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Series Introduction

The primary objectives of the Biostatistics Book Series are to provide useful

reference books for researchers and scientists in academia, industry, and govern-

ment, and also to offer textbooks for undergraduate or graduate courses in the area

of biostatistics. This book series will provide comprehensive and unified presen-

tations of statistical designs and analyses of important applications in biostatistics,

such as those in biopharmaceuticals. A well-balanced summary will be given of

current and recently developed statistical methods and interpretations for both

statisticians and researchers or scientists with minimal statistical knowledge who

are engaged in thefieldof appliedbiostatistics.The series is committed toproviding

easy-to-understand, state-of-the-art referencesand textbooks. Ineachvolume, statis-

tical concepts and methodologies will be illustrated through real world examples.

As indicated by the authors of this volume, there is a rapid change in

pharmaceutical research and development since the publication of the second

edition of this book. New concepts and advanced technologies have enabled more

flexible and efficient pharmaceutical research and development in the past decade.

These new concepts and advanced technologies include the use of adaptive (or

flexible) design in early phase of clinical research and development, the

determination of non-inferiority margin in non-inferiority trials for proving

superiority over placebo, and the establishment of a predictive clinicalmodel using

genomic data for personalized medicine. Similar to previous editions, this volume

provides awell-balanced summarization of statistical designs and analyses that are

commonly encountered in pharmaceutical research and development. It covers

important topics in pharmaceutical research and development such as clinical trial

designs, interim analysis and adaptive design in clinical trials, post-marking

studies and adverse drug experiences, statistical challenges in pharmacogenomics,

and global harmonization of drug development. As a result, it can serve as not only

a textbook for a course in biopharmaceutical statistics at senior level of under-

graduate or graduate level but also as a useful reference book for pharmaceutical

scientists and researchers in the health related area. In addition, this volume also

provides pharmaceutical scientists and researchers an innovative way of thinking

for evaluation of the effectiveness and safety of an investigational new drug or

therapy. It would be beneficial to biostatisticians and pharmaceutical scientists

and researchers who are engaged in the areas of pharmaceutical research and

development.

Shein-Chung Chow
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Preface to the Third Edition

Wow — and we thought that the decade from the first to the second edition was

one of rapid change. The changes in the pharmaceutical industry in the last

decade, from the second to this third edition, have been even more enormous. For

example, the industry and all of its thinking have become global so that planning

from the very beginning of a new drug to its marketing are done on an inter-

national basis. The regulatory authorities have made great strides in harmoniza-

tion so that there are fewer small and time consuming differences from one

country to another. Computer power has permitted an increased level of statistical

sophistication in analyses and in improved communication over the internet and

intranet. Now one designs clinical trials that are adaptive and thus provide

flexibility and also raise interesting new statistical issues of validity. Proving

superiority over placebo is becoming less important and trials that show

equivalence with (or superiority to) a known effective medication are thus more

common and important.

This book then tries to convey the excitement of the pharmaceutical industry

to an audience including those who work there on the industry side or the

regulatory authorities who review the work of the industry and wish to learn

about a different area, to those who may work there in the future and wish to learn

more about the industry before making that decision, and to those who just wish

to understand more about the role of statistics in this research and these

companies. These chapters are written by those on the front lines in the industry

and at the regulatory agencies. The views of those who originate the statistics and

those who then evaluate the analysis are both here. While their roles may give

these statisticians different viewpoints, their goals are the same: see that studies

are designed to prove safety and efficacy and good manufacturing and find new

medications that are marketable while weeding out the chemical candidates that

have some defect. The answers vary with different classes of drugs and this

variety is also illustrated in this volume.

We the editors express our thanks to the authors of these chapters who have

recorded their knowledge and experience to make it easier for others to achieve

the same level with fewer hurdles. The sophistication of the authors’ thinking has

been a blessing to the editors.

C. Ralph Buncher

Jia-Yeong Tsay
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Preface to the Second Edition

This volume started out as a simple revision which was to become the second

edition of our book Statistics in the Pharmaceutical Industry. Then the apprecia-

tion of the enormous changes in the industry in recent years emerged.

In a decade of rapid change in this field, have come, in large numbers, the

new initials of PCs (personal computers), CANDAs (computer-assisted new drug

applications), CROs (contract research organizations), AIDS (acquired immuno-

deficiency syndrome), as well as biotechnology, biomonitoring, pharmaco-

epidemiology, molecular biology, meta-analysis, designer drugs, international

planning, work stations, and so forth. Diseases for which there was no pharma-

ceutical therapy are now routinely treated, and the expectation is that new genetic

and molecular knowledge will make possible treatment for virtually all diseases.

The result is that this book not only was completely revised by updating every

chapter from the first edition, but also was expanded by adding many chapters

to cover new areas that were still in their infancy during the development of the

first edition. We believe that reading this book will enlighten readers—be they

students in statistics, faculty members, statisticians, OS nonstatisticians—about

the pharmaceutical industry and the many roles played by the biostatistician

within that industry. Even those readers with background in the industry may

find interesting ideas in the words of others whose experience may differ from

their own.

We wish to thank the authors of these chapters who used their practical

knowledge to make this revision possible. They have many years of experience in

the pharmaceutical industry, whether working for government or industry or both.

Their efforts will enable the reader to speed the process of building experience

and understanding.

We thank the many people at Marcel Dekker, Inc., who have worked on

this book and helped bring it to fruition. We also thank Brenda Riggins in the

Division of Biostatistics at the University of Cincinnati for her special efforts

which facilitated this volume.

C. Ralph Buncher

Jia-Yeong Tsay
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Preface to the First Edition

This book is the culmination of many years of difficult work by numerous people.

The idea of a book devoted to the lessons learned by those working in the

pharmaceutical field had its genesis in 1973. After an initial flare of interest, the

idea lay dormant for three or four years. Then the current group was assembled

to bring the thought to fruition. Even this final stage has taken a number of years

for all of the usual reasons associated with busy persons trying to put together a

volume while also having the rest of their duties undiminished. We are proud that

this book fulfills most of our dreams.

AUDIENCE FOR THIS BOOK

For whom is this book written? The editors and authors have discussed this

question extensively, especially since this is the first book that we know of

devoted to applied statistics in the pharmaceutical industry. We agreed to keep in

mind four audiences in particular as the chapters were written.

The principal audience for this book is the graduate student in statistics or

biostatistics. We believe that these students can use this volume to find out

much more than is currently available about opportunities in the pharmaceutical

industry, which is one of the major employers of biostatisticians. It is hoped

that some academic institutions will choose to use this volume as a textbook in a

seminar type of course, perhaps held jointly with students in pharmacology,

pharmacy, or research methods. Secondly, the book has been sprinkled with

topics that the authors believe would be good thesis subjects for those who are

looking for work which will be of use and interest to others. Finally, we believe

that this book provides much general information on applied statistics which

will help enlarge the perspective of the student training for a career in the field of

statistics, whether that field is on the applied side or in the theoretical world.

Many new employees in the pharmaceutical industry also fit into this category.

A second audience for this book consists of the statistics faculty members

who have had little or no acquaintance with the pharmaceutical industry. We

believe that these statisticians, who have a wider perspective and a greater depth

of experience than the students, will be able to sort out which problems in the

industry are similar to problems that they are already working on and which

problems are relatively unique to the industry. We all agree that there are many

valuable contributions that academic statisticians could make toward solving

xiii



problems facing the pharmaceutical industry. We hope that this book will help

provide a greater bridge between industry and academia.

A third audience for this book consists of other persons interested in the

pharmaceutical industry who are not statisticians. Many of the chapters in this

book can be read and understood by those with no statistical training or only

minimal training in statistics. We are thinking of those working in clinical fields,

pharmacology, chemistry, quality control, company management, legal depart-

ments, and data managers. Each of these persons can find a wealth of experience

summarized and presented. These lessons are explained in the hope that other

professionals will not have to relearn problems and pitfalls that exist for almost

every drug and almost every company. Clearly, members of regulatory agencies

and persons wishing to know more about the inner workings of the pharma-

ceutical industry also fit into this category.

Finally, we believe that the pharmaceutical industry currently documents its

statistical and other evidence better than any other segment of our society. As

more and more comparable problems—for example, concerns with the value and

safety of nontherapeutic chemicals and other environmental agents—become

greater concerns for industry and regulatory agencies, we foresee that parts of

industry and government other than the pharmaceutical industry and the Food

and Drug Administration will be doing the same extensive work and documen-

tation that has been pioneered in the pharmaceutical industry. We think that those

other industrial/governmental interfaces will profit by learning the lessons of the

pharmaceutical industry and applying them in their own spheres as appropriate.

READING THIS BOOK

Chapter 1 describes the development of a chemical into a new drug for those

unfamiliar with the process or with the vocabulary of the industry. The other

chapters are in chronological order with respect to drug development.

This book has been written with the idea that many if not most readers

will read only a few chapters. We recommend that those unfamiliar with the

industry read the introductory chapter and then a few of current interest. It is

hoped that after learning some of the material, the reader will find additional

chapters to be of interest and will pick up the volume again to gain additional

insight and perspective.

This book has been designed to show many of the problems and solutions of

the statistical portion of the biopharmaceutical industry. The principal emphasis

throughout is on the problems that occur and the solutions that are used in practice

rather than in theory. The chapters in this book are written with the personal

experiences of the authors in the pharmaceutical industry in mind. Thus the book

manifests a diversity in subject matter as well as style and attitude toward

statistical problems.

An attempt has been made to explain the problems discussed in each chapter

before describing some of the solutions. As in most areas of human endeavor,

it is easy to miss some of the subtleties of the problem if one has never been

Preface to the First Editionxiv



exposed to it. Thus the book does require some sophistication in understanding

the problems of finding out the truth about a drug, forming impressions of the

truth when only part of the data is at hand, convincing others that your

understanding of the situation is the correct one, and documenting the material so

that an outside reviewer (even one who may be a doubter) can be convinced that a

pharmaceutical product is sufficiently safe and efficacious or, in other words,

sufficiently well understood to be suitable for marketing.

We thank the authors of these chapters for their cooperation and help

during this project. Special thanks go to Charlie Dunnett for key suggestions in

this process. Two other persons not mentioned elsewhere were essential to the

successful completion of this project. They are Hannah Aron and Elaine Sirkoski

who are Staff Assistants in the Division of Biostatistics and Epidemiology at the

University of Cincinnati. They did much of the organizing and communicating

and all of the typing of this final copy. We thank Hannah and Elaine for a superior

job well done.

C. Ralph Buncher

Jia-Yeong Tsay

Preface to the First Edition xv
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I. INTRODUCTION

There are many amazing statistics about the pharmaceutical industry. A United

States government agency has announced that almost half of the people in the

country used a prescribed pharmaceutical product in the last month.1 On an age-

specific basis, this usage includes one quarter of children,more than 60%ofmiddle

aged adults andmore than 80%of older adults.One in six people used three ormore

drugs including almost half of those aged 65 and over. This is an amazing

testimony to the accomplishments of the scientists working in this industry and

producing effective and valuable medications over the last half century —

although some doubters would give much of the credit to improved marketing.

These achievements do not come without great expenditure. DiMasi et al.2

report that the “estimated average out-of-pocket cost per new drug is US $403

1



million” although total costs may be twice as high. Clearly this is an industry that

requires tremendous resources of both money and people.

In addition to the tremendous productivity of the industry, there has also been

a tremendous amount of structural change. Perhaps the largest change of the last

decade or so is the emphasis on globalization instead of the more traditional

country by country approach. One of the major improvements is that the

regulatory authorities of various countries, and particularly the United States

(U.S.), European Union (E.U.), and Japan, have worked to bring their rules into

line with each other so that more of the research and development data can be

applied to fulfill requirements in multiple countries. This streamlining of the

system should make global drug development more efficient and less costly.

One of the most profound effects on international drug development from

globalization is the establishment of various International Conference on

Harmonization (ICH) guidelines. Through these ICH guidelines the E.U., U.S.,

and Japanese regulatory authorities will use similar rules and regulations with

much of the common data for the new drug application for marketing in these

regions. ICH-M43 provides guidance for the Common Technical Documents

(CTD) that may be submitted to E.U., U.S., and Japanese regions for submitting

marketing applications. The CTD consists of five modules. Module 1 is region

specific and for regional administration information. Modules 2 to 5 are technical

parts and intended to be common for the three regions.

Also there is more offshore outsourcing such as more pharmaceutical

companies having their data entry or data management done in India or China.

This trend seems to be gradually becoming the norm for major pharmaceutical

companies. The results of offshore outsourcing show that it provides reduced

cycle times, error rates, and costs. More recently some companies have expanded

their offshore outsourcing into biostatistical operations as indicated by Mehra4

who presents some success stories on offshore outsourcing in data management

and biostatistics.

Part of the globalization effort has involved restructuring of companies.

Companies have merged and purchased each other at a rapid rate. For example,

most of the companies represented by the authors of the first edition of this book

are no longer distinct entities. These mergers offer the positive benefit of each

company learning the best practices of the other with the usual overtones of

power struggles and defending of one’s “turf”. The result seems to be a continued

vibrant industry that will continue to produce more valuable drugs to treat and

cure the ills to which the human body is subject.

Another important change is the standard to prove efficacy. In times past, one

used a placebo as the basic concurrent control; subject to the usual concerns for

ethical treatment, i.e., one did not stop a patient from taking a physiologically

important medication. In the current world, the number of physiologically

important medications has grown to such an extent that those planning clinical

trials now must frequently, if not usually, design trials to compare the new

medication with a standard active drug. According to McGinn,5 an article in

the revised Declaration of Helsinki states that “an experimental treatment should

Statistics in the Pharmaceutical Industry2



always be compared against the best available treatment. Only when there is no

such treatment available anywhere in the world can a new drug be compared

against a placebo.” This transition has led to trials that emphasize proving

noninferiority or equivalence to an active medication rather than superiority over

a placebo. Statisticians trained in alpha and beta errors of hypothesis testing

immediately realize that proving noninferiority or equivalence is statistically a

very different package. For further details, readers are referred to Chapter 12.

One of the products of this type of methodological research is a greater

emphasis on adaptive clinical trials (see Chapters 13 and 14). The old concept of

doing a study while everyone is in a completely blindfold condition has given

way to the Data and Safety Monitoring Committees. These committees have the

role of deciding in the middle of the study whether the study should continue or

be stopped early. The standard situations for stopping early, even if they are not

common occurrences, are: efficacy has already been proven, side effects are too

severe in one group, or the results are so far from the desired outcome that the

goal will not be achieved in the time remaining.

One obvious conclusion from these statements is that the statistical analysis is

now more complicated and complex than in past times. Ubiquitous statistical

software has enabled more complex analyses to become routine. More is

expected from the analysis than in past times. Subgroups need to be studied and

various alternatives considered before the analysis is considered complete. This is

particularly so in the large global trial, which may be sufficient to provide

required evidence of efficacy by a single trial for the new drug application

(NDA), if adequate subgroups can be proved to be statistically significant.6

The ultimate goal is finding identifiable subgroups in the data set that can have

different standards of treatment set for them. Thus, for one example, if one can

identify those who metabolize the drug slowly, they can be given smaller doses

than the standard and those who metabolize rapidly can be given larger doses.

While these attempts at Pharmacogenomics and “Individualized Drug Therapy”

are ongoing and “more than 800 pharmacogenetics/genomics reviews” have been

published, no one should underestimate the problems in making this a part

of routine medicine.7

A number of statistical tools that were once novel have become mainstream

and are used routinely, as appropriate. These include generalized estimating

equations, several varieties ofmultivariate analysis, andmixedmodels.We should

also note that this sophisticated analysis of data, especially the efficacy data, is an

excellent example of the increased productivity that the hardware and software

enable. (By the way, do you know that the originator of the term “software” was

the late and great statistician John Tukey?)

Knowledge is the seed from which new drug preparations are grown.

Molecular studies in biology are blossoming forth at such exceptional speed that

new knowledge is created daily. The enterprising and astute are capable of using

this new knowledge as a springboard towards new pharmaceutical products.

The new products mean better health for the public and possible prosperity for

the company that develops the product.
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Thus the key decision points are: (i) whether we the sponsors are convinced

that we should test this new molecular entity in humans based on results from

animal and laboratory studies only, (ii) whether we the sponsors are convinced

that the drug works and is safe in humans, (iii) whether we the sponsors now

have sufficient information to convince the Food and Drug Administration (FDA)

and regulatory authorities in other countries and the medical community that

this medication as we now manufacture is safe and effective, and (iv) whether the

FDA and other regulatory authorities will approve the drug for marketing.

II. MOLECULAR BIOLOGY

In the last decade, the ability to understand the role of individual chemicals,

which can cause or prevent disease, has increased faster than at any time in

human history. Much of this knowledge has been generated through studies of the

genetic material, the proteins created from genes, and the role played by each.

Collectively, this work is called “Molecular Biology” and involves proteins

through concepts such as proteomics. Those who work in molecular biology are

converting these theoretical concepts into realities and statisticians are measuring

the progress.

Most statisticians working in the industry get to learn and be proficient in

some of the biologic and medical terminology even if they have never learned

it during their prior education. One can read statements such as “until recently, it

was common practice for a pharmaceutical company to market a chiral drug as

the racemate”.8 In this case one needs to know that if there are four different

chemical groups attached to a carbon atom, then two mirror-image forms called

enantiomers or optical isomers are possible. These are chiral drugs. Generally,

Nature creates just one of them but human manufacturing creates both in equal

numbers which is a “racemic” mixture. Usually only one form is of therapeutic

value but both can cause side effects. If the manufacturing process is able to

produce only the form that is therapeutic, then the incidence of side effects will be

reduced.

This explosion in molecular biology is one of the great changes in the last

decade in the pharmaceutical industry that we have identified. Another by-product

of molecular biology is the proliferation of smaller companies consisting of only a

small number of researchers who are experts in a niche area of medicine and

chemistry. Through molecular biologic techniques, these researchers can produce

a new candidate drug. With the help of other companies, they can develop this

candidate into a new drug, or they can sell or out-license themedication to another,

usually larger, company that will undertake the approval process. Alternatively,

the company may be purchased by a larger company because of the value of

the new drug candidate.

Another major change in the last decade is the use of computing equipment.

The new machines, and the wondrous software also now available, give the

statistician instant ability to explore data sets, to represent the data graphically,
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to calculate results, do an influence analysis, and to do other complex analyses.

As a result the level of sophistication in statistical analysis is much higher

because of the ability to do more extensive analysis and because of the desire to

see those alternatives. Thus one can present alternative analyses with difficult

patients both in and out to see if there are any qualitative differences, one can

differentially weight the observations, one can see what happens if you omit an

investigator from a combined analysis, and one can do formal or informal meta-

analysis of the results. Concepts such as data mining and bioinformatics have

become part of the vocabulary of statisticians in this industry.

Many potential problems arise because a statistician in the pharmaceutical

industry produces data that are to be evaluated by other statisticians, particularly

those at the FDA. Anyone who has ever tried to review a major work of another

statistical analyst realizes that there are important points to be resolved. The first

major point concerns the ability to follow a complex analysis, because most

statistical work is only reported in a skeletal outline. One needs to be able to follow

exactly which patients were included in the analysis. Were all data points used, or

were some outliers rejected, presumably for valid reasons?

Moreover, the ability to store and retrieve alternative analyses makes the

system effective. These abilities have led in turn to the desire to transmit all of this

information intact from the sponsor’s statisticians to those of the FDA.

Statisticians at the FDA usually want to pursue their own alternatives in analyzing

a data set rather than just checking the analysis of others. This sequence of events

can be facilitated by the electronic format of the NDA submission. We note that

electronic storage devices change about once a decade and that two decades later it

may be impossible to read the files that have been stored for future reference. Thus

every groupmust consider every five to ten years whether data that was previously

stored must be stored again on a newer electronic storage device.

Another trend in the last decade is the ability to monitor drug levels and the

effects of medications in various body fluids and tissues. More and more,

physicians are able to take into account the characteristics of individual patients

and thus to tailor doses to just the right level for each. The sources of variation in

optimal dose can be genetic differences, such as different varieties of the same

enzyme, or different physical characteristics, such as differences in body weight.

While statisticians find the variance to be informative, physicians find that

variation is mostly a problem in optimal therapy. By tailoring doses of medication,

the physicians improve their ability to treat but at times make the statistician’s job

a little more challenging. These abilities to make informative extra measurements

and the resulting explosion of data to be analyzed also make the statistician’s job

more interesting.

The final trend in the last decade is seen to be the changes in the structure of

the industry. The pharmaceutical industry no longer is focused within individual

countries but rather it has become an international marketplace with efficacy

and safety research focused on the world market. Much of Europe is now one

unit rather than many separate countries. Thus, the old information problem

was how do we best get safety and efficacy information in this one country;
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now the question is more like the following: in which country should we do each

piece of research to optimize our opportunities to do research, our costs, the

information we obtain, and the information necessary to convince the authorities

in many lands to let us market the medication. Optimizing the research has also

resulted in restructuring within the companies. Thus companies that used to do all

of the work themselves will now frequently, if not always, use outside contractors

to carry out some or all of the research and statistical functions that used to be

internal. A whole new sub-industry has grown up of Contract Research

Organizations which include, among other capabilities, all of the statistical

functions necessary in clinical trial research. Chapter 18 contains more

information on this subject.

III. ISSUES IN DRUG DEVELOPMENT

This first chapter attempts to accomplish three tasks. The first is to outline briefly

the steps involved in the pharmaceutical industry from creation of a new

molecular compound in the laboratory until, for some tiny fraction of those

compounds, a new drug is available on the market. Bouckenooghe9 estimates that

“out of 10,000 molecules discovered, synthesized, and screened, only about 50

are found to have potential as a drug and progress to preclinical in vitro and

animal testing. Further, only 10 make it to Phase I and just three make it to

Phase II, leading hopefully to one product that can get licensed as a human

medicine.” This brief description is primarily to allow those unfamiliar with the

process to have a better idea of the many interrelated steps involved in this long

and frequently unsuccessful effort. Second, the outline will emphasize the role of

the statistician in each of these phases, because that is a purpose of this volume.

Finally, the chapters in this book will be introduced at the point that the

description of the development of a new drug relates to that chapter.

There are three main issues in drug development: safety, efficacy, and

manufacturing. Safety must first be proven in cell based and whole animal

research before a drug is permitted to be used in humans. Then the safety must

again be proven in humans to justify long-term clinical rather than experimental

use of a drug. Finally, after the drug has been approved for marketing,

investigators will search for rare side effects of a drug in those patients who have

used the drug. Efficacy must be proven in clinical testing of a drug for the medical

purpose intended in typical groups of patients. Prior to this time, a chemical has

been selected because it has been found to be “active” in some subhuman

biologic screen or because of considerations in molecular biology or chemical

structural analysis. After success in screening, this chemical has been sufficiently

tested in animals so that one can infer that the drug is likely to be clinically useful

in humans. Finally, a drug must be manufactured. What was once a newly active

chemical created by molecular biologists or chemists in a laboratory must be

produced in a pilot plant operation and then later manufactured in large batches
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with careful quality control so that each individual dose of the medication will

exhibit the high standards of safety and efficacy expected.

Obviously, these developments are not made independently of each other.

A drug that does not dissolve as intended may show restricted efficacy, for

example, relief of pain for only two hours rather than the intended eight hours.

Reformulation of the medication might serve to improve the efficacy. Drug side

effects may disappear if the medication is given at mealtime or at bedtime and as

a result enhance efficacy. A drug that has been found to be highly efficacious and

easy to manufacture may turn out on lifetime toxicity testing to cause malignant

tumors in rats, thus abruptly ending a research program.

Currently one thinks of a typical duration of time from creation of the chemical

structure in the laboratory until a drug is marketed to be on the order of 7 to 12

years. Safety, efficacy, andmarketing are each studied for amajority of that period;

however, proving safety requires the most time. On the time scale, the lifetime of a

drugmay be divided into: preclinical time, the period from creation of the chemical

to its first use in humans; clinical studies, duringwhich time the drug is being tested

in humans; and finally post-approval, during which time the drug is being sold

commercially.

In the preclinical stage, one must learn about the characteristics of the drug to

such an extent that it makes good sense to the sponsor (pharmaceutical company)

and to the Federal FDA to try this drug in human beings. In order to reach this

stage, the sponsor must be reasonably sure of the drug as shown in various tests of

cell preparations and short-term animal toxicity testing in at least two species.

Also, the sponsor will want to know that there is a reasonable indication that the

drug will have the desired positive effect as predicted by tests in animal species

and known molecular configurations.

Finally, the sponsor will have to be able to manufacture test lots of the

proposed medication so questions of dosage form and amount and procedure for

the preparation must be resolved. Typically, these experimental quantities of the

drug will be made in a pilot plant operation or in special laboratories that make

sufficient quantities of the drug for experimental purposes. As a by-product of this

research, the sponsor will have studied the metabolism of the drug in animals to

know whether it accumulates in the tissues or whether it is excreted rapidly.

Likewise, questions about the active form of the drug, whether it is the parent

compound or some metabolite of it, will have been tentatively answered. Doses

that have been proven effective in animals will be extrapolated to the likely

therapeutic human dose and then to a fraction of that dose to provide a margin

of safety for initial testing.

All of this material is carefully written up by the sponsor and submitted to

the U.S. Food and Drug Administration or regulatory authority in another

country to ask for an exemption so that the chemical may be tested in humans as

an Investigational New Drug (IND). This submission is usually called

submission for an IND. Regulations allow the FDA 30 days in which to deny

the IND or to ask additional questions that were not adequately answered in the

submission.
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The clinical trials before drug approval are divided into three categories:

Phase I, Phase II, and Phase III. Phase I studies are the earliest studies in humans,

involving perhaps 20 to 80 subjects in total. Usually these persons are healthy

volunteers. Questions to be answered concern the short-term toxicity of the drug in

clinical pharmacology studies that provide data concerning absorption, distri-

bution, metabolism, and excretion (ADME) of the drug and which establish the

safe dosage range for the drug as well as likely side effects; occasionally some

inferences regarding effectiveness may be made. These studies are characterized

statistically by few subjects who are carefully observed but multiple measure-

ments per patient.

Phase II studies involve perhaps 100 to 300 patients with the disease of

interest who are studied in carefully supervised controlled clinical trials. These

studies show the drug’s fundamental effectiveness in restricted circumstances.

As a by-product, one usually obtains dose–response curves in humans for

effectiveness and side effects. Common adverse effects can be detected during

Phase II. Tests for the serum level or other level of the medication may be

incorporated into the research, especially if there is sizeable genetic variation in

metabolism of the medication.

Phase III trials involve proving efficacy in typical patients. During this phase,

various levels of the severity of the disease are studied and patients using various

concomitant medications provide information on a more clinical and less

experimental usage. The total number of persons studied in this phase rarely

exceeds 3500 patients and frequently is much smaller, usually 1000 to 3000.10

During this phase, efficacy is proven conclusively, and safety, with the

exception of rare adverse events, is also demonstrated. A sponsor must notify the

FDA of any serious adverse events, which implies close monitoring of the data as

well as statistical tests of various results from clinical evaluation of safety.

The monitoring of the studies may be done by the sponsor or by a Contract

Research Organization (see Chapter 18), and some of this work could be

outsourced to workers in another country.

All of the data on the three clinical phases with respect to human research is

submitted electronically as part of the NDA. Details can be seen in the FDA

Guidance11 on the electronic submission of NDAs. The NDA will contain results

of the animal pharmacological and toxicological studies as well as the human

pharmacology studies and the “adequate and well-controled” clinical studies

demonstrating the drug’s efficacy and side effects. Data from long-term animal

toxicity testing — for example, lifetime studies in rats lasting about two years —

are included in this submission. All of the manufacturing information must also

be contained in the submission indicating all of the ingredients that go into the

drug and whether the ingredients are active or inactive, included for the purposes

of taste, color, physical characteristics of the tablet, or packaging, as in the case

of a capsule.

The total submission that could easily be equivalent to 500 to 1000 volumes,

each one up to 2 in. thick in the old day of paper submission now can be loaded to

only oneDLTTape of pocket size. The period of preparing anNDAby the sponsor,
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reviewing the NDA by the FDA, and then reaching a resolution about points for

which there is insufficient information for the FDA reviewer to sign off on that part

of the submission often involves several years. By law, the FDA is to respond to

a submission in 60 days to determine if the NDA is complete and fileable. In recent

years the FDA has made this complex review process more rapid, i.e., a ten month

review timeline for a standard submission. A separate fast track has been added for

those drugs that are especially innovative or of use in life threatening diseases for

which few or no alternatives are available. For this type of priority NDAs have a

six month review timeline. An important part of the submission and of the final

NDA approval is the precise labeling to be used with the drug. In the labeling, the

many thousands of pages of research and development are compressed into a few

dozen paragraphs, which summarize the research with the drug.

After the drug has been approved by the FDA, the sponsor is permitted to

manufacture and sell it. During this postmarketing period, usually called

Phase IV, a number of other questions may be answered. These questions concern

relative efficacy of the new drug compared with others for the same or similar

purpose. Also likely to be answered is the question of the effects of prolonged use

of the medication and whether any rare side effects can be discovered. In some

instances, approval is made contingent on doing particular Phase IV studies.

For further discussion on Phase IV postmarketing studies, see Chapter 17.

IV. PRECLINICAL TESTING

Frequently, the effect of drugs can be investigated by using a molecular

preparation, a cell preparation, or an animal or portion of an animal as a test

system with the characteristic that increasing doses will produce increasing

effects. A particular concern is whether the drug will cause cancer in its use.

Drs. Lin and Ali report in Chapter 2 on how the FDA reviews animal toxicity data

on the carcinogenic potential of a new medication. The more general

measurement of the effects of medication on an animal is termed bioassay.

Bioassays are particularly good ways of telling how potent a new drug is relative

to a standard drug or treatment. Finney12 provides a detailed discussion on

statistical methods in bioassay, although logistic regression has supplanted some

older methods. Bioassay procedures are particularly important in the preclinical

phase of drug development, but also have great importance in further animal and

human testing during the clinical phases of research and in quality control.

A vital area in pharmaceutical research is the area of animal pathology and

toxicology. Procedures have been formalized in response to rules and regulations

about “good laboratory practices.” One part of the good laboratory practices

refers to the recording and analysis of toxicity data. In addition, there is activity on

optimal experimental designs to be used in the practical world of toxicity testing.

In that world, animals die for causes unrelated to the experiment, particular

samples are sometimes lost through technical error, and practical matters of

cost limit the size of experiments. Thus, what is needed are experimental designs
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that are at once powerful (in the statistical sense of being able to observe a

difference if it is truly there) and robust (in the statistical sense that if

assumptions, such as a particular variable being normally distributed, are not met,

the analysis is still valid; and in the laboratory sense that loss of a few test animals

or samples should not invalidate the experiment).

V. TOXICITY TESTING

There are numerous methods for testing toxicity of potential drugs. The first

major factor is whether the test is to be of acute or chronic exposure. If of acute

exposure, then one can administer a single dose to an animal and find out whether

there are any apparent toxic effects. Actually, several different doses are

administered. Alternatively, a small number of doses may be given and tested for

toxicity. In chronic toxicity tests, the drug is given on a continuous basis, perhaps

over the lifetime of the test animal. Numerous unsolved problems are involved

with this procedure. If one is simply trying to determine the effects on a test

animal, the above procedure is reasonable as it stands, though limited by the

problems of sampling error, size of experiment, and so forth. If, however, one is

interested in using a test animal as a surrogate for a human, then it is implicit that

the test animal handle the drug biochemically and pharmacologically in a manner

similar to the human, if not identical. Thus, a test animal that metabolizes

a drug in a different manner than does the human, is not likely to be a valid

surrogate.

There are many statistical and practical problems in these tests. Short-term

acute experiments can be done during the preclinical testing phase. Lifetime

experiments, on the other hand, require at least two years of observation in rats,

a frequently used test animal; and then perhaps another year for finishing the

experiment, preparing the numerous slides, reading and evaluating the slides,

and producing a statistical analysis of the resulting data. Thus, a chronic rat study

can require a duration of the order of three years. Practicality suggests that such

studies should be done only after one is reasonably sure that the drug is going to

be used in humans. Statistical problems involve mortality and sampling. It would

be reasonable to schedule a certain number of animals to begin a study and then to

sacrifice a fixed randomly selected proportion at each of several checkpoints in

the study. Unfortunately, some animals may die from “natural” causes or there

may be laboratory problems assumed to be unrelated to the drug or exposure.

Thus, any statistical design must be robust with respect to these anticipated

untoward effects.

Questions about optimal number of animals are also of great importance.

Since we would all prefer to expose as few animals as practical to these studies

and animal experiments for toxicity are extremely expensive, they should be done

in the most efficient manner possible. The statistician can save pharmaceutical

companies a great deal of resources (animals, employee time, space, and money)
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with an optimally designed experiment; of course statistically, concern for

sensitivity always dictates as large an experiment as possible.

VI. CLINICAL TESTING

After drugs have been tested extensively in experimental animals and the FDA

has issued an IND exemption, the drug can be tested for the first time in Phase I

human trials. Choosing the proper doses to use in humans is an interesting

statistical problem. One can assume that on a fixed number of milligrams of drug

per kilogram of body weight, the effects of the drug are constant. For anticancer

drugs this is frequently amended to use the unit of milligrams of drug per square

meter of body-surface area of the animal. In these or other projections (frequently

extrapolations, because the experimental animals are much smaller than the

humans about to be tested) there is ample room for more statistical work to

predict what dose in humans will have the same effect as a dose shown to have

been effective in an experimental animal. Differences in metabolic processes, in

disease processes, in species-specific modifying factors, in genetic character-

istics, in diet and nutrition, and other factors are such that some of the

experimental data in animals may be totally inappropriate to use in such a

projection. Obviously, portions of this problem are beyond the role of the

statistician; however, the statistical problem involves making estimates of an

effective dose in humans that is not unduly affected by meaningless data points

from a particular animal species.

Finally, the eventful day arrives and the drug is used for the first time in

humans in a Phase I trial. Initial doses are chosen to be especially safe and usually

include placebo controls. The experimental program in humans usually

reproduces the results found in animals. First, acute single-dose studies, then

short-term studies of more than one dose, and finally studies of several different

doses on a longer-term basis are done. The goal of the initial studies is to find out

about the toxicity of the drug in humans. What side effects, if any, are found in

persons taking what is thought to be a large dose of the drug? What are the

characteristics of these side effects? In order to be as certain as possible about any

adverse effects, each volunteer or patient is given an extensive physical

examination before taking the drug and then again after taking the drug, and for

longer-term experiments at various intervals while taking the drug. These

examinations include liver function tests, kidney tests, blood chemistry, urine

chemistry, eye testing, and various other studies designed to provide more data

about the organ systems that might be adversely affected by the drug. An

extensive battery of laboratory tests is usually included in these initial clinical

pharmacology studies. Most of these tests will not be necessary in later studies

when more is known about the clinical pharmacology of the drug.

The statistical characteristic of these initial studies is that they include a large

number of observations on a small number of persons. Thus, the ability to be

inclusive in characterizing the effect of the drug on the handful of persons who
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have taken it is quite good, based on repeated measures/correlated observations in

the study persons. On the other hand, the small number of such subjects in these

early trials means that inferences about the next persons to take the drug are

subject to large prediction errors.

Drs. Dubey, Chi, and Kelly discuss the role of the FDA statisticians in the

review of IND and efficacy and safety evaluation of new drug applications in

Chapter 3. That chapter includes the operating rules for these drug trials based on

published federal rules, regulations, and guidelines. Moreover, the results of the

studies must be of a quality to convince the FDA statisticians; therefore, it is

necessary to understand the criteria used in making these evaluations.

Drs. Buncher and Tsay sketch a number of the important points that should

be considered in Chapter 4 on clinical trial designs. This area of statistical

work involves many statisticians in the pharmaceutical industry. Accordingly,

a number of other chapters are devoted to various aspects of clinical trials.

Patients who are studied in a clinical trial are supposed to be representative

of those persons who will later take the drug. Studies at the University of

Rochester School of Medicine and Dentistry have made apparent how much

selectivity is involved concerning the patients who actually take part in modern

regulated pharmaceutical research. Writings from Drs. Weintraub and Calimlim

in Chapter 5 describe the selection of both inpatients and outpatients

participating in clinical trials.

Each different class of drugs involves special problems with respect to

carrying out clinical trials. For example, antibiotics generally involve short-term

trials, while drugs for the cardiovascular system involve tests over months and

even years. Trials with geriatric patients differ from those with persons in the

middle of life. A major area of research is pharmaceutical preparations to be used

to control or cure cancer. Dr. Chen discusses statistical aspects of these cancer

trials in Chapter 6 and Dr. Shih provides further discussion on more recent

statistical issues and development of these trials in Chapter 7. Another field of

interest is hormone replacement therapy (HRT) for men who suffer testosterone

deficiency. Dr. Smith explains this therapeutic area of male HRT trials in Chapter

8. Dr. McCormick follows with a discussion of clinical trials of analgesic drugs

in Chapter 9.

HIV/AIDS is a difficult area for medical research. No cure has been found,

although progress in developing treatments has been made. In Chapter 10,

Drs. Bosch and Buncher discuss statistical issues in HIV/AIDS research.

VII. PLACEBO EFFECTS AND OTHER TOPICS

In order to know the effects of a drug, one must separate the pharmacological

effects from the medical aura effects. The accepted way to do this is to compare

the active drug with a pharmacologically inert substance. The substance is

designated a placebo from the Latin for “I shall please.” The placebo is well
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known to be a good analgesic; it cures or reduces headaches, backaches,

postoperative pain, etc. Side effects from placebo therapy are even more

extensive than the list of conditions that are aided by the placebo. Headaches,

nausea, vomiting, dizziness, and so forth have all been caused by the

administration of placebos. The placebo effect is discussed in Chapter 11 by

Dr. Buncher. When a placebo is considered inappropriate as a control in a trial for

ethical or other reasons, a positive treatment is usually used for a noninferiority or

equivalence trial. In this case the objective is to show the test drug is no worse

than or equally good as the active treatment in efficacy. Dr. Hwang presents an

interesting discussion on this topic in Chapter 12.

Studies used to be completed first and then were subject to statistical analysis.

Many prefer to know how the study results are proceeding even as the study is

ongoing for ethical, financial, and scientific reasons. An area in statistics on these

interim analyses and relevant adaptive designs has developed. Drs. Liu and

Pledger in Chapter 13, and Drs. Hwang and Lan in Chapter 14 have extensive

discussion on interim analysis and adaptive design. Dr. O’Neill provides the

regulatory view of these methods in Chapter 15. Genomics advanced rapidly

in the last decade. Its application in pharmaceutical development has shown its

importance. In Chapter 16 Drs. Zerba and Shen discuss statistical challenges

in pharmacogenomics. There are also many studies of medications that start after

the NDA has been granted. Drs. Buncher and Tsay discuss these Phase IV

postmarketing studies in Chapter 17. A group of companies known collectively

as Contract Research Organizations have grown up to provide statistical and

clinical trial management services for the sponsors of medications. Drs. Flora

and Constant discuss the role of these organizations in drug development

in Chapter 18.

VIII. GLOBAL DRUG DEVELOPMENT

Globalization is an industrial trend. The pharmaceutical industry is no exception.

The high cost and long duration to develop a new drug present a compelling

pressure to the pharmaceutical companies to seek alternatives with lower cost and

shorter time in the drug development process. For a global pharmaceutical

company, simultaneous clinical development in different parts of the world is

a common practice now. Harmonization in the relevant processes is a key to

success. Drs. van Ewijk, Huitfeldt, and Tsay discuss a clinical statistical

perspective in global harmonization of drug development in Chapter 19. In the

global drug development, the sponsor hopes to use much of the same clinical data

collected in different countries to submit new drug applications in different

countries of the world. However, many countries require clinical data from their

local country. If no clinical trials were done in that country, some bridging studies

may be required in order to convince the country’s authority that extrapolation

of foreign clinical data to their population is valid. Narukawa-san and Professor

Takeuchi discuss bridging strategies for global drug development in Chapter 20.
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IX. MANUFACTURING

Everyone is familiar with the concept of thousands of tiny capsules or tablets

being carefully produced by a pharmaceutical manufacturer. Obviously, with

a little reflection we realize that this sort of production requires a tremendous

amount of development before it becomes a reality. The chemical that has been

tested in animals and found to be active must be given to humans. If the chemical

is to be given in tablet form, the tablet must dissolve, typically in the stomach

of the person taking the medication. The tablet must not break up into chunks in

some people and dissolve neatly in other people. Therefore, other ingredients

must be added to the tablet to give it proper disintegration and dissolution

characteristics to hold the tablet together before it is taken, to be less affected by

temperature and humidity, and to yield various other favorable properties. This

is a part of the field of drug formulation.

Another part of the formulation process involves the human reaction rather

than physical reactions. For example, what does the tablet taste like? Perhaps

a sweetener must be added to avoid a bitter taste. Perhaps something must be

added to prevent the tablet from feeling chalky. Other ingredients will be added

to change the color of the tablet. In the case of capsules, a gelatin will be used

with the addition of food coloring to give the capsule a particular identifying

color or set of colors.

After the initial formulation work is completed, the drug is tested in humans

in the original Phase I and Phase II studies. During these early studies some

problem with the formulation may be discovered. Meanwhile, pilot plant

preparation of the drug is being worked on. At later stages full-scale manufacture

of the drug will be planned and accomplished. Required changes in the drug at

any of these stages will require a restart of many of the formulation steps.

Checking procedures and other steps preparatory to a formal quality control

program must also be worked out. The statistician is often involved at the time

of bioavailability studies when various pharmacokinetic parameters are studied.

Drs. Yuh and Chen cover these issues in Chapter 21.

The statistician works with other employees in the quality control field to be

certain that the drug is manufactured to the best standards possible. This field is

usually called “Current Good Manufacturing Practices (cGMP) in Manufacturing,

Processing, Packing, or Holding the Drugs” and is described in the FDA cGMP

Guidance (see http://www.fda.gov/cder/guidance/index.htm).13Another practically

important and statistically interesting question concerns the stability of a drug.

For how longafter the drug ismanufactured can it be considered clinically adequate?

These time periods are typically measured in years. Dr. Tsong and his collaborators

at the FDA discuss stability testing of pharmaceutical preparations in Chapter 22.

X. OTHER ISSUES

A classical statistical problem is that of multiple comparisons that must be

considered when there are more than two treatment groups in the experiment
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or more than two measurements on each subject simultaneously. If a drug may

have one of four activities and we wish to claim only one of them, then we must

take account of the fact when setting a “0.05 level” of Type I error that there are

four random chances that the drug will be shown to be effective rather than just

one. In a similar manner, if there are ten chemicals competing to become a drug,

the possibility that at least one of them will be better than the placebo by chance is

certainly enhanced by the fact that it is one of ten. Again, the probability levels

must be properly adjusted. Drs. Dunnett and Goldsmith discuss this problem and

some of the solutions in Chapter 23 on when and how to do multiple comparisons.

Finally, there are many clinical tests that may have an accepted range of

normal values. Some tests are new enough that the “normal range” is not clearly

established. All statisticians understand that “normal” means everything from

Gaussian to typical to acceptable depending on the context. Those subjects whose

measurements are outside of acceptable values may be considered potentially

unhealthy or to have a side effect of the medication. Thus statisticians sometimes

have to define these normal ranges (also called reference ranges or reference

intervals) or to validate the intervals established by others. Drs. Horn and Pesce

discuss in Chapter 24 various methods of creating these reference intervals.

We hope that the readers will have many stimulating thoughts and lessons

in reading these chapters by statisticians and others who are well experienced in

the pharmaceutical industry.
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I. INTRODUCTION

The risk assessment of a new drug exposure in humans usually begins with

an assessment of risk of the drug in animals. It is required by law that the sponsor

of a new drug conducts nonclinical studies in animals to assess the

pharmacological actions, the toxicological effects, and the pharmacokinetic

properties of the drug in relation to its proposed therapeutic indications or clinical

uses. Studies in animals, designed for assessment of toxicological effects of the

drug, include acute, subacute, subchronic, and chronic toxicity studies,

tumorigenicity, reproduction, and pharmacokinetic studies.

The Divisions of Biometrics, Center for Drug Evaluation and Research

(CDER), Food and Drug Administration (FDA) are responsible for statistical

reviews of results of long-term (or chronic) animal carcinogenicity experiments

submitted by drug sponsors to FDA as parts of their investigational new drug

(IND) or new drug application (NDA) submissions. Long-term animal

carcinogenicity studies usually are conducted on sexes of mice and rats for

the majority of the normal lifespan of those animals. The primary purpose

of these studies is to determine the oncogenic potential of the new drug. There

are different ways to use the results of long-term animal carcinogenicity studies

in determination of oncogenic potential of chemical compounds. The first way

is to use the results merely for screening of unsafe chemical compounds.

The second way is to do risk assessments of chemicals in humans, which

involves extrapolations of results from animals to humans, and from high to low

doses. The third way is to verify scientific hypotheses about the mechanisms

of carcinogenesis.

Statisticians in CDER are not involved in extrapolating animal carcino-

genicity study findings beyond the ranges of doses studied or to species other

than those studied, nor are they involved in investigation of mechanisms

of carcinogenesis. Accordingly, statisticians in the CDER develop a quantitative

assessment of the risk of a drug for each species and sex of rodent, and

the reviewing pharmacologists and medical officers apply their knowledge

of mammalian similarities and interspecies differences to extrapolate qualitat-

ively from rodent to human beings.1

The statistical interest in detecting oncogenic potential of a new drug, is to

test if there are statistically significant positive dose–response relationships in

tumor incidence rates induced by the new drug. The phrase “positive dose–

response relationship” in this chapter refers to the increasing linear component

of the effect of treatment, but not necessarily to a strictly increasing tumor rate

as dose increases. However, the review and evaluation of the results of long-

term animal carcinogenicity experiments studying the oncogenic potential

of a new drug is a complex process. The final interpretation of the study results

involves issues that require statistical as well as nonstatistical biomedical

judgments. The statistical issues, in carrying out an animal carcinogenicity

experiment, include the validity of design of the experiment, the appropriate-

ness of methods of statistical analysis of experimental data, adjustment for the
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effect of multiple tests, and the use of comparable historical data in the final

interpretation of the results.

There is a vast amount of statistical literatures on these issues. The techniques

or methods of analysis, and decision rules adopted by FDA statisticians in their

reviews are based on current literature, inputs derived out of consultations with

outside experts, our research, and best scientific judgments, although it is

recognized that some of the issues are still without consensus of opinion among

experts in evaluation of animal carcinogenicity studies. The majority of the

methods of analysis and interpretation, described in this book chapter, are

based on those included in the draft FDA Guidance for Industry: Statistical

Aspects of the Design, Analysis, and Interpretation of Chronic Rodent

Carcinogenicity Studies of Pharmaceuticals,2 and an article on carcinogenicity

studies of pharmaceuticals by the first author.3

Besides reviewing the reports submitted by sponsors, statisticians in the

CDER also need tumor data on computer readable media from drug sponsors

to perform additional statistical analyses, which they believe are appropriate

and necessary to evaluate the analyses and conclusions contained in the reports.

The Agency has issued guidelines for formats and specifications for submission

of animal carcinogenicity study data.4 To expedite the statistical review, sponsors

are urged to submit the tumor data on computer readable media using the

Agency’s recommended formats and specifications along with their original,

initial submissions of the hardcopy NDA or IND.

The purpose of this chapter is to provide some guidance in the design

of animal carcinogenicity experiments, method of statistical analysis of tumor

data, interpretation of study results, presentation of data and results in reports,

and submission of tumor data to FDA statistical reviewers that drug sponsors

can follow in their preparations for the nonclinical parts of IND and NDA

submissions. A discussion on the validity of the design of experiment is

given in Section II. This is followed by an extensive discussion on methods

of statistical analysis in Section III. In Section IV, a discussion on how the

results should be interpreted is given. A brief discussion on carcinogenicity

studies using transgenic mice is given in Section V. Discussions on data

presentation and submission are given in Section VI. Finally, some concluding

remarks are given in Section VII.

II. VALIDITY OF THE DESIGN

In evaluation of the validity of experimental designs, statistical reviewers check

if randomization methods are used in allocating animals to treatment groups,

to avoid possible biases caused by animal selections, and if a sufficient number

of animals are used in an experiment to ensure reasonable power in the statistical

tests used. It has been recommended that, in a standard four-treatment-group

experiment, each dose group and concurrent control group should contain at least

50 animals of each sex. If interim sacrifices are planned, the initial number should

be increased by the number of animals scheduled for the interim sacrifices.
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In general, based on the results of sponsors’ single dose, short-term sub-

chronic toxicity studies, FDA statisticians, reviewing pharmacologists, medical

officers, and CDER Carcinogenicity Assessment Committee (CAC) members

will evaluate the appropriateness of the doses used in animal carcinogenicity

experiments. However, in negative studies (i.e., studies in which no significant

positive dose–response relationships or drug related increases in tumor incidence

rates were detected) the statistical reviewers working with other FDA scientists

will perform an additional evaluation on the validity of the designs of experiment,

to see if there are sufficient animals living long enough to get an adequate

exposure to the chemical and to be at risk of forming late-developing tumors.

Also of concern is whether the doses used are high enough and close enough to

the maximum tolerated dose (MTD) to present a reasonable tumor challenge to

the tested animals.5

The adequacy of the number of animals surviving, the length of exposure,

and the appropriate dose strength depend on species and strains of animals

employed, routes of administration, and other factors (see the discussion in

Haseman6). A general rule is that a 50% survival rate in any group between weeks

80 and 90 of a two-year study will be considered as a sufficient number and an

adequate exposure. However, the percentage can be lower or higher if the number

of animals used in each treatment or sex group is larger or smaller than 50, so that

there will be between 20 and 30 animals still alive during these weeks. In

consultations with reviewing pharmacologists and medical officers, FDA

statistical reviewers often followed the criteria proposed in Chu et al.7 in their

evaluation to see if the high dose used is close to the MTD and presents a

reasonable tumor challenge to the animals. Based on results of 200 National

Cancer Institute carcinogen bioassays, these investigators considered a high dose

to be close to the MTD if: (a) there was a detectable weight loss of up to 10% in

the dosed group relative to the controls, (b) the animals exhibited clinical signs or

severe histopathologic toxic effects that could be attributed to the chemical in the

dosed animals, (c) there was a slightly increased mortality in the dosed animals

compared with the controls.

The appropriateness of the high dose is always addressed in the CDER/CAC

meetings during the final determinations of the oncogenic potential of new drugs

under review at the FDA. It is an important, controversial, and complicated issue in

the evaluation of validity of designs of animal experiments. Information about

body weight gain, mortality, and clinical signs and histopathologic toxic effects

still are used to resolve the issue. Other information, such as pharmacokinetic

and metabolic data, is also often needed in evaluation of dose selection.

The International Conference on Harmonization (ICH) guidance entitled

S1C Dose Selection for Carcinogenicity Studies of Pharmaceuticals8 is an

internationally accepted guidance for dose selection for carcinogenicity

studies, and sponsors are advised to consult this document. The guidance allows

for approaches to high dose selection based on toxicity endpoints, pharmaco-

kinetic endpoints (multiple of maximum human exposure), pharmacodynamic

endpoints, and maximal feasible dose.
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III. METHODS OF STATISTICAL ANALYSIS

A. TEST OF INTERCURRENTMORTALITY DATA

Intercurrent mortality refers to all deaths not related to the development of the

particular type or class of tumors that are being studied for evidence of

carcinogenicity. Like human beings, older rodents have a many times higher

probability of developing or dying from tumors than those of younger ages.

Therefore, it is essential to identify and adjust the possible differences in

intercurrent mortality (or longevity) among treatment groups to eliminate or

reduce biases caused by the differences. It is pointed out that “the effects of

differences in longevity on numbers of tumor-bearing animals can be very

substantial, and so, whether or not they appear to be, they should routinely be

corrected for when presenting experimental results.”5,9 The following examples

demonstrate the above important point.

Example1.9 Consider an experiment consisting of one control group and

one treated group of 100 mice each. A very toxic but not tumorigenic new drug

was administered to the animals in the diet for two years. Assume that the

spontaneous incidental tumor rates for both groups are 30% at 15 months and

80% at 18 months of age and that the mortality rates at 15 months for the control

and the treated groups are 20% and 60%, respectively, because of the toxicity of

the drug. The results of the experiment are summarized in Table 2.1. If one looks

only at the overall tumor incidence rates of the control and the treated groups

(70% and 50%, respectively) without considering the significantly higher early

deaths in the treated group caused by the toxicity of the drug, one will conclude

erroneously that there is a significant ( p ¼ 0.002, one-tailed) negative dose–

response relationship in this tumor type (i.e., the new drug prevents tumor

occurrences). The one-tailed p-value is 0.5 when the survival-adjusted

prevalence method is used.9

TABLE 2.1
Data for Example 1

Control Treated

T D % T D %

15 Months 6 20 30 18 60 30

18 Months 64 80 80 32 40 80

Total 70 100 70 50 100 50

T ¼ incidental tumors found at necropsy, D ¼ deaths.
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Example 2.10 Assume that the design used in this experiment is the same as

the one used in the experiment of Example 1. However, we assume that the

treated group has a much higher early mortality than the control (20% vs. 90%)

before 15 months, and that the drug in this example induces an incidental tumor

that does not cause the animal’s death, either directly or indirectly. Also assume

that the incidental tumor prevalence rates for the control and treated groups are

5% and 20%, respectively, before 15 months of age, and 30% and 70%,

respectively, after 15 months of age. The results of this experiment are

summarized in Table 2.2. Note that the age-specific tumor incidence rates

are significantly higher in the treated group than those in the control group. The

survival-adjusted prevalence method yielded a one-tailed p-value of 0.003; this

shows a clear tumorigenic effect of the new drug. However, the overall tumor

incidence rates are 25% for the two groups. Without considering the significantly

higher early mortality in the treated group, one would conclude that the positive

dose–response relationship is not significant.

Before analyzing the tumor data, the intercurrent mortality data are routinely

tested first by FDA statisticians to see if the survival distributions of the treatment

groups are significantly different or if there exist significant dose–response

relationships. Cox’s Test,10–12 the generalized Wilcoxon or Kruskal–Wallis

test,12–14 and the Tarone trend tests9,15,16 are routinely used to test for the

heterogeneity in survival distributions and significant dose–response relationship

(trend) in mortality.

There is an issue on the use of the results from tests of intercurrent mortality

data in the determinationwhether a survival-adjustedmethod should be used in the

analyses of tumor data. If we treat the test for heterogeneity in survival

distributions or dose–response relationship in mortality as a preliminary test of

significance,17 then a level of significance larger than 0.05 should be used. A very

large level of significance used in the preliminary test means that survival-adjusted

methods should always be used in the subsequent analyses of the tumor data.

TABLE 2.2
Data for Example 2

Control Treated

T D % T D %

Before 15 Months 1 20 5 18 90 20

After 15 Months 24 80 30 7 10 70

Total 25 100 25 25 100 25

T ¼ incidental tumors found at necropsy, D ¼ deaths.
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B. CONTEXTS OF OBSERVATION OF TUMOR TYPES

The choice of a survival-adjusted method to analyze tumor data depends on the

role that a tumor plays in causing the animal’s death. Tumors can be classified as

“fatal,” “mortality-independent (or observable),” and “incidental” according to

the contexts of observation described in Peto et al.9 Tumors that kill the animal

either directly or indirectly are said to have been observed in a fatal context.

Tumors that are not directly or indirectly responsible for the animal’s death, but

are merely observed at the autopsy of the animal after it has died of some

unrelated causes, are said to have been observed in an incidental context. Tumors,

such as skin tumors, whose times of criterion attainment (i.e., detection of the

tumor at a standard point of their development) other than the times or causes of

death, are the primary interest of analyses and these are said to have been

observed in a mortality-independent (or observable) context. To apply a survival-

adjusted method correctly, it is essential that the context of observation of a

tumor be determined as accurately as possible.

Different statistical techniques have been proposed for analyzing data of

tumors observed in different contexts of observation. For example, the death-rate,

onset-rate, and prevalence methods are recommended for analyzing data of

tumors observed in fatal, mortality-independent, and incidental contexts of

observation, respectively.9 Peto et al. also demonstrate the possible biases

resulting from misclassifications of incidental tumors as fatal tumors, or fatal

tumors as incidental tumors.

C. STATISTICAL ANALYSES OF INCIDENTAL TUMORS

The prevalence method described by Peto et al.9 is routinely used by FDA

statisticians in testing for a positive dose–response relationship in prevalence

rates of incidental tumors. Briefly, this method focuses on the age-specific tumor

prevalence rates to correct for intercurrent mortality differences among treatment

groups in the test for positive dose–response relationships in incidental tumors.

The experimental period is partitioned into a set of intervals plus interim

sacrifices (if any) and terminal sacrifices. The incidental tumors are then stratified

by those intervals of survival times. The selection of the partition of the

experiment period does not matter very much as long as the intervals “are not so

short that the prevalence of incidental tumors in the autopsies they contain is not

stable, nor yet so large that the real prevalence in the first half of one interval

could differ markedly from the real prevalence in the second half .”9

In each time interval and for each group, the observed number of animals

with a particular tumor type found in necropsies, is compared with number of

animals that died in the time interval and expected to have the tumor type found

in the necropsies under the null hypothesis so that there is no dose–response

relationship. Finally, the differences between the observed and the expected

numbers of animals found with the tumor type after their deaths are combined
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across all time intervals to yield an overall test statistic using the method

described in Mantel.18

The following derivation of the Peto prevalence test statistic uses the

notations in Table 2.3. Let the experimental period be partitioned into the

following M intervals I1; I2;…; IM: As mentioned before, interim sacrifices (if

any) and terminal sacrifices should be treated as separate intervals.

The number of autopsied animals expected to have the particular incidental

tumor in group i and interval k under the null hypothesis that there is no treatment

effect is

Eik ¼ O:kPik:

The covariance of ðOik 2 EikÞ and ðOjk 2 EjkÞ is

Vijk ¼ Pikðdij 2 PjkÞ
where

dij ¼
1 if i ¼ j

0 otherwise

Define

Oi ¼ SkOik

Ei ¼ SkEik

TABLE 2.3
Notation Used in the Derivation of Peto Prevalence Test Statistic

Interval

Group Dose

I1 I2 ··· Ik ··· IM
R1 R2 ··· Rk ··· RM

0 D0 O01 P01 O02 P02 … O0k P0k … O0M P0M

1 D1 O11 P11 O12 P12 … O1k P1k … O1M P1M
..
. ..

. ..
. ..

. ..
.

… ..
. ..

.
… ..

. ..
.

i Di Oi1 Pi1 Oi2 Pi2 … Oik Pik … OiM PiM
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

r Dr Or1 Pr1 Or2 Pr2 … Ork Prk … OrM PrM

Sum O:1 P:1 O:2 P:2 … O:k P:k … O:M P:M

Rk: number of animals that have not died of the tumor type of interest but come to autopsy in the time

interval k; Pik: proportion of Rk in group i; Oik: observed number of autopsied animals in group I and

interval k found to have the incidental tumor type, O:k ¼
P

i Oik .
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and

Vij ¼ SkVijk

The test statistic T for the positive linear trend in the incidental tumor rate is

defined as

T ¼ SiDiðOi 2 EiÞ
with estimated variance

VðTÞ ¼ SiSjDiDjVij

Under the null hypothesis of equal prevalence rate among the treatment groups,

the statistic

Z ¼ T=VðTÞ1=2

is approximately distributed as standard normal.

As mentioned above, to use the prevalence method, the experimental period

has to be partitioned into a set of intervals plus interim (if any) and terminal

sacrifices.

The following partitions (in weeks) are used most often by FDA statisticians

in two-year studies: (a) zero to 50, 51 to 80, 81 to 104, interim sacrifice (if any)

and terminal sacrifice, (b) zero to 52, 53 to 78, 79 to 92, 93 to 104, interim

sacrifice (if any), and terminal sacrifice (proposed by National Toxicology

Program), or (c) Partition determined by the “ad hoc runs” procedure described in

Peto et al.9

This method uses a normal approximation in the test for a positive dose–

response relationship in tumor prevalence rates. The accuracy of the normal

approximation depends on: the numbers of tumor-bearing animals in each group,

in each interval, the number of intervals used in the partition, and the mortality

patterns. However, it is known that under regularity conditions, the approximation

will not be stable and reliable when the numbers of tumor occurrences across

treatment groups are small. In this situation, an exact permutation trend test based

on an extension of the hypergeometric distribution (discussed in Section III.F) is

used to test the positive dose–response relationship in tumor prevalence rates.

Although Peto et al.9 proposed general guidelines for partitioning the

experimental period into intervals in the prevalence method, there is no unique

way to do the partition. Test results could be different when different sets of

intervals are used. Dinse and Haseman19 applied ten different sets of intervals to

the same tumor data set and got ten different p-values ranging from 0.001 to

0.261. Because of the lack of a unique way to partition the experimental period,

some regression-type methods have been proposed as alternatives for analyzing

incidental tumor data from animal carcinogenicity experiments. The logistic

regression method19–22 and Cochran–Armitage trend test methods23,24 are two

of those proposed alternatives. The main advantage of the regression type
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methods is that these adjust for the differences in intercurrent mortality by

including the survival time as a continuous regression variable. This makes it

unnecessary to partition the experimental period into intervals. Another

advantage of these methods is that the other variables having effects on the

prevalence rates, such as body weight and cage location, can also be incorporated

into the model as covariates.

The logistic regression model is defined as

EðYiÞ ¼ eaþbDi

1þ eaþbDi

without adjustment for intercurrent mortality differences, and as

EðYiÞ ¼ eaþbDiþFðtiÞ

1þ eaþbDiþFðtiÞ

with adjustment for intercurrent mortality differences, where EðYiÞ, Di, and ti are

the expected value of Yi, the dose level, and survival time, respectively, of animal

i and

FðtÞ ¼ c0 þ c1ti þ c2t
2
i þ ···þ cpt

p
i

The following statistic

Z ¼ b̂

V̂ðb̂Þ1=2
which is approximately distributed as a standard normal, is used to test the

positive dose–response relationship in a specific incidental tumor. The term V̂ðb̂Þ
in the above equation is the variance of the estimated regression coefficient b̂:

However, there is another issue in using the logistic regression method. The

functional form of FðtiÞ has to be specified in the logistic regression model to
indicate the effect of survival time on tumor prevalence rate. Like partitioning the

experimental period into intervals in the Peto prevalence method, there is no

unique way of determining the functional form and different functional forms of

FðtiÞ can yield different results.
Armitage23 applies the one-way analysis of variance model to the dependent

variable Y , individual animal tumor status (i.e., Y ¼ 1 if an animal developed the

tumor of interest and Y ¼ 0 otherwise) using the dose variable as the grouping

variable to obtain the sum of square components of various sources of variation as

shown in Table 2.4.

However, because the dependent variable Y assumes only values of zero and

one, the test procedure for the linear contrast in regular analysis of variance has to

be modified. Armitage suggested the use of the following alternative statistic

x20 ¼ S1
ðS1 þ S2 þ S3Þ=T

which is distributed approximately with one degree of freedom under the null

hypothesis of no positive dose–response relationship. The above analysis of
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variance approach to the trend test is equivalent to the test of significant positive

slope of the regression equation of Y and X:Here the score variable X can take the
values X1 ¼ 2r=2;X2 ¼ 2ðr 2 2Þ=2;…;Xr ¼ r=2, or any set of r þ 1 equally

spaced numbers for the case of r þ 1 groups. If the fitted regression equation is

expressed as

Yi ¼ âþ b̂Xi

then the test statistic

Z ¼ b̂

V̂ðb̂Þ1=2

which is distributed approximately as a standard normal is used to test the

positive dose–response relationship.

The Cochran–Armitage regression methods are survival-unadjusted. The

results from the unadjusted methods are reasonably unbiased if the intercurrent

mortalities among the treatment groups are not significantly different. For

experiments experiencing significant differences in intercurrent mortality, the

Cochran–Armitage trend test procedures can be modified to adjust for the

effect of the survival differences. Two different modifications can be made.

The first is to use the survival time as a covariate and perform the analysis of

covariance; the second is to include the linear term or quadratic term or both

in the regression analysis as other independent variables in addition to the

score variable X:
The computations in the modified Cochran–Armitage regression method are

much simpler than those in the logistic regression method. However, it does not

satisfy the condition of constant variance in regression analysis. The modified

Cochran–Armitage regression method also has a shortcoming similar to the

logistic regression method, i.e., there is no unique way to determine the functional

relationship between survival time and tumor incidence.

TABLE 2.4
Analysis of Variance Table

Source of Variation D.F. Sum of Squares

Treatment r S1 þ S2

Linear 1 S1

Departure from linearity r 2 1 S2

Error T 2 r 2 1 S3

Total T 2 1 S1 þ S2 þ S3

T is the total number of animals used in the study. There are r þ 1 treatment groups including the

control.
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Lin25 conducted an empirical study using tumor data from three experiments

to compare the Peto prevalence method with the logistic regression and the

modified Cochran–Armitage regression type test procedures, with the following

results. The p-values from the logistic regression methods assuming the effect of

survival time on tumor incidence rate was linear and linear and quadratic forms

were similar in the three studies used. However, this is not true in the case of the

modified Cochran–Armitage regression method. The p-values from the model

including only a linear term of survival time were in general appreciably larger

than those from the model including the linear and quadratic terms.

The p-values from the Cochran–Armitage method using linear survival time

as a covariate or as an independent regression variable were close to those from

the logistic regression method also adjusted by the linear term of survival time,

although those were somewhat larger. There was no clear pattern in p-values

from these two test procedures when the linear and the quadratic terms of survival

time are included.

