊕�AL→min⊂ p,¬p.

Note that there is no conflict concerning r . Hence it is true in all minimal abnormal
models. Second, the conflict in our statements concerns a disagreement in p. Since q
is derivable from both of the conflicting statements and q is not conflicted otherwise,
it is true in both minimally abnormal interpretations of our premises. Hence, it is a
consequence.3

5.2.2 Lexicographic ALs

A recent example for ALs that are not in the standard format is the class of lexico-
graphic ALs (see [4]). In these logics we work with a structured, i.e., prioritized set of
abnormalities: Ω = ⋃

I Ωi (where I = {1, . . . , n} or I = N). The abnormalities in
Ω1 are considered to be “worst” and hence our priority is to avoid them. Abnormali-
ties inΩ2 are “second-worst”, and so on. Lexicographic ALs have been applied to nor-
mative reasoning [5], to belief revision [6], and to reasoning with inconsistencies [7].4

For a simple example let us return to our logic CL→. However, we enhance our
expressive powers slightly. We use sequences of → in order to indicate the trustworthi-
ness of the information. For instance, →A indicates that the information A is provided
by a most trust-worthy source. “→→” indicates a less trust-worthy source, etc. This
way we can “prioritize” our set of abnormalities Ω = ⋃

N
Ωi . Where →i denotes a

3 It can easily be shown that AL→min⊂ represents the universal Rescher-Manor consequence relation:
A is derivable from all maximally consistent subsets of β iff β → 
AL→min⊂ A. See [15].
4 Lexicographic ALs have been compared to sequential combinations of ALs in the standard format
and to hierarchical adaptive logics [16] in [17].
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sequence of i-many →, we define

Ωi =
{→i A ∨ ¬A | A is a formula without occurrences of ‘ → ’

}

Now suppose we have the following premises: β = {→p, →→¬p, →q, →→→r}. We
consider four CL→-models of β :

Model M Ab(M) M |=
M1 →p ∨ ¬p ¬p, q, r
M2 →→¬p ∨ ¬¬p, →→→r ∨ ¬r p, q,¬r
M3 →→¬p ∨ ¬¬p, →q ∨ ¬q p,¬q, r
M4 →→¬p ∨ ¬¬p p, q, r

Now compare M1 and M4. Note that a more trust-worthy source states p than the
source that states¬p. Hence we should prefer p over¬p. This makes M4 preferable
to M1. By a similar argument M2 is preferable to M3.

One way of formally realizing this intuition is by means of a lexicographic order.

Definition 5.2.1 (Lexicographic order on Θ(Ω)× Θ(Ω)). Where ϕ,ψ ∧ Ω are
sets of abnormalities, ϕ is preferable to ψ, in signs ϕ ∈lex ψ, iff, there is a n ∈ N for
which

(a) ϕ ∩Ωi = ψ ∩Ωi for all i < n and
(b) ϕ ∩Ωn ⊂ ψ ∩Ωn .

This obviously imposes a partial order on the lower limit logic models (resp. on their
abnormal parts) since now we can compare models with respect to their abnormal
parts and ∈lex. Applying ∈lex to our four models we get:

Ab(M4) ∈lex Ab(M2) ∈lex Ab(M3), Ab(M1)

As a threshold for our selection we use min∈lex

(
Abβ

CL→
)

and hence select all the
∈lex-minimally abnormal CL→-models of β . Thus, the set of selected models of the
corresponding AL, we call it AL→∈lex

, is defined by

MAL→∈lex

(
β

) =df
{

M ∈MCL→
(
β

) | Ab(M) ∈ min∈lex

(
Abβ

CL→
)}

The semantic consequence relation is defined analogous to (Δ).
In our example all the minimal abnormal models M have the abnormal part

Ab(M) = Ab(M4) = {→→¬p ∨ ¬¬p}. Hence, we get β �AL→∈lex
p, q, r .

Since there is no conflict concerning q and r both are valid in our selected mod-
els and hence they are consequences. There is a conflict in p, however the more
trustworthy source states p. Hence in our selected models p is the case, as desired.
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5.2.3 Counting Abnormalities

Another class of ALs in which the abnormal parts of LLL-models are not compared
by means of⊂ are ALs with so-called counting strategies (see e.g., [1–3]), or –more
general–, ALs that use quantitative comparisons rather than qualitative ones.

Suppose we have a discussive application where we model possibly conflicting
expert opinions. Instead of CL→ we use CLΔ→: instead of → we now have a →i for each
i ∈ N. The idea is that each expert gets a number i , and everything she states is
preceded by →i .

In case some experts’ opinions conflict, we do not prioritize between their exper-
tise such as we did in the previous example where we distinguished the “trust-
worthiness of the source”. However, we prefer expert opinions in proportion to how
often they have been stated by different experts. E.g., if 6 experts state A and only 2
state ¬A, we prioritize A.

This can be realized as follows. We define

Ω◦ = {→i A ∨ ¬A | A is a →-free formula}

We compare the abnormal parts of CLΔ→-models by means of the order ∈c:

Definition 5.2.2 (Counting order on Θ(Ω) × Θ(Ω)). Where ϕ,ψ ∧ Ω are sets
of abnormalities, ϕ ∈c ψ iff, |ϕ| < |ψ| or ϕ ⊂ ψ where |X | is the cardinality of X .5

So suppose we have the following scenario:

Expert States

1 p, q
2 ¬p, q
3 p, q
4 p,¬q

We can translate this into a premise set:

βc = {→1 p, →1q, →2¬p, →2q, →3 p, →3q, →4 p, →4¬q}

Now consider the following CLΔ→-models of βc:

5 Of course, for finite sets ϕ ⊂ ψ implies |ϕ| < |ψ|. However, for infinite sets the comparison by
means of the cardinality does not allow to prefer ϕ to ψ in case of ϕ ⊂ ψ, although the latter clearly
indicates that ϕ is “better” (“less abnormal”) than ψ.
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Model Ab(M) |Ab(M)| M |=
M1 →2¬p ∨ ¬¬p, →4¬q ∨ ¬¬q 2 p, q
M2 →2¬p ∨ ¬¬p, →1q ∨ ¬q, →2q ∨ ¬q, →3q ∨ ¬q 4 p,¬q
M3 →1 p ∨ ¬p, →3 p ∨ ¬p, →4 p ∨ ¬p, →4¬q ∨ ¬¬q 4 ¬p, q
M4 →1 p ∨ ¬p, →3 p ∨ ¬p, →4 p ∨ ¬p, →1q ∨ ¬q, →2q ∨ ¬q, →3q ∨ ¬q 6 ¬p,¬q

Ab( M 4)

Ab( M 2) Ab( M 3)

Ab( M 1)

∈c imposes the following partial order on our models:
Let AL→min∈c

be the AL that is characterized by the lower limit logic CLΔ→, the set of
abnormalities Ω◦, the order ∈c on the (abnormal parts) of our CLΔ→-models, and the
threshold min∈c for the semantic selection. Hence,

MAL→min∈c

(
β

) =df
{

M ∈MCLΔ→
(
β

) | Ab(M) ∈ min∈c

(
Abβ

CLΔ→
)}

The semantic consequence relation is defined analogous to (Δ).
It is easy to see that in our example all selected models have the abnormal part

of M1. Hence, we get βc �AL→min∈c
p, q. This is as expected since p was stated

by three experts, while ¬p was stated by only one expert. An analogous argument
applies to q.

5.2.4 A Most Skeptical Rationale: Reliability

The rationale behind the semantic selections presented thus far can be summarized
as follows: given some partial order ∈, select all ∈-minimal models.

We will now depart from this rationale and focus on different threshold functions
by considering ALs with the reliability strategy. Later –in Sect. 5.2.7– we take a look
at two example with more refined quantitative rationales.

The reliability strategy is usually motivated by means of minimal Dab-
consequences. Recall that a disjunction of abnormalities Dab(Σ) was called a Dab-
consequence of β relative to a lower limit logic LLL iff β 
LLL Dab(Σ). Dab(Σ)

is a minimal Dab-consequence of β iff there is no Φ ⊂ Σ such that Dab(Φ) is also
a Dab-consequence of β .

The information provided by a minimal Dab-consequence Dab(Σ) is that (a) at
least one of the abnormalities in Σ is true, and (b) there is no way of excluding any
abnormality in Σ (due to the minimality of Σ).



5.2 Some Examples 115

The reliability strategy treats this situation in the most sceptical way possible: all
abnormalities in a minimal Dab-consequence are considered unreliable. Hence, we
also consider the worst case scenario in which each abnormality in Σ is true. For the
semantic selection this means that we also select models in which all abnormalities
in Σ are true. More general: where Dab(Σ1), Dab(Σ2), . . . is a list of all minimal
Dab-consequences of β and Υ(β ) =df {Σ1,Σ2, . . .}, we select all LLL-models M
for which Ab(M) ∧⋃

Υ(β ).
Note that an abnormality is a member of a minimal Dab-consequence iff it is

validated by some⊂-minimally abnormal model. Hence, another way to express the
selection for reliability is as follows: only select models M such that each abnormality
validated by M is also validated by some⊂-minimally abnormal model. This means
that our threshold function Λ is6:

min↓⊂(X) =df

{
ϕ ∈ X | ϕ ∧

⋃
min⊂(X)

}

Let us exemplify this by means of the example from Sect. 5.2.1. Recall that
the minimally abnormal models in our example were models with abnormal part
Ab(M2) = {→(¬p ∨ q) ∨ ¬(¬p ∨ q)} and models with abnormal part Ab(M3) =
{→(p ∨ q) ∨ ¬(p ∨ q)}. Thus, min↓⊂

(
Abβ

CL→
) = {

Ab(M) ∈ Abβ
CL→ | Ab(M) ∧

Ab(M2) ↓ Ab(M3)
} = {

Ab(M) ∈ Abβ
CL→ | Ab(M) ∧ {→(¬p ∨ q) ∨ ¬(¬p ∨

q), →(p∨q)∨¬(p∨q)}}. Hence, also M4 is selected since Ab(M4) ∧ min↓⊂
(
Abβ

CL→
)
.

However, M1 is not selected since →r ∨ ¬r ∈ Ab(M1) \min↓⊂
(
Abβ

CL→
)
.7

The fact that models like M1 are not selected deserves some more discussion. The
reason that M1 is not selected is that it validates an abnormality that is not part of
any minimal Dab-consequence. This is indeed reasonable in view of

(a) the fact that in ALs we assume an abnormality to be false “per default”, i.e.,
unless there is a good reason to doubt this assumption

(b) as long as an abnormality is not involved in any minimal Dab-consequence there
is indeed no reason to assume it to be true.

The fact that an abnormality is not involved in a minimal Dab-consequence indicates
that it either is not part of any Dab-consequence (in case there are none), or that it was
just added to a Dab-consequence by means of addition: but obviously this doesn’t
make it any more suspicious.

In other words: whatever our selection function is, it seems rational to require that
it does not select models that validate abnormalities that are not part of any minimal
Dab-consequence. As a consequence, for any threshold Λ used for the semantic
selection, min↓⊂ should serve as an upper bound:

6 In the Appendix (Corollary C.2.1) we prove that min↓⊂
(
Abβ

LLL

) = Abβ ∪
LLL where β ∪ = β ↓ (Ω \

⋃
Υ(β ))¬̌. This shows that the models in min↓⊂

(
Abβ

LLL

)
are indeed exactly the models which do

not validate any abnormalities which are not part of any minimal Dab-consequence.
7 In [15] we show that the AL ACL→r in standard format that is characterized by the triple 〈CL→,Ω→,
reliability⊆ represents the free Rescher-Manor consequence relation: A is a free Rescher-Manor
consequence from β iff β → �ACL→r A.
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Λ
(
Abβ

LLL
) ∧ min↓⊂

(
Abβ

LLL
)

In this sense, the reliability strategy of the standard format provides the most sceptical
rationale for ALs.

5.2.5 Colexicographic ALs

Let us come back to our lower limit logic CLΔ→. We now focus on a single participant
of the discussion and offer a different reading of →i A. Namely, A has been uttered
by our participant at time point i . We move from time point 1 on forward in time.
We are interested in offering an account of the participant’s changes of mind: in case
she states ¬A at time point 1 but changes her mind later on, say at time point 5 she
states A, we expect to derive A. Hence, the consequences of our logic mirror the
state of mind of our agent based on what she states at the latest time point she offers
a statement.

Take as an example the following premise set

βco = {→1 p, →2q, →3r, →4¬q, →5¬p}

and consider the following models:

Model Ab(M) M |=
M1 →5¬p ∨ ¬¬p, →4¬q ∨ ¬¬q p, q, r
M2 →5¬p ∨ ¬¬p, →2q ∨ ¬q p,¬q, r
M3 →1 p ∨ ¬p, →2q ∨ ¬q, →3r ∨ ¬r ¬p,¬q,¬r
M4 →1 p ∨ ¬p, →4¬q ∨ ¬¬q ¬p, q, r
M5 →1 p ∨ ¬p, →2q ∨ ¬q ¬p,¬q, r

The idea to prioritize later statements over former incompatible ones is realized by
means of the following colexicographic order:

Definition 5.2.3 (Colexicographic order on Θ(Ω) × Θ(Ω)). Where ϕ,ψ ∧ Ω ,
ϕ ∈co ψ iff ϕ ⊂ ψ or there is a n ∈ N for which

(a) ϕ ∩Ωi = ψ ∩Ωi for all i > n, and
(b) ϕ ∩Ωn ⊂ ψ ∩Ωn

If we order our models by means of ∈co with respect to their abnormal parts which
are based on Ω◦ we have:

Ab(M5) ∈co Ab(M3) ∈co Ab(M4) ∈co Ab(M2) ∈co Ab(M1)

Indeed, all models M with abnormal part in min∈co

(
Abβco

CLΔ→
)

have the same abnormal
part as our M5.
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Hence, where AL→min∈co
is characterized by the lower limit logic CLΔ→, the set

of abnormalities Ω◦, and by the semantic selection based on min∈co , we have
β �AL→min∈co

¬p,¬q, r (where �AL→min∈co
is defined analogous to (Δ)).8

5.2.6 The Problem of Non-Smoothness

Logics such as AL→min∈co
are troublesome as soon as the order 〈Abβ

CLΔ→ ,∈co⊆ is not

smooth.9,10 Take for instance the premise set (where pi , q (i ∈ N) are distinct
propositional letters):

βa = {¬pi ∨ ¬p j | i < j} ↓ {→pi | i ∈ N} ↓ {→1q, →1r} ↓ {¬q ∨ ¬r}

There are infinitely descending sequences of “better and better and never best”
models as illustrated in Fig. 5.1 where � = {→pi ∨¬pi | i ∈ N}, !i A =df →i A∨¬A
and

Ab
(
Mq

i

) = � \ {!i pi } ↓ {!1q}
Ab

(
Mr

i

) = � \ {!i pi } ↓ {!1r}
Ab

(
Mq,r

i

) = � \ {!i pi } ↓ {!1q, !1r}

Note that for instance,

Fig. 5.1 An excerpt of the
∈co-order on the CLΔ→-models
of βa providing an illustration
of non-smoothness

M q,r
1

M q
1 M r

1

M q,r
2

M q
2 M r

2

M q,r
3

M q
3 M r

3

...
...

...

8 Of course, we could define a logic on the basis of CL→ that realizes the same idea. Instead of e.g.,
→3 A we could use →→→A in order to express that A is stated at time point 3.
9 〈X,∈⊆ is smooth iff for all x ∈ X there is a y ∈ min∈(X) such that y ⊃ x .
10 Non-smooth configurations similar to the following example have been discussed in the litera-
ture. See for instance Batens’ discussion of Priest’s LPm in [18], or an example in the context of
Circumscription discussed by Bossu and Siegel in [19].
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. . . ∈co Mq
n ∈co . . . ∈co Mq

2 ∈co Mq
1

Note further that min∈co

(
Abβa

CLΔ→
) = ∅. This immediately implies that for any formula

A, βa �AL→min∈co
A. This is unfortunate since we do not want that our AL trivializes

premise sets that are non-trivial in its lower limit logic. This problem can be avoided
by slightly adjusting the selection procedure: instead of using as a threshold for our
selection the set min∈co

(
Abβ

CLΔ→
)

we select11

Ψ∈co

(
Abβ

CLΔ→
) =df

{
Ab(M) ∈ min↓⊂

(
Abβ

CLΔ→
) |

for all Ab(M ∪) ∈ min∈co

(
Abβ

CLΔ→
)
, Ab(M ∪) ⊀co Ab(M)

}

It follows immediately by the definition that min∈co

(
Abβ

CLΔ→
) ∧ Ψ∈co

(
Abβ

CLΔ→
)
. Hence

all minimal models (if there are any) remain selected. The additional selected models
are the ones in infinitely descending chains (for which there are no minimal models
below).

However, there is still a problem. In our previous example each Mq
i and each Mr

i
(where i ∈ N) is selected according to this new selection. However, each Mq,r

i is

also selected, since there is no M ∪ for which Ab(M ∪) ∈ min∈co

(
Abβa

CLΔ→
)

such that

Ab(M ∪) ∈co Ab(Mq,r
i ). This seems clearly counter-intuitive since for each level i ,

Ab(Mq
i ), Ab(Mr

i ) ⊂ Ab(Mq,r
i ) and

min∈co

({Ab(Mq
i ), Ab(Mr

i ), Ab(Mq,r
i )}) = {

Ab(Mq
i ), Ab(Mr

i )
}

Note first that although according to ∈co the model Mq,r
i is worse than all the

models Mq
j and Mr

j (where j ≥ i), ∈co doesn’t offer a demarcation principle or

rationale by means of which we select some Mq
j or Mr

j but not Mq,r
i . Accord-

ing to ∈co, Mq,r
i –just like Mq

j – is just another model in an infinitely descending
chain for which there is no minimal model M ∪ that is equal or better. There is
just as much reason for (de-)selecting Mq,r

i as for Mq
j . “Wait”, one may say, “but

Ab
(
Mq

j

) ∈co Ab
(
Mq,r

i

)
. Isn’t that a reason to select Mq

j and to deselect Mq,r
i ?”

However, analogously Ab
(
Mq

j+1

) ∈co Ab
(
Mq

j

)
and Ab

(
Mq

j+2

) ∈co Ab
(
Mq

j+1

)

and so forth. Hence, by applying this line of reasoning symmetrically, none of our
Mq

j ’s would be selected. Altogether, we have an all-or-nothing choice: either we

select all models in the infinitely descending chains or none. Every other choice
would be asymmetric and hence ad hoc with respect to ∈co.

11 Batens mentioned this idea in the context of inconsistency-tolerant logics in [18]. Here it is applied
in a more generic setting and we systematically investigate its meta-theory. For a motivation of the
restriction of the selection to min↓⊂ see Sect. 5.2.4.
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So, given that ∈co isn’t doing any work in demarcating Mq,r
i from the Mq

j ’s

and the Mr
j ’s, is our intuition that we should rather de-select Mq,r

i based on a
confusion? Rather, we suggest, it is based on a second-order principle that we use
on top of comparing models by means of ∈co. The second order principle offers
additional means of qualitatively demarcating some models from others. It helps us
to express that some models that defer with respect to∈co defer in a more significant
sense than others. E.g., Mq

i and Mq,r
i defer more significantly than Mq

i+1 and Mq
i ,

although according to ∈co the situation is symmetric
(
Ab

(
Mq

i+1

) ∈co Ab
(
Mq

i

)
and

Ab
(
Mq

i

) ∈co Ab
(
Mq,r

i

))
. In this case the second order principle says: Mq

i and Mq,r
i

defer significantly because Ab
(
Mq

i

) ⊂ Ab
(
Mq,r

i

)
, while Ab

(
Mq

i+1

) ⊕⊂ Ab
(
Mq

i

)
and

hence these two models do not defer significantly.
Altogether, what we are interested in is another partial order∈∪ which emphasizes

certain distinctions made within ∈co while neglecting others as less important. ∈∪
should not introduce new distinctions that were not made by means of ∈co already.
Hence, ∈∪ ⊂ ∈co. Our discussion above motivates to use ⊂ in order to implement
our second order principle. The selection can then proceed by means of12:

Ψ[∈co,⊂]
(
Abβ

CLΔ→
) =df Ψ⊂

(
Ψ∈co

(
Abβ

CLΔ→
))

According to this selection only the models Mq
i and Mr

i are selected, while any
model that validates both ¬q and ¬r (such as Mq,r

i ) is de-selected. Hence, where
AL→Γ[∈co,⊂] is the AL based on the semantic selection offered by Ψ[∈co,⊂], we get
βa �AL→Γ[∈co,⊂] q ∨ r .

5.2.7 More Refined Quantitative Examples

Let us come back to our application in the example of Sect. 5.2.3. There, models were
selected in which statements that are offered the most frequent by our experts are
validated. Now suppose we are not only interested in the models that validate the most
frequently stated statements, but also some others which are “good enough”. One
way to do so would be by introducing a threshold value τ : instead of selecting models
whose abnormal parts are in min∈c

(
Abβ

CLΔ→
)

we select models whose abnormal parts
are in

Λ1
c

(
Abβ

CLΔ→
) =df

{
Ab(M) ∈ min↓⊂

(
Abβ

CLΔ→
)∣∣|Ab(M)| − τ ≺ |ϕ|

}

12 This is not the same as simply defining another partial order ∈∪co by “Ab(M) ∈∪co Ab(M ∪) iff
Ab(M) ∈co Ab(M ∪) or Ab(M) ⊂ Ab(M ∪)” and then to use Ψ∈∪co

. Note that since ⊂ ∧ ∈co, also
∈∪co = ∈co.
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where ϕ is an arbitrary element in min∈c

(
Abβ

CLΔ→
)
.13

For instance, suppose τ = 3. For our example based on βc, both M2 and M3 would
now be selected, while M4 is still not selected. The value τ hence introduces some
error tolerance: in this case we allow the majority to be mistaken about p (model
M3) or to be mistaken about q (model M2) but not to be mistaken about both, p and
q (model M4 is not selected).

Another option is to use the following selection14:

Λ2
c

(
Abβ

CLΔ→
) =df


⎧

⎨
Ab(M) ∈ min↓⊂

(
Abβ

CLΔ→
)
∣∣
∣∣∣∣
|Ab(M)| ≺

⎩
Ab(M ∪)∈min⊂(Abβ

CLΔ→ )
|Ab(M ∪)|

|min⊂
(
Abβ

CLΔ→
)|


⎫

⎬

Take for instance

β 2
c = {→i (p ∨ q), → j (p ∨ ¬q), →k p, →11¬p |

i ∈ {1, 2, 3}, j ∈ {4, 5, 6, 7}, k ∈ {8, 9, 10}}

We have three types of models M with Ab(M) ∈ min⊂
⎭

Ab
β 2

c
CLΔ→

)
:

Model Ab(M) |Ab(M)| M |=
M1 →11¬p ∨ ¬¬p, →i (p ∨ q) ∨ ¬(p ∨ q) (i ∈ {1, 2, 3}) 4 p,¬q
M2 →11¬p ∨ ¬¬p, → j (p ∨ ¬q) ∨ ¬(p ∨ ¬q) ( j ∈ {4, 5, 6, 7}) 5 p, q
M3 →i (p ∨ q) ∨ ¬(p ∨ q) (i ∈ {1, 2, 3}), → j (p ∨ ¬q) ∨ ¬(p ∨ ¬q), 10 ¬p

( j ∈ {4, 5, 6, 7}), →k p ∨ ¬p (k ∈ {8, 9, 10})

A model M is selected if its abnormal part Ab(M) ∈ Λ2
c

⎭
Ab

β 2
c

CLΔ→

)
, i.e., if |Ab(M)| ≺

(4+ 5+ 10)/3. Hence, M1 and M2 are selected, while M3 is not selected.
This selection is very contextual: an average value is calculated on the basis of

how many statements are conflicted in the maximally consistent sets of statements.
The models that conflict less than this average value are accepted. Suppose the
distribution of conflicts in the example above would be different: instead of 4–5–10
(|Ab(M1)|, |Ab(M2), |Ab(M3)|) we could have for instance 2–7–9. Then we would
get the median value 6. In this case only M1 would be selected.

13 We prove that min∈c

(
Abβ

LLL

)
(where LLL qualifies as a lower limit logic such as our CLΔ→) is

non-empty for LLL-non-trivial β in Sect. 5.8.2 (see Fact 5.8.2 in combination with Lemma 5.3.2).
14 Where n ∈ N

∗, we define ∗/n =df ∗. We show later that min⊂(Abβ
LLL) is non-empty for

LLL-non-trivial β (see Lemma 5.3.2 and Theorem 5.5.4): hence we do not have to worry about
division by zero.
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5.2.8 Summary

We have seen various examples for ALs that use orders different from set-inclusion
in order to select models. Let us abstract away from the concrete examples and
identify the formats of ALs we have discussed above. We characterize ALs in the
following by triples: 〈LLL,Ω,Λ⊆ where LLL is the lower limit logic, Ω is the set
of abnormalities, and Λ determines the threshold for the selection of the models.15

We started with ALs in the standard format characterized by:

〈LLL,Ω, min⊂⊆ (5.1)

Selected are the LLL-models M of a premise set β whose abnormal part is in

min⊂
(
Abβ

LLL
) = {Ab(M) | M ∈MLLL

(
β

)
,

for all M ∪ ∈MLLL
(
β

)
, Ab(M ∪) ⊕⊂ Ab(M)}

Then we moved on to ALs with other partial orders ∈, but presupposing that

(†) for all premise sets β , 〈Abβ
LLL,∈⊆ is smooth.

These logics can be characterized by:

〈LLL,Ω, min∈⊆ (5.2)

The selected models of a premise set β are the ones whose abnormal part is in:

min∈
(
Abβ

LLL
) = {Ab(M) | M ∈MLLL

(
β

)
,

for all M ∪ ∈MLLL
(
β

)
, Ab(M ∪) ⊕∈ Ab(M)}

Dropping the smoothness requirement (†) for ∈ we first proposed the following
format:

〈LLL,Ω,Ψ∈⊆ (5.3)

The selected models of a premise set β are the ones whose abnormal part is in:

Ψ∈(Abβ
LLL) = {

Ab(M) ∈ min↓⊂
(
Abβ

LLL
) |

there is no Ab(M ∪) ∈ min∈
(
Abβ

LLL
)

such that Ab(M ∪) ∈ Ab(M)
}

Since

Fact 5.2.1. If 〈X,∈⊆ is smooth, then Ψ∈(X) = min∈(X).

15 We still focus on the semantic aspect of ALs in order not to open more doors than necessary at
this point of the discussion. However, this should not distract from the fact that all these semantic
features have a syntactic counter-part. We will investigate also the syntax of ALs beginning with
the next section.
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and given the presupposition (†) we used for the format (5.2), the semantic selec-
tion characterized by 〈LLL,Ω, min∈⊆ is identical to the one characterized by
〈LLL,Ω,Ψ∈⊆.

As the example in Sect. 5.2.6 motivates, sometimes we are interested in basing
our selection on more refined selections. On way to do so was by means of an order
∈∪ where ∈∪ ∧ ∈:

〈LLL,Ω,Ψ[∈,∈∪]⊆ (5.4)

Here, the selection is refined by making use of the order ∈∪ so that the selected
models for a premise set β are the ones whose abnormal part is in

Ψ[∈,∈∪]
(
Abβ

LLL
) = Ψ∈∪

(
Ψ∈

(
Abβ

LLL
))

Of course, one may generalize this approach to a sequence of orders.

Definition 5.2.4. We call a∈∪ an abstraction order of ∈ iff∈∪ ∧ ∈. A sequence of
partial orders 〈∈1,∈2, . . . ,∈n⊆ is an abstraction sequence iff for each i < n, ∈i+1
is an abstraction order of ∈i .

Where 〈∈1,∈2, . . . ,∈n⊆ is an abstraction sequence we define

Ψ[∈1, ...,∈n ]
(
Abβ

LLL
) =df Ψ∈n

(
Ψ∈n−1

(
. . . Ψ∈1

(
Abβ

LLL
)))

The examples presented in Sects. 5.2.4 and 5.2.7 explicated a different rationale
according to which we are not anymore only interested in selecting minimal models
(resp., in the case of Ψ∈, models for which there are no “better” minimal models). In
this context we have argued that min↓⊂ is a reasonable upper bound for any threshold
function Λ.

The most generic representation can be obtained when we abstract from the con-
crete way the threshold is obtained by an order ∈ and just focus on the threshold
function Λ itself.

〈LLL,Ω,Λ⊆ (5.5)

Obviously, all the meta-theory that is available for the most generic format (5.5)
straight-forwardly applies to the other formats as well.

In the next section we characterize the proof theory and semantics of this format
which is followed by a study of its meta-theory.

5.3 The Generic Adaptive Logic ALΩ

We will now define adaptive logics ALΩ characterized by our most generic presen-
tation 〈LLL,Ω,Λ⊆ where
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1. the Lower Limit Logic LLL is a compact Tarski logic that has a characteristic
semantics (see Sect. 2.2),16

2. the set of abnormalities Ω is characterized by a (or many) logical form(s) in

a LLL-contingent way, i.e., there is no ϕ ∧ Ω for which ϕ ↓ (Ω \ ϕ)¬̌ is
LLL-trivial

3. Λ : Θ(Θ(Ω)) ⊇ Θ(Θ(Ω)) is an LLL-threshold function, where

Definition 5.3.1. An LLL-threshold function17 Λ : Θ(Θ(Ω)) ⊇ Θ(Θ(Ω)) satis-
fies the following requirements for all X in the sub-domain Π =df

{
Abβ

LLL | β ∧
W+}

T1 Λ is inclusive in min↓⊂ (i.e., Λ(X) ∧ min↓⊂(X))
T2 Λ(X) is a ⊂-lower set18 of X
T3 Λ(X) = ∅ implies X = ∅
Of course, Λ(X) shall select sets in X and not introduce new sets of abnormalities.
Moreover, as motivated in Sect. 5.2.4, min↓⊂ provides an upper bound for our selection
Λ. Hence, T1. T2 expresses that if some set ϕ of abnormalities is selected and hence
deemed “sufficiently normal” in X according to Λ, then any ψ ∈ X for which
ψ ⊂ ϕ shall also be selected: after all ψ contains even less abnormalities than ϕ.
T3 expresses that Λ makes a choice from X in case X is non-empty. The following
properties are derivable:

Fact 5.3.1. Where X ∈ Π : (i) Λ(X) = ∅ iff X = ∅, (ii) ∅ ∈ X iff {∅} = Λ(X).

(i) follows by T1 and T3. It expresses that no choice is made by means of Λ if and
only if there is no choice available. (ii) follows by T1 and T3. It expresses that the
abnormality-free empty set is always selected if it is in X : there is indeed no reason
to deem it not “sufficiently normal”.

As is shown below, each of our examples from Sect. 5.2 is a threshold function and
hence satisfies T1–T3, except for min∈co since it doesn’t satisfy T3 as demonstrated
in Sect. 5.2.6. We come back to our examples in more detail in Sect. 5.8.

In the following we will first present the semantics, then the dynamic proof theory
of ALΩ. It will become evident that we hereby generalize the standard format. Hence,
all the meta-theory for ALΩ immediately applies to the standard format as well (see
also the discussion in Sect. 5.8.2).

16 In order to reduce notational clutter, we will in the following not distinguish between LLL and
LLL+ and always write LLL in order to denote either. (Compare the discussion in Sect. 2.7). The
context will always disambiguate this.
17 We will in the remainder skip the reference to LLL whenever the context disambiguates.
18 X is a ∈-lower set of Y iff for all x ∈ X and all y ∈ Y , if y ∈ x then y ∈ X .

http://dx.doi.org/10.1007/978-3-319-00792-2_2
http://dx.doi.org/10.1007/978-3-319-00792-2_2
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5.3.1 The Semantics

As in the standard format we use a selection semantics. The threshold function Λ

determines which models we select from MLLL
(
β

)
.

Definition 5.3.2. MALΩ

(
β

) =df
{

M ∈MLLL
(
β

) | Ab(M) ∈ Ω
(
Abβ

LLL)
}

Definition 5.3.3. β �ALΩ
A iff for all M ∈MALΩ

(
β

)
, M |= A.

Remark 5.3.1. Note that with Λ = min⊂we get exactly the semantics of the minimal
abnormality strategy of the standard format, whereas with Λ = min↓⊂ we get the
reliability strategy. We will come back to this in Sect. 5.8.2.

5.3.2 The Dynamic Proof Theory

The proof format of ALΩ is identical to the proof format of the standard format.
Each proof line has four elements: a line number, a formula, a justification, and a
condition which is a finite set of abnormalities.

We again have the three generic rules: PREM, RU, and RC.
We only need to adjust the marking condition. Recall the marking definition

of minimal abnormality (Definition 2.4.7, page 26). Our motivation was along the
following lines.

Suppose we have derived A on the condition Σn at stage s on line l. That means our
(defeasible) assumption for the argument that leads to line l is that each abnormality
in Σn is false. Moreover, we may have also derived A already earlier in the proof
on other conditions: Σ1, . . . , Σn−1. The fact whether line l is marked concerns two
questions (compare our previous discussion in Sect. 2.4.2.2):

Q1 Is the argument at line l defensible?

Is the assumption of line l that neither of the abnormalities in Σn is true valid in
some sufficiently normal interpretation of the disjunctions of abnormalities derived
from the premises?

Q2 Is the claim A of line l justified?

Is it the case that for each sufficiently normal interpretation I of the Dab-formulas
derived from the premises there is a Σi such that all the abnormalities in Σi are
false in I?

Let us make this formally more precise. Recall that the minimal Dab-formulas derived
from β at stage s were denoted by Υs(β ). Accordingly, interpretations of these Dab-
formulas are represented by means of choice sets over Υs(β ). The set of all choice
sets over Υs(β ) is denoted by πs(β ). More precisely, πs(β ) is the set of all set of
abnormalities ϕ such that ϕ ∩Σ ⊕= ∅ for all Σ ∈ Υs(β ).

http://dx.doi.org/10.1007/978-3-319-00792-2_2
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We have previously seen that the two strategies of the standard format provide
different readings of what it means that a choice set is “sufficiently normal”: e.g., for
the minimal abnormality strategy we chose the ⊂-minimal choice sets (denoted by
Φs(β ) = min⊂(πs(β ))). Now we use our threshold function Λ instead of min⊂.
Let us write Λβ

s for the choice sets that are selected at stage s by means of Λ.19

Hence, formally the questions Q1 and Q2 have the following form:

Q1 Is there a ϕ ∈ Λβ
s such that Σn ∩ ϕ = ∅?

Q2 For each ϕ ∈ Λβ
s : is there a Σi such that ϕ ∩Σi = ∅?

This gives rise to the following marking definition which is analogous to the marking
definition for minimal abnormality (Definition 2.4.7):

Definition 5.3.4 (Λ-marking ). A line l with formula A and condition Σ is marked
at stage s, iff Σ ⊕= ∅ and

(i) there is no ϕ ∈ Λβ
s such that ϕ ∩Σ = ∅, or

(ii) for a ϕ ∈ Λβ
s there is no line l ∪ at stage s with formula A and condition Φ such

that Φ ∩ ϕ = ∅.

Obviously, condition (i) is met in case the answer to Q1 is negative, while condition
(ii) is met in case the answer to Q2 is negative.

There is a slight complication concerning the definition of Λβ
s in the marking

definition which is best demonstrated by means of an example.

Example 5.3.1. Let

Λ(X) =
{

ϕ

∣∣
∣∣∣
|ϕ| ≺

⎩
ψ∈min↓⊂(X) |ψ|∣∣min↓⊂(X)

∣∣

}

similar to Λ2
c from Sect. 5.2.7 and, where !A =df →A ∨ A, let

β = {!p ∨ !q, !p ∨ !r ,¬!p ∨ ¬!q,¬!p ∨ ¬!r , s ∨ !q}

We first look at the situation semantically. We have

min⊂
(
Abβ

L→
) = {{!p}, {!q, !r}}

Due to the premises ¬!p ∨ ¬!q and ¬!p ∨ ¬!r we have:

{!p, !q}, {!p, !r}, {!p, !q, !r} /∈ Abβ
L→

As a consequence:

19 The reader may for the moment think of Λβ
s as denoting the set Λ(πs(β )). However, we will

have to make a slight adjustment below (see Definition 5.3.5).
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min↓⊂
(
Abβ

L→
) = min⊂

(
Abβ

L→
)

Hence, since
⎩

ψ∈min↓⊂(Abβ
L→ )
|ψ|

∣∣∣min↓⊂
(
Abβ

L→
)∣∣∣

= 3

2

we have

Λ
(
Abβ

L→
) = {{!p}} (5.6)

Hence, since each selected model M has the abnormal part {!p}, also M |= ¬!q and
hence M |= s due to the premise s ∨ !q. Thus, s is a semantic consequence of the
AL based on Λ.

Let us now look at a proof from β where, by way of trial, Λβ
s =df Λ(πs(β )):

1 !p ∨ !q PREM ∅
2 !p ∨ !r PREM ∅
3 ¬!p ∨ ¬!q PREM ∅
4 ¬!p ∨ ¬!r PREM ∅
5 ¬!p ∨ ¬!q ∨ ¬!r 4; RU ∅
6 s ∨ !q PREM ∅
7 s 6; RC {!q}

Members of π7(β ) are for instance {!p}, {!q, !r}, {!p, !q}, {!p, !r}, {!p, !q, !r}.20

Moreover,

min↓⊂(π7(β )) = {{!p}, {!q, !r}, {!p, !q}, {!p, !r}, {!p, !q, !r}}

Note that ⎩
ψ∈min↓⊂(π7(β )) |ψ|∣∣min↓⊂(π7(β ))

∣∣ = 10

5
= 2

Hence, we have:

Λ(π7(β )) = {{!p}, {!p, !q}, {!p, !r}, {!q, !r}} (5.7)

According to this, line 7 is marked. Since we can only derive s on conditions con-
taining {!q} and there is no way to unmark line 7,21 s is not derivable anymore on an
unmarked line. But, recall that s is a semantic consequence. Something went wrong.

20 For the sake of simplicity, we disregard in this discussion “checked connectives” (see Sect. 2.7).
21 Note that we cannot introduce new minimal Dab-formulas in the proof.

http://dx.doi.org/10.1007/978-3-319-00792-2_2
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Note that in view of (5.6), models with abnormal part {!q, !r} are not selected.
However, {!q, !r} is below our Λ-threshold in the syntactic selection (5.7). The reason
for the asymmetry is that for the calculation of the threshold on the syntactic side
some choice sets are considered that do not correspond to abnormal parts of models
since they are not satisfiable. Examples are {!p, !q}, {!p, !r} and {!p, !q, !r} which
are due to the premises ¬!p ∨ ¬!q and ¬!p ∨ ¬!r not satisfiable and hence

{{!p, !q}, {!p, !r}, {!q, !r}} = Λ
(
π7(β )

) \Λ
(
Abβ

L→
)

(5.8)

The good news is that this asymmetry can easily be avoided: instead of fixing
the threshold on the basis of the choice sets of Υs(β ), i.e., on the basis of πs(β ),
we calculate it on the basis of only the satisfiable choice sets of Υs(β ). This can be
achieved by also paying attention to disjunctions of negated abnormalities that have
been derived on the empty condition.

Let therefore Dabn(Σ,Φ) =df
∨̌(

Σ ↓ Φ ¬̌ )
where Σ ∩ Φ = ∅ and Σ ↓ Φ ∧

Ω . We say that Dabn(Σ,Φ) is a minimal Dabn-formula derived at stage s iff
Dabn(Σ,Φ) is derived at stage s on the condition ∅, and for all Dabn(Σ∪,Φ ∪)
derived at stage s on the condition ∅: if Σ∪ ∧ Σ and Φ ∪ ∧ Φ , then Σ∪ = Σ and
Φ ∪ = Φ .

In analogy to Υs(β ) we define Υ sat
s (β ) to be the set of all Σ ↓ Φ ¬̌ such that

Dabn(Σ,Φ) is a minimal Dabn-formula at stage s.
Instead of using πs(β ) that contains the choice sets of Υs(β ) we now use π sat

s (β )

which contains all sets of abnormalities ϕ such that ϕ ↓ (Ω \ ϕ) ¬̌ is a choice set of
Υ sat

s (β ).
An alternative characterization of π sat

s (β ) is given by the following Lemma. It
mirrors nicely our informative reading that π sat

s (β ) contains all choice sets in πs(β )

that are satisfiable.

Lemma 5.3.1. Let β ∧W+: π sat
s (β ) = πs(β ) \π⇐

s (β ), where

π⇐
s (β ) =df

{
ϕ ∈ πs(β ) | there are ψ ∧ ϕ and Σ ∧ Ω \ ϕ such that

Dabn(Σ,ψ) is a minimal Dabn-formula at stage s
}

Proof. “⇒”: Let ϕ ∈ πs(β ) \ π⇐
s (β ). Assume there is a Σ ↓ Φ ¬̌ ∈ Υ sat

s (β )

such that ϕ ∩ Σ = ∅ = (Ω \ ϕ) ∩ Φ . Hence, Φ ∧ ϕ and Σ ∧ Ω \ ϕ. But then,
ϕ ∈ π⇐

s (β ),—a contradiction.
“∧”: Let (*) ϕ ↓ (Ω \ ϕ) ¬̌ be a choice set of Υ sat

s (β ). Obviously, ϕ ∈ πs(β ).
Assume ϕ ∈ π⇐

s (β ). Hence, there are ψ ∧ ϕ and ψ∪ ∧ Ω \ϕ such that Dabn(ψ∪,ψ)

is a minimal Dabn-formula at stage s. Hence, ψ∪ ↓ ψ ¬̌ ∈ Υ sat
s (β ). But this is a

contradiction to (*). �

In our example we have π sat
7 (β ) ⇒ {{!p}, {!q, !r}},

min↓⊂
(
π sat

7 (β )
) = {{!p}, {!q, !r}} and hence Λ

(
π sat

7 (β )
) = Λ

(
Abβ

L◦→
)



128 5 Generalizing the Standard Format

Hence, if we let Λβ
s = Λ

(
π sat

s (β )
)

then line 7 is unmarked (and remains unmarked
in any extension of the proof).

Note that for instance {!p, !r} /∈ π sat
7 (β ) since Dabn(∅, {!p, !r}) = ¬!p∨¬!r is

a minimal Dabn-formula derived at line 4. Thus, {!p, !r} ∈ π⇐
7 (β ).

Let us sum up. What was demonstrated in the example is that some choice sets in
πs(β ) may not be satisfiable. This causes two problems:

P1 Redundancy
First, there seem to be no good reasons why such choice sets should be selected
by Λ or even be considered in the calculation of the threshold Λ.

P2 Non-adequacy
Moreover, in some configurations these non-satisfiable choice sets may alter the
selection via Λ such that we get different outcomes in the syntactic and the
semantic selection (see (5.8)).

The solution is to define

Definition 5.3.5. Λβ
s =df Λ

(
π sat

s (β )
)

In Sect. 5.6 we will show that under specific conditions we can also use
Λβ

s = Λ(πs(β )) without running into the problem P2.
Note that in the limit π sat

s (β ) exactly corresponds to Abβ
LLL as demonstrated

in the following lemma. This result will be crucial to guarantee the soundness and
completeness of ALΩ (see Sect. 5.4). Where Dabn(Σ,Φ) is a Dabn-consequence of
β iff β 
LLL Dabn(Σ,Φ), it is a minimal Dabn-consequence of β iff there are no
Σ∪,Φ ∪ such that Σ∪ ↓ Φ ∪ ¬̌ ⊂ Σ ↓ Φ ¬̌ and Dabn(Σ∪,Φ ∪) is a Dabn-consequence
of β . Let Υ sat(β ) be the set of all Σ ↓ Φ ¬̌ such that Dabn(Σ,Φ) is a minimal
Dabn-consequence of β . Finally, π sat(β ) is the set of all sets of abnormalities ϕ
such that ϕ ↓ (Ω \ ϕ) ¬̌ is a choice set of Υ sat(β ).

Stage-independent versions of πs(β ) and π⇐
s (β ) are defined analogously on the

basis of the Dab-consequences of β , resulting in π(β ) and π⇐(β ).

Lemma 5.3.2. Where β ∧W+: π sat(β ) = Abβ
LLL

Proof. Let ϕ ∈ π sat(β ). Assume there is no M ∈MLLL
(
β

)
such that Ab(M) = ϕ.

Hence, MLLL
(
β ↓ (Ω \ ϕ) ¬̌ ↓ ϕ

) = ∅. By the compactness of LLL, there are
finite ψ ∧ ϕ and Σ ∧ Ω \ ϕ such that MLLL

(
β ↓ ψ ↓ Σ ¬̌) = ∅. Hence,

β �LLL Dabn(Σ,ψ). By the completeness of LLL, β 
LLL Dabn(Σ,ψ). But
then there are Σ∪ ∧ Σ and ψ∪ ∧ ψ such that Σ∪ ↓ ψ∪ ¬̌ ∈ Υ sat(β ),—a contradiction
since ϕ ∩Σ∪ = ∅ = ψ∪ ∩ (Ω \ ϕ) and ϕ ∈ π sat(β ).

Let ϕ ∈ Abβ
LLL. Let M ∈ MLLL

(
β

)
such that ϕ = Ab(M). Let Σ ↓ Φ ¬̌ ∈

Υ sat(β ). Hence, β �LLL Dabn(Σ,Φ). Thus, M |= Dabn(Σ,Φ). Hence, either
ϕ∩Σ ⊕= ∅ or (Ω \ϕ)∩Φ ⊕= ∅. Thus, ϕ↓ (Ω \ϕ) ¬̌ is a choice set of Υ sat(β ) and
hence ϕ ∈ π sat(β ). ∼�

In view of Definitions 5.3.4 and 5.3.5 we can again define a stage-dependent and
an absolute notion of derivability. The stage-dependent notion is as follows:
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Definition 5.3.6. A formula A is derived at stage s of a proof iff there is a line l
with formula A that is not marked at stage s.

Before we define the absolute notion of derivability, let us look at another example.

Example 5.3.2. We come back to our example from Sect. 5.2.5. We begin by intro-
ducing our first three premises:

1 →1 p PREM ∅
2 →2q PREM ∅
3 →3r PREM ∅

From this we can conditionally derive the following:

4 p 1; RC {→1 p ∨ ¬p}
5 q 2; RC {→2 q ∨ ¬q}
6 r 3; RC {→3 r ∨ ¬r}

The proof gets more interesting when we introduce our fourth premise →4¬q since
this leads to a conflict:

7 →4¬q PREM ∅
8 (→2q ∨ ¬q) ∨ (→4¬q ∨ ¬¬q) 2, 7; RU ∅
9 ¬q 7; RC {→4¬q ∨ ¬¬q}

At this point we have

{→2q ∨ ¬q}, {→4¬q ∨ ¬¬q}, {→2q ∨ ¬q, →4¬q ∨ ¬¬q} ∈ π sat
9 (βco)

Note that

{→2q ∨ ¬q} ∈co {→4¬q ∨ ¬¬q} ∈co {→2q ∨ ¬q, →4¬q ∨ ¬¬q}

Indeed, Ψ∈co

(
π sat

9 (βco)
) = {{→2q∨¬q}}. Hence, at this point line 5 is marked while

9 is unmarked. This is as expected given the reading offered in Sect. 5.2.5. After all,
¬q was stated at a later point than q and hence it is to be preferred.

Let us continue and introduce our last premise:

10 →5¬p PREM ∅
11 (→1 p ∨ ¬p) ∨ (→5¬p ∨ ¬¬p) 1, 10; RU ∅
12 ¬p 10; RU {→5¬p ∨ ¬¬p}

At this point we have four ⊂-minimal choice sets in π sat
12 (βco):

ϕ1 = {→2q ∨ ¬q, →1 p ∨ ¬p}
ϕ2 = {→2q ∨ ¬q, →5¬p ∨ ¬¬p}
ϕ3 = {→4¬q ∨ ¬¬q, →1 p ∨ ¬p}
ϕ4 = {→4¬q ∨ ¬¬q, →5¬p ∨ ¬¬p}

http://dx.doi.org/10.1007/978-3-319-00792-2_5
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Note that ϕ1 ∈co ϕ3 ∈co ϕ2 ∈co ϕ4. Indeed, Ψ∈co

(
π sat

12 (βco)
) = {ϕ1}. Hence, lines

4 and 5 are marked while lines 9 and 12 are unmarked.

In order to define the consequence relation of ALΩ we make use of a static notion
of derivability. Final derivability is defined just as for the standard format:

Definition 5.3.7. A is finally derived at a line l at a finite stage s of a proof iff

(i) A is derived at line l at stage s,
(ii) for every further extension of the proof in which line l is marked there is yet

another extension in which line l is unmarked.

Definition 5.3.8. β 
ALΩ
A iff A is finally derivable from β .

For a reading of final derivability in terms of an argumentation game between two
players see page 22.

We are now in the position to define a syntactic consequence relation for ALΩ.

Definition 5.3.9. A ∈ CnALΩ

(
β

)
iff β 
ALΩ

A

5.4 Representational Results for ALΩ

In this Section we will offer various representational results for �ALΩ
and 
ALΩ

. An
overview is given in Fig. 5.2.

AL A Cor. 5.4.2

(Sec. 5.4.4)
AL A

Cor. 5.4.1

(Sec. 5.4.1)

Thm. 5.4.4

(Sec. 5.4.3)

∀ ∈ AbLLL ∃ ⊆ :

LLL A ∨̌ Dab( )
∀ ∈ sat ( ) ∃ ⊆ :

LLL A ∨̌ Dab( )

since
AbLLL

sat ( )
Lem. 5.3.2

Fig. 5.2 Representational results presented in Sect. 5.4
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5.4.1 A Representational Theorem for �ALΩ

The semantic consequence relation �ALΩ
can also be represented in terms of the

consequence relation of the lower limit logic: �LLL.

Theorem 5.4.1. Where β ∧W+: β �ALΩ
A iff for all ϕ ∈ Λ

(
Abβ

LLL

)
, β ↓ (Ω \

ϕ) ¬̌ �LLL A.

Proof. β �ALΩ
A iff M |= A for all M for which Ab(M) ∈ Λ

(
Abβ

LLL

)
iff

β ↓ Ab(M) ↓ (Ω \ Ab(M)) ¬̌ �LLL A for all Ab(M) ∈ Λ
(
Abβ

LLL

)
iff [by T2]

β ↓ (Ω \ Ab(M)) ¬̌ �LLL A for all Ab(M) ∈ Λ
(
Abβ

LLL

)
. �

Hence, by the compactness of LLL and the deduction theorem, we get:

Corollary 5.4.1. Where β ∧W+: β �ALΩ
A iff for all ϕ ∈ Λ

(
Abβ

LLL

)
there is a

Σ ∧ Ω \ ϕ for which β �LLL A ∨̌Dab(Σ).

5.4.2 The Complete Stage of an Adaptive Proof

In the following it will be very useful to speak about the extension of a given (possibly
empty) dynamic proof P from β in which A is derived on the condition Σ whenever
β 
LLL A ∨̌Dab(Σ). We dub a corresponding stage g(P) a complete stage.

This stage exists and can be constructed along the following lines. Note that each
well-formed formula has a Gödel-number. From this it follows immediately that
CnLLL

(
β

)
is enumerable, e.g. CnLLL

(
β

) = {B1, B2, . . .}. Moreover, due to the
compactness of LLL, for each Bi ∈ CnLLL

(
β

)
there are some A1, . . . , Am such

that A1, . . . , Am 
LLL Bi . Hence, for each Bi ∈ CnLLL
(
β

)
we have the following

proof Pi :

li
1 A1 PREM ∅
...
...

...
...

li
m Am PREM ∅

li
m+1 Bi li

1, . . . , li
m; RU ∅

In case Bi is of the form A ∨̌Dab(Σ) we add a further line.

li
m+2 A li

m+1;RC Σ

Where P consists of lines l0
1 , l0

2 , . . ., we now combine the proofs P,P1,P2, . . .

to a proof P ∪ that extends P to the stage g(P) by means of listing the respective lines
as follows (and by renumbering the lines accordingly):

l0
1 , l0

2 , l1
1 , l1

2 , l0
3 , l1

3 , l2
1 , l2

2 , l2
3 , l0

4 , . . . , l2
4 , l3

1 , . . . , l3
4 , l0

5 , . . . , l3
5 , l4

1 , . . . , l4
5 , . . .
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Obviously, at the complete stage all formulas that can be derived on the empty
condition from β are derived. Hence, all the LLL-consequences of β are derived on
the empty condition. The following fact holds for the extension of a dynamic proof
P to the stage g(P):

Fact 5.4.1. Where β ∧W+ and A ∈W+, we have:

(i) A is derived on the condition ∅ at stage g(P) iff β 
LLL A
(ii) Υg(P)(β ) = Υ(β ) = Υs(β ) for any successor stage s of g(P)

(iii) Υ sat
g(P)

(β ) = Υ sat(β ) = Υ sat
s (β ) for any successor stage s of g(P)

(iv) πg(P)(β ) = π(β ) = πs(β ) for any successor stage s of g(P)

(v) π sat
g(P)

(β ) = π sat(β ) = π sat
s (β ) for any successor stage s of g(P)

Note that the marking at a stage is determined by π sat
s (β ) and Λ. Hence, the

following fact follows immediately by (v).

Fact 5.4.2. If a line l is marked at stage g(P), then it is marked in every further
extension. Hence, the markings remain stable from stage g(P) on.

5.4.3 A Representational Theorem For ∗ALΩ
and Related Results

The following theorem shows that ALΩ is at least as strong as its lower limit logic:

Theorem 5.4.2. Where β ∧W+: β 
LLL A implies β 
ALΩ
A.

Proof. By the compactness of LLL there is a finite set {A1, . . . , An} ∧ β such that
{A1, . . . , An} 
LLL A. Hence we can construct a proof as follows: we introduce A1
on line 1 be PREM, A2 on line 2 by PREM, …, An on line n by PREM. Finally we
derive A on line n + 1 on the justification 1, . . . , n; RU and the condition ∅. This
line stays unmarked in any extension of the proof. �

We call β LLL-trivial iff MLLL
(
β

) = ∅.

Lemma 5.4.1. Where β ∧W+: β is LLL-trivial iff π sat(β ) = Λ(π sat(β )) = ∅.

Proof. Λ(π sat(β )) = ∅ iff [by Fact 5.3.1] π sat(β ) = ∅ iff [by Lemma 5.3.2]
Abβ

LLL = ∅ iff β is LLL-trivial. �

In case the premise set is LLL-trivial, LLL and ALΩ define the same consequence
relation:

Theorem 5.4.3. If β ∧W+ is LLL-trivial: β 
LLL A iff β 
ALΩ
A iff A ∈W+.

Proof. Let β be LLL-trivial. Hence, by Lemma 5.4.1, Λ(π sat(β )) = ∅. “⇒”: this
is Theorem 5.4.2. “⇐”: Let β 
ALΩ

A. Hence there is a finite proof P such that A
is finally derived on a line l on a condition Σ at the corresponding stage s. We extend
the proof to the complete stage g(P). Note that Λ(π sat(β )) = Λ

(
π sat

g(P)
(β )

) =
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Λ
(
π sat

s∪
(
β

)) = ∅ for all further stages s∪. Hence, l is unmarked iff Σ = ∅. Since, A
was finally derived at stage s, Σ = ∅. Hence, A is LLL-derivable. �

Lemma 5.4.2. Where β ∧W+ and β 
ALΩ
A:

(i) if β is LLL-non-trivial then A is derivable on a line l of a finite ALΩ proof from
β on a condition Σ such that Σ ∩ ϕ = ∅ for a ϕ ∈ Λ(π sat(β )).

(ii) For every ϕ ∈ Λ(π sat(β )) there is a finite Σ ∧ Ω \ ϕ for which β 
LLL
A ∨̌Dab(Σ).

Proof. Suppose β 
ALΩ
A. Hence, there is a finite ALΩ-proof P from β such that

(1) A is derived in this proof on an unmarked line l with a condition Σ, and (2) every
extension of the proof in which l is marked can be further extended such that l is
unmarked again. We now extend our proof P to the complete stage g(P). Note that
Λ

(
π sat(β )

) = Λ
(
π sat

g(P)
(β )

) = Λ
(
π sat

s∪ (β )
)

for every later stage s∪.
Ad (i): Since β is LLL-non-trivial and by Lemma 5.4.1, Λ(π sat(β )) ⊕= ∅.

Assume there is no ϕ ∈ Λ(π sat(β )) such that Σ ∩ ϕ = ∅. By Definition 5.3.4, line
l is marked at stage g(P) and hence at every later stage s∪—a contradiction to (2).
Ad (ii): Assume there is a ϕ ∈ Λ(π sat(β )) for which there is no Σ ∧ Ω such that
β 
LLL A ∨̌Dab(Σ) and Σ∩ϕ = ∅. By Definition 5.3.4.ii line l is marked at stage
g(P) and hence at every later stage s∪. This contradicts (2). �

Lemma 5.4.3. Where β ∧ W or β = CnL+LLL

(
β

)
: If β 
LLL A ∨̌Dab(Σ) and

Σ∩ϕ = ∅ for a ϕ ∈ Λ(π sat(β )), then there is a finite ALΩ-proof from β in which
A is derived on the condition Σ at an unmarked line.

Proof. Case β ∧ W: Suppose the antecedent holds. Due to the compactness of
LLL, there is a β ∪ = {A1, . . . , An} ∧ β for which β ∪ 
LLL A ∨̌Dab(Σ). We
construct a proof as follows: At line 1 we introduce A1 by the PREM rule, …,
at line n we introduce An by the PREM rule, and at line n+1 we derive A on
the condition Σ by RC from lines 1, . . . , n. Let s be the corresponding stage of
the proof. Since β ∪ ∧ β ∧ W , all Dab-formulas B1, . . . , Bm that have been
derived at stage s are members of Ω since no formulas with occurrences of ∨̌
have can be introduced by PREM. Thus, Υ sat

s (β ) = {{B1}, . . . , {Bn}} and thus,
min⊂(π sat

s (β )) = {{B1, . . . , Bn}
} = min↓⊂(π sat

s (β )). Hence, by T1 and T3,
Λ

(
π sat

s (β )
) = Λ

(
min↓⊂(π sat

s (β ))
) = {{B1, . . . , Bn}

}
.22 Note that β 
LLL Bi

for all these abnormalities and hence {B1, . . . , Bm} ∧ ψ for all ψ ∈ π(β ) and
hence also for all ψ ∈ π sat(β ). Since ϕ ∈ Λ(π sat(β )) and since by T1 Λ is inclu-
sive, also ϕ ∈ π sat(β ). Hence, {B1, . . . , Bn} ∧ ϕ. By the supposition Σ ∩ ϕ = ∅
and hence {B1, . . . , Bn} ∩Σ = ∅. Hence, line n+1 is unmarked.

The case β = CnL+LLL

(
β

)
is similar. Since β 
LLL A ∨̌Dab(Σ) also β 
LLL

¬̌ A ⊃̌Dab (Σ). Since β is a LLL-fixed point, also ¬̌A ⊃̌Dab (Σ) ∈ β . Hence,
we can introduce ¬̌A⊃̌Dab (Σ) at line 1 of a proof by PREM and derive A on the

22 Note that T1–T3 are indeed applicable since π sat
s (β ), min↓⊂(πs(β )) ∈ Π as we show in Lemma

C.2.1 in the Appendix.
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condition Σ by RC on line 2. Obviously this line is not marked at this stage since no
Dab-formulas have been derived yet. �

Lemma 5.4.4. Where β ∧ W or β = CnL+LLL

(
β

)
: If for every ϕ ∈ Λ(π sat(β ))

there is a finite Σϕ ∧ Ω \ ϕ such that β 
LLL A ∨̌Dab(Σϕ), then β 
ALΩ
A.

Proof. The case that β is LLL-trivial is covered by Theorem 5.4.3. Let hence β

be LLL-non-trivial and thus by Lemma 5.4.1, Λ(π sat(β )) ⊕= ∅.
Suppose the antecedent is true. By Lemma 5.4.3, for every Σϕ there is a finite

ALΩ-proof from β in which A is derived on the condition Σϕ at an unmarked line l.
Given any such proof, suppose the proof is extended to a stage s in which l is marked.
Call this proof P . We extend the proof further to the stage g(P). Note that for all
ϕ ∈ Λ(π sat(β )), A has been derived on the condition Σϕ at this stage. By Definition
5.3.4, line l is unmarked at stage g(P). �

The following representational theorem characterizes the consequence relation
of ALΩ entirely by means of the consequence relation of LLL and the members of
Λ(π sat(β )). By Lemma 5.4.2 and 5.4.4 we immediately get:

Theorem 5.4.4. Where β ∧ W or β = CnL+LLL

(
β

)
: β 
ALΩ

A iff for every
ϕ ∈ Λ(π sat(β )) there is a Σ ∧ Ω \ ϕ for which β 
LLL A ∨̌Dab(Σ).

Due to the compactness of LLL, Theorem 5.4.4 can be alternatively expressed
by:

Theorem 5.4.5. Where β ∧ W or β = CnL+LLL

(
β

)
: β 
ALΩ

A iff for every

ϕ ∈ Λ(π sat(β )), β ↓ (Ω \ ϕ)¬̌ 
LLL A.

Proof. In case β is LLL-trivial the theorem holds by Theorem 5.4.3. Let thus β

be LLL-non-trivial. Hence, by Lemma 5.4.1, Λ(π sat(β )) ⊕= ∅.
Suppose for every ϕ ∈ Λ(π sat(β )), β ↓(Ω \ϕ)¬̌ 
LLL A. Let ϕ ∈ Λ(π sat(β )).

Hence, β ↓(Ω\ϕ)¬̌ 
LLL A. By the compactness of LLL, there is a finite Σ ∧ Ω\ϕ
such that β ↓Σ¬̌ 
LLL A. By the deduction theorem, β 
LLL A ∨̌Dab(Σ). Hence,
since ϕ was arbitrary in Λ(π sat(β )) by Lemma 5.4.4, β 
ALΩ

A.
Let β 
ALΩ

A. By Lemma 5.4.2.ii, for every ϕ ∈ Λ(π sat(β )) there is a Σ ∧
Ω \ ϕ for which β 
LLL A ∨̌Dab(Σ). Assume for some ϕ ∈ Λ(π sat(β )), β ↓
(Ω \ ϕ)¬̌ �LLL A. By the monotonicity of LLL, there is no Σ ∧ Ω \ ϕ such that
β ↓Σ¬̌ 
LLL A. Hence, there is no Σ ∧ Ω \ϕ such that β 
LLL A ∨̌Dab(Σ),—a
contradiction. �

5.4.4 Soundness and Completeness

By our two representational results, Theorem 5.4.1 and 5.4.5 (or Corollary 5.4.1 and
Theorem 5.4.4), and our Lemma 5.3.2 we immediately get soundness and complete-
ness (see Fig. 5.2):
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Corollary 5.4.2 (Soundness and Completeness of ALΩ). Where β ∧W or β =
CnL+LLL

(
β

)
: β 
ALΩ

A iff β �ALΩ
A.

Soundness even holds for premise sets with “checked connectives”:

Corollary 5.4.3. Where β ∧W+: β 
ALΩ
A implies β �ALΩ

A.

This follows immediately with Lemma 5.3.2, 5.4.2 and Corollary 5.4.1.

5.5 Other Meta-Theoretic Properties of ALΩ

In this section we will establish some crucial meta-theoretic properties of ALΩ. Due
to the generality of our format, some properties only hold for a subclass of ALs.
We will establish criteria for the threshold function Λ in order to distinguish some
interesting classes.

5.5.1 Cumulativity and Equivalent Premise Sets

The following two criteria play an important role in what follows23:

CT where X, Y ∈ Π : Λ(X) ∧ Y ∧ X implies Λ(X) ∧ Λ(Y )

CM where X, Y ∈ Π : Λ(X) ∧ Y ∧ X implies Λ(X) ⇒ Λ(Y )

The following theorem shows that CT and CM are sufficient to guarantee cautious
transitivity resp. cautious monotonicity. Table 5.2 offers an overview for these and
other criteria on Λ which are introduced in the following sections.

Theorem 5.5.1. Where β, β ∪ ∧W+ and β �ALΩ
B for all B ∈ β ∪:

(i) if Λ satisfies CM then: β �ALΩ
A implies β ↓ β ∪ �ALΩ

A.
(ii) if Λ satisfies CT then: β ↓ β ∪ �ALΩ

A implies β �ALΩ
A.

Proof. Since β �ALΩ
B for all B ∈ β ∪, MALΩ

(
β

) ∧MLLL
(
β ↓ β ∪

)
and hence

(1) Λ
(
Abβ

LLL

) ∧ Abβ ↓β ∪
LLL . Since by the monotonicity of LLL, MLLL

(
β ↓ β ∪

) ∧
MLLL

(
β

)
also (2) Abβ ↓β ∪

LLL ∧ Abβ
LLL.

Table 5.2 Overview of the
criteria for Λ and their effects

CT � Cautious transitivity (Sect. 5.5.1)
CM � Cautious monotonicity (Sect. 5.5.1)
RA∈ � Strong reassurance w.r.t. ∈ (Sect. 5.5.3)
SIMP � Simplification of proof theory (Sect. 5.6)

23 In [12] these criteria were first proposed for preferential semantics.
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Ad (i): By CM, (1) and (2): Λ
(
Abβ

LLL

) ⇒ Λ
(

Abβ ↓β ∪
LLL

)
. Thus, MALΩ

(
β

) ⇒
MALΩ

(
β ↓ β ∪

)
. The rest follows immediately.

Ad (ii): By CT, (1) and (2): Λ
(
Abβ

LLL

) ∧ Λ
(

Abβ↓β ∪
LLL

)
. Thus, MALΩ

(
β

) ∧
MALΩ

(
β ↓ β ∪

)
. The rest follows immediately. �

By Corollary 5.4.2 we immediately get:

Corollary 5.5.1. Where β, β ∪ ∧W and β 
ALΩ
B for all B ∈ β ∪:

(i) if Λ satisfies CM then: β 
ALΩ
A implies β ↓ β ∪ 
ALΩ

A.
(ii) if Λ satisfies CT then: β ↓ β ∪ 
ALΩ

A implies β 
ALΩ
A.

From this we immediately get:

Corollary 5.5.2. Where β ∧ W and Λ satisfies CT and CM: CnALΩ

(
β

) =
CnALΩ

(
CnLALΩ

(
β

))
.

To see why this holds note that CnLAL

(
β

) ∧ CnALΩ

(
β

)
and hence, by CT, CM and

Corollary 5.5.1, CnALΩ

(
β

) = CnALΩ

(
CnLALΩ

(
β

) ↓ β
)

By the reflexivity of ALΩ,

CnALΩ

(
β

) = CnALΩ

(
CnLALΩ

(
β

))
.

Recall that cumulativity was crucial for various of the criteria for equivalent
premise sets in Chap. 4. Hence, applying these results to our insights in this section
we get:

Corollary 5.5.3. Where β, β ∪ ∧W: If Λ satisfies CM and CT then

(i) if β ∧ CnALΩ

(
β ∪

)
and β ∪ ∧ CnALΩ

(
β

)
then CnALΩ

(
β

) = CnALΩ

(
β ∪

)

(ii) where L is a reflexive logic weaker than ALΩ then CnL
(
β

) = CnL
(
β ∪

)
implies

CnALΩ

(
β

) = CnALΩ

(
β ∪

)

(iii) where L is monotonic and reflexive and ALΩ is closed under L (i.e., for all Φ ,
CnL

(
CnALΩ

(
Φ

)) = CnALΩ

(
Φ

)
), then CnL

(
β

) = CnL
(
β ∪

)
implies CnALΩ

(
β ↓

Φ
) = CnALΩ

(
β ∪ ↓Φ

)

(iv) where L is a reflexive and monotonic logic weaker than ALΩ then CnL
(
β

) =
CnL

(
β ∪

)
implies CnALΩ

(
β ↓Φ

) = CnALΩ

(
β ∪ ↓Φ

)

Neither cautious monotonicity nor cautious transitivity hold for ALΩ in general.
We give two examples, starting with a counter-example for cautious transitivity.

Example 5.5.1. The logic ALΩ2
c

from Sect. 5.2.7 does not satisfy cautious tran-
sitivity. Recall that in our example there were three types of models M with

Ab(M) ∈ min⊂
(
Ab

β 2
c

L◦→
)
, namely:

Model M |Ab(M)| M |=
M1 4 p,¬q
M2 5 p, q
M3 10 ¬p

http://dx.doi.org/10.1007/978-3-319-00792-2_4
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As demonstrated, selected are models with the abnormal part of M1 or with the
abnormal part of M2. Thus, β 2

c 
ALΩ2
c

p and β 2
c ⊕
ALΩ2

c
¬q.

However, let us add p to our premise set: β ∪ = β 2
c ↓{p}. Now we have two types

of models M with Ab(M) ∈ min⊂
(
Abβ ∪

L◦→
)
, namely models that have the abnormal

part of M1, and models that have the abnormal part of M2. Hence, now we select
models M for which: |Ab(M)| ≺ 4+5

2 . Models with the abnormal part of M2 are
thus not selected anymore, which leaves only models with the abnormal part of M1.
As a consequence, β ∪ 
ALΩ2

c
¬q. Hence, cautious transitivity does not hold.

Let us continue with a counter-example to cautious monotonicity.

Example 5.5.2. Let

Λ(X) =
{

min∈c (X) if |min⊂(X)| ≥ ω
min⊂(X) else

It is easy to see that Λ is a threshold function.24 Suppose we have the following
premise set (where p, q, r, si are propositional atoms (i ∈ N)):

β = {¬p ∨ (¬q ∨ ¬r) ∨ (¬si ∨ ¬s j ) | i < j} ↓ {→p, →q, →r, →si | i ∈ N}

We have three types of ⊂-minimally abnormal models (where i ∈ N and !A =df
→A ∨ ¬A):

Model M Ab(M) |Ab(M)| M |=
Mp {!p} 1 ¬p, q, r, s j where j ∈ N

Mq,r {!q, !r} 2 p,¬q,¬r, s j where j ∈ N

Mi {!s j | j ⊕= i} ω p, q, r, si ,¬s j where j ⊕= i

Since
∣∣min⊂

(
Abβ

L→
)∣∣ ≥ ω, only models with the abnormal part of Mp are selected

since they are ∈c-minimally abnormal. Hence, β 
ALΩ
¬p and thus also β 
ALΩ¬p ∨ (¬q ∨ ¬r).

Now let β ∪ = β ↓ {¬p ∨ (¬q ∨ ¬r)}. Then the ⊂-minimally abnormal models
have the abnormal part of either Mp or Mq,r . Hence,

∣∣min⊂(Abβ
L→)

∣∣ < ω. But that

means that also models with the abnormal part of Mq,r are now selected: Λ
(
Abβ ∪

L→
) =

{Ab(Mp), Ab(Mq,r )}. As a consequence, β ∪ ⊕
ALΩ
¬p. This shows that cautious

monotonicity does not hold.

24 In Theorem 5.5.4 and Fact 5.8.2 we show that 〈X,⊂⊆ and 〈X,∈c⊆ are smooth for all X ∈ Π

which ensures T3. In view of the definition of ∈c, min∈c (X) ∧ min⊂(X) which ensures T1. T2 is
evident.
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5.5.2 Some Classes of Cumulative Λ-Based ALs

In this section we will introducesome general criteria for the threshold function Λ

which are sufficient for cumulativity.
The following notions will be useful in what follows:

Definition 5.5.1. Where X ∧ Y : X is a ∈-dense in Y iff for all y ∈ Y either y ∈ X
or there is a x ∈ X for which x ∈ y.

Definition 5.5.2. We say that Λ is ∈-density invariant (on Π ) iff for all X, Y ∈ Π

where X is a ∈-dense subset of Y , Λ(X) = Λ(Y ) ∩ X .

DI∈ Λ is ∈-density invariant (on Π )
RA∈ for all X ∈ Π : Λ(X) is ∈-dense in X

DI∈ expresses a certain invariance of our threshold: if ϕ is below our threshold in
the context of X then it is also below the threshold in any Y in which X is ∈-dense,
and vice versa. One may think of X as a filtered Y : elements are filtered out in such a
way that it is guaranteed that for every element ψ that is filtered out a∈-better one is
preserved. Every element that is not filtered out and still below our threshold, should
already be below our threshold in Y and vice versa, every element that is below our
threshold in Y should still be below our threshold after a filtering process in which
it is not filtered out.

RA∈ expresses that for every element that is above our threshold there should be
a∈-better one that is below the threshold. One motivation is as follows. If an element
is not deemed to be good enough than this should be justified by means of pointing
out a (∈-) better element that is good enough.

The following fact shows that these two criteria are sufficient to guarantee cumula-
tivity (Corollary 5.5.1) and the criteria for equivalent premise sets (Corollary 5.5.3).

Fact 5.5.1. (DI∈ and RA∈) imply CT and CM.

Proof. Let Λ(X) ∧ Y ∧ X where X, Y ∈ Π . Since by RA∈ Λ(X) is∈-dense in X
and Λ(X) ∧ Y , also Y is∈-dense in X . Hence, by DI∈, Λ(Y ) = Λ(X)∩Y = Λ(X).

�

We state also some weaker criteria in terms of min⊂.

C1 for all X, Y ∈ Π : min⊂(X) = min⊂(Y ) implies Λ(X) ∩ Y = Λ(Y ) ∩ X

C1 is a similar invariance criterion as DI∈. Indeed, in the Appendix we show that
C1 is equivalent to DI⊂ and that DI∈ implies DI⊂ and hence also C1. The following
criteria imply C1 (with the exception of C4)25:

C2 for all X ∈ Π : Λ(X) = f (min⊂(X)) for some function f
C3 for all X, Y ∈ Π : min⊂(X) = min⊂(Y ) implies Λ(X) = Λ(Y )

C4 for all X ∈ Π : Λ(X) ⇒ min⊂(X)

25 See Fact C.3.1.
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C4 RA

&
CT

CM

C2 C3 C1 DI SIMP

= ⊂

= ⊂

Fig. 5.3 Overview: criteria for Λ

These criteria express that Λ is determined by min⊂ to some degree. In the case
of C2 this is specified by a function f , while in the case of C3 we have a weaker
dependency: the sameness of the ⊂-minimal elements of two sets guarantees that
they have the same threshold. C4 expresses that the threshold is always above or
equal to min⊂.

Figure 5.3 gives an overview for the different criteria. They offer easy ways to
check whether a given AL has certain properties. Take for instance the two thresh-
old functions associated with the standard format: min⊂ and min↓⊂. Both obviously
satisfy C4 and C2 and hence cumulativity follows immediately.

5.5.3 Reassurance

Reassurance means that whenever β is LLL-non-trivial, β is also ALΩ-non-trivial.
In semantic terms: if MLLL

(
β

) ⊕= ∅ then MALΩ

(
β

) ⊕= ∅.

Theorem 5.5.2 (Reassurance). If β is LLL-non-trivial then β is ALΩ-non-
trivial.

Proof. Suppose β is LLL-non-trivial. Hence, Abβ
LLL ⊕= ∅. By T3, Λ(Abβ

LLL) ⊕= ∅.
Hence, β is ALΩ-non-trivial. �

The following lemma and its corollary are crucial to show that reassurance holds
for ALs in the standard format (see also Sect. 5.8.2), or more general for ALs with
threshold functions that satisfy C4.26

Lemma 5.5.1. Let X be an enumerable set, Υ be a set of finite subsets of X, and
CS denote the function that returns the choice sets of a set of sets. Where ϕ = {Ai |
i ∈ I } ∈ CS(Υ), let ϕ̂ =⋂

i∈I ϕi where ϕ0 = ϕ and (where i+1 ∈ I )

ϕi+1 =
{

ϕi if there is a Σ ∈ Υ such that ϕi ∩Σ = {Ai+1}
ϕi \ {Ai+1} else

we have: ϕ̂ ∈ min⊂(CS(Υ)).

26 This and the following lemma are proven in Appendix A.
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Hence, we immediately get:

Theorem 5.5.3. Where β ∧W+: 〈π(β ),⊂⊆ is smooth.

Since also

Lemma 5.5.2. Where β ∧W+ is LLL-non-trivial: π sat(β ) is ⊂-dense in π(β ).

we get:

Theorem 5.5.4. Where β ∧W+: 〈π sat(β ),⊂⊆ is smooth.

This immediately shows that min⊂ and any function Λ that satisfies C4 (e.g.
min↓⊂) also satisfies reassurance and T3. Since min⊂ and min↓⊂ trivially satisfy T1
and T2, this also suffices to show that min⊂ and min↓⊂ are threshold functions.

There is also a stronger form of reassurance. ALΩ satisfies strong reassurance
relative to a partial order∈ iff, for each LLL-model M of β that is not selected there
is a selected LLL-model M ∪ of β that has a less abnormal part with respect to ∈:
Ab(M ∪) ∈ Ab(M). Obviously,

Fact 5.5.2. If Λ satisfies RA∈ then ALΩ satisfies strong reassurance (relative to∈).

For instance, Ψ∈ and Ψ[∈1,...,∈n ] (where ∈ = ∈1) satisfy27 RA∈ and hence AL�∈
and AL� [∈1,...,∈n] satisfy strong reassurance with respect to ∈.

Also, since C4 implies RA⊂,28 C4 is by Fact 5.5.2 sufficient to guarantee strong
reassurance (relative to ⊂). For instance, min⊂ and min↓⊂ evidently satisfy C4 and
hence ALs in the standard format satisfy strong reassurance.

5.5.4 The Upper Limit Logic and the Maximality
of the Lower Limit Logic

Recall that a premise set was called normal iff no Dab-formula is LLL-derivable
from it. The upper limit logic ULL of an AL with abnormalities Ω was defined by
β 
ULL A iff β ↓ Ω¬̌ 
LLL A. Semantically ULL is characterized by the set of
models MULL

(
β

) =df {M ∈MLLL
(
β

) | Ab(M) = ∅}.
It is easy to see that ALΩ has exactly the same consequences as the upper limit

logic in case β is normal.

Theorem 5.5.5. Where β ∧W+ is normal: β 
ALΩ
A iff β 
ULL A.

Proof. In case β is normal, ∅ ∈ Abβ
LLL and hence by Fact 5.3.1, Λ

(
Abβ

LLL

) = {∅}.
Hence, MALΩ

(
β

) =MULL
(
β

)
. �

Moreover, ULL is always an upper bound for ALΩ:

27 This is shown in the Appendix: Fact C.3.4 and Fact C.3.11.
28 See Fact C.3.1 in Appendix C.
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Theorem 5.5.6. Where β ∧W+: CnALΩ

(
β

) ∧ CnULL
(
β

)

Proof. In case β is not normal, CnULL
(
β

)
is trivial and hence the statement trivially

holds. The case in which β is normal has been dealt with in Theorem 5.5.5. �

Hence, ALΩ strengthens LLL and approximates ULL in the limit of normal
premise sets. Altogether we have the following:

Corollary 5.5.4. Where β ∧W+:

β ∧ CnLLL
(
β

) ∧ CnALmin↓⊂

(
β

) ∧ CnALΩ

(
β

) ∧ CnULL
(
β

)
.

In Theorem 5.4.2 we have shown that CnLLL
(
β

) ∧ CnALmin↓⊂

(
β

)
, in view of

T1 it directly follows that CnALmin↓⊂

(
β

) ∧ CnALΩ

(
β

)
, and finally CnALΩ

(
β

) ∧
CnULL

(
β

)
follows by Theorem 5.5.6.

In Chap. 4 we have seen that the lower limit logic LLL is the maximal monotonic
logic that is weaker or equal an adaptive logic based on it (see Theorem 4.6.1). The
situation is analogous for ALΩ:

Theorem 5.5.7. Where L is a monotonic logic for which CnL+L

(
Φ

) ∧ CnL+ALΩ

(
Φ

)

for all Φ ∧W+: CnL+L

(
β

) ∧ CnL+LLL

(
β

)
for all β ∧W+.

Proof. The proof is nearly identical to the proof of Theorem 4.6.1. The only dif-
ference (besides the obvious replacing of occurrence of ALm by ALΩ) concerns the
paragraph after (4.8.) It is replaced by:

Note first that due to (4.3) and (4.5), β ∪ ⊕= ∅ (otherwise there is obviously no way to finally
derive B in an ALΩ-proof from β ). Thus, ∅ /∈ Φ(β ↓ β ∪). Note that by (4.6) β ↓ β ∪ is
LLL-non-trivial. Hence, Abβ↓β ∪

LLL ⊕= ∅ and thus by Lemma 5.3.2, π sat(β ↓ β ∪) ⊕= ∅. By
Lemma 5.4.2, there is a ϕ ∈ Λ(π sat(β ↓ β ∪)) and a Σϕ ∧ Ω \ ϕ such that β ↓ β ∪ 
LLL
B ∨̌Dab(Σϕ).

The rest of the proof proceeds analogously. �

Similar as in Chap. 4 we obtain by Fact 4.3.1 a further corollary.

Corollary 5.5.5. If CnL+ALΩ

(
β

)
is closed under a monotonic logic L, then CnL+L

(
β

)

∧ CnL+LLL

(
β

)
for all β ∧W+.

5.5.5 Further Properties

For a more thorough study of further meta-theoretic properties and their relationship
to the threshold function Λ we refer the reader to Sten Lindström’s [12]. Lindström’s
study concerns only selection semantics. Due to our soundness and completeness

http://dx.doi.org/10.1007/978-3-319-00792-2_4
http://dx.doi.org/10.1007/978-3-319-00792-2_4
http://dx.doi.org/10.1007/978-3-319-00792-2_4
http://dx.doi.org/10.1007/978-3-319-00792-2_4
http://dx.doi.org/10.1007/978-3-319-00792-2_4
http://dx.doi.org/10.1007/978-3-319-00792-2_4
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Table 5.3 Overview of other meta-theoretic properties

Distributivity CnALΩ

(
β

) ∩ CnALΩ

(
β ∪

)
Λ(X ↓ Y )

∧ =
CnALΩ

(
CnLLL

(
β

) ∩ CnLLL
(
β ∪

))
Λ(X) ↓Λ(Y )

Chernoff CnALΩ

(
β ↓ β ∪

)
Λ(X) ∩ Y

∧ =
CnLLL

(
CnALΩ

(
β

) ↓ β ∪
)

Λ(X ∩ Y )

Path CnALΩ

(
CnALΩ

(
β

) ∩ CnALΩ

(
β ∪

))
Λ(Λ(X) ↓Λ(Y ))

independence = =
CnALΩ

(
CnLLL

(
β

) ∩ CnLLL
(
β ∪

))
Λ(X ↓ Y )

Sen If CnALΩ

(
β

) ↓ CnALΩ

(
β ∪

)
Λ(X) ∩Λ(Y ) ⊕= ∅

is LLL-non-trivial, then: implies
CnALΩ

(
β

) ↓ CnALΩ

(
β ∪

) ∧ Λ(X ∩ Y ) ∧
CnALΩ

(
β ↓ β ∪

)
Λ(X) ∩Λ(Y )

Arrow If CnALΩ

(
β

) ↓ β ∪ is
LLL-non-trivial, then Λ(X) ∩ Y ⊕= ∅

CnALΩ

(
β ↓ β ∪

) = implies
CnLLL

(
CnALΩ

(
β

) ↓ β ∪
)

Λ(X ∩ Y ) = Λ(X) ∩ Y

result they apply to the semantic and syntactic consequence relations corresponding
to ALΩ as well. Table 5.3 provides a selective overview.

5.6 Simplifying the Proof-Theory for a Subclass
of Λ-Based ALs

In the analysis of Example 5.3.1 we have seen that in general it is necessary to
apply the threshold function Λ to only the satisfiable choice sets and hence to let
Λβ

s = Λ(π sat
s (β )) in the marking definition 5.3.4. We have seen in Sect. 2.4.2

that in the standard format we can use the more simple Λβ
s = min⊂(πs(β )) for

minimal abnormality (instead of Λβ
s = min⊂(π sat

s (β ))). This raises the question
for a general criterion which ensures that we can use Λβ

s = Λ(πs(β )) instead of
Λβ

s = Λ(π sat
s (β )). Such a criterion is:

SIMP Λ(π(β )) \π⇐(β ) = Λ(π sat(β ))

Let 
AL
◦
Ω be defined as 
ALΩ

just that instead of Λβ
s = Λ(π sat

s (β )) we use
Λβ

s = Λ(πs(β )) in the marking definition 5.3.4. We have29:

Theorem 5.6.1. Where β ∧ W: If Λ satisfies SIMP, then β 
ALΩ
A iff 
AL

◦
Ω A

iff β �ALΩ
A.

29 This is proven in Appendix C.4.

http://dx.doi.org/10.1007/978-3-319-00792-2_2
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This shows that in case Λ satisfies SIMP we can slightly simplify the proof
theory while avoiding problem P2 (see Sect. 5.3.2). Note though that problem P1
is not avoided: still it may be the case that some choice sets are selected that are
not satisfiable and in that sense redundant. Only, given SIMP these choice sets do
not disturb the adequacy of the syntactic consequence relation with respect to the
semantic consequence relation (as it was the case in Example 5.3.1).

In the Appendix we show that.30

Fact 5.6.1. DI∈ implies SIMP.

For instance, the threshold functions min⊂, Ψ∈, Ψ[∈1,...,∈n ], and min∈ (in case
smoothness is guaranteed) satisfy DI∈ (where ∈ = ∈n in the case of Ψ[∈1,...,∈n ]).
Hence, these functions also satisfy SIMP.

5.7 Normal Selections: The Logic ALn
Ω

Recall the normal selections strategy from Sect. 2.8.
Syntactically the idea was that a conditional inference is not to be retracted in case

it is defensible. We have called an argument on line l with a condition Σ defensible
in case the assumption holds with respect to some sufficiently normal interpretation
of the Dab-formulas derived from the premises at the corresponding stage. The
sufficiently normal interpretations at stage s are given by Λβ

s = Λ(π sat
s (β )). This

gives rise to the following marking definition:

Definition 5.7.1 (Marking for Normal Selections). A line l with condition Σ is
marked at stage s iff for all ϕ ∈ Λβ

s , ϕ ∩Σ ⊕= ∅.

The syntactic consequence relation is defined as usual in terms of finally derivable
formulas (where the definition of final derivability is exactly the same as for ALΩ,
see Definition 5.3.7).

Definition 5.7.2. β 
ALn
Ω

A iff A is finally derivable in a ALn
Ω-proof from β .

We have an analogous representation theorem as in Sect. 2.8:

Theorem 5.7.1. Where β ∧ W or β = CnL+LLL

(
β

)
: β 
ALn

Ω
A iff there is a

ϕ ∈ Λ(π sat(β )) and a Σ ∧ Ω \ ϕ such that β 
LLL A ∨̌Dab(Σ).

Proof. “⇒”: Let β 
ALn
Ω

A. Hence, there is a finite stage of a proof P at which
A is finally derived at some line l on a condition Σ. We claim that there is a ϕ ∈
Λ(π sat(β )) such that Σ ∩ ϕ = ∅. To see that we extend the proof to the complete
stage g(P). We have π sat(β ) = π sat

g(P)
(β ) = π sat

s (β ) for any successor stage s.

Were there no ϕ ∈ Λ(π sat(β )) such that Σ ∩ ϕ = ∅ then line l would be marked

30 See Theorem C.4.3.

http://dx.doi.org/10.1007/978-3-319-00792-2_2
http://dx.doi.org/10.1007/978-3-319-00792-2_2
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and would remain marked from this stage on,—a contradiction to the fact that A was
finally derived at line l.

“⇐”: Suppose there is a ϕ ∈ Λ(π sat(β )) for which ϕ ∩ Σ = ∅ and β 
LLL
A ∨̌Dab(Σ). By Lemma 5.4.3, there is a finite proof such that A is derived on
some line l on the condition Σ and line l is unmarked. Suppose line l is marked
in an extension of the proof P . We extend the proof further to the complete stage
g(P). Since ϕ ∩ Σ = ∅ and ϕ ∈ Λ

(
π sat

(
β

)) = Λ
(
π sat

g(P)

(
β

))
line l is unmarked

again. �

Semantically the idea was as follows: A is a semantic consequence of β if we can
find a sufficiently normal LLL-model M of β such that in all LLL-models M ∪ of β

in which the same (or even more) normality assumptions hold as in M , A is true. In
signs:

Definition 5.7.3. β �ALn
Ω

A iff there is a M ∈ MALΩ

(
β

)
such that for all M ∪ ∈

MLLL
(
β

)
for which Ab(M ∪) ∧ Ab(M), M ∪ |= A.

In cases in which Λ
(
Abβ

LLL

) ∧ min⊂
(
Abβ

LLL

)
, this comes down to identifying an

∼-equivalence class of selected models where M ∼ M ∪ iff Ab(M) = Ab(M ∪). In
that case it is immediately clear that our definition is equivalent to: β �ALn

Ω
A iff

there is an M ∈MALΩ

(
β

)
/∼ such that for all M ∈M, M |= A.31 This is the way

we characterized the normal selections strategy in Sect. 2.8.
We have the following representation theorem that is analogous to the syntactic

version:

Theorem 5.7.2. Where β ∧ W+: β �ALn
Ω

A iff there is a ϕ ∈ Λ(π sat(β )) such

that β ↓ (Ω \ ϕ)¬̌ �LLL A.

Proof. β �ALn
Ω

A, iff, there is a M ∈MALΩ

(
β

)
such that for all M ∪ ∈MLLL

(
β

)

for which Ab(M) ⇒ Ab(M ∪), M |= A, iff, there is a ϕ ∈ Λ(Abβ
LLL) such that for

all M ∈ MLLL
(
β

)
for which Ab(M) ∧ ϕ, M |= A, iff, there is a ϕ ∈ Λ(Abβ

LLL)

such that β ↓ (Ω \ ϕ)¬̌ �LLL A, iff [by Lemma 5.3.2], there is a ϕ ∈ Λ(π sat(β ))

such that β ↓ (Ω \ ϕ)¬̌ �LLL A. �

The corollary follows immediately by the compactness of LLL.

Corollary 5.7.1. Where β ∧W+: β �ALn
Ω

A iff there is a ϕ ∈ Λ(π sat(β )) and a

Σ ∧ Ω \ ϕ such that β 
LLL A ∨̌Dab(Σ).

Hence, we immediately get soundness and completeness:

Corollary 5.7.2. Where β ∧W or β = CnL+LLL

(
β

)
: β 
ALn

Ω
A iff β �ALn

Ω
A.

31 Or equivalently: β �ALn
Ω

A iff there is an M ∈ MALΩ

(
β

)
such that for all M ∪ ∈ MLLL

(
β

)

for which Ab(M) = Ab(M ∪), M ∪ |= A.

http://dx.doi.org/10.1007/978-3-319-00792-2_2


5.7 Normal Selections: The Logic ALn
Ω 145

In the Appendix we show that min⊂(π sat(β )) = min⊂(π(β )) (where β is
LLL-non-trivial, see Corollary C.1.1).32 This immediately implies that ALn

min⊂ has
indeed the same consequence relation as ALn from Sect. 2.8.

5.8 Wrapping Things Up: Some Concrete Classes
of Λ-Based ALs

In this chapter we wrap things up by relating our meta-theoretic insights to—among
others—the examples presented in Sect. 5.2.

5.8.1 The Threshold Functions min≺, Ψ≺, and Ψ[≺1,...,≺n]

The traditional perspective associated with preference semantics in the vein of
Shoham is to select ∈-minimal models (of a given premise set) with respect to a
partial order ∈.

One of the most serious problems behind this approach is the possibility of non-
smoothness. A model may be such that there is no ∈-minimal model below. In the
worst case there are no∈-minimal models and we loose T3 (see Sect. 5.2.6) in which
case min∈ is not a selection function according to our definition. Sometimes we may
encounter asymmetric situations where for some models there are minimal models
below them, while for other models there are none. Only selecting the minimal models
in such cases can lead to rather counter-intuitive results. Suppose for instance that (a)
in all minimal models C holds, and (b) in each infinitely descending chain of models
there is a M such that in all models below M , C doesn’t hold. This is illustrated in
the following example.

Example 5.8.1. We use the logic AL→min∈co
from Sect. 5.2.6. Let the premise set be

β = {!1q1 ∨ (!i pi∨! j p j ) | i, j ∈ N, i < j
}↓

{!i qi ⊃ !i+1qi+1 | i ∈ N
} ↓ {!1q1 ⊃ r,¬̌!1q1 ⊃ ¬r

}

where !i p =df →i p ∨ ¬p. Figure 5.4 represents an excerpt of the order on the
(abnormal parts of the) L◦→-models of β by means of ∈co where Ab(Mq) = {!i qi |
i ∈ N}, Ab(M p

i ) = {! j p j | j ⊕= i} and Ab(M p
q ) = Ab(Mq) ↓ {!i pi | i ∈ N}.

It is not difficult to see that all models M in min∈co

(
Abβ

L◦→
)

have the same abnormal

part as Mq . Note that for all these models M |= r (due to the premise !1q1 ⊃ r ).

32 Note that min⊂(π(β )) is just another way of writing Φ(β ).

http://dx.doi.org/10.1007/978-3-319-00792-2_2
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Fig. 5.4 Illustration with an
infinite chain of models

Ab( M p
q )

Ab( M p
1 ) |= ¬r

Ab( M q) |= r Ab( M p
2 ) |= ¬r

Ab( M p
3 ) |= ¬r

... |= ¬r

Similarly, as indicated in the figure, M p
i |= ¬r for all i ≥ 1. Altogether, since all

selected models in min∈co

(
Abβ

L◦→
)

validate r we have β �AL→min∈co
r .

We have presented a way to avoid such problems. The idea is to use Ψ∈ (or a more
refined Ψ[∈1,...,∈n ]) instead of min∈.33 Since min∈(π(β )) = Ψ∈(π(β )) whenever
〈π(β ),∈⊆ is smooth, these logics are equivalent for all “non-problematic” β . Hence,
whenever RA∈ holds, the logics ALmin∈ and ALΨ∈ lead to an identical consequence
relation. However, for ALΨ∈ (and for ALΨ[∈1,...,∈n]) the problems pointed out above
for non-smooth cases are avoided. Moreover, we get a rich meta-theory:

• Since Ψ∈ and Ψ[∈1,...,∈n ] satisfy CT and CM,34 by Corollary 5.5.1 we get cumu-
lativity, by Corollary 5.5.2 we get the fixed point property, and by Corollary 5.5.3
the same criteria for equivalent premise sets are satisfied as in the standard format
(see Chap. 4).

• Since Ψ∈ and Ψ[∈1,...,∈n ] satisfy RA∈, by Fact 5.5.2 we get strong reassurance.
• Finally, Ψ∈ and Ψ[∈1,...,∈n ] satisfy SIMP and hence we can use the simplified

proof theory from Sect. 5.6.35

5.8.2 The Standard Format

ALs with the minimal abnormality strategy are representable in our format by means
of the threshold function Λ = min⊂.36 Since by Theorem 5.5.4 〈π sat(β ), min⊂⊆
is smooth, we get the full meta-theory discussed in Sect. 5.8.1: cumulativity, fixed
point, strong reassurance, etc.

33 In the Appendix we show that Ψ∈ and Ψ[∈1,...,∈n ] are threshold functions (see Fact C.3.8).
34 See Appendix: Ψ∈ satisfies both DI∈ (Fact C.3.3) and RA∈ (Fact C.3.4), and hence by Fact 5.5.1
also CT and CM. Ψ[∈1,...,∈n ] satisfies CT and CM by Fact C.3.12.
35 By Fact C.3.3, Ψ∈ satisfies DI∈ and hence by Fact 5.6.1 also SIMP. By Fact C.3.13, Ψ[∈1,...,∈n ]
satisfies DI∈n and hence by Fact 5.6.1 also SIMP.
36 T1 and T2 are trivially satisfied, for T3 see the discussion in Sect. 5.5.3.

http://dx.doi.org/10.1007/978-3-319-00792-2_4
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In order to represent the reliability strategy we let37

Λ(X) = min↓⊂(X) =
{
ϕ ∈ X | ϕ ∧

⋃
min⊂(X)

}

Note first that min↓⊂ is a threshold function (see footnote 36)
We get the following properties:

• Since min↓⊂ trivially satisfies C4 we get38 RA⊂ and hence by Fact 5.5.2 we have
strong reassurance.

• Since we obviously have C2, we get DI⊂. Hence, since we also have RA⊂, by
Fact 5.5.1 we get CT and CM. Thus, by Corollary 5.5.1 we get cumulativity, by
Corollary 5.5.2 we get the fixed point property, and by Corollary 5.5.3 we get the
criteria for equivalent premise sets.

• By DI⊂ and by Fact 5.6.3 we have SIMP. Thus, we can apply the simplified proof
theory of Sect. 5.6.

5.8.3 (Co)-Lexicographic ALs

Lexicographic ALs as introduced in [4] are represented in our generic format by
Λlex where ∈lex is defined as in Definition 5.2.1 on the basis of a structured set of
abnormalities Ω =⋃

I Ωi . Note that

Fact 5.8.1. ⊂ ∧∈lex

In the appendix of [4] we have shown that 〈π(β ),∈lex⊆ is smooth. Since π sat(β )

is ∈lex-dense in π(β ),39 this means that also 〈π sat(β ),∈lex⊆ is smooth. Hence, we
get all the properties discussed in Sect. 5.8.1 such as cumulativity, fixed point and
strong reassurance, etc.

Our more generic perspective in this chapter gives rise to other lexicographic
ALs which do not fall within the scope of the format presented in [4]. One may
for instance define ∈∪lex ∧ Θ(Ω) × Θ(Ω) as follows on the basis of partial orders
∈i ∧ Θ(Ωi )× Θ(Ωi ):

Definition 5.8.1. Where ϕ,ψ ∧ Ω are sets of abnormalities, ϕ is preferable to ψ,
in signs ϕ ∈∪lex ψ, iff, there is an n ∈ N for which

(a) ϕ ∩Ωi = ψ ∩Ωi for all i < n and
(b) ϕ ∩Ωn ∈n ψ ∩Ωn .

37 The fact that this logic indeed characterizes the reliability strategy is proven in Theorem C.2.1
in the Appendix.
38 For this and other relationships among the criteria see Fig. 5.3. For the proofs see Fact C.3.1 in
the Appendix.
39 See Lemma C.1.1 in the Appendix.
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If we are able to guarantee the smoothness of 〈π(β ),∈∪lex⊆ we can define Λ∪lex as
before by min∈∪lex

. Otherwise we define Λ∪lex by Ψ∈∪lex
. As pointed out in Sect. 5.8.1,

we get the full meta-theory (soundness, completeness, cumulativity, fixed point,
strong reassurance, etc.) for the resulting logic and can apply the simplified proof
theory from Sect. 5.6.

In Sect. 5.2.5 we have seen another variant: instead of a lexicographic order we
employed a colexicographic order. Unlike ∈lex, colexicographic orders sometimes
give rise to non-smoothness. Hence, we used the selection function Ψ∈co or the refined
variant Ψ[∈co,⊂]. As discussed in Sect. 5.8.1, we get the full meta-theory for these
logics (soundness, completeness, cumulativity, fixed point, and strong reassurance,
etc.) and can apply the simplified proof theory from Sect. 5.6.

5.8.4 More on Quantitative Variants

5.8.4.1 Counting Strategies

In Sect. 5.2.3 we have introduced the order ∈c. Note that

Fact 5.8.2. Where β ∧W+: 〈π sat(β ),∈c⊆ is smooth.

Proof. 1. case: π sat(β ) only contains infinite sets. In this case min∈c (π
sat(β )) =

min⊂(π sat(β )) (recall that ⊂ ∧ ∈c). Hence we get smoothness by Theorem 5.5.4.
2. case: π sat(β ) contains finite sets. Let n = min<({|ϕ| | ϕ ∈ π sat(β )}). Note
that min∈c (π

sat(β )) = {ϕ ∈ π sat(β ) | |ϕ| = n} ⊕= ∅. Let ψ ∈ π sat(β ) \
min∈c (π

sat(β )) and ϕ ∈ min∈c (π
sat(β )). Hence, |ϕ| < |ψ| and thus ϕ ∈c ψ. �

Hence, as pointed out in Sect. 5.8.1 we have the full meta-theory (soundness,
completeness, cumulativity, fixed point, strong reassurance, etc.) for ALs based on
the threshold function min∈c and we can apply the simplified proof theory from
Sect. 5.6.

Of course, one may for instance use more refined partial orders for quantitative
comparisons, such as

Definition 5.8.2. ϕ ∈∪c ψ iff |ϕ \ ψ| < |ψ \ ϕ|.
It is easy to see that ∈c ∧ ∈∪c. Note that ∈∪c allows also to compare infinite sets

that are not comparable by ∈c. As an easy example apply the two partial orders to
Θ(N). Let ϕ = E ↓ {1, . . . , 10} and ψ = E ↓ {21, . . . , 40} where E is the set of
even numbers in N. Note that ϕ ∈∪c ψ since |ϕ \ ψ| = |{1, 3, . . . , 9}| = 5 < 10 =
|{21, 23, . . . , 39}| = |ψ \ ϕ|. However, ϕ and ψ are not comparable with respect
to ∈c.
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5.8.4.2 More Involved Quantitative Approaches

We have already seen more involved examples that make use of a selection of models
based on quantitative considerations in Sect. 5.2.7. Note that both Λ1

c and Λ2
c are

threshold functions. Hence, by Corollary 5.4.2 we get soundness and completeness
for both logics. Moreover, it can be easily shown that Λ1

c satisfies both CT and CM
and hence we get cumulativity, while cumulative transitivity does not hold for the
logic based on Λ2

c (see Example 5.5.1). We leave the proofs and examples to the
interested reader and focus instead on yet another interesting quantitative approach
that can be characterized in terms of a logic ALΩ.

The driving idea behind prioritized ALs can be characterized by an iterative
procedure:

• First we pick out models of the premises in which as less abnormalities in Ω1 are
validated as possible.

• Second, we refine the given selection from step 1 in such a way that models are
selected that validate as less abnormalities in Ω2 as possible.

• etc.

In some applications this procedure may be suboptimal. Take for instance default
logics that are able to express the specificity order among defaults. Although in most
cases it is more intuitive to prefer interpretations of a given set of defaults that violate
more general defaults over interpretations that violate more specific defaults. For
instance, given we know of Tweety that it is a penguin, and the following defaults,
“Bird(X), then fly(X).”, “Penguin(X), then not-fly(X)” we are usually inclined to
choose an interpretation that violates the former default and we hence conclude that
Tweety does not fly.

However, consider a case where we have the choice between violating one more
specific default and, say, 20 slightly less specific defaults. In such cases, as has
been pointed out by Goldszmidt, Morris and Pearl [20], it may be better to choose
an interpretation that violates the more specific default. There are many weighing
functions which can be employed for this. I will demonstrate the point with a very
simple one.

Suppose that Ω = Ω1 ↓ . . . ↓Ωn where Ωi = {→i A ∨ ¬A | A is →-free}. Let

μ(Σ) =
{⎩n

i=1
|Σ∩Ωi |

i if Σ is finite
μ(Σ) = ∗ else

Define Σ ∈μ Σ∪ iff μ(Σ) < μ(Σ∪) or Σ ⊂ Σ∪. We denote →i A ∨ ¬A by !i A. In
a similar way as in Fact 5.8.2 we can show that 〈π sat(β ),∈μ⊆ is smooth for all
β ∧ W+. Hence, we can define the logic ALmin∈μ and get the full meta-theory
(soundness, completeness, cumulativity, fixed point, strong reassurance) and can
apply the simplified proof theory from Sect. 5.6, as pointed out in Sect. 5.8.1.

Example 5.8.2. Suppose we have the situation that an expert of highest expertise
states p. However, this is in conflict with the statements q, r , s, t and u which are
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stated by other experts of slightly less expertise. Hence, suppose our premise set is

β = {→1 p, →3q, →2r, →3s, →3t, →3u,¬p∨¬q,¬p∨¬r,¬p∨¬s,¬p∨¬t,¬p∨¬u}

Hence, we have

Υ(β ) = {{!1 p, !3q}, {!1 p, !2r}, {!1 p, !3s}, {!1 p, !3t}, {!1 p, !3u}}

which gives to the following ⊂-minimal choice sets in π sat(β ): ϕ = {!1 p} and
ψ = {!3q, !2r, !3s, !3t, !3u}. We have:

μ(ϕ) = 1

1
= 1 < μ(ψ) = 0+ 1

2
+ 4

3
= 1

5

6

and hence, ϕ <μ ψ. This means that with the AL characterized by the triple
〈L◦→,Ω, min∈μ⊆, q, r, s and t are finally derivable while we don’t get p. Hence,
the expert opinions of the group of less expertise opposing our number one expert is
prioritized by the logic.

In contrast, in a prioritized AL such as the one characterized by 〈L◦→, Ω , min∈lex ⊆
the situation would be inverse: ψ ∈lex ϕ and hence we get the consequence p while
q, r, s and u are not finally derivable. The reason is that the order ∈lex proceeds
strictly stepwise: since ψ ∩Ω1 ⊂ ϕ ∩Ω1 the order ∈lex doesn’t take into account
any differences between the two choice sets concerning abnormalities of higher
levels. The situation is different for ∈μ since here the fact that on the higher levels 2
and 3 ϕ is less normal than ψ is the reason that ϕ ∈μ ψ despite that fact that ψ fares
better with respect to Ω1.

Of course, in many cases both approaches will agree. Suppose for instance that our
number one expert who states p is only opposed by one expert of lesser expertise who
states ¬p. Hence, let β ∪ = {→1 p, →2¬p}. Now we get π sat(β ∪) ⇒ {{!1 p}, {!2¬p}}.
We have μ({!1 p}) = 1 > μ({!2¬p}) = 1/2 and hence {!2¬p} ∈μ {!1 p}. We also
have {!2¬p} ∈lex {!1 p}. Hence, in both logics, p is a consequence.

5.9 Conclusion

In this chapter it was demonstrated that the standard format for ALs can be general-
ized in a natural way. Semantically speaking, in the standard format the models are
compared with respect to the set of abnormalities they verify and set inclusion. The
generalization allows for comparisons with respect to any partial order ∈. Also, we
allow for a rich class of threshold functions Λ that select the models of the AL out of
the models of the lower limit logic. We have shown that a huge class of ALs based
on Λ has a strong meta-theory (soundness, completeness, cumulativity, fixed point,
(strong) reassurance).
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The generalization is natural since the main mechanisms of the standard format
remain intact:

• As in the standard format we still have a selection semantics in which models are
selected by virtue of their abnormal parts

• The dynamic proof format is the same as in the standard format. Formulas are
derived conditionally where the conditions are sets of abnormalities. Derivations
are executed by means of the familiar three generic rules PREM, RU, and RC.
The marking is structurally analogous to the marking of the minimal abnormality
strategy. The only significant difference is that instead of using the ⊂-minimal
choice sets with respect to the derived disjunctions of abnormalities, we use choice
sets selected by the threshold function Λ.

We have given some special attention to the problem of non-smoothness. In the
standard format where the abnormal parts of models are compared with respect to⊂
this problem does not appear: e.g., in the semantics the abnormal parts of the lower
limit logic models of some premise set β are always guaranteed to be smooth with
respect to ⊂. However, as soon as we introduce other partial orders ∈ instead of
⊂, this may not hold anymore. We have offered a way to deal with such situations:
instead of using the threshold function min∈ we introduced the threshold function
Ψ∈. In this way the problems connected to non-smoothness are avoided while for
premise sets in which smoothness is guaranteed we get equivalent consequence sets
(compared to the logic based on min∈).

Finally, one may argue that generalizations as the one offered in this chapter are
useless formal overkills, it is shooting at flies with cannon-balls. For our defense let
us point out the following.

First, we have hoped to convinced the reader that there are many applications that
are intuitively represented with orders different from ⊂. One class of applications
concerns situations in which we have a structured set of abnormalities (e.g., they may
be prioritized as in the lexicographic and the colexicographic format). The recently
developed format of lexicographic ALs gave already rise to various useful formal
systems. Similar developments can be expected for the many other possibilities that
are offered within the new format. Another class of applications concerns quantitative
approaches, that is logics in which we compare the abnormal parts of models by
means of quantitative considerations (rather than qualitative ones such as in the
standard format).

Once the reader agrees that there are application contexts in which a departure from
the standard format is useful (or even needed), it is not difficult to further convince
her of the usefulness of having a generic format with a rich associated meta-theory.
On the one hand this reduces labor: once a logic is devised in this format there is no
need anymore to check and prove many of the interesting meta-theoretic properties.
We get them for free based on the research offered in this chapter. On the other hand,
generic formats are fruitful for unification. Logics formulated in the same format
can be easier compared, techniques used for one application context can be easier
transferred to other application contexts, etc.
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Finally, some may argue or at least conjecture that all ALs can be translated into
the standard format. However, even if that were true, it is very likely that many of
the translations will turn out to be technically very cumbersome and/or artificial on
an intuitive level. Since one of the goals of ALs is to explicate reasoning processes,
this seems counter-productive to this goal. In many cases switching to different
orderings of the models (e.g., ones based on quantitative considerations) and to
different threshold functions may offer a more natural and intuitive explication of
reasoning processes than the best possible translations into the standard format can
offer.

In this sense we hope that the research offered in this chapter proves useful and
fruitful for one of the main goals behind the adaptive logic program: the intuitive
and natural explication of defeasible reasoning processes.

Acknowledgments The results presented in this chapter are the product of joint research with
Frederik Van De Putte.
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Part II
Default Reasoning



Chapter 6
Adaptively Applying Modus Ponens
in Conditional Logics of Normality

This chapter presents an adaptive logic enhancement of conditional logics of
normality that allows for defeasible applications of Modus Ponens to conditionals.
In addition to the possibilities these logics already offer in terms of reasoning about
conditionals, this way they are enriched by the ability to perform default inferencing.
The idea is to apply Modus Ponens defeasibly to a conditional A � B and a fact
A on the assumption that it is “safe” to do so concerning the factual and conditional
knowledge at hand. It is, for instance, not safe if the given information describes
exceptional circumstances: although birds usually fly, penguins are exceptional to
this rule. The two adaptive standard strategies are shown to correspond to different
intuitions, a skeptical and a credulous reasoning type, which manifest themselves in
the handling of so-called floating conclusions.

6.1 Introduction

In this section I will first provide a brief introduction to reasoning on the basis of
normality and then give an overview of this chapter.

6.1.1 Some Background

Since the early eighties, default reasoning, i.e., reasoning on the basis of what is nor-
mally or typically the case, has drawn much attention from philosophical logicians
as well as scholars working in Artificial Intelligence. This is not surprising concern-
ing the prominent role which reasoning on the basis of notions such as normality

A previous version of this chapter was published in the Journal of Applied Non-Classical Logic
under the same title [1].

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 157
DOI: 10.1007/978-3-319-00792-2_6, © Springer International Publishing Switzerland 2014
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and typicality has. It clearly occupies a central place from everyday common sense
reasoning to expert reasoning in many domains. Thus, logicians are urged to develop
formal models which accurately explicate these reasoning forms.

In recent years the traditional formalisms of default reasoning such as presented
in the landmark articles on default logic [2], on circumscription [3], and on autoepis-
temic logic [4] have been criticized and alternative conditional approaches have been
developed.

In pioneering works on logics of conditionals the main interest was to model
conditionals in everyday language which have the form “if …then”. Most of the
research in this domain has been in the vein of the following influential conditional
logics: Stalnaker [5] and Lewis [6] who offer an ontic interpretation of the conditional,
Adams [7] who introduces probabilities in the discussion, and Gärdenfors’ belief
revision principles which are more concerned with acceptability than probability
and truth [8].

There has been, especially since the late eighties, an increasing interest in mak-
ing use of techniques and properties of conditional logics within the field of non-
monotonic reasoning, such as employed in default reasoning or reasoning with
respect to prima facie obligations. The focus of this chapter is on conditional logics
of normality that have been inspired by pioneering works such as [9–11]. There, a
statement of the form A � B is read as “From A normally/typically follows B” or
“If A is the case then normally/typically also B is the case”. We will call “A � B”
a conditional, and a sequence of conditionals, written A1 � A2 � . . . � An as an
abbreviation for (A1 � A2) ∪ (A2 � A3) ∪ . . . ∪ (An−1 � An), an argument.

Conditional logics are attractive candidates for dealing with default reasoning for
various reasons: First, the conditional � does not have unwanted properties such
as Strengthening the Antecedent, from A � B infer (A ∪ C) � B, Transitiv-
ity, from A � B and B � C infer A � C , and Contraposition, from A � B
infer ¬B � ¬A. That the validity of any of these properties leads to undesired
results in the context of reasoning on the basis of normality is well-known. Take,
for instance, Strengthening the Antecedent: although birds usually fly, b � f , pen-
guins do not, (b ∪ p) � ¬ f . Thus (b ∪ p) � f should not be derived. To find
similar counterexamples for the other properties is left to the reader (see e.g., [9],
p. 92.). Another advantage is the naturalness and simplicity of the representation
of default knowledge by conditionals A � B compared to the cumbersome repre-
sentation by the classical approaches mentioned above. The latter use rules such as
A ∪ Ω(B) ⊃ B where Ω(B) expresses for instance that we do not believe ¬B in
the case of autoepistemic logic, or that B can consistently be assumed in the case
of default logic. Furthermore, certain disadvantages of the classical approach can
be avoided in the framework of conditional logics. Boutilier for instance argues that
certain paradoxes of material implication are inherited by the classical approaches
due to the way default knowledge is represented in them (see [9], pp. 89–90).

Starting from the pioneering works such as [9–12] there has been vigorous
research activity on conditional logics of normality. To mention a few: they have
been applied to belief revision in [13, 14], strengthenings have been proposed
for instance to give a more sophisticated account of Strengthening the Antecedent
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(see [15, 16]), a labeled natural deduction system has been introduced in [17], and
various authors have investigated tableaux methods and sequent calculi for condi-
tional logics (see e.g. [18, 19]). Furthermore, the influential work in [11] is greatly
generalized in [20] by their plausible nonmonotonic consequence relations, and in
[21] by their plausibility measures.

There is a remarkable agreement concerning fundamental properties for default
reasoning in the various formal models. These properties have been dubbed conser-
vative core by Pearl and Geffner [22] and are also commonly known as the KLM-
properties (see [11]). Some of the most interesting and important problems in this
field are, on the one hand, related to a proper treatment of irrelevant information (see
[12]) and, on the other hand, to a proper treatment of specificity.

6.1.2 Contribution and Structure of this Chapter

This chapter tackles another important problem related to conditional logics of nor-
mality: while they are able to derive from conditional knowledge bases, i.e., sets of
conditionals, other conditionals, their treatment of factual knowledge is mostly rather
rudimentary. This concerns most importantly their treatment of Modus Ponens (MP),
i.e., to derive B from A and A � B. We will also speak about detaching B from
A � B in case A is valid. Usually we do not only have a conditional knowledge
base at hand but also factual information F . In order to make use of the knowledge
base, it is in our primary interest to derive, given F , what normally should be the
case. It goes without saying that for the practical usage of a conditional knowledge
base this kind of application to factual information is essential and that the proper
treatment of MP for conditionals is a central key to its modeling.

It is clear that full MP should not be applied unrestrictedly to conditional asser-
tions: although birds usually fly, b � f , we should not deduce that a given bird flies
if we also know that it is a penguin, since penguins usually do not fly, p � ¬ f .
However, if we do not know anything about it than the fact that it is a bird, MP should
be applied to b � f and b. Furthermore, it would be useful if this application is of
a defeasible kind, since later we might learn that the bird in question is after all a
penguin or a kiwi.

In this chapter a simple generic method is presented to enrich a given conditional
logic of normality L by a defeasible MP. We consider L to consist at least of the core
properties (see Sect. 6.2). We will refer to L as the base logic. As hinted above, there
are several circumstances when we do not want to apply MP: cases of specificity
such as the example with the penguin, or cases in which conditionals conflict, such
as the well-known Nixon-Diamond. The central idea presented in this chapter is
to apply MP conditionally, namely on the condition that it is safe to apply it. This
idea will informally be motivated and outlined in Sect. 6.3. Formally, the conditional
applications of MP are realized by ALs, namely DLpm and DLpr (see Definition
6.4.1). The idea of ALs is to interpret a premise set “as normally as possible” with
respect to a certain standard of normality. They allow for some rules to be applied
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conditionally. In our case, as demonstrated in Sect. 6.4, MP is going to be applied
as much as possible, i.e., as long as no cases of overriding via specificity or similar
conflicts take place concerning the conditionals to which MP is going to be applied.
That is to say, we are going to apply MP to A � B and A on the condition that
the other factual information at hand does not describe exceptional circumstances
with respect to A. As a consequence, detachment from b � f and b is for instance
blocked if p is the case.

It will be demonstrated that choosing different adaptive strategies serves different
intuitions: one corresponding to a more skeptical and the other one corresponding to
a more credulous type of reasoning. This difference manifests itself in the handling
of so-called floating conclusions.1

I will spend some time in demonstrating the modus operandi of the proposed
logics and thereby their strengths by having a look at various benchmark examples.
In Sect. 6.5 I highlight some advantages of the adaptive logic approach, compare
it to other approaches, and discuss some other related issues. The semantics are
investigated in Appendix D.

6.2 Conditional Logics, Their Core Properties
and Related Work

Conditional logics are often presented in terms of extending classical propositional
logic with a conditional operator �.2 Our language is defined by the (∪,⊆,⊃,¬,≡)-
closure of the set of propositional variables and conditionals of the form A � B,
where A and B are classical propositional formulas. Hence, to keep things simple we
do not consider here nested occurrences of � and focus on flat conditional logics.
We refer to A as the antecedent and to B as the conclusion of the conditional. We
write W for the set of all classical propositional formulas (i.e., formulas without
occurrences of �). We abbreviate (A � B) ∪ (B � A) by A ∼ B and ¬(A � B)

by A ∈� B. Furthermore, we require that a conditional logic L satisfies the following
core properties, where CL is classical propositional logic (see [11])3:

1 A floating conclusion is a proposition that can be reached by two conflicting and equally strong
arguments (see our discussion in Sect. 2.5).
2 In some conditional logics of normality � is not primitive. For instance in [9] it is defined by
making use of Kripkean modal logic. There the core properties are shown to be equivalent to an
extension of the modal logic S4. See [21] for a comparative study of various semantic systems for the
core properties such as the preferential structures of [11], the β-semantics of [23], the possibilistic
structures of [24] and Λ-rankings of [25, 26].
3 We will use the name convention that is associated with conditional logics of normality (see [27,
28]) and not the one associated with nonmonotonic consequence relations which is used e.g. in
[11].

http://dx.doi.org/10.1007/978-3-319-00792-2_2


6.2 Conditional Logics, Their Core Properties and Related Work 161

If ∧CL A ≡ B, then ∧ (A � C) ≡ (B � C) (RCEA)

If ∧CL B ⊃ C, then ∧ (A � B) ⊃ (A � C) (RCM)

∧ A � A (ID)

∧ (
(A � B) ∪ ((A ∪ B) � C)

) ⊃ (A � C) (RT)

∧ (
(A � B) ∪ (A � C)

) ⊃ ((A ∪ B) � C) (ASC)

∧ (
(A � C) ∪ (B � C)

) ⊃ ((A ⊆ B) � C) (CA)

The logic defined by these rules and axioms is P. Note that for instance the following
properties are valid in P:4

∧ (
(A � B) ∪ (A � C)

) ⊃ (A � (B ∪ C)) (CC)

∧ ((A ∪ B) � C) ⊃ (A � (B ⊃ C)) (CW)

∧ (
(A ∼ B) ∪ (B � C)

) ⊃ (A � C) (EQ)

∧CL A ⊃ B, then ∧ A � B (CI)

We consider these properties to be valid for all the conditional logics of normality
in the remainder. Adding the following Rational Monotonicity principle to the core
properties yields the logic R (see [15])5:

∧ (
(A � C) ∪ (A ∈� ¬B)

) ⊃ ((A ∪ B) � C) (RM)

The core properties are not without criticism. On the one hand, it has been pointed
out that certain principles of P resp. R are not always perfectly intuitive. For instance,
Neufeld [29] has argued against (CA), Poole [30] against (CC), and Stalnaker [31]
and Giordano et al. [32, 33] against (RM).6

On the other hand, the core properties have been criticized for being too weak.
Many nonmonotonic strengthenings have been developed in order to overcome cer-
tain weaknesses.

Rational closure (see e.g. [15, 36, 37] and Chap. 7) for instance strengthens R by
means of a Shoham-like preferential semantics [38, 39]. The idea is to assign natural
numbers, i.e. ranks, to formulas. The rank indicates how exceptional a formula is. If
for instance (A ⊆¬A) � A then A has the lowest rank, 0. In our penguin example p
is of a higher rank than b since after all (p ⊆b) � ¬b. Each formula is ranked as low

4 The proofs are fairly standard and can be found e.g. in [11].
5 I adopt the names P and R for these logics from [19]. Although these are the same names as
used for the systems in the pioneering KLM paper [11], the reader may be warned: the approach in
terms of conditional logics differs from the KLM perspective which deals with rules of inference
rather than with axioms. Also, strictly speaking, Rational Monotonicity as defined in [11] is a rule
of inference whereas (RM) as defined above is an axiomatic counterpart to it.
6 Some weakening or variants of Rational Monotonicity have been proposed: e.g. ∧ ((A � B) ∪
((A ∪ C) ∈� ¬B)) ⊃ ((A ∪ C) � B) (IRR) in the context of Description Logic by Giordano
et al. [34] or in the context of conditional deontic logics ∧ ((A � B) ∪ (A ∈� ¬(B ∪ C))) ⊃
((A ∪ C) � B) (WRM) by Goble in [35].

http://dx.doi.org/10.1007/978-3-319-00792-2_7
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as possible. A default A � B is in the rational closure of a set of defaults D iff the
rank of A is strictly less than the rank of A ∪ ¬B. In this way a significant problem
of P and R is tackled, namely its suboptimal treatment of irrelevant information.
For instance, the proposition “Tweety is a green bird.”, g, will get the same rank as
“Tweety is a bird.”, b. Hence, the Rational Closure of {b � f, g � b} contains
the default (b ∪ g) � f , that green birds fly. The latter is neither entailed by P nor
by R. Rational Closure has been shown to be equivalent to Pearl’s system Z (see
[16, 36]) which employs a probabilistic interpretation of defaults. These and similar
approaches have been criticized for inheriting some of the weaknesses of the core
properties (see e.g. [22]) resp. of rational monotonicity (see [33]) and for introducing
new problems (see Example 6.4.7).

Giordano et al. introduce another preferential semantics based on P and a tableaux
calculus for it. Their system Pmin selects models that minimize non-typical worlds
with respect to a given set of formulas. Adding to our example the conditional p � a,
that penguins live in the arctic, Pmin concludes nonmonotonically that there are no
penguins that do not live in the arctic: (p ∪ ¬a) � ⊃. This is not a consequence
of Z resp. Rational Closure. However, Pmin’s treatment of irrelevant information is
suboptimal: unlike Z and Rational Closure Pmin does not lead to the consequence
(b ∪ g) � f .

Lehmann’s Lexicographic Closure (see [40, 41]) improves on some of the short-
comings of Rational Closure by strengthening it further.7 On the one hand, it intro-
duces a more rigorous approach to strengthening the antecedent and hence avoids
the so-called Drowning Problem (we discuss this in more detail in Sect. 6.5). On
the other hand, it makes sure that in cases of contradictory defaults quantitatively as
many defaults as possible are satisfied. The policy is to strictly prefer more specific
defaults over less specific ones. The quantitative aspect makes the Lexicographic
Closure dependent on the way defaults are presented.

The maximum entropy approach of [42] is in the probabilistic tradition of the
1-entailment of system Z. It follows a similar intuition as Lexicographic Closure
concerning conflicting defaults. One difference is, however, that in some cases the
violation of a more specific default may lead to a higher overall entropy than the
violation of some less specific defaults and may be thus preferred.

In his critical discussion of the core properties Delgrande [43] points out that
there are two interpretations of conditionals A � B. Many approaches, such as the
ones listed above, treat defaults as weak material implications that have a defeasible
character, e.g. in specificity cases. He identifies several counter-intuitive instances
where the core properties obtain contrapositives of defaults. This, so he argues, is a
result of treating default conditionals in terms of material implications rather than in
terms of inference rules. In the spirit of the latter perspective he develops a system
based on a weakened core logic (in comparison to P). He demonstrates that his
rule-based system has a lot of nice properties in terms of treating irrelevant informa-

7 More precisely, Lexicographic Closure strengthens Rational Closure for all defaults with
antecedents that have a finite rank: if A has finite rank and A � B is in the rational closure
of D, then A � B is in the lexicographic closure of D.
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tion and conflicting defaults. Another rule-based approach is e.g. presented by Dung
and Son in [44].

The take on defaults in terms of weak material implications is very obvious in
approaches that make abnormality assumptions explicit (see McCarthy’s Circum-
scription [3], Geffner and Pearl’s Conditional Entailment [22], as well as the one
presented in this chapter). Here a default A � B is presented by A ∪ Δ ⊃ B (or by
both in the case of Conditional Entailment) where Δ expresses normality conditions
that have to hold for this default. The interesting aspect of conditional entailment is
that it extracts a priority order on the normality assumptions automatically from the
knowledge base. The idea is to interpret a given knowledge base such that the nor-
mality assumptions of the defaults are validated “as much as possible”. The priority
order takes care that in case of conflicts more specific defaults are preferred where
possible.

We conclude this section by noting that conditional logics have been successfully
applied to various fields. For instance their relevance for belief revision has been
investigated in [13, 14, 45]. The description logic ALC has been enhanced with a
“typicality” operator in [34]. Similar to the logics that are going to be presented in the
present chapter this system allows for inferences on the basis of factual information.
However, in its current form the logic faces the problem of irrelevance pointed out
above: given the information that typical birds fly the logic does not allow to infer
that typical green birds fly. In order to deal with such problems the authors propose
to integrate “a standard mechanism to reason about defaults” (p. 14) which is left for
future research. Furthermore, recently conditional logics have been applied to access
control and security in [46]. There the authors extend Garg and Abadi’s access control
logic ICL from [47] with intuitionistic conditional logic.

6.3 Modus Ponens in Conditional Logics of Normality

In this section I will informally motivate and outline the main idea behind the mod-
eling of a defeasible MP in this chapter.

A naïve way to apply MP would be to use the unrestricted version

∧ (
(A � B) ∪ A

) ⊃ B (MP�)

However, this would lead to logical explosion whenever we are confronted with con-
flicting defaults, for instance in cases of specificity. Informally speaking, specificity
occurs if a more specific argument overrides a more general one. One way to for-
malize this is as follows: if A is the case and A � B � C , as well as A � ¬C ,
then B � C is overridden by A � ¬C , or in terms of arguments, A � B � C is
overridden by A � ¬C . The reader finds an illustration in Fig. 6.1a. The illustrations
in the following figures have to be read in a similar way as inheritance networks
(see [48]): nodes are in our case propositions, “A → B” indicates A � B, “A··> B”
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Fig. 6.1 Specificity and the
Nixon Diamond
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indicates A � ¬B, “A => B” indicates A ∧CL B, and “A ==> B” indicates
A ∧CL ¬B.

Example 6.3.1. A standard example illustrating a case of specificity is the following
(see Fig. 6.1b):

• Birds normally fly.—b � f
• Penguins are (normally) birds.—p � b
• Penguins normally do not fly.—p � ¬ f

The information represented by p is less specific or normal than the information
represented by b. Thus, obviously the more specific p � ¬ f overrides b � f . This
has an important consequence: Given p ∪ b or p we do not want to apply MP to b
and b � f . However, if we only have b as factual knowledge it would be justified
on the basis of default reasoning to apply MP to b and b � f .

Since, as argued above, full MP is highly problematic in the context of default
inferencing, we will in the remainder make use of a restricted MP. The idea is to
restrict MP to “safe” antecedents. In order to express this, we introduce a unary oper-
ator • into our language which is applicable to propositional formulas. •A expresses
that the given factual information is atypical or exceptional for A. Hence, in case •A,
MP should not be applied to conditionals with antecedent A. The following restricted
MP realizes this idea.

∧ (
(A � B) ∪ A ∪ ¬•A

) ⊃ B (rMP)

Due to the restriction, MP is only applied in case we are able to derive that the
factual information is not exceptional with respect to A, i.e., ¬•A. The following is
an immediate consequence of (rMP) and the core properties:

∧ (
A ∪ B ∪ (B � ¬A)

) ⊃ •B (Spe1)

The antecedent of (Spe1) expresses that the default B � ¬A is factually overridden
since A is the case. If the factual information describes atypical circumstances for A
and A � B, then we also have atypical circumstances for B, since after all A is at
least as specific as B. This motivates the following axiom8:

8 The name (Inh) indicates that the property of being exceptional is inherited along �-paths.
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∧ (•A ∪ (A � B)
) ⊃ •B (Inh)

Fact 6.3.1. (rMP), (Inh) and the core properties entail

∧ (
A ∪ (A � B � C) ∪ (A � ¬C)

) ⊃ •B (Spe2)

The antecedent of (Spe2) describes a case of specificity: the default B � C is
overridden by the more specific default A � ¬C and the fact A. Let us take a look
at a proof fragment for our example:

1 p � b PREM
2 b � f PREM
3 p � ¬ f PREM
4 p PREM
5 b PREM
6 •b 1,2,3,4; Spe2

Due to the fact that •b is derived at line 6, our restriction prevents MP of being
applicable to b and b � f in order to derive f . Indeed, due to p we are in atypical
circumstances with respect to b. This is for instance witnessed by the fact that by the
core properties b � ¬p is derivable from our premise set, and p is a premise.

Note that something is still missing in order to model default inferencing properly.
Due to the restricted MP we are able to block MP from being applied to excepted
antecedents. However, we lack the ability to apply MP to p � ¬ f and p since we
miss ¬•p. This can be tackled by applying MP conditionally. More specifically, MP
is applied to A � B and A on the condition that the antecedent A can be assumed
to be not excepted, i.e., on the condition that •A can be assumed not to be the case.
This is technically realized by means of ALs.

I will introduce the ALs formally in Sect. 6.4 but let me sketch the main idea
already now. In order to rewrite the proof above in the style of ALs, we need to add a
fourth column containing sets of so-called abnormalities. In our case abnormalities
are of the form •A.

1 b � f PREM ∨
2 p � b PREM ∨
3 p � ¬ f PREM ∨
4 b PREM ∨
5 p PREM ∨

76 f 1,4; RC
{•b

}

7 •b 1,2,3,5; Spe2 ∨
8 ¬ f 3,5; RC

{•p
}

At lines 6 and 8 MP is applied conditionally (indicated by RC for “rule condi-
tional”). For instance at line 8 the condition is {•p}. In other words, MP is applied
to p and p � ¬ f on the condition that p can be assumed to be not excepted. Note
that if ¬•p would be derivable, we would be able to apply (rMP) to p, p � ¬ f and
¬•p in order to detach ¬ f . However, ¬•p is not derivable. Nevertheless, ALs offer
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the option to apply MP conditionally. Similarly, at line 6 MP is applied to b � f and
b on the condition that b is not excepted. However, at line 7, •b is derived. Note that
at this point line 6 is marked by 7. The idea is that lines with “unsafe” conditions are
marked and the formulas in the second column of marked lines are not considered as
being derived. Of course, since f is derived on the condition that b is not excepted,
this very condition cannot be considered safe anymore as soon as we derive that b
is excepted at line 7. There are two adaptive strategies that specify what it exactly
means that a condition of a line is “unsafe”. For instance in case of the reliability
strategy a line is marked at a given stage of the proof in case a member of its condi-
tion has been derived as part of a minimal disjunction of abnormalities (in our case
a disjunction of formulas preceded by a •) on the condition ∨.9 Minimality means
that no sub-formula of the disjunction has been derived. Since •p is not derivable
as part of a disjunction of abnormalities, line 8 is not going to be marked. There is
obviously no reason to treat its condition as unsafe.

In the following sections I will realize the idea that was informally presented in
this section. In Sect. 6.4, the ALs for conditionally applying MP will be defined.

6.4 Applying Modus Ponens Conditionally

As discussed in Sect. 6.3, we use a unary operator ‘•’ in order to label propositional
formulas for which MP should be blocked. These are propositions that are excepted
by the information given in the premises. That is to say, the factual information at
hand describes unusual circumstances concerning them.

We have seen that b, “Tweety is a bird.”, is excepted if also p, “Tweety is a
penguin.”, is given. The second proposition describes an exceptional context for the
first one due to the conditionals b � f , p � b and p � ¬ f where f = “Tweety
flies”. Thus, f should not be detached from b � f and b if p is the case: b � f is
overridden by the more specific p � ¬ f .

The following fact shows that in various cases of specificity the least specific
arguments are excepted.

Fact 6.4.1. The core properties, (rMP) and (Inh) imply (Spe1), (Spe2) and the fol-
lowing:

If ∧ A ⊃ B, then ∧ (
A ∪ (B � C) ∪ (A � ¬C)

) ⊃ •B (sSpe)

∧ (
A ∪ (A � B1 � . . . � Bn � C) ∪ (A � ¬C)

) ⊃ •Bn (SpeG)

∧ (
A ∪ (A � B1 � . . . � Bn � D)∪

(A � C1 � . . . � Cm � ¬D) ∪ (Bn � . . . � Cm)
) ⊃ •Cm

(PreE)

If ∧ ¬
∧

I
Di , then ∧

(
A ∪

∧

I
(A � . . . � Bi � Di )

)
⊃

∨

I
•Bi (Conf)

9 A more precise notion of what it means that a condition is “unsafe” will be given in the next
section by means of a marking definition.
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Fig. 6.2 Generalized
specificity cases
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(SpeG) is a generalization of (Spe2) (see Fig. 6.2a). The preemption rule (PreE) is
a further generalization (see Fig. 6.2b).10 (Conf) shows that if there are multiple
conflicting arguments A � . . . � Bi � Di then at least one of the Bi ’s is excepted.

Let in the remainder Lp be the base logic L enriched by (rMP) and (Inh). In this
chapter we will focus on base logics L ⊕ {P, R} (see Sect. 6.2).

Definition 6.4.1. We define DLpx where x ⊕ {r, m} as an AL in standard format
by the following triple:

• the lower limit logic is Lp,
• the set of abnormalities is Θ = {•A | A ⊕ W},
• the strategy is either reliability (for DLpr) or minimal abnormality (for DLpm).

To adaptively interpret premise sets “as normally as possible” means in our case
to interpret the propositional formulas as not being excepted whenever possible, i.e.,
whenever this is consistent with the given premises. In turn, this allows us to apply
MP as much as possible since the additional antecedents of (rMP), ¬•A, are validated
as much as possible. Note that due to (rMP) we have

∧Lp
(

A ∪ (A � B)
) ⊃ (

B ⊆ •A
)

Hence, by RC, B is derivable from A and A � B on the condition {•A}.
The (object-level) proofs presented in the following examples are for both ALs,

DLpr, and DLpm, if not specified differently. I presume that L ⊕ {P, R}. Let us take
a look at a simple case of specificity.

Example 6.4.1. We equip the conditional knowledge base in Example 6.3.1 (see
Fig. 6.1b) with the factual knowledge {p}.

1 p � b PREM ∨
2 b � f PREM ∨
3 p � ¬ f PREM ∨
4 p PREM ∨
5 b 1,4; RC

{•p
}

10 Preemption plays an important role in the research on inheritance networks (see [48]).
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86 f 2,5; RC
{•p, •b

}

7 ¬ f 3,4; RC
{•p

}

8 •b 1,2,3,4; RU ∨
At line 5, MP is applied to p � b and p on the condition {•p}. Similar conditional

applications take place at lines 6 and 7. The desired ¬ f and b are (finally) derivable
since the condition, •p, is not part of any minimal Dab-consequence. Moreover, MP
is blocked from b � f and b since at line 8, •b is derived and hence line 6 is marked.

Example 6.4.2. Let us have a look at conflicting conditionals by means of the Nixon
Diamond (see Fig. 6.1c) with the factual knowledge {n} and the usual reading of q
as ‘being a Quaker’, r ‘being a Republican’ and p as ‘being a pacifist’.

1 n � q PREM ∨
2 n � r PREM ∨
3 q � p PREM ∨
4 r � ¬p PREM ∨
5 n PREM ∨
6 q 1,5; RC

{•n
}

7 r 2,5; RC
{•n

}

108 p 3,6; RC
{•n, •q

}

109 ¬p 4,7; RC
{•n, •r

}

10 •q ⊆ •r 1,2,3,4,5; RU ∨
The logic proceeds as expected: r and q are derivable while the derivations of p

and ¬p get marked for both strategies. Note that the condition of line 6 and 7, namely
{•n}, is not part of any minimal Dab-consequence. In order to make the example
more interesting let us introduce two more conditionals: q � e and r � e where e
represents for instance ‘being politically motivated’.

11 q � e PREM ∨
12 r � e PREM ∨
13 e 6,11; RC

{•n, •q
}

14 e 7,12; RC
{•n, •r

}

By the reliability strategy lines 13 and 14 are marked (due to the fact that •q ⊆•r
at line 10 is a minimal Dab-consequence). They are not marked by the minimal
abnormality strategy, since the minimal choice sets at line 14 are {•q} and {•r}. It is
easy to see that there is no way to extend the proof in a way such that lines 13 and
14 are marked according to the minimal abnormality strategy. This shows that the
reliability strategy models a more skeptical reasoning in comparison to the bolder
reasoning type modeled by the minimal abnormality strategy.

We have a similar scenario for the example depicted in Fig. 6.3d. By the minimal
abnormality strategy p is derivable given the factual knowledge x . It is not derivable
by the reliability strategy.
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Fig. 6.3 Illustrations for our
examples a
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Propositions such as p in Fig. 6.3d are commonly dubbed “floating conclusions”.
There is a vivid debate about whether such propositions should be accepted.11 Instead
of trying to have the final word on the discussion I want to point out that, as the exam-
ple shows, the minimal abnormality strategy detaches floating conclusions, while the
more skeptical reliability strategy rejects them. Different applications may ask for
different strategies. The credulous character of the minimal abnormality strategy
makes it interesting for applications in which “the value of drawing conclusions is
high relative to the costs involved if some of those conclusions turn out not to be
correct.” ([48], p. 123). The reliability strategy on the other hand is, due to its more
skeptical character, better “when the cost of error rises” (ibid.).

Example 6.4.3. Let our knowledge base be Σ6.4.3 = {ai � ai+1 | 1 ≤ i < n} (see
Fig. 6.3b) with factual knowledge {a1}. Note that Σ6.4.3 �P a1 � a j and Σ6.4.3 �R
a1 � a j where 2 < j ≤ n. However, our ALs are able to detach all the ai ’s:

1 a1 � a2 PREM ∨
...
...

... ∨
n−1 an−1 � an PREM ∨

n a1 PREM ∨
n+1 a2 n; RC {•a1}
n+2 a3 n+1; RC {•a1, •a2}

...
...

...
...

2n−1 an 2n−2; RC {•a1, . . . , •an−1}
Obviously none of the lines n+1, . . . , 2n−1 can be marked by extending the

proof. The fact that Σ6.4.3 ∪{a1} ∧DLpx ai , where i ≤ n, x ⊕ {r, m} and L ⊕ {P, R},
while Σ6.4.3 �L a1 � ai demonstrates that our handling of MP overcomes certain
weaknesses of the core logic in terms of the handling of transitive relations among
conditionals.

Example 6.4.4. Let our factual knowledge be a. b1, . . . , bn−1 and ¬bn are derivable
from the knowledge base depicted in Fig. 6.2a by means of DPpx (where x ⊕ {r, m}).
We obtain e.g. the Dab-formula •bn−1 (by (SpeG)) and •bn (by means of the former

11 While Ginsberg [49], and Makinson and Schlechta [50] argue for the acceptance, Horty [51]
argues against it.
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and (Inh)). Note that no •bi where i < n − 1 is derivable as a part of a minimal
Dab-consequence. Hence we can iteratively apply Modus Ponens conditionally to
a � b1 and bi � bi+1 where i < n − 1 in such a way that the corresponding lines
are unmarked. Note that a � bn−1 is neither a P-consequence nor a R-consequence
of the given premises, nor is it derivable by means of Rational Closure. However, it
is entailed by Pmin.12

The situation is slightly different in DRpx: besides •bn−1 and •bn also •bn−2 ⊆
•¬bn−2 is Rp-derivable from the premises.13 It is easy to see that due to this bn−1 is
not DRpx-derivable since the only means of deriving bn−1 from the given premises
is by detaching it from the conditional bn−2 � bn−1 on the condition {•bn−2}. Yet,
due to the minimal Dab-consequence •bn−2 ⊆•¬bn−2 any such attempt gets marked
in the proof. However, if we add the premise bn−2 ∈� bn we get the consequences
bi for all i < n and ¬bn just as for DPpx. It is easy to see that in this case •bn−2 is
not anymore part of any minimal Dab-consequence.

Similarly, b1, . . . , bn , c1, . . . , cm and ¬d are DPpx-derivable from the knowledge
base depicted in Fig. 6.2b. Analogous to the previous paragraph we need to add
another premise, e.g. cm−1 ∈� a, in order to get the same consequences for DRpx.
The proofs are simple and left to the reader.

Example 6.4.5. Let us take a look at a variant of the Nixon Diamond (Fig. 6.3a) by
means of the logic DPpx (where x ⊕ {r, m}):

1 a � b PREM ∨
2 a � c PREM ∨
3 b � ¬e PREM ∨
4 c � d PREM ∨
5 d � e PREM ∨
6 a PREM ∨
7 b 1,6; RC

{•a
}

128 ¬e 3,7; RC
{•a, •b

}

9 c 2,6; RC
{•a

}

10 d 4,9; RC
{•a, •c

}

1211 e 5,10; RC
{•a, •c, •d

}

12 •b ⊆ •d 1–6; RU ∨
Note that neither is a � d derivable by the core properties nor is it in the Rational

Closure, nor is it entailed by Conditional Entailment.14 Thus, in the given example our

12 Note that in case we do not add a ∈� ⊃ to our premises, Pmin is rather rigorous and also entails
a � ⊃.
13 The reason is as follows. Suppose first that bn−1 ∈� ¬bn−2. In this case by means of (RM) and
since bn−1 � bn also (bn−1 ∪ bn−2) � bn . By (RT) and since bn−2 � bn−1, bn−2 � bn . But then
since a, a � ¬bn and a � . . . � bn−2 � bn , by (SpeG), •bn−2. Now suppose bn−1 � ¬bn−2.
Since •bn−1 we get •¬bn−2 by (Inh). Altogether, •bn−2 ⊆ •¬bn−2. Note that this argument does
not hold in Pp since it makes essentially use of (RM).
14 Note that Pmin entails a � d and moreover a � ⊃ (in case we do not manually add a ∈� ⊃ to
the premises, see also footnote 12).



6.4 Applying Modus Ponens Conditionally 171

logic handles the transitive relations between defaults better than these systems, since
(with both strategies) d is derivable following argument a � c � d. Furthermore, as
desired, neither e nor ¬e is derivable since there are conflicting arguments concerning
e and ¬e.

The situation is different in DRpx since by means of Rp also the minimal Dab-
consequence •c⊆•¬c is derivable.15 Hence, there d at line 10 is not finally derivable.
However, by adding c ∈� ¬a to the premises also d is a DRpx-consequence of this
premise set.

Example 6.4.6. We take a look at Fig. 6.2c with factual knowledge {a ∪ c}. This
example illustrates a more complex case of specificity.

1 a ∪ c � ¬(b ∪ d) PREM ∨
2 a � b PREM ∨
3 c � d PREM ∨
4 a ∪ c PREM ∨
5 ¬(b ∪ d) 1,4; RC

{•(a ∪ c)
}

96 b 2,4; RC
{•a

}

97 d 3,4; RC
{•c

}

8 •a ⊆ •c ⊆ •(a ∪ c) 1,2,3,4; RU ∨
9 •a ⊆ •c 8; RU ∨

10 b ⊆ d 6; RU
{•a

}

11 b ⊆ d 7; RU
{•c

}

Line 9 follows from line 8 in view of (Inh) and (CI). By the reliability strategy
lines 10 and 11 are marked since both, •a and •c, are unreliable formulas. Not so by
the minimal abnormality strategy, since b ⊆ d is derivable on both conditions, {•a}
and {•c} (see Definition 2.4.7).

This example is interesting also in another respect. It features a more complex
type of specificity. While none of the arguments A1 = (a ∪ c) � a � b and
A2 = (a ∪ c) � c � d suffices in its own respect to cause a case of specificity
with (a ∪ c) � ¬(b ∪ d), both taken together do. Indeed, if we follow both lines of
argument, A1 and A2, we arrive at b and d. However, the conjunction b∪d contradicts
¬(b ∪ d). Thus, a ∪ c � ¬(b ∪ d) overrides the joint application of arguments A1
and A2 (see also the illustration in Fig. 6.2c).

Both, minimal abnormality and reliability strategy, validate ¬(b ∪ d). Again, if
we apply reliability we take a more skeptical route concerning A1 and A2, since both
arguments are considered as being unreliable and thus neither argument is validated:
we neither derive b, nor d, nor b ⊆ d. Minimal abnormality however validates one

15 The reason is as follows. Suppose ¬•c. Suppose (i) b � ¬a. Since also a, a � b and a � a
(by (ID)) we get •b by (Spe2). Assume b ∈� ¬c. By (RM), (b ∪ c) � ¬a. Since also a, a � a
and a � (b ∪ c) (by (CC), a � b and a � c) we have •(b ∪ c) by (Spe2). By (Inh) and (CI) also
•c,—a contradiction. Hence, b � ¬c. By (Inh) •¬c. Now suppose (ii) b ∈� ¬a. Since b � ¬e
by (RM) (a ∪ b) � ¬e. Since a � b by (RT) a � ¬e. By the latter, a, ¬•c and a � c we have
c ∈� e due to (Spe2). By a, a � ¬e and a � c � d � e we have •d due to (SpeG). Assume
d ∈� ¬c. Then by (RM) (c ∪ d) � e and by (RT), c � e,—a contradiction. Hence d � ¬c and
by (Inh), •¬c. Altogether we get •c ⊆ •¬c.
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of the two arguments. Indeed, taken isolated from each other, neither A1 nor A2 is
overridden by a ∪ c � ¬(b ∪ d). Thus, the credulous reasoning provided by the
minimal abnormality strategy validates b ⊆ d and ¬(b ∪ d).

Example 6.4.7. Given the factual knowledge p ∪ s ∪ r and the defaults depicted
in Fig. 6.3c we have the minimal Dab-consequence •(p ∪ s) ⊆ •r . That shows that
neither q nor ¬q is derivable. This is intuitive as pointed out by Geffner and Pearl in
[22] since there are no reasons to prefer argument (p ∪ s) � q over r � ¬q or vice
versa. Note however that the counter-intuitive (p ∪ s ∪ r) � q is in the Rational and
Lexicographic Closure, and it is entailed by the maximum entropy approach.16

6.5 Discussion

In this discussion section I will point out some advantages of the presented logics,
also in comparison with other systems from the literature. Moreover I will comment
on some other related and interesting points which were not mentioned so far.

6.5.1 Some Advantages of the Adaptive Approach

ALs offer a very generic framework enabling defeasible MP for conditional logics
of normality since they can be applied to any conditional lower limit logic as long
as it is reflexive, transitive, monotonic and compact. Depending on the application
the reader is free to use any conditional logic of normality as LLL as long as it
fulfills the mentioned requirements. Since ALs have shown great unifying power
in representing nonmonotonic, defeasible logics, even conditional logics that do
not fulfill the requirements may be represented by ALs.17 By applying techniques
of combining adaptive systems the framework developed in this chapter may be
applicable also in such cases. Furthermore, similar techniques as presented here
for defeasible MP in the context of default reasoning can be applied to conditional
deontic logics (see Chap. 12 and [52]).

The meta-theory of ALs in standard format is well-researched (see [53, 54]). Many
useful properties have been established generically. For instance, completeness and
soundness of an AL are guaranteed by the completeness and soundness of its LLL,
the consequence relation of an AL defines a fixed point and is cautious monotonic,
etc.

Recall that Pollock distinguished in [55] between two types of dynamics that
characterize defeasible reasoning: one based on synchronic defeasibility and another

16 It is not entailed by Pmin in case we add (p ∪ s ∪ r) ∈� ⊃.
17 As will been shown, for instance, for Rational Closure in the next chapter.

http://dx.doi.org/10.1007/978-3-319-00792-2_12
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one based on diachronic defeasibility. As I will discuss in the following, ALs are
able to model both of them.

The internal dynamics of defeasible reasoning is caused by diachronic defeasi-
bility. Often achieving a better understanding of the information at hand forces us to
withdraw certain inferences even in cases in which no new information is available.
This is modeled by the dynamic proof theory of ALs. For instance, if we (condi-
tionally) apply MP to b � f and b but at a later moment also derive p, p � ¬ f
and p � b from the same premises, we revise the former derivation. In the adaptive
proof the line at which MP has been applied to b � f and b is going to be marked
and is hence considered not to be valid. Thus, while our insight in the given knowl-
edge base—i.e., the premises—grows, we may consider revising some conclusions
drawn before, especially if the knowledge base is of a complex nature. Hence, our
treatment of common sense reasoning with factual information on the basis of con-
ditional knowledge bases does not just reach intuitive results but the explication of
the reasoning process itself is an integral part of the proof theory. This is an advan-
tage compared to other systems which are able to model default inferencing such as
Delgrande’s [12], Lamarre’s [56], or Geffner and Pearl’s [22].

Lamarre in [56] presents a powerful approach based on semantic selection pro-
cedures on the models of a given conditional base logic, where the facts valid in
all the selected models characterize the consequence set of his system.18 What is
missing, however, is a syntactical approach corresponding to it that mirrors our com-
mon sense reasoning by its proof theory. Delgrande’s system [12] is syntactical in
nature. The idea here is to iteratively enrich the given factual knowledge by further
contingent information in order to form so-called maximal contingent extensions.19

Special attention in building these extensions is given to cases of specificity: similar
as in the presented approach, the world at hand is interpreted as non-exceptional as
possible. Furthermore, in the construction of the extensions only relevant informa-
tion is considered with respect to the knowledge base at hand. What is derivable by
classical logic from these maximal contingent extensions corresponds to the factual
consequences we draw via default reasoning. While Delgrande’s assumptions con-
cerning the normality of the actual world and his restriction to relevant information
accord with a natural intuition concerning default reasoning, the way we arrive at
the inferences by Delgrande’s approach seems rather unnatural, i.e., the technical
necessity to first built up all the maximal consistent factual extensions and then to
infer from them by classical reasoning. This procedure does not model our actual
default inferencing in an accurate way. Geffner and Pearl’s Conditional Entailment
has been already mentioned on Sect. 6.2. Although the authors provide a syntactic
check-criterion for conditionally entailed propositions, they do not offer a deriva-

18 As discussed in Sect. 6.2, ALs also employ semantic selections on the models of the LLL.
19 Delgrande introduces in fact two equivalent proposals in this paper. The other one, which I do
not discuss above, is based on forming maximal consistent extensions of the conditional knowledge
base at hand (in contrast to the maximal consistent extensions of the factual knowledge which I
discuss here). Note, however, that a similar criticism applies to both approaches.
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tional procedure that mirrors our actual reasoning processes such as the dynamic
proofs of ALs.20

As mentioned, another advantage of ALs is their ability to deal with the synchronic
defeasibility that causes the external dynamics of reasoning processes (see also the
discussion in Sect. 2.5.1). Often with the introduction of new information we are
forced to withdraw certain inferences. Again, the markings of the dynamic proofs
are able to model cases of specificity and conflicting arguments which might be
caused by new information. In contrast, in Lamarre’s approach the arrival of new
information forces us to re-initiate the semantic selection procedure, and, similarly,
for Delgrande’s account we have to re-construct the maximal contingent extensions.
In the adaptive approach, despite the fact that new information might force us to
withdraw certain conclusions, the proof dynamics model in an accurate way the fact
that we continue reasoning facing new information instead of beginning the reasoning
process again from scratch.

6.5.2 The Drowning Problem

In Examples 6.4.3 and 6.4.4 it was demonstrated that the presented treatment of MP
sometimes outgrows the abilities of the core system in terms of transitively closing
�. However, there are limitations to it. To show this I extend Example 6.4.1 by a
further conditional:

Example 6.5.1. We add to the conditionals of Example 6.4.1, b � w, wherew stands
for “having wings”. The proof of Example 6.4.1 is extended in the following way:

9 b � w PREM ∨
810 w 5,9; RC

{•p, •b
}

Note that the conditional derivation of w is not successful in the sense that it gets
marked. This is due to the fact that b is excepted since we have p and b � ¬p.
Indeed there is no way to derive w from the given premises. This is also due to the
fact that in P and R neither p � w nor (p ∪ b) � w is derivable (neither are they
in the Rational Closure). Note that if one of the latter would be derivable, w would
be detachable from p � w and p, or resp. (p ∪ b) � w and p ∪ b. Thus, the
limitation of the adaptive treatment of MP concerning excepted propositions mirrors
a limitation of the base logic concerning conditional consequences.

This problem is commonly known as the Drowning Problem: suppose a default
with antecedent A is excepted, then all other defaults with antecedent A are blocked
from MP as well.

The first question to ask at this point is whether a “solution” to the drowning
problem is at all desirable. Some scholars voice worries (see e.g. [14, 58–60]). For

20 Computing Conditional Entailment is a pretty complex and challenging task. Hence, the authors
only offer a computational approximation in terms of an assumption-based truth maintenance-like
system (see [57]).

http://dx.doi.org/10.1007/978-3-319-00792-2_2
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instance, Koons asserts that there are good reasons why we should not apply MP to
defaults with excepted antecedents.

Consider the following variant on the problem: birds fly, Tweety is a bird that doesn’t fly,
and birds have strong forelimb muscles. Here it seems we should refrain from concluding
that Tweety has strong forelimb muscles, since there is reason to doubt that the strength of
wing muscles is causally (and hence, probabilistically) independent of capacity for flight.
Once we know that Tweety is an exceptional bird, we should refrain from applying other
conditionals with Tweety is a bird as their antecedents, unless we know that these conditionals
are independent of flight, that is, unless we know that the conditional with the stronger
antecedent, Tweety is a non-flying bird, is also true. (see [60], Sect. 5.7)

Moreover, Lehmann in [40] points out that there are two perspectives on default
reasoning. On the one hand, there is the prototypical reading where b � f is
understood as “Birds typically fly.” On the other hand, according to the presumptive
reading it is read as “Birds are presumed to fly unless there is evidence to the contrary.”
The former was proposed in [61] and Lehmann states that it is the intended reading for
Rational Closure, whereas the presumptive reading is intended for the Lexicographic
Closure. According to the prototypical reading the Drowning problem should not be
solved. This is due to the fact that if there is an exception to some conditional with
antecedent A then the situation is not typical with respect to A. However, defaults
with antecedent A only account for typical situations (with respect to A). Hence, MP
should not be applied to any conditional A � B according to this view.

6.5.3 Taking Into Account Negative Knowledge

So far we focused on knowledge bases consisting on the one hand of conditionals
and on the other hand of facts, i.e., facts expressed by propositions. It is interesting to
enable the logic to also deal with knowledge bases including negative conditionals,
i.e., formulas of the form A ∈� B. Note that the framework proposed in this chapter
is not able to deal with such knowledge bases in the case that our base system only
consists of the core properties. Take for instance the simple penguin Example 6.4.1
and replace the premise p � ¬ f by p ∈� f . Note that for the logics DPpx (where
x ⊕ {r, m}) the unwanted f is derivable for this premise set.

1 p � b PREM ∨
2 p ∈� f PREM ∨
3 b � f PREM ∨
4 p PREM ∨
5 b 1,4; RU

{•p
}

6 f 3,5; RU
{•p, •b

}

Note that there is no way to mark line 6 (in either of the strategies). However, as
the following fact shows, the situation is different in case R is chosen as base system,
i.e., for lower limit logic Rp.
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Fact 6.5.1. The core properties, (RM), (rMP) and (Inh) imply21

∧ (
A ∪ (A � B � C) ∪ (A ∈� C)

) ⊃ •B (Spe’)

∧ (
A ∪ (A � B1 � . . . � Bn � C) ∪ (A ∈� C)

) ⊃ •Bn (SpeG’)

∧ (
A ∪ (A � B1 � . . . � Bn) ∪ (Bn ∈� D) ∪

(A � C1 � . . . � Cm � D) ∪ (Bn � . . . � Cm)
) ⊃ •Cm (PreE’)

In DRpx f is not derivable since line 6 is marked by the following extension of
the proof:

7 •b 1,2,3,4; Spe’ ∨

6.6 Conclusion and Outlook

In this chapter an adaptive logic approach to Modus Ponens for conditional logics
of normality was presented. By adaptively enhancing a given base logic we enrich it
by the ability to model actual default inferencing. By means of benchmark examples
it was demonstrated that the adaptive systems deal with specificity and conflicting
arguments in an intuitive way. The two adaptive standard strategies have been shown
to correspond to two different intuitions: a more skeptical and a more credulous one
which gives rise to a different handling of floating conclusions.

Acknowledgments I thank Joke Meheus, Dunja Šešelja, and the anonymous reviewers of the
Journal of Applied Non-Classical Logic for valuable comments concerning a previous version of
this chapter.
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Chapter 7
An Adaptive Logic for Rational Closure

Monotonicity is an essential property of classical logic. For instance for a
mathematician it would be rather inefficient (and demotivating) if a proof of a state-
ment ϕ from a set of statements Γ would be invalidated by the addition of other
statements to Γ . Of course, the situation in everyday life is quite different.The deriv-
ative power of human (and other intelligent) beings depends to a high degree on
methods for drawing consequences which can be invalidated with the arrival of new
information. Modeling ways of nonmonotonic reasoning in a formal framework is
therefore very interesting for philosophers, as well as for the artificial intelligence
community. Many systems were proposed in the literature to get a better grip on
some of them, such as negation as failure [2], circumscription [3], default logic [4],
or autoepistemic logic [5]. A more general view enabling comparative studies of non-
monotonic logics was introduced on the one hand by Gabbay [6], who focused on
consequence relations, and on the other hand by Shoham (e.g. [7, 8]), who proposed
a general model theory for nonmonotonic inference based on preference relations on
models.

In [9] Kraus, Lehmann and Magidor give an account of nonmonotonic conse-
quence relations by isolating a list of properties and putting them in the form of
conditions on consequence relations. These properties have become well-known as
the KLM-properties and form the basis of active research. They have been put in the
context of a more generic framework in [10] and [11]. define, among other things,
preferential consequence relations which prove to be a powerful tool for study-
ing what could be considered as reasonable inference procedures. In [12] Lehmann
and Magidor study a strong nonmonotonic, so-called rational consequence relation,
which extends the preferential consequence relation of [9] by also validating the rule
of rational monotonicity.

This is a substantially revised version of a paper that has been published under the name “An
adaptive logic for Rational Closure” in “The Many Sides of Logic” in “Studies in Logic” Series,
College Publications, London, 2009, [1].

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 181
DOI: 10.1007/978-3-319-00792-2_7, © Springer International Publishing Switzerland 2014
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α |∪ γ α |� ¬β

α ∧ β |∪ γ
(Rational Monotonicity)

The motivating question behind their study is as follows: given a conditional knowl-
edge base K (i.e., a set of conditionals), what other conditionals can we infer from
them. Hence, we are interested in extending the given conditional knowledge base by
additional conditionals to K⊆ = Cn(K) and this way to gain a notion of entailment.
Moreover, we expect that our extended knowledge base K⊆ satisfies all the properties
of rational consequence relations such as Rational Monotonicity.

The most natural idea to achieve this goal seems to simply take the intersections
of all extensions of K that satisfy all the properties of rational consequence relations.
Obviously this will result in an extension of K since K is included in all of its exten-
sions. The hope is that additionally this intersection also satisfies all the properties of
rational consequence relations. However, it is ill-founded. This can easily be illus-
trated by an example. Suppose K only consists of a |∪ b. In the absence of a |∪¬c
one would—in view of Rational Monotonicity—expect that we get (a ∧ c) |∪ b.
However, by intersection all extensions of K that satisfy the properties of rational
consequence relations we don’t get that. The reason is that on the one hand there
are extensions of K where a |∪¬c holds and (a ∧ c) |∪ b does not hold (see Type 1
extensions in Table 7.1). As soon as we have a |∪¬c Rational Monotonicity cannot
be used to “enforce” (a ∧ c) |∪ b. On the other hand, there are extensions of K where
a |∪¬c does not hold and hence (a ∧ c) |∪ b holds by Rational Monotonicity (see
Type 2 extensions in Table 7.1). As a consequence of the existence of both types of
extensions, a |∪ b is in our intersection, while a |∪¬c is not in our intersection and
nevertheless (a ∧ c) |∪ b is not in our intersection. Hence, our intersection violates
Rational Monotonicity.

Note that given our knowledge base K, c is an irrelevant fact since it doesn’t play
a role in the conditional assertions of our knowledge base. Nevertheless, there are
extensions in which c becomes relevant: for instance the type 1 extension in our
Table 7.1.

Lehmann and Magidor propose a technique to gain a notion of rational entailment
that avoids the problems of the ill-founded approach based on the intersection of
extensions and that hence offers a better account of irrelevant factors such as c in our
example. The idea is as follows. Given a rational consequence relation we can order
propositional formulas by means of degrees of (ab)normality: a ⊀b iff (a ∨b) |∪ ¬b.
In words: b is less normal than a in case a ∨ b usually implies that b is not the case.
Hence, each rational consequence relation can be associated with such a normality
order or a ranking in which each propositional formula is associated with a natural
number indicating its degree of normality. The idea is now to pick out of all extensions
of K that satisfy the properties of rational consequence relations the one in which
every formula A is interpreted as normal as possible with respect to ⊀. Indeed, they
show that for a huge class of conditional knowledge bases there is such a unique
minimally abnormal extension which they dub the Rational Closure.

Let us illustrate this with our example before we give a formally precise account
in the next section. First, we want to interpret a is normal as possible: that means
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Table 7.1 Various extensions
of K = {a |∪ b} Type 1 Type 2 Intersection

a |∪ b ✔ ✔ ✔

a |∪ ¬c ✔ ✘ ✘

a |∪ c ✘ ✘ ✘

(a ∧ c) |∪ b ✘ ✔ ✘

� |∪¬a (which is the same as � ⊀ a) should not hold: nothing in our knowledge
base suggests that a is usually not the case. Second, note that the type 1 interpretation
satisfies a ⊀ (a ∧ c) since by means of properties of rational consequence relations
a |∪¬c implies a ∨ (a ∧ c) |∪ ¬(a ∧ c). In the type 2 interpretation we have neither
a ⊀ (a ∧ c) nor a ⊀ (a ∧ ¬c). In sum, the type 1 interpretation interprets a ∧ c
unnecessarily abnormal, while in type 2 interpretations the degree of normality of
a ∧ c, a ∧ ¬c and a is on par. This mirrors the fact that c is indeed irrelevant. In this
sense extensions of type 2 offer a more normal interpretation than extensions of type
1 (other things being equal).

There are various ways to construct the rational closure of a knowledge base. For
instance Lehmann and Magidor define a partial ordering on rational consequence
relations that extend a given conditional knowledge base and the minimum of which
represents the rational closure. Alternatively, there are set-theoretic constructions for
a ranked model for the rational closure (see Sect. 7.1.4). Ranked models provide a
semantics to rational consequence relations: we will discuss this in detail in the next
section.

What is missing is a proof theory that enables one to derive all the conditionals
from a conditional knowledge base K that are in the rational closure of K. In this
chapter I will propose such a proof theory by means of an AL for rational closure. As
it has been shown in [13], rational closure is equivalent to 1-entailment as defined in
the context of Pearl’s Z-system [14]. Therefore we additionally gain a proof theory
for 1-entailment as well.

The idea is to realize the main rationale behind Rational Closure—to interpret
each propositional formula as normally as possible—by means of dynamic proofs
which allow for inferences that are equipped with normality assumptions. Lehmann
and Magidor propose two perspectives on conditionals a |∪ b: on the one hand |∪ may
represent a consequence relation, on the other hand it may represent a conditional
connective in the object language (just as � in the previous chapter). Analogous
to the previous chapter we will adopt the second perspective.1 Moreover, it will be
handy to express at the object level the degree of (ab)normality of a given formula.
To sketch the main mechanism and to give the reader already a general idea of the
proof theory, let me state an excerpt from a proof from K = {a |∪ b}. In Sect. 7.2 we
will explain the technical details.

1 For representational reasons it will be more transparent to stick with the “|∪”-notation of Lehmann
and Magidor instead of using “�”.
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1 a |∪ b PREM ∈
2 ¬(� |∪¬(a ∧ c)) RC {l0 ⊀ (a ∧ c)}
3 ¬(a |∪¬c) 2; RU {l0 ⊀ (a ∧ c)}
4 (a ∧ c) |∪ b 1,3; RU {l0 ⊀ (a ∧ c)}

The first line just introduces our premise. The assumption expressed in the con-
dition of the second line is to be read as “the degree of abnormality of a ∧ c is not
worse than 0” (where 0 is the most normal degree and it gets less normal as we count
up). That the degree of abnormality of a ∧ c is 0 means that it is not usually the
case that ¬(a ∧ c). This is expressed by the formula at line 2. It is easy to see that
¬(a |∪¬c) follows from ¬(� |∪¬(a ∧ c)) by the KLM-properties. Hence, line 3.
Finally we can derive (a ∧ c) |∪ b by Rational Monotonicity on line 4. In sum, in the
AL proofs we interpret formulas as normal as possible by means of equipping lines
with conditions in which these defeasible normality assumptions are expressed. The
AL marking mechanism will realize the retraction of inferences whose associated
assumptions are violated.

In this chapter I will proceed as follows. I will give a technically precise account of
Rational Closure in Sect. 7.1. My original contribution, the AL for Rational Closure,
is presented in Sect. 7.2. First I introduce the lower limit logic R+. The difference
to the well-known R is that in R+ we can express the degree of (ab)normality of a
formula in the object language. Then I introduce the AL ARCs and shortly discuss
the handling of negative conditional knowledge in Sect. 7.3. Finally I will conclude
this chapter in Sect. 7.4.

7.1 Rational Closure

Let a propositional language Lp be characterized as follows. We denote the classical
connectives by ¬,∨,∧,∧ and ⊃. Furthermore, we use the primitive symbols �
and →. Lower case Greek letters α,β, γ and δ denote formulas in Vp, the set of
propositional formulas over the set of propositional letters P = {p1, . . . , pn}. In
examples we will also often denote propositional variables by lower case Roman
letters a, b, c, etc.

The authors in [9] introduce the symbol |∪ for conditional consequence relations.
Statements of the form “α |∪β”, where α,β ∨ Vp, are called conditional assertions
and can be interpreted as “from α sensibly conclude β” or “α usually implies β”.

Definition 7.1.1 (see [9], Def. 15). A relation |∪ ⊕ Vp × Vp is called a preferen-
tial consequence relation iff it satisfies the following properties2:

α |∪α (Reflexivity)

2 This is the characterization presented in [12]. In [9] the authors give an alternative (equivalent)
characterization replacing (And) with (Cut).
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 α ⊃ β α |∪ γ

β |∪ γ
(Left Logical Equivalence)


 α ∧ β γ |∪α

γ |∪β
(Right Weakening)

α |∪β α |∪ γ

α |∪β ∧ γ
(And)

α |∪β α |∪ γ

α ∧ β |∪ γ
(Cautious Monotonicity)

α |∪ γ β |∪ γ

α ∨ β |∪ γ
(Or)

Another way to look at the properties is to interpret them as inferential rules where
|∪ is a logical connective and does therefore not represent a consequence relation.
We call the system constituted by the above rules PKLM.

Remarks 7.1.1. The following properties have been shown to be valid for preferential
consequence relations in [9]:

α |∪β β |∪α α |∪ γ

β |∪ γ
(Equivalence)

α ∧ β |∪ γ α |∪β

α |∪ γ
(Cut)

α |∪β ∧ γ α |∪β

α |∪ γ
(MPC)

α ∧ β |∪ γ

α |∪β ∧ γ
(S)

α ∧ ¬β |∪ γ α ∧ β |∪ γ

α |∪ γ
(D)

In addition to Rational Monotonicity, the following properties are in general not
valid for preferential consequence relations:

α ∧ γ |� β α ∧ ¬γ |� β

α |� β
(Negation Rationality)

α |� γ β |� γ

α ∨ β |� γ
(Disjunctive Rationality)

Remarks 7.1.2 (see [12], Lem. 10, Lem. 12). “Rational Monotonicity” implies “Dis-
junctive Rationality” and this implies “Negation Rationality”.

Recall our ordering relation α ⊀ β =df (α ∨ β |∪¬β).

Fact 7.1.1. Where |∪ is a preferential consequence relation3:

3 Proofs can be found in Appendix E.
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(i) α ⊀ β implies α |∪α ∧ ¬β, α |∪¬β, and α ∨ β |∪α
(ii) α |∪β and α ⊀ γ imply β ⊀ γ
(iii) α ⊀ β and β ⊀ γ imply α ⊀ γ

Definition 7.1.2 (see [12], Def. 13). A preferential consequence relation is a rational
consequence relation if it satisfies rational monotonicity. We call the corresponding
inferential system RKLM.

A (conditional) knowledge base K is a set of conditional assertions. We call |∪
a preferential (resp. rational) extension of K iff |∪ is a preferential (resp. rational)
consequence relation and it satisfies all the conditional assertions in K.

7.1.1 Preferential Entailment

Let us now tackle the question what conditional assertions a conditional knowledge
base K entails. We first look at the simpler case concerning the rationale of preferen-
tial consequence relations. The question can be answered by means of intersecting
all preferential extensions of K. Indeed, it can be shown that this intersection is itself
a preferential consequence relation. This provides us with a notion of preferential
entailment: α |∪β is preferentially entailed by K iff it is in the intersection of all
preferential extensions of K.

Alternatively and equivalently, the question can be answered by means of the
inferential system PKLM: α |∪β is preferentially entailed by K iff it can be inferred
from K by means of PKLM.

Finally, we can answer the question in a semantic way. For this we have to first
define a semantics for preferential consequence relations. A preferential model is
a triple 〈S, l,◦↓ where S is a set of states, l associates states with worlds (i.e.,
interpretations of propositional atoms) and ◦ is a partial order on S where s ◦ s⊆
reads “state s is more normal than state s⊆”. The validity of α |∪β in a model M
is then decided in view of the α-minimal states. A state s is α-minimal in case its
associated world verifies α (l(s) |= α) and there is no state s⊆ below s (s⊆ ◦ s) such
that l(s⊆) |= α. If in all the associated worlds of the α-minimal states β is also valid,
the model validates α |∪β. We write α |∪M β if M validates α |∪β. Finally, we have
the following smoothness condition: for each propositional formula α the set of states
whose associated worlds validate α is ◦-smooth. Hence, for each state s for which
l(s) |= α there is a state s⊆ � s that is minimal with the property l(s⊆) |= α.4

Let us illustrate this by a preferential model M for K = {p1 |∪ p2}. Suppose
the set of propositional letters is {p1, p2, p3}. We consider the worlds as listed in
(Table 7.2):

Figure 7.1 illustrates the ordering ◦ of our model M :

4 Recall that we used a similar condition for our threshold functions in the generalized standard
format for ALs in Chap. 5. This ensures the strong reassurance property for ALs.

http://dx.doi.org/10.1007/978-3-319-00792-2_5
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Table 7.2 Worlds for
K = {p1 |∪ p2} p1 p2 p3

w2 0 1 0
w123 1 1 1
w12 1 1 0
w13 1 0 1

Fig. 7.1 Left the ordering on
states in a preferential model.
Right the corresponding
ordering on the associated
worlds
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On the left hand side we have the ordering on the states. The dotted arrows
illustrate our mapping l of states into worlds. On the right hand side we illustrate the
ordering that is indirectly imposed on the worlds. This shouldn’t be taken too literal
but serves illustrative purposes. Note that w2 appears twice: this is possible since
different states may be mapped to the same world (like here s1 and s4 which are both
mapped to w2).

For instance, we have p1|∪M p2 since in all minimal states whose associated
worlds verify p1 also p2 is verified: these minimal states are s2 and s5. Note also that
Rational Monotonicity is not valid in this model: we have p1 |∪M p2 and we don’t
have p1 |∪M ¬p3 but we also don’t have p1 ∧ p3 |∪M p2 as the reader can easily
verify. (Note that s3 is p1 ∧ p3-minimal.)

In [12] it was shown that |∪M is a preferential consequence relation, and that each
preferential consequence |∪ relation can be represented by a preferential model M
such that |∪ = |∪M .

Theorem 7.1.1 ( see [12], Thm. 1). A binary relation |∪ ⊕ Vp ×Vp is a preferential
consequence relation iff it is the consequence relation defined by some preferential
model.

Hence, our third way of expressing preferential entailment is as follows: K entails
α |∪β iff in all models M of K, α |∪M β.

Given the equivalence of the three characterizations of preferential entailment it
is arbitrary whether we define it in terms of the intersection of all preferential con-
sequence relations that extend some knowledge base, or by means of the inferential
system P, or in semantic terms. Here we go for the latter:

Definition 7.1.3 (see [12], Def. 6). A conditional assertion α |∪β is preferentially
entailed by a conditional knowledge base K iff it is satisfied by all preferential
models of K. The set of all conditional assertions that are preferentially entailed by
K is denoted by Kp. The relation Kp is called the preferential closure of K.

As discussed, we have the following equivalences:
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Theorem 7.1.2 (see [12], Thm. 2). Let K be a conditional knowledge base. The
following conditions are equivalent:

1. α |∪β ∨ Kp

2. for all preferential models M of K, α |∪M β
3. α |∪β has a proof from K in PKLM

4. α |∪β for all preferential consequence relations |∪ that extend K

Note that the preferential closure satisfies all the KLM-properties:

Theorem 7.1.3 (see [12], Cor. 2). For a conditional knowledge base K the prefer-
ential closure Kp defines a preferential consequence relation.

7.1.2 Rational Entailment

We already mentioned in the beginning of this chapter that the idea to characterize
rational entailment analogous to the notion of preferential entailment is ill-founded.
The intersection of all rational extensions of a conditional knowledge base K is not
warranted to be rational itself. Indeed, the intersection of all rational extensions of K
yields exactly the same result as intersecting the preferential extensions of K: namely
|∪Kp the preferential closure.

Theorem 7.1.4 (see [12], Thm. 6). If an assertion α |∪β is in all rational extensions
of a conditional knowledge base K, then it is also in all preferential extensions of K.
Furthermore, α |∪β can be derived from K by the rules of RKLM iff it can be derived
from K by the rules of PKLM.

In view of this, Magidor and Lehmann propose an alternative, more sophisticated
characterization of rational entailment. For this purpose they introduce a partial order
on rational consequence relations (not to be confused with the partial order on states
that preferential models come with!):

Definition 7.1.4 (see [12], Def. 20). Let |∪0 and |∪1 be two rational consequence
relations. We shall say that |∪0 is preferable to |∪1 (|∪0 � |∪1) iff5:

1. there exists an assertion α |∪1 β such that α |�0 β and for all γ for which γ ⊀ α
for |∪0, and for all δ such that γ |∪0 δ, we also have γ |∪1 δ, and

2. for any assertion γ |∪0 δ such that γ |�1 δ, there are γ⊆ and δ⊆ for which γ⊆ |∪1 δ⊆,
γ⊆ |�0 δ⊆ and γ⊆

⊀ γ for |∪1.

This can be interpreted as an argumentation game between two persons. Both persons
come with a rational extension of a knowledge base. In order to attack the other
person one may name a conditional assertion α |∪β that is in the extension of the

5 In [12] the authors use the “◦” symbol for this relation. In order to disambiguate the usage of
the various symbols for ordering relations in this chapter and therefore to serve readability, in this
chapter “�” is being used exclusively for the preferability relation of Definition 7.1.4.
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other person but not in one’s own. A defense consists of a counter-attack: it is to
name a conditional assertion γ |∪ δ that is in the extension of the opponent but not
in one’s one and for which the antecedent γ is more normal than α according to
the opponent’s extension (hence the opponent has γ ⊀ α in her knowledge base). In
order to win the proponent has to be able to attack the opponent in such a way that
the opponent cannot offer a defense (criterion 1), and for every counter-attack of the
opponent the proponent has to be able to respond (criterion 2).

The rational closure of a knowledge base K is the rational extension of K that
is �-preferable to all other rational extensions of K. Indeed, for instance for finite
languages there is a unique rational extension that has this property.

Definition 7.1.5 (see [12], Def. 21). Let K be a knowledge base. If there is a rational
extension |∪ of K that is �-preferable to all other rational extensions of K, then |∪
is called the rational closure of K.

7.1.3 Ranked and Rational Models

Let us proceed by giving a semantics for rational consequence relations. In the next
section we will use this semantic characterization in order to construct the rational
closure of a knowledge base. The semantics is provided by a specific sub-class
of preferential models, namely the ones for which the ordering on the states ◦ is
modular.

Definition 7.1.6. A partial order ◦ over V is called modular iff it satisfies the fol-
lowing equivalent conditions:

• there is a totally ordered set Υ (the strict order on Υ is denoted by ◦⊆) and a
function r : V ∅ Υ (the ranking function) such that x ◦ y iff r(x) ◦⊆ r(y).

• for any x, y, z ∨ V if x ⊀ y, y ⊀ x and z ◦ x , then z ◦ y
• for any x, y, z ∨ V if x ◦ y, then either z ◦ y or x ◦ z
• for any x, y, z ∨ V if x ⊀ y, y ⊀ z, then x ⊀ z

In [12] (Def. 14) the authors define a ranked model as a preferential model 〈S, l,◦↓
for which the strict partial order ◦ is modular. Therefore we can associate a ranking
function r with each ranked model.

This is a good place to introduce some insights which help to simplify the technical
requirements below. Using states and mapping states into worlds in the definition
of a preferential model M = 〈S, l,◦↓ allows for one and the same world w to be
associated with different states, i.e., there are s, t ∨ S such that s ≥= t and l(s) = l(t).6

However, if ◦ is modular, either both states have the same rank or one state is higher
ranked than the other, e.g. s ◦ t . Let N = 〈S⊆, l ⊆,◦⊆↓ where S⊆ = S \ {t}, l ⊆ is l
restricted to the domain S⊆, and ◦⊆ = ◦ ≺ (S⊆ × S⊆). Due to the modularity of ◦, it
is obvious in the first case that |∪N = |∪M . In the second case t is such that for any

6 See for instance the states s1 and s4 in Fig. 7.1.



190 7 An Adaptive Logic for Rational Closure

Fig. 7.2 Illustration of a
rational model and its
canonical ranking function
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α ∨ Vp for which t |⊃α, t is not minimal in ∼α (since s ◦ t and s |⊃α). What we
have just seen is that, whenever for a ranked model two states are mapped into the
same world, then we can do without one of them. But then, in case ◦ is modular,
the talk about states is superfluous. Similar to [15] and to [16] we use therefore the
following simplification:

Definition 7.1.7. A rational model M is a pair 〈W,◦↓ where W is a set of worlds
(i.e., interpretations of propositional atoms) and ◦ is a strict modular order on W .
We define α |∪M β iff for all w ∨ min◦(σM (α)) : w |= β, where σM (α) =df
{w ∨ W : w |= α} and for all W ⊆ ⊕ W , min◦(W ⊆) =df {w ∨ W ⊆ : there is no
w⊆ ∨ W ⊆ such that w⊆ ◦ w}.7

Note that due to the modularity of ◦ we have w ◦ w⊆ for all w ∨ min◦(W ⊆)
and for all w⊆ ∨ W ⊆ \ min◦(W ⊆). Note further that the modularity of ◦ gives rise
to equivalence classes of worlds which are mutually incomparable, namely the ones
which have the same ranking. The equivalence classes themselves are totally ordered.

For a rational model M = 〈W,◦↓ we define the canonical ranking function
rank◦ : W ∅ N (N being the natural numbers incl. 0) as the unique epimorphism
from 〈W,◦↓ onto 〈{0, . . . , n},<↓ where n ∨ N. Obviously for every equivalence
class [w] there is a unique natural number i assigned to it by rank◦, i.e., for all
w⊆ ∨ [w], rank◦(w⊆) = rank◦(w) = i and for each w⊆ /∨ [w], rank◦(w⊆) ≥= i . It is
obvious that all minimal worlds in σM (α) belong to the same equivalence class. The
canonical ranking of a rational model is illustrated in Fig. 7.2.

We define another useful related mapping AbDeg◦ : Vp ∅ {0, . . . , n,ω} on basis
of rank◦. We say AbDeg◦(α) is the abnormality degree of α. Intuitively speaking,
the abnormality degree of a formula α mirrors how surprised we would be if α were
to be the case: higher degrees indicate a higher surprise factor.

For a α ∨ Vp, α ∗∅ h iff σM (α) ≥= ∈ and rank◦(w) = h for any w ∨
min◦(σM (α)). If σM (α) = ∈ then α ∗∅ ω.

Suppose in Fig. 7.2, σM (α) = {w1
2, w

1
3, w

2
3, w2

5, w2
7}. Then min◦(σM (α)) =

{w1
2, w

1
3} and AbDeg◦(α) = 1.

Just like preferential models adequately represented preferential consequence
relations, rational models represent rational consequence relations:

7 Since in this chapter we only deal with a finite language, the set of worlds W is finite as well.
Hence, we don’t need to add the smoothness condition that we used in the definition of preferential
models.



7.1 Rational Closure 191

Theorem 7.1.5 (see [12],Thm. 5). A binary relation |∪ is a rational consequence
relation iff it is the consequence relation defined by some rational model.

In the remainder of this section we present some properties that will be useful later
on and that highlight the links between the various ways normality can be expressed
in the present formal framework. Let in the following facts M be a rational model.
We denote by α ⊀M β that M validates α ⊀ β (i.e., α ∨ β |∪M ¬β).

The normality order ⊀ mirrors exactly the abnormality degrees: β is less normal
than α in M in case the abnormality degree of α is lower than the one of β or both
abnormality degrees are infinite (i.e., there are neither α-worlds nor β-words). Note
that in the latter case α ∨ β |∪ γ for any γ.

Fact 7.1.2. α ⊀M β iff (AbDeg◦(α) < AbDeg◦(β) or AbDeg◦(α) = AbDeg◦
(β) = ω)

Proof. Let α ⊀M β. Then α ∨ β |∪M ¬β. In case σM (α ∨ β) ≥= ∈, for all w ∨
min◦(σM (α ∨ β)), w |= ¬β. Hence min◦(σM (α ∨ β)) = min◦(σM (α ∧ ¬β)).
But then obviously for any w ∨ min◦(σM (α)) and any w⊆ ∨ σM (β), rank◦(w) <

rank◦(w⊆) or σM (β) = ∈. Therefore AbDeg◦(α) < AbDeg◦(β). The case σM (α∨
β) = ∈ is trivial, since then σM (α) = σM (β) = ∈.

Let AbDeg◦(α) < AbDeg◦(β). Then σM (α) ≥= ∈. Furthermore, either σM (β) =
∈ or for all w ∨ σM (β), rank◦(w) > rank◦(w⊆) where w⊆ is any minimal world
in σM (α). But then obviously w⊆ |= ¬β. Hence min◦(σM (α)) = min◦(σM (α ∧
¬β)) = min◦(σM (α ∨ β)) and therefore α ∨ β |∪M ¬β. The case AbDeg◦(α) =
AbDeg◦(β) = ω is trivial, since then σM (α ∨ β) = ∈ and thus α ∨ β |∪ γ
for all γ. �

α normally implies β in M iff the abnormality degree of α is lower than the
abnormality degree of α ∧ ¬β or the abnormality degree of α is infinite.

Fact 7.1.3. α |∪M β iff (AbDeg◦(α) < AbDeg◦(α ∧ ¬β) or AbDeg◦(α) = ω)

Proof. This is an immediate consequence of Fact 7.1.2 since α |∪β is equivalent to
α ⊀ α ∧ ¬β, as can easily be shown. �

If α is more normal than β then α normally implies ¬β.

Fact 7.1.4. If α ⊀M β, then α |∪M ¬β.

Proof. Since α ⊀M β, α ∨ β |∪M ¬β. Suppose first σM (α ∨ β) = ∈. Then
σM (α) = ∈ and hence α |∪M ¬β. Suppose now σM (α ∨ β) ≥= ∈. Then, for all
w ∨ min◦(σM (α ∨ β)), w |= ¬β. Hence, since w |= α ∨ β, w |= α. Hence,
min◦(σM (α)) = min◦(σM (α ∨ β)). Hence α |∪M ¬β. �

⊀M is transitive.

Fact 7.1.5. If α ⊀M β and β ⊀M γ, then α ⊀M γ.
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Fig. 7.3 Illustration of a
rational+ model and its canon-
ical ranking function
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Proof. Applying Fact 7.1.2 we have AbDeg◦(α) < AbDeg◦(β) ⊇ AbDeg◦(γ) or
AbDeg◦(α) = ω = AbDeg◦(β) = AbDeg◦(γ). The rest follows by
Fact 7.1.2. �

We close our list of facts with two observations which immediately follow by the
finiteness of our language:

Fact 7.1.6. (i) For all w ∨ W there is an α for which w ∨ min◦(σ(α)). (ii) For all
w ∨ W , rank◦(w) ⊇ 2n − 1.

Proof. Ad (i): Take α = ∧
i∨I pi ∧ ∧

j∨{1,...,n}\I ¬p j where w is the assignment
pi ∗∅ 1 if i ∨ I and pi ∗∅ 0 else.

Ad (ii): This follows from the fact that there are maximal 2n worlds since there
are only 2n different assignments to the propositional letters {p1, . . . , pn}. �

7.1.4 Constructing a Model for Rational Closure

As shown in [12], the rational closure of a given knowledge base exists for a finite
language L. Furthermore, there are various model-theoretic approaches to construct
a model for it (e.g. in [12], Sect. 5.7). The following proposal presented in [16] is
interesting for our purposes. Let K be a conditional knowledge base. Let M be the
set of all rational models of K. Define

U0 =df

⋃

〈W,◦↓∨M
{w ∨ W | rank◦(w) = 0}

Ui =df

⋃

〈W,◦↓∨M
{w ∨ W | rank◦(w) = i} \

⋃

j<i

U j , where i > 0

We are interested in M = 〈U,◦↓ where U = ⋃
i∨N Ui and ◦ is defined by: for all

natural numbers i, j and for all w,w⊆ for which w ∨ Ui and w⊆ ∨ U j , w ◦ w⊆ iff
i < j . As proven in [16], M is a rational model defining the rational closure of K
(Fig. 7.3).

The idea behind this construction is simple: each world gets a rank as low as
possible. In terms of abnormality degrees of formulas this means that each formula

http://dx.doi.org/10.1007/978-3-319-00792-2_5
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Table 7.3 Worlds for K =
{p1 |∪ p2,¬p1 ∧ ¬p2 |∪ p3} p1 p2 p3 p1 p2 p3

w2 0 1 0 w1 1 0 0
w123 1 1 1 w23 0 1 1
w12 1 1 0 w3 0 0 1
w13 1 0 1 w0 0 0 0

(a) model M1 (b) model M2 (c) model M3

Fig. 7.4 The worlds are ordered by rank: bottom line is rank 0, second line is rank 1 and third line
is rank 2

gets an abnormality degree as low as possible. Let us demonstrate this by a simple
example where K = {p1 |∪ p2,¬p1∧¬p2 |∪ p3}. Let the worlds be as in (Table 7.3):

In Fig. 7.4 we depict three models which we are going to compare now.
We see a sequence of models where worlds are ranked lower and lower from left

to right (indicated by the dotted arrow). Indeed, model M3 is the rational closure of
K since no world can be ranked lower than it is ranked in M3. This suggest we can
visualize the construction as “dropping worlds” as low as possible. It is not difficult to
see that “dropping worlds” in this manner leads to more and more preferable models:
|∪M3

� |∪M2
� |∪M1

.

7.2 An AL for Rational Closure

We are now going to introduce our AL for rational closure. For this purpose we first
define the logic R, then slightly enhance its expressive power in the logic R+. The
latter will serve as our lower limit logic. What it adds to R is the ability to express in
the object language the degree of (ab)normality of a formula. This will be handy for
the AL ARCs which is introduced in Sect. 7.2.3 since the abnormalities will be—
informally speaking—of the form “α has an abnormality degree worse than n” (for
each n). As a consequence ARCs will interpret each formula as normally as possible
relative to a given conditional knowledge base.
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7.2.1 The Logic R

As our goal is to develop a logic, the consequences of which, for a given condi-
tional knowledge base, correspond to the rational closure, the following logic R
which generalizes the inferential system RKLM will be very useful. We are operating
in a language L consisting of Boolean combinations of conditional assertions and
propositional formulas (while the language of RKLM only consisted of conditional
assertions). Let Vp be again the set of propositional formulas, P = {p1, . . . , pn} the
set of propositional letters, and V|∪ the set of conditional assertions. V is the set of all
Boolean combinations of the formulas in V|∪. The consequence relation of R maps
sets of formulas in V to sets of formulas in V . Some notational conventions: as done
so far we use α,β, γ and δ to refer to propositional formulas, ϕ and ψ are reserved for
formulas in V . Logic R consists of all axioms and rules of the propositional calculus
together with the following axioms and rules:

α |∪α (ID)

If 
 α ⊃ β, then 
 (α |∪ γ) ∧ (β |∪ γ) (RCFA)

If 
 α ∧ β, then 
 (γ |∪α) ∧ (γ |∪β) (RCM)
(
(α |∪β) ∧ (α |∪ γ)

) ∧ (α |∪β ∧ γ) (CC)
(
(α |∪ γ) ∧ (β |∪ γ)

) ∧ (α ∨ β |∪ γ) (CA)
(
(α |∪β) ∧ (α |∪ γ)

) ∧ (α ∧ β |∪ γ) (ASC)
(
(α |∪β) ∧ ¬(α |∪¬γ)

) ∧ (α ∧ γ |∪β) (RM)

The logic was more thoroughly studied in [10], for instance completeness and
soundness was demonstrated for various semantics. In [15] a tableau calculus was
developed for R. Like the authors in [15], we use a semantics based on rational
models. For a rational model M = 〈W,◦↓ we define |= as follows: where α |∪β ∨
V|∪: M |= α |∪β iff α |∪M β. Furthermore, for Boolean combinations |= is defined
in the usual way (e.g. M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ, etc.). We write �R for
the semantic consequence relation that is defined in the usual way by Γ �R ϕ iff
M |= ϕ for all rational models of Γ .8

Remarks 7.2.1. Note that for instance the following properties hold in R:

(
(α |∪β) ∧ (β |∪α) ∧ (α |∪ γ)

) ∧ (β |∪ γ) (EQ)
(
(α ∧ β |∪ γ) ∧ (α |∪β)

) ∧ (α |∪ γ) (RT)
(
(α ∧ β) |∪ γ

) ∧ (α |∪(β ∧ γ)) (CW)

8 In order to extend R such that its consequence relation maps formulas in the Boolean closure
of V|∪ × Vp to formulas in the Boolean closure of V|∪ × Vp we can add an actual world @ to
rational models and define M |= pi iff @ |= pi . Conditional assertions and complex formulas get
their truth values as before. However, here we will keeps things simple and only focus on Boolean
combinations of conditional assertions.
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7.2.2 The Lower Limit Logic R+

The main idea underlying the adaptive logic ARCs for rational closure which is
going to be introduced in this section is that propositional formulas are interpreted
as normally as the given knowledge base allows for. Semantically this means that the
worlds of rational models are ranked as low as possible (see Sect. 7.1.4). In order to
make this description more precise and in order to define this logic we introduce an
extended language L+ on basis of our language L. Therefore we extend the given
set of propositional letters P = {p1, . . . , pn} with the set of propositional letters
{li | i ∨ N } where N = {0, . . . , 2n − 1}. We use the abbreviation m for 2n − 1.
We define P+ =df P ⇐ {li | i ∨ N }, V+

p as the set of propositional formulas with

propositional letters P+, and V+
|∪ is the set of conditional assertions α |∪β where

α,β ∨ V+
p . Finally, let V+ be the set of all Boolean combinations of formulas in V+

|∪.

The idea is that the li ’s represent different “degrees of abnormality”. li ⊀α can
be read as “α has a higher degree of abnormality than i”, α |∪ li can be read
as “α’s degree of abnormality is at least i”. The higher the index i , the higher
is the degree of abnormality represented by li .

We call a rational consequence relation realizing this idea a rational+ consequence
relation. It is supposed to satisfy the following additional conditions, where α ∨ V+

p :

α |∪ l0 (C+1)

li−1 ⊀ α

α |∪ l j
, for all j ⊇ i, where i ∨ N \ {0}, (C+2)

li−1 ⊀ li , for all i ∨ N \ {0} (C+3)

lm ⊀ α

α |∪→ (C+4)

Note that due to the transitivity of ⊀ (Fact 7.1.1.iv) and (C+3) we immediately have
li ⊀ l j for all i, j ∨ N for which i < j . (C+1) ensures that each α has at least
abnormality degree 0. By (C+2), if α is more abnormal than i − 1, then it has at
least abnormality degree j for j ⊇ i . Should α be more abnormal then m, then we
consider it as maximally abnormal by (C+4), i.e., α |∪→.

The following facts express that li works exactly as expected. Where |∪ is a
rational+ consequence relation and α ∨ V+

p , we have:

Fact 7.2.1. Where i < j ⊇ m, li ⊀ l j .

The li ’s are linearly ordered by ⊀ according to their indexes. The fact holds by (C+3)
and Fact 7.1.1.iii.
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Fact 7.2.2. If li−1 ⊀ α and α ⊀ l j , then (a) α |∪ li ⊆ for all i ⊆ ⊇ i and i ⊆ ⊇ m, and
(b) α |∪¬l j ⊆ for all j ⊆ ⇒ j and j ⊆ ⊇ m.

If α has an abnormality degree worse than i−1 and better than j then (a) its abnor-
mality degree is at least i ⊆ for all i ⊆ ⊇ i , and (b) its abnormality degree is not as bad
as j ⊆ for all j ⊆ ⇒ j that are lower or equal to m.

(a) holds due to (C+2). Due to Fact 7.1.1.iii and (C+3), α ⊀ l j ⊆ for all j ⊆ ⇒ j and
j ⊆ ⊇ m. Hence, by Fact 7.1.1.i, α |∪¬l j ⊆ .

Fact 7.2.3. (i) l0 |∪� and � |∪ l0. (ii) � |∪ α iff l0 |∪α.

� has abnormality degree 0 (“most normal”).
� |∪ l0 holds by (C+1) and the other direction is trivial. (ii) holds due to

(Equivalence).
In order to avoid unnecessary confusions, we need to be very precise from now

on concerning the language that is used in the context of models and consequence
relations. Where ∼L ∨ {L,L+}, rational models are called rational ∼L-models if the
corresponding worlds are ∼L-worlds, namely assignments of truth values to the propo-
sitional letters in ∼L. Similarly we call a consequence relation |∪ an ∼L-consequence
relation if it is defined over the propositional formulas in ∼L. Finally, we call a knowl-
edge base consisting of conditional assertions over propositional formulas in ∼L an
∼L-conditional knowledge base.

Definition 7.2.1 (Rational+ models). A rational+ L+-model is a rational L+-
model M = 〈W,◦↓ that meets the following requirement (R):

(R) For each world w ∨ W , rank◦(w) ⊇ m and where rank◦(w) = i , (i) w |= l j

for all j ∨ N such that j ⊇ i and (ii) w |= ¬l j for all j ∨ N such that j > i .

A rational+ L+-model is schematically illustrated in Fig. 7.3. As was already the
case for rational models, each level of the modular order ◦ has an associated rank,
i.e., rank◦(wi

j ) = i . This partitions the worlds in equivalence classes of worlds with
the same rank. Moreover, each equivalence class of rank i corresponds to the minimal
worlds validating li . This way we can express in the object language the degree of
abnormality of a formula β. As is shown in the following lemma, AbDeg◦(β) = i
iff (li−1 ⊀M β and not li ⊀M β).

In the following we state some facts that highlight how rational+ L+-models
handle normality degrees.9 Let M = 〈W,◦↓ be a rational+ L+-model.

Fact 7.2.4. α |∪M l0

Each α has abnormality degree of at best 0.

Fact 7.2.5. AbDeg◦(li ) = i iff σM (li ) ≥= ∈, else AbDeg◦(li ) = ω.

The abnormality degree of li is i except there are no li -worlds, in which case it is ω.

9 The interested reader can find the proofs for these fact in Appendix E.
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Fact 7.2.6. Where i, j ∨ N , if i < j then li ⊀M l j .

The ⊀M -ordering of the li ’s reflects their indexes.
The next fact justifies why we speak of the “abnormality degree of α” in both

cases, when we refer to AbDeg◦(α) and when we refer to α’s relation to the li ’s:
there is a 1:1 between both notions.

Fact 7.2.7. For all α ∨ V+
p and all i ∨ N ,

(i) i < AbDeg◦(α) iff li ⊀M α.
(ii) i ⊇ AbDeg◦(α) iff α |∪M li .

(iii) where i < m, AbDeg◦(α) = i iff, α |∪M li and α ≥ |∪ li+1
(iv) AbDeg◦(α) = i iff, not li ⊀M α and (li−1 ⊀M α or i = 0).

Ad (i): The abnormality degree as measured by AbDeg◦ is worse than i iff the
abnormality degree as measured by means of the l j ’s is worse than i .

Ad (ii): The abnormality degree of α (as measured by AbDeg◦) is at best i iff it
is at best i as measured by the l j ’s.

Ad (iii): If α’s abnormality degree is i (in view of AbDeg◦) then its abnormality
degree (in view of the l j ’s) is at best i and better than i + 1.

Ad (iv): If α’s abnormality degree is i (in view of AbDeg◦) then its abnormality
degree is not worse than i and either it is 0 or it is worse than i−1.

Fact 7.2.8. If li−1 ⊀M α, then α |∪M l j for all j ⊇ i and j ⊇ m.

Obviously, if α has an abnormality degree worse than i−1 then its abnormality degree
is at best j where j ⊇ i and j ⊇ m.

Fact 7.2.9. If lm ⊀M α, then α |∪M →.

If α has an abnormality degree worse than m then there are no α-worlds and hence
α |∪M →.

It is in no way surprising that we have an analogous representation theorem for
rational+ consequence relations and rational+ models as we had in the case of rational
consequence relations and rational models. We first show that every rational+-model
defines a rational+ consequence relation (Theorem 7.2.1), then that all rational mod-
els that define a rational+ consequence relation are rational+ (Theorem 7.2.2). This
culminates in Corollary 7.2.1 which states the adequacy of rational+ models for
rational+ consequence relations.

Theorem 7.2.1. Let M = 〈W,◦↓ be a rational+ L+-model, then |∪M is a rational+
consequence relation.

Proof. Follows by Fact 7.2.4, Fact 7.2.6, Fact 7.2.8, and Fact 7.2.9. �

Theorem 7.2.2. For all rational L+-models M = 〈W,◦↓ defining a rational+
consequence relation |∪M , M satisfies requirement (R).
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Proof. Let w ∨ W . We prove the theorem by induction on rank◦(w). “n = 0”: Let
rank◦(w) = 0. There is an α0 ∨ V+

p such that w |= α0. Since rank◦(w) = 0, w ∨
min◦(σM (α0)). Since by (C+1) α0 |∪M l0, we have w |= l0. Since rank◦(w) = 0,
w ∨ min◦(σM (l0)) = min◦(σM (l0 ∨ li )) for all i ∨ N . Furthermore, since by Fact
7.2.1 l0 ⊀ li , for all i ∨ N \ {0}, w |= ¬li .

“n ∅ n + 1”: Let rank◦(w) = n + 1. By Fact 7.1.6 there is an αn+1 ∨ V+
p such

that w ∨ min◦(σM (αn+1)). By the induction hypothesis, AbDeg◦(li ) = i for all
i < n + 1. Hence by Fact 7.1.2 we have li ⊀M αn+1 for all i < n + 1. But then,
due to (C+2), αn+1 |∪M li for all i ⊇ n + 1. Therefore αn+1 |∪M ln+1 and hence
w |= li for all i ⊇ n + 1. It follows also immediately by the induction hypothesis
that w ∨ min◦(σM (ln+1)). Since by Fact 7.2.1 ln+1 ⊀ l j for all j ∨ N for which
j > n + 1, w |= ¬l j .

That rank◦(w) ⊇ m follows immediately by (C+4). �

Corollary 7.2.1. A binary relation |∪ is a rational+ L+-consequence relation iff it
is the consequence relation defined by some rational+ L+-model.

Proof. Suppose |∪ is a rational+ L+-consequence relation. Then, by Theorem 7.1.5,
there is a rational L+-model M such that |∪ = |∪M . By Theorem 7.2.2 is M a
rational+ L+-model.

Suppose |∪M is such that M is a rational+ L+-model. By Theorem 7.2.1, |∪M is
a rational+ L+-consequence relation. �

Corollary 7.2.2 is going to show that rational L-models and rational+ L+-models
define the same rational L-consequence relations. It is an immediate consequence
that for each rational L-consequence relation there is a rational+ L+-model defining
it and vice versa. Therefore, if a rational closure exists for a given L-knowledge base,
then there are rational+ L+-models that define it. It will be the task of the adaptive
logic ARCs to pick out these models. In order to establish these results the following
mappings λ and μ will be helpful.

Definition 7.2.2. We define a mapping λ from the rational L-models into the
rational+ L+-models in the following way (see Fig. 7.5). For M = 〈W,◦↓,
M ∗∅ 〈π(W ),◦⊆↓, where π maps L-worlds into L+-worlds such that (i) for all
α ∨ P , w |= α iff π(w) |= α; and (ii) if rank◦(w) = i then π(w) |= l j for
all j ∨ N for which j ⊇ i , and π(w) |= ¬l j for all j ∨ N for which j > i .
Furthermore, define ◦⊆ in the following way, w ◦ w⊆ iff π(w) ◦⊆ π(w⊆).

The following lemma shows that the co-domain of λ is indeed the set of rational+
L+-models (see (i) and (iv)) and that the mapping preserves conditional assertions
(see (ii)) and abnormality degrees (see (iii)).

Lemma 7.2.1. The following holds for the mapping λ:10

(i) λ(M) satisfies requirement (R).

10 The proofs can be found in Appendix E.
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Fig. 7.5 The mappings λ (see
Definition 7.2.2) and π (see
Definition 7.2.3), MRC is the
model for the Rational Closure
as constructed in Sect. 7.1.4

M (M )

rational -models rational + + -models

µ

-order

(ii) For all α,β ∨ Vp, α |∪M β iff α |∪λ(M) β.
(iii) For all w ∨ W , rank◦(w) = rank◦⊆(π(w)).
(iv) λ(M) is a rational+ model.

Definition 7.2.3. We define a mapping μ from the rational+ L+-models into the
rational L-models in the following way (see Fig. 7.5). For M = 〈W,◦↓, M ∗∅
〈η(W ),◦⊆↓, where η mapsL+-worlds intoL-worlds such that for all α ∨ P , η(w) |=
α iff w |= α. Furthermore, η(w) ◦⊆ η(w⊆) iff for all w⊆⊆ ∨ min◦(η−1({η(w)})) and
for all w⊆⊆⊆ ∨ min◦(η−1({η(w⊆)})), w⊆⊆ ◦ w⊆⊆⊆.

The following lemma establishes that the co-domain of π is indeed the set of
rational L-models (see (i)), that the mapping preserves conditional assertions (see
(ii)), and that the ranks of mapped worlds are at most their original rank. The reason
why the ranks may not be equal is that for some L-world w there may be different
L+-worlds w⊆ such for all L-formulas α, w |= α iff w⊆ |= α. Hence, all the latter
worlds are mapped by η to the same representative w which may have a lower rank
in the resulting model μ(M) than some of the w⊆ have in the original model M .

Lemma 7.2.2. The following holds for the mapping μ:11

(i) μ(M) is a rational L-model.
(ii) For all α,β ∨ Vp, α |∪M β iff α|∪μ(M)β.

(iii) For all w ∨ W , rank◦(w) ⇒ rank◦⊆(η(w)).

Altogether the two lemmas show that the rational L-models and the rational+
L+-models represent the same rational consequence relations in Vp × Vp.

Theorem 7.2.3. (i) For each rational+ L+-model M there is a rational L-model N
for which |∪M ≺ (Vp × Vp) = |∪N . And vice versa, (ii) for each rational L-model
N there is a rational+ L+-model M for which |∪M ≺ (Vp × Vp) = |∪N .

Proof. This follows by Lemma 7.2.1 and Lemma 7.2.2. �

Corollary 7.2.2. Let K be an L-knowledge base. We have,

11 The proof can be found in Appendix E.
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⋂
{|∪ | |∪ is a rational L-cons. rel. extending K} =

⋂
{|∪ | |∪ is a rational+ L+-cons. rel. extending K} ≺ (Vp × Vp).

Analogous to the rational case we can introduce a logic R+ on basis of the con-
ditions for rational+ consequence relations.

Definition 7.2.4 (Logic R+). We define the logic R+ by the axioms for R and the
following:

α |∪ l0 (R+1)

(li−1 ⊀ α) ∧ (α |∪ l j ) for all j ⊇ i, where i ∨ N \ {0} (R+2)

li−1 ⊀ li for all i ∨ N \ {0} (R+3)

(lm ⊀ α) ∧ (α |∪→) (R+4)

A semantics for R+ is given by the rational+ models. We define |= and �R+ for
rational+ models analogously to the way we defined |= and �R for rational models.

Theorem 7.2.4. R+ is complete and sound with respect to rational+ models.

Proof. This can be easily shown on the basis of the soundness and completeness
of R. Let Γ + = Γ ⇐ {α |∪ l0 | α ∨ V+

p } ⇐ {
(li−1 ⊀ α) ∧ (α |∪ l j ) | α ∨ V+

p , i ∨
N \ {0}, j ⊇ i

}⇐ {
li−1 ⊀ li | i ∨ N \ {0}}⇐ {

(lm ⊀α) ∧ (α |∪→) | α ∨ V+
p

}
. Note

first that Γ 
R+ ϕ iff Γ + 
R ϕ since all instances of (R+1)–(R+4) are contained in
Γ +. By the soundness and completeness of R, Γ + 
R ϕ iff Γ + �R ϕ. Evidently, all
rational models of Γ + define a rational+ consequence relation. Hence, by Theorem
7.2.2, all rational models of Γ + are rational+ models. Since, by definition, also every
rational+ model of Γ is a rational model of Γ +, we have Γ �R+ ϕ iff Γ + �R ϕ.
Altogether, we get Γ 
R+ ϕ iff Γ �R+ ϕ. �

7.2.3 The Adaptive Logic ARCs

We now define the adaptive logic ARCs for rational closure. The lower limit logic is
R+. Abnormalities are conditional assertions of the kind li ⊀α. The intention served
by minimizing abnormalities of this form is to interpret a propositional formula α as
normally as possible. Note here that for a rational+ L+-model M = 〈W,◦↓, li ⊀M α
iff i < AbDeg◦(α) (see Fact 7.2.7.i). Minimizing abnormalities can therefore in
semantical terms be seen as ranking worlds as low as possible (see Sect. 7.1.4),
hence as interpreting formulas as normally as possible.

Definition 7.2.5. ARCs is the adaptive logic in standard format defined by the fol-
lowing triple:

• LLL: R+
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• Abnormalities: Ω =df {li ⊀ α | α ∨ Vp, i ∨ N }
• Strategy: simple strategy

We write Ab(M) for the set {ϕ ∨ Ω | M |= ϕ} where M is an LLL-model of a
given premise set.

We first prove the adequacy of ARCs for characterizing the Rational Closure.
Then we give some examples of dynamic proofs.

The following lemma establishes that, where M is the rational L-model for which
|∪M is the rational closure of a knowledge base K, (i) λ(M) is a minimally abnormal
R+-model of K, (ii) all minimally abnormal models of K have the same abnormal
part, (iii) all formulas have the same normality degrees in the minimally abnormal
models, (iv) all minimally abnormal models verify the same conditional assertions,
namely the ones in the rational closure of K.

(iv) immediately implies that ARCs is indeed adequate to represent the Rational
Closure. (ii) allows us to use the simple strategy (see the discussion in Sect. 2.4.3).

Lemma 7.2.3. Let M = 〈WM ,◦M ↓ be the rational L-model of the rational closure
of an L-knowledge base K constructed as in Sect.7.1.4.

(i) λ(M) = 〈π(WM ),◦λ(M)↓ is a minimally abnormal rational+ L+-model of K;
(ii) for all minimally abnormal rational+ L+-models N of K, Ab(N ) = Ab(λ(M));

(iii) for all minimally abnormal rational+ L+-models N = 〈WN ,◦N ↓ of K and
for all α ∨ Vp, AbDeg◦N

(α) = AbDeg◦M
(α) = AbDeg◦λ(M)

(α);

(iv) for all minimally abnormal rational+ L+-models N of K and for all conditional
assertions α |∪β (where α,β ∨ Vp), α |∪N β iff α |∪λ(M) β iff α |∪M β.

Proof. Ad (i) and (ii): Suppose there is a rational+ L+-model N = 〈WN ,◦N ↓ of K
such that there is an li ⊀ α valid in λ(M) but not in N (for i ∨ N ,α ∨ Vp). Hence,
by Fact 7.2.7.i,

rank◦N (w) ⊇ i (7.1)

where w is any world in min◦N (σN (α)). By Lemma 7.2.2, μ(N ) = 〈η(WN ), ◦μ(N )↓
is a rational L-model of K. Furthermore, by the construction of M in Sect. 7.1.4,
η(w) ∨ WM and therefore π(η(w)) ∨ σλ(M)(α). Furthermore, since li ⊀λ(M) α and
by Fact 7.2.7.i, rank◦λ(M)

(π(η(w))) > i . By the construction of M we have

rank◦M (η(w)) ⊇ rank◦μ(N )
(η(w)) (7.2)

Also, by Lemma 7.1.2.iii and Lemma 7.2.2.iii,

rank◦λ(M)
(π(η(w)) = rank◦M (η(w)) and (7.3)

rank◦μ(N )
(η(w)) ⊇ rank◦N (w) (7.4)

But (7.1), (7.2), (7.3) and (7.4) imply that rank◦λ(M)
(π(η(w)) ⊇ i ,—a contradiction.