The p-values from the Peto prevalence method were in general smaller than

those from the Cochran–Armitage regression method adjusted by the linear term

of survival time. There was no clear pattern in p-values between the two methods

when the quadratic term of survival time was added to the Cochran–Armitage

method. There was no clear pattern in p-values when the Peto prevalence method

was compared with the logistic regression method.

The p-values from the unadjusted logistic and the unadjusted Cochran–

Armitage test procedures were virtually identical, and were not very different

from the p-values from the Peto prevalence method in the study in which there is

no significant difference in mortality.

Finally, in terms of decision making, the Peto prevalence, the adjusted

logistic regression, and the adjusted Cochran–Armitage regression methods

reached consistent conclusions (either all methods reject or accept, at a given

level of significance, the null hypothesis of no positive dose–response

relationship in the tumors tested in the three studies).

Before the issues related to the functional form of the effect of survival

time on tumor incidence rate and the power and the conservativeness of the

logistic regression and the modified Cochran–Armitage regression test

procedures are fully studied, FDA statisticians will continue to recommend

the Peto prevalence method in analyzing incidental tumor data from animal

experiments.

D. STATISTICAL ANALYSES OF FATAL TUMORS

In their reviews and analyses of animal carcinogenicity study data, FDA

statisticians routinely use the death-rate method described in Peto et al.9 to test

the positive dose–response relationship in tumors observed in a fatal context.

The notations of Section III.C with some modifications will be used in

this section to derive the test statistic of the death-rate method. Now let t1 ,
t2 , · · · , tM be the time points when one or more animals died. Use these time
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points to replace the intervals adopted in the prevalence method. The notations

in Table 2.3 are redefined as follows:

Rk ¼ The number of animals of all groups just before tk:
Pik ¼ The proportion of Rk in group i (the same as in the prevalence

method).

Oik ¼ Observed number of animals in group i just before tk found to have

the fatal tumor.

O:k ¼
X
i

OikOik

As in the prevalence method, the test statistic T for the positive dose–response

relationship in the fatal tumor is defined as:

T ¼
X
i

DiðOi 2 EiÞ

with estimated variance

V̂ðTÞ ¼
X
i

X
j

DiDjVij

where Di, Oi, Ei, and Vij are defined similarly as in Section III-C. Under the null

hypothesis of equal death rates among the treatment groups, the statistic

Z ¼ T

V̂ðTÞ1=2
is distributed approximately as a standard normal.

E. STATISTICAL ANALYSES OF TUMORS OBSERVED IN INCIDENTAL

AND FATAL CONTEXTS

When a tumor was observed in a fatal context for a set of animals and in an

incidental context for the remaining animals in an experiment, data should be

analyzed separately by the prevalence and death-rate methods. Results from

different methods can then be combined to yield an overall result. The combined

overall result can be obtained by simply adding together either the separate

observed and expected frequencies and variances, or the separate T statistics and

their variances.

F. EXACT ANALYSIS

Asmentioned in the previous sections, the prevalence and death-ratemethods use a

normal approximation in the test for positive dose–response relationship (trend) in
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tumor rates. The adequacy of the normal approximation may depend on factors,

viz., the number of tumor-bearing animals, scores assigned to the treatment

groups, number of intervals used in partitioning the study period, etc. It is

particularly true that when the number of tumor-bearing animals is “small,” the

normal approximation is unreliable and tends mostly to underestimate the exact p-

values.26 Under this situation, the use of an exact permutation trend test is

suggested10,27 to test for dose–response relationship in tumor rates. The exact

trend test is a generalization of the Fisher exact test to sequences of 2ðr þ 1Þ tables.

1. The Exact Method

The exact method is derived by conditioning on the row and column marginal

totals of each of the 2ðr þ 1Þ tables, formed from the partitioned data set of

Table 2.3. Consider the kth interval Ik (in Table 2.3) and write it as in Table 2.5.

Now let the column totals C0k;Clk;…;Crk, and the row totals O·k and A·K be

fixed. Define

Pjk ¼
Cjk

Rk

Then the quantities Eik ¼ O·kPik, Vijk ¼ Pikðdij 2 PjkÞ, and VðtÞ as defined in
Section III.C are all known constants.

Now let z be the observed value of Z: Then (under conditioning on the

column and row marginal totals in each table) the observed significance level or

p-value ¼ PðZ $ zÞ ¼ P

P
DiðOi 2 EiÞffiffiffiffiffiffi

VðTÞp $ z

� �
¼ P

X
DiOi $ y

h i
¼ P

X
i

Di

X
k

Oik $ y

{ !
¼ P

X
k

X
i

DiOik $ y

{ !
¼ P

X
Yk $ y

 �
¼ PðY $ yÞ

where Y ¼ P
Yk ¼

P
i DiOik and y ¼

P
yk, the observed value of Y:

We compute this p-value ½PðY .¼ yÞ	 from the exact permutational

distribution of Y : Given the observed row and column marginal totals in

TABLE 2.5
The Data in the k th Time Interval Ik is Written as a 2ðr1 1Þ Table
Group 1 … i … r

Dose D0 D1 … Di … Dr Total

Number with tumor O0k O1k … Oik … Ork O:k

Number without tumor A0k A1k … Aik … Ark A:k

Total C0k C1k … Cik … Crk Rk
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a 2ðr þ 1Þ table, generate all possible tables having the same marginal totals.
Let Sk ðk ¼ 1; 2;…;KÞ be the set of all such tables generated from the kth

observed table. Form a set of K tables taking one from each Sk: Assuming
independence between the K tables, the above expression for the p-value can now

be written as

p-value ¼
X
½PðY1 ¼ y1Þ…PðYK ¼ yKÞ	

where yk ¼
P

i DiOik ðk ¼ 1; 2;…;KÞ, the sum is over all sets of K tables such

that ð y1 þ y2 þ · · ·þ ykÞ $ y, the observed value of Y , and PðYk ¼ ykÞ is the
conditional probability given the marginal totals in the kth table,

PðYk ¼ ykÞ ¼

C0k

O0k

{ !
C1k

O1k

{ !
· · ·

Crk

Ork

{ !
Rk

O·k

{ !

Example. Consider an experiment with three treatment groups (control,

low, and high) with dose levels D0 ¼ 0, D1 ¼ 1, and D2 ¼ 2, respectively.

Suppose the study period is partitioned into the intervals zero to 50, 51 to 80, 81

to 104 weeks, and the terminal sacrifice week. Consider a tumor type (classified

as incidental) with the data shown in Table 2.6.

Since all the observed tumor counts (i.e., O’s) in the first two time intervals

are zeros, the data for these intervals will not contribute anything to the test

TABLE 2.6
Tumor Count Table

Time Interval (Weeks)

Dose Levels

0 1 2 Total

0–50 O 0 0 0 0

C 1 3 3 7

51–80 O 0 0 0 0

C 4 5 7 16

81–104 O 0 0 2 2

C 10 12 15 37

Terminal sacrifice O 0 1 0 1

C 35 30 25 90

O ¼ observed tumor count, C ¼ number of animals necropsied.
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statistic and we may neglect these intervals. The observed tables formed from the

last two intervals are as follows:

Observed Table 1 Observed Table 2

Dose 0 1 2 Total Dose 0 1 2 Total

O 0 0 2 2 ¼ o.1 O 0 1 0 1 ¼ o.2

A 10 12 13 35 ¼ a.1 A 35 29 25 89 ¼ a.2

C 10 12 15 37 ¼ R1 C 35 30 25 90 ¼ R2

We will now generate all possible tables from Observed Table 1. Since the

marginal totals are fixed, we may generate these tables by distributing the total

tumor frequency o:1 ð¼ 2Þ among the three dose groups. Thus each table will
correspond to a configuration of this distribution of o:1: The configurations, the
values of y1, and the PðY1 ¼ y1Þ are shown in Table 2.7.

To illustrate the computation of y1 and PðY1 ¼ y1Þ consider the last row. Here
y1 ¼ ðD0 £ 1Þ þ ðD1 £ 1Þ þ ðD2 £ 0Þ ¼ ð0 £ 1Þ þ ð1 £ 1Þ þ ð2 £ 0Þ ¼ 1, and

PðY1 ¼ 1Þ ¼

10

1

{ !
12

1

{ !
15

0

{ !
37

2

{ ! ¼ 10 £ 12 £ 2
37 £ 36 ¼ :18018

The configurations and probabilities obtained from Observed Table 2 are given in

Table 2.8.

Note that the first configuration (0, 0, 2) in Table 2.7 corresponds to

the Observed Table 1 with a value of y1 ¼ ð0 £ 0Þ þ ð1 £ 0Þ þ ð2 £ 2Þ ¼ 4 and

a probability of .15766, and the second configuration (0, 1, 0) in Table 2.8

corresponds to the Observed Table 2 with a value of y2 ¼ ð0 £ 0Þ þ ð1 £ 1Þ þ
ð0 £ 0Þ ¼ 1 and a probability of .33333. Thus the observed value of

TABLE 2.7
All Possible Configurations of o.1 and the Corresponding Hypergeometric

Probabilities

Configurations y1 P ðY1 5 y1Þ

0 0 2 4 .15766

0 2 0 2 .09910

2 0 0 0 .06757

0 1 1 3 .27027

1 0 1 2 .22523

1 1 0 1 .18018
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y ¼ y1 þ y2 ¼ 4þ 1 ¼ 5: Now the exact

p-value ðright-tailedÞ¼PðY¼Y1þY2$5Þ
¼PðY1¼4;Y2¼1ÞþPðY1¼4;Y2¼2ÞþPðY1¼3;Y2¼2Þ
¼ð:15766£ :33333Þþð:15766£ :27778Þþð:27027£ :27778Þ
¼ :17142

For the purpose of comparison it may be noted that the normal approximated

p-value for the data set in the above example is .0927.

2. Comparison of Exact and Approximate Methods

As mentioned before, the use of exact p-values has been suggested when the

number of tumor-bearing animals is small. However, the magnitude of this

“smallness” is not known. Mantel28 suggested the use of the exact procedure

whenever the total number of tumor-bearing animals is five or less. However, a

simulation study by Ali26 showed that in a four-group experiment with 50

animals in each, the normal approximated p-value may severely underestimate

the exact p-value even when the total number of tumor-bearing animals is as

large as ten. In Ali’s simulation, survival data for the four groups were

generated under the proportional hazard assumption with a baseline Weibull

model for the control group, and the tumor-bearing animals were distributed in

one or more of the four survival time intervals: zero to 50, 51 to 80, 81 to 104,

and over 104 weeks (i.e., the terminal sacrifice week).

FDA reviewers routinely apply the exact trend test whenever the total number

of animals bearing the tumor type of interest across treatment groups is 12 or less.

An inherent feature of the exact method (as described above) is that p-values

are computed from (conditional) null distribution which is discrete. Depending

on the extent of this discreetness, the exact method will result in a conservative

test in the sense that its actual significance level will, usually, be smaller than the

nominal level. The extent of this conservativeness may play an important role in

determining the experimentwise Type I error rate (also referred to as the false-

positive rate) when performing multiple tests to significance in an experiment

TABLE 2.8
All Possible Configurations of o:2 and the Corresponding Hypergeometric

Probabilities

Configurations y1 PðY1 5 y1Þ

0 0 1 2 .27778

0 1 0 1 .33333

1 0 0 0 .38889
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designed to test an “overall experimentwise” hypothesis. Under such circum-

stances, it is useful to gain knowledge of the actual significance levels of the

individual tests.

The scenario just described fits an animal carcinogenicity study. In a typical

animal carcinogenicity study, four parallel experiments (two species each with

two sexes) are run. In each experiment, a combination of 20 or more organ or

tissue types with several lesion types are tested for positive linear trend in tumor

rates across the treatment groups. Thus the number of tests performed per

experiment could be as high as 60 or more. Because, for many tumor types, the

incidence is a relatively rare event, it is usually the case that each of a large class

of (relatively rare) tumor types will be observed in only a few animals. Hence the

number of exact trend tests performed will also be large. Thus the

experimentwise false-positive rates will depend heavily on the actual significance

levels of the individual exact tests. In addition to the issue of false-positive rates,

the question of false-negative rates also arises in a parallel context.

Some knowledge about the Type I and Type II error rates of an exact trend

test compared with approximate tests can be found in the results of a simulation

study by Ali.26,29 In this study, the actual significance levels and power of the

exact trend test was compared with three approximate tests for the special case of

a small number of tumor-bearing animals. Data for the simulation were generated

under various Weibull models for survival time, and time to tumor, and tests were

computed using four different score sets for the treatment groups. For details on

the results of this study the reader is referred to the paper by Ali.26 Here we will

state only the main results comparing the exact test and its normal approximation

version.

The actual attained significance levels (as estimated by 10,000 simulated

experiments) were compared with the nominal 5% and 1% levels. Five Weibull

models each with three score sets resulted in 15 cases to consider. The average

number of tumor-bearing animals among these 15 cases ranged from 2.5 to 7.9.

The attained significance levels of the exact test ranged from .82% to 1.7% when

the nominal level was 5%, and from .08% to .32% when it was 1%. Hence it is

clear that the exact test was always very conservative in rejecting the null

hypothesis of “no trend” when the tumor prevalence rates across treatment groups

were equal. On the other hand, the significance levels attained by the normal

approximated test ranged from 3.01% to 8.36% corresponding to a nominal level

of 5%, and from .31% to 2.09% when the nominal level was 1%. It is seen that the

normal approximation was very unstable in the sense that the significance levels

fluctuated above and below the nominal level.

Ali26 also performed power comparisons between the two tests. The power

was computed under various Weibull alternatives for tumor prevalence functions.

The average number of tumor-bearing animals ranged from 4.4 to 9.5. The power

of the exact test corresponding to a 5% nominal level ranged from 2.14%

to 15.09%, and between .35% and 4.46% when the nominal level was 1%. Thus,

in the case of very low total tumor rates, it is almost impossible for the exact test

to detect increasing tumor prevalence across the treatment groups. In the case of
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the normal approximation test, the power ranged from 6.2% to 33% at the

5% nominal level, and between 1% and 12.8% when the nominal level was 1%.

Hence, although the normal approximation improved the power, it was not high

enough to make a real difference.

G. STATISTICAL ANALYSIS OF DATA WITHOUT INFORMATION

ABOUT CAUSE OF DEATH

The widely used prevalence method, the death-rate method, and the onset rate

methods for analyzing incidental, fatal, and mortality independent tumors,

respectively, and described in previous sections, rely on good cause-of-death

information. There are situations in which sponsors have not included tumor

lethality and cause-of-death information in their statistical analyses and electronic

data sets. Under those situations, statistical reviewers in CDER either treated all

tumors as incidental or relied on cause-of-death assessments by the reviewing

pharmacologists and toxicologists in the Center. There are consequences in

misclassifying tumors as lethal or not in survival-adjusted statistical tests.

The prevalence method will reject the null hypothesis of no positive trend less

frequently than it should as the lethality of a tumor increases.9,30 This will

increase the probability of failing to detect true carcinogens.

The Bailer–Portier poly-3, and poly-6 (in general poly-k) tests30,31 have been

proposed for testing linear trends in tumor rates. These tests are basically

modifications of the survival unadjusted Cochran–Armitage test23,32 for linear

trend in tumor rate. If the entire study period is considered as one interval, the

data for a particular tumor type will be in the form of Table 2.9. The notations in

Table 2.9 to be used to explain these tests are the same as those in Table 2.3

except that the kth interval now is the entire study period. The second subscript, k,

for the kth interval was dropped from the notations.

The Cochran–Armitage test statistic for linear trend in tumor rate is defined

as23:

x 2
CA ¼ R{R

P
OiDi 2 O

P
CiDi}

2

OðR2 OÞ{RPCiD
2
i 2 ðPCiDiÞ2}

or ¼ {
P
DiðOi 2 EiÞ}P

EiD
2
i ð
P
EiDiÞ2=O

where O ¼ P
Oi, A ¼

P
Ai, R ¼

P
Ci, Ei ¼ OCi=R.

TABLE 2.9
The Data Using the Entire Study Period as an Interval

Group 0 1 … i … r

Dose D0 D1 … Di … Dr Total

# w. tumor O0 O1 … Oi … Or O

# w/o tumor A0 A1 … Ai … Ar A

Total C0 C1 … Ci … Cr R
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The test statistic x 2
CA is distributed approximately as x 2 on one degree

of freedom.

The Cochran–Armitage linear trend test is based on a binomial assumption

that all animals in the same treatment group have the same risk of developing the

tumor over the duration of the study. However, as noted previously, the animal’s

risk of developing the tumor increases as study time increases. The assumption is

thus no longer valid if some animals die earlier than others. It has been shown that

as long as the mortality patterns are similar across treatment groups, the

Cochran–Armitage test is still valid, although it may be slightly less efficient

than a survival-adjusted test.30 However, if the mortality patterns are different

across treatment groups, the Cochran–Armitage test can give very misleading

results.

The Bailer–Portier poly-3 test adjusts for differences in mortality among

treatment groups by modifying the number of animals at risk in the denominators

in the calculations of overall tumor rates in the Cochran–Armitage test to reflect

“less-than-whole-animal contributions for decreased survival.”31 The modifi-

cation is made by defining a new number of animals at risk for each treatment

group. The number of animals at risk for the ith treatment group Cpi is defined as

Cpi ¼
X

Wij

where Wij is the weight for the jth animal in the ith treatment group, and the sum

is over all animals in the group.

Bailer and Portier31 proposed the weight Wij as follows:

Wij ¼ 1 to animals dying with the tumor, and

Wij ¼ ðtij=tsacrÞ3 to animals dying without the tumor

where tij is the time of death of the jth animal in the ith treatment group, and tsacr
is the time of terminal sacrifice.

The power of three used in the weighting is from the observation that tumor

incidence can be modeled as a polynomial of order of three of age. Similarly the

poly-6 test (or the general poly-k test) assigns theweightWij ¼ ðtij=tsacrÞ6 ðorWij ¼
ðtij=tsacrÞkÞ to animals dyingwithout the tumor when the tumor incidence is close to
a polynomial of order six (or order k).

The class of Bailer–Portier poly-k tests are carried out by replacing the Ci’s

by the new number of animals at risk C pi ’s in the calculation of the above

Cochran–Armitage test statistic.

The class of Bailer–Portier poly-k tests adjust differences in survival, do not

need the information about cause of death, and call for only a (the terminal)

sacrifice. Results of simulation studies by Bailer and Portier,31 and Dinse30 show

that the tests performed very well under many conditions simulated. They are

also relatively robust to (not affected greatly by) tumor lethality.

Bieler and Williams33 pointed out that, since animal survival time is

generally not a fixed quantity, the numerators and denominators of the adjusted
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quantal response estimates.

ppi ¼ Oi=C
p
i

are both subject to random variation.

Bieler and Williams33 proposed a test called the ratio trend test (also called

Bieler–Williams poly-3 test), which is another modification to the Cochran–

Armitage linear trend test. The ratio trend test employs the adjusted quantal

response rates calculated in Bailer and Portier31 and the delta method34 in the

estimation of the variance of the adjusted quantal response rates ppi ¼ Oi=C
p
i :

The computational formula for Bieler–Williams ratio trend (modified C–A)

test statistic is given as follows:

x 2
BW ¼

P
mip

p
iDi 2 ðPmiDiÞð

P
mip

p
i Þ=

P
mi

{c½PmiD
2
i 2 ðPmiDiÞ2=

P
mi	}1=2

where

c ¼
XX

ðrij 2 ri:Þ2=½R2 ðr þ 1Þ	

mi ¼ ðCpI Þ2=Ci

rij ¼ yij 2 ppwij

ri ¼
X

rij=Ci

yij ¼ tumor response indicator (zero ¼ absent at death, one ¼ present at death)

for the jth animal in the ith group.

Bieler and Williams33 showed that the Bailer–Portier poly-3 trend test is

anticonservative when tumor incidence rates are low and treatment toxicity

is high. Their study also showed that for tumors with low background rates, the

ratio trend test (Bieler–Williams poly-3 test) yielded actual Type I errors close to

the nominal levels used and was observed to be less sensitive than the Bailer–

Portier poly-3 trend test to misspecification of the shape of tumor incidence

function and the magnitude of treatment toxicity.

The ratio trend test (Bieler–William poly-3 test), like the Bailer–Portier

poly-3 test, adjusts differences in survival, does not need the information about

cause of death, and results only in a (the terminal) sacrifice. Results of simulation

studies33,35 show that the tests performed well under many simulated conditions.

It is also shown to be relatively robust to (not affected greatly by) tumor lethality,

misspecification of the shape of tumor incidence function, and the magnitude

of treatment toxicity. The ratio trend test (Bieler–William poly-3 test) should be

used to replace the asymptotic tests that depend on the information of tumor

lethality and cause of death when the information is unavailable.
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H. COMBINED ANALYSIS OF TUMOR TYPES OBSERVED IN FATAL

AND INCIDENTAL CONTEXTS BY EXACT PERMUTATION TEST

When a tumor type is observed in a fatal context in some animals and incidental

context in other animals, and the total number of animals bearing the tumor type

is not small, the appropriate method is to compute a pooled Z-statistic as

described in Section III.E. However, when the total number of tumor-bearing

animals is “small,” e.g., less than ten, the normal approximation may not be

adequate, and the p-value derived from a Z-test will not be reliable. One may

be tempted to use the exact method described in the previous section using all

tables formed for incidental tumors and fatal tumors. But as several authors have

noted36–38 this method is incorrect. A fundamental flaw in this approach is that

the tables formed for fatal tumors are not conditionally independent as in case of

incidental tumors. This is because animals can contribute to the total number-at-

risk in more than one table. Heimann and Neuhaus have developed an exact

permutation test that corrects this problem, but it assumes that the intercurrent

mortality (i.e., the censoring distributions) among the dose groups is equal. In the

case of unequal censoring the computing intensive test may yield worse results

than the asymptotic test.38An alternative is to use the exact permutation trend test

proposed by Mancuso et al.37 for the combined analysis of incidental and fatal

tumors. The test is an exact permutational version of the poly-3 test proposed

by Bailer and Portier31 and described in the previous section. The number of

tumor-bearing animals over the entire experiment period can be exhibited as in

Table 2.9.

The derivation of the exact poly-3 test is facilitated by first describing an

exact permutation version of the Cochran–Armitage (CA) test. (Refer to the

previous section for a description of the CA test.) An exact permutation version

of the CA test can now be based on the permutation distribution of the test

statistic Y ¼ P
DiOi, given the fixed row and columns marginal totals. In

particular, the p-value ¼ P½Y $ yl the row and column marginal totals], where

y is the value of Y computed from the observed table. Let s be the number of

tables that can be generated from all possible permutations of the cell counts

given the fixed marginal totals such that the value of Y $ y: Then the probability
of observing a kth such table is given by

Pk ¼

C0

O0k

{ !
C1

O1k

{ !
…

Cr

Ork

{ !
R

O

{ ! ; k ¼ 1; 2;…; s:

The p-value then equals
P
Pk: In the above formulation it is assumed that all

R animals were exposed to equal duration of risk, i.e., for the entire experiment

period.
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The survival-adjusted exact permutation trend test is based on the weighting

scheme of the poly-3 test described in the previous section. In particular, let ½Cpi 	
be the largest integer that does not exceed Cpi : The adjusted exact test results are
obtained by replacing Ci with ½Cpi 	 and R with Rp ¼

P½Cpi 	 in the computation of
Pk and thereby the p-value as

P
Pk:

IV. INTERPRETATION OF STUDY RESULTS

Interpreting results of carcinogenicity experiments in an overall evaluation of

the carcinogenic potential of a new drug is a complex process. Because of

inherent limitations — such as small number of animals used, low tumor

incidence rates, and biological variation — a carcinogenic drug may not be

detected (i.e., a false negative error is committed). Also because of a large

number of statistical tests performed on the data (usually two species, two

sexes, 20 to 30 tissues examined, and four dose levels), there is a great potential

that statistically significant positive dose–response relationships in some tumor

types are purely caused by chance of random variation alone (i.e., a false

positive error is committed). Controlling these two types of error is the central

element in the interpretation of study results and involves statistical and

nonstatistical biological judgments.5 Therefore, it is important that an overall

evaluation of the carcinogenic potential of a drug should be made based on the

knowledge of statistical significance of positive dose–response relationships,

historical control data,5 and information of biological relevance.

The controls of the two types of error are also directly related to tests of

statistical significance used. In the context of a question whether one should

test for heterogeneity or positive dose–response relationship (trend) with

respect to dose, Peto et al.9 make the following recommendation: “If two or

more dose levels are studied, statistical tests for positive trend with respect to

the actual dose-levels tested will usually be more sensitive than the standard

alternative statistical methods with respect to any real carcinogenic effects

that may exist. In other words, when there is a fairly consistent positive trend

in the experimental results, the p-value yielded by a test for heterogeneity

will tend to be less impressive than the p-value yielded by a test for trend”

(pp. 338, 339).

In general, FDA statistical reviewers follow this recommendation and test

for a positive dose–response relationship in tumor incidence rates in their

reviews.

Based on biological information, the overall false positive error in animal

carcinogenicity studies, caused by the effect of multiple tests of statistical

significance, can be controlled by reducing the number of variables evaluated.

This can be achieved by combining certain tumor types. McConnell et al.39

proposed the following guidelines for combining tumors: (a) tumors of the same

histomorphogenic type with substantial evidence of progression from benign to
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malignant stage; (b) tumors, such as hyperplasia and benign tumors, in which

criteria for differentiating then become unclear; (c) tumors in other organs or

tissues but of the same histomorphogenic type; and (d) tumors of different

morphologic classifications but with comparable histomorphogenesis.

These are statistical methods and use a Bonferroni type of adjustment for the

effect of multiple comparisons.28,40,41 This group of methods takes into

consideration the fact that all tests performed on data pertaining to different

tumors at the same or different sites are not independent, and significant results

are not possible in some of the tests. The above modifications to the Bonferroni

adjustment reduce the number of multiple tests performed and thus increase the

power of the tests.

Tarone41 proposed a modification of the Bonferroni method for discrete data.

Since the statistical tests (trend or pairwise comparison tests) are based on

discrete null distributions of the test statistics, Tarone’s modified Bonferroni

method is particularly suitable for correcting the effect of multiple tests in tumor

data analysis. Tarone’s modification method is conditional on the marginal totals

of (two by two) or (two by c) tables. Using Tarone’s notation the method is

described here.

Suppose there are I sites (i.e., tissue and tumor combinations) for which a

significance test can be performed. Let ai be the minimum achievable

significance level at site i, where i ¼ 1,2,…,I: The minimum achievable

significance level is the minimum of the observed p-values under all possible

permutations of the animals of the given sex in the given experiment. For each

integer k, let m(k) ¼ number of the I sites for which ai , a, where a is the

nominal significance level. Let K be the smallest value of k such thatmðkÞ=k # 1,

and let Rk denote the set of indices satisfying Kai , a: A statistical test at site i

will be considered to yield a significant result only if i is contained in Rk and

Pi , a=K, where Pi is the observed p-value for site i: Note that K is the modified

Bonferroni correction factor. It can be readily seen that the overall false positive

error rate (i.e., the probability of rejecting the null hypothesis, say, of no trend at

any site) is bounded by a:
Tarone has suggested a further refinement of the modification method by

considering the fact that, in most cases, the total probability in the rejection

regions (as defined above) of the mðkÞ tests will be less than a. Under this
situation, it may be possible to expand one or more of the mðkÞ rejections, or even
outside the set Rk by adding points until the overall false positive error rate does

not exceed a:
In the same spirit, Fears et al.42 showed that in animal carcinogenicity

studies, the issue of multiple tests is a problem only for the tumor types with

high incidence rates. Since the majority of the tumor types in animal studies of

human drugs have very low incidence rates and the final determination of the

oncogenic potential of a new drug is based on results of statistical tests as well

as relevant biologic and pathological information, it is argued42–44 that the false

error rates in animal carcinogenicity studies are not as large as some people

previously thought.45 Haseman44 showed that if a comparison of tumor rates in
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high dose vs. control groups is carried out at the 0.01 level for all commonly

occurring tumors and at the 0.05 level for all rare tumors, then the overall false

positive error rate associated with this approach in NCI/NTP carcinogenicity

studies appears to be no more than 7% to 8%.

Farrar and Crump46,47 proposed an alternative method to adjust for the effect

of multiple tests, and the effect of dependencies that may exist between tumors

on the overall false positive error. In the proposed method, simple functions

of p-values from conventional tests applied to each individual tumor

(approximation or exact permutation, pairwise comparisons or trend tests) are

evaluated for statistical significance using a Monte-Carlo procedure that treats

individual animals as units of variation. The functions of p-values of individual

pairwise and trend tests can be the minimum p-value or the product of a fixed

number, K, of the smallest p-values. For material that causes tumors at only

a single site, the minimum p-value may be a meaningful summary statistic, and

the test based on this statistic may also be more powerful. However, for less

specific carcinogens, the product of the K smallest p-values, which combines

information from K sites, may be more appropriate.

As mentioned above, the statistical significance of a chosen function of the

p-values used as the test statistic is then evaluated using a Monte-Carlo

randomization (permutation) procedure. Animals are randomly assigned to

treatment groups with the number of animals assigned to each treatment group

being preserved. The test statistic is recomputed for each reassignment. The

proportion of the statistics that are at least as extreme as the observed minimum

p-value (or the product of the K smallest p-values) computed from the original

data is used as the estimated overall false positive error.

A method related to the Farrar–Crump method but independently developed

by Heyse and Rom48 deals exclusively with the use of the minimum of the

p-values from all exact permutation trend tests and random permutations in the

adjustment for the effect of multiple statistical tests. In this method, the overall

false positive error is estimated by the following formula (using the authors’

notation):

Pp½1	 ¼ 12
Yr
j¼1

ð12 PpðiÞÞ ¼ Pp½1	 2 PpðiÞP
p
ð jÞ þ · · ·þ ð21Þnþ1PpðiÞPpð jÞ· · ·PpðrÞ

where

Pp½1	 ¼ estimated overall false positive error.

PpðiÞ ¼ PrðSðiÞ $ SpðiÞÞ ¼ the largest p-value that is attainable (with given

number of tumors at site i) and is smaller than or equal to P1:
S(i) ¼ A random variable assuming score of measuring trend from the

exact permutation trend test.

SpðiÞ ¼ The observed value of SðiÞ that satisfies the definition of PpðiÞ
above.
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P1 ¼ Minimum of the p-values from the exact permutation trend tests on

individual sites and tumors.

n ¼ The number of PpðiÞ components in each term of Pp½i	:

PpðiÞP
p
ðjÞ…PpðrÞ ¼ PrðSðiÞ $ SpðiÞ and…and SðtÞ $ SpðrÞÞ

The above probabilities of joint events are calculated from multivariate

randomization distributions of trend measure scores, SðiÞs:
r ¼ the number of site/lesion combinations tested.

The above formula considers possible dependencies between sites and

tumors. However, the authors showed empirically that “the independence

assumption may prove to be a biologically reasonable approximation for the data

of this sort.”

Westfall and Young49 proposed another method for controlling the

experimentwise false error rate. In this method, all p-values are adjusted for

the multiplicity of testing using vector-based bootstrap resampling method.

In the test for positive dose–response relationship in tumor incidence rates

using the survival-unadjusted Cochran–Armitage linear trend test,23,24 the

p-values can be adjusted for the effect of multiple tests by the above method

as follows:

1. Assume the observed data are x11,…,x1n1 ,…,xg1,…,xgng , where each xij
is a kx1 vector, and g is the number of treatment groups.

2. Compute the k unadjusted p-values, pvk, for all lesion or site

combinations using the Cochran–Armitage trend test.

3. Generate a prespecified number (with desired accuracy), say, 10,000,

of replicate samples of the observed data x11,…,x1n1 ,…,xg1,…,x1ng , with

bootstrap resampling. Let xp11,…,xp1n1 ,…,xpg1,…,x1ng denote a replicate

sample.

4. Calculate the new set of p-values, pvpk , by applying the Cochran–

Armitage trend test to each of the replicate samples, find the

smallest, min pvp, of the k p-values, pvpk calculated from the replicate

sample.

5. Calculate the adjusted p-values, apvk, for each k using the proportions

of samples for which min pvpk is equal to or less than pvk:

The authors conducted a simulation study comparing the bootstrap method

with the permutation method of Farrar and Crump46,47 and Heyse and Rom.48

They reported the following simulation results: (a) the bootstrap method

approximates nominal significance levels more closely than the permutation

method, and (b) the bootstrap method has more power than the permutation

method.

In the tests for the positive dose–response relationship in tumor incidence

rates, FDA statistical reviewers currently use data of the concurrent control
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groups and comparable, historical control data to classify common and rare

tumors, and adopt the following decision rule in their evaluation: a positive

dose–response relationship is considered not to occur by chance of variation

alone if the p-value is less than 0.005 for a common tumor, and 0.025 for a rare

tumor. A tumor type with a background rate of 1% or less is classified as rare;

more frequent tumors are classified as common.

The above FDA statistical decision rule for tests for a positive trend in tumor

incidence has been developed based on recent studies using real historical control

data of CD mice and CD rats from Charles River Laboratory and simulation

studies conducted internally and in collaboration with NTP.50,51 The FDA

decision rule achieves an overall false positive rate of around 10% in a standard

two-species and two-sex study.50–53 The 10% overall false positive rate is seen

by CDER statisticians as appropriate in a new drug regulatory setting.

The false negative error issue in animal carcinogenicity study, although

equally important as the false positive error issue, has not received as much

attention as has the false positive error issue. This may be in part because of the

following two reasons:

1. This issue is less familiar to people. Statistically, the theory of the false

negative error issue is more complicated than that of the false positive

error issue. The false negative error is a function of alternative

hypotheses one is interested in testing. The statistical distributions used

in the evaluation of false negative errors are complicated and involve

noncentrality parameters.

2. Because of the high cost involved in developing a new drug, the drug

sponsor will pay more attention to false positive errors than to false

negative errors.

As mentioned at the beginning of this section, the large false negative error

that occurs in animal carcinogenicity study, is caused by the inherent limitations

of small numbers of animals used and by the low incidence rates in the majority of

tumors examined. Because of the above limitations, the power of statistical tests

for positive dose–response relationship is going to be small. That is, the false

negative errors are expected to be large. A study by Ali26 shows that under the

conditions he simulated (which assumed tumor incidence rates followingWeibull

models), the powers of the exact permutation trend test, the Peto prevalence test

for trend, and some modified forms of Peto prevalence test are no more than 0.25.

That is, the false negative errors are greater than 0.75. If the above simulation

results reflect the general magnitudes of the power of statistical trend tests, then

the false negative error issue should cause concern to investigators and be

weighted at least equally with the false positive error issue in the overall

evaluation of results of an animal carcinogenicity study.

Table 2.10 contains some of Haseman’s6 calculations of tumor rates that

needed to be induced in the treated group in order to achieve certain levels

of power in the Fisher’s exact test at .05 and .01 levels of significance under
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various assumed spontaneous rates in the control group (assuming 50 animals

in the treated group and in the control).

Statistically, there are at least three ways to increase the power of tests to

ensure that the overall false negative errors are not excessive. The most obvious

way is to increase group sizes. However, the increase in power probably won’t be

significant unless the group size is drastically increased, say, from 50 to 250

animals per group. This approach to increasing power may not be financially

or logistically feasible.

The second way to ensure adequate power in statistical tests of positive

dose–response relationship in tumor rates is to administer to treated animals with

dose levels that are high enough to induce tumors. As mentioned in Section II, the

determination of a dose close to MTD for treating animals in the high dose group

is an important, controversial, and complicated issue. Information about clinical

signs, histopathological toxic effects, body weight gain, and mortality, as well as

pharmacokinetic and metabolic data is needed for the evaluation of MTD.

Haseman used results of some NTP studies to emphasize the importance

of using dose levels that provide an adequate tumor challenge to the treated

animals. He found that half of the carcinogens tested in those studies would be

judged as noncarcinogens if half of the MTDs were used as the highest dose.

Under the current four-group design in which a medium group was added as

a cushion for cases where the high dose used may be over MTD, it is feasible to

take a greater risk of using the highest possible dose level to ensure adequate

power in statistical tests.

The third way to increase power in statistical tests is to assume a larger

overall false positive error. One may have to be willing to assume an overall false

positive error in the 15% to 20% range in order to balance out the low power

of statistical tests.

If one wants to control one of the two types of error to a small magnitude,

then he or she has to pay the price for committing a large magnitude of the other

TABLE 2.10
Tumor Rates (%) Needed to be Induced in the Treated Group in Order to

Achieve Levels of Power of 0.50 and 0.90

Spontaneous tumor a 5 0.05 a 5 0.01

rate in control (%) Power 5 0.5 Power 5 0.9 Power 5 0.5 Power 5 0.9

0.1% 9.5% 15.8% 13.5% 20.5%

1.0 11.0 18.4 15.1 23.4

3.0 14.0 22.9 18.9 29.0

5.0 17.0 27.0 22.5 33.3

10.0 24.2 35.7 30.2 41.9

20.0 36.8 49.0 43.2 56.0

30.0 48.1 61.1 54.8 67.0
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type of error. In the general case, a statistical test is performed at a prespecified

level of false positive error, usually .05, and a decision rule is derived to

maximize the power (or to minimize the false negative error) of the test under

the alternative hypothesis tested. However, because of the intertwining and

conflicting relationship between the magnitudes of the false positive error

and false negative error that one is willing to assume, the choice has to be

determined by the cost-risk (or cost-risk-benefit) factor in new drug evaluation.

For drug products, such as cancer and AIDS drugs that are intended for treating

terminally ill patients, one may take a greater risk (false negative error) by taking

a smaller overall false positive error. This will be especially true when there is no

alternative drug available in the market. Alternatively, for drug products for

treating common illnesses that can be treated with other available approved

alternative drugs and that will be used by a larger population, one can be

more cautious about the overall false negative error. To ensure that the false

negative error is not excessive, one may have to assume a larger overall

false positive error. It is true that limited resources should not be wasted by

rejecting an effective drug, but for the protection of the health of the general

public, it is equally important that drugs with carcinogenic potential should not be

misinterpreted as safe and allowed to enter the market.

Although concurrent control groups are the most relevant controls in testing

drug related increases in tumors in a study, there are situations in which historical

control data from previous comparable studies can be useful in the overall

evaluation of the results of the study. One of the situations is to use the

comparable historical control information to define rare tumors (which have less

effect on overall false positive error) and therefore can be tested at higher levels

of significance. Another situation is to check if a marginally significant finding is

really drug related or purely caused by chance of variation. A third situation is to

use historical control data to check if a study was conducted properly.

In the first situation, a tumor is defined as rare if it was so classified by

reviewing pharmacologists and pathologists, or if the background spontaneous

incidence rate is less than 1%. In the second situation, the incidence rates of the

treated groups are compared with the incidence rates of the historical control

data. The significant finding will not be considered as biologically meaningful

if the incidence rates of the treated groups are within the ranges of historical

control incidence rates. In the third situation, a question about the quality of the

study will be raised if incidence rates of tumors of the concurrence control of the

study are not consistent with those in the comparable historical control data.

“However, before historical control data can be used in a formal testing

framework, a number of issues must first be considered.”6

These issues include: the nomenclature conventions and diagnostic criteria

used by pathologists and conducting laboratories; study durations; strains and

species of animals used; and time (calendar year) when a study was conducted.

It is important that the historical control data can be useful only if it is comparable

with the concurrent control data. The comparability includes identical

nomenclature conventions and diagnostic criteria, same species, strain and sex,
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same source of supplier, same testing laboratory, comparable survival and age

at termination, comparable time frame of studies (within 5 years), and

comparable food consumption and body weight gain.

FDA statisticians routinely perform tests for positive dose–response

relationship (trend) in incidence rates in individual or pooled site/tumor

combinations using the decision rule of testing common tumors at 0.005 and

rare tumors at 0.025 levels of significance. Comparable historical control data,

when available and reliable, are used to assist in classifying common and rare

tumors, and in deciding if significant findings are biologically relevant. As

mentioned at the beginning of the chapter, the adoption of the Bonferroni type of

adjustment for the effect of multiple tests by FDA statisticians is based on a

review of current literature, input received from consultations with outside

experts, our own research, and our best scientific judgment.

To make sure that the false negative error committed is not excessive,

statistical reviewers collaborate with the reviewing pharmacologists, pathol-

ogists, and medical officers to evaluate the adequacy of the gross and histological

examination of control and treated groups, the adequacy of dose selection, and the

durations of experiments in relation to the normal life span of the tested animals.

V. CARCINOGENICITY STUDIES USING TRANSGENIC MICE

The high cost (between $1M and $2M) and long time (a minimum of three

years) needed to conduct a standard long-term in vivo carcinogenicity study, and

the increased insight into the mechanisms of carcinogenicity because of the

advances made in molecular biology have led to alternative in vivo approaches

to the assessment of carcinogenicity. People also argue that genetically altered

mice are better animal surrogates for human cancer because they carry some

specifically activated oncogenes that are known to function in human and animal

cancers. ICH has developed a document, accepted by the U.S. and other regions,

entitled “Guidance on Testing for Carcinogenicity of Pharmaceuticals.”54

The guidance outlines experimental approaches to the evaluation of carcino-

genic potential that may obviate the necessity for the routine use of two long-

term rodent carcinogenicity studies, allowing sponsors either to continue to

conduct two long-term rodent carcinogenicity studies or to use the alternative

approach of conducting one long-term rodent carcinogenicity study together

with a short- or medium-term rodent test. The short- or medium-term rodent test

systems include such studies as initiation-promotion in rodents, transgenic

rodents, or new-born rodents, which provide rapid observation of carcinogenic

endpoints in vivo.

Studies using transgenic mice have become the most important alternative

to carcinogenicity testing among the short- or medium-term rodent test systems

recommended in the ICH guideline. Many new studies of known carcinogens and

noncarcinogens from previous two-year bioassays but using transgenic rodents

have been carried out by the National Toxicological Program (NTP) and by
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the International Life Science Institute (ILSI) to evaluate the specificity and

sensitivity of alternative test systems. Different strains of transgenic mice

(models) have been proposed and used in the alternative system of testing

carcinogenicity of pharmaceutical and environmental chemical compounds.

We also have seen and reviewed carcinogenicity studies of pharmaceuticals using

transgenic mice submitted by drug companies. The following are the main strains

(models) having been proposed and used in the studies mentioned above:

(a) p53 þ/2 transgenic mice (with knockout of one of the two alleles of the tumor

suppression gene p53), (b) Tg.AC transgenic mice (with genetically initiated skin

to induce epidermal papillomas in response to dermal or oral exposure to chemical

agents and act as a reporter phenotype of the activities of the tested chemicals), (c)

rasH2 transgenic mice (with five or six copies of the stable human c-Ha-ras gene.

These were first developed and patented in Japan), and (d) XPA 2/2 repair

deficient mice (developed in Europe).

The standard study protocol described below has been used in the above

studies:

1. Study duration: 26 weeks.

2. A positive control group with treatment of a known carcinogen such as

p-cresidine, benzene, and TPA, in addition to the regular three or four

treatment groups (negative control, low, medium, and high)

3. 15 to 30 animals per sex and treatment group.

4. Tissues and organs of p53 þ/2 , rasH2, and XPA 2/2 repair deficient
mice died or terminally sacrificed are microscopically examined for

neoplastic and nonneoplastic lesions.

5. In studies using Tg.AC transgenic mice, only data (incidence rates and

weekly counts of papillomas observed over time) of tumor type of skin

papillalomas are collected and tested for drug effects.

In studies using p53 þ/2 , rasH2, and XPA 2/2 repair deficient mice, tumor

data and methods of analysis are similar to those of 2-year studies. However,

methods for analyzing the data of weekly counts of skin papilloma in studies

using Tg.AC transgenic mice are somewhat different from those for studies using

the above models.

In general, the exact and asymptotic tests for trend and difference in tumor

incidence for the traditional 2-year study can be applied to carcinogenicity

studies using p53 þ/2 , or rasH2 or XPA 2/2 transgenic mice because the

endpoints in these two types of study are the same.

Because the major differences in designs used, i.e., 15 to 30 animals per

sex/treatment group and a small number of tumor types developed in animals in

the new type of study using the above models, the decision rules used in the two-

year studies may have to be modified in order to maintain a desirable level of

overall false positive rate. Also because only 15 to 30 animals per sex or group

are used, the power of the trend and pairwise comparison tests should be

evaluated.
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Carcinogenicity studies using Tg.AC transgenic mice are different from the

traditional 2-year studies because skin papillomas (weekly incidence rates and

weekly counts of the tumor) in areas inside and outside of topical application of

the chemical are used as the endpoints of measuring the carcinogenic effect of a

drug.

Incidence rates of skin papilloma (proportions of animals with the tumor) of

different weeks can be analyzed separately by the same methods used in regular

2-year studies. For the data of counts of skin papillomas of different weeks, the

nonparametric procedures, Jonckheere’s test for trend and the Mann-Whitney test

for pairwise comparison, can be used separately. Because the number of

papillomas in the application area in an animal can be counted only up to a

prespecified number, 20 or 30, there could exist a large number of observations

with this value. The large number of tied observations could be a problem in

applying the nonparametric procedures.

The above separate tests basing on data of individual weeks produce results

difficult to interpret and ignore some important biological factors. A more

recently developed method by Dunson et al.55 uses data of papilloma counts of all

time points in one analysis. This method separates the effects on papilloma into

latency and multiplicity, and accommodates important features of the data,

including variability in expression of the transgene and dependency in the tumor

counts.

Because skin papilloma is the only tumor type used as the endpoint of testing

the carcinogenic effect of a drug, the adjustment for multiplicity is no longer an

issue. However, there are suggestions that the examination of only skin

papillomas may not be sufficient in detecting a carcinogen in studies using Tg.AC

transgenic mice.

VI. DATA PRESENTATION AND SUBMISSION

To facilitate statistical reviews, sponsors should present their data in the reports

in such a way that the reviewers are able to verify the sponsors’ calculations so as

to validate their statistical methods as being appropriate to the way the data were

generated, to trace back the sponsors’ conclusions through their summaries and

analyses to the raw data, and to reanalyze the data, if necessary, in order to

explore alternatives or to gain greater insight into the relationships between

various events of the studies.

In addition to reviewing the reports submitted by sponsors, statisticians at

FDA also perform additional statistical analyses that they believe are appropriate

and necessary to evaluate the analyses and conclusions contained in the reports.

Therefore sponsors should make the raw data easily accessible in an appropriate

format to the statistical reviewers. Statistical reviews are delayed when data are

not accessible or not submitted in appropriate formats. To expedite the statistical

reviews, sponsors are advised that the tumor data on computer readable forms be

submitted with their original initial submissions of the hardcopy NDA or IND
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following the formats and specifications described in the FDA guidance for

industry on electronic data submission.2,4,56

VII. CONCLUDING REMARKS

In designing an experiment, randomization methods should be used in allocating

animals to treatment groups to avoid possible biases caused in animal selection.

A sufficient number of animals should be used in the experiment to ensure

reasonable power in the statistical tests used. In negative studies in which results

of the analysis show no significant positive dose–response relationships in tumor

incidence rates, a further evaluation on the validity of the designs of experiment

should be performed to see if there are sufficient numbers of animals that lived

long enough to get adequate exposure to the chemical and to be at risk of forming

late-developing tumors, and if the doses used are high enough and close to the

MTD to present a reasonable tumor challenge to the tested animals.

In the review and evaluation of methods of statistical analysis in an animal

carcinogenicity study submission, the statistical reviewers in FDA examine the

appropriateness of the statistical methods used by the sponsor and perform

additional independent analyses to evaluate and verify the sponsor’s conclusions.

Appropriate statistical analyses of animal carcinogenicity study data should

include the following areas.

The intercurrent mortality data should be evaluated first to see whether

the survival distributions of the treatment groups are significantly different and

the dose–response relationship in mortality is significant. Because the effects

of differences in intercurrent mortality on number of tumor-bearing animals can

be substantial, survival-adjusted methods should be used in tests for positive

dose–response relationships in tumor incidence rates.

The determination of survival-adjusted methods to be used in tests for

positive dose–response relationships in tumor incidence rates should be based on

the contexts of observation of the tumors whose data are to be analyzed. The

death-rate method and the prevalence method should be used to analyze data of

tumors observed in fatal and incidental contexts of observation, respectively.

However if the information about the contexts of observation of tumors is not

available or is available but is considered as not accurate enough, then statistical

methods such as poly-k, that do not require the information, should be used.

When the number of tumor occurrences across treatment groups is small, the

test results of the death-rate method and the prevalence method that use the

normal approximation are not stable and reliable. In this circumstance, exact

permutation methods should be used to replace the above methods in tests

for positive dose–response relationships in tumor incidence rates.

Controlling the overall false positive error and the overall false negative error

to acceptable levels is the central element in the interpretation of study results.

The control of the two types of error involves statistical and nonstatistical issues

that require statistical as well as biological judgments. Therefore, it is important
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that an overall evaluation of the tumorigenic potential of a drug should be made

based on knowledge of statistical significance of positive dose–response

relationship and information of biological relevance.

To facilitate the FDA’s statistical review, sponsors should present their data

in the reports in such a way that the reviewers should be able to verify

their calculations, to validate their statistical methods, and to trace back the

calculations through their summaries and analyses to the raw data. The sponsors

should make the raw data easily accessible in an appropriate format to the

statistical reviewers. Statistical reviews are delayed when data are not accessible.

Sponsors are advised that the electronic tumor data be submitted with their

original initial submissions of the hardcopy NDA or IND.
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I. THE FDA: WHY?

Food and drug laws have been a necessity to mankind since the beginning

of civilization. Early Hebrew and Egyptian laws governed the handling of meat,

Greek and Roman laws prohibited adding water to wine and short measures for

grain and cooking oil, and in royal households, the “King’s taster” protected the

monarch from inferior or poisoned food. As civilization advanced, more complex
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protection became necessary. Apothecaries and food merchants of the Middle

Ages organized as trade guilds to combat adulteration by inspecting spices and

drugs. With the industrial revolution came an increasing use of chemicals, some

of them harmful, such as poisonous food colors containing lead, arsenic, and

mercury, and preservatives such as formaldehyde and borax. Such practices

led the British parliament in 1860 to pass the first nationwide general food law

of modern times.

The first general law against food adulteration in the United States was

enacted in Massachusetts in 1784; gradually, other states passed a variety of food

and drug statutes. As the country expanded, however, it became clear that

a national law was needed. Many states had no laws or lacked enforcement.

Products that met the requirements of one state could be illegal in adjoining states

and variations in labeling requirements became intolerable. From 1879 to 1906

more than 100 food and drug bills were introduced in the U.S. Congress. The first

advocates of Federal legislation were state officials who knew the problems and

the weaknesses of existing controls. It was the leadership of one remarkable man,

Harvey Washington Wiley, Head Chemist for the Department of Agriculture’s

Bureau of Chemistry, which finally made food and drug protection a function

of the Federal Government.

With support and encouragement from various segments of the drug and food

industries, state governments, women’s groups, writers, business organizations,

and a host of crusading individuals, Congress passed the first national legislation

designed to control impure and unsafe foods and drugs: The Pure Food and Drug

(Wiley) Act of 1906. The administration of the law was assigned to the Bureau of

Chemistry, which was headed by Dr. Wiley. Under Wiley’s direction the Bureau

continued the development of scientific methods of analysis, worked out the

legal procedures and techniques of inspection, and applied them in hundreds of

hard-fought court cases. They won scores of judicial interpretations, which both

strengthened the law and disclosed its weaknesses.

Laws and amendments following the Wiley Act have greatly increased the

ability of the Federal Government to protect the U.S. consumer and to safeguard

this nation’s sources of food and drugs. It became quickly evident that this initial

legislation did not have the necessary “teeth” to control many of the problems

associated with the distribution and consumption of foods and drugs existing in

the U.S. during the early part of the last century. For example, the Supreme Court

ruled in 1911 that the law allowed for false and unproven therapeutic claims as

long as all of the ingredients were properly listed. In the following year (1912)

in an attempt to correct this omission, Congress passed the Sherley Amendment

prohibiting “false and fraudulent label claims.” However, this amendment did not

prove effective, for it placed the burden of proof as to what constituted fraud on

government prosecutors; a distributor only needed to demonstrate that he

“believed” that the product produced the advertised effect in order to escape

prosecution for fraud.

In an effort to increase the visibility of the organization and to raise needed

revenues, the Bureau of Chemistry became the Food, Drug, and Insecticide
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Administration in 1927. Four years later, in 1931, the name was changed to the

Food and Drug Administration (FDA).

Motivated by the public clamor resulting from the infamous Elixir

Sulfanilamide disaster, Congress passed the Food, Drug and Cosmetic Act

in 1938. The Sulfanilamide incident resulted from the marketing of a medication

containing diethylene glycol, a common component of antifreeze. The solution

was prescribed as an antibiotic but produced fatal kidney failure that killed

107 people. This “elixir” was marketed without toxicological tests.

The Food, Drug and Cosmetic Act of 1938 greatly increased the power and

responsibility of the FDA. Marking a basic change in the attitude of the

Government to the regulation of drugs, the legislation required the preapproval

of drugs by the FDA. In this new system, drug companies were required to submit

evidence of drug safety. With this procedure the FDA had 60 to 180 days to

review an application. Failure to disapprove within the time period would lead

to marketing.

The 1938 law required that the drug manufacturers list additional warnings

and descriptions for use of marketed drugs. In addition, the Act required factory

inspection, gave prosecutors the added weapon of court injunctions as a regulatory

weapon, and simplified the prosecution of false claims by eliminating the need

to prove fraud.

Amendments to the 1938 Act and regulations issued by the FDA have further

refined and improved the U.S. drug regulatory system. The Humphrey–Durham

Amendment in 1951 gave the FDA the authority to define and label prescription

drugs and prohibit refills.

Under this law, labeling was available on request but was not routinely

shipped with the product. In 1960, the FDA issued regulations requiring that

detailed information on indications, dosing, and safety be included with drug

packaging and in sales literature.

In 1962, in a response to the Thalidomide tragedy, the Kefauver–Harris

Amendment was passed, further increasing the regulatory authority of FDA.

This amendment required for the first time that drug sponsors demonstrate the

efficacy of a drug by providing substantial evidence from controlled trials.

The Kefauver–Harris Amendment also eliminated the passive approval system

by making it a requirement that the FDA approve drugs prior to marketing.

The 1962 Amendment also required that adverse drug reactions be reported to

the FDA, tightening Investigational New Drug Application (IND) provisions

requiring informed consent, and gave FDA the authority to regulate advertising

for prescription drugs.

In 1983, the Orphan Drug Act was passed to provide incentives for the

pharmaceutical industry to develop drugs for relatively rare diseases. The 1984

Price Competition/Patient Term Restoration Act provides for increased patent

protection to compensate for patent life lost during the approval process and

simplified the approval of generic drugs. In responding to criticisms concerning

the length of the review process, the FDA issued the “NDA Rewrite” in 1985,
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with new and revised drug regulations that were designed to improve the content

and format as well as the processing of New Drug Applications (NDAs).

In 1987, recognizing the health crisis brought on by the AIDS epidemic,

the Agency issued the “Interim Regulatory Procedures” (Federal Register Part VI,

21 CFR Parts 312 and 314, page 41516). These Interim procedures make it

possible for more seriously ill patients to receive promising experimental drugs,

while preserving appropriate guarantees for safety and effectiveness. These

procedures reflect the recognition that the benefits of a drug need to be evaluated

in light of the severity of the disease being treated; physicians and patients are

willing to accept greater risks from products that treat life-threatening and

severely debilitating illnesses than they would accept from products that treat less

serious illnesses.

With this rule, the expanded availability of drugs for “immediately life-

threatening conditions” can begin near the end of the second phase of human testing.

In this way the drug would become available as soon as the initial safety evidence

was on-hand and the proper dose had been determined (Phase I), and after some

evidence of efficacy had been obtained (Phase II). Under these procedures, it is

also possible that, with early evidence for efficacy and safety, drugs for “serious but

not immediately life-threatening illnesses” can be approved for expanded use during

Phase III trials. If FDA approval is gained on the basis of limited but sufficient

evidence from clinical trials, it will usually be important to conduct postmarketing

(Phase IV) clinical studies to extend knowledge of the drug’s safety and efficacy,

thus allowing physicians to optimize its use (21 CFR, Part 312.85, page 92).

In 1992, the Prescription Drug User Fee Act (PDUFA) authorized the agency

to charge industry fees when submitting a new drug or similar application for

review and the agency in return would adhere to new strict approval timelines and

clearance of back-logs without compromising review quality. FDA primarily

spent these new resources to hire additional personnel (a 56% increase in FDA

review staff) to review human drug applications and to upgrade the information

technology infrastructure supporting the human drug review process. The FDA’s

success in making the drug approval process more predictable, accountable,

and scientifically sound, while making safe and effective drugs available

to the public more quickly, was recognized in late 1997 when the FDA received

the prestigious Innovations in American Government Awards, jointly

sponsored by the Ford Foundation and Harvard University’s John F. Kennedy

School of Government. PDUFA contained a “sunset” provision for automatic

expiration on September 30, 1997. However, PDUFA was deemed a success and

reauthorized and extended through September 2002. This extension authorized

the FDA to collect and spend fee revenues to accomplish increasingly

challenging goals over the next five-year span. Because of the continued success

of this program, PDUFA was again reauthorized for another five years in 2002.

PDUFA III corrects some of the flaws of the previous acts and should provide

FDA with sufficient resources to continue to meet the challenging goals and

undertake pilot programs and new initiatives. Some of the PDUFA III goals

require development of guidance documents and databases to track performance
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as well as the development of infrastructure and tools necessary to enhance

electronic application receipt and review. An overview and comparison of the

major goals of the PDUFA I–III and further details can be found at http://www.

fda.gov/oc/pdufa3/2003plan/default.htm.

PDUFA I enabled the agency to reduce a 30-month average review time

to 15 months, in large part because of the addition of almost 700 new employees

in the drug and biologics review program. The FDA Modernization Act of

1997 (FDAMA) reauthorized PDUFA as well as enacting many FDA initiatives

(http://www.fda.gov/opacom/7modact.html). It codified programs such as

Vice President Gore’s Reinventing Government, modernized the regulation

of biological products to bring them in harmony with regulations for drugs,

eliminated the establishment of license applications, eliminated the batch

certification and monograph requirements for insulin and antibiotics, stream-

lined the approval processes for drug and biological manufacturing changes, etc.

It also codified FDA regulations and practices to increase patient access to

experimental drugs and medical devices and to accelerate review of important

new medications. The law also provided for an expanded database on clinical

trials, which is accessible to patients. In the area of drugs, the law codified

the agency’s practice of allowing, in certain circumstances, one clinical

investigation as the basis for product approval. This issue and the related

Guidance document on “Providing Clinical Evidence of Effectiveness for

Human Drug and Biological Products” are discussed in more detail later in the

chapter. The act, however, does preserve the presumption that, as a general rule,

two adequate and well-controlled studies are needed to establish a product’s

safety and effectiveness. Another noteworthy objective of FDAMA was to

adequately fund and staff research. The Regulatory Science and Review

Enhancement initiative actively encourages the submission of concept papers

that explore approaches, methods, or data that can potentially enhance the

quality or efficiency of the IND/NDA review process, or the design and

evaluation of clinical or non-clinical protocols. The proposals are evaluated

and funded at the Center level and support the Critical Path initiative as well as

the professional growth of the staff.

Another recent major amendment to the Federal Food, Drug, and Cosmetic

Act is the Best Pharmaceuticals for Children Act (BPCA) of early 2002, which

concentrates on the improvement of the safety and efficacy of pharmaceuticals

for children. It grew out of FDAMA, which granted six-month exclusivity

to manufacturers who conducted studies of drugs in children. However, the

pediatric exclusivity provision had a sunset date of January 1, 2002. By early 2001,

the agency concluded that the pediatric exclusivity provision had been highly

effective in generating pediatric studies onmany drugs and in providing useful new

information in product labeling. However, some categories of drugs and some age

groups remained inadequately studied, which the enactment of BPCA seeks to

rectify (see also: http://www.fda.gov/cder/pediatric/index.htm#bpca).

Many IND and NDA submissions now are nearly paperless. In 1997,

the agency published a guidance that provided for the voluntary submission
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of regulatory records in electronic format (see: http://www.fda.gov/cder/

guidance/2867fnl.pdf). In 1998, CDER issued a draft guidance for industry,

“Providing Regulatory Submissions in Electronic Format — NDAs,” which

expanded on the earlier document. This guidance was finalized in January 1999

and has been the modus operandi since then. Additional draft and final guidance

documents have been developed to further facilitate the paperless submission and

review process.

The body of law currently defining the FDA’s authority is comprehensive,

providing a variety of controls required by the nature of the market, the product

and attendant health risk. For many years, the Agency’s job consisted almost

entirely of inspections aimed at uncovering adulterated and impure products and

exposing fraudulent labeling. However, in addition to this traditional monitoring

role, the FDA today serves an important role as the “gatekeeper” for new drug

technologies; it applies its substantial scientific resource base to the premarket

evaluation and approval of new drugs, and to the postmarketing monitoring

of drug labeling, advertising, and quality control.

The demand for the FDA’s regulatory role in the marketing of drugs — as

expressed in U.S. laws, amendments, and regulations— has evolved based on the

needs of the drug industry, the public, the scientific community, the courts, and

the Federal Government. As this brief historical description on the “Why” of

FDA’s existence illustrates, American drug laws and the FDA owe their existence

to a fundamental belief that drug companies cannot be fully trusted to assure the

safety and efficacy of their products. Unfortunately, there are enough examples

in the past and present of dangerous and ineffective drugs on the market to

perpetuate this mistrust. At the same time, it should be remembered that

a combination of forces — scientific, regulatory, economic, medical, and legal —

work together to assure the safety and efficacy of the American drug supply. None

of these elements alone should be considered sufficient to provide the margin of

control that the American public expects and demands.

A. THE FDATODAY

The FDA has been described as the “principal consumer protection agency of the

Federal Government.” In fact, recent concerns about bioterrorism and growing

incidences of preventable medical costs have widened the scope of responsi-

bilities and provide greater challenges than ever. For more information on the

wide range of responsibilities and activities at the FDA, the reader is referred

to http://www.fda.gov.

In simplest terms, the provisions of the food and drug laws, the FDA’s review

and enforcement actions are intended to ensure:

† Food is safe, wholesome, and secure (from bioterrorism against the

food supply).

† Drugs (both human and veterinary), biological products, and medical

devices are safe and effective.
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† Cosmetics are unadulterated.

† The use of radiological products does not result in unnecessary

exposure to radiation.

† All of these products are honestly and informatively labeled.

† Counterterrorism initiatives focus on quickly responding to acts of

terrorism and enhancing food security (see: http://www.fda.gov/oc/

mcclellan/strategic_terrorism.html).

The FDA is an agency within the Department of Health and Human Services.

It is administered by a Commissioner who is appointed by the Secretary of the

Department of Health and Human Services. To perform its mission, the Agency

is currently organized into seven centers, namely, the Center for Biologics

Evaluation and Research, the Center for Drug Evaluation and Research, the

Center for Devices and Radiological Health, the Center for Food Safety and

Applied Nutrition, the Center for Veterinary Medicine, the National Center for

Toxicological Research, and the Office of Regulatory Affairs.

The review and evaluation of efficacy and safety of drugs, a primary focus

of this chapter, is the responsibility of the Center for Drug Evaluation and

Research (CDER); CDER is currently divided into 12 offices:

Office of the Center Director

Office of Executive Programs

Office of New Drugs

Office of Management

Office of Medical Policy

Office of Information Management

Office of Compliance

Office of Information Technology

Office of Pharmaceutical Science

Office of Pharmacoepidemiology and Statistical Science

Office of Regulatory Policy

Office of Training and Communications.

B. THE OFFICE OF BIOSTATISTICS

The Office of Biostatistics (OB) is part of the Office of Pharmacoepidemiology

and Statistical Science (OPaSS) and currently consists of the Immediate Office,

three divisions of Biometrics, the Biologics and Therapeutics Statistical Staff,

and the Quantitative Methods and Research Staff (QMRS). Each division

of Biometrics provides comprehensive statistical and computational services to

several medical divisions and to all programs of CDER. QMRS primarily

supports the Office of Pharmaceutical Sciences. In addition, the newly formed

Biologics and Therapeutics Statistical Staff is responsible for satisfying the needs

of biological products in the therapeutic areas of oncology and internal medicine.

The Office of Biostatistics employs more than 80 statisticians and support
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personnel. As stated at OB’s website (http://www.fda.gov/cder/Offices/

Biostatistics/default.htm), OB serves CDER by

† Providing leadership, direction, and policy development on statistical,

mathematical and computational aspects of review, evaluation, and

research

† Providing independent and collaborative evaluations and reviews to all

programs and disciplines of CDER in support of the scientific and

regulatory review process

† Developing statistical and mathematical methods to enhance the drug

and biologics review process in:
* Pharmacokinetics; pharmacodynamics; bioequivalence;
* Bioavailability testing;
* Drug safety monitoring;
* Analysis and risk assessment;
* Chemical testing and evaluation; and
* Product quality assessment and control

† Evaluation and utilizing analytic statistical and mathematical

simulation software to enhance the drug development process.