Ad (iii): Assume for a α ∨ Vp, i = AbDeg◦λ(M)
(α) < AbDeg◦N

(α). By Fact
7.2.7.i, li ⊀ α /∨ Ab(λ(M)) and li ⊀ α ∨ Ab(N ). This contradicts (ii). Assume

http://dx.doi.org/10.1007/978-3-319-00792-2_1
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for a α ∨ Vp, i = AbDeg◦N
(α) < AbDeg◦λ(M)

(α). But then, by an analogous
argument as above, li ⊀ α ∨ Ab(λ(M)) \ Ab(N ),—this contradicts (ii). Altogether,
AbDeg◦λ(M)

(α) = AbDeg◦N
(α). That AbDeg◦λ(M)

(α) = AbDeg◦M
(α) follows by

Lemma 7.2.1.iii.
Ad (iv): This is an immediate consequence of (iii) and Fact 7.1.3. �

Theorem 7.2.5. Let K be an L-conditional knowledge base. We have for all α,β ∨
Vp: α |∪β is in the rational closure of K iff K 
ARCs α |∪β.

Proof. Let M be the model for the rational closure of K constructed in Sect. 7.1.4.
“ˇ”: Suppose α |∪β is in the rational closure of K. Thus, α |∪M β. By Lemma

7.2.1.ii, α |∪M β iff α |∪λ(M) β. Hence, by Lemma 7.2.3, all minimally abnormal
models verify α |∪β. Thus, K �ARCs α |∪β and by completeness K 
ARCs α |∪β.

“⇐”: Suppose K 
ARCs α |∪β. Hence, by soundness K �ARCs α |∪β. By
Lemma 7.2.3, α |∪M β. �

Some examples are needed in order to demonstrate what we have achieved.
First some simple facts which will help us to shortcut the proofs:

Fact 7.2.10. (i) 
R+ (� |� ¬α) ∨ (l0 ⊀ α)

(ii) α |∪β 
R+ ((α ∧ γ) |∪ β) ∨ (l0 ⊀ (α ∧ γ))

(iii) {li ⊀ α,¬(li+1 ⊀ (α ∧ β)),α |∪ γ} 
R+ α ∧ β |∪ γ
(iv) {α |∪ γ,β |∪¬γ,β |∪α} 
R+ α ⊀ β

Proof. Ad (i): Suppose � |∪¬α. By (R+1) � |∪ l0 and since obviously l0 |∪� we
have by (EQ), l0 |∪¬α. Note that also l0 |∪ l0 ∨ α and l0 ∨ α |∪ l0. Hence, again by
(EQ), l0 ∨ α |∪¬α which is the same as l0 ⊀ α.

Ad (ii): Suppose α |∪β and that l0 ⊀ α ∧ γ is not the case. By (i), � |� ¬(α ∧ γ).
Assume α |∪¬(α∧ γ). Then, by (CW), � |∪(α ∧ ¬(α∧ γ)) and hence � |∪¬(α∧
γ),—a contradiction. Thus, α |� ¬(α ∧ γ). Since also α |∪β, by (RM), α ∧ γ |∪β.

Ad (iii): Suppose ¬(li+1 ⊀ (α ∧ β)), li ⊀ α and α |∪ γ. Since li ⊀ α, by (R+2),
α |∪ li+1. Since¬(li+1⊀(α∧β)), by Fact 7.1.1.ii,¬(α⊀(α∧β)). Thus,α |� ¬(α∧β).
Since α |∪ γ, by (RM), α ∧ β |∪ γ.

Ad (iv): Suppose α |∪ γ,β |∪¬γ, and β |∪α. Note that by (CC) and (ID), β |∪β∧
α and by (ID) and (RCM), β∧α |∪β. Hence, by (EQ), β∧α |∪¬γ. Assume α |� ¬β.
By (RM), α ∧ β |∪ γ,—a contradiction. Thus, α |∪¬β. Since α |∪α and β |∪α by
(CA), α∨β |∪α. Since by (ID) and (RCM), α |∪α∨β, we get by (EQ), α∨β |∪¬β
and thus α ⊀ β. �

Example 7.2.1. Let our knowledge base be Γ = {b |∪ f, p |∪¬ f, p |∪ b}: Birds
usually fly, while penguins usually don’t fly. Moreover, Penguins are usually birds.
We first introduce our premises:

1 b |∪ f PREM ∈
2 p |∪¬ f PREM ∈
3 p |∪ b PREM ∈
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Now we interpret b as normally as possible. This means that we assume that
� |∪¬b is not the case since this would imply that b is not normal:

4 � |� ¬b RC {l0 ⊀ b}
We have made use of Fact 7.2.10.i. We proceed symmetrically for ¬b:

5 � |� b RC {l0 ⊀ ¬b}
Now we introduce an irrelevant factor w. By Fact 7.2.10.ii we know that in case

we can safely assume that b ∧ w has abnormality degree 0 we can derive b ∧ w |∪ f
from b |∪ f :

6 b ∧ w |∪ f 1; RC {l0 ⊀ (b ∧ w)}
We now defeasibly interpret p as having abnormality degree 0:

107 � |� ¬p RC {l0 ⊀ p}
8 b |∪ l0 RU ∈
9 b ⊀ p 1,2,3; RU ∈

10 l0 ⊀ p 8,9; RU ∈
Line 8 follows by (R+1). Line 9 follows by Fact 7.2.10.iv and Line 10 follows

with Fact 7.1.1.ii. It shows that our assumption at line 7 was mistaken and hence we
retract the inference at line 7 by means of marking it.

Finally we derive p ∧ w |∪¬ f from p |∪¬ f in an analogous way as we derived
b ∧ w |∪ f from b |∪ f :

11 ¬(l1 ⊀ (p ∧ w)) RC {l1 ⊀ (p ∧ w)}
12 (p ∧ w) |∪¬ f 2,10,11; RU {l1 ⊀ (p ∧ w)}

Line 12 follows with Fact 7.2.10.iii. All formulas on unmarked lines are finally
derivable and hence in the rational closure of K, as can easily be verified.

Example 7.2.2. We consider the so-called Nixon diamond example where Γ =
{r |∪} ¬p, q |∪ p.12 The formulas can be interpreted by:

• Being a republican usually implies not being a pacifist. (r |∪¬p)
• Being a Quaker usually implies being a pacifist. (q |∪ p)

It would for example be desirable to derive q ∧w |∪ p (where w can be read as “being
a worker”).

1 r |∪ ¬p PREM ∈
2 q |∪ p PREM ∈
3 � |� ¬(w ∧ q) RU {l0 ⊀ w ∧ q}
4 � |� ¬w ∨ ¬q 3; RU {l0 ⊀ w ∧ q}
5 (� |� ¬w ∨ ¬q) ∧ (q |� ¬w) RU ∈
6 q |� ¬w 4,5; RU {l0 ⊀ w ∧ q}
7 ((q |∪ p) ∧ (q |� ¬w)) ∧ (q ∧ w |∪ p) RU ∈
8 q ∧ w |∪ p 2,6,7; RU {l0 ⊀ w ∧ q}

12 This has been presented e.g. in [12].
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At line 3 we make use of Fact 7.2.10.i, at line 5 we arrive by the contraposition
to (CW), line 7 is an instance of (RT). It is easy to see that there is no way to derive
l0 ⊀ w ∧ q on the empty condition,—q ∧ w |∪ p is therefore finally derivable.

7.3 Including Negative Knowledge

Knowledge bases were so far restricted to contain only the positive knowledge an
agent may have. However, an agent might also have statements of the following kind
in his knowledge base: if α then not normally β, i.e., α |� β. Adding statements of
this kind to a knowledge base requires special attention since such enriched knowl-
edge bases might not be consistent anymore. Suppose K = {a |∪ b} and we add
a |� ¬c and a ∧ c |� b. Applying rational monotonicity to a |∪ b and a |� ¬c leads
to a contradiction.

Let a general knowledge base be a conditional knowledge base which may contain
negated conditional assertions. As shown in [16], for a consistent general conditional
knowledge base K, |∪M is the rational closure of K, where M is the model constructed
in Sect. 7.1.4. By Theorem 7.2.3 we get following result:

Corollary 7.3.1. Let K be a consistent general L-conditional knowledge base. We
have for all α,β ∨ Vp: α |∪β is in the rational closure of K iff K 
ARCs α |∪β.

7.4 Conclusion

The preferential closure of a conditional knowledge base K can be obtained by
intersecting all supersets of K satisfying the conditions for preferential consequence
relations. The proof theory of preferential closure is therefore simply given by a logic
defined by these conditions, interpreted as rules. Adding Rational Monotonicity as
a further condition, on the other hand, defines a family of consequence relations
which is not closed under intersection. Although Lehmann and Magidor are able to
characterize it semantically by a selection on ranked models, a proof theory for it
was missing. This syntactical gap has been filled in this chapter by the adaptive logic
ARCs for finite propositional languages for which the rational closure is guaranteed
to exist.

In [12] it has been shown that the rational closure exists for a larger class of
knowledge bases and infinite languages, namely the so-called admissible knowledge
bases (e.g. knowledge bases for which a well-founded preferential model exists).
If we want to proceed in a similar manner as in this chapter we are in need of a
set-theoretic construction for the rational closure of a knowledge base in this more
general case. This is no trivial exercise: the one we used in Sect. 7.1.4 (cp. [16])
is restricted to finite languages. The authors in [12] presented another procedure.
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However, this construction requires another severe restriction: it only works on
the basis of so-called well-founded preferential consequence relations.13 Unfortu-
nately, as has been shown in [12], even finite knowledge bases can give rise to a non
well-founded preferential closure, and the existence of a well-founded preferential
model M does not ensure that the consequence relation defined by M is well-founded.

It is a future challenge to develop a proof theory allowing for admissible knowl-
edge bases in general and furthermore to take into account the predicative case
(cp. [17]).

Acknowledgments I am thankful to Diderik Batens and Joke Meheus for many constructive com-
ments which helped to improve this paper.
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Part III
Argumentation Theory



Chapter 8
Towards the Proof-Theoretic Unification
of Dung’s Argumentation Framework:
An Adaptive Logic Approach

This chapter presents a unifying adaptive logic framework for abstract
argumentation. It consists of a core system for abstract argumentation and various
ALs based on it. These logics represent in an accurate sense all standard extensions
defined within Dung’s abstract argumentation framework (see [2, 3]) with respect to
skeptical and credulous acceptance. The models of our logics correspond exactly to
specific extensions of given argumentation frameworks. Additionally, the dynamics
of adaptive proofs mirror the argumentative reasoning of a rational agent. In particu-
lar, the presented logics allow for external dynamics, i.e., they are able to deal with the
arrival of new arguments and are therefore apt to model open-ended argumentations
by providing provisional conclusions.1

8.1 Introduction

Theories of argumentation have been the subject of intensive research within the fields
of logic, philosophy, artificial intelligence and computer science. Bench-Capon and
Dunne [4] speak of a “core study within Artificial Intelligence”, the relation of argu-
mentation to nonmonotonic logics has been pointed out and researched (see [3, 5,
6]), argumentation has been discovered as a powerful tool within logic programming
(see [7, 8]), while in the field of practical reasoning many specific applications have
been developed, e.g., the analysis of legal discourse (see [9, 10]). One of the most
influential approaches to argumentation systems is Dung’s account of argumentation
frameworks (see [2, 3]). The importance of Dung’s approach derives from the fact
that it abstracts away from the nature of arguments and argumentation rules: the
framework consists of a set of arguments, which are taken to be abstract entities
represented by alphabetical letters, and the binary (so-called attack) relation defined

1 A former version of the content of this chapter has been published under the name “Towards the
Proof-Theoretic Unification of Dung’s Argumentation Framework: An Adaptive Logic Approach”
in the “Journal of Logic and Computation”, 2010, [1]. The paper is co-authored by Dunja Šešelja.

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 209
DOI: 10.1007/978-3-319-00792-2_8, © Springer International Publishing Switzerland 2014
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over this set. Such a framework is capable of formalizing various approaches to
nonmonotonic inferencing in the fields of AI, logic programming and human rea-
soning, which also “suggests that it is meaningful and interesting to incorporate the
idea of argumentation into nonmonotonic logic” ([2], p. 855). For a survey on abstract
argumentation frameworks see [4, 11] or [5].

The key notion of Dung’s account is the acceptability of arguments. Dependent on
the criteria for acceptance, it is possible to formulate different semantics. These define
a number of extensions representing sets of acceptable arguments, such as admissible,
grounded, complete, (semi)-stable and preferred extensions. Dung’s system has been
extended and generalized in various respects. We name just a few: preferences [12],
values [13] and audiences [14] in the sense of Perelman [15] have been introduced,
joint attacks have been enabled [16], the system has been used for an improved
account to default reasoning [6, 17], it has been applied to multi-agent systems
[18, 19], it has been used for applications in the philosophy of science [20], new
semantics/extensions have been presented [21, 22], game-theoretic approaches have
been developed [23], etc.

This chapter offers an adaptive logic framework with a specific core axiomatic
system, on the basis of which we define logics for obtaining all the standard extension
types of Dung’s account with respect to the skeptical and the credulous acceptability
of arguments. We have seen that the main idea of ALs is to interpret a premise set “as
normally as possible”, given a certain standard of normality. Based on the lower limit
logic (LLL), they select certain LLL-models of a given premise set which satisfy
the standard of normality. Syntactically they enrich the derivative power of the LLL
by allowing for certain rules to be applied conditionally. In case a condition turns
out to be unsafe, formulas derived on this very condition are marked in the proof
and thus not considered as being derived anymore. Markings in ALs come and go
while we reason on. Indeed, adaptive proofs are dynamic in two ways: internally in
the sense that during the reasoning process certain conditions might turn out to be
unsafe/safe (again) while we get more insight into the given premises, externally in
the sense that the introduction of new information in the form of new premises may
alter our treatment of certain conditions and thus alter the markings in the proof. In
argumentation the situation is similar: as rational debaters we introduce an argument
a in such a way that we are willing to withdraw it under certain circumstances. For
instance in the case that it is conflicting with other arguments, or in the case that
we cannot defend it against certain counterarguments. However, at a later point,
a new argument which defends the attacked a, might enter the scene, and cause
the acceptance of the latter one again. Therefore, argumentation is in a similar way
dynamic as adaptive logic proofs: internally in the sense that the progressing analyses
of the relationship of given arguments might alter our choice for accepted arguments,
and externally in the sense that the introduction of new arguments might make us
reconsider the acceptance of some arguments.

As we have already mentioned, Dung defined various extension types which
select certain subsets of (non-conflicting) arguments with respect to given criteria.
This mirrors the semantic selection of ALs: while the LLL defines minimal criteria
that have to be fulfilled in every model (such as the absence of conflicts between the
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validated arguments and the property that every validated argument is defended by
the other validated arguments against all possible attacks), the adaptive enhancements
refine the semantic selection by modeling the criteria given by the various extension
types. Furthermore, the dynamic adaptive proofs model the reasoning process leading
to these selections. In summary, ALs are very suitable for providing a unifying logical
framework for abstract argumentation. Thus, the logics for abstract argumentation
which will be presented in this chapter are ALs. They employ the core set of axioms
as LLL and define different standards of normality. In this way we can obtain logics
for admissible, complete, preferred, (semi-)stable as well as grounded extensions.

One of the main advantages of our approach compared to other proposals for proof
theories for abstract argumentation (see [24–26]) lies in its unifying power. A single
framework is able to capture all standard semantics/extensions with respect to both
skeptical and credulous acceptance, which makes it a decent logical surrounding for
their comparison, further elaboration, enhancements and generalizations.

In addition, our system represents a contribution to the research done in appli-
cations of ALs to different dialogical contexts (for a survey see [27]). Furthermore,
this chapter confirms the claim that the adaptive logic program offers a general and
unifying framework for nonmonotonic and defeasible logics (as has recently been
argued for in [28]).

The chapter is structured in the following way. First we present Dung’s abstract
argumentation framework in Sect. 8.2. In Sect. 8.3 we introduce the reader step-wise
into our adaptive logic framework for abstract argumentation. In Sect. 8.4 we define
all the ALs for the various extension types with respect to skeptical acceptance and
state the corresponding representational results. Section 8.5 features all the logics
for credulous acceptance and the respective representational results. In Sect. 8.6 we
localize the adaptive logic approach within the field of logical representations of
abstract argumentation and point out some advantages. The Appendix contains all
the meta-proofs for our results.

8.2 Dung’s Argumentation Framework: Key Terms

We will use lower case letters a1, a2, a3, . . . for arguments and lower case fraktur
letters a, b, c, . . . as meta-variables for arguments. Let

An =df {a1, a2, . . . , an}.

In [3] Dung defined his abstract argumentation frameworks as follows2:

Definition 8.2.1. A finite argumentation framework (AF) is a pair ∪A,→⊆ where
A ⊆ An is a finite set of arguments, and → ⊆ A×A is a relation between arguments.
The expression a → b is pronounced as “a attacks b”.

2 We restrict the discussion in this chapter to the finite case, i.e., to argumentation frameworks with
a finite number of propositional letters.
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Given an AF ∪A,→⊆ we are particularly interested in giving an account of reason-
able choices of arguments in A: a minimal criterion is, for instance, that no argument
in a selection S should attack another argument in S. Of course, more interesting
selection types can be defined:

Definition 8.2.2. Given an argumentation framework A = ∪A,→⊆ we define the
following notions.

(i) An argument a is attacked by a set of arguments B ⊆ A iff there is a b ∈ B
such that b → a.

(ii) An argument a is acceptable with respect to a set of arguments C ⊆ A, iff
every attacker of a is attacked by C . It is said that C defends a.

(iii) A set of arguments S ⊆ A is conflict-free iff S doesn’t attack any argument
in S.

(iv) A conflict-free set of arguments S ⊆ A is admissible iff each argument in S
is acceptable with respect to S.

(v) A set of arguments S ⊆ A is a preferred extension iff it is a maximal (w.r.t.
⊆) admissible set.

(vi) A conflict-free set of arguments S ⊆ A is a stable extension iff it attacks every
argument in A \ S.

(vii) An admissible set of arguments S ⊆ A is a complete extension iff F(S) = S,
where F(S)=df{c | S defends {c}}.

(viii) A set of arguments S ⊆ A is a grounded extension iff it is the minimal (w.r.t.
⊆) complete extension.

(ix) A complete extension S ⊆ A is a semi-stable extension 3 iff S∈S+ is maximal
(w.r.t. ⊆), where S+ is the set of all arguments in A \ S which are attacked
by S.

(x) A set of arguments S ⊆ A is credulously accepted according to preferred
[(semi)-stable, complete or grounded] semantics (w.r.t. A) iff it is contained in
at least one preferred [(semi)-stable, complete or grounded] extension of A.

(xi) A set of arguments S ⊆ A is skeptically accepted according to preferred
[(semi)-stable, complete or grounded] semantics (w.r.t. A) iff it is contained
in every preferred [(semi)-stable, complete or grounded] extension of A.

Suppose we select a conflict-free set E ⊆ A. There are two types of arguments in
A \ E which are not selected. On the one hand, arguments in E+ which are attacked
by the selected arguments and on the other hand the ones that are not attacked by E ,
i.e., arguments in A \ (E ∈ E+). We call the former arguments defeated, since they
are attacked by at least some of our selected arguments E . Admissibility requires
that the set of defeated arguments for a given selection of arguments S consists at
least of all the attackers of S. Opposite to attacks, we only speak of a defeat in view
of a given selection of arguments: a attacks b iff a → b, while b is defeated iff there
is a selected argument a that attacks b. It would be misleading to confuse attack and

3 Semi-stable semantics were defined by Caminada in [22] and are equivalent to Verhijs’ admissible
stage extensions in [29].
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Fig. 8.1 The relationship
between the extensions types

stable extension
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Fig. 8.2 An attack-diagram a1
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defeat: an agent may (argumentatively) attack another agent, but we only consider
the attack as a defeat if the argument used for the attack is considered as valid.4

Figure 8.1 illustrates some basic relationships between the various extension types.
For a more thorough study of them we refer the reader to the rich literature mentioned
in the introduction.

Argumentation frameworks ∪A,→⊆ are often represented by directed graphs, the
so-called attack-diagrams (see Fig. 8.2). The nodes are arguments in A and there is
an edge from a to b iff (a, b) ∈ →.

Example 8.2.1. We will demonstrate the concepts just introduced with the attack-
diagram in Fig. 8.2. The following table lists the extensions belonging to the extension
types introduced in Definition 8.2.2.

Admissible Preferred Semi-stable Complete Grounded

∧, {a1}, {a2}, {a1, a4}, {a1, a4}, ∧, {a1, a4}, ∧
{a1, a4}, {a2, a4} {a2, a4} {a2, a4} {a2, a4}

Stable extensions are, unlike the other extension types, not guaranteed to exist.
Semi-stable extensions (see [22]) improve on that: they are guaranteed to exist, and
in case stable extensions exists the semi-stable extensions are identical to them.5

Moreover, there is one unique grounded extension.

4 Our notion of defeat differs from the way defeat is defined in various preference or value based
enhancements of Dung’s abstract argumentation framework. Defeat is there usually defined as
a binary relation between arguments which is a subset of the attack relation: a1 defeats a2 iff
a1 attacks a2 and a2 is not ‘preferable’ to a1. The preferability of one argument over another is
modeled in different ways: in terms of a preference relation between arguments in [30], by allowing
for arguments to attack an attack in [31], or in terms of mapping arguments into partially ordered
values in [19].
5 The following fact offers an alternative definition of semi-stable extensions in terms of admissible
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8.3 A Logic for Abstract Argumentation

In this chapter we are going to present propositional logics for abstract
argumentation. We will present for each extension type E (such as admissible, com-
plete, preferred, etc.) a corresponding logic LE . The major idea is that LE derives for
a given argumentation framework A = ∪A,→⊆ all skeptically (resp. credulously)
accepted arguments and that the models represent the extensions of type E .

This section will make this idea more precise. It will introduce basic notions and
the modus operandi of our logical framework for abstract argumentation. First, in
Sect. 8.3.1, we will propose a formal language and the core set of rules for our logics.
Section 8.3.2 offers a way to represent AFs as premise sets. We give a precise account
of the representational requirements for our logics in Sect. 8.3.3. In the remainder of
this section we will introduce the reader into the main ideas of ALs by focusing on
example cases, paradigmatically for preferred extensions. Section 8.4 will contain
the definitions for all the other variants and the representational results.

8.3.1 Language and Rules

In order to represent a given AF A as a premise set we need a formal language which
allows us to express the basic notions of abstract argumentation. The idea is, on the
one hand, to represent arguments by propositional letters and, on the other hand, to
enrich the language of classical propositional logic by a binary logical operator �
where α � β means that α attacks β. Since we represent arguments by propositional
letters only, we restrict our language in such a way that only propositional letters
are arguments of �.6 Formally the set of well-formed formulas Wn (where n is a
natural number) is defined in the following way:

Vn := p1 | p2 | p3 | . . . | pn

W�
n := ∪Vn⊆ � ∪Vn⊆ | ⊃ � ∪Vn⊆

Wn := ⊃ | ∪Vn⊆ | ∪W�
n ⊆ | ¬∪Wn⊆ | ∪Wn⊆ → ∪Wn⊆ |

∪Wn⊆ ∨ ∪Wn⊆ | ∪Wn⊆ ⊕ ∪Wn⊆

Vn are the propositional letters of our language. We will in the remainder abbreviate
¬(α � β) by α 
� β.

Let us introduce the rules characterizing our core logic for abstract argumentation.
First of all, it is obvious that if α is valid and it attacks β, α � β, then β should not
be a consequence of our logic:

(Footnote 5 continued)
sets S for which S ∈ S+ is maximal: Let A = ∪A,→⊆ be an AF and S ⊆ A. S is a semi-stable
extension iff S is an admissible set of arguments for which there is no admissible set of arguments
T ⊆ A such that T ∈ T + ⊕ S ∈ S+. The statement is proven in Appendix F, Fact F.3.1.
6 We also allow for ⊃ on the left hand side of �. We will comment on this in a moment.
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α α � β

¬β
(R�)

This rule guarantees the conflict-freeness of our consequences since by (R�) we
immediately get

� (α � β) ⊕ (¬α ∨ ¬β)

So, whenever α � β, either α or β is considered to be invalid. Moreover, in our
language it is easy to express that an argument has been defeated by one or more
arguments. We define:

def β =df

∨

α∈Vn

(
α → (α � β)

)
(Def)

It is easy to verify that the following properties are immediate consequences of this
definition and rule (R�):

� def α ⊕ ¬α

� (
α → (α � β)

) ⊕ def β

The first property guarantees that, if an argument has been defeated, then it is sup-
posed not to be validated by the logic. The second property assures that, if α and
α � β have been derived then β is defeated.

Remember that the idea behind admissible extensions is that a selected set of
arguments S is required to defend itself. That is to say, in case an argument a in S
is attacked by another argument b, b → a, then there is an argument c in S which
attacks b or, in yet other words, b is defeated. For our logics we can express this as
follows:

α β � α

def β
(Rad)

If we have α and β � α, then β is supposed to be defeated. Note that it would be
insufficient to replace the conclusion def β of rule (Rad) by ¬β. In case an argument
a is selected and b attacks a, b → a, then it is not enough simply not to select b.
By the requirement of admissible extensions the selected arguments have to defend
themselves against all attackers. Thus, what is required in terms of our language is
def β. This ensures that there is an argument γ which attacks and thus defeats β. This
is guaranteed by def β due to its definition

∨
δ∈Vn

(δ → (δ � β)). The existence of a
defeating argument γ of β would not be guaranteed were we to replace def β by ¬β
in the conclusion of (Rad).

An attentive reader might have noticed that our language also allows for ⊃ � α.
This is helpful in order to express that a given propositional letter α corresponds
to an argument in the given argumentation framework ∪A,→⊆. The cardinality of
Vn might be higher than the cardinality of A and thus there might be propositional
letters which do not correspond to the given arguments A. We express the fact that a



216 8 Towards the Proof-Theoretic Unification of Dung’s Argumentation Framework

propositional letter represents an argument by ⊃ � α. All propositional letters that
do not represent an argument are guaranteed not to be validated by the following
rule: ⊃ 
� α

¬α
(R⊃)

Let us have a look at one last rule that will help us to represent complete extensions.
The main idea behind this extension type is that any argument that is defended by a
given selected set of arguments S is supposed to be in the selection S. That is to say,
if S defends argument a, then a ∈ S. This can be expressed by the following rule:

⊃ � β
∧

α∈Vn

(
(α � β) ⊕ def α

)

β
(RCo)

That β is defended by the set of validated arguments is expressed by
∧

α∈Vn
((α �

β) ⊕ def α): for every attacker α of β, α is supposed to be defeated. We also add the
condition that β is actually representing an argument, ⊃ � β, since, if it did not, then
β would have no attackers and thus the other antecedent,

∧
α∈Vn

(α � β ⊕ def α),
would be valid. But, as already pointed out, we want to keep propositional letters
which do not represent arguments out of the consequence sets of our logics.

The presented rules enable us to define the following two logics which will serve
as lower limit logics for our adaptive systems.

Definition 8.3.1. LA is classical propositional logic enriched by the rules (R�),
(Rad), and (R⊃). LC is LA enriched by (RCo).

We define the semantics for logics L ∈ {LA, LC} via an assignment function
v : Vn ∈ W�

n → {0, 1} and an L-valuation vL
M : Wn → {0, 1} determined by the

assignment. We use an extended assignment function v : Vn ∈ W�
n → {0, 1} that

assigns truth values to both, propositional letters and ‘attacks’, i.e., formulas in W�
n .

A model M is defined by an assignment function v. The following definitions are
useful in order to define the LA-valuation based on v:

vRral =df1 − max
α,β∈Vn

(
min(v(α), v(α � β), v(β))

)

vRbot =df1 − max
α∈Vn

(
min(v(α), 1 − v(⊃ � α))

)

vRad =df1 − max
α,β∈Vn

(
min

(
v(α), v(β � α), 1 − max

γ∈Vn

(
min(v(γ), v(γ � β))

)))
,

v
LA
i =df min(vRral, vRbot, vRad)

Note that vRral corresponds to our syntactical rule (R�) in the sense that vRral = 1 iff
the assignment satisfies the semantic counterpart to (R�). That is to say, vRral = 1
iff v satisfies

If v(α) = v(α � β) = 1, then v(β) = 0. (S�)
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The situation is analogous for vRbot and vRad with respect to the following properties:

If v(α) = 1, then v(⊃ � α) = 1. (S⊃)

If v(α) = v(β � α) = 1, then
there is a γ ∈ Vn for which v(γ) = v(γ � β) = 1.

(Sad)

We call an assignment LA-intended iff v
LA
i = 1. In Appendix F it is shown that an

assignment v is LA-intended iff v satisfies (S�), (Sad) and (S⊃).
We define the valuation function vL

M : Wn → {0, 1} paradigmatically for L = LA.
The one for LC is defined in a similar way and can be found in Appendix F. Where
α,β ∈ Vn and ϕ,ϕ1,ϕ2 ∈ Wn we define:

vL
M (⊃)=df0 (s⊃)

vL
M (α � β)=dfv(α � β) (s�)

vL
M (⊃ � α)=dfv(⊃ � α) (s⊃�)

vL
M (α)=df min(v

LA
i , v(α)) (sPA)

vL
M (ϕ1 → ϕ2)=df min(vL

M (ϕ1), v
L
M (ϕ2)) (s→)

vL
M (ϕ1 ∨ ϕ2)=df max(vL

M (ϕ1), v
L
M (ϕ2)) (s∨)

vL
M (ϕ1 ⊕ ϕ2)=df max(1 − vL

M (ϕ1), v
L
M (ϕ2)) (s⊕)

vL
M (¬ϕ)=df1 − vL

M (ϕ) (s¬)

Obviously, by (s�) and (s⊃�) the valuation inherits the truth values for ‘attacks’ in
W�

n from the assignment function. Note that although (sPA) is of a rather complex
form, it is fully determined by the assignment v. In the case v

LA
i = 1, i.e., in the case

that the assignment is LA-intended, the valuation takes over all truth values from
the assignment for all formulas in Vn . However, if v

LA
i = 0, the valuation assigns

to all propositional letters the truth value 0. Note that for a given AF A the empty
selection is always an admissible extension. Thus, the valuation on the basis of a
non-intended assignment corresponds to the empty extension. In Appendix F it is
shown that LA-valuations satisfy (S�), (Sad) and (S⊃).

Model validity and the semantic consequence relation are defined in the usual
way. Where L ∈ {LA, LC}, we define M |=L ϕ iff vL

M (ϕ) = 1. We say a model M is
an L-model of Ω ⊆ Wn iff M |=L ϕ for all ϕ ∈ Ω . We write ML(Ω ) for the set of
all L-models of Ω . The semantic consequence relations �L are defined in the usual
way: Ω �L ϕ iff for all L-models M of Ω , M |=L ϕ.

Completeness and soundness for both logics, LA and LC are proven in Appendix F.
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8.3.2 Representing AFs as Premise Sets

Let us now see how to represent AFs in terms of premise sets. There is an easy and
intuitive way to do so:

• First, we need to map the arguments of a given AF A = ∪A,→⊆, where A ⊆
An , into the set of propositional letters Vn . Of course, we need at least as many
propositional letters as we have arguments. A canonical way to do so is by λn :
An → Vn, ai ◦→ pi for all 1 ↓ i ↓ n. We can say that pi represents, or
corresponds to an argument ai iff ai ∈ A.

• Second, we need to represent the attack relation. This can be simply done by adding
to the premise set pi � p j iff (ai , a j ) ∈ →.

• It is furthermore important to indicate which propositional letters belong to the
AF in question. We do this by adding ⊃ � pi to the premise set iff ai ∈ A.

For premise sets constructed in this way we write Ω n
A .

Example 8.3.1. For instance, the AF A from Example 8.2.1 is represented by the
premise set Ω n

A = {p1 � p2, p2 � p1, p1 � p3, p2 � p3, p3 � p4} ∈ {⊃ �
p1,⊃ � p2,⊃ � p3,⊃ � p4} where n ≥ 4.

For many applications it is interesting to choose a language that has more propo-
sitional letters than an argumentation framework ∪A,→⊆ that is initially modeled.
Some examples:

1. In order to model the argumentative reasoning of intelligent agents a system
has to deal with more and more information in form of new arguments com-
ing in. The initial setup is thus iteratively enriched as the argumentation pro-
ceeds. An argumentation can thus be seen as a sequence of argumentation
frameworks A1, A2, . . . , Am where Ai+1 = ∪Ai+1,→i+1⊆ is an enhancement of
Ai = ∪Ai ,→i ⊆, i.e., (Ai+1∈ →i+1) ⊕ (Ai∈ →i ).

2. Abstract argumentation is a promising framework for applications such as
machine learning (see [32]), belief revision (see [33] for a survey), or deci-
sion theory (see [34]) since knowledge/belief bases may be represented by or
with the help of argumentation frameworks.

For such applications it is obviously important to have enough propositional letters
available in order to represent the successive stages A1, A2, . . . , Am .

Furthermore, a logic has to be able to deal with new information arriving, resulting
in the transition from Ai to Ai+1. That is to say, it has to allow for external dynamics
(see our discussion in Sect. 2.5.1. To simply apply a given algorithm producing the
accepted argument in question again from scratch to Ai+1 is cumbersome, especially
since it doesn’t model in any way the rationale of the rational agent going through
this very transition. We will thus offer a dynamic proof procedure which by dynamic
markings is able to model the reasoning of the agent in question throughout the
sequence of updates she is exposed to. We will discuss this feature more in Sect. 8.3.6.

http://dx.doi.org/10.1007/978-3-319-00792-2_2


8.3 A Logic for Abstract Argumentation 219

8.3.3 Representational Requirements

Given an extension type E (such as admissible, complete, preferred, etc.) and an AF
A, what are our requirements for a logic for abstract argumentation LE? What should
its consequences look like, what should its models represent?

Let us presuppose that for the AFs ∪A,→⊆ under consideration,A ⊆ An , and that
LE is formulated in the language Wn . This simply makes sure that we have enough
propositional letters to logically represent the AFs in question.

We have two straightforward and intuitive representational requirements for a
complete and sound logic LE : a syntactical one and a semantical one. Let A =
∪A,→⊆ be an AF:

1. Syntactic adequacy for skeptical (resp. credulous) acceptance: We require that
Ω n

A �LE pi iff ai ∈ A and ai is skeptically (resp. credulously) accepted according
to E . Informally this simply means that a propositional letter is derivable iff it
represents a skeptically (resp. credulously) acceptable argument (according toE).

2. Semantic adequacy: LetMLE (Ω n
A ) be the set of all LE -models of Ω n

A . We require
that,

(a) For each E-extension E ⊆ A of A there is a model M ∈ MLE (Ω n
A ) for

which M |=LE pi iff ai ∈ E ,
(b) and vice versa, for each model M ∈ MLE (Ω n

A ) there is an E-extension E
of A for which M |=LE pi iff ai ∈ E .

Thus, the models of the logic correspond exactly to the E-extensions in the sense
that they validate exactly the propositional letters representing the arguments in
the extensions.

For instance, an adequate logic for preferred extensions for our Example 8.2.1
would have two types of models: one validating p1 and p4, representing the preferred
extension {a1, a4}, and another one validating p2 and p4, representing the preferred
extension {a2, a4}. For skeptical acceptance, the only propositional letter derivable
is supposed to be p4, since the only skeptically acceptable argument is a4. Due to
completeness, p1 ∨ p2 is obviously also a consequence. This is also intuitive since
in every preferred extension either a1 or a2 is valid.

Definition 8.3.2. Let E be an extension type. If a logic L fulfills requirement (1) for
E and for all AFs A = ∪A,→⊆ where A ⊆ An , then we say that L syntactically
represents extension type E with respect to skeptical (resp. credulous) acceptance
for argumentation frameworks with at most n arguments. If a logic L fulfills the
requirements in (2) for E and for all AFs A = ∪A,→⊆ where A ⊆ An , then we say
that L semantically represents extension type E for argumentation frameworks with
at most n arguments.
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8.3.4 Interpreting a Premise Set as Normally as Possible

The logics we are going to present belong to the class of ALs. The essential feature
of ALs is that they interpret a premise set “as normally as possible” given certain
criteria for normality. Semantically speaking, ALs select from all LLL-models the
ones that “are normal enough” and hence satisfy a certain standard of normality.
We will give a technically precise explication of this in a moment. Translated in the
context of our application and given an AF A = ∪A,→⊆ this means, for instance,

• that, in the case of preferred extensions, in each selected LLL-model of Ω n
A as many

arguments as possible7 are validated while the criteria for admissible extensions
are satisfied,

• that, in the case of grounded extensions, in each selected LLL-model of Ω n
A as

few arguments as possible are validated while the criteria for complete extensions
are satisfied,

• that, in the case of semi-stable extensions, in each selected LLL-model of Ω n
A as

many arguments as possible are validated and at the same time as many arguments
as possible are defeated while the criteria for complete extensions are satisfied.

The adaptive strategy defines what it means for a model to satisfy the standard of
normality. For all the ALs in this chapter it will mean that the models should be as
“normal as possible”, or in other words, “minimally abnormal”. The abnormalities
define what is considered as abnormal for these models. For instance, in case of
preferred extension

βP = {¬pi | i ↓ n}

is a good choice for abnormalities. Assume for the moment that, given an AF A,
the LLL-models of Ω n

A correspond to the admissible extensions of A.8 The minimal
abnormal models are the LLL-models in which as few negated propositional letters
¬pi are validated as possible. Inversely that means that as many propositional letters
are validated as possible. Then these models correspond exactly to the preferred
extensions, since these are the maximal admissible extensions.

More generally, where β is the set of abnormalities and L is a logic, we define
the abnormal part of an L-model M as follows, AbL

β(M) = {ϕ ∈ β | M |=L ϕ}.
We say that an L-model M of Ω is an β-minimally abnormal L-model of Ω iff for
all L-models M ∅ of Ω , AbL

β(M ∅) 
≥ AbL
β(M). The ALs presented in this chapter

select all the β-minimally abnormal LLL-models of a given premise set where the
exact nature of β depends on the extension type under consideration.

In terms of proofs, this idea is realized by allowing for certain lines to be added
to the proof conditionally while the LLL-rules are unconditionally applicable. For

7 More precisely we would have to express this by “as many propositional letters as possible that
represent arguments of the given AF”.
8 Actually, as we will see in Sect. 8.3.5, the LA-models of Ω n

A are a superset of the models cor-
responding to the admissible extensions of A. Due to this we will perform a pre-selection on the
LA-models before selecting the βP -minimally abnormal models (see Sect. 8.3.6).
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instance in case of preferred extensions we are interested in adding an argument α
on the condition that the assumption that ¬α is not the case is safe.

But let us exemplify the notions just introduced by having a look at a proof for
the simple AF given by A1 = ∪{a1, a2},→1⊆ where →1= {(a1, a2)}. As discussed
above, the premise set corresponding to A1 for language W3 is given by Ω 3

A1 =
{p1 � p2,⊃ � p1,⊃ � p2}. We use more than two propositional letters (namely
three) since we are later going to enhance A1. The only preferred extension for A1 is
{a1}. Thus, what is expected from the logic for preferred extensions is to derive p1.
A good choice for an LLLis our core system LA.

1 p1 � p2 PREM ∧
2 p1 RC

{¬p1
}

3 ¬p2 1, 2; R�
{¬p1

}

As discussed above, the idea for preferred extensions is to derive as many argu-
ments as possible. Technically, this is made possible by allowing for the conditional
introduction of arguments, i.e., propositional letters. For instance at line 2, p1 is
introduced on the condition {¬p1}. The elements of conditions are abnormalities, in
our case members of βP .

Now, once p1 is considered to be valid, we know that p2 cannot be valid since
p1 � p2. Indeed, at line 3 we derive ¬p2 by rule (R�). Note that the condition of
line 2 is carried forward to line 3 since the derivational step performed at line 3 uses
also line 2.

In our example proof we write the rules of the lower limit logic which are used for
unconditional derivations instead of writing “RU” for the unconditional generic rule.
This is for the sake of transparency. E.g., we derive ¬p2 at line 3 by the LLL-rule
(R�) with antecedents in lines 1 and 2. The conditions of these lines, namely ∧ and
{¬p1}, are carried forward to line 3.

The essential strength of ALs comes with the rule RC. It enables us to derive
formulas conditionally. Since � p1 ∨ ¬p1 is a theorem of propositional logic, we
derive p1 by RC at line 2 on the condition {¬p1}.

Note that adaptive proofs are not yet fully characterized by the generic rules
PREM, RU and RC. What is missing are means to invalidate lines which are derived
on conditions that have to be considered as unsafe. The marking definition of our
ALs will give a precise account of when a condition is considered as unsafe. We will
come to that at the end of the next subsection.

8.3.5 The Problem of an Interpretative Surplus

It was indicated above that an intuitive semantic selection procedure is to select all
βP -minimally abnormal LA-models of Ω 3

A1 . This section will show that this idea,
although it is on the right path, gives rise to a problem. Namely, some of the models
selected by the proposed procedure validate attacks, pi � p j , and propositional
letters, pk , that do not correspond to attacks or arguments in the given AF A, i.e.,
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(ai , a j ) /∈ → and ak /∈ A. Thus, some models ‘interpret too much into the given
AF’. After explicating the problem in this subsection we will propose a solution by
refining our semantic selection (Sect. 8.3.6).

Note that, in our example, neither is a1 a member of all admissible extensions
of A nor is p1 derivable by LA. Argument a1 constitutes the unique preferred
extension {a1} and thus p1 should be derivable by a logic for preferred extensions
and furthermore, it should be the only propositional letter derivable. Also, since
(p1 � p2) ⊕ (¬p1 ∨ ¬p2), p1 and p2 are never both valid in the same model.
This is as desired since a1 attacks a2. Furthermore, it can be easily shown that there
is an βP -minimally abnormal LA-model of Ω 3

A that verifies p1 and ¬p2. There are
however two problems:

(1) As can easily be verified, all the βP -minimally abnormal LA-models of Ω 3
A1

also validate p3. Since a3 is not part of the AF in question, A1, this is undesired
and is not in accordance with our adequacy requirements.

(2) It is easy to see that there are other βP -minimally abnormal LA-models which
verify p2 and ¬p1. Some of these models verify p2 � p1, which enables p2 to
defend itself against the attack from p1. However, a2 does not attack a1 in our
AF A1.

Thus, the problem is that, in order to validate as many arguments as possible,
the logic selecting βP -minimally abnormal LA-models, (a), validates propositional
letters that do not correspond to arguments of the given AF, and, (b), in some models
validates attacks which are not part of the given premises. To interpret a premise set
as normally as possible the logic should thus always also take care, (a), that all the
arguments that do not correspond to arguments in the given AF are not validated,
and, (b), that no additional attacks are derived or validated in the models.

One way to do so would be to directly enhance the premise set for AF ∪A,→⊆
by pi 
� p j iff (ai , a j ) /∈ → and by ⊃ 
� pi iff ai /∈ A. In our case the enriched
premise set is

Ω ∅
A1 = Ω 3

A1 ∈
⋃3

i=1
{pi 
� p1} ∈

⋃3

i=2
{pi 
� p2} ∈

⋃3

i=1
{pi 
� p3} ∈ {⊃ 
� p3}.

However, to enhance the premise set in this way has disadvantages. Some of
them are rather obvious: our first proposal for the representation of AFs in terms of
premise sets as exemplified by Ω 3

A1 is more intuitive, simple and elegant compared to
the enhanced presentation exemplified by Ω ∅

A1 . Furthermore, such enhanced premise
sets can have a very high cardinality (namely, n! + n) already for small AFs. Instead
of manually adding all the additional formulas to the premise set Ω 3

A1 it would be
better if the logic were able to derive them on its own.

Additionally, for some applications the enhancement of the premise set proposed
above is counterproductive. Suppose we are to model the argumentative reasoning
of intelligent agents: argumentation is a dynamic process, new information in form
of new arguments and new attack relations might come in (see also [35]). In terms of
argumentation frameworks that means that the initial state of an argumentation might
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be given by A1, while, at a later stage a new argument might enter the scene. For
instance an agent might, in order to defend a2 argue that a new argument a3 attacks a1.
Thus, A1 is extended to A2 = ∪{a1, a2, a3}, {(a1, a2), (a3, a1)}⊆. Now if we represent
A1 by the premise set Ω ∅

A1 , then there is no way anymore to introduce p3 � p1 at a
later point of the proof, since this contradicts the premise p3 
� p1 ∈ Ω ∅

A1 . Were we
to add p3 � p1, this would lead to explosion. Similar applications requiring from
the logic the ability to deal with new information on-the-fly would be in the fields
of belief revision or machine learning (see p. 218). Fortunately, ALs offer a way to
avoid these difficulties. The following subsection explores how.

8.3.6 A Better Solution: Going Adaptive and Enabling
External Dynamics

Instead of enriching the premise set in the way demonstrated above, it would thus
be preferable to have a logic that, (a), has the virtue of dealing with such cases of
external dynamics, that is to say a logic which is able to deal with the addition of new
arguments and new attacks at any point during the proof without exhibiting explosive
behaviour, and, (b), can deal with the intuitive and simple representation Ω n

A of AFs
A as premise sets as defined in Sect. 8.3.2 without exhibiting the problems explicated
in Sect. 8.3.5.

This is where the strengths of ALs can again be of use. The idea is now to interpret
the relation between two arguments ai and a j as non-attacking as long as the premise
pi � p j has not been introduced, and to treat pi as not representing an argument as
long as the premise ⊃ � pi has not been introduced. For our example that means
that as long as our agent doesn’t introduce p3, the logic should, (a), treat the relation
between p3 and pi for all pi ∈ Vn as non-attacking and thus derive p3 
� pi ,
and, (b), derive ⊃ 
� p3 and hence by (R⊃) ¬p3. As a result, as long as p3 has
not been introduced, the only argument in the consequence set should be p1 since
a1 constitutes the unique preferred extension of A1. However, as soon as p3 and
p3 � p1 have been introduced, we are interested in deriving p2 and p3 as only
arguments. The reason is that {a2, a3} constitutes the unique preferred extension of
A2. As the reader might have already guessed, the way to achieve this behaviour via
an AL is to define abnormalities by the logical form α � β. Let thus

β� =df {α � β | α ∈ Vn ∈ {⊃},β ∈ Vn}

The idea is to ensure in this way that pi 
� p j and ⊃ 
� pk are derivable whenever
pi � p j and ⊃ � pk are not part of the premise set.

We have seen in Sect. 8.3.5 that the βP -minimally abnormal LA-models of Ω 3
A1

do not correspond to the preferred extensions since they validate arguments and
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attacks which are not part of A1. In order to improve on that we employ a sequential
combination of adaptive logics.9 In semantic terms the idea is realized in two steps:

(1) First, we pre-select the set M� of LA-models of Ω 3
A1 which validate only the

attacks that are actually a part of the given AF and which invalidate all proposi-
tional letters that do not represent arguments.

(2) Second, from our preselection M� we select the βP -minimally abnormal LA-
models.

Now we have all tools at hand, at least semantically, to introduce our logic for
preferred extensions:

ALP = ∪LA, [β�,βP ], [simple strategy, minimal abnormality strategy]⊆

The first element, LA, is the lower limit logic. The second element lists the abnor-
malities for the first and second selection. The third element lists the strategies used
for the semantic selections , or syntactically, for the markings in the proof. We will
comment on the simple strategy more in a moment; what is now important is that
semantically both strategies select minimally abnormal models.10 ALP is semanti-
cally characterized by the two steps of the selection procedure which have just been
introduced. Only performing the first step characterizes another, flat AL that can be
shown to represent admissible extensions:

ALA = ∪LA,β�, simple strategy⊆

It is easy to prove that, for a given AF A = ∪A,→⊆, the models selected by the
first selection, i.e., the ALA-models of Ω n

A ,

(a) validate pi � p j iff (ai , a j ) ∈ →, and,
(b) for all ai /∈ A validate ⊃ 
� pi and thus, by (s⊃), ¬pi .

9 See Chap. 3 for a detailed discussion of their meta-theory.
10 The reader should not be confused by the fact that for both strategies, simple strategy resp.
minimal abnormality, we apply the same semantic selection, namely the selection of minimally
abnormal LA-models with respect to the abnormalities in β� resp. βP . The reason for this is that
the simple strategy is equivalent to the minimal abnormality strategy for a lower limit logic LLL,
abnormalities β and a class of premise sets Γ if the following fact holds:

(FΛ): For all Ω ∈ Γ and all finite and non-empty Δ ⊆ β , Ω �LLL Dab(Δ), then there is
a ϕ ∈ Δ such that Ω �LLL ϕ.

This is the case for our LA, β� and premise sets defined by Ω n
A (as shown in Appendix F).

Hence, in this case the simple strategy, as we will see, allows for a simplified marking strategy
(see Definition 8.3.3) compared to the one for minimal abnormality (which is defined in Sect. 8.3.8,
Definition 8.3.4). Of course, due to (FΛ) the semantic selection for the simple strategy can also be
characterized as follows: selected are all LA-models of Ω n

A that validate only those abnormalities
in β� that are LA-derivable from Ω n

A (or equivalently, that are validated by all other LA-models
of Ω n

A ). Note, that in the case that fact (FΛ) does not hold, such models are not guaranteed to exist.
See also the discussion in Sect. 2.4.3.

http://dx.doi.org/10.1007/978-3-319-00792-2_3
http://dx.doi.org/10.1007/978-3-319-00792-2_2
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This obviously solves the problem of Sect. 8.3.5. Indeed, the ALA-models of Ω 3
A1

correspond to the admissible extensions of A1.11 This is as expected, since the mod-
els in our second selection, the βP -minimally abnormal models from these ALA-
models, are expected to correspond to the maximal admissible sets. We will see in
Sect. 8.4 that the same sequential selection procedure is applied to other extension
types, only the abnormalities for the second selection have to be adjusted.

We have talked a lot about semantics. Let us now take a look at a continuation of
our proof from p. 221 and see how the ideas presented above are applied syntactically.

1 p1 � p2 PREM ∧
2 p1 RC

{¬p1
}

3 ¬p2 1,2; R�
{¬p1

}

134 p2 RC
{¬p2

}

135 def p1 1,4; Rad
{¬p2

}

136 ¬p1 1,4; R�
{¬p2

}

137
∨3

i=1(pi → (pi � p1)) 5; Def
{¬p2

}

138

[
(p2 → (p2 � p1))∨

(p3 → (p3 � p1))
6,7; RU

{¬p2
}

159 p3 RC
{¬p3

}

10

[¬p2 ∨ (p2 → (p2 � p1))

∨(p3 → (p3 � p1))
8; RA ∧

11 p2 
� p1 RC
{

p2 � p1
}

12 p3 
� p1 RC
{

p3 � p1
}

13 ¬p2 10,11,12; RU
{

p2 � p1, p3 � p1
}

14 ⊃ 
� p3 RC
{⊃ � p3

}

15 ¬p3 14; R⊃ {⊃ � p3
}

What is happening in the proof segment above? At line 4 we conditionally intro-
duce p2. This gives rise to p1 being defeated under the same condition at line 5.
Furthermore, at line 8 we derive that either p2 or p3 has to be the defeater of p1. We
introduce p3 conditionally at line 9. What we expect from the proof is that lines 4–9
get invalidated, since it is not in our interest to derive p2 and p3, as neither is a part
of the unique preferred extension {a1}.

At lines 11, 12 and 14 we realize the ideas from above, namely that two propo-
sitional letters pi and p j should be considered to not attack each other as long as
no premise pi � p j has been introduced, and that a propositional letter pi should
be considered as not valid unless one of the introduced premises states that it is part
of the AF under consideration, i.e., ⊃ � pi . Thus, we derive p2 
� p1, p3 
� p1
and ⊃ 
� p3 conditionally at line 11, 12 and 14. Since p2 � p1, p3 � p1 and
⊃ � p3 are not part of the premise set Ω 3

A1 , these lines are not going to be marked

in our proof for A1. Using these lines we are able to derive ¬p2 at line 13 on the
condition {p2 � p1, p3 � p1} as well as ¬p3 at line 15 on condition {⊃ � p3}.
Now something very important happens. Note that lines 4–8 have been derived on

11 The representational results are stated in Sect. 8.4 (see Theorem 8.4.1 and Corollary 8.4.1) and
proven in Appendix F.
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the very condition that ¬p2 is not valid. However, now we have derived ¬p2 and
thus all lines which were derived on this condition should be considered as invalid
derivations and thus have to be marked. Similarly, by introducing ⊃ 
� p3 at line
14 we derive ¬p3 at line 15 which causes the marking of line 9. The idea behind
the marking is thus to invalidate lines on conditions that have to be considered as
unsafe. What is considered as unsafe depends on the adaptive strategy used. Recall
that we have defined two types of abnormalities: βP and β�. Each of these come
with their own marking definition. The marking definition for abnormalities in β�
is very simple, after all it is based on the adaptive strategy called the simple strategy
(see Sect. 2.4.3).

Definition 8.3.3 (Marking for the simple strategy). A line with condition Δ is
marked at stage s if a α � β ∈ Δ ≺ β� has been derived on the empty condition.

Suppose for a moment that new information comes in: one agent, in order to defend
a2, voices a3 which attacks a1. In this case we would introduce p3 � p1 and ⊃ � p3
by PREM. Note that lines 12–15 would get marked. These lines would not anymore
be considered to be derived since they rely on the condition that p3 � p1 and resp.
⊃ � p3 are not derivable. This behavior is obviously intuitive.

The marking conditions for βP are technically a bit more complicated. We will
introduce them later in Sect. 8.3.8 in order not to complicate things more than
necessary at this point. However, let us make another important remark.

So far we have discussed the prioritized aspect of ALs only in terms of the semantic
selection. Of course, this has a syntactic equivalent to it. This is illustrated in the proof,
for instance, at line 13: here we derive an abnormality ¬p2 ∈ βP at an unmarked
line on a condition {p2 � p1, p3 � p1} ≥ β�. This causes the marking of all
lines that have ¬p2 as a part of the condition. Similarly, at line 15 we derive ¬p3
on the condition {⊃ � p3} which causes the marking of line 9. Hence, lines are
considered as (un)safe due to conditions in βP on the basis of abnormalities in
βP (and their disjunctions, as we will see in Sect. 8.3.8) derived on unmarked lines
on the empty condition or on conditions which are subsets of β�. In contrast, the
marking condition for β� requires that, in order to mark a line with condition Δ, a
α � β ∈ Δ has to be derived on the empty(!) condition. It is not enough to derive
α � β on a condition Δ∅ ⊆ βP . This evidently mirrors syntactically the prioritized
aspect of the two semantic selections.

8.3.7 External Dynamics: Letting New Information In

Let us now proceed from A1 to A2. The new information in Ω 3
A2 \ Ω 3

A1 is introduced
at lines 16 and 17. We restate lines 2, 4, 9, 13–15. Let Θ = {p1 � p3, p2 � p3,

p3 � p3}.

http://dx.doi.org/10.1007/978-3-319-00792-2_2
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222 p1 RC {¬p1}
...
...

...
...

4 p2 RC {¬p2}
...
...

...
...

9 p3 RC {¬p3}
...
...

...
...

1613 ¬p2 10,11,12; RU {p2 � p1, p3 � p1}
1714 ⊃ 
� p3 RC

{⊃ � p3
}

1715 ¬p3 14; R⊃ {⊃ � p3
}

16 p3 � p1 PREM ∧
17 ⊃ � p3 PREM ∧
18 def p3 2, 16; Rad

{¬p1
}

19
∨3

i=1(pi → (pi � p3)) 18; Def
{¬p1

}

20 ¬p1 ∨ ∨3
i=1(pi → (pi � p3)) 19; RA ∧

21
∧3

i=1(pi 
� p3) RC Θ

22 ¬p1 20, 21; RU Θ

Due to the new information in A2, p3 now corresponds to an argument, namely
a3. Furthermore a3 attacks a1. Thus we introduce at lines 16 and 17 the new premises
p3 � p1 and ⊃ � p3. This immediately leads to the marking of line 13 since this
line was derived on the condition that p3 does not attack p1, and to the marking
of lines 15 and 15 since these lines were derived on the condition {⊃ � p3}, i.e.,
that a3 does not belong to the AF in question. Furthermore, the new information
enables us to derive ¬p1 at line 22 on the condition Θ ≥ β�, which leads to the
marking of line 2. Moreover, line 4 is now unmarked, since the line which caused it
to be marked before, namely 13, is now itself marked. Analogously for line 9: line
15 which caused it to be marked is now marked itself and hence, 9 is unmarked.

8.3.8 The Minimal Abnormality Strategy and Final Derivability

We postponed the exact marking definition for the minimal abnormality strategy
so far. Recall that this strategy is used for the abnormalities in βP . The marking
definition can be better motivated if we take a look at another simple example. Let
A = ∪{a1, a2}, {(a1, a2), (a2, a1)}⊆. The two preferred extensions are {a1} and {a2}.
Thus, there should be two types of βP -minimally abnormal ALA-models: on the
one hand a model verifying p1 and ¬p2 and on the other hand a model verifying p2
and ¬p1. That means that we expect from our logic to derive p1 ∨ p2 since either
p1 or p2 is valid in each minimally abnormal model. Let us take a look at a proof
for Ω 4

A = {p1 � p2, p2 � p1,⊃ � p1,⊃ � p2} and the language W4.

1 p1 � p2 PREM ∧
2 p2 � p1 PREM ∧
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3 ⊃ � p1 PREM ∧
4 ⊃ � p2 PREM ∧
5 p1 RC

{¬p1
}

6 p2 RC
{¬p2

}

7 p1 ∨ p2 5; RU
{¬p1

}

8 p1 ∨ p2 6; RU
{¬p2

}

With the analyses given above, what we expect from our logic is that lines 5 and
6 are marked, while line 7 and 8 are not marked and hence p1 ∨ p2 is considered
as being derived. Note that with line 1 we can derive the following disjunction of
abnormalities:

9 ¬p1 ∨ ¬p2 1; R� ∧
It is important to notice that neither ¬p1 nor ¬p2 can be derived on a condition

Δ ⊆ β� (including the empty condition ∧). All we know is that either p1 is false or
p2 or both. If our rationale is to interpret the premises “as normal as possible” then
we will not opt for the latter but assume that at most one of the two propositional
letters is false. However, if at most one of them is false, either p1 or p2 will be true.
In that case at least on of the two assumptions {¬p1} or {¬p2} is not mistaken. Since
p1 ∨ p2 is derived on both assumptions, it should be considered a safe defeasible
inference at this point of the proof. We will now make this insight technically precise.

In order to define our marking conditions we need to introduce some terminology.
Let us do this in a more general setting for a logic

AL = ∪LX, [β�,β], [simple strategy, minimal abnormality strategy]⊆,

where X ∈ {A, C}. Obviously our ALP is such a logic for β = βP . Where Δ ⊆ β

and Δ is finite and non-empty, we say that Dab(Δ) is a β-minimal Dab-formula
at a stage s of the proof iff it is the formula of an unmarked line with a condition
Δ� ⊆ β� and no Dab(Δ∅), where Δ∅ ≥ Δ, is the formula of an unmarked line with
a condition Δ∅� ⊆ β�. A choice set of Σ = {Δ1,Δ2, . . . } is a set that contains
an element out of each member of Σ . A minimal choice set of Σ is a choice set of
Σ of which no proper subset is a choice set of Σ .12 Where Dab(Δ1), . . . , Dab(Δn)

are the β-minimal Dab-formulas at stage s for a premise set Ω , Φs(Ω ) is the set of
minimal choice sets of {Δ1, . . . , Δn}.

With this terminology we can define marking conditions for the abnormalities β

and the minimal abnormality strategy. Let Ω be a premise set.

Definition 8.3.4 (Marking for the minimal abnormality strategy (with respect
to Ω)). Line i is marked at stage s if, where ϕ is derived on the condition Δ at line i ,

(i) there is no Δ∅ ∈ Φs(Ω ) such that Δ∅ ≺ Δ = ∧, or
(ii) for some Δ∅ ∈ Φs(Ω ), there is no line at which ϕ is derived on a condition Θ

for which Δ∅ ≺ Θ = ∧.

12 Let for instance Σ = {{1, 2}, {1, 3}}. Choice sets are {1}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}.
Minimal are {1} and {2, 3}.
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Let us return to our example. Note that at this stage of the proof ¬p1 ∨ ¬p2 at
line 9 is a βP -minimal Dab-formula. Thus, the minimal choice sets at this stage of
the proof are {¬p1} and {¬p2}. By (ii) lines 5 and 6 are marked. This is as desired,
since after all, neither is a1 nor is a2 a skeptically accepted argument. However, the
situation is different for lines 7 and 8. Note that neither (i) nor (ii) apply, due to the
fact that we are able to derive p1 ∨ p2 on condition {¬p1} and(!) on condition {¬p2}.

Since, as we have seen with our examples, markings come and go in adaptive
proofs, we need a stable criterion for derivability in order to define a consequence
relation.

Definition 8.3.5. ϕ is finally derived from Ω on line i of a proof at stage s iff

(i) ϕ is the second element of line i ,
(ii) line i is not marked at stage s and
(iii) for every extension of the proof in which line i is marked there is a further

extension in which line i is unmarked.

The definition states that a formula derived at an unmarked line is finally derived in
the case that there is no way anymore to mark it by extending the proof. For instance
in our proof above it is easy to see that p1 ∨ p2 is finally derived since there is no
way of extending the proof in such a way that lines 7 and 8 get marked. This is due
to the fact that neither ¬p1 nor ¬p2 are derivable on a condition Δ ⊆ β�.

Let us close this section by introducing p1 � p3, p2 � p3, p3 � p4,⊃ �
p3,⊃ � p4 to our last example so that we arrive at the AF from Example 8.2.1.
Hence our new premise set is {p1 � p2, p2 � p1, p1 � p3, p2 � p3, p3 �
p4,⊃ � p1,⊃ � p2,⊃ � p3,⊃ � p4}. In the following proof we use the
abbreviations:

Θ1 = {p1 � p1, p3 � p1, p4 � p1}
Θ2 = {p2 � p2, p3 � p2, p4 � p2}

The proof is as follows:

10 p1 � p3 PREM ∧
11 p2 � p3 PREM ∧
12 p3 � p4 PREM ∧
13 p1 
� p1 → p3 
� p1 → p4 
� p1 RC Θ1
14 def p1 ⊕ p2 13; RU Θ1
15 p2 
� p2 → p3 
� p2 → p4 
� p2 RC Θ2
16 def p2 ⊕ p1 15; RU Θ2
17 p3 ⊕ def p1 10; Rad ∧
18 p3 ⊕ def p2 11; Rad ∧
19 p3 ⊕ (def p1 → def p2) 17,18; RU ∧
20 p3 ⊕ (p1 → p2) 14,16,19; RU Θ1 ∈ Θ2
21 ¬p3 9,20; RU Θ1 ∈ Θ2
22 p4 RC

{¬p4
}
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It is easy to see that there is no way to mark line 22. Thus, as desired, p1 ∨ p2 and
p4 are finally derivable. Recall that a4 is the only accepted argument with respect
to preferred extensions and that in each preferred extension there is either a1 or a2
(but obviously never both simultaneously). Thus, p1 and p2 are not derivable, but
p1 ∨ p2 and ¬p1 ∨ ¬p2 are.

After having introduced a logic for preferred extensions it is time to introduce the
other logics for abstract argumentation in the next section.

8.4 The AL Framework for Skeptical Acceptance

In this section we will introduce ALs for all the standard extension types for abstract
argumentation. After our discussion in the previous section this can be done very
smoothly. Let us first recapitulate the three characteristic elements of ALs that were
introduced in the previous section:

The lower limit logic (LLL) While all the rules of LLL are valid in AL, the latter
additionally allows for certain rules to be applied conditionally. This strengthens
LLLas it allows to derive at least as much as LLL and in most cases even more.
Thus, the consequence set of AL is a superset of the consequence set of LLL:
CnAL(Ω ) ∗ CnLLL(Ω ) for all premise sets Ω . In semantic terms ALs select a
subset of “sufficiently normal” LLL-models. In the case of our logics, models
are “minimally abnormal” in the sense that they validate as few abnormalities as
possible. This brings us to the next point:

The abnormalities The set of abnormalities is defined by a logical form F.13 In
the last section we, for instance, used abnormalities of the form ¬α where α is
a propositional letter. Thus, one set of abnormalities was characterized by the set
βP = {¬pi | i ↓ n} for the language Wn .

The strategy Together with the abnormalities the strategy gives an exact account
of what it means to interpret a premise set “as normally as possible”. In the
previous section we, for instance, employed the minimal abnormality strategy.
In semantic terms this strategy selects all LLL-models M of a given premise
set Ω for which there are no LLL-models that validate less abnormalities (w.r.t.
≥). In syntactic terms strategies are realized by a marking definition. In the last
section we have demonstrated that adaptive proofs are dynamic: the markings
invalidate lines, however if new information is introduced and/or while we reason
along, markings may come and go. In this respect adaptive proofs resemble human
reasoning.

We have introduced the following notation to define ALs (where X ∈ {A, C}):

AL1 = ∪LX,β�, simple strategy⊆
AL2 = ∪LX, [β�,β], [simple strategy, minimal abnormality]⊆

13 F is considered to be LLL-contingent, i.e., neither �LLL F nor �LLL ¬ F.
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We have already seen examples for both cases: the logic ALA is a flat AL for admis-
sible extensions. On the other hand, the logic ALP for preferred extensions is a
prioritized AL.

The idea of the prioritization can be easily put in semantic terms: first the set
of minimally abnormal LX-models M� with respect to β� is selected, and then,
from these selected models in M� the minimally abnormal models with respect to
β are selected. This is mirrored in the proof dynamics: the marking definition for
the minimal abnormality strategy (w.r.t. β) is such that not only β-minimal Dab-
formulas (i.e., minimal disjunctions of abnormalities) derived on the empty condition
are considered for the marking procedure, but also the ones derived at unmarked lines
with conditions Δ ⊆ β� (see Definition 8.3.4).

We presuppose the language Wn throughout this and the next section for an
arbitrary natural number n. Let us give a general account of the consequence relations
for the flat and prioritized logics that we are going to introduce in this chapter:

Definition 8.4.1. Let MAL1(Ω )=df
{

M ∈ MLX(Ω ) | there is no M ∅ ∈ MLX(Ω )

such that AbLX
β� (M ∅) ≥ AbLX

β� (M)
}
.

We define Ω �AL1 ϕ iff for all M ∈ MAL1(Ω ), M |=LX ϕ. Furthermore,
Ω �AL1 ϕ iff ϕ is finally derivable in terms of the marking conditions for the simple
strategy defined in Definition 8.3.3.

We define Ω �AL2 ϕ iff for all β-minimally abnormal AL1-models M of Ω ,
M |=LX ϕ. Furthermore, Ω �AL2 ϕ iff ϕ is finally derivable in terms of the marking
conditions for the simple strategy in Definition 8.3.3 and for the minimal abnormality
strategy in Definition 8.3.4.

Since our logics are in the standard format for ALs, a lot of meta-theory for
them has already been investigated in other places (see e.g., [36]). Thus, for
instance, completeness and soundness follow immediately with the completeness
and soundness of our lower limit logics LA and LC (see Appendix F for proofs).
The consequence set of the sequential AL AL2 in Definition 8.4.1 is given by
CnAL2(Ω ) = CnAL∅

2
(CnAL1(Ω )) where14

AL∅
2 = ∪LLL,β, minimal abnormality strategy⊆

We are now able to define our adaptive logic framework for abstract argumen-
tation. The idea is that we first define flat, non-prioritized ALs for admissible and
complete extensions. While ALA is the logic for admissible extensions, the logic for
complete extensions is the strengthening of ALA by the rule (RCo):

ALC = ∪LC,β�, simple strategy⊆

14 We have not characterized the marking conditions for minimal abnormality for logics that employ
the minimal abnormality strategy for the flat case such as AL∅

2. They are a straightforward specifi-
cation of our Definition 8.3.4. See also the characterization of sequential ALs in Chap. 3 where the
proof theory is presented in generic terms.

http://dx.doi.org/10.1007/978-3-319-00792-2_3
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In the second step we define the ALs for all the other extension types (preferred,
grounded and semi-stable) by simply adding an “adaptive layer” to the flat adaptive
logics ALA, resp. ALC. We have seen this already in Sect. 8.3.6 for preferred exten-
sions: we added a second level to the AL for admissible extensions resulting in the
logic ALP.

For grounded extensions the idea is similar. There are three differences compared
to preferred extensions:

• While preferred extensions are a specific selection of admissible extensions, the
grounded extension is a specific complete extension. Thus, instead of using LA as
LLL, we now use LC.

• While preferred extensions were maximal admissible extensions, the grounded
extension is the minimal complete extension. Thus, instead of verifying as many
propositional letters as possible we now verify as few as possible. Hence, instead
of defining the abnormalities as βP = {¬pi | i ↓ n} we now define them as

βG = {pi | i ↓ n}

• While there may be many preferred extensions, the grounded extension is always
unique. This allows for a simplification, namely to use instead of the minimal
abnormality strategy the simple strategy.15

Thus, we define the AL for grounded extensions as follows16:

ALG = ∪LC, [β�,βG ], [simple strategy, simple strategy]⊆

The AL for semi-stable extensions shouldn’t come as a surprise anymore: instead
of maximizing the number of arguments validated, we now maximize not only the
number of arguments validated but also the number of defeated arguments. Thus,
our abnormalities are defined by

βS = {¬pi → ¬ def pi | i ↓ n}

For as many propositional letters as possible the logic is supposed to derive ¬(¬pi →
¬ def pi ). This is equivalent to pi ∨ def pi : either pi is valid or it is defeated. We
define our AL for semi-stable extensions as follows17:

ALS = ∪LC, [β�,βS], [simple strategy, minimal abnormality strategy]⊆

15 As is well-known in the adaptive logic research, in case all minimally abnormal models validate the
same set of abnormalities, the minimal abnormality strategy and the simple strategy are equivalent
(cf. Footnote 10). See Sect. 2.4.3.
16 In view of our discussion it is straightforward to define the marking conditions for the simple
strategy for βG in ALG: A line with condition Δ is marked at stage s if a pi ∈ Δ ≺ βG has been
derived at an unmarked line on a condition Δ∅ ⊆ β� .
17 In accordance with Footnote 5, ALS can easily be shown to be equivalent to ∪LA, [β� ,βS],
[simple strategy, minimal abnormality strategy]⊆.

http://dx.doi.org/10.1007/978-3-319-00792-2_2
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The following results show that the logics defined above satisfy our
representational requirements from Sect. 8.3.3.

Theorem 8.4.1.


⎧⎧⎧⎧⎨

⎧⎧⎧⎧⎩

(i) ALA
(ii) ALC

(iii) ALP
(iv) ALG
(v) ALS


⎧⎧⎧⎧⎫

⎧⎧⎧⎧⎬

semantically represents


⎧⎧⎧⎧⎨

⎧⎧⎧⎧⎩

admissible
complete
preferred
grounded
semi-stable


⎧⎧⎧⎧⎫

⎧⎧⎧⎧⎬

extensions

for argumentation frameworks with at most n arguments.

Due to our generic soundness and completeness results in Chap. 3 we immediately
get:

Corollary 8.4.1.


⎧⎧⎧⎧⎨

⎧⎧⎧⎧⎩

(i) ALA
(ii) ALC

(iii) ALP
(iv) ALG
(v) ALS


⎧⎧⎧⎧⎫

⎧⎧⎧⎧⎬

syntactically represents


⎧⎧⎧⎧⎨

⎧⎧⎧⎧⎩

admissible
complete
preferred
grounded
semi-stable


⎧⎧⎧⎧⎫

⎧⎧⎧⎧⎬

extensions

with respect to skeptical acceptance for argumentation frameworks with at most n
arguments.

8.5 Adaptive Logics for Credulous Acceptance

So far we have presented logics modeling skeptical acceptance. The current section
will deal with credulous acceptance. In the skeptical case we were interested in
arguments located in the intersection of all extensions of a given type. Now we are
focusing on their union. The so-called normal selections strategy will prove to be very
useful for this purpose.18 We will see that, given the systems for skeptical acceptance,
everything which has to be done in order to model credulous acceptance is to use the
normal selections strategy instead, resp. on top of the minimal abnormality strategy.

The reason for this can be easily understood when we take a look at the normal
selections strategy from a semantic point: like the minimal abnormality strategy,
the normal selections strategy selects minimally abnormal LLL-models. However,
semantic consequences are not defined in terms of the intersection of the models but
in terms of their union. This obviously mirrors the difference between skeptical and
credulous acceptance, where the former is defined with respect to the intersection of
all models of a certain extension type while the latter is defined in terms of the union
of these extensions.

We use in this section the language Wn for an arbitrary natural number n. The
semantic consequence relation for our prioritized logics for credulous acceptance is
defined as follows:

18 The normal selections strategy was first introduced in [37]. See also [38] and Sect. 2.8 for a more
elaborated representation. In Sect. 3.4 normal selections are introduced in sequential combinations
of ALs and in Sect. 5.7 normal selections are presented in a more general way.

http://dx.doi.org/10.1007/978-3-319-00792-2_3
http://dx.doi.org/10.1007/978-3-319-00792-2_2
http://dx.doi.org/10.1007/978-3-319-00792-2_3
http://dx.doi.org/10.1007/978-3-319-00792-2_5
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Definition 8.5.1. Where X ∈ {A, C} let

ALn = ∪LX, [β�,β], [simple strategy, normal selections]⊆.

Where MALX(Ω ) is the set of all LX-models of Ω that are β�-minimally abnormal
and MALn(Ω ) is the set of all β-minimally abnormal LX-models in MALX(Ω ),
we define the semantic consequence relation as follows: Ω �ALn ϕ iff there is a
M ∈ MALn(Ω ) for which M |=LX ϕ.19

Thus, we are going to define, for instance, a logic for preferred extensions with
respect to credulous acceptance by

ALCP = ∪LA, [β�,βP ], [simple strategy, normal selections]⊆.

Note that each of the selected models from Definition 8.5.1 exactly corresponds to a
preferred extension.

We are still lacking a syntactic characterization of the normal selections strategy.
The marking conditions are technically straightforward. The following definition
covers the generic case for ALn from Definition 8.5.1:

Definition 8.5.2 Marking for normal selections (w.r.t. Ω). Line i is marked at
stage s if, where Δ is the condition of line i , Dab(Δ ≺ β) has been derived at an
unmarked line on a condition Δ∅ for which Δ∅ ≺ β = ∧.

Definition 8.5.3. Ω �ALn ϕ iff ϕ is finally derivable with respect to the marking
conditions for simple selections (w.r.t. β�) and for normal selections (w.r.t. β).

Let us again take a look at the AF A from our Example 8.2.1 for the logic ALCP
and with the language W4. Recall that the premise set is Ω 4

A = {p1 � p2, p2 �
p1, p1 � p3, p2 � p3, p3 � p4,⊃ � p1,⊃ � p2,⊃ � p3,⊃ � p4}. In
the proof we use the following abbreviation: Θ = {p1 � p1, p3 � p1, p4 �
p1, p2 � p2, p3 � p2, p4 � p2}.

1 p1 � p2 PREM ∧
2 p2 � p1 PREM ∧
3 p1 � p3 PREM ∧
4 p2 � p3 PREM ∧

19 Usually the semantic consequence relation has to be defined in terms of equivalence classes of
β-minimally abnormal ALX-models. For two ALX-models M ⊇ N iff AbLX

β (M) = AbLX
β (N ).

The semantic consequence relation is then defined by Ω �ALn ϕ iff there is an β-minimally
abnormal ALX-model M of Ω such that for all β-minimally abnormal ALX-models N of Ω for
which N ⊇ M , N |=LX ϕ (see Definition 2.8.1). However, the nature of our abnormalities and of
our premise sets allows for the simplification in Definition 8.5.1 since it can easily be shown that
for all AFs A and for all β-minimally abnormal ALX-models of Ω n

A , M and N ,

(M ⊇ N ) iff (for all ϕ ∈ Wn, M |=LX ϕ iff N |=LX ϕ)

The simplification is explicated in a more detailed way in Appendix F.4.
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5 p3 � p4 PREM ∧
6 p1 RC

{¬p1
}

7 ¬p2 → def p2 1, 6; R�,Def
{¬p1

}

8 p2 RC
{¬p2

}

9 ¬p1 → def p1 2, 8; R�,Def
{¬p2

}

1310 p1 → ¬p1 6, 9; RU
{¬p1,¬p2

}

1311 p2 → ¬p2 7, 8; RU
{¬p1,¬p2

}

1312 p1 → p2 6, 8; RU
{¬p1,¬p2

}

13 ¬p1 ∨ ¬p2 1; R� ∧
14

∧
i∈{1,3,4} pi 
� p1 RC

{
p1 � p1, p3 � p1, p4 � p1

}

15 def p1 ⊕ p2 14; Def
{

p1 � p1, p3 � p1, p4 � p1
}

16
∧

i∈{2,3,4} pi 
� p2 RC
{

p2 � p2, p3 � p2, p4 � p2
}

17 def p2 ⊕ p1 16; Def
{

p2 � p2, p3 � p2, p4 � p2
}

18 p3 ⊕ def p1 3; Rad ∧
19 p3 ⊕ def p2 4; Rad ∧
20 p3 ⊕ (def p1 → def p2) 18, 19; RU ∧
21 p3 ⊕ (p1 → p2) 15, 17, 20; RU Θ

22 ¬p3 13, 21; RU Θ

23 p4 RC
{¬p4

}

24 ⊃ � p4 PREM ∧
Although the proof is very similar to the one presented in Sect. 8.3.8, there are

important differences. Let us take a closer look. At lines 1–5 we introduce some
premises. At line 6 we conditionally derive p1. Next, due to p1 being conditionally
derived, p2 gets defeated at line 7 on the condition {¬p1}. This branch of the proof
corresponds to the preferred extension {a1, a4} in the sense that the proof proceeds
under the condition that p1 is valid. The only βP -minimally abnormal ALA-model
validating p1 is the one also validating p4 and ¬p2,¬p3. Analogously lines 8–9
correspond to the preferred extension {p2, p4}. At line 13 the βP -minimal Dab-
formula ¬p1 ∨ ¬p2 is derived. At line 22 another βP -minimal Dab-formula is
derived, namely ¬p3.

Note that, unlike the marking procedure for the logic ALP (see Definition 8.3.4),
at line 13 we do not mark lines 6–9. The reason for this is that, concerning the
marking conditions for normal selections, we would have to derive ¬p1 (resp. ¬p2)
at an unmarked line on a condition Δ ⊆ β� in order to mark lines derived on the
condition {¬p1} (resp. {¬p2}).

In our example we have two minimal choice sets at line 24, namely {¬p1,¬p3}
and {¬p2,¬p3}. Therefore we have two βP -minimally abnormal ALA-models: Ma

and Mb where AbLA
βP

(Ma) = {¬p2,¬p3} and AbLA
βP

(Mb) = {¬p1,¬p3}. It is easy
to see that Ma |=LA p1, p4,¬p2,¬p3 and Mb |=LA p2, p4,¬p1,¬p3. Ma (resp.
Mb) therefore corresponds to the preferred extension {a1, a4} (resp. corresponds to
the other preferred extension {a2, a4}).

What is important to notice in this example is that we have
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Ω 4
A �ALCP p1

Ω 4
A �ALCP p2

Ω 4
A �ALCP ¬p1

Ω 4
A �ALCP ¬p2

However, we also have for instance

Ω 4
A �ALCP p1 → p2 (8.1)

Ω 4
A �ALCP p1 → ¬p1 (8.2)

Note that lines 10–12 are marked. While p1 and p2 are credulously acceptable
in their own respect, as both corresponding arguments—a1 and a2—are members of
preferred extensions, their conjunction is not. Indeed, there is no preferred extension
in which both appear simultaneously. This justifies (8.1). As for (8.2), note that
this prevents an explosion. Also, as a1 is a member of one preferred extension, it
is credulously acceptable. Still, a1 is defeated in another preferred extension and
therefore the corresponding p1 is false in the corresponding model Mb. Of course,
we do not want this to lead to the credulous acceptance of ‘p1→¬p1’. This reasonable
behaviour of the logics for credulous acceptance causes that they, unlike the logics
for skeptical acceptance, are not in the standard format of ALs.20

Let us take a look at the other extension types. Admissible, complete, and pre-
ferred extensions share the same credulously accepted arguments since an argument is
credulously accepted with respect to preferred extensions iff it is in a maximal admis-
sible (resp. complete) extension iff it is in an admissible (resp. complete) extension
iff it is credulously accepted with respect to admissible (resp. complete) extensions.
Thus, logic ALCP also models credulous acceptance for admissible (resp. complete)
extensions.

Also for grounded extensions we know that an argument is credulously accepted
iff it is a member of the unique grounded extension iff it is skeptically accepted.
Thus, logic ALG also models credulous acceptance.

For semi-stable extensions we proceed in a similar way as for preferred extensions:

ALCS = ∪LC, [β�,βS,βP ],
[simple strategy, minimal abnormality strategy, normal selections]⊆

The semantic consequence relation for ALCS is defined similar to Definition 8.5.1
(details can be found in Appendix F.4.4).

20 In particular they lack e.g. the following properties which hold for ALs in the standard format:

(i) fixed-point property – CnLLL(CnAL(Ω )) = CnAL(Ω ),
(ii) closure of the consequence set with respect to the LLL – CnLLL(CnAL(Ω )) = CnAL(Ω ),
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Theorem 8.5.1.


⎨

⎩

(i) ALCP
(i i) ALCP

(i i i) ALCS


⎫

⎬
semantically represents


⎨

⎩

max. complete
preferred
semi-stable


⎫

⎬

extensions for argumentation frameworks with at most n arguments.

Theorem 8.5.2.


⎧⎧⎧⎧⎨

⎧⎧⎧⎧⎩

(i) ALCP
(i i) ALCP

(i i i) ALCP
(iv) ALG
(v) ALCS


⎧⎧⎧⎧⎫

⎧⎧⎧⎧⎬

syntactically represents


⎧⎧⎧⎧⎨

⎧⎧⎧⎧⎩

admissible
complete
preferred
grounded
semi-stable


⎧⎧⎧⎧⎫

⎧⎧⎧⎧⎬

extensions with respect to credulous acceptance for argumentation frameworks with
at most n arguments.

8.6 Discussion

In this discussion section we will localize our results within the context of logical
representations of abstract argumentation and highlight some of its advantages.

There are basically two types of logical approaches to argumentation: a meta-level
and an object-level approach (see [39]).

The meta-level approaches are often framed in terms of modal logics (see [39,
40]). Where L is such a modal logic, argumentation frameworks are models of L and
arguments are possible worlds. This way extension types and other key properties of
argumentation theory can be expressed in terms of the validity of certain formulas
in the models.21

Object-level approaches “model argumentation from within” ([39], p. 134). An
AF is represented in terms of premises and arguments as atoms. The logic is supposed
to derive acceptable arguments with respect to a given extension type. Obviously,
this is the way we motivated our logical framework. Caminada and Gabbay [39]
present such a (modal) system for grounded extensions. Our system is clearly more
unifying in the sense that it is able to represent all standard extensions of Dung’s
framework. It is to our knowledge the most unifying object-level logical modeling of
argumentation in this sense. This is due to the fact that the adaptive logic framework
offers easily adjustable and thus powerful mechanisms that make it possible to obtain
a generic proof-theoretic framework for all the different extensions, i.e., with the same
representation of AFs as premise sets and only slight variations in the abnormalities
and strategies.

It is important to point out that our logical (object-level) approach to abstract
argumentation has a variety of advantages that go beyond the capabilities of a simple
algorithmic framework that produces skeptically resp. credulously accepted argu-
ments. Some were already mentioned before. For instance, the defeasible character

21 A different meta-level approach is [41]. Here, arguments are presented by propositions and
extensions are presented by primitives. The authors in [39] offer, besides the modal systems, also
a classical logic meta-level approach (using circumscription).
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of our modeling allows for the addition of new elements to an AF A1 on-the-fly,
resulting in A2 (see especially Sect. 8.3.7 for the technical details). Traditional algo-
rithms have to be applied first to A1 and then again, from scratch, to A2. However,
our proof theory adjusts to new situations by updating the markings while the argu-
mentation goes on, providing provisional consequences for each step. In this way
the dynamics and the rationale of an ongoing argumentation are modeled.

Furthermore, the consequence set of our logics applied to an AF contains
more useful information beside the acceptable arguments. Take our Example 8.2.1.
As expected, our logic for preferred extensions does derive the only skeptically
acceptable p4. Moreover, the following formulas are derivable: ϕ1 = p1 ∨ p2,
ϕ2 = def p1 ∨ def p2, ϕ3 = def p3.22 The first formula, ϕ1, expresses that either
a1 or a2 is valid in every preferred extension, ϕ2 expresses that either a1 or a2 is
defeated in every preferred extension, and ϕ3 expresses that a3 is defeated in every
preferred extension.

Moreover, in some cases the user may take some arguments, X , in A for granted
and is thus only interested in, say, preferred extensions that cohere with X , i.e., all
preferred extensions E of A such that E ∗ X . In this case the premise set Ω n

A
may be enriched by {pi | ai ∈ X}. Our logic for preferred extensions for instance
derives inter alia all skeptically acceptable arguments with respect to this subset of
all preferred extensions. E.g., for X = {a1} we get the following consequences:
p4, def p2,¬p2, def p3,¬p3. This expresses that a4 is skeptically acceptable in the
discussed sense, that a2 and a3 are defeated and thus not part of any of the preferred
extensions of interest.

Furthermore, we are able to introduce proof theoretic techniques developed for
ALs which are interesting for abstract argumentation. For instance, the interpretation
of adaptive proofs in terms of argumentation games23 can be used to model a debate
between two parties. Thus, we gain a view on all the standard extension types for
abstract argumentation in terms of dialogical games for free on the basis of the
presented proof dynamics.

Another advantage of our framework is that it is easily extendable. We give two
examples. Often it is not a single argument but rather a bundle of arguments that
together attack another argument (see also [16]). Such joint attacks can easily be intro-
duced in our framework by, for instance, allowing for formulas such as

(∧
I pi ) � p j

expressing that arguments {ai | i ∈ I } attack argument a j . Our rules (R�), (Rad),
(R⊃), (RCo) and the definition (Def) can be adjusted in a straightforward way. This
is presented in the next Chapter. On the other hand, it is interesting to allow for
arguments attacking attacks rather than arguments (see e.g., [31]). One such reason
is to express a preference for one argument, for instance a1 attacks a2 → a3 since a3
is preferred compared to a2. For our modeling this means that we allow for nested
occurrences of the attack operator: p1 � (p2 � p3).24 It is important to notice that

22 Note that neither of the following is derivable: p1, p2, def p1, def p2.
23 See [42] for different variants of argumentation games proposed for ALs, and for instance [24]
for the interpretation of abstract argumentation in form of games.
24 We will present the technical details in a future paper.
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enhancements to abstract argumentation and their combinations can be modeled by
minor natural adjustments to our framework and that the modeling is very intuitive.

We have at the end of Sect. 8.3.2 already pointed out that the external dynamics
enabled by the AL representation of abstract argumentation not only opens the

possibility to model open, on-going argumentations, but may also be useful for
applications in machine learning, belief revision and decision theory.

Moreover, the interpretation of abstract argumentation in terms of ALs offers the
possibility to combine the strengths of both frameworks in the modeling of various
reasoning forms. Scholars have pointed out the strength of both systems to model for
instance defeasible reasoning (see e.g., [17, 28]) or abduction (see e.g., [43, 44]). It
remains open for future research to explore these options.

8.7 Conclusion

In this chapter we have presented an adaptive logic characterization of abstract argu-
mentation. Our framework is unifying in the sense that adaptive logic enhancements
of one core logic are able to represent all standard extension types for skeptical and
credulous acceptance. Skeptically as well as credulously accepted arguments with
respect to a given extension type are represented syntactically via the consequence
set and semantically in the sense that the models correspond to the extensions. The
logics differ only insofar as different strategies and different sets of abnormalities
are employed.

Moreover, the presented family of logics is apt for the modeling of open-ended
argumentations. The logics are able to derive provisional conclusions at different
stages of an ongoing discussion. Thus, they explicate the rationale underlying the
acceptance of arguments. This is mirrored also by their dynamic proof theory.

It is interesting to notice that the proof dynamics of these logics can be interpreted
in terms of argumentation games (see [42]). Finally, it should be mentioned that the
logics can easily be extended by preferences [12], values [13], audiences [14] as well
as joint attacks [16] (see Chap. 9).
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Chapter 9
Allowing for Joint Attacks

In the last chapter I have announced that the adaptive modeling of Dung’s abstract
argumentation framework can easily be enhanced. In order to demonstrate this I will
focus in this chapter on a useful generalization of Dung’s framework proposed by
Nielsen and Parsons in [1].

9.1 Motivation

In [1] Nielsen and Parsons argue that Dung’s abstract argumentation framework [2]
has a major drawback, namely its inability to model joint attacks on arguments.
An argumentative setting in which more than one argument, say a1, . . . , an , attack
another argument b cannot be modeled in a straightforward way since the attack
relation is only defined for pairs of arguments. Hence, Nielsen and Parsons argue
that “if his [Dung’s] framework is expected to be able to model all possible kinds
of attack, there is an implicit assumption that the underlying language contains a
logical ‘and’ connective” ([1], p. 55). Namely, in order to model the setting above,
we need to presuppose that there is an argument c that represents the conjunction of
arguments a1, . . . , an and c ∪ b.

But are such joint attacks occurring in argumentations? Nielsen and Parsons offer
various examples.

Example 9.1.1. 1 Three persons, A, B, and C have the following argumentation:

a1 “Peter’s Porsche looks purple, so he drives a purple car.”
b1 “Peter drives an Austin Montego, but not a Porsche.”
b2 “Since Peter’s car looked purple to me when I saw it yesterday evening, he drives

a purple car.”
c1 “According to my catalogue, Austin Montego has never produced purple cars.”

1 This is a slight modification of an examples offered by Nielsen and Parsons in [1], p. 57.

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 243
DOI: 10.1007/978-3-319-00792-2_9, © Springer International Publishing Switzerland 2014
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a2 “Actually, in 1969 Austin Montego produced a limited special edition for a movie
that was purple.”

The setting suggests the following attacks: b1 attacks a1, c1 together with b1 attacks
b2, c1 together with b2 attacks b1, and a2 attacks c1.

Nielsen and Parsons have argued that, in order to model for instance the attack of c1
together with b1 on b2 in terms of Dung’s argumentation framework, “C would have
to repeat a previously stated argument [namely the argument b1 which was uttered
by B], which is not only inelegant, but also forces C to implicitly acknowledge [b1]”
(p. 58). This is problematic since C does not necessarily have to agree with b1 in
order to make her argumentative move, the aim of which may be to show that b1 and
b2 cannot hold at the same time. This would not be reflected, were C’s argumentative
move be modeled by a pseudo-argument p stating the conjunction of c1 and b1.

Furthermore, the attack of argument a2 on c1 would have to be modeled by a2 ∪ p
which does not adequately represent the fact that a2 is directed against c1.

In order to give an adequate representation of joint attacks Nielsen and Parsons
generalize the attack relation so that it does not only hold between single arguments,
but between sets of arguments and sets of arguments:

{a1, . . . , an} ∪ {b1, . . . , bm}

Following Verheij [3] there are two types of interpretation to such joint attacks2:

Collective Attack From the validity of a1, . . . , an follows that neither of the bi ’s
is valid. That is to say, each of the bi ’s is considered to be jointly attacked by the
set of arguments {a1, . . . , an}.

Indeterministic Attack From the validity of a1, . . . , an follows that at least one of
the bi ’s is invalid. That is to say, the fact that all the bi ’s hold is jointly attacked
by the set of arguments {a1, . . . , an}.
Of course, if a set of arguments jointly attacks a singleton then both interpretations

are equivalent.

9.2 Complex Argumentation Frameworks

Definition 9.2.1. A complex argumentation framework (CAF) is a triple

〈A,∪c,∪i⊆

2 Verheij speaks of collective and indeterministic defeats. Since defeat is a specific technical term
in our logical modeling of Dung’s argumentation framework that is going to be generalized in this
chapter, I choose the term attack instead of defeat.
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where A is a finite3 set of arguments, ∪c is the collective attack relation where
∪c ⊆ (

℘(A) \ {∅}) × (
℘(A) \ {∅}), and ∪i is the indeterministic attack relation

where ∪i ⊆ (
℘(A) \ {∅}) × (

℘(A) \ {∅}).

Nielsen and Parsons argue that both notions, collective and indeterministic attacks,
can be modeled by restricting the attack relation to hold between sets of arguments
and single arguments, {a1, . . . , an} ∪ b.

First, a collective attack of a set of arguments {a1, . . . , an} on a set of arguments
{b1, . . . , bm} can be reformulated as a series of attacks

{a1, . . . , an} ∪ b1

...

{a1, . . . , an} ∪ bm

Evidently, if the arguments a1, . . . , an are valid, each of the bi ’s is invalid.
An indeterministic attack of a set of arguments {a1, . . . , an} on a set of arguments

{b1, . . . , bm} is reformulated in the following way:

{a1, . . . , an, b2, . . . , bm} ∪ b1

{a1, . . . , an, b1, b3, . . . , bm} ∪ b2

...

{a1, . . . , an, b1, . . . , bm−1} ∪ bm

Given an indeterministic attack of {a1, . . . , an} on {b1, . . . , bm}, given the validity
of all the ai ’s and all but one of the bi ’s, say b j , evidently b j cannot be valid.

Accepting Nielsen and Parson’s reformulations of collective and indeterministic
attacks in terms of attacks of sets of arguments on single arguments each CAF has a
canonical representation as an argumentation framework that only features an attack
relation between (non-empty) sets of arguments and single arguments.

Definition 9.2.2. A simplified complex argumentation framework (sCAF) is a pair
〈A,∪⊆ where A is a finite set of arguments, and ∪ ⊆ (

℘(A) \ {∅}) × A is the
attack relation.

Evidently, every CAF can be transformed into a unique sCAF by the procedure
indicated above.

Example 9.2.1. Let A = 〈A,∪c,∪i⊆ be a CAF, where A = {a1, a2, a3, a4, a5},

∪c = {({a1}, {a2}
)
,
({a2}, {a1, a3}

)}
, and

∪i = {({a1, a5}, {a3, a4}
)
,
({a2, a5}, {a3, a4}

)}

3 As in Chap. 8 I restrict the discussion to the finite case.

http://dx.doi.org/10.1007/978-3-319-00792-2_8
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The canonical representation of A as a sCAF is given by A∈ = 〈A,∪⊆ where

∪ = {({a1}, a2
)
,
({a2}, a1

)
,
({a2}, a3

)
,
({a1, a3, a5}, a4

)
,

({a1, a4, a5}, a3
)
,
({a2, a3, a5}, a4

)
,
({a2, a4, a5}, a3

)}

Example 9.2.2. Our Example 9.1.1 is for instance represented by the CAF A =
〈{a1, a2, b1, b2, c1},∪c,∪i⊆ where ∪c = {

({b1}, {a1}), ({a2}, {c1})
}

and ∪i ={
({c1}, {b1, b2})

}
.

The corresponding sCAF is 〈{a1, a2, b1, b2, c1},∪⊆ where

∪ = {
({b1}, a1), ({a2}, c1), ({b1, c1}, b2), ({b2, c1}, b1)

}

9.3 Extension Types

We alter the definition of our standard extension types as follows:

Definition 9.3.1. Given a CAF A = 〈A,∪c,∪i⊆ we define the following notions
on the basis of its canonical representation as a sCAF 〈A,∪⊆.

(i) A set of arguments A is attacked by a set of arguments B ⊆ A iff there is a
B ∈ ⊆ B and a a ∧ A such that B ∈ ∪ a.

(ii) A set of arguments A is acceptable with respect to a set of arguments C ⊆ A,
iff every set of attackers of A is attacked by C . It is said that C defends A.

(iii) A set of arguments S ⊆ A is conflict-free iff S does not attack itself.
(iv) A conflict-free set of arguments S ⊆ A is admissible iff S is acceptable with

respect to S.
(v) A set of arguments S ⊆ A is a preferred extension iff it is a maximal (w.r.t.

⊆) admissible set.
(vi) A conflict-free set of arguments S ⊆ A is a stable extension iff it attacks every

set of arguments in A \ S.
(vii) An admissible set of arguments S ⊆ A is a complete extension iff

⋃
F(S) =

S, where F(S) =df {C | S defends C}.
(viii) A set of arguments S ⊆ A is a grounded extension iff it is the minimal (w.r.t.

⊆) complete extension.
(ix) A complete extension S ⊆ A is a semi-stable extension4 iff S ⊃ ⋃

S+ is
maximal (w.r.t. ⊆), where S+ is the set of sets of arguments that are subsets
of A \ S and that are attacked by S.

(x) A set of arguments S ⊆ A is credulously accepted according to preferred
[(semi)-stable, complete or grounded] semantics (w.r.t. A) iff it is contained
in at least one preferred [(semi)-stable, complete or grounded] extension of A.

4 Semi-stable semantics were defined by Caminada in [4] for AFs and are equivalent to Verhijs’
admissible stage extensions in [5].
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(xi) A set of arguments S ⊆ A is skeptically accepted according to preferred
[(semi)-stable, complete or grounded] semantics (w.r.t. A) iff it is contained
in every preferred [(semi)-stable, complete or grounded] extension of A.

Example 9.3.1. Let us return to our CAF A from Example 9.2.1. We have the fol-
lowing preferred and (semi)-stable extensions:

{a1, a3, a5}, {a1, a4, a5}, {a2, a4, a5}

Note that {a1, a3, a4} is not admissible since it does not defend itself from the attacker
{a1, a4, a5}. The grounded extension is {a5}.
Example 9.3.2. For our Example 9.1.1 we have the preferred and at the same time
(semi-)stable extension {a2, b1, b2}. Moreover, this is also the grounded extension
as can easily be seen.

9.4 Allowing for Joint Attacks in the Lower Limit Logics

In the remainder I will generalize the ALs for Dung’s argumentation framework that
have been presented in Chap. 8 in such a way that they are able to model CAFs (resp.
sCAFs).

In the remainder we allow for conjunctions of atoms on the left hand side of �
and we allow for disjunctions and conjunctions of atoms on the right hand side of
�. Thus, for instance,

(p1 → p2 → p3) � (p4 ∨ p5)

(p1 → p2 → p3) � (p4 → p5)

are now well-formed formulas.
Where

∧{pi } = ∨{pi } = pi , we define V→
n to be the set of all conjunctions of

atoms in Vn = {p1, . . . , pn}, V→
n = {∧

I pi | I ⊆ {1, . . . , n}, I ⊕= ∅}
, and V∨

n to be
the set of all disjunctions of atoms in Vn , V∨

n = {∨
I pi | I ⊆ {1, . . . , n}, I ⊕= ∅}

.
Let

W�
n := 〈V→

n ⊆ � 〈V→
n ⊆ | 〈V→

n ⊆ � 〈V∨
n ⊆ | ⊥ � 〈Vn⊆

Wn := ⊥ | 〈Vn⊆ | 〈W�
n ⊆ | ¬〈Wn⊆ | 〈Wn⊆ → 〈Wn⊆ |
〈Wn⊆ ∨ 〈Wn⊆ | 〈Wn⊆ ⊃ 〈Wn⊆

As noted above, collective attacks {ai | i ∧ I } ∪c {a j | j ∧ J } can be expressed
by a series of attacks, namely by {ai | i ∧ I } ∪ a j for all j ∧ J . We will express
collective attacks by

(∧
I pi

)
�

(∨
J p j

)
and characterize them in accordance with

the discussion in Sect. 9.2 as follows:

http://dx.doi.org/10.1007/978-3-319-00792-2_8
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((∧

i∧I
pi

)
�

(∨

j∧J
p j

)⎧ ◦
(∧

j∧J

((∧

i∧I
pi

)
� p j

)⎧
(CA)

Indeterministic attacks {ai | i ∧ I } ∪i {a j | j ∧ J } will be expressed by(∧
I pi

)
�

(∧
J p j

)
. As noted above, also indeterministic attacks can be translated

into a series of attacks of single arguments, namely into
{
ai | i ∧ I ⊃ J \ { j}} � p j

for all j ∧ J . This motivates the following equivalence:

((∧

i∧I
pi

⎧
�

(∧

j∧J
p j

⎧⎧
◦

(∧

j∧J

((∧

i∧I⊃J\{ j} pi

⎧
� p j

⎧⎧
(IA)

Where
∧

I βi ∧ V→
n , I alter the definition of def in the following way:

def
∧

i∧I
βi =df

∨

i∧I

∨

α∧V→
n

(
α → (α � βi )

)

The other rules are defined as in Chap. 8, just that we relax the constraint that only
atoms attack atoms:

α α�β

¬β
where α ∧ V→

n , β ∧ Vn (R�C)

α β � α

def β
where α ∧ Vn, β ∧ V→

n (RadC)

⊥ ⊕� α

¬α
where α ∧ Vn (R⊥C)

These rules are motivated and discussed in Sect. 8.3.1.
For complete extensions we add the following rule:

⊥ � β
∧

α∧V→
n

(
(α � β) ⊃ def α

)

β
whereβ ∧ Vn (RCoC)

Definition 9.4.1. CLA is classical propositional logic enriched by rules (R�C),
(RadC), (R⊥C), (CA), and (IA). CLC is CLA enriched by (RCoC).

The semantics for these logics and all the proofs for our meta-theory can be found
in Appendix 9.

Theorem 9.4.1. The following holds, where X ∧ {A, C}:

↓CLX (α → (α � β)) ⊃ ¬β, where α ∧ V→
n and β ∧ V∨

n ⊃ V→
n (gR�C)

↓CLX (α → (β � α)) ⊃ def β, where α ∧ V∨
n ⊃ V→

n and β ∧ V→
n (gRadC)

http://dx.doi.org/10.1007/978-3-319-00792-2_8
http://dx.doi.org/10.1007/978-3-319-00792-2_8
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↓CLC

((∧

I
⊥ � βi

)→
∧

α∧V→
n

(
(α � β) ⊃ def α

)) ⊃ β,

where β ∧ {∧

I
βi ,

∨

I
βi | βi ∧ Vn

}
(gRCoC)

Proof. I paradigmatically prove (gR�C). Suppose α → (α � β). Suppose β =∨
I βi ∧ V∨

n . By (CA),
∧

I α � βi . By (R�C), ¬βi for each i ∧ I . Hence, by
aggregation,

∧
I ¬βi . Thus, ¬∨

I βi .
Suppose now β = ∧

I βi . Hence, by (IA),
∧

i∧I

((
α → ∧

j∧I\{i} β j
)

� βi
)
. By

(R�C),
((∧

I βi
)→∧

i∧I

((
α→∧

j∧I\{i} β j
)

� βi
)→α

) ⊃ (∧
I ¬βi

)
. Hence,

((
α→

∧
j∧I\{i} β j

)
� βi

) → α
) ⊃ ((∧

I ¬βi
) ∨ ¬(∧

I βi
))

. Thus,
((

α → ∧
j∧I\{i} β j

)
�

βi
) → α

) ⊃ ¬(∧
I βi

)
. By MP, ¬∧

I βi and hence, ¬β.
The proofs for (gRadC) and (gRCoC) are similar and left to the reader. �

Suppose for instance that (p1 → p2) � (p3 → p4). This represents the indetermin-
istic attack of {a1, a2} on {a3, a4}. Suppose now, that we have p1 → p2. By (gR�C)
(and Modus Ponens), we get ¬(p3 → p4) and hence ¬p3 ∨ ¬p4. This is as expected
since due to the nature of indeterministic attacks at least one of the two arguments
a3 and a4 is supposed to be invalid.

Similar for the collective attack that is represented by (p1 → p2) � (p3 ∨ p4).
Given p1 → p2 we are able to derive ¬(p3 ∨ p4) by (gR�C) (and Modus Ponens).
The latter is equivalent to ¬p3 → ¬p4. Again, this is as desired, since due to the
validity of a1 and a2 both arguments, a3 and a4, are expected to be invalid.

9.5 Representing Complex Argumentation Frameworks
as Premise Sets

The representation of a given CAF or a given sCAF in terms of a premise set is again
straightforward and very similar to the way AFs were presented in terms of premise
sets in Sect. 8.3.2.

Given a CAF A = 〈A,∪c,∪i⊆, where A ⊆ An , we define the premise set Γ n
A

as follows:

Γ n
A =

⎨(∧

I
pi

)
�

(∨

J
p j

) | {ai | i ∧ I } ∪c {a j | j ∧ J }
⎩

⊃
⎨(∧

I
pi

)
�

(∧

J
p j

) | {ai | i ∧ I } ∪i {a j | j ∧ J }
⎩

⊃ {⊥ � pi | ai ∧ A}

Although our primary interest is to give a logical modeling of CAFs, it is tech-
nically straightforward to represent sCAFs as well. Given an sCAF A = 〈A,∪⊆,
where A ⊆ An , we define Γ n

A as follows:

Γ n
A =

⎨(∧

I
pi

)
� p j | {ai | i ∧ I } ∪ a j

⎩
⊃ {⊥ � pi | ai ∧ A}

http://dx.doi.org/10.1007/978-3-319-00792-2_8
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Given a CAF A and its canonical representation as a sCAF, A∈, the corresponding
representations as premise sets are equivalent with respect to our logics CLA and
CLC.

Theorem 9.5.1. Where A is a CAL and A∈ is its canonical representation as an sCAL
and X ∧ {A, C}, Γ n

A ↓CLXΓ n
A∈ and Γ n

A∈ ↓CLXΓ n
A .

Proof. This is so by the definition of A∈ and axioms (CA) and (IA). �

Example 9.5.1. The presentation of our CAF A from Example 9.2.1 as a premise set
is as follows:

Γ 5
A = {

p1 � p2, p2 � (p1 ∨ p3), (p1 → p5) � (p3 → p4), (p2 → p5) � (p3 → p4)
}

⊃{⊥ � pi | i ∧ {1, . . . , 5}}

9.6 Going Adaptive

The adaptive systems for the various extension types are defined analogous to the
way they were defined in Sect. 8.4.

Definition 9.6.1. Where X ∧ {A, C} and ΩC� = {α � β | α ∧ V→
n ⊃ {⊥}, β ∧ Vn}

we define:

ACLX = 〈CLX,ΩC
�, simple strategy⊆,

ACLP = 〈CLA, [ΩC
�,ΩP ], [simple strategy, minimal abnormality]⊆,

ACLG = 〈CLC, [ΩC
�,ΩG ], [simple strategy, simple strategy]⊆,

ACLS = 〈CLC, [ΩC
�,ΩS], [simple strategy, minimal abnormality]⊆.

The sets of abnormalities ΩP , ΩG and ΩS are defined exactly as in Chap. 8.

We have the following representational results:

Theorem 9.6.1.


⎫⎫⎫⎫⎬

⎫⎫⎫⎫⎭

(i) ACLA
(ii) ACLC

(iii) ACLP
(iv) ACLG
(v) ACLS


⎫⎫⎫⎫

⎫⎫⎫⎫

semantically represents5


⎫⎫⎫⎫⎬

⎫⎫⎫⎫⎭

admissible
complete
preferred
grounded
semi-stable


⎫⎫⎫⎫

⎫⎫⎫⎫

extensions for CAFs and sCAFs with at most n arguments.

5 See Definition 8.3.2.

http://dx.doi.org/10.1007/978-3-319-00792-2_8
http://dx.doi.org/10.1007/978-3-319-00792-2_8
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Corollary 9.6.1.


⎫⎫⎫⎫⎬

⎫⎫⎫⎫⎭

(i) ACLA
(ii) ACLC

(iii) ACLP
(iv) ACLG
(v) ACLS


⎫⎫⎫⎫

⎫⎫⎫⎫

syntactically represents6


⎫⎫⎫⎫⎬

⎫⎫⎫⎫⎭

admissible
complete
preferred
grounded
semi-stable


⎫⎫⎫⎫

⎫⎫⎫⎫

extensions with respect to skeptical acceptance for CAFs and sCAFs with at most n
arguments.

Example 9.6.1. Let me demonstrate for instance the logic ACLP by means of our
Example 9.1.1. Let us first take a look at the situation before the introduction of
argument a2. Let

A1 = 〈{a1, b1, b2, c1}, {({b1}, {a1})}, {({c1}, {b1, b2})}⊆.

Hence, our premise set is:

Γ 5
A1 = {

p1
b � p1

a, p1
c �

(
p1

b → p2
b

)} ⊃ {⊥ � p1
a,⊥ � p1

b,⊥ � p2
b,⊥ � p1

c

}
,

where p1
a = p1, p2

a = p2, p1
b = p3, p2

b = p4, p1
c = p5. Let moreover Θc = {

ϕ �
p1

c | ϕ ∧ V→
5

}
.

31 p1
a RC

{¬p1
a

}

2 p1
b � p1

a PREM ∅
3 ¬p1

a ∨ ¬p1
b 2; RU ∅

34 p1
b RC

{¬p1
b

}

95 p2
b RC

{¬p2
b

}

6 p1
c �

(
p1

b → p2
b

)
PREM ∅

7
∧

ϕ∧V→
5

ϕ � p1
c RC Θc

8 ¬ def p1
c 7; RU Θc

9 ¬p1
b ∨ ¬p2

b 6,8; RU Θc

10 p1
b ∨ (

p2
b → p1

a

)
4; RU

{¬p1
b

}

11 p1
b ∨ (

p2
b → p1

a

)
1,5; RU

{¬p1
a,¬p2

b

}

12 p1
c RC

{¬p1
c

}

At line 1 we conditionally introduce argument a1. Since b1 attacks a1 (line 2),
at least one of them is not valid (line 3). At this point of the proof ¬p1

a ∨ ¬p1
b is a

ΩP -minimal Dab-formula. Hence, line 1 is marked. After introducing the indeter-
ministic attack of c1 on {b1, b2} (line 6), we derive that c1 is un-defeated on the
condition that none of the given arguments attacks c1 (line 8). Since c1 attacks
{b1, b2} indeterministically, at least one of the two has to be invalid (line 9). Note
that neither line 7, nor line 8 nor line 9 can be marked in any extension of the proof
since our premise set Γ 5

A1 does not feature any attack on c1. Since ¬p1
b ∨ ¬p2

b has
been derived at an unmarked line on the condition Θc ⊂ Ω�, lines 4 and 5 are

6 See Definition 8.3.2.
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marked. Note that the minimal choice sets at line 11 are {¬p1
b} and {¬p1

a,¬p2
b}.

Since p1
b ∨ (

p2
b → p1

a) is derived on both conditions, {¬p1
b} and {¬p1

a,¬p2
b}, lines 10

and 11 are not marked according to the marking definition for minimal abnormality.
It is easy to see that Γ 5

A1 ↓ACLP p1
c , p1

b ∨ (
p2

b → p1
a), while Γ 5

A1 �ACLP p1
b, p2

b, p1
a .

This corresponds to the two preferred extensions {a1, b2, c1} and {b1, c1}.
Let us now look at the situation when argument a2 enters the scene. Our premise

set is enriched to Γ 5
A2 = Γ 5

A1 ⊃ {p2
a � p1

c ,⊥ � p2
a} where A2 is the (full) CAF

from Example 9.1.1. Let Θa = {
ϕ � p2

a | ϕ ∧ V→
5

}
and Θb = {

ϕ � p1
b | ϕ ∧

V→
5 {p2

b → p1
c }

}
.

191 p1
a RC

{¬p1
a

}

2 p1
b � p1

a PREM ∅
3 ¬p1

a ∨ ¬p1
b 2; RU ∅

4 p1
b RC

{¬p1
b

}

5 p2
b RC

{¬p2
b

}

6 p1
c �

(
p1

b → p2
b

)
PREM ∅

137
∧

ϕ∧V→
5

ϕ � p1
c RC Θc

138 ¬ def p1
c 7; RU Θc

139 ¬p1
b ∨ ¬p2

b 6,8; RU Θc

10 p1
b ∨ (

p2
b → p1

a

)
4; RU

{¬p1
b

}

1911 p1
b ∨ (

p2
b → p1

a

)
1,5; RC

{¬p1
a,¬p2

b

}

1512 p1
c RC

{¬p1
c

}

13 p2
a � p1

c PREM ∅
14 ¬ def p2

a RC Θa

15 ¬p1
c 13,14; RU Θa

16 p2
a RC

{¬p2
a

}

17 def p1
c 13,16; RU

{¬p2
a

}

18 ¬ def p1
b 6,15; RC Θa ⊃ Θb

19 ¬p1
a 2,18; RU Θa ⊃ Θb

At line 13 we introduce the new attack of a2 on c1. This leads to the marking
of lines 7, 8 and 9, since these lines were derived under the condition that c1 is not
attacked by any of the given arguments. Under the condition that none of the given
arguments attacks a2 we derive that a2 is not defeated at line 14. But that means that c1
cannot be the case since c1 is not defended from a2 (line 15). This leads to the marking
of our conditional derivation of c1 at line 12. At line 16 we conditionally derive a2. If
a2 is valid, c1 is defeated since a2 attacks c1 (line 17). Under the condition that only
{b2, c1} attacks b1 we can derive from the fact that c1 is not valid (line 15), that b1 is
un-defeated (line 18). In this case a1 cannot be valid, since a1 would be undefended
from the attack of b1 (line 19). It is easy to check that p1

b at line 4, p2
b at line 5, and

p2
a at line 16 are finally derivable. Altogether, Γ 5

A2 ↓ACLP p1
b, p2

b, p2
a, def p1

a, def p1
c .

This corresponds to the only preferred extension {a2, b1, b2}.
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9.7 Conclusion

In this chapter I have demonstrated that the AL framework for abstract argumentation
of Chap. 8 can easily be enhanced to model a more generic setting in which joint
attacks of sets of arguments are allowed.

The results were explicated with respect to the skeptical acceptance type. Note
that the credulous acceptance type can be easily represented by employing the normal
selections strategy analogous to the logics that were introduced in Sect. 8.5.
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Deontic Logics



Chapter 10
Avoiding Deontic Explosion by Contextually
Restricting Modal Inheritance

In order to deal with the possibility of deontic conflicts Lou Goble developed a group
of logics (DPM) that are characterized by a restriction of the inheritance principle.
While they approximate the deductive power of standard deontic logic, they do so
only if the user adds certain statements to the premises. By adaptively strengthen-
ing the DPM logics, this chapter presents logics that overcome this shortcoming.
Furthermore, these ALs are capable of modeling the dynamic and defeasible aspect
of our normative reasoning by their dynamic proof theory. This way they enable us
to have a better insight into the relations between obligations and thus to localize
deontic conflicts.

10.1 Introduction

Recent work in deontic logics has shown a growing interest in systems that are able
to deal with deontic conflicts (e.g., [2–11]). A deontic conflict between obligations
occurs when the obligations cannot be jointly realized. Note that deontic conflicts
are not just an abstruse philosophical notion, but that they occur quite commonly in
our every-day moral lives (see e.g. [12, 13]). This has for instance to do with the
fact that different obligations and behavioral codices may stem from different moral
systems and institutions. Sartre famously reports on one of his students who found
himself in an unfortunate situation. On the one hand, he felt obliged to support the
French army in their resistance against Nazi Germany. On the other hand, however,
there was the obligation to stay at home in order to support his ill mother. Obviously,
it was not possible for him to fulfill both obligations simultaneously.

In deontic logics a modal operator O is used where OA expresses the obligation
to bring about A. In order to accommodate deontic conflicts systems that tolerate

A former version of the content of this chapter has been elaborated in the article “Avoiding
Deontic Explosion by Contextually Restricting Modal Inheritance” [1]. It is co-authored by
Joke Meheus and Mathieu Beirlaen.

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 257
DOI: 10.1007/978-3-319-00792-2_10, © Springer International Publishing Switzerland 2014
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them need to be developed, i.e., systems that do not lead to triviality when applied
to conflicting obligations. Formally, conflict-tolerant deontic logics do not validate
the following principle of deontic explosion:

∪ (OA ∧ O¬A) ⊆ OB (DEX)

Note that standard deontic logic (SDL)1 is not conflict-tolerant. One reason is that
it validates the principle (D), ∪ OA ⊆ ¬O¬A. Thus, ¬(OA ∧ O¬A) is a theorem
of SDL and all conflicts of the form OA ∧ O¬A lead to explosion.

There are various proposals for conflict-tolerant deontic logics. First, one could
restrict or reject the ex contradictione quodlibet principle ((A ∧ ¬A) ∪ B, for any
B), i.e., go paraconsistent (see e.g. [2, 3, 9]). Another approach is to restrict the
aggregation principle (if OA and OB, then O(A ∧ B)) or to abandon it (see [4, 8,
10, 14]).

Yet another approach is given by Goble’s logics DPM (see [5, 6]). They prevent
deontic explosion by restricting the inheritance principle

If ∪ A ⊆ B, then ∪ OA ⊆ OB (RM)

Note that any system that validates full aggregation, full inheritance as well as
ex contradictione quodlibet leads to explosion when applied to conflicts of the form
OA ∧ O¬A. By aggregation O(A ∧ ¬A) is derivable from OA ∧ O¬A and, in view
of ex contradictione quodlibet, OB follows from O(A ∧ ¬A) by (RM).

We will argue in this chapter that, although Goble’s DPM logics are conflict-
tolerant with respect to conflicting obligations, they are suboptimal in other respects.
In order to overcome this, we will present adaptive strenghtenings of the DPM logics.
The idea behind ALs (see [15, 16]) is to interpret a given premise set “as normally
as possible”. In our case obligations are interpreted as non-conflicting as possible.
It will be demonstrated that the adaptive systems are significantly stronger than the
DPM logics and approximate SDL. For instance, for premise sets that are conflict-
free, the adaptive versions of the DPM systems lead to exactly the same consequence
set as SDL.

Let us outline the structure of this chapter. In Sect. 10.2, we introduce Goble’s
DPM systems and explain their semantics in Sect. 10.3. We show that the DPM
systems have some shortcomings in Sect. 10.4. Motivated by the limitations of the
DPM systems, we suggest ALs as a way to tackle the given problems in Sect. 10.5. In
Sects. 10.6 and 10.7 we present the adaptive strengthenings ADPM.1 and ADPM.2′.
We list some meta-theoretical properties of the ALs in Sect. 10.8. In Sect. 10.9 we
discuss some shortcomings of our logics and relate them to other systems. Finally, in
Sect. 10.10 we offer a conclusion and in Sect. 10.11 an outlook. Appendix H features
the proofs of our results.

1 SDL is obtained by adding the principle (D), ∪ OA ⊆ ¬O¬A to the normal modal logic K. There
are various alternative axiomatizations of SDL, cfr. footnote 5.
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10.2 Dealing with Deontic Conflicts by Restricting Inheritance

In the remainder we work with a propositional language enriched by a monadic
obligation operator O. Where S is the set of sentential letters, our set of well-formed
formulas W is given by the 〈¬,∧,∈,⊆, O∧-closure of S with the usual rules for
brackets. We define A ⊃ B by (A ⊆ B) ∧ (B ⊆ A) and the permission operator PA
by ¬O¬A.

The idea behind Goble’s DPM systems is to restrict the inheritance principle
via permission statements. The full inheritance principle (RM) is replaced by the
following ‘rule of permitted inheritance’

If ∪ A ⊆ B, then ∪ PA ⊆ (OA ⊆ OB) (RPM)

What the rule (RPM) comes to is this: if A is obligatory and A entails B, then B is
also obligatory provided that it is explicitly stated that A is permitted, or what comes
to the same, that the obligation to bring about A is unconflicted.2 Thus, OB follows
neither from Ω1 = {O(A ∧ B), O¬(A ∧ B)} nor from Ω2 = {O(A ∧ B)}, but it does
follow from Ω3 = {O(A ∧ B), P(A ∧ B)}.

Classical propositional logic enriched with the rules (RPM), and

If ∪ A ⊃ B, then ∪ OA ⊃ OB (RE)

and the axioms
∪ O→ (N)

∪ (OA ∧ OB) ⊆ O(A ∧ B) (AND)

defines the system DPM.1. More precisely, DPM.1 is the least set of formulas
containing all classical tautologies of formulas of W , plus all instances of (N) and
(AND), that is closed under Modus Ponens, (RE), and (RPM) with ‘∪’ indicating
membership in DPM.1. We define in a canonical way, ∪DPM.1 A iff A is a member
of DPM.1. Furthermore, where Ω ∨ W , Ω ∪DPM.1 A iff for some B1, . . . , Bn ⊕ Ω

we have ∪DPM.1 (B1 ∧ · · · ∧ Bn) ⊆ A.3

Besides DPM.1 Goble presented another system, DPM.2, that also employs the
restricted inheritance principle (RPM), but that moreover restricts aggregation. We
have motivated the restriction of the inheritance principle and of the aggregation
principle as a way to gain conflict-tolerant deontic logics. As will be stated in
Theorem 10.2.1, DPM.1 does not validate (DEX). Hence, since DPM.1 is already a
conflict-tolerant deontic logic, the question arises concerning the use of this fur-
ther restriction. Let us give some reasons. First, it is not clear that aggregation
should hold unrestrictedly. For instance, should aggregation be applied to conflict-

2 In view of the definition of PA, OA ∧ PA expresses that the obligation O A is unconflicted.
3 See also [17] where the authors define consequence relations for rank-1 modal logics in this way
and prove strong completeness.
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ing obligations? Example: do we want to derive O(A ∧ B) from {OA, O¬A, OB}?
Analogously, should aggregation be applied in cases where it leads to (additional)
deontic conflicts? For instance, should one allow that O(A ∧ B) is derivable from
{OA, OB, O¬(A ∧ B)}, thus creating an additional conflict? A negative answer to
these questions motivates the restriction of aggregation. Secondly, principle

¬O⊥ (P)

has quite some intuitive appeal. Obviously it is impossible to bring about ⊥. The
Kantian principle ‘ought implies can’ says that we are not obliged to bring about
things that are impossible to realize. However, allowing for unrestricted aggregation
in the presence of a conflict OA ∧ O¬A leads to O(A ∧ ¬A) and hence to O⊥.
Thus, adding (P) as an axiom to DPM.1 leads to explosion when applied to deontic
conflicts. This can be avoided by restricting aggregation.

Due to the fact that there are various conflict-tolerant deontic logics that only
restrict (or abandon) aggregation, the reader may still wonder why in DPM.2 both
principles are restricted. One reason is, as Goble pointed out in his [6], that many sys-
tems that restrict (but do not abandon) aggregation are not conflict-tolerant enough.
In his critical analysis he elaborated various refined explosion principles. Besides
the very strict notion of deontic explosion that underlies (DEX), namely situations
in which all obligations are derivable, there are weaker notions. Take for instance the
following explosion principle4:

If � ¬B then OA, O¬A ∪ OB (DEX-1)

Another notion of deontic explosion is given if, for every B, OB ∈O¬B is derivable.
Semantically speaking this corresponds to the case where all models are such that
for every B there is either the obligation to bring about B or there is the obligation to
bring about not-B. Although weaker than (DEX) it is equally counter-intuitive that
OB ∈O¬B is derivable from {OA ∧O¬A}. Hence, we expect from conflict-tolerant
deontic logics that they do not validate the following explosion principle:

OA, O¬A ∪ OB ∈ O¬B (DEX-2)

This may be weakened further. Facing a deontic conflict, OA ∧ O¬A as well as an
unconflicted obligation OC ∧ ¬O¬C , it would be undesired that, for every B, the
formula OB ∈ O¬B would be derivable. This is expressed as follows:

OA, O¬A, OC,¬O¬C ∪ OB ∈ O¬B (DEX-3)

4 We slightly adjusted the criteria (DEX-1)–(DEX-3) (the latter two will be introduced in a moment)
offered by Goble since his criteria were formulated in terms of theoremhood while we focus on the
consequences of premise sets.
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Validating (DEX-3) is counter-intuitive, since for some arbitrary B the conflict OA∧
O¬A together with the other, otherwise unrelated and unproblematic obligation OC
does not entail that we are either obliged to bring about B or to bring about ¬B:
OB ∈ O¬B.

By restricting aggregation along with inheritance the various advantages can be
combined. In this way we gain systems that follow the Kantian intuition ‘ought
implies can’, that hence validate (P), and that are strongly conflict-tolerant such that
they do not validate any of the explosion principles (DEX), (DEX-1)–(DEX-3).

In order to achieve such a conflict-tolerant logic, Goble uses the following per-
mitted aggregation principle:

∪ (
OA ∧ OB ∧ P(A ∧ B)

) ⊆ O(A ∧ B) (PAND’)

The idea is to apply aggregation to OA and OB, provided that A ∧ B is explicitly
permitted. Goble’s logic DPM.2 is defined by (RPM), (RE), (N), (P), and (PAND’).
The consequence relation ∪DPM.2 is defined analogous to ∪DPM.1.

There is an alternative way of restricting aggregation that offers several advantages
over (PAND’), namely:

∪ (
OA ∧ OB ∧ PA ∧ PB

) ⊆ O(A ∧ B) (PAND’)

Here, the idea is to apply aggregation to OA and OB provided that both A and B are
explicitly permitted.

The logic DPM.2′ is defined by (RPM), (RE), (N), (P), and (PAND’). The con-
sequence relation ∪DPM.2′ is defined analogous to ∪DPM.1.

Henceforth we will use DPM as a generic term for DPM.1, DPM.2 and DPM.2′.
As announced already, DPM is sufficiently conflict-tolerant not to validate any

of the introduced explosion principles.

Theorem 10.2.1. Where L ⊕ {DPM.1, DPM.2, DPM.2′}, L does not validate any
of the explosion principles (DEX), (DEX-1–DEX-3).

Lou Goble argued in [5] in favor of the following criterion of adequacy for conflict-
tolerant deontic logics:

(β) A conflict-tolerant deontic logic should be such that the result of adding (D),
namely ∪ OA ⊆ ¬O¬A, as an axiom leads to the same consequence relation
as SDL.5

Theorem 10.2.2. Where Λ ⊕ {1, 2′}, DPM.Λ satisfies (β).

The logic DPM.2′ has several advantages as compared to Goble’s DPM.2. First,
the restricted aggregation principle of DPM.2′, i.e. (PAND’), coheres better with the
idea underlying (RPM) than (PAND’). Note that the idea underlying (RPM) was to

5 Goble axiomatizes SDL by adding (D), (N), (RE), (RM), and (AND) to full propositional logic.
A consequence relation ∪SDL can be defined analogous to ∪DPM.1. We slightly adjusted Goble’s
(β) since he is mainly interested in theoremhood, while we focus on consequence relations.
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restrict inheritance to those obligations that are explicitly permitted, or what comes to
the same, are explicitly unconflicted. This idea is applied to the aggregation principle
by (PAND’)—aggregation can only be applied if both obligations are explicitly
unconflicted. In contrast, the idea underlying (PAND’) is to apply aggregation to OA
and OB provided that the outcome of the aggregation, A ∧ B, is explicitly permitted.
Thus in the case of (PAND’), but not in the case of (PAND’), O(A ∧ B) is derivable
from {OA, O¬A, OB, P(A ∧ B)}.6 Second, DPM.2′ satisfies Goble’s criterion (β)
while DPM.2 does not. Third, by choosing DPM.2′ instead of DPM.2 as a basis
for the adaptive strengthenings that are introduced in Sect. 10.5 we will avoid some
technical problems.

Before we take a look at some of the shortcomings of the DPM logics, let us
introduce the semantics.

10.3 The Semantics of DPM

The semantics that we introduce in this section are very similar to Goble’s neigh-
borhood semantics for his DPM logics in [5]. The only difference is that we employ
an actual world. This makes the semantics philosophically more intuitive for our
application, since we are not only interested in modeling theoremhood but also in
defining a semantic consequence relation.

One of the basic ideas for the neighborhood semantics is that propositions are
interpreted in terms of sets of worlds. Moreover, each world has associated with it
propositions, i.e., sets of worlds. The idea is that an obligation OA is true at a world
w, in case A is one of its associated propositions.

Let Δ(X) be the power-set of some set X . A neighborhood frame F is a tuple
〈W,O∧ where W is a set of points and O : W → Δ(Δ(W )). We call elements
of W worlds. Thus, O assigns to each world w ⊕ W a set of propositions, i.e.,
O(w) ∨ Δ(W ). We write from now on Ow instead of O(w). An F-model M
on a frame F is a triple 〈F, v, @∧ where @ ⊕ W is called the actual world and
v : S → Δ(W ). A propositional atom is mapped by v into the set of worlds in which
it is supposed to hold. Where w ⊕ W and |A|M =df {w ⊕ W | M, w |= A}, we
define:

(M-P) M, w |= A iff w ⊕ v(A), where A ⊕ S
(M-O) M, w |= OA iff |A|M ⊕ Ow

(M-¬) M, w |= ¬A iff M, w � A
(M-∈) M, w |= A ∈ B iff M, w |= A or M, w |= B
(M-∧) M, w |= A ∧ B iff M, w |= A and M, w |= B
(M-⊆) M, w |= A ⊆ B iff M, w |= ¬A ∈ B
(M-→) M, w |= →
(M-⊥) M, w ◦|= ⊥

6 A restricted inheritance principle following the intuition of (PAND’) would be: If ∪ A ⊆ B, then
∪ PB ⊆ (OA ⊆ OB). Inheritance is applied to OA in order to derive OB if it does not result in a
deontic conflict OB ∧ O¬B.
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Furthermore, M |= A iff M, @ |= A. Where Ω ∨ W , we say that M is an
F-model of Ω iff M is an F-model and M |= A for all A ⊕ Ω .

We define the following requirements on frames F = 〈W,O∧. For all w ⊕ W :

(a) W ⊕ Ow

(b) If X ⊕ Ow and Y ⊕ Ow, then X ↓ Y ⊕ Ow

(b’) If X ⊕ Ow; Y ⊕ Ow; W \ X /⊕ Ow; and W \ Y /⊕ Ow, then X ↓ Y ⊕ Ow

(b”) If X ⊕ Ow; Y ⊕ Ow; W \ (X ↓ Y ) /⊕ Ow, then X ↓ Y ⊕ Ow

(c) If X ∨ Y ; X ⊕ Ow and W \ X /⊕ Ow, then Y ⊕ Ow

(d) ∅ /⊕ Ow

Condition (a) corresponds to (N), (b) corresponds to (AND), (b’) corresponds to
(PAND’), (b”) corresponds to (PAND’), (c) corresponds to (RPM), and (d) corre-
sponds to (P). We call the class of all frames that satisfy (a), (b) and (c) the DPM.1-
frames, the ones that satisfy (a), (b’), (c) and (d) the DPM.2′-frames, and the ones
that satisfy (a), (b”), (c) and (d) the DPM.2-frames.

Let Ω ∨ W . A semantic consequence relation can be defined as follows. Where
F is a frame, Ω �F A iff for all F-models M of Ω , M |= A. Moreover, where
Λ ⊕ {1, 2, 2′}, Ω �DPM.Λ A iff Ω �F A for all DPM.Λ-frames F .

Theorem 10.3.1. Where Λ ⊕ {1, 2, 2′} and Ω ∨ W:

Ω ∪DPM.Λ A iff Ω �DPM.Λ A.

10.4 Some Shortcomings of DPM

In order to apply the weakened inheritance principle (resp. also the weakened aggre-
gation principle in the case of DPM.2 and DPM.2′) the user has to “manually” add
permission statements. For instance, in order to apply the restricted inheritance prin-
ciple (RPM) to OA we also need PA. In cases in which PA is not derivable from the
premises by means of DPM, the user has to add manually PA to the premises. This
is suboptimal for various reasons.7

1. For all interesting cases, determining which permission statements can safely
be added to a set of premises (that is, in such a way that no explosion follows)
requires reasoning. This kind of reasoning falls entirely outside the scope of
the DPM systems and is therefore left to the user of the DPM systems. So, the
DPM systems are inadequate to fully explicate the reasoning processes that are

7 In [11], van der Torre and Tan presented a sequential system which, in a first phase, disables
the application of (RM) and allows for the application of a restricted aggregation rule. In a second
phase, it disables this aggregation rule and allows for the application of (RM). Although this system
overcomes this problem, it can do so only by introducing two different O-operators and by requiring
that (RM) is never applied before the restricted aggregation rule. As the authors themselves admit,
this is rather strange from an intuitive point of view (see also [6], pp. 470–471).
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needed to apply the DPM systems in a sensible way (that is, in a way that modal
inheritance is applied “as much as possible”).

2. The fact that permissions have to be added manually is especially problematic in
cases where the relationship between the premises is interwoven. For instance in
complicated setups it might not be obvious at all that OA ∧ O¬A is derivable.
However, suppose that in this case the user naïvely added PA to the premises in
order to apply (RPM) to OA. Since PA is equivalent to ¬O¬A the user caused
in this way an explosion.

3. For most premise sets the DPM systems are rather weak. Recall that in order to
achieve the deductive strength of SDL we had to add (D) to the axiomatization
of DPM.1 (resp. DPM.2′). Suppose we accept SDL as the normative standard
for the modeling of non-conflicting obligations. It would be desirable then that
conflict-tolerant logics apply all rules of SDL to non-conflicting obligations. For
instance, given a premise set Ω ∨ W that is conflict-free, we expect a deontic
logic to lead to a consequence set that is the same as that of SDL without the
need of strengthening the premise set manually by adding instances of (D), or by
adding premises. Thus, if the premises are conflict-free, the logic should apply
all the rules of SDL unrestrictedly.

The discussion above motivates the following strengthening of Goble’s require-
ment (β).8

(ββ) For SDL-consistent premise sets9 Ω ∨ W a conflict-tolerant deontic logic
should lead to the same consequence set as SDL.

Note that neither of the introduced DPM logics satisfies (ββ). We will in the next
section adaptively strengthen DPM.1 and DPM.2′ so that they satisfy criterion (ββ).

As should have become evident from the discussion above, there is a certain trade-
off for monotonic deontic logics such as DPM. In order to offer conflict-tolerance
certain SDL-principles such as (D) and inheritance have to be restricted or abandoned.
In return, this weakens the logics even in cases in which it would be unproblematic
to apply the principles in question.

The adaptive strengthenings introduced in the next sections will overcome this
trade-off. On the one hand, applying the logic does not involve any user interference.
On the other hand, by interpreting a premise set as non-conflicting as possible, princi-
ples such as inheritance, (D) and aggregation in the case of the adaptive strengthening
of DPM.2′ will be applied as much as possible.

8 To stay in line with Goble’s (β), we formulate the strengthened requirement in terms of SDL. If
one’s preferred logic is different from SDL, the requirement may easily be adapted. The basic idea
is that, where one’s preferred deontic logic (for conflict-free premise sets) is L, one expects from a
conflict-tolerant deontic logic on the basis of L that it leads to the same consequence set as L for
all L-consistent premise sets. This is exactly what ALs allow for.
9 Ω is SDL-consistent iff Ω �SDL ⊥.
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10.5 Adaptive Logics

As discussed before, the main feature of ALs is that they interpret a given premise
set “as normally as possible”. The standard of normality depends on the application.
For instance, there are inconsistency-ALs that, while allowing for classical inconsis-
tencies, interpret a given premise set as consistently as possible (see e.g. [16, 18]).
In our case the idea is to interpret premise sets “as non-conflicting as possible”. We
will in the following give a precise meaning to this vague notion.

We will in this chapter use DPM.1 or DPM.2′ as lower limit logics.10 Let hence-
forth Λ ⊕ {1, 2′}.

We will focus in this chapter on the minimal abnormality strategy. It gives rise to
a stronger consequence relation since it allows for the derivation of O(A ∈ B) from
two incompatible obligations OA and OB while reliability does not. We will give an
example of this later on (see Example 10.7.1). Of course, the corresponding logics
with reliability can easily be devised, which is left to the reader.

Since our aim is to interpret a given premise set Ω as non-conflicting as possible,
we define our abnormalities to be deontic conflicts, OA ∧ O¬A.

Now we have the three elements needed to define the ALs that are explicated in
this chapter:

1. the lower limit logic is either DPM.1 or DPM.2′,
2. the logical form of the abnormalities is OA ∧ O¬A and Θ is the set of all

abnormalities,11

3. the strategy is minimal abnormality.

We dub these systems ADPM.1 and ADPM.2′.
We define the semantics as usual: a certain well-defined set of DPM.Λ-models of

a given premise set Ω is selected, namely the ones that are “minimally abnormal”.
The models are selected with respect to their abnormal part, i.e. the abnormalities
they verify: where M is a DPM.Λ-model, Ab(M) = {A ⊕ Θ | M |= A}. For a given
logic L, we write ML (Ω ) for the set of L-models verifying all members of Ω .

Definition 10.5.1. A DPM.Λ-model M ⊕ MDPM.Λ(Ω ) is minimally abnormal iff
there is no DPM.Λ-model M ′ ⊕ MDPM.Λ(Ω ) such that Ab(M ′) ∅ Ab(M). We write
MADPM.Λ (Ω ) for all the minimal abnormal DPM.Λ-models of Ω .

Ω �ADPM.Λ A (A is an ADPM.Λ-semantic consequence of Ω ) iff A is verified
by all M ⊕ MADPM.Λ (Ω ).

Hence all the selected models are such that they validate a minimal amount of
conflicts (in the set-theoretical sense). This justifies our claim that the ALs interpret
the premises as non-conflicting as possible.

Let us proceed with the syntactic counter-part to the semantic selection. It is
realized by dynamic adaptive proofs. While all the rules of DPM.Λ are valid, a

10 We will discuss the case of DPM.2 being a lower limit logic shortly in Sect. 10.7.
11 In Section 10.6 in the context of the lower limit logic DPM.1 we will have to make a slight
adjustment when defining Θ . However, the main idea stays the same.
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key feature of adaptive proofs is that they allow for certain additional rules to be
applied conditionally. In our case the idea is to apply the inheritance principle and
principle (D) conditionally. Recall that DPM.Λ, in order to avoid deontic explosions,
only validates a restricted version of (RM). This led to the problem (discussed in
Sect. 10.4) that in many cases the user needs to add manually permission statements.
Note that the following is valid in DPM.Λ:

If ∪DPM.Λ A ⊆ B, then OA ∪DPM.Λ OB ∈ (OA ∧ O¬A).

The underlying idea of the restriction is that inheritance is applicable to OA if
there is no deontic conflict concerning OA. In the AL we make use of this: the
inheritance principle is applied to OA on the condition {OA ∧ O¬A}. That is
to say, on the condition that there is no reason to suppose that there is a deontic
conflict concerning OA.

This is still very vague, but we will make it more precise in a moment. Suppose
OA is one of the premises. A fragment of an adaptive proof may look as follows:

1 OA PREM ∅
2 O(A ∈ B) 1; RC

{
OA ∧ O¬A

}

Line 2 contains a conditional application of the inheritance rule to OA. This is
indicated by the generic rule RC and by a fourth column in which the conditions
of the respective lines are contained. The condition of line 1 is empty since it is
the result of a premise introduction. The condition of line 2 is {OA ∧ O¬A}. Now
suppose we are able to derive the following disjunction of abnormalities from the
given premises at a line l:

l (OA ∧ O¬A) ∈ (OC ∧ O¬C) . . . ; RU ∅

By the generic rule RU we indicate the (unconditional) applications of the DPM.Λ

rules. Note that the disjunction of abnormalities that has been derived at line l also
features the condition of line 2. This gives us reasons to suspect that OA may after
all be part of a deontic conflict. In this case line 2 is marked according to the marking
definition. Formulas that are the second element of marked lines are not considered
to be derived at that stage. Note however that markings may come and go. Assume
for instance that OC ∧O¬C has been derived at a later stage of the proof. In this case
there is no reason anymore to suspect that OA is part of a deontic conflict and the
conditional application of inheritance at line 2 can again be considered as valid. The
marking will thus be defined on basis of the minimal disjunctions of abnormalities
that have been derived at a given stage of the proof.

Besides the lower limit logic there is also an upper limit logic for each AL. It is
the strengthening UDPM.Λ of DPM.Λ that trivializes abnormalities. It is defined by,
Ω ∪UDPM.Λ A iff Ω ≥ {¬B | B ⊕ Θ} ∪DPM.Λ A.
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The next result follows immediately by Theorem 2.6.6 (recall that there premise
sets that are consistent with respect to the upper limit logic are called “normal”).

Corollary 10.5.1. For UDPM.Λ-consistent premise sets Ω , ADPM.Λ leads to the
same consequence set as UDPM.Λ.

10.6 The Adaptive Logic ADPM.1

In this section we introduce a concrete adaptive system on the basis of Lou Goble’s
DPM.1. ADPM.1 is defined by the triple

〈DPM.1,Θ, minimal abnormality∧,

where Θ = {!A | A ⊕ W} is the set that contains for each propositional
formula A and its set of subformulas Sub(A) (including A itself) the formula
!A =df

∨
B⊕Sub(A) OB ∧ O¬B. This is a slight complication to our discussion in

Sect. 10.5: a formula A behaves abnormal if it gives rise to a deontic conflict, or (and
this is the complication) if any of its subformulas gives rise to a deontic conflict. We
will comment some more on this in Example 10.6.1. below.

This logic will allow us to apply the inheritance principle to OA on the condition
{!A}. Moreover, also (D) may be applied conditionally. Note that the following is
valid:

OA ∪DPM PA ∈ (OA ∧ O¬A)

and hence OA ∪DPM PA ∈ !A

This allows to derive PA from OA on the condition {!A} by the generic rule RC.

Example 10.6.1. Let us take a look at a first concrete example of a proof in ADPM.1
(where A, B, and C are atoms):

1 OA PREM ∅
2 O¬A PREM ∅
3 O(B ∧ C) PREM ∅
4 OB 3; RC

{!(B ∧ C)
}

5 PB 4; RC
{!(B ∧ C), !B}

Note that OA, O¬A, O(B ∧ C) �DPM.1 OB and OA, O¬A, O(B ∧ C) �DPM.1
PB. In Sect. 10.4 we have pointed out that this is suboptimal. A deontic logic should
apply the rules of SDL to non-conflicting parts of the premise set and there should
be no need for the user to add permission statements. In order to derive OB from
O(B ∧C) the user of DPM.1 would have to manually add P(B ∧C) to the premises.
Moreover, there is no way of deriving PB from the given premises in DPM.1.
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In contrast, the adaptive logic ADPM.1 applies inheritance conditionally to
O(B ∧ C) in order to derive OB at line 4. Moreover, (D) is applied condition-
ally to OB in order to derive PB at line 5. Note that O(B ∧ C) and OB are unrelated
to the deontic conflict OA ∧ O¬A, and hence, as discussed in Sect. 10.4, inheritance
and (D) should be applicable to them. It can easily be seen that lines 4 and 5 are
finally derived.

We still need to explain why we need the complication in the definition of the
set of abnormalities Θ . Indeed, in the original formulation [1], Θ was defined by
{OA ∧ O¬A | A ⊕ W}. However, Lou Goble [19] pointed out that the resulting
system is suboptimal. Take our example. Were we to use OA ∧ O¬A as our form of
abnormalities we would derive OB at line 4 on the condition {O(B∧C)∧O¬(B∧C)}.
However, we have e.g., {OA, O¬A, O(B ∧ C)} ∪ DPM.1

∨
Σ where Σ = {

O(B ∧
C)∧ O¬(B ∧ C), O(A ∧ C)∧ O¬(A ∧ C), O(¬A ∧ C)∧ O¬(¬A ∧ C)

}
. Deriving∨

Σ on the empty condition leads to the marking of line 4. Moreover, for all Σ′ ∅ Σ,
{OA, O¬A, O(B ∧C)} �DPM.1

∨
Σ′ which means that

∨
Σ is minimal and in view

of this it is not difficult to see that indeed OB would not follow.
Because of this complication, Goble proposed the solution to redefine Θ as pre-

sented above. This avoids the problem from the previous paragraph for the simple
reason that we can derive !A and hence also !(A ∧ C) and !(¬A ∧ C). As a conse-
quence, there is no way to involve !(B∧C) in a minimal disjunction of abnormalities.

In the remainder we will frequently make use of the following fact.

Fact 10.6.1. Where Λ ⊕ {1, 2′}, the following holds in DPM.Λ12:

If ∪CL ¬(A ∧ B), then OA, OB ∪DPM.Λ !A ∈ !B.

The fact shows that a pair of conflicting obligations gives rise to a disjunction of
abnormalities in the DPM logics, even in case they are not directly conflicting (such
as OA and O¬A).

Example 10.6.2. In the example above it was demonstrated that ADPM.1 delivers all
the consequences of a premise (O(B∧C)) that is consistent with the other two directly
conflicting premises (OA, O¬A). In the following example we have two conflicting
premises: O¬A and O(A ∧ B). Note that OB is –via unrestricted inheritance– a
consequence of O(A ∧ B) and that it is not conflicting with the premise O¬A. This
poses the question whether OB is a desired consequence of these premises. We
now demonstrate that ADPM.1 takes a skeptical stance and does not lead to the
consequence OB. Let us take a look at an adaptive proof (where A and B are atoms):

1 O¬A PREM ∅
2 O(A ∧ B) PREM ∅

43 OB 2; RC
{!(A ∧ B)

}

4 !(A ∧ B) 1,2; RU ∅

12 This can easily be seen: from ∪CL ¬(A ∧ B), OA and restricted inheritance we get O¬B ∈ !A.
The latter together with OB results in !A ∈ !B.
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Although OB is conditionally derivable at line 3, it is marked since the condition
of line 3 is part of the minimal Dab-consequence derived at line 4. Note that by Fact
10.6.1 we get !A∈!(A ∧ B) and hence also !(A ∧ B) from lines 1 and 2.

What motivates the skeptical stance according to which OB is not a
consequence of the given premises is that there may be certain causal connections
between A and B. This is for instance the case where A stands for taking a train to
London and B for buying the ticket for it. If there is also the obligation not to take
the train, then despite the fact that there is no direct conflict between ¬A and B in
terms of being jointly realizable, there is nevertheless clearly a tension. As long as
we don’t have reasons to prefer the obligation to take the train there is no reason to
derive the obligation to buy the ticket.

Example 10.6.3. Let us alter the example slightly by adding OA to the premises.
This way we make the conflict between OA and O¬A explicit in the premises.

1 OA PREM ∅
2 O¬A PREM ∅
3 O(A ∧ B) PREM ∅

64 OB 3; RC {!(A ∧ B)}
5 !A 1,2; RU ∅
6 !(A ∧ B) 5; RU ∅

Evidently, we can again derive !(A ∧ B) on the empty condition and mark line
4. Hence, ADPM.1 is also in this example coherent to its skeptical stance that was
illustrated already in the example above.

Example 10.6.4. Examples 10.6.2 and 10.6.3 have demonstrated that in some cases
we cannot derive non-conflicting conjuncts of conflicting premises by means of
ADPM.1. This opens the question whether OB is derivable if it is part of each
conflicting premise. Where A and B are atoms, we have the following proof:

1 O(A ∧ B) PREM ∅
2 O(¬A ∧ B) PREM ∅

73 OA 1; RC
{!(A ∧ B)

}

74 O¬A 2; RC
{!(¬A ∧ B)

}

5 OB 1; RC
{!(A ∧ B)

}

6 OB 2; RC
{!(¬A ∧ B)

}

7 !(A ∧ B) ∈ !(¬A ∧ B) 1,2; RU ∅
As the proof indicates, OB is derivable from O(A ∧ B) and O(¬A ∧ B). The

reason why lines 5 and 6 are unmarked is that for each minimal choice set {!(A∧ B)}
and {!(¬A ∧ B)} at this stage, OB is derivable on a condition which has an empty
intersection with it. As can easily be checked, OB is finally derived at line 6.

Example 10.6.5. Let us generalize the example above. We take a look at the premises
O(A ∧ B) and O(¬A ∧ C). Although B ∈ C is not a conjunct of any of the two
premises, it is a consequence of both A ∧ B and ¬A ∧ C . In coherence with the
example above we expect thus O(B ∈ C) to be an ADPM.1-consequence. On the
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other hand we expect OB and OC not to be a consequence. Where A, B, and C are
atoms, we have the following proof:

1 O(A ∧ B) PREM ∅
2 O(¬A ∧ C) PREM ∅

73 OB 1; RC
{!(A ∧ B)

}

4 O(B ∈ C) 1; RU
{!(A ∧ B)

}

75 OC 2; RC
{!(¬A ∧ C)

}

6 O(B ∈ C) 2; RU
{!(¬A ∧ C)

}

7 !(A ∧ B) ∈ !(¬A ∧ C) 1,2; RU ∅
8 !→ 1,2; RU ∅

Indeed, the conditional derivation of OB and OC is marked, while O(B ∈ C) is
derivable since it is derived on both conditions, {!(A ∧ B)} and {!(¬A ∧ C)}. Since
the minimal choice sets in this example are {!→, !(A ∧ B)} and {!→, !(¬A ∧ C)} this
ensures that O(B ∈ C) is finally derived.13

Example 10.6.6. The following example of an ADPM.1-proof features a more com-
plex setup. Where A, B, C , and D are atoms, we have:

1 OA PREM ∅
2 OB PREM ∅
3 O(C ∈ D) PREM ∅
4 O¬(A ∧ C) PREM ∅
5 O¬(B ∧ D) PREM ∅
6 O(A ∧ ¬C) 1,4; RU ∅
7 O(B ∧ ¬D) 2,5; RU ∅

168 PA ∧ PB ∧ P(C ∈ D) 1,2,3; RC
{!A, !B, !(C ∈ D)

}

9 O(A ∈ ¬C) ∈ !A 1; RU ∅
10 O(B ∈ ¬D) ∈ !B 2; RU ∅
11 O¬C ∈ !A 4,9;RU ∅

1612 O¬C 11; RC
{!A}

13 O¬D ∈ !B 5,10; RU ∅
1614 O¬D 13; RC

{!B}

15 O¬(C ∈ D) ∈ !A ∈ !B 11,13; RU ∅
16 !A ∈ !B ∈ !(C ∈ D) 3,15; RU ∅
17 ¬PA ∈ ¬PB ∈ ¬P(C ∈ D) 15; RU ∅

Without engaging in more advanced reasoning processes it is for a user of DPM.1
in no way clear which permission statements may be added without causing deontic
conflicts or explosion. We have pointed out this problem in Sect. 10.4 (point 2). Would
(s)he, for instance, add PA, PB, and P(C ∈ D) it would cause explosion, since via
DPM.1, ¬PA ∈¬PB ∈¬P(C ∈ D) is derivable at line 17. Note that in the adaptive
proof line 8 is marked in view of line 16 and does therefore not cause any harm.
Thus, the AL identifies given deontic conflicts and blocks undesired consequences

13 Note that line 8 follows by (N) and applying aggregation to lines 1 and 2.
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from them. For instance, the unintuitive derivations of O¬C and O¬D at lines 12
and 14 are marked.

10.7 The Adaptive Logic ADPM.2′

We have already pointed out various advantages of our DPM.2′ logic over Goble’s
DPM.2. Besides these points DPM.2′ is also more apt as a lower limit logic.

One idea to define an AL on the basis of DPM.2 would be in terms of the triple
〈DPM.2, Θ , minimal abnormality∧. However, this has a severe shortcoming. Suppose
our premises are Ω = {OA, OB}. Since these premises do not give rise to any
deontic conflicts we expect from the logic to apply aggregation to them. However,
Ω �ADPM.2 O(A ∧ B). Since DPM.2 also restricts aggregation beside inheritance
it is desirable that the logic is able to apply aggregation conditionally in a similar
way as ADPM.1 applies inheritance and (D) conditionally. The way aggregation
is restricted in DPM.2, namely by (PAND’), does not allow for utilizing the same
set of abnormalities as for ADPM.1. A way around this problem is to define the
abnormalities in a different way, for instance by Θ ′ = {OA ∧ OB ∧ O¬(A ∧ B) |
A, B ⊕ W}. This would allow to apply the aggregation principle conditionally.
However, this logic is very weak. For instance given two incompatible obligations
OA, OB, where O¬(A∧ B) expresses their incompatibility, we are not able to derive
O(A ∈ B). The upshot is that, with DPM.2 as the lower limit logic, we were not able
to define a set of abnormalities in such a way that the resulting AL is sufficiently
strong and aggregation is conditionally applicable.

The situation is different if we employ DPM.2′ as lower limit logic. In that case,
we can use the set of abnormalities Θ = {OA ∧ O¬A | A ⊕ W}. This con-
tributes to a more unifying adaptive framework. Let ADPM.2′ be defined by the
triple 〈DPM.2′,Θ, minimal abnormality∧. Note that in DPM.2′ the following is a
consequence of (PAND’):

∪DPM.2′
(
OA ∧ OB

) ⊆ (
O(A ∧ B) ∈ (

(OA ∧ O¬A) ∈ (OB ∧ O¬B)
))

This makes it possible to apply aggregation to OA ∧ OB on the condition {OA ∧
O¬A, OB ∧O¬B} by the rule RC. Similarly, inheritance and (D) are applied to OA
on the condition {!A} where now !A abbreviates OA ∧ O¬A.

Note that we simplified the form of the abnormalities in ADPM.2′ compared to
ADPM.1. The reason why there was a need for the complication in ADPM.1 was
the presence of the unrestricted aggregation principle (AND). For instance, it caused
that the unconflicted formula O(B ∧ C) became involved in a minimal disjunction
of normative conflicts in our Example 10.6.1. It is easy to see that the only minimal
disjunctions of deontic conflicts derivable via DPM.2′ from {OA, O¬A, O(B ∧C)}
are OA′ ∧O¬A′ for all A′ for which ∪ DPM.2′ A′ ⊃ A. This immediately implies that
we can finally derive OB from O(B ∧C) on the condition {O(B ∧C)∧O¬(B ∧C)}
in ADPM.2′.
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In order to demonstrate the modus operandi of ADPM.2′ we take a look at a
concrete example.

Example 10.7.1. Let us come back to Sartre’s unfortunate student. On the one hand,
he has the obligation to stay with his sick mother (OM). However, on the other hand
he has the obligation to fight at the front against Nazi Germany (OF). Due to the lack
of alethic modalities we have to find a way to model the fact that both obligations
are not simultaneously realizable. This can be done by O¬(M ∧ F). We add another
premise which is independent of the first two: as a good citizen he is obliged to pay
taxes and to vote, O(T ∧ V ).14

1 OM PREM ∅
2 OF PREM ∅
3 O¬(M ∧ F) PREM ∅
4 O(T ∧ V ) PREM ∅
5 OT 4; RC

{!(T ∧ V )
}

76 O(M ∧ F) 1,2; RC
{!M, !F}

7 !(M ∧ F) ∈ !M ∈ !F 1,2,3; RU ∅
8 O(M ∈ F) 1; RC

{!M}

9 O(M ∈ F) 2; RC
{!F}

As discussed in Sect. 10.4, we expect that all rules of SDL can be applied to
non-conflicting obligations such as O(T ∧ V ). Indeed, after having introduced the
premises at lines 1–4, inheritance is applied to O(T ∧ V ) in order to derive OT ,
the student’s duty to pay taxes. Furthermore, the application of aggregation to OM
and OF at line 6 gets marked. This accords with the fact that (PAND’) is a rule that
isolates deontic conflicts, i.e. it is not applicable to conflicting obligations.

ADPM.2′ realizes our design requirements. On the one hand, it blocks rules
from being applied to conflicting obligations (such as aggregation at line 6). On the
other hand it allows for applications of rules to non-conflicting premises (such as
inheritance at line 5 to O(T ∧V )) without requiring the manual addition of permission
statements.

Moreover, note that it is desired to derive O(M ∈ F), the student’s obligation to
either stay with his mother or to fight the Nazis. Indeed, since O(M ∈ F) is derivable
on both conditions, {OM ∧ O¬M} and {OF ∧ O¬F}, lines 8 and 9 are not marked.
Similarly for instance O(T ∧ (M ∈ F)) and O(V ∧ (M ∈ F)) are derivable.

In contrast, using one of the DPM logics, the user would have to add manually
P(T ∧ V ) to the premises in order to derive OT . Furthermore, it is unclear how to
derive O(M ∈ F) in DPM. Only by adding either PM or PF permitted inheritance
is applicable to OM or resp. OF . However, there is no reason to prefer PM over PF
or vice versa. Moreover, would the user add both of them, it may lead to explosion.
Consider the case where also P¬(M ∧ F) is a premise. It can be argued that, since M
and F cannot be mutually realized an agent is allowed either to bring about not-M
or to bring about not-F . However, in view of the final derivability of the formula at

14 The proofs of O(M ∈ F) and OT for ADPM.1 are left to the reader.
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line 7, this leads to the derivability of (OM ∧ O¬M) ∈ (OF ∧ O¬F). In case the
user would have added both, PM and PF , explosion would result.

Example 10.7.2. ADPM.2′ leads to similar results in examples 10.6.1, 10.6.2, 10.6.4
and 10.6.5 as ADPM.1:

OA, O¬A, O(B ∧ C) �ADPM.2′ OB, PB

O¬A, O(A ∧ B) �ADPM.2′ OB

O(A ∧ B), O(¬A ∧ B) �ADPM.2′ OB

O(A ∧ B), O(¬A ∧ C) �ADPM.2′ OB, OC

O(A ∧ B), O(¬A ∧ C) �ADPM.2′ O(B ∈ C)

Example 10.7.3. A difference between ADPM.2′ and ADPM.1 is in the handling
of the premise set consisting of OA, O¬A and O(A∧ B) (where A and B are atoms):

1 OA PREM ∅
2 O¬A PREM ∅
3 O(A ∧ B) PREM ∅
4 OA ∧ O¬A 1,2; RU ∅
5 OB 3; RC

{!(A ∧ B)
}

In ADPM.1 an obligation behaves abnormal as soon as one of its subformulas
is involved in a deontic conflict. As a result and due to the conflict in A, it is not
possible to finally derive OB from O(A ∧ B) in ADPM.1 in Example 10.6.3. The
situation is different in ADPM.2′ where an obligation is only considered abnormal
if it is itself involved in a conflict. There is no way to involve !(A ∧ B) in a minimal
Dab-consequence in this example. Responsible is also the restricted aggregation
principle. Given (AND), we can involve !(A ∧ B) in a minimal Dab-consequence
since {OA, O¬A, O(A ∧ B)} ∪ DPM.1(O(A ∧ B) ∧ O¬(A ∧ B)) ∈ (O(¬A ∧ B) ∧
O¬(¬A ∧ B)). To see this suppose the first disjunct !(A ∧ B) does not hold. Then,
inheritance is applicable to O(A ∧ B) to derive for instance (1) O(A ∈ ¬B) and (2)
O(A ∈ B). Via (AND), (2) and O¬A we get O(¬A ∧ B). By (1) we get the second
disjunct !(¬A ∧ B). In absence of (AND) this derivation is blocked in DPM.2′ since
we would also need for instance ¬OA in order to apply (PAND’) to (2) and O¬A to
arrive at O(¬A ∧ B). However, we have OA in our premises.

10.8 Some Meta-Theoretical Properties

This section features some meta-theoretic properties of the introduced logics. The
meta-theory of ALs in standard format equips our systems immediately with sound-
ness and completeness. As desired, the adaptive strengthenings are conflict-tolerant.
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Theorem 10.8.1. Where Λ ⊕ {1, 2′}, none of Goble’s explosion principles (DEX),
(DEX-1)–(DEX-3) is valid in ADPM.Λ.

Theorem 10.8.2. Where Λ ⊕ {1, 2′}, the upper limit logic of ADPM.Λ is SDL.

Corollary 10.8.3. Where Λ ⊕ {1, 2′}, ADPM.Λ satisfies (β).

We introduced another, in a sense more demanding criterion, (ββ). For SDL-
consistent premise sets the given logics should have the same derivative power as
SDL. This criterion is not fulfilled by the DPM logics. However, as the following
corollary shows, it is fulfilled by our adaptive strengthenings. The corollary is a direct
consequence of Corollary 10.5.1 and Theorem 10.8.2.

Corollary 10.8.4. Where Λ ⊕ {1, 2′}, ADPM.Λ satisfies (ββ).

10.9 Shortcomings and Related Work

The starting point and main motivation of this paper was to present a technically
straightforward way to equip Goble’s DPM systems with a defeasible mechanism
that strengthens the logics in a non-monotonic fashion. In this section, we point
out some parallels and differences between the ADPM.Λ-systems resulting from
our enterprise on the one hand, and existing approaches for dealing with deontic
conflicts on the other hand.

The behavior of ADPM.1 explicated in examples 10.6.1–10.6.5 may suggest that
the consequence set of ADPM.1 can be characterized in the following way: OB is a
consequence of a set of obligations {OA | A ⊕ Ω } (where Ω is a set of propositions)
iff A is (classically) derivable from each maximal consistent subset15 of Ω . This
characterization is similar to approaches making use of maximally consistent subsets
with a ‘skeptical’ operator for obligation, e.g. [7, 20] or the “full meet constraint
output” of Input/Output logics in [21].16 However, there are more complex settings
which show that ADPM.1 is too weak.17 It is a question for future research to find
ways to strengthen this logic so that the rationale above is realized and a defeasible

15 A subset Ω ′ of Ω is maximally consistent iff Ω ′ is consistent and for every consistent Ω ′′ ∨ Ω ,
if Ω ′ ∨ Ω ′′ then Ω ′′ = Ω ′.
16 In the deontic logic literature on maximally consistent subsets, skeptical operators are contrasted
with more ‘credulous’ operators. The latter allow one to derive the obligation OA as soon as A is
derivable from some maximal consistent subset of Ω (see e.g. [20, 22] or the “full join constraint
output” of Input/Output logics in [21]) while the former allow to derive OA iff A is derivable in all
maximal consistent subsets of Ω .
17 One such counterexample is given by the premise set {OA, OB, O¬(A ∧ B), O(¬(A ∧ B) ∧
D), O(C1 ∧ C2)}. Here it is not possible to derive OC1 by means of ADPM.1 or ADPM.2′ since
!(C1∧C2) is involved in a minimal Dab-consequence. Note that we can derive OC1 on the condition
that O(C1 ∧ C2) is not conflicted. By applying aggregation we get O(C1 ∧ (A ∧ B)) (in ADPM.2′
we also need the condition that both OA and OB are not conflicted). Similarly, we can derive
O¬(C1 ∧ (A ∧ B)) from O(¬(A ∧ B)∧ D) by means of inheritance on the condition that the latter
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proof theory is obtained for the well-known conflict-tolerant approach in terms of
maximal consistent subsets.

We have mentioned that for examples 10.6.1, 10.6.2, 10.6.4, and 10.6.5 ADPM.2′
has a similar behavior as ADPM.1. This may suggest that the consequences of
ADPM.2′ can be characterized as follows: OB is a consequence of a set of obligations
{OA | A ⊕ Ω } iff A is in Ω or it is (classically) derivable from each maximal
consistent subset of Ω . However, again there are examples in which the consequence
set of ADPM.2′ is too weak (see Footnote 17).

Moreover, we have already mentioned the rather peculiar asymmetry of ADPM.2′
in the handling of the premise sets Ω1 = {OA, O¬A, O(A ∧ B)} and Ω2 =
{O¬A, O(A ∧ B)} (see Example 10.7.3). While in the first case OB is derivable, in
the second case it isn’t. One way to make the behavior of ADPM.2′ more coherent
is to restrict inheritance in the lower limit logic more severely by also blocking it
from obligations that display “sub-conflicts”, i.e. conflicts concerning subformulas
of two obligations. In our example inheritance should be blocked from O(A ∧ B)

since this conflicts with O¬A. In the adaptive system this would be mirrored by a
type of abnormality that is not only restricted to direct conflicts but also considers
conflicts such as the one between O(A ∧ B) and O¬A. A deontic adaptive logic that
takes into account such conflicts can be found in [23].

The treatment of Ω1 points also to another direction. Namely to design an adaptive
logic for which OB is derivable from a set of obligations {OA | A ⊕ Ω } iff A is
(classically) derivable from some maximal consistent subset of Ω and A is consistent
with all maximal consistent subsets of Ω .18 One way to realize this is to adjust the
restricted inheritance principle in the following way. Instead of applying inheritance
if the antecedent is consistent the idea is to apply inheritance if the consequent is
consistent:

If ∪ A ⊆ B, then OA ⊆ (PB ⊆ OB).

We will investigate in these systems in the future.
Recently various other adaptive deontic systems have been presented. In [8] and

the forthcoming [23] strictly non-aggregative deontic logics were adaptively strength-
ened. These systems are based on the lower limit logic PeSDLa from [14]. Two
modalities are used: Oe and Oa where the former e.g. expresses obligations that stem
from some authority while the latter expresses obligations upon which all authorities
agree. These systems validate full inheritance but have no aggregation for the Oe-
operator. In [27] these systems are formulated in the prioritized format for adaptive
logics from [28]. This way they are able to deal with preferences among obligations.

is not conflicted. Altogether this shows that !(C1 ∧ C2), !(¬(A ∧ B) ∧ D) and !(C1 ∧ (A ∧ B)) are
involved in a Dab-consequence. It is not difficult to see that they are indeed involved in a minimal
Dab-consequence.
18 In a non-deontic setting, this approach was taken up by Rescher & Manor in their definition of an
‘argued’ consequence relation [24]. Adaptive characterizations of Rescher & Manor’s consequence
relations are given in [25, 26].
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The abnormalities used in all of the systems mentioned in this paragraph are of a
more complex nature since they also take into account conflicts between subformulas
of obligations. One advantage of the systems presented in the present paper is that by
means of ADPM.1 and ADPM.2′ we are able to derive O(A∈ B) from OA, OB and
O¬(A ∧ B). This ‘disjunctive solution’ has been defended for instance in [7, 29].
Moreover, deontic adaptive logics have been devised that are based on paraconsistent
modal logics [2, 30]. This approach has also been applied to a multi-agent setting
[31, 32].

10.10 Conclusion

In this chapter we introduced the adaptive strengthenings ADPM.1 and ADPM.2′ of
Goble’s conflict-tolerant logic DPM.1 and of our variant DPM.2′ of Goble’s DPM.2.
We have demonstrated various advantages of the adaptive systems.

ADPM.Λ (where henceforth Λ ⊕ {1, 2′}) is significantly stronger than DPM.Λ.
It is not just the case that adding (D) to the logic leads to equivalent systems to
SDL. For any SDL-consistent premise set, ADPM.Λ proves to be equivalent to SDL.
Moreover, ADPM.Λ applies restricted inheritance “as much as possible”. In contrast,
in Goble’s system permission statements have to be added by the user in order to
apply the inheritance principle. The needed permission statements are generated in
the adaptive systems automatically. This brings us to another point.

The adaptive systems ADPM.Λ have the design virtue that the logics model all
the reasoning for the user. In contrast, in DPM.Λ the user not just has to interfere in
order to derive as much consequences as possible (by adding permission statements).
Moreover, finding out which permission statements are harmless and may be added
to a given premise set involves advanced reasoning by the user. This is especially the
case for complicated setups.

The meta-theory of ALs in standard format is well-established. Many key-features
do not have to be proven (anymore) for the ADPM.Λ logics since they have been
shown to be valid for all ALs in standard format. For instance, the completeness and
soundness of ADPM.Λ follows immediately from the completeness and soundness
of DPM.Λ.

The dynamic adaptive proofs mirror actual reasoning processes. While the insight
in a given premise set grows, some lines of the proof may get marked, others unmarked
due to the fact that their conditions turn out to be (not) trustworthy. Furthermore, the
adaptive proofs are able to deal with new information in the form of new premises
and thus to handle the defeasibility that comes with it.
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10.11 Outlook

While we presented in this chapter ways to apply inheritance, (D), and aggregation
conditionally by ALs, the approach can be fruitfully applied in other contexts of
deontic logics. Let me give some examples.

10.11.1 Obligation-Permission Conflicts: Towards More
Conflict-Tolerant Deontic Logics

It is remarkable that scholars have been mainly focusing on only one type of
deontic conflicts, namely conflicts between obligations (henceforth, OO-conflicts)
such as for instance between OA and O¬A. However, another type of conflict has
been neglected, namely conflicts between obligations and permissions (henceforth,
OP-conflicts) such as for instance between OA and P¬A. In this respect the numer-
ous proposed conflict-tolerant deontic logics (henceforth, CTDLs) are not “fully”
conflict tolerant since they validate the principle

(
OA ∧ P¬A

) ⊆ OB (OP-EX)

This creates an unnecessary and moreover unmotivated asymmetry in the modeling
offered by these logics.

This is a severe defect of CTDLs. However, it is not a fatal one. In [33] Mathieu
Beirlaen and I propose a transformation procedure that turns a given monotonic
CDTL L into a monotonic CTDL Lβ that is also conflict-tolerant concerning OP-
conflicts. The mainspring of our transformation is to give up the interdefinability
between obligations and permission that is characteristic for most deontic logics.
Usually, either PA is defined by ¬O¬A or there is an axiom which enforces the
equivalence. In the transformed logic Lβ only one direction of the equivalence holds,
i.e. Lβ does not validate

PA ⊆ ¬O¬A (DfP1)

The logics gained by our transformation procedure offer many advantages. First
and foremost, acknowledging the so far neglected conflict type does not necessitate
the development of entirely new deontic systems, but many of the already proposed
systems can be transformed in a way that preserves their strengths and modeling
features while making them at the same time more conflict-tolerant.

Giving up (DfP1) weakens the transformed logic compared to L. In the first
instance this sounds like a shortcoming. However, this makes it possible to add a
very intuitive principle that is usually not validated by CTDLs, namely axiom (D)
that allows to derive from the obligation to bring about A, the permission to bring
about A. Given the intuitive appeal of (D) we argue in [33] that this is indeed a very
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good compensation for losing (DfP1). We have paradigmatically demonstrated this
transformation, inter alia, by means of Goble’s DPM.Λ (where Λ ⊕ {1, 2′}). The
transformed systems are denoted by DPM.Λβ.

One of the drawbacks of our transformations in [33] is that we had to give up on
(DfP1) in order to gain conflict-tolerance with respect to OP-conflicts. The problem
is that, as some may argue, in non-conflicting cases (DfP1) has quite some intuitive
appeal. Hence, what is needed is a logic that applies (DfP1) whenever it is unprob-
lematic. Given that the aim is to interpret a given set of norms as non-conflicting and
as coherent as possible, it is desirable to derive ¬O¬A from PA whenever there is no
conflicting situation with respect to PA. Similarly, whenever there is no conflicting
situation with respect to a OB it is desirable to derive ¬P¬B from OB.

In [33] we demonstrate that ALs offer a very intuitive solution to this problem.
We define ALs, inter alia on the basis of DPM.Λβ, that interpret a given premise set
Ω as non-conflicting as possible. That is to say, Ω is interpreted in such a way that as
few deontic conflicts are the case as is coherent with Ω . As a consequence the ALs
validate (DfP1) as much as possible. Thus, we are able to define deontic logics that
are OO- and OP-conflict tolerant, that validate the intuitive principle (D), and that
interpret obligations and permissions in the usual way according to the equivalence
PA ⊃ ¬O¬A as much as is coherent with a given premise set.

The way this is technically realized is deeply inspired by the adaptive systems
presented in this Chapter. Instead of the lower limit logic DPM.Λ there we use
DPM.Λβ, instead of using OO-conflicts OA ∧ O¬A as abnormalities we use there
OP-conflicts OA∧P¬A as abnormalities. The strategy is again minimal abnormality.
Classical logic and (D) warrants

OA ∪DPM.Λβ ¬P¬A ∈ (OA ∧ P¬A)

PA ∪DPM.Λβ ¬O¬A ∈ (O¬A ∧ PA)

OA ∪DPM.Λβ ¬O¬A ∈ (OA ∧ P¬A)

If ∪DPM.Λβ A ⊆ B, then OA ∪DPM.Λβ OB ∈ (O¬A ∧ PA)

Hence, in the adaptive systems we are able to derive ¬P¬A from OA condition-
ally, resp. to derive ¬O¬A from PA conditionally, resp. to derive ¬O¬A from OA
conditionally, resp. to apply inheritance conditionally. Semantically, selected are the
DPM.Λβ models that validate the least OP-conflicts. Since by (D) every OO-conflict
OA ∧ O¬A gives rise to two OP-conflicts, OA ∧ P¬A and PA ∧ O¬A, the selected
models are also models that validate the least OO-conflicts.

10.11.2 Going Conditional

While we have so far focused on monadic deontic operators, the techniques and ideas
introduced in this chapter can also be applied in conditional deontic logics.
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Lou Goble presented in [5] conditional versions of his DPM systems. Also there,
he uses a restricted version of the inheritance principle. The adaptive handling of
inheritance and aggregation introduced in this chapter can be applied in the condi-
tional context straightforwardly (see Sect. 11.5).

One problem for conditional deontic logics is related to the detachment of condi-
tional obligations. Given a conditional obligation to bring about A if B is the case,
written O(A|B), and given that the condition B is fulfilled, one may want to derive the
‘actual obligation’ to bring about A. However, detachment is not universally valid.
Note that being served a meal and given that the meal is asparagus, we do not want
to detach the obligation not to eat with our fingers, although its condition, that a meal
is served, is fulfilled. This is due to the fact that being served asparagus we are in
exceptional circumstances. Again, applying adaptively detachment to O(A|B) and
B “as much as possible” leads to interesting solutions to this problem (see Chap. 12).
Furthermore, the semantics with an actual world introduced in this chapter can eas-
ily be generalized to the conditional case. This way factual premises can be handled
semantically. Similarly an adaptive approach can be used in order to apply strength-
ening the antecedent (if O(A|B), then O(A|B) ∧ C) “as much as possible”, i.e., to
apply it whenever the factual premises do no describe an exceptional situation (see
Sect. 11.5.2).

Altogether, the work presented in this chapter is inspiring and transferable to the
tackling of other important problems within the context of deontic logics.
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Chapter 11
An Adaptive Logic Framework for Conditional
Obligations and Deontic Dilemmas

Lou Goble proposed powerful conditional deontic logics (CDPM) in [1, 2] that
are able to deal with deontic conflicts by restricting the inheritance principle. One
of the central problems for dyadic deontic logics is to properly treat the restricted
applicability of the principle “strengthening the antecedent”. In most cases it is
desirable to derive from an obligation A under condition B, that A is also obliged
under condition B and C . However, there are important counterexamples. Goble
proposed a weakened rational monotonicity principle to tackle this problem. This
solution is suboptimal as it is for some examples counter-intuitive or even leads
to explosion. The chapter identifies also other problems of Goble’s systems. For
instance, to make optimal use of the restricted inheritance principle, in many cases
the user has to manually add certain statements to the premises.

An adaptive logic framework on basis of CDPM is proposed which is able to
tackle these problems. It allows for certain rules to be applied as much as possible.
In this way counter-intuitive consequences as well as explosion can be prohibited
and no user interference is required. Furthermore, for non-conflicting premise sets
the ALs are equivalent to Goble’s dyadic version of standard deontic logic.

11.1 Introduction

Recent work in ALs has shown growing interest in (monadic) deontic systems which
are able to deal with deontic conflicts (see e.g., [3–6]). A deontic conflict between
obligations occurs when the obligations cannot be mutually realized. As has been
argued in Chap. 10, deontic conflicts are not just an abstruse philosophical notion,
but that they occur quite commonly in our every-day moral lives.

A former version of the content of this chapter has been published under the name “An Adaptive
Logic Framework for Conditional Obligations and Deontic Dilemmas” in the Journal “Logic
and Logical Philosophy”, 2010, [1].

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 281
DOI: 10.1007/978-3-319-00792-2_11, © Springer International Publishing Switzerland 2014
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Unlike standard deontic logic SDL, Goble’s logics DPM (see [1, 2, 7] and
Chap. 10) prevent deontic explosions in such cases by means of restricting the inher-
itance principle (“if ∪ A ⊃ B then ∪ OA ⊃ OB”), while having the same range
of desired consequences for non-conflicting premise sets. Developing adaptive ver-
sions of DPM in [3] the authors were able to improve them in various aspects (see
Chap. 10).

It is well known that attempts to model conditional obligations in terms of monadic
ought-operators (e.g. O(A ⊃ B) or A ⊃ OB) have several shortcomings. This has
led to various approaches based on dyadic ought-operators O(A | B)—“if B is the
case you are obliged to do/bring about A”. Goble in [1, 2] developed conditional
versions of his conflict-tolerant DPM systems (CDPM) that are also based on a
restricted inheritance principle.

One of the most difficult problems for dyadic deontic logics is to handle cases in
which the principle ‘strengthening the antecedent’ (∪ O(A | B) ⊃ O(A | B ⊆ C))
has to be restricted. Paradigmatic instances are settings in which exceptions and/or
violations of general obligations occur, as for example (cp. [8])1:

• You ought not to eat with your fingers: O(¬ f | �)

• You ought to put your napkin on your lap: O(n | �)

• If you are served asparagus, you are allowed to eat it with your fingers: P( f | a)

By adding some intuitive permission statements, Goble’s preferred conditional
logic CDPM.2c is able to derive all the desired obligations (e.g. O(¬ f ⊆ n | �),
O(n | a)). Note, however, that given the intuitive permission P(¬ f ⊆ a | �), also
the counter-intuitive O(¬ f | a) is derivable. This leads to triviality since the latter
is equivalent to ¬P( f | a),—a severe shortcoming. Obviously nothing is wrong
with the permission not to eat with your fingers and to eat asparagus, it is perfectly
coherent with our three premises.

We will also identify other shortcomings of Goble’s logics. For instance, in order
to make optimal use of the restricted inheritance principle, in many cases the user
needs to manually add certain statements to the premise set. Furthermore, some of
the rules of Goble’s CDPM logics do not behave well together and cause undesired
consequences.

This chapter presents ALs based on Goble’s CDPM logics which are able to tackle
these problems. They allow for certain rules to be applied as much as possible. In this
way counter-intuitive consequences as well as explosion can be prohibited and no user
interference is required. For instance, it will be shown that for the adaptive approach
there is no need to explicitly add premises in order to make use of the restricted
inheritance rule. The proof dynamics of the ALs takes care of this as part of the
reasoning process which is explicated by the proof. In addition, the dynamic aspect
of our moral reasoning is nicely recaptured by the dynamic proof theory. This also
enables us to have a better insight in the relations between obligations/permissions
and thus to localize the deontic conflicts as well as violations and exceptions
of obligations as the product of an actual reasoning process. Furthermore, for

1 The permission operator is as usually defined by P(A | B) =df ¬O(¬A | B).

http://dx.doi.org/10.1007/978-3-319-00792-2_10
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non-conflicting premise sets the ALs are equivalent to Goble’s dyadic version of
standard deontic logic.

In Appendix I the interested reader can find semantics for the introduced logics
and proofs for the (meta)-theorems presented in this chapter.

11.2 The Problem With Strengthening the Antecedent

Most of our moral or behavioral norms are in a conditional form. For instance “Being
in an airplane you ought to turn off your mobile phone.” One proposal to model this
in deontic logics is to use p ⊃ Om. A disadvantage of this form is that it offers
unrestricted “strengthening the antecedent” (SA): from p ⊃ Om, (p ⊆ b) ⊃ Om is
derivable. In many cases this is as expected. But consider the following case:

1. In general we’re supposed not to eat with our fingers.
2. Eating asparagus we’re allowed to eat with our fingers.

Modeling (1) by � ⊃ O¬ f , a ⊃ O¬ f is derivable. This obviously is in conflict
with (2) a ⊃ P f which is equivalent to a ⊃ ¬O¬ f . Similarly problematic is to
use O(C ⊃ B) to represent the obligation B under condition C . In the example
we can derive by the inheritance principle the counter-intuitive O(a ⊃ ¬ f ) from
O(� ⊃ ¬ f ). Also restricting the inheritance principle as proposed by Goble doesn’t
help, as nothing speaks against adding the harmless premise P(� ⊃ ¬ f ). However,
this again enables the derivation of O(a ⊃ ¬ f ) by (RPM) from O(� ⊃ ¬ f ) (and
P(� ⊃ ¬ f )).

Monadic approaches also were object of other kinds of criticism. The most promi-
nent class of problems have to do with paradoxes such as the Chisholm Paradox (see
[9]) or the Gentle Murderer Paradox (see [10]). It is commonly agreed that dyadic
approaches are in general better suited to deal with these kind of problems.

Modeling conditional obligations with dyadic obligation operators also allows for
a more subtle approach to (SA). We use O(A | B) in order to express that “under
condition B it ought to be that A”. As usual, the permission operator P(A | B) is
defined by ¬O(¬A | B). We use a propositional language. In contrast to the monadic
approach presented in Chap. 10 we enrich the language now by a dyadic obligation
operator. Our set of well-formed formulas W2 is defined as follows:

W2 ::= ⊥ | � | ∈S∧ | ∈W2∧ ⊆ ∈W2∧ | ∈W2∧ ⊃ ∈W2∧ |
∈W2∧ ⊃ ∈W2∧ | ¬∈W2∧ | O∈W2∧∈W2∧

In this way we can formalize our example by:

O(¬ f | �) (A1)

P( f | a) (A2)

http://dx.doi.org/10.1007/978-3-319-00792-2_10
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An unrestricted (SA)

∪ O(B | A) ⊃ O(B | A ⊆ C) (SA)

would lead to the counter-intuitive O(¬ f |a).
As in the case of the restricted inheritance principle (RPM) (see Chap. 10), a pos-

sible way of restricting (SA) is to require certain permission statements. Inspired by
Kraus, Lehmann and Magidor’s work (see [11, 12]) on nonmonotonic consequence
relations a candidate can be found in the principle of Rational Monotonicity

∪ (
O(B | A) ⊆ P(C | A)

) ⊃ O(B | A ⊆ C) (RatMono)

Lou Goble proposed different axiomatizations of a standard dyadic deontic logic
(which are equivalent to van Fraassen’s CD in [13], David Lewis’s VN in [14] and
his own SDDL in [15]). Let RSDDL be the logic characterized by all classical
tautologies, (RatMono) and the following rules

If ∪ A → B then ∪ O(C | A) → O(C | B) (RCE)

If ∪ B ⊃ C then ∪ O(B | A) ⊃ O(C | A) (RCM)

and axioms

∪ O(� | �) (CN)

∪ ¬O(⊥ | A) (CP)

∪ (
O(B | A) ⊆ O(C | A)

) ⊃ O(B ⊆ C | A) (CAND)

∪ O(B | A) ⊃ O(A | A) (QR)

∪ O(C | A ⊆ B) ⊃ O(B ⊃ C | A) (S)

But employing (RatMono) instead of (SA) is problematic as well. In our example
it is in no way counter-intuitive to add the statement P(a | �), “It is in general
allowed to eat asparagus”, to the premise set. But now it is again possible to derive
O(¬ f | a). A further restriction is needed.

11.3 Lou Goble’s CDPM

Lou Goble proposes in [1, 2] the following Weak Rational Monotonicity principle:

∪ (
O(B | A) ⊆ P(B ⊆ C | A)

) ⊃ O(B | A ⊆ C) (WRM)

On basis of his DPM systems he presents the following conditional logics:

Definition 11.3.1. Enriching classical propositional logic by (RCE), (CN), (CAND)
and the rules

http://dx.doi.org/10.1007/978-3-319-00792-2_10
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If ∪ B → C then ∪ O(B | A) → O(C | A) (CRE)

If ∪ B ⊃ C then ∪ P(B | A) ⊃ (
O(B | A) ⊃ O(C | A)

)
(RCPM)

results in logic CDPM.1. Logic CDPM.1c is CDPM.1 enriched by (WRM), (QR)
and (S).

The idea behind the restricted inheritance principle (RCPM) is analogous to the
monadic case (see Chap. 10): inheritance is only applied to non-conflicting obliga-
tions. That is to say, it is applied to O(A | B) only in case we also have P(A | B).

Definition 11.3.2. CDPM.2∨ is defined analogous to CDPM.1, just add (CP) and
replace (CAND) by2

∪ (
O(A | C) ⊆ O(B | C) ⊆ P(A | C) ⊆ P(B | C)

) ⊃ O(A ⊆ B | C) (CPAND∨)

Logic CDPM.2∨c is like CDPM.1c with exception of (CAND) which is replaced by
(CPAND∨). Furthermore (CP) is added.

Definition 11.3.3. For the remainder it is useful to introduce some writing conven-
tions: We write ⊕({P1, . . . , Pn}, L) for the logic L∨ that is defined as L with the
addition of principles P1, . . . , Pn where each Pi ∈ P and3

P =df {WRM, WRMΩ, CAND, CPAND∨, QR, PS, S, CP, AWRMΩ, CD}.

Define L =df {⊕(β, CDPM−) | β ∈ Λ(P)} where CDPM− is defined by
(RCE), (CN), (CRE) and (RCPM). Let L = ⊕({P1, . . . , Pn}, CDPM−) ∈ L. We
write �({Pi | i ∈ I }, L) (where I ◦ {1, . . . , n}) for the logic L∨ = ⊕({Pi | i ∈
{1, . . . , n} \ I }, CDPM−). We write ⊕P L (resp. �P L) instead of ⊕({P}, L) (resp.
�({P}, L)). Further define for L = ⊕({Pi | i ∈ I }, CDPM−) ∈ L, ↓L as the set of
all sub-logics of L in {�(β, L) | β ∈ Λ({Pi | i ∈ I })}.

None of the following “deontic explosion principles” are valid in CDPM1.c and
CDPM.2∨c4:

If � ¬B then O(A | C), O(¬A | C) ∪ O(B | C) (CDEX-1)

O(A | C), O(¬A | C), P(B | C) ∪ O(B | C) (CDEX-2)

2 As in the monadic case in Chap. 10, we use a slight variation of Goble’s CDPM.2 which employs
∪ (

O(A | C) ⊆ O(B | C) ⊆ P(A ⊆ B | C)
) ⊃ O(A ⊆ B | C) (CPAND) instead of our (CPAND∨).

Using CDPM.2∨c instead of CDPM.2c as lower limit logic leads to technically more elegant
ALs. Furthermore, in contrast to CDPM.2c, CDPM.2∨c fulfills criterion (CΩ), that is going to be
introduced in a moment.
3 Some of the principles in P will be defined later on (namely WRMΩ, PS, CD and AWRMΩ).
4 We slightly adjusted the criteria offered by Goble since his criteria were formulated in terms
of theoremhood, while we focus on the consequences of premise sets. Models validating counter-
instances of the criteria can be found in the proof of Theorem I.2.1 in Appendix I.

http://dx.doi.org/10.1007/978-3-319-00792-2_10
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O(D | C), P(D | C), O(A | C), O(¬A | C), P(B | C) ∪ O(B | C) (CDEX-3)

Goble defined a dyadic variant of convention (Ω) which is satisfied by both logics,
CDPM.1c and CDPM.2∨c:

(CΩ) A dyadic deontic logic for dilemmas should be such that the result of adding
(CD), namely O

(
B|A) ⊃ ¬O

(¬B|A)
, as an axiom results in a logic that has

the same consequence relation as (R)SDDL.

Theorem 11.3.1. Where Δ ∈ {1, 2∨}, CDPM.Δc satisfies (CΩ).

11.4 A Critical Analysis

In the following we will give a critical analysis of the CDPM logics which will
indicate several problems. This in turn will motivate to strengthen these systems
within the AL framework.

11.4.1 CDPM.1c Validates (PRatMono)

As has been demonstrated by Goble, one severe shortcoming of CDPM.1c is that

∪ (
O(B | A) ⊆ P(C | A) ⊆ P(B | A)

) ⊃ O(B | A ⊆ C) (PRatMono)

is derivable from it. However, this is suboptimal. If just the harmless premise
P(¬ f | �) in addition to P(a | �) is added to (A1) and (A2) then again O(¬ f | a)

is derivable.

11.4.2 Explosive Behavior and Other Problems With (WRM)

We saw above that different restricted versions of (SA), such as (RatMono) and
(PRatMono), are counter-intuitive as soon as we add further harmless premises to
our asparagus example. Is the weak rational monotonicity principle proposed by
Lou Goble robust to criticism of this kind? Goble demonstrates that it is not. It is not
conflicting with our moral intuitions to add the premise P(¬ f ⊆ a | �), “in general
it is allowed not to eat with your fingers and also to eat asparagus”, to the premise set
consisting of (A1) and (A2). But in this case, by applying (WRM) to O(¬ f | �) and
P(¬ f ⊆ a | �), we arrive at O(¬ f | a). This causes not just a deontic conflict, but a
full-fledged explosion, as we also have P( f | a) which is equivalent to ¬O(¬ f | a).

Note also that the following counter-intuitive statement is a consequence of
(WRM):
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∪ (
O(¬ f | �) ⊆ P( f | a)

) ⊃ ¬P(¬ f ⊆ a | �)

Obviously the general obligation not to eat with your fingers and the fact that in case
asparagus is served it is allowed to eat with your fingers do in no way entail that it is
in general not allowed not to eat with your fingers and to eat asparagus.

Example 11.4.1. We add another problematic example:

(1) In a hospital you ought not to smoke—O(¬s | h);
(2) If you’re in a smoking room, you’re allowed to smoke—P(s | r);
(3) If you’re in a hospital, you are allowed to be in a smokers room and not to

smoke—P(r ⊆ ¬s | h);
(4) If you’re in a smoking room (and) in a hospital, you’re allowed to smoke—

P(s | h ⊆ r).

Note that by (WRM) we can derive O(¬s | h ⊆ r) from (1) and (3). In face of (2)
and (4) this is counter-intuitive and contradictory.

11.4.3 Solving the Problems by Further Restricting (WRM)

There is a way of tackling our problems in a non-adaptive, monotonic way by further
restricting (WRM):

∪ (
O(B | A) ⊆ P(B ⊆ C | A) ⊆ ¬P(¬B ⊆ A | C)

) ⊃ O(B | A ⊆ C) (WRMΩ)

The idea is to strengthen the antecedent A of obligation B by C only if ¬B ⊆ A is
not allowed in the context described by C . Looking back at the asparagus example
this obviously blocks the unwanted derivation. By (WRMΩ) we have

∪ (
O(¬ f | �) ⊆ P(¬ f ⊆ a | �) ⊆ ¬P( f | a)

) ⊃ O(¬ f | a)

Note that P( f | a) is a premise and thus O(¬ f | a) is not derivable by (WRMΩ).
Also in the case of the second example we have no means to derive O(¬s | h ⊆ r).
We would need ¬P(s ⊆ h | r), which is obviously counter-intuitive.

As (PRatMono) was derivable in CDPM.1c while not being derivable in
CDPM.2∨c, this lead to an undesirable asymmetry. However, this asymmetry dis-
appears in case of ⊕WRMΩ�WRMCDPM.1c and ⊕WRMΩ�WRMCDPM.2∨c. In both
systems neither (PRatMono) nor (WRM) is derivable. This is clearly as desired.

However, the price to pay for this is that neither ⊕WRMΩ�WRMCDPM.1c nor
⊕WRMΩ�WRMCDPM.2∨c is equivalent to (R)SDDL if we add (CD) as an axiom.
Hence neither of the two systems satisfies requirement (CΩ).

Both systems, ⊕WRMΩ�WRMCDPM.1c and ⊕WRMΩ�WRMCDPM.2∨c, do not
validate (CDEX-1)–(CDEX-3) and are therefore sufficiently robust with respect to
deontic conflicts.
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Note that in (R)SDDL all instances of

∪ (
O(B | A) ⊆ P(B ⊆ C | A)

) ⊃ O(A ⊃ B | C) (AWRMΩ)

are valid. Hence, whenever the antecedent of (WRM) is fulfilled in (R)SDDL, then
also the antecedent of (WRMΩ) is fulfilled. Where Δ ∈ {1, 2∨}, if all instances of (CD)

are added to ⊕({WRMΩ, AWRMΩ},�WRMCDPM.Δc) then the resulting logic has
the same consequence relation as (R)SDDL.

Theorem 11.4.1. Where Δ ∈ {1, 2∨},
⊕({WRMΩ, AWRMΩ}�WRMCPDM.Δc) satisfies (CΩ).

One of the major problems with restricting (WRM) is analogous to the problem we
already pointed out in connection with the restricted inheritance principle (RCPM):
in order to apply (WRMΩ) the user has to manually add permission statements.
However, on the one hand, if the relationships between various obligations are of
a complicated nature, the manual addition of permission statements might lead to
undesired results such as explosion. On the other hand we would like to delegate
as much reasoning as possible from the user to the logic itself. We will therefore in
Sect. 11.5.2 propose an AL which applies (WRM) “as much as possible” without the
need of user interference.

11.4.4 A Problem with Aggregation and (S)

Example 11.4.2. Consider the following strict version of the asparagus example:

O(¬ f | �) (SA1)

O( f | a) (SA2)

P(a | �) (SA3)

P(¬ f ⊆ ¬a | �) (SA4)

From (SA2) we get by (S),

O(a ⊃ f | �) (SA5)

Note that it is a consequence of (RCPM) that ∪ P(C | B) ⊃ (P(C ∨ | B)⊃O(C ∨ | B))

where C ∪ C ∨. Therefore, by (SA3), P(a ⊃ f | �) ⊃ O(a ⊃ f | �). Since (SA4) is
equivalent to ¬O(a ⊃ f | �) we arrive at

P(a ⊃ f | �) (SA6)
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In case we apply (CAND) to (SA1) and (SA5) we get O(¬ f ⊆ (a ⊃ f ) | �) and
therefore, by (CRE), O(¬ f ⊆ ¬a | �). But this is equivalent to ¬P(a ⊃ f | �),—a
contradiction with (SA6). Employing the weaker aggregation principle (CPAND∨)
doesn’t help either. In this case we add the harmless statements P(¬ f | �) and
¬O(a ⊆¬ f | �) to the premises. By (CPAND∨), O(¬ f ⊆¬a | �) is again derivable
(as the reader can easily verify herself),—in contradiction with (SA6).

Thus, the example shows that (CAND) and (CPAND∨) do not behave well together
with (S). One possible solution is to use a restricted version of (S), namely5

∪ (
P(C | A) ⊆ O(C | A ⊆ B)

) ⊃ O(B ⊃ C | A) (PS)

Note that in ⊕PS�SCDPM.1c and ⊕PS�SCDPM.2∨c the derivation of (SA5) is
blocked since we would need P( f | �), but we have O(¬ f | �) which is
equivalent to ¬P( f | �). It is also worth mentioning that, where Δ ∈ {1, 2∨},
⊕({CD, PS},�SCDPM.Δc) has the same consequence relation as ⊕CDCDPM.Δc
and therefore it also has the same consequence relation as (R)SDDL.

Theorem 11.4.2. Where Δ ∈ {1, 2∨}, ⊕PS�SCDPM.Δc satisfies (CΩ).

Furthermore, in view of Theorem (11.4.1) it is not surprising that in case we
replace (WRM) with (WRMΩ) we need to also add (AWRMΩ) in order to get (CΩ):

Theorem 11.4.3. Where Δ ∈ {1, 2∨},
⊕(WRMΩ, AWRMΩ, PS,�({WRM, S}, CPDM.Δc)) satisfies (CΩ).

11.5 Going Adaptive – The Conditional Case

After having located various problems of CDPM.1c and CDPM.2∨c we are now
going to introduce an adaptive logic framework that can deal with these problems.
One of our goals is to develop conflict-tolerant logics that are able to derive from the
non-conflicting ‘parts’ of a given premise set as much as possible without the need
of manually adding premises. Due to this, criterion (CΩ) is not adequate anymore
since it measures the derivative power of a logic in view of adding all instances of
(CD) to it. We alter it the following way:

(C‡) For all premise sets for which (R)SDDL is non-explosive, a dyadic deontic
logic for dilemmas should have the same consequence set as (R)SDDL.

Note that logics satisfying this criterion are in a sense stronger than logics only
satisfying (CΩ) since, in order to achieve the same consequences as (R)SDDL, (CD)

does not have to be added to the former ones.

5 (PS) was proposed by Goble in [1] in connection with another problem with respect to (RatMono).
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11.5.1 Applying Inheritance Conditionally

In order to apply the dyadic inheritance principle (RCPM) conditionally we proceed
in the same way as in the monadic case (see Chap. 10).

Definition 11.5.1. Ac(LLL) is defined by the triple

∈LLL,Θc
d , minimal abnormality∧

where LLL ∈ ↓CDPM.1c ∪ ↓CDPM.2∨c, Σc
d =df {!cO(A | B) | A, B ∈ W2}, and

!cO(¬A | B) abbreviates

• O(A | B) ⊆ O(¬A | B) in case LLL does not validate (CAND), and otherwise
• ∨

C∈Sub(A) O(C | B) ⊆ O(¬C | B) (where Sub(A) is the set of subformulas of A
including A).

In Chapter 10 we have already explained why in the presence of an unrestricted aggre-
gation principle we need a slightly more complicated logical form to characterize
our abnormalities. We have:

If ∪L A ⊃ B, then O(A | C) ∪L O(B | C) ⊃ !cO(A | C)

O(D | F), O(E | F) ∪L.2 O(D ⊆ E | F) ⊃ (!cO(D | F) ⊃ !cO(E | F)
)

where L, L.2 ∈ ↓CDPM.1c ∪ ↓CDPM.2∨c, !c has any of the two interpretations
stated above, and L.2 validates (CPAND∨). Thus, it is possible

• to derive O(B | C) from O(A | C) on the condition {!cO(A | C)}, and
• to derive O(D ⊆ E | F) from O(D | F) and O(E | F) on the condition {!cO(D |

F), !cO(E | F)}.
Example 11.5.1. As we discussed the monadic variant already in Chap. 10, we are
only going to take a look at a very simple example for Ac(CDPM.2∨c). Let as usual
f express ‘eating with your fingers’, n ‘using a napkin’ and let b stand for ‘belching
at the table’.

1 O(¬ f ⊆ ¬b | �) PREM ∅
2 O(¬b | �) 1; RC {!cO(¬ f ⊆ ¬b | �)}
3 O(n | �) PREM ∅
4 O(¬ f ⊆ ¬b ⊆ n | �) 1, 3; RC {!cO(¬ f ⊆ ¬b | �), !cO(n | �)}

In line 2 we have a conditional application of the inheritance principle, in line 4
one of the aggregation principle.

Similar as in the monadic case (see Corollary 10.8.4) we have:

Theorem 11.5.1. Where Δ ∈ {1, 2∨}, we have:

(i) Ac(CDPM.Δc) satisfies (C‡).
(ii) Ac(⊕PS�SCDPM.Δc) satisfies (C‡).

http://dx.doi.org/10.1007/978-3-319-00792-2_10
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Theorem 11.5.2. Where LLL ∈ ↓CDPM.1c ∪ ↓CDPM.2∨c, Ac(LLL) does not
validate (CDEX-1), (CDEX-2), and (CDEX-3).

11.5.2 Applying Weak Rationality Conditionally

Furthermore, our logics can be equipped with the ability to conditionally apply
(WRM). Compared with CDPM.1c and CDPM.2∨c the advantage is that in case
an application of (WRM) leads to unwanted results (e.g. conflicts or explosions,
see Sect. 11.4.2) the logics that are going to be introduced in this Section block the
application. Compared to the logic presented in Sect. 11.4.3 that makes use of a
further restriction of (WRM), namely (WRMΩ), for the ALs that are presented in this
section there is no need to add more auxiliary permission statements to the premise
set. This accords with our goal to reduce the reasoning and interference of the user
as much as possible.

We define the set of abnormalities

Θr
d = {O(A | B) ⊆ P(A ⊆ C | B) ⊆ ¬O(A | B ⊆ C) | A, B, C ∈ W2}

By propositional logic we have

O(A | B), P(A ⊆ C | B) ∪O(A | B ⊆ C)⊃
(
O(A | B) ⊆ P(A ⊆ C | B) ⊆ ¬O(A | B ⊆ C)

)
,

This enables us to derive O(A | B ⊆ C) from O(A | B) and P(A ⊆ C | B) on the
condition {O(A | B) ⊆ P(A ⊆ C | B) ⊆ ¬O(A | B ⊆ C)}.
Definition 11.5.2. Logic Am/r

r (LLL) is defined by the following triple:

∈LLL,Θr
d , minimal abnormality/reliability∧

where LLL ∈ ⋃
Δ∈{1,2∨} ↓ �WRM CDPM.Δc ∪ {⊕CD�WRMCDPM.Δc}.

Theorem 11.5.3. Where Δ ∈ {1, 2∨} and x ∈ {r, m}, we have

(i) Ax
r(⊕CD�WRMCDPM.Δc) satisfies (C‡).

(ii) Ax
r(⊕({CD, PS},�({S, WRM}, CDPM.Δc))) satisfies (C‡).

Theorem 11.5.4. Where Δ ∈ {1, 2∨}, x ∈ {r, m}, and LLL ∈ ↓ �WRM CDPM.Δc,
Ax

r(LLL) does not validate (CDEX-1), (CDEX-2), and (CDEX-3).

Let us take a look at a few examples.

Example 11.5.2. Let us return to the problematic asparagus example from Sect. 11.4.2
with lower limit logic �WRMCDPM.1c. Let !r OB

A(C) =df O(C | A) ⊆ P(C ⊆ B |
A) ⊆ ¬O(C | A ⊆ B).
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1 O(¬ f | �) PREM ∅
2 P( f | a) PREM ∅
3 P(¬ f ⊆ a | �) PREM ∅

64 O(¬ f | a) 1,3; RC
{!r Oa�(¬ f )

}

5 ¬O(¬ f | a) 2; RU ∅
6 !r Oa�(¬ f ) 1,3,5; RU ∅

This demonstrates that unwanted derivations are successfully blocked. In order
to show that desired consequences are actually reached, the example needs to be
extended. Let x stand for “being in a country C” and we know that eating with your
fingers is strictly forbidden (no exceptions!) in C . Moreover, let n stand for “using a
napkin”.

7 O(¬ f | x) PREM ∅
8 O(n | �) PREM ∅
9 P(¬ f ⊆ a | x) PREM ∅

10 P(n ⊆ a | �) PREM ∅
11 O(¬ f | x ⊆ a) 7,9; RC

{!r Oa
x (¬ f )

}

12 O(n | a) 8,10; RC
{!r Oa�(n)

}

13 P(n ⊆ x | a) PREM ∅
14 O(n | x ⊆ a) 12,13; RC

{!r Oa�(n), !r Ox
a(n)

}

It can easily be shown that lines 11, 12 and 14 will not be marked in any extension
of the proof.

Example 11.5.3. Also in the other problematic Example 11.4.1 the ALs block the
undesired instances of (SA). Let the lower limit logic be �WRMCDPM.Δc where
Δ ∈ {1, 2∨}.

1 O(¬s | h) PREM ∅
2 P(s | r) PREM ∅
3 P(s | h ⊆ r) PREM ∅
4 P(¬s ⊆ r | h) PREM ∅

85 O(¬s | h ⊆ r) 1,4; RC
{!r Or

h(¬s)
}

86 O(h ⊃ ¬s | r) 5; S
{!r Or

h(¬s)
}

7 ¬O(¬s | h ⊆ r) 3; Def ∅
8 !r Or

h(¬s) 1,4,7; Agg ∅
Note that with CDPM.Δc (Δ ∈ {1, 2∨}) the counter-intuitive O(¬s | h ⊆ r) is

derivable from O(¬s | h) and P(¬s ⊆ r | h) by (WRM) causing an explosion due
to P(s | h ⊆ r). Since line 5 gets marked in the adaptive proof this problem has
evidently been overcome.
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11.6 Combining the Adaptive Systems

This section offers insight into the way the various systems introduced above can
be combined, allowing for different degrees of adaptiveness. This is desired since
each of our logics so far only treated particular problems of the ones presented in
Sect. 11.4. By combining them we are able to get the most powerful and intuitive
systems. A natural first suggestion for an AL account of both inheritance and weak
rational monotonicity is given by the following logic:

Definition 11.6.1. Am
r,c(L) is defined by the following triple

∈L,Θc
d ∪ Θr

d , minimal abnormality∧,

where L ∈ ⋃
Δ∈{1,2∨} ↓ �WRM CDPM.Δc.

However, the following example shows that this logic is only suboptimal.

Example 11.6.1. Suppose the following obligations and permissions:

• If your friends Beth and Mike are around, you’re supposed to serve coffee.—
O(c | f )

• If your friend Anna, who has a coffee allergy, is around, you’re supposed not to
serve coffee.—O(¬c | a)

• If your friends Beth and Mike are around, you’re allowed to serve coffee and to
have Anne around.—P(c ⊆ a | f )

• If your friend Anna is around, you’re allowed to have Beth and Mike around and
to not serve coffee.—P(¬c ⊆ f | a)

The following proof is in Am
r,c(⊕PS�({WRM, S}, CDPM.1c)).

1 O(c | f ) PREM ∅
2 O(¬c | a) PREM ∅
3 P(c ⊆ a | f ) PREM ∅
4 P(¬c ⊆ f | a) PREM ∅

95 O(c | f ⊆ a) 1, 3; RC {!r Oa
f (c)}

96 O(¬c | f ⊆ a) 2, 4; RC {!r O f
a (¬c)}

7 O(c | f ⊆ a) ⊃ O(¬c | f ⊆ a) 5; RU {!r Oa
f (c)}

8 O(c | f ⊆ a) ⊃ O(¬c | f ⊆ a) 6; RU {!r O f
a (¬c)}

9 !cO(c | f ⊆ a) ⊃ !r Oa
f (c) ⊃ !r O f

a (¬c) 5, 6; RU ∅
The minimal choice sets are

{{!cO(c | f ⊆ a)}, {!r Oa
f (c)}, {!r O f

a (¬c)}}. Note that
O(c | f ⊆ a) ⊃ O(¬c | f ⊆ a) is derivable. This is undesired. One possible solution
is to use the reliability strategy instead of the minimal abnormality strategy. In this
case lines 5–8 are marked at line 9. Note however that, as pointed out for the monadic
case in Chap. 10, the reliability strategy is with respect to Θc

d suboptimal in the case
of the life saver and similar examples since it does not allow to derive the obligations
to bring about at least the disjunction of conflicting obligations.

http://dx.doi.org/10.1007/978-3-319-00792-2_10
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A better solution to this problem is presented in the form of a sequential AL:

Definition 11.6.2. Ax
r ≥ Ac(LLL) (where x ∈ {m, r}) is the combined AL defined by

the consequence relation CnAx
r (LLL)(CnAc(LLL)(Φ ))where LLL ∈ ⋃

Δ∈{1,2∨} ↓�WRM
CDPM.Δc.

The intuition behind this system is to first interpret “locally” for each condition
C the corresponding obligations O(A | C), O(B | C) etc. as non-conflicting as
possible. Then, strengthening of the antecedent is applied adaptively.

We need to slightly adjust the marking conditions for abnormalities in Θr
d . We

show this paradigmatically for the case x = r: for a more detailed explication of the
proof theory for sequential combinations of ALs see Sect. 3.3.

Definition 11.6.3. We define Ur
s (Φ ) = ⋃

I Υi where {Dab(Υi ) | i ∈ I,Υi ≺ Θr
d}

is the set of all minimal Dab-formulas derived at stage s at unmarked lines on a
condition Υ∨ such that Υ∨ ∗ Θr

d = ∅.
Line i is marked at stage s iff, where Υ is its condition, Υ ∗ Ur

s (Φ ) ⊇= ∅.
Now the following line can be added to the proof of Example (11.6.1.):

10 !r Oa
f (c) ⊃ !r O f

a (¬c) 9; RC {!cO(c | f ⊆ a)}
Due to the reliability strategy we have to mark lines 5–8. Note that for the minimal

abnormality strategy lines 7 and 8 would not be marked at line 10. Thus, reliabil-
ity strategy is preferable. Note furthermore that, although the reliability strategy
is employed for Θr

d and hence for the conditional applications of (WRM), we are
free to use the minimal abnormality strategy for Θc

d and hence for the conditional
applications of (RCPM).

Theorem 11.6.1. Where Δ ∈ {1, 2∨} and x ∈ {m, r}, we have:

(i) Ax
r ≥ Ac(�WRMCDPM.Δc) satisfies (C‡).

(ii) Ax
r ≥ Ac(⊕PS�({WRM, S}, CDPM.Δc)) satisfies (C‡).

Theorem 11.6.2. Where Δ ∈ {1, 2∨}, x ∈ {m, r}, and LLL ∈ ↓ �WRM CDPM.Δc,
Ax

r ≥ Ac(LLL) does not validate (CDEX-1), (CDEX-2), and (CDEX-3).

11.7 Conclusion

Lou Goble presented in [1, 2] dyadic deontic logics based on a restriction of the
inheritance principle. These systems are able to deal with deontic conflicts in the
sense that they are not explosive facing dilemmas and they block undesired deriva-
tions from these dilemmas. Furthermore, by including a restricted version of rational
monotonicity Goble is able to give an intuitive account of a restricted strengthening
the antecedent (SA) principle.

However, this chapter locates various shortcomings of Goble’s logics. Most impor-
tantly the treatment of (SA) is counter-intuitive for some examples and can even lead

http://dx.doi.org/10.1007/978-3-319-00792-2_3
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to explosion. Furthermore, some of the principles employed by the CDPM systems
do not behave well together.

An adaptive logic framework has been developed which enables a satisfactory
treatment of these problems. The price to pay for going adaptive is the lack of
monotonicity. However, although Goble’s systems are monotonic logics, a defeasible
approach is motivated by them due to the restrictiveness of some of their rules. Take
for instance the restricted version of the inheritance principle. In order to apply the
rule, in many cases the user needs to add permission statements to the premise sets.
Especially for complicated premise sets this demands a great deal of reasoning by
the user and can lead to explosive behavior in cases in which she is not able to
foresee all consequences of the addition of certain premises. A defeasible approach
is far more elegant. It not only avoids explosive behavior in such cases but also
shifts the reasoning from the user to the logic. It is self-explanatory that one of the
basic requirements for an adequate deontic logic is that it models as much reasoning
with as less external interference as possible. The ALs are well-suited for this task.
By interpreting a premise set as “normally as possible”, the required additional
permission statements are generated automatically as part of the proof dynamics.
Furthermore these proof dynamics explicate our moral reasoning processes.

While this chapter demonstrated that going adaptive improves CDPM in terms of
elegance, strength and intuitiveness, in Chap. 12 and in [4] I show that the adaptive
logic approach on basis of CDPM is also able to give a solution to another deep
problem of dyadic deontic logics, namely the lack of a proper treatment of (defeasible)
detachment. The advantages of the logics presented in this chapter and in Chap. 12
resp. [4] can easily be assembled by forming combined systems in the same manner
as it was done in Sect. 11.6.