In an effort to improve the quality and consistency of the advice to CDER

decision makers and to industry in general, the Office has taken the lead in the

development of several statistical guidance documents on specific scientific

topics, most notably on ICH E9 and ICH E10, which promote the global effort

of harmonizing science and diverse regulatory processes. Similarly, each final

statistical review and evaluation report becomes a public document upon

approval of the drug that represents the best thinking of the Office on the issues

arising from each submission.

II. THE IND REVIEW

The Code of Federal Regulations (CFR) section 312.22 describes the purpose

of IND reviews. It states that “FDA’s primary objectives in reviewing an IND are,

in all phases of the investigation, to assure the safety and rights of subjects, and,

in Phase 2 and 3, to help assure that the quality of the scientific evaluation of drugs

is adequate to permit an evaluation of the drug’s effectiveness and safety.”

Further, “FDA’s review of Phase 2 and Phase 3 submissions will also include an

assessment of the scientific quality of the clinical investigations and the

likelihood that the investigations will yield data capable of meeting statutory

standards for marketing approval.”

A schematic of the IND review process (Figure 3.1) is given below and can

be found at http://www.fda.gov/cder/handbook/ind.htm. On the website, clicking

on the individual boxes provides a more detailed description of each topic.
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As can be seen, statistics is but one scientific review area that provides input

to the sponsor’s drug development program, but it seems clear from the above

stated purpose that a statistical review addressing the quality of evidence and

likelihood of success of the study should be performed on many types of Phase 2

and 3 protocols, especially those of a confirmatory study meant to provide the

primary source of evidence for efficacy. This is even more important under

FDAMA, which requires that in general both the sponsor and the FDA abide by

their prior agreements, including some agreements made during the IND phase.

In particular, a “Special Protocol” is a Phase 3 protocol submitted after being

discussed at an End-of-Phase-II meeting. A protocol with this classification

requires a specific timeline for review and is considered binding if the require-

ments for the study are met.

CDER biostatisticians function as reviewers, consultants, and technical

experts to their medical CDER colleagues in discussions on scientific/regulatory/

drug development issues associated with the sponsor’s proposals and strategies

to demonstrate either the efficacy, safety, or both of a new drug. The statistical

reviewer does not work in a vacuum but can draw on the intellectual resources

of the Office of Biostatistics to get answers and advice on successful approaches

used in other medical areas that can be useful in constructive critiques of study

protocols and other drug development strategies that rely on sound study designs

and prospective data analysis plans. Formal reviews are undertaken for Phase 1, 2,

or 3 protocols for which the study design, the methods of analysis proposed in

the analysis plan, or the decision rules for declaring a successful study are

proposed by the sponsor and CDER is asked for its position on such. Such reviews

or critiques are documented and archived. CDER statisticians serve as consultants

and technical experts also in general discussions with the medical review division

and/or with the sponsor on approaches to studying a drug for a disease that is

not well understood or characterized and where decisions need to be made

for particular study designs, statistical monitoring procedures, or approaches to

handling study withdrawals from treatment. Similarly, statistical input is needed

when a range of potential statistical approaches may fit a particular study design,

but none appears clearly best for the problem. CDER statisticians may perform

independent research and carry out extensive simulations of different study

scenarios to develop best approach strategies for a particular situation. Or, a

sponsor may ask for CDER’s position on a statistical approach that is to be applied

to a series of future submissions. Such advice is provided to the sponsor early

in the drug development program to maximize the chances of success of an

individual clinical trial, of the collection of evidence from several studies to meet

regulatory standards, and to minimize problem areas that otherwise might surface

late in the IND and NDA program.

As the success of a NDA depends to a great extent on the success of the

confirmatory (Phase 3) trials needed to establish the efficacy and safety claims,

most of such protocols are reviewed. Protocols of open-label safety studies

or non-comparative studies generally do not require a statistical review, because

there are few statistical issues involved in planning these types of trials.
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The success of a confirmatory trial on the other hand depends heavily on the

appropriateness of the design, conduct, and analysis of the study. Critical issues

include, but are not limited to, the appropriateness of the study design in relation

to the study objectives, relevancy of primary endpoints, clarity of the decision

rule for efficacy assessment, multiplicity and maintenance of type I error rate,

sample size consideration, randomization plan, proposed conduct of the study,

interim looks, alpha spending functions, missing data involving informative

censoring, and planned methods of analysis including meta analyses for

combining two or more studies. The primary consideration is whether

the study, as planned in the protocol, will be capable of providing the desired

quality and strength of evidence needed under the statutory requirements for the

approval of the drug.

Many trials have failed because of design flaws such as improper choice of

dose, insufficient power from an overestimation of effect size, lack of a clear

clinical decision rule for efficacy assessment, lack of a proper statistical support

structure for the proposed clinical decision rule, or failure to properly account

for multiple testing (e.g., in post hoc subgroup claims). Similarly, planned

interim analyses, in particular so-called administrative interim looks, present an

opportunity for operational bias being introduced and warrant careful review.

Design modifications based on interim data can also lead to an inflation of type I

error rate and proper statistical methodology needs to be prospectively specified

in the protocol to permit such design modifications without the associated

inflation in type I error rate. In general, methods of analysis that properly take into

consideration missing data, the different nature of censoring, competing risks,

repeated measurements over time, multiple testing (including multiple treatment

comparisons, multiple endpoint testing, repeated testing over time), etc., need to

be carefully considered.

Some Phase 2 protocols may also require statistical review. This may be

the case if the protocol proposes the use of a new or subjective measurement

instrument or endpoint, a new design, or statistical method. In life threatening

disease areas, such as oncology, where there is no treatment available, Phase 2

trials may be accepted as pivotal studies, and therefore would require an in-depth

statistical protocol review during the IND stage. These studies rely on the

outcome of a single arm and on surrogate endpoints, such as tumor response in

lieu of survival, and may contain flexible designs with the option of combining

results from Phase 2 and 3 studies. However, for non-life threatening conditions,

a Phase 2 trial with a large sample size may also require a statistical review

because there is the potential for the sponsor to change the intended use of the

data at a later date (such as, presenting the results as if it had been planned as a

Phase 3 study). It is important to clarify the goal of such studies within the drug

development program. In general, a Phase 2 protocol should require a statistical

review if it is intended to provide supportive evidence of efficacy, or to support

an accelerated approval.

There are two additional kinds of protocols that may require statistical input.

Both are applicable to life-threatening situations only. An Emergency IND
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allows for an investigational drug to be given to a specific patient who has

exhausted all other treatment options, when time does not allow for submission of

an IND application in the usual manner. A Treatment IND requests a specific

treatment use of a drug in a defined group of patients with a serious or life-

threatening disease who have no satisfactory alternative therapy when the drug

has shown safety and preliminary efficacy results. The evaluation of a Treatment

IND usually presents an additional challenge because of the short time frame

available to review such a protocol.

In general, the statistical review of a protocol addresses almost all aspects of

the study design, the hypotheses to be tested, and the proposed statistical analysis

plan (see ICH E9). These include the randomization scheme, level of blinding,

type of design and control, the proposed indication, patient entry criteria, primary

and secondary endpoints, decision rule, multiplicity and maintenance of type I

error rate, sample size and power, rationale for and plan of interim analyses and

related infrastructure, standard operating procedures (SOPs), plan for design

modifications (such as sample size re-estimation), methods of analysis, treatment

of missing data and dropouts, sources of operational or methodological bias,

handling of treatment-by-center interactions, and potential confounding of

treatment effects due to design flaws. The evaluation may also address the role the

study will play in the overall drug development plan, focusing on the goal of

achieving substantial and robust evidence to support efficacy for the indication

upon completion of the trial.

III. THE NDA REVIEW

Under section 505 of the Federal Food, Drug and Cosmetic Act, a drug sponsor

is required to obtain prior approval from the FDA for the marketing of a new

drug. The drug sponsor is required to submit a NDA, or an abbreviated NDA

application (ANDA), to the FDA for review and approval, as well as

amendments, supplements (SNDA) (e.g., new indications, or other labeling

changes [21 CFR 314.70 (b)(3)]) and postmarketing reports [21 CFR 314.80].

When wishing to market a new molecular entity, the Code of Federal

Regulations [21 CFR 314.50] states that the drug sponsor must submit a NDA.

The NDA must contain seven technical sections [21 CFR 314.50 (d)]. The seven

sections are: chemistry including manufacturing and control, nonclinical

pharmacology and toxicology, human pharmacokinetics and bioavailability,

microbiology, clinical data, statistics, and pediatric use. For electronic

submission, the clinical and statistical sections are rolled into one and include

the protocol, description and analysis of each controlled clinical study, and

the documentation and supporting statistical analyses used in evaluating the

controlled clinical studies. In addition, it contains a summary of information

about the safety of the drug product and supporting statistical analyses used

in evaluating the safety information.
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A schematic of the NDA review process (Figure 3.2) is given above and

can be found at http://www.fda.gov/cder/handbook/nda.htm. On the website,

clicking on the individual boxes provides a more detailed description of each

topic. The nature of the NDA submission requires a multidisciplinary approach
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to drug review. This is reflected in the concept of a NDA review team, which

consists of at least a project manager, medical team leader, medical officer,

statistical team leader, statistical reviewer, pharmacologist, chemist, and

microbiologist. The FDA’s statistical reviewers review the clinical/statistical

section of a NDA submission. In addition, statistical reviews may be required

for stability studies (chemistry), PK/PD studies (human pharmacokinetics and

pharmacodynamics), carcinogenicity studies (nonclinical pharmacology and

toxicology) and pediatric data.

For a supplement to an approved drug, the drug sponsor is also required

to submit an application for the changes desired [21 CFR 314.70, 314.71]. Just as

in a NDA, the statistics section is reviewed. Statistical review of other sections

may or may not be necessary depending upon the changes requested. For an

abbreviated application, statistical reviews may be needed for stability studies

and bioequivalence studies [21 CFR 314.94 (a) (9), (7)].

The NDA review process is very structured and is pressured by a tight time

line. Therefore, only a few studies may be targeted for in-depth review.

In addition to studies identified as pivotal by the sponsor, a reviewer may identify

other key confirmatory trials or studies containing important issues that may

impact on the efficacy claim of the drug in light of existing policies, prior

agreements with the applicant, or possible concerns of the review divisions.

Federal regulations [21 CFR 314.101 (a) (1)] require that FDA will determine

within 60 days of receipt of the NDA if it is sufficiently complete to permit

a substantive review. For this purpose, a 45-day filing meeting is scheduled upon

receipt of a NDA submission. At this meeting the review team determines whether

the application is reviewable and at least potentially approvable as submitted. If the

submission is incomplete because it does not contain, on its face, the minimum

information required under 21 CFR 314.50 or 314.94 (format and content of a NDA

and ANDA, respectively), the provision 21 CFR 314.101 (d) (3) allows for the

refusal to file of the application. Refusal to file decisions may also be made under

other provisions of 21 CFR 314.101 (d). A simple criterion for judging fileability is

whether each reviewer can proceed with his/her review of the NDA or ANDA

submission without undue delay because of lack of necessary data or information,

andwhether it is potentially approvable as submitted. At times, communicationwith

the sponsor may be needed to clarify whether any obvious deficiencies can be

remedied in time. In most cases, the NDA should be fileable. If the NDA is fileable,

a decision is made whether to classify it as a priority or standard application. A

priority application requires the Center to make a decision regarding approvability

within six months. The time line for a standard submission is ten months.

The primary purpose of a NDA review is to provide a detailed assessment

of whether the application meets the current established statutory standards for

pre-market approval. Such standards include safety, efficacy, and data quality.

Each evaluation of a clinical trial provides a reviewer with the opportunity

to evaluate the methodology used by the sponsor in terms of its appropriateness,

potential bias, and sensitivity; to apply more proper methods if needed; and to

arrive at an overall assessment of the strength of evidence to ensure that the correct
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interpretation of the results is made. If the drug receives a positive review,

recommendations for proper labeling, which includes adequate directions for use,

and secondary labeling claims need to be addressed. The review may also assure

that potentially misleading or unsubstantiated statements do not appear in the

label.

The comprehensive review of a confirmatory study may begin with a review

of the study protocol for an examination of the planned study design, conduct

of the trial, data sets to be analyzed, and method of analysis, as well as protocol

amendments and correspondence between the applicant and FDA. Deviations

from the original plans may involve changes in objectives, method of selection

of subjects, nature of the control group, primary endpoints, safety variables, event

adjudication criteria, methods of analysis, unplanned interim analyses, and more.

Changes that were not discussed in protocol amendments or in correspondence

may have introduced potentially major sources of bias. The impact of such

changes on the quality of the data, integrity of the trial, the results of the primary

efficacy endpoint and especially on the overall strength of evidence need to be

assessed and quantified if possible.

Keeping the protocol and any modifications or deviations in mind, the review

of the actual trial can be addressed. On the surface, the principal objective of a

confirmatory study is often fairly simple, namely, it is to demonstrate that the

drug shows a certain clinical benefit for a certain target population. However,

such an objective needs to be translated in terms of a clinical decision rule that

involves one or more primary endpoints, some secondary endpoints and an

appropriate statistical support structure. The statistical support structure should

reflect the clinical decision rule, test statistics, proper allocation of a to maintain

the overall Type I error rate, adequate power, etc. Therefore, some of the major

points that need addressing in the review of a confirmatory trial are:

1. Can the design address the principal objective of the study?

2. Is the randomization successful?

3. Is the planned level of blinding maintained throughout?

4. Are patient characteristics and demographics those of the intended

treatment population?

5. Is the clinical decision rule compatible with the design?

6. Is the clinical decision rule consistent with the desired indication or

clinical claim?

7. Is the clinical decision rule supported by the appropriate statistical

support structure?

8. In a non-inferiority trial, is the non-inferiority margin defined appro-

priately?

9. If an interim analysis was planned, is there any deviation from

the interim analysis plan?

10. Is there any modification to the design, conduct, and analysis of

the trial after an interim analysis?
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11. What is the frequency and distribution of each reason for loss to

follow-up?

12. Are there major compliance issues with the study?

13. Do the data sets permit duplication of the sponsor’s results?

14. Do the data sets permit independent analyses?

15. Are the statistical assumptions underlying the proposed primary

analysis met?

16. What patient data sets are evaluated (e.g., ITT or intent-to-treat)?

17. Are the findings robust?

18. Are results consistent with subgroup adjustment?

19. Is there potential for Type I error inflation due to multiple com-

parisons, multiple testing of primary endpoints, repeated testing over

time, etc.?

20. What sources of bias have been introduced and can their effect be

quantified?

Beyond these and many other considerations, the overall strength of evidence

presented by a given confirmatory trial is of crucial importance and can be

assessed by considering features such as:

† Overall quality of the trial, good trial conduct, quality of key data

elements

† Sample size and power of the study

† The number of centers involved

† The number of studies involved (where appropriate)

† The number of endpoints for various clinical events

† Observed treatment effect size and its associated significance level

† Internal consistency of the results across centers, various subgroups

and clinically relevant endpoints

† Robustness of the results relative to a variety of alternative analyses.

An important issue in a NDA is robustness of the statistical evidence.

Robustness of statistical evidence can be demonstrated in several ways. In a single

study, robustness of statistical evidence can be shown when various appropriate

statistical methods yield similar conclusions. Moreover, when the intent-to-treat

analysis and the evaluable patient analysis yield similar results, they provide

robust statistical evidence of effectiveness. Additionally, when the best case

analysis and the worst case analysis produce similar p-values and confidence

intervals, robust results are realized. Robustness is also demonstrated in being

able to show that the effectiveness of a new drug is reproducible in multiple

studies. If the p-values and confidence intervals are homogeneous among

themselves to an extent that they are considered statistically equivalent and

the respective confidence intervals are fairly consistent, the results of the

statistical analyses are considered robust.
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A. BIAS

Bias is a very fundamental issue in evaluating the robustness of statistical

evidence. In a clinical trial, bias refers to the consequence of any design feature,

property of the study treatment, characteristic of the disease, intentional or

unintentional conduct, or decision that results in a systematic exaggeration of the

treatment difference either in favor or against the study treatment in a show-a-

difference trial. It also refers to the consequence of a systematic dampening of

the treatment difference in favor of the study treatment in an active control, non-

inferiority, or equivalence trial. Bias affects the estimate of the true treatment

effect and may lead to drawing incorrect conclusions regarding the overall effect

of the study treatment. This is especially important in an active control non-

superiority trial where it is crucial to obtain an unbiased estimate of the effect

of the active control.

Randomization is the standard procedure used in clinical trials to achieve

balance in both known and unknown important baseline covariates and

prognostic and demographic factors between the treatment and the control

arms. However, there are still many potential sources for bias in a randomized

controlled clinical trial. These sources include confounding, operational bias

during trial execution, evaluation bias in outcome measurements, and unblinding.

In any given situation, bias could come from one or more of these sources.

Blinding is the most important technique for controlling operational bias.

A confirmatory trial should be blinded at the study level. If necessary, special

blinding techniques should be considered at the individual patient level and the

investigator level. The aim is to minimize the likelihood of unblinding by the

individual patients, the investigators, evaluators or raters, or the study personnel,

and to minimize its impact in the event of actual unblinding.

In a controlled clinical trial, even randomization and blinding may not fully

protect against structural bias resulting from flaws in the design. Design flaws

can occur and are not infrequent. Thus, properties of the study treatment, types

of treatment administration, nature of the disease, objectives of the trial, and other

pertinent information should be well understood to ensure that the design of

the trial is not flawed. Structural bias has the potential to invalidate the results

of the entire trial.

Even a randomized controlled trial that is blinded and has no design flaws can

still have statistical bias introduced at the final analysis stage. Statistical bias can

arise as a result of the method of analysis, the manner in which patients or data are

excluded from the data set, or the manner in which missing data are being

handled. This kind of statistical bias can sometimes be fairly subtle.

An important principle in the analysis of clinical trial data is the so-called

intent-to-treat principle. The intent-to-treat principle simply espouses the view

that the primary analysis should be performed on the outcome measures from

all of the randomized patients. When there is no other source of bias, such as

design flaws, then the intent-to-treat analysis should provide an unbiased estimate

of the treatment effect if there are no patient exclusions and no missing data.
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When the outcome measure is not available from all of the randomized patients,

efficacy subset analysis is likely to provide biased estimates of the treatment

effect. To reduce the impact of missing data, it is recommended that a

confirmatory trial should attempt complete follow-up on all missing primary

response data from dropouts or others, and provide better documentation of

reasons for dropping out and missing primary response data. This will minimize

the impact of bias and may provide the basis for determining the proper method

of handling the missing data.

In view of the various potential sources of bias in a clinical trial, it is

important for a confirmatory trial to consider adopting appropriate measures at

the design stage to minimize the impact of potential biases.

B. COMBINATION DRUG POLICY

The evaluation of a combination drug product presents special challenges.

The federal regulations [21 CFR 300.50] on fixed combination prescription

drugs states that “Two or more drugs may be combined in a single dosage form

when each component makes a contribution to the claimed effects and the

dosage is such that the combination is safe and effective for a significant patient

population requiring such concurrent therapy as defined in the labeling for the

drug.”

The regulations continue to discuss other special cases where a fixed combi-

nation can be considered. In general, from the efficacy perspective, one needs to

ensure that the combination drug is superior to its individual components. This is

interpreted to mean that the combination has to be statistically significantly better

at the pre-specified level of a than each of the individual components.

C. REVIEW OF SAFETY DATA

Currently, the statistical contribution to this area is limited but growing.

The analysis of safety data is quite different from the analysis of efficacy data.

Safety analyses are generally not pre-specified in the protocol and involve

numerous outcome variables (i.e., lab results, adverse events), which raises the

multiplicity problem and protection of the Type I error. Thus, a significant finding

in a safety analysis is difficult to interpret and becomes dependent on the results

observed in other trials. The focus of the analysis may be viewed as hypothesis

generating rather than hypothesis testing because most studies are not of sufficient

size to achieve statistical significance when comparing incidence rates of safety

variables between treatment groups. It is important, however, to identify a “signal”

and compare results across trials. Consistency of findings may be more important

than the size of the p-value. Other than for comparative safety claims, descriptive

statistics may suffice and consistency of results may outweigh the magnitude

of p-values. Data mining and visualization methods are currently used more

as browsing tools than for statistical decision making. Confidence intervals
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of adverse event rates, especially when they are narrow, provide useful informa-

tion for regulatory decision purposes.

D. EVIDENCE OF EFFECTIVENESS FROM A SINGLE STUDY

The added rigor and size of contemporary clinical trials have made it possible

to rely in certain circumstances on a single adequate and well-controlled study,

without independent substantiation from another controlled trial, as a sufficient

scientific and legal basis for approval. Information on evidence of effectiveness

derived from a single study can be found at http://www.fda.gov/cder/guidance/

1397fnl.pdf.

A large multi-center study may meet the requirement. If no single study site

provided an unusually large fraction of the patients and no single investigator or

site was disproportionately responsible for the favorable effect seen, the study’s

internal consistency lessens concerns about lack of generalizability of the finding

or an inexplicable result attributable only to the practice of a single investigator.

If analysis shows that a single site is largely responsible for the effect, the

credibility of a multicenter study is diminished. Further confidence is gained

if there is consistency across study subsets. Frequently, large trials have relatively

broad entry criteria and the study populations may be diverse with regard to

important covariates such as concomitant or prior therapy, disease stage, age,

gender, or race. Analysis of the results of such trials for consistency across key

patient subsets addresses concerns about generalizability of findings to various

populations in a manner that may not be possible with smaller trials or trials with

more narrow entry criteria.

Multiple studies in a single study, such as properly designed factorial studies,

may be analyzed as a series of pairwise comparisons representing, within a single

study, separate demonstrations of activity of a drug as monotherapy and in

combination with another drug. This model was successfully used in ISIS II,

which showed that for patients with a myocardial infarction both aspirin and

streptokinase had favorable effects on survival when used alone and when

combined (aspirin alone and streptokinase alone were each superior to placebo;

aspirin and streptokinase in combination were superior to aspirin alone and

to streptokinase alone). This represented two separate (but not completely

independent) demonstrations of the effectiveness of aspirin and streptokinase.

In some cases, a single study will include several important, prospectively

identified primary or secondary endpoints, each of which represents a beneficial,

but different, effect. Where a study shows statistically persuasive evidence of an

effect from multiple endpoints involving different events, the internal weight

of evidence of the study is enhanced. For example, favorable effects on both

death and nonfatal myocardial infarctions in a lipid-lowering, postangioplasty,

or postinfarction study would represent different, but consistent, demonstrations

of effectiveness, greatly reducing the possibility that a finding of reduced

mortality was a chance occurrence. In contrast, a beneficial effect on multiple

endpoints that evaluate essentially the same phenomenon and correlate strongly,
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such as mood change on two different depression scales or SGOT and CPK levels

postinfarction, does not significantly enhance the internal weight of the evidence

from a single trial. Moreover, although two consistent findings within a single

study usually provide reassurance that a positive treatment effect is not due

to chance, they do not protect against bias in study conduct or biased analyses.

For example, a treatment assignment not well balanced for important prognostic

variables could lead to an apparent effect on both endpoints. Thus, close scrutiny

of study design and conduct are critical to evaluating this type of study.

In a multi-center study, a very low p-value indicates that the result is highly

inconsistent with the null hypothesis of no treatment effect. In some studies it

is possible to detect nominally statistically significant results in data from several

centers, but even where that is not possible, an overall statistically very

persuasive finding and significance level mean that most study centers had similar

findings. Preventive vaccines for infectious disease indications with a high

efficacy rate (e.g., point estimate of efficacy of 80% or higher and a reasonably

narrow 95% confidence interval) have been approved based on a single adequate

and well-controlled trial.

Caveats: While acknowledging the persuasiveness of a single, internally

consistent, strong multicenter study, it must be appreciated that even a strong

result can represent an isolated or biased result, especially if that study is the only

study suggesting efficacy among similar studies.

When considering whether to rely on a single multicenter trial, it is critical

that the possibility of an incorrect outcome be considered and that all the

available data are examined for their potential to either support or diminish

reliance on a single multicenter trial.

E. THE STATISTICAL REVIEW AND EVALUATION REPORT

CDER statistical reviewers write a Statistical Review and Evaluation Report

of the reviewed NDA to document their conclusions regarding the effectiveness

of the drug based on the data submitted in the NDA. The report discusses the

strength of evidence relative to the established statutory standards of effectiveness

and data quality, any unresolved issues, and gives final recommendations on the

evidence.

The Statistical Review and Evaluation Report is an official document and

is submitted to an electronic archival in CDER. When a NDA is approved, the

report becomes part of the public record documenting the FDA’s positions about

the product. It then becomes available (minus any redacted materials) for public

use on the FDA website.

F. STATISTICAL NDA REVIEW TEMPLATE

The Office of Biostatistics implemented a Statistical NDA Review Template that

is being used to document statistical findings in a structured, organized format,

so that all statistical reviewers follow a similar structure for the report.

Statistics in the Pharmaceutical Industry74



Review standards define workable guidelines, which ensure that all key

review areas are addressed. The Template promotes consistency in review

practices so that all relevant information is adequately reflected and essential

results of evaluations are relayed in an organized order of presentation. Template

use allows flexibility in intellectual execution of the review while requiring

minimal adherence to prescriptive methods of documenting findings and

conclusions.

This tool serves as a guide in review development and fosters effective

communication among a range of audience disciplines. Reviewers are encouraged

to summarize overall findings from detailed discussion of individual study

reports by distilling this information into the concise, clear summation of an

Executive Summary (www.fda.gov/cder/Offices/Biostatistics/default.htm).

The statistical reviewers are currently required to follow this Template to

achieve consistency of the statistical review reports with respect to the format.

G. ADVISORY COMMITTEES

The FDA has 30 Advisory Committees organized along product lines and body

systems (e.g., cardiovascular, gastrointestinal products, etc.). The members of

each committee are (rotating) non-FDA experts in the disease areas who are

convened periodically to give advice on some of theAgency’smost difficult and/or

complex review issues. The members of an advisory committee complement

the Agency’s scientific expertise by bringing cutting-edge research, patient and

patient caregiver concerns, and industry and consumer advocacy viewpoints to

the table for discussion (http://www.fda.gov/cder/handbook/advisory.htm). Both

the sponsor of the particular submission and the FDA reviewers present their best

case for consideration before the committee. However, during the open public

hearing session, any person may make a presentation of scientific fact or personal

experience.

H. TRANSPARENCY

The content of this chapter is intended to make the IND and NDA review process

transparent to outsiders, especially drug sponsors who are actively interested in

the review approach of CDER reviewers. The scope of the review process as

outlined here aims at helping drug sponsors understand the process clearly and

inspiring them to develop IND and NDA submissions smartly and efficiently.

This approach is consistent with the concept of transparency, which is one of

the operating principles of the FDA.

I. CONSISTENCY

The NDA Review Template and the Statistical Review and Evaluation Report, as

described, are aimed at achieving consistency among statistical reviewers across

medical review divisions and multiple disease areas on fundamental issues.
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Again, this approach addresses the idea of consistency, which is another

operating principle of the FDA.

IV. CONCLUSION

Industry and the FDA must, out of necessity, work closely together in conscienti-

ously maintaining and strengthening the public trust in the safety and efficacy of

the nation’s drugs. It should be prominently noted that without voluntary efforts

by a majority of drug sponsors to meet and exceed the requirements of the law,

the FDA would never have enough staff or resources to enforce its requirements.

It is the responsibility of the FDA and industry statisticians to work together to

ensure that drugs are marketed only after rigorous scientific evidence has

demonstrated that they are both safe and efficacious. The American public

demands and expects this type of professional dedication.

Researchers in the Office of Biostatistics (OB) have been active in producing,

presenting and publishing papers on the various aspects of regulatory statistical

research. The list of publications is a long one and even a brief summary of these

papers is beyond the scope of this chapter; they are published in pertinent

statistical and scientific journals. Readers are encouraged to review these

published papers with a view to extending, enlarging, as well as enhancing their

perspectives and gaining greater insights into our evaluation process of the

IND/NDA submissions. In this connection, a list of selected publications by OB

statistical scientists is available on the website.

V. DISCLAIMER

The authors are solely responsible for the views expressed in this chapter and

these views do not necessarily reflect the official position of the FDA on this

matter.
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I. INTRODUCTION

Designing clinical trials of pharmaceutical products shares many characteristics

with other types of scientific study. General principles of experimental design

applied to other types of scientific studies also apply to clinical trials, i.e., to

reduce experimental error in the data collection and to avoid bias in the decision

making. The unique characteristic of clinical trials is that the experimental units

are human beings, commonly called subjects — and usually sick ones at that.

Modern clinical trials must be designed in such a way that the participants can be

well informed about the conduct, purpose, and reasonable risks and benefits of

the trial, and that the welfare of each participant remains more important than

carrying out the trial as designed. The Declaration of Helsinki,1 item 5 of Basic

Principles states “ … Concern for the interests of the subject must always prevail

over the interests of science and society.” The basic purpose of the trial is to

obtain pharmaceutical information that is applicable to the people who will
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take the drug in the future. In short, the design must be such that the interests

of the individual are balanced with the interest of the group.2 Generally speaking,

the clinical trials must meet the requirements of “Good Clinical Practice” as

described in ICH Guideline E-6 (http://www.ich.org).

A century ago volunteers were given diseases such as yellow fever and

malaria in experimental conditions, and some of these persons lost their lives.

This predictable loss of life of a few of the volunteers resulted in the saving of the

lives of thousands of other persons because of the more rapid scientific advances

made from those experimental studies. However, acceptable research behavior

and government regulations such as FDA/guidelines/guidance (http://www.fda.

gov/cder/guidance) and EMEA guidance (http://www.emea.eu.int), have drasti-

cally changed because of greatly improved mortality rates, changing moral

concepts, and also as a reaction to some prior abuses in clinical trials. Suffice it to

say that at the current time in the United States and other countries with

comparable research philosophies, a primary characteristic of all clinical trials is

a concern for the safety of the volunteer participants. The general principle of

informed consent, that all participants will be fully informed of the characteristics

of the trial, is now universally accepted, although efforts to make it work better

continue.3,4

Each class of drugs generates unique characteristics for clinical trials.

For example, antibacterial drugs tend to have an action that can be measured in

days and safety that can be measured in months, while a cardiovascular drug

produces an actionmeasured inmonths and safety measured in years. This chapter

will discuss some of the fundamental characteristics of all clinical trials and leave

to the later chapters the specific characteristics within a few of the unique fields.

II. CLINICAL TRIAL DESIGN

A. TREATMENT COMPARISON (CONTROL)

The first characteristic of clinical trials is that any clinical trial of the drug must

be controlled in the scientific sense of having some comparison, called control,

for the results of the drug under study, preferably a comparison provided in the

same clinical trial, i.e., concurrent control. A common type of control in many

therapeutic areas is a placebo control, a type of study in which at least some of

the study participants receive a preparation with the physical appearance of the

drug but none of its pharmacological properties. This type of trial is considered

ethical in those instances where there is no standard treatment and where placebo

is well known to cure a high proportion of persons, e.g., pain relief or mood

enhancement. Chapter 9 provides more information on analgesic trials.

A study may also be controlled through the use of a positive control for the

disease under study, particularly if the trial is in patients with life threatening

disease such as cancer (see Chapter 6 for details and relevant statistical issues).

An example would be an antibiotic or an oncology drug known to be effective,

which could be used in instances where it would not be ethical to deny treatment

Statistics in the Pharmaceutical Industry80

http://www.ich.org
http://www.fda.gov/cder/guidance
http://www.fda.gov/cder/guidance
http://www.emea.eu.int


to participants. Sometimes a trial may have placebo and active controls

simultaneously for the purpose of internal validation or assessing relative efficacy

and safety compared with a drug in the market. Another type of concurrent

controlled trial is the dose–response trial using different doses in the same trial for

comparison. Other control possibilities that are much less frequently used are

historical controls and no control.

B. MASKED EVALUATION (BLINDING)

Another characteristic of the clinical trials is that all evaluations must be made

without bias. Painful experience has proven that patients and clinical evaluators

have subjective opinions and views of life that can affect the outcome in most

trials. These potential biases must be thwarted by proper experimental design.

The most common design technique, called blinding, is to make the study

subjects and evaluators in a clinical trial act as if they were blindfolded or masked

as to the identity of which medication is which in the trial. These trials are most

commonly called “double-blind,” short for double-blindfold, although “double-

masked” is a preferable term by some.5 This is accomplished by making the

medications look exactly alike and be alike in all characteristics that might

be observed, save only the chemical differences.

Moreover, the labeling must be done in such a way that a person having

access to the complete set of labels would not know which medication is which

and therefore could not tell which medication would be given to the next

participant. This is usually accomplished by numbering the medications

sequentially (1, 2, 3, 4,…) and having separate codes, which are usually stored

in a secured place like a fire-proof locked cabinet and available only in an

emergency situation, to describe which number is equivalent to each medication.

Each container of medication used in interstate commerce must be labeled

with the contents, but the labels used in pharmaceutical trials are generally

a variety of sealed labels such that one can only determine the medication

by breaking the seal (often glue sealed by heat). If the label is opened, it cannot be

resealed again. Obviously, the labels are also made so that holding them up to the

light does not permit reading what is inside. Thus, return of the sealed labels is

one important piece of evidence that no one has discovered which medication

was taken by which patient. Clearly, the degree to which the placebo matches the

active medication and other characteristics of the trial also contribute to the proof

that no one knew which medication was which.

Most trials are double-blind or double-masked in the sense that neither the

participant nor the evaluating clinical personnel knows which medication is

which. It is also possible for trials to be single-blind. In the more common single-

blind situation the clinician in early trials knows which is the study medication

and which is the placebo, to be able to more knowledgeably monitor progress of

the trial and side effects, but the participant in the experiment does not know

which medication is which. In some single-blind situations — for example, when

the medication cannot be blinded, as in the comparison of a surgical treatment
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and a drug treatment — the patient is aware of which treatment is which but the

evaluating clinical personnel are “blindfolded.” Again, this is a single-blind trial.

Notice that sometimes when two treatments (say, A and B) cannot be made

identical or are given with different timing of the doses, a technique, called

double-dummy, can be used to conduct a double-blind rather than single-blind

trial. In this case, each treatment will have an active version and a placebo

version. Then each subject will take either the set of active A and placebo B, or

the set of active B and placebo A. Finally, some studies are done on an open-label

or unblinded basis — for example, when all concerned are aware that an

experimental drug is being used for collecting long-term safety information.

C. RANDOMIZATION

Randomization is a process of assigning subjects to treatment groups using an

element of chance to avoid bias. Randomization serves four important purposes.

(1) It avoids known and unknown biases on the average in the assignments to

treatment groups. (2) It balances known and unknown prognostic factors on the

average. (3) It helps convince others that the trial was conducted properly. (4) It is

the basis for the statistical theory that allows us to calculate probabilities.

In general, patients are assigned to treatments based on a randomization

schedule. There are many ways of allocating drug names to the labels numbered

in order. While many methods are suggested in textbooks and pamphlets, those

who frequently randomize use a random permutation schedule. Random

permutations are the most general scheme for randomization, and they can be

tailored to almost any design requested.

Consider the numbers 1, 2, 3, and 4. There are 24 different orderings of these

four numbers, e.g., 1, 2, 3, 4; 1, 2, 4, 3; 1, 3, 2, 4, and so on through to 4, 3, 2, 1.

If four random numbers are generated, then the rank of the magnitude of these

numbers can be considered as an ordering. For example, suppose the random

numbers were 378, 842, 103, and 927, then these random numbers, considering

their ranks fromsmallest to largest, would have generated the permutation 2, 3, 1, 4.

Because each rank had an equal chance of occurring in each position, each of the

24 possible orders would have had an equal opportunity of being chosen.

To apply the random permutation technique to choose two persons to receive

the active drug and two to receive the placebo, one decides before starting that

numbers 1 and 2 will be active drug, for example, and 3 and 4 will be placebo.

The random permutation then chooses which persons will receive which drugs.

The extension of this schedule to larger sizes should be obvious. The schedule

can be done by hand with ease in small trials, programmed into a computer, or

found in software packages. However, the pharmaceutical regulatory agency

expects “The randomization schedule should be reproducible (if the need arises)”

as stated in the ICH Guideline E-9. Using software packages to generate

the randomization schedule is now the standard practice in the pharmaceutical

industry.
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To avoid bias or a confounding effect, a randomization technique, called

stratification, is commonly used in clinical trials.6 For multicenter trials, the

randomization is mostly stratified by study center, so that within each center

subjects are randomly assigned to treatments in a prespecified proportion

between treatments and most commonly in equal proportion. In this way center

effect will not be confounded with the treatment effect and can be accounted

for by a proper statistical analysis model. Stratification sometimes is performed

for demographic and prognostic factors also. For example, if gender or severity of

disease has a potential impact on the effect of the treatment, these factors may be

stratified in the randomization to ensure proper balance in these factors.

In general, randomization should not be stratified for more than three factors,

particularly when a trial may include centers with low recruiting capability.

Changes over time during the course of a designed trial are always a

possibility. For various reasons, a trial may even stop before all patients have been

entered. The statistician can make the design more robust against these

contingencies by randomizing the sample in blocks that are complete (i.e., all

treatments are included in the same block) and balanced at the end of each block.

For example, in a three-arm trial (i.e., three different treatment groups), using

blocks of six patients each would guarantee the desired balance at the end of every

sixth patient. In this way, randomization is carried out within each block, which is

one form of “restricted randomization.” In like manner, in the 200-patient study

with two drugs, one could create blocks of size 4 or 6 (or even 8 or 12 with one

smaller block) so that the study would be balanced at the end of each of these

blocks. Sometimes, one also randomizes the block sizes to protect against

investigators guessing the final treatments in a block. One caveat of using random

block sizes is that with so many different disciplines of personnel involved in the

clinical trial operations, there is an increased chance of mis-randomization that

may cause serious consequences, such as invalidity of the results or high financial

cost for correcting the problem. Therefore, the risk/benefit ratio for using random

block sizes should be carefully considered.

There could be one or multiple blocks per center in a multicenter trial.

Of course, one should not tell any investigator or relevant staff of the study about

the block size, and given the complexities of the usual trial and sophistication

of the blinding they will not be able to guess it accurately.

Statisticians have rejected alternatives to randomization for decades,

although there is an active field of research in useful modifications to strict

randomization. For example, Royall7 examined ethical and scientific dilemmas in

randomized clinical trials and urged statisticians to improve the statistical

methodology of nonrandomized clinical trials when randomization is not

ethically or practically feasible. An excellent source is the December, 1988

issue of Controlled Clinical Trials (volume 9, number 4), which features a

number of articles about randomization, mostly written by John M. Lachin.

An area of research that is still developing is unequal randomization.

Do the two or more groups have to have the same number of patients?

This type of clinical trial is not unusual outside of the pharmaceutical industry.
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Thus, if the group is somewhat convinced that treatment One is better than

treatment Two, it is sensible to randomize so that more patients end up on the

better treatment which is thought to be treatment One. One such simple

schedule is the play-the-winner rule.8 If treatment One results in a success, then

treatment One is also used on the next patient. When treatment One results in a

failure, then treatment Two is used on the next patient. If this process is

continued for the whole trial, the result is that more of the patients will have

used the better treatment. Some of the literature in this field is found under the

title of biased coin or adaptive randomization.9 Although these designs are of

great interest to theoreticians and are very useful in certain instances, they are

not used very much in the pharmaceutical industry. The schedules are more

difficult to use and introduce problems when trying to convince others of the

efficacy of the product, and standard designs are usually adequate.

Another area undergoing rapid development is called “adaptive designs.”

More and more commonly, designs are being used that may change after the

initial batch of observations is made. These are modernizations of sequential

statistical, group sequential, and interim analysis designs.10–13 They are driven

by the desire to make timely decisions in the middle of a clinical trial, rather

than the more expensive and time-consuming task of completing one study and

then starting a new one. See Chapters 13 and 14 for details in this area.

III. STATISTICAL DESIGN

The actual design of a trial that explains which patient receives which drug

(called “treatment” in the jargon of design of experiments) can be classified in

one of two general categories. The trial may be a parallel design in which each

patient receives one and only one treatment (although that treatment may be given

at more than one dose), or a crossover design in which the same patient is given

two or more different drugs. In this latter case, the patient serves as the patient’s

own control for treatment comparison, because the comparison of treatments

is made within the patient.

Some time ago, crossover designs were considered among the best in

pharmaceutical research. The theoretical advantage of a smaller sample size with

a crossover design was emphasized along with the advantage of making

comparisons within patients, which is especially appealing to clinicians.

Problems with crossover designs are also important. Suppose there is an adverse

effect found 1 week after the end of the study. How do we know which drug,

if either, should be held responsible? As an extreme example, if ten patients died

after a crossover study, all we would know is that each took each medication.

On the other hand, in a parallel study, we might know that five patients were on

placebo and five on the test drug, or that nine patients were on the test drug and

only one was on placebo. Clearly the parallel design offers us potentially more

information about side effects. The advantages and disadvantages of crossover
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designs are discussed more completely in Chapter 21 with regard to

bioavailability studies. The U.S. Food and Drug Administration14 recommends

the use of two-treatment crossover designs for bioequivalence studies.

All the usual designs available in the statistical design of experiments are also

candidates for pharmaceutical trial designs — for example, the completely

randomized design, inwhich all patients are divided into the group on the new drug

and the group on the comparison treatment, is very commonly used. Another very

commonly used design is the randomized block design in which groups of patients

are put together in such a way that patients in a “block” resemble each other

more than they resemble patients in other blocks. For example, in a study of pain

one might use as a blocking factor the type of operation, the gender of patients, the

degree of severity of the pain, or some combination of all three. In each case

the goal is to reduce variation by putting together those patients who are similar in

a block and then allocating the treatment within that block. The extreme example

of this design is thematched pair design, inwhich two persons are selectedwho are

very similar, and then drug and placebo are randomly allocated one to each

member of the pair.

Latin square designs are also frequently used if their size is small enough.

A Latin square is a type of randomized block design in which there are two

simultaneous blocking factors. Thus, patients could be blocked on degree of pain

in three classifications and in three classifications of type of operation. Frequently

the second blocking factor is the time period in which the drugs will be given.

For example, in a study of the pain of rheumatoid arthritis, one could design three

different levels of impairment and then have three pain relievers (new drug,

placebo, and positive control) given for 1 week each over a total of 3 weeks

of treatment. This is also another example of a type of crossover trial.

Efficient experimental designs defined according to certain statistical

optimality criteria are desirable in pharmaceutical research. However, most

frequently the optimal criteria, for which there is a theory already developed,

impose some assumptions that are found to be hard to meet in the clinical setting.

Therefore, these designs are little used in clinical trials. There is an opportunity

for a great deal of statistical research using current optimality criteria as well as

developing new optimality standards to suggest the most efficient designs that

will also accomplish the necessary goals of practical research. Among the latter

are robustness against frequently encountered problems of clinical trials, balance

with respect to all important factors, and the challenge of convincing others of the

correctness of the interpretation of the results of the trial. Simpler designs lead to

obvious interpretations; complex designs lead to statistical interactions,

extraneous but important variables, other unavoidable realities of practical

research, and difficult interpretations.

Any of the designs with blocking can be incomplete in the sense that not all

of the treatments are used in each of the blocks. The usual goal is to balance these

incomplete blocks in such a way that the number of treatments within a block is

the same in all of the blocks and each treatment appears with each other treatment

an equal number of times.
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An interesting example of this variety involved the use of three analgesic

drugs that were self-administered by pregnant women during labor pains.15 There

were three analgesic mixtures: 50% nitrous oxide and 50% air, 75% nitrous oxide

and 25% oxygen, and 0.5% trichlorethylene and 99.5% air. The usual randomized

block experiment would have each patient (the blocking factor) use each

analgesic in random order. The constraint was that patients were not expected to

be able to use more than two of the analgesic mixtures during their labor pains.

The design selected was to have each of 150 women use two mixtures such that

each of the three pairs of drugs was compared by 50 randomly selected women.

Moreover, the 50 women were subjects in a crossover design so that 25 had the

first mixture followed by the second, while the other 25 had the second mixture

first followed by the first mixture. Each subject was asked, “Which was more

effective in relieving the pain of uterine contraction?” in order to evaluate the pair

of analgesics. The results showed that the 50% nitrous oxide mixture was the

weakest and the other two were about equally effective.

This design is a balanced incomplete block design because each block is

missing one analgesic and the blocks are balanced for all possible combinations.

This example is mentioned to suggest that the standard designs mentioned are

only the simplest of samples out of a vast design warehouse. The simplest designs

have the advantage of being easier to finish successfully in practical situations

and often become the ultimate sophistication in clinical trials.

IV. PHASES OF CLINICAL TRIALS

When drug development leaves the laboratory and reaches the clinical stage,

it has a set of phases of clinical trials to traverse. Sometimes the precise phase

is vague so it is difficult to differentiate one phase from another. This is because

a trial may have several different goals in the protocol, or the goal of a trial may

be multiple, among other reasons.

A. PHASE I

When the study drug is first time tested, we need to know how the body reacts to

the drug, including the processes of absorption, distribution, metabolism, and

excretion (ADME) of the drug in the body over a period of time, i.e., to do

a pharmacokinetic trial. We also need to know to what dose level can humans

tolerate the drug, i.e., to find the maximum tolerated dose (MTD) in a dose-

ranging trial. All these trials are Phase I trials and usually are done in 20 to 80

normal healthy volunteers in the setting of a special clinical facility. Sometimes

study drugs for certain diseases are likely to be more toxic, e.g., AIDS and

oncology drugs are in this category. It is considered unethical to expose healthy

volunteers to such toxic drugs. In this case, the trials are conducted in patients

with the underlying disease.
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B. PHASE II (SEE REF. 16)

Phase II clinical trials are usually the initial phase of clinical studies that involve

patients/subjects who have the disease or condition to be treated, diagnosed, or

prevented, except in some therapeutic areas like oncology or AIDS. Sometimes

Phase II trials are classified into two categories: Phase IIA and Phase IIB.

Phase IIA clinical trials are usually conducted by highly trained clinicians

called clinical pharmacologists who make the study of therapeutic medications

their specialized area in medicine. In these trials information concerning degree

of safety and the effectiveness of the drugs in humans is obtained in a selected

population of 100 to 300 subjects who have the disease or condition to be treated,

diagnosed, or prevented. Usually, these trials are sufficient to select the optimal

dose or doses of the drug for usual clinical use. Also, the common side effects on

a subjective basis, e.g., dizziness and nausea, are discovered, as are common

biochemical side effects, e.g., changes in liver enzymes or sodium levels.

Phase IIB clinical trials are those of well-controlled trials to evaluate safety

and efficacy in subjects who have the disease or condition to be treated, diagnosed,

or prevented. These trials usually represent the most rigorous demonstration of

efficacy.

There are interesting design problems associated with these early drug trials.

Kaitin et al.17 provide some useful insights. Since the audience for these trials is

small and more specialized, we have not devoted much space to them. Instead, we

shall discuss general problems of trials and several of the problems encountered

in later drug trials.

C. PHASE III

Typically Phase III trials are multicenter trials in populations of 500 to 3000

(or more) subjects for whom the medicine is eventually intended. The Phase III

clinical trials that prove the effectiveness and safety of the medication are the

ones which provide the further detailed comparisons to verify the earlier results

from Phase II, thus frequently called confirmatory trials. In addition, less

common side effects are discovered during these larger and more extensive trials.

For a number of reasons, Phase III trials are usually conducted by general

clinicians or specialists in a particular clinical field, rather than by those

specifically trained in clinical trials. First, there is the desire to use the drug in

a more typical environment rather than in the highly controlled situation

of a clinical pharmacologist in a research-oriented setting. Likewise, one must

find clinicians who have larger numbers of patients in order to provide the

numbers of drug-recipients necessary to verify efficacy and safety. Finally, it

must be pointed out that later clinical trials are rarely of as much scientific interest

as the earlier trials, and thus do not as frequently lead to medical journal articles,

the basic currency of a “publish or perish” scientific standard.

The clinicians who do participate are motivated by other factors. These

factors include financial benefits for the participants and investigators, access to
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a drug that would not be available outside the research program, the opportunity

and status of participating in a research program, and doing a favor for an old

friend. Clearly the research design must be robust against any biases that could

creep into a study because of these reasons for participating in it.

Some clinical trials are conducted after submission of the NDA, but before the

product’s approval and market launch. This type of trial is called Phase IIIB.

These trials may supplement earlier trials or seek different kinds of information

like quality of life measures or other information for marketing promotion.

D. PHASE IV AND PHASE V

One of the issues that makes drug approval at the FDA difficult, is the question

of safety. Sometimes a question of a side effect from phase III trials is not

completely resolved and additional information is needed. Sometimes after a drug

is approved and used by thousands or even millions of people, some side effects

that were not known at the time of approval may be discovered. An alternative is

to do studies of side effects after the drug is approved for marketing. Frequently,

the FDA needs further information on a safety issue at the time of NDA approval

and requires the sponsor to commit some clinical trials to provide further safety

information. Also, the sponsor may want to do postmarketing studies to collect

additional details of safety and efficacy information or further information on

drug–drug or drug–demographic interaction, or to evaluate formulation,

dosages, treatment duration, etc. These postmarketing studies are generally

called Phase IV studies. In fact, postmarketing studies that are primarily

observational or nonexperimental are frequently called postmarketing surveil-

lance or simply called Phase V studies.16 The observational studies are not

randomized clinical trials and fall more into the realm of epidemiology than

biostatistics.

V. STUDY PROTOCOL

Before any clinical trial is carried out by a pharmaceutical company, the details

of the study are first agreed to and expressed in a written document called the

study protocol. Generally speaking, the protocol is a document that describes

the study objectives, design, methodology, statistical consideration, entrance and

exclusion criteria, and other organization of a trial. At most pharmaceutical

companies, the study protocol is the joint effort of the clinical scientists,

the biostatisticians, others with a concern in the study, and the investigator.

A general discussion for pharmaceutical trials is found in Ref. 18.

The protocol includes information on the objectives of the study as well

as details of the study. The objectives should be stated as precisely as possible,

e.g., “This study will investigate whether the new drug causes weight loss in

diabetic patients of ages 45 to 65 when compared with an identically appearing

placebo.” The details include the study design (e.g., 8-week parallel trial, control
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treatment, blinding, randomization); the criteria for inclusion of patients into the

study, including how patients will be diagnosed for the disease being treated;

criteria for exclusion of patients from the study; the clinical and laboratory

procedures that will be carried out with each patient; the description of the drug

treatment schedule (doses of drugs, route of treatment); description of laboratory

and other tests; the criteria that will be used to measure efficacy; and the planned

statistical analysis that has to be very specific for primary parameters and other

statements about how the study will be carried out.

In the statistical methods section, the statisticians describe how the sample

size was derived and how they will analyze the data. The statistical procedure for

primary analysis has to be clearly described in great detail, including what level

of significance is to be used. If an interim analysis will be performed, it is

critically important to describe when it will be done, by whom, and what methods

will be used for the analysis, particularly how the Type I error rate will be

controlled and who will have access to the results. The procedure to handle

missing data should be stated. Finally, the protocol contains the method

of eliciting information about adverse events and the course of action to be taken

if adverse events are reported. The set of case report forms that will be used

for this study is usually attached to the protocol as an appendix.

In summary, the protocol contains all of the directions that can be written out

explaining how to do a study. The challenge is to maintain a balance between

completeness and brevity. The protocol must be long enough to contain

meaningful comments on each of the points just mentioned. On the other hand,

if the protocol gets to be too long, then it is unlikely that the investigator and other

personnel involved with the study will carefully read the details of the protocol.

In that case, the investigator and co-workers are likely to violate some of the

requirements specified in the protocol. The statistician then has a difficult time

trying to analyze the data and interpret the results.

Studies are reviewed by an Institutional Review Board, which considers the

ethical issues in the study. Some larger and longer pharmaceutical studies may

also have a Data Safety and Monitoring Board (DSMB) or Independent Data

Monitoring Committee (IDMC) that is concerned with patient safety and

dissemination of interim analysis information to protect the integrity of the trial.

As stated above, more and more frequently, studies are reviewed before

completion in an interim analysis. Information on this topic can be found in

Chapters 13 and 14.
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OVERVIEW

Statisticians know that patients who are randomly allocated to two or more

groups are supposed to have equal characteristics on the average, and thus an

inference from the study will validly compare two treatments. If the two groups

remain equal in the characteristics during the trial, then there is no bias in the

resulting outcomes since other factors or covariates will be equal in the groups.

On the other hand, if the studies, like many cardiovascular studies in the past,

only include male patients for instance, then any inference about females is based

on extrapolation and thus is not directly based on the data collected in the trial.

In this chapter, we try to describe some of the possible biases that exist in

selecting the patients who actually take part in the trials. For example, one

concern is that if a drug has been shown to be effective in patients aged 21 to 75,

should it also be approved for the same indication in those over age 75? Should it

be approved for children based on these results in adults? Should it be approved

for pregnant women if they were excluded from the studies? Even if the

medication was not specifically studied in and approved for a subgroup of

the population, individual physicians still have the problem of choosing

a treatment for their specific patients, so-called “off-label use.” Moreover, if

Doctor A takes care of patients of a different ethnicity than those who were in the

trials, do the results of the published studies still apply to those patients? This is

an important issue in global drug development to market a drug in a new region

with a different population as shown in ICH E-5 Guideline (1998).1

Several themes are intertwined in this chapter. For the clinician-investigator,

the concern is whether there will be enough patients willing to take part in the

trial to fulfill the sample size requirement calculated by the statistician. For

the clinical monitor, the concern is to decide whether the investigator,

or investigators in a multi-site study, will be able to obtain an adequate supply

of the desired patients in the desired time frame. For the statistician, one concern

Statistics in the Pharmaceutical Industry92



is whether the patients entered into the study will be representative of the

population desired. All of these concerns focus on whether there are enough

candidates available for the trial and whether a sufficient and representative

number of them will actually take part in the trial. Among other factors, these

decisions involve the subjects’ attitudes towards clinical research, the inclusion

and exclusion criteria in the protocol, the content and implications in the

Informed Consent, and the investigator’s ability to resolve the situations that arise

during a clinical trial. The challenge for the statistician is to understand the biases

that are operative in selecting those patients who actually participate in the

studies. This greater insight will often suggest statistical comparisons that will

illuminate the results of a clinical trial.

The focus of pharmacology in the 20th century was to characterize the effects

in the average patient. In the 21st century, the focus will continue to shift to

finding and characterizing those patients in whom the medication works and

those in whom it does not work. Can one describe the differences in those patients

who will show an important side effect? Whether the basis for the difference is

genetic or environmental, the more one understands, the more effective will be

the use of the medication.

Most studies provide only limited information about the non-participants.

A couple of exceptions are Siminoff et al.2 and Mengis et al.3 which describe

patients in breast cancer trials and Phase III leukemia trials, respectively.

Subject recruitment and retention is quite a challenge in clinical trials. Jean

Sullivan4 characterizes four types of barriers to success in subject recruitment and

retention and provides extensive discussion in each category of the barriers.

To improve subject accrual to clinical trials, the barriers to recruitment and

retention need to be identified and overcome accordingly. For further advice on

Good Recruitment Practice in clinical trials, see Joan F. Bachenheimer.5

Michael Weintraub and José F. Calimlim described some of their experiences

in obtaining patients for clinical trials in the following excerpts from Weintraub

and Calimlim:6

Part A: The Outpatient by Michael Weintraub

Part B: The Inpatient by José F. Calimlim

This chapter provides some actual observations on what happens with patient

selection between the time a trial is designed and the time study patients are

started on medication.

We know that pregnant women and often women who may become pregnant

during a trial have frequently been excluded from clinical trials. Persons addicted

to illegal drugs have also been excluded. An important concern then becomes

apparent when a clinician wishes to treat patients in one of these groups and

discovers that no or few studies have ever involved persons in these classifications.

One example of the lack of representativeness is the use of geriatric patients

in research articles. Geriatric patients are underrepresented among patients in

clinical trials. For example, Morley et al.7 showed that the percentage of articles
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on humans that included subjects over 65 years of age grew from perhaps 12%

in 1966 to 15% in 1986 while discharges from short-stay hospitals of the same

persons increased from 17 to 31% in 1986. In addition we note that geriatric

patients take more medications than do younger patients and yet are used in trials

far less than their share of consumption of the final product.

Major studies find the descriptionof patient recruitment to be an important part of

the study characterization. For example, the methods, strategies, costs, and

effectiveness of recruitment for theLungHealth Studyhave been explained in detail.8

PART A: THE OUTPATIENT BY MICHAELWEINTRAUB

I. INTRODUCTION

Patient selection affects many aspects of a clinical trial. It determines whether or

not the clinical trial can be carried out and how long it will take to complete.

It will affect the outcome of the trial and thus will directly influence the

regulatory agency. The selection process will also affect the clinician’s ability to

generalize the findings of the study. Ultimately, then, selection of patients for a

trial can even influence drug utilization. This section deals with outpatient

populations having chronic conditions.

The patientswho end up in clinical trialsmay represent only a small percentage

of the theoretical universe of available patients. Usually the analysis will not

suggest that extrapolation from the study sample was unjustified.

In the University of Rochester Rheumatology Unit, the names of patients and

their diagnoses are kept in a coded card catalog. It is possible, then, to retrieve

quickly a list of all patients having the diagnosis of rheumatoid arthritis. We knew

from experience that the diagnosis recorded on the cards should not be accepted

as final, since further investigations often reveal a second disease or, with the

passage of time, a revised diagnosis may be made but not recorded in this file.

Also, the diagnosis appearing on the card may have been based on the physician’s

clinical impression rather than on the rigid criteria needed in our clinical trial.

For these reasons we hired a medical student to do a feasibility study before

beginning the trial, and convinced the sponsoring pharmaceutical company to pay

for it. The student reviewed the records and entered diagnostic information on a

standard form, assisted the investigators in contacting the patients and finding out

whether they still met the diagnostic criteria, and set up appointments for

interviews and examinations. The initial survey of the card file provided 300

patient names and unit numbers. The charts of 150 of these patients were not

available for review. Several of the patients had died. Of the 150 patients whose

charts were available, 101 were rejected after screening for the following reasons:

40% had not been seen for more than five years.

10% did not meet the diagnostic criteria.

10% had recently been examined in the clinic and were reported to be in

remission or without symptoms.
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10% were judged by the rheumatologist caring for them to be unable to

respond to therapy other than surgical replacement of joints.

10% had drug toxicity akin to that expected from the study drug.

10% were considered unable to follow the protocol reliably.

Only 49 patients (16% of the initial sample) remained to be interviewed and

examined. As mentioned more completely elsewhere,9 31 patients were removed

from consideration for participation because:

eleven did not have disease activity great enough to warrant their

inclusion.

seven had concurrent disease not evident from the charts of screening,

including:

two with abnormal liver chemistries (SGOT, SGFT, and LDH).

two with asymptomatic gastric ulcers demonstrated by a screening

upper gastrointestinal (GI) series.

one who revealed after long discussion that she had frequent nausea and

vomiting with or without drug therapy.

one with an asymptomatic aortic aneurysm.

one with renal stones.

four were found unacceptable for reasons pertaining to the protocol, viz.

one in whom pregnancy was diagnosed by the radiologist (before he began

the upper GI series).

two who were taking other nonsteroidal, anti-inflammatory drugs not

noted in their records and were doing well on them.

one who had been scheduled for joint replacement.

four declined toparticipate because of inconvenience ordistance to the clinic.

five refused outright to participate in the study.

The reasons they gave were interference with their work, with family

responsibilities, or with their “life style.” Only one patient gave toxicity

as the reason, and that was prompted by pressure from her husband,

who feared that she might develop an ulcer and be unable to participate

in the enjoyment of his retirement. (This patient later entered an open-

label study of the same drug and did, in fact, develop a duodenal ulcer.)

II. THE SELECTION PROCESS AND GETTING ENOUGH

PATIENTS TO DO THE STUDY— LASAGNA’S LAW

AND ITS COROLLARIES

“Lasagna’s Law”10 teaches us that the incidence of the disease under study will

drastically decrease once the study begins. It will not return to its previous level

until the completion of study (if completion occurs before the investigators retire).

There are obvious and valuable public health aspects of this law, but it has an

undesirable impact on the conduct of clinical trials. The following discussion

Selecting Patients for a Clinical Trial 95



examines how Lasagna’s law operates to diminish acceptable candidates for

participation in a clinical trial.

A. THEMANY BECOME THE FEW

One can never know whether there will be enough patients for a clinical trial

simply from investigators’ estimates of howmany patientswillmeet the diagnostic

criteria. Physicians have selective memory of how many patients of a particular

type they see. Their interest in the study may cause them to overestimate the

number of suitable patients available. Files are frequently out of date or lost.

Patients move, retire, die, or recover. Ideas change over time as to what constitutes

the disease entity under study.

B. THE FEW BECOME THE FEWER

The diagnostic strictures imposed by the clinical trial decrease the number

of available patients even further. In clinical practice the diagnostic criteria need

not be as rigid as those laid down by, for example, the American Rheumatism

Association, the pharmaceutical industry, or the Food and Drug Administration.

In clinical practice, the special tests required to fulfill the stringent criteria are

neither done nor necessary. Patients with variations on the theme of the disease are

included under the basic rubric because such fine distinctions will not often affect

therapy. If in studies, however, only the strictest criteria are used, one ends upwith

the purest-of-the-pure sample, and this distillate will be very small. It is rarely

considered that such a refined population may not provide an adequate or fair test

of the studymedication. Data based on such a purified sample may not apply to the

population at large but may fulfill certain internal or regulatory needs.

C. AVOIDING THE LAZARUS TRAP

Once the diagnosis is assured, investigators must make a judgment on disease

activity, the stage of disease, and the severity of the disease. An optimum selection

would include patients with enough disease present to show a good response to

medication but not so much disease that they are unable to respond or have

irreversible changes — “burned-out” disease. The latter patients would not be

suitable for participation in a clinical trial because inclusion of their data could

cause a Type II error and a rejection of an active medication. Requiring a drug to

show its efficacy in patients in whom no othermedication has been of value is what

has been called the “Lazarus Phenomenon.” Including too many Lazaruses will

bias the study against the drug.

D. ALL GOD’S CHILDREN GET SICK FROM TIME TO TIME

The next major problem of the selection process is the presence of concurrent

disease that has been apparent from the very outset, before the pre-drug-screening

tests. Although some diseases obviously require exclusion, what about past

conditions that mimic the expected toxicity of the study drug? In the clinical trial
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of the nonsteroidal agent, the possibility of gastrointestinal toxicity with the study

drug alerted us to the need for obtaining the history of such disease in prospective

participants. Who should be rejected — patients who had an ulcer two years ago?

five years ago? ten years ago? Then, too, sick people frequently have other

diseases. Some diseases often coexist with, or result from, therapeutic measures

used in the disease under study. These are important determinants of a patient’s

suitability for inclusion in a clinical trial. Yet if everyone who has the merest

touch of another disease is excluded, the study population will shrink even

further. The question of what constitutes serious renal, hepatic, or cardiovascular

diseases also must be raised. Many diseases and laboratory test changes;

e.g., cataracts, pulmonary changes, electrocardiographic “abnormalities,”

hypertension, adult onset diabetes, decreased creatinine clearance, and increased

globulins may occur as part of the natural course of aging. Too often clinical logic

does not function in the elimination criteria for studies of drugs brought to Phase

II. The standard exclusions are used indiscriminately without any modification

based on the disease process, the type of medication, toxicity shown in preclinical

testing, or the toxicity demonstrated during Phase I trials.

E. THE FEW BECOME THE ROCK-BOTTOM FEWEST

Both Bloomfield11 and Lasagna10 have pointed out the therapeutic effect

of looking for study participants. As discussed above, the reasons why potential

study participants disappear once a clinical trial begins are quite mundane.

The main reason is the rigor of diagnostic criteria. Another is that the patient’s

disease changes; he/she may have had enough active disease during the initial

review but improves before the trial gets underway, or during the run-in period,

especially if the disease is cyclic. Then, as Joubert et al.12 have observed, during

the screening period potential participants frequently are found to have laboratory

pseudo abnormalities in the form of meaningless deviations from normal

values — cholesterol levels that are too low, minor electrocardiographic

variations, or even spurious laboratory vagaries. In the study under discussion, we

made sure that only patients with “cast-iron stomachs” and no laboratory

abnormalities would participate, i.e., whose upper GI series results were negative

despite high doses of aspirin/prednisone, and gold therapy.

Many times the abnormalities that show up in laboratory tests are caused by

illnesses unrelated to the disease under study, or to necessary therapeutic

intervention. It is more difficult to decide whether to include this latter group in

a trial. For example, in the first study we found a patient with increased liver

enzymes, probably induced by aspirin. She of course, was excluded from

participation. Similarly, aspirin therapy, especially if the patient takes aspirin

intermittently, can result in the shedding of large numbers of renal epithelial cells

into the urine. These may be disturbing to the person examining the urinary

sediment. Asymptomatic, serious illnesses may be discovered in patients being

screened for a clinical trial. We found two patients with asymptomatic ulcers

and one with an aortic aneurysm in the NSAID study. At this point in the
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selection process, investigators may turn their faces to the heavens and, like Job,

cry, “What else, Lord, what else?”

F. NEED YOU ASK?

There are other burdens. In the first study a young woman who had assured us that

she was practicing birth control became pregnant. Fortunately, the radiologist

was astute enough to question the patient about her menstrual period before

performing the upper GI series, and found she had missed her last period, which

should have occurred between the screening interview and the time for the x-ray.