Acknowledgments I thank Joke Meheus, Mathieu Beirlaen, Frederik Van De Putte, and the anony-
mous referees of the Journal of Logical Philosophy for valueable comments which helped to improve
the paper.
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Chapter 12
A Deontic Logic Framework Allowing
for Factual Detachment

Since our ethical and behavioral norms have a conditional form, it is of great
importance that deontic logics give an account of deontic commitments such as “A
commits you to do/bring about B”. It is commonly agreed that monadic approaches
are suboptimal for this task due to several shortcomings, for instance their falling
short of giving a satisfactory account of “Strengthening the Antecedent” or their dif-
ficulties in dealing with contrary-to-duty paradoxes. While dyadic logics are more
promising in these respects, they have been criticized for not being able to model
“detachment”: A and the commitment under A to do B implies the actual obligation
to do B. Lennart Åqvist asks in his seminal entry on deontic logic in the Handbook of
Philosophical Logic: “We seem to feel that detachment should be possible after all.
But we cannot have things both ways, can we? This is the dilemma on commitment
and detachment.” (Lennart Åqvist in ([1], p. 199)).

In this chapter I answer Åqvist’s question with “Yes, we can”. I propose a gen-
eral method to turn dyadic deontic logics in ALs allowing for a defeasible factual
detachment while paying special attention to specificity and contrary-to-duty cases.
I show that a lot of controversy about detachment can be resolved by analysing dif-
ferent notions of unconditional obligations. The logical modeling of detachment is
paradigmatically realized on basis of one of Lou Goble’s conflict tolerant CDPM
logics.

12.1 Introduction

In this chapter I propose a way to adaptively enhance dyadic deontic logics in
order to enable defeasible factual detachment. This is done by paying special atten-
tion to specificity and contrary-to-duty (CTD) cases. Paradigmatically the adaptive
treatment is demonstrated by means of one of Lou Goble’s powerful conflict-tolerant

A former version of the content of this chapter has been elaborated in [37].

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 297
DOI: 10.1007/978-3-319-00792-2_12, © Springer International Publishing Switzerland 2014
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CDPM logics.1 But let me slowly situate this enterprise in the landscape of deontic
logics and introduce the reader, by doing so, into the central notions and problems.

12.1.1 Monadic Approaches to Conditional Obligations

While monadic deontic logics, i.e., logics employing unary obligation and permission
operators, are powerful tools to model normative notions such as obligations, duties,
oughts, etc., there are several shortcomings concerning their abilities to model con-
ditional obligations. Since most of our moral or behavioral norms are in a conditional
form, it is important to develop deontic logics that adequately model them.

There are two canonical ways to represent of the conditional obligations of the
type “Under condition A you’re obliged/committed to bring about B” in unary logics:
(i) by A ∪ OB and (ii) by O(A ∪ B), where OA is written for the obligation/the
duty/etc. to bring about A (and analogously for permissions PA). A lot of criticism
of such ways of modeling commitment has been published (for a survey see [1]). Let
me mention two of them.

(1) Some prominent arguments concern the appropriate representation of
Strengthening the Antecedent (SA)—if A commits you to do B then A and C commit
you to do B. In most situations the logic is obviously expected to validate SA. But
consider the following case (�):

�1 In general we’re supposed not to eat with our fingers.
�2 Being served asparagus, we are supposed to eat with our fingers.

If �1 is modeled by � ∪ O¬ f , then a ∪ O¬ f is derivable. This obviously is in
conflict with �2, a ∪ O f . It would be counter-intuitive that, being served asparagus,
we do have at the same time the obligation to eat and not to eat with our fingers.
Similarly problematic is to use O(A ∪ B) to represent the obligation B under
condition A. In the example we can derive by the inheritance principle2 O(a ∪ ¬ f )

from O(� ∪ ¬ f ). However, this is counter-intuitive with respect to ��.
(2) Problems related to CTD obligations are commonly considered as the death-

blow for any effort in modeling conditional obligations in a monadic way. A promi-
nent example is given by the so-called Chisholm Paradox (�) (see [4]):

�1 John ought not to impregnate Diane.
�2 If John impregnates Diane, he ought to marry her.
�3 If John does not impregnate Diane, he ought not to marry her.
�4 John impregnates Diane.

1 See [2, 3], where Goble presents a family of logics, CDPM.xy where x ⊆ {1, 2} and y ⊆ {a, b, c}.
I use in this chapter CDPM as a generic term for this family of logics.
2 The inheritance principle, also often referred to as rule (K), is given by: If � A ∪ B then
� O A ∪ O B. It is validated by most deontic logics, above all by standard deontic logic.



12.1 Introduction 299

As it has been shown for instance in [1], monadic approaches face severe difficulties
in modeling such examples.3

It has been argued that deontic paradoxes are due to the lack of a modeling of
the temporal aspect of obligations (see [11]). However, Prakken and Sergot have in
[12] presented a version of Chisholm’s paradox that is entirely independent of any
temporal parameters (see Example 12.6.6, p. 322). This shows that any hopes to
resolve all CTD puzzles by temporal deontic logics have to be abandoned. Further-
more, it motivates research in non-temporal deontic logics which are able to tackle
CTD puzzles.

12.1.2 Dyadic Approaches and the Problem of Detachment

It is commonly accepted that dyadic approaches can lead to satisfying solutions with
respect to the CTD problems and, as for instance in the case of Goble’s CDPM
[2, 3], there are also ways to tackle problems such as the ones related to (SA). In a
dyadic deontic logic conditional obligations are modeled by a dyadic obligation oper-
ator. O(A|B) is written for the obligation to bring about A in case of B (and similarly
for permissions P(A|B)). I sometimes refer to A as being the conclusion and to B
as being the antecedent or condition of the conditional obligation O(A|B).4 Despite
their merits, dyadic approaches are criticized for not giving a satisfactory account
of detachment. Factual detachment (from now on shortly detachment) is, generally
speaking, to derive the ‘actual’ obligation to bring about A from the commitment to
bring about A under condition B and the fact B.5 Formally:

� (
O(A|B) ∧ B

) ∪ OA (FD)

The unconditional obligation OA should indicate that the obligation to bring about A
is ‘actual’ for an agent in question and that it ‘binds’ her. This rough description is still
somewhat ambiguous. It will be one of my tasks to analyze it further (see Sect. 12.2).
That the modeling of detachment is not a trivial task can easily be demonstrated by the
asparagus example (�). I write O(¬ f �) for A1 and O( f |a) for A2. Now suppose

3 It would go beyond the scope of this chapter to offer a detailed analysis of the example. However,
this has been done before in the literature and I refer the interested reader to e.g. [1], Sect. 8. It
should be mentioned that recent developments in reactive modal logics (see e.g., [5–10]) offer
a way to overcome many of the usual shortcomings of monadic deontic logics in the context of
Contrary-to-Duty examples such as the Chisholm Paradox.
4 I restrict the discussion in this chapter to the case that the arguments of the obligation operator are
propositional formulas, i.e., formulas without occurrences of obligation operators. The handling of
detachment concerning obligations such as O(O(A|B)|C) deserves a discussion in its own right.
Such a discussion would have to answer questions concerning the proper way of dealing with nested
obligations, e.g., should we infer O(A|B ∧ C) from O(O(A|B)|C), or, to what extent, if any, can
we make sense of detaching obligations from obligations.
5 There is also deontic detachment (cp. [13]). I will discuss it in more detail in Sect. 12.6.1.

http://dx.doi.org/10.1007/978-3-319-00792-2_8
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we are being served asparagus, a. However, we can apply (FD) to both premises ��
and �� and thus get O¬ f and O f , a deontic conflict. Confronted with such cases
Åqvist pessimistically stated,

We seem to feel that detachment should be possible after all. But we cannot have things both
ways, can we? This is the dilemma on commitment and detachment. ([1], p. 199)

And indeed, most of the existing dyadic logics do not allow for detachment. Of
course, then we have to ask with Van Eck rhetorically,

How can we take seriously a conditional obligation if it cannot, by way of detachment, lead
to an unconditional obligation? ([14], p. 263)

Indeed, normative reasoning is not just reasoning about conditional commitments,
i.e., deriving other commitments from given ones, but to a high degree also applying
a set of conditional norms to a factual situation in order to see what unconditional
actual obligations bind us and guide our actions.

12.1.3 The Contribution and Structure of this Chapter

In this chapter I answer Åqvist’s question whether it is possible to have both, com-
mitment and detachment, with “Yes, we can”. I propose a general method to turn
dyadic deontic logics into ALs allowing for a defeasible factual detachment while
paying special attention to specificity and CTD cases. This will equip the logics with
the ability to model actual deontic reasoning/inferencing. That is to say, the logic is
then able, given a set of factual information F , to derive obligations that are actual
and bind us (or some agents in question) in the very situation described by F . I will
proceed along the following steps:

Before giving a formal account of detachment, we have to ask, what kind of
unconditional obligations do we want to detach. This is not a trivial question and
there is a lot of controversy concerning CTD cases. In Sect. 12.2 I will point out that
there is more than one sensible notion. For the formal modeling I paradigmatically
settle for two notions that I consider to be very interesting for practical applications:
instrumental and proper obligations.

Now, having a conceptual grip on the obligations that should be detached, I can
proceed by giving a formal model. The central idea in this chapter is to apply detach-
ment conditionally, namely on the condition that it can be considered safe to apply
it. Therefore the language and axiomatization of a given dyadic deontic logic—let
me call it the base logic—is enriched in such a way that it is expressible when it
is unsafe to apply detachment (see Sect. 12.3). In such cases these obligations are
labeled, •O (A | B). Formally the conditional applications of detachment are realized
by ALs. The idea of ALs is to interpret a premise set “as normally as possible” with
respect to a certain standard of normality. They allow for some rules to be applied
conditionally. In our case detachment is going to be applied “as much as possible”.
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The idea is to apply detachment to an obligation O (A | B) and B on the condition
that •O (A | B) can be considered to be false.

After having presented the generic framework I am going to apply the “adaptiviza-
tion” to a concrete base logic. The choice is one of Lou Goble’s CDPM systems (see
[2, 3]) which I introduce in Sect. 12.5. This is a good choice in order to achieve an
altogether very powerful logic. Let me highlight some of the strengths. Goble’s logic
has an intuitive handling of SA based on a weakening of the Rational Monotonicity
principle (see e.g. [15]). Furthermore, by restricting the inheritance principle it is
conflict-tolerant. That is, it is able to deal with deontic conflicts, i.e., situations in
which we are committed to do A as well as to do not-A or some B which cannot
be jointly realized with A. Standard deontic logic leads in such cases to deontic
explosion, namely to the derivability of all obligations.

By going adaptive in Sect. 12.6 one more strength is added, namely an intuitive
modeling of detachment. I will demonstrate the modus operandi and the strengths of
the adaptive system by a number of standard benchmark examples.

Finally, in Sect. 12.8 I discuss some advantages of the adaptive handling of detach-
ment and suggest some useful enhancements. In Appendix J I present the semantics,
completeness and soundness proofs for the logics presented in this chapter.

12.2 What to Detach?

This section clarifies our intuitions about what kind of obligations to detach from
conditional obligations. This is necessary since there is a variety of conceptions
concerning the types of obligations involved in certain setups and concerning their
relationships. Due to this, scholars disagree about how and when to apply detachment.

Preliminarily it can be said that what should be detached are obligations that are
in some sense ‘actual’ and that in some sense ‘bind us’. These are obligations whose
condition is fulfilled, and that are not ‘canceled’ or ‘destroyed’ by other obligations.
These points deserve a deeper analysis which I am going to provide in this section.
I will emphasize two types of obligations that are especially interesting for detach-
ment: instrumental and proper obligations.6 In order to explicate these concepts
I will first focus on two paradigmatical cases in which conditional obligations are in
a sort of tension: specificity and CTD cases. This will provide a good basis to disen-
tangle the discussion in the literature about when, or to what kind of obligations to
apply detachment.

6 This distinction is not exhaustive. There are other conceptions, such as Carmo and Jones’ “ideal”
obligation (see [16] and Sect. 12.2.5).
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12.2.1 Exceptional Contexts and Specificity

Let us look at an example:

• When the plane takes off you ought to turn off electronic devices.—O(e|p)

• The plane takes off.—p

It seems reasonable to apply detachment to the two premises in order to derive the
‘actual’ obligation to turn off electronic devices. However, we have to be careful.
Norms and obligations often allow for exceptional contexts. Consider for instance our
asparagus example (�1, �2), O(¬ f |�) and O( f |a), or the weaker version, O(¬ f |�)

and P( f |a). Often scholars dub such settings specificity. The idea is that, where C is
a more specific context than B, an obligation O(A|B) does not hold in the context C
due to the presence of P(¬A|C) or O(¬A|C) if the context C can be considered as
exceptional. In this case the obligation O(A|B) is excepted. For instance, the situation
in which we eat asparagus is an exceptional context to the general obligation not to
eat with our fingers and the latter is excepted in this context.

Let us get a more formal grip on this. ∈C1, . . . , Cn∧ is a permissive sequence from
C1 to Cn iff, for all i < n, (a) � Ci+1 ∪ Ci and (b) P(Ci+1|Ci ). We say that C is a
permissible context to B iff there is a permissive sequence from B to C .

Obviously a is a permissible context to � since P(a|�). Moreover, also f ∧a is a
permissible context to �, although we do not have P( f ∧ a|�).7 However, we have
P(a|�) and P( f ∧ a|a) which constitute the permissive sequence ∈�, a, f ∧ a∧.

C is an exceptional context to O(A|B) iff

��1 C is a permissible context to B, and
��2 there is an exceptional permission (resp. obligation), P(D|C) (resp. O(D|C)),

where � D ∪ ¬A.

The idea is that, if C is a permissible context to B and we have incompatible norms
in the two contexts, e.g. O(A|B) and O(¬A|C), then we have a case of specificity
and O(A|B) is excepted. In Example (�) a situation in which we are being served
asparagus, a, as well as the connected obligation O( f |a) are approved by P(a|�).
Thus, if a is the case, f should not be seen as a violation of O(¬ f |�), but rather as
an exception. Note that it would be suboptimal to use a more simplified definition
of exceptional contexts in which ��� is replaced by P(C |B). The reason is that
according to the latter, simplified definition, f ∧ a is not an exceptional context to
O(¬ f |�), which is counter-intuitive.

We say that O(A|B) is excepted in C iff C is an exceptional context to O(A|B).
Hence, O(¬ f |�) is excepted in the contexts a and f ∧ a. Cases such as the
asparagus example are usually considered as obligations “overriding”, “cancel-
ing”, or “destroying” other obligations in certain contexts, i.e., O( f |a) overrides
O(¬ f |�).

7 Note that it is rather problematic to add P( f ∧ a|�) to the premises, since the latter is equivalent
to ¬O(¬ f ⊃ ¬a|�) and in most deontic logics O(¬ f ⊃ ¬a|�) is entailed by O(¬ f |�) (due to
modal inheritance).
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Let me contrast exceptional contexts and specificity with violation contexts and
CTD obligations.

12.2.2 Violation Contexts and Contrary-to-Duty Obligations

C is a violation context to O(A|B) iff

��1 � C ∪ B (C is at least as specific as B),
��2 C is not a permissible context to B, and
��3 � A ∪ ¬C (A and C are incompatible).

If C is the case then O(A|B) is (factually) violated by C . Note that O(A|B) is not
excepted in the context C . In this sense violation contexts define sub-ideal situations,
opposite to exceptional contexts, in which no obligation is violated. In order to give
an example it is better to first introduce CTD obligations. A prominent case is given
by the following “Gentle Murderer” example (�)8:

�1 Doe is in general obliged not to kill his mother.—O(¬k|�)

�2 However, if Doe kills his mother, he ought to kill her gently.—O(g|k)

�3 Doe kills his mother.—k

I presuppose g � k. Obligations of this kind are usually dubbed contrary-to-duty
obligations. Formally: O(D|C) is a (strong) CTD obligation to O(A|B) iff, (i) �
A ∪ ¬D and (ii) C is a violation context to O(A|B).9 As is customary, I call O(A|B)

the primary and O(D|C) the secondary obligation. Note that A is inconsistent,
both with the antecedent and the conclusion of O(D|C). There is a certain sense
in which the secondary obligation is dependent on the primary one. It specifies
norms for the case that the primary obligation is violated. In the case of strong CTD
obligations these norms are themselves incompatible with the primary obligation. In
order to indicate this aspect, we say that the secondary obligation O(D|C) is burdened
with the primary obligation O(A|B). The strong CTD obligation expresses that, if
the primary obligation is being violated, then there are certain ways of violating it
that are normatively preferable to others. If Doe already kills his mother, then he
should at least do it gently. Evidently k is a violation context to O(¬k|�). Moreover,
� ¬k ∪ ¬g. Hence, O(g|k) is a strong CTD obligation to O(¬k|�).

We say that O(D|C) is a weak CTD obligation to O(A|B) iff, C is a violation
context to O(A|B) and O(D|C) is not a strong CTD obligation to O(A|B) (hence,
→� A ∪ ¬D). Note that in this case O(D|C) is not burdened with O(A|B). Weak CTD
obligations express that, if the primary obligation is being violated, then this violation
introduces certain other consequential norms beside the strong CTD obligations that

8 This version of the Forrester Paradox (cp. [17]) is taken from McNamara ([18], p. 243).
9 It would be suboptimal to define (strong) CTD obligations by (i) together with � A ∪ ¬C , since
then e.g. O( f | f ∧ a) would be a CTD obligation to O(¬ f |�). However, this is counter-intuitive
since O(¬ f |�) is excepted in the context f ∧ a, as argued above.
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O(A B ) O (A B ) O(A B )

O(D C ) O (D C ) O(D C)

(i) (ii) (iii)

Fig. 12.1 (i) Strong CTD obligation, (ii) Weak CTD obligation, (iii) Specificity. The dashed line
indicates an inconsistency between, for instance, A and D in (i). The (striked-out) solid arrow
indicates that C is (not) a permissible context to B

specify the normatively optimal ways the violation should take place. An example
(��) is

��1 In general you should not break your promise to attend the meeting.—
O(¬b|�).

��2 If you break your promise to attend the meeting, then you are supposed to
apologize.—O(a|b).

Evidently b is a violation context to O(¬b|�). Note that O(a|b) is not a strong CTD
obligation to O(¬b|�) and is hence not burdened by O(¬b|�), since its conclusion,
i.e. to apologize, is not incompatible with the primary obligation. It does not inform
us how to break the promise in the normatively preferable way but rather states a
norm that is a consequence of the broken promise (and that is itself not incompatible
with the primary obligation).

Figure 12.1 features a comparative overview of the introduced obligations types.

12.2.3 The Dissent in the Literature

There has been some discussion concerning detachment, especially with respect to
(strong) CTD cases such as the Forrester Paradox (�). McNamara argues against
detaching CTD obligations:

So carte blance factual detachment seems to allow the mere fact that I will take an action
in the future (killing my mother) that is horribly wrong and completely avoidable now to
render obligatory another horrible (but slightly less horrible) action in the future (killing my
mother gently). ([18], p. 268)

What McNamara has in mind in his criticism is the case that O(¬k|�) is violated
(and not excepted): in the case that Doe cannot be excused for killing his mother since
it was ‘completely avoidable’, but he undertakes the killing anyway, it seems absurd
to detach an obligation to kill her gently, since, after all, the primary obligation, not
to kill his mother, binds Doe despite him acting against it.

Wang in [19] disagrees. He points out the importance of “premise-dependency”
(ibid., p. 13) when evaluating detachment inferences. He remarks:
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the logic should construct the detachment inference in a way that makes the conclusion be
evaluated in a premise-dependent way (ibid., p. 12, Wang’s emphasis)

In order to explicate this notion he reminds his readers of classical logic. There “B is
a logical consequence of A, iff if A is true, then B is true, where the evaluation of B
is given under the evaluation of A, i.e., B is evaluated in the models where A is true.”
(ibid., p. 12). In the Gentle Murderer case, the conclusion to kill the mother gently
has the counter-intuitive appeal highlighted by McNamara mainly when interpreted
in a premise-independent way, namely when we forget that the evaluation of the
conclusion takes place in worlds/models in which Doe anyway kills her. Of course,
isolated, i.e., independent from the evaluative constraint that he in fact kills her, the
obligation to kill his mother gently is against our moral convictions. However, settling
for a premise-dependent evaluation and accepting the premises �2 and �3, there is
nothing which should cause any unease with our acceptance of the conclusion, that he
should kill her gently. Similarly, accepting the conclusion “Doe will win the lottery
tomorrow.” from the premises (i) “If Doe knows the lottery numbers and he will play
them in due time, then he will win.” and (ii) “Doe knows the lottery numbers and he
will play them in due time.” is counter-intuitive only in the case that we forget about
(ii). In general it is of course very unlikely for Doe to win the lottery. However, if we
know that Doe knows the numbers already, it is perfectly correct to conclude that he
will win.

Wang criticizes McNamara for giving a premise-independent interpretation of the
conclusion for the Gentle Murderer: while

obligatory in the premise [�2] is interpreted in the evaluative sense, i.e. given that Doe does
kill his mother, it is better that Doe kills her gently, McNamara objects to the conclusion by
a moral sense of the obligation based on what is morally right or wrong. (ibid., Footnote
12, p. 11).

He moreover points out that, opposite to the premise-dependent treatment of
conclusions in the case of classical logic, “the evaluation should [in the case of
detachment] be considered in a defeasible way.” (ibid., p. 12). This is also clear
looking at Example (�). Evidently, the antecedent of �1, �, is fulfilled. However, the
antecedent of the more specific �2 is also fulfilled, which leads in Wang’s perspective
to �1 being defeated.

A different view is offered by Van Der Torre and Tan in [20]. In cases such as the
asparagus example they speak of an obligation, e.g. O(¬ f |�), being overridden and
canceled by a more specific obligation, e.g. O( f |a). However, in CTD situations
they use the term overshadowing: for instance, O(¬k|�) is overshadowed by O(g|k)

in a situation in which the killing takes place. The primary obligation, though being
violated, is not in any way canceled or destroyed. Therefore, Van Der Torre and Tan
argue that it would be intuitive to derive O¬k, i.e., to apply detachment to O(¬k|�),
while “[t]he consistency of O¬k∧ Og is a solution that seems like overkill” ([21],
p. 53). With respect to our terminology it seems to be the intuition of Van Der
Torre and Tan that in most cases excepted obligations are being overridden while
violated obligations are being overshadowed. It can be argued that Van Der Torre and
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Tan circumvent the criticism by Wang: they evaluate the conclusion in a premise-
dependent way and it is precisely the nature of CTD obligations that justifies and
motivates that detachment is not applied to them, but rather to the more general
primary obligation which is being violated. The intuition is that, whether Doe kills
his mother or not, he has the obligation not to kill her and this obligation binds him.
In the former case he violates this obligation.10

However, one might ask, what kind of conditional does �2 represent? Although
it is of the form “if …, then …”, a logic in McNamara’s or Van Der Torre and
Tan’s sense would in no way allow to detach its conclusion. Nevertheless, in case
of �3, �2 binds Doe and is actual in a certain way. In fact, both, �1 and �2 are of a
binding nature in case of �3, despite the fact that both conclusions are incompatible.
Thus, I suggest that a proper deontic logic allowing for detachment should be able
to distinguish these cases and to offer an adequate detachment mechanism for both
intuitions.

12.2.4 Instrumental and Proper Obligations

So, who is right, on the one hand Wang, or on the other hand McNamara, Van Der
Torre and Tan? I suggest: all of them in their own way. This is due to the fact that
different intuitions are in place which are all justified in their own respect once they
are made more transparent.

Let us first look at Wang’s intuition. The disagreement between him and the other
scholars concerns mainly circumstances in which some (primary) obligations are
factually violated. For instance, in the case in which Doe kills his mother, a fact
that obviously violates his primary obligation not to kill her. However, in viola-
tion contexts as well as in any other context, there may still be certain obligations
which guide our actions, despite the fact that some obligations are not realizable or
excepted. This may for instance be obligations that tell us, if we already violate a
primary obligation, how to do so in the morally most correct way. For Doe this means
to at least kill his mother in a gentle way. There are obligations that tell us what we
should and can bring about without considering already violated obligations. They
tell us what is the right thing to do in a certain situation, but not what would have
been the right thing to do in first place, for instance, to avoid a sub-ideal situation in
which some obligations are violated.11 I call these obligations from now on instru-

10 Prakken and Sergot offer a similar view. A “key difference between contrary-to-duty and prima
facie obligations” ([22], p. 224) is that, unlike prima facie obligations and opposite to Wang’s view,
the former do not satisfy any form of (defeasible) factual detachment. The only form of detachment
they satisfy is the following strong detachment principle: |= (O(A|B)∧�B) ∪ O A, where � is the
necessity operator of an adequate modal logic. Detaching the obligation to kill gently would cause
an inconsistency which is “counter to our intuitions”. The obligation not to kill is not overridden,
it is fully valid.
11 Foot in [23] introduces a similar concept. She dubs ‘obligations of type 2’ oblig-
ations which “tell us the right thing to do” ([23], p. 385). They answer the question
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mental obligations and write Oi A for the instrumental obligation to bring about A.
More formally the idea could be expressed as follows: given the factual information
F , the instrumental obligations amount to those obligations that an agent is expected
to practically realize in the most normal and ideal worlds that validate F . The latter
are worlds in which as less violation and exceptional contexts are the case as possible,
i.e., as is coherent with F . For instance, in case of the asparagus example, if we do
not have any specific factual information about the meal which is served, the most
normal worlds are worlds in which asparagus is not served. Thus, we are expected
not to eat with our fingers.

Instrumental obligations seem to cohere with Wang’s intuition. Interpreting the
factual premises as settled and immutable, all-things-considered it is the best thing
to do for Doe to kill his mother gently, presupposing that he kills her. Thus, violated
primary obligations are not candidates for detaching instrumental obligations. Rather
are the secondary CTD obligations the ones which should be detached: in this case to
kill the mother gently. Also, in case your promise is broken, the weak CTD obligation
to apologize should be considered as an instrumental obligation to be detached, but
not the primary obligation not to break the promise since the promise is already
broken. Excepted obligations are not candidates for instrumental detachment: being
served asparagus we are obviously exempted from the obligation not to eat with our
fingers. The latter has to be considered as being overridden and the more specific
obligation to eat with our fingers should be detached as instrumental obligation (see
Table 12.1 for an overview).

Note that instrumental obligations are both, ‘actual’ (in our preliminary under-
standing of not being canceled or destroyed by another obligation) and binding in
the sense of guiding our actions.

Instrumental obligations are not the only sensible notion for unconditional oblig-
ations which are interesting for detachment. The intuition behind Van Der Torre and
Tan’s approach may be linked to another concept which I call proper obligations.
I write Op A for the proper obligation to bring about A. These obligations tell us,
all-things-considered, which obligations are predominantly in force in a certain sit-
uation, where, (i) we also take into account obligations which have been violated
but which still bind us, and, (ii) primary or stronger obligations are prioritized in

Table 12.1 What is detached? The columns are considered to be mutually exclusive. Ideal oblig-
ations are introduced in Sect. 12.2.5

Violated obl. Excepted obl. Strong CTD obl. Weak CTD obl.

Instr. obl. × × � �
Proper obl. � × × �
Ideal obl. � × × ×

(Footnote 11 continued)
“And what all things considered ought we to do?” (p. 386). Of course, it would have been the best
thing to do for Doe not to kill his mother. However, interpreting the factual premises as unalterable
facts, the best thing Doe may (still) do is to kill his mother gently (if he already kills her).
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cases of conflicts. Hence, proper obligations are all obligations for a given context
that are neither excepted nor burdened. For instance, all non-conflicted obligations
conditioned for a given context are proper obligations. That proper obligations are
‘actual’ even in case they are violated is the reason why we judge a violator to be
guilty, and it is witnessed by us being conscience-smitten after violating them.

In the case of example (�), the moral reasons for Doe not to kill his mother
are stronger, or primary, compared to the reasons to kill her gently: after all, the
obligation to kill her gently is only secondary for the case that he violates the primary
obligation. It provides a practical guideline how to act in the situation in which the
murder takes place. However, the obligation proper for Doe is not to kill. Thus, we are
interested in detaching (not-excepted) violated primary obligations rather than their
strong CTD counterparts. This is a key difference to the instrumental case. However,
weak CTD obligations should be detached as being proper obligations since you are
obliged to apologize in case you break your promise and this obligation is neither
excepted nor burdened. Hence, it is not in conflict with a more general obligation that
would bind you more. It is a proper obligation to apologize in the violation context,
not “just” a norm informing you, if you already violate an obligation, how to do
so in the normatively best way. Also the primary obligations in weak CTD cases
should be detached as proper obligations, since neither are they excepted nor are
they burdened. Analogous to the primary obligation in strong CTD cases they bind
us as proper obligations despite the fact that they are violated.12 Analogous to the
instrumental case, excepted obligations should not be detached, but rather the more
specific obligations which override them: it is our proper obligation to eat with our
fingers in the case that asparagus is served (see Table 12.1 for an overview).

Concluding, it can be said that proper obligations bind us (in contrast to instru-
mental obligations) even in the case that they are violated by secondary obligations
(if they are not excepted otherwise). They are ‘actual’ in our preliminary understand-
ing since, also in the case of being violated they are not destroyed or canceled, or as
Van Der Torre and Tan put it: they are merely overshadowed.

12 Of course, in an ‘ideal’ world there is no need to apologize. Thus, Prakken and Sergot in [12] call
it a ‘pragmatic oddity’ if, in the case of b, both obligations, to keep the promise and to apologize,
are considered to be ‘actual’. Van Der Torre and Tan ([21], p. 63) call it counter-intuitive. Let us
see if our proposal causes an ‘oddity’. An oddity could be given in two respects: (a) concerning
ideality and (b) concerning a pragmatic aspect. Due to (a) there would be an oddity if we had Op A
and Op B for incompatible A and B, and the intended reading of Op A would be that A is true in all
“ideal worlds”. This, however, is not the case with our analysis since for our proper obligation Op A
the intended reading is not that this is an obligation ideal in the mentioned sense, but rather that it is
an obligation actual in the given context that is neither excepted nor burdened. Furthermore, taking
into account that, (i), some proper obligations may be violated while other proper obligations may
still be realizable (the ones which are also instrumental obligations such as in our case the obligation
to apologize) and, (ii), that the two obligations in question are consistent, I do not think that this is
counter-intuitive. Due to (b) we would have a pragmatic oddity in case we would get two in some
sense incompatible obligations which tell us what to do. This boils down to the concurrence of two
incompatible instrumental obligations in our sense. However, again we do not have an oddity in
the given example since we only have Oia and no other instrumental obligation with which it is
incompatible.
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12.2.5 Carmo and Jones’ Proposal

Carmo and Jones propose in [16] a similar distinction of detachable obligations.
They also reject the frequent reduction of an ‘actual’ unconditional obligation OA
to the dyadic representation O(A|�). Instead they define two notions of obligations,
“actual” and “ideal” ones, each represented by a monadic operator, OA and OI .
They realize detachment by introducing two modal operators, ♦ (and its dual ·♦) for
representing what “is actually fixed, or unalterable, given (among other factors) what
the agents concerned have decided to do or not to do” (p. 286), and � (and its dual
♦) for representing what is fixed and “could not have been avoided by the agents
concerned, ... It is not even potentially possible for the agents to alter” (p. 287) these
fixed facts. It is illuminating to take a look at their factual detachment principles
(Table 12.2):

(
O(B|A) ∧ ♦A ∧ ·♦B ∧ ·♦¬B

) ∪ OA B (OA-FD)
(
O(B|A) ∧ �A ∧ ♦B ∧ ♦¬B

) ∪ OI B (OI-FD)

The intuition behind their “actual” obligations is very similar to our instrumental
ones: in case an agent decides to act against a duty such as in the Gentle Murderer
case, ♦k, and it is possible for him to either kill gently, ·♦g, or to not kill gently ·♦¬g, he
has, due to O(g|k), the “actual” obligation to kill gently, OAg. There is a distinctive
difference however concerning their “ideal” and our proper obligations. Take for
instance example (��): while in our analysis it is the proper obligation to apologize,
it is not an “ideal” obligation in the sense of Carmo and Jones. As discussed above,
our proper obligations are the non-excepted and non-burdened obligations that are
valid for the given context. The only “ideal” obligation for (��) is the obligation not
to break the promise. This is also a proper obligation. Note however that OIa is not
derivable if we consider the standard case for which ♦b∧♦¬b is valid. Nevertheless,
Opa is a proper obligation in example (��) since it is not excepted and not burdened
in the context b.

According to the distinction proposed by Carmo and Jones the treatment of strong
and weak CTD cases is the same: in both cases the primary obligation is the “ideal”

Table 12.2 Overview of the Examples

Example (A) (G) (PA)

Premises O(¬ f |�) O(¬k|�) O(¬b|�)

O( f |a) O(g|k) O(a|b)

P(a|�)

a k b
Proper Op f Op¬k Op¬b, Opa
Instrumental Oi f Oig Oia
Context Exceptional Violation Violation
Over… Overriding Overshadowing Overshadowing
Relationship Specificity CTD (strong) CTD (weak)
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one, while the secondary obligation is the “actual” one. Our distinction, however,
mirrors the demarcation line between the two CTD cases: the difference is that in
weak CTD cases the secondary obligation is treated as an instrumental and a proper
obligation (since it is not excepted and it is not burdened) while in strong CTD
cases it is only an instrumental but not a proper obligation (since it is burdened).
Ideal obligations offer a third sensible notion of unconditional obligations which are
interesting for detachment.

One of the interesting aspects of Carmo and Jones’ approach is the idea to analyze
the (actual and ideal) responsibilities of an agent by taking into account non-deontic
modalities. If, for instance, �b is the case, maybe due to the fact that our agent got
forcefully hypnotized and thus cannot but break the promise, in Carmo and Jones’
modeling the agent is not under the ideal obligation not to break the promise, since
it is impossible to avoid breaking the promise, ¬♦¬b.

Due to the limited expressiveness of the standard language of dyadic deontic logics
(such as used for this chapter), for these logics we need to presuppose that the deontic
implications of the additional modal information are explicitly expressed in terms of
the conditions of the obligations in question. In our case this means that, in order to
express the example, we need to presuppose that our premises include P(b|h), i.e.,
that the agent is allowed to break a promise in case he is forcefully hypnotized, and
that he is not obliged not to be forcefully hypnotized since it is beyond his power
to avoid it, ¬O(¬h|�).13 This remark hints at the main methodological difference
between Carmo and Jones’ and my approach: while their treatment of the detachment
of “ideal” and “actual” obligations relies entirely on an analysis of certain types of
possibilities concerning the conditions and conclusions of conditional obligations,
my treatment of the detachment of proper and instrumental (“ideal”) obligations
relies entirely on an analysis of the relationships of the conditional obligations and
the given facts, for instance, on the question if a certain obligation is overridden or
overshadowed, resp. violated or excepted.14

There are certain shortcomings of the framework proposed by Carmo and Jones.
Their paper is primarily concerned with CTD cases and thus they do not give a
satisfying account of specificity. Note, that for the asparagus example we would

13 Presupposing that the additional modal information modeled in Carmo and Jones’ system is
expressed in terms of conditional obligations, “ideal” obligations can be incorporated within the
formal framework presented in this chapter as I will remark later (see Footnote 20). For the sake of
conciseness I will though focus on instrumental and proper obligations.
14 In this respect my approach is similar to the ones offered by defeasible deontic logics such
as Rye’s [24] or Horty’s [25]. These accounts proceed in a similar way as default logic [26]: a
given set of conditional obligations is enhanced to so-called extensions with respect to certain
consistency criteria. One important feature is that by an analysis of the relationships between the
conditional obligations the logics identify the “overridden” (in Horty’s terminology) resp. “defeated”
and “violated” (in Rye’s terminology) obligations that are rejected as members of the extensions. In
our terminology, excepted and violated obligations are sorted out. A consequence relation is then
defined in terms of membership to these extensions.
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get OI¬ f , by their handling, even if asparagus is served, since obviously we have
�� ∧ ♦ f ∧ ♦¬ f . This is clearly counter-intuitive. In order to deal with speci-
ficity cases their framework needs to be complemented by the ability to analyze the
relationships certain conditional obligations have in order to identify exceptional
contexts. Furthermore, there seems to be no obvious way to express the detachment
of our proper obligations in Carmo and Jones’ way by modal operators � and ♦.

Of course, given an enhanced modal framework such as proposed by Carmo
and Jones nothing speaks against a hybrid framework that for instance inherits the
defeasible character and the treatment of specificity from our framework and the
treatment of “ideal” and “actual” obligations from Carmo and Jones.

12.3 Formally Realizing Detachment

In the remainder of the chapter I will present a logical framework that models
detachment paradigmatically for instrumental and proper obligations. Following
standard representations of dyadic deontic logics I presuppose a propositional calcu-
lus which is supplemented by a dyadic obligation operator O for conditional obliga-
tions O(A|B) where A and B are propositional formulas (without occurrences of O,
see Footnote 4) and analogously a dyadic operator P for permissions.15 Furthermore,
two monadic obligation operators are used, Op and Oi, for proper and instrumental
obligations. Where ∧,⊃,∪,∨ and ¬ are the classical logical operators, two further
symbols are added: •p and •i. The language is restricted in such a way that •p and
•i only precede conditional obligations O(A|B). The modal operators and the new
symbols are going to be closed under substitution of equivalents. Where x ⊆ {i, p},
we have:

If � A ∨ B, then � O(C |A) ∨ O(C |B) (RCE)

If � A ∨ B, then � O(A|C) ∨ O(B|C) (CRE)

If � A ∨ B, then � Ox A ∨ Ox B (EOx)

If � A ∨ B, then � •xO(A|C) ∨ •xO(B|C) (CREx)

If � A ∨ B, then � •xO(C |A) ∨ •xO(C |B) (RCEx)

The intended meaning of •pO(A|B) (resp. •iO(A|B)) is that the commitment to
bring about A if B, is blocked from being detached as a proper (resp. instrumental)
obligation.16 Therefore the rule for factual detachment (FD) is altered as follows:

� (
O(A|B) ∧ B ∧ ¬ •p O(A|B)

) ∪ Op A (FDp)

15 The permission operator may also be defined by P(A|B) =df ¬O(¬A|B).
16 There is a similarity between the presented approach and defeasible deontic logics such as Rye’s
[24] or Horty’s [25] (see Footnote 14) concerning the fact that excepted or violated obligations are
in a sense incapacitated via an analysis of the relationships between the obligations. Of course,
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O(A B) O(A B) O(A B) ∧ P(B ∧C B)

O(D B ∧C) O(D B ∧C) O(D B ∧C)

(i) (ii) (iii)

Fig. 12.2 The line indicates an inconsistency between, for instance, A and D in (i). (i) Strong CTD
obligation, (ii) weak CTD obligation, (iii) specificity

� (
O(A|B) ∧ B ∧ ¬ •i O(A|B)

) ∪ Oi A (FDi)

By (FDp) and (FDi), detachment is applied to O(A|B) and B only in case also
¬ •p O(A|B) (resp. ¬ •i O(A|B)) is derivable.

In order to provide a technically not too involving presentation I will introduce the
adaptive handling of detachment in terms of a simplified notion of CTD and excepted
obligations compared to the ones presented in Sect. 12.2 (see Fig. 12.2). This way I
am able to focus more on the central issue of providing a formal modeling of defea-
sible factual detachment inferences. As will be demonstrated, for all the standard
examples the simplified notions are sufficient in order to guarantee an apt modeling
of detachment. However, for cases of nested permissible contexts the solution pre-
sented here is suboptimal. These are cases in which we have a permissible context
C to B but not P(C |B). Hence, for the interested reader a generalized modeling that
reflects faithfully the more realistic notions of CTD and excepted obligations from
Sect. 12.2 is presented in Sect. 12.7.

In the following we treat an obligation O(A|B) to be excepted in the context
B∧C iff, (i) P(B∧C |B) and (ii) there is an exceptional permission (resp. obligation)
P(D|B ∧ C) (resp. O(D|B ∧ C)) where � D ∪ ¬A. Compared to the more generic
definition of exceptional contexts in Sect. 12.2, (ii) is identical to ��2 and (i) is a
simplification of ��1. Indeed, if P(B ∧ C |B) then B ∧ C is a permissible context to
B. However, what we do not take into account are nested permissible contexts. One
example is in the asparagus case f ∧ a. Note that we do not have P( f ∧ a|�) (see
Footnote 7), but P(a|�) and P( f ∧ a|a).17

We will use the following simplified notion of CTD obligations. O(D|B ∧ C) is
a (strong) CTD obligation to O(A|B) iff � A ∪ ¬D and � A ∪ ¬C . We define
O(D|B ∧ C) to be a weak CTD obligation to O(A|B) iff only the latter is the case,
i.e., � A ∪ ¬C . See Fig. 12.2 for an illustration.

(Footnote 16 continued)
the current approach does not “sort out” for instance overshadowed and overridden obligations by
constructing extensions, but rather labels them by •i and •p. Note that this allows us to stay within
the (adaptively extended) standard proof theory of the given deontic base logic.
17 Nevertheless, as will be shown later (see Example 12.6.2), the ALs which are going to be presented
in the following model detachment as desired for this example.



12.3 Formally Realizing Detachment 313

Obviously, in case of Example (�), O(g|k) is a strong CTD obligation to O(¬k|�)

according to this definition. Moreover, for Example (��), O(a|b) is a weak CTD
obligation to O(¬b|�).18

12.3.1 Blocking Proper Detachment

The following rule models specificity: excepted obligations are not to be detached
as proper obligations.19

If � D ∪ ¬A, then
((

P(D|B ∧ C) ⊃ O(D|B ∧ C)
)∧

B ∧ C ∧ P(B ∧ C |B) ∧ O(A|B)
) ∪ •pO(A|B)

(Ep)

Note that in the asparagus example,—O(¬ f |�), O( f |a), P(a|�), a—, •pO(¬ f |�)

is derivable by (Ep).
Furthermore, proper detachment should be blocked in strong CTD cases. While

in the case of specificity the more general primary obligation is blocked, the situation
is now inverse:

If � A ∪ ¬C and � A ∪ ¬D,

then
(
O(D|B ∧ C) ∧ O(A|B)

) ∪ •pO(D|B ∧ C)
(CTDR)

Thus, in the case of the Gentle Murderer •pO(g|k) is derivable from O(¬k|�) and
O(g|k).20

18 Again, the definition fails for cases that feature nested permissible contexts. For instance O( f ∧
a|a) is a strong CTD obligation to O(¬ f |�) according to the simplified definition above, although,
according to the refined notions in Sect. 12.2, f ∧ a is an exceptional context to O(¬ f |�).
19 In logics verifying � O(E |F) ∪ P(E |F) (e.g. standard deontic logic) the first condition of the
antecedent, P(D|B ∧ C) ⊃ O(D|B ∧ C), can be simplified to P(D|B ∧ C).
20 It should be remarked at this place that our framework can easily be enhanced such as to model
a notion similar to Carmo and Jones’ “ideal” obligations. The language is enhanced similar as
for instrumental and proper obligations by a unary “ideal” obligation operator OI and by •I. The
factual detachment rule is defined analogous as for the instrumental and proper case, � (

O(A|B) ∧
B ∧ ¬ •I O(A|B)

) ∪ OI A. An analogous rule to (Ep) is used where •pO(A|B) is replaced by
•IO(A|B). The major change in comparison to the rules for the blocking of proper detachment
is, as discussed in Sect. 12.2.4, with (CTDR) since in the “ideal” case we also block weak CTD
obligations from detachment. Thus, the rule is altered to: If � D ∪ ¬C , then

(
O(A|B ∧ C) ∧

O(D|B)
) ∪ •IO(A|B ∧C). In order not to unnecessarily increase the complexity of the discussion,

I will not follow this option further in this chapter. As remarked in Sect. 12.2.5, the language of
standard deontic logic lacks the modal expressiveness of Carmo and Jones’ proposal and the deontic
implications of the additional modal information need to be explicitly expressed in terms of the
conditions of obligations.
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12.3.2 Blocking Instrumental Detachment

If ¬A is the case we do not allow for the detachment of instrumental obligations
such as Oi A, since conditional obligations with conclusion A are de facto violated:

� (
O(A|B) ∧ ¬A ∧ B

) ∪ •iO(A|B) (fV)

For instance, in the Gentle Murderer case (�) we have k and thus we get •iO(¬k|�).
Similarly, we get in Chisholm’s example (�) •iO(¬i |�) since we have i , where i
stands for ‘John impregnates Diane’.

Furthermore, we instrumentally prioritize more specific obligations over incom-
patible general norms21:

If � D ∪ ¬A, then
((

P(D|B ∧ C) ⊃ O(D|B ∧ C)
)∧

B ∧ C ∧ O(A|B)) ∪ •iO(A|B)
(oV-Ei)

Note that if O(A|B) is excepted in the context B ∧ C , then by (oV-Ei), •iO(A|B).
Moreover, since the standard language of deontic logics lacks the means to express
explicit preferences among incompatible obligations, I opt in this chapter heuris-
tically for preferring instrumentally the more specific norm, O(D|B ∧ C) resp.
P(D|B ∧ C), over the general obligation, O(A|B), even in cases in which B ∧ C is
not an exceptional context to O(A|B).

12.3.3 Realizing Detachment by an Adaptive Logic

We are now able to define the following enhancement of a given ‘base logic’ L:

Definition 12.3.1. We define L+ by adding the rules (EOi), (EOp), (CREi), (CREp),
(RCEi), (RCEp), (FDi), (FDp), (Ep), (CTDR), (oV-Ei), and the axiom (fV) to the
axiomatization of L.

However, L+ does not yet give a satisfactory account of detachment. In order to show
this we take a look at two paradigmatic proofs: one for example (�) (to the left) and
one for example (�) (to the right, we presuppose g � k):

1 O(¬ f |�) PREM 1 O(¬k|�) PREM
2 O( f |a) PREM 2 O(g|k) PREM
3 P(a|�) PREM 3 k PREM
4 a PREM 4 •iO(¬k|�) 1,3; fV
5 •iO(¬ f |�) 1,2,4; oV-Ei 5 •pO(g|k) 1,2; CTDR
6 •pO(¬ f |�) 1,2,3,4; Ep

21 In logics verifying � O(E |F) ∪ P(E |F) (e.g. standard deontic logic) the first condition of the
antecedent, P(D|B ∧ C) ⊃ O(D|B ∧ C), can be simplified to P(D|B ∧ C).
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It is important to notice that, although the logic is able to block undesired appli-
cations of the detachment rules (FDi) (to O(¬ f |�) resp. O(¬k|�)) and (FDp) (to
O(¬ f |�) resp. O(g|k)), detachment is not applied where desired. For instance in the
case of the asparagus example (�) we are interested in applying (FDi) and (FDp) to
O( f |a), and in the case of the Gentle Murderer (�) we are interested in applying (FDi)
to O(g|k) and (FDp) to O(¬k|�). What is lacking are means to derive ¬ •i O( f |a)

and ¬ •p O( f |a) in the former case and ¬ •i O(g|k) and ¬ •p O(¬k|�) in the latter
case.

This is where ALs come in, since these logics allow for conditional applications of
certain rules which enable them to interpret a premise set “as normally as possible”
with respect to some given criterion for normality.

In our case we are interested in applying detachment to O(A|B) and B on the
condition that •iO(A|B) (resp. •pO(A|B)) can be assumed to be false.

Note that if we were able to derive ¬ •i O(A|B) (resp. ¬ •p O(A|B)), then the
restricted detachment rules (FDi) (resp. (FDp)) would be applicable to O(A|B) and
B. For instance in the Gentle Murderer example it would be useful to extend the
proof by the following lines:

6 Oig 2, 3; cFDi {•iO(g|k)}
7 Op¬k 1; cFDp {•pO(¬k|�)}

At line 6 detachment is applied to O(g|k) and k on the condition {•iO(g|k)} which
is written in the last column. The idea is that, e.g. in the case that •iO(g|k) is derived at
a later stage of the proof, all lines that feature •iO(g|k) as an element of the condition
are marked. The second elements of such marked lines are not anymore considered
to be derived. Similarly, Op¬k is conditionally derived at line 7.

In order to technically realize the idea just described I introduce in Sect. 12.4 a
generic format for an adaptive deontic logic that realizes factual detachment. After-
ward, the adaptive approach is demonstrated by means of a concrete base logic.

12.4 A Generic Adaptive Logic for Detachment

Given that our enriched base logic L+ satisfies the criteria for lower limit logics as
required in the standard format of ALs (see Sect. 2.2), we are able to define an AL
DL+ which models detachment by the following triple:

1. the LLL is L+;
2. the abnormalities are Ωd =df Ω i ⊕ Ω p where Ωx =df {•xO(A|B) : A, B ⊆ P}

for x ⊆ {i, p}, and P is the set of all propositional formulas;
3. the strategy is reliability.

http://dx.doi.org/10.1007/978-3-319-00792-2_2
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Note that due to (FDp) and (FDi) we have, where x ⊆ {i, p},

O(A|B), B �L+ Ox A ⊃ •xO(A|B)

As argued above, this makes it possible to (conditionally) derive Ox A in DL+ from
O(A|B) and B on the condition {•xO(A|B)}. This is demonstrated by the following
proof fragment:

1 O(A|B) PREM ∅
2 B PREM ∅
3 Oi A 1,2; cFDi

{•iO(A|B)
}

4 Op A 1,2; cFDp
{•pO(A|B)

}

We write cFDi and cFDp for these conditional derivations. If at a later stage of the
proof e.g. •iO(A|B) is derived as part of a minimal Dab-formula, say •iO(A|B) ⊃
•iO(C |D), line 3 would be marked. If at a even later stage •iO(C |D) is derived, then
line 3 would be unmarked again since its condition is not anymore unreliable.

Note that the adaptive models of a given premise set do not validate any abnor-
malities that are not members of minimal Dab-consequences. As a look at rules (Ep),
(CTDR), (fV), (oV-Ei) and at the discussion in Sect. 12.2 reveals, the abnormalities
in Ωd are caused by exceptional and violation contexts. Thus, the reliable models of
Γ validate as less exceptional and violation contexts as possible.

In the remainder I will give concrete examples for such ALs by using variants of
one of Lou Goble’s CDPM logics (see [2, 3]) as lower limit logics.

12.5 A Lower Limit: Lou Goble’s CDPM

In order to demonstrate the adaptive modeling of detachment by means of a concrete
logic, I settle for this chapter on two variants of one of Lou Goble’s CDPM systems
(see [2, 3]) as base logics. This choice is not essential: it is possible to use other
logics for this task. The choice however is not arbitrary either. CDPM was chosen
due to its many nice properties. For instance it tolerates deontic conflicts while
blocking counter-intuitive consequences from conflicting obligations. Furthermore,
in the absence of deontic conflicts it offers a close approximation of (dyadic) standard
deontic logic.22 One of the main ideas behind these logics is to restrict the (conditional
version of the) inheritance principle

If � B ∪ C, then � O(B|A) ∪ O(C |A) (RCM)

by adding a further permission statement:

If � B ∪ C, then � P(B|A) ∪ (
O(B|A) ∪ O(C |A)

)
(RCPM)

22 Goble defines a dyadic version SDDL of standard deontic logic in [27]. It is equivalent to van
Fraassen’s CD of [28] and David Lewis’ VN of [29]. See Chap. 11, Sect. 11.2.

http://dx.doi.org/10.1007/978-3-319-00792-2_11
http://dx.doi.org/10.1007/978-3-319-00792-2_11
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This principle ensures that the logic is non-explosive confronted with deontic con-
flicts.

Goble proposed two families of his CDPM systems: CDPM.1α and CDPM.2α

where α ⊆ {a, b, c}. Only the latter family verifies the rule (CP), � ¬O(⊥|A). In
order to ensure non-explosive behavior in CDPM.2α the aggregation principle has
to be restricted in a similar way as inheritance.

� P(A ∧ B|C) ∪ ((
O(A|C) ∧ O(B|C)

) ∪ O(A ∧ B|C)
)

(CPAND)

For the conditional version Goble favors the second family, since in the first one a
counter-intuitive kind of SA is valid.23 I focus in this chapter on (a weakened version
of) the system Goble dubs CDPM.2c. Goble gives an account of SA by restricting
Rational Monotonicity24 in the following way:

� (
O(B|A) ∧ P(B ∧ C |A)

) ∪ O(B|A ∧ C) (WRM)

CDPM.2c is defined by adding to (RCE), (CRE), (CP), (RCPM), (CPAND), and
(WRM) the axioms:

� O(�|�) (CN)

� O(B|A) ∪ O(A|A) (QR)

� O(A|B ∧ C) ∪ O(B ∪ A|C) (S)

Axiom (QR) is in some cases severely counter-intuitive. Take for instance the
Chisholm example (�) from p. 298. (QR) allows to derive from the commitment to
marry Diane in case John impregnates her, O(m|i), the commitment to impregnate
her in that very case, O(i |i). However, the fact that he impregnates her is a violation
of the primary obligation not to impregnate her. I therefore abandon rule (QR) for
our base logics.25 Furthermore, the language is extended as discussed in Sect. 12.3.
For reasons that are explicated later (see Sect. 12.6.1) I define two alternative lower
limit logics for the adaptive systems which will be introduced in Sect. 12.6.

23 It validates all instances of � (
O(B|A) ∧ P(C |A) ∧ P(B|A)

) ∪ O(B|A ∧ C) (PRatMono). That
(PRatMono) is counter-intuitive can be demonstrated by means of our asparagus example (namely
O(¬ f |�), P(a|�) and O( f |a)): if we add the intuitive premise P(¬ f |�), then the counter-intuitive
O(¬ f |a) is derivable. This defect is not fatal though: I proposed in [30] and in Sect. 11.4 a version
of CDPM.1 which overcomes this shortcoming.
24 Rational Monotonicity (cp. [15]) can be stated in terms of the language of dyadic deontic logic
used in this chapter as follows: � (

O(B|A) ∧ P(C |A)
) ∪ O(B|A ∧ C). It is verified in dyadic

standard deontic logic. Goble is aware of the fact that his (WRM) leads to counter-intuitive, even
explosive behavior in some cases. I offered an improvement based on the idea of conditionally
applying SA within an AL which is able to avoid these problems (see [30] and Sect. 12.8).
25 The reader might further object that (CN) (in a similar way as (QR) is not very intuitive. Goble’s
intention is to stay as close as possible to standard deontic logic. However, (CN) is neither an
essential part of his logic nor in any way essential to the presented approach and may thus be
disregarded as well.

http://dx.doi.org/10.1007/978-3-319-00792-2_11
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Definition 12.5.1. CDPM.2d+ is defined by (CP), (RCPM), (CPAND), (WRM),
(RCE), (CRE), (CN), (S), (FDp), (FDi), (Ep), (CTDR), (fV), (oV-Ei), (EOi), (EOp),
(CREi), (CREp), (RCEi), and (RCEp). CDPM.2e+ is defined just as CDPM.2d+,
with the exception of (S) which is replaced by:

� (
O(A|B ∧ C) ∧ P(A|¬B ∧ C)

) ∪ O(B ∪ A|C) (PS’)

The semantics for these systems can be found in Appendix J. In Sect. 12.6.1 I will
show that these systems handle the Chisholm example in different ways.

12.6 Handling Detachment Adaptively

As already explicated at the end of Sect. 12.3, the idea is to apply detachment to
O(A|B) and B for proper (resp. instrumental) obligations on the condition that
•pO(A|B) (resp. •iO(A|B)) can be considered to be false. More precisely the condi-
tion is, with respect to the reliability strategy, that •pO(A|B) (resp. •iO(A|B)) is not
part of any minimal Dab-consequence. The following ALs are defined as suggested
in Sect. 12.4, employing CDPM.2d+ (resp. CDPM.2e+) as lower limit logic.

Definition 12.6.1. The AL in standard format DCDPM.2α+, where α ⊆ {d, e}, is
defined by the triple ∈CDPM.2α+,Ωd , reliability strategy∧.

Let me demonstrate the way the logics work by having a look at some examples.
The proofs in this section are all for both logics, DCDPM2.d+ and DCDPM2.e+.

Example 12.6.1 (�, see page 303). I have already stated a proof for the case of
the Gentle Murderer on page 303.26 Note that, for both strategies, there is no way
to extend the proof in such a way that lines 6 and 7 are marked, i.e., there is
no way to derive •iO(g|k) and •pO(¬k|�) as part of minimal Dab-consequences
in our lower limits CDPM.2α+ (α ⊆ {d, e}). Hence, •iO(g|k), •pO(¬k|�) /⊆
U ({O(¬k|�), O(g|k), k}). Thus, Oig and Op¬k are finally derivable. As discussed,
this is the desired outcome.

Example 12.6.2 (�, see page 298). For our asparagus example we have already
derived •iO(¬ f |�) and •pO(¬ f |�) at lines 5 and 6. Now we apply detachment
conditionally to O( f |a) and a in order to derive Oi f and Op f .

7 Oi f 2,4; cFDi
{•iO( f |a)

}

8 Op f 2,4; cFDp
{•pO( f |a)

}

26 Lines 1–5 are not stated in the form of an AL proof. It can be easily adjusted by adding the empty
condition ∅ in a fourth column.
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Note that the conditions •pO( f |a) and •iO( f |a) are not part of any minimal
Dab-consequences and hence reliable. Thus, as desired, Oi f and Op f are derivable.

Example 12.6.3 (��, see page 304). Let us have a look at our weak CTD example.

1 O(¬b|�) PREM ∅
2 O(a|b) PREM ∅
3 b PREM ∅

54 Oi¬b 1; cFDi {•iO(¬b|�)}
5 •iO(¬b|�) 1,3; fV ∅
6 Oia 2, 3; cFDi {•iO(a|b)}
7 Opa 2, 3; cFDp {•pO(a|b)}
8 Op¬b 1; cFDp {•pO(¬b|�)}

Lines 4 and 6–8 feature conditional applications of detachment. Note that the first
one gets marked, since its condition, •iO(¬b|�), is derived on the empty condition
at line 5. Hence, •iO(¬b|�) ⊆ U ({O(¬b|�), O(a|b), b}) and there is no way to
unmark line 4. The unconditional obligations derived at lines 6–8 are finally derived
since neither of the resp. conditions is unreliable.

Example 12.6.4 (Reykjavik scenario (see [12])). Let us look at another interesting
example.

	1 The secret shall be told neither to Reagan nor to Gorbachev.—O(¬r ∧ ¬g|�)

	2 If the secret is told to Reagan it shall also be told to Gorbachev.—O(g|r)

	3 If the secret is told to Gorbachev it shall also be told to Reagan.—O(r |g)
It is easy to see that if our factual knowledge is F = ∅ then Oi(¬r ∧ ¬g) and
Op(¬r ∧ ¬g) are derivable. Let us see what happens if we add the premise g:

1 O(¬r ∧ ¬g|�) PREM ∅
2 O(g|r) PREM ∅
3 O(r |g) PREM ∅
4 g PREM ∅
5 •pO(g|r) 1,2; CTDR ∅
6 •pO(r |g) 1,3; CTDR ∅
7 •iO(¬r ∧ ¬g|�) 1,4; fV ∅
8 Op(¬r ∧ ¬p) 1; FDp

{•pO(¬r ∧ ¬p|�)
}

9 Oir 3,4; FDi
{•iO(r |g)}

Obviously we get the intuitive consequences: while Op(¬r ∧ ¬g) informs us of
our proper obligation not to tell the secret to either of the two politicians, we have
in the violation context g the instrumental obligation to tell the secret to Reagan as
well, Oir .
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12.6.1 Context Shifts

In this section it will be demonstrated how certain properties of deontic logics can
shift the context of some conditional obligations to more general or entirely different
contexts and in what way this effects detachment. While the variants of the Chisholm
example in Examples 12.6.5 and 12.6.6 focus on deontic detachment, Example 12.6.7
focuses on the interplay of deontic detachment and SA.

I postponed a discussion as to why axiom (S) was restricted to (PS’) for CDPM.2e.
Taking a look at the Chisholm example will illuminate this point. In the following I
will highlight the role of deontic detachment for factual detachment by showing that
the choice between a stronger and a weaker version of deontic detachment manifests
itself in two incompatible resolutions of the Chisholm example. It is easy to see that
DCDPM.2d+ allows for the following versions of deontic detachment (henceforth
(DD))27:

(
O(A|C) ∧ P(A ∧ B|C) ∧ O(B|A ∧ C)

) ∪ O(B|C) (DDP1)
(
O(A|�) ∧ P(A ∧ B|�) ∧ O(B|A)

) ∪ O(B|�) (DDP�1)

Example 12.6.5 (�, see p. 298). Let i stand for John impregnating Diane, and m for
him marrying her. We first take a look at a proof in DCDPM2.d+:

1 O(¬i |�) PREM ∅
2 O(¬m|¬i) PREM ∅
3 O(m|i) PREM ∅
4 i PREM ∅
5 P(¬i ∧ ¬m|�) PREM ∅
6 Oim 3, 4; cFDi {•iO(m|i)}
7 Op¬i 1; cFDp {•pO(¬i |�)}
8 •iO(¬i |�) 1,4; fV ∅
9 O(¬m|�) 1,2,5; DDP�1 ∅

10 O(¬i ∧ ¬m|�) 1,5,9; CPAND ∅
11 •iO(¬i ∧ ¬m|�) 4,10; fV ∅
12 •pO(m|i) 3,10; CTDR ∅

1213 Opm 3,4; cFDp
{•pO(m|i)}

14 •iO(¬m|�) 3,4,9; oV-Ei ∅
15 Op¬m 9; cFDp {•pO(¬m|�)}
16 Op(¬i ∧ ¬m) 10; cFDp {•pO(¬i ∧ ¬m|�)}

What follows is a continuation of the proof from line 8 on in DCDPM2.e+:

9◦ Opm 3,4; cFDp {•pO(m|i)}

27 That (DDP�1) is a consequence of (DDP1) can easily be shown. Proofs for the validity of (DDP1)
and (DDP�1) in CDPM.2d can be found in Appendix J.
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In the case of the first proof we have •pO(m|i) at line 12, since (CTDR) is applied
to O(¬i ∧ ¬m|�) and O(m|i). Thus, the conditional application of detachment
at line 13 gets marked. In the second proof however we have no means to derive
O(¬i ∧ ¬m|�). Therefore the conditional application of detachment to O(m|i) is
not blocked and thus Opm is finally derivable at line 9◦. In contrast, note that in the
first proof O(¬m|�) is derivable and detachment is applied to this obligation: as a
consequence we arrive at the proper obligation Op¬m at line 15.

For an illustration of the two treatments of the Chisholm example by the two ALs
see Fig. 12.3. Let me analyze it a bit more. What is the correct result? What about
the solution offered by DCDPM.2d+? (DDP�1) enables us to derive O(¬m|�) at
line 9 from the given obligations O(¬i |�), O(¬m|¬i) and the harmless permission
statement P(¬i ∧¬m|�) that is added at line 5. Note that the commitment O(¬m|¬i)
not to marry Diane in the case that Doe doesn’t impregnate her, is in this logic treated
as the general obligation not to marry her, O(¬m|�). From this we immediately get
O(¬i ∧ ¬m|�) at line 10 which makes O(m|i) a strong CTD obligation. Thus, in
this logic the commitment not to marry Diane is a proper obligation which is in
conflict with the instrumental CTD obligation to marry her. The latter is in force
since its condition, him having impregnated her, is fulfilled (and it is not otherwise
excepted). More generally speaking: the logic elevates, via deontic detachment, a
commitment on a condition C stating that a proper obligation is fulfilled (such as
O(¬m|¬i) where the condition ¬i corresponds to the proper obligation Op¬i) to be
a proper obligation itself (e.g. Op¬m), even in case the condition C is not fulfilled
(e.g. i being the case). Deontic detachment has quite some intuitive appeal as well

1 (¬ i )

2 (¬ m ¬ i )

3 (m i )

4 i

¬ i

• (¬ i )

(¬ i ) is violated

and not excepted

¬ i

• (¬ i )

5 (¬ m )

6 (¬ m∧ ¬ i )

(DD)

to 1+2

(m i ) is

a strong CTD (w.r.t. 6) m

• (m i)

(m i ) is

a weak CTD (w.r.t. 1)

(¬ m ) is not

excepted
¬m m

yes no

O

O

O

O

O

O

O

OO

O

O

O

O
O

O

O
O

Fig. 12.3 Two ways of dealing with Chisholm’s problem. Left: the treatment in DCDPM.2d+,
Right: the treatment in DCDPM.2e+
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as the thought that, if A is a proper obligation and you are committed to bring about
B in case A, then also B should be a proper obligation.

We have a different result for the second logic. Indeed, there is an alternative
intuition. In the case of DCDPM.2e+ the deontic detachment that enabled us in
DCDPM.2d+ to derive O(¬m|�) is blocked, since this logic only supports a weaker
form of (DD)28:

(
O(A|C) ∧ P(A ∧ B|C) ∧ P(B|¬A ∧ C) ∧ O(B|A ∧ C)

)

∪ O(B|C)
(DDP2)

(
O(A|�) ∧ P(A ∧ B|�) ∧ P(B|¬A) ∧ O(B|A)

) ∪ O(B|�) (DDP�2)

In favor of this approach it may be argued that, after all, the obligation not to marry
Diane was stated only on the condition that Doe doesn’t impregnate her, O(¬m|¬i).
This is clearly weaker than O(¬m|�), not to marry her in general. After all, O(m|i)
is only a weak CTD obligation to O(¬i |�): thus to marry her in case of him impreg-
nating her should not be considered as a violation of a primary obligation (such as the
gentle killing in the Forrester paradox) but rather as a proper obligation in a violation
context, similarly to our intuition which tells us in the (��) example that it is not just
an instrumental but rather a proper obligation to apologize in the sub-ideal situation
of the broken promise. This logic reflects therefore the difference between stating
O(¬m|�) and stating O(¬m|¬i) on the level of proper and instrumental obligations
whereas in case of DCDPM.2d+ this makes no difference since we get Op¬m in
both cases.

I leave it to the reader to settle for one of the two intuitions and to pick the
corresponding logic.

Example 12.6.6. For another version of the Chisholm paradox (see [22]) the logic
DCDPM.2e+ seems clearly preferable:


1 There must be no dog.—O(¬d|�)


2 If there is no dog, there must be no warning sign.—O(¬s|¬d)


3 If there is a dog, there must be a warning sign.—O(s|d)


4 There is a dog.—d

Analogously to the setup above DCDPM.2d+ derives O(¬d ∧¬s|�) in case we add
the in no way counter-intuitive P(¬d ∧¬s|�). This way we gain a strong CTD case
between O(¬d ∧ ¬s|�) and O(s|d). With this we arrive at •pO(s|d). Finally the
logic has the following unconditional obligations as consequences: Ois, Op(¬d ∧
¬s), Op¬d and Op¬s. In contrast, for DCDPM.2e+ the deontic detachment which
leads to O(¬d ∧ ¬s|�) is blocked and we arrive at the following unconditional
obligations: Ois, Op¬d and Ops. As Prakken and Sergot argue: “In the dog example
where there is a dog, having a sign does not violate an obligation that applies to the
situation: no fine is due for having a warning sign, only for having a dog” ([22], p.
240). This clearly speaks against deriving Op¬s. But then it is clear that Ops should

28 Proofs can be found in Appendix J.
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be the case due to O(s|d), d and the fact that this obligation is neither excepted nor
burdened. Thus, we treat O(s|d) as a weak CTD obligation.

Example 12.6.7. I add one more example (see [22]) to underline the role played by
deontic detachment and also by (SA) in the derivation of proper and instrumental
obligations.

�1 There must be no fence.—O(¬ f |�)

�2 There must be a white fence, if there is a fence.—O(w ∧ f | f )

�3 There must be a fence, if there is a dog.—O( f |d)

�4 It is allowed to have a dog.—P(d|�)

�5 There is a dog and no fence.—d ∧ ¬ f

Let us take a look at a proof in DCDPM.2d+ for this example:

1 O(¬ f |�) PREM ∅
2 O(w ∧ f | f ) PREM ∅
3 O( f |d) PREM ∅
4 P(d|�) PREM ∅
5 d ∧ ¬ f PREM ∅
6 •pO(w ∧ f | f ) 1,2; CTDR ∅
7 •pO(¬ f |�) 1,3,4,5; Ep ∅
8 •iO(¬ f |�) 1,3,5; oV-Ei ∅
9 Op f 3,5; cFDp {•pO( f |d)}

So far the logic derives the desired consequences. However, some readers might
point out that also the obligation to bring about w ∧ f should be detached as a
proper obligation, since, after all, O(¬ f |�) is excepted and Op f has been derived.
However, we cannot apply detachment to O(w ∧ f | f ) since its condition is not
fulfilled and even if that were so, we derived •pO(w ∧ f | f ) since O(w ∧ f | f ) is a
(strong) CTD obligation with respect to O(¬ f |�). Let us add the harmless premises
P(w ∧ f |d) and P(w ∧ f ∧ d| f )29:

10 P(w ∧ f |d) PREM ∅
11 P(w ∧ f ∧ d| f ) PREM ∅
12 O(w ∧ f | f ∧ d) 2,11; WRM ∅
13 O(w ∧ f |d) 3,10,12; DDP1 ∅
14 Op(w ∧ f ) 5,13; cFDp {•pO(w ∧ f |d)}

The reader can see that by (WRM) at line 12 the obligation in question can be
derived on the more restricted condition f ∧d. This enables the application of deontic
detachment in order to arrive at O(w ∧ f |d) at line 13. Now the detachment cannot
be blocked anymore. Thus, despite the fact that O(w∧ f | f ) is a CTD obligation, this
obligation can be detached since it can be derived also for the (exceptional) context

29 In DCDPM.2e+ we would have to add another additional premise, P(w ∧ f |d ∧ ¬ f ), in order
to derive O(w ∧ f |d) analogously by (DDP2). Otherwise the proof is analogous.
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d, which is the factual situation presented by the premises. This behavior of the logic
is intuitive.

It is easy and left to the reader to prove that if �5 is replaced by f ∧ ¬d we
get Op¬ f and Oi(w ∧ f ) as consequences, and if �5 is replaced by f ∧ d we get
Op f, Oi f, Oi( f ∧ w). This is as expected, since “[w]hat is most striking about the
fence example […] is the observation that when the premise O(¬ f |�) is violated
by f , then the obligation for ¬ f should be derivable, but not when O(¬ f |�) is
overridden by the exception f ∧ d” ([21], p. 71).

Let me summarize this section. Given a logic L and a premise setΓ we may say that
the context of a conditional obligation O(A|B) ⊆ Γ has shifted if (i) Γ �L O(A|D)

and (ii) �L B ∨ D. Context shifts may cause the blocking of detachment for certain
conditional obligations and may allow for additional detachments.

We have seen two examples for context shifts. First, with the Chisholm Example
(�) it was demonstrated that the stronger form of deontic detachment validated by
DCDPM.2d+ causes that O(¬m|¬i) shifts to the more general context � since
O(¬m|�) is derivable. This makes it on the one hand possible to detach Op¬m. On
the other hand, aggregation with O(¬i |�) leads to the derivation of O(¬m ∧ ¬i |�)

which makes O(m|i) a (strong) CTD obligation, and thus causes •pO(m|i).
A second case of context shifting was demonstrated in example (�). There the

interplay of deontic detachment and the weakened SA shifted the context of O(w ∧
f | f ) to d. This made it possible to detach Op(w∧ f ) despite the fact that we had ¬ f .

12.6.2 Deontic Conflicts

So far we did not take a look at the way the ALs handle detachment in face of
deontic conflicts. Take for instance the situation that two persons are about to drown
and, although it is possible to save one of them, it is not possible to save both. For
each person individually we have in general the obligation to save his or her life,
O(a|�) and O(b|�). However, it is intuitive that there is no obligation to save both
of them, O(a ∧ b|�), but rather to save at least one of them, O(a ⊃ b|�). Following
the intuition of the Kantian “ought implies can”, it is also not desirable to derive
the conjunction of the proper obligations, Opa ∧ Opb, since it is impossible to save
the lives of both. Even more so is it counter-intuitive to have Oia ∧ Oib since the
instrumental obligation should tell us what to do. However, it would not be very useful
to have two pragmatic instructions which are mutually exclusive. It is interesting that
the following is true in our lower limit logics CDPM2.d+ and CDPM2.e+ (where
x ⊆ {p, i})30:

30 In CDPM.2d+ also the stronger “If � B ∪ ¬A then
(
O(B|C) ∧ C ∧ O(A|C)

) ∪ •xO(A|C)” is
valid. Note that in this version P(C |C) is not part of the antecedent. In view of this, in CDPM2.e+
one may want to add the following rule in order to have a stricter handling of deontic conflicts: If
� B ∪ ¬A then

(
O(A|C) ∧ O(B|C) ∧ C

) ∪ •xO(A|C).
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If � B ∪ ¬A, then
(
O(B|�) ∧ O(A|�)

) ∪ •xO(A|�) (Cx�)

If � B ∪ ¬A, then
(
O(B|C) ∧ C ∧ P(C |C) ∧ O(A|C)

) ∪ •xO(A|C) (Cx)

In our example, presupposing � a ∪ ¬b, we get by (Cx�), •pO(a|�), •pO(b|�),

•iO(a|�), •iO(b|�) and thus detachment is blocked for both obligations. This is the
desired outcome as discussed above. Moreover, there is no way to block detachment
from O(a ⊃b|�) and thus Op(a ⊃b) and Oi(a ⊃b) are derivable (given O(a ⊃b|�)).
This is desired as well.31

12.7 Modeling Nested Permissible Contexts

As pointed out in Sect. 12.3, the generic enhancement L+ for deontic logics presented
there is not able to model nested permissible contexts. These are cases in which we
have a permissible context C to B but not P(C |B). The idea was there to focus on
the explication of the adaptive handling of detachment and hence not to introduce
additional complications. However, as will be demonstrated in this section, the log-
ical framework can be enhanced with this ability by introducing some additional
techniques.

Recall that ∈C1, . . . , Cn∧ is a permissive sequence from C1 to Cn iff, for all i < n
(a) � Ci+1 ∪ Ci and (b) P(Ci+1|Ci ). Moreover, C is a permissible context to B iff
there is a permissive sequence from B to C .

We have already noticed that the permissive sequences characterizing permissible
contexts have indeed sometimes a minimal length of more than 1. An instance was
given by the asparagus example where we have O(¬ f |�), P(a|�) and P( f ∧ a|a),
but not P( f ∧ a|�) (see the discussion in Sect. 12.2.1). Evidently f ∧ a describes a
permissible context to �.

12.7.1 Generalizing L+ for Nested Permissible Contexts

How can permissible sequences be formally modeled? The idea is to make use of
an additional permission operator P(A | B) that expresses that A is a permissible
context to B. It is axiomatized as follows:

If � A ∪ B, then P(A|B) ∪ P(A | B) (P-Ps)

31 Furthermore, many of the adaptive strengthenings of CDPM defined in [30] are able to derive
O(a ⊃ b|�) from O(a|�) and O(b|�). Thus, forming a combined AL with one of these systems,
analogous to the way it is sketched in Sect. 12.8, ϕ = Op(a ⊃ b) ∧ Oi(a ⊃ b) is derivable from
O(a|�) and O(b|�), whereas for DCDPM.2d+ and DCDPM.2e+ we have to add the additional
premise O(a ⊃ b|�) in order to derive ϕ.
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� (
P(B | A) ∧ P(C | B)

) ∪ P(C | A) (Ps-T)

By these axioms we can derive P( f ∧a | �) from P(a|�) and P( f ∧a|a), as desired.
More generally, we are able to derive P(Cn | C1) from P(C2|C1), …, P(Cn|Cn−1)

(where for all i < n, � Ci+1 ∪ Ci ) by multiple applications of (P-Ps) and (Ps-T).
Now we can adjust the axiomatization of our generic enhancement L+ of the base

logic L from Sect. 12.3 so that it can model precisely the more general notions from
Sect. 12.2.

If � D ∪ ¬A and � C ∪ B, then
((

P(D|C) ⊃ O(D|C)
) ∧ C∧

P(C | B) ∧ O(A|B)
) ∪ •pO(A|B)

(Ep-g)

If � A ∪ ¬D,� A ∪ ¬C, and � C ∪ B, then(
O(D|C) ∧ O(A|B) ∧ ¬P(C | B)

) ∪ •pO(D|C)
(CTDR-g)

The idea behind (Ep-g) is that if O(A|B) is excepted in C , then the proper oblig-
ation to bring about A should not be detached from O(A|B). Hence, in this case
•pO(A|B) is derived. Rule (CTDR-g) concerns strong CTD obligations. Given that
O(D|C) is a strong CTD obligation to O(A|B), the proper obligation to bring about
D should not be detachable from O(D|C). Hence, •pO(D|C) is derived.

The rules (fV) resp. (oV-ei) that manage the blocking of instrumental detach-
ment in case an obligation is factually violated resp. in case there is a more specific
obligation incompatible with it can remain as they were defined in Sect. 12.3, since
permissible contexts do not play a role for them.

Definition 12.7.1. Given a base logic L we define L+
P

to be L enriched by the axioms
(P-Ps), (Ps-T), (Ep-g), (CTDR-g), (fV), (oV-ei), (CRE�), (RCEi), (CRE
), (RCE
),
(EO�), (EO
), (FDp), and (FDi).

The underlying logic for the following examples is again an enriched CDPM.2α

where α ⊆{d,e}, i.e., CDPM.2α+
P

.

Example 12.7.1. Let us again have a look at the asparagus example (��). We enrich
the premise set {O(¬ f |�), O( f |a), P(a|�), a} by the intuitive O( f | f ∧ a). One
of the counter-intuitive consequences of CDPM.2α+ is •pO( f | f ∧ a) which is
derivable by (CTDR) from O(¬ f |�). Evidently, O( f | f ∧a) is not a CTD obligation
to O(¬ f |�) since f ∧a is a permissible context to �. It is easy to see that •pO( f | f ∧
a) is not anymore derivable by CDPM.2α+

P
. The reason is that P( f ∧ a | �) is

derivable (given P( f ∧ a|a)) and hence (CTDR-g) is not applicable in such a way
that •pO( f | f ∧ a) is derivable.

There is still a drawback to the idea as it was presented so far. Take for instance the
premises of the Forrester paradox: O(¬k|�) and O(g|k). Note that there are models32

in which k is a permissible context to �, that is to say, models in which P(k|�) is
verified. Take for instance the model that validates P(k ⊃ x |�) and P(k|k ⊃ x).

32 The semantics of CDPM.2α+
P

is defined by means of neighborhood frames similar as the seman-
tics of CDPM.2α+. This is spelled out in Appendix J.
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Moreover, there is a model that validates P(k |�) even if there is no permissive
sequence from � to k. As a consequence, ¬P(k | �) is not derivable and hence
(CTDR-g) is not applicable in order to derive •pO(g|k).

The reason for this is that all that is guaranteed by (P-Ps) and (Ps-T) is that if there
is a permissive sequence from some A to some B then P(B | A). However, the other
direction is not ensured. Moreover, there seem to be no simple axiomatic way of
doing so. What would have to be expressed is that whenever we have P(B | A) then
there is a natural number n such that there is a permissive sequence ∈C1, . . . , Cn∧
where A = C1 and B = Cn . However, without means to quantify over propositions
and numbers this seems a hopeless enterprise.

Here is where ALs help us out another time. The idea is to interpret a premise
set in such a way that B is a permissible context to A, i.e., P(B | A), iff there is an
explicit permissive sequence from A to B. Our axioms (P-Ps) and (Ps-T) ensure the
right-left direction. Hence, it is our task to ensure the left-right direction. In order to
achieve this, we define the following AL:

Definition 12.7.2. Where the set of abnormalities ΩP is {P(B | A) | A, B ⊆ P},
the adaptive logic PL+

P
is defined by the triple ∈L+

P
, ΩP, reliability strategy∧.

The reason why this realizes both directions is easy to see. If there is a permission
sequence from A to B, then by (P-Ps) and (Ps-T), P(B | A). If there is no permissive
sequence, then P(B | A) is not derivable by (P-Ps) and (Ps-T) and the AL PL+

P
will

take care of deriving ¬P(B | A), since P(B | A) is an abnormality. Obviously �L+
P

P(B | A)⊃¬P(B | A) and hence ¬P(B | A) is adaptively derivable on the condition
{P(B | A)}. In the remainder we indicate such conditional derivations by “RCP” in
the adaptive proofs. The following examples are formulated for PCDPM.2α+

P
where

α ⊆ {d, e}.
Example 12.7.2. Let us take another look at the Gentle Murderer.

1 O(¬k|�) PREM ∅
2 O(g|k) PREM ∅
3 ¬P(k | �) RCP

{
P(k | �)

}

4 •pO(g|k) 1,2,3; CTDR-g
{
P(k | �)

}

It is easy to see that there is no way of extending the proof in such a way that lines 3
and 4 are marked. Hence, as desired, •pO(g|k) is a finally derivable in PCDPM.2α+

P
.

The following example features nested permissible contexts.

Example 12.7.3. Let � ai+1 ∪ ai where 1 ↓ i < 3.
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Fig. 12.4 The dashed line
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1 O(b|a1) PREM ∅
2 P(a2|a1) PREM ∅
3 ¬P(a3|a1) PREM ∅
4 O(b|a2) PREM ∅
5 P(a3|a2) PREM ∅
6 O(¬b|a3) PREM ∅
7 ¬P(a3|a1) PREM ∅
8 a3 PREM ∅
9 O(¬a3|a1) 7; Def ∅

10 P(a2 | a1) 2; P-Ps ∅
11 P(a3 | a2) 5; P-Ps ∅
12 P(a3 | a1) 10,11; Ps-T ∅
13 a2 8; CL ∅
14 •pO(¬a3|a1) 5,9,10,13; Ep-g ∅
15 •iO(¬a3|a1) 8,9; fV ∅
16 •pO(b|a1) 1,6,8,12; Ep-g ∅
17 •pO(b|a2) 4,6,11,13; Ep-g ∅
18 •iO(b|a1) 1,6,8; oV-Ei ∅
19 •iO(b|a2) 4,6,8; oV-Ei ∅

Note that P(a3 | a1) although ¬P(a3|a1). The two permissions P(a2|a1) and
P(a3|a2) give rise to the nested permissible context a3 to a2 where a2 is a permissible
context to a1. See for an illustration Fig. 12.4a. Note that •pO(b|a1) is not derivable
by CDPM.2α+. Evidently it is desired, since O(b|a1) and O(b|a2) are excepted in
a3 due to O(¬b|a3) and P(a3 | a1) (resp. P(a3 | a2)).

Example 12.7.4. Let us extend the example from above. The reader may wonder
what happens if the primary obligation to bring about b in the context a1 gets rein-
stated at an even more specific level (see Fig. 12.4b). Suppose for the following that
� a4 ∪ a3.

20 O(b|a4) PREM ∅
21 a4 PREM ∅
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22 P(a4|a3) PREM ∅
23 P(a4 | a3) 22; P-Ps ∅
24 •pO(¬b|a3) 6,20,21,23; Ep-g ∅
25 •iO(¬b|a3) 6,20,21; oV-Ei ∅

As desired, due to the second element of lines 24 and 25, proper and instrumental
detachment is blocked from O(¬b|a3) since it is excepted in a4 as we have O(b|a4)

and P(a4 | a3).

12.7.2 Adaptively Applying Detachment

In order to apply deontic detachment adaptively we can now proceed analogously
to Sect. 12.4. Given a premise set Γ we first apply PL+

P
and then DL+

P
. The latter

logic is defined analogous to the definition of DL+ in Sect. 4.2 by the triple ∈L+
P

, Ωd

reliability strategy∧. The combination of the two logics is realized by a sequential
AL (for a more general introduction and a detailed description of the proof theory
see Chap. 3). DPL is characterized by the consequence relation

CnDPL (Γ ) = CnDL+
P

(
CnPL+

P

(Γ )
)

The marking for abnormalities in ΩP is analogous to Definition 2.4.2 (see
Definition 12.7.3. below). We only need to slightly alter the marking for abnor-
malities in Ωd . Since in the sequential case DL+

P
operates on the consequence set of

PL+
P

, Dab-formulas over abnormalities in Ωd that are derived at unmarked lines on
conditions that are subsets of ΩP have to be taken into account for the marking. Let
me give an example.

Example (continues Example 12.7.2). We extend the proof above by the following
lines:

5 k PREM ∅
‡(4)6 Opg 2,5; cFDp

{•pO(g|k)
}

7 Op¬k 1; cFDp
{•pO(¬k|�)

}

8 •iO(¬k|�) 1,5; fV ∅
9 Oig 2,5; cFDi

{•iO(g|k)
}

Note that the Dab-formula that is responsible for the marking of line 6 has been
derived on the condition {P(k | �)} at line 4. It is derivable in PCDPM.2α+

P
that k

is not a permissible context to � (line 3). Given this, it follows further that O(g|k) is
a strong CTD obligation to O(¬k|�) and hence •pO(g|k) is derived at line 4. This,
however, blocks the detachment at line 6.

Where Dab(Δ1), . . . , Dab(Δm) are all minimal disjunctions of abnormalities in
ΩP derived on the empty condition at stage s, we define UP

s (Γ ) = Δ1 ⊕ . . . ⊕ Δm .
The marking for PL+

P
is defined as usual for the reliability strategy.

http://dx.doi.org/10.1007/978-3-319-00792-2_4
http://dx.doi.org/10.1007/978-3-319-00792-2_3
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Definition 12.7.3. Line i is †-marked at stage s iff, where Δ ⊆ ΩP is its condition,
Δ ∅ UP

s (Γ ) →= ∅.

Where Dab(Δ◦
1), . . . , Dab(Δ◦

n) are the minimal disjunctions of abnormalities
in Ωd derived at unmarked lines on conditions Θ ⊆ ΩP at stage s, we define
U d

s (Γ ) = Δ◦
1 ⊕ . . . ⊕ Δ◦

n .

Definition 12.7.4. Line i is ‡-marked at stage s iff, where Δ is its condition, Δ ∅
U d

s (Γ ) →= ∅.

Example (continues Example 12.7.3). Prolonging the proof above nicely demon-
strates the conditional applications of detachment for the case with nested exceptional
contexts.

20 a1 8; CL ∅
‡(16)21 Opb 1,20; cFDp

{•pO(b|a1)
}

‡(17)22 Opb 4,13; cFDp
{•pO(b|a2)

}

23 Op¬b 6,8; cFDp
{•pO(¬b|a3)

}

24 Oi¬b 6,8; cFDi
{•iO(¬b|a3)

}

As expected, factual detachment is neither applicable to O(b|a1) nor to O(b|a2).
Both are excepted in a3. Hence, Op¬b is derived at line 23 and Oi¬b at line 24.

Example (continues Example 12.7.4). The situation is different if we proceed with
the enhanced premise set from Example 12.7.4.

‡(24)26 Op¬b 6,8; cFDp
{•pO(¬b|a3)

}

27 Opb 20,21; cFDp
{•pO(b|a4)

}

‡(25)28 Oi¬b 6,8; cFDi
{•iO(¬b|a3)

}

29 Oib 20,21; cFDi
{•iO(b|a4)

}

In this case we are able to derive the proper and instrumental obligation to bring
about b. This is intuitive since O(¬b|a3) is excepted in a4.

12.8 Discussion

Let me begin this section by pointing out some advantages of the adaptive modeling
of detachment.

First, it offers a very generic framework for detachment for dyadic deontic logics
since ALs strengthen the enriched base logic, their lower limit logic, for which
it is only required that it is a reflexive, transitive, monotonic and compact logic.
Depending on the application the reader is free to use any base logic as long as
it fulfills the mentioned requirements. Furthermore, since ALs have shown great
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unifying power representing nonmonotonic, defeasible logics, even deontic logics
that do not fulfill the requirements may be represented by ALs.

By applying techniques of combining adaptive systems, the framework developed
in this chapter may be applicable also in such cases.

Furthermore, the meta-theory of ALs in standard format is well-studied (see [31]).
For instance, completeness and soundness are guaranteed by the completeness and
soundness of the lower limit logic.

The internal dynamics modeled by the dynamic proof theory of ALs models the
dynamic nature of human reasoning, more precisely, its diachronic defeasibility (cp.
Pollock [32]). This type of defeasibility is based on the fact that we sometimes have
to withdraw certain conclusion we drew before due to insights gained by analyzing
the information at hand, even in cases in which we were not provided with any
explicitly new information. Suppose we (conditionally) apply, for our asparagus
example, detachment to O(¬ f |�). However, analyzing our premise set further we
come to the conclusion that we are in an exceptional context. In this case we revise
the former derivation. In the adaptive proof the line at which detachment has been
applied to O(¬ f |�) is going to be marked and is hence considered not to be valid.
This shows that the explication of the internal dynamics of the reasoning process is
itself an integral part of the adaptive proof theory.

Yet another advantage of ALs is their ability to deal with external dynamics,
i.e., with the synchronic defeasibility (see [32]) based on the introduction of new
information. Again the markings of the dynamic proofs are able to model cases of
specificity and CTD obligations which might be caused by new information. In the
adaptive approach, despite the fact that new information might force us to withdraw
certain conclusions, the proof dynamics via the marking procedure model in an
accurate way the fact that we continue reasoning facing new information instead of
beginning our reasoning process again from scratch.

Let me conclude this section by mentioning some possibilities to further strengthen
the presented systems.

As pointed out in [30], one of the disadvantages of Goble’s monadic logics DPM
and of his dyadic generalizations CDPM is that, in order to make use of the restricted
versions of inheritance, aggregation and SA, additional premises have to be added
by the user of the logic. This is suboptimal in the sense that as much reasoning as
possible should be performed by the logic and, inversely, as less as possible should
be left to the user. Especially in complicated settings the adding of premises can be
very bothersome for the user, since in such cases it is in no way a trivial question
whether the addition of a certain permission statement leads to explosion or to other
counter-intuitive consequences. In [30, 33] ALs on the basis of Goble’s systems
were developed which perform this task instead of the user: inheritance, aggregation
and/or SA are applied conditionally (see Chap. 10 and Chap. 11). The way this is
technically realized is very similar to the way detachment is realized in this chapter.
By adjusting the marking conditions, it is technically straightforward to realize a
sequential AL, with one of the logics in [30] resp. Chapter 11 being the first and
one of our ALs for detachment being the second logic. This way the advantages of

http://dx.doi.org/10.1007/978-3-319-00792-2_10
http://dx.doi.org/10.1007/978-3-319-00792-2_11
http://dx.doi.org/10.1007/978-3-319-00792-2_11
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both systems can be combined in order to realize an altogether very powerful deontic
logic.

Dyadic deontic logics are not the only field in which it is interesting to model
detachment. For instance conditional logics of normality [34–36] offer promising
ways to formalize default and common sense reasoning. Instead of our dyadic oblig-
ation operator there is a dyadic operator �, where A � B is read as “A normally
implies B”. In order to realize actual default inferencing an adaptive approach to
modus ponens may be developed. Techniques developed in this chapter for deontic
logics may be transferred since also in default reasoning specificity occurs and limits
the applicability of modus ponens (see Chap. 6).

12.9 Conclusion

In this chapter I proposed a generic way to turn dyadic deontic logics into ALs which
model defeasible detachment. I proposed two intuitions concerning the question
what obligations should be detached: proper and instrumental obligations. Obliga-
tions which are not excepted by more specific obligations bind us also in cases in
which they are violated and are therefore considered to be proper obligations. Instru-
mental obligations are a more pragmatic concept: taking the factual premises as
immutable, we can ask the question, what is the best thing to do in the given circum-
stances? For instance contrary-to-duty obligations indicate instrumental obligations,
while the primary obligations which are violated do not cease to bind us as proper
obligations. Paradigmatically I presented ALs based on one of Lou Goble’s conflict-
tolerant CDPM systems which implement these ideas. ALs are an excellent choice
for defeasibly enabling detachment since they allow for certain rules to be applied
“as much as possible”. In this case, detachment with respect to proper and instru-
mental obligations is adaptively applied under special consideration of specificity
and contrary-to-duty cases.

Acknowledgments I thank Joke Meheus, Mathieu Beirlaen, Frederik Van De Putte, Dunja Šešelja
and the anonymous referees of the Journal for Applied Logic for valuable comments which helped
to improve the paper.
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Appendix A
Some Generic Results on Choice Sets

In order to facilitate the reading we will shortcut min∪(X) by Xmin in this section.
Moreover, we will denote the set of choice sets of some set of sets Ω by CS(Ω). In
the following results we will refer to X and Ω where X is an enumerable set while
Ω is a set of finite subsets of X .

Lemma 5.5.1 (restated). Where ϕ = {Ai | i ∈ I } ∈ CS(Ω), let ∼ϕ =⋂
i∈I ϕi where

ϕ0 = ϕ and (where i+1 ∈ I )

ϕi+1 =
{

ϕi i f there is a β ∈ Ω such that ϕi ⊆β = {Ai+1}
ϕi \ {Ai+1} else

we have: ∼ϕ ∈ CSmin(Ω).

Proof. By the construction, (†) ϕi ⊇ ϕi+1 for all i, i + 1 ∈ I . Note that, also by
the construction, (Λ) each ϕi is a choice set of Ω , i.e., ϕi ∈ CS(Ω) for each i ∈ I .

We now show that ∼ϕ ∈ CS(Ω). Assume otherwise and hence that there is a
β ∈ Ω such that ∼ϕ ⊆β = ∅. Since β is finite and by (Λ), β ⊆ ϕ1 = {B1, . . . , Bn}
for some n ∈ N. By our assumption there is no j ∈ n such that B j ∈ ϕi ⊆ β for
all i ∈ I . Hence, for all j ∈ n there is a lowest i j ∈ I such that B j /∈ ϕi j ⊆ β.
Take k = max({i j | 1 ∈ j ∈ n}). Then, since due to (†) {B1, . . . , Bn} ⊇ ϕi ⊆β ⊇
ϕi+1 ⊆β, also B j /∈ ϕk ⊆β for all j ∈ n and thus ϕk ⊆β = ∅. However, this is a
contradiction, since by (Λ) ϕk ∈ CS(Ω). Thus, there is a j ∈ n such that B j ∈ ∼ϕ.
Hence, ∼ϕ ∈ CS(Ω).

Now assume ∼ϕ is not minimal. Hence, there is a Ai ∈ ∼ϕ (where i ∈ I ) such that
∼ϕ\{Ai } ∈ CS(Ω). By the construction, there is a β ∈ Ω such that ϕi−1⊆β = {Ai }.
By (†) and since ∼ϕ ∈ CS(Ω), ∼ϕ ⊆β = {Ai },—a contradiction since then ∼ϕ \ {Ai }
cannot be a choice set of Ω . Hence, ∼ϕ ∈ CSmin(Ω)). �

Fact A.1. Where β ∧ X: if there is no Δ ∈ Ω such that Δ ∧ β then β /∈
CS(CSmin(Ω)).

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 335
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Proof. Suppose the antecedent holds. Hence, for each Δ ∈ Ω , Δ \ β ⊃= ∅. Let ϕ
be any set in CS({Δ \β | Δ ∈ Ω}). Note that also ϕ \β ∈ CS({Δ \β | Δ ∈ Ω})
and moreover, ϕ \ β ∈ CS(Ω). By Lemma 5.5.1, there is a ψ ∧ ϕ \ β for which
ψ ∈ CSmin(Ω). Note that β ⊆ ψ = ∅. Hence, β /∈ CS(CSmin(Ω)). �

Fact A.2. Where Δ ∈ Ω , Δ ∈ CS(CSmin(Ω)).

Proof. Let Δ ∈ Ω and ϕ ∈ CSmin(Ω) arbitrary. Hence, ϕ ∈ CS(Ω) and thus,
ϕ ⊆Δ ⊃= ∅. �

Lemma A.1. Where β ∧ X: β ∈ Ωmin iff β ∈ CSmin(CSmin(Ωmin)).

Proof. Let β ∈ Ωmin. Obviously for each ϕ ∈ CSmin(Ωmin), ϕ ⊆ β ⊃= ∅.
Hence, β ∈ CS(CSmin(Ωmin)). Assume there is a β→ ∪ β such that β→ ∈
CS(CSmin(Ωmin)). Hence, β→ /∈ Ωmin. By the contra-position of Fact A.1 there
is a Δ ∈ Ωmin such that Δ ∧ β→. Thus, Δ ∪ β→ since β→ /∈ Ωmin. But then
Δ ∪ β,—a contradiction to the fact that β ∈ Ωmin. Hence, our assumption is false.
But that means that β ∈ CSmin(CSmin(Ωmin)).

Let now β /∈ Ωmin. Assume β ∈ CSmin(CSmin(Ωmin)) and hence β ∈
CS(CSmin(Ωmin)). By the contra-position of Fact A.1, there is a Δ ∈ Ωmin
such that Δ ∪ β. By Fact A.2, Δ ∈ CS(CSmin(Ωmin)),—a contradiction to our
assumption. �

Lemma A.2.
⋃

Ωmin =⋃
CSmin(Ωmin)

Proof. Let A ∈ ⋃
Ωmin. Hence, there is a β ∈ Ωmin such that A ∈ β. By Lemma

A.1, β ∈ CSmin(CSmin(Ωmin)). Hence, for all ϕ ∈ CSmin(Ωmin), β ⊆ ϕ ⊃= ∅.
Thus, A ∈ ϕ for some ϕ ∈ CSmin(Ωmin), else β \ {A} ∈ CS(CSmin(Ωmin)) in
contradiction to β ∈ CSmin(CSmin(Ωmin)).

Let A ∈ ⋃
CSmin(Ωmin). Hence, there is a ϕ ∈ CSmin(Ωmin) such that A ∈ ϕ.

Suppose for all β ∈ Ωmin, A /∈ β. Then ϕ \ {A} ∈ CS(Ωmin) in contradiction to
ϕ ∈ CSmin(Ωmin). �

Applied to the adaptive logic context Lemma A.1 yields the following result which
will be useful for proving results of Chap. 5: the set of minimal choice sets of the
set of minimal choice sets of Ω(Θ ) is Ω(Θ ) itself. We use the notation of Chap. 5:
Σ(Θ ) [Σs(Θ )] denotes all ϕ ∧ Φ such that ϕ is a choice set of Ω(Θ ) [Ωs(Θ )], and
min∨∪(K ) =df {ϕ ∈ K | ϕ ∧⋃

min∪(K )}where K is a set of sets of abnormalities.

Corollary A.1. Where Θ ∧ W+: Ω(Θ ) = min∪(CS(min∪(Σ(Θ )))) = min∪
(CS(Υ(Θ ))).

Similarly, by Lemma A.2 we get:

Corollary A.2. Where Θ ∧W+:

(i)
⋃

Ω(Θ ) =⋃
min∪(Σ(Θ )) =⋃

min∨∪(Σ(Θ )) =⋃
Υ(Θ )

(ii)
⋃

Ωs(Θ ) =⋃
min∪(Σs(Θ )) =⋃

min∨∪(Σs(Θ )) =⋃
Υs(Θ )

http://dx.doi.org/10.1007/978-3-319-00792-2_5
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The following two lemmas follow by Lemma A.1 and are useful to prove the
adequacy of the two marking definitions for normal selections in Sect. 2.8.

Lemma A.3. Where β ∧ X: If there is a ϕ ∈ CSmin(Ωmin) such that ϕ ⊆ β = ∅
then there is no Δ ∈ Ωmin such that Δ ∧ β.

Proof. Let ϕ ∈ CSmin(Ωmin) such that ϕ⊆β = ∅. Assume there is a Δ ∧ β such
that Δ ∈ Ωmin. Thus, Δ ⊆ ϕ ⊃= ∅. But then β ⊆ ϕ ⊃= ∅,—a contradiction. �

Lemma A.4. Where β ∧ X is finite: If there is no β→ ∈ Ωmin such that β→ ∧ β

then there is a ϕ ∈ CSmin(Ωmin) such that ϕ ⊆β = ∅.

Proof. Suppose the antecedent is true. Hence, by Lemma A.1, there is no β→ ∈
CSmin(CSmin(Ωmin)) such that β→ ∧ β. Since β is finite this means that β /∈
CS(CSmin(Ωmin)). Hence, there is a ϕ ∈ CSmin(Ωmin) such that β ⊆ ϕ = ∅. �

The following corollary is immediate in view of the two lemmas:

Corollary 2.8.1 (restated). Where β ∧ Φ is finite and Θ ∧W+:

(i) there is a ϕ ∈ Υs(Θ ) such that β ⊆ ϕ = ∅ iff there is no minimal Dab-formula
Dab(Δ) at stage s such that Δ ∧ β;

(ii) there is a ϕ ∈ Υ(Θ ) such that β ⊆ ϕ = ∅ iff there is no minimal Dab-consequ-
ence Dab(Δ) such that Δ ∧ β.

The following insights are useful in Chap. 3 in order to prove the relationships
between the criteria in Fig. 3.3.

Lemma A.5. If every ϕ ∈ CSmin(Ωmin) is finite, then Ωmin is finite.

Proof. Suppose Ωmin = {β0
i | i ∈ N} is infinite. Obviously for each i ∈ N and

each j ∈ N where i ⊃= j : β0
i \β0

j ⊕ ∅. Note that for some A ∈ β0
1 the set

Ω1
A =df {β0

i | A ∈ β0
1 \β0

i }

is infinite. The reason is that (a) Ωmin is infinite and hence Ωmin \{β0
1} is also infinite,

(b) Ωmin \ {β0
1} =

⋃
A∈β0

1
Ω1

A, and (c) the latter is a finite union. Hence, some Ω1
A

must be infinite. Let A1 be such that the set Ω1
A1

is infinite. We rename the elements

of Ω1
A1

in the following way:

Ω1
A1
= {β1

i | i ∈ N} = {β0
i | A1 ∈ β0

1 \β0
i }

where, if β0
k = β1

l then l ∈ k (evidently this is possible).
By symmetric reasoning, there is a A2 such that

Ω2
A2
=df {β1

i | A2 ∈ β1
1 \β1

i }

http://dx.doi.org/10.1007/978-3-319-00792-2_2
http://dx.doi.org/10.1007/978-3-319-00792-2_3
http://dx.doi.org/10.1007/978-3-319-00792-2_3
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is infinite. Again, we can rename the elements so that Ω2
A2
= {β2

i | i ∈ N} and

whenever β0
k = β2

l then l ∈ k.
Again, by an analogous argument there is a A3 ∈ β2

1 such that Ω3
A3

is infinite.
And so on. In this manner we can construct a set Δ = {Ai | i ∈ N}.

Note first that Δ is a choice set of Ωmin since by the construction, for each
i ∈ N there is a j ∈ i+1 such that either β0

i = β
j−1
1 or j is minimal such that

β0
i ∈ Ωmin \Ω

j
A j

. In each case A j ∈ β0
i .

Note that for each Ai , for all β ∈ Ω
j
A j

and for all j ≥ i , Ai /∈ β. Hence, no

finite subset Δ → of Δ is a choice set of Ωmin since for all Ai ∈ Δ → and all β ∈ Ωk
Ak

,
Ai ⊆β = ∅ where k = max({l ∈ N | Al ∈ Δ →}).

Hence, the minimal choice set ∼Δ ∧ Δ that is constructed as in Lemma 5.5.1 is
infinite. �

Lemma A.6. If Ωmin is finite, then CSmin(Ωmin) is finite.

Proof. Since Ωmin is finite, also
⋃

Ωmin is finite. By Lemma A.2, also
⋃

CSmin
(Ωmin) is finite. Evidently this means that every ϕ ∈ CSmin(Ωmin) is finite. �

Corollary A.3. Where Θ ∧W+: If each ϕ ∈ Υ(Θ ) is finite then Υ(Θ ) is finite.

Corollary A.4. Where Θ ∧W+: U (Θ ) is finite iff each ϕ ∈ Υ(Θ ) is finite.

Proof. Follows immediately by Lemma A.2. �
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Appendix to Chapter 3

B.1 Proof of Lemma 3.2.7

The following fact states a useful insight. It follows immediately by way the semantic
selections for reliability and minimal abnormality are defined.

Fact B.1.1. Where AL = 〈LLL,Φ, x◦ is an AL in standard format and M ∈
MAL (Θ ). For all M → ∈MLLL (Θ ) for which Ab(M →) ∧ Ab(M), M → ∈MAL (Θ ).