Next the question arises: How will the patient’s other therapy effect the

outcome of the trial? A certain amount of standard therapy must be permitted in

many current clinical trials for ethical reasons. One could not, in good

conscience, deprive patients suffering from serious rheumatoid arthritis of all

their usual therapy. Investigators must learn a lesson from the early trials

of L-dopa, when patients whose anticholinergic therapy was discontinued

regressed to the point of severe Parkinson’s disease and required months to return

to even baseline status.13 Conversely, drugs that obviously interfere — ones

capable of causing adverse effects similar to those expected from the study

medication — should be discontinued. Competing agents should also be stopped.

Other, nondrug treatment modalities can be handled in a variety of ways. For

example, ancillary therapy can be forbidden, standardized or measured and

included in the analysis. Background therapy can be categorized (none, minimal

some, or maximal) by a set of rules and participants in each classification that

will minimize the differences between groups.14

G. PARTICIPANT PSYCHOLOGY: CAPRICIOUS AND INTELLIGENT

NONCOMPLIERS

Psychological factors play an important role in the physician’s assessment of who

should participate in a clinical trial. Physicians make judgments about the

patient’s ability to adhere to the protocol according to the patient’s past

demonstration of understanding prescription directions. “Capricious compliers”

should not be included in clinical trials, since they vary their medication intake

from day to day, according to ideas not necessarily founded on pharmacokinetic

or pharmacodynamic theory. On the other hand, “intelligent noncompliers” —

patients who stop medication for rational reasons — should be included if

they can be relied upon to notify the study physician.15 Patients who accurately

report adverse effects may also be known to physicians and would be

valuable participants in a clinical trial. The important psychological attributes

of participants in a trial are stability coupled with flexibility.

When considering the ethical aspects of the participant selection process,

physicians must also analyze the psychological factors that enable a patient to

make a reasoned judgment about participation in a clinical trial. The ideal

participants would be patients whowill carry through the clinical trial and actively

interact with the investigators rather than being passive experimental subjects.
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H. “NOT UNLESS I CAN BE IN THE PLACEBO GROUP, DOCTOR”

Finally, there are some patients who meet the diagnostic and disease activity

criteria, pass the screening tests, can respond to the study drug, and take the

correct amount and type of other treatment but who refuse outright to participate.

These are rare, however, in studies of treatments for chronic diseases. Patients

with active rheumatoid arthritis despite therapy often will want to participate in

a study that offers any hope of relief, no matter how remote. However, in a study

such as the trial of a postoperative analgesic discussed by Dr. Calimlim, more

patients decline to participate.

Some of the obstacles to participation mentioned by patients in our study may

actually have been veiled but valid refusals. Problems with the clinic schedule,

travel arrangements, and “cure” during run-in periods may give the patient ways

to decline participation without outright refusal. Healthy volunteers often find

alterations in life style the most disrupting aspect of participation in a clinical

trial,16 and perhaps this is an important deterrent to some patients as well. Fear

of toxicity is another. However, in a test of how well the patients in this study

recalled the information given them during the consent procedure, we found that

very little of the toxicity data was retained.9 Perhaps because of anxiety about

their disease and desire to participate in the study, patients did not really listen to

the discussion of the negative aspects of the trial. Other, less anxious patients may

have listened and refused to participate.

I. THE SELECTION PROCESS AND REGULATORY REQUIREMENTS

The choice of the target population must be made so that the drug has a fighting

chance. I would like to term this “Lazarus versus Grendel.” As previously

discussed, too many “Lazarus” patients can cause even the best-designed study to

reject an active, valuable drug. One must balance the availability of fresh, barely

treated, or even untreated patients with the ethically and practically more sound

practice of seeking difficult responders to participate in initial studies. This is the

“Grendel,” or worthy opponent, principle. (A lesser opponent than the terrible

monster Grendel would not have truly tested Beowulf’s courage, diminishing his

heroic credentials.) In the trial discussed here, we elected to use patients with

active disease despite full doses of standard therapy, but not patients with end-

stage or nonresponsive disease, even if they met the criteria for pain and disease

activity. If the drug works in tough but treatable (“Grendel”) patient populations,

one can say, “Great: We have an active valuable agent.” If, however, it fails in

the improper (“Lazarus”) patients, it does not mean that the drug could not be

effective in less severely ill patients.

J. BETWEEN A ROCK AND A HARD PLACE

Another goal of clinical trials related to the regulatory process is toxicity

monitoring. The selection process exerts an influence on this goal also. Screening

out every patient who has ever had, or could have, a particular sort of problem
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leaves a small, select group providing little indication of possible serious toxicity.

If, for example, patients likely to develop gastrointestinal disease are included

and each toxicity does occur, is it worse than if gastrointestinal lesions appear in

patients who have been carefully screened for any possible predisposing factor

or presence of disease? If, on the other hand, such toxicity does not occur, can one

then assume that it will not occur in the average patient? If all patients are

included in a study without any sort of clinical logic being applied, then we will

end up including patients who already have some disease (“toxicity”) before

treatment with the study drug. The results will then make the drug look falsely

toxic. Such patients may participate in late (Phase III) studies, where the goals are

different and information on general usefulness is being sought. If included

earlier, they must be equally distributed among the treatment groups.

III. PATIENT SELECTION PROCESS AND SCIENTIFIC MERIT

OF PUBLICATIONS

A. GENERALIZATION OF DATA TO OTHER PATIENT POPULATIONS

In following the rigorous selection process outlined above, who finally enters the

study? Does this patient population have any relationship to that seen in actual

practice? The answer, of course, is that there are many important differences

between study populations and patients in general, and these differences decrease

our ability to apply the study results to any other population. Patients in a clinical

trial are usually fairly homogeneous in terms of diagnostic criteria, other

treatments, and duration and severity of disease; in clinical practice the

population is much more heterogeneous. Diagnostic criteria are much more

stringent with study patients than with patients in general whose disease may be

more severe or more treatment resistant. Study participants may tolerate adverse

reactions because of perceived benefit for the more severe illness. Patients in

studies have often been referred to specialists, whereas in actual practice more

patients are treated by primary care physicians. Patients participating in Phase II

studies usually live in large cities, frequently those with university medical

centers and academic investigators, whereas in actual practice there is a mixture

of population densities, and physicians are less likely to be academic

investigators. Patients in studies may have less restriction on their time; they

may be retired, disabled, unemployed, or work for a benevolent company.

Patients in clinical trials tend to adhere closely to therapeutic regimens and are

good observers. This is not necessarily the case among the general population

of patients.

B. ETHICS AND EXTRAPOLATION

Ethical considerations may also affect the patient selection process and

the scientific merit of publication. Racial, social, and economic factors have

frequently been offered as an important distinction between patients who
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participate in a trial and those who do not. Participation by patients who stand to

benefit themselves or for the societal good from the research should be fostered.

In obtaining consent from our patients we found that much of the material on

adverse effects was forgotten.9 Two thirds of the patients could not remember at

the end of the study ever having been told that they could get an ulcer from the

medication, despite having been told five times about the ulcerogenic activity of

the drug, having been given the written patient information form to take home on

two occasions, having had an upper GI series, and having been questioned every

two weeks about gastrointestinal symptoms. One third of the patients incorrectly

noted that they had been told that this drug was safer than any other drug for

rheumatoid arthritis. Only one third of the patients reported apprehension about

the side effects of the new drug before the study started. This apprehension soon

disappeared, however.

We keep our patient information form short and to the point. They are written

in what we hope is an easily understood style, although, considering the

socioeconomic status and educational level of the patients, much more complex

material should have been easily understood. Actually, when tested, our patients

retained material contained in the information form, rejecting from memory only

the material on adverse effects.

An “add-on” study, in which test medication is added to the patient’s current

treatment, is frequently more ethical but presents serious difficulties for a clinical

trial. Add-on studies alter the target population, in many cases making it broader

and making the study more feasible. However, there will be less room for

improvement in each individual patient (part of the Lazarus dilemma mentioned

above). The resultant decreased experimental sensitivity and decreased patient

responsiveness should be taken into account in the creation of “power curves”

needed to determine the number of patients who should be in the study.

The studies will be “dirtier,” that is, there is likely to be an increased incidence

of adverse drug reactions and less clear cut response attributable to the new agent.

Data from add-on trials are easier to apply to the patient population at large.

The ethical nature of the add-on studies, as well as the ability to be practical and to

extrapolate to the general population, probably outweighs the drawback of results

that are harder to interpret.

C. WHAT,MEWORRY?

Why should investigators and monitors in the pharmaceutical industry worry

about patient selection processes and the effect on extrapolation? The most

important reason relates to the possibility of achieving a true result from the study

and a valid estimate of common toxicity. In addition, medical students have

increasingly been trained in the critical evaluation of the literature. Physicians

will downgrade studies in which the selection process appears to have biased

the outcome, or in which the selection process was so rigid as to preclude

extrapolation to their patient population. Then they will be less likely to use the

drug except in selected patients. Regulatory bodies carefully analyze the study
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population’s characteristics. Labeling restrictions (or even approval) may thus

be affected by participant selection.

IV. IMPROVING THE SELECTION PROCESS

Bloomfield11 recommended that investigators should check records and do formal

pilot studies, assessing the availability and suitability of the patient population at

hand for participation in a clinical trial and if the protocol is workable. Investing a

small amount of time and money in such prestudy surveys will save the concerned

parties much grief. Sponsors, investigators, and regulators must remain flexible in

determining selection criteria. Small changes in the criteria may make vast

difference in patient availability without materially influencing the outcome of the

study or its extrapolatability. For example, in a study of a new hypnotic agent,

slightly increasing the age limits for entry resulted in a large increase in potential

participants, facilitating completion of the trial.

A corollary of the “flexibility” recommendation is to tailor the criteria to the

institutions. Clinical trial logic must be applied at all stages of the process of

patient selection — the diagnostic criteria, the prognostic criteria, the distribution

of patients in the treatment groups, and the decisions made about adverse

effects. In some areas the patient population may have certain demographic,

diagnostic, or therapeutic idiosyncrasies, which would not deleteriously affect the

outcome of the study but, if included, might improve the availability of patients.

These comments are intended to be an argument against many large,

multicenter trials. The latter studies tend to be carried out by “data gatherers”

instead of investigators. The necessary patient selection judgments are the

province of the investigator on the scene. I believe that data gatherers do not have

the time, the training or the inclination for these tasks.

V. AVOIDING STUDIES THAT RESEMBLE FINE SCOTCH

(AGED IN THE CASK)

Another suggestion for rapid completion and for statistically and clinically

significant results is to start all patients in the study at the same time whenever

possible. This avoids long drawn-out studies during which the quality of the data

deteriorates as investigator interest wanes. Additionally, starting patients as a

group decreases “improvement bias” noted in rheumatoid arthritis studies.17Given

the cyclic pattern of many chronic diseases, such as rheumatoid arthritis, patients

often enter studies during an exacerbation. They then would be expected to get

better with time, no matter what their treatment (regression toward the mean).

Assigning treatment and starting all patients at one time, generally after a delay

during which patients are selected for the study, diminishes improvement bias.

Some patients will have passed the worst of the exacerbation, and others will be at

some middle point.
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The procedures used in obtaining consent can also be improved. We allow

patients to bow out gracefully for whatever reasons they advance. We do not

attempt to convince a patient to enter a clinical trial, and if a patient asks for

more time to decide, we do not contact them again. They must contact us if they

later decide to participate. Whenever possible in our studies, an investigator not

associated with the daily care of the patient obtained the consent after discussing

the pros and cons of entering the study. (This is a safeguard that cannot be used

when physician/data gatherers conduct clinical trials.) Patients may feel

constrained to participate when their own physicians are the ones obtaining

consent. We have found that group discussions are an effective way of informing

participants about a study. Potential participants gather together and are given

information on the study and possible adverse effects. They ask questions and

hear the concerns of others that might not have occurred to them. Video tapes,

interactive computer programs, readability testing, and other newer methods for

improving communication have been applied to the consent process.

Discussion, worry, and thought about patient selection are often left

completely to the investigators. Pharmaceutical industry monitors should

continue involvement after the inclusion and exclusion criteria have been

established. Once the design and protocol have been established, the patient

selection process may be the single most important determinant of the outcome of

a clinical trial. Proper monitoring of patient selection becomes increasingly

important now that physicians in nonacademic centers are taking part in

multicenter clinical trials with standardized protocols imposed upon them. They

may have neither the expertise nor the experience to assess the influence of

patient selection on the outcome of studies. They may fail to realize how their

entering a patient into a clinical trial could affect the outcome because they see

only a small portion of the patients in the study. Patient selection problems are

less likely when investigators trained in clinical pharmacology or having wide

experience in performing clinical trials are involved in the design and

management of a study.

Precise or quantitative data of the impact of patient selection on the outcome

and extrapolatability of a study do not now exist. Although the population in the

study discussed above had an incomplete response to standard treatment and

differed from the population of arthritis patients as a whole, we were able to

demonstrate significant drug effects. How one uses the information from that study

in making a therapeutic decision or a regulatory decision is a difficult problem.

More thinking and research is needed in this area.

PART B: THE INPATIENT BY JOSÉ F. CALIMLIM

I. INTRODUCTION

The term clinical trial covers a wide variety of different activities. To many

people outside medicine it implies something exciting and dramatic and possibly
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dangerous, involving the early administration of a new drug to man. There are

clinical trials of that kind, but the majorities are more mundane but no less

important.18

It is not easy to generalize about clinical trials in new drugs because

applications vary so widely. On the one hand, the drug concerned might offer the

first effective treatment for a hitherto untreatable form of cancer, and on the other

hand it might be a new substance for the treatment of pain. Obviously the

approach to these two problems would be very different. However, there are some

basic principles which apply throughout this type of work.

Before a drug is offered for a clinical trial a great deal of work has been done

on it and a lot of money has been spent. If the drug is reasonably safe in animal

and Phase I clinical trials in man, and has an action which might be useful in the

treatment of pain, it will probably be accepted for study by a clinical investigator.

If the secondary trials turn out successfully and no serious toxicity is observed in

man, analytical and descriptive papers on the drug then go back to the Food

and Drug Administration for approval. If the proof of the efficacy and safety

is acceptable, the pharmaceutical company will be given permission to market

the drug.

We take the need for clinical trials to be self-evident. It is impossible

to conceive of a modern civilized society without the benefits of modern drugs.

Development and assessment of new analgesics is not possible without clinical

trials. We do not think that many people would deny this general case as long

as trials are carried on with utmost safety and efficiency.

In some clinical trials the use of placebo is essential.19 The drug can only be

assessed on the basis of what the patient tells the doctor or observer about the

pain. The pain is often lessened somewhat by a tablet that does not contain any

active ingredients (a “placebo effect”); therefore, a comparison of no treatment

with the active tablet might give a false positive result because of this effect.

Here it is necessary to compare the active tablet with a placebo.

It is more difficult to generalize about the role of the patient in the trial of new

drugs. If the drug is for the treatment of a serious condition, it is easy to find

patients who are unresponsive to established drugs. A new drug is usually offered

to patients who are in this position. But for new drugs with unproven efficacy to

relieve pain, it is a little bit more difficult to obtain patient participation. In these

circumstances a heavy responsibility falls upon the clinical investigator

conducting a clinical trial for the patient’s safety.

The first step in an analgesic clinical trial is to choose which kind of pain to

study, a choice determined in part by the goal of the research.20 Two kinds of pain

have been studied in assaying analgesics: experimentally induced and clinical

pain. Experimental pain now has few protagonists, partly because with the

institution of double-blind procedures it was found that many of the most famous

experiments involved bias and cuing, and partly because assay of the therapeutic

value of a drug is appropriately done against clinical pain.

The next decision to be made is what kinds of subjects to utilize. In studies

of clinical pain, the subjects will be patients of some sort. As with experimental
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pain, they also will be volunteers, although the factors which influence their

participation and understanding are likely to be different.

If one works with outpatients, some special difficulties arise. One can never

be certain that they take their doses when and as directed.21 Their interest and

cooperation cannot be actively and continuously engaged.

If inpatients are selected, the next choice is between acute and chronic

patients. Acute postsurgical pain and its relief have been the subject of many

reports.22 The meaningfulness of much of this work is evaluated subject to the

diversity of etiologies and preoperative as well as postoperative surgical states.

Postsurgical patients are also, to a varying and not altogether predictable extent,

still recovering from the anesthesiologist’s marvelous bag of tricks. Postoperative

pain has been described as “the most frequent and neglected painful state in the

hospital situation.” Many others, including intelligent and informed patients,

have echoed this sentiment, but postoperative pain relief is still too often left to

the junior physician’s “cautiously administered opiate and the balm that comes

from time alone.”

Most civilized men today surely concede that there is need for the relief

of postoperative pain on humanitarian grounds alone. There are, however, other

obvious reasons for mitigating the discomfort of the patients. These include the

need to promote deep breathing and cooperation with the physiotherapist and

the desirability of early mobilization to avoid deep venous thrombosis.

For clinical trials to be of any value, one must be able to extrapolate the

results to the general population for whom the drug is designed. For extrapolation

to be valid there must be a relationship between the study sample and the

population from which it was selected.

This discussion is an attempt to examine the degree of selection and attrition

due to protocol and other factors that occurred in the course of obtaining 100

consenting volunteers completing a single-dose postsurgical analgesic study.22

An attempt is also made to compare the study population and the population

from which it was selected.

II. DESCRIPTION OF THE STUDY

The protocol was written for a study intended to evaluate the efficacy of three

analgesic treatments and a placebo administered in single-doses in double-blind

fashion for postoperative pain. Subjects were postoperative surgical patients.

Surgical procedures of potential participants were classified as: general

superficial surgery, gynecological surgery, plastic surgery, dental surgery, and

superficial neurosurgical procedures. Excluded from the study were: cardiovas-

cular, thoracic, and abdominal surgical procedures.

There were several criteria for admission to the study. Patients must have

been 21 to 65 years old, weighing 120 to 200 lb. Patients whose medical or

surgical history was consistent with a reasonable suspicion of gastrointestinal,
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liver, or urinary disease that might interfere with the absorption, metabolism, or

excretion of medications were excluded.

Acceptable patients were those who had not participated in any other drug

studies in the past three weeks, who had recovered from a surgical procedure

sufficiently to request and receive oral analgesic medication during the first three

postoperative days, who had at least a moderate degree of pain after surgery, and

who did not have history of tolerance to analgesic medication.

Permission to visit patients for discussion of the study was obtained from

the patients’ physicians prior to the operation.

III. SELECTION PROCESS

A. SCHEDULE SURVEY AND SCREENING

Survey of the daily elective surgical schedule for the duration of the study

showed a total of 8027 patients potentially available. This number was reduced

by 39% (3103) because of patients not screened due to unavailability during

appointed hours of interview for various reasons such as late admissions, being

worked up by staff, referral to specialty clinics, or out on pass. This left 4924

patients available for screening. Preliminary exclusion eliminated 4254 or (86%)

of these. Only 670 patients were thus available for interview, i.e., only 8% of

the total number of patients originally available for the study.

B. PRELIMINARY EXCLUSIONS

The reasons for preliminary screening exclusions are described in Table 5.1. 45%

or 1921 were excluded because of age. Of these, 1232 were below 21 years and

689 were over 65 years. The lower age limit, 21 years, was the legal age of

majority in New York State at the time of the study. The upper age limit was

chosen arbitrarily. Age was thus a major factor for excluding 45% of the number

available for screening.

Insufficiency of postoperative pain excluded an additional 1155 or 27%.

Some patients do not require postoperative pain relief even after major

operations. The scheduled surgical procedures included diagnostic curettage

TABLE 5.1
Reasons for Preliminary Exclusion

Below 21 or above 65 years 1921 (45%)

Insufficient postoperative pain 1155 (27%)

Excluded surgical procedures 718 (17%)

No physician consent 337 (8%)

Short-term admissions 123 (3%)

Total 4254
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and superficial gynecological surgery, superficial general surgery, and excisions

of small lesions, gingivectomy, some simple eye and nose surgery, and

endoscopies, procedures in which pain is often mild postoperatively.

Some of the surgical procedures that were excluded were gastrointestinal

resections, open heart surgery, spine fusions, and facial or mandibular surgery,

where oral administration may be ineffective or inappropriate in the early

postoperative period. These made up 718 exclusions or 17%. The remaining were

excluded for miscellaneous reasons, e.g., admitted in the morning for scheduled

surgery and sent home later in the afternoon. Such patients numbered 123 or 3%.

A considerable number of patients (337 or 8%) were not included in the study

because some attending surgeons had not consented to let us interview their

patients for the study.

C. CHART SCREENING AND PATIENT INTERVIEW

After these preliminary exclusions, only 670 (or 14% of the total initially available)

were left for screening and interview (Table 5.2). This number was cut further by

such factors as patients not being available for interview at designated time, surgery

canceled, or surgical procedure changed to a less painful one (e.g., laparotomy to

laparoscopy) so that there was insufficient postoperative pain.

Twenty-one patients were in this group. The charts of the remaining 649

patients were screened and reviewed in detail prior to interview with emphasis on

the past and present history and physical findings together with the available

laboratory reports. This brought about rejection of an additional 258 patients

prior to interview. Thus 391 patients were left to be interviewed.

D. REASONS FOR REJECTION PRIOR TO INTERVIEW

There were several reasons why we rejected these 258 patients prior to interview

after review of their charts. Many had multiple medical problems unrelated to the

indication for surgery (Table 5.3). Some were underweight or overweight.

Allergy or sensitivity to the drug was also reported but not observed. Others were

too apprehensive, high-strung, and agitated; or overly concerned about the loss

of a particular organ such as breast, uterus, testis, etc. Active peptic ulcer disease,

TABLE 5.2
Patients Available for Interview

Patients not screened 21

Patients screened 649

Total 670

Patients interviewed 391 (60%)

Patients rejected before interview 258 (40%)

Total 649
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chronic intake of analgesics, and psychiatric illness or history thereof added to

the exclusions. Language problems were also encountered, as were physical

impairments (blindness or deafness) and mental retardation. Some patients

refused surgery. A few reported severe multiple allergies to drugs and were

excluded on that account.

This left 391 patients interviewed (Table 5.4), of which 53 were interviewed

but rejected. Some of these patients who were interviewed and rejected at this

stage were found to have had incomplete or absent workups. Old records were not

available for evaluation prior to interview, so that in the process of patient

interview other exclusion criteria were noted which were not known prior to

TABLE 5.3
Reasons for Rejection Prior to Interview

Multiple medical problems 82 31%

Overweight or underweight 60 23%

Sensitivity to study medication 28 11%

Emotional overlay 20 8%

Chronic analgesic intake 17 7%

Active peptic ulcer disease 16 6%

Psychiatric history or illness 10 4%

Language problems 8 3%

Multiple allergies 6 2%

Physical impairment (deaf, blind) 4 2%

Refused surgery 4 2%

Mental retardation 3 1%

Total 258 —

TABLE 5.4
Patients Interviewed

Number of patients interviewed 391

Number interviewed but rejected 53

Reasons for rejection

Multiple allergies 14

Medical problems 13

Very apprehensive 13

Overweight 7

No relief from study drug 3

Language problem 3

Patients asked for consent 338

Patients consenting 246 (73%)

Patients not consenting 92 (27%)
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interview. Such patients were therefore rejected from the study. There were

various reasons for such rejections. Some patients had multiple allergies and

sensitivity to drugs. Others had medical problems. Quite a few were excessively

apprehensive. Problems of overweight and language were also encountered.

Still others claimed no relief with one of the study drugs on the basis of previous

use. These patients were interviewed and rejected but the explanation of the

purpose and process in conducting the drug study were not discussed.

Two hundred and forty-six patients (73%) consented to participate in the

study; 92 (27%) did not consent. There were various reasons given for refusing

to consent (Table 5.5). The majority of patients about to undergo surgery develop

varying degrees of anxiety and tension related to the extent of surgery and its

attendant risks. For many patients the prospect of pain still remains a dreaded

specter, so that relief or avoidance of pain is one of the primary concerns of patients

after surgery.

A major reason for not consenting (71%) was the preference for a parenteral

pain medication for fast, effective relief. The effectiveness of parenteral agents

like morphine and meperidine has been assisted by the introduction of recovery

room and intensive-care areas; it is now feasible for the anesthesiologist to

routinely administer narcotics intravenously to achieve an immediate effect.

Lowenstein et al.23 demonstrated that surprisingly large doses of narcotic can be

given intravenously to pain-free individuals without dangerous cardiopulmonary

depression, but in practice, adequate analgesia from parenteral agents frequently

leads to impaired respiratory function and pulmonary sequelae. Some patients

cannot decide whether to participate or not. Others graciously refuse consent after

a member of the family present during the interview has commented or made

a subtle indication of disagreement during the interview. Others refuse without

offering any reason. In another study (unpublished) which did not include a

placebo in the protocol, the nonconsenters were much less common (13%), with

396 patients interviewed. Perhaps the presence of a placebo in a study may be a

factor that influences nonconsenting. In another clinical trial in progress which

includes a placebo, there is already a 17% nonconsenting rate among 123 patients

interviewed.

Of the 338 patients ultimately interviewed in this study (which is only 4.2%

of the total number of patients originally available), we thus had a group of

TABLE 5.5
Reasons for Not Consenting

Prefers intramuscular medication 65 (71%)

Cannot decide 10 (11%)

Study drugs not effective in past 9 (10%)

Family refuses 5 (5%)

No reason 3 (3%)

Total 92
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246 patients who consented to participate in the study, underwent surgery, and

were followed closely up to the third postoperative day. One hundred were

medicated; 146 were not. Data on 12 patients who were not medicated were not

available, leaving 134 patients whose various reasons for nonmedication can be

analyzed (Table 5.6). About 35% of patients were pain-free during the study

hours (8:00 a.m. to 6:00 p.m.). Some patients (26%) were kept off oral intake

during the immediate postoperative period and were subsequently discharged on

the first postoperative day. These were usually patients who had superficial

or relatively simple gynecological procedures such as an abdominal tubal

ligation. Some patients (22%) were kept off oral intake more than 72 hours

postoperatively, thereby going beyond the time limits set in our protocol. Some

patients (7%) had medical complications after surgery and had to be taken off

the study. A similar number (7%) were dropped from the study by request of the

patient or the surgeon. Some had surgery canceled (3%).

IV. COMPARISON OF CONSENTERS VERSUS

NONCONSENTERS

We decided to compare the 246 consenting patients and the 92 who did not

consent out of the total 338 interviewed. Age, sex, social class, and anticipated

pain severity after surgery were the bases for comparison. This seemed important

to do in view of the need to extrapolate the results of the analgesic study.

The mean age of the consenting group was 35, while the mean age of the

nonconsenting group was 41, a statistically significant difference (p , .001).

There was a slight trend to a higher percentage of women in the consenters

(76.3%) than in the nonconsenters (65.4%), but this difference was not

statistically significant.

TABLE 5.6
Reasons for Nonmedication

Consenting patient

Not medicated 146

Data not available 12

Difference 134

Insufficient pain when oral medication allowed 47 (35%)

Oral medication not permitted then discharged day 1 35 (26%)

Oral medication not permitted days 0, 1, 2, 3 29 (22%)

Dropped from study by request of patient or surgeon 10 (7%)

Medical complications after surgery 9 (7%)

Surgery canceled 4 (3%)

Total 134
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We coded Hollingshead’s occupational categories as follows: high social

class — higher executives and major professionals, proprietors of medium

businesses ($35,000 to $100,000); middle social — lesser professionals to

semiprofessionals and farmers ($24,000 to $35,000); and lower class — clerical

and sales workers and unskilled employees. The housewife category was removed

to reduce sensitivity to the difference in gender distribution. There was no

significant difference between the two groups in the proportions of high, middle,

and low social classes.

V. COMPARISON AMONG CONSENTERS

We then compared the 100 consenters who were medicated and the 134

consenters who were not medicated (Table 5.7). Data was not available from the

other 12 consenters. There was no significant difference between the two groups

in the distribution of age and social class. However, there was a significant and

unexpected difference in regard to sex. More females tended not to be medicated

(p ¼ .01). As expected, there was a difference in the pain severity of the

operation, in that a significantly greater proportion of the patients with operations

deemed prior to the surgery to be more painful were medicated than was the case

for the other operations. The p value of the chi-square statistic was .02.

VI. SUMMARY

Initially most exclusions are for administrative reasons such as nonavailability

during times of interview due to late admissions, patients undergoing referrals to

specialty clinics or being worked up by other members of the staff, which reduced

the pool by almost 40% in this example. At the next stage, 86% were eliminated,

almost three fourth of which were due to age and insufficient severity of pain after

operations, which were the two major reasons for preliminary exclusions. Most

of the rejections prior to or at interview were due to concurrent medical problems,

TABLE 5.7
Comparison among Consenters

Medicated (%) Not Medicated (%) Significance

Age — — NS

Sex: female 67 83 p ¼ .01

Social class (housewives excluded) — — NS

Anticipated Pain Severity after Surgery

Moderate 37 54 —

Severe 50 41 p ¼ .02

Very severe 13 5 —
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being overweight or underweight, or having allergies or possible sensitivity

to study medication.

At the consent stage, most of the patients who refused reported doing so

because they preferred parenteral medication. After consenting, it was mainly

administrative reasons, degree of pain, or denial of oral intake that resulted

in failure to provide data. The only statistically significant difference between

consenters and nonconsenters was the factor of age.

VII. CONCLUSIONS

The patients who end up in clinical trials may represent only a small percentage

of the theoretical universe of available patients. Nevertheless, in this study the

analysis did not suggest that extrapolation from the study sample was unjustified.
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I. CANCER TREATMENT PROGRESS

In the 1930s, less than 20% of cancer patients were alive 5 years after diagnosis.

In the 1940s, the figure was about 25%, and in the 1960s it was about 33%. Today

about 40% of cancer patients will be alive 5 years after diagnosis. If we compared

with a similar control population, then the 5 year relative survival rate was 48.9%

for patients diagnosed in 1974–1976 and 49.8% for patients diagnosed during

the period 1980–1985.1 In the past three decades, good progress in treating

cancer has been made in acute lymphocytic leukemia in children, Hodgkin’s

disease, Burkitt’s lymphoma, Ewing’s sarcoma, Wilms’ tumor, rhabdomyosar-

coma, choriocarcinoma, testicular cancer, ovarian cancer and osteogenic

p This work has been produced by the author in his capacity as a Federal Government employee, as

part of his official duty, and hence this work is in the public domain and is not subject to copyright.
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sarcoma. However, for other common cancers, effective treatments have not been

found.

Debates about whether we had really made progress in fighting against cancer

since the passage of the National Cancer Act in 1971 were kindled several years

ago.2 The observation that the proportion of deaths from cancer has increased

progressively in the last 60 years has led to the conclusion that we are losing

the fight against cancer. The progress against cancer is demonstrated clearly from

examination of cohorts of men and women between 20 and 44 years of age.3 As

a result of debates, several measures of progress against cancer were examined

and many recommendations about the modification or expansion of the current

information base were made.4

More than 60 anticancer drugs have received FDA approval for marketing

in the United States. More than 40 of these had their INDs (Investigational New

Drug Application) sponsored by the National Cancer Institute. Currently, nearly

100 new drugs and 70 new biologics are under active clinical investigation.

New improved methods of treating cancer are being actively pursued in all

types of cancer. To establish the effectiveness of a new treatment, appropriate

clinical trials have to be carried out. Statistical methods are used in design,

conduct, analysis, and reporting to ensure the validity and efficiency of cancer

clinical trials.

II. BENEFIT TO RISK RATIO

Because an antineoplastic drug usually produces toxicity to normal cells as well

as killing cancer cells, we always have to consider the efficacy and toxicity

together in obtaining a favorable benefit to risk ratio in cancer treatment. In other

words, an oncologist would want to make sure that the new drug can produce a

net benefit when compared with no treatment or current standard treatment. The

net benefit can result from a large improvement in efficacy with a small

worsening in toxicity or from a large reduction in toxicity with a small decrease

in efficacy. The ideal situation will be both an improvement in efficacy and a

decrease in toxicity. Of course, how much the improvement in efficacy can

balance out the harm of increasing toxicity is usually subjective and ambiguous.

When determining efficacy, the decision can be framed as accepting a

treatment if it is good, or rejecting a treatment when it is not good. There are

two types of error in this decision framework. The false negative error (Type I) is

the error of misclassifying a good treatment as not good. The false positive error

(Type II) is the error of misclassifying a bad or not so good treatment as good.

There are costs or consequences associated with these two kinds of error. Usually

in early clinical trials of a drug, we will tolerate a larger false positive error rather

than a large false negative error.

In the process of developing a new treatment, the type and stage of cancer

and the usefulness of the current standard treatment have to be considered in the

estimation of the net benefit and the decision of whether to accept a new

treatment.5,6 Suppose the current treatment is not very effective for a certain type
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and stage of cancer, then the risk of using another ineffective drug is not so

relatively high. In this situation, patients are willing to accept a larger false

positive error or a larger variation for the estimation of net benefit. This kind of

situation can be found in chronic lymphocytic leukemia in blast crisis, metastatic

renal cell or germ cell cancer, Hodgkin’s disease refractory to MOPP/ABVD,

postmenopausal hormone refractory metastatic breast cancer, or advanced stage

lung cancer. Some AIDS clinical trials are in this class.7

In other types and stages of cancer (e.g., previously untreated testicular

cancer and Hodgkin’s disease) the current treatment is very effective. Therefore,

estimation of net benefit of the new treatment should have a higher precision,

both false positive and false negative errors should be very small, and the new

treatment should be compared with the current standard through a randomized

controlled clinical trial.

In the above discussion, the risks of false positive and false negative errors

are determined relatively according to the disease. This is reasonable from the

treatment decision point of view. But from the perspective of scientific progress,

the magnitude of errors should be small. Some large scale postmarketing studies

could fulfill this purpose.

III. TRIAL ENDPOINTS

In cancer clinical trials, the efficacy endpoints include overall survival, quality

of life, complete and partial response rate and duration, and time to progression.

Overall survival is measured from the date of registration or randomization to

the date of death or last follow-up. In the latter case, the observation is censored

because the patient is still alive. Quality of life consists of many components

including disease related symptoms and can be measured through a validated

psychosocial instrument.8,9 Complete response denotes the total disappearance of

tumor lesions under clinical and diagnostic staging. The duration complete

response is measured only for complete responders from the date of response to

the date of relapse or last check-up. In the latter case, the observation is censored

because the patients is still in remission. Time to progression is measured for all

eligible patients from the date of registration or randomization to the date of

relapse (for responders) or the date of progression (for nonresponders) or the

date of death (before relapse or progression). In early stage cancer after complete

surgical removal of cancer (adjuvant setting), time to progression is called

disease-free survival, which is the time from study entry to relapse or death, with

patients alive without relapse considered as censored.

The toxicity endpoints include the following major categories: blood or bone

marrow toxicity, clinical, clinical hemorrhage, infection, gastrointestinal, liver,

kidney, bladder, alopecia, pulmonary, heart, blood pressure, neurologic, skin,

allergy, fever, metabolic, and coagulation. Within each major category, there are

subcategories. For each subcategory, the grade of toxicity ranges from 0 to 4.

Grade 0 means none or normal; grade 4 is life-threatening.10
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In recent years many hematopoietic growth factors have been tested in cancer

patients. The usefulness of these agents is measured by shortened duration

of neutropenia or hospitalization, reduced episodes of febrile neutropenia, or

delivery of more intensive chemotherapy. Other chemoprotectors are used to

reduce incidence of nephrotoxicity and ototoxicity.

IV. PHASE I CLINICAL TRIAL

Drugs for treating cancer have to demonstrate effectiveness in tumor cell lines

before actual testing in humans. The initial clinical evaluation of a new drug,

biologic, or radiotherapy technique is called a Phase I trial, which evaluates dose,

schedule, toxicity, pharmacology, and early evidence of clinical activity. The

goal of a phase I trail is to arrive at a recommended dose with the minimum

number of patients receiving either biologically inactive or toxic doses.

The patients selected for Phase I clinical trials are in those categories of

cancer with no effective treatment at present. Patients should have good perfor-

mance status and normal organ function. Hopefully, they might receive some

benefit in using the investigative agent. The purpose of doing a Phase I trial is

to find a dose that will cause dose-limiting toxicity in acceptable percentages

of patients under a given method of administration for a fixed number of cycles.

The dose-limiting toxicity is usually defined as any grade 3 or 4 toxicity. The

maximum tolerated dose (MTD) is usually defined as the dose that produces

dose-limiting toxicity in 30% of patients. Many cytotoxic agents are observed to

have a steep dose–response relation; therefore, the MTD estimated in a Phase I

study will be the dose used in Phase II trials. Because a Phase I trial is a

preliminary step for a Phase II trial, the requirement of statistical precision of

dose determination is not high. Usually the dose can be further fine-tuned in a

Phase II trial. The MTD is usually not disease-site specific. In general, pediatric

patients have a different MTD from that of adults.

The usual starting dose in humans is one-tenth of the MELD10 (mouse

equivalent of the LD10, dose with 10% drug-induced deaths) in mg/m2 of body

surface area, unless that dose is toxic in any species tested. The doses of drugs for

human testing are usually selected by modified Fibonacci method. The second

dose level is twice the starting dose. The third dose level is 167% of the second,

the fourth dose level is 150% of the third, the fifth dose level is 140% of the

fourth, and each subsequent dose level is 133% of the preceding dose.11

Because it is possible that the starting dose could be far away from the MTD

and many patients will be exposed to a subtherapeutic dose, a pharmacokinet-

ically guided dose selection scheme was proposed.12 This approach builds upon a

pharmacodynamic hypothesis that similar biological effects (e.g., toxicity) would

happen at similar plasma levels in mice and man. For many agents, the area under

the curve for plasma concentration versus time ðC £ TÞ of the MTD for humans is

found to be fairly close to the C £ T for mice at the LD10 if calculated in mg/m2

equivalents (MELD10). Therefore, C £ T of MELD10 is considered as an upper
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limit, and the ratio F of C £ T (MELD10) to C £ T (starting dose in men) is used
to guide dose selection. One method takes the second dose as

ffiffi
F

p
times the

starting dose, and the third dose is twice the second dose, then follows the

modified Fibonacci scheme. The other method continues to double the dose until

0:4F times the starting dose is exceeded and then the modified Fibonacci scheme
is followed. Another use of preclinical toxicological information is in choosing a

higher entry dose than one-tenth of MELD10. All these methods have a potential

of reducing overall completion times by 25%.12

Drugs with high schedule-dependency in preclinical models will use the

existing optimal schedule. For drugs without particular schedule dependency,

two extremes of schedules (e.g., single bolus dose per course and 5-day

continuous infusion) are generally examined.10

The usual dose-finding is carried out through a dose-escalation and de-

escalation procedure. (1) Three new patients are studied at a dose level at the first

stage. (2) If none experience dose-limiting toxicity, then the next higher dose is

used for the subsequent group of three patients. (3) If two or more experience

dose-limiting toxicity, then the MTD has been exceeded and three more patients

are treated at the next lower dose (if only three patients were treated previously at

this dose). (4) If 1/3 experiences dose-limiting toxicity at the current dose, then

three more patients are accrued at the same dose at the second stage. If none of

these three experiences dose-limiting toxicity, then the dose is escalated.

Otherwise the MTD has been exceeded and three more patients are treated at the

next lower dose (if only three patients were treated previously). (5) The MTD is

the dose level where 0/6 or 1/6 experience dose-limiting toxicity with the next

higher dose having at least 2/3 or 2/6 experience dose-limiting toxicity.

In the above procedure, we require new patients at each dose level. Some-

times at very low doses, we could re-enter a patient at a higher dose level and

include this patient in the analyses of both dose levels. For higher doses, this

kind of intrapatient escalation of doses could confound the result because of

possible cumulative toxicity. The toxicity that occurs to these re-entered patients

could either be caused by the higher second dose or the cumulated total dose.

Therefore, if intrapatient escalation is used in high doses, then the patient is only

included in the analysis of the first dose level.

Storer13 proposed other single- and two-stage designs and the methods of

estimating MTD. The different designs were compared through computer

simulation by assuming logistic dose–toxicity curves. The results indicated that

there is little difference among the two-stage designs because of the small sample

sizes.

A Phase I study usually has a pharmacokinetic component to understand

the absorption, distribution, metabolism, and excretion of the drug in humans.

If the variation of pharmacokinetic behavior is too large for a drug among the

patient population, then some kind of adaptive dosing can be used to control a

patient’s plasma concentration within a desirable range.14 This approach has

the potential of maximizing response and minimizing toxicity. Its usefulness is

under investigation.
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V. PHASE II CLINICAL TRIAL

After a MTD is determined, the drug at that dose and schedule is carried forward

to get a better estimate of antitumor activity in a Phase II trial that will evaluate

drug, biologic, or radiotherapy techniques in single modality or combined

modality regimens. The definition of a Phase II trial in cancer clinical trials is

different from that of a Phase II clinical study defined by the FDA in drug

development. The Phase II cancer clinical trial usually requires fewer than

100 patients, whereas FDA Phase II trials require several hundred patients.5

From past experience, efficacy of a drug is disease-site specific; therefore, a

Phase II trial is limited to a specific type of cancer. The kind of cancer to be

tested is determined through preclinical animal data and the data collected in the

Phase I clinical trials. Patients should have good performance status and normal

organ function.

Because cancer drugs can be cross-resistant — that is, a drug can be less

effective as a second-line treatment than as a first-line treatment — a new drug

should be preferably used as a first-line treatment. The phenomenon of cross-

resistance is caused by similar drug actions; when some tumor cells are refractory

to a certain drug, they are going to be resistant to a similar-action drug. Therefore,

a Phase II trial is preferably done in patients who have not been previously

treated if there is no effective treatment at the present for this particular type

of cancer. If we use previously treated patients, the efficacy could be low, and we

cannot differentiate it from background noise.

For certain categories of cancer at early stages, there are some very effective

treatments. A Phase II trial will usually be first done in patients with the late stage

of these kinds of cancer where the existing treatment is not so effective and then

later in patients with the early stage cancer. A phase II trial should not diminish a

window of opportunity for patients to get effective treatment.15

The response variable for a Phase II trial is usually tumor response rather than

survival; the tumor response can be determined in the first few months of

treatment and it usually has good correlation with survival within a specific type

of cancer. In order to obtain precise evaluation of response, the patients should

have measurable disease that can be measured through diagnostic tools.

For solid tumors, response includes both complete and partial response. For

leukemia, the response includes only complete remission because it is known that

only complete remission is related to long-term survival.16 In order to qualify as a

response, the tumor reduction should be long-lasting, usually one month.

The design of a Phase II trial is based on one-sample binomial statistics

with the probability of success being the probability of achieving a response.

From the current treatment results, both desirable and undesirable response rates

are specified. We would like to reject the drug as not promising if it is unlikely

that it has the desirable response rate (the false negative error is small), and to

accept a drug as promising if it is unlikely that it has the undesirable response rate

(the false positive error is small). Because we prefer not to miss any promising

drug, the false negative error should not be greater than the false positive error.
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The trial is carried out in two stages17 so that if a drug is not promising, the trial

can be terminated early at the end of the first stage. This two-stage design and

other multistage designs18 are examples of a broad class of drug screening

procedures.19 This approach to Phase II trials is identical to sampling inspection

in the industrial quality control setting.

For example, a Phase II trial for a new agent in nonsmall cell lung cancer

can have the following two-stage design. For the first stage, 12 patients are

enrolled. If there is no response (complete or partial) in these 12 patients, then

the study is terminated and the agent is rejected. If there is at least one response,

then 25 more patients are enrolled in the second stage. If there are less than four

responses in 37 patients, then the agent is rejected; otherwise, the new agent

will be deemed promising. This design is based on the current treatment result

for nonsmall cell lung cancer; the response rate of 20% is desirable and 5%

is undesirable. The false negative and positive rates are limited to 0.10. This

design has the minimum expected sample size (23.5) when the agent has a

response rate of 5%.17

Phase II trials usually are repeated in at least two different centers. Response

rates from two trials could be different because of several reasons: patient

selection, different evaluation and response criteria, intra- and inter-evaluator

variability or bias, and protocol compliance. Whether a drug will enter into a

Phase III trial depends not only on the tumor response observed in Phase II trials,

but also on its toxicity, dose–response relationship, and cross-resistance with

other active agents.

In the situation where there is more than one new agent, a randomized Phase II

trial can be carried out. The sample size used here is about the size of a usual Phase

II trial and the comparison will not be as precise as a Phase III trial. The advantage

of a randomized Phase II trial is that the results for the several new agents can be

compared within the same patient population and protocol procedure.

VI. PHASE III CLINICAL TRIAL

A. GENERAL CONSIDERATION

After a drug or treatment regimen has been shown to have promising antitumor

activity, it may progress forward to a Phase III trial. A Phase III trial compares

the experimental treatment(s) with a standard control treatment. The purpose of

a Phase III trial is to demonstrate that the new treatment is either better than or

equivalent to the standard control. The response variable for a Phase III trial is

usually the overall survival or the quality of life.

Sometimes instead of concurrent control, historical control data are used in

comparison. The validity and usefulness of this approach is very limited.20 The

historical controls have to be the patients treated in the same institution in the past

few years with the same enrollment criteria and evaluation procedure. The base-

line comparability of historical control patients and current patients can never be

demonstrated beyond reasonable doubt. The usefulness of statistical adjustment
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is based on the validity of the model assumptions and the inclusion of all major

prognostic variables.

In a Phase III cancer clinical trial protocol, the purposes of the trial have to be

very clearly defined. For each stated purpose, the data collection procedure

should be thought through and described in the protocol. The statistical tech-

niques of analyzing these data need to be planned and stated in the statistical

consideration section of the protocol.

The data collected should be valid and reliable. To be certain about its

validity and reliability, unequivocal documentation must be provided. Overall

survival is very reliable if every patient is followed until death. The response,

progression, and relapse status are less reliable because of the limitation of

diagnostic techniques or clinical evaluation. To ensure that these data are reliable,

a uniform and unbiased follow-up, standardized supportive care, secondary

treatment, and method of evaluation for all treatment groups are very important.

Treatment regimens need to be defined specifically. For chemotherapy, the

dose, schedule, route of administration, and dose modification because of toxicity

have to be described clearly. For radiotherapy, the dose, schedule, and field size

should be similarly specified. For surgery, the incision margin and number of

nodes to be sampled need to be specified. The quality of treatment delivered

should be monitored very closely to maintain the protocol compliance. The

purpose of doing quality control is two-fold: to ensure that patients get optimal

treatment and to minimize variation in the treatment outcome.

The eligibility criteria of patients must be determined very carefully. Here we

need to strike a balance between more and less stringent criteria. Usually good

performance status and normal liver and kidney function patients can show

maximal difference between the treatments in a trial. However, limiting the

patient eligibility also limits the applicability of the trial result. Therefore,

it usually is better to enroll all the patients who could benefit from the treatment

and are healthy enough to receive the treatment.

Case report forms including prestudy, flow sheet, pathology, surgery, and

radiotherapy should be designed with extra care so that only necessary and useful

information is collected. If too much information is required, then the quality of

data will deteriorate.

B. RANDOMIZATION

In a Phase III trial, a randomized trial will provide the best design.21 The purpose

of randomization is two-fold: (1) randomization will provide a theoretical founda-

tion for the validity of the statistical analysis of the trial data; and (2) randomi-

zation will render the treatment groups comparable regarding unknown and

known prognostic factors, and also reduce the bias in assigning patients to

treatments. The actual process of randomization is usually done through

a centralized statistical office.

The randomization scheme is usually not unrestricted randomization, but

the sample sizes of the treatments are constrained to be equal. More desirable is
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block randomization with a block size of four to eight patients with blocks nested

within each clinical center. With each block there is equal assignment of patients

to each treatment. The purpose of doing this is to ensure that the final numbers of

patients on the treatments are almost equal. The information about block size

should not be revealed to avoid bias in the enrollment of patients.

The time of randomization should take place as close as possible to the time

of beginning different treatments.22 For example, the protocol can have the same

induction regimen, but two different intensification regimens. The patients should

be registered twice: once before induction, the second time for randomization

before intensification. This approach will minimize the possible bias in the

eligibility determination for intensification and control the variability of number

of patients on the two intensification arms. The statistical analysis to compare the

two intensification arms can be restricted to those patients who were randomized.

C. STRATIFICATION

Usually some important prognostic factors can be identified before a trial. In this

case, it is advisable to stratify patients by these prognostic factors, and then

randomize within each stratum. The purpose of stratification is two-fold: (1) to

make the result of the study more convincing, and (2) to increase the efficiency of

statistical analysis.

Peto et al.23 stated that stratified randomization is not necessary for a large

trial because the probability is high that the balance among important prognostic

factors can be achieved by unrestricted randomization. However, a stratified

randomization is similar to an insurance policy to insure against the unlikely

event of unbalanced distribution of patients among the important prognostic

factors. If this event happens, an adjusted analysis may not alleviate the doubt

because the statistical adjustment usually depends on model assumptions.

If one wants to balance patient assignment on many prognostic factors, some

kind of dynamic allocation scheme can be considered.24 For a multicenter clinical

trial, it is always desirable to balance treatments at each institution because there

is usually an institutional effect on the trial outcome.25

D. SIZE OF THE TRIAL

The size of a trial depends on the degree of precision we would like to have about

the estimate of the treatment difference. This is related to the width of the

confidence interval for the treatment difference, or to the Type I and Type II

errors of differentiating two hypotheses for possible values of the treatment

difference. In a clinical trial, the sample size determination is usually done

through the latter approach because the two types of error are usually not equally

serious, and therefore not symmetric. However, there is a natural connection

between the confidence interval approach and the hypothesis testing approach.

In the analysis and report of the study, a confidence interval will provide

more information than just a p-value. A p-value is the result of comparison of
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the observed difference with only one value of the hypothetical difference.

A confidence interval or a standard error of the observed difference provides

information about the whole range of values of the hypothetical difference. If the

main variable is the overall survival, then the difference between treatments can

be formulated in terms of the hazard ratio. If the main variable is the tumor

response, then the difference between treatments can be formulated in terms

of the odds ratio. If the main variable is a normal, continuous one, then the

difference between two treatments is just the mean difference.

If the purpose of the trial is to show that a new treatment T1 is better than

the standard control treatment T0, then we specify as the null hypothesis that

the two treatments are the same, and try to use data to reject this null

hypothesis. Because the likelihood of observing a treatment advance is not

great (according to the past history of cancer clinical research), we want to

control the Type I error a, which is the probability of rejecting the null

hypothesis when it is true. The Type I error is specified as 0.05. We also

specify an alternative hypothesis, which says the difference between the two

treatments is a certain amount. We would like to control the Type II error b,
which is the probability of not rejecting the null hypothesis when the

alternative hypothesis is true. The Type II error is usually specified between 0.1

and 0.2 (i.e., the power is between 0.9 and 0.8). We usually specify the

treatment difference in the alternative as a clinically meaningful difference, or

the minimum difference we would like to detect. This value is usually

subjectively obtained and usually is a compromise between what is really

important and what can be done. If this value is too large then the study will

not have enough power to detect a smaller difference.

For a one-sided alternative and normally distributed data, assuming that the

variance of both treatments are the same, the formula to obtain the required

number of patients for each treatment is n ¼ 2t 2=d2 where t ¼ ðz12aÞ þ ðZ12bÞ
and d ¼ ðm1 2 m0Þ=s: The zP is the value of the normal deviate corresponding
to the P point of the cumulative standard normal distribution. The value d
is the difference in means divided by the standard deviation. The value of t is
determined by the Type I and Type II errors. For a two-sided alternative, a should
be replaced by a=2: Note that the total sample size required for the trial

is 4t 2=d2:
For binomial response data, the formula for n is similar with d ¼

2ðarcsin ffiffiffi
p1

p
2 arcsin

ffiffiffi
p0

p Þ: The arcsine transformation of the square root of the
observed proportion stabilized the standard deviation as 1=2

ffiffi
n

p
: A more accurate

formula for the sample size to compare two binomials has been published.26

For the survival data, the formula for n is again similar with d ¼
lnðl0=l1Þ

ffiffi
2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=p1 þ 1=p0Þ
p

:Here we make the assumption that the distribution
of the survival data is exponential with hazard rates l0 and l1; and pi ði ¼ 0; 1Þ
is the proportion of actual events (deaths) for the ith treatment at the time of

data analysis. This expected proportion of events pi is a function of total accrual

time ðMÞ; the further follow-up time ðLÞ after the termination of accrual, and
the hazard rate li: Assuming a Poisson patient arrival over M; and all patients
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are observed till the end of the further follow-up time L; then pi is

12
expð2liMÞexpð2liLÞðexp liM 2 1Þ

liM
ð6:1Þ

The reason that d is more complicated is because the sufficient statistic is the
number of events and not the number of total enrollments for exponential data

with censoring. The formula for n can be rewritten as

t 2

ðlnðl0=l1ÞÞ2
¼ np0p1

p0 þ p1
ð6:2Þ

In the design of a Phase III trial comparing overall survival, an appropriate

follow-up period should be allowed after the closure of enrollment so that the

number of expected events under the alternative hypothesis will be np0 and np1 at

the time of the final analysis.27,28

If the follow-up period is long enough, then p0 is very close to p1: The right
hand side of the above formula would be very close to one-fourth of the total

number of events in the trial. The total number of events in the trial is

4t 2=ðlnðl0=l1ÞÞ2: If a (one-sided) is 0.025, b is 0.2, and the alternative of

1:5l1 ¼ l0 (a 50% improvement in median time to event) is to be detected, then

the total number of events in the trial should be 192. If the follow-up period is not

long enough, and p0 is not close to p1; then the total number of events should be
greater, but not more than 110% of 4t 2=ðlnðl0=l1ÞÞ2: For example, in a Phase III
trial of stage IIIA and IIIB inoperable nonsmall cell lung cancer with vinblastine

and cisplatinum followed by radiation therapy as the control, the experimental

treatment could be vinblastine and cisplatinum followed by radiation therapy

with concurrent carboplatin. If the accrual rate is 6.2 patients per month, and the

control arm has a median survival of 15.5 months, then the study design should

have an accrual period of 3.5 years (260 patients) and a follow-up period of 1.5

years in order to have 208 as the total number of events in the trial at the end of 5

years.

If the purpose of a Phase III trial is to show that the new treatment is

equivalent to the standard control, then we have to define the term “equivalency.”

Some will define equivalence as within 10% of the control mean or an odds or

hazard ratio between 0.9 and 1.1. Because the observed difference has variation,

the definition will further require that the 95% confidence interval for mean ratio,

odds ratio, or hazard ratio must be within the interval of 0.9 and 1.1. This kind of

requirement is very stringent. If the true ratio is close to either 0.9 or 1.1, then the

sample size would have to be very large to have the 95% confidence interval

within the interval of (0.9, 1.1). Therefore, an equivalency trial usually requires

more patients than a trial to prove superiority.

Sometimes a new treatment has less toxicity than the standard control and we

are willing to “accept” the new treatment if it is not more than 10% inferior in

efficacy. This kind of trial is also called an equivalency trial but it is different

from the trial described in the previous paragraph. Here we only require that
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the lower limit of the confidence interval be greater than 0.9 and we set no bound

for the upper limit. Again, the sample size will depend on how close the true

efficacy ratio is to the value of 0.9. If we are willing to carry more risk, then the

sample size will not be as large as the true equivalency trial in the previous

paragraph. This trial is very similar to a superiority trial except the null value

is shifted from 1 to 0.9.29 To obtain a size for this kind of equivalency trial, one

usually takes 0.9 as the null value and as the alternative value, the Type I error

associated with the null value at 5% and the Type II error can be between 5 and

20%. This kind of design can be interpreted as a test that places a greater burden

upon a new treatment to prove it is not more than 10% inferior in efficacy.

The expected accrual rate should be considered in the design. If a trial takes

more than 4 years to complete, then the treatments being compared could become

obsolete as the trial progresses and the investigator could lose interest in enrolling

patients. Therefore, a Phase III trial is usually done by a cooperative oncology

group. Sometimes for a rare cancer, the trial is done through an intergroup

mechanism that pools several oncology groups together. This kind of pooling of

resources makes sure that the trial can be finished in a reasonable amount of time.

During the progress of the trial, accrual rate should be monitored to ensure it is

not too far from the expected rate.

To compare survival or disease-free survival for two treatments, sometimes

the comparison is done in terms of proportion of patients without event (survived,

or survived and free of disease) at a specified time. If the sample size is calculated

for comparison of two proportions, it is larger than that for the comparison of two

exponential curves.30 Because the final test is usually a logrank test that compares

the entire survival curves, the latter sample size is preferable unless the exponen-

tiality assumption is grossly untrue.

If patient compliance or loss to follow-up could become major problems

in the conduct of a trial, an allowance should be provided in the sample size

calculation.31 The sample size requirement based on the logrank statistic without

the exponentiality assumption has been derived under very general conditions

that include cure rate models.32,33

E. DATA ANALYSIS

Because randomization provides a theoretical basis to carry out statistical

analysis, the analysis of the trial should include all the randomized patients.

However, some ineligible patients could also get randomized by mistake. If they

do not belong to the patient population for which the treatments question is being

asked, they can be excluded from the analysis. In rare instance, patients may

cancel their registration before the treatment begins and are not included in the

analysis. Other than these, all patients should be included in the analysis. This

approach is called “intent-to-treat” analysis because we intend to treat all eligible

patients according to the randomly assigned treatments. Those patients who do

not comply with the protocol are called inevaluable patients; they are included in

the intent-to-treat analysis in the groups into which they were randomized.
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Because strict adherence to the protocol treatment is not easy when it is used in

everyday practice, and we would like to find out in a Phase III trial what would

happen if we used the treatments in a general patient population, doing intent-to-

treat analysis will provide an answer close to the general practice. Also treatment

could affect early death and early dropout and compliance; therefore, excluding

these inevaluable patients in the analysis will not provide a fair comparison of

the total treatment effect. Including all randomized eligible patients also mini-

mizes the possibility of biased exclusion because cancer trials usually cannot be

blinded to the patients or to the investigators. Of course, if there is no bias

involved, then the analysis excluding inevaluable patients could provide

additional useful information.

There has been tremendous development in the statistical methods for

censored survival data since 1960. For the estimation of survival distribution,

the product-limit estimator34 is widely used in clinical trials whereas the life

table method is mostly used in epidemiology.35,36

For comparing two treatments, one method used was an extension of the

Wilcoxon rank statistics.37,38 Later, another method used treated data as a series

of 2 £ 2 tables, as an extension of the Mantel–Haenszel test, and is now called

the logrank test.39,40 Both methods were shown to be in a class of weighted-sum

statistics.41,42 The logrank test has the benefit of being easily extended to cover

the stratified analysis, and hence has been used extensively in the meta-analysis

of cancer clinical trials.43 The logrank statistic and its variance estimate can be

used to calculate the hazard ratio estimate and its standard error.44

In analysis, the data of the major endpoints should be analyzed both

unadjusted and adjusted by the stratifying factors. The adjusted analyses can be

carried out through stratified analyses39,45 or a regression model.46–48 If a

prognostic factor is ordinal or numerical, and the relationship between the

response and the prognostic factor can be approximated by the regression model,

the regression approach will provide a better test for the treatment effect.

If there is a statistically significant difference between the treatments, then it

is appropriate to show that there is no qualitative interaction between treatments

and known prognostic factors. This can be tested by a statistical procedure49 and

by a tabulation of means or medians of the major endpoints by treatments within

patient subgroup.50 This kind of tabulation to show there is no qualitative inter-

action will provide more credence for the conclusion. If there is no statistically

significant difference between the treatments in the overall analysis, then subset

analysis should not be done. Any intended subset analysis should be prespecified

in the protocol and the sample size should be adequate within the subset. Any

unprespecified subset analysis can only be used as hypothesis generating and

any finding should be confirmed by another trial.

There is some controversy about using a one- or two-sided test. However,

after using a two-sided test in a clinical trial, if we reject the null hypothesis of no

differences, we will usually conclude that the new treatment is better than the

control or the new treatment is worse than the control. Because we will not

just conclude they are different, one-sided p-values are more relevant if we use
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the p-value as a strength of evidence to support our conclusion. Therefore, in

order to be consistent in drawing conclusions after either a one-sided or two-sided

test, a one-sided p-value of 0.025 should be seen as providing strong evidence.

Sometimes a better survival for responders than the survival for non-

responders is used to argue for the efficacy of a new treatment in an uncontrolled

single arm trial. This argument is not valid for two reasons.51 First, the better

survival for the responders could be from favorable prognostic status and not

treatment. Second, the responders have to survive long enough to get a response.

A randomized controlled trial is almost always needed to demonstrate the

efficacy of a new agent beyond any reasonable doubt.

F. INTERIM ANALYSES

In the progress of a cancer clinical trial, if a new treatment has shown its

superiority early, then a proper procedure should be in place to terminate the trial

so that more patients will get the new effective treatment. Similarly, if the new

treatment is worse than the standard control, the trial should be terminated early

so that fewer patients will be exposed to the ineffective new treatment. However,

if the interim analyses are carried out many times at the 5% significance level,

the overall significance level is much larger than 5%.52 Because the false positive

result is quite common, interim analysis has to be carried out carefully so that the

overall significance level (Type I error) stays at 5% (see Chapter 14).

For a large Phase III trial, the data monitoring procedure and stopping

rule should be specified in the protocol and a data monitoring committee should

convene periodically to decide whether to terminate the trial early. The members

of this committee are privy to see the unblinded interim analysis results, whereas

in semiannual oncology group meetings the reporting of interim analysis is

blinded and the overall survival and toxicity results are usually pooled across

treatments. The purpose of blinding the interim results is to safeguard the

progress of the trial.

In doing interim analyses one controls the probability of making a wrong

conclusion (Type I error) at 5% if the treatments are equally efficacious. Because

the wrong conclusion can be reached at any interim analysis, the sum of

(spending) probabilities of making wrong conclusions should total 5%. Lan and

DeMets53 proposed several use functions to spend this 5% in the process of the

trial. Once a use function is specified as a function of the information fraction

accrued in a trial, interim analysis can be carried out at any time with incremental

error probability determined from the use function.

Originally, interim analyses were proposed to be carried out at fixed time

intervals with an equal number of events (information time) in each interval.

Pocock54 proposed a procedure that uses the same critical value for each interim

standardized test statistic. O’Brien and Fleming55 proposed a procedure that

uses different critical values for each interim standardized test statistic and that

these critical values are inversely proportional to the square root of the number

of events. This procedure is more conservative in the early looks; therefore,
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the power is reduced very little as compared with a fixed size trial. Because

many cancer trials are analyzed before the semiannual oncology group meeting,

it was shown that both procedures for repeated logrank analyses are quite robust

if carried out at equal intervals of calendar time rather than information time.56

Pocock57 showed that there is not much gain in efficiency or ethical benefit in

doing more than five interim analyses.

Because any testing procedure can be converted into a confidence interval,

interim tests can be converted into repeated confidence intervals.58 The width

of the interval is zP times the standard error of the observed treatment efficacy

ratio where zp is the critical value for the interim standardized test statistic. The

repeated confidence intervals can be used for early decisions about any prespeci-

fied treatment efficacy ratio, not just the value of one.

Because the interim analysis is making an inference with incomplete data, the

assumption of uninformative censoring is a critical one. Using early results to

predict the long-term outcome, we assume that the early trend will continue. It

is prudent to have sufficient follow-up before terminating a trial. A subsequent

analysis for the long-term result is appropriate in many cases.

Sometimes early termination is carried out to conserve patient resources

when the two treatments are quite similar. Lan et al.59 proposed a stochastic

curtailing procedure to terminate a trial in this situation. They compute a

conditional probability of not rejecting the null hypothesis given the current

observed data and the alternative hypothesis is true. If this probability is very

high, then the trial can be terminated. The complement of this procedure can be

used to terminate a trial when the two treatments are very different; however, it is

more conservative than the group sequential approach.

VII. TRIAL REPORT

After the data set is analyzed, a paper should be written for peer review. Some

guidelines have been suggested for writing up a report.60 The following has been

proposed by Simon and Wittes61

1. The paper should discuss briefly the quality control methods used to

ensure that the data are complete and accurate. A reliable procedure

should be cited for ensuring that all patients entered in the study are

actually reported upon. If no such procedures are in place, their absence

should be noted. Any procedures employed to ensure that assessment

of major endpoints is reliable should be mentioned (e.g., second-party

review of response) or their absence noted.

2. All patients registered in the study should be accounted for. The report

should specify for each treatment the number of patients who were not

eligible, died, or withdrew before treatment began. The distribution

of follow-up times should be described for each treatment, and the

number of patients lost to follow-up should be given.
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3. The study should not have an inevaluability rate greater than 15%

for major endpoints from early death, protocol violation, and missing

information. Not more than 15% of eligible patients should be lost to

follow-up.

4. In randomized studies, the report should include a comparison of

survival and/or other major endpoints for all eligible patients as

randomized, that is, with no exclusions other than those not meeting

eligibility criteria.

5. The sample size should be sufficient to either establish or conclusively

rule out the existence of effects of clinically meaningful magnitude.

For “negative” results in therapeutic comparisons, the adequacy of

sample size should be demonstrated by either presenting a confidence

interval for the true treatment difference or calculating the statistical

power for detecting differences. For uncontrolled Phase II studies,

a procedure should be in place to prevent the accrual of an inappro-

priately large number of patients when the study has shown the agent

to be inactive.

6. Authors should state whether there was an initial target sample size

and, if so, what it was. They should specify how frequently interim

analyses were performed and how the decisions to stop accrual and

report results were arrived at.