Lemma 3.2.7 (restated). Where i ∈ {1, . . . , n}, Υ↓(Θ ) is finite, and Θ ∧W:

(i) Υ↓(CnL+CALi
(Θ )

) ∧ Υ↓(Θ )

(ii) For all ϕ ∈ Φ i (Θ ) there is a ϕ→ ∈ Υ↓(Θ ) such that ϕ ∧ ϕ→.
(iii) |Φ i (Θ )| ∈ |Υ↓(Θ )|
Proof. Let {ϕ1, . . . ,ϕm} = Υ↓(Θ ) and AL be the AL in standard format charac-
terized by the triple 〈LLL,Φ↓, m◦. I will show by an induction that (i)–(iii) hold for
every i ∈ {1, . . . , n}. It is enough to show that

for each M ∈MAL
xi
i

(
CnL

+
CALi−1

(Θ )
)

there is an M → ∈MALm (Θ ) ⊆MAL
xi
i

(
CnL

+
CALi−1

(Θ )
)

such that Ab(M →) ∧ Ab(M) (†)

Indeed, suppose that (†) holds, then

{
M ∈MAL

xi
i

(
CnL

+
CALi−1

(Θ )
) ∣∣∣∣M is minimally abnormal

w.r.t. Φ↓ in MAL
xi
i

(
CnL

+
CALi−1

(Θ )
)}
∧MALm (Θ ) (‡)

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 339
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By Theorem 2.4.6, for every minimally abnormal (w.r.t. Φi ) model

M ∈ MAL
xi
i

(
CnL+CALi−1

(Θ )
)

, Ab(M) ⊆ Φi ∈ Φ i (Θ ). By (†), there is an M → ∈
MALm (Θ ) ⊆MAL

xi
i

(
CnL+CALi−1

(Θ )
)

such that Ab(M →) ∧ Ab(M) and Ab(M →) ⊆
Φi ∧ Ab(M)⊆Φi . Due to the minimality of M, Ab(M →)⊆Φi = Ab(M)⊆Φi . Since
by Theorem 2.4.6, Ab(M →) ∈ Υ↓(Θ ), Φ i (Θ ) ∧ {

ϕ⊆Φi | ϕ ∈ Υ↓(Θ )
⎧
. Hence, for

every ϕ ∈ Φ i (Θ ) there is a ϕ→ ∈ Υ↓(Θ ) such that ϕ ∧ ϕ→. Hence statement (ii) and
(iii) hold.

Since by (iii), Lemma 3.2.6 and Lemma 3.1.3,

{
M ∈MAL

xi
i

(
CnL

+
CALi−1

(Θ )
) ∣

∣∣∣M is minimally abnormal

w.r.t. Φ↓ in MAL
xi
i

(
CnL

+
CALi−1

(Θ )
)}
=

{
M ∈MLLL

(
CnL

+
CALi

(Θ )
) ∣∣∣∣M is minimally abnormal

w.r.t. Φ↓ in MLLL

(
CnL

+
CALi

(Θ )
)}

we get by (‡),

{
M ∈MLLL

(
CnL

+
CALi

(Θ )
) ∣

∣∣∣M is minimally abnormal

w.r.t. Φ↓ in MLLL

(
CnL

+
CALi

(Θ )
)}
∧MALm (Θ )

Hence, by Theorem 2.4.6, Υ↓
(

CnL+CALi
(Θ )

)
∧ Υ↓(Θ ).

I now show by induction that (†) indeed holds.
“i = 1”: Let M ∈MAL

x1
1

(Θ ). By the strong reassurance (Corollary 2.4.3ii) of AL

there is an M → ∈MALm (Θ ) for which Ab(M →) ∧ Ab(M). Hence, Ab(M →)⊆Φ1 ∧
Ab(M) ⊆Φ1. Hence M → ∈MAL

x1
1

(Θ ) by Fact B.1.1.

“i ⇒ i + 1”: Let M ∈MAL
xi+1
i+1

(
CnL+CALi

(Θ )
)

. This is equivalent to

M ∈
{

M → ∈MLLL

(
CnL

+
CALi

(Θ )
) ∣∣∣

∣M
→ is a rel. (xi+1 = r)

resp. m.a. (xi+1 = m) model in MLLL

(
CnL

+
CALi

(Θ )
)}

(B.1)

By the induction hypothesis, Φ i (Θ ) is finite and hence by Lemma 3.2.6,

MLLL

(
CnL

+
CALi

(Θ )
)
=MAL

xi
i

(
CnL

+
CALi−1

(Θ )
)

(Λ)
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Hence, (B.1) is equivalent to

M ∈
{

M → ∈MAL
xi
i

(
CnL

+
CALi−1

(Θ )
) ∣∣∣∣M

→ is a rel. (xi+1 = r)

resp. m.a. (xi+1 = m) model in MAL
xi
i

(
CnL

+
CALi−1

(Θ )
)}

(B.2)

By the induction hypothesis there is an

M → ∈MALm (Θ ) ⊆MAL
xi
i

(
CnL

+
CALi−1

(Θ )
)

for which Ab(M →) ∧ Ab(M) and hence Ab(M →) ⊆Φi+1 ∧ Ab(M) ⊆Φi+1. Hence,

by Fact B.1.1, M → ∈MAL
xi+1
i+1

(
CnL+CALi

(Θ )
)

. �

B.2 The Adequacy of the Proof Theory for CAL

In this Appendix we prove the adequacy of the proof theory for CAL. Let us first
introduce some useful notions.

We say that Dab(β) is a minimal Dabi -consequence of Θ iff β ∧ Φi ,
Dab(β) ∈ CnLLL (Θ ), and for all β→ ∧ β: if Dab(β→) ∈ CnLLL (Θ ) then β→ = β.
Where Dab(β1), Dab(β2), . . . are the minimal Dabi -consequences from Θ , let
Ω i (Θ ) =df {β1,β2, . . .}. Let Υ i (Θ ) be the set of all minimal choice sets of Ω i (Θ )

and Ui (Θ ) =df
⋃

Ω i (Θ ).
In the remainder of this section, AL is a flat AL in standard format with lower

limit logic LLL and the set of abnormalities Φ = Φ1 ∨ . . . ∨ Φn . Dab(β) is a
minimal Dab-consequence of Θ iff β ∧ Φ , Dab(β) ∈ CnLLL (Θ ) and for all
β→ ∧ β: if Dab(β→) ∈ CnLLL (Θ ) then β→ = β. Where Dab(β1), Dab(β2), . . . are
all the minimal Dab-consequences of Θ , Ω(Θ ) =df {β1,β2, . . .}. Υ(Θ ) is the set
of minimal choice sets of Ω(Θ ) and U (Θ ) =df

⋃
Ω(Θ ).

In the following, ∅̌Dab(β) denotes the empty string in case β = ∅. CnCALi (Θ )

denotes Θ if i = 0. For the sake of convenience we will sometimes speak about the
empty proof, meaning the “proof” which consists of 0 lines. We denote this proof
by Pτ.

B.2.1 A Complete Proof Stage g

In the following it will be very useful to speak about the extension of a given (possibly
empty) AL-, resp. CAL-proof P in which A is derived on the condition β whenever
Θ ≥LLL A ∅̌Dab(β). We dub a corresponding stage g(P) a complete stage.
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Note that each well-formed formula has a Gödel-number. From this it follows
immediately that CnLLL (Θ ) is enumerable, e.g. CnLLL (Θ ) = {B1, B2, . . .}. More-
over, due to the compactness of LLL, for each Bi ∈ CnLLL (Θ ) there are some
A1, . . . , Am such that A1, . . . , Am ≥LLL Bi . Hence, for each Bi ∈ CnLLL (Θ ) we
have the following proof Pi :

li
1 A1 PREM ∅
...
...

...
...

li
m Am PREM ∅

li
m+1 Bi li

1, . . . , li
m; RU ∅

In case Bi is of the form A ∅̌Dab(β) we add some further lines. Where m→ ∈ m is
the lowest natural number such that β ∧ Φ1∨. . .∨Φm→ we add (where β j = β⊆Φ j

for each j ∈ m→):
li
m+2 A ∅̌Dab(β2 ∨ . . . ∨βm→) li

m+1;RC β1
...
...

...
...

li
m+m→ A ∅̌Dab(βm→) li

m+m→−1;RC β1 ∨ . . . ∨βm→−1

li
m+m→+1 A li

m+m→ ;RC β

Where P consists of lines l0
1 , l0

2 , . . ., we now combine the proofs P,P1,P2, . . .

to a proof P → that extends P to the stage g(P) by means of listing the respective lines
as follows (and by renumbering the lines accordingly):

l0
1 , l0

2 , l1
1 , l1

2 , l0
3 , l1

3 , l2
1 , l2

2 , l2
3 , l0

4 , . . . , l2
4 , l3

1 , . . . , l3
4 , l0

5 , . . . , l3
5 , l4

1 , . . . , l4
5 , . . .

Note that the marking at a stage is determined by the minimal Dabi -formulas
derived at this stage (where i ∈ n). Since in g(P) every possible Dabi -formula is
derived on every possible condition, the marking remains stable from g(P) on. The
following fact holds for the extension of an AL proof P to the stage g(P):

Fact B.2.1. (i) Ωg(P)(Θ ) = Ω(Θ ) and hence Ug(P)(Θ ) = U (Θ ) and Υg(P)(Θ ) =
Υ(Θ ). (ii) Where i ∈ n: Ω i

g(P)(Θ ) = Ω i (Θ ) and hence Ui
g(P)(Θ ) = Ui (Θ ) and

Υ i
g(P)(Θ ) = Υ i (Θ ).

Fact B.2.2. If a line l is marked at stage g(P), then it is marked in every further
extension. Hence, the markings remain stable from stage g(P) on.

B.2.2 Some Results for Flat ALs

It is useful to first prove some lemmas about flat ALs. The following fact follows
immediately by the reflexivity, the monotonicity, and the transitivity of LLL.

Fact B.2.3. (Fixed point property for LLL). CnLLL (CnLLL (Θ )) = CnLLL (Θ )
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The following two lemmas are known to hold where Θ ∧ W (see Chap. 2). In
what follows it is useful to show that they also hold where Θ = CnL+LLL (Θ ).1

Lemma B.2.1. Where Θ ∧ W or Θ = CnL+LLL (Θ ): A ∈ CnL+ALr (Θ ) iff there is a
β ∧ Φ \U (Θ ) for which Θ ≥LLL A ∅̌Dab(β).

Proof. A ∈ CnL+ALr (Θ ) iff [by Corollary 2.7.1] Θ �ALr A iff [by Corollary 2.4.1]
there is a β ∧ Φ \U (Θ ) for which Θ �LLL A ∅̌Dab(β) iff [by the soundness and
completeness of LLL] there is a β ∧ Φ \U (Θ ) for which Θ ≥LLL A ∅̌Dab(β). �

Lemma B.2.2. Where Θ ∧ W or Θ = CnL+LLL (Θ ): A ∈ CnL+ALr (Θ ) iff there is a
β ∧ Φ \U (Θ ) for which Θ ≥ALr A ∅̌Dab(β).

Proof. “⇒”: this follows by Lemma B.2.1 and since CnL+LLL (Θ ) ∧ CnL+ALr (Θ ).

“≺”: Let A ∅̌Dab(β) ∈ CnL+ALr (Θ ) for some β ∧ Φ \U (Θ ). Hence, by Lemma
B.2.1, there is a Δ ∧ Φ \U (Θ ) such that Θ ≥LLL A ∅̌Dab(β∨Δ). Since β∨Δ ∧
Φ \U (Θ ), by Lemma B.2.1, A ∈ CnL+ALr (Θ ). �

Lemma B.2.3. Where Θ ∧ W or Θ = CnL+LLL (Θ ): A ∈ CnL+ALm (Θ ) iff for each
ϕ ∈ Υ(Θ ) there is a β ∧ Φ \ ϕ for which Θ ≥LLL A ∅̌Dab(β).

Proof. A ∈ CnL+ALm (Θ ) iff [by Corollary 2.7.1] Θ �ALm A iff [by Corollary 2.4.4]
for each ϕ ∈ Υ(Θ ) there is a β ∧ Φ \ ϕ such that Θ �LLL A ∅̌Dab(β) iff [by the
soundness and completeness of LLL] for each ϕ ∈ Υ(Θ ) there is a β ∧ Φ \ϕ such
that Θ �LLL A ∅̌Dab(β). �

Lemma B.2.4. Where Θ ∧ W or Θ = CnL+LLL (Θ ): A ∈ CnL+ALm (Θ ) iff for each
ϕ ∈ Υ(Θ ) there is a β ∧ Φ \ ϕ for which Θ ≥ALm A ∅̌Dab(β).

Proof. “⇒: this follows by Lemma B.2.3 and since CnL+LLL (Θ ) ∧ CnL+ALm (Θ ).

“≺”: Suppose for eachϕ ∈ Υ(Θ ) there is aβϕ ∧ Φ\ϕ such that A ∅̌Dab(βϕ) ∈
CnL+ALm (Θ ). Hence, by Lemma B.2.3, for each ϕ ∈ Υ(Θ ) and for each ψ ∈ Υ(Θ )

there is a β
ψ
ϕ ∧ Φ\ψ such that Θ ≥LLL A ∅̌Dab(βϕ∨β

ψ
ϕ). Since βϕ∨β

ϕ
ϕ ∧ Φ\ϕ

this implies by Lemma B.2.3 that A ∈ CnL+ALm (Θ ). �

Lemma B.2.5. (Dab-conservatism of AL). Where Θ ∧W or Θ = CnL+LLL (Θ ): If
Dab(β) ∈ CnAL (Θ ) then Dab(β) ∈ CnLLL (Θ ).

Proof. Let Dab(β) ∈ CnL+AL (Θ ). Case “minimal abnormality”. By Lemma B.2.3,
for each ϕ ∈ Υ(Θ ) there is a βϕ ∧ Φ \ ϕ for which Θ ≥LLL Dab(β ∨βϕ). Note
that for each ϕ ∈ Υ(Θ ) there is a Δ ∈ Ω(Θ ) such that Δ ∧ β ∨ βϕ. For each
ϕ ∈ Υ(Θ ), by Corollary 2.8.1, there is no ψ ∈ Υ(Θ ) such that ψ ⊆ (β ∨βϕ) = ∅.
This means that β is a choice set of Υ(Θ ). Hence, by Corollary A.1, there is a
β→ ∧ β for which β→ ∈ Ω(Θ ). Hence, Θ ≥LLL Dab(β).

1 Note that they do not hold for just any premise set that also contains formulas with “checked”
symbols as the example in Sect. 2.7 shows.

http://dx.doi.org/10.1007/978-3-319-00792-2_2
http://dx.doi.org/10.1007/978-3-319-00792-2_2
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Case “reliability”. By Lemma B.2.1 there is a Δ ∈ Φ \U (Θ ) such that Θ ≥LLL
Dab(β ∨ Δ). Hence, there is a Δ → ∈ Ω(Θ ) such that Δ → ∧ β ∨ Δ . By Corollary
2.8.1, for all ψ ∈ Υ(Θ ), ψ⊆(β∨Δ) ⊃= ∅. Since by Corollary A.2 U (Θ ) =⋃

Υ(Θ ),
ψ ⊆Δ = ∅ for all ψ ∈ Υ(Θ ). Hence, β is a choice set of Υ(Θ ). By Corollary A.1,
there is a β→ ∧ β for which β→ ∈ Ω(Θ ). Hence, Θ ≥LLL Dab(β). �

B.2.3 Proving the Adequacy of the CAL-Proof Theory

Corollary B.2.1. Where Θ ∧W: A ∈ CnL+CALi
(Θ ) iff there is a β ∧ Φi such that

A ∅̌Dab(β) ∈ CnL+CALi−1
(Θ ) and

(i) where xi = r, β ⊆Ui (CnL+CALi−1
(Θ )) = ∅, or

(ii) where xi = m, there is a ϕ ∈ Υ i (CnL+CALi−1
(Θ )) such that ϕ ⊆ β = ∅ and

for each ϕ ∈ Υ i (CnL+CALi−1
(Θ )) there is a Δ ∧ Φi such that A ∅̌Dab(Δ) ∈

CnL+CALi−1
(Θ ) and Δ ⊆ ϕ = ∅.

Proof. We prove this by an induction for j ∈ n:
“ j = 1” follows directly Lemmas B.2.1 and B.2.3 and the fact that CnL+CAL1

(Θ ) =
CnL+AL1

(Θ ).

“ j ⇒ j + 1”: By Lemma 3.1.3, CnL+CALj
(Θ ) = CnL+LLL

(
CnL+CALj

(Θ )
)

. Thus, the

corollary follows by Lemmas B.2.1 and B.2.3. �

The following corollary follows immediately by Lemma B.2.5 and Lemma 3.1.3.

Corollary B.2.2. (Dab-conservatism of CALi.). Where β ∧ Φi :
if Dab(β) ∈ CnL+CALi

(Θ ) then Dab(β) ∈ CnL+CALi−1
(Θ ).

Lemma B.2.6. Where Θ ∧ W and P is a CAL-proof from Θ , we have for each
i ∈ n:

(i) Ω i
g(P)(Θ ) = Ω i (CnL+CALi−1

(Θ )) and hence Ui
g(P)(Θ ) = Ui (CnL+CALi−1

(Θ )) and

Υ i
g(P)(Θ ) = Υ i (CnL+CALi−1

(Θ ));
(ii) there is a [∈i]-line l with formula A and that is unmarked at stage g(P) iff

A ∈ CnL+CALi
(Θ ).

Proof. We show this by an induction on i ∈ n.
“i=1”: Ad (i). Trivial.
Ad (ii). Case x1 = r. There is a [∈1]-line l with formula A and condition

β that is unmarked iff [by the construction of stage g(P) and Definition 3.3.2]
Θ ≥LLL A ∅̌Dab(β) and β ⊆U 1

g(P)(Θ ) = ∅, iff [by i.] Θ ≥LLL A ∅̌Dab(β) and

β ⊆U 1(Θ ) = ∅, iff [by Lemma B.2.1] A ∈ CnL+AL1
(Θ ), iff A ∈ CnL+CAL1

(Θ ).
Case x1 = m. The proof is similar and left to the reader.
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“i ⇒ i + 1”: Ad (i). Where β ∧ Φi+1, we have: β ∈ Ω i+1
g(P)(Θ ) iff Dab(β)

is derived at an unmarked [∈i]-line and there is no β→ ∪ β such that Dab(β→)
is derived at an unmarked [∈i]-line, iff [by (ii) and the induction hypothesis]
Dab(β) ∈ CnL+CALi

(Θ ) and for no β→ ∪ β, Dab(β→) ∈ CnL+CALi
(Θ ), iff [by

Lemma 3.1.3] Dab(β) ∈ CnL+LLL

(
CnCALi (Θ )

)
and for no β→ ∪ β, Dab(β→) ∈

CnL+LLL

(
CnCALi (Θ )

)
, iff β ∈ Ω i+1(CnL+CALi

(Θ )).
Ad (ii). Case xi+1 = r. Let l be some [∈i+1]-line with formula A and condition

β. Suppose line l is unmarked. If l is a j-line with j ∈ i we get A ∈ CnL+CALi+1
(Θ )

due to the induction hypothesis and since CnL+CALj
(Θ ) ∧ CnL+CALi+1

(Θ ).
Thus, suppose l is an i+1-line with condition β1 ∨ . . . ∨βi+1 where β j ∧ Φ j

for each j ∈ i+1. We prove the statement by another induction on the number of
steps j needed to derive A.

“ j = 1”: Only premises can be introduced in one inference step, but this does not
lead to an i+1-line.

“ j = 2”: The proof looks as follows: A is derived by RC from some line l →
at which some B is introduced as a premise and B ≥LLL A ∅̌Dab(βi+1) where
βi+1 ∧ Φi+1. Since l is unmarked at stage g(P), βi+1 ⊆Ui+1

g(P)(Θ ) = ∅ and hence

by (i), βi+1 ⊆Ui+1(CnL+CALi
(Θ )) = ∅. By Corollary B.2.1.i, A ∈ CnL+CALi+1

(Θ ).
“ j ⇒ j + 1”: Suppose A is derived with the justification l1, . . . , lm; R where

R ∈ {RU, RC} and each line lk (where 1 ∈ k ∈ m) features a formula Ak and a
condition βk

1 ∨ . . . ∨ βk
i+1 where βk

o ∧ Φo for each o ∈ i+1. By the definition
of RU and RC, (†) A1, . . . , Am ≥LLL A ∅̌Dab(β→i+1) for some (possibly empty)
β→i+1 ∧ βi+1 ∧ Φi+1, and β→i+1∨β1

i+1∨ . . .∨βm
i+1 = βi+1. Since l is unmarked,

(a) by Definition 3.3.2 and (i), βi+1⊆Ui+1(CnL+CALi
(Θ )) = βi+1⊆Ui+1

g(P)(Θ ) = ∅,
(b) by the definition of inh-marking each of the lines lk is neither o-marked for any
o ∈ i nor inh-marked, (c) neither line lk is i+1-marked since βk

i+1 ∧ βi+1 and

by (a). By our induction hypothesis, (b) and (c), Ak ∈ CnL+CALi+1
(Θ ) and by (†)

and Lemma 3.1.3 also A ∅̌Dab(β→i+1) ∈ CnL+CALi+1
(Θ ). By Lemma B.2.2, Lemma

3.1.3, and (a), A ∈ CnL+CALi+1
(Θ ).

For the other direction suppose A ∈ CnL+CALi+1
(Θ ). By Corollary B.2.1.i there is a

β ∧ Φi+1 for which A ∅̌Dab(β) ∈ CnL+CALi
(Θ ) and β ⊆Ui+1(CnL+CALi

(Θ )) = ∅.
By the induction hypothesis there is an unmarked [∈i]-line l at which A ∅̌Dab(β)

is derived on some condition Δ1 ∨ . . . ∨Δi where Δ j ∧ Φ j for each j ∈ i . By the
construction of stage g(P) there is a line l → with formula A, justification l;RC and
condition Δ1 ∨ . . . ∨Δi ∨β. Since by i., β ⊆Ui+1

g(P)(Θ ) = ∅, line l → is not marked
according to the i+1-marking with reliability. Moreover, since l is unmarked, l → is
also not inh-marked.

Let xi+1 = m. The proof is similar and left to the reader. �

Since A ∈ CnL+CAL (Θ ) iff there is an i ∈ n such that A ∈ CnL+CALi
(Θ ), we get by

item 2 of the previous lemma:
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Corollary B.2.3. Where Θ ∧ W and P is a CAL-proof from Θ : A ∈ CnL+CAL (Θ )

iff A is derived at an unmarked line at stage g(P).

Theorem B.2.1. Where Θ ∧W: if Θ ≥CAL A then A ∈ CnL+CAL (Θ ).

Proof. Suppose Θ ≥CAL A. Hence, there is a finite CAL-proof P in which A is
finally derived at some line l. We extend P to stage g(P). By Definition 3.3.4 and
Fact B.2.2, line l is unmarked and hence A ∈ CnL+CAL (Θ ) by Corollary B.2.3. �

Theorem B.2.2. Where Θ ∧W: if A ∈ CnL+CAL (Θ ) then Θ ≥CAL A.

Proof. Suppose A ∈ CnL+CAL (Θ ). Hence by Corollary B.2.3, (1) A is derived at
an unmarked line at stage g(Pτ) on a condition Δ1 ∨ . . . ∨ Δm where Δ j ∧ Φ j

for all j ∈ m. The case where Δ1 ∨ . . . ∨ Δm = ∅ is trivial. Let’s hence suppose
Δ1 ∨ . . .∨Δm ⊃= ∅ and let m be minimal such that A is derived at an unmarked line
at stage g(Pτ) on a condition Δ1 ∨ . . . ∨ Δm . By Lemma B.2.6.ii this is to say, (2)
m is minimal such that A ∈ CnCALm (Θ ).

Since Θ ≥LLL A ∅̌Dab(Δ1 ∨ . . . ∨Δm) and by the compactness of LLL, there
are B1, . . . , Bo ∈ Θ such that {B1, . . . , Bo} ≥LLL A ∅̌Dab(Δ1 ∨ . . . ∨ Δm). We
now construct a CAL-proof P for A as follows:

1 B1 PREM ∅
...
...

...
...

o Bo PREM ∅
o+1 A ∅̌Dab(Δ1 ∨ . . . ∨Δm) 1, . . . , o;RU ∅
o+2 A ∅̌Dab(Δ2 ∨ . . . ∨Δm) 1, . . . , o;RU Δ1

...
...

...
...

o+m A ∅̌Dab(Δm) o+m−1;RC Δ1 ∨ . . . ∨Δm−1
o+m+1 A o+m;RC Δ1 ∨ . . . ∨Δm

Let s be the stage of our proof. Since Θ ∧ W , the only Dab-formulas in
{B1, . . . , Bo} are abnormalities and hence (3) for every j ∈ n, {B1, . . . , Bo} ⊆
Φ j ∧ U j

g(P)(Θ ) = U j
g(Pτ)

(Θ ); and for every ϕ ∈ Υ
j

g(P)(Θ ) = Υ
j

g(Pτ)
(Θ ),

{B1, . . . , Bo} ⊆Φ j ∧ ϕ.
Assume A ∈ Φm . Then A is a Dabm-formula. By Corollary B.2.2 and since

A ∈ CnL+CALm
(Θ ), A ∈ CnL+CALm−1

(Θ ). This is a contradiction to (2). Hence, (4)
A /∈ Φm .

By (3) and (4) we infer that line o+m+1 is unmarked.
Suppose line o+m+1 is marked in an extension of the proof resulting in the proof

P →. We can extend the proof further to stage g(P →). That line o+m+1 is unmarked
is an immediate consequence of (1). �
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B.2.4 Proving the Adequacy of the CALns-Proof Theory

Lemma B.2.7. A ∈ CnL+CALns (Θ ) iff there is a β ∧ Φn such that

CnL
+

CALn−1
(Θ ) ≥LLL A ∅̌Dab(β)

and for all Δ ∈ Ωn
(

CnL+CALn−1
(Θ )

)
, Δ ⊃∧ β.

Proof. This follows by Corollary 3.1.2 and Theorem 2.8.2. �

Theorem B.2.3. Where Θ ∧W: Θ ≥CALns A implies A ∈ CnL+CALns (Θ ).

Proof. Let Θ ≥CALns A. Hence, there is a finite proof in which A is finally derived
on a condition β on a line l. Suppose l is marked in an extension of the proof P .
We extend the proof further to the stage g(P). Since l is finally derived and since the
markings remain stable from this point on, line l is unmarked at stage g(P). Hence,
β ⊆Φn is such that for all Δ ∈ Ωn

g(P)(Θ ), Δ ⊃∧ β ⊆Φn . Hence, by Lemma B.2.6,

for all Δ ∈ Ωn
(
CnL+CALn−1

(Θ )
)
, Δ ⊃∧ β ⊆Φn .

In order to apply Lemma B.2.7 to conclude that A ∈ CnL+CAL (Θ ) we still have

to show that A ∅̌Dab(β ⊆ Φn) ∈ CnL+CALn−1
(Θ ). Suppose that the justification of

line l is l1, . . . , lm; R where R ∈ {RU, RC}. Let Ak be the formula of line lk and
β1

k ∨ . . .∨βn
k its condition where βo

k ∧ Φo for each o ∈ n. By the definition of RU
and RC, {A1, . . . , Am} ≥LLL A ∅̌Dab(β→n) for some (possibly empty) β→n ∧ β⊆Φn

and β→n ∨ βn
1 ∨ . . . ∨ βn

m = β ⊆Φn . For each line lk there is an associated list of
[∈n−1]-lines l1

k , . . . , lmk
k with formulas B1

k , . . . , Bmk
k such that Ak has been derived

from these lines (possibly in more than one step: we can easily locate these lines by
traversing backwards along the ‘justification path’ starting from the justification of
line lk). This holds due to the iterative character of the RC rule: see Remark 3.3.1. Note
that {B1

k , . . . , Bmk
k } ≥LLL Ak ∅̌Dab(βn

k ) and that the lines l1
k , . . . , lmk

k are unmarked
(otherwise lk would be marked as well and as a consequence also l). By Lemma
B.2.6 this shows that each B j

k ∈ CnL+CALn−1
(Θ ). Note that also

{
B1

k , . . . , Bmk
k | k ∈

m
⎧ ≥LLL A ∅̌Dab(β ⊆ Φn). Since by Lemma 3.1.3 CnL+LLL

(
CnL+CALn−1

(Θ )
)
=

CnL+CALn−1
(Θ ), this shows that A ∅̌Dab(β ⊆ Φn) ∈ CnL+CALn−1

(Θ ). Hence, our
proof is finished. �

Theorem B.2.4. Where Θ ∧W: A ∈ CnL+CALns (Θ ) implies Θ ≥CALns A.

Proof. Let A ∈ CnL+CALns (Θ ). Hence, by Lemma B.2.7 there is a β ∧ Φn such that

CnL+CALn−1
(Θ ) ≥LLL A ∅̌Dab(β) and for all Δ ∈ Ωn

(
CnL+CALn−1

(Θ )
)
, Δ ⊃∧ β.

By Corollary 3.1.2 A ∅̌Dab(β) ∈ CnL+CALn−1
(Θ ) and hence also ¬̌A ⊕̌Dab(β) ∈

CnL+CALn−1
(Θ ). By Corollary B.2.3, (†) it is derived at an unmarked line l in the com-

plete extension of the empty proof on a condition Δ1, . . . , Δn−1
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(where Δi ∧ Φi ). Thus, by the compactness of LLL, there are B1, . . . , Bm ∈ Θ such
that {B1, . . . , Bm} ≥LLL (¬̌A ⊕̌Dab(β)) ∅̌ Dab(Δ1 ∨ . . . ∨Δn−1). We construct
now a proof of ¬̌A ⊕̌Dab(β) as follows:

1 B1 PREM ∅
...
...

...
...

m Bm PREM ∅
m + 1 (¬̌A ⊕̌Dab(β)) ∅̌ Dab(Δ2 ∨

. . . ∨Δn−1)

1–m; RC Δ1

...
...

...
...

m+n−2 (¬̌A ⊕̌Dab(β)) ∅̌ Dab(Δn−1) m+n−3; RC Δ1 ∨ . . . ∨Δn−2
m+n−1 ¬̌A ⊕̌Dab(β) m+n−3; RC Δ1 ∨ . . . ∨Δn−1
m+n A m+n−2; RC Δ1 ∨ . . . ∨Δn−1 ∨β

Since Θ ∧ W no Dab-formulas are derived at this stage of the proof. Thus,
line m+n is unmarked. Suppose the line is marked in an extension of the proof P .
We extend the proof further to g(P). That the line is unmarked is an immediate
consequence of (†) and Fact B.2.1. �
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C.1 Ξ(Γ ), Ξ sat(Γ ), Density, and Smoothness

In this section we are going to prove that Σ sat(Θ ) is ∗-dense in Σ(Θ ):

Theorem C.1.1. Where Θ ∧W+ is LLL-non-trivial: Σ sat(Θ ) is∗-dense in Σ(Θ ).

We will see that this implies the following corollaries: Σ sat(Θ ) and Σ(Θ ) have
the same ∗-minimal elements and Σ sat(Θ ) is smooth (relative to ∗) iff Σ(Θ ) is
smooth.

Corollary C.1.1. Where Θ ∧ W+ is LLL-non-trivial: min∗(Σ sat(Θ )) = min∗
(Σ(Θ )).

Corollary C.1.2. Where Θ ∧W+: If 〈Σ(Θ ),∗◦ is smooth then also 〈Σ sat(Θ ),∗◦
is smooth.

First it is useful to show that the following special case of Theorem C.1.1 holds:

Lemma 5.5.2 (restated). WhereΘ is LLL-non-trivial:Σ sat(Θ ) is∪-dense inΣ(Θ ).

Before we prove this note that:

Lemma C.1.1. Where Θ ∧W+ is LLL-non-trivial and ϕ ∈ Σ(Θ ): Θ ∨ (Φ \ϕ)¬̌
is LLL-non-trivial.

Proof. Assume Θ ∨ (Φ \ ϕ)¬̌ is LLL-trivial. Hence, by the compactness of LLL,
there is a finite and ∪-minimal β ∧ Φ \ ϕ such that Θ ≥LLL Dab(β). Hence,
β ∈ Ω(Θ ). Since ϕ is a choice set of Ω(Θ ), ϕ ⊆β ⊃= ∅,—a contradiction. �

Proof. (Proof of Lemma 5.5.2). Let ϕ ∈ Σ(Θ ). Hence, by Lemma C.1.1, Θ ∨
(Φ \ ϕ)¬̌ is LLL-non-trivial. We construct ψ = ⋃

i∈N ψi as follows: where ψ0 =
Θ ∨ (Φ \ ϕ)¬̌and {A0, A1, . . .} is a list of the members of ϕ, let

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 349
DOI: 10.1007/978-3-319-00792-2, © Springer International Publishing Switzerland 2014
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ψi+1 =
{

ψi ∨ {Ai } if ψi ∨ {Ai }is LLL-non-trivial
ψi ∨ {¬̌Ai } else

We can easily show by induction that each ψi is LLL-non-trivial. Since Θ is LLL-
non-trivial, so is ψ0. Suppose ψi is LLL-non-trivial and ψi ∨ {Ai } is LLL-trivial.
Hence, by classical logic, ψi ≥LLL ¬̌Ai . Since ψi is LLL-non-trivial, so is ψi ∨
{ ¬̌Ai }.

Assume ψ is LLL-trivial. By the compactness of LLL, there is a finite subset ψ→
of ψ that is LLL-trivial. There is a ψi ⊇ ψ→. By the monotonicity of LLL, also ψi is
LLL-trivial,—a contradiction. Hence, ψ is LLL-non-trivial.

Note that ψ can be written as Θ ∨ (Φ \ ω)¬̌∨ ω for some ω ∧ ϕ.
Let now β ∨Δ¬̌ ∈ Ω sat(Θ ) and hence Θ ≥LLL Dabn(β,Δ). Assume β ⊆ ω =

∅ = Δ ⊆ (Φ \ ω). Hence, β ∧ Φ \ ω and Δ ∧ ω,—a contradiction to the LLL-non-
triviality of ψ since by the monotonicity of LLL also ψ ≥LLL Dabn(β,Δ). Hence,
ω ∈ Σ sat(Θ ). Since ω ∧ ϕ this shows that Σ sat(Θ ) is ∪-dense in Σ(Θ ). �

Fact C.1.1. Where X is ∗-dense in Y : min∗(X) = min∗(Y ).

Proof. Assume x ∈ min∗(X) \ min∗(Y ). Since X ∧ Y , x ∈ Y . Hence, there is a
y ∈ Y \ X for which y ∗ x . Since X is ∗-dense in Y , there is a z ∈ X for which
z ∗ y. By the transitivity of ∗, z ∗ x ,—a contradiction. Suppose x ∈ min∗(Y ).
Hence, there is no y ∈ Y for which y ∗ x . Since X is ∗-dense in Y, x ∈ X and
hence x ∈ min∗(X). �

Fact C.1.2. Where ∗2 ∧ ∗1: If X is ∗2-dense in Y, then it is ∗1-dense in Y.

Proof. Let x ∈ Y . Hence, there is a y ∈ X for which y ⊇2 x . Since ∗2 ∧ ∗1, also
y ⊇1 x . �

By Lemma 5.5.2, Fact C.1.2 and since∪ ∧ ∗, we immediately get Theorem C.1.1.
Hence, by Fact C.1.1, also Corollary C.1.1 is immediate. Finally, also Corollary C.1.2
follows immediately by Theorem C.1.1.

C.2 Questions Concerning Membership in Υ

In this section we show that each of the following sets belongs to Ψ : Σ sat
s (Θ ), Σs(Θ ),

and Σ(Θ ). Furthermore we show that Ψ is closed under⊆ and under min∨∪. The latter
will help us to prove the adequacy of our characterization of the reliability strategy
in terms of Π = min∨∪.

Some notations for the next few results:

•Ω sat(Θ ) =df {Dabn(β,Δ) | β ∨Δ¬̌ ∈ Ω sat(Θ )}
•Ω sat

s (Θ ) =df {Dabn(β,Δ) | β ∨Δ¬̌ ∈ Ω sat
s (Θ )}

•Ω(Θ ) =df {Dab(β) | β ∈ Ω(Θ )}
•Ω s(Θ ) =df {Dab(β) | β ∈ Ωs(Θ )}
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Lemma C.2.1. Where Θ ∧W+: Σ sat
s (Θ ) = Ab

•Ωsat
s (Θ )

LLL and hence Σ sat
s (Θ ) ∈ Ψ .

Proof. “∧”: Assume ϕ ∈ Σ sat
s (Θ ) \ Ab

•Ωsat
s (Θ )

LLL . Hence, •Ω sat
s (Θ ) ∨ ϕ ∨ (Φ \ ϕ)¬̌

is LLL-trivial. Since ϕ ∨ (Φ \ ϕ)¬̌ is a choice set of Ω sat
s (Θ ), ϕ ∨ (Φ \ ϕ)¬̌ ≥LLL

•Ω sat
s (Θ ). Hence, ϕ ∨ (Φ \ ϕ)¬̌ is LLL-trivial,—a contradiction to the LLL-

contingency of Φ .

“⊇”: Let ϕ ∈ Ab
•Ωsat

s (Θ )

LLL . Hence, obviously ϕ ∨ (Φ \ ϕ)¬̌ is a choice set of
Ω sat

s (Θ ). �

Lemma C.2.2. Where Θ ∧W+: Σs(Θ ) = Ab
•Ωs (Θ )
LLL and hence Σs(Θ ) ∈ Ψ .

Proof. “∧”: Assume ϕ ∈ Σs(Θ ) \ Ab
•Ωs (Θ )
LLL . Hence, Ωs(Θ ) ∨ ϕ ∨ (Φ \ ϕ)¬̌ is

LLL-trivial. Since ϕ is a choice set of Ωs(Θ ), ϕ∨ (Φ \ϕ)¬̌ ≥LLL
•Ω s(Θ ). Hence,

ϕ ∨ (Φ \ ϕ)¬̌ is LLL-trivial,—a contradiction to the LLL-contingency of Φ .
“⊇”: Let ϕ ∈ Ab

•Ωs (Θ )
LLL . Hence, obviously ϕ is a choice set of Ωs(Θ ). �

Lemma C.2.3. Where Θ ∧W+: Σ(Θ ) = Ab
•Ω(Θ )
LLL and hence Σ(Θ ) ∈ Ψ .

Proof. Analogous to the proof of Lemma C.2.2.

Lemma C.2.4. X, Y ∈ Ψ implies X ⊆ Y ∈ Ψ .

Proof. Let X, Y ∈ Ψ . Hence, there are ΘX and ΘY such that X = AbΘX
LLL and

Y = AbΘY
LLL. By Lemma 5.3.2, X = Σ sat(ΘX ) and Y = Σ sat(ΘY ). We will show

that Σ sat(ΘX )⊆Σ sat(ΘY ) = Σ sat(•Ω sat(ΘX )∨•Ω sat(ΘY )) which is by Lemma 5.3.2
sufficient to prove the lemma.

Let ϕ ∈ Σ sat(ΘX ) ⊆ Σ sat(ΘY ). Assume ϕ /∈ Σ sat(•Ω sat(ΘX ) ∨ •Ω sat(ΘY )).
Hence, there are β,Δ such that •Ω sat(ΘX ) ∨ •Ω sat(ΘY ) ≥LLL Dabn(β,Δ) where
ϕ ⊆ β = ∅ = (Φ \ ϕ) ⊆ Δ . However, by the supposition, ϕ is a choice set of
Ω sat(ΘX ) and Ω sat(ΘY ). Hence, ϕ ∨ (Φ \ ϕ)¬̌ ≥LLL

•Ω sat(Θx ),
•Ω sat(ΘY ). By the

transitivity of ≥LLL we have: ϕ∨ (Φ \ϕ)¬̌ ≥LLL Dabn(β,Δ). Hence, ϕ∨ (Φ \ϕ)¬̌
is LLL-trivial,—a contradiction to the LLL-contingency of Φ .

Let ϕ ∈ Σ sat(•Ω sat(ΘX ) ∨ •Ω sat(ΘY )). Due to symmetry it is sufficient to show
that ϕ ∈ Σ sat(ΘX ). Assume thus that ϕ /∈ Σ sat(ΘX ). Hence, there are β,Δ such
that Dabn(β,Δ) ∈ •Ω sat(ΘX ) for which Δ ∧ ϕ and β ∧ Φ \ ϕ. Note that
•Ω sat(•Ω sat(ΘX )∨•Ω sat(ΘY )) ≥LLL Dabn(β,Δ). But then ϕ /∈ Σ sat(•Ω sat(ΘX )∨
•Ω sat(ΘY )),—a contradiction. �

Fact C.2.1. Where Θ ∧W+ is LLL-trivial: (i) Σ(Θ ) = {Φ}, (ii) Σ⇐(Θ ) = {Φ},
(iii) Σ sat(Θ ) = ∅.

Lemma C.2.5. Where Θ ∧ W+: Θ is LLL-trivial iff Θ ∨ (Φ \ ⋃
Ω(Θ ))¬̌ is

LLL-trivial.
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Proof. “⇒” follows by the monotonicity of LLL. “≺”: Suppose Θ ∨(Φ\⋃ Ω(Θ ))¬̌
is LLL-trivial. Assume Θ is LLL-non-trivial. Hence, there is a finite β ∧ Φ \⋃

Ω(Θ ) such that Θ ≥LLL Dab(β). But then there is a Δ ∧ β such that Δ ∈
Ω(Θ ),—a contradiction. �

Lemma C.2.6. Where Θ ∧W+: ϕ ∈ Σ sat(Θ ∨(Φ\⋃ Ω(Θ ))¬̌) iff (i) ϕ ∈ Σ sat(Θ )

and (ii) ϕ ∧⋃
Ω(Θ ).

Proof. Note that by Lemma C.2.5 Θ is LLL-trivial iff Θ ∨ (Φ \⋃
Ω(Θ ))¬̌is LLL-

trivial in which case (by Fact C.2.1) Σ sat(Θ ) = Σ sat(Θ ∨ (Φ \⋃
Ω(Θ ))¬̌) = ∅

and hence the Lemma holds trivially. Let thus, Θ be LLL-non-trivial.
Let ϕ ∈ Σ sat(Θ ) and ϕ ∧ ⋃

Ω(Θ ). Assume ϕ /∈ Σ sat(Θ ∨ (Φ \⋃
Ω(Θ ))¬̌).

Hence, there are β,Δ ∧ Φ such that β ∨ Δ¬̌ ∈ Ω sat(Θ ∨ (Φ \ Ω(Θ ))¬̌), β ⊆
ϕ = ∅ = Δ ⊆ (Φ \ ϕ) and hence β ∧ Φ \ ϕ and Δ ∧ ϕ ∧ ⋃

Ω(Θ ). Thus,
Θ ∨ (Φ \⋃

Ω(Θ ))¬̌ ≥LLL Dabn(β,Δ). By the compactness of LLL, there is a
finite ω ∧ Φ \⋃

Ω(Θ ) such that Θ ≥LLL ¬̌⎨̌ω ¬̌ ∅̌ Dabn(β,Δ). Thus, Θ ≥LLL
Dabn(β ∨ ω,Δ). Hence, there are ∪-minimal β→ ∧ β ∨ ω and Δ → ∧ Δ such that
Θ ≥LLL Dabn(β→,Δ →). Note though that ϕ ⊆ β→ = ∅ = Δ → ⊆ (Φ \ ϕ). This is a
contradiction to ϕ ∈ Σ sat(Θ ).

Let ϕ ∈ Σ sat(Θ ∨ (Φ \ ⋃
Ω(Θ ))¬̌). Evidently, ϕ ∧ ⋃

Ω(Θ ). Assume ϕ /∈
Σ sat(Θ ). Hence, there are β,Δ ∧ Φ for which ϕ ⊆ β = ∅ = Δ ⊆ (Φ \ ϕ) and
β ∨ Δ¬̌ ∈ Ω sat(Θ ). Hence, Θ ≥LLL Dabn(β,Δ). By the monotonicity of LLL,
also Θ ∨ (Φ \⋃

Ω(Θ ))¬̌ ≥LLL Dabn(β,Δ). Hence, there are ∪-minimal β→ ∧ β

and Δ → ∧ Δ such that β→ ∨Δ →¬̌ ∈ Ω sat(Θ ∨ (Φ \⋃
Ω(Θ ))¬̌). Note however that

ϕ ⊆β→ = ∅ = Δ → ⊆ (Φ \ ϕ). A contradiction to the supposition. �

Lemma C.2.7. Where Θ ∧W+: Σ sat(Θ ∨ (Φ \⋃
Ω(Θ ))¬̌) = min∨∪(Σ sat(Θ )).

Proof. Note that by Lemma C.2.5 Θ is LLL-trivial iff Θ ∨ (Φ \⋃ Ω(Θ ))¬̌is LLL-
trivial in which case (by Fact C.2.1) Σ sat(Θ ) = Σ sat(Θ ∨ (Φ \⋃

Ω(Θ ))¬̌) = ∅
and hence the Lemma holds trivially. Let thus, Θ be LLL-non-trivial.

Let ϕ ∈ Σ sat(Θ ∨ (Φ \ ⋃
Ω(Θ ))¬̌). By Lemma C.2.6, ϕ ∧ ⋃

Ω(Θ ). By
Corollary A.2,

⋃
Ω(Θ ) = ⋃

min∪(Σ(Θ )). By Corollary C.1.1, min∪(Σ(Θ )) =
min∪(Σ sat(Θ )) and hence,

⋃
Ω(Θ ) = ⋃

min∪(Σ sat(Θ )). Thus, (1) ϕ ∧ ⋃
min∪

(Σ sat(Θ )). By Lemma C.2.6, (2) ϕ ∈ Σ sat(Θ ). By (1) and (2), ϕ ∈ min∨∪(Σ sat(Θ )).
Letϕ ∈ min∨∪(Σ sat(Θ )). Hence, (1)ϕ ∈ Σ sat(Θ ) and (2)ϕ ∧⋃

min∪(Σ sat(Θ )).
By Corollary C.1.1, (3) min∪(Σ sat(Θ )) = min∪(Σ(Θ )). By Corollary A.2, (2), (3),
we have (4) ϕ ∧ ⋃

Ω(Θ ). By (1), (4) and Lemma C.2.6, ϕ ∈ Σ sat(Θ ∨ (Φ \⋃
Ω(Θ ))¬̌). �

Corollary C.2.1. Where Θ ∧W+: min∨∪(AbΘ
LLL) = Ab

Θ ∨(Φ\⋃Ω(Θ ))¬̌
LLL

Corollary C.2.2. Where Θ ∧W+: min∨∪(Σ sat(Θ )) ∈ Ψ and min∨∪(AbΘ
LLL) ∈ Ψ .
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Theorem C.2.1. Where ALr is the AL in standard format characterized by 〈LLL,Φ,

reliability◦, ALmin∨∪ is characterized LLL, Φ and the semantic selection min∨∪:

(i) Θ ∧W+: Θ �ALr A iff Θ �ALmin∨∪
A

(ii) Θ ∧W: Θ ≥ALr A iff Θ ≥ALmin∨∪
A.

Proof. Ad (i): Θ �ALr A, iff, for all reliable models M of Θ , M |= A, iff [note
that U (Θ ) = ⋃

Ω(Θ )], for all M ∈ MLLL (Θ ) such that Ab(M) ∧ ⋃
Ω(Θ ),

M |= A, iff, Θ ∨ (Φ \⋃
Ω(Θ ))¬̌�LLL A, iff, for all M ∈ MLLL (Θ ) for which

Ab(M) ∈ AbΘ∨(Φ\Ω(Θ ))¬̌
LLL , M |= A, iff [by Corollary C.2.1] for all M ∈MLLL (Θ )

for which Ab(M) ∈ min∨∪
(
AbΘ

LLL

)
, M |= A, iff, Θ �ALmin∨∪

A.

Ad (ii): Θ ≥ALr A, iff, [by Corollary 2.4.2] Θ ∨ (Φ \⋃
Ω(Θ ))¬̌ ≥LLL A, iff, [by

the soundness and completeness of LLL] Θ ∨ (Φ \⋃
Ω(Θ ))¬̌�LLL A, iff, for all

M ∈MLLL (Θ ) for which Ab(M) ∈ Ab
Θ∨(Φ\⋃ Ω(Θ ))¬̌
LLL , M |= A, iff, [by Corollary

C.2.1] for all M ∈ MLLL (Θ ) for which Ab(M) ∈ min∨∪(AbΘ
LLL), M |= A, iff,

Θ �ALmin∨∪
A, iff [by Corollary 5.4.2], Θ ≥ALmin∨∪

A. �

C.3 Criteria for the Threshold Function Λ

In this section we investigate relationships among the various criteria for threshold
functions introduced in the main text. Then we prove some properties of some specific
threshold functions.

Fact C.3.1. (i) C2 implies C3; (ii) C3 implies C1; (iii) C1 implies DI∪; (iv) DI∪
implies C1; (v) C4 implies RA∪; (vi) DI∗ implies DI∪.

Proof. Ad (i): C3 follows trivially. Ad (ii): C1 follows immediately due to T1. Ad
(iii): Let X be ∪-dense in Y . By Fact C.1.1, min∪(X) = min∪(Y ). Hence, by C1,
Π(X) ⊆ Y = Π(Y ) ⊆ X . By T1 and since X ∧ Y , Π(X) = Π(Y ) ⊆ X . Hence DI∪
holds. Ad (iv): Suppose min∪(X) = min∪(Y ). We first show that X ⊆ Y is ∪-dense
in X and in Y . (Recall that X ⊆ Y ∈ Ψ by Lemma C.2.4.) Without loss of generality
we show the case for X . Let x ∈ X . By the smoothness of 〈X,∪◦ (Theorem 5.5.3)
there is a y ∈ min∪(X) such that y ∧ x . Since min∪(X) = min∪(Y ), y ∈ X ⊆ Y .
Hence, X ⊆ Y is ∪-dense in X . Thus, by DI∪, Π(X ⊆ Y ) = Π(X) ⊆ X ⊆ Y and by
T1, Π(X ⊆ Y ) = Π(X) ⊆ Y . By an analogous argument, Π(X ⊆ Y ) = Π(Y ) ⊆ X .
Hence, Π(X) ⊆ Y = Π(Y ) ⊆ X . Ad (v): This follows by Theorem 5.5.3. Ad (vi):
Suppose X is ∪-dense in Y . Hence, by Fact C.1.2 and since ∪ ∧ ∗, X is ∗-dense
in Y . Hence, due to DI∗, Π(X) = Π(Y ) ⊆ X . �

An overview of the relationship between the criteria is offered in Fig. 5.3.

http://dx.doi.org/10.1007/978-3-319-00792-2_5
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Fact C.3.2. min∪(X) = π∪(X)

Proof. This follows immediately by Theorem 5.5.3 and Fact 5.2.1. �

Fact C.3.3. Where X is ∗-dense in Y : π∗(X) = π∗(Y ) ⊆ X. (π∗ satisfies DI∗.)

Proof. “∧”: Let x ∈ π∗(X). Assume x /∈ π∗(Y )⊆X . Since π∗ is inclusive, x ∈ X
and thus x /∈ π∗(Y ). Hence, there is a y ∈ min∗(Y ) for which y ∗ x . However,
by Fact C.1.1, y ∈ min∗(X) and hence x /∈ π∗(X),—a contradiction. “⊇”: Let
x ∈ π∗(Y ) ⊆ X . Assume x /∈ π∗(X). Since x ∈ X , there is a y ∈ min∗(X) for
which y ∗ x . However, by Fact C.1.1, y ∈ min∗(Y ) and thus x /∈ π∗(Y ),—a
contradiction. �

Fact C.3.4. π∗(X) is ∗-dense in X. (π∗ satisfies RA∗.)

Proof. Let x ∈ X . Either there is a y ∈ min∗(X) such that y ⊇ x or not. In the
second case x ∈ π∗(X). Since min∗(X) ∧ π∗(X), there is a y ∈ π∗(X) such that
y ⊇ x also in the first case. �

Fact C.3.5. π∗(X) is a ∗-lower set of X.

Proof. Let x ∈ π∗(X) and y ∈ X such that y ∗ x . Hence, x /∈ min∗(X). Hence,
there is no z ∈ min∗(X) such that z ∗ x . Hence, by the transitivity of ∗, there is no
z ∈ min∗(X) such that z ∗ y. Thus, y ∈ π∗(X). �

Fact C.3.6. π[∗1,...,∗n ](X) is a ∗n-lower set of X.

Proof. We show this by induction on n. The case n = 1 is shown in Fact C.3.5.
“n−1 ⇒ n”: Let x ∈ π[∗1,...,∗n ](X) and y ∈ X such that y ∗n x . Hence, x ∈
π[∗1,...,∗n−1](X) and, since ∗n ∧ ∗n−1, y ∗n−1 x . Hence, y ∈ π[∗1,...,∗n−1](X) by
the induction hypothesis. The rest follows by Fact C.3.5. �

Fact C.3.7. Where ∗2 ∧ ∗1: If X is a ∗1-lower set of Y , then X is a ∗2-lower set
of Y .

Proof. Let x ∈ X and y ∈ Y such that y ∗2 x . Hence, y ∗1 X and thus, y ∈ X
since X is a ∗1-lower set of Y . �

Fact C.3.8. π[∗1,...,∗n ] (and hence also π∗) is a threshold function.

Proof. T1 and T3 are immediate. T2 follows by Fact C.3.6, Fact C.3.7 and since
∪ ∧ ∗n . �

The following related facts C.3.9–C.3.12 are especially useful in Sect. 5.5.1.

Fact C.3.9. Where 〈∗1, . . . ,∗n◦ is an abstraction sequence:

min∗1(X) ∧ min∗2(π∗1(X)) ∧ . . . ∧ min∗n (π[∗1,...,∗n−1](X))

http://dx.doi.org/10.1007/978-3-319-00792-2_5
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Proof. We show this by induction. “i = 1”: Let x ∈ min∗1(X). Assume x /∈
min∗2(π∗1(X)). Note that min∗1(X) ∧ π∗1(X) and hence x ∈ π∗1(X). Thus,
there is a y ∈ π∗1(X) such that y ∗2 x . But then y ∗1 x ,—a contradiction to the
minimality of x .

“i−1 ⇒ i”: Let x ∈ min∗i (π[∗1,...,∗i−1](X)). Hence, x ∈ π[∗1,...,∗i ](X).
Assume there is a y ∈ π[∗1,...,∗i ](X) such that y ∗i+1 x . Then, y ∗i x and
y ∈ π[∗1,...,∗i−1](X),—a contradiction to the minimality of x . �

Fact C.3.10. Where 〈∗1, . . . ,∗n◦ is an abstraction sequence, x ∈ π[∗1,...,∗i ](X)

and 0 ∈ i < j ∈ n2: either x ∈ π[∗1,...,∗ j ](X) or there is a y ∈ π[∗1,...,∗ j ](X) for
which y ∗i+1 x.

Proof. Let 0 ∈ i < n. We show the fact by induction for all j such that i < j ∈ n.
“ j = i+1”: Suppose x /∈ π[∗1,...,∗ j ](X). Since x ∈ π[∗1,...,∗i ](X) there is a

y ∈ min∗ j (π[∗1,...,∗i ](X)) ∧ π[∗1,...,∗ j ](X) such that y ∗ j x .
“ j ⇒ j+1”: By the induction hypothesis there is a x → ⊇i+1 x such that

x → ∈ π[∗1,...,∗ j ](X). Suppose x → /∈ π[∗1,...,∗ j+1](X). Hence, there is a y ∈
min∗ j+1(π[∗1,...,∗ j ](X)) such that y ∗ j+1 x →. Hence, y ∗i+1 x → and by the transi-
tivity of ∗i+1 also y ∗i+1 x . �

Fact C.3.11. π[∗1,...,∗n ](X) is ∗1-dense in X. (π[∗1,...,∗n ] satisfies RA∗1 .)

Proof. Follows by Fact C.3.10 (where i = 0 and j = n). �

Fact C.3.12. Where π[∗1,...,∗n ](X) ∧ Y ∧ X: π[∗1,...,∗n ](X) = π[∗1,...,∗n ](Y ).
(π[∗1,...,∗n ] satisfies CT and CM.)

Proof. “⊇”: Let x ∈ π[∗1,...,∗n ](Y ). Note that (†) x ∈ π[∗1,...,∗i ](Y ) for all i ∈ n
and x ∈ Y . We show by induction that x ∈ π[∗1,...,∗i ](X) for every i ∈ n.

“i = 1”: Assume x /∈ π∗1(X). Hence, there is a y ∈ min∗1(X) such that
y ∗1 x . By Fact C.3.9, y ∈ π[∗1,...,∗n ](X) and hence y ∈ Y . Since x ∈ π∗1(Y ),
y /∈ min∗1(Y ). Hence, there is a z ∈ Y such that z ∗1 y,—a contradiction to the
minimality of y.

“i ⇒ i+1”: By the induction hypothesis, x ∈ π[∗1,...,∗i ](X). Assume x /∈
π[∗1,...,∗i+1](X). Hence, there is a y ∈ min∗i+1(π[∗1,...,∗i ](X)) such that y ∗i+1 x .
Hence, by Fact C.3.9, y ∈ π[∗1,...,∗n ](X) and thus y ∈ Y . Since π[∗1,...,∗i+1](Y )

is a ∗i+1-lower set of Y by Fact C.3.6 and by (†), y ∈ π[∗1,...,∗i+1](Y ). Hence,
since x, y ∈ π[∗1,...,∗i+1](Y ) and y ∗i+1 x there is a z ∈ π[∗1,...,∗i+1](Y ) such that
z ∗i+1 y (otherwise y ∈ min∗i+1(π[∗1,...,∗i ](Y )) and hence x /∈ π[∗1,...,∗i+1](Y )).
Since y ∈ π[∗1,...,∗i+1](X) and π[∗1,...,∗i+1](X) is by Fact C.3.6 a∗i+1-lower set of
X , also z ∈ π[∗1,...,∗i+1](X),—a contradiction to the minimality of y.

“∧”: We show by induction that x ∈ π[∗1,...,∗i ](Y ) for all i ∈ n and all x ∈
π[∗1,...,∗n ](X). Note that x ∈ Y and x ∈ π[∗1,...,∗i ](X) for all i ∈ n and all
x ∈ π[∗1,...,∗n ](X).

2 For the special case i = 0 let π[∗1,...,∗0](X) denote X .
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“i = 1”: Let x ∈ π[∗1,...,∗n ](X). Assume x /∈ π∗1(Y ). Hence, there is a y ∈
min∗1(Y ) such that y ∗1 x . Hence, there is a z ∈ X such that z ∗1 y (otherwise
x /∈ π∗1(X)). By Fact C.3.11, there is a z→ ∈ π[∗1,...,∗n ](X) such that z→ ⊇1 z. Since
z→ ∈ Y and z→ ∗1 y this is a contradiction to the minimality of y.

“i ⇒ i + 1”: By the induction hypothesis x ∈ π[∗1,...,∗ j ](Y ) for every j ∈ i
and every x ∈ π[∗1,...,∗n ](X). Let x ∈ π[∗1,...,∗n ](X). Assume x /∈ π[∗1,...,∗i+1](Y ).
Since x ∈ π[∗1,...,∗i ](Y ), there is a y ∈ min∗i+1(π[∗1,...,∗i ](Y )) such that y ∗i+1 x .
By Fact C.3.9, y ∈ π[∗1,...,∗n ](Y ) and hence by “⊇”, y ∈ π[∗1,...,∗n ](X).
Hence, y ∈ π[∗1,...,∗i ](X). Since y ∗i+1 x and x ∈ π[∗1,...,∗i ](X), there is a
z ∈ π[∗1,...,∗i ](X) such that z ∗i+1 y (otherwise y ∈ min∗i+1(π[∗1,...,∗i ](X))

and hence x /∈ π[∗1,...,∗i+1](X)). We know by Fact C.3.10 that there is a z→ ∈
π[∗1,...,∗n ](X) for which z→ ⊇i+1 z and hence z→ ∗i+1 y. By the induction hypothe-
sis, z→ ∈ π[∗1,...,∗i ](Y ),—a contradiction to the minimality of y. �

Fact C.3.13. Where X is ∗n-dense in Y : π[∗1,...,∗n ](X) = π[∗1,...,∗n ](Y ) ⊆ X.
(π[∗1,...,∗n ] satisfies DI∗n .)

Proof. We show this by induction for each n ∈ N. The case “i = 1” has been shown
in Fact C.3.3. “n ⇒ n+1”: By Fact C.1.2, X is∗n-dense in Y. Hence, by the induction
hypothesis, π[∗1,...,∗n ](X) = π[∗1,...,∗n ](Y ) ⊆ X . Let x ∈ π[∗1,...,∗n+1](X). Thus,
x ∈ π[∗1,...,∗n ](X) = π[∗1,...,∗n ](Y ) ⊆ X .

Assume x /∈ π[∗1,...,∗n+1](Y ). Hence, there is a y ∈ min∗n+1(π[∗1,...,∗n ](Y ))

such that y ∗n+1 x .
Assume now that y ∈ X . Then y ∈ π[∗1,...,∗n+1](X) since by Fact C.3.6

π[∗1,...,∗n+1](X) is a ∗n+1-lower set. Hence, there is a y→ ∈ X such that y→ ∗i+1 y
(since otherwise y ∈ min∗n+1(π[∗1,...,∗n ](X)) and hence x /∈ π[∗1,...,∗n+1](X)).
But then, since by Fact C.3.6 π[∗1,...,∗n+1](Y ) is a ∗n+1-lower set, also y→ ∈
π[∗1,...,∗n+1](Y ) in contradiction to the minimality of y. Hence, our assumption
is false and y /∈ X .

Since X is ∗n+1-dense in Y , there is a x → ∈ X such that x → ∗n+1 y. Since
by Fact C.3.6, π[∗1,...,∗n+1](Y ) is a ∗n+1-lower set, also x → ∈ π[∗1,...,∗n+1](Y ),—
a contradiction to the minimality of y. Hence, our first assumption is false and
x ∈ π[∗1,...,∗n+1](Y ).

Let now x ∈ π[∗1,...,∗n+1](Y ) ⊆ X . Hence, x ∈ π[∗1,...,∗n ](Y ) ⊆ X =
π[∗1,...,∗n ](X). Assume that x /∈ π[∗1,...,∗n+1](X). Hence there is a y ∈ min∗n+1

(π[∗1,...,∗n ](X)) such that y ∗n+1 x . Hence, y ∗n x . Since y ∈ π[∗1,...,∗n ](X),
by the induction hypothesis also y ∈ π[∗1,...,∗n ](Y ). Hence, there is a y→ ∈
π[∗1,...,∗n+1](Y ) such that y→ ∗n+1 y (since otherwise y ∈ min∗n+1(π[∗1,...,∗n ](Y ))

in which case x /∈ π[∗1,...,∗n+1](Y )). Since X is ∗n+1-dense in Y , there is a x → ∈ X
such that x → ⊇n+1 y→. Since by Fact C.3.6, π[∗1,...,∗n+1](X) is a ∗i+1-lower set and
x → ∗i+1 x , also x → ∈ π[∗1,...,∗n+1](X),—a contradiction to the minimality of y. �

Remark C.3.1. RA∗n does in general not hold for π[∗1,...,∗n ]. Take as an example
π[∗c,∪] and the lower limit logic L⇒. Let Θ = {⇒p, ⇒q, ⇒r,¬p ∅ ¬q,¬p ∅ ¬r}.
It is easy to see that π∗c (AbΘ

L⇒) yields {{⇒p ∧ ¬p}} and thus π[∗c,∪](AbΘ
L⇒)
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= {{⇒p ∧ ¬p}}. The latter set is not ∪-dense in AbΘ
L⇒ since for instance there is

no ϕ ∈ π[∗c,∪](AbΘ
L⇒) such that ϕ ∧ {⇒q ∧ ¬q, ⇒r ∧ ¬r}.

Remark C.3.2. Fact C.3.3 does not generalize to arbitrary abstraction sequences.
Take as an example the set AbΘa∨{¬q,¬r}

L↓⇒ given our Example in Sect. 5.2.6. It is easy

to check that AbΘa∨{¬q,¬r}
L↓⇒ is∗co-dense in AbΘa

L↓⇒ . Note that π[∗co,∪]
(
AbΘa∨{¬q,¬r}

L↓⇒
) =

{Ab(Mq,r
i ) | i ∈ N} while π[∗co,∪]

(
AbΘa

L↓⇒
) ⊆ AbΘa∨{¬q,¬r}

L↓⇒ = ∅. This shows that in
general π[∗1,...,∗n ] does not satisfy DI∗1 .

However, for a more restricted class of abstraction orders we can guarantee DI∗1 .
This in shown in the remainder of this section.

Definition C.3.1. Given two partial orders∗ and∗→ we say that∗→ is∗-transitivity
preserving iff (i) x ∗ y ∗→ z implies x ∗→ z, and (ii) x ∗→ y ∗ z implies x ∗→ z.

An abstraction sequence 〈∗1, . . . ,∗n◦ is transitivity preserving iff for each i ∈ n,
∗i is ∗ j -transitivity preserving for all j < i .

Fact C.3.14. Where X is∗1-dense in Y and the abstraction sequence 〈∗1, . . . ,∗n◦
is transitivity preserving: π[∗1,...,∗n ](X) = π[∗1,...,∗n ](Y ) ⊆ X.

Proof. We show this by induction for any n ∈ N. By Fact C.3.3 this holds for n = 1.
“n ⇒ n + 1”:

“∧”: Let x ∈ π[∗1,...,∗n+1](X). Hence, x ∈ π[∗1,...,∗n ](X), x ∈ X , and by the
induction hypothesis, x ∈ π∗n+1(π[∗1,...,∗n ](Y ) ⊆ X). Thus, x ∈ π[∗1,...,∗n ](Y ).
Assume x /∈ π[∗1,...,∗n+1](Y ). Hence, there is a y ∈ minn+1(π[∗1,...,∗n ](Y )) for
which y ∗n+1 x . Since X is∗1-dense in Y , there is a z ∈ X for which z ⊇1 y. Hence,
since∗n+1 is a transitivity preserving abstraction order of∗1 and∗n , z ∗n+1 x and
thus z ∗n x . By Fact C.3.6 and since x ∈ π[∗1,...,∗n ](Y ), z ∈ π[∗1,...,∗n ](Y ) ⊆ X .
Now assume z /∈ min∗n+1(π[∗1,...,∗n ](Y )⊆X). Hence, there is a z→ ∈ π[∗1,...,∗n ](Y )⊆
X for which z→ ∗n+1 z. Since ∗n+1 is a transitivity preserving abstraction order of
∗1 and since z ⊇1 y, z→ ∗n+1 y,—a contradiction to the minimality of y. But then,
z ∈ min∗n+1(π[∗1,...,∗n ](Y )⊆X). However, then x /∈ π∗n+1(π[∗1,...,∗n ](Y )⊆X),—a
contradiction. Hence, our first assumption is false and x ∈ π[∗1,...,∗n+1](Y ).

“⊇”: Let x ∈ π[∗1,...,∗n+1](Y ) ⊆ X . Hence, x ∈ π[∗1,...,∗n ](Y ) ⊆ X . Assume x /∈
π[∗1,...,∗n+1](X) and hence by the induction hypothesis, x /∈ π∗n+1(π[∗1,...,∗n ](Y )⊆
X). Hence, there is a y ∈ min∗n+1(π[∗1,...,∗n ](Y )⊆X) such that y ∗n+1 x . Since x ∈
π[∗1,...,∗n+1](Y ), y /∈ min∗n+1(π[∗1,...,∗n ](Y )). Thus, there is a z ∈ π[∗1,...,∗n ](Y )\X
such that z ∗n+1 y. Since X is ∗1-dense in Y there is a z→ ∈ X such that z→ ∗1 z.
Since ∗n+1 is a transitivity preserving abstraction order of ∗1, also z→ ∗n+1 y and
thus z→ ∗n y. By Fact C.3.6 and since y ∈ π[∗1,...,∗n ](Y ), z→ ∈ π[∗1,...,∗n ](Y )⊆X ,—a
contradiction to the minimality of y. �

http://dx.doi.org/10.1007/978-3-319-00792-2_5
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C.4 Simplifying the Proof Theory: Some Meta-Proofs

Let in the following CnAL∗
Λ
(Θ ) =df

{
A | Θ ≥AL∗

Λ
A
⎧
. An AL∗

Λ proof is just like an

ALΛ proof except that in the marking definition we set ΠΘ
s = Π(Σs(Θ )).

Fact C.4.1. Σ(Θ ) ⊃= ∅ ⊃= Π(Σ(Θ ))

Note that Σ(Θ ) ⊃= ∅ by definition. The rest follows by Fact 5.3.1.3

Lemma C.4.1. Where Θ ∧W+ and Θ ≥AL∗
Λ

A:

(i) A is derivable on a line l of a finite AL∗
Λ proof from Θ on a condition β such

that β ⊆ ϕ = ∅ for a ϕ ∈ Π(Σ(Θ )).
(ii) For every ϕ ∈ Π(Σ(Θ )) there is a finite β ∧ Φ \ ϕ for which Θ ≥LLL

A ∅̌ Dab(β).

Proof. Suppose Θ ≥AL∗
Λ

A. Hence, there is a finite AL∗
Λ-proof P from Θ such that

(1) A is derived in this proof on an unmarked line l with a condition β, and (2) every
extension of the proof in which l is marked can be further extended such that l is
unmarked again. We now extend our proof P to the complete stage g(P). Note that
Π(Σ(Θ )) = Π

(
Σg(P)(Θ )

) = Π
(
Σs→(Θ )

)
for every later stage s→.

Ad (i): By Fact C.4.1, Π(Σ(Θ )) ⊃= ∅. Assume there is no ϕ ∈ Π(Σ(Θ )) such
that β ⊆ ϕ = ∅. By Definition 5.3.4, line l is marked at stage g(P) and hence at
every later stage s→—a contradiction to (2). Ad (ii): Assume there is a ϕ ∈ Π(Σ(Θ ))

for which there is no β ∧ Φ such that Θ ≥LLL A ∅̌ Dab(β) and β ⊆ ϕ = ∅. By
Definition 5.3.4.ii line l is marked at stage g(P) and hence at every later stage s→.
This contradicts (2). �

Lemma C.4.2. Where Θ ∧ W: If Θ ≥LLL A ∅̌ Dab(β) and β ⊆ ϕ = ∅ for a
ϕ ∈ Π(Σ(Θ )), then there is a finite AL∗

Λ-proof from Θ in which A is derived on the
condition β at an unmarked line.

Proof. Perfectly analogous to the proof of Lemma 5.4.3: just replace all occurrences
of Σ sat(Θ ) by Σ(Θ ) and all occurrences of Σ sat

s (Θ ) by Σs(Θ ).

Lemma C.4.3. Where Θ ∧ W: If for every ϕ ∈ Π(Σ(Θ )) there is a finite βϕ ∧
Φ \ ϕ such that Θ ≥LLL A ∅̌ Dab(βϕ), then Θ ≥AL∗

Λ
A.

Proof. Suppose the antecedent is true. By Lemma C.4.2, for every βϕ there is a
finite AL∗

Λ-proof from Θ in which A is derived on the condition βϕ at an unmarked
line l. Given any such proof (by Fact C.4.1 Π(Σ(Θ )) ⊃= ∅ and hence there is such a
βϕ), suppose the proof is extended to a stage s in which l is marked. Call this proof
P . We extend the proof further to the stage g(P). Note that for all ϕ ∈ Π(Σ(Θ )),
A has been derived on the condition βϕ at this stage. By Definition 5.3.4, line l is
unmarked at stage g(P). �

3 Note that that Fact 5.3.1 is applicable since Σ(Θ ) ∈ Ψ and Σs(Θ ) ∈ Ψ by Lemma C.2.3 and
Lemma C.2.2. We will in the following make use of these Lemmas without further notice.
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By Lemma C.4.1 and Lemma C.4.3 we immediately get:

Theorem C.4.1. Where Θ ∧W: Θ ≥AL∗
Λ

A iff for every ϕ ∈ Π(Σ(Θ )), Θ ∨ (Φ \
ϕ)¬̌ ≥LLL A.

This representational result can be further strengthened:

Theorem C.4.2. Where Θ ∧ W: Θ ≥AL∗
Λ

A iff for every ϕ ∈ Π(Σ(Θ )) \
Σ⇐(Θ ), Θ ∨ (Φ \ ϕ)¬̌ ≥LLL A.

Proof. Let ϕ ∈ Π(Σ(Θ ))⊆Σ⇐(Θ ). Θ ∨(Φ \ϕ)¬̌ ≥LLL A iff [by the soundness and

completeness of LLL] Θ ∨(Φ \ϕ)¬̌�LLL A iff for all M ∈MLLL

(
Θ ∨ (Φ \ ϕ)¬̌

)
,

M |= A iff for all M ∈ MLLL (Θ ) for which Ab(M) ∧ ϕ, M |= A iff Θ ∨ (Φ \
ψ)¬̌ �LLL A for all ψ ∈ {ω ∈ AbΘ

LLL | ω ∧ ϕ} iff [by Lemma 5.3.2 and by
the soundness and completeness of LLL] Θ ∨ (Φ \ ψ)¬̌ ≥LLL A for all ψ ∈ {ω ∈
Σ(Θ )\Σ⇐(Θ ) | ω ∪ ϕ} iff [by T2 and sinceϕ ∈ Π(Σ(Θ ))] Θ ∨(Φ\ψ)¬̌ ≥LLL A for
all ψ ∈ Xϕ and Xϕ =df {ψ ∈ Π(Σ(Θ )) \Σ⇐(Θ ) | ψ ∪ ϕ} ∧ Π(Σ(Θ )) \Σ⇐(Θ ).

Hence, for each ϕ ∈ Π(Σ(Θ )) ⊆ Σ⇐(Θ ) there is a Xϕ ∧ Π(Σ(Θ )) \ Σ⇐(Θ )

such that (†) CnLLL

(
Θ ∨ (Φ \ ϕ)¬̌

)
=⋂

ψ∈Xϕ
CnLLL

(
Θ ∨ (Φ \ ψ)¬̌

)
.

By Theorem C.4.1,

CnAL∗
Λ
(Θ ) =

⎩

ϕ∈Π(Σ(Θ ))

CnLLL

(
Θ ∨ (Φ \ ϕ)¬̌

)
. (1)

Obviously,

⎩

ϕ∈Π(Σ(Θ ))

CnLLL

(
Θ ∨ (Φ \ ϕ)¬̌

)
=

⎩

ϕ∈Π(Σ(Θ ))\Σ⇐(Θ )

CnLLL

(
Θ ∨ (Φ \ ϕ)¬̌

)
⊆

⎩

ϕ∈Π(Σ(Θ ))⊆Σ⇐(Θ )

CnLLL

(
Θ ∨ (Φ \ ϕ)¬̌

)
(2)

By (†),
⎩

ϕ∈Π(Σ(Θ ))⊆Σ⇐(Θ )

CnLLL

(
Θ ∨ (Φ \ ϕ)¬̌

)
=

⎩

ϕ∈Π(Σ(Θ ))⊆Σ⇐(Θ )

⎩

ψ∈Xϕ

CnLLL

(
Θ ∨ (Φ \ ψ)¬̌

)
⊇

⎩

ϕ∈Π(Σ(Θ ))\Σ⇐(Θ )

CnLLL

(
Θ ∨ (Φ \ ϕ)¬̌

)
(3)
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Hence, by (1), (2) and (3):

CnAL∗
Λ
(Θ ) =

⎩

ϕ∈Π(Σ(Θ ))\Σ⇐(Θ )

CnLLL

(
Θ ∨ (Φ \ ϕ)¬̌

)

�

Theorem 5.6.1 (restated). Where Θ ∧ W: If Π satisfies SIMP, then Θ ≥ALΛ

A iff Θ ≥AL∗
Λ

A iff Θ �ALΛ
A.

Proof. This follows immediately by Theorem C.4.2, Theorem 5.4.5 and Corollary
5.4.2. �

Lemma C.4.4. Where Θ ∧ W+ is LLL-trivial: Π(Σ sat(Θ )) = Π(Σ(Θ )) \
Σ⇐(Θ ).

Proof. By Fact C.2.1, Σ sat(Θ ) = ∅ and hence by Fact 5.3.1 also (1) Π(Σ sat(Θ )) =
∅. By Fact C.2.1, Σ(Θ ) = {Φ}. Hence, by T2 and T3, Π(Σ(Θ )) = {Φ}. By
Fact C.2.1, Σ⇐(Θ ) = {Φ}. Hence, (2) Π(Σ(Θ )) \ Σ⇐(Θ ) = ∅. By (1) and (2),
Π(Σ sat(Θ )) = Π(Σ(Θ )) \Σ⇐(Θ ). �

Theorem C.4.3. Where Θ ∧ W+: If Π satisfies C1 or DI∗, then Π(Σ sat(Θ )) =
Π(Σ(Θ )) \Σ⇐(Θ ).

Proof. Where Θ is LLL-trivial this has been shown in Lemma C.4.4. Let thus Θ

be LLL-non-trivial.
Ad C1: this follows with the help of Corollary C.1.1 (where ∗ = ∪): Since

min∪(Σ sat(Θ )) = min∪(Σ(Θ )), by C1, Π(Σ sat(Θ )) ⊆ Σ(Θ ) = Π(Σ(Θ )) ⊆
Σ sat(Θ ). By T1, Π(Σ sat(Θ )) = Π(Σ(Θ )) \Σ⇐(Θ ). Ad DI∗: this follows by Fact
C.3.1. �
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D.1 Some proofs

Lemma D.1.1. The core properties, (rMP) and (Inh) entail
(

A1 ∧ (A1 � . . . �
An � B)

) ⊕ (B ∅ •An).

Proof. Due to A1, A1 � A2 and (rMP) we have A2 ∅ •A1. Analogously we get
A3 ∅ •A2 ∅ •A1 and finally B ∅ •An ∅ · · · ∅ •A1. By iterated applications of (Inh)
we get B ∅ •An . �

Fact 6.3.1 (restated). (rMP), (Inh) and the core properties entail

≥ (
A ∧ (A � B � C) ∧ (A � ¬C)

) ⊕ •B (Spe2)

Proof. By means of A, A � B � C and the lemma, (†) C ∅ •B. By means of A
and A � ¬C , by (rMP) ¬C ∅ •A. Since A � B, by (Inh), •A ⊕ •B. Hence, (‡)
¬C ∅ •B. By (†) and (‡), dotu B. �

Fact 6.4.1 (restated). The core properties, (rMP) and (Inh) imply (Spe1), (Spe2)
and the following:

If ≥ A ⊕ B, then ≥ (
A ∧ (B � C) ∧ (A � ¬C)

) ⊕ •B (sSpe)

≥ (
A ∧ (A � B1 � . . . � Bn � C) ∧ (A � ¬C)

) ⊕ •Bn (SpeG)

≥ (
A ∧ (A � B1 � . . . � Bn � D)∧
(A � C1 � . . . � Cm � ¬D) ∧ (Bn � . . . � Cm)

) ⊕ •Cm
(PreE)

If ≥ ¬
∧

I
Di , then ≥

(
A ∧

∧

I
(A � . . . � Bi � Di )

)
⊕

⎫

I
•Bi (Conf)

Proof. “(Spe1)”: this is trivial. “(SpeG)”: By Lemma D.1.1, C ∅•Bn and¬C ∅•A.
By multiple applications of (Inh), •A ⊕ •Bn . Hence ¬C ∅ •Bn . Thus, •Bn . (Spe2)

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 361
DOI: 10.1007/978-3-319-00792-2, © Springer International Publishing Switzerland 2014
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and (sSpe) follow immediately with (SpeG) and (CI). “(PreE)”: By Lemma D.1.1,
D ∅ •Bn and ¬D ∅ •Cm . By multiple applications of (Inh), •Bn ⊕ •Cm . Hence,
D ∅ •Cm . Thus, •Cm . “(Conf)”: By Lemma D.1.1, Di ∅ •Bi . Due to ¬⎨

I Di and
by classical logic,

⎬
I •Bi . �

Fact 6.5.1 (restated). The core properties, (RM), (rMP) and (Inh) imply

≥ (
A ∧ (A � B � C) ∧ (A ⊃� C)

) ⊕ •B (Spe’)

≥ (
A ∧ (A � B1 � . . . � Bn � C) ∧ (A ⊃� C)

) ⊕ •Bn (SpeG’)

≥ (
A ∧ (A � B1 � . . . � Bn) ∧ (Bn ⊃� D) ∧

(A � C1 � . . . � Cm � D) ∧ (Bn � . . . � Cm)
) ⊕ •Cm (PreE’)

Proof. “(Spe’)”: Suppose¬•B. Then, due to (Spe1), B ⊃� ¬A. By (RM), (A∧B) �
C . But then by (RT), A � C ,—a contradiction. “(SpeG’)”: Suppose ¬•Bn . Hence,
due to (Inh), ¬•Bi for all i � n and ¬•A. Hence, due to (Spe’), A � Bi for all
i ∈ n (otherwise, •Bi ). But then by (Spe’), •Bn ,—a contradiction. “(PreE’)”: similar
and left to the reader. �

D.2 The Semantics

I focused in this chapter on the base logics L ∈ {P, R}. There are many semantics
around for the core properties (see Footnote 2). Paradigmatically I will extend the
semantics based on preferential models (see [1]) for our lower limit logics Lp. Again
there are various ways to enhance preferential models such as to serve as semantical
representations of Lp. I am going to present versions which are technically straight-
forward. In this appendix I will cover the case for L = P and hence the logic Pp.
However, for Rp the semantics are defined analogously.

We call interpretations W → {0, 1} which satisfy the classical truth conditions
for ∧,∅,¬,⊕ and ≡ classical propositional worlds and write U for the set of all
classical propositional worlds.

Definition D.2.1. Let∗ be a partial order on a set U and V ∧ U . We say that x ∈ V
is minimal in V iff there is no y ∈ V , such that y ∗ x . We shall say that V is smooth
iff for all x ∈ V , either there is a y minimal in V , such that y ∗ x or x is itself
minimal.

Definition D.2.2. A preferential model M is a triple 〈S, l,∗◦ where S is a set, the
elements of which will be called states, l : S → U assigns a classical propositional
world to each state and ∗ is a strict partial order on S satisfying the following
smoothness condition: forall A ∈ W , the set of states ∼A =df {s | s ∈ S, s |≡ A} is
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smooth, where |≡ is defined as s |≡ A (read s satisfies A) iff l(s)(A) = 1. M validates
A � B, in signs M |= A � B, iff, for any s minimal in ∼A, s |≡ B. For the classical
connectives |= is defined as usual:

M |= A ∅ B iff M |= A or M |= B (S-∅)

M |= A ∧ B iff M |= A and M |= B (S-∧)

M |= ¬A iff M � A (S-¬)

M |= A ⊕ B iff M |= ¬A ∅ B (S-⊕)

M |= A ≡ B iff M |= A ⊕ B and M |= B ⊕ A (S-≡)

where A and B are in the (∧,∅,⊕,¬,≡)-closure of W� and W� is the set of all
conditionals.

Let W• be the set of all formulas of the form •A. Let Pbe the (∧,∅,⊕,¬,≡)-
closure of W ∨W• ∨W�. We have two tasks in order to define the semantics for
Pp. On the one hand, preferential models have to be generalized in order to allow for
the modeling of factual premises. On the other hand, the new rules (rMP) and (Inh)
have to be taken into account. We will realize both requirements by introducing an
actual world to the preferential models defined above.

Definition D.2.3. A preferentialc model M with an actual world is defined by
〈S, l,∗, @◦ where M → = 〈S, l,∗◦ is a preferential model and @ is an interpre-
tation P → {0, 1} such that the classical clauses (where now A, B ∈ P) (M-∅),
(M-∧), (S-¬), (M-⊕), and (S-≡) hold and the following requirements are satisfied:

M → |= A � B iff @(A � B) = 1 (S-@)

If @(A) = @(A � B) = 1 and @(•A) = 0, then @(B) = 1 (S-rMP)

If @(•A) = @(A � B) = 1, then @(•B) = 1 (S-Inh)

We define M |= ϕ iff @ (ϕ) = 1. We denote the corresponding semantic conse-
quence relation by �p

P which is defined in the usual way: Θ �p
P ϕ iff all preferentialc

models M with an actual world that verify all members of Θ also verify ϕ.

Lemma D.2.1. Let Θ ∪ P be a Pp-consistent premise set. There is a preferentialc
model M with an actual world for which M |= Θ .

Proof. (Sketch of the proof). Let Θ → be a maximal consistent (w.r.t. Pp) extension
of Θ . Take any preferential model M → of Θ → ⊆W�. Obviously such a model exists
since Θ → ⊆W� is Pp-consistent. Let @ be definedby @ (A) = 1 iff A ∈ Θ →. Let
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M = 〈M →, @◦. Obviously @ fulfills the requirements (S-@), (S-rMP), (S-Inh), the
classical properties and the core properties. �

Theorem D.2.1. If Θ ≥Pp ϕ then Θ �p
P ϕ.

Proof. (Sketch of the proof). The proof proceeds via an induction over the derivative
steps constituting a proof of ϕ.

“n = 1”: If ϕ is derived by a core rule R, then the antecedents of the rule are valid
in all models M = 〈M →, @◦ of Θ since they are in Θ and due to the fact that M → is
a preferential model, ϕ is also valid in M →. By (S-@), ϕ is valid in M . If ϕ = B has
been derived by (rMP) from A, A � B, and ¬•A, then A, A � B,¬•A ∈ Θ . By
(S-rMP) and (S-@), B is valid in all models. For (S-Inh) and the classical rules the
argument is similar.

“n → n + 1”: Let ϕ be derived by a core rule R. All antecedents of the rule are
valid in all models M = 〈M →, @◦ of Θ and since M → is a preferential model, also the
consequent of Ris valid in M →. By (S-@), ϕ is valid in M . If ϕ = B has been derived
by (rMP) from A, A � B, and ¬•A, then Θ �p

P A, A � B,¬•A. By (S-rMP), B
is valid in all models. For (S-Inh) and the classical rules the argument is similar. �

Theorem D.2.2. If Θ �p
P ϕ then Θ ≥Pp ϕ.

Proof. Suppose Θ ⊀Pp ϕ, then Θ ∨ {¬ϕ} is Pp-consistent. Thus, by Lemma D.2.1,
there is a preferentialc model with an actual world for Θ ∨ {¬ϕ}. �

So far I have presented the semantics for the ALs based on the core properties,
i.e., based on P. For Rp the semantics are defined analogously. Instead of preferential
models, ranked models are used. Ranked models are preferential models for which
∗ is modular (see [2] and Sect. 7.1.3 for details). The completeness and soundness
results are shown analogously. The easy meta-proofs are left to the reader.

http://dx.doi.org/10.1007/978-3-319-00792-2_7
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Fact 7.1.1 (restated). Where |∼ is a preferential consequence relation:

(i) δ � σ implies δ |∼δ ∧ ¬σ, δ |∼¬σ, and δ ∅ σ |∼δ
(ii) δ |∼σ and δ � γ imply σ � γ

(iii) δ � σ and σ � γ imply δ � γ

Proof. Ad (i): Suppose δ�σ. Then, δ∅σ |∼¬σ. Since also δ∅σ |∼δ∅σ and by
(And), δ ∅ σ |∼δ ∧ ¬σ. By (Right Weakening), δ ∅ σ |∼δ. Since by (Reflexivity)
and (Right Weakening) also δ |∼δ ∅ σ, we get by (Equivalence), δ |∼δ ∧ ¬σ and
δ |∼¬σ by (Right Weakening).

Ad (ii): Suppose δ |∼σ and δ � γ. Hence, δ ∅ γ |∼¬γ and by (i), δ ∅ γ |∼δ.
Evidently also δ |∼δ ∅ γ. Since δ |∼σ by (EQ) also δ ∅ γ |∼σ. Hence, by (Right
Weakening), δ∅ γ |∼σ ∅ γ. By (Cautious Monotonicity), (δ∅ γ)∧ (γ ∅ σ) |∼¬γ.
By (S), γ ∅ σ |∼(δ ∅ γ) ⊕ ¬γ and hence γ ∅ σ |∼¬γ which is the same as σ � γ.

Ad (iii): Suppose (1) δ � σ and (2) σ � γ. By (2), (i) and (Right Weakening),
σ∅γ |∼σ and σ |∼σ∅γ. Since σ |∼δ∅σ and by (Equivalence), (3) σ∅γ |∼δ∅σ.
By (2) and (Cautious Monotonicity), (σ∅γ)∧(δ∅σ) |∼¬γ. By (S), δ∅σ |∼¬(σ∅
γ)∅¬γ and hence δ∅ σ |∼¬γ. Since also σ ∅ γ |∼¬γ, by (OR), δ∅ σ ∅ γ |∼¬γ.
By (Reflexivity) and (Right Weakening), δ ∅ σ |∼δ ∅ σ ∅ γ. Also, by (3) and
since by (Reflexivity) δ ∅ σ |∼δ ∅ σ, by (Or) δ ∅ σ ∅ γ |∼δ ∅ σ. By (1) and (i)
δ ∅ σ |∼δ. Thus, by (Equivalence), δ ∅ σ ∅ γ |∼δ. By (Reflexivity) and (Right
Weakening), δ |∼δ ∅ σ ∅ γ. By (Reflexivity) and (Right Weakening), δ |∼δ ∅ γ.
Hence, by (Equivalence), δ∅σ∅γ |∼δ∅γ. By (Reflexivity) and (Right Weakening),
δ ∅ γ |∼δ ∅ σ ∅ γ. Since δ ∅ σ ∅ γ |∼¬γ, by (Equivalence), δ ∅ γ |∼¬γ. �

Fact 7.2.4 (restated). δ |∼M l0

Proof. There are two possible cases: either σM (δ) = ∅ or σM (δ) ⊃= ∅. In the former
case by definition δ |∼M l0. In the latter case let i = AbDeg∗(δ). By (R) (i), w |= l0
for all w ∈ min∗(σM (δ)). Hence, δ |∼M l0. �

Fact 7.2.5 (restated). AbDeg∗(li ) = i iff σM (li ) ⊃= ∅, else AbDeg∗(li ) = λ.

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 365
DOI: 10.1007/978-3-319-00792-2, © Springer International Publishing Switzerland 2014
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Proof. “⇒”: By the definition of AbDeg∗.
“≺”: Let σM (li ) ⊃= ∅. Assume AbDeg∗(li ) < i . Then by (R) (ii), for all

w ∈ min∗(σM (li )), w |= ¬li ,—a contradiction. By (R) (i), for all w for which
rank∗(w) = i , w |= li . Hence, AbDeg∗(li ) = i . The rest follows by the definition
of AbDeg∗. �

Fact 7.2.6 (restated). Where i, j ∈ N , if i < j then li �M l j .

Proof. Let i, j ∈ N such that i < j . There are two cases: (a) σM (li ∅ l j ) = ∅ and
(b) σM (li ∅ l j ) ⊃= ∅. In the case (a) li ∅ l j |∼M ¬l j and hence li �M l j . Suppose now
that (b) is the case. Let k = AbDeg∗(li ∅ l j ). Suppose k < i . Then by (R) (ii), for
all w ∈ min∗(σM (li ∅ l j )), w |= ¬li ,¬l j ,—a contradiction. Hence k ≥ i . Since by
(R) (i) for all w for which rank∗(w) = i , w |= li , k = i . Note that for all these w

by (R) (ii), w |= ¬l j . Hence li ∅ l j |∼M ¬l j and hence li �M l j . �

Fact 7.2.7 (restated). For all δ ∈ V+p and all i ∈ N ,

(i) i < AbDeg∗(δ) iff li �M δ.
(ii) i ∈ AbDeg∗(δ) iff δ |∼M li .
(ii) where i < m, AbDeg∗(δ) = i iff, δ |∼M li and δ ⊃ |∼M li+1
(iv) AbDeg∗(δ) = i iff, not li �M δ and (li−1 �M δ or i = 0).

Proof. Ad (ii): “⇒” Let i ∈ AbDeg∗(δ). Let AbDeg∗(δ) = j . If j = λ then
σM (δ) = ∅ and hence δ |∼M li . If j ⊃= λ then by (R) (i) for all w ∈ min∗(σM (δ)),
w |= li . Hence, δ |∼M li . “≺”: Let δ |∼M li . Assume AbDeg∗(δ) < i . Then by (R)
(ii) for all w ∈ min∗(σM (δ)), w |= ¬li ,—a contradiction.

Ad (i): “≺”: Suppose li �M δ. By Fact 7.2.5, AbDeg∗(li ) ∈ {i,λ}. If
AbDeg∗(li ) = i , then by Fact 7.1.2, AbDeg∗(δ) > i . If AbDeg∗(li ) = λ, then by
Fact 7.1.2, AbDeg∗(δ) = λ > i . “⇒”: Suppose now that i < AbDeg∗(δ). By (ii),
δ |∼M li . By Fact 7.2.5, AbDeg∗(li ) ∈ {i,λ}. If AbDeg∗(li ) = i then by Fact 7.1.2,
li �M δ. If AbDeg∗(li ) = λ then σM (li ) = ∅. Due to δ |∼M li , also σM (δ) = ∅.
Hence σM (δ ∅ li ) = ∅. Hence l �M δ.

Ad (iii): “⇒”: Suppose AbDeg∗(δ) = i . Then by (ii), δ |∼M li . Suppose that
i ⊃= m. By Fact 7.2.5, AbDeg∗(li+1) ∈ {i + 1,λ}. Hence, δ |∼M ¬li+1. Hence,
δ ⊃ |∼M li+1.

“≺”: Suppose δ ⊃ |∼M li . By Fact 7.2.5, AbDeg∗(li ) ∈ {i,λ}. Hence, AbDeg∗
(δ) ≥ i . Suppose further δ ⊃ |∼M li+1. By (ii), AbDeg∗(δ) < i + 1. Hence,
AbDeg∗(δ) = i .

Ad (iv): “⇒”: Suppose AbDeg∗(δ) = i . By (i), not li �M δ. Also by (i), if i ⊃= 0,
li−1 �M δ. “≺”: Suppose now that not li �M δ. Suppose further that i > 0 and
li−1 �M δ. By (i), i−1 < AbDeg∗(δ) and i ⊃< AbDeg∗(δ). Hence, AbDeg∗(δ) =
i . Suppose now i = 0. By (i), 0 ⊃< AbDeg∗(δ). Hence, AbDeg∗(δ) = 0. �

Fact 7.2.8 (restated). If li−1 �M δ, then δ |∼M l j for all j ∈ i and j ∈ m.

Proof. Let li−1 �M δ. By Fact 7.1.2, AbDeg∗(li−1) ∈ AbDeg∗(δ). If σM (δ) = ∅,
δ |∼M l j for all j ∈ i . Otherwise, by Fact 7.2.5, AbDeg∗(li−1) = i − 1.
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By Fact 7.1.2, AbDeg∗(li−1) < AbDeg∗(δ). By (R) (i), for all w ∈ min∗(σ(δ)),
w |= l j for all j ∈ i . Hence, δ |∼M l j for all j ∈ i . �

Fact 7.2.9 (restated). If lm �M δ, then δ |∼M ⇐.

Proof. Let lm �M δ. By Fact 7.2.5, AbDeg∗(lm) ∈ {m,λ}. In the second case, by
Fact 7.1.2, AbDeg∗(δ) = λ and hence δ |∼M ⇐. In the first case, by Fact 7.1.2,
AbDeg∗(δ) > m. By (R), for all w ∈ W , rank∗(w) ∈ m. Hence, σM (δ) = ∅.
Thus, δ |∼M ⇐. �

Lemma 7.2.1 (restated). The following holds for the mapping π:

(i) π(M) satisfies requirement (R).
(ii) For all δ,σ ∈ Vp, δ |∼M σ iff δ |∼π(M) σ.

(iii) For all w ∈ W , rank∗(w) = rank∗→(η(w)).
(iv) π(M) is a rational+ model.

Proof. Ad (iii): This can be shown by an induction on rank∗(w). Assume
rank∗(w) = 0. Suppose further that rank∗→(η(w)) ⊃= 0. Hence, there is a w→ such that
rank∗→(η(w→)) = 0. However, then by the construction, rank∗(w→) < rank∗(w),—
a contradiction. Let now rank∗(w) = n + 1. By the definition of rank∗ there is
a sequence of worlds w0, . . . , wn such that rank∗(wi ) = i for all i ∈ n. By the
induction hypothesis, rank∗→(η(wi )) = i for all i ∈ n. Moreover, by the con-
struction, rank∗→(η(wn)) < rank∗→(η(w)) since rank∗(wn) < rank∗(w). But then,
rank∗→(η(w)) > n. Assume rank∗→(η(w)) > n + 1. Hence, there is a wn+1 for
which rank∗→(η(wn+1)) = n + 1. Since rank∗→(η(w)) > rank∗→(η(wn+1)) >

rank∗→(η(wn)) = n also rank∗(w) > rank∗(wn+1) > rank∗(wn) = n. A con-
tradiction the fact that rank∗(w) = n+1. Thus, our assumption was false and hence
rank∗→(η(w)) = n + 1.

Ad (i): By (iii) and Fact 7.1.6ii, for all η(w) ∈ η(W ), rank∗→(η(w)) ∈ m. Let
rank∗→(η(w)) = i . By (iii), rank∗(w) = i . By the definition of η, η(w) |= l j for all
j ∈ i and η(w) |= ¬l j for all j ∈ N for which j > i . Hence, (R) is satisfied.

Ad (ii): By the definition of η and by (iii), min∗(σM (δ)) = {w | η(w) ∈
min∗→(σ〈η(W ),∗→◦(δ))}. Also due to the definition of η, w |= σ iff η(w) |= σ.

Ad (iv): Follows by (i) and (iii). �

Lemma 7.2.2 (restated). The following holds for the mapping μ:

(i) μ(M) is a rational L-model.
(ii) For all δ,σ ∈ Vp, δ |∼M σ iff δ |∼μ(M) σ.

(iii) For all w ∈ W , rank∗(w) ≥ rank∗→(η(w)).

Proof. Ad (i): We have to show that ∗→ is modular. Define D =df {ρ(w) | w ∈ W }
where ρ(w) picks out an arbitrary member of min∗(η−1({w})). Define υ : η(W )→
D by η(w) ˆ→ ρ(w). We will show that υ defines an isomorphism from μ(M) =
〈η(W ),∗→◦ to 〈D,∗D◦ where ∗D = ∗ ⊆ (D× D). By definition υ is surjective. Let
now η(w) ⊃= η(w→). Hence, there is an δ ∈ P such that η(w) |= δ and η(w→) ⊃|= δ.
Hence, for all w→→ ∈ η−1({w}), w→→ |= δ and for all w→→→ ∈ η−1({w→}), w→→ ⊃|= δ. Hence,
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υ(η(w)) ⊃= υ(η(w→)). This shows that υ is injective. We still need to show that υ
is structure-preserving. Suppose η(w) ∗→ η(w→). Then, by the definition of ∗→, for
all w→→ ∈ min∗(η−1({w})) and for all w→→→ ∈ min∗(η−1({w→})), w→→ ∗ w→→→. Hence,
υ(η(w)) ∗ υ(η(w→)). Suppose now that υ(η(w)) ∗ υ(η(w→)). Since υ(η(w)) ∈
min∗(η−1({w})) and υ(η(w→)) ∈ min∗(η−1({w→})), η(w) ∗→ η(w→).

Since ∗ is modular, also ∗D is modular. Hence, due to the fact that υ is an
isomorphism between μ(M) and 〈D,∗D◦, ∗→ is also modular.

Ad (iii): This can be shown by an induction on rank∗→(η(w)). Suppose
rank∗→(η(w)) = 0. Evidently rank∗(w) ≥ 0. Suppose now that rank∗→(η(w)) =
n+1. By the definition of rank∗→ , there are w0, . . . , wn such that rank∗→(η(wi )) = i
for all i ∈ n. Since η(w0) ∗→ · · · ∗→ η(wn) ∗→ η(w), also w→0 ∗ · · · ∗
w→n ∗ w→ for all w→0 ∈ min∗(η−1({w0})), . . . , w→n ∈ min∗(η−1({wn})) and all
w→ ∈ min∗(η−1({w})). Then rank∗(w→) > n for all w→ ∈ min∗(η−1({w})). Hence
rank∗(w) > n.

Ad (ii): Suppose first that δ |∼M σ. Assume δ ⊃|∼μ(M) σ. Hence, there is a η(w) ∈
min∗→(σμ(M)(δ)) for which η(w) ⊃|= σ. Let w→ ∈ min∗(σM (δ)). Since for all w→→ ∈
η−1({η(w)}), (†) w→→ |= δ, rank∗(w→→) < rank∗(w→). Let w→→ ∈ min∗(η−1({η(w)})).
Note that w→ ∈ min∗(η−1({η(w→)})) since otherwise w→ /∈ min∗(σM (δ)). By the
definition of ∗→ and (†), rank∗→(η(w→)) < rank∗→(η(w→→)) = rank∗→(η(w)). This is
a contradiction to the minimality of η(w) in min∗→(σμ(M)(δ)).

Suppose now that δ |∼μ(M) σ. Assume δ ⊃ |∼M σ. Hence, there is a w ∈ min∗(σM

(δ)) for which δ ⊃|= σ. This also means that η(w) /∈ min∗→(σμ(M)(δ)). Thus, there
is a w→ for which η(w→) ∈ min∗→(σμ(M)(δ)) and η(w→) ∗→ η(w). By the definition of
∗→, for all w→→ ∈ min∗(η−1({η(w→))), w→→ ∗ w. Since w→→ |= δ this is a contradiction
to w ∈ min∗(σM (δ)). �
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In Sect. F.1 we investigate the semantics of our core systems LA and LC and prove
completeness and soundness. The representational results proven in Sect. F.2 for the
logics for admissible and complete extensions, and in Sect. F.3 for the other extension
types are given with respect to skeptical acceptance. We prove the representational
results for credulous acceptance in Sect. F.4.

F.1 Semantics for the Core Systems LA and LC

For the sake of clarity we recapitulate the definitions of the language and the axiom-
atization of logics LA and LC before we define the semantics.

F.1.1 The Language

We use a classical propositional language with an additional binary operator, �,
that represents the attack relation. Formally our language Wn (where n is a natural
number) is defined in the following way:

Vn := p1 | p2 | p3 | · · · | pn

W�
n := 〈Vn◦� 〈Vn◦ | ⇐� 〈Vn◦

Wn := ⇐ | 〈Vn◦ | 〈W�
n ◦ | ¬〈Wn◦ | 〈Wn◦ ∧ 〈Wn◦ |

〈Wn◦ ∅ 〈Wn◦ | 〈Wn◦ ⊕ 〈Wn◦

Vn are the propositional letters of our language. We will in the remainder abbreviate
¬(δ � σ) by δ ⊃� σ. Moreover, Greek letters δ,σ and γ are used as meta-variables
for propositional letters, and ϕ and ψ are used for formulas in Wn .

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 369
DOI: 10.1007/978-3-319-00792-2, © Springer International Publishing Switzerland 2014
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F.1.2 The Syntactic Rules

Let us recapitulate the axiomatization of our core systems LA and LC. Before we
state the rules, we define:

def σ =df

⎫

δ∈Vn

(
δ ∧ (δ � σ)

)
(Def)

The following rules are needed:

δ δ � σ

¬σ
(R�)

δ σ � δ

def σ
(Rad)

⇐ ⊃� δ

¬δ
(R⇐)

⇐� σ
⎨

δ∈Vn

(
(δ � σ) ⊕ def δ

)

σ
(RCo)

Definition F.1.1. LA is classical propositional logic enriched by rules (R�), (Rad),
and (R⇐). LC is LA enriched by (RCo).

F.1.3 The Semantics

We will define the semantics for logics L (where L ∈ {LA, LC}) via an assignment
function v : Vn ∨W�

n → {0, 1} and an L-valuation vL
M :Wn → {0, 1} determined

by the assignment. A model M is defined by the assignment v. In Sect. F.1.3.1 we take
a closer look at assignment functions, and in Sect. F.1.3.2 we define the L-valuations.

Once the L-valuations are defined, model validity and the semantic consequence
relation can be defined in the usual way. We define M |=L ϕ iff vL

M (ϕ) = 1. We say
that a model M is an L model of Θ ∪ Wn iff M |=L ϕ for all ϕ ∈ Θ . We write
ML(Θ ) for the set of all L-models of Θ . The semantic consequence relations �L
are defined in the usual way: Θ �L ϕ iff for all L-models M of Θ , M |=L ϕ.

F.1.3.1 The Assignment Function

We use an extended assignment function v : Vn ∨W�
n → {0, 1} that assigns truth

values to both, propositional letters and ‘attacks’, i.e., formulas in W�
n . A model M

is defined by an assignment function v.
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Some useful definitions for the remainder:

v(def δ) =df max
σ∈Vn

(
min(v(σ), v(σ � δ))

)

vRral =df 1− max
δ,σ∈Vn

(
min(v(δ), v(δ � σ), v(σ))

)

vRbot =df 1− max
δ∈Vn

(
min(v(δ), 1− v(⇐� δ))

)

vRad =df 1− max
δ,σ∈Vn

(
min(v(δ), v(σ � δ), 1− v(def σ))

)

vRCo =df 1−
max
σ∈Vn

(
min

(
v(⇐� σ), min

δ∈Vn
(max(1− v(δ � σ), v(def δ))), 1− v(σ)

))

v
LA
i =df min(vRral, vRbot, vRad)

v
LC
i =df min(vRral, vRbot, vRad, vRCo)

Note that vRral corresponds to our syntactical rule (R�) in the sense that vRral = 1
if the assignment satisfies the semantic counterpart to (R�). That is to say, vRral = 1
iff v satisfies

If v(δ) = v(δ � σ) = 1, then v(σ) = 0. (S�)

The situation is analogous for vRbot, vRad and vRCo with respect to the following
properties:

If v(δ) = 1, then v(⇐� δ) = 1. (S⇐)

If v(δ) = v(σ � δ) = 1,

then there is a γ ∈ Vn for which v(γ) = v(γ � σ) = 1. (Sad)

If v(⇐� σ) = 1 and for all δ ∈ Vn we have
⎭
v(δ � σ) = 0 or

(there is a γ ∈ Vn for which v(γ) = v(γ � δ) = 1)
]
, then v(σ) = 1. (SCo)

We call an assignment v LA-intended iff v
LA
i = 1, and we call it LC-intended

iff v
LC
i = 1. Obviously, every LC-intended assignment is LA-intended as well. The

following lemma shows that intended assignments have the corresponding intuitive
properties:

Lemma F.1.1. Let v be an assignment function.