7. All claims of therapeutic efficacy should be based upon explicit com-

parisons with a specific control group, except in the special circum-

stances where each patient is his/her own control. If nonrandomized

controls are used, the characteristics of the patients should be presented

in detail and compared with those of the experimental group. Potential

sources of bias should be adequately discussed. Comparison of survival

between responders and non-responders does not establish efficacy

and should not be included. Reports of Phase II trials that draw

conclusions about antitumor activity but not therapeutic efficacy do not

require a control group.

8. The patients studied should be adequately described. Applicability of

conclusions to other patients should be carefully dealt with. Claims

of subset-specific treatment differences must be carefully documented

statistically as more than the random results of multiple-subset

analyses.

9. The methods of statistical analysis should be described in sufficient

detail that a knowledgeable reader could reproduce the analysis if the

data were available.
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I. INTRODUCTION

Chen (in Chapter 6) and many others (e.g., Ref. 1) have given excellent general

overviews of clinical trial in cancers. This chapter will deal with a review of some

statistical methods and issues focusing on recent developments pertinent to the

pharmaceutical industry. It will follow the traditional drug development process

to organize the review in terms of phase I to phase III trials and will also discuss

about a recent major challenge to seamlessly link these kinds of traditional

phased-designs.

II. PHASE I CLINICAL TRIALS

Many general design considerations for clinical trial of cancer are similar to that

for other categories of diseases. However, a major difference starts from the so-

called phase I clinical trial. In most drug testing in diseases other than cancer,

healthy (normal) volunteers (subjects) are recruited for phase I trials in order to

study the clinical pharmacology and toxicity of the drug. Using healthy subjects

reduces the risk of serious toxicity problems and avoids confounding
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pharmacologic and disease effects. Once comfort against acute toxicity is

established, dose-ranging studies to determine tolerable doses typically follow,

again with healthy subjects. This is not the case for cancer phase I trials.

Phase I cancer clinical trials usually involve patients who have been heavily

treated and, in most cases, have failed to respond to previous treatments (but still

have good organ function to receive potential benefit from the investigational

therapy). The types and grade levels of toxicity are specifically defined. In the

U.S.A., the National Cancer Institute (NCI) Common Toxicity Criteria are used.

The main goals of a phase I cancer clinical trial with cytotoxic drugs are to find

the maximum tolerated dose (MTD) of the drug for a specific mode of

administration and to characterize the most frequent dose-limiting toxicities

(DLT).2 Sequential dose-finding strategies are always used for ethical reasons.

Two types of sequential strategies are used: algorithm-based designs and

model-based designs. The so called “3 þ 3” design is the typical algorithm-based

design (see Chen in Chapter 6) and has been referred to as the standard method by

Korn et al.3 and a conventional method by Simon et al.4 Because of its practical

simplicity, many clinical investigators favor this conventional design. The

algorithm does not have to be limited to “3 þ 3”, and many variants in fact have

also frequently been used in practice. Lin and Shih5 presented examples and

derived in rigorous details the statistical properties of the generalized “A þ B”

designs, with or without dose de-escalation schemes. The statistical properties

include:

† the probability of a dose chosen as MTD

† the expected number of patients at each dose level

† the target toxicity level (TTL), i.e., the expected DLT incidences at

MTD

† the expected DLT incidences at each dose level

† the expected overall DLT incidences.

All these statistical properties are derived based on the assumed toxicity rate

at each dose level selected for the trial. Though the exact dose–toxicity rates are

not known in advance, the clinicians should have some knowledge or rough idea

of the drug–toxicity based on similar trials or other source of information;

otherwise, it would be very difficult for the investigator to justify the dose levels

selected for testing. Usually several different scenarios, including the best and

worst possible cases, may be considered back and forth during the planning stage.

By considering these properties, statisticians also help the clinical investigators to

gain insights on selecting the dose levels to be tested in the trial. It is clear from

Ref. 5 that the algorithm-based “A þ B” designs do not really have a fixed TTL;

in particular, they showed that the TTL of 33% for the “3 þ 3” design is a

misconception. One should understand that the algorithm-based designs are to

identify a dose-level that does not exhibit too much toxicity on a very small group

of patients so as not to produce accurate estimates of a target quantile. The S-plus

program used in Ref. 5 is available at http://www2.umdnj.edu/~linyo.
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In model-based sequential designs, the MTD is a quantile corresponding to

the desired TTL of the assumed dose–toxicity distribution model. Methods for

estimating the MTD based on parametric models are also used in industry-

sponsored trials. These include the “continual reassessment method” (CRM),6,7

modified CRM,8–10 extended CRM,11 and “escalation with overdose control”

(EWOC).12 The main feature of the CRM and EWOC methods is using an initial

monotonic dose–toxicity working model with prior distributions on the model

parameters and accruing data to update the current estimate of the MTD. The

modifications and extension of CRM for practical concerns include the

following:

† Always start with lowest dose.

† Never skip a dose level (in the discrete case).

† Never increase by more than twice the previous dose.

† Use the conventional “3 þ 3” algorithm for the first two or three dose

levels until the first toxicity is observed and then engage in the CRM

mode.

O’Quigley and Shen13 noted that CRM could be developed according to the

likelihood without Bayes theorem, similar to sequential maximum likelihood

techniques. It is clear that the likelihood approach requires at least one toxicity

case for parameter estimation and restriction of the dose–toxicity model to only

one parameter. The modified or extended CRM procedure is always used in

practice instead of the CRM. Shen and O’Quigley14 and Cheung and Chappell15

discussed sufficient conditions under which the procedure is consistent

(i.e., converging to the correct MTD). Proper stopping-rules need to be set to

allow early termination, such as rules based on confidence intervals,16 binary

outcome trees,17 and allocation limits.18 Some of these rules are based on precise

probabilistic calculations and are not easy to implement. In practice, a maximum

number of patients to be treated in the trial (usually under 30) is imposed as the

stopping-rule and may undermine the dose convergence.

EWOC is also a Bayesian method based on a location-scale family of models.

The scheme introduces over-dose control such that the predicted probability of

the next dose assigned to a new patient exceeding MTD is fixed at a given level.

Zacks et al.19 studied the consistency of this procedure. Evaluation of the

predicted probability requires intensive computations, but with recent develop-

ments of the Markov Chain Monte Carlo method and the widely available

computer software “BUGS” (Bayesian inference Using Gibbs Sampling), the

task of computation has been easier.

A major concern for model-based methods is model misspecification.

The sufficient conditions given in Refs. 14 and 15 for consistency of CRM relate to

the true dose–toxicity curve. Because the true dose–toxicity curve is unknown,

the conditions are not verifiable. For a given working dose–toxicity model,

Cheung and Chappell15 suggested a reasonable approach to determine an interval

of probabilities in which the toxicity of the converged recommended dose
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will fall. The shorter the range, the less sensitive the working model is to the

underlying true model and vice versa. Similar to studying the “A þ B” properties

by Lin and Shih5 using these sufficient conditions and simulations, statisticians

are able to evaluate the operating characteristics of CRM in advance and can help

in selecting doses for experimentation; see examples in Ref. 20.

Storer21 investigated several “up and down” designs that target TTL at 33%.

Random walk rules (RWRs) generalize these rules to any quantile of interest.22

Up and down and RWRs are nonparametrics having no concerns in possible

model misspecification. A RWR creates a unimodal distribution around the target

quantile. The estimate of MTD can then be obtained from the empirical mode of

frequency distribution, and it is consistent but is highly variable with a small

number of patients. Also, as in CRM, some patients will be assigned above the

MTD. Properties of RWRs have been developed and a simple software in

MATLAB is also available.22

More reviews on phase I designs can be found in Ref. 23 including other

methods such as decision–theoretic approaches.24 Leung and Wang25 also used a

decision theory approach to optimize the number of patients treated at the MTD.

Because the phase I trial has to define the MTD, with due consideration to

efficacy, strategies based on efficacy and toxicity responses in combination phase

I/II trials by Thall and Russell26 have great potential to expedite drug

development in the industry. Phase I/II trial designs first use one of the above

strategies to find the MTD or RPTD (recommended phase II dose), then with the

same protocol continue the same study to treat patients with the RPTD and

examine the tumor response rate. Such seamless switching from phase I to

phase II within the same protocol is practical only when the study does not

require different patient populations, defined by the inclusion and exclusion

criteria, for phase I and II parts of the protocol.

III. PHASE II CLINICAL TRIALS

The main objective of a phase II cancer trial is to determine whether a new

therapy has sufficient activity against a specific type of tumor to warrant its

further (phase III) development.27 A major difference between cancer phase II

trials and those of many other diseases is that the former are usually conducted

single-arm without a parallel control. Historical control is often referred to for

comparison.28 In the industry, these are often referred to as phase IIA studies and

extensive epidemiological data and literature review and meta-analysis are

crucial to the interpretation of a phase IIA cancer trial using historical controls.

The primary endpoint for cancer phase IIA trials is usually the tumor response

rate defined clinically based on a combination of reduction in tumor size and

changes in biochemical markers. Complete and partial responses are usually

pooled together when a single (overall) response rate is calculated. Sometimes

investigators also collect data on survival, but confidence intervals are usually

wide because of small samples. Since there is no randomization in these Phase

IIA studies, the starting time of survival is rather arbitrary.
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A hypothesis testing approach is carried out in a phase IIA trial based on

response rates because one has to decide whether or not to proceed to a phase

IIB/III trial. The therapy will be deemed uninteresting if the true response rate ( p)

is no more than a certain level, and accepted for further investigation in larger

groups of patients (i.e., phase IIB/III studies) if the true response is greater than

some target level. The “uninteresting level” of response rate (p0) may be obtained

from the literature regarding the standard therapy. The target level of response

rate (i.e., the alternative hypothesis, p* ) is usually set based on the investigator’s

expectation of the new therapy. Typically, for ethical and practical considerations

a two- or three-stage design is used for these phase IIA trials so that an ineffective

treatment can be dismissed early at the end of the first stage.

In the early 1960s, when the anticancer agents had low activity, Gehan’s two-

stage design was used widely, in which p0 was set to be zero.
29 Later, Simon

generalized p0 and introduced “optimal” and “minimax” designs.30 Simon’s

“optimal” design minimizes the expected sample size under the null hypothesis,

and “minimax” design first minimizes the maximum of the total sample size and

then chooses the “optimal” one among these solutions. In Simon’s design, no

early termination is allowed even when there is a long run of failures at the start.

To overcome this difficulty, Ensign et al.31 introduced an optimal three-stage

design, in which the first stage is to allow early stopping when a moderately long

sequence of initial failures occur and the remaining two stages are the same as in

Simon’s design.

While Simon’s two-stage design has been the most popular method for

phase IIA cancer trials, another recent development is an adaptive two-stage

design, which copes with the uncertainty in setting the alternative hypothesis

associated with power at the planning stage. To illustrate, consider a study to

investigate the weekly administration of vinorelbine, bleomycin, and gemcita-

bine combination therapy for treating patients with recurrent or refractory

Hodgkin’s disease. Because each of the single agents has been known to be active

against Hodgkin’s disease when given alone, p0 was set at .40 to distinguish the

combination from the single agents. The principal investigator targeted the

response rate of the combination therapy at p* ¼ :60 based on his expectation.
The testing of H0: p # :40 vs. HA: p $ :60 is considered. With the type I error

a # 5% and type II error b # 20%; using Simon’s two-stage optimal design, 16
patients will be recruited to the first stage of the study. The therapy will not be

interesting (i.e., H0 accepted) if there are no more than seven responses out of the

16 patients, otherwise an additional 30 patients will be recruited to the second

stage of the study. The combination therapy will not be interesting if there are no

more than 23 responses out of the total of 46 patients.

When the true response rate is actually 55% (i.e., 15% above p0), the

probability of accepting H0 (rejecting the therapy) will be 40%, twice as large as

the chosen type II error. If the true response rate is 50% (i.e., 10% above p0), the

probability of rejecting the drug will be 64%, more than triple the type II error.

The problem is even more pronounced when one chooses b # 10%: If the true
response rate is 55%, the probability of rejecting the therapy will be 26.9%,
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almost triple the chosen type II error. If the true response rate is 50%, the

probability of rejecting the therapy will be 54.2%, more than five times the type II

error.

It is conceivable that in many situations the response rates of 55 or 50% are

still worth pursuing, even though 60% is initially targeted based on the

investigator’s expectation of the new therapy. In general, using Simon’s design,

there is a high probability of rejecting a promising new therapy if the initial

expectation is set optimistically.

From the above illustration, we can see that it is crucial to choose the right p*
when planning a phase IIA study. Unfortunately, we usually have very little

information about p* at the planning stage of studying a new cancer therapy, and

are often concerned with the uncertainty in setting a value for it. A natural way to

resolve this dilemma is to choose p* with some flexibility. Lin and Shih32

proposed an adaptive two-stage design, which enables the investigator to set a

higher target (p2Þ in the beginning but to switch to a lower rate (p1Þ for testing if
necessary, or vice versa, depending on the observed number of responses after the

first stage of the study, and then determine the number of patients needed for the

second stage accordingly. The procedure is briefly described as follows. Let x be

the number of the observed responses out of n1 patients in the first stage:

† If x # s1; reject the therapy and stop the trial (i.e., accept H0).

† If s1 , x # r1; power the study of ð12 b1Þ at p* ¼ p1 and enter m2 ¼
m2 n1 additional patients into the study.

Reject the therapy if later the total number of responses is #s out of m

patients.

† If x . r1; power the study of ð12 b2Þ at p* ¼ p2 and enter n2 ¼
n2 n1 additional patients into the study.

Reject the therapy if later the total number of responses is ,r out of n

patients.

The adaptive two-stage design parameters are (s1; r1; n1; s; m; r; n). These
have to satisfy the requirement of type I error # a: It is reasonable to choose
b1 $ b2 in practice, although not required, because we would like to have higher

power for detecting more improvement of the new therapy (p2 vs. p0), and, from

the feasibility aspect, we need to lower the power for less improvement (p1 vs. p0)

because the sample size could not be too big for a phase IIA study. This capping

sample size for less effect (compromising the power somewhat) has also been used

in the sample size re-estimation methods (see, e.g., Ref. 33). In addition, four

optimality criteria for (s1; r1; n1; s; m; r; n) are considered:

† Optimality Type (O1): EN0 is smallest

† Optimality Type (O2): max{ENili ¼ 0; 1; 2} is smallest
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† Optimality Type (O3): maxðn;mÞ is smallest among all solutions and
EN0 is smallest among such solutions

† Optimality Type (O4): maxðn;mÞ is smallest among all solutions and
max{ENili ¼ 0,1,2} is smallest among such solutions

where ENi ¼ EðNlpiÞ for i ¼ 0; 1; 2:
O1 and O3 are similar to Simon’s “optimal design” and “minimax design”

criteria, respectively. As in Ref. 30, O1 design achieves reduction in EN0 by

having a smaller sample size at the first stage. This is desirable for ethical

considerations in the case of inactive therapy. On the other hand, O3 design has a

smaller maximum sample size. O2 and O4 designs are natural extensions of O1

and O3, respectively. In O2 and O4, the smallest expected number of patients is

considered under the null hypothesis and also under the alternative as well. For

O2 and O4, compared with O1 and O3, respectively, a larger sample size is

needed at the first stage, but large savings in the total sample size are achieved. A

larger sample size needed at the first stage is reasonable for O2 and O4 to ensure a

sound decision based on the interim data for adaptive designs. Lin and Shih32

provided theoretical proof of the existence of (s1; r1; n1; s; m; r; n) and algorithm
to find the optimal solutions. Table 7.1 gives the designs for a ¼ 0:05; b1 ¼ 0:20;
b2 ¼ 0:10; p1 2 p0 ¼ :20; and p2 2 p0 ¼ :30: More tables for other scenarios
of (a; b1; b2; p0; p1; p2) and the computer program used to generate these

tables are available at the web site http://www2.umdnj.edu/~linyo.

Other various designs that extend Simon’s design can be found in Refs.

34–36. All these designs and testing procedures are considered as some sort of

optimal early stopping for futility or efficacy. Bayesian designs have also been

proposed by, for example, Ref. 37. An earlier review of statistical designs of

phase IIA cancer trials can be found in Ref. 38.

Recently, because of the pressure of getting medicines on the market for

needy patients faster, more phase IIB studies are designed with a randomized

active control group using time-to-progression or progression-free-survival as the

primary endpoint and quality of life as the key secondary endpoint. This strategy

is related to the use of seamless phase IIB/III design and the “Fast Track Drug

Development Program,” as discussed in the next section.

IV. PHASE III CLINICAL TRIALS

Key design considerations for phase III cancer trials, such as randomization,

control agent, endpoints, sample size, study duration, interim analyses, Data

Safety Monitoring Committee, etc., are similar to those for other life-threatening

diseases, and have been discussed by many authors (e.g., Ref. 1). Some issues,

those are specifically pertinent to the pharmaceutical industry sponsored cancer

trials, are worth highlighting. These include the 1998 FDA’s “Guidance for

Industry: the Fast Track Drug Development Programs” (FTDDP) and the recent

trend in filing equivalence or noninferiority for new cancer treatments. We

discuss these two topics in the following.
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TABLE 7.1
Designs for a 5 0.05, b1 5 0.20, b2 5 0.10, p1 2 p0 5 .20, and p2 2 p0 5 .30

p0 p1 p2
Design Parameters True Expected Sizes

Optimal Types1/r1/n1 s/m r/n a b1 b2 EN0 EN1 EN2

.05 .25 .35 0/1/7 2/19 3/24 0.041 0.200 0.059 10.84 20.17 22.24 1

0/1/9 2/18 2/15 0.046 0.196 0.049 12.11 15.23 15.18 2

0/1/9 2/17 2/16 0.044 0.198 0.048 11.89 15.70 15.96 3 & 4

.10 .30 .40 1/2/11 4/22 5/28 0.047 0.200 0.043 14.87 24.88 26.95 1

0/2/9 5/25 3/16 0.050 0.198 0.038 18.32 19.52 17.92 2

1/3/17 5/23 4/22 0.050 0.197 0.035 20.03 22.09 22.03 3 & 4

.15 .35 .45 2/5/12 8/35 7/24 0.050 0.199 0.047 18.03 29.18 28.83 1

2/4/15 9/36 5/18 0.050 0.196 0.040 22.20 23.04 19.94 2

2/3/15 6/25 7/28 0.050 0.199 0.031 19.49 26.86 27.77 3

1/5/15 7/28 6/20 0.048 0.200 0.033 23.72 24.33 22.06 4

.20 .40 .50 3/7/13 12/43 8/24 0.050 0.200 0.048 20.56 36.09 36.10 1

3/6/17 11/36 7/20 0.049 0.199 0.035 24.97 26.28 22.54 2

3/6/17 10/32 9/31 0.047 0.200 0.026 23.73 30.75 31.07 3

1/5/13 10/32 7/23 0.050 0.200 0.026 27.29 27.93 25.58 4

.25 .45 .55 4/7/15 14/40 9/24 0.049 0.200 0.032 22.56 31.45 28.91 1

5/8/20 15/42 9/22 0.049 0.200 0.036 27.60 29.07 24.47 2

3/6/16 12/34 13/35 0.050 0.196 0.022 26.79 34.13 34.81 3

7/10/26 13/35 11/32 0.050 0.200 0.022 28.71 32.54 32.17 4

.30 .50 .60 5/9/15 18/46 14/32 0.050 0.199 0.036 23.58 39.21 39.31 1

5/8/17 19/45 9/21 0.050 0.198 0.022 27.32 30.99 25.48 2
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6/11/22 15/36 13/34 0.050 0.200 0.020 29.05 34.80 34.43 3

5/11/22 15/36 12/28 0.050 0.200 0.020 31.50 32.55 29.82 4

.35 .55 .65 6/9/16 20/44 15/33 0.050 0.199 0.027 24.48 36.50 35.79 1

8/11/21 21/45 12/24 0.048 0.198 0.022 27.40 32.08 27.15 2

7/11/23 18/38 17/37 0.049 0.199 0.017 31.73 37.08 37.06 3

9/14/28 18/38 16/36 0.050 0.200 0.017 33.33 36.60 36.14 4

.40 .60 .70 7/11/16 23/46 14/26 0.050 0.200 0.028 24.42 38.40 36.23 1

8/12/21 23/44 13/23 0.049 0.199 0.022 31.21 32.19 26.04 2

6/10/17 20/39 20/37 0.050 0.199 0.016 29.08 37.34 37.38 3

15/19/31 20/39 20/35 0.050 0.198 0.016 32.01 36.47 35.69 4

.45 .65 .75 7/11/15 24/43 14/23 0.050 0.198 0.021 24.58 36.38 33.29 1

10/13/21 27/47 14/23 0.048 0.200 0.018 28.44 32.12 25.95 2

12/16/24 22/39 21/35 0.050 0.199 0.014 27.59 36.16 35.83 3

16/19/30 22/39 20/33 0.050 0.199 0.014 31.14 34.82 33.56 4

.50 .70 .80 8/12/15 26/43 20/30 0.050 0.200 0.021 23.45 37.68 37.32 1

12/15/22 26/42 16/24 0.049 0.198 0.015 26.76 31.27 26.27 2

8/13/17 23/37 15/23 0.050 0.200 0.011 26.91 33.37 29.26 3

13/17/24 23/37 18/29 0.050 0.200 0.011 27.43 32.93 30.46 4

.55 .75 .85 9/13/15 28/43 14/17 0.050 0.199 0.023 22.26 36.76 34.25 1

11/14/19 27/40 15/21 0.048 0.199 0.011 25.12 29.53 23.66 2

15/19/24 24/36 20/28 0.050 0.199 0.009 26.05 32.57 30.22 3 & 4

.60 .80 .90 7/10/11 30/43 14/18 0.050 0.200 0.019 20.39 35.70 34.56 1

13/15/20 30/41 17/23 0.050 0.196 0.006 24.33 27.85 23.73 2

10/14/17 24/33 15/20 0.048 0.200 0.005 24.01 28.37 23.08 3 & 4

.65 .85 .95 6/8/9 28/37 17/22 0.049 0.197 0.009 18.13 29.58 27.31 1

11/13/16 31/40 14/17 0.049 0.190 0.008 21.90 25.19 17.97 2

13/16/18 23/30 20/24 0.050 0.199 0.003 20.24 27.21 25.34 3

13/16/18 23/30 20/24 0.050 0.199 0.003 20.24 27.21 25.34 4
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A. FAST TRACK DRUG DEVELOPMENT PROGRAMS

The FTDDP is a great opportunity for industry to bring effective treatment on the

market faster to benefit patients. The issues involve endpoints switching and

controlling different type I errors for conditional and final approvals of the drug.

In general, overall survival benefit is the ultimate endpoint that a phase III cancer

trial needs to show on the test treatment over the control in order to obtain the

final approval of marketing authorization from the Food and Drug Adminis-

tration. Time-to-progression, disease-free survival, tumor response rate, and

quality of life scores can all serve as secondary endpoints for supportive

evidence, but the primary endpoint is the overall survival. (Aside: Because it may

well take a huge sample size and long time to show the benefit of overall survival,

issues regarding interim analyses and trial monitoring arise. See Hwang and

Lan in Chapter 14 for discussions of group sequential designs, which are almost

always used for phase III cancer trials.)

In the past, the Oncology Drug Advisory Committee (ODAC) of the FDA has

recommended conditional approval of new treatments based on well-conducted

studies using secondary endpoints, such as disease progression and tumor

response rate. The legal base of the conditional approval is the Food and Drug

Administration Modernization Act of 1997 Section No. 112 entitled “Expediting

Study and Approval of Fast Track Drugs.”53 The FDA issued “Guidance for

Industry: the Fast Track Drug Development Programs” in 1998 to set

the requirements for the FTDD programs.54 First, it states that the purpose of

FTDD programs is to “facilitate the development and expedite the review of new

drugs that are intended to treat serious or life-threatening conditions and that

demonstrate the potential to address unmet medical needs.” For cancer, this

requires the investigation of the new treatment to be at a tumor site for which there

is currently no effective medication. Second, it states that an application for

approval of a fast track product may be granted if it is determined that “the product

has an effect on a clinical endpoint or on a surrogate endpoint that is reasonably

likely to predict clinical benefit.” For cancer treatments, the “clinical benefit”

refers to the overall survival, and “a clinical endpoint or a surrogate endpoint” may

be time-to-progression, progression-free-survival, or tumor response rate, because

these are generally accepted as reasonably predictive of the overall survival.

The FTDD Programs also put limitations on such accelerated approvals:

the sponsor has to “conduct appropriate postapproval studies to validate the

surrogate endpoint or otherwise confirm the effect on the clinical endpoint.”

The FDA also may withdraw approval of a fast track product using expedited

procedures if, among other things such as safety issues, “the sponsor fails to

conduct any required study” or “a postapproval study of the fast track product fails

to verify clinical benefit of the product.” Therefore, the accelerated approval is

only a conditional approval for the drug. Some authors have labeled as “phase IIB”

those randomized studies that use time-to-progression, progression-free-survival,

or tumor response rate as endpoints39 and “phase III” for the postconditional-

approval study.
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Shih et al.40,52 discussed two related issues involved in the FTDD programs:

the so-called “postconditional-approval study” concept, and the kind of type I

errors involved in the approval process. For the issue of postconditional-

approval study, Shih et al. proposed a “seamless phase IIB/III” design, i.e., the

“postconditional-approval study” does not have to be a separate study, but can

be a proper continuation or extension of the same study upon which the early

submission for accelerated approval is based. An obvious advantage of such an

approach is savings of time and resources. It is also conceivable that in certain

situations of severe diseases (such as pancreatic cancer) continuation or

extension of the same trial, often very large in sample size, is the only feasible

way to study the effect of treatment under investigation.

Seamless studies have obvious advantages of efficiency. But there are design

and conduct considerations to continue a study properly so as to ensure that the

final submission of the product satisfies the usual requirements of the traditional

approval. For example, special attention needs to be paid to how to keep enough

patients in the control arm of the study after a clear benefit of the investigational

drug has been shown on the surrogate endpoint (and the drug is available on the

market). Because the objective and endpoint often change in the continuation

according to the design, some interesting questions are raised. Do we view the

fast track approval submission as an interim analysis of the whole study, or view

the final analysis as for a “poststudy extension” (i.e., the fast track submission is

the main study)? If the fast track (accelerated approval) submission is an interim

analysis, how does this type of interim analysis differ from the usual ones? What

is the implication of the type I error rate when the first accelerated approval is

only a conditional one? How should the type I error rate(s) be calculated and

controlled?

The usual sense of overall (or experiment-wise) type I error rate means the

probability of falsely rejecting any true hypothesis. This concept is not useful for

the current situation where the final hypothesis regarding the overall survival

ultimately dominates the fast-track hypothesis regarding the intermediate

endpoint (time-to-progression or progression-free-survival) at a later time point

with more data. Denote the “final approval type I error rate” by aF ; the “early
submission type I error rate” during the gap time before final approval by aE; and
the tentative, conditional “accelerated approval type I error rate” during the gap

time by aA: Shih et al.
40 suggested that we should instead consider the following

possible scenarios:

(1) Control aF at 0.05 level.
(2) Control aF at 0.05 level and, in addition, control aE also at 0.05 level.
(3) Control aF at 0.05 level and, in addition, control aA at 0.01 level.
(4) Control aF þ aA at 0.05 level, for example, aF ¼ 0:04 and aA ¼ 0:01:

Scenario (1) views that the ultimate approval is the final conclusion of

the drug’s efficacy, only aF needs to be controlled at the conventional 5%

level. Scenario (2) views that the continuation of the trial is an extension study.
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Each section of the submission process is controlled at the 5% level. Scenario (3)

controls the final submission at the conventional 5% and the tentative conditional

type I error rate at 1% (implying the imposition of a stricter risk protection for the

accelerated approval of a yet-to-be confirmed but promising drug.) Scenario (4) is

the most conservative way of controlling the accelerated and final approvals

together at the 5% rate. When planning for an accelerated submission, discussion

with the regulatory agency with regard to an appropriate scenario for aF; aE and
aA should be an essential part of the application for the FTDD programs.

B. NONINFERIORITY OR SUPERIORITY TRIALS WITH ACTIVE CONTROL

Because of ethical reasons many randomized phase III cancer trials are conducted

using an active control agent (“A”) for testing an experimental treatment (“T”).

The active control treatment should have been shown to be efficacious as

compared with placebo or a reference drug (“R”).41 Note that, because many

recent phase III cancer studies have involved combinations of therapies, a single

therapy such as 5-fluorouracil (5-FU) is often the ultimate reference (“R”) rather

than the placebo. There are usually two types of study objectives in an active

controlled clinical trial. One is a superiority hypothesis that the experimental

treatment is more effective than the active control. The other is a noninferiority

(or equivalence) hypothesis that the experimental treatment is therapeutically no

worse than (or equivalent to) the active control within a defined margin or

range.42 The superiority objective is of course much more desirable if achieved.

Because the effect size of a new treatment relative to the active control is often

hard to predict, the noninferiority objective is also valuable to consider if the

experimental treatment is shown to have a similar effect, yet is less costly, safer,

and more convenient to administer than the active control. Thus, both objectives

are often included in the study protocol in practice.

For the noninferiority objective, the issue of determining the noninferiority

margin has been at the center stage. First, one has to assure that the active control

(“A”) would have been superior to a standard reference (“R”) if a standard

reference were included in the present trial. The use of past (historical) standard

reference-controlled trials often accomplishes this, but one must evoke a very

strong assumption (namely, the constancy assumption) that the historical

difference between the active control and reference therapy remains the same

if the reference therapy had been used in the present trial. Second, one has to take

into account the variability of the historical data by meta-analysis. Third, one has

to demonstrate that the new therapy (“T”) is superior to the putative “R”

preserving at least a certain amount of the superiority of the active control (“A”)

over the reference therapy. See Hwang in Chapter 12, Refs. 43 and 44 for detailed

reviews of fundamental issues in noninferiority trials in general. The “indirect

confidence interval comparison method”,45 or so-called “two CI procedure”,46 is

the most commonly used method to address the above issues. Although often

conservative, it controls the type I error probability robustly against failure of the

constancy assumption.
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For keeping both objectives of superiority and noninferiority comparisons in

the same study, Morikawa and Yoshida47 and Dunnett and Gent48 proposed using

stepwise procedures, testing superiority first then noninferiority next depending

on the outcome of the first test. The stepwise procedures are based on the closed

testing principle valid without adjustment for the multiple comparisons. Note that

their procedures are conducted with the usual fixed sample size design. Group

sequential trials for either superiority or noninferiority can also be conducted by

using the repeated confidence interval approach. Note that the conventional

group sequential procedure is also based on fixed maximal information.

An adaptive design, which utilizes in-trial information to direct the future

course of a trial, is sequential in nature and provides a strategy for flexible sample

size (or information in general), trial duration, and other study design

specifications. Adaptive designs have gained increasing popularity in recent years

in clinical trials; see, for example, Pledger and Liu in Chapter 13, Refs. 49 and 50

for recent overviews. Wang et al.42 have proposed an adaptive group sequential

closed test procedure (AGSC) for testing the superiority or noninferiority

hypotheses. Wang et al.’s AGSC is an extension of that of Cui et al.51 In their

AGSC, sample size can be adjusted once, and the test statistic is reconstructed to

control the type I error rates for both superiority and noninferiority, based on the

interim data. This procedure has the advantage of an early stop for superiority and

continuing with a larger sample size if only inferiority is shown at the interim

analysis.

Another adaptive strategy for testing the superiority and noninferiority

hypotheses in an active-controlled study is proposed in Ref. 40, which uses the

conditional power at the first stage to determine the course of the second stage.

Differing from AGSC, they include consideration of an early stop for futility as a

part of the interim decision making, and keep the final test statistic in its original

likelihood ratio test form but recalculate the critical value to control the overall

type I error rate. As a result, the proposed procedure is more flexible and more

powerful compared with Wang et al.’s AGSC. Future cancer phase III trials in

the pharmaceutical industry will likely be shaped with these new developments.

The SAS computer program of Ref. 40 is available at the author’s web site at

http://www2.umdnj.edu/~shihwj.

REFERENCES

1. Simon, R.M., Design and conduct of clinical trials, In Cancer Principles and

Practice of Oncology, DeVita, V.T. Jr., Hellman, S., and Rosenberg, S.A., eds.,

Lippincott, Philadelphia, PA, 1982.

2. Carter, S.K., The phase I study, In Fundamentals of Cancer Chemotherapy,

Hellmann, K.K. and Carter, S.K., eds., McGraw Hill, New York, pp. 285–300,

1987.

3. Korn, E.L., Midthune, D., Chen, T.T., Rubinstein, L.V., Christian, M.C., and

Simon, R.M., A comparison of two phase I trial designs, Stat. Med., 13,

1799–1806, 1994.

Recent Statistical Issues and Developments in Cancer Clinical Trials 147

http://www2.umdnj.edu/~shihwj


4. Simon,R., Freidlin, B., Rubinstein, L., Arbuck, S.G., Collins, J., andChristian,M.C.,

Accelerated titration designs for phase I clinical trials in oncology, J. Natl Cancer

Inst., 89, 1138–1147, 1997.

5. Lin, Y. and Shih, W.J., Statistical properties of the traditional algorithm-based

designs for phase I cancer clinical trials, Biostatistics, 2, 203–215, 2001.

6. O’Quigley, J., Pepe, M., and Fisher, L., Continual reassessment method: a

practical design for phase I clinical trials in cancer, Biometrics, 46, 33–48, 1990.

7. O’Quigley, J. and Chevret, S., Methods for dose finding studies of cancer clinical

trials: a review and results of a Monte Carlo study, Stat. Med., 10, 1647–1664,

1991.

8. Faries, D., Practical modification of the continual reassessment method for phase I

clinical trials, J. Biopharm. Stat., 4, 147–164, 1994.

9. Goodman, S.N., Zahurak, M.I., and Piantadosi, S., Some practical improvement in

the continual reassessment method for phase I studies, Stat. Med., 14, 1149–1161,

1995.

10. Ahn, C., An evaluation of phase I cancer clinical trial designs, Stat. Med., 17,

1537–1549, 1998.

11. Moller, S., An extension of the continual reassessment methods using a

preliminary up-and-down design in a dose finding study in cancer patients, in

order to investigate a greater range of doses, Stat. Med., 14, 911–922, 1995.

12. Babb, J., Bogatko, A., and Zacks, S., Cancer phase I clinical trials: efficient dose

escalation with overdose control, Stat. Med., 17, 1103–1120, 1998.

13. O’Quigley, J. and Shen, L.Z., Continual reassessment method: a likelihood

approach, Biometrics, 52, 673–684, 1996.

14. Shen, L.Z. and O’Quigley, J., Consistency of the continual reassessment method

under model misspecification, Biometrika, 83, 395–406, 1996.

15. Cheung, Y.K. and Chappell, R., A simple technique to evaluate model sensitivity

in the continual reassessment method, Biometrics, 58, 671–674, 2002.

16. Heyd, J.M. and Carlin, B., Adaptive design improvements in the continual

reassessment method for phase I studies, Stat. Med., 18, 1307–1321, 1999.

17. O’Quigley, J. and Reiner, E., A stopping-rule for the continual reassessment

method, Biometrika, 85, 741–748, 1998.

18. O’Quigley, J., Continual reassessment designs with early termination, Biostatis-

tics, 3, 87–99, 2002.

19. Zacks, S., Rogatko, A., and Babb, J., Optimal Bayesian-feasible dose escalation

for cancer phase I clinical trials, Stat. Probabil. Lett., 38, 215–220, 1998.

20. Ishizuka, N. and Ohashi, Y., The continual reassessment method and its

applications: a Bayesian methodology for phase I cancer clinical trials, Stat.

Med., 20, 2661–2682, 2001.

21. Storer, B.E., Design and analysis of phase I clinical trials, Biometrics, 45,

925–937, 1989.

22. Durham, S.D., Flournoy, N., and Rosenberger, W.F., A random walk rule for

phase I clinical trials in cancer, Biometrics, 53, 745–760, 1997.

23. Rosenberger, W.F. and Haines, L.M., Competing designs for phase I clinical

trials: a review, Stat. Med., 21, 2757–2770, 2002.

24. Whitehead, J. and Brunier, H., Bayesian decision procedures for dose determining

experiments, Stat. Med., 14, 885–893, 1995.

25. Leung, D.H.Y. and Wang, Y.G., An extension of the continual reassessment

method using decision theory, Stat. Med., 21, 51–64, 2002.

Statistics in the Pharmaceutical Industry148



26. Thall, P.F. and Russell, K.E., A strategy for dose-finding and safety monitoring

based on efficacy and adverse outcomes in phase I / II clinical trials, Biometrics,

54, 251–264, 1998.

27. Leventhal, B.G. and Wittes, R.E., Research Methods in Oncology, Raven Press,

New York, 1988.

28. Thall, P.F. and Simon, R., Incorporating historical control data in planning phase

II clinical trials, Stat. Med., 9, 215–228, 1990.

29. Gehan, E.A., The determination of the number of patients required in a

preliminary and a follow-up of a new chemotherapeutic agent, J. Chronic Dis., 13,

346–353, 1961.

30. Simon, R.M., Optimal two-stage designs for Phase II clinical trials, Control. Clin.

Trials, 10, 1–10, 1989.

31. Ensign, L.G., Gehan, E.A., Kamen, D.S., and Thall, P.F., An optimal three-stage

design for phase II clinical trials, Stat. Med., 13, 1727–1736, 1994.

32. Lin, Y. and Shih, W.J., Adaptive two-stage designs for single-arm phase IIA

cancer clinical trials, Biometrics, 60, 482–490, 2004.

33. Gould, L.J. and Shih, W.J., Modifying the design of ongoing trials without

unblinding, Stat. Med., 17, 89–100, 1998.

34. Green, S.J. and Dahlberg, S., Planned versus attained designs in phase II clinical

trials, Stat. Med., 11, 853–862, 1992.

35. Chen, T.T., Optimal three-stage designs for phase II cancer clinical trials, Stat.

Med., 16, 2701–2711, 1997.

36. Shuster, J., Optimal two-stage designs for single arm phase II cancer trials,

J. Pharm. Stat., 12, 39–51, 2002.

37. Tan, S.B. and Machin, D., Bayesian two-stage designs for phase II clinical trials,

Stat. Med., 21, 1991–2012, 2002.

38. Mariani, L. and Marubini, E., Design and analysis of phase II cancer trials: a

review of statistical methods and guidelines for medical researchers, Int. Stat.

Rev., 64, 61–88, 1996.

39. Simon, R., Wittes, R., and Ellenberg, S., Randomized phase II clinical trials,

Cancer Treat. Rep., 69, 1375–1381, 1985.

40. Shih, W.J., Quan, H., and Li, G., Two-stage adaptive strategy for superiority

and noninferiority hypotheses in active controlled clinical trials, Stat. Med., 23,

2781–2798, 2004.

41. Temple, R. and Ellenberg, S.S., Placebo-controlled trials and active-controlled

trials in the evaluation of new treatments: Part 1: Ethical and scientific issues,

Ann. Intern. Med., 133, 455–463, 2000.

42. Wang, S.J., Hung, H.M.J., Tsong, Y., and Cui, L., Group sequential test strategies

for superiority and noninferiority hypotheses in active controlled clinical trials,

Stat. Med., 20, 1903–1912, 2001.

43. D’Agostino, R.B., Massaro, J.M., and Sullivan, L.M., Noninferiority trials: design

concepts and issues — the encounters of academic consultants in statistics, Stat.

Med., 22, 169–186, 2003.

44. Hung, H.M.J., Wang, S.J., Tsong, Y., Lawrence, J., and O’Neil, R.T., Some

fundamental issues with noninferiority testing in active controlled trials, Stat.

Med., 22, 213–226, 2003.

45. Wang, S.J., Hung, H.M.J., and Tsong, Y., Utility and pitfalls of some statistical

methods in active controlled clinical trials, Control. Clin. Trials, 23, 15–28, 2002.

Recent Statistical Issues and Developments in Cancer Clinical Trials 149



46. Rothmann, M., Li, N., Chen, G., Chi, G.Y.H., Temple, R., and Tsou, H.H., Design

and analysis of noninferiority mortality trials in oncology, Stat. Med., 22,

239–264, 2003.

47. Morikawa, T. and Yoshida, M., A useful testing strategy in phase III trials:

combined test of superiority and test of equivalence, J. Biopharm. Stat., 5,

297–306, 1995.

48. Dunnett, C.W. and Gent, M., Significance testing to establish equivalence

between treatments, with special reference to data in the form of 2 £ 2 tables,
Biometrics, 33, 593–602, 1996.

49. Shih, W.J., Sample size reestimation — Journey for a decade, Stat. Med., 20,

515–518, 2001.

50. Wittes, J., On changing a long-term clinical trial midstream, Stat. Med., 27,

2789–2795, 2002.

51. Cui, L., Hung, H.M.J., and Wang, S.J., Modification of sample size in group

sequential trials, Biometrics, 55, 853–857, 1999.

52. Shih, W.J., Ouyang, P., Quan, H., Lin, Y., Michiels, B., and Bijnens, L.,

Controlling type I error rate for fast track drug development programmes, Stat.

Med., 22, 665–675, 2003.

53. U.S. Department of Health and Human Services, Section 112 of the Food and

Drug Administration Modernization Act of 1997: Expediting Study and Approval

of Fast Track Drugs. http://www.fda.gov/cder/guidance/index.htm, 1997.

54. U.S. Department of Health and Human Services, Guidance for Industry: Fast

Track Drug Development Programs — Designation, Development, and

Application Review, http://www.fda.gov/cder/guidance/index.htm, 1998.

Statistics in the Pharmaceutical Industry150

http://www.fda.gov/cder/guidance/index.htm
http://www.fda.gov/cder/guidance/index.htm


8 Design and Analysis
of Testosterone
Replacement
Therapy Trials

Ted M. Smith

CONTENTS

I. Introduction.......................................................................................... 152

A. Physiology..................................................................................... 152

B. Goals of Testosterone Replacement ............................................. 152

II. General Design Considerations of TRT Trials ................................... 153

A. Serum Testosterone Levels........................................................... 153

B. Clinical Endpoints......................................................................... 154

1. Sexual Functions ..................................................................... 155

2. Bone Mineral Density............................................................. 155

3. Body Composition .................................................................. 155

III. Inclusion/Exclusion Criteria ................................................................ 156

A. Inclusion Criteria .......................................................................... 156

B. Exclusion Criteria ......................................................................... 156

IV. Efficacy ................................................................................................ 157

A. Serum T, Free T, DHT Levels ..................................................... 157

1. Normalization of Serum T Levels.......................................... 157

2. Analysis of T Levels............................................................... 158

3. Analysis of Free T and DHT.................................................. 158

B. Serum E2....................................................................................... 159

C. Clinical Endpoints......................................................................... 159

D. Sample Size Considerations ......................................................... 159

V. Safety ................................................................................................... 159

A. Prostate .......................................................................................... 160

VI. Conclusion ........................................................................................... 160

References........................................................................................................ 160

151



I. INTRODUCTION

Testosterone (abbreviated as T in this chapter) in the male is associated with

sexual function and fertility, intellectual capacity, depression, fatigue, body

composition (muscle and fat mass), muscle strength, bone mineral density

(BMD), and red blood cell production.1 Deficiency in testosterone has been

associated with sexual dysfunction of low libido, poor sexual performance, lack

of spontaneous erections, poor erectile quality,2 reduced muscle mass, increased

body fat (visceral fat), increased risk of osteoporosis, negative mood and/or

depression, and decreased red blood cell production.

Primary hypogonadism is defined as a testicular failure to produce T and can

be caused by Klinefelter’s Syndrome, cryptorchidism, vanishing testis syndrome,

bilateral torsion, orchitis, orchiectomy, chemotherapy or toxic damage from

radiation, alcohol, or heavy metals. Secondary hypogonadism is defined as

hypothalamic–pituitary failure to simulate testicular testosterone production and

can be caused by idiopathic gonadotropin or luteinizing hormone releasing

hormone (LHRH) deficiency or pituitary–hypothalamic injury from tumors,

trauma, radiation, or Kallmann’s Syndrome. Age-dependent decline in

testosterone levels is with associated decreases in muscle mass and strength,

BMD, libido and sexual desire, or increases in body fat.3 Testosterone levels have

been reported to decrease in males over 40 years of age at a rate of approximately

1% a year.4 As a result, 12% of men in the age bracket of 50 to 59 years are

estimated to have a deficiency in testosterone, 19% of men between 60 and 69

years, 28% of men between 70 and 79 years, and 49% of men over 80 years.

A. PHYSIOLOGY

Testosterone is approximately 98% bound to the sex hormone-binding globulin

(SHBG) in the blood and albumin. Approximately 2% of T in circulation is

unbound (free T). Because of the high affinity between T and SHBG, the T bound

to SHBG is not available to most tissues for androgenic action, whereas the free

T and the T bound to albumin is bioavailable to most tissues for androgenic action

(bioavailable T ¼ 70% of circulating T). SHBG levels increase with age and as

a result, many older men will have total T levels in the low-to-normal range but

will have free or bioavailable T levels that are below the normal range for

young men.5

The active metabolites of T are estradiol (E2) and 5 alpha-dihydrotesto-

sterone (DHT). These metabolites, in part, may mediate many of the actions

of T. DHT is a more potent androgen than T.

B. GOALS OF TESTOSTERONE REPLACEMENT

Goals of testosterone replacement therapy (TRT) are to restore libido and regain

sexual function, improve energy and restore positive mood, improve mental

acuity, reduce body fat, restore muscle mass and strength, and improve BMD.1
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Current options for testosterone replacement are oral testosterone, injectable

testosterone esters, transdermal patches, and transdermal gels. Oral formulations

suffer from inconsistent serum T levels and possible hepatotoxicity. Injectables

provide more infrequent dosing options, but suffer from supraphysiological

serum T levels that return to subtherapeutic levels before the next injection.

Transdermal patches maintain serum T levels in a normal range, but suffer from

high dermal reactions that often result in discontinuation. Transdermal gels

maintain serum T levels in a normal range with long-term therapy with a

convenient once a day dosing but have a potential for transfer to a partner or

child.

II. GENERAL DESIGN CONSIDERATIONS OF TRT TRIALS

Goals of TRT trials should be two-fold:

1. Establish that serum T levels are increased into the normal range.

2. Establish that clinical endpoints such as sexual functions, body

composition, mood, and BMD improved through the increase in serum

T levels.

The first goal is essentially pharmacokinetic and should be established

relative to an active comparator, e.g., transdermal patches or transdermal gels.

Because of the large intersubject variation in response to TRT, the trial should

include a component with titration of the dosage of T in the treatment regimen to

provide useful information for prescribing physicians. The titration decision

should be based on the steady state T levels obtained after an initial dosing

period. The titration decision can be part of a double-blind trial or part of an open

label extension.

The second is a clinical goal and must be established relative to a placebo

comparator to achieve clinical objectivity. Depending on the choice of active

comparator and experimental treatment regimen, it may not be possible to have

a completely blinded clinical trial with placebo and active comparator. A new

drug application (NDA) approved by the FDA included an open label active

comparator of a transdermal patch and blinded treatment arms of two doses of

a transdermal gel and a matching placebo gel. Both TRT goals were achieved

with this design.6

A. SERUM TESTOSTERONE LEVELS

Testosterone levels follow a daily circadian variation in untreated healthy young

men with the maximum levels observed in the morning (8 to 9 a.m.) and

minimum levels observed in the afternoon.9 A 24 h pharmacokinetic (PK) profile

on specific days throughout the study is required to establish the first goal with the
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number of serum sample collection time points depending on the pharmacoki-

netics of the specific TRT. Typically, serum collection time points of 0 h

(predose), 2, 4, 8, 12, and 24 h (postdose) will often suffice. A collection time

between 12 and 24 h postdose is only required if a significant maximum

concentration is expected during that time period. Otherwise, this additional

collection time does not add much to the establishment of the first goal and adds a

tremendous burden for the clinical trial centers and their subjects.

In contrast to many other areas of clinical trial research, there are endogenous

levels of T circulating in the body naturally, even in most men with testosterone

deficiency. Testosterone supplementation adds exogenous T to this circulating

system. The body’s natural biofeedback system will alter the level of endogenous

T levels in response to the addition of exogenous T. After TRT, the T levels are a

combination of both naturally occurring endogenous T and supplemented

exogenous T. Consequently, to measure the effect of the TRT, a baseline 24 h PK

profile is required before treatment begins, which measures the naturally

occurring endogenous T levels.

Serum profiles should be collected at baseline and once a month for the

duration of the study for T, free T, and DHT. Serum E2 levels should be collected

at a single collection time during each 24 h PK profile. This is usually during the

predose 0 h collection time point. Serum T, DHT, and free T levels should be

measured by a central laboratory because of large interlaboratory variations in the

assays available. It is critical that the appropriate assay method be used to

measure each of the serum parameters, particularly for free T.

B. CLINICAL ENDPOINTS

Three potential clinical endpoints are presented, which address very different

clinical questions. Sexual function is a question of lifestyle and quality of life.

Body composition is a question of ability to carry out daily activities easily and

efficiently and may also be related to diabetes.7 BMD is really a surrogate for

osteoporosis and risk of fractures. Although older men may have a lower risk

of fractures compared with women, the mortality from these fractures may be

higher.8

The time of response to TRT for these three endpoints varies significantly.

Sexual function parameters may respond within the first 30 days of treatment,

body compositions will respond within 90 days of treatment, whereas BMD

will take 12 to 18 months before a measurable effect will be seen. In contrast,

the impact on fracture rates has yet to be studied and may require a trial

duration of 5 years or more to see an effect. Consequently, the duration of the

clinical trial depends on which clinical endpoints are required for the indication

sought.

Other clinical endpoints may be used, depending on the indication and

population of interest. A comprehensive summary of other clinical endpoints,

especially for older men, is presented in Ref. 5.
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1. Sexual Functions

Sexual function can be measured using several methods. A number of

questionnaires have been developed for different aspects of sexual function.

The questionnaire selected for the clinical trial should measure to some degree

erectile dysfunction, spontaneous erections, sexual performance in general,

sexual motivation, and libido/desire. Some methods or questions are required to

accommodate sexual activity with and without a partner.

Most questionnaires are administered periodically and are based on either

the recall method for the last 2 to 4 weeks or on diaries kept daily for 1 week

prior to the office visit. One daily diary questionnaire was adapted for use with

an interactive voice response system (IVRS) using the telephone. This system

required the subject to call each day with the response to several questions.

The advantage of this system was that responses were captured in “real time” as

opposed to the recall method or to paper diaries, which may be completed on

the same day for all days. Thus, both the recall method and paper diaries

can be very inaccurate. These questionnaires could be modified for use

with other electronic diary techniques such as hand-held personal digital

assistants (PDA).

2. Bone Mineral Density

Lumbar spine BMD is the primary endpoint for determining the impact of TRT

on BMD. The gold standard for measuring BMD is dual x-ray absorptiometry

(DXA). This technique allows the use of intercenter calibration, if needed, when

pooling across centers. Data can be analyzed by a central reader, to increase

consistency. If possible, a machine produced by the same manufacturer should be

used at all centers.

3. Body Composition

Recent advances in DXA technology has made this technique a viable way to also

measure whole body composition of lean mass and fat mass. Percent fat is derived

from the total mass and fat mass. As with BMD measurements, a central reader

reads these measurements. If required, specific body areas (such as abdominal

fat) can be targeted for special consideration and measurement.

Because muscle mass can also change as a result of muscle/strength training,

subjects should either be instructed to not be involved in any muscle training

activities or be kept on a constant level of training for the duration of the clinical

trial. In the latter case, there may be need of some adjustment either at the time

of randomization or at the time of analysis to account for possible differences

in level of muscle training.
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III. INCLUSION/EXCLUSION CRITERIA

Inclusion/exclusion criteria should reflect the population that will eventually

receive the TRT. Listed below are criteria from Phase III TRT trials submitted

to the FDA.

A. INCLUSION CRITERIA

The two primary inclusion criteria are the serum T levels and symptoms of

testosterone deficiency presented during screening. Two serum T levels should be

obtained 1 week apart, and both should be below 300 ng/dl (nanograms per

deciliter). Intrasubject variability is high enough so that approximately 15% of

men with normal serum T levels will have a single morning serum T level below

300 ng/dl.9 The serum levels must be taken during the morning (8 to 9 a.m.)

because of the diurnal variation observed in T levels. Also, levels of luteinizing

hormone (LH) and follicle-stimulating hormone (FSH) should be measured to

provide a complete gonadotropic picture at baseline. In addition, a subject should

present with one or more symptoms of low testosterone (i.e., fatigue, decreased

muscle mass, reduced libido, or reduced sexual functioning of a nonmechanical

nature).

Other inclusion criteria are as follows. Subject should be judged to be in

otherwise good health, based upon the results of a medical history, physical

examination, and laboratory profile. Subject’s body mass index (kg/m2) should be

between 18 and 31. It should be noted that subjects who are extremely obese may

have difficulty having BMD or body composition measured by DXA. Subjects

receiving lipid-lowering agents, anxiolytics, lithium, antidepressants, hypnotics,

or antipsychotics must have been on a stable dose for at least 3 months prior to

entering the study. Subjects who have benign prostatic hypertrophy (BPH) can be

allowed into the study if they have normal prostate specific antigen (PSA) levels

and, in the investigators’ opinion, are not at risk for urinary obstruction. Subjects

receiving treatment a1 blockers or herbal treatment for BPH must have been on

a stable dose for at least 3 months prior to entering the study.

B. EXCLUSION CRITERIA

The two primary sets of exclusion criteria are concerned with subjects taking

medications that may interfere with or enhance androgen metabolism and with

subjects who have undiagnosed prostate cancer.

The following relate to prohibitive medications. Subject is using medications

that may interfere with androgen metabolism (i.e., spironolactone, finasteride, or

ketoconazole). Subject has received any estrogen therapy, a lutenizing hormone

releasing hormone (LHRH) antagonist, or human growth hormone therapy within

the last 12 months prior to the screening visit. Subject was treated with either a

testosterone ester injection within the last 8 weeks, or with an oral or transdermal

patch or gel androgen within the last 6 weeks prior to start of dosing. Subject
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is receiving supplements that are supposed to be anabolic such as dehydroepian-

drosterone (DHEA) and creatine.

A patient who has diagnosed prostatic cancer or a history thereof, palpable

prostatic masses or serum levels of PSA . 4 ng/ml is excluded.

Other diseased populations to exclude are: subject currently has uncontrolled

diabetes, subject has clinically significant anemia or renal dysfunction, subject

has any evidence of hepatic dysfunction, and subject has hyperparathyroidism.

In later trials these men may be studied. Subjects receiving Viagraw or other

treatments for erectile dysfunction should be excluded if sexual function is a

clinical endpoint.

IV. EFFICACY

A. SERUM T, FREE T, DHT LEVELS

The following PK parameters should be computed for each 24 h PK profile

for serum T, free T, and DHT:

† Cavg ¼ area under the 24 h concentration curve using the linear

trapezoidal rule divided by the length of the 24 h sampling time period.

This parameter can also be viewed as a time-dependent weighted

average of the serum levels from the 24 h sampling period.

† Cmin ¼ minimum measured postdose serum concentration.

† Cmax ¼ maximum measured postdose serum concentration.

1. Normalization of Serum T Levels

Normalization of T levels has not been a simple concept to quantify because of

the history of the various types of testosterone replacement therapies currently on

the market. The initial and very intuitive definition is based on Cavg alone,

namely:

† Definition 1: Serum T levels are normalized if Cavg is within the normal

range of young healthy men, usually 300 to 1000 ng/dl.

Typically, many of the current TRT will result in approximately 60 to 80%

of all subjects showing normalization of T levels, depending on the dose level.

However, the different TRTs achieve this degree of normalization in many

different ways, often with large fluctuations over the dosing period including

T levels that approximated pretreatment T-deficient levels. In light of large

fluctuations over a dosing period, the FDA proposed a more restrictive definition

of normalization:

† Definition 2: Serum T levels are normalized if both Cavg and Cmin are

within the normal range (300 to 1000 ng/dl).
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This definition will separate injectable forms of TRTs and transdermal patch

TRTs from transdermal gel TRTs. Typically, transdermal patches will have

a smaller normalization rate than those achieved with transdermal gels.

2. Analysis of T Levels

The primary analysis should be based on the comparison of the normalization rate

of the experimental TRT with an active comparator TRT. The analysis could be

used to show equivalence/superiority of one dose of the experimental TRT to

a comparable dose of the active comparator, as well as to show a dose response

between two doses of the experimental TRT.

Further characterization of the response profile can be obtained with an

Analysis of Covariance (ANCOVA) of the change from baseline for the

individual PK parameters with the appropriate baseline parameter as a covariate.

The change from baseline is the appropriate parameter that adjusts for the

existence of endogenous T levels occurring naturally before T supplementation.

The addition of the baseline values to the analysis of covariance will adjust the

comparison for any potential differences at baseline that may occur. In addition,

if only one screening T level was obtained instead of the recommended two

screening levels, the baseline Cavg could be used to stratify those subjects

with baseline Cavg below 300 ng/dl from those with baseline Cavg above

300 ng/dl. Then this stratification variable could be used in the final analysis.

However, the inclusion of this stratification typically does not affect any of the

conclusions.

3. Analysis of Free T and DHT

There are no acceptable definitions of normalization of free T or DHT in

T-deficient men. Therefore, the ANCOVA analysis should be used for

changes from baseline in the three PK parameters for free T and DHT. In a

short-term study it is expected that free T will follow the same pattern as T

levels.

The response for DHT will depend on the type of experimental TRT being

studied. The metabolism of T to DHT can occur internally as well at various

locations on the skin and genital areas. For example, the DHT response is

different between transdermal patches and transdermal gels, probably because of

the conversion of T to DHT taking place at the skin and the difference in skin area

exposed to the exogenous T between the gel and the patch. This difference in

conversion sites is also reflected in the ratio of DHT/T, once converted to the

same unit. Serum T levels are typically measured in ng/dl and serum DHT levels

in picograms per milliliter (pg/ml). Hence, an additional characterization of the

DHT response is provided by an ANCOVA for the change from baseline in this

ratio.
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B. SERUM E2

The same ANCOVA analysis for the change from baseline, as used with serum T,

should be used for serum E2. A similar pattern as seen with serum T is expected

because the primary source of E2 is from conversion of serum T.

C. CLINICAL ENDPOINTS

Each of the proposed clinical endpoints should be analyzed also with an

ANCOVA for the actual value or the change from baseline with the appropriate

baseline parameter as covariate. In addition, there may be several other baseline

parameters, which may help explain the degree of clinical effect that could be

used in multivariate exploratory and/or confirmatory analyses.

There are still open questions about potential threshold levels for serum T

above which no additional clinical benefit may be seen. These threshold levels

will vary for the different clinical endpoints. There are enough data to explore

pharmacokinetic/pharmacodynamic relationships between clinical endpoints and

serum T, free T, and/or DHT levels.

D. SAMPLE SIZE CONSIDERATIONS

Typically for a phase III trial 80 to 90 subjects per treatment arm will be sufficient

to establish equivalence/superiority of treatment regimens with respect to

normalization of serum T levels based on Definition 2. Sample sizes will increase

when the different clinical endpoints are considered. The largest studies will be

those based on fracture rates, in which several thousand subjects per treatment

regimen will be required to show clinical benefit.

Approximately one of every three men who present with some symptom

of T deficiency will also have a serum T level below 300 ng/dl. Consequently,

one would expect to need to screen approximately three men who may have

symptoms of low T to randomize one man for a clinical trial.

V. SAFETY

Potential risks for TRT include polycythemia (increased red blood cell mass

[RBC]), increased hemoglobin (Hgb), increased hematocrit (Hct), changes in

PSA levels, gynecomastia, and sleep apnea. Unknown at this time is the effect of

TRT on BPH or prostate cancer. Therefore, in addition to standard safety

surveillance for any clinical trial, special considerations must be given to

monitoring RBC, Hgb, Hct, and PSA levels, symptoms of BPH, and prostate

cancer.
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A. PROSTATE

Periodic assessment for BPH symptoms using the International Prostate Symptom

Score (I-PSS) should be obtained throughout the clinical trial. In addition, at

minimum a pre- and end-study examination of the prostate, including a digital

rectal exam (DRE) and PSA level, should be performed for all subjects.

VI. CONCLUSION

TRT trials in men with testosterone deficiency have increased in number over the

last decade. Short-term trials have clearly indicated that various techniques are

available for delivery of exogenous testosterone to men, which will increase

circulating T levels into the normal range for healthy young men. In addition

some placebo-controlled trials have shown the clinical benefit of TRT for some

clinical parameters. The FDA is exploring guidelines for such trials. At the same

time, there is a need to conduct longer term trials in larger numbers of subjects

to see the actual long-term benefits and long-term risks for TRT in men with

testosterone deficiency.
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I. INTRODUCTION

Tremendous groundwork has been laid over the last half century by pioneer

researchers in analgesic drug evaluation. Early analgesic trials to evaluate the

properties of opioid drug products brought out critically important insights

through in vivo human assays, the single-dose relative potency studies. These

trials were designed to answer the basic question, whether a test intervention had

any analgesic effect. These early trials attempted to accurately and reliably

measure pain, the subjective outcome, in the context of a clinical experiment.

The clinical pharmacology experiments performed by these early researchers

have had a lasting effect on the field. Their legacy was the modern randomized

controlled clinical trial in analgesic drug evaluation.

Approval of many of the early analgesic drug products were based on

evidence from randomized controlled trials in single-dose studies. As drugs came

under regulatory scrutiny, the limitations of these studies became evident without
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the benefit of basic experiments to define efficacy in the conditions and settings

for which approval was sought. As new modified release formulations were

developed to address dosing needs for patients suffering from chronic painful

conditions, the single-dose pain models were shown to be inadequate to define

effectiveness. With this observation it became clear that pain management in the

chronic disease setting would require a different approach.

Advances in basic research have led to consideration that studies should be

performed to evaluate the effect of drugs on the basic underlying mechanisms of

pain, which could be many in the acute or chronic painful condition. This led to

the conclusion that for many conditions, one agent may not be sufficient to

control pain elicited by a variety of mechanisms, unless a final common pathway

could be defined. This approach of polypharmacy-targeting-specific underlying

mechanisms has scientific appeal but has not yet gained sufficient practical

application.

The innovative beginning of analgesic trials has given way to more

traditional approaches, recognizing that the one-size-fits-all trial may not be

adequate to characterize the potential drug product for its ultimate usefulness.

With the development of agents with unique pharmaco-kinetic properties the

clinical trial methodology has matured. Discoveries in basic science have

enhanced our understanding of the mechanisms underlying pain so that we can

pose more sophisticated questions in the context of clinical trial. Nevertheless,

current approaches to the challenge of defining a drug’s efficacy as a pain reliever

still focus on basic clinical questions, exploring a spectrum of the drug’s utility in

trials designed to replicate the target conditions. Central questions to the design

of these trials include the target population, duration of trial, appropriate dose,

outcome measures, high-placebo effects and high-drop-out rates. This chapter

focuses on the key elements of studies, which will define the efficacy of an

intervention for pain.

II. DESIGN OF ANALGESIC DRUG TRIALS

A. SELECTING THE TARGET PATIENT POPULATION

From the early studies in analgesic development evolved the popular concept of

the “pain models,” the workhorses of the latter part of the 20th century. These

studies were often small, single-dose assays, performed in standard settings, such

as the postoperative setting, third molar extraction, or other acute painful

conditions. The studies were popular because these were economic and relatively

easy to conduct. Despite the usefulness, these studies had limitations. In one

sense these were not always true “models” for all of the representative conditions,

but rather were founded on the somewhat naive assumption that if the test drug

was successful in an analgesic model of pain the results could be generalized to

the vast spectrum of painful conditions regardless of etiology or chronicity.

While often successful in demonstrating an effect in the acute setting, these

models left questions about the dose, duration, and regimen.
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It is necessary to evaluate the effectiveness of analgesic interventions in the

representative population intended to be used. The likely target population for an

analgesic under development may depend on a number of factors including the

purported mechanism of action, likely biochemical or physiological target

determined from nonclinical studies, past performance of drugs in a similar class,

pharmaco-kinetic properties of the drug in human, and manner in which the drug

is formulated to achieve that pharmaco-kinetic profile. It is not feasible or

necessary to test a drug in all potentially relevant clinical settings; it is important

to try to define the most representative of these in which to perform the key

clinical trials.

B. THE CHOICE OF CONTROL GROUP

The selection of the control group is one of the most challenging and important

decisions in designing a clinical trial for analgesic drug products. The particularly

high placebo response rate characteristic of analgesic trials, the frequent

occurrence of variable and even negative performance of known analgesics

across studies, and the subjective nature of the outcome being measured all argue

for the use of a solid anchor to establish the sensitivity of the analgesic trial.1 The

placebo control is by far the highest standard for the analgesic trial.

Ethical and practical concerns are often raised about performing studies with

an untreated or placebo control group in painful conditions particularly for

studies of 3 or 6 months’ duration. These concerns can be overcome by applying a

variety of strategies or trial designs to minimize the untreated state. One of these

includes the use of rescue medication.

In the setting of clinical analgesic trials, rescue is a strategy by which a known

analgesic treatment is introduced to alleviate painful symptoms that arise during

any phase of the clinical trial. Rescue medication may be administered to patients

in the placebo group or even to the experimental treatment group, depending

on the study design and conditions of blinding. The rescue medication

is administered after the primary outcome measurement is obtained. The use

of rescue medication may be helpful in preventing symptom-related attrition

from clinical trials; however, caution is warranted, as the use of this strategy may

dilute the difference in effect size between the placebo and treated groups.

Whenever rescue medication is used, provisions should be made to analyze

the influence of the rescue medication on the outcome of the trial.

It may be appropriate in some instances to design a study using more than one

type of concurrent control. Whereas U.S. regulatory standards for drug approval

do not require the demonstration of superiority to an existing marketed product,

from the perspective of patient care, it is often useful to know how agents

compare with each other in certain clinical settings. Therefore, use of an active

control in addition to a placebo can provide a useful clinical internal gauge of the

sensitivity of the trial to assay analgesic effect and may be useful when

considering international marketing.
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Active control trials that do not make use of a concurrent internal placebo

comparator are often subject to misinterpretation and may lead to erroneous

conclusions. The comparison of the test drug against a standard analgesic drug

may yield useful information if the test drug is shown to be statistically and

significantly superior to the standard analgesic or vice versa. If the drugs perform

in a similar manner, and no significant difference can be demonstrated, such

a finding may simply reflect inadequate sensitivity of the assay to distinguish

between the treatments and does not establish the effectiveness of either drug.

To avoid such an ambiguous outcome, the use of an internal placebo anchor can

be incorporated into the study design. In this way, the assay should be able to

distinguish the placebo from the standard control defining its level of activity

in this population, setting and trial as conducted. This design will allow for

the optimal comparison of the test drug with a commonly used analgesic.

The dose-controlled study is a variation on the placebo-controlled trial. In

such a study, two or more doses of the test drug are compared with each other

with or without a placebo group. In selecting doses one should explore the entire

dose-response curve of the test drug. Data should be collected on doses that are

expected to be above and below the recommended doses. When this trial design is

used it is important to take into account the pharmaco-kinetic profile of the drug,

avoiding any overlap in plasma concentrations or area under the plasma

concentration curve (AUC). These dose-ranging studies are conducted as fixed-

dose trials in which patients are randomized to one of several doses of the

treatment drug that remains constant throughout the duration of the study.

Such designs are of tremendous usefulness in evaluating the minimum effective

dose in a population that is being initiated on therapy. However, for chronic

dosing studies, particularly in the case of the opioid drug products with a wide

therapeutic window, where dose individualization and escalation have occurred,

fixed dose studies may not be meaningful or feasible. In this latter setting, other

more flexible dosing strategies may be required.

Regardless of the control group or groups chosen, the success of the analgesic

trial is determined by having some internal measure of assay sensitivity. In

general, the performance of a test analgesic in a clinical trial varies across the

population studied. In most of the studies the relief of painful symptoms is partial

and quite variable. The demonstration of efficacy in one study may not predict a

similar performance of the drug in another study, even when the methodology is

ostensibly similar. A study that does not contain some measure of assay

sensitivity is not considered capable of providing substantial evidence for the

effectiveness of a new analgesic.

C. OUTCOMEMEASURES

Pain is a purely subjective and patient-based symptom, but it is clearly of interest

in analgesic trials and the evaluation of an analgesic drug should measure pain as

the primary outcome. There are a number of parameters that could be considered

in this evaluation, including pain intensity (PI) and pain relief (PR), temporal
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aspects of pain, pain quality, and distribution. It is not necessary for a given

clinical trial to encompass all of these types of outcomes, and one is selected as

the principal outcome of interest—most frequently it is PI.

While it can be argued that pain is an inherently subjective symptom complex

modulated by a host of physiological and psychological factors, there are a

number of metrics that define and quantify this symptom complex. In selecting

a measurement tool to assess this outcome in analgesic trials, one should consider

how reliable a measurement is in assessing the patient’s self-report of

symptoms. The measurement’s reliability partly depends on the patient’s ability

to understand and apply the scales.

An abundance of scales exists but by far the most widely used are the single

item ratings of PI such as the Visual Analog Scales (VAS), the Numerical Rating

Scales (NRS), and the Verbal Rating Scales (VRS). The VAS is constructed

to allow the patient to choose from an entire spectrum of possible levels of pain,

showing no pain on one end of a line (usually the left of a horizontal line) and

extreme pain on the other end, usually the right in a scale of zero to 100. The

patient places a mark on the line, which corresponds to the degree of pain

experienced at the time of assessment. The VAS pain score is the distance from

zero (no pain). The scale is accepted as sensitive because there is a wide range

of choice available to reflect the interpretation of symptoms. One of the

shortcomings of the VAS is the patient’s subjectivity required to arrive at an

appropriate numeral and in some cases it may be more difficult for patients to

correctly understand and interpret the pain in terms of the scale even with

assistance. Nevertheless, this scale is reliable with high correlation within studies

of other measures of PI.

Use of NRS in measuring PI is another approach to quantify subjective

symptoms of pain. The NRS consists of a spectrum of numbers, usually between

zero and ten as in the case of the Likert scale, ranging from no pain to extreme

pain or “the worst pain that you can imagine.” Patients are asked to respond, most

often verbally, with their assessment about where their pain falls within this

spectrum. The properties of this rating scale are similar to those of the VAS. One

notable shortcoming is the tendency of patients to be conservative about their

assessment of numerals anticipating that pain may indeed worsen with time. Most

of these scales are simple, quick and easy to administer, and are relatively easy

to understand.

Another form of a pain assessment is the VRS in which the patient chooses

among a variety of categories describing the intensity of pain or degree of PR. For

example, in the traditional four-point categorical scale of PI, the patient must

choose among four categories described as none, slight, moderate, and severe,

with numbers assigned to the categories for purposes of calculation and analysis.

These scores are reported as continuous variables. The advantage to this type

of scale is that the descriptors are easy to interpret; the disadvantage is that there

may not be sufficient degrees of gradation to adequately characterize the patient’s

pain. These measures provide a relatively intuitive means to assess outcome, both

for the patient and for the person interpreting the results.
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The scales can be used to measure PI or PR. There are advantages and

disadvantages to these approaches. The direct measurement of PI has the

advantage of measuring contemporaneous pain and does not rely upon memory of

past symptoms. It assumes that other factors that may influence the patient’s

interpretation of pain are stable or at least random, which will reduce power.

The measurement of PR, on the other hand, allows the patient to incorporate

some degree of interpretation of symptoms as better, worse or the same.

Littman et al.2 compare visual pain analog, verbal PI and verbal PR and conclude

that these scales are highly correlated with minimal difference in sensitivity.

These analgesic rating scales provide a simple means for patients to rate PI in

a unidimensional scale.

In many clinical trials that use rescue medication, a quantification of rescue

medication is used as a confirmation or a cross-check against the results of the

pain rating assessment. It is quite clear that the results of the VAS may be

influenced by the amount, timing, and characteristics of the rescue medication.

It is common for the use of rescue medication to dilute the effect of an active

treatment by providing response in the placebo arm of a trial. In the case of a less

effective active medication, if the trial is found to be successful because of the

excessive use of rescue in the treatment arm, the results can be misleading.

Some trials are specifically designed to study the effect of rescue medication

directly as a primary outcome. In these trials the use of active rescue compared

with placebo rescue can be used to assess the effect of an intervention on the

treatment of breakthrough pain.

Studies that focus only on indirect outcomes such as analgesic sparing

effect or time to rescue medication, have been proposed. These studies, while

they provide some useful information, do not necessarily capture the essential

features of the effect of the drug on the outcome of interest, that is, their primary

performance as an analgesic.

D. DURATION OF STUDY

The duration of the analgesic trial should be determined by the characteristics of

the condition being evaluated. For example, studies in acute pain should not last

longer than the expected duration of the pain. Postoperative pain studies should

be designed duly considering the fact that the intensity of pain can be expected to

be maximal once the effect of anesthetics has subsided and the pain will gradually

attenuate with time following the surgery. Ideally the duration of the study should

last no longer than the period of maximal pain, unless the goal of the study is to

evaluate tapering strategies.

In the case of chronic pain, there may be day-to-day or even week-to-week

fluctuations in the intensity of pain, and in some cases because of underlying

disease factors, symptoms may even intensify over time. Clinical trials evaluating

the effect of a drug in chronic pain should be of sufficient length to allow for a
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trend in the response to treatment rather than the natural fluctuations to be

measured. In general, chronic pain studies should be conducted for a duration of

no less than 3 months.

In the case of the opioid drug products, the phenomenon of tolerance may be

expected to occur after the first few weeks to a month. Tolerance can be suspected

if there are increasing symptoms of pain associated with an increasing requirement

for medication. Trials of several months duration allow for this phenomenon to be

identified and studied in a controlled setting. In some instances, it may be desirable

to specifically design a trial to study the development of tolerance as it may have

important clinical and safety implications.

E. DESIGN

There is a multitude of study designs that have been and can be used in the

evaluation of analgesic drugs, but by far the three most widely used include

prospective randomized parallel-group design, placebo-controlled add-on trial,

and crossover design. These will be discussed in order of importance and

regulatory stature.3

1. Parallel-Group Design

The simplest, commonest and most straightforward design is the prospective

parallel-design trial in which randomized groups are treated simultaneously for

a set period of time. The controls are concurrent and treated identically.

Any changes to protocol are applied contemporaneously to all groups.

The parallel-group design is quite flexible and may allow for the addition of a

number of features to improve the quality of information gained from the trial.

For example, some investigations allow for stratification into subgroups for

specific analysis, such as baseline pain, anticipating an analysis of the results as

a function of disease severity. Other examples of stratification allow for analysis

by gender, previous treatment, or etiology of pain.

Parallel design trials may incorporate titration paradigms to allow for gradual

acclimation onto treatment regimens, and fixed vs. flexible dosing. This feature is

of particular value for treatments for which there is an anticipated high attrition

because of adverse events. Titration may considerably reduce the intolerance to

side effects, risk of unblinding and burden of imputing results caused by drop-

outs related to adverse events.

Parallel design trials may be conducted as fixed dose trials or may

employ strategies such as individualization of dose. The latter is a particularly

common strategy for chronic pain trials of opioids, where tolerance and disease

severity have resulted in considerable variability in baseline opioid medication

dosage in patients entering the trials. The trial includes a period prior to

randomization during which the patient is stabilized on a formulation and dose

of the active intervention (test drug), which is predicted to be comparable

with the patient’s existing therapy. This is done in an effort to reduce the
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possibility of withdrawal effects or rebound pain. While properties of opioids

may vary from one another, and doses cannot be predicted with complete

accuracy, this strategy is found to be helpful in reducing the early drop-outs.

Fixed dose parallel-group studies are the preferred design for acute pain

studies. This design, when combined with the dose comparator and placebo

control, has the clear advantage of accurately determining the minimum effective

dose for treatment of pain and may lend itself to strategies of measuring time

to onset of effective treatment.

2. Add-on Design

A study design, which has not been commonly used in the evaluation of therapies

for chronic pain, is the add-on study where the intervention is studied against

a background of existing analgesic therapy. The placebo-controlled add-on trial

is the most basic design in this class. This trial design has the clear advantage

of being able to evaluate a new medication in a relevant clinical context while

maintaining a stable regimen. It also allows for the comparison to proceed over

several months and virtually eliminates the need for the usual heavy reliance

upon rescue medication, resulting in a cleaner comparison of the two study arms.

The clearest advantage of this design is that it will allow for a clean

straightforward placebo-controlled comparison to take place without the:

† concern about deterioration over the course of several months

† risk of disproportionate drop-outs in the control group

† necessity to use rescue medication

This design also offers a closer approximation of actual clinical practice than

the alternatives, providing valuable information about safety, tolerance, and

effectiveness in the context of existing concomitant treatments. Some of the

apparent lack of popularity of this design results from the expectation that such

a trial would likely lead to an adjunctive therapy indication.

3. Crossover-Design

The crossover-design is one in which each patient receives both or all treatments

in the study, but in a randomized prespecified sequence. The design has the

advantage of being able to increase the sensitivity by allowing within-patient

comparisons, rather than between-patient comparisons.

There are many disadvantages to this study design and it is rarely used

for regulatory decisions. The studies have been criticized because of carryover

effects from one analgesic treatment period to the next because of inadequate

time between treatments, even when pharmaco-kinetics would have predicted

that no residual plasma blood levels are measurable. This is of particular concern

in chronic pain studies.
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In acute pain studies, such as postoperative or dental pain, the intensity of the

pain will likely have changed from one period to the next based solely on natural

history, rendering thewithin-patient comparison invalid and the results impossible

to interpret. This study design is not really feasible for short duration pain.

III. INTERPRETATION OF RESULTS

The efficacy of a particular dose of a test drug is most commonly established

by demonstrating a statistically significant difference in analgesic effect on

the selected analgesic measure between the treatment and placebo groups

by comparing group means of a given outcome.4 Alternatively, one could, based

on an a priori definition of response, demonstrate a statistically significant

difference between the percentage of patients who meet the definition of

responders in the treatment and the responders in the placebo group. How one

defines a responder in this setting is a matter of debate.

Assessing the clinical meaningfulness of a change, whether measured by

patient report of PR or a difference in the PI values recorded on a scale, is

a challenge. Attempts to define a clinically meaningful outcome have relied

largely on either an arbitrary definition set by the investigator, or by the use of

global rating scales that may be influenced by a number of factors, some unrelated

to the intervention’s ability to control pain. One approach that has considerable

promise is the correlation of the change in VAS with a categorical measurement

of patient improvement.5 Such an approach allows the correlation of a percentage

of improvement with a patient’s own assessment of clinically meaningful

improvement. Additional objectivity can be gained by measuring the effect of an

intervention on other dimensions such as pain quality, temporal aspects of pain,

and pain distribution.

IV. UNIQUE CHALLENGES IN THE ANALGESIC TRIAL

One of the most significant challenges to the success of an analgesic trial for

drugs that are centrally acting is the effect of the profile of central nervous system

(CNS) adverse events. These effects may result in unblinding of the study,

influencing the validity of pain measurements, or leading to an unacceptably high

level of drop-outs.

Blinding is an important tool in reducing bias in a controlled trial. In the cases

where a treatment with a very prominent or bothersome adverse event profile is

compared with placebo, successful blinding may be a significant challenge. This

is of particular concern with CNS adverse effects. Strategies that reduce the CNS

effects such as slow induction may serve to attenuate the difference between

treatment and placebo groups.

Another significant challenge of analgesic trials is the recognized problem of

differential drop-out rates. This problem arises when in the course of a chronic
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dosing study, the patients receiving placebo withdraw because of a lack of

perceived effectiveness, while patients in the treatment arm may have an early but

significant attrition because of intolerable adverse events. This differential drop-

out rate may tend to amplify the effectiveness of the drug when prescribed in the

manner studied, when indeed the patient may never realize adequate PR at the

tolerated doses.

The use of rescue medication has been alluded to as a means to reduce the

excessive attrition from placebo-controlled trials because of a lack of perceived

effectiveness in the placebo arm. This practice can have the unwanted result of

diluting the differences in treatment between the two arms, resulting in a

very small effect size or no separation between the treatments. Timing of

the measurement of outcomes relative to rescue medication is as essential as the

comparison of the quantity of rescue medication between the treatment and

control arms of the study.

A unique feature of analgesic trials of opioid medications is the phenomenon

of tolerance. Tolerance can be described as the increase in the dosage requirement

for medication over time, combined with the reduction in effectiveness of

a previous dose. The result of tolerance to opioids is the increase in doses over time

in individuals who require chronic treatment. The phenomenon is accompanied

by acclimatization to many of the adverse effects of these medications, such as

respiratory depression and somnolence, such that higher doses can be tolerated

without serious risk to the patient. The challenge that tolerance presents in the

evaluation of clinical trials is that the effectiveness of the drug may appear to be

lost at the end of the evaluation period, if this effect is not anticipated and analysis

is planned.

V. CONCLUSION

Tremendous progress has been made in the design and interpretation of clinical

trials for analgesic drug products over the last half century. It is expected that as

further progress is made in the basic understanding of pain mechanisms, more

sophisticated outcome measures will be developed and validated allowing

for greater precision and predictability of response to analgesic drugs.
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I. INTRODUCTION

In the last decade, the field of HIV/AIDS research has changed dramatically.

The introduction of potent antiretroviral combination therapy (“cocktail”

therapy) in the mid 1990s has led to significant decreases in HIV/AIDS

morbidity and mortality in those countries where patients can afford these

regimens.1 These regimens are difficult to tolerate, though, and drug toxicities

may require additional treatment. However, the spread of the world HIV/AIDS

pandemic continues, especially in southern Africa, where antiretroviral treatment

is still only minimally available. An HIV vaccine is urgently needed to alter

the devastating course of this disease that infects 38 million people worldwide,

of whom only a fraction in need are receiving antiretroviral treatment.2

This review chapter highlights various statistical issues relevant to

HIV/AIDS research. Statisticians in this field have created or improved many

statistical methods of design and analysis. Awareness of these issues and the cited
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references should aid statisticians working in this field. Many of these issues,

especially relating to the use of surrogate markers in clinical trials, are relevant to

statisticians and clinicians investigating other diseases where clinical disease

may take years to develop.

II. CHARACTERISTICS OF HIV/AIDS TRIALS VS. OTHER

PHARMACEUTICAL RESEARCH

– Chronic disease, many years to clinical disease — use of surrogate

markers as study endpoints.

– Multidrug combination therapy. Studies examine the optimal use of

different manufacturers’ drugs used in combination. Sequential strat-

egies of drug combinations are impacted by the development of drug

resistance, especially multidrug resistance.

– HIV vaccine research. With potentially minimal return on investment in

developing countries for preventive vaccines, public/nonprofit/private

funding mechanisms are used to support HIV vaccine development

(e.g., International AIDS Vaccine Initiative/AlphaVax, NIH/VaxGen).

III. DESIGN AND ANALYSIS OF HIV CLINICAL TRIALS

A. THERAPEUTICS

Corresponding to the changes in treatment and improved outcomes, the design of

clinical trials to evaluate anti-HIV therapeutics has changed substantially in the

last 10 years. Early trials were powered to detect differences in clinical endpoint

rates, such as progression to AIDS and death.3 – 6 However, as potent

antiretroviral regimens including protease inhibitors became available and

clinical progression rates were thereby reduced, the necessary sample size and

duration for comparative trials with clinical endpoints became very large. Also,

in the mid 1990s, viral load assays were developed to measure the concentration

of HIV virions in blood plasma.7 These HIV RNA-based measures of viral load

were shown to be prognostic of HIV disease progression,8–12 and were more

quantitative and sensitive than earlier assays.13,14

These developments led to new antiretroviral drugs becoming FDA-approved

based on their ability to suppress viral load levels after 16 to 24 weeks of

treatment. Moreover, short-term viral endpoint studies could be conducted more

quickly, and with fewer subjects, than clinical endpoint studies. The FDA

continues to view viral load as a key surrogate marker for evaluating

antiretroviral agents.15,16 In addition to predicting clinical outcome, viral load

is a natural marker of the biological activity of an antiviral agent. But to be a

surrogate marker of therapeutic efficacy, a marker needs to fully account for the

clinical efficacy of the therapeutic agent.17 Yet an important surrogacy issue

remains, where studies frequently have not presented purely viral load-based

endpoints.18 Rather, a composite endpoint is constructed so that a subject is
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considered a success only if viral load is suppressed and the subject also remained

on the study-prescribed regimen.19 Follow-up for viral load and other

measurements is often discontinued after stopping or switching the randomized

treatment, so that true intent-to-treat virologic suppression rates, without

consideration of whether the randomized treatment was still being taken, cannot

be determined. This adversely affects the conclusions one can draw from such a

study. Continued follow up of all subjects — even after treatment discontinuation

— is urged.

Clinical endpoint studies, however, are still being conducted. In particular,

the immune-based therapy interleukin-2 (IL-2) is being evaluated in two large,

multi-year clinical endpoint studies.20While IL-2 plus antiretroviral therapy has

been shown to produce a sustainable rise in CD4 counts (decline in CD4 cell

counts is a marker of the progress of the disease), exceeding what can be achieved

using antiretroviral therapy alone, the clinical benefit of these greater CD4 counts

has not yet been established.

For immune-based interventions, such as therapeutic HIV vaccines, there are

a large number of immunologic assays to evaluate the effects of the interventions.

However, none of these assays is considered the “gold standard” for assessing

improved host immune control of HIV. For this reason, many immune-based

intervention studies have viral setpoint as the primary endpoint. In such a study,

the randomized immune-based intervention, or placebo, is given while subjects

are on combination antiretroviral therapy. Then subjects have their antiretroviral

treatment withdrawn, and the viral setpoint is determined by the viral load level

obtained a certain number of weeks after treatment withdrawal or after the

dynamic viral load rebound has stabilized. An intervention can then be evaluated

relative to the placebo arm in terms of its ability to substantively lower the viral

load level in the absence of antiretroviral treatment. This endpoint, however, has

some anticipated statistical challenges, most importantly because of the fact that

withdrawal of antiretroviral treatment has safety concerns and some subjects may

have treatment reinitiated because of high viral load levels or declining CD4

counts. Therefore, not all randomized subjects will have an observed viral

setpoint, leading to statistical approaches such as worst-rank imputation analyses

using rank-based analysis methods and planned sensitivity analyses to

incorporate information on the reasons for unavailable viral setpoints.

In terms of study design, factorial designs continue to be used to evaluate

anti-HIV drugs and strategies. A 2 £ 3 factorial design was used in AIDS Clinical
Trials Group (ACTG) 384,21 where the two factors represented two components

of the combination antiretroviral regimen. This factorial structure permitted six

different initial antiretroviral combinations to be evaluated in an efficient design.

The results of this study revealed statistically significant interactions,22

highlighting the challenging task of defining optimal multi-drug combination

regimens when the efficacy of one drug vs. another may depend on the other

drugs in the regimen. Because an antiretroviral combination regimen with too

few drugs may be clinically inappropriate, factorial designs having factors

representing the use or nonuse of specific drugs are not directly applicable to
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evaluate combinations of antiretroviral drugs. ACTG 39823 was a four-arm study

of protease-inhibitor-based regimens in subjects previously failing a regimen

containing a protease inhibitor. The randomization in this study was stratified and

restricted to prevent, to the extent possible, subjects from being randomized to

protease inhibitors to which they had prior exposure. Thus, for the main

comparison of the efficacy of single vs. dual protease inhibitor regimens, a

stratified analysis was required, because not every subject was eligible for

randomization to every arm. This planned stratified analysis was key to the

design of this study.

B. PREVENTIVE VACCINES

A variety of HIV vaccine products and strategies are in the early stages of testing,

in animals and in Phase I and Phase II trials.24,25 The first Phase III clinical trials

of a preventive HIV vaccine have been concluded. Though the overall analyses

were negative, subgroup analyses were highlighted that showed a vaccine effect.

However, concern about the statistical issues of multiple testing and subset

analyses have led to criticism of the reporting of these results from this high-

profile study.26 A subsequent, thorough statistical evaluation, corrected for

multiple comparisons, failed to identify a vaccine effect in any of the

subgroups.27

A review article discussed statistical issues inherent to HIV vaccine studies.28

One challenging issue derives from the expectation that available HIV vaccines

may have only a modest effect on blocking infection, but may be able to confer

protection against high levels of HIV replication and also may slow HIV disease

progression. Thus, an important co-primary or secondary endpoint in preventive

HIV vaccine trials will be to compare viral load levels and disease course

between placebo-recipient vs. vaccine-recipient infecteds. As these comparison

groups are selected post-randomization (i.e., when these subjects become HIV

infected), a standard statistical test that compares viral load distributions does not

assess a causal effect of the vaccine. To address this problem, a class of logistic

selection bias models has been developed, which can be used to quantify how the

inferred causal effect of vaccination varies with the presumed magnitude of

selection bias.29 This framework to assess randomized comparisons in post-

randomization-selected subgroups is an illustrating example of recent statistical

research in causal inference.30

IV. ANALYSIS ISSUES RELATED TO ASSAY CHARACTERISTICS

A. VIRAL LOAD

As outlined above, viral load as measured by HIV RNA in blood plasma is a key

surrogate marker in HIV/AIDS, and a major goal of antiretroviral treatment is to

suppress HIV RNA levels below the lower limit of the assay. Combination
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antiretroviral therapy, especially in antiretroviral-naı̈ve populations, can lead to

reductions in viral load of more than 3 log10 (99.9% reduction), resulting in a

majority of subjects with viral load measurements below the lower limit of the

assay. This in turn has led to statistical research in methods for analyzing such

left-censored data. One approach has been to create study endpoints that are not

affected by this assay limitation. For example, virologic failure can be defined as

failure to suppress HIV RNA by 24 weeks or a subsequent confirmed rise in viral

load above a threshold. This virologic failure definition has clinical interpretation

and also can be analyzed using standard time-to-event statistical methods.31

Because of clinical interest in estimating the magnitude (in log10 units) of

viral load reduction induced by antiretroviral regimens, statistical methods have

been developed, for example, by modifying standard right-censored data analysis

approaches.32 However, bias in these estimates of change in viral load remains an

issue and it is recommended to use an analysis of covariance (ANCOVA)

approach, with adjustment for baseline viral load. Longitudinal mixed effects

models have also been generalized, using the EM algorithm, to allow for repeated

measurements that may be left-censored below assay limits.33

B. TIMING OF HIV INFECTION

One of the greatest successes in HIV treatment has been the ability to reduce

mother-to-child transmission of HIV. However, identification of the timing of

HIV transmission is challenging. For this reason, HIV transmission rates in

mother-to-child studies are based on Kaplan–Meier estimates.34 Statistical

methods have also been developed to account for possible false-positive and

false-negative test results in estimating the timing of infection,35 for example, in

order to estimate the probability of HIV transmission during delivery vs.

subsequently via breast-feeding.

C. VIRAL GENOTYPE AND RESISTANCE

Drug resistance can now be evaluated by genotyping the circulating virus in an

individual. Statistical and bioinformatical approaches to examine HIV genotypic

resistance data are rapidly developing areas of research. We refer the reader to

several papers that highlight the multidimensional nature of genotype data36,37

and a framework for relating resistance information to viral load responses.38One

challenge to conducting research in HIV resistance is that diagnostic companies

have developed proprietary algorithms for assessing drug resistance, which are

not made publicly available.

D. PHENOTYPIC SUSCEPTIBILITY

In addition to sequencing the viral genotype, there are phenotypic assays that

evaluate the in vitro growth of the virus in the presence of antiretroviral drugs. The

result of a phenotype assay is a fold-change for each antiretroviral drug evaluated,

representing the amount of drug required to suppress the growth of the patient’s
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virus by 50%, relative to a control virus. Identifying the optimal clinical utility

of the phenotype assay is also an important and timely area of research, because

the choice of a new antiretroviral drug regimen should be guided by the

anticipated resistance to the new regimen. We have recently analyzed baseline

phenotypic susceptibility data and related these to virologic outcome in terms of

both dichotomous (threshold-based) and continuous scoring systems.39 In

particular, the continuous scoring system was developed because drug

resistance/susceptibility is likely to be truly a continuous phenomenon, with

drugs having partial activity against mutant viruses and patients having variability

in drug exposure, metabolism, and distribution to sites of virus replication. We

also found evidence for hypersusceptibility to the antiretroviral drug efavirenz,40

in which viruses that have become highly resistant to the earliest class of

antiretrovirals show increased susceptibility to efavirenz.41 These findings

provide a rationale to consider interactions between multiple drugs with respect

to resistance profiles, a task that will require substantial research given the

thousands of possible drug combinations using the more than 15 approved

antiretroviral HIV drugs.

E. ACTIVATION AND FUTURE SURROGATE MARKERS

While CD4 and viral load remain the main surrogate markers in HIV disease, it

should be noted that these commonly used biomarkers do not directly reflect

many of the toxicities associated with antiretroviral drugs. As numerous assays

continue to be developed and evaluated, appropriate statistical analysis

approaches will be needed to identify the value of these markers.17 Of particular

interest are markers of immune activation,42–44 which may become increasingly

important as new and improved antiretroviral regimens are successful in

maintaining long-term viral load suppression.
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I. INTRODUCTION

After a fall, a small child cries in pain. The parent picks up the child, kisses the

source of pain, and says that now it will feel better. Remarkably, the child shows

less pain and stops crying.

It is well known that in studies of pharmaceutical preparations, the subjects

who receive a pill or capsule without any of the pharmacological properties of the

“active” medication will also show some signs of efficacy and some side effects.

This preparation is called “placebo” from the Latin for “I shall please”

( placebo Domino in regione vivorum— I shall please the Lord in the land of the

living). The name is very old and was often used as a derogatory term recognizing

the fact that almost all medications used more than a century ago were without

proven therapeutic efficacy. Still these medications were used because the

recipients found relief from their complaints. They are also frequently called

“sugar pills” since they are usually made up from noncaloric sugar with again the

overtone that, it is only their sweetness which makes one feel better.

There are many definitions of placebo, which depend on the point of view

and emphasis of the writer. An excellent and comprehensive definition was given

by Shapiro1:

A placebo is any therapy (or component of therapy) that is

deliberately or knowingly used for its nonspecific, psychologic, or

psychophysiologic effect, or that is used unknowingly for its

presumed or believed effect on a patient, symptom, or illness, but

which, unknown to patient and therapist, is without specific activity

for the condition being treated.
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In more modern times when drugs were being tested for efficacy, it soon

became clear that a concurrent control preparation was essential if one needed

to prove to others the difference between pharmacologic efficacy and perceived

efficacy. Anyone working in this field needs to have read some of the older

literature including the classic paper of Beecher2 and others who studied placebos

before the advent of Informed Consent and Institutional Review Boards in the

early 1970s. In those days one could deceive subjects and therefore discover

physiologic effects while controlling the thoughts of the subjects. One problem

is that many conditions, such as pain, will decrease over time and thus

a no-treatment group will also “improve” over the course of a clinical trial.

The belief system of the patient is an important element of the placebo effect.

For example, Comstock3 reported that customers who in a past day believed that

pasteurization spoiled the flavor of their milk complained of the awful

pasteurized milk delivered to them. It seems the label was recently changed to

note the pasteurization, although the milk was unchanged from what they had

been receiving. When the label was changed back, the complaints ceased.

One interesting example was a study of the effect of iron pills on women.4

In this study, three groups of subjects were established. In one, the women were

given iron pills and were told that they were taking iron pills. A second group

received the placebo for the iron pills and was told that they were receiving the

placebo. A third group also received the placebo for the iron pills but they were

told that they were receiving the iron pills. The outcomewas that, both groups who

thought they were taking iron pills reported many more side effects than the group

who thought they were taking placebo. Because the two groups who thought they

were taking iron pills reported the same results and the two groups who were on

placebo had different results, the conclusion is that the side effects were caused by

what the women thought and not by the physiologic effects. “Virtually no toxic

effects were reported from ‘known’ control pills containing lactose, but the exactly

similar ‘unknown’ control pills, which were thought by the subjects to contain

iron, produced as many side effects as the pills that did, in fact, contain it.”4

Another study, this time with second year medical students, is also

illustrative.5 This study, though not original in concept, is classic because the

results were so predictable to illustrate this field. In fact we placed the predicted

results in a sealed envelope prior to the study to emphasize that wewere pretty sure

we knewwhat would happen. The students were studying stimulants and sedatives

in their pharmacology classes, and were asked to participate in a blindfold

experiment on the psychological and physiological effects of stimulant and

sedative drugs.At baseline and one hour later, after attending a lecture, the students

who volunteeredmeasured each other’s pulse, blood pressure, and pupil size. They

reported on twelve possible desirable and undesirable psychological effects.

Students received their medication dose as one or two blue or pink capsules.

Only three students did not report any change and 27% of the class reported at

least seven of the 12 responses. A statistically significant but small change was

observed in pulse rate and systolic blood pressure. Subjects in a comment section

reported headaches, difficulty in concentrating, and dizzy feelings. Additional
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effects were noted by single individuals. Later in the day, two subjects were

sufficiently concerned that they sought reassurance from the faculty and one had to

be driven home. Those who took two capsules demonstrated more pronounced but

not more frequent changes than those who took only one, a typical dose response.

Blue capsules produced more sedative effects than pink capsules.

These results were presented to the students two weeks later when they were

also told that all students consumed only placebo. After a pause, presumably to

process this information and to reevaluate, the students burst out laughing.

Almost all of the responses to a questionnaire on the impact of the experiment

rated the experience in a favorable light. This included five students who felt

humiliated but still rated the learning-experience as good or excellent.

Most physicians and patients have not had the experience of taking and

reacting to something that is later revealed to be a placebo especially in the last

decades when Informed Consent and Institutional Review Boards constrict

researchers on what can be told to the recipients. The literature suggests that

almost everyone will respond to a placebo if put into a conducive situation. It is

also clear that a reaction today does not do a good job of predicting what will

happen tomorrow in a slightly different situation. In fact, researchers have tried

the approach of a run in period to find and eliminate those who respond to placebo.

This approach has not been successful because placebo effects are still observed

during the study even after putative placebo responders have been eliminated

from starting the study.

It should also be emphasized that in spite of its name, placebo effects

include both the positive and negative when compared with a standard of no

treatment. Thus Buncher6 reported as follows:

Placebo is well known to be a good analgesic. It cures or reduces the

pain from headaches, backaches, postoperative pain, rheumatoid

arthritis, angina pectoris, and cardiac pain. It has cured motion

sickness, gastric hyperacidity, the symptoms of common cold, and

clinical cough. It can tranquilize or stimulate. One tenth of women

proven to be anovulatory then ovulated following administration of a

placebo under study conditions.7Moreover, side effects from placebo

therapy are even more extensive than the list of conditions that are

aided by placebo. Headaches, nausea, vomiting, dizziness, diarrhea,

pain, dermatitis, drowsiness, anxiety-nervousness, weakness-fatigue,

dry mouth, abdominal pain, insomnia, urinary frequency, urticaria,

loss of libido, tinnitus, and so forth, have all been caused by the

administration of placebos.

Also, the results sometimes indicate that placebo is the better treatment.

Occasionally people fall into the trap of believing that either the active treatment is

better or the same as placebo. One example is the cardiac arrhythmia suppression

trial discovering that the placebo group had fewer deaths from arrhythmia or

shock after acute recurrent myocardial infarction. This study was stopped by the
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Data and Safety Monitoring Board when they observed more deaths in the

encainide and flecainide treatment groups than in the placebo group.8

In pharmaceutical trials, the purpose of a placebo is to provide a comparison

such that one can tell what would have happened if the new “active treatment”

had no pharmacologic effect. One should not think that the results in the placebo

group are necessarily causal. Some effects are causal but some are caused by

changes over time in the disease or the patient, regression towards the mean,

other human factors, and so forth. One illuminating example appeared in a news

account of AIDS testing.9 “Four weeks after enrolling in a trial, John G. saw

his CD4 cells (a marker for the progress of the disease) rise from 300 to 649.

Thrilled, he called up other infected friends to urge them to get the drug. He

started to take better care of himself — he ate three meals a day, he exercised —

seeing a future for himself again. Then he found out he was on a placebo.

…‘I was totally shocked,’ John G., a 31 year old circulation manager for a

magazine in Manhattan, said. ‘I thought it was the miracle drug’.”

We have to note that thinking you are doing better can be autocorrelated with

actions that make you healthier. This anecdote also raises the complicated issue

of how to tell a patient at the end of a trial that you have been taking a placebo.10

One particularly important study should be understood by all who work in

pharmaceutical statistics. This is part of the Coronary Drug Project that evaluated

several lipid-influencing drugs.11 The five-year mortality rate was 20.9% in the

placebo group and 20.0% in the clofibrate group — a nonsignificant difference.

Further analysis showed that good adherers, defined as those who took 80% or

more of the assigned medication had a 15.0% mortality rate compared with

24.6% in those who took less of the medication — a highly significant difference.

Then the same analysis was done for the placebo group with the same results —

15.1% mortality for those who took at least 80% of their placebo and 28.3% for

those who took less of the placebo, again a highly significant difference. The

usual interpretation is that those who took at least 80% of their medication,

whether clofibrate or placebo, were “better patients” who also followed other

advice to keep them as healthy as possible, such as exercising and using a more

healthy diet. As an aside, this study put a bright spotlight on the danger of

evaluating treatment efficacy in subgroups determined by patient responses and

lead to the much greater use of the “intent-to-treat” analysis.

Explanations of the placebo effect have been sought and include factors such

as a cascade of events resulting in the release of endorphins in the brain. Thus we

understand how a chemical drug can fit into a receptor site on a cell of an organ

and then trigger a series of events resulting in the positive effects of the drug

or even the side effects if a receptor on a different organ is triggered. Then how

does a placebo work if we cannot point to a chemical pathway? In spite of a great

quantity of results and better understanding, the process is still being studied. I do

object to an advertisement that stated “No placebos. What we do for you really

works” since that statement misses the point that, the “really works” and the

placebo effect are indistinguishable in any individual.
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I think of it this way. We know that the brain, in response to a stimulus such

as a sight, a sound, a smell, a touch, or a taste, can trigger thoughts that in turn will

turn on or off parts of the genetic system. That is a gene can be turned on by

the brain to produce a protein or turned off to stop producing a protein. Thus there

is a parallel system with the brain as intermediary to the system of drug induced

molecular changes. One can imagine an ancient ancestor walking and seeing or

hearing a lion. Molecular changes to start the fight or flight reaction would be

induced by the sensing of this potential problem. We also know that sometimes

that ancestor might be mistaken in the identification but would still trigger the

reaction. Alpha and beta errors suggest that it was probably better for us if our

ancestors overreacted to potential danger. Thus we have this biologic system that

translates sense organ signals into chemical reactions, which in the experimental

setting of pharmacological research we would designate as a placebo reaction.

A fascinating example of the role of placebo in research was given by

Roy L. Sanford in the second edition of this book,12 and it is repeated here.

II. A CASE STUDY OF A CLINICAL TRIAL OF THE DRUG

CHYMOPAPAIN

Published results of studies with chymopapain serve to illustrate the revealing

nature of placebo-controlled, double-blind trials and the importance of not

underestimating the magnitude of the placebo effect. A brief historical review is

in order. Chymopapain is an enzyme that dissolves the protein in injured

vertebral discs. According to Smith, the dissolution of this protein may alleviate

the pain experienced by slipped-disc sufferers. In 1963 Smith13 injected the

enzyme intradiscally into patients with symptomatic lumbar disc disease and

termed his new treatment, chemonucleolysis. Prior to 1975, almost 17,000

patients had undergone chemonucleolysis by neurosurgeons and orthopedists.

These studies were uncontrolled, and success rates ranged from 50% to 80%

from investigator to investigator. FDA approval of chemonucleolysis seemed

a formality. In 1974 the American Academy of Orthopedic Surgeons endorsed

chymopapain as “safe” and “effective.” However, prior to approval, it was

determined that a placebo-controlled, double-blind study was necessary in the

United States. Based on the successful uncontrolled clinical experience since

1963, this study was considered by many to be unethical. Unfortunately, the only

therapy available other than chemonucleolysis was surgery and could not be

accommodated in a double-blind format.

This situation prompted the election of a placebo-controlled study. Four

hospitals were selected to participate in a double-blind clinical study that was

conducted for approximately one year and was completed on December 31, 1975.

A total of 106 patients were admitted with 56 patients receiving a placebo

injection and 50 receiving chymopapain. The placebo injection consisted of the

vehicle without the enzyme but with an inert substance for bulk. The vehicle

consisted of cysteine hydrochloride and ethylenediamine tetraacetic acid with
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sodium iothalamate, and was considered to be pharmacologically inert when

included as part of the injection procedure. All other aspects of the treatment

program were identical for both the control and treatment groups. At the end of

one year, out of 50 patients receiving chymopapain, 20 patients were determined

to be treatment failures, and out of 56 treated in the control group, 28 were

determined to be treatment failures. Determination of treatment failure was made

jointly by the physician and patient. The overall success rates were not found to

be significantly different between control and treatment groups, nor did any

additional evaluation of all the data collected demonstrate a significant benefit in

favor of chymopapain compared with the placebo control. Long-term followup

did not alter this situation. Further details and results were reported by

Schwetschenau et al.14 and Martins et al.15

This one chymopapain study raised numerous questions. Was the placebo

response rate caused by true pharmacological activity on the part of the vehicle,

or was the true placebo response rate under these circumstances comparable

with those of chemonucleolysis and surgery? Should measurement of patient

improvement and the reduction of pain from lower back problems have been

carried out differently to result in amore efficient estimate of the contrast in success

rates between chymopapain and placebo? How long should patients be followed

before success or failure is determined? Should a larger sample size have been

used? Lower back problems tend to reverse themselves and then recur. Should

different patient entry criteria be used? Based on the findings of this study, the

new drug application (NDA) was not approved and further use of chymopapain

in the United States was discontinued. Several articles appeared in the press16,17

questioning the nonapproval of the NDA and the conduct of the study, two

congressional investigations were launched, documentaries appeared on televi-

sion, and scientific papers were published in different journals discussing

chemonucleolysis.

McCulloch18 published results of a seven-year, unblinded, single-treatment

studyof 480patientswhounderwent enzymatic dissolution of the nucleus pulposus

with chymopapain. He reported that 70% of patients with the clinical criteria for a

disc herniation had a favorable response to chemonucleolysis. Those patients with

spinal stenosis or psychogenic components or those having had a previous

operation were found to have poor results. In 1976 Smith, the discoverer of

chemonucleolysis, indicated, “In comparisonwith usage of the drug over 12 years,

this one study (referring to the double-blind study) is relatively insignificant.” The

controversy continued for years. Final approval of chymopapainwas received from

the FDA in 1982 after two additional placebo-controlled studies were completed.

One was conducted in Australia and is reported by Fraser.19 The other was

conducted by Smith Laboratories and is reported by Haines20 in a review of the

three published randomized clinical trials of chymopapain. The three published

studies were double-blind placebo-controlled studies utilizing a total of 234

patients. Haines20 pooled the results of these studies on the basis that study design,

selection criteria, technique, and outcome assessment were very similar. He

concluded that the odds of successful outcome were 2.6 times as great with
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chymopapain as with placebo, or that chemonucleolysis provided a 23% increase

in the number of successfully treated patients compared with placebo. The pooled

success rate for chymopapain was 70% and for placebo was 47%. Haines

demonstrated that in these three studies the estimated powers for finding a 50%

increase in success rate for chymopapain relative to placebo ranged from 0.51 to

0.61, and he concluded that “the failure of the original double-blind study …

probably resulted from small sample size.” Two recent reports provide an update

on the situation.Wittenberg21 reported on a later clinical trial and Kim22 reviewed

3000 cases.

In conclusion, we can reflect on the example just given and our understanding

of the placebo effect. As we continue to make progress in pharmacologic

treatment, there are more and more active medications that can be used to treat

disease conditions. While patients may be willing to forgo a medicine to relieve

pain in an experiment or to reduce itching or the symptoms of allergy, we do not

think that a study should use a placebo to treat a debilitating disease or for birth

control or cancer treatment, in most situations. Vickers and deCraen23 discuss

some of the alternatives. Some condemn the use of placebo in any study when

a proven treatment exists. The country of Brazil instituted this as a requirement.24

Thus more and more studies will use an active control and not include a placebo.

This raises a whole range of statistical issues because statistically “significantly

better than placebo” as the goal can be replaced by “as good as the usual

treatment.” Even when comparing active treatments, the investigators must keep

in mind that some of the effects are caused by the placebo effect. As background,

consider a study that shows a placebo effect such that 30% of patients on placebo

have their pain relieved compared with 60% on the active treatment. The

conclusion is that the active treatment is effective. However, we should keep in

mind that, based on these results, we must conclude that half of the patients on the

active treatment are being cured by placebo effects.

Finally, there are always doubters and those who come up with new

conclusions. One example is an article that appeared in the New England Journal

of Medicine and was given publicity to the effect that the placebo effect was not

real.25 The news reports stated things like the placebo effect is nothing more than

a myth. The authors searched for articles with well done studies that involved

both a placebo and a no-treatment group so that they could measure the difference

caused by the placebo effect. Their conclusion was that only for an effect on pain

was there a statistically significant effect. If one looks at their data in Table 2, you

can see a fundamental fallacy in this report. The table shows that the effect size is

about the same for pain as for obesity, asthma, hypertension, and insomnia,

although none of the latter is statistically significant. Then one notes that the

sample size of patients fulfilling the authors’ criteria was large for pain relief

ðn ¼ 1602Þ and small for the other characteristics (n ¼ from 81 to 129). The

authors then concluded that because the effect was not found at a statistically

significant level, it did not exist. This is the classic fallacy of “accepting” the null

hypothesis rather than concluding that the data are consistent with the null

hypothesis as well as an array of alternative hypotheses.
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In summary, fewwho have experienced the contingencies of life or carried out

pharmacologic research will doubt the importance of the concept of the placebo

effect. Eventually, after you have proven your medication effective, you still have

to choose a color for it and if a blue color has more sedative effects, then…
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I. INTRODUCTION

Substantial evidence from “adequate and well-controlled” randomized clinical

trials (RCTs), as outlined in FDA CFR Title 21, Part 314.126, 2000,1 is required

for medicinal product (e.g., drug, therapy, vaccine, or medical device) approval

by the Food and Drug Adminstration (FDA) of the US. The “control” serves as a

comparator that allows for discrimination of patient outcomes (changes in

symptoms, signs, morbidity, or mortality) caused by the test treatment from that

caused by other factors, such as the natural progression of the disease, patient and

investigator expectation, or other treatments. The comparative information

gained on the control is crucial for the determination of test treatment efficacy and

safety, provided that the “bias” is minimized via randomization and/or blinding.

The choice of control is well discussed in ICH E10 Guidance2 and others.3,4

Control can be “historical” or “concurrent.” A historical control is a control

selected from a defined patient population in a similar group of patients studied in

historical trials. The patient population in the current trial may no longer be the

same because of changes in medical practice and patient life style. Due to a lack

of randomization and patient comparability of the test and control groups and

its inability to minimize bias, historical control is only used in exceptional cases.

A concurrent control is one selected from the same patient population as the test

treatment group and treated in the same trial concurrently in adherence to the

study protocol. Concurrent control, as described in ICH E10, can be classified

into four types: namely, no-treatment control, placebo control, active control, and

dose–response control. An important extension is multiple controls, where

placebo and active controls are included in the same trial.
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Within the limits of technical and practical feasibility of using placebo, the

placebo-controlled RCT has been the gold standard in drug development for

many decades and it continues to be the primary means to demonstrate efficacy

and safety of a new test treatment. As more proved effective treatments are

available, the utilities of the placebo-controlled trials from ethical consideration

become questionable.5–7 Recently in 2000, the World Medical Association

(WMA) Declaration of Helsinki8 further challenged the use of placebo-controlled

trials by declaring, “in any medical study, every patient — including those of a

control group, if any — should be assured of the best proved diagnostic and

therapeutic method.” This strong wording is literally interpreted by many

and they consider it unethical to conduct placebo-controlled trials, if there

is an effective treatment available. Some FDA experts9,10 countered the

extreme viewpoint and rectify use of placebo under certain conditions (e.g.,

where diseases are symptom-driven, nonfatal, or morbidity is reversible) even

when effective treatments are readily available.

Nonetheless, the active-controlled trials have gained popularity in recent

years, especially in the European Union (EU) and Japan, where these trials are

routinely conducted to demonstrate test treatment efficacy and assess compara-

tive effectiveness of the test treatment against standard control treatments.

An active-controlled trial is one in which a test treatment is compared with a

standard effective treatment. Active-controlled trials have two distinct objectives

with respect to demonstrating efficacy:

1) superiority: to demonstrate efficacy by showing superiority of the test

treatment to the active control treatment

2) noninferiority or equivalence: to prove efficacy of the test treatment by

showing it is noninferior or equivalent to a standard effective treatment.

Active control has been used in trials with or without placebo. For trials

involving placebo and active controls, active control usually plays a secondary

role with respect to demonstrating the effectiveness of a test treatment. It is

primarily used as a reference intended for verifying the assay sensitivity (AS)

of the trial.

In Section II the utilities of the placebo-controlled trials vs. the active-

controlled trials are briefly reviewed. Section III discusses the definitions of

superiority, noninferiority, and equivalence trials in hypothesis testing and

interval estimation settings. Section IV provides some basic formulae for sample

size and power calculations under various trial designs and data distributions.

Section V details the issues of AS, historical evidence of sensitivity-to-drug-

effects (HESDE), appropriate trial conduct (ATC), and constancy assumption

(CA). Section VI further discusses active control effect size ðDÞ; noninferiority/
equivalence margin ðdÞ; and fraction of active control effect preservation ðfÞ
determination. AS, HESDE, CA, D; d; and f are the essential elements required

for the design of a positive noninferiority/equivalence trial. Section VII and

Section VIII describe switching objectives and general analysis issues,
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respectively. Next, in Section IX some caveats are presented. In Section X

a summary discussion on the active-controlled noninferiority trials is provided,

closing with a short remark regarding the role of the statistician.

II. PLACEBO VS. ACTIVE-CONTROLLED TRIALS

The utilities of placebo-controlled trials are well established. The placebo-

controlled trials, using randomization and blinding, generally minimize patient

selection, investigator assessment, and trial conduct bias. In such trials, patients

are randomly assigned to a test treatment (e.g., drug) or to an identical-

appearing inactive drug (i.e., placebo). A placebo is a “dummy” substance that

appears as identical as possible to the test treatment with respect to physical

characteristics such as color, weight, taste, and smell, but it does not contain the

test treatment or any other active ingredient of drugs. The treatments can be

titrated or given at one or multiple fixed doses. The placebo concurrent control

design controls for the so-called “placebo” effect (see Chapter 11, this volume).

Therefore, use of placebo concurrent control is able to separate the true

pharmacologic effect of the test treatment from other confounded effects

(e.g., natural progression of the disease, regression to the mean, patient, and/or

investigator expectation, the effect of being treated in a trial, and bias

of diagnosis/assessment). Placebo-controlled trials also have the ability to

distinguish adverse effects caused by a treatment from those resulting from

underlying disease or concomitant illness. However, use of a placebo raises

problems of ethics, acceptability, and feasibility when an effective treatment is

available, in particular, for some severe disease conditions (e.g., mortality and

irreversible morbidity) under study. Nonetheless, it is often possible to address

the ethical or practical limitations of placebo-controlled trials by including

multiple doses of the test drug, a pseudo-placebo (a low-dose active control

drug), a known effective active-control drug, or adopting some design

alternatives or modifications to be discussed in Section IX.

In an active-controlled trial, patients are randomly assigned to the test

treatment or to an active control treatment. Such trials are usually double-blind

via the use of double-dummies, but this is not always feasible. Many oncology

trials, for example, are difficult or impossible to blind because of different

regimens, schedules/cycles, routes of administration, and induced toxicities.

Active-controlled trials are generally considered to pose fewer ethical and

practical problems than placebo-controlled trials because all patients receive

active treatment. Active-controlled trials also can, if properly designed, provide

information about test treatment efficacy in addition to relative efficacy to an

active control treatment. A crucial design question for an active-controlled trial

is whether the primary objective of the trial is intended to show superiority of the

test treatment to the active control or merely to show noninferiority/equivalence.

When this design is used to show superiority of the test treatment to an active

control treatment, the approach is straightforward like the placebo-controlled
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trials. When superiority (significant difference between the test and active

control treatments) is shown, AS of the trial is established, and efficacy of the

test treatment is demonstrated. However, when it is used to show noninferior-

ity/equivalence of the test treatment to an active control treatment, AS will need

special consideration; it cannot be demonstrated directly, but rather deduced via

HESDE of the chosen active control, CA of the control effect size, and ATC of

the current noninferiority trial including adequate sample size and power as well

as high trial quality. Predefinition of a trial design as a superiority trial or

a noninferiority trial is necessary for proper trial design and analysis (e.g., choice

of control, doses, patient populations, endpoints, sample size and power, clinical

relevant effect size, noninferiority margin, analysis plan, and assay sensitivity).

In practice, an active-controlled trial may include switching objectives as a

priori in the trial design.3,11,12. These important topics on properties of the

noninferiority/equivalence trials and switching objectives will be discussed in

Section IV and Section VII, respectively.

III. SUPERIORITY, NONINFERIORITY,

AND EQUIVALENCE TRIALS

One should be clear about the primary objective of any clinical trial regardless

of the control used. Should the objective be to demonstrate superiority of the

test treatment to the control (either placebo or a standard effective active

treatment), noninferiority to the active control treatment, equivalence to the

active control, or simply effectiveness of the test treatment? Each of these

objectives requires a different set of hypotheses. Now let us review the

framework of the hypotheses in terms of null and alternative for superiority,

noninferiority, and equivalence trials as follows. Blackwelder13 and many

authors,3,14–19 to name just a few, have addressed the hypotheses using slightly

different formats and symbols. In this manuscript primarily those of Hwang and

Morikawa3 are used. Let T ¼ test treatment, S ¼ standard active control

treatment, P ¼ placebo, d ¼ noninferiority/equivalence margin, D ¼ active

control effect size, and 1 ¼ effect size to be detected between the test and

active control treatments. To simplify the presentation, the letters T; S; and P

will be loosely used to represent treatment groups/arms or primary endpoint of

interest in population means, proportions, and event rates, etc., as appropriate.

Also, positive effects are considered favorable (i.e., D . 0; d . 0; and 1 . 0).

In addition, we assume D; d; and 1 are known (i.e., readily available from prior

research). In Section VI, the cases when D and d are not known but may be
estimated from historical placebo-controlled trials will be discussed. For other

specific formulations of null and alternative hypotheses (e.g., relative risk in

means or event rates, odds ratio, or hazard ratio), the reader may refer

specifically to these articles.20–24

Active-Controlled Noninferiority/Equivalence Trials 197



A. SUPERIORITY TRIAL

A superiority trial is designed to detect a difference (D or 1) between the test and
control treatments. The control can be placebo or an effective standard active

treatment. The form of null and alternative hypotheses remains the same. Namely

H0 : T 2 P # 0 vs. H1 : T 2 P . 0 when control is placebo and

H0 : T 2 S # 0 vs. H1 : T 2 S . 0 when control is a standard active

treatment

Note that in sample size estimation, the clinically meaningful effect size between

the test treatment and placebo to be detected is D, while the effect size between
the test and active control treatments is 1; where D . 1 . 0: Note also that we
assume the test is one-sided instead of the traditional two-sided test that the FDA

has favored. In fact, a one-sided test at a ¼ 0:025 gives the same significance
level as the two-sided test at a ¼ 0:05:

The test statistics are,

z ¼ ðT 2 PÞ=sðt2pÞ when control is placebo, and
z ¼ ðT 2 SÞ=sðt2sÞ when control is a standard active treatment,

where sðt2pÞ and sðt2sÞ are the sample standard errors of T 2 P and T 2 S;
respectively. Again, to simplify presentation, we assume the data are from a large

sample with a common distribution for which the variance is finite and outliers

are rare. We reject H0 and conclude superiority of T to P or S; if z . z12a (a one-

sided a-level test), where z12a is the usual 100 £ ð12 aÞ% point of the standard

normal distribution.

Equivalently, we can use the confidence interval (CI) approach. To declare

superiority we need to show that the one-sided 100 £ ð12 aÞ% CI, ½CL;1Þ; for
T 2 P or T 2 S is included in ½0;1Þ or simply 0 , CL as shown in the following

sketch, where CL is the lower limit of the CI.

Superiority Trial

H0: Inferior H1: Superior

0

T− P or T− S

CL

It should be noted that in a superiority trial involving a standard active control

S; one cannot conclude the test treatment T is noninferior or equivalent to

the active control S; when the trial failed to demonstrate superiority of T to S:
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Many nonstatisticians often commit this kind of fallacy, simply because they

do not understand that failing to reject the null hypothesis of inferiority (or no

difference) for an active-controlled superiority trial does not imply that the null

hypothesis is true. If one is interested in demonstrating T as noninferior or

equivalent to S; then the corresponding hypotheses should reflect “noninferiority”
or “equivalence” as follows.

B. NONINFERIORITY TRIAL

A noninferiority trial is to show that a test treatment is no less effective than

an existing standard effective treatment by a small predefined noninferiority

margin d: In this context, “noninferiority” does not simply mean “not inferior,”
but rather “not inferior by as much as a predefined limit or margin, with respect

to a particular endpoint under study.” The control now is an effective standard

active treatment. The null and alternative hypotheses are

H0 : T 2 S # 2d vs. H1 : T 2 S . 2d;
where d ¼ predefined noninferiority margin

The test statistic is now z ¼ ½ðT 2 SÞ þ d	=sðt2sÞ. We reject H0 and conclude

noninferiority of T to S if z . z12a (a one-sided a-level test).
To declare noninferiority of T to S using the CI approach, we need to show

that the one-sided 100 £ (1 2 a)% CI, ½CL;1Þ; for T 2 S is included in ½2d;1Þ
or simply 2d , CL as shown in the graph below.

Noninferiority Trial

H0: Inferior H1: Noninferior

−δ

T− S

CL
0

Note that we demonstrate noninferiority when 2d , CL: We may

further claim superiority if 0 , CL: The discussion of switching objectives

(i.e., superiority to noninferiority or vice versa) will be deferred to Section VII.

C. EQUIVALENCE TRIAL

An equivalence trial is designed to show either that the test treatment is not

meaningfully different from an effective standard active treatment or that the

test treatment is equivalent to the active control (i.e., bounded by a small
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predefined equivalence margin d). Now the null and alternative hypotheses

are two-sided:

H0 : T 2 S # 2d or T 2 S $ d vs. H1 : 2 d , T 2 S , d:

The two-sided hypotheses can also be expressed as paired (two) one-sided

hypotheses25,26:

H0 : T 2 S # 2d vs. H1 : T 2 S . 2d and

H 0
0 : T 2 S $ d vs. H 0

1 : T 2 S , d:

T and S are equivalent when the two-sided null hypothesis H0 is rejected (or the

paired null hypotheses H0 and H 0
0 are simultaneously rejected). For testing

equivalence, the test statistics for the paired one-sided a-level tests are:

z ¼ ½ðT 2 SÞ þ d	=sðt2sÞ and z0 ¼ ½ðT 2 SÞ2 d	=sðt2sÞ:

Reject H0 and H 0
0 to demonstrate equivalence of T and S: Chow and Shao27

showed that the two one-sided tests procedure is a valid size a test.
To conclude equivalence of T and S in the CI approach (as shown in the

following sketch), we need to show that the 100 £ (1 2 2a)% CI, ½CL;CU	
is included in ½2d; d	 or 2d , CL , CU , d; where CL and CU are the lower

and upper limits of the CI, respectively.

Equivalence Trial

H0:
Non-equivalent

H0:
Non-equivalent

H1: Equivalent

− δ

T− S

CL 0 CU δ

In fact, in late-phase drug development, noninferiority trials are more

commonly used than equivalence trials. Sole assessment of therapeutic

equivalence of two treatments (test vs. effective active control) may be

inadequate in practice. The sponsor may want to demonstrate that the test

treatment is no less effective than an effective active control treatment — it may

have a similar effect or it may be even more effective than the active control.

That is, it may involve an assessment of noninferiority and superiority in a

stepwise fashion, not restricted to demonstrate equivalence. Because there is an

incentive to demonstrate superior efficacy beyond noninferiority (unlike excess
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bioavailability in bioequivalence), the interest is fundamentally one-sided.

As discussed in the next section, the formulae for sample size and power are

also slightly different between the noninferiority and equivalence trials. The latter

tends to need a larger sample size than the former. Therefore, the distinction

between noninferiority and equivalence trials is important and needs to be clarified

to avoid confusion, though this point has only been made clear recently.11,12,28

IV. SAMPLE SIZE AND POWER

Formulae for sample size estimates and their corresponding power can be derived

via solving the following two simultaneous equations29:

a ¼ Pr½z . zclH0	 and 12 b ¼ Pr½z . zclH1	
where z ¼ the test statistic, zc ¼ the critical value, H0 ¼ the null hypothesis, and

H1 ¼ the alternative hypothesis.

Some selected formulae for sample size estimates and their corresponding

power under normal and binomial distributions3,30 are provided as follows.

A. SUPERIORITY TRIAL

1. Normal Distribution

The formulae for sample size per group and its related power when control is

placebo are

n ¼ 2ðs=DÞ2ðz12a þ z12bÞ2 and 12 b ¼ F½ðD=sÞðn=2Þ1=2 2 z12a	:
When control is an active treatment, one simply replaces D with 1 as follows.

n ¼ 2ðs=1Þ2ðz12a þ z12bÞ2 and 12 b ¼ F½ð1=sÞðn=2Þ1=2 2 z12a	:
where n ¼ sample size per group, 12 b ¼ power, d ¼ clinically meaningful

mean difference of test vs. placebo (test treatment effect size), 1 ¼ mean

difference between the test and active control treatments, which may not need to

be clinically meaningful and in general D . 1, s ¼ pooled standard deviation,

z12x remains the usual 100 £ (1 2 x)% point of the standard normal distribution,

and F½x	 denotes Pr½X $ x	 where X has the standard normal distribution.

2. Binomial Distribution

The formulae for sample size per group and its related power when control

is placebo are:

n ¼ 2½pð12 pÞ=D2	ðz12a þ z12bÞ2 and

12 b ¼ F ½{D=½p ð12 pÞ	1=2}ðn=2Þ1=2 2 z12a	;
with D ¼ T 2 P, and p ¼ ðT þ PÞ=2:
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When control is an active treatment, one replaces D with 1:

n ¼ 2½p ð12 pÞ=12	ðz12a þ z12bÞ2 and

12 b ¼ F ½{1=½p ð12 pÞ	1=2}ðn=2Þ1=2 2 z12a	;

with 1 ¼ T 2 S, and p ¼ ðT þ SÞ=2:

B. NONINFERIORITY TRIAL

1. Normal Distribution

In the formulae for sample size per group and related power for a noninferiority

trial, one needs to replace D or 1 in a superiority trial with the noninferiority
margin d as follows:

n ¼ 2ðs=dÞ2ðz12a þ z12b Þ2 and 12 b ¼ F ½ðd=sÞ ðn=2Þ1=2 2 z12a	;

when T ¼ S:

2. Binomial Distribution

Again, we replace D or 1 with d; now the respective formulae become

n ¼ 2½p ð12 pÞ=d 2	ðz12a þ z12b Þ2 and

12 b ¼ F ½{d=½p ð12 pÞ	1=2}ðn=2Þ1=2 2 z12a	;

at T ¼ S ¼ p:

C. EQUIVALENCE TRIAL

1. Normal Distribution

For an equivalence trial at T ¼ S; the sample size formula for a noninferiority
trial can be used, but with b replaced by b=2:3,30,31 Here we assume that the
equivalence margin d is symmetric around 0

n ¼ 2ðs=dÞ2½z12a þ z12ðb=2Þ	2 and

12 b ¼ 2F ½ðd=sÞðn=2Þ1=2 2 z12a	2 1;

when T ¼ S:
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2. Binomial Distribution

Again, we replace b with b=2; now the respective formulae become

n ¼ 2½p ð12 pÞ=d 2	½z12a þ z12ðb=2Þ	2 and

12 b ¼ 2F ½{d=½p ð12 pÞ	1=2}ðn=2Þ1=2 2 z12a	2 1;

at T ¼ S ¼ p:
Clearly in active-controlled trials whether the intention is to demonstrate

superiority, noninferiority, or equivalence, the required sample size is usually

much larger than a placebo-controlled superiority trial.

To take a closer view of this, let us arrange the sample size formulae

of superiority, noninferiority, and equivalence on top of each other (e.g., under

normal distribution) as follows:

nðSup: T vs: SÞ ¼ 2ðs=1Þ2ðz12a þ z12bÞ2;
nðSup: T vs: PÞ ¼ 2ðs=DÞ2ðz12a þ z12bÞ2;
nðNI: T vs: SÞ ¼ 2ðs=dÞ2ðz12a þ z12bÞ2; and

nðEq: T vs: SÞ ¼ 2ðs=dÞ2½z12a þ z12ðb=2Þ	2;

where Sup ¼ Superiority, NI ¼ Noninferiority, and Eq ¼ Equivalence.

Clearly, n ð Eq: T vs: S Þ . n ðNI: T vs: S Þ . n ðSup: T vs: P Þ; and n ð Sup: T vs: S Þ .
n ð Sup: T vs: P Þ; because D . d . 1 and z12ðb=2 Þ . z12b: In particular, if one

chooses an equivalence margin to be less than one half of the active control effect

size (i.e., let d , D=2), then n ðEq: T vs: S Þ . 4n ðSup: T vs: P Þ: It should be empha-
sized again that n ðEq: T vs: S Þ . n ðNI: T vs: S Þ is caused by the fact that z12ðb=2 Þ .
z12b: Therefore, one can generalize that an active-controlled trial needs larger
sample size than a placebo-controlled trial.

Following are a couple of examples in sample size and power estimation

in active-controlled noninferiority trials.

Example 1. Company X is developing a new antiarthritis (RA) disease drug

X-111 — a selective COX-2 inhibitor. It has been proved in historical placebo-

controlled trials that the standard drug, ibuprofen, is effective in treating RA, but

might induce gastrointestinal (GI) side effects such as ulcer, which is usually

confirmed by endoscopy. X-111 is also proved effective (vs. placebo) in Phase III

placebo-controlled trials, but now the FDA wants Company X to conduct a study

to ascertain that the possible GI side effects for X-111 is substantially better

(lower) than ibuprofen, but not worse than placebo by much. You, the project

statistician, are called upon to design this study to provide response to the FDA.

The historical ulcer rates for ibuprofen and placebo are approximately 20 to 22%

and 2 to 3%, respectively. The noninferiority margin is assumed readily known to

be no greater than 5%.
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Assignment. 1. What trial design would you suggest? How many treatment

arms would you include? Which formula would you use to calculate the sample

size as defined in this simple mythical example? (Assume that the sample size

required for demonstrating noninferiority of X-111 to placebo is more than

adequate for showing superiority of X-111 to ibuprofen in causing ulcer.)