(i) v
LA
i = 1 iff v satisfies (S�), (Sad) and (S⇐).

(ii) v
LC
i = 1 iff v satisfies (S�), (Sad), (S⇐), and (SCo).
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Proof. Ad (i): “⇒”: Let v
LA
i = 1. Assume v(δ) = 1. Since vRbot = 1,

min(v(δ), 1 − v(⇐ � δ)) = 0. Thus, v(⇐ � δ) = 1. Thus, (S⇐) is valid.
Assume v(δ) = v(δ � σ) = 1. Since vRral = 1, min(v(δ), v(δ � σ), v(σ)) = 0.
Thus, v(σ) = 0. Thus, (S�) is valid. Assume v(δ) = v(σ � δ) = 1. Since
vRad = 1, min(v(δ), v(σ � δ), 1 − v(def σ)) = 0. Hence, v(def σ) = 1. By
definition, maxγ∈Vn (min(v(γ), v(γ � σ))) = 1. Thus, there is a γ ∈ Vn for which
v(γ) = 1 = v(γ � σ). Thus, (Sad) is valid.

“≺”: Suppose vRbot = 0. Then there is a δ ∈ Vn for which min(v(δ), 1−v(⇐ �
δ)) = 1. Thus, v(δ) = 1 and v(⇐� δ) = 0. Hence (S⇐) does not hold. The proof
is similar for vRral, and vRad.

Ad (ii): “⇒”: Let v
LC
i = 1. In addition to what has been shown in (i), it has

to be shown that (SCo) is valid. Assume v(⇐ � σ) = 1 and for all δ ∈ Vn ,
v(δ � σ) = 0 or there is a γ ∈ Vn for which v(γ) = v(γ � δ) = 1. Thus,
for all δ ∈ Vn , v(δ � σ) = 0 or v(def δ) = 1. Due to the fact that vRCo = 1,
min

(
v(⇐ � σ), minδ∈Vn (max(1 − v(δ � σ), v(def δ))), 1 − v(σ)

) = 0. Thus,
v(σ) = 1. Thus, (SCo) is valid.

“≺”: Suppose vRCo = 0. Then there is a σ ∈ Vn for which min
(
v(⇐ � σ),

minδ∈Vn (max(1− v(δ � σ), v(def δ))), 1− v(σ)
) = 1 and thus v(σ) = 0. Thus,

for every δ ∈ Vn for which v(δ � σ) = 1, v(defδ) = 1 and hence there is a γ ∈ Vn

such that v(γ) = v(γ � δ) = 1. Hence, (SCo) does not hold. �

F.1.3.2 The Valuation

Let us now take a look at valuation functions for our core logics LA and LC. Let a
model M be defined by an assignment v.

An LA-valuation v
LA
M :Wn → {0, 1} determined by v is defined as follows (where

δ,σ ∈ Vn ; ϕ,ϕ1,ϕ2 ∈Wn ; and L = LA):

vL
M (⇐) = 0 (s⇐)

vL
M (δ � σ) = 1 iff v(δ � σ) = 1 (s�)

vL
M (⇐� δ) = 1 iff v(⇐� δ) = 1 (s⇐�)

vL
M (δ) = min

(
v

LA
i , v(δ)

)
(sPA)

vL
M (ϕ1 ∧ ϕ2) = min

(
vL

M (ϕ1), v
L
M (ϕ2)

)
(s∧)

vL
M (ϕ1 ∅ ϕ2) = max

(
vL

M (ϕ1), v
L
M (ϕ2)

)
(s∅)

vL
M (ϕ1 ⊕ ϕ2) = max

(
1− vL

M (ϕ1), v
L
M (ϕ2)

)
(s⊕)

vL
M (¬ϕ) = 1− vL

M (ϕ) (s¬)

In the case v
LA
i = 1, i.e., in the case that the assignment is LA-intended, the

valuation takes over the truth values from the assignment for all formulas in Vn .
However, if v

LA
i = 0, the valuation assigns to all propositional letters the truth
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value 0. Note that for a given AF A the empty selection is always an admissible
extension. Thus, the valuation on basis of a non-intended assignment corresponds to
the empty extension.

LC-valuations are defined analogous to LA-valuations, with the exception of (sPA)
which is replaced by:

v
LC
M (δ) = max

(
min

(
v

LC
i , v(δ)

)
, vg(δ)

)
where (sPC)

vg(δ) =df max
i≥0

(
vi

g(δ)
)
, where

v0
g(δ) =df min

(
v(⇐� δ), 1− max

σ∈Vn
(v(σ � δ))

)
, and

vi
g(δ) =df min

(
v(⇐� δ), defendedi (δ)

)
, where i > 0 and

defendedi (δ) =df min
σ∈Vn

(
max(1− v(σ � δ), defeatedi (σ))

)
, where

defeatedi (σ) =df max
γ∈Vn

(
min(v(γ � σ), v<i

g (γ))
)
, where

v<i
g (γ) =df max

0∈ j<i

(
v j

g (γ)
)

Again, in the case that v is an LC-intended assignment, i.e., in the casev
LC
i = 1, the

valuation v
LC
M takes over all truth values for all formulas in Vn from the assignment.

However, in the case v
LC
i = 0, the situation is more complicated than for the LA

case, since for a given AF A the empty selection may not correspond to a complete
extension. In this case the valuation v

LC
M verifies a propositional letter δ iff vg(δ) = 1.

As it will be shown, this way it is ensured that the models of the adaptive strengthening
of LC correspond to the complete extensions.

As the reader can see, everything except rules (s�), (s⇐�) and (sPA) (resp.
(sPC)) is defined in the classical way. Note, that by (s�) and (s⇐�) the valuation
takes over the assignment from v for formulas of the form δ � σ and ⇐ � δ. By
(sPA) (resp. (sPC)) the valuation may have a different value for propositional letters
than assigned by v. Note that although (sPA) and (sPC) are of a rather complex form,
they are fully determined by the assignment v.

Our valuations satisfy the semantic properties corresponding to the rules (R�),
(Rad), (R⇐), (RCo) of logics LA and LC.

Theorem F.1.1. Let M be a model defined by the assignment v.4

(i) v
LA
M satisfies (S�), (Sad) and (S⇐).

(ii) v
LC
M satisfies (S�), (Sad), (S⇐), and (S⇐).

4 We postpone the proof of this theorem to page 375.
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F.1.4 Soundness and Completeness

Lemma F.1.2. Let v be an assignment. If v
LC
i = 1, then vg(δ) = 1 implies

v(δ) = 1.

Proof. Suppose v
LC
i = vg(δ) = 1. Then there is a i ≥ 0 such that vi

g(δ) = 1. We
prove the statement by an induction on i .

“i = 0”: We have v(⇐ � δ) = 1 and for all σ ∈ Vn , v(σ � δ) = 0. Since
vRCo = 1, min

(
v(⇐ � δ), minσ∈Vn

(
max(1−v(σ � δ), v(def σ))

)
, 1−v(δ)

) = 0.
Thus, 1− v(δ) = 0 and hence, v(δ) = 1.

“i ⇒ i + 1”: Let vi+1
g (δ) = 1. Thus, min(v(⇐ � δ), defendedi+1(δ)) = 1

and hence v(⇐ � δ) = defendedi+1(δ) = 1. Thus, minσ∈Vn

(
max(1 − v(σ �

δ), defeatedi+1(σ))
) = 1. In the case that there is no σ ∈ Vn for which v(σ �

δ) = 1, v0
g(δ) = 1 and thus by induction hypothesis, v(δ) = 1. Suppose there is a σ

for which v(σ � δ) = 1. Then defeatedi+1(σ) = 1. Hence, maxγ∈Vn

(
min(v(γ �

σ), v<i+1
g (γ))

) = 1. Thus, there is a γσ for every such σ ∈ Vn for which v(γσ �
σ) = v<i+1

g (γσ) = 1. Hence there is a j < i + 1 such that v
j
g (γσ) = 1. Thus, by

induction hypothesis, v(γσ) = 1. Thus, v(def σ) = 1 for all σ for which v(σ �
δ) = 1. Thus, due to the fact that vRCo = 1, min

(
v(⇐ � δ), minσ∈Vn (1 − v(σ �

δ), v(def σ)), 1− v(δ)
) = 0. Thus, we have 1− v(δ) = 0 and hence v(δ) = 1. �

Lemma F.1.3. Let vL
M be an L-valuation (where L ∈ {LA, LC}) with corresponding

assignment v.

(i) If vL
i = 1 then vL

M (ϕ) = v(ϕ) for all ϕ ∈ Vn ∨W�
n and for all ϕ = def δ

where δ ∈ Vn.
(ii) Moreover, if v

LA
M (δ) = 1 for some δ ∈ Vn then v

LA
i = 1.

Proof. Ad (i): For L = LA: Since vL
M (δ) = 1 iff v(δ) = vL

i = 1, vL
M (δ) =

0 iff vL
i = 0 or v(δ) = 0. Since vL

i = 1 the statement is true for all ϕ ∈ Vn . For
L = LC: Since vL

M (δ) = 1 iff v(δ) = vL
i = 1 or vg(δ) = 1, and vg(δ) = 1 implies

v(δ) = 1 due to vL
i = 1 by Lemma F.1.2, we have vL

M (δ) = 1 iff v(δ) = 1.
For ϕ ∈ W�

n the statement is true by (s�) and (s⇐�). Furthermore, vL
M

(def δ) = vL
M (

⎬
σ∈Vn

((σ � δ) ∧ σ)) = maxσ∈Vn (min(vL
M (σ), vL

M (σ � δ))) =
maxσ∈Vn (min(v(σ), v(σ � δ))) = v(def δ).

Ad (ii): this is the case due to (sPA). �

Lemma F.1.4. Let v be an assignment function. If vg(σ) = 1 then for all δ ∈ Vn

for which v(δ � σ) = 1, vg(δ) = 0.

Proof. Since vg(σ) = 1 iff maxi≥0(v
i
g(σ)) = 1, we have vi

g(σ) = 1 for some i ≥ 0.
The proof is by induction on i .

“i = 0”: In this case min(v(⇐ � σ), 1 − maxγ∈Vn (v(γ � σ))) = 1 and thus
there is no γ ∈ Vn for which v(γ � σ) = 1.
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“i ⇒ i + 1”: Let vi+1
g (σ) = 1. Thus, min(v(⇐ � σ), defendedi+1(σ)) = 1.

Thus, defendedi+1(σ) = 1. Thus, minγ∈Vn (max(1 − v(γ � σ), defeatedi+1

(γ))) = 1. Thus, for any γ for which v(γ � σ) = 1, defeatedi+1(γ) = 1. In
the case that there is such a γ, maxω∈Vn

(
min(v(ω � γ), v<i+1

g (ω))
) = 1. Thus, there

is a ωγ for which v(ωγ � γ) = 1 and v<i+1
g (ωγ) = 1. Thus, there is a j < i + 1 such

that v
j
g (ωγ) = 1. Suppose vg(γ) = 1 then there is a k such that vk

g(γ) = 1. Note that

k > 0 since v(ωγ � γ) = 1. Thus defendedk(γ) = 1. Hence, defeatedk(ωγ). Thus,
there is an ε for which v(ε � ωγ) = v<k

g (ε) = 1 and hence, vg(ε) = 1. By induction
hypothesis however, vg(ε) = 0,—a contradiction. Thus, vg(γ) = 0. �

Proof (Proof of Theorem F.1.1). Ad (i): Let L = LA. By Lemma F.1.3i , in the case
that vL

i = 1, vL
M (ϕ) = v(ϕ) for all ϕ ∈ Vn ∨W�

n . By Lemma F.1.1i follows the
rest. Assume thus that vL

i = 0. Note that in this case by Lemma F.1.3ii vL
M (δ) = 0

for all δ ∈ Vn . Hence, trivially (S�), (Sad), and (S⇐) are valid.
Ad (ii): Let L = LC. By Lemma F.1.3i, in the case vL

i = 1, vL
M (ϕ) = v(ϕ) for all

ϕ ∈ Vn ∨W�
n . By Lemma F.1.1ii follows the rest. Assume thus that vL

i = 0. Note
that in this case vL

M (δ) = 1 iff vg(δ) = 1 for all δ ∈ Vn . Assume vL
M (δ) = 1. Then

vg(δ) = 1 and thus, by definition, v(⇐ � δ) = vL
M (⇐ � δ) = 1. Thus, (S⇐) is

valid. Assume vL
M (δ) = vL

M (δ � σ) = 1. Hence, vg(δ) = 1 = v(δ � σ). Thus,

by Lemma F.1.4, vg(σ) = 0 and hence, vL
M (σ) = 0. Thus, (S�) is valid. Assume

vL
M (δ) = vL

M (σ � δ) = 1. Thus, vg(δ) = 1 = v(σ � δ). Thus, there is an

i ≥ 0 such that vi
g(δ) = 1. Since v(σ � δ) = 1, i > 0. Since defendedi (δ) = 1,

defeatedi (σ) = 1. Thus, there is a γ ∈ Vn such that v(γ � σ) = vL
M (γ � σ) = 1

and v<i
g (γ) = 1. Thus, vg(γ) = 1 and thus vL

M (γ) = 1. Thus, (Sad) is valid. Assume

vL
M (⇐ � σ) = 1 and for all δ ∈ Vn either vL

M (δ � σ) = 0 or there is a γ ∈ Vn

for which vL
M (γ) = vL

M (γ � δ) = 1. Hence, v(⇐ � σ) = 1 and for all δ ∈ Vn

either v(δ � σ) = 0 or there is a γ ∈ Vn for which vg(γ) = v(γ � δ) = 1. If

for all δ ∈ Vn , v(δ � σ) = 0 then by definition, v0
g(σ) = 1 and thus vg(σ) = 1.

Hence, vL
M (σ) = 1. Otherwise there is a j > 0 such that for all δ ∈ Vn for which

v(δ � σ) = 1 there is a γδ ∈ Vn for which vg(γδ) = v(γδ � δ) = 1, v< j
g (γδ) = 1.

Then, defended j (σ) = 1 and thus v
j
g (σ) = 1. Thus, vg(σ) = vL

M (σ) = 1. Thus,
(SCo) is valid. �

Theorem F.1.2 (Soundness). Let L ∈ {LA,LC}, Θ ∧Wn and ϕ ∈Wn. If Θ ≥L ϕ,
then Θ �L ϕ.

Proof. We use for the proof an induction on the derivation steps of a proof of ϕ
analogous to the way soundness is usually proven for classical propositional logic
(cp. e.g., [3] p. 40–43). If ϕ is introduced by premise introduction then trivially
Θ �L ϕ, as ϕ ∈ Θ . If ϕ is obtained by aggregation ϕ1 ϕ2

ϕ1∧ϕ2
where ϕ = ϕ1 ∧ ϕ2,

then by induction hypothesis, Θ �L ϕ1,ϕ2. Therefore we have for all L-models of
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Θ , M |=L ϕ1,ϕ2. But then by (s∧), M |=L ϕ1 ∧ϕ2 . The proof is analogous for the
other classical rules.

We have to take a look at the non-classical rules: If ϕ = ¬σ and it has been derived
by (R�) from δ and δ � σ, then by induction hypothesis we have Θ �L δ,δ � σ.
Thus for all L-models M of Θ , M |=L δ,δ � σ. Since by Theorem (F.1.1) vL

M
validates (S�), vL

M (σ) = 0. Thus, by (s¬), vL
M (¬σ) = 1.

If ϕ = ¬δ and it has been derived from ⇐ ⊃� δ by (R⇐), then by induction
hypothesis for each L-model M of Θ , vL

M (⇐ ⊃� δ) = 1 and hence by (s¬), vL
M (⇐�

δ) ⊃= 1. By (S⇐), vL
M (δ) ⊃= 1 and hence vL

M (δ) = 0. Thus, by (s¬), vL
M (¬δ) = 1.

If def σ has been derived fromδ andσ � δby (Rad), then by induction hypothesis
for each L-model M of Θ , vL

M (δ) = vL
M (σ � δ) = 1. By (Sad), there is a γ ∈ Vn

for which vL
M (γ) = vL

M (γ � σ) = 1. By (s∅), vL
M (def σ) = 1.

For L = LC: If σ has been derived from ⇐ � σ and
⎨

ω∈Vn

(
(ω � σ) ⊕

def ω
)

by (RCo), then by induction hypothesis, vL
M (⇐ � σ) = vL

M

(⎨
ω∈Vn

((ω �
σ) ⊕ def ω)

) = 1 for each L-model M of Θ . Thus, minω∈Vn (max(1 − vL
M (ω �

σ), vL
M (def ω))) = 1. Thus, for all ω ∈ Vn , vL

M (ω � σ) = 0 or vL
M (def ω) = 1. In the

latter case, by (s∅), there is an εω ∈ Vn for which vL
M (εω) = vL

M (εω � ω) = 1. By
(SCo), vL

M (σ) = 1. �

Let Θ ∧ Wn and L ∈ {LA, LC}. Θ is L-consistent iff Θ ⊀L ⇐. Θ is maximally
L-consistent iff (a) Θ is L-consistent and (b) if Θ ∧ Θ → and Θ → is L-consistent,
then Θ = Θ →. We say that Θ is L-inconsistent in case it is not L-consistent. The
proofs of the following propositions are standard for classical propositional logic
and can for instance be found in van Dalen [3] pp. 43–45. The proofs for our logics
are analogous.

Lemma F.1.5. Let Θ ∧Wn, ϕ ∈Wn, and L ∈ {LA, LC}. We have:

(i) If Θ ∨ {¬ϕ} is L-inconsistent, then Θ ≥L ϕ
(ii) If Θ ∨ {ϕ} is L-inconsistent then Θ ≥L ¬ϕ.

(iii) Each L-consistent set Θ is contained in a maximally L-consistent set Θ →.
(iv) If Θ is maximally L-consistent, then ϕ ∈ Θ iff ¬ϕ /∈ Θ , and ¬ϕ ∈ Θ iff ϕ /∈ Θ .
(v) For an L-consistent Θ and for all ϕ ∈ Θ , Θ ⊀L ¬ϕ.

Lemma F.1.6. Let L ∈ {LA,LC}. If Θ ∧ Wn is L-consistent, then there is an
L-model M of Θ .

Proof. By Lemma F.1.5iii we know that Θ is contained in a maximally L-consistent
Θ →. We define an assignment v : Vn ∨W�

n → {0, 1} by ϕ ˆ→ 1 iff ϕ ∈ Θ →. I will
show that vL

M (ϕ) = 1 iff ϕ ∈ Θ →. In order to do so we first show that vL
i = 1.

Suppose vRbot = 0 and thus maxω∈Vn

(
min(v(ω), 1 − v(⇐ � ω))

) = 1. Thus,
there is an δ for which min(v(δ), 1 − v(⇐ � δ)) = 1. Thus, v(δ) = 1 and
v(⇐ � δ) = 0. Hence, δ ∈ Θ → and ⇐ � δ /∈ Θ →. Due to the maximal consistency
of Θ →,⇐ ⊃� δ ∈ Θ →. However, by (R⇐),¬δ ∈ Θ → and thus δ /∈ Θ →,—a contradiction.
Thus, vRbot = 1.
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Suppose vRral = 0. Then maxγ,ω∈Vn (min(v(γ), v(γ � ω), v(ω))) = 1. Thus,
there are δ,σ ∈ Vn such that v(δ) = v(δ � σ) = v(σ) = 1. Hence, δ,σ,δ �
σ ∈ Θ →. But by (R�) ¬σ ∈ Θ →,—a contradiction. Thus, vRral = 1.

Suppose vRad = 0. Then maxγ,ω∈Vn (min(v(γ), v(ω � γ), 1 − v(def ω)) = 1.
Thus, there are δ,σ ∈ Vn such that v(δ) = v(σ � δ) = 1 and v(def σ) = 0.
Thus, δ,σ � δ ∈ Θ →. By (Rad), def σ ∈ Θ →. Note that by definition v(def σ) =
maxγ∈Vn (min(v(γ), v(γ � σ))) = 0. Thus, for all γ ∈ Vn , v(γ) = 0 or v(γ �
σ) = 0. Thus due to the maximal consistency of Θ →, for all γ ∈ Vn , ¬γ ∈ Θ →, or
γ ⊃� σ ∈ Θ →. Thus, due to the maximal consistency of Θ →,¬γ∅(γ ⊃� σ) ∈ Θ → for all
γ ∈ Vn . Thus,¬(γ∧ (γ � σ)) ∈ Θ → for all γ ∈ Vn . Thus,

⎨
γ∈Vn

¬(γ∧ (γ � σ)) ∈
Θ → and hence, ¬⎬

γ∈Vn
(γ ∧ (γ � σ)) ∈ Θ →. Thus ¬def σ ∈ Θ →,—a contradiction.

Thus, vRad = 1.
In the case of LC also vRCo = 1 has to be shown. Suppose vRCo = 0. Then

maxω∈Vn

(
min(v(⇐� ω), minδ∈Vn (max(1−v(δ � ω), v(def δ))), 1−v(ω))

) = 1.
Thus, there is a σ ∈ Vn for which min(v(⇐ � σ), minδ∈Vn (max(1 − v(δ �
σ), v(def δ))), 1− v(σ)) = 1. Thus, v(⇐ � σ) = 1, v(σ) = 0 and for all δ ∈ Vn ,
max(1 − v(δ � σ), v(def δ)) = 1. Thus, ⇐ � σ ∈ Θ → and σ /∈ Θ → and hence,
¬σ ∈ Θ →. Moreover, for all δ ∈ Vn either v(δ � σ) = 0 and hence δ ⊃� σ ∈ Θ →
or v(def δ) = 1. In the latter case, maxγ∈Vn (min(v(γ), v(γ � δ))) = 1 and
hence there is a γδ ∈ Vn for which min(v(γδ), v(γδ � δ)) = 1. Thus, v(γδ) =
v(γδ � δ) = 1. Thus, γδ, γδ � δ ∈ Θ →. Hence, due to the maximal consistency
of Θ →, def δ ∈ Θ →. Thus, for all δ ∈ Vn , def δ ∅ (δ ⊃� σ) ∈ Θ → and hence,⎨

δ∈Vn

(
(δ � σ) ⊕ def δ

) ∈ Θ →. By (RCo), σ ∈ Θ →,—a contradiction. Thus,
vRCo = 1.

We have shown that vL
i = 1. We will show now that vL

M (ϕ) = 1 iff ϕ ∈ Θ → by an
induction on the length l of ϕ ∈Wn .

“l = 0”: By Lemma F.1.3i, vL
M (ϕ) = v(ϕ), for all ϕ ∈ Vn ∨ W�

n . Thus,
vL

M (ϕ) = 1 iff ϕ ∈ Θ → for all ϕ ∈ Vn ∨W�
n .

“l ⇒ l + 1”: Let ϕ = ¬ϕ→ ∈ Θ →, then ϕ→ /∈ Θ → and by the induction hypothesis,
vL

M (ϕ→) = 0. By (s¬), vL
M (ϕ) = 1. Now let vL

M (ϕ) = 1, then by (s¬), vL
M (ϕ→) = 0

and by the induction hypothesis, ϕ→ /∈ Θ →. Due to the maximal consistency of Θ →,
ϕ ∈ Θ →.

For the other Boolean combinations the proof is analogous. Thus, vL
M (ϕ) = 1 iff

ϕ ∈ Θ →. Since Θ → ⊇ Θ , we also have: if ϕ ∈ Θ then vL
M (ϕ) = 1. �

Corollary F.1.1. Let L ∈ {LA,LC} and Θ ∧ Wn. If Θ ⊀L ϕ then there is an
L-model of Θ for which vL

M (ϕ) = 0.

Proof. If Θ ⊀L ϕ, then by Lemma F.1.5i, Θ ∨ {¬ϕ} is L-consistent. By Lemma
F.1.6 there is an L-model M of Θ ∨ {¬ϕ}. By (s¬), vL

M (ϕ) = 0. �

Theorem F.1.3 (Completeness). Let L ∈ {LA,LC} and Θ ∧ Wn. If Θ �L ϕ then
Θ ≥L ϕ.

Proof. By Corollary F.1.1 we know that if Θ ⊀L ϕ, then Θ �L ϕ. �
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By Theorem F.1.2 and Theorem F.1.3, we get:

Corollary F.1.2. Let L ∈ {LA,LC} and Θ ∧Wn. Θ �L ϕ iff Θ ≥L ϕ.

F.2 Semantics for Admissible and Complete Extensions

Let us recapitulate some definitions.

Definition F.2.1. Where Φ� =df {δ � σ | δ ∈ Vn ∨ {⇐},σ ∈ Vn}, logic
ALX where X ∈ {A, C} is the AL in standard format defined by the triple
〈LX,Φ�, simple strategy◦. For a model M , AbLX� (M) =df {ϕ ∈ Φ� | M |=LX ϕ}.
Furthermore, Θ n

A =df {pi � p j | (ai , a j ) ∈ →} ∨ {⇐ � pi | ai ∈ A} where
A = 〈A,→◦ and A ∧ An .

The following rather technical insights vastly simplify the proofs for the repre-
sentational results for our systems (Theorem 8.4.1, Corollary 8.4.1). The proofs of
the following results are very easy and are left to the reader:

Theorem F.2.1. Let L ∈ {LA,LC} and Θ, Θ → ∧Wn.

(i) L is reflexive, i.e., Θ ∧ CnL (Θ ).
(ii) L is monotonic, i.e., if Θ ∧ Θ → then CnL (Θ ) ∧ CnL

(
Θ →

)
.

(iii) L is transitive, i.e., if Θ → ∧ CnL (Θ ), then CnL
(
Θ →

) ∧ CnL (Θ ).
(iv) L is compact, i.e., there is an L-model of Θ iff for each finite Θ → ∧ Θ there is

an L-model of Θ →.

Lemma F.2.1. Let A = 〈A,→◦ be an AF for which A ∧ An and X ∈ {A, C}.
(i) Θ n

A ≥ALX ⇐ ⊃� pi for all pi ∈ Vn \ {pl | al ∈ A}, otherwise ⇐� pi ∈ Θ n
A .

(ii) Θ n
A ≥ALX pi � p j iff (ai , a j ) ∈ → iff pi � p j ∈ Θ n

A , otherwise Θ n
A ≥ALX

pi ⊃� p j .

(iii) For all M ∈MALX(Θ n
A ), AbLX� (M) = Θ n

A .
(iv) If pi ∈ Vn \ {pl | al ∈ A}, then Θ n

A ≥ALX ¬pi .

Proof. Let S ∧ A, in case X = A, be an admissible extension and, in case X = C, a
complete extension. We construct an LX-model M of Θ n

A on basis of the assignment
v : Vn ∨W�

n → {0, 1}, where

ϕ ˆ→






1 if ϕ = pi where ai ∈ S [1]
1 if ϕ = pi � p j where (ai , a j ) ∈ → [2]
1 if ϕ = ⇐� pi where ai ∈ A [3]
0 else [4]

It is easy to check that the semantical properties (Sad), (S�) and (S⇐) (resp. (Sad),
(S�), (S⇐) and (SCo) in the case X = C) are valid. Let for rule (S�), v(pi ) =
v(pi � p j ) = 1, then by definition of v, ai ∈ S and (ai , a j ) ∈ →. But then
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v(p j ) = 0, as due the conflict-freeness of S, there is no ak ∈ S such that (ai , ak) ∈
→. For rule (Sad) suppose v(pi ) = v(p j � pi ) = 1. By definition of v, ai ∈ S
and (a j , ai ) ∈ →. Since S is admissible, there is an ak ∈ S such that (ak, a j ) ∈ →.
But then, v(pk) = v(pk � p j ) = 1. For (S⇐) let v(pi ) = 1. Then ai ∈ A and
thus v(⇐ � pi ) = 1. For (SCo) in the case X = C let v(⇐ � pi ) = 1 and for all
pk ∈ Vn let v(pk � pi ) = 0 or there is a pm such that v(pm) = v(pm � pk) = 1.
Since {(a j , al) | v(p j � pl) = 1} = → and {al | v(pl) = 1} = S, we know that ai

is defended by S. Thus, ai ∈ S and hence v(pi ) = 1.
Thus, since v

LX
i = 1, v

LX
M (ϕ) = v(ϕ) for all ϕ ∈ Vn ∨W�

n by Lemma F.1.3i.

Note that by construction, AbLX� (M) = Θ n
A . (i) – (iii) follow immediately. (iv)

follows by (i) and (R⇐). �

Lemma F.2.1 shows that for our ALs all minimal disjunctions of abnormalities
Dab(β) (where β ∧ Φ�) derivable by our lower limits LA and LC are such that
β is a singleton. Therefore, the simple strategy defines in these cases the same
consequence relation as the minimal abnormality strategy (or the reliability strategy,
see Theorem 2.4.11).

Since all our ALs for skeptical acceptance are in the standard format and employ
LA resp. LC as lower limit logics, the completeness and soundness of LA and LC pro-
vides us immediately with the completeness and soundness of the adaptive systems
ALA resp. ALC:

Theorem F.2.2. We have Θ n
A �ALX ϕ iff Θ n

A ≥ALX ϕ where X ∈ {A, C}.
Proof. This is due to Lemma F.2.1, Theorem F.2.1, Corollary F.1.2 and Theorem
2.4.12. �

Proof (Proof of Theorem 8.4.1i). Let A = 〈A,→◦ be an AF for which A ∧ An .
“≺”: Let M ∈ MALA(Θ n

A ). Note that S = {al | M |=LA pl} ∧ A, as for all
p j ∈ Vn \ {pl | al ∈ A} by Lemma F.2.1iv, Θ n

A ≥ALA ¬p j and thus Θ n
A �ALA ¬p j .

S is conflict-free, as if (ai , a j ) ∈ →, then pi � p j ∈ Θ n
A and therefore M |=LA

pi � p j . Hence, if M |=LA pi then by (S�) we have M |=LA ¬p j . Hence, either
ai /∈ S or a j /∈ S. For admissibility let (a j , ai ) ∈ → and M |=LA pi . Hence,
p j � pi ∈ Θ n

A . Now by (Sad) there is a pk such that M |=LA pk, pk � p j . By
Lemma F.2.1ii, (ak, a j ) ∈ →. Hence, S is admissible.

“⇒”: Let S ∧ A be an admissible set. Define an ALA-model M with respect
to S as in Lemma F.2.1. Obviously {al | M |=LA pl} = S and by construction
M |=LA Θ n

A . �

Proof (Proof of Theorem 8.4.1ii). Let A = 〈A,→◦ be an AF for which A ∧ An .
“≺”: Let M ∈ MALC(Θ n

A ). Note that S = {al | M |=LC pl} ∧ A, as for all
p j ∈ Vn \ {pl | al ∈ A} by Lemma F.2.1iv, Θ n

A ≥ALC ¬p j and thus Θ n
A �ALC ¬p j .

S is conflict-free, as if (ai , a j ) ∈ →, then pi � p j ∈ Θ n
A and therefore M |=LC

pi � p j . Hence, if M |=LC pi then by (S�) we have M |=LC ¬p j . Hence, either
ai /∈ S or a j /∈ S. For admissibility let (a j , ai ) ∈ → and M |=LC pi . Hence,
p j � pi ∈ Θ n

A . Now by (Sad) there is a pk such that M |=LC pk, pk � p j . By
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Lemma F.2.1ii, (ak, a j ) ∈ →. Hence, S is admissible. Let ai ∈ A be such that S
defends ai . We have to show that ai ∈ S. Note that, since ai ∈ A, ⇐ � pi ∈ Θ n

A .
Let Attai =df {al | (al , ai ) ∈ →}. If Attai = ∅, then by Lemma F.2.1ii, for all p j ,
M |=LC p j ⊃� pi and thus by (SCo), M |=LC pi . Hence, ai ∈ S. Let now Attai ⊃= ∅.
By Lemma F.2.1, {pl | (al , ai ) ∈ →} = {pl | M |=LC pl � pi }. Since S defends
ai , there is an ak ∈ S for each a j ∈ Attai for which (ak, a j ) ∈ →. Thus, there is a pk

such that M |=LC pk, pk � p j for each p j ∈ {pl | (al , ai ) ∈ →} = {pl | M |=LC

pl � pi }. By (SCo), M |=LC pi and thus, ai ∈ S.
“⇒”: Let S ∧ A be a complete extension. We construct an ALC-model M of Θ n

A
such that {al | M |=LC pl} = S as in Lemma F.2.1 (for the L = LC case). �

Proof (Proof of Corollary 8.4.1i,ii). Let L ∈ {ALA, ALC} and A = 〈A,→◦ an AF
for which A ∧ An .

Let ai be skeptically accepted w.r.t. admissible (in case L = ALA) resp. complete
(in case L = ALC) extensions. Then ai ∈ S for all admissible (resp. complete)
extensions S, ai ∈ ⋂{S ∧ A | S is an admissible (resp. complete) extension of A}.
By Theorem 8.4.1i,ii we immediately get Θ n

A �L pi and due to Theorem F.2.2 we
have Θ n

A ≥L pi .
Let Θ n

A ≥L pi . By Theorem F.2.2 we know that Θ n
A �L pi . By Theorem 8.4.1i,ii

we immediately get ai ∈ ⋂{S ∧ A | S is an admissible (resp. complete) extension
by A}. �

F.3 Semantics for the Other Extension Types

F.3.1 Semantics for Preferred Extensions

Let us recapitulate some definitions.

Definition F.3.1. Where ΦP =df {¬δ | δ ∈ Vn} and L ∈ {LA, LC}, AbL
P (M) =df

{ϕ ∈ ΦP | M |=L ϕ} for a model M . The sequential adaptive logic ALP is defined
by the following triple 〈LA, [Φ�,ΦP ], [simple strategy, minimal abnormality]◦.
Theorem F.3.1. Θ n

A ≥ALP ϕ iff Θ n
A �ALP ϕ.

Proof. This is due to Lemma F.2.1, Theorem F.2.1, Corollary F.1.2, Corollary 3.2.3,
and Theorem 3.3.1. �

Lemma F.3.1. Let A = 〈A,→◦ be an AF for which A ∧ An and L ∈ {LA, LC}.
For all M, N ∈ML

(
Θ n

A

)
, if AbL

P (M) = AbL
P (N ) then vL

M = vL
N .

Proof. Let pi ∈ Vn and M |=L pi . Then N |=L pi since otherwise¬pi ∈ AbL
P (N )\

AbL
P (M). Let ϕ ∈W�

n . Then by Lemma F.2.1iii M |=L ϕ iff ϕ ∈ Θ n
A iff N |=L ϕ.

It follows immediately by (s⇐), (s∧), (s∅), (s⊕), and (s¬) that if M and N valuate
all formulas in Vn ∨W�

n in the same way, then vL
M = vL

N . �
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Proof (Proof of Theorem 8.4.1iii). Let A = 〈A,→◦ be an AF for which A ∧ An .
“≺”: Let M ∈MALP (Θ n

A ) ∧MALA(Θ n
A ) and S = {al | M |=LA pl}. By Theorem

8.4.1i we know that S is an admissible extension. Suppose there is a S→ ⊕ S such
that S→ is a preferred extension of A. Then S→ is also admissible and therefore by
Theorem 8.4.1i there is a M → ∈MALA(Θ n

A ) such that S→ = {al | M → |=LA pl}. But

then {al | M → |=LA pl} ⊕ {al | M |=LA pl} and hence AbLA
P (M →) ∪ AbLA

P (M),—a
contradiction. “⇒”: Let S ∧ A be a preferred extension. Therefore S is also an
admissible extension and by Theorem 8.4.1i there is a M ∈ MALA(Θ n

A ) such that

S = {al | M |=LA al}. Suppose there is an N ∈MALA

(
Θ n

A

)
such that AbLA

P (N ) ∪
AbLA

P (M). We know by Theorem 8.4.1i that there is an admissible extension T such
that T = {al | N |=LA pl}. But then T ⊕ S,—a contradiction. �

Proof (Proof of Corollary 8.4.1iii). The proof is analogous to the proof of Corollary
8.4.1i. �

F.3.2 Semantics for Grounded Extensions

Let us recapitulate some definitions.

Definition F.3.2. Where ΦG = Vn and L ∈ {LA, LC}, let for a model M ,
AbL

G(M) =df {ϕ ∈ ΦG | M |=L ϕ}. The prioritized adaptive logic ALG is defined
by the following triple: 〈LC, [Φ�,ΦG ], [simple strategy, simple strategy]◦.

Let moreover, ALm
G be the sequential AL defined by

〈LC, [Φ�,ΦG ], [simple strategy, minimal abnormality]◦.

Lemma F.3.2. Θ n
A ≥ALm

G
ϕ iff Θ n

A �ALm
G

ϕ.

Proof. This is due to Lemma F.2.1, Theorem F.2.1, Corollary F.1.2, Corollary 3.2.3,
and Theorem 3.3.1. �

Theorem F.3.2. Let A = 〈A,→◦ be an AF where A ∧ An.

(i) ALm
G semantically represents grounded extensions for AFs with at most n argu-

ments.
(ii) For all M, N ∈MALm

G
(Θ n

A ), v
LC
M = v

LC
N .

(iii) All minimal disjunctions Dab(β) where β ∧ ΦG in CnALC

(
Θ n

A

)
are such that

β is a singleton.
(iv) Θ n

A ≥ALm
G

ϕ iff Θ n
A ≥ALG ϕ.

Proof. Ad (i): “⇒”: Let M ∈ MALm
G

(
Θ n

A

) ∧ MALC

(
Θ n

A

)
. By Theorem 8.4.1ii

we know that there is a complete extension S such that S = {al | M |=LC pl}.
Suppose there is a S→ ∪ S such that S→ is a complete extension. By Theorem 8.4.1ii
there is a N ∈MALC

(
Θ n

A

)
such that {al | N |=LC pl} = S→. But then {al | N |=LC

pl} ∪ {al | M |=LC pl} and therefore AbLC
G (N ) ∪ AbLC

G (M),—a contradiction.
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“≺”: Let S ∧ A be the grounded extension, then since S is complete there is
by Theorem 8.4.1ii a M ∈ MALC

(
Θ n

A

)
such that {al | M |=LC pl} = S. Now

suppose there is a N ∈ MALC

(
Θ n

A

)
such that AbLC

G (N ) ∪ AbLC
G (M). But then

{al | N |=LC pl} ∪ {al | M |=LC pl}. Also by Theorem 8.4.1ii we know that there
is a complete extension S→ such that S→ = {al | N |=LC pl}. But then S→ ∪ S,—a
contradiction.

Ad (ii): This is due to the fact that there is only one grounded extension S ∧ A
and for all M ∈MALm

G

(
Θ n

A

)
, {al | M |=LC pl} = {al | pl ∈ AbLC

G (M)} = S by (i).
Furthermore, by Lemma F.2.1ii, {δ � pl | M |=LC δ � pl} = {δ � pl | N |=LC

δ � pl} = {δ � pl | δ � pl ∈ Θ n
A } for all M, N ∈MALC

(
Θ n

A

)
. By (s⇐), (s∧),

(s∅), (s⊕), and (s¬), v
LC
M = v

LC
N .

Ad (iii): Follows immediately by (ii). Ad (iv): Follows immediately by (iii) and
Theorem 2.4.11. �

Corollary F.3.1. Θ n
A ≥ALG ϕ iff Θ n

A �ALG ϕ.

Proof (Proof of Theorem 8.4.1iv). Follows immediately by Theorem F.3.2. �

Proof (Proof of Corollary 8.4.1iv). The proof is analogous to the proof of Corollary
8.4.1i. �

F.3.3 Semantics for (Semi)-Stable Extensions

Let us recapitulate some definitions.
Definition F.3.3. Where ΦS =df {¬δ ∧ ¬defδ | δ ∈ Vn} and L ∈ {LA, LC}, let
for a model M , AbL

S (M) =df {ϕ ∈ ΦS | M |=L ϕ}. The prioritized adaptive logic
ALS is defined by the following triple:

〈LC, [Φ�,ΦS], [simple strategy, minimal abnormality strategy]◦.

Theorem F.3.3. Θ n
A ≥ALS ϕ iff Θ n

A �ALS ϕ.

Proof. This is due to Lemma F.2.1, Theorem F.2.1, Corollary F.1.2, Corollary 3.2.3,
and Theorem 3.3.1. �

In Footnote 5 in Chap. 8 we mentioned the following fact:

Fact F.3.1. Let A = 〈A,→◦ be an AF and S ∧ A. S is a semi-stable extension iff S
is an admissible set of arguments for which there is no admissible set of arguments
T ∧ A such that T ∨ T+ ⊕ S ∨ S+.

Proof. “⇒”: S is admissible since it is complete. Suppose now that for an admissible
T such that T ∨T+ is maximal (w.r.t.∧), T ∨T+ ⊕ S∨ S+. Thus T is not complete.
Hence, F(T ) ⊃= T . We have T ∪ F(T ) since T is admissible. Therefore, there is an
a ∈ A \ T such that T defends a. Let Ta =df T ∨ {a}. Note that there is no argument

http://dx.doi.org/10.1007/978-3-319-00792-2_8
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in T attacking a since T defends a and is conflict-free. Furthermore, a does not attack
any argument in T , since, due to the fact that T is admissible, T defends itself against
all attackers. Would a attack T , then there would be an argument in T attacking a.
But as we have just shown, this is not the case. Thus, Ta is conflict-free. Suppose
there is a b attacking Ta. Then b attacks T or it attacks a. Since T defends itself, in
the first case there is an argument in T attacking b. In the second case there is also
an argument in Ta attacking b since T defends a. Thus, Ta is admissible.

Furthermore, Ta ∨ Ta+ ⊕ T ∨ T+ since obviously T+a ⊇ T+, Ta ⊕ T and
a /∈ (T ∨ T+),—a contradiction.

“≺”: Suppose there is an admissible extension T ∧ A such that S ∪ T . Then
T ∨ T+ ⊕ S ∨ S+ since obviously T+ ⊇ S+, T ⊕ S and for any a ∈ T \ S,
a /∈ S ∨ S+. Note that a /∈ S, and a /∈ S+ since otherwise a ∈ T+ which contradicts
the conflictfreeness of T . However, that T ∨ T+ ⊕ S ∨ S+ is a contradiction since
S∨S+ is maximal. Hence, S is a preferred extension. Since every preferred extension
is complete, S is semi-stable. �

Lemma F.3.3. Let A = 〈A,→◦ be an AF for which A ∧ An and X ∈ {A, C}.
(i) Let S ∧ A be an admissible extension. For all M ∈ MALX

(
Θ n

A

)
such that

{al | M |=LX pl} = S we have: ai ∈ S ∨ S+ iff M |=LX pi ∅ def pi .
(ii) Let S, T ∧ A be admissible extensions. For all M, N ∈ MALX

(
Θ n

A

)
where

{al | M |=LX pl} = S, {al | N |=LX pl} = T we have: AbLX
S (M) \ AbLX

S (N ) =
{¬pl ∧ ¬def pl | al ∈ (T ∨ T+) \ (S ∨ S+)}.

Proof. Ad (i): Let M ∈MALX

(
Θ n

A

)
such that {al | M |=LX pl} = S. Let M |=LX

pi ∅ def pi . If M |=LX pi then ai ∈ S. If M |=LX def pi then by rule (s∅) and
the definition of def, there is a p j such that M |=LX p j , p j � pi . Therefore also
a j ∈ S. Then by Lemma F.2.1ii we have (a j , ai ) ∈ → and therefore ai ∈ S+. Let
now ai ∈ S ∨ S+. If ai ∈ S then, by definition, M |=LX pi . Let ai ∈ S+. Therefore
there is a a j ∈ S such that (a j , ai ) ∈ →. Then M |=LX p j and p j � pi ∈ Θ n

A .
Thus, M |=LX def pi .

(ii) follows immediately by (i). �

Proof (Proof for Theorem 8.4.1v). Let A = 〈A,→◦ be an AF for which A ∧ An .
“≺”: Let M ∈MALS(Θ

n
A ) ∧MALC(Θ n

A ) and S = {al | M |=LC pl}. Suppose
there is a semi-stable extension S→ ∧ A such that S→ ∨ S→+ ⊕ S ∨ S+. Then S→ is
also complete and therefore by Theorem 8.4.1ii there is a N ∈ MALC(Θ n

A ) such

that S→ = {al | N |=LC pl}. Then by Lemma F.3.3ii, AbLC
S (M) ⊕ AbLC

S (N ),—a
contradiction.

“⇒”: Let S ∧ A be a semi-stable extension. Due to the fact that S is complete
there is by Theorem 8.4.1ii a M ∈ MALC

(
Θ n

A

)
such that {al | M |=LC pl} = S.

Suppose there is a N ∈MALC

(
Θ n

A

)
such that AbLC

S (N ) ∪ AbLC
S (M). By Theorem

8.4.1ii there is a complete extension T ∧ A such that {al | N |=LC pl} = T . By
Lemma F.3.3ii we have T ∨ T+ ⊕ S ∨ S+,—a contradiction. �
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Proof (Proof of Corollary 8.4.1v). The proof is analogous to the one for Corollary
8.4.1i. �

F.4 Semantics for Credulous Acceptance

F.4.1 Some Preliminary Results

We presented in Sect. 8.5 simplified definitions for our semantic consequence rela-
tions for the ALs for credulous acceptance (see Footnote 19). In this subsection
we will show that we were justified in doing so. Therefore, we will first define
the semantics in the way it is usually done for the normal selections strategy (see
[4] and Sect. 2.8) which enables us to use the soundness and completeness results
from Sect. 3.4. Then we show that the way we defined the semantics in Sect. 8.5 is
equivalent.

Recall that the logics for credulous acceptance are defined as follows:

ALCP = 〈LA, [Φ�,ΦP ], [simple strategy, normal selections]◦
ALCS = 〈LC, [Φ�,ΦS,ΦP ],

[simple strategy, minimal abnormality strategy, normal selections]◦

Where X ∈ {P, S}, let L[X] be the lower limit logic of ALCX and

K[X] =
{

ALA if X = P
ALS if X = S

Let in the remainder AP = 〈L[X],ΦP , normal selections◦.
The following Corollary follows with Theorem 3.4.2.

Corollary F.4.1. ϕ ∈ CnAP
(
CnK[X]

(
Θ n

A

))
iff Θ n

A ≥ALCX ϕ.

Let �→ALCX
be defined as in Chap. 3 (Sect. 3.4) by: Θ ≥→ALCX

ϕ iff there is a M ∈
{

M → ∈ MK[X] (Θ ) | for all M →→ ∈ MK[X] (Θ ), AbL[X]
P (M →→) ⊃∪ AbL[X]

P (M →)
⎧

such

that for all M → ∈MK[X] (Θ ) for which AbL[X]
P (M →→) = AbL[X]

P (M →), M → |=L[X] ϕ.
The following Corollary follows with Corollary 3.4.2 and Corollary F.4.1.

Corollary F.4.2. Θ n
A ≥ALCX ϕ iff Θ n

A �→ALCX
ϕ.

Lemma F.4.1. Where A = 〈A,→◦ is an AF for which A ∧ An: Θ n
A �ALCX ϕ iff

Θ n
A �→ALCX

ϕ.

Proof. Θ n
A �ALCX ϕ, iff, there is a M ∈ {

M → ∈ MK[X]
(
Θ n

A

) | there is no

M →→ ∈MK[X]
(
Θ n

A

)
such that AbL[X]

P (M →→) ∪ AbL[X]
P (M →)

⎧
, M |= ϕ, iff [by Lemma

F.3.1] there is a M ∈ {
M → ∈ MK[X]

(
Θ n

A

) | there is no M →→ ∈ MK[X]
(
Θ n

A

)
such

http://dx.doi.org/10.1007/978-3-319-00792-2_8
http://dx.doi.org/10.1007/978-3-319-00792-2_2
http://dx.doi.org/10.1007/978-3-319-00792-2_3
http://dx.doi.org/10.1007/978-3-319-00792-2_8
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that AbL[X]
P (M →→) ∪ AbL[X]

P (M →)
⎧

such that for all M → ∈ MK[X]
(
Θ n

A

)
for which

AbL[X]
P (M) = AbL[X]

P (M →), M → |= ϕ, iff, Θ n
A �→ALCX

ϕ. �

Corollary F.4.3. Let A = 〈A,→◦ be an AF for which A ∧ An. The following
statements are equivalent:

(i) Θ n
A �→ALCX

ϕ
(ii) there is a M ∈MALCX(Θ n

A ) for which M |=L[X] ϕ
(iii) Θ n

A ≥ALCX ϕ
(iv) Θ n

A �ALCX ϕ.

F.4.2 Semantics for Admissible, Complete, and Preferred
Extensions

Corollary F.4.4. MALCP (Θ n
A ) = MALP

(
Θ n

A

)
where A = 〈A,→◦ is an AF for

which A ∧ An.

Proof. Follows by the definitions. �

Fact F.4.1. Where A is an AF, S is a preferred extension iff S is a maximal complete
extension.

Lemma F.4.2. An argument a is credulously accepted w.r.t. admissible (resp. com-
plete) extensions iff a is credulously accepted w.r.t. preferred extensions.

Proof. If a is credulously accepted w.r.t. the admissible (resp. complete) extension
type, then it is an element of an admissible (resp. complete) extension S. Then there is
a preferred extension S→ ⊇ S. Therefore, a is credulously accepted w.r.t. the preferred
extension type. The other direction is clear, because every preferred extension is also
an admissible (resp. complete) extension. �

Proof (Proof of Theorem 8.5.1i,ii). This follows immediately by Corollary F.4.4,
Theorem 8.4.1iii and Fact F.4.1. �

Proof (Proof of Theorem 8.5.2i,ii,iii). Let A = 〈A,→◦ be an AF for whichA ∧ An .
Because of Lemma F.4.2 it is enough to show this for preferred extensions. If ai is
credulously accepted w.r.t. preferred extensions, then for a preferred extension S of
A, ai ∈ S. By Theorem 8.5.1ii there is a M ∈ MALCP (Θ n

A ) such that pi ∈ {pl |
M |=LA pl}. Hence, Θ n

A ≥ALCP pi by Corollary F.4.3.
If Θ n

A ≥ALCP pi , then by Corollary F.4.3 there is a model M ∈MALCP (Θ n
A ) such

that M |=LA pi . By Theorem 8.5.1ii there is a preferred extension S of Asuch that
S = {al | M |=LA pl}. Therefore ai ∈ S. �
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F.4.3 Semantics for Grounded Extensions

Proof (Proof of Theorem 8.5.2iv). This is immediately clear in view of the fact that
there is only one grounded extension and because of Corollary 8.4.1iv. �

F.4.4 Semantics for Stable and Semi-Stable Extensions

On first sight the AL defined by the triple

L = 〈LC, [Φ�,ΦS], [simple strategy, normal selections]◦

might to some readers seem to be a good candidate for a logical characterization of
semi-stable extensions w.r.t. credulous acceptance. However, suppose we have the
AF A = 〈{a1, a2}, {(a1, a2), (a2, a1)}◦. In this case we have two stable extensions,
namely {a1} and {a2}. Our logic ALS for language W2 has therefore two types of
models, type (1) verifying p1 and def p2 and type (2) verifying p2 and def p1. Note
that for models M of either type we have AbLC

S (M) = ∅. Thus, it is easy to see that
we have neither p1 nor p2 as a L-consequence.

Note however, that we do have ¬p1 ∅¬p2 as ΦP -minimal Dab-consequence for
ALS. If we apply normal selections w.r.t. ΦP to the set of ALS-models we gain two
selected sets of models: models of type (1) and models of type (2). Thus, this way
we gain both, p1 and p2, as consequences.

Lemma F.4.3. Where A = 〈A,→◦ is an AF for which A ∧ An, MALCS(Θ
n
A ) =

MALS

(
Θ n

A

)
.

Proof. All ALS-models of Θ n
A are ΦP -minimally abnormal. To show this suppose

there are M, N ∈MALS

(
Θ n

A

)
for which AbLC

P (M) ∪ AbLC
P (N ). By Theorem 8.4.1v

there are semi-stable extensions SM = {al | M |=LC pl} and SN = {al | N |=LC pl}.
Hence, SN ∪ SM . But this is not possible, since both, SM and SN are also preferred
extensions. �

Proof (Proof of Theorem 8.5.1iii). This is an immediate consequence of Lemma
F.4.3 and Theorem 8.4.1v. �

Proof (Proof of Theorem 8.5.2v). Let A = 〈A,→◦ be an AF for which A ∧ An .
If ai is credulously accepted w.r.t. semi-stable extensions, then for a semi-stable
extension S, ai ∈ S. By Theorem 8.5.1iii there is an M ∈MALCS(Θ

n
A ), M |=LC pi .

Hence, Θ n
A ≥ALCS pi by Corollary F.4.3.

If Θ n
A ≥ALCS pi , then by Corollary F.4.3 there is a model M ∈MALCS(Θ

n
A ) such

that M |=LC pi . By Theorem 8.5.1iii there is a semi-stable extension S such that
S = {al | M |=LC pl} and therefore ai ∈ S. �



Appendix G
Appendix to Chapter 9

This Appendix provides the semantics to the logics defined in Chap. 9. Moreover, all
representational results will be proven.

G.1 The Semantics

The semantics are defined analogous to the way they were defined for the logics
for Dung’s argumentation framework in Appendix F. Hence, the presentation in this
section will be brief.

G.1.1 The Assignment

Let

W�,r
n := 〈V∧n ◦� 〈Vn◦ | ⇐� 〈Vn◦

As in Appendix F I define the semantics for logics L (where L ∈ {CLA, CLC}) via an
assignment function v : Vn∨W�,r

n → {0, 1} and an L-valuation vL
M :Wn → {0, 1}

determined by the assignment. A model M is defined by the assignment v. We have
to slightly alter our definitions in order to adjust them to the generalized framework.
Let

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 387
DOI: 10.1007/978-3-319-00792-2, © Springer International Publishing Switzerland 2014
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v∧
(∧

I
δi

)
=df min({v(δi ) | i ∈ I }) where δi ∈ Vn,

v∅
(⎫

I
δi

)
=df max({v(δi ) | i ∈ I }) where δi ∈ Vn,

vdef

(
def

∧

I
δi

)
=df max

i∈I

(
max
σ∈V∧n

(
min(v∧(σ), v(σ � δi ))

))
where

∧

I
δi ∈ V∧n ,

vΛ(δ) =df






v(δ) δ ∈ Vn ∨W�,r
n

v∧(δ) δ ∈ V∧n \ Vn

v∅(δ) δ ∈ V∅n \ Vn

vdef(δ) δ = def σ,σ ∈ V∧n
We define

vR�C =df 1− max
δ∈V∧n ,σ∈Vn

(
min(vΛ(δ), vΛ(δ � σ), vΛ(σ))

)

vR⇐C =df 1− max
δ∈Vn

(
min(vΛ(δ), 1− vΛ(⇐� δ))

)

vRadC =df 1− max
δ∈Vn ,σ∈V∧n

(
min(vΛ(δ), vΛ(σ � δ), 1− vΛ(def σ))

)

vRCoC =df 1− max
σ∈Vn

(
min

(
vΛ(⇐� σ), min

δ∈V∧n
(max(1− vΛ(δ � σ), vΛ(def δ))),

1− vΛ(σ)
))

v
CLA
i =df min(vR�C, vR⇐C, vRadC)

v
CLC
i =df min(vR�C, vR⇐C, vRadC, vRCoC)

Note that vR�C corresponds to our syntactical rule (R�C) in the sense that
vR�C = 1 if the assignment satisfies the semantic counterpart to (R�C). That
is to say, vR�C = 1 iff v has the following property (where v = v):

If v(δ) = v(δ � σ) = 1, then v(σ) = 0, where δ ∈ V∧n ,σ ∈ Vn (S�C)

The situation is analogous for vR⇐C, vRadC, and vRCoC with respect to the following
properties:

If v(δ) = 1, then v(⇐� δ) = 1, where δ ∈ Vn . (S⇐C)

If v(δ) = v
((∧

I
σi

)
� δ

) = 1, then there is a γ ∈ V∧n
for which v(γ) = max

i∈I
(v(γ � σi )) = 1, where δ,σi ∈ Vn . (SadC)

If v(⇐� σ) = 1 and for all
∧

I
δi ∈ V∧n we have

⎭
v
((∧

I
δi

)
� σ

) = 0 or

(there is a γ ∈ V∧n for which v(γ) = max
i∈I

(v(γ � δi )) = 1)
]
, then v(σ) = 1.

(SCoC)
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We call an assignment v CLA-intended iff v
CLA
i = 1, and we call it CLC-intended

iff v
CLC
i = 1. Obviously, every CLC-intended assignment is CLA-intended as well.

The following Lemma shows that intended assignments have the corresponding intu-
itive properties:

Lemma G.1.1. Let v be an assignment function.

(i) v
CLA
i = 1 iff vΛ satisfies (S�C), (SadC), (S⇐C).

(ii) v
CLC
i = 1 iff vΛ satisfies (S�C), (SadC), (S⇐C), (SCoC).

Proof. Ad (i): “⇒”: Let v
CLA
i = 1. Assume vΛ(δ) = 1. Since vR⇐C = 1,

min(vΛ(δ), 1− vΛ(⇐� δ)) = 0. Thus, vΛ(⇐� δ) = 1. Thus, (S⇐C) is valid.
Assume now vΛ(δ) = vΛ(δ � σ) = 1. Since vR�C = 1, min(vΛ(δ), vΛ(δ �

σ), vΛ(σ)) = 0. Thus, vΛ(σ) = 0. Thus, (S�C) is valid.
Assume now vΛ(δ) = vΛ(σ � δ) = 1 where σ = ⎨

I σi . Since vRadC = 1,
min(vΛ(δ), vΛ(σ � δ), 1 − vΛ(def σ)) = 0. Hence, vΛ(def σ) = 1. By definition,
maxi∈I maxγ∈V∧n (min(vΛ(γ), vΛ(γ � σ))) = 1. Thus, there is a γ ∈ V∧n for which
vΛ(γ) = 1 = maxi∈I vΛ(γ � σi ). Thus, (SadC) is valid.

“≺”: Suppose that vR⇐C = 0 and vΛ satisfies (S⇐C). Then there is a δ ∈ V∅n for
which min(vΛ(δ), 1 − vΛ(⇐ � δ)) = 1. Thus, vΛ(δ) = 1 and vΛ(⇐ � δ) = 0.
However, by (S⇐C), vΛ(⇐� δ) = 1,—a contradiction. Thus, vR⇐C = 1. The proof
is similar for vR�C, and vRadC.

Ad (ii): “⇒”: Let v
CLC
i = 1. In addition to what has been shown in (i), it has to be

shown that (SCoC) is valid. Assume vΛ(⇐ � σ) = 1 and for all δ = ⎨
I δi ∈ V∧n ,

vΛ(δ � σ) = 0 or there is a γ ∈ V∧n for which vΛ(γ) = maxi∈I (vΛ(γ � δi )) = 1.
Thus, for all δ ∈ V∧n , vΛ(δ � σ) = 0 or vΛ(def δ) = 1. Due to the fact that vRCoC =
1, min

(
vΛ(⇐ � σ), minδ∈V∧n (max(1 − vΛ(δ � σ), vΛ(def δ))), 1 − vΛ(σ)

) = 0.
Thus, vΛ(σ) = 1. Thus, (SCoC) is valid.

“≺”: Suppose that vRCoC = 0 and vΛ satisfies (SCoC). Then there is a σ ∈ Vn for
which min

(
vΛ(⇐� σ), minδ∈V∧n (max(1−vΛ(δ � σ), vΛ(def δ))), 1−vΛ(σ)

) = 1.
Thus, vΛ(σ) = 0 and vΛ(⇐ � σ) = 1. Thus, for every δ = ⎨

I δi ∈ V∧n for
which vΛ(δ � σ) = 1, vΛ(def δ) = 1 and hence there is a γ ∈ V∧n such that
vΛ(γ) = maxi∈I (vΛ(γ � δi )) = 1. But then, due to (SCoC), vΛ(σ) = 1,—a
contradiction. �

G.1.2 The Valuation

Let us now take a look at valuation functions for our core logics CLA and CLC. Let
a model M be defined by an assignment v.

An CLA-valuation v
CLA
M : Wn → {0, 1} determined by v is defined as follows

(where, if not indicated differently, δ,δi ,σ ∈ Vn ; ϕ,ϕ1,ϕ2 ∈Wn ; and L = CLA):
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vL
M (⇐) = 0 (s⇐)

vL
M (δ � σ) = v(δ � σ), where δ ∈ V∧n ,σ ∈ Vn (s�)

vL
M (⇐� δ) = v(⇐� δ) (s⇐�)

vL
M

((∧

I
δi

)
�

(⎫

J
δ j

))
= vL

M

(∧

J

((∧

I
δi

)
� δ j

))
(s-CA)

vL
M

((∧

I
δi

)
�

(∧

J
δi

))
= vL

M

(∧

J

((∧

I∨J\{ j}δi

)
� δi

))
(s-IA)

vL
M (δ) = min

(
vL

i , v(δ)
)

(sPA)

vL
M (ϕ1 ∧ ϕ2) = min

(
vL

M (ϕ1), v
L
M (ϕ2)

)
(s∧)

vL
M (ϕ1 ∅ ϕ2) = max

(
vL

M (ϕ1), v
L
M (ϕ2)

)
(s∅)

vL
M (ϕ1 ⊕ ϕ2) = max

(
1− vL

M (ϕ1), v
L
M (ϕ2)

)
(s⊕)

vL
M (¬ϕ) = 1− vL

M (ϕ) (s¬)

We define M |=CLA A iff v
LA
M (A) = 1.

In the case v
CLA
i = 1, i.e., in the case that the assignment v is CLA-intended,

the valuation takes over the truth values from the assignment for all formulas in Vn .
However, if v

CLA
i = 0, the valuation assigns to all propositional letters the truth

value 0. Note that for a given CAF A the empty selection is always an admissible
extension. Thus, the valuation on basis of a non-intended assignment corresponds to
the empty extension.

CLC-valuations are defined analogous to CLA-valuations, with the exception of
(sPA) which is replaced by (where δ ∈ Vn):

v
LC
M (δ) = max

(
min

(
v

LC
i , vΛ(δ)

)
, vg(δ)

)
where (sPC)

vg(δ) =df max
i≥0

(
vi

g(δ)
)
, where

v0
g(δ) =df min

(
vΛ(⇐� δ), 1− max

σ∈V∧n
(vΛ(σ � δ))

)
, and

vi
g(δ) =df min

(
vΛ(⇐� δ), defendedi (δ)

)
, where i > 0 and

defendedi (δ) =df min⎨
Lσl∈V∧n

(
max

(
1− vΛ

((∧

L
σl � δ

)
,

defeatedi (
∧

L
σl)

)))
, where

defeatedi
(∧

L
σl

)
=df max

l∈L;⎨K γk∈V∧n

(
min

(
vΛ

((∧

K
γk

)
� σl

)
,

v<i
g

(∧

K
γk

)))
, where

v<i
g

(∧

K
γk

)
=df min

k∈K

(
max

0∈ j<i

(
v j

g (γk)
)
)
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We define M |=CLC A iff v
LC
M (A) = 1. Again, in the case that v is an CLC-

intended assignment, i.e., in the case v
CLC
i = 1, the valuation v

LC
M takes over all

truth values for all formulas in Vn from the assignment (see Lemma G.2.1 below).
However, in the case v

CLC
i = 0, the situation is more complicated than for the CLA

case, since for a given AF A the empty selection may not correspond to a complete
extension. In this case the valuation v

LC
M verifies a propositional letter δ iff vg(δ) = 1.

As it will be shown, this way it is ensured that the models of the adaptive strengthening
of CLC correspond to the complete extensions.

As the reader can see, everything except rules (s�), (s⇐�), (s-CA), (s-IA), and
(sPA) (resp. (sPC)) is defined in the classical way. Note, that by (s�) and (s⇐�)
the valuation takes over the assignment from v for formulas of the form δ � σ
and ⇐ � δ. By (sPA) (resp. (sPC)) the valuation may have a different value for
propositional letters than assigned by v. Note that although (sPA) and (sPC) are of a
rather complex form, they are fully determined by the assignment v.

Our valuations satisfy the semantic properties corresponding to the rules (R�C),
(RadC), (R⇐C), (RCoC) of logics CLA and CLC.

Theorem G.1.1. Let M be a model defined by the assignment v.5

(i) v
CLA
M satisfies (S�C), (SadC), (S⇐C).

(ii) v
CLC
M satisfies (S�C), (SadC), (S⇐C), (SCoC).

G.2 Soundness and Completeness

Lemma G.2.1. Let v be an assignment and δ ∈ Vn. If v
CLC
i = 1, then vg(δ) = 1

implies vΛ(δ) = 1.

Proof. Suppose v
CLC
i = vg(δ) = 1. Then there is a i ≥ 0 such that vi

g(δ) = 1. We
prove the statement by an induction on i .

“i = 0”: We have vΛ(⇐ � δ) = 1 and for all σ ∈ V∧n , vΛ(σ � δ) = 0.
Since vRCoC = 1, min

(
vΛ(⇐ � δ), minσ∈V∧n

(
max(1 − vΛ(σ � δ), vdef(def σ))

)
,

1− vΛ(δ)
) = 0. Thus, 1− vΛ(δ) = 0 and hence, vΛ(δ) = 1.

“i ⇒ i + 1”: Let vi+1
g (δ) = 1. Thus, min(vΛ(⇐ � δ), defendedi+1(δ)) = 1

and hence vΛ(⇐ � δ) = defendedi+1(δ) = 1. Thus, minσ∈V∧n
(
max(1 − vΛ(σ �

δ), defeatedi+1(σ))
) = 1. In the case that there is no σ ∈ V∧n for which vΛ(σ �

δ) = 1, v0
g(δ) = 1 and thus by induction hypothesis, vΛ(δ) = 1. Suppose there

is a σ for which vΛ(σ � δ) = 1. Then defeatedi+1(σ) = 1. Hence, where σ =⎨
L σl , maxl∈L;γ∈V∧n

(
min(vΛ(γ � σl), v

<i+1
g (γ))

) = 1. Thus, there is a γσ for

every such σ = ⎨
L σl ∈ V∧n for which maxL(vΛ(γσ � σl)) = v<i+1

g (γσ) = 1.
Hence, where γσ = ⎨

K γk , for each k ∈ K there is a jk < i + 1 such that

5 We postpone the proof of this theorem to page 393.
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v
j
g (γk) = 1. Thus, by induction hypothesis, vΛ(γσ) = 1. Thus, vdef(def σ) = 1 for

all σ for which vΛ(σ � δ) = 1. Thus, due to the fact that vRCoC = 1, min
(
vΛ(⇐�

δ), minσ∈V∧n (max(1 − vΛ(σ � δ), vdef(defσ))), 1 − vΛ(δ)
) = 0. Thus, we have

1− vΛ(δ) = 0 and hence vΛ(δ) = 1. �

Lemma G.2.2. Let vL
M be an L-valuation (where L ∈ {CLA, CLC}) with corre-

sponding assignment v.

(i) If vL
i = 1 then vL

M (ϕ) = vΛ(ϕ) for all ϕ ∈ Vn ∨ V∅n ∨ V∧n ∨W�,r
n and for all

ϕ = def δ where δ ∈ V∧n .

(ii) Moreover, if v
CLA
M (δ) = 1 for some δ ∈ Vn then v

CLA
i = 1.

Proof. Ad (i): Let L = CLA: Let δ ∈ Vn . Since vL
M (δ) = 1 iff v(δ) = vL

i = 1,
vL

M (δ) = 0 iff vL
i = 0 or v(δ) = 0. Since vL

i = 1 the statement is true for all ϕ ∈ Vn .
Let L = CLC and δ ∈ Vn : Since vL

M (δ) = 1 iff v(δ) = vL
i = 1 or vg(δ) = 1, and

vg(δ) = 1 implies v(δ) = 1 due to vL
i = 1 by Lemma G.2.1, we have vL

M (δ) =
1 iff v(δ) = 1. For ϕ ∈ V∅n ∨ V∧n the statement follows by the definition of vΛ.

For ϕ ∈ W�,r
n the statement is true by (s�) and (s⇐�) and the definition

of vΛ. Furthermore, vL
M (def

⎨
I δi ) = vL

M (
⎬

i∈I
⎬

σ∈V∧n ((σ � δi ) ∧ σ)) =
maxi∈I ;σ∈V∧n (min(vL

M (σ), vL
M (σ � δi ))) = maxi∈I ;σ∈V∧n (min(vΛ(σ), vΛ(σ �

δi ))) = vΛ(def
⎨

I δi ).
Ad (ii): this is the case due to (sPA). �

Lemma G.2.3. Le v be an assignment function and σ ∈ Vn. If vg(σ) = 1 then for
all

⎨
L δl ∈ V∧n for which v((

⎨
L δl) � σ) = 1, vg(δl) = 0 for some l ∈ L.

Proof. Since vg(σ) = 1 iff maxi≥0(v
i
g(σ)) = 1, we have vi

g(σ) = 1 for some i ≥ 0.
The proof is by induction on i .

“i = 0”: In this case min(v(⇐ � σ), 1 − maxγ∈V∧n (v(γ � σ))) = 1 and thus
there is no γ ∈ V∧n for which v(γ � σ) = 1.

“i ⇒ i + 1”: Let vi+1
g (σ) = 1. Thus, min(v(⇐ � σ), defendedi+1(σ)) =

1. Thus, defendedi+1(σ) = 1. Thus, minγ∈V∧n (max(1 − v(γ � σ), defeatedi+1

(γ))) = 1. Thus, for any γ = ⎨
L γl for which v(γ � σ) = 1, defeatedi+1(γ)

= 1. In the case that there is such a γ, maxl∈L;ω∈V∧n
(
min(v(ω � γl), v

<i+1
g (ω))

) =
1. Thus, there are a ωγ and a γl for which v(ωγ � γl) = 1 and v<i+1

g (ωγ) =
1. Thus, where ωγ = ⎨

N ωn , there is a jn < i + 1 for every n ∈ N such that

v
jn
g (ωn) = 1. Suppose vg(γl) = 1. Then there is a kl such that v

kl
g (γl) = 1. Thus,

defendedkl (γl) = 1. Hence, defeatedkl (ωγ) = 1. Thus there is an ε = ⎨
E εe for

which maxn∈N (v(ε � ωn)) = minE (v
<kl
g (εe)) = 1. By the induction hypothesis

however, vg(εe) = 0 for some e ∈ E ,—a contradiction. Thus, vg(γl) = 0. �

Proof (Proof of Theorem G.1.1). Ad (i): Let L = CLA. By Lemma G.2.2i, in the
case that vL

i = 1, vL
M (ϕ) = v(ϕ) for all ϕ ∈ V∧n ∨ V∅n ∨W�

n . By Lemma G.1.1i
follows the rest. Assume thus that vL

i = 0. Note that in this case by Lemma G.2.2ii
vL

M (δ) = 0 for all δ ∈ Vn . Hence, trivially (S�C), (SadC), and (S⇐C) are valid.
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Ad (ii): Let L = CLC. By Lemma G.2.2i, in the case vL
i = 1, vL

M (ϕ) = v(ϕ) for
all ϕ ∈ V∧n ∨ V∅n ∨W�

n . By Lemma G.1.1ii follows the rest.
Assume thus that vL

i = 0. Note that for all δ ∈ Vn in this case vL
M (δ) = 1 iff

vg(δ) = 1.

Assume vL
M (δ) = 1. Then vg(δ) = 1 and thus, by definition, v(⇐ � δ) =

vL
M (⇐� δ) = 1. Thus, (S⇐C) is valid.

Assume vL
M (δ) = vL

M (δ � σ) = 1. Hence, where δ = ⎨
I δi , for all i ∈ I ,

vL
M (δi ) = vg(δi ) = 1 = v(δ � σ). Thus, by Lemma G.2.3, vg(σ) = 0 and hence,

vL
M (σ) = 0. Thus, (S�C) is valid.

Assume vL
M (δ) = vL

M (σ � δ) = 1. Thus, vg(δ) = 1 = v(σ � δ). Thus,

there is an i ≥ 0 such that vi
g(δ) = 1. Note that this entails defendedi (δ). Since

v(σ � δ) = 1, i > 0. Since defendedi (δ) = 1, defeatedi (σ) = 1. Thus, where
σ = ⎨

L σl , for some l ∈ L and γ = ⎨
G γg ∈ V∧n , v(γ � σl) = vL

M (γ � σl) = 1
and ming∈G(v<i

g (γg)) = 1. Thus, for all g ∈ G, vg(γg) = 1 and thus vL
M (γg) = 1.

Hence vL
M (γ) = 1. Thus, (SadC) is valid.

Assume vL
M (⇐� σ) = 1 and for all δ =⎨

I δi ∈ V∧n either vL
M (δ � σ) = 0 or

there is a γ = ⎨
G γg ∈ Vn for which ming∈G(vL

M (γg)) = maxi∈I (v
L
M (γ � δi )) =

1. Hence, v(⇐� σ) = 1 and for all δ =⎨
I δi ∈ Vn either v(δ � σ) = 0 or there

is a γ = ⎨
G γg ∈ V∧n for which ming∈G(vg(γg)) = maxi∈I (v(γ � δi )) = 1. If

for all δ ∈ V∧n , v(δ � σ) = 0 then by definition, v0
g(σ) = 1 and thus vg(σ) = 1.

Hence, vL
M (σ) = 1. Otherwise there is a j > 0 such that for all δ =⎨

I δi ∈ V∧n for

which v(δ � σ) = 1 there is a γδ = ⎨
G γg ∈ V∧n for which ming∈G(v

< j
g (γg)) =

maxi∈I (v(γδ � δi )) = 1. Then, defended j (σ) = 1 and thus v
j
g (σ) = 1. Thus,

vg(σ) = vL
M (σ) = 1. Thus, (SCoC) is valid. �

Theorem G.2.1 (Soundness). Let L ∈ {CLA, CLC}, Θ ∧ Wn and ϕ ∈ Wn. If
Θ ≥L ϕ, then Θ �L ϕ.

Proof. We use for the proof an induction on the derivation steps of a proof of ϕ
analogous to the way soundness is usually proven for classical propositional logic
(cp. e.g., [3] p. 40–43). If ϕ is introduced by premise introduction then trivially
Θ �L ϕ, as ϕ ∈ Θ . If ϕ is obtained by aggregation ϕ1 ϕ2

ϕ1∧ϕ2
where ϕ = ϕ1 ∧ ϕ2,

then by induction hypothesis, Θ �L ϕ1,ϕ2. Therefore we have for all L-models of
Θ , M |=L ϕ1,ϕ2. But then by (s∧), M |=L ϕ1 ∧ϕ2 . The proof is analogous for the
other classical rules.

We have to take a look at the non-classical rules: If ϕ = ¬σ and it has been
derived by (R�C) from δ and δ � σ, then by induction hypothesis we have
Θ �L δ,δ � σ. Thus for all L-models M of Θ , M |=L δ,δ � σ. Since by
Theorem G.1.1 vL

M validates (S�C), vL
M (σ) = 0. Thus, by (s¬), vL

M (¬σ) = 1.
If ϕ = ¬δ and it has been derived from ⇐ ⊃� δ by (R⇐C), then by induction

hypothesis for each L-model M of Θ , vL
M (⇐ ⊃� δ) = 1 and hence by (s¬), vL

M (⇐�
δ) ⊃= 1. By (S⇐C), vL

M (δ) ⊃= 1 and hence vL
M (δ) = 0. Thus, by (s¬), vL

M (¬δ) = 1.
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If def σ has been derived from δ and σ � δ by (RadC), then by induction
hypothesis for each L-model M of Θ , vL

M (δ) = vL
M (σ � δ) = 1. Where σ =⎨

I σi ,
by (SadC), there is a γ ∈ V∧n and an i ∈ I for which vL

M (γ) = vL
M (γ � σi ) = 1. By

(s∅), vL
M (def σ) = 1.

Evidently, also the axioms (CA) and (IA) have the semantic counterparts (s-CA)
and (s-IA) and hence the proof proceeds similarly.

For L = CLC: If σ has been derived from ⇐ � σ and
⎨

ω∈V∧n
(
(ω � σ) ⊕

def ω
)

by (RCoC), then by induction hypothesis, vL
M (⇐ � σ) = vL

M

(⎨
ω∈V∧n ((ω �

σ) ⊕ def ω)
) = 1 for each L-model M of Θ . Thus, minω∈V∧n (max(1 − vL

M (ω �
σ), vL

M (def ω))) = 1. Thus, for all ω =⎨
I ωi ∈ Vn , vL

M (ω � σ) = 0 or vL
M (def ω) =

1. In the latter case, by (s∅), there is an εω ∈ V∧n for whichvL
M (εω) =maxi∈I (v

L
M (εω �

ωi )) = 1. Altogether, by (SCoC), vL
M (σ) = 1. �

Let Θ ∧Wn and L ∈ {CLA, CLC}. Θ is L-consistent iff Θ ⊀L ⇐. Θ is maximally
L-consistent iff (a) Θ is L-consistent and (b) if Θ ∧ Θ → and Θ → is L-consistent,
then Θ = Θ →. We say that Θ is L-inconsistent in case it is not L-consistent. The
proofs of the following propositions are standard for classical propositional logic
and can for instance be found in van Dalen [3] pp. 43–45. The proofs for our logics
are analogous.

Lemma G.2.4. Let Θ ∧Wn, ϕ ∈Wn, and L ∈ {CLA, CLC}. We have:

(i) If Θ ∨ {¬ϕ} is L-inconsistent, then Θ ≥L ϕ
(ii) If Θ ∨ {ϕ} is L-inconsistent then Θ ≥L ¬ϕ.

(iii) Each L-consistent set Θ is contained in a maximally L-consistent set Θ →.
(iv) If Θ is maximally L-consistent, then ϕ ∈ Θ iff ¬ϕ /∈ Θ , and ¬ϕ ∈ Θ iff ϕ /∈ Θ .
(v) For an L-consistent Θ and for all ϕ ∈ Θ , Θ ⊀L ¬ϕ.

Lemma G.2.5. Let L ∈ {CLA, CLC}. If Θ ∪ Wn is L-consistent, then there is an
L-model M of Θ .

Proof. By Lemma G.2.4v we know that Θ is contained in a maximally L-consistent
Θ →. We define an assignment v : Vn ∨W�,r

n → {0, 1} by ϕ ˆ→ 1 iff ϕ ∈ Θ → ⊆ (Vn ∨
W�,r

n ). I will show that vL
M (ϕ) = 1 iff ϕ ∈ Θ →. In order to do so we first show that

vL
i = 1.

Suppose vR⇐C = 0 and thus maxω∈Vn

(
min(v(ω), 1 − v(⇐ � ω))

) = 1. Thus,
there is an δ for which min(v(δ), 1 − v(⇐ � δ)) = 1. Thus, v(δ) = 1 and
v(⇐� δ) = 0. Hence, δ ∈ Θ → and⇐ � δ /∈ Θ →. Due to the maximal consistency of
Θ →,⇐ ⊃� δ ∈ Θ →. However, by (R⇐C),¬δ ∈ Θ → and thus δ /∈ Θ →,—a contradiction.
Thus, vR⇐C = 1.

Suppose vR�C = 0. Then maxγ∈V∧n ,ω∈Vn (min(v∧(γ), v(γ � ω), v(ω))) = 1.
Thus, there are δ ∈ V∧n and σ ∈ Vn such that v∧(δ) = v(δ � σ) = v(σ) = 1.
Hence, due to the maximal consistency of Θ →, δ,σ,δ � σ ∈ Θ →. But by (R�C)
¬σ ∈ Θ →,—a contradiction. Thus, vR�C = 1.

Suppose vRadC = 0. Then maxγ∈Vn ,ω∈V∧n (min(v(γ), v(ω � γ), 1 − vdef

(def ω)) = 1. Thus, there are δ ∈ Vn,σ ∈ V∧n such that v(δ) = v(σ � δ) = 1 and
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vdef(def σ) = 0. Thus, δ,σ � δ ∈ Θ →. By (RadC), def σ ∈ Θ →. Note that, where
σ =⎨

I σi , by definition vdef(def σ) = maxi∈I ;γ∈V∧n (min(v∧(γ), v(γ � σi ))) = 0.
Thus, for all γ ∈ V∧n , v∧(γ) = 0 or maxi∈I (v(γ � σi )) = 0. Thus due to the maxi-
mal consistency of Θ →, for all γ ∈ V∧n , ¬γ ∈ Θ →, or γ ⊃� σi ∈ Θ → for all i ∈ I . Thus,
due to the maximal consistency of Θ →,¬γ∅⎨

I (γ ⊃� σi ) ∈ Θ → for all γ ∈ V∧n . Thus,⎨
I ¬(γ ∧ (γ � σi )) ∈ Θ → for all γ ∈ V∧n . Thus,

⎨
I
⎨

γ∈V∧n ¬(γ ∧ (γ � σi )) ∈ Θ →
and hence,¬⎬

I
⎬

γ∈V∧n (γ∧ (γ � σi )) ∈ Θ →. Thus¬def σ ∈ Θ →,—a contradiction.
Thus, vRadC = 1.

In the case of CLC also vRCoC = 1 has to be shown. Suppose vRCoC = 0. Then
maxω∈Vn

(
min(v(⇐� ω), minδ∈V∧n (max(1−v(δ � ω), vdef(defδ))), 1−v(ω))

) =
1. Thus, there is a σ ∈ Vn for which min(v(⇐ � σ), minδ∈V∧n (max(1 − v(δ �
σ), vdef(defδ))), 1−v(σ)) = 1. Thus, v(⇐� σ) = 1, v(σ) = 0 and for all δ ∈ V∧n ,
max(1 − v(δ � σ), vdef(defδ)) = 1. Thus, ⇐ � σ ∈ Θ → and σ /∈ Θ → and hence,
¬σ ∈ Θ →. Moreover, for all δ =⎨

I δi ∈ V∧n either v(δ � σ) = 0 and hence δ ⊃�
σ ∈ Θ → or vdef(defδ) = 1. In the latter case, maxI maxγ∈V∧n (min(v∧(γ), v(γ �
δi ))) = 1 and hence there is a γδ ∈ V∧n for which maxI min(v∧(γδ), v(γδ �
δi )) = 1. Thus, v∧(γδ) = maxI (v(γδ � δi )) = 1. Thus, γδ, γδ � δi ∈ Θ → for
some i ∈ I . Hence, due to the maximal consistency of Θ →, defδ ∈ Θ →. Thus, for all
δ ∈ V∧n , defδ ∅ (δ ⊃� σ) ∈ Θ → and hence,

⎨
δ∈V∧n

(
(δ � σ) ⊕ defδ

) ∈ Θ →. By
(RCoC), σ ∈ Θ →,—a contradiction. Thus, vRCoC = 1.

We have shown that vL
i = 1. We will show now that vL

M (ϕ) = 1 iff ϕ ∈ Θ → by an
induction on the length l of ϕ ∈Wn .

“l = 0”: By Lemma G.2.2i, vL
M (ϕ) = v(ϕ), for all ϕ ∈ Vn ∨ W�,r

n . Thus,
vL

M (ϕ) = 1 iff ϕ ∈ Θ → for all ϕ ∈ Vn ∨W�,r
n .

“l ⇒ l + 1”: Let ϕ = ¬ϕ→ ∈ Θ →, then ϕ→ /∈ Θ → and by induction hypothesis,
vL

M (ϕ→) = 0. By (s¬), vL
M (ϕ) = 1. Now let vL

M (ϕ) = 1, then by (s¬), vL
M (ϕ→) = 0

and by induction hypothesis, ϕ→ /∈ Θ →. Due to the maximal consistency of Θ →, ϕ ∈ Θ →.
For the other Boolean combinations the proof is analogous.
Thus, vL

M (ϕ) = 1 iff ϕ ∈ Θ →. Since Θ → ⊇ Θ , we also have: if ϕ ∈ Θ then
vL

M (ϕ) = 1. �

Corollary G.2.1. Let L ∈ {CLA, CLC} and Θ ∧ Wn. If Θ ⊀L ϕ then there is an
L-model of Θ for which vL

M (ϕ) = 0.

Proof. If Θ ⊀L ϕ, then by Lemma G.2.4i, Θ ∨ {¬ϕ} is L-consistent. By Lemma
G.2.5 there is an L-model M of Θ ∨ {¬ϕ}. By (s¬), vL

M (ϕ) = 0. �

Theorem G.2.2 (Completeness). Let L ∈ {CLA, CLC}. If Θ �L ϕ then Θ ≥L ϕ.

Proof. By Corollary G.2.1 we know that if Θ ⊀L ϕ, then Θ �L ϕ. �
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G.3 Representational Results for Admissible and Complete
Extensions

Since all our ALs for skeptical acceptance are in the standard format and employ
CLA resp. CLC as lower limit logics, the completeness and soundness of CLA and
CLC provides us immediately with the completeness and soundness of the adaptive
systems ACLA resp. ACLC (see Theorem 2.6.1).

Theorem G.3.1. We have Θ n
A �ACLX ϕ iff Θ n

A ≥ACLX ϕ where X ∈ {A, C}.
Proof. This follows by Theorem G.2.1, Theorem G.2.2 and Theorem 2.6.1. �

Lemma G.3.1. Let A = 〈A,→◦ be a sCAF for which A ∧ An and X ∈ {A, C}.
(i) Θ n

A ≥ACLX ⇐ ⊃� pi for all pi ∈ Vn \ {pl | al ∈ A}, otherwise ⇐� pi ∈ Θ n
A .

(ii) Θ n
A ≥ACLX

(⎨
I pi

)
� p j iff ({ai | i ∈ I }, a j ) ∈ → iff

(⎨
I pi

)
� p j ∈ Θ n

A ,
otherwise Θ n

A ≥ACLX

(⎨
I pi

) ⊃� p j .

(iii) For all M ∈MACLX(Θ n
A ), AbCLX� (M) = Θ n

A .
(iv) If pi ∈ Vn \ {pl | al ∈ A}, then Θ n

A ≥ACLX ¬pi .

Proof. Let S ∧ A, in case X = A, be an admissible extension and, in case X = C, a
complete extension. We construct an CLX-model M of Θ n

A on basis of the assignment
v : Vn ∨W�,r

n → {0, 1}, where

ϕ ˆ→






1 if ϕ = pi where ai ∈ S [1]
1 if ϕ = (⎨

I pi
)

� p j where ({ai | i ∈ I }, a j ) ∈ → [2]
1 if ϕ = ⇐� pi where ai ∈ A [3]
0 else [4]

It is easy to check that the semantical properties (SadC), (S�C) and (S⇐C) (resp.
(SadC), (S�C), (S⇐C) and (SCoC) in the case X = C) are valid for vΛ. Let for
property (S�C), vΛ(

⎨
I pi ) = v((

⎨
I pi ) � p j ) = 1, then by definition of v,

{ai | i ∈ I } ∧ S and ({ai | i ∈ I }, a j ) ∈ →. But then v(p j ) = 0, as due the
conflict-freeness of S, there is no S→ ∧ S such that (S→, ak) ∈ → for some ak ∈ S.
For property (SadC) suppose v(pi ) = v((

⎨
J p j ) � pi ) = 1. By definition of

v, ai ∈ S and ({a j | j ∈ J }, ai ) ∈ →. Since S is admissible, there is a {ak |
k ∈ K } ∧ S such that ({ak | k ∈ K }, a j ) ∈ → for some j ∈ J . But then,
v∧(

⎨
K pk) = v((

⎨
K pk) � p j ) = 1. For (S⇐C) let v(pi ) = 1. Then ai ∈ A

and thus v(⇐ � pi ) = 1. For (SCoC) in the case X = C let v(⇐ � pi ) = 1
and for all

⎨
K pk ∈ V∧n let v((

⎨
K pk) � pi ) = 0 or there is a

⎨
M pm such

that v∧(
⎨

M pm) = maxK v((
⎨

M pm) � pk) = 1. Since
{({a j | j ∈ J }, al

) |
v((

⎨
J p j ) � pl) = 1

⎧ = → and
{
al | v(pl) = 1

⎧ = S, we know that ai is
defended by S. Thus, ai ∈ S and hence v(pi ) = 1.

Thus, since v
CLX
i = 1, vCLX

M (ϕ) = v(ϕ) for all ϕ ∈ Vn ∨W�
n by Lemma G.2.2i.

Note that by construction, AbLX� (M) = Θ n
A . (i) – (iii) follow immediately. (iv)

follows by (i) and (R⇐). �
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Lemma G.3.1 shows that for our ALs all minimal disjunctions of abnormalities
Dab(β) (where β ∧ Φ�) derivable by our lower limits CLA and CLC are such
that β is a singleton. Therefore, the simple strategy defines in these cases the same
consequence relation as the minimal abnormality strategy (or the reliability strategy,
see Theorem 2.4.11).

Proof (Proof of Theorem 9.6.1i). Let A = 〈A,→◦ be a sCAF for which A ∧
An . “≺”: Let M ∈ MACLA(Θ n

A ). Note that S = {al | M |=CLA pl} ∧ A, as
for all p j ∈ Vn \ {pl | al ∈ A} by Lemma G.3.1iv, Θ n

A ≥ACLA ¬p j and thus
Θ n

A �ACLA ¬p j . S is conflict-free, as if ({ai | i ∈ I }, a j ) ∈ →, then (
⎨

I pi ) �
p j ∈ Θ n

A and therefore M |=CLA

⎨
I pi � p j . Hence, if M |=CLA

⎨
I pi and

thus M |=CLA pi for all i ∈ I , then by (S�C) we have M |=CLA ¬p j . Hence,
either {ai | i ∈ I } ⊃∧ S or a j /∈ S. For admissibility let ({a j | j ∈ J }, ai ) ∈ →
and M |=CLA pi . Hence, (

⎨
J p j ) � pi ∈ Θ n

A . Now by (SadC) there is a
⎨

K pk

such that M |=CLA

⎨
K pk, (

⎨
K pk) � p j for some j ∈ J . By Lemma G.3.1ii,

({ak | k ∈ K }, a j ) ∈ →. Hence, S is admissible.
“⇒”: Let S ∧ A be an admissible set. Define an ACLA-model M with respect

to S as in Lemma G.3.1. Obviously {al | M |=CLA pl} = S and by construction
M |=CLA Θ n

A .
Due to Theorem 9.5.1 an analogous proof can be used to prove the property for

CAFs. �

Proof (Proof of Theorem 9.6.1ii). Let A = 〈A,→◦ be a sCAF for which A ∧ An .
“≺”: Let M ∈MACLC(Θ n

A ). Note that S = {al | M |=CLC pl} ∧ A, as for all p j ∈
Vn \ {pl | al ∈ A} by Lemma G.3.iv, Θ n

A ≥ACLC ¬p j and thus Θ n
A �ACLC ¬p j . S is

conflict-free, as if ({ai | i ∈ I }, a j ) ∈ →, then (
⎨

I pi ) � p j ∈ Θ n
A and therefore

M |=CLC

⎨
I pi � p j . Hence, if M |=CLC

⎨
I pi and thus M |=CLC pi for all i ∈ I ,

then by (S�C) we have M |=CLC ¬p j . Hence, either {ai | i ∈ I } ⊃∧ S or a j /∈ S. For
admissibility let ({a j | j ∈ J }, ai ) ∈ → and M |=CLC pi . Hence, (

⎨
J p j ) � pi ∈

Θ n
A . Now by (SadC) there is a

⎨
K pk such that M |=CLC

⎨
K pk, (

⎨
K pk) � p j for

some j ∈ J . By Lemma G.3.1ii, ({ak | k ∈ K }, a j ) ∈ →. Hence, S is admissible.
Let ai ∈ A be such that S defends ai . We have to show that ai ∈ S. Note that, since

ai ∈ A, ⇐ � pi ∈ Θ n
A . If Attai =df {{al | l ∈ L} | ({al | l ∈ L}, ai ) ∈ →} = ∅,

then by Lemma G.3.1ii, for all
⎨

J p j , M |=CLC (
⎨

J p j ) ⊃� pi and thus by
(SCoC), M |=CLC pi . Hence, ai ∈ S. Let now Attai ⊃= ∅. By Lemma G.3.1,{⎨

L pl |
({al | l ∈ L}, ai

) ∈ →⎧ = {⎨
L pl | M |=LC (

⎨
L pl) � pi

⎧
. Since

S defends ai , there is an {ak | k ∈ K } ∧ S for each {a j | j ∈ J } ∈ Attai for
which ({ak | k ∈ K }, a j ) ∈ → for some j ∈ J . Thus, there is a

⎨
K pk such that

M |=CLC

⎨
K pk, (

⎨
K pk) � p j for some j ∈ J for each

⎨
J p j ∈

{⎨
L pl |

({al |
l ∈ L}, ai

) ∈ →⎧ = {⎨
L pl | M |=CLC (

⎨
L pl) � pi

⎧
. By (SCoC), M |=CLC pi

and thus, ai ∈ S.
“⇒”: Let S ∧ A be a complete extension. We construct an ACLC-model M of

Θ n
A such that {al | M |=CLC pl} = S as in Lemma G.3.1 (for the X = C case).

Due to Theorem 9.5.1 an analogous proof can be used to prove the property for
CAFs. �
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Proof (Proof of Corollary 9.6.1i,ii). Let L ∈ {ACLA, ACLC} and A = 〈A,→◦ an
sCAF (resp. A = 〈A,→c,→i ◦ a CAF) for which A ∧ An .

Let ai be skeptically accepted with respect to admissible (in case L = ACLA)
resp. complete (in case L = ACLC) extensions. Then ai ∈ S for all admissible
(resp. complete) extensions S, ai ∈ ⋂{S ∧ A | S is an admissible (resp. complete)
extension of A}. By Theorem 9.6.1i,ii we immediately get Θ n

A �L pi and due to
Theorem 9.6.1 we have Θ n

A ≥L pi .
Let Θ n

A ≥L pi . By Theorem G.3.1 we know that Θ n
A �L pi . By Theorem 9.6.1i,ii

we immediately get ai ∈ ⋂{S ∧ A | S is an admissible (resp. complete) extension
by A}. �

G.4 The Other Extension Types

The proofs are analogous to the proofs for standard AFs (see Appendix F.3).
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In order to prove soundness and completeness with respect to our semantics for
DPM, we will show that it is equivalent to Goble’s original DPM semantics. Since
Schröder and Pattinson have proven soundness and strong completeness for Goble’s
semantics in [5] this is sufficient.

Goble’s original neighborhood semantics is very similar to the one presented here:
the key difference is that we employ an actual world. Where frames are defined as
before, an F-G-model M is a pair 〈F, v◦ where F is a frame and v : S → ℘(W )

as before. The essential difference concerns the definition of model-validity. While
in our semantics it is defined in terms of validity with respect to the actual world, in
Goble’s semantics it is defined in terms of validity with respect to all given worlds:
M |=G A iff M, w |= A for all w ∈ W . All other definitions concerning validity
are analogous. For a given frame F = 〈W,O◦ and Θ ∧ W , Θ �G

F A iff for all
F-G-models M and for all w ∈ W , if M, w |= B for all B ∈ Θ , then M, w |= A.
Moreover, where δ ∈ {1, 2→}, Θ �G

DPM.δ A iff Θ �G
F A for all DPM.δ-frames F .

Schröder and Pattinson have shown the following strong completeness and soundness
result in [5]:

Theorem H.1. Where δ ∈ {1, 2→} and Θ ∧W , Θ �G
DPM.δ A iff Θ ≥DPM.δ A.

Theorem H.2. Where δ ∈ {1, 2→} and Θ ∧W , Θ �G
DPM.δ A iff Θ �DPM.δ A.

Proof. Let F be the class of DPM.δ-frames. “≺”: Let Θ �DPM.δ A and F =
〈W,O◦ ∈ F . Suppose there is an F-G-model M = 〈F, v◦ and a world w ∈ W for
which M, w ⊃|= A and M, w |= B for all B ∈ Θ . Note that M → = 〈F, v, w◦ is a
DPM.δ-model of Θ for which M → ⊃|= A,—a contradiction.

“⇒”: Let Θ �G
DPM.δ A. Suppose for some frame F = 〈W,O◦ ∈ F there is an

F-model Mw = 〈F, v, w◦ of Θ for which Mw ⊃|= A. Let M = 〈F, v◦. Note that
M, w |= B for all B ∈ Θ and M, w ⊃|= A,—a contradiction. �

Theorem 10.3.1 (restated). Where δ ∈ {1, 2, 2→} and Θ ∧W:

Θ ≥DPM.δ A iff Θ �DPM.δ A

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 399
DOI: 10.1007/978-3-319-00792-2, © Springer International Publishing Switzerland 2014
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Proof. Follows immediately by Theorem H.1 and Theorem H.2. �

Theorem 10.2.2 (restated). Where δ ∈ {1, 2→}, DPM.δ satisfies (Λ).

Proof. For DPM.1 this has already been shown by Goble in [6]. Note that (D)
together with (PAND) results in (AND). Since DPM.1 strengthened by (D) has the
same corresponding consequence relation as SDL, it also validates (N). Thus, DPM.1
strengthened by (D) and DPM.2→ strengthened by (D) have the same corresponding
consequence relation. Thus, DPM.2→ strengthened by (D) has the same corresponding
consequence relation as SDL. �

Theorem 10.8.1 (restated). Where δ ∈ {1, 2→}, none of Goble’s explosion principles
(DEX), (DEX-1)–(DEX-3) is valid in ADPM.δ.

Proof. Let us first consider the case for ADPM.2→. Let W = ℘(S) and p1 and p2
are sentential letters. We define

Wa = {w ∈ W | p1 /∈ w, p2 /∈ w},
Wb = {w ∈ W | p1 /∈ w, p2 ∈ w},
Wc = {w ∈ W | p1 ∈ w, p2 /∈ w},
Wd = {w ∈ W | p1 ∈ w, p2 ∈ w}.

We define a frame F = 〈W,O◦whereOw = {Wa∨Wb, Wc∨Wd , W } for all w ∈ W .
Note that F is a DPM.2→-frame. Let M = 〈F, v, @◦ where v(pi ) = {w ∈ W | pi ∈
w} and @ is any world in W . Note first that M |= Op1, O¬p1, O , P , P(p1∧ p2)

and M ⊃|= O(p1 ∧ p2). Thus, M models a counter-instance to (DEX), (DEX-1)–
(DEX-3). Note furthermore that M is a minimally abnormal model of {Op1, O¬p1}
and also of {Op1, O¬p1, O , P } since Ab(M) = {OA ∧ O¬A |≥ A ≡ p1} and
{Op1, O¬p1} ≥DPM.2→ A for all A ∈ Ab(M).

The proof for ADPM.1 is similar. Where W = ℘(S) and v : S → ℘(W ),
pi ˆ→ {w ∈ W | pi ∈ w}, we define a frame F = 〈W,O◦ where for all w ∈ W ,

Ow = {W → | W → ⊇ v(p1)} ∨ {∅}

Note that F is a DPM.1-frame. Let M = 〈F, v, @◦ where @ is any world in W .
Evidently, M |= Op1, O , O⇐, Pp1, Pp2 and M ⊃|= Op2. Thus, M models a coun-
ter-instance to (DEX), (DEX-1)–(DEX-3). Also, M is a minimally abnormal model
of {O , O⇐} and of {O , O⇐, Op1, Pp1} since Ab(M) = {!A | A has a subformula
B for which ≥ B ≡  } and {O , O⇐} ≥DPM.1 A for all A ∈ Ab(M). �

Theorem 10.2.1 (restated). Where L ∈ {DPM.1, DPM.2, DPM.2→}, L does not
validate any of the explosion principles (DEX), (DEX-1)–(DEX-3).

Proof. Due to the fact that all adaptively selected models are models of the lower
limit logic, the counter-models to (DEX) and (DEX-1)—(DEX-3) constructed for
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ADPM.1 and ADPM.2→ in the proof of Theorem 10.8.1 are also counter-models for
DPM.1 and DPM.2→. Theorem 10.2.1 was proven for DPM.2 by Goble in [6]. �

Theorem 10.8.2 (restated) Where δ ∈ {1, 2→}, the upper limit logic of ADPM.δ is
SDL.

Proof. Given a Θ ∧W we have to show that Θ ∨{¬(OA∧O¬A) | A ∈W} ≥DPM.δ

B iff Θ ≥SDL B. Note that ≥DPM.δ ¬(OA ∧ O¬A) ≡ (OA ⊕ PA). Thus, Θ ∨
{¬(OA∧O¬A)} ≥DPM.δ B iff Θ ≥DDPM.δ B where DDPM.δ is DPM.δ enriched
by (D). However, since by Theorem 10.2.2 DDPM.δ has the same corresponding
consequence relation as SDL, we are finished. �

Corollary 10.8.3 (restated). Where δ ∈ {1, 2→}, ADPM.δ satisfies (Λ).

Proof. For SDL-consistent premise sets Θ this is an immediate consequence of
Corollary 10.8.4. Let Θ ∧ W be SDL-inconsistent. Where DADPM.δ (resp.
DDPM.δ) is ADPM.δ (resp. DPM.δ) enriched by (D) and Θ → = Θ ∨ {OA ⊕
PA | A ∈ W}, note that MSDL (Θ ) = ∅ = MDDPM.δ(Θ ) = MDPM.δ(Θ →) ⊇
MADPM.δ(Θ →) =MDADPM.δ(Θ ). �
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I.1 Semantics

The interested reader can find semantics for the monadic systems in [7, 8] and
Chap. 10. Semantics for some of the dyadic CDPM systems, such as for instance
CDPM.1 and CDPM.1c, are introduced by Goble in [9]. The semantics for the
variations introduced in Chap. 11 can be defined along the same lines. The only
difference to the original versions is that we employ an actual world. This makes the
semantics philosophically more intuitive for our applications, since we are not only
interested in modeling theoremhood but rather in defining a semantic consequence
relation.

One of the basic ideas for the neighborhood semantics is that propositions are
interpreted in terms of sets of worlds. Moreover, each world has associated with
it pairs of propositions, i.e., pairs of sets of worlds. The idea is that an obligation
O(A|B) is true at a world w, in case 〈|B|, |A|◦ is one of its associated pairs of
propositions and where |B| denotes the set of worlds representing the proposition B
(analogous for A). Let us take a look at the formal details.

Let a dyadic neighborhood frame F be a pair 〈W,O◦where W is a set of worlds and
O assigns each world a ∈ W a set of ordered propositions, i.e.Oa ∧ ℘(W )×℘(W ).
A model M on a frame F is a triple 〈F, v, @◦where v(p) ∧ W for each propositional
letter p and @ ∈ W is called the actual world. Where S = {p1, p2, . . . } is the set of
sentential letters, we define:

M, a |= A iff a ∈ v(A), where A ∈ S
M, a |= ¬A iff M, a � A

M, a |= A ∧ B iff (M, a |= A and M, a |= B)

M, a |= A ∅ B iff (M, a |= A or M, a |= B)

M, a |= A ⊕ B iff (M, a |= ¬A or M, a |= B)

M, a |=  
M, a � ⇐

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 403
DOI: 10.1007/978-3-319-00792-2, © Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-00792-2_10
http://dx.doi.org/10.1007/978-3-319-00792-2_11


404 Appendix I: Appendix to Chapter 11

Moreover, where |A|M =df {a ∈ W | M, a |= A}, we define,

M, a |= O(A|B) iff 〈|B|M , |A|M ◦ ∈ Oa

For a model M = 〈W,O, v, @◦, M |= A iff M, @ |= A. Where Θ ∧ W2 and
M = 〈F, v, @◦, we say that M is an F-model of Θ iff M |= A for all A ∈ Θ .
Moreover, for a frame F , Θ �F A iff for all F-models M = 〈F, v, @◦ of Θ ,
M |= A. For a class of frames F , Θ �F A iff Θ �F A for all F ∈ F .

Semantics for CDPM.1c are defined by means of the following frame conditions.
Where F = 〈W,O◦ and X =df W \ X , we require for all a ∈ W :

〈W, W ◦ ∈ Oa (F-CN)

If 〈X, Y ◦ ∈ Oa and 〈X, Z◦ ∈ Oa, then 〈X, Y ⊆ Z◦ ∈ Oa (F-CAND)

If Y ∧ Z and 〈X, Y ◦ ∈ Oa and 〈X, Y ◦ /∈ Oa then 〈X, Z◦ ∈ Oa (F-RCPM)

If 〈X, Y ◦ ∈ Oa, for any Y ∧ W, then 〈X, X◦ ∈ Oa (F-QR)

If 〈X ⊆ Y, Z◦ ∈ Oa, then 〈X, Y ∨ Z◦ ∈ Oa (F-S)

If 〈X, Y ◦ ∈ Oa and 〈X, Y ⊆ Z◦ /∈ Oa, then 〈X ⊆ Z , Y ◦ ∈ Oa (F-WRM)

Semantics for CDPM.2→c are defined by means of (F-CN), (F-RCPM), (F-QR),
(F-S), (F-WRM) and the following frame conditions:

If 〈X, Y ◦ ∈ Oa, 〈X, Z◦ ∈ Oa, 〈X, Y ◦ /∈ Oa,

〈X, Z◦ /∈ Oa, then 〈X, Y ⊆ Z◦ ∈ Oa (F-CPAND→)
〈X,∅◦ /∈ Oa (F-CP)

Moreover, the following frame conditions are useful to define the semantics for
some of our logical variants:

If 〈X, Y ◦ ∈ Oa, 〈X, Y ⊆ Z◦ /∈ Oa and 〈Z , Y ∨ X◦ ∈ Oa,

then 〈X ⊆ Z , Y ◦ ∈ Oa (F-WRMΛ)

If 〈X ⊆ Y, Z◦ ∈ Oa, and 〈X, Z◦ /∈ Oa, then 〈X, Y ∨ Z◦ ∈ Oa (F-PS)

If 〈Y, Z◦ ∈ Oa, and 〈Y, Z ⊆ X◦ /∈ Oa, then 〈X, Y ∨ Z◦ ∈ Oa (F-AWRMΛ)

If 〈X, Y ◦ ∈ Oa, then 〈X, Y ◦ /∈ Oa (F-CD)

Definition I.1.1. Let π ∈ ℘(P), L = ⊕(π, CDPM−) and Θ ∧W2. Let F be the
class of frames that meet the conditions in {F-P | P ∈ π }, (F-CN) and (F-RCPM).