2. What historical ulcer rates for ibuprofen and placebo would you use? What

noninferiority margin to define? Give brief rationale. 3. Provide n; sample size
per group (equal allocation) at a ¼ 0:025 (one-sided) and power ð12 b Þ ¼ 0:80;
0.90, and 0.95, respectively. 4. Provide the power for n ¼ 100; 200, and 300 per
group, respectively.

Answer. 1. A mixture design with three treatment arms (i.e., X-111, ibuprofen,

and placebo) to demonstrate superiority (X-111 to ibuprofen) and noninferiority

(X-111 to placebo). In this hypothetical example, GI side effect (i.e., ulcer) is

of safety concern. Therefore, the role of placebo is very different in assessing

safety than efficacy and one needs to demonstrate that the ulcer rate of the test

treatment X-111 is not much greater (i.e., the GI side effects were not much

worse) than that of placebo (a standard control for safety). Because the sample

size required for demonstrating noninferiority of X-111 to placebo is greater

than for showing superiority of X-111 to ibuprofen in developing ulcer, the

formula for a noninferiority trial under binomial distribution is used:

n ðNI: T vs: S Þ ¼ 2½p ð12 pÞ=d 2	ðz12a þ z12b Þ2

at T ¼ S ¼ p, where T ¼ X-111, S ¼ placebo, T ¼ S ¼ p ¼ 0:03, d ¼ 0:05,
z0:8 ¼ 0:84, z0:9 ¼ 1:282, z0:95 ¼ 1:645, and z0:975 ¼ 1:96. 2. The ulcer rates used
in sample size estimation are 20% for ibuprofen and 3% for placebo. The non-

inferiority margin used is 5%. The simple reason is that these rates provide a

larger sample size to safeguard adequate power. 3. Sample sizes per group

calculated and estimated:

Power (%) n per Group (Calculated) n per Group (Estimated)

80 183 185

90 245 245

95 303 305

Note: Sample size estimation is not an exact science. Usually in practice the

calculated numbers are rounded up to some reasonable whole numbers. 4.

The following table lists the calculated power for given n ¼ 100; 200, and 300 per
group:

n per Group Given Power 5 ð12 bÞ (%)

100 54

200 83

300 94
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Example 2. The following example describes a complex case about

a Phase III trial in oncology. The original trial design was to demonstrate that the

test treatment ðTÞ is noninferior in overall survival (OS) to an active standard
treatment ðSÞ: The noninferiority margin for the hazard ratio of OS was assumed
to be 0.70. Later, it was revised to 0.75 and eventually settled at d ¼ 0:80 per
insistence of the regulatory authority. In reviewing the draft protocol, the

authority further requested the sponsor to include a co-primary endpoint — tumor

response rate (RR) such that the test treatment ðTÞ retains at least 75% of the

active control response rate. The sample size section of the revised draft protocol

is shown as follows (note that drug names are withheld and some wordings are

also changed to preserve anonymity):

“The primary efficacy objective is to demonstrate that treatment with regimen

T results in noninferior OS and RR as compared with treatment with the con-

ventional regimen S. Statistically, it is to demonstrate noninferiority concurrently

in both the co-primary endpoints such that:

1. The lower limit of the two-sided 95% CI or equivalently, the lower

limit of the one-sided 97.5% CI of the hazard ratio on OS of T vs. S is

greater than or equal to a noninferiority margin of 0.80.

2. The lower limit of the two-sided 95% CI or equivalently, the lower

limit of the one-sided 97.5% CI on the difference of the RR between T

and S excludes a noninferiority margin such that T retains at least 75%

of the RR of S: Or, the lower limit of the one-sided 97.5% CI on the

relative risk of the response rates between T and S is greater than or

equal to a noninferiority margin of 0.75.

To design a noninferiority trial as suggested in ICH E10 Guidance, first it

requires a determination that there exists HESDE of the chosen active control and

then an estimation of the control effect size via appropriate statistical method-

ology (e.g., mixed-effects meta-analysis). Next, it needs to show that the test drug

preserves appropriate fraction of the active control effect. Unfortunately, the

HESDE of the active control S; was not well established and the control effect
size for neither OS nor RR can be appropriately estimated. Alternatively, various

estimates for the control effect size, based primarily on one positive trial were

used. Tables 12.1 and 12.2 provide the sample size estimates for the co-primary

endpoints of OS and RR under various assumptions, respectively.

Assume that the survival of this patient population follows an exponential

distribution with a constant hazard and the time to median survival of the control

group is approximately 18 months. For an average patient follow-up of 24 months

(36 months maximum and 12 months minimum for a 24-month accrual period

and an additional 12 months follow-up), the active control group mortality

rate is estimated to be approximately 0.60. The total sample size required

is approximately 780 patients (390 patients per group) at the significance level

of a ¼ 0:025 (one-sided), power ð12 bÞ ¼ 90%; and the noninferiority margin
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on hazard ratio of the OS at 0.80. The total information (total expected number

of deaths) of the trial based on survival alone is estimated to be approximately

520 deaths.

The point and interval (95% CI) estimates for the active control RR in the

single historical trial were, respectively, 0.44 and (0.35, 0.51). Assume that

the active control ðSÞ RR is approximately 0.45. To retain 75% of that effect,

a noninferiority margin is estimated to be around 0.1125. To demonstrate that

T retains at least 75% of the control response rate, the total sample size required is

approximately 910 patients (455 patients per group) at the significance level

of a ¼ 0:025 (one-sided) and power ð12 bÞ ¼ 90%: The total information (total
expected number of responders) of the trial based on RR alone is estimated to be

approximately 360 responders.

In summary, at a ¼ 0:025 (one-sided) and 90% power, it requires 780

patients (520 deaths) in OS and 910 patients (360 responders) in RR to show

noninferiority, respectively. To assure that the overall power is at least 80% for

demonstrating noninferiority in both the co-primary endpoints, it is imperative to

maintain that the individual power for each endpoint is at least 90%. Therefore,

the trial will randomize a total of 910 (the greater of 910 and 780) patients with a

follow-up of 36 months or observe a total of 360 responders and a minimum of

520 deaths, whichever comes last.”

TABLE 12.1
The Sample Size Estimates for Demonstrating Noninferiority of T to S

in OS Under Various Assumptions at a5 0:025 (One-Sided), 12 b

(Power) 5 90%, with a Noninferiority Margin d5 0:80 on Hazard

Ratio of OS

S0:5 ls T Ss ps d n N Np Dp

21 0.0330 24 0.45 0.55 0.110 430 860 950 580

30 0.37 0.63 0.126 310 620 690 480

20 0.0347 24 0.43 0.57 0.114 400 800 880 550

30 0.35 0.65 0.130 280 560 620 450

18 0.0385 24 0.40 0.60 0.120 350 700 780 520

30 0.32 0.68 0.136 250 500 550 410

16 0.0433 24 0.35 0.65 0.130 280 560 620 450

30 0.27 0.73 0.146 195 390 430 350

S0:5 ¼ Time to median survival for the active control group in months; ls ¼ Hazard rate for the active

control group under exponential survival; T ¼ Time of average patient follow-up (accrual

time þ follow-up time) in months; Ss ¼ Active control group survival rate; ps ¼ Active control

group mortality rate; d ¼ Noninferiority margin corresponding to the active control group mortality

rate; n ¼ Sample size per group; N ¼ Total sample size; Np ¼ Total sample size adjusted for

noncompliance (drop-out and lost-to-follow-up); Dp ¼ Total information (total expected number of

deaths) of the trial based on OS alone.
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Comments. Working with moving targets in trial design was extremely

frustrating. Because HESDE for the active control S was not well supported, the

meta-analysis was not performed. Therefore, the approach of using “putative

placebo” suggested by Hasselblad and Kong,32 to estimate the fraction of active

control effect S preserved by the test treatment T; was not attempted. The
estimated sample size based on two co-primary endpoints was overly large for the

sponsor to conduct. Because of the size and cost, the trial never got off the ground

and was finally shelved by the management of the sponsor.

V. ASSAY SENSITIVITY (AS), HISTORICAL EVIDENCE

OF SENSITIVITY-TO-DRUG-EFFECTS (HESDE),

APPROPRIATE TRIAL CONDUCT (ATC),

AND CONSTANCY ASSUMPTION (CA)

Now in this section we begin to provide in-depth discussions on the essence

of active-controlled trials, in particular, the noninferiority trial. As noted earlier

most active-controlled equivalence trials are practically noninferiority trials

intended to establish the efficacy of a new treatment. The new treatment can be

TABLE 12.2
The Sample Size Estimates for Demonstrating Noninferiority of T to S in RR

with the Active Control Rates Ranged from 0.40 to 0.50 at a5 0:025 (One-

Sided), 12 b (Power) 5 90%, and T Retains$75% of the S Response Rate

ps pt d n N Np Rp

0.40 0.3000 0.1000 505 1010 1120 392

0.41 0.3075 0.1025 485 970 1080 388

0.42 0.3150 0.1050 465 930 1030 378

0.43 0.3225 0.1075 445 890 990 372

0.44 0.3300 0.1100 430 860 950 366

0.45 0.3375 0.1125 410 820 910 360

0.46 0.3450 0.1150 395 790 880 354

0.47 0.3525 0.1175 380 760 840 346

0.48 0.3600 0.1200 365 730 810 340

0.49 0.3675 0.1225 350 700 780 334

0.50 0.3750 0.1250 340 680 750 330

ps ¼ Active control group response rate; pt ¼ Test treatment group response rate; d ¼ Noninferiority

margin corresponding to the active control group response rate; n ¼ Sample size per group; N ¼ Total

sample size; Np ¼ Total sample size adjusted for noncompliance (drop-out and lost-to-follow-up);

Rp ¼ Total expected number of responders based on RR alone.
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shown noninferior as well as superior to the active control treatment, not limited

to equivalence. Hence, the term of equivalence will be dropped hereafter in most

of this manuscript.

A. AS

As defined in ICH E10, AS is “a property of a clinical trial that has the ability to

distinguish an effective treatment from a less effective or ineffective treatment.”

AS is crucial in any trial but has different implications for trials intended to

demonstrate superiority vs. noninferiority. In the superiority trial setting whether

the control is placebo or an active treatment, AS refers to the ability of a specific

trial to detect a difference between treatments, if one exists. For active-controlled

noninferiority trials, AS requires the presence of an active control treatment

effect of a minimum size so that a specific trial, properly designed and conducted,

has the ability not to falsely conclude an ineffective treatment noninferior.

Because the effect size of the active control in the current noninferiority trial is

not measured directly relative to placebo, AS must be deduced. When AS is not

supported in a superiority trial whether the control is placebo or an active

treatment, it will fail to show that the test treatment is superior and therefore will

fail to demonstrate test treatment efficacy. In contrast, if a trial intended to

demonstrate efficacy by showing a test treatment is noninferior to an active

control lacks AS, the trial may find an ineffective treatment to be noninferior and

could lead to an erroneous conclusion of efficacy. Therefore, when a finding of

noninferiority is used as evidence of efficacy, AS of the trial is absolutely critical

and the evidence of AS may be deduced from HESDE of the chosen active

control treatment in historical placebo-controlled trials and an ATC of the current

noninferiority trial. That is, in a noninferiority trial AS depends not only on the

sample size and quality, but also on the effect of the active control (i.e., its effect

size and constancy to the size observed in historical trials) in the current trial.

B. HESDE

ICH E10 defines HESDE as “similarly designed trials in the past regularly

distinguish effective treatments from less effective or ineffective treatments”.

Superficially, AS and HESDE appear to be synonymous in terms of

distinguishing effective treatments from less effective or ineffective treatments

per se. There is indeed a difference between AS and HESDE. The former defines

the ability of differentiating effective treatment from an ineffective one for any

trial, historical or current, placebo or active-controlled trials, while the latter

specifically emphasizes the historical placebo-controlled trials involving a chosen

active control, which regularly demonstrated effectiveness over placebo. In fact,

HESDE should be evaluated at the beginning of designing a noninferiority trial.

That is, as described in ICH E10, “it should be determined in the specific

therapeutic area under study, appropriately designed and conducted trials that

used a well-defined dose of a specific active treatment, or other treatments with
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similar effects, reliably showed an effect of at least a minimum size.” In plain

language, HESDE means that the chosen active control for the current designed

noninferiority trial should have shown efficacy with a clinically meaningful effect

size over placebo regularly and consistently in the historical placebo-controlled

trials in a specific therapeutic area of interest. The chosen active control with

HESDE ensures that demonstrating noninferiority will not falsely conclude an

ineffective treatment effective provided that a noninferiority margin is

appropriately chosen and the current trial is conducted with high quality.

It should be noted that in many therapeutic areas for symptomatic treatments such

as depression, anxiety, seasonal allergic rhinitis, exercise tolerance in CHF, and

symptomatic gastro-esophageal reflux, historical trials clearly did not have

proved HESDE and AS for the test treatments vs. placebo. The effectiveness was

not regularly and consistently demonstrated possibly because of high placebo

response, small or marginal treatment effects, and excessive variability in trials.

In these cases, it will be impossible to design and conduct noninferiority trials,

because HESDE for those active control candidates cannot be supported.

C. ATC

ATC means that noninferiority trials currently conducted do not undermine the

ability to distinguish effective treatments from less effective or ineffective

treatments. For a planned noninferiority trial to be similarly sensitive to drug

effects, it is essential that the trial design characteristics (e.g., the entry criteria,

concomitant medications, the primary and secondary endpoints, and timing

of assessments) should be similar to the historical trials in all aspects as

possible, except that the current trial is intended to demonstrate noninferiority of

the test treatment to the active control, while the historical trials were mostly

placebo-controlled involving the selected active control treatment as the test

treatment. Most importantly, the trial should be conducted with high quality not

to undermine its AS.

Similarly designed and well-conducted trials may not ensure constancy in

active control effect size. This brings about the next important issue in

noninferiority trials.

D. CA

CA means that the historical active control effect size vs. placebo is holding

unchanged in the setting of the current noninferiority trial. Therefore,

demonstration of efficacy by showing noninferiority of the test treatment to an

active control rests on some critical assumptions that the selected active control

with proved HESDE does have an effect and that the CA of the control effect does

hold. Unfortunately, as pointed out by many authors,19,20,21,33 CA is a strong

evoked assumption in noninferiority trials that may not be directly verifiable.

Nonetheless, this may be accomplished via the so-called putative (imputed)

placebo approach,32 in which an imputed placebo P is compared with the
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test treatment T via comparing T vs. S in the current noninferiority trial

in conjunction with S vs. P in historical placebo-controlled trials. When T is

demonstrated to be superior to the imputed P; T is deduced to be effective.

Together with HESDE, ATC, and CA, it provides evidence of AS in the

currently designed trial and a successful active-controlled noninferiority trial thus

involves four critical steps2:

1. Determining that HESDE of the chosen active control exists. Without

this determination, demonstration of efficacy from a showing

of noninferiority is not possible and should not even be attempted.

If HESDE exists for the chosen active control, one then needs to

determine its effect size based on appropriate statistical methodology

(refer to Section VI).

2. Designing a trial similar to the historical trials. The trial design

(e.g., study population, concomitant therapy, endpoints, trial duration,

and assessments) needs to adhere closely to the design of the trials for

which HESDE has been determined.

3. Setting an appropriate margin provided that the CA holds. An

acceptable noninferiority margin should be chosen taking into account

the active control effect size based on the historical data and relevant

clinical and statistical considerations (also see Section VI).

4. Conducting the trial with high quality. The trial conduct should also

adhere closely to that of the historical trials and should be of high

quality.

VI. ACTIVE CONTROL EFFECT SIZE ðDÞ AND
NONINFERIORITY MARGIN ðdÞ

A. ACTIVE CONTROL EFFECT SIZE ðDÞ
When there exist no credible historical placebo-controlled trials or no HESDE

involving the chosen active control, an active-controlled noninferiority trial

should not be designed and conducted, or even attempted. However, in some

therapeutic areas such as infectious disease and hypertension, historical active

control effects are well documented and readily available. An active-controlled

noninferiority trial should pose no major difficulty. Nonetheless, in most

therapeutic areas the active control effects are not well known, but adequate and

well-controlled (i.e., placebo-controlled) trials may be available; it may be

possible to estimate the active control effect size D: Therefore, the difficulty in
most noninferiority trials lies in the fact that the presumed active control effect is

not measured directly in the current trial, but rather estimated indirectly via

historical placebo-controlled trials. This means that most noninferiority trials

inherited some strong assumptions with uncertain validity, if the active control

effect is not readily known.
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To estimate such an active control effect can be problematic. A meta-analysis

of DerSimonian and Laird33 on the data, if available, from the historical placebo-

controlled trials involving the active control or other relevant treatments, may

provide a reliable estimate of the control effect size D and the relevant within- and
between-trial variability. Limitations and problems of an appropriate meta-

analysis are well known.

First, trial selection bias may be of major concern in practice. Which trials to

include — all placebo-controlled trials, trials showing positive results, or trials

with similar design to the current noninferiority trial? If only favorable trials are

included in the meta-analysis, the active control effect will be overestimated.

On the other hand, if all trials are included indiscriminately, the control effect will

be underestimated because of increased heterogeneity of trials, not to mention

that some trials with negative or equivocal results have never been published

because of publication bias.

Second, selection of estimates from a meta-analysis can be problematic.

Which estimate to adopt, point estimate or interval estimate (e.g., the lower limit

of the CI)? What level a or 100 £ ð12 aÞ% CI to use? One or two-sided? Some

authors34,22 have shown that use of a point estimate may overestimate the true

control effect size, while use of the lower limit of a one-sided 95% CI may

underestimate the true control effect for being over conservative in adopting the

worst scenario.

Third, the trial data and critical information for meta-analysis may not be

readily available. More often the historical placebo-controlled trial data are

proprietary and owned by the funding sponsor(s). Gaining access to these trial

data may be difficult in practice, though negotiation with the sponsor or use of

Freedom of Information Act may help. Also, some trials may only report mean

differences without standard errors or CIs or in mortality trials may only report

median survival times, number of events (e.g., deaths) and logrank p values

without giving hazard ratios and the corresponding standard error estimates

or CIs. Though occasionally it may be possible to extract some of the necessary

information,35 the process may be difficult and sometimes implausible.

Fourth, correct model selection is important in meta-analysis. To obtain an

overall active control effect one needs to choose between the fixed effect and

random effect model, where appropriate. When historical trials are abundant,

a random (mixed) effect model utilizes between-trial variation in estimation will

be a logical choice. However, when available trials are scant (e.g., one or two),

one cannot utilize the between-trial variability despite the fact that the within-

trial variability estimate remains available.

Though the active control effect may be estimated via the data from historical

placebo-controlled trials, the active control effect in the current noninferiority

trial may still be different (usually smaller is the concern) because of changes

in patient population, improved care, health awareness, and advanced medical

practice. The current trial should be designed as similarly as possible to the

historical placebo-controlled trials including important factors, which may

influence the trial outcome. Most importantly, some adjustment (discounting by
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a fraction f ) of the historical control effect may be necessary by introducing

a reduced active control effect size D0 as

D0 ¼ fD;

where 0 , f , 1: The fraction f can be determined by clinical judgment,

examining the within- and between-trial variability of the historical trials, and

consulting with the experts in that particular therapeutic area, in the absence of

regulatory guidance.

When the active control effect is readily available or estimated via historical

trials, the next step will be choosing the noninferiority margin d:

B. NONINFERIORITYMARGIN ðdÞ
What is d? d is a term used to represent the noninferiority (or equivalence)

margin. It states in ICH E10,2 “This margin is the degree of inferiority of the test

treatment to the control that the trial will attempt to exclude statistically. …The

margin chosen for a noninferiority trial cannot be greater than the smallest effect

size that the active drug would be reliably expected to have compared with

placebo in the setting of the planned trial, but may be smaller based on clinical

judgment.” ICH E936 states, “An equivalence margin should be specified in the

protocol; this margin is the largest difference which can be judged as being

clinically acceptable and should be smaller than differences observed in

superiority trials of the active comparator. For the active control equivalence

trial, both the upper and lower equivalence margins are needed, while only the

lower margin is needed for the active control noninferiority trial. The choice

of equivalence margins should be justified clinically.” Blackwelder13 states,

“In a study designed to show equivalence of the therapies, the quantity d is

sufficiently small that the therapies are considered equivalent for practical

purposes if the difference is smaller than d:” Hwang and Morikawa3 defines,
“The noninferiority/equivalence margin, d; is the degree of acceptable inferiority
between the test and active control drugs that a trial needs to predefine at the trial

design stage. This margin chosen for a noninferiority trial should be smaller

(usually a fraction) than the effect size, D; that the active control would be

reliably expected to have compared with placebo in the setting of the given trial.”

The 2004 CPMP Points to Consider draft37 articulates, “The selection of the

noninferiority margin is based upon a combination of statistical reasoning and

clinical judgment. An appropriate selection should be at the minimum provide

assurance that the test drug has a clinically relevant effect greater than zero.

…The choice of margin should be independent of consideration of power.

It should be based upon the clinical and statistical principles…not upon issues

of sample size, as the size of the clinically important difference is not altered by

the size of the study.” For more definitions of d; refer to Ng.38 Before we discuss
choosing an appropriate margin for a noninferiority trial, it can be asserted, in

line with many authors, that d should be based on the active control effect size D
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derived from the historical placebo-controlled trials and more specifically, a small

fraction of the control effect size D determined by good clinical judgment with

sound statistical reasoning and it must be carefully stated in the trial protocol.

In fact, the active control effect size, variability, and constancy as well as the trial

objective are some of the major factors for determination of the noninferiority

margin. In practice, the statistician and clinician, in consultation with the

therapeutic area experts and regulatory authority (e.g., FDA), should define an

appropriate margin at study design stage together for all active-controlled

noninferiority trials intended for new drug registration. Wiens18 suggested three

strategies for choosing a margin, namely: the putative placebo strategy, the

clinical importance strategy, and the statistical strategy. The first strategy appears

to be one of the mainstream approaches in design and analysis of noninferiority

trials.

In choosing an appropriate margin for a noninferiority trial, two inter-related

objectives regarding the effectiveness of the test treatment arise. One objective is

to demonstrate that the test treatment is not much less effective than the active

control treatment by a prespecified margin. To attain this objective one must

prespecify a fixed noninferiority margin. The other objective is simply to

establish the effectiveness of the test treatment. In this case a prespecified margin

is not necessary, but rather one needs to define a certain fraction of active control

effect to be retained or preserved. Articles by Wang et al.,34 Hung et al.,20

Rothmann et al.,21 and Chi et al.22 have articulated the discussion of the above

mentioned objectives and corresponding statistical methods for active-controlled

noninferiority trials.

1. Setting a Fixed Noninferiority Margin d

The traditional framework for a noninferiority trial as shown in Section III

requires a fixed noninferiority margin d to be set in the null and alternative

hypotheses. Whether it can be concluded that the test treatment T is effective in

the absence of direct placebo comparison, if noninferiority to the active control

S based on the predefined margin d is demonstrated, remains a critical issue.
When the active control effect size D or D0 as defined earlier is readily known or
estimated via historical placebo-controlled trials through a meta-analysis, one

can simply set

d ¼ lD or d # lD0

where 0 , l , 1: The well known CBER/FDA “50% rule” defines l ¼ 0:5;
when the control effect size D is set as the lower limit of the one-sided 95% CI on

S2 P through a meta-analysis on the historical placebo-controlled trials

involving the active control S: Some use l ¼ 0:8 to compensate for the over
conservatism. Alternatively, one can set 0 , l , 1=2; if D is defined as the point
estimate (equivalent to the lower limit of the 0% CI) of the active control effects
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from the meta-analysis. In principle, the lower CI limit or point estimate reflects

the “least” effect of the active control can be used. This is to ensure that an

ineffective test treatment should not be erroneously concluded as effective via a

fallacious noninferiority demonstration.

Most determinations of d through D and l depend on clinical judgment,

statistical reasoning, historical experience in a specific therapeutic area, and

regulatory guidance (if available) on a case-by-case basis. A general one-size-

fits-all rule which is available for bioequivalence (e.g., log mean AUC ratio

between log 0.80 and log 1.25) does not appear to be feasible for assessing

therapeutic noninferiority in various therapeutic areas. In infectious disease, the

adaptive stepwise equivalence margins adopted by the FDA Points to Consider39

are set to 10, 15, or 20 percentage points depending on the response cure rates

of .90%, 80 to 90%, or ,80% in the study, respectively. These margins’

determination appeared to be primarily based on clinical reasoning without

statistical justification. Recently, responding to many years’ criticism, the

Agency adopted a further conservative “10 percentage point” margin across

the board for all noninferiority trials in antiinfectives. In Europe, a new test that

allows the noninferiority margin to vary with the response rates is proposed by

Phillips.40 In oncology, the Agency used to set the margin around 0.70 to 0.80

for hazard ratio of active control to test treatment in OS and disease-free survival

(DFS), but recently has moved towards preservation of a certain fraction of active

control effect approach.21,22

In the traditional approach with an appropriate margin prespecified,

noninferiority is demonstrated when the lower limit of the CI excludes the

margin and the effectiveness of the test treatment is deduced in the absence of

placebo. Wang et al.34 referred to it as the indirect CI comparison (ICIC), because

there is no direct placebo comparison in the active-controlled noninferiority

trials, while Rothmann et al.21 and Chi et al.22 termed it as the Two (95%) CI

Testing Approach.

Is post hoc change in the margin allowed? This question occasionally

arises regarding changing the prespecified noninferiority margin after the trial

is completed. The answer is clearly negative. An appropriate margin is

supposed to be chosen during the study design based on historical active control

effect size. Regulatory authorities will not accept a post hoc change in the margin

to accommodate the less favorable study results.

2. Preservation of a Certain Fraction of Active Control Effect

The notion of considering preservation of a certain fraction of active control

effect has been discussed by many authors.32,20–22 Simon41 gave an equivalent

Baysian formulation. When the noninferiority testing is defined in terms of a

fraction of active control effect to be preserved, it provides some advantages.

First, the fraction of control effect to be preserved is specified according to the

trial objective. Second, one does not need to prespecify a noninferiority margin,
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though a fraction of active control effect to be preserved still needs to be

defined. Because, in an active-controlled noninferiority trial, there is no con-

current placebo, one cannot estimate the active control effect directly from

the current trial. However, one can impute a placebo, called “putative placebo,”

from historical placebo-controlled trials and compare the test treatment

indirectly to this putative placebo. For this to be valid, one again has to assume

that the current active control effect has not changed over time (i.e., CA to hold)

or assume that the current control effect has only reduced slightly (i.e., a large

fraction of the historical control effect is preserved). Such a comparison of the

test treatment with the putative placebo seems to be natural, but the difficulty is

that it involves cross historical trials inference, which may be highly sensitive to

many conditions, in particular, the constancy assumption.

This putative placebo or “imputed placebo” approach has been best discussed

by Hasselblad and Kong.32 This putative placebo comparison approach works

under three basic assumptions:

† At least one historical placebo-controlled trial is available that

estimates the active control effect,

† the current noninferiority trial comparing the test treatment to the

active control has the same endpoint of interest in historical trials, and

† at least some common patient subpopulations exist in the current and

historical trials.

The above assumptions reiterate the requirements of HESDE and CA of

the active control, as well as AS of the current noninferiority trials. When these

assumptions are met, two measures: (1) estimated test treatment effect via

putative placebo, and (2) estimated fraction of active control effect preserved by

the test treatment can be obtained for point estimates and CIs, as well as for

hypothesis testing. The concept of this putative placebo approach will now be

described.

a. Estimating the Test Treatment Effect (Relative to Putative Placebo)

Formulae estimating the test treatment effect for different effect measures: risk

difference in means or event rates, relative risk in means or event rates, odds ratio,

and hazard ratio can be summarized as follows.

Let T ¼ test treatment and S ¼ standard active treatment in the current

noninferiority trial; S0 ¼ standard active treatment and P ¼ placebo in the

historical trials. Again, the letters T; S; S0; and P will be loosely used to represent
treatment, estimate in mean, event rate, or hazard rate, as appropriate. Let

bab ¼ log relative risk, log odds ratio, or log hazard ratio of a to b;

Ê½x	 ¼ expectation estimate of x and Û½x	 ¼ variance estimate of x: Further,
lnðxÞ ¼ logeðxÞ: It may be noted that since the meta-analysis on the historical
trials and the current active-controlled noninferiority trial are independent, the

variance estimate of the indirect comparison is simply the sum.
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i. Risk Difference in Means or Event Rates. The expectation and variance

estimates for test treatment to placebo (imputed) comparison can be derived as

ÊðT 2 PÞ ¼ Ê½ðT 2 SÞ þ ðS0 2 PÞ	 ¼ ÊðT 2 SÞ þ ÊðS0 2 PÞ and
ÛðT 2 PÞ ¼ Û½ðT 2 SÞ þ ðS0 2 PÞ	 ¼ ÛðT 2 SÞ þ ÛðS0 2 PÞ:

Here S ¼ S0; if the CA holds. With estimates of expectation (mean) and variance

on the effect of the test treatment relative to placebo ðT 2 PÞ available, one can
construct CI and perform hypothesis testing, as appropriate.

ii. Relative Risk. Now the expectation and variance estimates for the relative

risk of test treatment to placebo are simply:

ÊðbTPÞ ¼ ÊðbTSÞ þ ÊðbS0PÞ ¼ Ê½lnðT=SÞ	 þ Ê½lnðS0=PÞ	 and
ÛðbTPÞ ¼ ÛðbTSÞ þ ÛðbS0PÞ ¼ Û½lnðT=SÞ	 þ Û½lnðS0=PÞ	:

Here bab ¼ log relative risk of a to b: For example, bTP ¼ lnðT=PÞ ¼ log relative

risk of T to P: Similarly, estimates for odds ratio and hazard ratio can be derived.

iii. Odds Ratio

ÊðbTPÞ ¼ ÊðbTSÞ þ ÊðbS0PÞ
¼ Êðlnf½T=ð12 TÞ	=½S=ð12 SÞ	gÞ þ Êðlnf½S0=ð12 S0Þ	=½P=ð12 PÞ	gÞ

and

ÛðbTPÞ ¼ ÛðbTSÞ þ ÛðbS0PÞ
¼ Ûðlnf½T=ð12 TÞ	=½S=ð12 SÞ	gÞ þ Ûðlnf½S0=ð12 S0Þ	=½P=ð12 PÞ	gÞ

Here bab ¼ log odds ratio of a to b: For example, bTP ¼ lnf½T=ð12 TÞ	=
½P=ð12 PÞ	g ¼ log odds ratio of T to P:

iv. Hazard Ratio

ÊðbTPÞ ¼ ÊðbTSÞ þ ÊðbS0PÞ ¼ Ê½lnðT=SÞ	 þ Ê½lnðS0=PÞ	 and
ÛðbTPÞ ¼ ÛðbTSÞ þ ÛðbS0PÞ ¼ Û½lnðT=SÞ	 þ Û½lnðS0=PÞ	

Here bab ¼ log hazard ratio of a to b: For example, bTP ¼ lnðT=PÞ ¼ log hazard

ratio of T to P:

b. Estimation of the Fraction of Active Control Effect
Preserved by the Test Treatment

The preservation of active control effect is defined as a fraction f ð0 , f , 1Þ:
It is a computed value of the effect of the test treatment vs. placebo (imputed)

relative to the effect of active control vs. placebo (historical). If the active

control is highly effective, then the test treatment should not be considered to be
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much inferior to this active control. One may set f to be close to one. On the

other hand, if the test treatment offers some important benefits such as better

safety profile, then f may be set to be somewhat smaller. In this case, it may

only be concluded that the test treatment is effective, but not noninferior to the

active control. Again, under CA the point and CI estimates can be obtained via

expectation and variance estimates for different measures in risk difference in

means or event rates, relative risk, odds ratio, and hazard ratio. Now, the

expectation and variance estimates for the preservation fraction f for risk

difference are, respectively,

ÊðfÞ < 1þ ½ðT 2 SÞ=ðS0 2 PÞ	 and

ÛðfÞ < ½ðT 2 SÞ=ðS0 2 PÞ	2{½ÛðT 2 SÞ=ðT 2 SÞ2	 þ ½ÛðS0 2 PÞ=ðS0 2 PÞ2	}
Similarly, for relative risk, odds ratio, or hazard ratio, the fraction f of control

effect preserved, can be estimated by

ÊðfÞ< 1þðbTS=bS0PÞ and

ÛðfÞ< ½bTS=bS0P	2{½ÛðbTSÞ=b2TS	þ ½ÛðbS0PÞ=b2S0P	}
where bab ¼ log relative risk, log odds ratio, or log hazard ratio of a to b;
respectively, as previously defined. With estimates of expectation (mean) and

variance available for the fraction effect preserved f for the test treatment

vs. placebo relative to the effect of active control vs. placebo, CI can easily be

constructed and hypothesis testing be performed, as appropriate. It should be

noted that preservation of a certain fraction of the active control effect on one

measure (e.g., risk difference) does not necessarily translate to the same fraction

of preservation on another measure (e.g., odds ratio). For formulae derivations

and examples, see Refs. 21, 22, 32 and 34.

Wang et al.34 referred to this preservation of fraction of control effect or

the putative placebo approach as the virtual comparison (VC) method. The VC

method compares the test treatment vs. a putative placebo by synthesizing the

estimated effect of the test treatment vs. the active control and the estimated effect

of the active control vs. the placebo from the historical trials. They compared

the performance of the ICIC and VC methods in terms of Type I error rate —

the probability of falsely concluding a test treatment is effective relative to a

putative placebo and the test treatment preserves a certain fraction of the active

control effect. By means of simulation studies, they showed that the ICIC method

using the CBER 50% rule in defining the margin is naturally ultraconservative

with respect to the Type I error rate. They also demonstrated that the VC

method performed much worse in inflating the type I error rate than the ICIC

method, which is a departure from the constancy assumption. In addition, they

asserted that the risk ratio proposed by Hasselblad and Kong for estimating

preservation of the active control effect is unreliable when sample size is small

and historical data for active control are inadequate. Wang and Hung42 further

developed a two-stage active control testing (TACT) method. The TACT method

consists of an examination phase and a two-stage testing phase. The first phase is
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for active control HESDE examination. The first stage of the next phase is for CA

validation. The second stage then performs analysis using either the ICIC or VC

method. On the contrary, Rothmann et al.21 and Chi et al.22 in their formulation

of hazard ratio in survival data considered that hypotheses with any type of

prespecified margin (i.e., the ICIC method) are in general problematic. They

advocated that the hypothesis with a certain fraction of preservation of the active

control effect (i.e., the VC method) is a preferred formulation for noninferiority

trials. The contradictive assertions by these authors appear to be dependent

on availability of historical trials, degree of CA deviation, and simulation

studies used.

VII. SWITCHING OBJECTIVES

Predefinition of a trial design as a superiority trial or a noninferiority trial is

necessary for proper trial design and analysis (e.g., choice of control, doses,

patient populations, endpoints, sample size and power, clinical relevant effect

size, noninferiority margin, analysis plan, and assay sensitivity). When the trial

is completed and the final results become available, often an alternative inter-

pretation or conclusion may be of interest. That is, a superiority trial may be

“salvaged” to show noninferiority as the lesser objective when it fails to detect a

significant difference between the test and active control. Or, a noninferiority

trial can be “enhanced” to further demonstrate superiority of the test over

the comparator when it satisfies the noninferiority objective. Salvaging a trial

from superiority to noninferiority or enhancing a trial from noninferiority to

superiority may be feasible when a trial was designed prospectively with

switching objectives in mind and well conducted with high quality. However, it is

recognized that enhancing is easier while salvaging is more difficult because of

the inherent nature of noninferiority trials. Often, the latter should be considered

on a case-by-case basis. The issues of switching trial objectives have been well

contemplated in CPMP Points to Consider on Switching between Superiority and

Noninferiority11 and Hwang.12 In fact, the only relevant switching possible

is between superiority and noninferiority.

A. SWITCHING FROM NONINFERIORITY TO SUPERIORITY

In an active-controlled noninferiority trial, assuming it is properly designed with

adequate power and well conducted with high quality when noninferiority is

established (i.e., shows that the lower bound of the CI exceeds or excludes the

predefined noninferiority margin, 2d), one can take a stepwise approach to

further test whether superiority can be demonstrated (i.e., shows that the lower

bound of the CI also exceeds 0). The procedure is straightforward and there is

no multiplicity adjustment necessary, because it corresponds to a simple step-

wise (in two steps) closed test. If the active control was chosen suitably per

HESDE, showing noninferiority will deduce proof of test treatment efficacy.

Demonstration of superiority will further enhance or strengthen the fact that
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the test treatment is not only an effective treatment, but also is more effective than

the standard effective control. The size of additional treatment effect needs to be

estimated and properly discussed in clinical terms.

In practice, successful switching from noninferiority to superiority first

needs the noninferiority to be established via the per protocol (PP) analysis set,

and then to have superiority demonstrated via the intention to treat (ITT)

analysis set. Because the analyses involve double switching (i.e., switching

analysis sets in switching objectives), it is advisable that the PP and ITT analysis

sets should be used to ensure robust interpretation, in particular, when patient

noncompliance/dropout is severe. For safety analysis no switching of analysis

sets should be done and the ITT set should be used throughout.

B. SWITCHING FROM SUPERIORITY TO NONINFERIORITY

When a trial is designed as a superiority trial, it intends to detect a difference

between treatments; there is generally no provision to predefine a noninferiority

margin. However, it becomes a critical prerequisite as soon as switching

objectives emerges as an option. In general, switching from superiority to

noninferiority will be more difficult because of the inherent difficulties of

noninferiority trials, despite the fact that there remains no multiplicity adjustment

because a stepwise closed test is involved. In fact, the switching is only prudent

when the analysis fails to yield the superiority objective. A lesser objective to

demonstrate noninferiority may be feasible by switching the objectives, provided

that a noninferiority margin was predefined and the trial was well conducted

with high quality and adequate power. In rare cases where the margin can be

chosen and well justified post hoc. Nonetheless, a putative placebo approach with

preservation of a certain fraction of active control effect remains applicable,

provided that the CA of the chosen active control effect holds (or closely holds).

It should be noted again that this approach may demonstrate that the test treat-

ment is more effective than placebo (putative), but one cannot conclude that the

test treatment is noninferior to the active control by a certain amount because

a noninferiority margin was not defined.

Because the switching is from superiority to noninferiority, the analysis set

to be used will be that of the ITT set for superiority testing and PP set for

noninferiority. Again, to maintain data robustness, both analysis sets should be

used for efficacy and the ITT set for safety evaluation. An example in docetaxel

(Taxotere) in second-line treatment of patients with locally advanced or meta-

static breast cancer is described in Durrleman and Chaikin43 and From the FDA.44

In this real-life example not only switching objectives ( post hoc) was carried out

successfully in one of its adequate and well-controlled Phase III trials, but also the

approval by the FDAwas elevated from accelerated approval to full approval with

an expanded indication in the U.S. under the Clinton–Gore oncology initiative.

Comments. Switching objectives between superiority and noninferiority

further adds complexity to the inherent difficulties of the noninferiority trials.

Nonetheless, switching objectives is a viable option either to enhance or salvage
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a trial, but the best intention is that it is predefined in the protocol during trial

design. Switching from noninferiority to superiority is easier, but not vice versa.

It should be remembered that switching from superiority to noninferiority post

hoc will always be problematic and be considered on a trial-by-trial basis. The

successful switch in the case of docetaxel was merely an exception.

VIII. ANALYSIS ISSUES

Analyzing data from placebo and active-controlled trials are similar with subtle

differences tied in with their respective objectives and formulations of hypotheses.

A. HYPOTHESIS TESTING VS. CONFIDENCE INTERVAL (CI)

As discussed previously the hypothesis testing and its equivalent CI approaches

are used in the analysis of data from superiority, noninferiority, and equivalence

trials. In superiority trials the emphasis tends to be more on testing and p-values,

though point estimates and CIs are routinely reported, in particular, the control

is placebo. The key will be the estimated effect size, variability, and p-values.

On the other hand, in active-controlled noninferiority trials the CI approach is

preferred, i.e., demonstration of noninferiority by showing that the lower limit of

the CI excludes the predefined noninferiority margin. Less attention is usually

paid to the p-values.

B. ANALYSIS SETS

In a superiority trial the analysis based on ITT analysis set is usually considered

as the primary analysis. The analysis derived from the PP analysis set is

supplementary or secondary. It has been well recognized that the ITT approach is

conservative and is the analysis of choice in superiority trials. However, in a

noninferiority trial, the reverse is true, because it is believed that the ITT

approach tends to bias results toward no difference. Some authors3,17 have

challenged this assertion. Nonetheless, it is agreed that in a noninferiority trial a

robust interpretation can only be reached when analyses based on the PP and ITT

analysis sets lead to a similar conclusion. A switch of objectives in analysis

would require this difference of emphasis to be recognized.11

C. SWITCHING OBJECTIVES

Analysis in switching objectives between superiority and noninferiority will

involve the proper choice of analysis sets (as discussed above) and analytic

methods for noninferiority assessment. Assessing superiority is straightforward.

Demonstration of noninferiority will depend on how the noninferiority objective

is defined. A routine CI approach will do if an appropriate fixed noninferiority

margin is predefined, otherwise a more difficult post hoc justification of the

margin or demonstration of preservation of a certain faction of the active control

effect via putative placebo32 based on a meta-analysis on the historical trials will
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be needed. An equivalent Baysian analysis41 can also be used, despite the

ambiguity about the utility and acceptance of the Baysian approach by the

regulatory authorities. It is rather clear that there will be no multiplicity

adjustment necessary, regardless of the direction of objectives switching, because

it corresponds to a simple stepwise closed test.

It should be noted that prespecification of trial objective switching between

superiority and noninferiority in active-controlled trials can be very difficult,

in particular when the test treatment effect may be overrated or the active control

effect is known to be high. One might be able to use an adaptive group sequential

closed testing procedure to study the superiority and noninferiority hypotheses.45

D. INTERIM ANALYSIS AND SAMPLE SIZE REESTIMATION

Superiority trials are often designed with interim analysis for midstream trial

conduct modification (e.g., early termination of the trial for overwhelming

efficacy, futility, or harm) via group sequential methods,46,47 in particular, the a
spending function approach.48,49 Sample size reestimation50,51 has also been

utilized in the event that the sample size originally estimated becomes inadequate

with amendment of trial assumptions while the trial is in progress. The a
spending function and conditional power52 approaches are useful methods for

performing interim analysis and sample size reestimation in superiority trials.

Such methods are equally applicable to noninferiority and equivalence trials,

in particular the group sequential confidence approach proposed by Jennison

and Turnbull.53,54 (Extensive discussion on interim analysis and sample size

reestimation can be found in Chapter 14.)

Midstream sample size adjustment remains a valuable tool for restoring a

positive superiority or noninferiority trial when the planned power is on the short

side. Friede and Kieser55 demonstrated blinded sample size reassessment in

noninferiority and equivalence trials utilizing an internal pilot design.

In situations where superiority is uncertain and noninferiority is more

plausible, an adaptive group sequential closed testing procedure45 can be used. In

this adaptive procedure, the superiority and noninferiority hypotheses can be

tested concurrently. The sample size can initially be planned for superiority and

readjusted (increased) for demonstrating noninferiority when it is deemed more

plausible than showing superiority based on interim data. They showed via

simulation studies that this adaptive procedure allowing for concurrent super-

iority and noninferiority testing has sample size saving over the traditional group

sequential test designed solely for testing either superiority or noninferiority.

E. MULTIPLE ENDPOINTS/TREATMENTS

Most analyses on the active control noninferiority and equivalence trials have

been involved in two treatments on a univariate endpoint. There is limited

research in assessing noninferiority and equivalence in trials on multiple

endpoints or multiple treatments.
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When an active-controlled trial involved multiple primary endpoints,

Quan et al.56 suggested a closed procedure for equivalence assessment on

multiple endpoints with prespecified equivalence margins on the individual

endpoints. Their approach extends the intersection-union test discussed in Berger

and Hsu.57 They used an example with three equally important primary endpoints

in demonstrating efficacy for a selective COX-2 inhibitor in osteoarthritis.

Equivalence of the test treatment (COX-2) to an active control treatment

(a nonsteroidal antiinflammatory drug — NSAID) on three endpoints was

demonstrated. The step-down procedure can be used to demonstrate whether

equivalence is achieved for all of, any two of, or one of the three endpoints. (Note

that the last option in demonstrating equivalence in an individual endpoint may

be plausible mathematically; it may not be clinically attractive.) For assessing

equivalence of all three endpoints simultaneously, (1 2 2a) £ 100% CIs (or

slightly smaller CIs) are used. For assessing at least two of the three endpoints,

(1 2 a) £ 100% CIs are used. For selecting an individual endpoint on which

equivalence may be demonstrated, (1 2 2a/3) £ 100% CIs are used. The closed

step-down procedure controls the experimentwise error rate as shown in

simulation studies. The procedure can be easily generalized to multiple endpoints

greater than three and to a noninferiority assessment as well. Note that the step-

down procedures proposed by Hochberg58 and Simes59 in significance testing are

not readily applicable to cases of equivalence assessment in multiple endpoints.

Their tests do not necessarily control the experimentwise error rate for all cases

pending study power and correlation structure among the endpoints.

For showing noninferiority or equivalence in active-controlled trials

involving more than two treatments, similar closed stepwise test or pairwise

procedure applies. Giani and Strassburger60 considered testing multiple test

treatments for equivalence to an active control treatment for all or nothing

analysis or for subset comparisons. Wiens and Iglewicz61 considered equivalence

in three treatments where three lots of the vaccine product being equivalent

would establish the consistency of the manufacturing process. Procedures are

extended stepwise to select pairs of treatments that are equivalent to each other

when all three treatments are not shown to be equivalent. This equivalence testing

may not be applicable in the vaccine consistency study that requires all or nothing

equivalence testing, but may be applicable in other situations.

IX. SOME CAVEATS

A. TRIAL QUALITY

In a superiority trial to show difference between treatments, there is always a

strong imperative to design and conduct the trial with high quality to enhance

the likelihood of demonstrating assay sensitivity. Whereas, in a trial to show

noninferiority of the test treatment to an effective active control, there is

relatively weaker stimulus to design and conduct a high-quality study because of

the expectations of patients and investigators on receiving active treatments.
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Many clinical researchers including Temple62,63 believed that trial sloppiness

(poor trial quality) in a noninferiority trial, would bias toward no difference and,

in turn, increase the likelihood that an ineffective treatment would be falsely

concluded effective.

The above assertion is generally true, but not necessarily always the case.

Hauck and Anderson17 questioned whether any bias introduced is strictly toward

no difference. In fact, trial sloppiness introduces noise. Noise implies increased

variability with wider CI and in turn it biases toward the null (inferiority).

In addition, sloppiness introduces bias. Bias may happen in either direction

(i.e., reduced or increased observed difference). Therefore, sloppiness may bias

toward either the null (inferiority) or alternative (noninferiority), though the latter

is the major concern in conducting a noninferiority trial. Hwang64 and Hwang and

Morikawa3 compared the hypotheses (null vs. alternative) and test statistics of the

superiority vs. noninferiority trials and demonstrated that good trial design and

conduct with large observed differences and small standard errors are necessary

regardless of whether a trial is designed to show superiority or noninferiority.

Moreover, through the test statistics in a noninferiority trial, it was shown that

rejecting the null hypothesis to conclude noninferiority depends on the relative

magnitude of the ratio of the predefined fixed margin divided by the standard error

of the treatment difference, even when the observed difference is biased toward

zero. Therefore, good trial quality is necessary for any trial to show positive

results regardless of whether it is intended to show superiority or noninferiority.

B. ISSUE OF TRANSITIVITY AND DRIFT

Transitivity is expressed in the following mathematical expression:

A . B and B . C ) ðimpliesÞ A . C:

It simply means that if A is greater than B and B is greater than C then it

automatically implies that A is greater than C: Transitivity works well in a

superiority trial setting. Unfortunately, transitivity assertion does not necessarily

hold in the noninferiority or equivalence settings. Hauck and Anderson17 gave a

simple example and it goes like this: given a common margin to be five units, C is

noninferior (three units inferior, but less than the margin of five units) to B and B

is also noninferior (again three units inferior, but less than the margin of five

units) to A: Now C cannot be concluded noninferior (six units inferior, exceeded

the margin of five units) to A:
In fact, in the above simple example, C has drifted away from A: The

phenomenon of drift or biocreep may happen when a noninferior (slightly inferior

— not much worse per predefined margin) test treatment becomes the active

control for the next series of noninferiority trials and so on till the new generation

active control drifts far away and becomes almost a placebo. The drift or biocreep

problem can be avoided if one always chooses the most effective or the most

prescribed active control with well demonstrated HESDE.19
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C. USEFUL ALTERNATIVES

A few useful alternatives2,3 are available if an appropriate active-controlled

noninferiority trial cannot be designed or conducted. These alternatives will be

briefly summarized as follows:

† Include a placebo arm in addition to the active control treatment

if ethical concerns are not major. Such a three-arm trial provides a

straightforward solution to establishing AS. This design directly

measures the test treatment effect (test vs. placebo) and establishes

ASwhen a difference between the test treatment and placebo is detected.

It also allows for noninferiority comparison of the test treatment to

the active control in a setting where AS is established by the active

control vs. placebo comparison. In fact, the active control vs. placebo

comparison in such a trial provides internal evidence of AS of the

trial. It is particularly informative even when the test treatment and

placebo are nondistinguishable in the trial. If the active control is

superior to placebo, the trial does have AS and will provide evidence

that the test treatment is indeed ineffective. On the other hand, if neither

the test nor the active control can be distinguished from placebo, the

trial is proved as not having AS. That is, this three-arm trial can readily

evaluate whether a failure to distinguish the test treatment from placebo

is due to ineffectiveness of the test, or simply the trial does not have

AS to detect a difference when it exists. An article by Piegot et al.24

provided an excellent discussion on the subject of assessing noninfer-

iority in a three-arm trial with placebo.

† Show superiority of the test treatment to a standard active control at

an effective or low dose, if the test treatment in the phase II trials

has shown to be highly effective. Demonstration of superiority in

the former is straightforward if the test treatment is indeed highly

effective. One can predefine an appropriate noninferiority margin

(if feasible) and the possibility of switching objectives from superiority

and noninferiority in the protocol if one is not particularly confident

about showing superiority. The latter uses a low dose, either of the

active control or of the test drug, which may provide a pseudo-placebo.

Demonstration of superiority to a pseudo-placebo would establish test

treatment effects and trial AS.

† Design a trial to establish a clear dose–response relationship for the

test treatment and demonstrate pairwise differences between doses

(e.g., the highest vs. the lowest) of the test treatment. A trial may

be less useful for dose determination, if the trial failed to show

a significant difference between doses, despite that a significant trend

in dose–response is established. In this case, a therapeutic dose will be

difficult to establish. Again, the inclusion of a placebo (zero dose) will

be very useful, in particular, if a significant difference between any
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dose and placebo is detected. This will demonstrate AS and establish a

test treatment effect.

† In many cases variations of placebo-controlled designs such as an

add-on, replacement, early escape, or randomized withdrawal trial has

been shown to be very useful. An add-on trial is a placebo-controlled

trial in which a test treatment is compared with placebo in patients

also receiving effective standard treatment. It is commonly used in

cancer, antiepileptic, hypertension, CHF, and lipid-lowering trials for

second-line therapy. This design is useful when the first-line standard

treatment is not fully effective or additional effect is desirable, and

the added test treatment as the second-line therapy will provide

evidence of improved effectiveness. A variation of this design is the

replacement trial, in which the test treatment or placebo is added by

random assignment to conventional therapy and then the conventional

therapy is withdrawn, usually by tapering. This design has often been

used in trials to study steroid-sparing/replacement and antiepileptic

drugs. Another design is an early-escape trial. Early escape refers

to prompt withdrawal of trial patients whose clinical status worsens or

fails to improve to a predefined level. In such cases, the need to change

therapy becomes a trial primary endpoint. Another modification is

a randomized withdrawal trial, in which patients receiving a test

treatment for a fixed time period are then randomized to continue

treatment with the test treatment or placebo. The observed difference

between the test treatment and placebo would establish the test

treatment effects. All these designs would demonstrate AS when a

difference between the test treatment and placebo is detected.

X. DISCUSSION

There is no doubt that the WMA Helsinki Declaration in 20008 has rendered

a brand new challenge in clinical trials, in particular the active-controlled trial

is gaining more attention with marked increase in applications. The Guidance

of ICH E9,36 E10,2 and CPMP Points to Consider,11,37 as well as The European

regulatory experience65 have indeed provided better understanding regarding

superiority, noninferiority, and equivalence trials. Recognition of the relevancy of

demonstrating therapeutic noninferiority than equivalence is emerging. Emphasis

on trial AS has also enhanced the likelihood of success in design and conduct of

positive trials regardless of the trial objective. AS can be measured directly in a

superiority trial, whether the control is placebo or an active control. However, it

can only be demonstrated indirectly or rather deduced in an active-controlled

noninferiority trial. The deduction will be based on proved HESDE of the chosen

active control from similarly designed historical placebo-controlled trials, degree

of the CA of the control effect that holds, and quality of the current trial.
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As described in ICH E10, a successful active-controlled noninferiority trial

requires four critical steps: 1. determining that the HESDE for the chosen active

control drug exists, 2. designing the current trial similar to the historical trials,

3. setting an acceptable margin, and 4. conducting the trial with high quality. In

determining that HESDE of the active control did exist, one needs to evaluate and

estimate the control effect size from the historical placebo-controlled trials if it is

not known or readily available in a disease area of interest. Estimating the active

control effect size in practice can be problematic, e.g., which trials to include,

which estimate to adopt, and what model to use? In the estimation process

bias can be introduced and the control effect can be over- or underestimated.

Most often the presence of quality historical trials is rare or in certain disease

areas such as depression, HESDE is hardly in existence for any active control

treatments. Problems may also arise in designing the current trial to be closely

similar to the historical trials since patient population, standard care, and medical

practice are changing over time. Next, in determining a fixed noninferiority

margin or a certain fraction of control effect to be preserved or retained for

indirect comparison of the test treatment to a putative placebo, there is not yet a

logical and consistent approach available. Because of the uncertainty surrounding

some unverifiable assumptions (e.g., constancy of active control effect), defining

the appropriate margin or right level of fraction for preservation can be highly

subjective and logically, may be on a case-by-case basis. Nonetheless, the margin

or fraction preservation chosen ought to be clinically relevant and statistically

sound — it remains the key issue in noninferiority trials not yet satisfactorily

resolved. The 2004 CPMP Points to Consider draft37 offers general guidance on

designing noninferiority trials and assessing test treatment effectiveness, but it

fails to provide adequate and in-depth account on the choice of the margin.

Continued research in this area is necessary and it remains to be seen whether

the approach of prespecification of a fixed noninferiority margin or preservation

of a fraction of active control effect will be the preferred method for non-

inferiority trials. An approach, suggested by Giani and Strassberg58 and further

explored in Wiens,18 which sets the margin to be proportional to the variance

obtained via the meta-analysis on historical trials seems to have some statistical

appeals. Again, the right constant to apply and its justification remained unclear.

When switching objectives between superiority and noninferiority becomes

an option, one must pay attention to the features of the superiority and non-

inferiority trials, particularly the latter. In fact, switching objectives will further

add complexity to the inherent difficulties of the noninferiority trials. None-

theless, switching is a viable alternative either to enhance or salvage a trial, but

the intention is best to be predefined in the protocol at the trial design. Be aware

that switching from superiority to noninferiority post hoc will always be

problematic and the choice of analysis sets (i.e., ITT on superiority and PP on

noninferiority) can also be confusing. The best approach is to put equal weight on

both analyses to reach robust interpretation. In general, switching from

noninferiority to superiority is easier, but the reverse is rather difficult and it

should be considered on a trial-by-trial basis.
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In addition to trial assay sensitivity, HESDE and constancy of the active

control, and trial quality, issues of nontransitivity and drift (or biocreep)

phenomenon in noninferiority trials also need to be recognized. Designing an

acceptable noninferiority trial can be a frustrating experience in some disease

areas. Merely showing noninferiority to deduce efficacy of a test treatment may

not be enough, in particular in the region of European Union (EU) or Japan,

where evidence of relative effectiveness of test to standard treatments is

usually required for pricing and reimbursement needs. Useful alternatives to

a noninferiority trial (e.g., an add-on design) or an active-controlled superiority

trial may be necessary for a novel new treatment.

Finally, like any positive clinical trial the clinician and statistician play

important roles. Whether the task is to determine the margin or fraction

preservation, the clinician, and statistician need to work closely together.

Rigorous efforts should be put in defining the purpose of the trial, investigating

relevant historical data, and designing the trial appropriately. The statistician, in

particular, should not and must not act merely like a bench technician or a number

cruncher. One must utilize his/her well-honed statistical training and background

to design, conduct, analyze, and report a positive adequate and well-controlled

trial according to good clinical practice (GCP) and good statistical practice (GSP).
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I. INTRODUCTION

Some bias is inevitable in controlled clinical trials. The issue relevant to trial

modifications based on external or internal data is whether additional bias

would be introduced. It is naive to equate blindness with validity, i.e., to accept
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the premise that the trial organizers are free to make trial modifications without

introducing bias if only blinded data are used, while bias is unavoidable but

immeasurable when modifications are based on unblinded data. We point out that

neither part of this proposition is true. A fruitful approach presented here is to

examine how trial modifications would introduce additional bias from various

sources. While careful planning and execution are necessary, it is also essential to

select appropriate adaptive design and inferential procedures in order to avoid

additional bias.

Interim analyses have traditionally been used in classical group sequential

designs where the only actions allowed at an interim analysis are to stop or

continue the trial according to prespecified stopping criteria. Increasingly

in practice, however, these interim analyses also lead to other actions, such as

changing the sample size, dropping treatment groups, changing endpoints,

or modifying the statistical analysis plan. A less obvious but more common

setting is to modify an ongoing trial on the basis of external information or

blinded review of the database. What separates these two settings is blinding,

i.e., whether modifications are based on comparative unblinded interim results or

blinded review of the database. Further discussion on interim analysis can be seen

in Chapter 14.

Blinding is undoubtedly important and fundamental to controlled clinical

trials. Unfortunately, blinding is also mythicized as being synonymous with

validity. It is widely believed that modifications of study designs based on blinded

datawill not invalidate the study results while bias is unavoidable but immeasurable

if modifications, when performed by trial organizers, are based on unblinded data.

We point out that the dichotomy of blinding and unblinding does not exist in

practice, and stress that the question of fundamental importance is validity. We

emphasize that basing changes on blinded data does not ensure validity. On the

other hand, changes can be made based on unblinded data without introducing bias

if appropriate procedures for adaptive designs are followed.

II. BIAS

Bias is a central concept in the validity of clinical trials. Fleming2 gave the

following broad definition:

“Bias can be thought of as anything that systematically impairs the

design, conduct, or interpretation of preclinical and clinical studies

such that false or unwarranted conclusions result.”

Sackett1 summarized the sources of bias for clinical trials in six categories:

(1) Reading up on the field

(2) Specifying and selecting the study sample

(3) Executing the experimental maneuver

(4) Measuring exposures and outcomes
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(5) Analyzing the data

(6) Interpreting the analysis.

Bias in (1) is frequently called literature bias. For all clinical trials it is a risk

that could introduce bias in the design, conduct, analysis, and interpretation

of clinical trials, i.e., in sources (2) through (6). Thus, it can be reasonably

assumed, solely on this basis, that bias from sources (2) through (6) exists in

various degrees in any clinical trial. The question is whether trial modifications

will introduce additional bias. To explore the issue, it is important to examine

how trial modifications would increase various sources of bias, and how such

additional bias can be either avoided, or minimized. The context relevant to this

discussion is where unblinded group data are available from interim

analysis, and it is assumed that neither patients nor investigators will have

access to these data.

For an ongoing trial where patients are enrolled, treated, and evaluated, bias

from sources (2) to (4) can arise due to patients’ and investigators’ involvement,

with or without blinding, although the use of double-blinding would minimize the

comparative bias between treatment groups. If it could be argued that the release

of unblinded group data would introduce additional bias in (2) to (4), then such

additional bias should be assumed to exist for the classical group sequential

design. This is because continuation of a trial after an interim analysis would

indicate to both the patients and investigators that an investigational therapeutic

medication has some effect since both would have access to protocol designs.

Thus, as compared to the classical group sequential design, concerns for

additional bias in (2) to (4) from either the patients or investigators would not

arise if modifications, made by either the Data Monitoring Committee (DMC) or

trial organizers, do not involve patient enrollment, treatment, or evaluations.

Similar issues could exist for sponsor staffs who work closely with the

investigators on data collection and safety monitoring, where the above argument

applies. The roles of DMC or trial organizers in (2) to (4) are indirect through

passing information on unblinded results or decisions on protocol modifications

to patients or investigators; when this passage is blocked, additional bias in (2) to

(4) is avoidable.

For bias in (6), the main concern is when interpreting the final analysis.

Moreover, it is reasonable to assume that additional bias in (6) would not

arise if trial modifications would not introduce additional bias in (5). In

general, bias in (5) consists of bias in type I error rates and bias in parameter

estimates. In our view, the former is of primary interest in assessing the

validity of trial results after modification. In clinical trials there is no concrete

definition of parameters because of the lack of random sampling of patients

from a prespecified population at large. Nonetheless parameter estimation has

been perceived by many as meaningful to the “would-be population,” which

could be better described in the context circumstantial to the trial. Setting

aside this philosophical argument, the main discussion in the following
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sections will be focused on bias in both the type I error rates and parameter

estimation.

III. MODIFICATIONS USING “BLINDED” DATA

A. BLINDING

A problematic but largely ignored area is blinded review of the database. It is not

unusual that study protocols provide minimal information on statistical methods,

with specifics deferred to a statistical analysis plan. But the development of

a statistical analysis plan typically coincides with the collection and blinded

review of efficacy, safety, and laboratory data, making it impossible to establish

that the development of a statistical analysis plan is not data dependent.

Often such a statistical analysis plan is accepted by regulatory agencies at face

value as long as its finalization occurs prior to releasing the randomization code.

The International Conference on Harmonization (ICH E9)3 states:

“One type of monitoring concerns… checking the appropriateness of

design assumptions, etc. This type of monitoring does not require

access to information on comparative treatment effects, nor

unblinding of data, and therefore has no impact on type I error.”

Even more provocative, a recent draft guidance by the Food and Drug

Administration4 claims:

“When a DMC is the only group reviewing unblinded interim data,

the trial organizers are free to make changes in the ongoing trial that

may be motivated by newly available data outside the trial or by

accumulating data from within the trial (e.g., overall event rates).”

These are overstatements on the credibility of modifications using “blinded” data.

In practice, type I error rates can be inflated because blinding may be partial and

incomplete.

The fallacy on blindness is the perception that there is a dichotomy of

blinding and unblinding. Such a dichotomy exists only mechanistically as the

word “blinded” practically means that the randomization code is not released,

and “unblinded” means the randomization code is released. Thus, we will assume

in the following only the mechanistic interpretation of the terms blinding or

blinded data. Between blinding and unblinding, there are partial unblinding and

blinding under the null neutral principle. The latter is fundamental to the validity

of the trial.

B. PARTIAL UNBLINDING

It is important to recognize that under mechanistic blinding, there are several

ways to partially unblind the data, which could result in inflation of type I

error rates.
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One type of partial unblinding involves construction of a pseudo

randomization code that is positively correlated with the true randomization

code. There are several ways to achieve this. One scheme, proposed in the

literature for sample size adjustment, is to artificially divide patients into different

strata and use different randomization ratios for different strata.5 Trial organizers

who have access to stratification information for individual patients can construct

unbiased estimates of effects for different treatment groups. However, under the

standard operating procedure of any sponsor, the randomization code is not

released and the trial would still be called blinded. Another maneuver is to use a

secondary variable that is differentially affected by the treatment of the study

drug as compared with the control, e.g., the pseudo code based on ranks by the

degree of a known side effect from within each randomization block would

correlate with the true randomization.

Partial unblinding also results from a fairly standard practice used for sample

size adjustment. In order to estimate “nuisance” parameters, the trial organizers

send outcome data and the randomization code to an “independent” third

party, such as an academic statistician. With all the data needed, the third party

calculates the estimates and sends them back to the trial organizers who will then

perform sample size adjustment. This procedure is treated as blinded by trial

organizers. In many cases regulatory agencies are apparently in agreement.

The effect of such sample size adjustment on the type I error rate has been studied

and the conclusion has been that such procedures do not materially inflate the

type I error rates. But, neither the mathematical formulation nor the stimulation

studies in this area have incorporated the fact the trial organizers, in possession

of estimates of nuisance parameters, also have access to individual patient

outcome data. From elementary statistics courses, it is well known that the

calculation of the total sum of squares in an analysis of variance model does not

require group information and also the sum of squares due to “error” can be easily

calculated from estimates of the variance. Thus, with these two pieces

of information, the trial organizers, although formally blinded, have no problem

calculating the F-statistic. In a simulation study the type I error rate can be as high

as 55% in extreme situations.

Because partial unblinding, either indirect or direct, can inflate the type I

error rate, its use should be discouraged by regulatory agencies and prohibited

at the policy level via sponsor’s standard operation procedures.