We define ML (Θ ) to be the class of all F-models of Θ . Moreover Θ �L A iff
for all M ∈ML (Θ ), M |= A.

Fact I.1.1. Let π ∈ ℘(P), L = ⊕(π, CDPM−) and Θ ∧ W2. Let F be the class
of frames that meet the conditions in {F-P | P ∈ π }, (F-CN) and (F-RCPM).
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Θ �L A iff Θ �F A.

Goble’s original neighborhood semantics is very similar to the one presented here.
As pointed out, the key difference is that we employ an actual world. Where frames
are defined as before, an F-G-model M is a pair 〈F, v◦where F = 〈W,O◦ is a frame
and v(p) ∧ W for each propositional letter p. The essential difference concerns the
definition of model-validity. While in our semantics presented above it is defined in
terms of validity with respect to the actual world, in Goble’s semantics it is defined
in terms of validity with respect to all given worlds: M |=G A iff M, w |= A for all
w ∈ W . All other definitions concerning validity are analogous. For a given frame
F = 〈W,O◦ and Θ ∧ W2, Θ �G

F A iff for all F-G-models M and for all w ∈ W ,
if M, w |= B for all B ∈ Θ , then M, w |= A. For a class of frames F , Θ �G

F A iff
for all F ∈ F , Θ �G

F A.
Goble offered a rather involved proof of weak completeness and soundness for

CDPM.1c in [9]. The authors in [5] have proven strong soundness and completeness
for all rank-1 modal logics (i.e., logics which are axiomatized by formulas containing
exactly one level of modal operators) with respect to their canonical neighborhood
semantics, i.e. that is with respect to the way Goble defined his neighborhood seman-
tics for them. Obviously all the logics defined in Chap. 11 are rank-1 modal logics.
Hence, with the results of [5] we have:

Theorem I.1.1. Where Θ ∧ W2, π ∈ ℘(P), L = ⊕(π, CDPM−), and F is the
class of frames that meet the conditions in {F-P | P ∈ π }, (F-CN) and (F-RCPM),
we have:

Θ �G
F A iff Θ ≥L A

The following establishes the bridge between Theorem I.1.3 and Theorem I.1.1.

Theorem I.1.2. Where Θ ∧ W2, π ∈ ℘(P), L = ⊕(π, CDPM−), and F is the
class of frames that meet the conditions in {F-P | P ∈ π }, (F-CN) and (F-RCPM),
we have:

Θ �L A iff Θ �F A iff Θ �G
F A

Proof. “⇒”: Let Θ �F A and F = 〈W,O◦ ∈ F . Suppose there is an F-G-model
M = 〈F, v◦ and a world w ∈ W for which M, w � A and M, w |= B for all B ∈ Θ .
Note that M → = 〈F, v, w◦ is an F-model of Θ for which M → ⊃|= A,—a contradiction.

“≺”: Let Θ �G
F A. Suppose that for some frame F = 〈W,O◦ ∈ F there is an

F-model Mw = 〈F, v, w◦ of Θ for which Mw � A. Let M = 〈F, v◦. Note that
M, w |= B for all B ∈ Θ and M, w ⊃|= A,—a contradiction. �

Theorem I.1.3. Let π ∈ ℘(P), L = ⊕(π, CDPM−) and Θ ∧W2.

Θ �L A iff Θ ≥L A

http://dx.doi.org/10.1007/978-3-319-00792-2_11
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Proof. By Theorem I.1.2, Θ �F A iff Θ �G
F A. By Theorem I.1.1, Θ �G

F A iff
Θ ≥L A. Hence, Θ �F A iff Θ ≥L A. �

Corollary I.1.1.

(i) Where LLL ∈ ↓CDPM.1c ∨ ↓CDPM.2→c, Θ ≥Ac(LLL) A iff Θ �Ac(LLL) A.
(ii) Where LLL ∈ ⋃

δ∈{1,2→} ↓CDPM.δc ∨ {⊕CD $WRM CDPM.δc} and x ∈
{m, r}, Θ ≥Ax

r (LLL) A iff Θ �Ax
r (LLL) A.

Proof. Follows by Theorem 2.6.1 and Theorem I.1.3. �

The semantics of our sequential ALs from Sect. 11.6 are defined as follows.6

Definition I.1.2. Where LLL ∈ ⋃
δ∈{1,2→} ↓ $WRM CDPM.δc we define:

Θ �Ar
r⇒Ac(LLL) A iff for all M ∈MAr

r(LLL)

(
CnAc(LLL) (Θ )

)
, M |= A.

By Theorem 3.2.5 and Theorem 3.3.1 we have:

Corollary I.1.2. Where LLL ∈ ⋃
δ∈{1,2→} ↓ $WRM CDPM.δc, Θ �Ar

r⇒Ac(LLL)

A iff Θ ≥Ar
r⇒Ac(LLL) A iff A ∈ CnAr

r⇒Ac(LLL) (Θ ).

I.2 Proofs

Theorem 11.3.1 (restated). Where δ ∈ {1, 2→}, CDPM.δc satisfies (CΛ).

Proof. Goble has proven the statement already for CDPM.1c. Note that from (CD)
and (CPAND’), (CAND) is derivable. Since CDPM.1c together with (CD) validates
(CN), CDPM.2→c together with (CD) results in the same consequence relation as the
one of CDPM.1c together with (CD). Thus, CDPM.2→c together with (CD) results
in the same consequence relation as the one of (R)SDDL. �

Lemma I.2.1. Where δ ∈ {1, 2→} and Θ ∧W2:
M is a ⊕({CD, PS},$SCDPM.δc)-model of Θ iff M is a ⊕CDCDPM.δc)-model
of Θ .

Proof. Let M = 〈F, v, @◦ be a ⊕({CD, PS},$SCDPM.δc)-model of Θ . It is
enough to show that (F-S) is valid in F . Suppose there is a counter-instance to the
frame condition (F-S) valid in F . Let thus

〈X ⊆ Y, Z◦ ∈ Oa (I.1)

and suppose

〈X, Y ∨ Z◦ /∈ Oa (I.2)

6 Since Ac uses minimal abnormality the semantics is not defined by the iterative procedure of
Definition 3.2.1. Compare the discussion concerning Example 3.2.1 where the reasons are explained
in detail.

http://dx.doi.org/10.1007/978-3-319-00792-2_11
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By (F-CD) and (I.1), 〈X ⊆ Y, Z◦ /∈ Oa . By (F-PS), (I.1) and (I.2), 〈X, Z◦ ∈ Oa .
But then, by (F-WRM), 〈X, Y ∨ Z◦ ∈ Oa ,—a contradiction. Hence F is a frame
satisfying the frame conditions corresponding to ⊕CDCDPM.δc.

The other direction is trivial. �

Theorem 11.4.2 (restated). Where δ ∈ {1, 2→}, ⊕PS $S CDPM.δc satisfies (CΛ).

Proof. This is an immediate consequence of Lemma I.2.1 and the fact that CDPM.δc
satisfies (CΛ). �

Lemma I.2.2. (R)SDDL validates (WRM), (WRMΛ) and (AWRMΛ).

Proof. Suppose O(B|A) and P(B ∧ C |A). Hence, ¬O(¬B ∅ ¬C |A). By (RCM),
¬O(¬C |A) and hence P(C |A). By (RatMono), O(B|A ∧ C). Hence, ≥(R)SDDL
(O(B|A ∧ PB ∧ C |A)) ⊕ O(B|A ∧ C). Hence (WRM) and (WRMΛ) are validated
by (R)SDDL.

Suppose now O(B|A) and P(B ∧ C |A). Hence, ¬O(¬B ∅ ¬C |A). By (RCM),
¬O(¬C |A) and hence P(C |A). Hence, by (RatMono), O(B|A ∧ C). By (S),
O(A ⊕ B|C). Hence ≥(R)SDDL

(
O(B|A) ∧ P(B ∧ C |A)

) ⊕ O(A ⊕ B|C). Hence,
(R)SDDL validates (AWRMΛ). �

Theorem 11.4.1 (restated). Where δ ∈ {1, 2→},
⊕({WRMΛ, AWRMΛ} $WRM CDPM.δc) satisfies (CΛ).

Proof. Let L→ = ⊕({WRMΛ, AWRMΛ},$WRMCDPM.δc). Since it validates all
instances of (WRMΛ) and (AWRMΛ), it also validates all instances of (WRM). Hence,
the consequence relation of L→ is at least as strong as the consequence relation of
CDPM.δc. Since ⊕CDCDPM.δc characterizes the same consequence relation as
(R)SDDL and due to Lemma I.2.2, it also validates all instances of (WRMΛ) and
(AWRMΛ). Hence, ⊕CDL→ and ⊕CDCDPM.δc characterize the same consequence
relation. �

Theorem 11.4.3 (restated). Where δ ∈ {1, 2→},
⊕({WRMΛ, AMRMΛ, PS},$({WRM, S}, CDPM.δc)) satisfies (CΛ).

Proof. Let

L→ = ⊕({WRMΛ, AMRMΛ, PS},$({WRM, S}, CDPM.δc))

Since L→ validates all instances of (WRMΛ) and (AWRMΛ), it also validates all
instances of (WRM). Hence, the consequence relation of L→ is at least as strong as the
consequence relation of ⊕PS $S CDPM.δc. Due to Theorem 11.4.2, ⊕({CD, PS},
$SCDPM.δc) satisfies (CΛ). Hence,⊕CDL→ is at least as strong as (R)SDDL. Since
(R)SDDL validates all instances of (WRMΛ) and (AWRMΛ), it characterizes the
same consequence relation as ⊕CDL→. �

Theorem 11.5.1 (restated). Where δ ∈ {1, 2→}, we have:
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(i) Ac(CDPM.δc) satisfies (C‡).
(ii) Ac(⊕PS $S CDPM.δc) satisfies (C‡).

Proof. Ad (i): Let Θ be a (R)SDDL-consistent premise set. As ⊕CDCDPM.δc is
equivalent to (R)SDDL, M⊕CD CDPM.δc(Θ ) ⊃= ∅. By the definition of Φc

d these are
the minimally abnormal CDPM.δc-models since for all these models M , Ab(M) =
∅. Moreover, for all M ∈MCDPM.δcΘ \M⊕CD CDPM.δc(Θ ), Ab(M) ⊃= ∅ since M
validates a counter-instance of (CD), O(A|B) ∧ O(¬A|B). Hence Ac(CDPM.δc)
is equivalent to⊕CDCDPM.δc for Θ . Therefore it is equivalent to (R)SDDL for all
premise sets for which (R)SDDL is non-explosive.

Ad (ii): Due to Lemma I.2.1 this is proven analogously. �

Lemma I.2.3. Where δ ∈ {1, 2→} and x ∈ {m, r}, for all premise sets for
which CDPM.δc (resp. ⊕CDCDPM.δc resp. ⊕({CD, PS},$SCDPM.δc)) is
non-explosive, Ax

r ($WRMCDPM.δc) (resp. Ax
r(⊕CD$WRMCDPM.δc) resp.

Ax
r(⊕({CD, PS},$({WRM, S}, CDPM.δc)))) has the same consequence relation

as CDPM.δc (resp. ⊕CDCDPM.δc resp. ⊕({CD, PS},$SCDPM.δc)).

Proof. It is immediately clear that all models inMCDPM.δc(Θ ) are minimally abnor-
mal $WRMCDPM.δc-models of Θ since they do not validate any abnormalities in
Φr

d . For all M ∈ M$WRMCDPM.δc(Θ ) \MCDPM.δc(Θ ) there is a counter-instance
of (WRM). Therefore these M do validate abnormalities and are therefore not mini-
mally abnormal. Hence MCDPM.δc(Θ ) is the set of all minimally abnormal (and all
reliable) models. The proof is similar for the other cases. �

Theorem 11.5.3 is an immediate consequence.

Lemma I.2.4. Let Θ ∧W2 be a (R)SDDL-consistent premise set and δ ∈ {1, 2→}.
(i) M ∈MAc ($WRMCDPM.δc)(Θ ) iff M ∈M⊕CD$WRMCDPM.δc(Θ ) iff

M ∈M$WRMCDPM.δc
(
CnAC($WRMCDPM.δc)(Θ )

)

(ii) M ∈MAc(⊕PS$({WRM,S},CDPM.δc))(Θ ) iff
M ∈M⊕({CD,PS},$({WRM,S},CDPM.δc))(Θ ) iff
M ∈M⊕PS$({WRM,S},CDPM.δc)

(
CnAc(⊕PS$({WRM,S},CDPM.δc))(Θ )

)

Proof. Ad (i): Evidently, since Θ is (R)SDDL-consistent, there are ⊕CD$WRM
CDPM.δc-models of Θ ,$WRMCDPM.δc-models of Θ and, due to the reassurance
property (see Corollary 2.4.3i) also Ac($WRMCDPM.δc)-models of Θ . Let M be an
Ac($WRMCDPM.δc)-model of Θ . Suppose Ab(M) ⊃= ∅ (w.r.t. Φc

d ). However, for
every N that is a⊕CD$WRMCDPM.δc-model of Θ , Ab(N ) = ∅ (w.r.t. Φc

d ). Hence,
M is not a minimally abnormal $WRMCDPM.δc-model of Θ ,—a contradiction.
Hence, Ab(M) = ∅ (w.r.t. Φc

d ). Hence, M validates all instances of (CD).
Thus, M is a ⊕CD$WRMCDPM.δc-model of Θ . Hence,

MAc($WRMCDPM.δc)(Θ ) ∧M⊕CD$WRMCDPM.δc(Θ ).

By the completeness of Ac($WRMCDPM.δc), Θ ≥Ac ($WRMCDPM.δc)¬A for all
A ∈ Φc

d . Thus, Θ ≥Ac($WRMCDPM.δc)O(B|C) ⊕ P(B|C) for all B, C ∈W2. Hence,
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M$WRMCDPM.δc
(
CnALc($WRMCDPM.δc)(Θ )

) ∧M⊕CD$WRMCDPM.δc(Θ ).

Let now M be a ⊕CD$WRMCDPM.δc-model of Θ . Hence, Ab(M) = ∅ (w.r.t.
Φc

d ). Hence, M is a minimally abnormal $WRMCDPM.δc-model of Θ . Thus,
M ∈MAc($WRMCDPM.δc)(Θ ). Moreover, trivially,

M ∈M$WRMCDPM.δc
(
CnAc($WRMCDPM.δc)(Θ )

)
.

Ad (ii): Analogous to part (i). �

Theorem 11.6.1 (restated). Where δ ∈ {1, 2→} and x ∈ {m, r} we have:

(i) Ax
r ⇒ Ac($WRMCDPM.δc) satisfies (C‡).

(ii) Ax
r ⇒ Ac(⊕PS$({WRM, S}, CDPM.δc)) satisfies (C‡).

Proof. Let Θ be (R)SDDL-consistent.
Ad (i): We show the case x = r. The case x = m is analogous.

MAr
r⇒Ac($WRMCDPM.δc)(Θ ) =

MAr
r($WRMCDPM.δc)

(
CnAc($WRMCDPM.δc)(Θ )

) =
{

M ∈M$WRMCDPM.δc
(
CnAc($WRMCDPM.δc)(Θ )

) | M is reliable w.r.t. Φr
d

⎧

The latter is by Lemma I.2.4i identical to

{
M ∈M⊕CD$WRMCDPM.δc(Θ ) | M is reliable w.r.t. Φr

d

⎧ =
MAr

r(⊕CD$WRMCDPM.δc)(Θ )

The rest follows with Theorem 11.5.3.
Ad (ii): Analogous to part (i). �

Theorem I.2.1. All ALs defined in Sect.11.5 and Sect.11.6 with lower limit logics
in ↓CDPM.1c and ↓CDPM.2→c falsify (CDEX-1)–(CDEX-3).

Proof. Let F = 〈W,O◦ where W = ℘(S). We define W → = {w ∈ W | p1 ∈ w}
and Ow is defined as follows for all w ∈ W :

Ow =
⋃

X∈π

{〈X, Y ◦ | Y ⊇ X ⊆W →} ∨ {〈W,∅◦}

where π = {W →→ ∧ W | W →→ ⊆W → ⊃= ∅}.
It is easy to see that F satisfies the frame conditions for CDPM.1c and hence also

all frame conditions for logics in ↓CDPM.1c. Obviously 〈W, W ◦ ∈ Ow for every
w ∈ W . Hence (F-CN) is valid.
Let now 〈X, Y ◦, 〈X, Z◦ ∈ Ow. In the case that either 〈X, Y ◦ or 〈X, Z◦ is 〈W,∅◦ we
have Y ⊆ Z = ∅ and hence 〈X, Y ⊆ Z◦ = 〈W,∅◦ ∈ Ow. Let now Y, Z ⊇ X ⊆W → and
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X ∈ π . Hence also Y ⊆ Z ⊇ X ⊆W →. Hence, 〈X, Y ⊆ Z◦ ∈ Ow. Hence, (F-CAND)
is valid.

Let Y ∧ Z and 〈X, Y ◦ ∈ Ow and 〈X, Y ◦ /∈ Ow. Since 〈W, W ◦ ∈ Ow, 〈X, Y ◦ ⊃=
〈W,∅◦. Hence, Y ⊇ X ⊆W → and X ∈ π . Hence Z ⊇ X ⊆W →. Hence 〈X, Z◦ ∈ Ow.
Hence, (F-RCPM) is valid.

Let us take a look at (F-QR). Let 〈X, Y ◦ ∈ Ow. The case 〈X, Y ◦ = 〈W,∅◦ is
trivial, since 〈W, W ◦ ∈ Ow. Let now 〈X, Y ◦ ⊃= 〈W,∅◦. Then, since X ⊇ X ⊆ W →,
also 〈X, X◦ ∈ Ow. Hence, (F-QR) is valid.

Let 〈X ⊆ Y, Z◦ ∈ Ow. In case 〈X ⊆ Y, Z◦ = 〈W,∅◦, we have X = Y = W . Then
〈X, Y ∨ Z◦ = 〈W,∅◦ ∈ Ow. Let now 〈X ⊆Y, Z◦ ⊃= 〈W,∅◦. Hence, X ⊆Y ⊆W → ⊃= ∅.
Hence, X ⊆ W → ⊃= ∅. Also, Z ⊇ X ⊆ Y ⊆ W →. Hence, Y ∨ Z ⊇ X ⊆ W →. Hence,
〈X, Y ∨ Z◦ ∈ Ow. Hence, (F-S) is valid.

Let 〈X, Y ◦ ∈ Ow and 〈X, Y ⊆ Z◦ /∈ Ow. Note that 〈X, Y ◦ ⊃= 〈W,∅◦, since
〈W,∅ ⊆ Z◦ = 〈W, W ◦ and 〈W, W ◦ ∈ Ow. Hence, X ⊆W → ⊃= ∅. Moreover, Y ⊆ Z ⊃⊇
X ⊆W →. Hence there is a x ∈ X ⊆W → such that x ∈ Y ⊆ Z . Hence, X ⊆ Z ⊆W → ⊃= ∅.
Since 〈X, Y ◦ ∈ Ow, Y ⊇ X ⊆W →. Hence also Y ⊇ X ⊆ Z ⊆W →. Altogether hence,
〈X ⊆ Z , Y ◦ ∈ Ow. Thus, (F-WRM) is valid.

We define an F-model M = 〈F, v, @◦ as follows. The actual world @ is an arbi-
trary world in W . Moreover, v : pi ˆ→ {w ∈ W | pi ∈ w}. The model validates all
premise sets Θ ∈ {{O( | ), O(⇐| )}, {O( | ), O(⇐| ), P(p2| )}, {O( | ),

O(⇐| ), O(p1| ), P(p1| ), P(p2| )}⎧ and falsifies the following instance of
(CDEX-3): M |=O( | ),O(⇐| ),O(p1| ),P(p1| ),P(p2| ) and M �O(p2| ).
Thus, it does also not validate (CDEX-1) and (CDEX-2). Furthermore the model
is minimally abnormal for Θ with resepct to Φc

d and Φr
d and any lower limit

L ∈ ↓CDPM.1c. For Φc
d note that the only abnormalities are {!cO(A| ) : where

≥L  ≡ A if L does not validate (CAND) resp. where A has a subformula B for
which ≥L  ≡ B if L validates (CAND)}, but we also have Θ ≥L!cO(A| ) for all
these abnormalities. For Φr

d the set of abnormalities verified by M is empty. There-
fore, given premises Θ , the model is selected in all ALs based on lower limits in
↓CDPM.1c that are defined in Sects. 11.5 and 11.6.

Let F = 〈W,O◦ where W = ℘(S). We define Wa = {w ∈ W | p1 /∈ w, p2 /∈
w}, Wb = {w ∈ W | p1 /∈ w, p2 ∈ w}, Wc = {w ∈ W | p1 ∈ w, p2 /∈ w},
Wd = {w ∈ W | p1 ∈ w, p2 ∈ w}, and Ow for all w ∈ W as follows:

Ow =
⋃

X∈π

{〈X, Y ◦ | Y ⊇ X ⊆ (Wc ∨Wd)} ∨ {〈W, Wa ∨Wb◦}

where π = {W →→ ∧ W | W →→ ⊆ (Wc ∨Wd) ⊃= ∅}.
It is easy to see that F is a CDPM.2→c-frame. Obviously 〈W, W ◦ ∈ Ow for every

w ∈ W and hence (F-CN) is valid.
Let 〈X, Y ◦, 〈X, Z◦ ∈ Ow and 〈X, Y ◦, 〈X, Z◦ /∈ Ow. Obviously neither 〈X, Y ◦

nor 〈X, Z◦ is equal to 〈W, Wa ∨Wb◦, since 〈W, Wa ∨Wb◦ = 〈W, Wc ∨Wd◦ ∈ Ow.
Hence, Y, Z ⊇ X ⊆ (Wc∨Wd) and X ∈ π . Hence, Y ⊆ Z ⊇ X ⊆ (Wc∨Wd). Hence,
〈X, Y ⊆ Z◦ ∈ Ow. Hence, (F-CPAND→) is valid.
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Let 〈X, Y ◦ ∈ Ow and Y ∧ Z . Let moreover, 〈X, Y ◦ /∈ Ow. Hence 〈X, Y ◦ ⊃=
〈W, Wa ∨Wb◦. Hence, X ∈ π and Y ⊇ X ⊆ (Wc∨Wd). Hence Z ⊇ X ⊆ (Wc∨Wd).
Hence, 〈X, Z◦ ∈ Ow. Hence (F-RCPM) is valid.

Let 〈X, Y ◦ ∈ Ow. Hence, X ∈ π . Trivially X ⊇ X ⊆(Wc∨Wd). Hence 〈X, X◦ ∈
Ow. Hence, (F-QR) is valid.
Let 〈X⊆Y, Z◦ ∈ Ow. In case 〈X⊆Y, Z◦ = 〈W, Wa∨Wb◦we have X = Y = W . Then
〈X, Y ∨ Z◦ = 〈W, Wa ∨Wb◦ ∈ Ow. Let now 〈X ⊆ Y, Z◦ ⊃= 〈W, Wa ∨Wb◦. Hence,
X ⊆Y ⊆(Wc∨Wd) ⊃= ∅. Hence, X ⊆(Wc∨Wd) ⊃= ∅. Also, Z ⊇ X ⊆Y ⊆(Wc∨Wd).
Hence, Y ∨ Z ⊇ X ⊆ (Wc ∨Wd). Hence, 〈X, Y ∨ Z◦ ∈ Ow. Hence, (F-S) is valid.
Let 〈X, Y ◦ ∈ Ow and 〈X, Y ⊆ Z◦ /∈ Ow. Suppose that 〈X, Y ◦ = 〈W, Wa ∨ Wb◦.
Hence 〈W, (Wa ∨Wb) ⊆ Z◦ /∈ Ow. Hence, 〈W, (Wc ∨Wd) ∨ Z◦ /∈ Ow,—a contra-
diction. Hence 〈X, Y ◦ ⊃= 〈W, Wa ∨ Wb◦. Hence, X ⊆ (Wc ∨ Wd) ⊃= ∅. Moreover,
Y ⊆ Z ⊃⊇ X ⊆ (Wc ∨Wd). Hence there is a x ∈ X ⊆ (Wc ∨Wd) such that x ∈ Y ⊆ Z .
Hence, X ⊆ Z ⊆ (Wc ∨ Wd) ⊃= ∅. Since 〈X, Y ◦ ∈ Ow, also Y ⊇ X ⊆ (Wc ∨ Wd).
Hence also Y ⊇ X ⊆ Z ⊆ (Wc ∨ Wd). Altogether hence, 〈X ⊆ Z , Y ◦ ∈ Ow. Thus,
(F-WRM) is valid.

We define an F-model M = 〈F, v, @◦ as follows. The actual world @ is an
arbitrary world in W . Moreover, v : pi ˆ→ {w ∈ W | pi ∈ w}. The model validates
all premise sets Θ ∈ {{O  , O⇐ }, {O  , O⇐ , Pp2 }, {O  , O⇐ , Op1 ,

Pp1 , Pp2 }
⎧

and falsifies the following instance of (CDEX-3): M |= O  ,

O⇐ , Op1 , Pp1 , Pp2 and M � Op2 . Thus, it does also not validate (CDEX-
1) and (CDEX-2). Furthermore the model is minimally abnormal for Θ with resepct
to Φc

d and Φr
d and any lower limit L ∈ ↓CDPM.1c. For Φc

d note that the only
abnormalities are {OA ∧ O¬A |≥L  ≡ A}, but we also have Θ ≥L OA ∧
O¬A for all these abnormalities. For Φr

d the set of abnormalities verified by M is
empty. Therefore, given premises Θ , the model is selected in all ALs based on lower
limits in ↓CDPM.1c that are defined in Sects. 11.5 and 11.6. �

Theorem 11.5.2, Theorem 11.5.4 and Theorem 11.6.2 follow immediately by
Theorem I.2.1.
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Although the semantics that I introduce in this Appendix are very similar to Goble’s
semantics of CDPM.2c in [9, 6], they vary from the former in the following aspects:

• An actual world variant of the semantics is used here in order to model factual
premises in an intuitive way.

• The semantics have to deal with a language enriched by modal operators Oi and
Op, symbols •i and •p, and the additional principles characterizing them.

• The language is weaker than Goble’s in the sense that nested occurrences of modal
operators are not allowed.

J.1 Language

The language used for the logics defined in [10] is built up by propositional atoms,
denoted by A, the classical connectives,  ,⇐, a dyadic modal operator O, monadic
modal operators Oi, Op and symbols •i, •p. We use for (classical) propositional
formulas the letters A, B, C, D, E, F and denote by P the set of all propositional
formulas. Let L→ consist of all formulas of the form O(A|B), Oi A, Op A, •iO(A|B),

•pO(A|B) and the set of all propositional letters. Our set of wffs L is then defined
by the 〈¬,∅,∧,⊕◦-closure of L→. We use for formulas in L lower case greek letters.
As usually done, we define P(A|B) =df ¬O(¬A|B).

J.2 Syntactic Characterization

First, in order to recapitulate the definitions from [10], we state again the syntactic
rules used to define logics CDPM.2d+ and CDPM.2e+:

If ≥ A ≡ B, then ≥ O(C |A) ≡ O(C |B) (RCE)

C. Straßer, Adaptive Logics for Defeasible Reasoning, Trends in Logic 38, 413
DOI: 10.1007/978-3-319-00792-2, © Springer International Publishing Switzerland 2014
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If ≥ A ≡ B, then ≥ O(A|C) ≡ O(B|C) (CRE)

If ≥ A ≡ B, then ≥ Oi A ≡ Oi B (EOi)

If ≥ A ≡ B, then ≥ Op A ≡ Op B (EOp)

If ≥ A ≡ B, then ≥ •iO(A|C) ≡ •iO(B|C) (CREi)

If ≥ A ≡ B, then ≥ •iO(C |A) ≡ •iO(C |B) (RCEi)

If ≥ A ≡ B, then ≥ •pO(A|C) ≡ •pO(B|C) (CREp)

If ≥ A ≡ B, then ≥ •pO(C |A) ≡ •pO(C |B) (RCEp)

If ≥ B ⊕ C, then ≥ P(B|A) ⊕ (
O(B|A) ⊕ O(C |A)

)
(RCPM)

If ≥ D ⊕ ¬A, then ≥ ((
P(D|B ∧ C) ∅ O(D|B ∧ C)

)∧
B ∧ C ∧ P(B ∧ C |B) ∧O(A|B)) ⊕ •pO(A|B)

(Ep)

If ≥ A ⊕ ¬C and ≥ A ⊕ ¬D, then
≥ (

O(A|B ∧ C) ∧ O(D|B)
) ⊕ •pO(A|B ∧ C)

(CTDR)

If ≥ D ⊕ ¬A, then ≥ ((
P(D|B ∧ C) ∅ O(D|B ∧ C)

)∧
B ∧ C ∧ O(A|B)) ⊕ •iO(A|B)

(oV-Ei)

Furthermore, the following axioms are needed:

≥ P( |A) (CP)

≥ O(C |A ∧ B) ⊕ O(B ⊕ C |A) (S)

≥ (
O(A|C) ∧ O(B|C) ∧ P(A ∧ B|C)

) ⊕ O(A ∧ B|C) (CPAND)

≥ (
O(B|A) ∧ P(B ∧ C |A)

) ⊕ O(B|A ∧ C) (WRM)

≥ (
O(A|B ∧ C) ∧ P(A|¬B ∧ C)

) ⊕ O(B ⊕ A|C) (PS’)

≥ (
O(A|B) ∧ B ∧ ¬ •p O(A|B)

) ⊕ Op A (FDp)

≥ (
O(A|B) ∧ B ∧ ¬ •i O(A|B)

) ⊕ Oi A (FDi)

≥ (
O(A|B) ∧ ¬A ∧ B

) ⊕ •iO(A|B) (fV)

Definition J.2.1. Logic CDPM.2d+ is defined by all the rules and axioms stated
above (with exception of (PS’)),7 CDPM.2e+ is defined as CDPM.2d+ with excep-
tion of (S), which is replaced by (PS’). Let L+ from now on be any of the two logics
(if not specified beforehand).

J.3 The Neighborhood Semantics

One of the basic ideas for the neighborhood semantics is that propositions are inter-
preted in terms of sets of worlds. For each obligation type (such as Oi, Op, . . . ) each
world has associated with it propositions, i.e. sets of worlds. The idea is that an oblig-

7 This rule follows directly from (S).
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ation Oi A is true at a world w, in case A is one of its associated propositions with
respect to Oi. The generalization in terms of conditional obligations is canonical.
In this case worlds are associated with ordered pairs of propositions representing
conditional obligations. We are going to make use of an actual world. The reason
is that we are going to work with premise sets containing propositional formulas
representing given facts, which can be better modeled like that.

Let a dyadic neighborhood frame F be a tuple 〈W,O,N i,N p,Oi,Op◦where W
is a set of worlds andO : W → ℘(℘(W )×℘(W )),N i : W → ℘(℘(W )×℘(W )),
N p : W → ℘(℘(W ) × ℘(W )), Oi : W → ℘(℘(W )), Op : W → ℘(℘(W )).
Thus, O, N i and N p assign to each world w ∈ W a set of ordered propositions, i.e.,
Ow,N i

w,N p
w ∧ ℘(W )×℘(W ),8 and Oi and Op assign to each world a proposition,

i.e., Oi
w,Op

w ∧ ℘(W ). A model M on frame F is a triple 〈F, @, v◦ where @ ∈ W
is the actual world and v : A→ ℘(W ). A propositional atom is mapped into the set
of worlds in which it is supposed to hold. We define M |= ϕ iff M, @ |= ϕ, F |= ϕ
iff for all models M defined on the basis of frame F , M |= ϕ, and F |= ϕ (where F
is a set of frames) iff for all F ∈ F , F |= ϕ. Furthermore, where w ∈ W , we have
the following requirements for our models:

M, w |= p iff w ∈ v(p), where p ∈ A (M-p)

M, w |= O(A|B) iff 〈|B|M , |A|M ◦ ∈ Ow (M-O)

M, w |= •iO(A|B) iff 〈|B|M , |A|M ◦ ∈ N i
w (M-N i)

M, w |= •pO(A|B) iff 〈|B|M , |A|M ◦ ∈ N p
w (M-N p)

M, w |= Oi A iff |A|M ∈ Oi
w (M-Oi)

M, w |= Op A iff |A|M ∈ Op
w (M-Op)

where |ϕ|M =df {w ∈ W | M, w |= ϕ}. For the classical connectives the definitions
are as usual:

M, w |= ¬ϕ iff M, w � ϕ (M-¬)

M, w |= ϕ ∅ ψ iff M, w |= ϕ or M, w |= ψ (M-∅)

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ (M-∧)

M, w |= ϕ ⊕ ψ iff M, w |= ¬ϕ ∅ ψ (M-⊕)

M, w |=  (M- )

M, w � ⇐ (M-⇐)

We write W → =df W \W → where W → ∧ W for a given frame F = 〈W , O, N i, N p,
Oi,Op◦. In order to define our CDPM systems we also need the following conditions
on frames. For all X, Y, Z ∧ W and w ∈ W we demand:

8 We follow Goble’s writing convention and write the argument of the mappings that constitute
frames as subscripts.
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〈W, W ◦ ∈ Ow (F-CN)

If Y ∧ Z; 〈X, Y ◦ ∈ Ow and 〈X, Y ◦ /∈ Ow, then 〈X, Z◦ ∈ Ow (F-RCPM)

If 〈X ⊆ Y, Z◦ ∈ Ow, then 〈X, Y ∨ Z◦ ∈ Ow (F-S)

If 〈X, Y ◦ ∈ Ow and 〈X, Y ⊆ Z◦ /∈ Ow, then 〈X ⊆ Z , Y ◦ ∈ Ow (F-WRM)

If 〈X, Y ◦ ∈ Ow; 〈X, Z◦ ∈ Ow and 〈X, Y ⊆ Z◦ /∈ Ow,

then 〈X, Y ⊆ Z◦ ∈ Ow
(F-CPAND)

〈X,∅◦ /∈ Ow (F-CP)

For the e-version of our system we need:

If 〈Y ⊆ Z , X◦ ∈ Ow and 〈Y ⊆ Z , X◦ /∈ Ow, then 〈Z , Y ∨ X◦ ∈ Ow (F-PS’)

In order to model detachment we are in need of the following conditions on frames:

If 〈Y, X◦ ∈ Ow;w ∈ Y ; and 〈Y, X◦ /∈ N i
w, then X ∈ Oi

w (F-FDi)

If 〈Y, X◦ ∈ Ow;w ∈ Y ; and 〈Y, X◦ /∈ N p
w, then X ∈ Op

w (F-FDp)

If w ∈ Y ⊆ Z; 〈Y, Y ⊆ Z◦ /∈ Ow; 〈Y, X◦ ∈ Ow; Z → ∧ X; and(〈Y ⊆ Z , Z →◦ /∈ Ow or 〈Y ⊆ Z , Z →◦ ∈ Ow

)
, then 〈Y, X◦ ∈ N p

w
(F-Ep)

If 〈Y ⊆ Z , X◦, 〈Y, Z →◦ ∈ Ow; Z → ∧ Z;
and Z → ∧ X , then 〈Y ⊆ Z , X◦ ∈ N p

w
(F-CTDR)

If 〈Y, X◦ ∈ Ow;w ∈ Y ; and w /∈ X; then 〈Y, X◦ ∈ N i
w (F-fV)

If w ∈ Y ⊆ Z; 〈Y, X◦ ∈ Ow;
(〈Y ⊆ Z , Z →◦ /∈ Ow or

〈Y ⊆ Z , Z →◦ ∈ Ow

); and Z → ∧ X , then 〈Y, X◦ ∈ N i (F-oV-Ei)

J.4 Soundness

Note that for the proofs in the Appendix I sometimes write LHS
X=RHS if the equation

between LHS and RHS holds due to Lemma X. Obviously most of the following
results and their proofs resemble results proven by Goble for his CDPM systems.

Lemma J.4.1. For any model M = 〈F, @, v◦, where

F = 〈W,O,N i,N p,Oi,Op◦,

(i) |ϕ ∧ ψ|M = |ϕ|M ⊆ |ψ|M ; (ii) |ϕ ∅ ψ|M = |ϕ|M ∨ |ψ|M ; (iii) |¬ϕ|M = |ϕ|M ;
(iv) | |M = W ; (v) |⇐|M = ∅.

Proof. Ad (i): |ϕ ∧ ψ|M = {w ∈ W | M, w |= ϕ ∧ ψ} = {w ∈ W | M, w |=
ϕ,ψ} = {w ∈ W | M, w |= ϕ} ⊆ {w ∈ W | M, w |= ψ} = |ϕ|M ⊆ |ψ|M . Ad (ii):
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analogous. Ad (iii): |¬ϕ|M = {w ∈ W | M, w |= ¬ϕ} = {w ∈ W | M, w � ϕ} =
W \ {w ∈ W | M, w |= ϕ} = |ϕ|M . Ad (iv): | |M = {w ∈ W | M, w |=  } = W .
Ad (v): analogous. �

Lemma J.4.2. For any model M = 〈F, @, v◦, where

F = 〈W,O,N i,N p,Oi,Op◦,

(i), if F |= ϕ ⊕ ψ, then |ϕ|M ∧ |ψ|M , and, (ii), if F |= ϕ ≡ ψ, then |ϕ|M = |ψ|M .

Proof. Ad (i): Suppose there is a w ∈ W for which M, w |= ϕ ∧ ¬ψ. M → =
〈F, w, v◦ obviously satisfies the model conditions (M-p), (M-O), (M-N i), (M-N p),
(M-Oi), (M-Op), (M-¬), (M-∅), (M-∧) and (M-⊕) since M satisfies them. But then
F � ϕ ⊕ ψ—a contradiction. Ad (ii): This is an immediate consequence of (i). �

Theorem J.4.1. L+ is sound with respect to the class of frames F that meet
the appropriate frame conditions. In case of CDPM.2d+ the frame conditions
are (F-CN), (F-RCPM), (F-S), (F-WRM), (F-CPAND), (F-CP), (F-FDi), (F-FDp),
(F-Ep), (F-CTDR), (F-fV) and (F-oV-Ei). In case of CDPM.2e+ we replace (F-S)
by (F-PS’).

Proof. The proof is very simple: we thus show only for a few rules paradigmatically
that they are valid in all models of the respective frames. Let F be our respective
class of frames and let M = 〈F, @, v◦ be an arbitrary model on an arbitrary frame
F ∈ F .

We begin with (RCPM): Let F |= B ⊕ C . Assume that M, @ |= P(B|A) ∧
O(B|A). Then M, @ |= P(B|A), O(B|A) and thus, M, @ |= ¬O(¬B|A), O(B|A).
Hence, 〈|A|M , |B|M ◦ ∈ O@ and 〈|A|M , |¬B|M ◦ /∈ O@. Thus by Lemma J.4.1
(iii), 〈|A|M , |B|M ◦ /∈ O@. Furthermore, by Lemma J.4.2 (i), |B|M ∧ |C |M . Since
F validates (F-RCPM), 〈|A|M , |C |M ◦ ∈ O@. Hence, M, @ |= O(C |A) and thus,
M, @ |= (P(B|A) ∧ O(B|A)) ⊕ O(C |A). Hence, M |= (P(B|A) ∧ O(B|A)) ⊕
O(C |A). Since M and F were arbitrary, F |= P(B|A) ⊕ (

O(B|A) ⊕ O(C |A)
)
.

For (WRM): Assume that M, @ |= O(B|A) ∧ P(B ∧ C |A). Then M, @ |=
O(B|A),¬O(¬(B ∧ C)|A). Thus, 〈|A|M , |¬(B ∧ C)|M ◦ J.4.1i i i= 〈|A|M , |B ∧ C |M

〉

J.4.1i= 〈|A|M , |B|M ⊆ |C |M
〉

/∈ O@. Thus, since F validates (F-WRM), 〈|A|M ⊆
|C |M , |B|M ◦ J.4.1i= 〈|A ∧ C |M , |B|M ◦ ∈ O@. Hence, M, @ |= O(B|A ∧ C)

and thus, M, @ |= (
O(B|A) ∧ P(B ∧ C |A)

) ⊕ O(B|A ∧ C). Hence, M |=(
O(B|A) ∧ P(B ∧ C |A)

) ⊕ O(B|A ∧ C). Since M and F were arbitrary, F |=(
O(B|A) ∧ P(B ∧ C |A)

) ⊕ O(B|A ∧ C).
For (PS’): Assume that M, @ |= O(A|B ∧ C) ∧ P(A|¬B ∧ C). Thus, M, @ |=

O(A|B ∧ C), P(A|¬B ∧ C). Thus, M, @ |= O(A|B ∧ C),¬O¬A¬B ∧ C . Hence,
〈|B ∧ C |M , |A|M ◦ ∈ O@ and 〈|¬B ∧ C |M , |¬A|M ◦ /∈ O@. Hence, by Lemma
J.4.1, 〈|B|M ⊆ |C |M , |A|M ◦ ∈ O@ and

〈|B|M ⊆ |C |M , |A|M
〉

/∈ O@. Since F
satisfies (F-PS’),

〈|C |M , |B|M ∨ |A|M
〉 ∈ O@. By Lemma J.4.1, 〈|C |M , |¬B ∅

A|M ◦ ∈ O@. By Lemma J.4.2 (ii), 〈|C |M , |B ⊕ A|M ◦ ∈ O@ and thus, M, @ |=
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O(B ⊕ A|C). Hence, M, @ |= (
O(A|B ∧ C) ∧ P(A|¬B ∧ C)

) ⊕ O(B ⊕ A|C).
Thus, M

(
O(A|B ∧ C) ∧ P(A|¬B ∧ C)

) ⊕ O(B ⊕ A|C). Since F and M were
arbitrary, F |= (

O(A|B ∧ C) ∧ P(A|¬B ∧ C)
) ⊕ O(B ⊕ A|C).

For (EOi): Let F |= A ≡ B. Assume that M, @ |= Oi A. Thus, |A|M ∈ Oi
@. By

Lemma J.4.2 (ii), |A|M = |B|M . Thus, |B|M ∈ Oi
@. Hence, M, @ |= Oi B. Thus,

M, @ |= Oi A ⊕ Oi B. Hence, M |= Oi A ⊕ Oi B. Since M and F were arbitrary,
F |= Oi A ⊕ Oi B. The other direction is analogous.

For (FDi): Assume that M, @ |= O(A|B)∧ B ∧¬ •i O(A|B) and thus, M, @ |=
O(A|B), B and M, @ � •iO(A|B). Hence, 〈|B|M , |A|M ◦ ∈ O@, @ ∈ |B|M and
〈|B|M , |A|m◦ /∈ N i

@. Since F satisfies (F-FDi), |A|M ∈ Oi
@ and thus, M, @ |= Oi A.

Hence, M, @ |= (
O(A|B) ∧ B ∧ ¬ •i O(A|B)

) ⊕ Oi A. Hence, M |= (
O(A|B) ∧

B ∧¬•i O(A|B)
) ⊕ Oi A. Since M and F were arbitrary, we have F |= (

O(A|B)∧
B ∧ ¬ •i O(A|B)

) ⊕ Oi A.
The other cases are shown in a similar way. �

J.5 Completeness

Completeness for our logics can be proven in a similar way as Goble proved com-
pleteness of his (C)DPM systems. We proceed in two steps:

1. We prove model-completeness by means of a canonical model Ṁ and adjusted
model conditions. We show that for each non-theorem ϕ of L+ there is such a Ṁ
falsifying ϕ.

2. Using filtration techniques on the canonical model Ṁ we arrive at an alternative
model M̊ on a frame F̊ that satisfies the respective frame conditions. For each
non-theorem ϕ of L+ we have an M̊ which falsifies ϕ. This suffices to prove
completeness and decidability.

J.5.1 Model Completeness

First we define a frame for a canonical model for L+. Let Ḟ = 〈Ẇ , Ȯ, Ṅ i, Ṅ p,Ȯi,
Ȯp◦. Ẇ contains all maximal L+-consistent sets of formulas in L. We have the
following assignments for all w ∈ Ẇ :9

Ȯw = {〈X, Y ◦ | X ∧ Ẇ , Y ∧ Ẇ ,

∃A∃B(X = [A], Y = [B] and O(B|A) ∈ w},
Ṅ i

w = {〈X, Y ◦ | X ∧ Ẇ , Y ∧ Ẇ ,

9 For sake of readability we use from now on “∃” and “∀” in set descriptions in the canonical reading
“there is” and “for all”.
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∃A∃B(X = [A], Y = [B] and •i O(B|A) ∈ w},
Ṅ p

w = {〈X, Y ◦ | X ∧ Ẇ , Y ∧ Ẇ ,

∃A∃B(X = [A], Y = [B] and •p O(B|A) ∈ w},
Ȯi

w = {X ∧ Ẇ | ∃A(X = [A] and Oi A ∈ w},
Ȯp

w = {X ∧ Ẇ | ∃A(X = [A] and Op A ∈ w},

where [ϕ] =df {w ∈ Ẇ | ϕ ∈ w}. Now we can define a canonical model Ṁ =
〈Ḟ, @̇, v̇◦. Let for every atomic formula p

v̇ : p ˆ→ {w ∈ Ẇ | p ∈ w}

Lemma J.5.1. For any ϕ and ψ, (i) [ϕ∧ψ] = [ϕ] ⊆ [ψ]; (ii) [ϕ∅ψ] = [ϕ] ∨ [ψ];
(iii) [¬ϕ] = [ϕ]; (iv) [ ] = Ẇ ; (v) [⇐] = ∅.

Proof. Ad (i): [ϕ ∧ ψ] = {w ∈ Ẇ | ϕ ∧ ψ ∈ w} (1)={w ∈ Ẇ | ϕ,ψ ∈ w} = {w ∈
Ẇ | ϕ ∈ w} ⊆ {w ∈ Ẇ | ψ ∈ w} = [ϕ] ⊆ [ψ] where (1) is due to the fact that w is a
maximal consistent extension. The other cases are shown in a similar way. �

Lemma J.5.2. For any ϕ and ψ, (i) [ϕ] ∧ [ψ] iff ≥ ϕ ⊕ ψ, and (ii) [ϕ] = [ψ] iff
≥ ϕ ≡ ψ.

Proof. This was proven in an analogous way in Goble [6, 9]. For (i), suppose
[ϕ] ∧ [ψ] but ⊀ ϕ ⊕ ψ. Then {ϕ,¬ψ} is consistent and so has a maximal consistent
extension, w. ϕ ∈ w so w ∈ [ϕ]. Hence w ∈ [ψ], which is to say ψ ∈ w, contrary
to the consistency of w since ¬ψ ∈ w. Therefore, ≥ ϕ ⊕ ψ. Further, if ≥ ϕ ⊕ ψ,
then since maximal consistent extensions are closed under provable implications,
it is automatic that for any w→ ∈ [ϕ], w→ ∈ [ψ], or [ϕ] ∧ [ψ]. Part (ii) follows
immediately from (i). �

Lemma J.5.3. For all ϕ ∈ L and all w ∈ Ẇ , Ṁ, w |= ϕ iff ϕ ∈ w (or, |ϕ|Ṁ = [ϕ]).
Proof. This is shown by induction over the length of ϕ. The case that ϕ is a propo-
sitional letter is trivial, since Ṁ, w |= ϕ iff w ∈ v̇(ϕ) = {w→ ∈ Ẇ | ϕ ∈ w→}. Let
ϕ now be a propositional formula. Suppose for the subformulas ϕ1 and ϕ2 of ϕ the
equivalence holds. Now let ϕ = ϕ1 ∧ ϕ2. We have Ṁ, w |= ϕ iff Ṁ, w |= ϕ1 and
Ṁ, w |= ϕ2 iff ϕ1,ϕ2 ∈ w iff ϕ1 ∧ ϕ2 ∈ w due to the fact that w is a maximal
consistent extension. The argument is similar for ϕ = ϕ1 ∅ ϕ2, ϕ = ϕ1 ⊕ ϕ2 and
ϕ = ¬ϕ1. Thus the equivalence holds for all propositional formulas ϕ (Λ).

Now consider the other cases in L→. Let ϕ = O(A|B). “⇒”: In case Ṁ, w |=
O(A|B) we have 〈|B|Ṁ , |A|Ṁ ◦ ∈ Ȯw and thus 〈[B], [A]◦ ∈ Ȯw by (Λ). Hence there
are A→, B → such that [A→] = [A] and [B →] = [B] and O(A→|B →) ∈ w. By Lemma J.5.2
(ii), ≥ A→ ≡ A and ≥ B → ≡ B. Since w validates (RCE) and (CRE), O(A|B) ∈ w.
“≺”: Let O(A|B) ∈ w, then 〈[A], [B]◦ ∈ Ȯw. Thus, by (Λ), 〈|A|Ṁ , |B|Ṁ ◦ ∈ Ȯw.
Hence, Ṁ, w |= O(B|A).
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Let ϕ = •iO(A|B). “⇒”: In case Ṁ, w |= •iO(A|B) we have 〈|B|Ṁ , |A|Ṁ ◦ ∈
Ṅ i

w and thus 〈[B], [A]◦ ∈ Ṅ i
w by (Λ). Hence there are A→, B → such that [A→] = [A]

and [B →] = [B] and •iO(A→|B →) ∈ w. By Lemma J.5.2 (ii), ≥ A→ ≡ A and ≥ B → ≡ B.
Since w validates (CREi) and (RCEi), •iO(A|B) ∈ w. “≺”: Let •iO(A|B) ∈ w, then
〈[A], [B]◦ ∈ Ṅ i

w. Thus, by (Λ), 〈|A|Ṁ , |B|Ṁ ◦ ∈ Ṅ i
w. Hence, Ṁ, w |= •iO(B|A).

The case ϕ = •pO(A|B) is analogous.

Let ϕ = Oi A. “⇒”: In case Ṁ, w |= Oi A we have |A|Ṁ ∈ Ȯi
w and thus

[A] ∈ Ȯi
w. Hence there is a A→ such that [A→] = [A] and Oi A→ ∈ w. By Lemma

J.5.2, ≥ A→ ≡ A. Since w validates (EOi), Oi A ∈ w. “≺”: Let Oi A ∈ w, then
[A] ∈ Ȯi

w. Thus, by (Λ), |A|Ṁ ∈ Ȯi
w. Hence, Ṁ, w |= Oi A.

The case ϕ = Op A is analogous.
Now let ϕ = ϕ1 ∧ ϕ2 ∈ L \ (L→ ∨ P). By induction hypothesis we suppose the

equivalence to be valid for ϕ1 and ϕ2. We have Ṁ, w |= ϕ iff Ṁ, w |= ϕ1 and
Ṁ, w |= ϕ2 iff ϕ1,ϕ2 ∈ w iff ϕ1 ∧ ϕ2 ∈ w due to the fact that w is a maximal
consistent extension. The argument is similar for ϕ = ϕ1 ∅ ϕ2, ϕ = ϕ1 ⊕ ϕ2 and
ϕ = ¬ϕ1. Thus the equivalence holds for all ϕ ∈ L. �

In order to prove model-completeness we need to restrict our sets of worlds to sets
corresponding to expressible propositions on Ṁ . We define,10 where M = 〈F, @, v◦
and F = 〈W,O,N i,N p,Oi,Op◦

τM =df {X ∧ W | ∃B(X = |B|M )}

Lemma J.5.4. For all w ∈ Ẇ and X, Y ∈ τṀ there are A and B for which [A] = X
and [B] = Y and we have for all such A and B:

(i) 〈X, Y ◦ ∈ Ȯw iff O(B|A) ∈ w

(ii) 〈X, Y ◦ ∈ Ṅ i
w iff •iO(B|A) ∈ w.

(iii) 〈X, Y ◦ ∈ Ṅ p
w iff •pO(B|A) ∈ w.

(iv) X ∈ Ȯi
w iff Oi A ∈ w.

(v) X ∈ Ȯp
w iff Op A ∈ w.

Proof. Let w ∈ Ẇ and X, Y ∈ τṀ By definition of τṀ there are A and B for
which X = |A|Ṁ and Y = |B|Ṁ . By Lemma J.5.3 we have [A] = |A|Ṁ = X and
[B] = |B|Ṁ = Y .

Ad (i) “⇒”: Let 〈X, Y ◦ ∈ Ȯw. Thus, 〈[A], [B]◦ ∈ Ȯw and thus, 〈|A|Ṁ , |B|Ṁ ◦ ∈
Ȯw. Hence, by Lemma J.5.3, O(B|A) ∈ w. “≺”: Let 〈X, Y ◦ /∈ Ȯw. Sup-
pose O(B|A) ∈ w, then by Lemma J.5.3, Ṁ, w |= O(B|A), then by (M-O),
〈|A|Ṁ , |B|Ṁ ◦ ∈ Ȯw. Hence, 〈[A], [B]◦ ∈ Ȯw and thus, 〈X, Y ◦ ∈ Ȯw—a con-
tradiction.

Ad (ii): “⇒”: Let 〈X, Y ◦ ∈ Ṅ i
w. Then 〈[A], [B]◦ ∈ Ṅ i

w and thus, 〈|A|Ṁ , |B|Ṁ ◦ ∈
Ṅ i

w. Thus, by Lemma J.5.3, •iO(B|A) ∈ w. “≺”: Now let 〈X, Y ◦ /∈ Ṅ i
w. Suppose

10 Note that this definition differs from Goble’s proposal to the extent that in our case B is a
propositional formula, while in Goble’s case it was any wff. The reason is, that we don’t allow for
nested modal operators in Chap. 12.

http://dx.doi.org/10.1007/978-3-319-00792-2_12
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•iO(B|A) ∈ w, then by Lemma J.5.3, Ṁ, w |= •iO(B|A) and thus by (M-N i),
〈|A|Ṁ , |B|Ṁ ◦ ∈ Ṅ i

w. Hence, 〈[A], [B]◦ ∈ Ṅ i
w and thus, 〈X, Y ◦ ∈ Ṅ i

w—a con-
tradiction.

Ad (iii): analogous.
Ad (iv): “⇒”: Let X ∈ Ȯi

w and thus [A] ∈ Ȯi
w. Hence, |A|Ṁ ∈ Ȯi

w. Thus,

Ṁ, w |= Oi A and thus by Lemma J.5.3, Oi A ∈ w. “≺”: Now let X /∈ Ȯi
w. Suppose

Oi A ∈ w. Then by Lemma J.5.3, Ṁ, w |= Oi A and thus by (M-Oi), |A|Ṁ ∈ Ȯi
w.

Hence, [A] ∈ Ȯi
w and thus, X ∈ Ȯi

w—a contradiction.
Ad (v): analogous. �

We now modify the frame conditions to form conditions on models. Where M =
〈F, @, v◦ and F = 〈W,O,N i,N p,Oi,Op◦ we require:

〈W, W ◦ ∈ Ow (M-CN)

For all X, Y, Z ∈ τM , if Y ∧ Z and 〈X, Y ◦ ∈ Ow

and 〈X, Y ◦ /∈ Ow then 〈X, Z◦ ∈ Ow
(M-RCPM)

For all X, Y, Z ∈ τM , if 〈X ⊆ Y, Z◦ ∈ Ow, then 〈X, Y ∨ Z◦ ∈ Ow (M-S)

For all X, Y, Z ∈ τM , if 〈X, Y ◦ ∈ Ow and 〈X, Y ⊆ Z◦ /∈ Ow,

then 〈X ⊆ Z , Y ◦ ∈ Ow
(M-WRM)

For all X, Y, Z ∈ τM , if 〈X, Y ◦ ∈ Ow, 〈X, Z◦ ∈ Ow

and 〈X, Y ⊆ Z◦ /∈ Ow, then 〈X, Y ⊆ Z◦ ∈ Ow
(M-CPAND)

For all X ∈ τM , 〈X,∅◦ /∈ Ow (M-CP)

For all X, Y, Z ∈ τM , if 〈Y ⊆ Z , X◦ ∈ Ow and
〈Y ⊆ Z , X◦ /∈ Ow, then 〈Z , Y ∨ X◦ ∈ Ow

(M-PS’)

For all X, Y ∈ τM , if 〈Y, X◦ ∈ Ow;w ∈ Y ;
and 〈Y, X◦ /∈ N i

w, then X ∈ Oi
w

(M-FDi)

For all X, Y ∈ τM , if 〈Y, X◦ ∈ Ow;w ∈ Y ;
and 〈Y, X◦ /∈ N p

w, then X ∈ Op
w

(M-FDp)

For all X, Y, Z , Z → ∈ τM , if w ∈ Y ⊆ Z; 〈Y, Y ⊆ Z◦ /∈ Ow;
〈Y, X◦ ∈ Ow; Z → ∧ X; and(〈Y ⊆ Z , Z →◦ /∈ Ow or 〈Y ⊆ Z , Z →◦ ∈ Ow

)
,

then 〈Y, X◦ ∈ N p
w

(M-Ep)

For all X, Y, Z , Z → ∈ τM , if 〈Y ⊆ Z , X◦, 〈Y, Z →◦ ∈ Ow; Z → ∧ Z;
and Z → ∧ X , then 〈Y ⊆ Z , X◦ ∈ N p

w
(M-CTDR)

For all X, Y ∈ τM , if 〈Y, X◦ ∈ Ow;w ∈ Y ;
and w /∈ X; then 〈Y, X◦ ∈ N i

w

(M-fV)

For all X, Y, Z , Z → ∈ τM , if w ∈ Y ⊆ Z; 〈Y, X◦ ∈ Ow;(〈Y ⊆ Z , Z →◦ /∈ Ow or 〈Y ⊆ Z , Z →◦ ∈ Ow

);
and Z → ∧ X , then 〈Y, X◦ ∈ N i

(M-oV-Ei)
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Theorem J.5.1. L+ is sound and complete with respect to the class of models that
meet conditions, as appropriate. In case of CDPM.2d+ the appropriate condi-
tions are (M-CN), (M-RCPM), (M-S), (M-WRM), (M-CPAND), (M-CP), (M-FDi),
(M-FDp), (M-Ep), (M-CTDR), (M-fV), and (M-oV-Ei). In case of CDPM.2e+ (M-S)
is replaced by (M-PS’).

Proof. Soundness is trivial and is shown in a similar way as it was done in
Theorem J.4.1. Some examples: Let M = 〈F, @, v◦ be a model that satisfies
the required properties. For (WRM), Let M |= O(B|A) ∧ P(B ∧ C |A), then
M, @ |= O(B|A), P(B ∧ C |A). Thus, 〈|A|M , |B|M ◦ ∈ O@ and

〈|A|M , |B ∧ C |M
〉

J.4.1i= 〈|A|M , |B|M ⊆ |C |M
〉
/∈ O@. Since M fulfills (M-WRM), 〈|B|M⊆|C |M , |A|M ◦

J.4.1i= 〈|B ∧ C |M , |A|M ◦ ∈ O@ and hence M, @ |= O(A|B ∧ C). Hence M |=
O(A|B ∧ C). For (RCPM) let M |= P(B|A), O(B|A) and � B ⊕ C . Then
M, @ |= P(B|A), O(B|A). Thus, 〈|A|M , |B|M ◦ ∈ O@ and 〈|A|M , |B|M ◦ /∈ O@.
Hence, since M satisfies (M-RCPM) and since |B|M ∧ |C |M , 〈|A|M , |C |M ◦ ∈ O@.
Hence, M, @ |= O(A|C) and thus, M |= O(A|C). The other cases are shown
analogously.

In order to show completeness let ϕ be a formula not provable in L+. Then
{¬ϕ} is L+-consistent and there is, hence, a maximal consistent extension of all L+
theorems, @̇ ∈ Ẇ , which verifies ¬ϕ. Let Ṁ = 〈Ẇ , Ȯ, Ṅ i, Ṅ p, Ȯi, Ȯp, @̇, v̇◦ be
defined as above. We show now that Ṁ meets the respective model conditions via
some paradigmatical examples.

For (M-WRM): Let X, Y, Z ∈ τṀ , 〈X, Y ◦ ∈ Ȯw, and 〈X, Y ⊆ Z◦ /∈ Ȯw. There
are A, B such that [A] = X , [B] = Y and O(B|A) ∈ w. By Lemma J.5.3, M, w |=
O(B|A) and thus, 〈|A|Ṁ , |B|Ṁ ◦ ∈ Ȯw. Furthermore there is a C such that |C |Ṁ = Z .
Suppose, O(¬(B ∧ C)|A) ∈ w. Then, 〈[A], [¬(B ∧C)]◦ ∈ Ȯw and thus by Lemma

J.5.3, 〈|A|Ṁ , |¬(B ∧ C)|Ṁ ◦ ∈ Ȯw. But then, since 〈|A|Ṁ , |¬(B ∧ C)|Ṁ ◦ J.4.1i i i=
〈|A|Ṁ , |B ∧ C |Ṁ

〉 J.4.1i= 〈|A|Ṁ , |B|Ṁ ⊆ |C |Ṁ
〉 = 〈X, Y ⊆ Z◦, 〈X, Y ⊆ Z◦ ∈ Ȯw—

a contradiction. Thus, O(¬(B ∧ C)|A) /∈ w and thus PB ∧ C A ∈ w. Since w

validates (WRM), O(B|A ∧ C) ∈ w. By Lemma J.5.3, Ṁ, w |= O(B|A ∧ C). Thus,

〈|A ∧ C |Ṁ , |B|Ṁ ◦ J.4.1i= 〈|A|Ṁ ⊆ |C |Ṁ , |B|Ṁ ◦ = 〈X ⊆ Z , Y ◦ ∈ ȮṀ .
For (M-RCPM) let X, Y, Z ∈ τṀ , Y ∧ Z , 〈X, Y ◦ ∈ Ȯw, and 〈X, Y ◦ /∈ Ȯw.

There are A, B such that [A] = X , [B] = Y and O(B|A) ∈ w. Furthermore,
there is a C such that |C |M = Z . By Lemma J.5.3, M, w |= O(B|A) and hence
〈|A|Ṁ , |B|Ṁ ◦ ∈ Ȯw. Since, by Lemma J.5.3, |B|Ṁ = Y , by Lemma J.5.3 (iii),
|¬B|Ṁ = Y . By Lemma J.5.4 (i), O(¬B|A) /∈ w since 〈X, Y ◦ /∈ Ȯw, and thus

PB A ∈ w. By Lemma J.5.2 (i), ≥ B ⊕ C since [B] ∧ |C |M J.5.3= [C]. Since
w validates all L+-theorems and (RCPM), O(C |A) ∈ w. Thus, by Lemma J.5.3,

Ṁ, w |= O(C |A) and thus, 〈|A|Ṁ , |C |Ṁ ◦ J.5.3= 〈X, Z◦ ∈ Ȯw.
For (M-FDi): Let X, Y ∈ τṀ . By Lemma J.5.4 there are A and B such that

[A] = X and [B] = Y . Now let 〈Y, X◦ ∈ Ȯw, w ∈ Y , and 〈Y, X◦ /∈ Ṅ i
w. Since

w ∈ Y we have w ∈ [B] and thus B ∈ w. By Lemma J.5.4 (i), O(A|B) ∈ w. By
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Lemma J.5.4 (ii), •iO(A|B) /∈ w and thus ¬ •i O(A|B) ∈ w since w is maximal
consistent. Thus, since w validates (FDi), Oi A ∈ w. By Lemma J.5.4 (iv), X ∈ Ȯi

w.
For (M-FDp): the proof is analogous.
For (M-Ep): Let X, Y, Z , Z → ∈ τṀ . By Lemma J.5.4 there are A, B, C and D for

which [A] = X , [B] = Y , [C] = Z and [D] = Z →. Suppose the antecedent of (M-Ep)
is true. By Lemma J.5.1 (i) we have [B] ⊆ [C] = [B ∧C]. Thus, since w ∈ [B ∧C],
B ∧ C ∈ w. By Lemma J.5.1 (iii), [¬(B ∧ C)] = [B ∧ C] = [B] ⊆ [C] = Y ⊆ Z .
Thus, by Lemma J.5.4 (i), O(¬(B ∧ C)|B) /∈ w since by hypothesis 〈Y, Y ⊆ Z◦ /∈
Ȯw. By Lemma J.5.4 (i), O(A|B) ∈ w since 〈Y, X◦ ∈ Ȯw. Since Z → ∧ X , [D] ∧ [A]
and thus by Lemma J.5.1 (iii), [D] ∧ [¬A]. Thus, by Lemma J.5.2 (i), ≥ D ⊕ ¬A.
Now we have by hypotheses, (a) 〈Y ⊆ Z , Z →◦ /∈ Ȯw, or, (b), 〈Y ⊆ Z , Z →◦ ∈ Ȯw.
Note that by Lemma J.5.1(iii), [D] = [¬D]. Thus in case (a) we have by Lemma
J.5.4 (i), O(¬D|B ∧ C) /∈ w, and thus ¬O(¬D|B ∧ C) ∈ w which is equivalent to
P(D|B ∧ C) ∈ w. In case (b) we have by Lemma J.5.4 (i), O(D|B ∧ C) ∈ w. Since
w validates (Ep), •pO(A|B) ∈ w. By Lemma J.5.4 (iii), 〈Y, X◦ ∈ Ṅ p

w.
For the remaining conditions the proofs are analogous.
Thus, our model Ṁ satisfies all the model-conditions. By Lemma J.5.3, Ṁ, @̇ |=

¬ϕ and thus, Ṁ, @̇ � ϕ. Hence, Ṁ � ϕ. By contraposition we have that if ϕ is valid
in all models which meet the appropriate conditions, then ϕ is provable in L+. �

J.5.2 Frame Completeness and Decidability

As shown in [6, 9], the canonical models Ṁ = 〈Ḟ, @̇, v̇◦ do not suffice to prove
frame completeness. The problem is that Ḟ does not in general satisfy the appropriate
frame conditions (as demonstrated by Goble for the monadic case with the permitted
inheritance principle). Let me demonstrate the problem by means of (F-RCPM): Let
X, Y, Z ∧ Ẇ such that Y ∧ Z; 〈X, Y ◦ ∈ Ȯw and 〈X, Y ◦ /∈ Ȯw. There are, by the
definition of Ȯw, A and B for which X = [A], Y = [B] and

O(B|A) ∈ w (J.1)

Now suppose O(¬B|A) ∈ w. Then 〈[A], [¬B]◦ ∈ Ȯw. However, by Lemma J.5.1
(iii), 〈[A], [¬B]◦ = 〈[A], [B]◦. Thus, 〈X, Y ◦ ∈ Ȯw—a contradiction. Thus,

O(¬B|A) /∈ w (J.2)

And hence due to the maximal consistency of w,

P(B|A) ∈ w (J.3)

Now, in case there would be a C such that [C] = Z it would be easy to prove frame
completeness. Since we have in that case [B] ∧ [C], we get, by Lemma J.5.2 (i),

≥ B ⊕ C (J.4)
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Since w satisfies (RCPM) we have P(B|A) ⊕ (O(B|A) ⊕ O(C |A)) due to (J.4).
By (J.1) and (J.3) we get via modus ponens, O(C |A) ∈ w. Hence, 〈[A], [C]◦ =
〈X, Z◦ ∈ Ȯw.

However, the problem is that we have no guarantee that there is such a C .
On the basis of a given model Ṁ = 〈Ẇ , Ȯ, Ṅ i, Ṅ p, Ȯi, Ȯp, @̇, v̇◦ we construct

a model M̊ = 〈F̊, @̊, v̊◦ on a frame F̊ = 〈W̊ , O̊, N̊ i, N̊ p, O̊i, O̊p◦ by filtration in
the following way.

Let Υ be a finite set of formulas closed under subformulas, i.e., if ϕ ∈ Υ and ψ is
a subformula of ϕ, then ψ ∈ Υ, and let ,⇐ ∈ Υ. Furthermore, let ∼Υ be the closure
of Υ under truth-functions, i.e., ∼Υ is the smallest set of formulas such that Υ ∧ ∼Υ
and if ϕ,ψ ∈ ∼Υ, then ϕ ∧ ψ ∈ ∼Υ, ϕ ∅ ψ ∈ ∼Υ and ¬ϕ ∈ ∼Υ. Note that  ,⇐ ∈ ∼Υ,
and that ∼Υ itself is closed under subformulas.

Now let π = Υ ⊆ P and ∼π be again the closure of π under truth-functions.
We define an equivalence relation ∼Ṁ

π on Ẇ such that, for all w,w→ ∈ Ẇ :

w ∼Ṁ
π w→ iff ∀ϕ(

if ϕ ∈ π then (Ṁ, w |= ϕ iff Ṁ, w→ |= ϕ)
)
.

Lemma J.5.5. For all w,w→ ∈ Ẇ , if w ∼Ṁ
π w→, then for all A ∈ ∼π , (Ṁ, w |=

A iff Ṁ, w→ |= A).

Proof. Suppose w ∼Ṁ
π w→. The proof is by induction on the length of A. For all

A ∈ π the statement holds by definition. If A = A1 ∧ A2 or A = A1 ∅ A2 or
A = ¬A1, for some A1, A2, then the result follows directly from the inductive
hypothesis. �

It is important to note that∼Ṁ
π partitions Ẇ into finitely many equivalence classes

[w] for w ∈ Ẇ , where [w] = {w→ ∈ Ẇ | w→ ∼Ṁ
π w}.

We select now, for each equivalence class [w], a member ẘ ∈ [w] in the following
way: where [w] = ⎭

@̇
]

let ẘ = @̇ and for all [w] ⊃= ⎭
@̇

]
let ẘ be an arbitrary

member of [w] (not necessarily w itself). We define W̊ as the set of all these selected
representants. The following fact follows directly from the definitions.

Lemma J.5.6. (i) W̊ ∧ Ẇ ; (ii) W̊ is finite; (iii) for all w→ ∈ Ẇ there is a ẘ ∈ W̊
such that w→ ∼Ṁ

π ẘ; (iv) for all w,w→ ∈ W̊ , if w ⊃= w→ then it is not the case that

w ∼Ṁ
π w→.

Some more writing conventions: for X ∧ Ẇ , let X↓ =df X ⊆ W̊ .
The assignments O̊, N̊ i, N̊ p, O̊i, O̊p fullfil the following conditions for each

w ∈ W̊ :

〈X, Y ◦ ∈ O̊w iff ∃A∃B
(

A, B ∈ ∼π and X = |A|Ṁ↓ and
Y = |B|Ṁ↓ and 〈|A|Ṁ , |B|Ṁ ◦ ∈ Ȯw

) (DOΛ)

〈X, Y ◦ ∈ N̊ i
w iff ∃A∃B

(
A, B ∈ ∼π and X = |A|Ṁ↓

and Y = |B|Ṁ↓ and 〈|A|Ṁ , |B|Ṁ ◦ ∈ Ṅ i
w

) (DN iΛ)
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〈X, Y ◦ ∈ N̊ p
w iff ∃A∃B

(
A, B ∈ ∼π and X = |A|Ṁ↓

and Y = |B|Ṁ↓ and 〈|A|Ṁ , |B|Ṁ ◦ ∈ Ṅ p
w

) (DN pΛ)

X ∈ O̊i
w iff ∃A

(
A ∈ ∼π and X = |A|Ṁ↓ and |A|Ṁ ∈ Ȯi

w

)
(DOiΛ)

X ∈ O̊p
w iff ∃A

(
A ∈ ∼π and X = |A|Ṁ↓ and |A|Ṁ ∈ Ȯp

w

)
(DOpΛ)

For all atomic formulas p we demand that v̊ : p ˆ→ v̇(p)↓.

Lemma J.5.7. For all ẘ ∈ W̊ , there is a formula B ∈ ∼π such that |B|Ṁ↓ = {ẘ}.
Proof. The following proof only differs minimally from Goble’s. First we have for
all ẘ, ẘ→ ∈ W̊ , if ẘ ⊃= ẘ→ then there is a formula A such that A ∈ ∼π and ẘ ∈ |A|Ṁ
and ẘ→ /∈ |A|Ṁ . For suppose otherwise. Suppose ẘ ⊃= ẘ→ but for every A ∈ ∼π if

ẘ ∈ |A|Ṁ then ẘ→ ∈ |A|Ṁ . Then ẘ ∼Ṁ
π ẘ→, for consider any B ∈ π , hence B ∈ ∼π .

If Ṁ, ẘ |= B, then ẘ ∈ |B|Ṁ , so by supposition ẘ→ ∈ |B|Ṁ , and thus Ṁ, ẘ→ |= B.
Suppose then that Ṁ, ẘ→ |= B, i.e., ẘ→ ∈ |B|Ṁ , but that it is not the case that
Ṁ, ẘ |= B. Then Ṁ, ẘ |= ¬B and w ∈ |¬B|Ṁ . Since ¬B ∈ ∼π , by supposition,
ẘ→ ∈ |¬B|Ṁ , or Ṁ, ẘ→ |= ¬B. That means Ṁ, ẘ→ � B—a contradiction. Hence, if
Ṁ, ẘ→ |= B, then Ṁ, ẘ |= B, and so Ṁ, ẘ |= B iff Ṁ, ẘ→ |= B, which suffices for
ẘ ∼Ṁ

π ẘ→. But if ẘ ⊃= ẘ→ then it is not the case that ẘ ∼Ṁ
π ẘ→, by Lemma J.5.6

(iv), a contradiction. Therefore, it must be the case that if ẘ ⊃= ẘ→, there is a A ∈ ∼π
such that ẘ ∈ |A|Ṁ and ẘ→ /∈ |A|Ṁ . For each ẘ→ such that ẘ→ ⊃= ẘ, select one such
formula, and call it Aẘ→ . Let Π = {γi | i ∈ I } be the set of all such formulas Aẘ→ for
all ẘ→ ⊃= ẘ. Π is finite since W̊ is finite. Let Bẘ =

⎨
Π =⎨

I γi be the conjunction
of all the members of Π. Bẘ ∈ ∼π since each conjunct γi ∈ ∼π and ∼π is closed under
truth-functions. We now show that |Bẘ|Ṁ↓ = {ẘ}.

(i) Suppose x ∈ |Bẘ|Ṁ↓. So x ∈ |Bẘ|Ṁ and x ∈ W̊ . Suppose x ⊃= ẘ. Then
there is a formula Ax ∈ π such that ẘ ∈ |Ax |Ṁ and x /∈ |Ax |Ṁ . We have |Bẘ|Ṁ =
|⎨I γi |Ṁ J.4.1i= ⋂

I |γi |Ṁ . Hence, |Bẘ|Ṁ ∧ |γi |Ṁ for all i ∈ I . Note that Ax = γ j

for a j ∈ I . Since x ∈ |Bẘ|Ṁ , x ∈ |Ax |Ṁ —a contradiction. Therefore, if x ∈ |Bẘ|Ṁ ,
x = ẘ and so x ∈ {ẘ}. Thus |Bẘ|Ṁ↓ ∧ {ẘ}.

(ii) Suppose x ∈ {ẘ}, i.e., x = ẘ. Thus x ∈ W̊ . For all γi ∈ Π, x ∈ |γi |Ṁ .
Hence, Ṁ, x |= γi for all i ∈ I . Consequently, Ṁ, x |= ⎨

I γi . But
⎨

I γi = Bẘ,
hence Ṁ, x |= Bẘ. That is to say, x ∈ |Bẘ|Ṁ , and therefore x ∈ |Bẘ|Ṁ↓. Thus,
{ẘ} ∧ |Bẘ|↓. Therefore, by (i) and (ii) together, |Bẘ|Ṁ↓ = {ẘ}, as required for the
Lemma. �

Lemma J.5.8. For all w ∈ W̊ we have: M̊, w |= A iff Ṁ, w |= A.

Proof. This is shown by induction. Let A ∈ A, then M̊, w |= A iff w ∈ v̊(A) iff w ∈
v̇(A)↓ iff w ∈ v̇(A) ⊆ W̊ iff (since w ∈ W̊ ) w ∈ v̇(A) iff Ṁ, w |= A. Now
by induction hypothesis let the lemma hold for B and C . Let A = B ∧ C . Then
M̊, w |= A iff M̊, w |= B, C iff Ṁ, w |= B, C iff Ṁ, w |= B ∧ C . The argument is
similar for A = B ∅ C , A = B ⊕ C and A = ¬B. �
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Lemma J.5.9. |A|M̊ = |A|Ṁ↓.

Proof. |A|M̊ = {w ∈ W̊ | M̊, w |= A} (1)={w ∈ W̊ | Ṁ, w |= A} = {w ∈ Ẇ |
Ṁ, w |= A} ⊆ W̊ = |A|Ṁ↓, where (1) is due to Lemma J.5.8. �

Lemma J.5.10. For all X ∧ W̊ , there is a formula B such that B ∈ ∼π and X =
|B|Ṁ↓.

Proof. Let X ∧ W̊ . Then X = {x1, . . . , xn} is finite, since W̊ is finite. By
Lemma J.5.7, there is an Ai ∈ ∼π for each xi ∈ X such that |Ai |Ṁ↓ = {xi }.
Let AX = A1 ∅ · · · ∅ An . Since ∼π is closed under classical connectives, AX ∈ ∼π .

|AX |Ṁ↓ = |⎬n
i=1 Ai |Ṁ↓ J.5.9= |⎬n

i=1 Ai |M̊ = {w ∈ W̊ | M̊, w |= ⎬n
i=1 Ai } =

{w ∈ W̊ | M̊, w |= A1 or . . . or M̊, w |= An} = ⋃n
i=1{w ∈ W̊ | M̊, w |= Ai } =

⋃n
i=1 |Ai |M̊

J.5.9= ⋃n
i=1 |Ai |Ṁ↓ =

⋃n
i=1{xi } = X . �

Lemma J.5.11. For all A, B ∈ ∼π , (i) if |A|Ṁ↓ ∧ |B|Ṁ↓, then |A|Ṁ ∧ |B|Ṁ ; (ii)
if |A|Ṁ↓ = |B|Ṁ↓, then |A|Ṁ = |B|Ṁ .

Proof. Let A, B ∈ ∼π such that |A|Ṁ↓ ∧ |B|Ṁ↓. Take any w ∈ |A|Ṁ . By Lemma

J.5.6 (iii), there is a ẘ ∈ W̊ such that w ∼Ṁ
π ẘ. Since Ṁ, w |= A, by Lemma J.5.5,

Ṁ, ẘ |= A. Hence, ẘ ∈ |A|Ṁ , and, since ẘ ∈ W̊ , ẘ ∈ |A|Ṁ↓. Thus, ẘ ∈ |B|Ṁ↓
and hence, ẘ ∈ |B|Ṁ or Ṁ, ẘ |= B. Thus, since B ∈ ∼π and w ∼Ṁ

π ẘ, Ṁ, w |= B
by Lemma J.5.5. Thus, w ∈ |B|Ṁ . (ii) follows immediately. �

Lemma J.5.12. (i) |ϕ|Ṁ↓⊆|ψ|Ṁ↓ = |ϕ∧ψ|Ṁ↓; (ii) |ϕ|Ṁ↓∨|ψ|Ṁ↓ = |ϕ∅ψ|Ṁ↓;
(iii) |ϕ|Ṁ↓ = |¬ϕ|Ṁ↓ (where the complement is interpreted w.r.t. frame F̊).

Proof. Ad (i): |ϕ∧ψ|Ṁ↓ = |ϕ∧ψ|Ṁ ⊆ W̊
(1)=(|ϕ|Ṁ ⊆ |ψ|Ṁ )⊆ W̊ = (|ϕ|Ṁ ⊆ W̊ )⊆

(|ψ|Ṁ ⊆ W̊ ) = |ϕ|Ṁ↓ ⊆ |ψ|Ṁ↓ where (1) is due to Lemma J.4.1 (i).

Ad (ii): |ϕ ∅ ψ|Ṁ↓ (2)=(|ϕ|Ṁ ∨ |ψ|Ṁ )↓ = (|ϕ|Ṁ ∨ |ψ|Ṁ ) ⊆ W̊ = (|ϕ|Ṁ ⊆ W̊ ) ∨
(|ψ|Ṁ ⊆ W̊ ) = |ϕ|Ṁ↓ ∨ |ψ|Ṁ↓ where (2) is due to Lemma J.4.1 (ii).

Ad (iii): |ϕ|Ṁ↓ = (W̊ \|ϕ|Ṁ↓)⊆W̊ = (W̊ \(|ϕ|Ṁ⊆W̊ ))⊆W̊ = (W̊ \|ϕ|Ṁ )⊆W̊ =
(Ẇ \ |ϕ|Ṁ )⊆ W̊

(3)= |¬ϕ|Ṁ ⊆ W̊ = |¬ϕ|Ṁ↓ where (3) is due to Lemma J.4.1 (iii). �

Lemma J.5.13. If Ṁ = 〈Ẇ , Ȯ, Ṅ i, Ṅ p, Ȯi, Ȯp, @̇, v̇◦, defined as above, satisfies
conditions {M-X | X ∈ X} where X ∧ {CN, RCPM, S, WRM, CPAND, CP, PS’,
FDi, FDp, Ep, CTDR, fV, oV-Ei}, then F̊ satisfies conditions {F-X | X ∈ X}.
Proof. We demonstrate the proof via some paradigmatical rules. For (F-PS’): Let
X, Y, Z ∧ W̊ , 〈Y ⊆ Z , X◦ ∈ O̊w and 〈Y ⊆ Z , X◦ /∈ O̊w. To show: 〈Z , Y ∨ X◦ ∈ O̊w.
By (DOΛ), there are E, F ∈ ∼π for which |E |Ṁ↓ = Y ⊆ Z , |F |Ṁ↓ = X and
〈|E |Ṁ , |F |Ṁ ◦ ∈ Ȯw. Furthermore, by Lemma J.5.10, there are A, B, C ∈ ∼π
such that |A|Ṁ↓ = X , |B|Ṁ↓ = Y and |C |Ṁ↓ = Z . By Lemma J.5.12 (i),
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|B|Ṁ↓ ⊆ |C |Ṁ↓ = |B ∧ C |Ṁ↓. Thus |E |Ṁ↓ = |B ∧ C |Ṁ↓ and by Lemma
J.5.11 and since B ∧ C ∈ ∼π , |E |Ṁ = |B ∧ C |Ṁ . Also by Lemma J.5.11,

|F |Ṁ = |A|Ṁ . Thus, 〈|B ∧ C |Ṁ , |A|Ṁ ◦ J.4.1i= 〈|B|Ṁ ⊆ |C |Ṁ , |A|Ṁ ◦ ∈ Ȯw. Sup-

pose
〈|B|Ṁ ⊆ |C |Ṁ , |A|Ṁ

〉 ∈ Ȯw. Note that
〈|B|Ṁ ⊆ |C |Ṁ , |A|Ṁ

〉 J.4.1i i i=
〈|¬B|Ṁ ⊆ |C |Ṁ , |¬A|Ṁ ◦ J.4.1i= 〈|¬B ∧ C |Ṁ , |¬A|Ṁ ◦ ∈ Ȯw. (iii) and (2)
by Lemma J.4.1 (i). Now by (DOΛ), 〈|¬B ∧ C |Ṁ↓, |¬A|Ṁ↓◦ ∈ O̊w. Note that

〈|¬B ∧ C |Ṁ↓, |¬A|Ṁ↓◦ J.5.12i= 〈|¬B|Ṁ↓ ⊆ |C |Ṁ↓, |¬A|Ṁ↓◦ J.5.12i i i= 〈|B|Ṁ↓ ⊆
|C |Ṁ↓, |A|Ṁ↓

〉 ∈ O̊w. However, now we have 〈Y ⊆ Z , X◦ ∈ O̊w—a contradic-
tion. Hence,

〈|B|Ṁ ⊆ |C |Ṁ , |A|Ṁ
〉
/∈ Ȯw. Since Ṁ satisfies (M-PS’),

〈|C |Ṁ , |B|Ṁ ∨
|A|Ṁ

〉 ∈ Ȯw. By Lemma J.4.1 (ii) and (iii), 〈|C |Ṁ , |¬B ∅ A|Ṁ ◦ ∈ Ȯw. Thus, by

(DOΛ) and since C,¬B ∅ A ∈ ∼π , 〈|C |Ṁ↓, |¬B ∅ A|Ṁ↓◦ ∈ O̊w. By Lemma J.5.12
(ii) and (iii),

〈|C |Ṁ↓, |B|Ṁ↓ ∨ |A|Ṁ↓
〉 ∈ O̊w and thus 〈Z , Y ∨ X◦ ∈ O̊w.

For (F-RCPM): Let X, Y, Z ∧ W̊ , Y ∧ Z , 〈X, Y ◦ ∈ O̊w, and 〈X, Y ◦ /∈ O̊w. By
(DOΛ), there are A, B ∈ ∼π such that |A|Ṁ↓ = X, |B|Ṁ↓ = Y and 〈|A|Ṁ , |B|Ṁ ◦ ∈
Ȯw. Furthermore, by Lemma J.5.10, there is a C ∈ ∼π for which Z = |C |Ṁ↓.

Suppose, 〈|A|Ṁ , |¬B|Ṁ ◦ ∈ Ȯw. Then by (DOΛ), 〈|A|Ṁ↓, |¬B|Ṁ↓◦ J.5.12i i i=
〈|A|Ṁ↓, |B|Ṁ↓

〉 = 〈X, Y ◦ ∈ O̊w—a contradiction. Thus, 〈|A|Ṁ , |¬B|Ṁ ◦ J.4.1i i i=〈|A|Ṁ , |B|Ṁ
〉
/∈ Ȯw. By Lemma J.5.11, |B|Ṁ ∧ |C |Ṁ , since |B|Ṁ↓ ∧ |C |Ṁ↓. Since

Ṁ satisfies (M-RCPM), 〈|A|Ṁ , |C |Ṁ ◦ ∈ Ȯw. Thus, by (DOΛ), 〈|A|Ṁ↓, |C |Ṁ↓◦ =
〈X, Z◦ ∈ O̊w.

For (F-Ep): Let X, Y, Z , Z → ∈ W̊ such that, (a), w ∈ Y ⊆Z , (b), 〈Y, Y ⊆ Z◦ /∈ O̊w,
(c), 〈Y, X◦ ∈ O̊w, (d), Z → ∧ X , and either, (e), 〈Y ⊆ Z , Z →◦ /∈ O̊w, or, (f),
〈Y⊆Z , Z →◦ ∈ O̊w. To show: 〈Y, X◦ ∈ N̊ p

w. By (DOΛ) and (c) there are A, B ∈ ∼π for
which |A|Ṁ↓ = X , |B|Ṁ↓ = Y and 〈|B|Ṁ , |A|Ṁ ◦ ∈ Ȯw. By Lemma J.5.10 there is
a C ∈ ∼π such that |C |Ṁ↓ = Z . Suppose

〈|B|Ṁ , |B ∧ C |Ṁ
〉 ∈ Ȯw, then by Lemma

J.4.1 (iii), 〈|B|Ṁ , |¬(B∧C)|Ṁ ◦ ∈ Ȯw. Now by (DOΛ) and since B,¬(B∧C) ∈ ∼π ,
〈|B|Ṁ↓, |¬(B∧C)|Ṁ↓◦ ∈ O̊w. Then by Lemma J.5.12, 〈|B|Ṁ↓, |¬(B∧C)|Ṁ↓◦ =〈|B|Ṁ↓, |B ∧ C |Ṁ↓

〉 = 〈|B|Ṁ↓, |B|Ṁ↓ ⊆ |C |Ṁ↓
〉 = 〈Y, Y ⊆ Z◦ ∈ O̊w—a con-

tradiction with (b). Thus,
〈|B|Ṁ , |B ∧ C |Ṁ

〉 J.4.1i= 〈|B|Ṁ , |B|Ṁ ⊆ |C |Ṁ
〉

/∈ Ȯw. By

Lemma J.5.10 there is a D ∈ ∼π for which |D|Ṁ↓ = Z →. Thus |D|Ṁ↓ ∧ |A|Ṁ↓
and thus by Lemma J.5.12 (iii), |D|Ṁ↓ ∧ |¬A|Ṁ↓. By Lemma J.5.11 and since

D,¬A ∈ ∼π , |D|Ṁ ∧ |¬A|Ṁ J.4.1i i i= |A|Ṁ . Case (e): Suppose
〈|B|Ṁ⊆|C |Ṁ , |D|Ṁ

〉 ∈
Ȯw, then by Lemma J.4.1 (i) and (iii), 〈|B ∧ C |Ṁ , |¬D|Ṁ ◦ ∈ Ȯw. By (DOΛ)
and since B ∧ C,¬D ∈ ∼π , 〈|B ∧ C |Ṁ↓, |¬D|Ṁ↓◦ ∈ O̊w. By Lemma J.5.12
(i) and (iii),

〈|B|Ṁ↓ ⊆ |C |Ṁ↓, |D|Ṁ↓
〉 = 〈Y ⊆ Z , Z →◦ ∈ O̊w—a contradiction with

(e). Thus,
〈|B|Ṁ ⊆ |C |Ṁ , |D|Ṁ

〉
/∈ Ȯw. Case (f): By (DOΛ) there are E, F ∈ ∼π

such that |E |Ṁ↓ = Y ⊆ Z , |F |Ṁ↓ = Z → and 〈|E |Ṁ , |F |Ṁ ◦ ∈ Ȯw. We have

|E |Ṁ↓ = |B|Ṁ↓ ⊆ |C |Ṁ↓ J.5.12i= |B ∧ C |Ṁ↓. Thus, by Lemma J.5.11 and since
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E, B∧C ∈ ∼π , |E |Ṁ = |B∧C |Ṁ J.4.1i= |B|Ṁ ⊆|C |Ṁ . Thus, 〈|B|Ṁ ⊆|C |Ṁ , |F |Ṁ ◦ ∈
Ȯw. Also by Lemma J.5.11, since |F |Ṁ↓ = Z → = |D|Ṁ↓, |F |Ṁ = |D|Ṁ . Thus,
〈|B ∧ C |Ṁ , |D|Ṁ ◦ ∈ Ȯw.

Since Ṁ satisfies (M-Ep), 〈|B|Ṁ , |A|Ṁ ◦ ∈ Ṅ p
w. Hence, by (DN pΛ), 〈Y, X◦ ∈

N̊ p
w.
For (F-WRM): Consider X, Y, Z ∈ W̊ . Let 〈X, Y ◦ ∈ O̊w and 〈X, Y ⊆ Z◦ /∈ O̊w.

By (DOΛ), there are A, B ∈ ∼π such that |A|Ṁ↓ = X , |B|Ṁ↓ = Y and
〈|A|Ṁ , |B|Ṁ ◦ ∈ Ȯw. By Lemma J.5.10, there is a C ∈ ∼π such that |C |Ṁ↓ = Z . Sup-

pose that
〈|A|Ṁ , |B|Ṁ ⊆ |C |Ṁ

〉 ∈ Ȯw. Due to the fact that
〈|A|Ṁ , |B|Ṁ ⊆ |C |Ṁ

〉 J.4.1i=
〈|A|Ṁ , |B ∧ C |Ṁ

〉 J.4.1i i i= 〈|A|Ṁ , |¬(B ∧ C)|Ṁ ◦, we have, 〈|A|Ṁ , |¬(B ∧ C)|Ṁ ◦ ∈
Ȯw. By (DOΛ), 〈|A|Ṁ↓, |¬(B∧C)|Ṁ↓◦ ∈ O̊w. However, 〈|A|Ṁ↓, |¬(B∧C)|Ṁ↓◦
J.5.12i i i= 〈|A|Ṁ↓, |B ∧ C |Ṁ↓

〉 J.5.12i= 〈|A|Ṁ↓, |B|Ṁ↓ ⊆ |C |Ṁ↓
〉 = 〈X, Y ⊆ Z◦. Thus,

〈X, Y ⊆ Z◦ ∈ O̊w—a contradiction. Thus,
〈|A|Ṁ , |B|Ṁ ⊆ |C |Ṁ

〉
/∈ Ȯw. Since Ṁ sat-

isfies (M-WRM), 〈|A|Ṁ⊆|C |Ṁ , |B|Ṁ ◦ J.4.1i= 〈|A∧C |Ṁ , |B|Ṁ ◦ ∈ Ȯw. Since A∧C ∈
∼π (since ∼π is closed under the classical connectives and A, C ∈ ∼π ) and B ∈ ∼π , by

(DOΛ), 〈|A∧C |Ṁ↓, |B|Ṁ↓◦ J.5.12i= 〈|A|Ṁ↓⊆ |C |Ṁ↓, |B|Ṁ↓◦ = 〈X ⊆ Z , Y ◦ ∈ O̊w.
The other cases are shown in a similar way and are left to the reader. �

Now we show that Ṁ and M̊ are equivalent modulo ∼Υ.

Lemma J.5.14. For all ψ ∈ ∼Υ and all w ∈ W̊ , Ṁ, w |= ψ iff M̊, w |= ψ.

Proof. We show the equivalence by induction on the length of ψ. The equivalence
holds for all propositional formulas ψ by Lemma J.5.8.

Let now ψ = O(A|B). Note that A, B ∈ ∼π . M̊, w |= O(A|B) iff 〈|B|M̊ , |A|M̊ ◦ ∈
O̊w iff (by Lemma J.5.9) 〈|B|Ṁ↓, |A|Ṁ↓◦ ∈ O̊w. By (DOΛ), there are A→, B → ∈ ∼π
such that |A→|Ṁ↓ = |A|Ṁ↓, |B →|Ṁ↓ = |B|Ṁ↓ and 〈|B →|Ṁ , |A→|Ṁ ◦ ∈ Ȯw. Since
A, A→, B, B → ∈ ∼π , by Lemma J.5.11, |A|Ṁ = |A→|Ṁ and |B|Ṁ = |B →|Ṁ . Thus,
〈|B|Ṁ , |A|Ṁ ◦ ∈ Ȯw and thus, Ṁ, w |= O(A|B). Let now Ṁ, w |= O(A|B). Then
〈|B|Ṁ , |A|Ṁ ◦ ∈ Ȯw and thus by (DOΛ), 〈|B|Ṁ↓, |A|Ṁ↓◦ ∈ O̊w. By Lemma J.5.9,
〈|B|M̊ , |A|M̊ ◦ ∈ O̊w and thus, M̊, w |= O(A|B).

Let ψ = •iO(A|B). Note that A, B ∈ ∼π . M̊, w |= •iO(A|B) iff 〈|B|M̊ , |A|M̊ ◦ ∈
N̊ i

w iff (by Lemma J.5.9) 〈|B|Ṁ↓, |A|Ṁ↓◦ ∈ N̊ i
w. By (DN iΛ), there are A→, B → ∈ ∼π

such that |A→|Ṁ↓ = |A|Ṁ↓, |B →|Ṁ↓ = |B|Ṁ↓ and 〈|B →|Ṁ , |A→|Ṁ ◦ ∈ Ṅ i
w. Since

A, A→, B, B → ∈ ∼π , by Lemma J.5.11, |A|Ṁ = |A→|Ṁ and |B|Ṁ = |B →|Ṁ . Thus,

〈|B|Ṁ , |A|Ṁ ◦ ∈ Ṅ i
w and thus, Ṁ, w |= •iO(A|B). Let now Ṁ, w |= •iO(A|B).

Then 〈|B|Ṁ , |A|Ṁ ◦ ∈ Ṅ i
w and thus by (DOΛ), 〈|B|Ṁ↓, |A|Ṁ↓◦ ∈ N̊ i

w. By Lemma

J.5.9, 〈|B|M̊ , |A|M̊ ◦ ∈ N̊ i
w and thus, M̊, w |= •iO(A|B).

The case ψ = •pO(A|B) is shown analogously.

Let ψ = Oi A. Note that A ∈ ∼π . M̊, w |= Oi A iff |A|M̊ ∈ O̊i
w iff (by Lemma

J.5.9) |A|Ṁ↓ ∈ O̊i
w. By (DOiΛ), there is a A→ ∈ ∼π such that |A→|Ṁ↓ = |A|Ṁ↓, and
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|A→|Ṁ ∈ Ȯi
w. Since A, A→ ∈ ∼π , by Lemma J.5.11, |A|Ṁ = |A→|Ṁ . Thus, |A|Ṁ ∈

Ȯi
w and thus, Ṁ, w |= Oi A. Let now Ṁ, w |= Oi A. Then |A|Ṁ ∈ Ȯi

w and thus by

(DOiΛ), |A|Ṁ↓ ∈ O̊i
w. By Lemma J.5.9, |A|M̊ ∈ O̊i

w and thus, M̊, w |= Oi A.
The case ψ = Op A is shown analogously.
We still have to show that our statement holds for ϕ ∈ (L ⊆ ∼π ) \ (P ∨ L→).

As induction hypothesis, suppose that the equivalence holds for ψ1,ψ2 ∈ ∼Υ. Let
ψ = ψ1∧ψ2. Then M̊, w |= ψ1∧ψ2 iff M̊, w |= ψ1,ψ2 iff (by induction hypothesis)
Ṁ, w |= ψ1,ψ2 iff Ṁ, w |= ψ1 ∧ ψ2. The cases ψ = ψ1 ∅ ψ2,ψ = ψ1 ⊕ ψ2
and ψ = ¬ψ1 are shown similarly. Thus, the equivalence holds for all formulas
ψ ∈ ∼Υ. �

Corollary J.5.1. For all ψ ∈ ∼Υ, Ṁ |= ψ iff M̊ |= ψ.

Proof. Ṁ |= ψ iff Ṁ, @̇ |= ψ iff (by Lemma J.5.14 and since @̊ = @̇) M̊, @̊ |= ψ
iff M̊ |= ψ. �

Theorem J.5.2. L+ is complete with respect to the class of frames that satisfy the
appropriate conditions.

Proof. The proof is similar to the proof of Theorem J.5.1. Take again a formula ψ
such that ⊀L+ ψ. The model Ṁ = 〈Ḟ, @̇, v̇◦ constructed for Theorem J.5.1 meeting
the respective model conditions was such that Ṁ, @̇ � ψ and thus Ṁ � ψ. We
choose now Υ to be the set of subformulas of ψ. We construct M̊ on basis of Ṁ as
above. By Corollary J.5.1, M̊ � ψ. By Lemma J.5.13, F̊ satisfies the respective frame
conditions. Therefore, there is a model in the respective class of frames that meets
the respective frame conditions. By contraposition and generalization, if a formula
ψ is valid with respect to that class, it must be provable in L+. �

The following two corollary follow immediately.

Corollary J.5.2. L+ is sound and complete with respect to the class of all finite
frames that meet the appropriate frame conditions.

Corollary J.5.3. L+ has the finite model property.

Corollary J.5.4. L+ is decidable.

J.6 Dealing with (Finite) Premise Sets

In order to work with (finite) premise sets Θ ∪ L we define:

M |= Θ iff for all ϕ ∈ Θ, M |= ϕ

Θ �F ϕ iff for all M = 〈F, @, v◦ : if M |= Θ, then M |= ϕ

Θ �F ϕ iff for all F ∈ F : Θ �F ϕ
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Θ ≥L+ ϕ iff ≥L+
∧

Θ ⊕ ϕ.

Let Θ ∪ L be finite and ϕ ∈ L.

Lemma J.6.1. M |=⎨
Θ ⊕ ϕ iff (if M |= Θ, then M |= ϕ).

Proof. “⇒”: M |=⎨
Θ ⊕ ϕ iff M |= ¬(

⎨
Θ )∅ϕ iff (M |= ¬(

⎨
Θ ) or M |= ϕ).

Also, M |= Θ iff M |=⎨
Θ (due to (M-∧). Thus, if M |= Θ , then M |= ϕ.

“≺”: Suppose M �
⎨

Θ ⊕ ϕ, then M � ¬(
⎨

Θ ) ∅ ϕ. Then, by (M-∅), it is
not the case that (M |= ¬(

⎨
Θ ) or M |= ϕ). Thus, M � ¬(

⎨
Θ ) and M � ϕ, and

hence, M |=⎨
Θ and M � ϕ—a contradiction. �

Theorem J.6.1. Where L+ ∈ {CDPM.2d+, CDPM.2e+} and F is the appropri-
ate class of frames (with respect to the frame conditions that characterize L+, see
Sect. J.3), Θ �F ϕ iff Θ ≥L+ ϕ.

Proof. Θ �F ϕ iff for all F ∈ F : Θ �F ϕ iff for all F ∈ F and for all
M = 〈F, @, v◦ : if M |= Θ, then M |= ϕ iff (Lemma J.6.1) for all F ∈ F and
for all M = 〈F, @, v◦ : M |= ⎨

Θ ⊕ ϕ iff (Theorem J.5.2) ≥L+
⎨

Θ ⊕ ϕ iff (by
Definition) Θ ≥L+ ϕ. �

J.7 Deontic Detachment

Recall the following deontic detachment principles:

≥ (
O(A|C) ∧ P(A ∧ B|C) ∧O(B|A ∧ C)

) ⊕ O(B|C) (DDP1)

≥ (
O(A| ) ∧ P(A ∧ B| ) ∧ O(B|A)

) ⊕ O(B| ) (DDP 1)

≥ (
O(A|C) ∧ P(A ∧ B|C) ∧ P(B|¬A ∧ C) ∧ O(B|A ∧ C)

)

⊕ O(B|C)
(DDP2)

≥ (
O(A| ) ∧ P(A ∧ B| )∧

P(B|¬A) ∧ O(B|A)
) ⊕ O(B| )

(DDP 2)

Theorem J.7.1. In CDPM.2d+ (DDP1) and (DDP 1) are valid.

Proof. By (S) and O(B|A ∧ C) we get O(A ⊕ B|C). P(A ∧ (A ⊕ B)|C) is a con-
sequence of (CRE) and P(A ∧ B|C). By (CPAND), O(A|C), P(A ∧ (A ⊕ B)|C)

and O(A ⊕ B|C) we have O(A ∧ (A ⊕ B)|C). Thus, by (CRE), O(A ∧ B|C). By
this, (RCPM) and P(A ∧ B|C) we get O(B|C). (DDP 1) follows immediately. �
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Theorem J.7.2. In CDPM.2e+ (DDP2) and (DDP 2) are valid.

Proof. The proof is similar to the one above. Since we don’t have (S), but instead
the weaker (PS’), we need the additional hypothesis P(B|¬A ∧ C) in order to derive
O(A ⊕ B|C) from O(B|A ∧ C). The rest of the proof is identical to the proof of
Theorem J.7.1. �

J.8 The Semantics for L+
P

The semantics for our enhanced new lower limit logic CDPM.2δ+
P

is defined in a
similar way as the semantics of CDPM.2δ+. Neighborhood frames are now tuples
〈W,O,N i,N p,Oi,Op,PΛ◦where W,O,N i,N p,Oi, andOp are defined as before
and PΛ : W → ℘(℘(W )× ℘(W )) is used to characterize our new operator P. We
add the following requirement for all w ∈ W :

M, w |= P(A | B) iff 〈|B|M , |A|M ◦ ∈ PΛ
w (M-PΛ)

We have to add two more frame conditions corresponding to the new rules (P-Ps)
and (Ps-T), namely

For all X, Y ∧ W, if X ∧ Y and 〈Y, X◦ /∈ Ow, then 〈Y, X◦ ∈ PΛ
w (F-P-Ps)

For all X, Y, Z ∧ W, if 〈X, Y ◦, 〈Y, Z◦ ∈ PΛ
w, then 〈X, Z◦ ∈ PΛ

w (F-Ps-T)

Moreover, the frame-conditions for the altered rules (Ep-g) and (CTDR-g) have
to be adjusted.

For all X, Y, Z , Z → ∧ W, if X ∧ Z →, Z ∧ Y,
(〈Z , Z →◦ /∈ Ow or 〈Z , Z →◦ ∈ Ow

)
,

w ∈ Z , 〈Y, Z◦ ∈ PΛ
w, and 〈Y, X◦ ∈ Ow, then 〈Y, X◦ ∈ N p

w

(F-Ep-g)
For all X, Y, Z , Z → ∧ W, if X ∧ Z →, X ∧ Z , Z ∧ Y,

〈Z , Z →◦, 〈Y, X◦ ∈ Ow and 〈Y, Z◦ /∈ PΛ
w, then 〈Z , Z →◦ ∈ N p

w
(F-CTDR-g)

The soundness and completeness proofs offered for CDPM.2δ+ can be easily
adjusted for the altered and additional frame conditions for CDPM.2δ+

P
.
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