C. THE NULL NEUTRAL PRINCIPLE

Despite the potential for inflating the type I error rate, modifications of the design

or statistical analysis plan are very common on the basis of other scientific

or clinical reasons. Often these reasons are external to the trial. But there are

many internal reasons as well. One type of modification that has been studied in

the literature is sample size adjustment using only the outcome data (i.e., not

requiring the release of randomization code to a third party as described above).
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On rare occasions, the primary endpoint is changed from a responder variable at

a specified time of followup to a time-to-response variable, if the overall response

rate is very high. Often, blinded data are used to fine tune statistical methods for

hypothesis testing, e.g., building a regression model to include appropriate

covariates, checking or adjusting the distribution of the test statistic to ensure

normality, etc.

To assist these types of modifications while being mindful of validity, the

use of pseudo randomization code based on null neutral variables can be

helpful. Specifically, a variable is null neutral if it is uncorrelated with the true

randomization under the primary null hypothesis. Certainly, a code obtained by

randomly assigning pseudo treatment groups to patients is null neutral, but it is

not useful. A more meaningful approach is to use a secondary variable that is

null neutral concerning the primary null hypothesis but correlated with the true

randomization code under an alternative to the primary null hypothesis. Then

a pseudo randomization code can be constructed based on rank values of the

null neutral variable within each randomization block. The goal of

modifications is to increase the power for rejecting the null hypothesis under

the alternative. As under the alternative a pseudo randomization code based on

null neutral secondary variables is correlated with the true randomization code,

its usefulness is apparent. The null neutral principle states that only the

null neutral variables should be used in the modifications of the test method.

The foundation for the principle is that the type I error rate under

modifications based on null neutral variables can be controlled at a stated

significance level.

To justify the claim, the paradigm for significance tests must be shifted from

a sampling based procedure to a randomization based procedure. The advantage

is that for randomized experiments, a randomization procedure under which the

treatment assignments are random while responses from experimental units are

fixed, allows more freedom of choice and therefore increases the power of the

test. Specifically, under a sampling procedure, the test method must be specified

in advance, while under a randomization procedure, an “optimal” test method can

be determined with the accumulating response data. In a randomization

procedure, both the primary variable and secondary neutral variables are fixed.

In addition, modifications to the test method are also fixed because they are

results of reviewing the primary and secondary null neutral variables.

By definition, neither the primary nor secondary null neutral variables would

correlate with the randomization under the null hypothesis. Thus, the null

distribution of the test statistic, selected as a result of modifications, can be easily

obtained by rerandomizing treatment groups to patients using the exact

randomization procedure used in the actual patient randomization. Since the

randomization test, conditional upon the primary and secondary null neutral

variables, controls the conditional type I error rate at a stated significance level,

the unconditional type I error rate is also controlled. A formal proof can be given

using the general adaptation theory of Liu et al.6
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D. ADAPTIVE STATISTICAL ANALYSIS PLANNING

The process of reviewing blinded null neutral variables, modifying the test

method, and assessing the randomization based p-value of the modified test is

called adaptive statistical analysis planning (ASAP). A prerequisite for ASAP

is the relevancy condition: the rejection of the null hypothesis corresponding to

the modified test must imply the rejection of the primary null hypothesis.

This requires that the primary null hypothesis be specified in the protocol and that

the rejection of the primary null hypothesis is necessary for trial success such that

not only is the type I error rate controlled but the result of the test is also

interpretable. On the other hand, ASAP recognizes the dilemma facing trial

statisticians and provides a valid approach to allow the development of

a statistical analysis plan with the accumulation of the data. To balance

specificity and flexibility, it is reasonable to follow the advice: specify what you

can and modify what you cannot specify. Under ASAP, the quoted claims by both

the ICH E93 and the draft FDA guidance4 in Section III.A are valid. Apart from

its scientific merits, the incorporation of ASAP can also facilitate quality and

speed for delivering statistical outputs and clinical reports.

E. SCOPE AND LIMITATIONS

Although modification using blinded data is tempting and can be very useful, we

warn that the blinded data may not be informative and blinding will hinder the

flexibility in the types of modifications to be made. For example, blinded sample

size adjustment methods do not provide directional information on the treatment

effects, and increasing sample size can be problematic both ethically and

economically when the actual effect is negative. The more efficient approach is

to base modifications on formal interim analyses built into the trial design.

IV. MODIFICATIONS USING UNBLINDED DATA

A. BIAS AND NAIVE ANALYSIS

The terminology “unblinded data” refers to summary statistics for different

treatment groups, rather than individual patient outcomes. It is used

interchangeably with “unblinded group data.” In this section, it is assumed that

unblinded interim data will be made available to only the DMC and trial

organizers, who will then make decisions regarding trial modifications.

Moreover, both the patients and investigators will be blinded to the interim

results and decisions concerning trial modifications. This is to confine any

potential addition of bias in source (5), i.e., bias in the type I error rates

and parameter estimates.

It is generally stated that modifications to an ongoing trial based on unblinded

interim data would introduce additional bias. However, it is less well recognized

that the additional bias is the result of employing naive methods for testing
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and estimation. The additional bias is certainly unavoidable but immeasurable

if modifications to the trial are kept unknown to trial evaluators, e.g., the FDA

reviewers, either intentionally or unintentionally. Even if the modifications were

known, the use of incorrect methods would still introduce additional bias.

For example, it is not uncommon for the FDA to request a sponsor to specify

an alpha-spending rule when the sponsor states that the trial would not stop

for efficacy and the purpose of the interim analysis is “administrative.” But for

various reasons in practice, such “administrative” interim analysis would often

trigger modifications of trial designs that are typically documented in protocol

amendments. The FDA might be satisfied if the sponsor would spend a rather

small alpha, say 0.0001, for the interim analysis. It must be realized that an alpha-

spending rule is adequate only for the conventional group sequential design

for which the only decision at an interim analysis is to stop or continue. For trials

with modifications such a superficial correction does not protect the overall type I

error rate.

Thus, to make progress, we assume further that adequate and honest

documentation of the modifications to the trial is available to trial evaluators.

We then discuss adaptive designs under which any additional potential bias can

be quantified and also corrected.

B. THE PHILOSOPHY OF ADAPTIVE DESIGNS

It is well known that in designing a clinical trial numerous assumptions must be

made regarding, say, the patient population, treatments, endpoints, effect size,

prognostic factors, outcome distributions, etc. In classical nonadaptive designs,

the basic premise is that these assumptions, except the effect size of the

experimental treatment, are true. In reality, many clinical trials fail not because

the experimental treatments are not effective but because the trial designs are

based on unrealistic assumptions. To demonstrate treatment effect new trials are

designed, which correct the mistaken assumptions used in previous trials.

Adaptive designs recognize that assumptions in a trial design may not be true.

Rather than being overly specific with respect to these assumptions, a range

of possibilities are permitted in the initial design such that greater specificity can

be reached later based on the results of planned interim analysis. In an adaptive

design, both “learning” and “confirmation” are allowed, and at the same time, the

data for learning and confirmation can be integrated for hypothesis testing and

parameter estimation. In multistage adaptive designs, the line between learning

and confirmation is blurred as data at a particular stage can serve both purposes.

The central issue regarding adaptive designs is how to avoid bias, and

specifically, bias in type I error rates and parameter estimates.

C. TWO-STAGE ADAPTIVE DESIGNS

The basic form of adaptive design is a two-stage adaptive design under which a

clinical trial is divided into two sequential stages such that data from the first
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stage can be used to modify certain features of the design or statistical analysis

for the second stage. Specific two-stage adaptive designs for sample size

adjustment have been studied by various authors.7–9 A general unified

framework for two-stage adaptive designs is given by Liu et al.6 Under the

general framework, modifications of the trial are not limited to sample size

adjustment, and can include dropping treatment groups, changing endpoints, and

fine tuning the final statistical analysis. Two-stage adaptive designs are important

because they are adequate for many practical applications. They also serve as

building blocks for multistage adaptive group sequential designs. Below we

discuss in greater detail the concept of adaptation and methods for hypothesis

testing and estimation.

1. Adaptation

Adaptation is an essential element of a two-stage adaptive design, which can be

viewed as a formalization of the process for interim analysis, decision making for

modifying the design or statistical analysis, and assessing the final trial outcome

as a result of modification. Three critical components are: the interim data,

an adaptation rule for modification, and the final trial outcome.

The interim data form the basis for gaining information on those assumptions

that are important for the trial’s success but cannot be assumed to be true with

confidence at the trial’s inception. Thus, not only must interim data be relevant

to the issue at hand but also informative.

An adaptation rule can be thought of as a transition from the interim data to a

decision on the types of modifications for the second stage. In mathematical

terms, an adaptation rule is a function of the interim data and its range is the

collection of all potential decisions on modifications for the second stage.

Technically, the function must be measurable and its range must be enumerable.6

It is important to realize that for each potential decision on modifications there is

a null hypothesis and a corresponding test statistic, and they may or may not be

the same depending on the nature of the decisions. Thus, to avoid difficulty in the

interpretation and extrapolation of the final results, it must be assumed that

modifications are limited such that the rejection of any modified null hypothesis

can lead to trial success. A prerequisite is that the success criteria are specified

in advance, by which the corresponding primary null hypothesis is also

prespecified. This is the relevancy condition. Mathematically, the primary null

hypothesis must imply all possible modified null hypotheses and, consequently,

rejecting a modified null hypothesis implies logically rejecting the primary

null hypothesis. In practice, it is helpful but not necessary to enumerate all

possible decisions on modifications in advance to promote understanding,

confidence, and smooth execution.

The third essential element of adaptation is assessing the final trial outcome,

which is described in the following as hypothesis testing and parameter

estimation.
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2. Hypothesis Testing

For the first stage, a null hypothesis and the corresponding test statistic must be

specified in the protocol. It is required that the null hypothesis be implied by the

primary null hypothesis and that the test statistic be a function of the interim data.

The null hypothesis can then be rejected at the end of the first stage if the p-value,

one-sided in favor of the alternative hypothesis, is less than a prespecified

fraction of the overall alpha; the trial will then stop. In many applications, it is also

desirable to stop the trial for futility, which occurs when the p-value is greater

than a prespecified futility level. Otherwise, the trial will continue and a decision

will be made based on interim data regarding the modifications of the first

stage null hypothesis and the corresponding test statistic. Among all possible

modifications, the default is not to modify the trial. Regardless of the nature

of the decision made, a null hypothesis and a test statistic will be formulated for

the second stage. Notice that the first stage p-value provides not only the basis

for hypothesis testing for the first stage but also a summary of the strength

of evidence, which can be incorporated in the hypothesis testing at the end of the

second stage. This is achieved via the use of a conditional error function,

proposed by Proschan and Hunsberger.8 A conditional error function essentially

defines the conditional type I error rate for the second stage for each realization

of the first stage test statistic. In general, a conditional error function is an

increasing function of the first stage test statistic; the stronger the evidence in the

first stage, the larger the conditional error rate for the second stage and therefore

the smaller the size for the second stage. From Liu et al.,6 the second stage p-

value is required to follow a conditional uniform distribution, given the interim

data and the choice of null hypothesis and test statistic for the second stage. At the

end of the second stage, the second stage null hypothesis is rejected if the second

stage conditional p-value is less than or equal to the conditional error rate.

To control the overall type I error rate at the alpha-level, the conditional error

function must integrate to alpha. Proschan and Hunsberger8 proposed conditional

error functions for two-stage adaptive designs for sample size adjustment.

The procedure is valid for general adaptations as well.6 In particular, the validity

does not depend on the prespecification of an exact adaptive rule except for its

possible outcomes, i.e., all possible modified null hypotheses, to ensure that they

are all relevant for trial success and that the construction of the second stage

conditional p-value is technically achievable for each possible null hypothesis.

One important application of two-stage adaptive designs is for trials with

a prespecified “administrative” interim analysis. Although at trial inception

a sponsor would insist that the purpose of the interim analysis was to assist

designing other trials of the clinical program, it would be irresponsible not to

modify the trial if interim data suggest that the protocol assumptions regarding

safety and efficacy are overly optimistic or pessimistic. Thus, because the

potential exists for modification, neither the naive analysis assuming no

modification nor the usual alpha-spending approach mentioned earlier can be

proven to control the type I error rate. To resolve the issue, the two-stage adaptive
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design proposed by Proschan et al.10 can be used. Such a design protects the type

I error rate without the need for specifying in advance whether or not

modifications to the trial will be made. If no modification is made, the analysis

is asymptotically equivalent to the naive analysis under which no alpha-penalty is

necessary.

3. Point Estimation and Confidence Intervals

Pragmatically, parameter estimates are important as treatment effect sizes are

routinely reported in drug package inserts and in scientific literature. These

estimates are also used for designing future trials as well as by physicians

and drug makers to “informally” distinguish one drug from another. Despite

the fact that a parameter estimate from a clinical trial would invariably be biased

for the patient population at large because of the inclusion and exclusion criteria, it

is important to ensure that additional bias will not be introduced through trial

modification, which would then make it impossible to compare, again

“informally”, different drugs even for the “would-be population” from which

the patient sample for the trial could be thought of as randomly selected.

Methods for obtaining point estimates and confidence intervals are developed

by Liu and Chi9 for two-stage adaptive designs with sample size adjustment.

The theory and methods under general adaptation rules are given by Liu et al.6

These methods assume that the parameter in question has the same

interpretation in both stages for all possible decisions regarding modifications.

That is, the parameter must be invariant to adaptation. Obviously, restricting the

adaptation such that the parameter will not change its interpretation can satisfy

this assumption. For many applications, however, such a restriction can

unnecessarily limit the potential flexibility in hypothesis testing. To balance

the need for hypothesis testing and estimation, consider only those “construct”

parameters for which their interpretations are not dependent upon the specifics

of study design or analytical modeling that are subject to adaptation. In contrast,

“nonconstruct” parameters are design-specific, and their estimates can be difficult

to interpret beyond the confines of the trial design, and there is less interest in

practice to report their estimates. Two notable examples of such nonconstruct

parameters are the linear trend parameter for a linear trend test for dose response

studies and the common odds ratio for a series of 2 £ 2 tables.
The estimation methods also assume that data for the construct parameters

are always available regardless of whether the trial stops early and regardless

of decisions concerning modifications. For practical applications, these data

are naturally available if patient enrollment continues during the period between

the time of last patient enrollment for the interim analysis and the time of

delivering the interim results. In fact, it is entirely reasonable to establish a policy

on the minimal sample size for the second stage.

Thus, for practical applications, it is advisable that the construct parameters

and policies on adaptation and a minimum sample size for the second stage be
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specified in the protocol to guarantee interpretability of construct parameters and

also the availability of data for these parameters.

D. ADAPTIVE GROUP SEQUENTIAL DESIGNS

The two-stage adaptive designs can be easily extended to multistage adaptive

group sequential designs. In a two-stage adaptive design, the conditional error

rate is the conditional type I error rate for the second stage. In a multistage design,

it is the conditional type I error rate for the remaining experiment that may

contain one or more stages.11 At any stage the cumulative interim data will be

reviewed and the trial may be designated to stop at the end of the next stage

regardless of the outcomes. If the trial is designated to stop, the conditional

error rate is spent in the final hypothesis testing, and if the trial is to continue,

the conditional error rate is the total type I error rate for designing a new

“two-stage” trial with its own conditional significance and futility levels. This

process continues until the trial stops either because it stops at the designated

stopping time or it hits a stopping boundary for either significance or futility.

This concept of adaptive group sequential designs has its origin in the self-

designing procedures of Fisher12 and Shen and Fisher13 where a “designated

stopping time” is determined on the basis of ongoing data. In contrast, the

conventional group sequential designs have a fixed designated stopping time,

which is 100% of the “information time.” While both approaches control the type

I error rate, they differ in how the type I error rate is controlled: in an adaptive

group sequential trial, the conditional error rates are spent dynamically on the

basis of ongoing data, whereas a conventional group sequential design spends

the overall alpha-rate according to a prespecified spending function

at prespecified information times.

In a general formulation, data from different stages are not required to be

independent to permit much wider applications where the Brownian motion

process, which underlies the conventional group sequential designs, is not

adequate. At each stage, decisions on other types of modifications for the

remaining trial are also allowed, in addition to decisions for trial stopping for

the next stage. The result is a very general and flexible framework, which is

justified bymartingale theory and the adaptation theory of Liu et al.6 Special cases

for sample size adjustment under the assumption of “independent” increments are

proposed by various authors.14–16 For statistical inference, methods proposed by

Liu and Chi,9 Liu et al.,6 and Proschan et al.10 can be extended for calculation of

overall p-value, point estimates, and confidence intervals.

V. DISCUSSION

We have assumed that decisions on trial modifications would not be made known

to patients and investigators, in order to avoid additional bias in the event that

knowledge of the decisions would lead to further modifications in patient

enrollment, treatment, or evaluation. It must be pointed out that this assumption is
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“sufficient” but not absolutely necessary for the trial to be valid and interpretable.

In certain therapeutic areas, such as oncology, not only are the treatments tailored

according to patients’ prognoses at diagnosis but also they are constantly

modified on the basis of observed safety and efficacy responses to treatments.

The effect sizes would therefore depend heavily on the exact circumstantial

context of the trial. Because the circumstances cannot be replicated, the observed

effects cannot be generalized to the patient population at large. This view was

also expressed by Leber,17

“Comparisons of drug performance based upon results obtained in

different clinical trials are always of arguable validity and reliability.

Because studies are conducted at different times, with different

samples of patients, by different investigators, employing different

criteria and/or different conditions (dose, dosing regimen, etc.),

quantitative estimates of treatment response and the timing of

response may be expected to vary considerably from study to study.

Accordingly, estimates of treatment effects obtained from a single

study or small series of studies have limited value as estimates of the

likely effect of a drug in the population as a whole.”

In the oncology setting, restricting trial adaptation for the sake of estimating

effect sizes makes little sense. Here the trial organizers should act responsibly in

modifying certain aspects of the trial, including enrollment criteria, treatments,

and perhaps methods of evaluation, etc. To avoid comparative bias, it is

necessary that the trial outcomes be based on objective criteria such as time

of death, or that patient evaluators be blinded to other information that might

reveal the identity of the underlying treatment. The bias in type I error rates can

then be controlled at a prespecified alpha-level using scientifically valid adaptive

designs and analysis procedures.

Finally, we point out that adaptation is not new to clinical trials. Under

the conventional clinical development paradigm where confirmatory phase 3

trials follow smaller scale phase 2 trials, the transition from phase 2 to phase 3 is

an adaptation process. What is new is how to combine data that are used for

“learning” with data that are for confirmation. Thus, at the clinical development

level, trial organizers now have the flexibility to integrate different phases of the

clinical development, e.g., phase 2 and phase 3,18 into a coherent development

program under which clinical trials can be conducted more effectively and

efficiently.
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7. Bauer, P. and Köhne, K., Evaluations of experiments with adaptive interim

analyses, Biometrics, 50, 1029–1041, 1994.

8. Proschan, M.A. and Hunsberger, S.A., Designed extension of studies based

on conditional power, Biometrics, 51, 1315–1324, 1995.

9. Liu, Q. and Chi, G.Y.H., On sample size and inference for two-stage adaptive

designs, Biometrics, 57, 172–177, 2001.

10. Proschan, M.A., Liu, Q., and Hunsberger, S.A., Practical midcourse sample size

modification in clinical trials, Control Clin. Trials, 24, 4–15, 2003.
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I. INTRODUCTION

Double-blind, randomized clinical trials (RCTs) in the 1960s had emerged as

the gold standard for evaluation of new drugs or therapeutic procedures in

medical research since Sir Austin Bradford Hill introduced the trial design in

1946. Almost all of these RCTs were based on fixed design. These trials were

primarily nonsequential and made no allowance for repeated testing (i.e.,

interim look/analysis of accumulating data and early decision making on trial

design and conduct). Interim examinations of data were performed, formally or

informally, but usually lacked documentation. The scientific issues of

performing repeated testing and methodology for group sequential designs

had drawn special attention in the statistical and clinical trial literature during

the 1970s and 1980s. In particular, the work of Pocock,1 O’Brien and Fleming,2

Lan and DeMets,3 and Lan et al.,4 suggested viable methodological solutions for

problems of inflation of error probabilities due to repeated testing and early trial

stopping.

Medical research in the United States prior to the 1970s was predominantly

conducted by academic institutions via government funding under the auspices of

National Institutes of Health (NIH) and Veterans Administration (VA). Perform-

ing interim analyses and making early decisions were promoted primarily by

scientific and ethical reasons. Over the past three decades the center of gravity of

clinical research has slowly shifted to the pharmaceutical industry,5 which has

additional needs. One such need is to shorten the drug development cycle so as to

have a new drug approved and marketed sooner to provide a competitive edge

commercially. Time and resource management are crucial. Interim analysis and

designs of adaptive nature, therefore, are now becoming important tools for the

pharmaceutical companies in managing critical trials in drug development

process.

Drug development involves both early-phase (Phases I to IIa) exploratory

trials and late-phase (Phases IIb to III) confirmatory trials. The major concern is

for the latter where the performance of interim analysis, in particular, with

midcourse adaptation, may skew/bias the results or their interpretation when

conducted improperly. Therefore, we focus our attention in this chapter primarily
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on issues of interim analysis and adaptive design in large late-phase confirmatory

trials, although the principles remain valid for small early-phase exploratory

trials.

In this chapter we begin by addressing the distinctive issues between interim

analysis and data monitoring in Section II, since these two are not considered

synonymous in the pharmaceutical industry. In Section III, we address the Data

Monitoring Committee (DMC) including its role and responsibility in interim

analysis of clinical trials. In discussion of the methodologies for interim analysis

and adaptive design, we concentrate on two most popular and flexible

approaches, namely, the error rate spending function3,6 and Conditioning

Power (CP)4 approaches. The readers will find that these two approaches are

theoretically interrelated and can be used independently or complementarily.

Sections IV and V discuss the essence of error rate spending function and CP

approaches, respectively. In these two sections we review both the fundamental

theories as well as practical issues involved in interim analysis. Examples of

landmark clinical trials are given for illustration of the use of these effective

approaches. Before closing with general discussion, we also briefly review

advances in adaptive design in Section VI. Relevant references are provided for

readers with further interests. This chapter can be viewed as an expanded

summary of many selected papers published by the authors as well as many

others on the topic related to interim analysis and adaptive design.

II. INTERIM ANALYSIS VS. DATA MONITORING

Interim analysis and data monitoring in the pharmaceutical industry are generally

considered nonsynonymous. The distinction is best described in “Interim

Analysis in the Pharmaceutical Industry” by PMA Biostatistics and Medical

Ad Hoc Committee on Interim Analysis.7 In this PMA Position Paper, interim

analysis was defined as: “Unmasked (blinded) data analysis of response variable

while the trial is in progress and before the response data are available for all

patients. The test statistics on the response variable are calculated and

significance testing (or confidence intervals) is often performed.” Whilst data

monitoring is defined as: “An active process involving the completely masked

(blinded) review of the clinical data while the trial is in progress. This is

performed to monitor the progress and conduct of the trial.” The focus of the

PMA Position Paper definitions was on whether the analysis is performed on

“unblinded” or “blinded” data. A followup paper8 further defined interim analysis

as: “Any analysis, summary or inspection of unblinded trial data prior to the end

of data collection phase of the trial. The data collection phase encompasses the

entire duration of the trial up to the finalization and locking of the trial’s database.

This phase includes the treatment phase, as well as the data cleanup period, the

period in which data related questions are being addressed.” Along the same vein

data monitoring was defined as: “Any completely blinded review, analysis,
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summary or inspection of the trial data prior to the end of the data collection

phase of the trial.”

ICH E9 Guidance: Statistical Principles for Clinical Trials9 classifies trial

monitoring into two distinct types. One type of monitoring concerns the oversight

of the quality of the trial (i.e., data monitoring) and the other type involves

breaking the blind in making treatment comparisons (i.e., interim analysis). It

further defines interim analysis as: “Any analysis intended to compare treatment

arms with respect to efficacy or safety at any time prior to the formal completion

of a trial. … Interim analysis requires unblinded (i.e., key breaking) access to

treatment group assignment (actual treatment assignment or identification of

group assignment) and comparative treatment group summary information. …

Any interim analysis that is not planned appropriately … may flaw the results of

a trial and possibly weaken confidence in the conclusion drawn. Therefore, such

analyses should be avoided.”

Current practice in the pharmaceutical industry is that interim analysis would

include any analysis performed on unblinded data prior to database finalization.

In addition, grouping patients according to randomization or treatment received

is considered unblinding, even if the actual treatment identification is not

revealed. Using arbitrary labels for treatments (e.g., A, B, C) should also be

considered tantamount to unblinding. Interim analysis involves unblinded data.

Unblinding data prior to trial completion may introduce both patient selection

and evaluation bias and may also introduce trial operational bias before database

finalization. What would make things worse is one’s inability to determine

whether or not bias was actually introduced, let alone to assess quantitatively

and/or qualitatively its impact.

We have made a distinction between interim analysis and data monitoring

based on whether or not the identity of the treatment is revealed and/or patients

are grouped according to randomization or treatment received. In fact, data

monitoring is a necessary process in clinical trials without unblinding the data to

assure that the quality of trial conduct is maintained and the safety of the

participating subjects is ensured (e.g., checking the recruitment status,

aggregating the overall mortality rate, and/or reviewing serious AEs and

elevated laboratory tests). In particular, ICH E9 defines data monitoring as:

“Trial monitoring concerning the oversight of the quality of the trial includes

whether the protocol is being followed, the acceptability of data being accrued,

the success of planned accrued targets, the checking of the design assumptions,

success in keeping patients in the trials, etc. This type of monitoring does not

require access to information on comparative treatment effects, not unblinding

of data and therefore has no impact on Type I error. … The period of this type

of monitoring usually starts with the selection of the trial sites and ends with the

collection and cleaning of the last subject’s data.” In principle, because data

monitoring does not involve unblinding data, there should be no concern for

bias introduction. In reality, however, this is not always the case. For example,

certain aspects of the data, such as a typical AE or laboratory test, may

associate with certain treatment but not with the others, would essentially
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reveal the treatment identity. In certain response variables or endpoints (e.g.,

dichotomous/binomial or survival), knowledge of the variance virtually reveals

the treatment effect since the variance and expectation are stochastically depen-

dent. This problem is of particular concern when sophisticated computerized data

monitoring browsing tools are available. Nonetheless, because data monitoring is

an essential activity, there are no simple solutions to this problem. Many sponsors

address this problem with strict standard operating procedures (SOPs) on data

monitoring and interim analysis in close concert with data blinding and

unblinding procedures.

It is well known that performing interim analyses on accumulating data may

inflate the type I and II error probabilities above the prespecified levels associated

with the testing of hypotheses10,11 regardless whether the trial is double-blind or

open-label. For example, if we set a ¼ 0:05 and perform repeated tests at the

same level, then the true Type I error probability would be inflated drastically

with the increased number of tests (e.g., 0.05 for testing once, 0.08 twice,

0.11 three times, 0.14 five times, 0.19 ten times, and 0.25 twenty times — a five

fold of the true 0.05 level). To protect the error probabilities, group sequential

methods (GSMs) such as the Pocock boundary,1 the O’Brien–Fleming

boundary,2 and an error rate spending function approach of Lan and DeMets3

were proposed. The approach of Lan and DeMets generalizes both the boundaries

of Pocock and O’Brien–Fleming with much greater flexibility and has now

emerged as the mainstream tool in GSMs and applications. A parallel

methodology to the GSMs is the CP or stochastic curtailing approach by Lan

et al.4 Another development is the Bayesian approach.12–14

In this chapter we focus on the frequentist viewpoint and concentrate our

discussions on two most popular and flexible approaches — namely the error rate

spending and CP approaches in Sections IV and V, respectively, following the

review of DMC in the next section. (Note: Chapter 15 provides a regulatory

perspective on data monitoring and interim analysis.)

III. DATA MONITORING COMMITTEE (DMC)

Ongoing trial monitoring is an ethical responsibility of a trial’s investigators and

sponsor to their trial participants. Such monitoring of trial data is required not

only to protect the safety and well-beings of human research subjects, but also

to ensure the scientific integrity of trials under investigation. ICH E6 Good

Clinical Practice (GCP). Consolidated Guidance15 recommends: “The sponsor

may consider establishing an independent data monitoring committee (IDMC)

to assess the progress of a clinical trial, including the safety data and the critical

efficacy endpoints at intervals, and to recommend to the sponsor whether to

continue, modify, or stop a trial. The IDMC should have written operating

procedures and maintain written records of all its meetings.” Consequently,

a critical clinical trial that has a formal interim analysis plan in the protocol
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usually establishes an independent DMC. The DMC monitors subject recruit-

ment, evaluates interim results (safety and efficacy), and relevant external

information regularly, as well as safeguards the blinding and objectivity so as to

ensure the integrity of the trial.

A DMC is a group of experts with pertinent knowledge and experience

external to the sponsor that reviews trial accumulating data from an ongoing trial

on a regular basis. (In some situations, a DMC may be formed within a sponsor,

but independent of the project team that runs a particular trial.) The DMC advises

the sponsor regarding the patient safety and ongoing trial conduct per ethics and

scientific merit. The name of DMC varies — most often it is called Data and

Safety Monitoring Committee/Board (DSMC/DSMB). It has been also named as

Ethical Review Committee (ERC) and a few others. DMCs were initially used in

the 1960s exclusively in large landmark mortality and/or irreversible morbidity

trials sponsored by NIH and VA in the U.S. Few trials sponsored by the

pharmaceutical industry involved DMC oversight until late 1970s and 1980s.

The very first one of such trials was The Blocadren Myocardial Infarction Study16

in which an independent ERC was involved. The involvement of external

advisors in interim analyses led to the recommendation of early termination

of BMIS for overwhelming efficacy. The use of DMCs in industry-sponsored

trials has increased ever since and they are currently used in a variety of situations

with slightly variant models of operations.

All clinical trials require safety monitoring, but not all trials require monitor-

ing by a formal committee or board external to the trial organizers, sponsors,

and investigators. The need for a DMC and its role may vary depending on the

size of the trial, the phase, and the potential risk of the intervention under

investigation. Most Phase I and Phase IIa studies of low risk interventions do

not require an independent DMC, since they tend to be exploratory and stepwise

in nature. Usually, the trial investigator can accomplish the sponsor’s safety

monitoring duty jointly with the sponsor’s Clinical Monitor or Safety Officer.

For large scale Phases IIb to III confirmatory trials or in trials that patients are at

higher risk of unexpected serious adverse events (SAEs), a DMC is often

deemed required to provide more vigorous data monitoring and review. In

particular, it is generally agreed that a DMC should be established for an

adequate and well-controlled trial with mortality and/or irreversible morbidity

as a primary or major secondary endpoint. Because the ultimate responsibility

for monitoring trial progress and safety belongs to the trial sponsor, a DMC may

be appointed to serve this function for the sponsor. In fact, the sponsor may

delegate this responsibility to a trial organizer or Contract Research

Organization (CRO), in which case the DMC selection, meetings, and other

activities may be coordinated by that CRO. Once an independent DMC is

established to assume the sponsor’s monitoring responsibility, a special

relationship is established between the DMC, sponsor, CRO, and other trial

governing bodies such as the Steering Committee (SC) or Policy Board (PB),

Data Coordination Center (DCC), IRBs of the clinical trial centers/sites, and the

investigators, as appropriate.
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A. DMC ROLE AND RESPONSIBILITIES

The responsibilities of the DMC can be broadly grouped into three areas.

1. Performance Monitoring

The DMC regularly reviews the performance of clinical centers/sites and the trial

in aggregate with respect to:

i. Subject recruitment relative to target goals

ii. Adherence to inclusion/exclusion criteria

iii. Timely submission and completeness of data forms

iv. Subject followup compliance

v. Data errors.

These performance criteria should be monitored continuously by the trial

manager and investigators, but should be reviewed by the DMC at scheduled

intervals.

2. Safety Review

Safety review is an ongoing process. There are usually several potential formats

for presentation of this data to the DMC:

i. Aggregate (pooled) data

ii. By treatment group (semiblinded, e.g., A, B, C)

iii. By treatment group (unblinded)

iv. Individual patient/event listings.

The frequency and exact method of data review should be formulated in

a monitoring plan. The adverse and/or endpoint events reviewed by the DMCwill

depend on the investigative therapy and patient population being studied.

In addition to scheduled DMC safety review, provision should be made for ad hoc

reviews, which may be triggered by unexpected adverse events or an increase in

a particular event above a specified threshold.

3. Interim Analyses on Efficacy and Safety

In addition to routine safety monitoring, the protocol may also stipulate formal

interim analyses for evaluation of safety and/or efficacy periodically. If interim

analyses are warranted, the study protocol should include a formal plan,

indicating when the analyses will be conducted, the expected consequences of

these analyses, a discussion of whether p-values will be adjusted, and methods of

controlling the overall Type I error rate. In contrast to ongoing safety reports that

represent snapshots of live data, the interim analysis is a formal process that is

Interim Analysis and Adaptive Design in Clinical Trials 251



usually included in the study’s statistical analysis plan (SAP) and sample size

calculations. This plan should be reviewed carefully and approved by the DMC as

it will define the DMCs recommended action based on the findings from

this analysis. As noted above, however, the DMC may modify the timing

of interim analyses, the types of events, or request additional data included

in these analyses based on routine observations or on an ad hoc basis.

B. DMC MEMBERSHIP AND RELATIONSHIPS

The DMC finds itself serving as an extension of the sponsor from a regulatory

perspective, but required to be independent and free of potential conflict of

interests from an ethical and trial conduct viewpoint. Careful selection of the

DMCmembers and a clear understanding in the monitoring plan of how the DMC

will relate to the sponsor, investigators, SC, DCC, and regulatory agencies will

allow for the DMC to perform its primary function without compromise.

The chairperson of the DMC must have experience with the conduct of

clinical trials, strong leadership skills, and the confidence of the sponsor and the

SC chairperson. The individual members of the DMC are in general chosen with

input from the DMC chairperson, approved by the sponsor and the SC. The DMC

members should possess the necessary expertise to allow the DMC as a whole to

perform all of its functions, including monitoring trial performance, reviewing

safety data with an understanding of its relevance to the condition and treatment

being studied, and recognizing when the observed outcomes are alarmingly

beyond those expected. In most cases, a DMC may have three to five members to

handle reasonably complex issues. Its membership is generally recommended in

the following:

† Clinician or other scientist preferably in an area related to the condition

under study with experience in clinical trial conduct, DMC function,

and GCP guidelines to serve as the chairperson. A person with

experience, statue, and integrity is preferred.

† Statistician— not associated with the SC, the sponsor, or the DCC, and

preferably with prior DMC experience.

† Two or three experts in the conditions and/or treatments under study.

† In certain situations epidemiologist or trial ethicist may also be

included.

C. DMC STATISTICAL CONSIDERATIONS

There are two areas of statistical concerns for the DMC. The DMC

statistician should have a thorough and in depth knowledge of these issues but

all members should have at least an elementary understanding.
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1. Statistical “Penalty” for Repeated Testing

Ongoing data monitoring may result in statistical issues with so-called multiple

tests/looks of the data. If repeated tests of the data are planned, however, each

test can no longer be considered significant at the nominal a ¼ 0:05: Rather,
the nominal a level at each interim analysis needs to be adjusted downward

(the so-called statistical penalty for multiple testing) to preserve the overall

Type I error probability. Statistical methodologies have been well developed in

this area. Namely, the GSMs (in particular, the error rate spending approach)

and the CP approach, as will be discussed in the following sections. Repeated

testing of the data can also affect the power of a study, and the sequential

design will need to have a sample size larger than the fixed design, if interim

analyses are planned.

Safety review by the DMC is less affected by this concern than formal

interim analyses. That is, ongoing safety review without endpoint comparisons

in order to assess for potential safety concerns is an obligation of the trial. Once

a concern is established, a more formal and thorough analysis via the spending

of the Type I and/or Type II error rates (a and/or b) may need to be considered.

2. Early Stopping Guidelines

The major purpose of interim safety analysis or formal interim analysis from

the DMC perspectives is to allow the DMC to perform its function of

recommending to the trial governance body (i.e., the SC and/or sponsor)

whether the trial conduct should continue or modify including early stopping.

A “stopping guideline” specifies the significance level for observed differences

that would warrant consideration of stopping the trial for overwhelming

efficacy, futility, or harm. Stopping guidelines should be specified a priori in

the protocol and agreed upon during the initial meeting of the DMC.

The guidelines for the DMC should not be invoked without consideration of

other trial data and external trial information that may affect the assumptions

used to derive the guidelines originally. The guidelines also are not intended to

reflect all potential scenarios that may arise during the trial. The DMC may

need to create additional rules or exercise judgment to terminate a trial prior to

its scheduled end based on safety or efficacy considerations beyond reasonable

doubt. The Coronary Drug Project Research Group17 asserted: “… decision

making in clinical trials is complicated and often protracted. … no single

statistical decision rule or procedure can take the place of well reasoned

consideration of all aspects of the data by a group of concerned, competent, and

experienced persons with a wide range of scientific backgrounds and points

of view.”

Relevant references on DMC issues can be found in Fleming and DeMets,18

Armstrong and Furberg,19 DeMets et al.,20 and Guidance for Clinical Trial

Sponsors — On the Establishment and Operation of Clinical Trial Data

Monitoring Committee.21 The EMEA also proposed to develop a CPMP Points
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to Consider on Data Monitoring Committee to provide the EU a consensual

viewpoint in a concept paper.22

IV. THE ERROR RATE SPENDING FUNCTION APPROACH

As discussed earlier two key issues in interim analysis are of concern. One is bias

and the other is the effect on error probabilities. Bias in clinical trials can be

minimized via randomization and blinding. It can be dealt with further through

vigorous GCP training and strict SOPs execution. The effect on inflation of error

probabilities can generally be controlled via sequential methodology. Significant

research and development have been advanced in this field during the past three

decades. Excellent methodology review literature can be found in DeMets and

Lan,23–25 Hwang,26 Davis and Hwang,27 PMA Biostatistics and Medical Ad Hoc

Committee on Interim Analysis,7 Whitehead,28 Jennison and Turnbull,29

and Shih.30 Pocock1 and O’Brien and Fleming2 independently introduced an

approach referred as “GSMs,” which extended the work of repeated significant

testing pioneered by Armitage.31 Lan and DeMets3 applied the concept of

Brownian motion process termed it as “a (error rate) spending” to the GSMs. The
error rate spending approach rendered a break-through extension with great

flexibility and controls the overall error level while allowing number and timing

of analyses unfixed a priori.

The essence of GSMs is to control the error probabilities, in particular, the

Type I error rate or significance level, a: The error rate spending function

allocates a portion of the fixed Type I error probability to each interim analysis

based on the fraction of trial information or statistical information (e.g., patients

or events) accrued during the trial according to the prespecified shape of the

spending function. This trial information fraction is usually termed as the

information time t; 0 # t # 1; which is defined as the amount of trial

information accrued at an interim analysis over the total trial information

expected at the end of the trial. The a spending must be equal to 0 at t ¼ 0 and

equal to a at t ¼ 1: We first review some group sequential methodology

fundamentals prior to the discussion on the error rate spending functions as

follows.

A. THE FUNDAMENTALS

Assume we have i.i.d. random variables Yij , Nðm;s 2Þ; i ¼ 1;…;M;
j ¼ 1;…; ni; where i indicates stage (i.e., ith interim analysis), j represents patient

(i.e., jth patient), and s 2 is known. The maximum sample size is N ¼ P
i¼1;M ni

( ¼ Mnwhen ni ¼ n; i ¼ 1;…;M). Without loss of generality, we plan to perform

an M-stage group sequential test of the null hypothesis H0: m ¼ 0 vs. H1: m . 0:
For simplicity we perform a one-sided test in a one-group case. (Note that the

between-group comparison can be easily conformed into a one-group case.)

We now review the various interim analysis processes as introduced in Lan and

Wittes32 and Lan and Zucker.33
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1. Partial Sum Process (S-Process)

Let Xi ¼
P

j¼1;ni ½Yij=ðs
p
niÞ	; then Xi is also i.i.d. and Xi , NðD; 1Þ;

D ¼ m
p
ni=s; i ¼ 1;…;M:

Now,

S0 ¼ 0; S1 ¼ X1;…;
Si ¼ X1 þ · · ·þ Xi;…;

SM ¼ X1 þ · · ·þ Xi þ · · ·þ XM;

where Si ¼
X
k¼1;i

Xk , NðiD; iÞ; i ¼ 1;…;M

and the statistic ½ðSi 2 iDÞ=pi	 , Nð0; 1Þ and EðSiÞ ¼ iD; VðSiÞ ¼ i; and
COVðSi; SjÞ ¼ minði; jÞ: Here {Si} is a Partial Sum Process (S-Process) with

a noncentrality parameter D: {Si} has the following properties:

i.{Si} has independent increments.

S0 ¼ 0; S1 ¼ X1;

S2 ¼ X1 þ X2 ¼ S1 þ ðS2 2 S1Þ;
S3 ¼ ðX1 þ X2Þ þ X3 ¼ S2 þ ðS3 2 S2Þ;…;
Si ¼ ðX1 þ X2 þ · · ·þ Xi21Þ þ Xi ¼ Si21 þ ðSi 2 Si21Þ:

That is, S1 and ðS2 2 S1Þ;…; Si21 and ðSi 2 Si21Þ;…; and SM21 and
ðSM 2 SM21Þ are mutually independent and {Si} has independent

increments.

ii. Si21 , Nðði2 1ÞD; i2 1Þ; Si , NðiD; iÞ; and ðSi 2 Si21Þ , NðD; 1Þ:
That is, the increments in {Si} are equal, simply because

i ¼ 1;…;M has equal increments.

2. Standardized S-Process (Z-Process)

Let Zi ¼
P

k¼1;i Xk=
p
i ¼ Si=

p
i; then Zi , NðpiD; 1Þ; i ¼ 1;…;M and

EðZiÞ ¼ p
iD; VðZiÞ ¼ 1; and COVðZi; ZjÞ ¼ pði=jÞ for i , j:

Now, {Zi} is a Standardized S-Process (Z-Process).

3. Discretized Standard Brownian Motion Process (B-Process)

Let Bi ¼ Si=
p
M ¼ ðSi=piÞpði=MÞ ¼ Zi

p
ti; then

Bi ,Nðtiu;tiÞ; ti¼ i=M; i¼ 1;…;M with u¼pMD and

EðBiÞ ¼ tiu; VðBiÞ ¼ ti; and COVðBi;BjÞ ¼minðti;tjÞ:
Here {Bi}¼ {BðtiÞ}; 0# ti# 1; i¼ 1;…;M is called a Discretized Standard

Brownian Motion Process (B-Process) with a linear drift parameter u:
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Now, {Bi} has the following properties:

i. {Bi} has independent increments. For example, Bi ¼ Bi21 þ ðBi 2 Bi21Þ
or BðtiÞ ¼ Bðti21Þ þ ½BðtiÞ2 Bðti21Þ	: That is, Bi21 and ðBi 2 Bi21Þ are
independent and {Bi} has independent increments.

ii. Bi21 ,Nðti21u;ti21Þ; Bi ,Nðtiu;tiÞ; and ðBi2Bi21Þ,Nððti2ti21Þu;
ti2ti21Þ:

That is, the variance increments in {Bi} depend on the information time

intervals of ti 2 ti21; i ¼ 1;…;M; which can be equal or unequal, though the
increments in i ¼ 1;…;M are equal. The B-Process, therefore, provides the very

much needed flexibility for unequally-spaced interim analyses, which will be

discussed further later.

Recall that

Si ¼
X
k¼1;i

Xk , NðiD; iÞ ðPartial Sum or S-ValueÞ;
Zi ¼ ðSi=

p
iÞ , NðpiD; 1Þ ðZ-ValueÞ; and

Bi ¼ ðSi=
p
MÞ ¼ ðSi=

p
iÞpði=MÞ ¼ ðZi

p
tiÞ , Nðtiu; tiÞ ðB-ValueÞ;

ti ¼ i=M; i ¼ 1;…;M with u ¼ p
MD:

Hence, we have defined the following processes involved in interim analysis:

{Si} is an S-Process with a noncentrality parameter D;
{Zi} is a Z-Process, and

{Bi} is a B-Process with a drift parameter u; i ¼ 1;…;M:

The relationships are simply

Si ¼ Zi
p
i;

Zi ¼ Si=
p
i; and the B-Value

Bi ¼ ðSi=pMÞ ¼ ðZiptiÞ , Nðtiu; tiÞ; ti ¼ i=M; i ¼ 1;…;M with u ¼ p
MD:

Now, we can display the interim analysis process in a straightforward group

sequential framework as follows:

Group Sequential Analysis
Interim analysis, i 1 · · · i · · · M

Information time, ti t1 · · · ti · · · tM ¼ 1

Z-Value Z1 · · · Zi · · · ZM
B-Value B1 · · · Bi · · · BM
or Bðt1Þ · · · BðtiÞ · · · BðtMÞ
Boundary c1 · · · ci · · · cM
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B. GROUP SEQUENTIAL BOUNDARIES

For a one-sided boundary, to control the overall Type I error rate, it requires that

P½Z1 $ c1; or Z2 $ c2;…; or Zi $ ci;…; or ZM $ cM lH0	
¼

X
i¼1;M

P½Zi $ ci; Zj , cj; j # i2 1lH0	

¼
X

i¼1;M
P½ðBi=

p
tiÞ $ ci; ðBj=

p
tjÞ , cj; j # i2 1lH0	 ¼ a:

That is, the overall boundary crossing probability equals to the prespecified level

a: For a two-sided symmetric boundary one simply replaces a by a=2 and applies
symmetrically. (Discussion for asymmetric boundaries for controlling both

Types I and II error rates (a and b) and other approaches will be covered later.)
Now, the group sequential tests can be simply summarized as:

† Compute the test statistic (i.e., the Zi value) at each interim

analysis i ð1;…;MÞ; which corresponds to the information time ti
ð0 , t1;…; tM ¼ 1Þ based on the accumulated fraction of trial

information (interim data) sequentially.

† Compare the test statistic Zi to a predefined critical value or boundary

value ci such that the overall error probability ðaÞ is maintained.
† Reject the null hypothesis H0 and stop the trial early if the boundary is

crossed. Otherwise, the interim analysis process continues till the final

analysis.

† At the final analysis (at the scheduled trial end) either reject the null

hypothesis H0 if ZM $ cM or do not reject H0 if ZM , cM:

An ad hoc rule, not based on precise theoretical model, was proposed by

Haybittle34 and later by Peto et al.35 It suggested the use of a two-sided critical

values of ci ¼ 3:0 at interim analyses for i , M; but retains cM ¼ 1:96 at the final
analysis. This ad hoc rule may be simple to use for interim analyses, but it does

not precisely maintain the prespecified error probabilities. In the following we

will review the “one-sided” versions of the original two classical group

sequential boundaries:

1. The Pocock Boundary1

The Pocock boundary can be formulated via the Z-process as finding the

boundary value of ci ¼ c — a constant value for i ¼ 1;…;M such that

P½Z1 $ c; or Z2 $ c;…; or Zi $ c;…; or ZM $ clH0	
¼

X
i¼1;M

P½Zi $ c; Zj , c; j # i2 1lH0	 ¼ a:

The value of c can be calculated via iterative numerical integration.36

For example at a¼ 0:025 (one-sided), the constant boundaries of Pocock are
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{c}¼ {2:178;2:178}; M¼ 2; {c}¼ {2:289;2:289;2:289}; M¼ 3; {c}¼ {2:361;
2:361;2:361;2:361}; M¼ 4; and {c}¼ {2:413;2:413;2:413;2:413;2:413};
M¼ 5: Note that the Pocock boundaries are equally spaced.

2. The O’Brien–Fleming Boundary2

The O’Brien–Fleming boundary, on the other hand, is best formulated via the

B-process as finding the boundary value of ci ¼ c for i ¼ 1;…;M such that

P½B1 $ c; or B2 $ c;…; or Bi $ c;…; or BM $ clH0	
¼

X
i¼1;M

P½Bi $ c;Bj , c; j # i2 1lH0	 ¼ a:

Recall that Bi ¼ Zi
p
ti and for Bi $ c it will be equivalent to have

Zi $ ðc=ptiÞ ¼ ci; i ¼ 1;…;M:

Again, via iterative numerical integration the boundaries of O’Brien–Fleming

(one-sided) can be calculated at a ¼ 0:025 with c ¼ 1:978; {ci} ¼
{2:797; 1:987}; M ¼ 2; c ¼ 2:004; {ci} ¼ {3:471; 2:454; 2:004}; M ¼ 3;

c ¼ 2:024; {ci} ¼ {4:049; 2:863; 2:338; 2:024}; M ¼ 4; c ¼ 2:040; {ci} ¼
{4:562; 3:226; 2:643; 2:281; 2:040}; M ¼ 5: It should be noted that the original
development of the O’Brien–Fleming boundary was not based on the B-Process,

but rather the S-Process and therefore, its boundaries are equally spaced.

The interim analyses for the Pocock boundary are performed at the same

critical value throughout. Early stopping is possible; however, it pays large

penalty for the final analysis, if it was not stopped early. For the O’Brien–

Fleming boundary, on the other hand, interim analyses are performed at

decreasing critical values. Early stopping is extremely difficult, but only pays

little penalty for the final analysis. It should be noted that both the Pocock and

O’Brien–Fleming boundaries are based on fixed and “equally spaced” times,

i.e., the number and timing of analyses are predefined and cannot be changed.

That is, these boundaries require “equal” variance increments or placed in

equally spaced information times. At trial design it may be convenient to plan for

fixed M analyses at calendar times or equally spaced information times.

However, during the course of a trial, changes often occur for both frequency and

timing of interim analyses. Actual analyses seldom take place at fixed numbers

with equally spaced information times. So a more flexible and practical procedure

is needed. The error rate spending approach proposed by Lan and DeMets3meets

this important requirement well and it has since emerged as the mainstream

procedure in group sequential methodology.
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C. ERROR RATE SPENDING FUNCTIONS (LAN AND DEMETS,
3

HWANG ET AL.,6 CHANG ET AL.
37)

The concept of the Lan–DeMets error rate spending functionwasmotivated by the

continuous boundary crossing probabilities of the B-process. They suggested

employing the discretized version to construct sequential boundaries for interim

analyses. Thea spending functionaðtÞ is defined such thataðt ¼ t0 ¼ 0Þ ¼ 0 and

aðt ¼ tM ¼ 1Þ ¼ a: The group sequential boundaries (or critical values) can be
determined according to the spending functionaðtÞ at the span of interim analyses.

The totala or Type I error rate can be spent over the information time t; 0 , t # 1

accordingly. Lan and DeMets38 gave an intuitive discussion on calendar vs.

information time in GSMs. In the B-Process the variance VðBiÞ ¼ ti; where
tiðinformation timeÞ ¼ i=M;

P
k¼1;i nk=

P
k¼1;M nk (fraction in patients), orP

k¼1;i ek=
P

k¼1;M ek (fraction in events), i ¼ 1;…;M:Note that when ti is defined
in terms of

P
k¼1;i nk=

P
k¼1;M nk or

P
k¼1;i ek=

P
k¼1;M ek the increments between

analyses are independent, but may not necessarily need to be equal. Now, we will

show how the error rate spending function approach works as follows.

Recall that

P½Z1 $ c1; or Z2 $ c2;…; or Zi $ ci;…; or ZM $ cMlH0	 ¼ a:

We can decompose the total rejection region and a based on the interim analyses

at information times into increments as

P½Z1 $ c1lH0	 ¼ aðt1Þ and P½Z1 $ c1; or Z2 $ c2lH0	 ¼ aðt2Þ;
the increment P½Z1 , c1; Z2 $ c2lH0	 ¼ aðt2Þ2 aðt1Þ represents the additional
a that is spent when the 2nd interim analysis is performed when the boundary was

not crossed at the 1st analysis. At the ith analysis

P½Z1 $ c1; or Z2 $ c2;…; or Zi $ cilH0	 ¼ aðtiÞ and

P½Z1 , c1; Z2 , c2;…; Zi21 , ci21; Zi $ cilH0	 ¼ aðtiÞ2 aðti21Þ:

aðtiÞ2 aðti21Þ represents the additional a that is spent when the ith analysis is
performed. The process may stop early when the boundary is crossed or may

continue till the final analysis such that

P½Z1 $ c1; or Z2 $ c2;…; or Zi $ ci;…; or ZM $ cMlH0	
¼

X
i¼1;M

P½Zi $ c; Zj , c; j # i2 1lH0	

¼
X

i¼1;M
½aðtiÞ2 aðti21Þ	 ¼ aðtMÞ ¼ að1Þ ¼ a

That is, the boundary crossing probability a equals to the sum of all alpha

increments spent at interim analyses. For a fixed design, P½ZM¼1 $ cM¼1lH0	 ¼
aðtM¼1 ¼ 1Þ ¼ a: That is, the total a is spent once all at one analysis at the end
of the trial.
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To solve for the boundary values cis; numerical integration of multivariate
normal distribution using the method of numerical quadrature is required. Note

that in

P½Z1, c1;Z2, c2;…;Zi21, ci21;Zi$ cilH0	 ¼aðtiÞ2aðti21Þ; i¼ 1;…;M

and evaluation of cis will only depend on aðtjÞ; j¼ 1;…; i: That is, for i¼ 2;…;M
only the joint distribution of ðZ1;Z2;…;ZiÞ is needed for numerical integration.
This demonstrates the flexibility of this a spending function approach for

interim analysis because there is no requirement for a given M; the total number
of analyses, or equally spaced ti: All that is needed is 0¼aðt0Þ,aðt1Þ, · · ·,
aðtMÞ ¼að1Þ ¼a; a strictly increasing function aðtÞ; known as the error rate or a
spending function, which needs to be prespecified to guide how the a is to be

spent over the information time.

Though the equally spaced Pocock and O’Brien–Fleming boundaries were

not originally developed via the a spending concept, we can reconstruct their a
spending increments, e.g.,M ¼ 5; a ¼ 0:025 (one-sided) shown in Table 14.1 as
follows. (The a spending patterns can be found in Figure 14.1.)

Lan and DeMets3 provided continuous a spending functions approximately

for the O’Brien–Fleming and Pocock boundaries, respectively, as

ap1ðtÞ ¼ a O0B–FðtÞ ¼ 2½12F ðz12a=2=ptÞ	 ðone-sidedÞ and
ap2ðtÞ ¼ aPðtÞ ¼ a ln½1þ ðe2 1Þt	;

where Fð·Þ represents the c.d.f. of the standard normal.
A couple of general families of a spending functions have also been proposed

in the literature. One is the “power function” spending family aðtÞ ¼ at r; r . 0

proposed by Lan and DeMets3 and Kim and DeMets.39 The other is the

TABLE 14.1
Interim Analyses via Equally-Spaced Pocock and O’Brien–Fleming

Boundaries

Analysis i 1 2 3 4 5

Inf. time ti 0.2 0.4 0.6 0.8 1.0

Pocock ci 2.413 2.413 2.413 2.413 2.413

aðtiÞ2 aðti21Þ 0.0079 0.0059 0.0045 0.0036 0.0031

S½aðtiÞ2 aðti21Þ	 0.0079 0.0138 0.0183 0.0219 0.025

O’Brien–Fleming ci 4.562 3.226 2.634 2.281 2.040

aðtiÞ2 aðti21Þ 0.0000 0.0006 0.0039 0.0083 0.0122

S½aðtiÞ2 aðti21Þ	 0.0000 0.0006 0.0045 0.0128 0.025
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“truncated exponential distribution” or “g” spending family by Hwang et al.6:

aðg; tÞ ¼
a½ð12 e2gtÞ=12 e2gÞ	; g – 0

at; g ¼ 0

(
for 0 # t # 1:

A fewmembers of the g family of a spending functions are plotted in Figure 14.1.
Note that many popular boundaries are in fact members of the rich g

family. For example, the continuous Pocock boundary ap2ðtÞ is virtually

identical to að1; tÞ; the continuous O’Brien–Fleming boundary ap1ðtÞ is also a
member of the g family with approximately g ¼ 24 or 25; the power

function members aðtÞ ¼ at3=2 is closely approximated by að21; tÞ and

aðtÞ ¼ at2 by að22; tÞ: Two landmark clinical trials: The “4S”40,41 and

“AFCAPS/TexCAPS”42 both adopted O’Brien–Fleming-like boundaries based

on a member of the g family, i.e., að24; tÞ: Both trials were designed as the
so-called “total information” trial instead of the traditional “fixed sample size”

or “maximum duration” trial. An information-based trial would maintain

statistical power regardless of the realized event rate, though in general, study

duration may need to be extended, or in some cases the sample size increased.

We will not discuss boundary optimality, because optimality in group

sequential designs is usually not well defined. In fact, the choice of boundary is

based more on the nature of trial design and clinical judgment than on strict

statistical properties. In general, choosing a member (e.g., 1 # g # 4) with a

concave a spending function will be suitable for trials with immediate response
and short patient follow up such as single-dose analgesic studies or for

accelerated early stopping in early phase exploratory studies. For large

mortality/irreversible morbidity trials where patient recruitment is massive
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and follow up is long term, the choice of a convex member (e.g.,

25 # g # 21) would be appropriate. In situations where greater a is to be

preserved for the final analysis, an extremely small g (e.g., g ¼ 215 or even
220) has also been adopted. The power of the group sequential test generally
increases with the convexity of the a spending function. A few statistical

packages are available commercially for group sequential designs and analysis.

(These packages will not be listed or discussed in this manuscript.) Nonetheless,

a versatile yet free program is available named LANDEM.43 This program and

its relevant documents are accessible at “www.medsch.wisc.edu/landemets.”

All these packages have been updated to include the power function and g
families of a spending functions.

A natural extension to the use of flexible Type I error rate spending function

approach is to use both Type I (a) and Type II (b) error rate spending functions
from Chang et al.37 in constructing the rejection (upper) and acceptance (lower)

boundaries, respectively. A trial can be stopped early for overwhelming efficacy

when the upper rejection boundary is crossed. The trial can also be stopped early

when the lower acceptance boundary is crossed for futility or harm. The null

hypothesis can be either two-sided or one-sided. The boundaries can be

symmetric or asymmetric. In practice, the latter makes more clinical sense

because there is usually less threshold or tolerance for futility or safety than for

efficacy. Emerson and Fleming44 proposed two-sided symmetric boundaries with

equal a and b spending. Pampallona and Tsiatis45 suggested unequal a and b
spending. Chang et al.37 constructed both symmetric and asymmetric boundaries

via the g family spending functions for unequal a and b spending. For

asymmetric boundaries using both a and b spending functions it requires that

X
i¼1;M

P½Zi $ ci; bj , Zj , cj; j # i2 1lH0	 ¼ a andX
i¼1;M

P½Zi # bi; bj , Zj , cj; j # i2 1lHa	 ¼ b;

where ci . bi; i ¼ 1;…;M 2 1; cM ¼ bM: Symmetric boundaries can easily be
constructed by imposing absolute values on Zi (i.e., lZil) and have lcil . lbil;
i ¼ 1;…;M 2 1; lcM l ¼ lbM l:

It should be noted that before employing the a and b spending functions to
construct group sequential boundaries, the following conditions must be fully

understood:

(i) The upper and lower boundaries depend on both H0 and Ha specified

a priori in the protocol. This set of boundaries should not be changed

after interim analyses. Otherwise, it will cause inconsistency between

the use of the sequential boundary and the actual recommendation of

the DMC to the sponsor on early termination.

(ii) The lower boundary, if crossed, should not be overruled.
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For further discussion on overruling of the group sequential boundary, refer

to Lan et al.46

Futility analyses (i.e., accepting the null hypothesis of no treatment

difference) can also be conducted at interim analyses using CP (stochastic

curtailment) methodology.32,47 The CP approach will be discussed in essence

later in Section V.

It should be emphasized that in constructing boundaries via the error rate

spending function approach there is no requirement to predefine M; the total
number of analyses. However, for design purpose some number M and an alpha

spending function must be prespecified. Both frequency and timing of analyses

can be changed as trial proceeds forward. The analyses can be unequally-spaced

in information time and boundaries can be reconstructed based on the

prespecified error rate spending function. The error rate spending over the

information time cannot be changed during the trial, but frequency and timing

can be changed based on recent results and the impact on the overall error level is

generally very small. Accurate estimation of the total information is necessary to

maintain power. The g family of error rate spending functions is versatile and it
generalizes the well-known boundaries.

D. APPLICATIONS

The GSMs are well developed. Although the Lan–DeMets error rate

spending approach provides the flexibility in group sequential design and

analysis, at study design it does require that the number and times of

analyses and how the error rate is to be spent (i.e., the error rate spending

function) be prespecified. Once the group sequential boundary and the sample

size based on the trial design are established and the trial proceeds forward,

the frequency and timing of the interim analyses may be changed as practice

dictates without significant impact on the overall error rate. In design and

analysis applications via the error rate spending approach one can compare

means, proportions, survival curves, repeated measures, and multiple

endpoints, etc., in performing repeated hypothesis tests. We will provide a

general review on some of these applications in this chapter. For specific

and/or detailed discussions one can refer to Kim and DeMets,39 Pocock

et al.,48 Lan and Lachin,49 Lee and DeMets,50 Wu and Lan,51 Lan and

Zucker,33 Lan et al.,52 DeMets and Lan,25 Jennison and Turnbull,29

Reboussin et al.,43 and Shih,30 to name just a few.

Classical GSMs1,2 were developed based on a partial sum process with

independent increments on immediate response, either continuous or dichot-

omous. Tsiatis53,54 and others showed that the logrank statistic (as well as a

general class of linear rank statistics) computed sequentially behave

(asymptotically) like a partial sum of independent normal random variables.

Lan and DeMets3 introduced the error rate spending concept via the Brownian

motion process. Lan and Wittes32 and Lan and Zucker33 further demonstrated
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that the S-Process (partial sum process) can be mapped into the B-Process

(Brownian motion process). Jennison and Turnbull55 later ratified the theory

that explains the independent increments structure in group sequential test

statistics. Scharfstein et al.56 further demonstrated that sequential Wald statistics

behave asymptotic multivariate normal. All these advances extend the GSMs to

more complicated cases in survival analysis models and correlated observations

including repeated measures in longitudinal data analysis.

In general, group sequential design and analysis can proceed as follows.

1. First determine the total number of planned interim analyses M and the

times of the analyses in information time. The trial information can be patient,

event or other surrogate depending on the nature of the trial and the increments

can be either equal or unequal pending preference in practice.

2. Choose a specific error rate spending function and generate the group

sequential boundary accordingly for the M interim analyses at the predefined

times in information time under the null hypothesis H0 to maintain a

prespecified overall a error level. One-sided, two-sided, symmetric, or

asymmetric boundaries can be generated based on the chosen error rate spending

function(s), to maintain the overall a level or the overall a and b levels as

appropriate.

3. Under the alternative hypothesis Ha and the sequential boundary

generated, obtain the value of D (the expected value of the test statistic under

Ha) to achieve a desired power 12 b:
4. Determine the values of n (assume ni ¼ n; i ¼ 1;…;M for equal

increments) or ni; i ¼ 1;…;M (unequal increments) that determines the total

sample size N ¼ Mn or N ¼ P
1;M ni: Note that the information time is ti ¼ i=M

or iðn=NÞ for equal increments or ti ¼
P
1;i nk=N for unequal increments, i ¼

1;…;M with t0 ¼ 0; t1 . 0; and tM ¼ 1: It has been shown that the sequential
methods developed for the comparison of the means are also applicable to the

survival distribution comparisons. However, the concept of trial information

needs some modification, because it corresponds to the variance of the linear

rank statistics and has different interpretations for different tests. We use

the logrank test for illustration. In general, for survival analysis or event-based

trial, sample size in number of patients alone is not enough to reflect the trial

information, one must further determine the total expected number of events

(e.g., deaths). When survival data are compared the corresponding information

fraction is ti ¼
P

k¼1;i ek=
P

k¼1;M ek; i ¼ 1;…;M: The number in the numerator
is the expected number of events at ti; while the number in the denominator is
the total expected number of events for the whole trial. Because the expected

number of events at ti is not observable, we usually use the observed number of
events as the substitute in practice. In general, there is no simple interpretation

of trial information for the Wilcoxon test. Nonetheless, when event rate is low

the information fraction for the logrank test provides a good approximation.

Further discussions can be found in Lan et al.57

5. Perform the scheduled interim analysis at ti; i ¼ 1;…;M: At time ti
compare the computed test statistic to the group sequential boundary value.
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Reject the null hypothesis H0 and recommend early trial stopping if the boundary

is crossed. Otherwise, the interim analysis process continues till the final analysis.

At the final analysis either reject or do not reject the null hypothesis H0 pending

whether the final test statistic exceeds the final boundary value.

1. An Example

We give herein a brief description of the use of the g-family of a spending

functions in planning interim analysis and early stopping guidelines with

a landmark trial — the 4S.40 Some preliminary discussion on interim analysis and

group sequential boundary was also given by Hwang et al.6 The final study results

were published in the Lancet.41

Briefly, the 4S was a multicenter, randomized, triple-blind, placebo-

controlled trial, conducted in Scandinavia, to confirm the efficacy of

simvastatin (a statin-HMG CoA Reductase inhibitor) in secondary prevention

of total mortality of all causes in patients with ischemic heart disease and

hypercholesterolemia. The total sample size planned was approximately 4000

patients to provide a 95% power at a ¼ 0:05 (two-sided). The estimated total
trial information was 380 deaths. Three analyses (M ¼ 3; two interims and

one final) were planned at unequal information times (t1 ¼ 0:50; 190 deaths;
t2 ¼ 0:80; 300 deaths; t3 ¼ 1:00; 380 deaths). The corresponding group

sequential boundary was {2.753, 2.343, 2.020}, an O’Brien–Fleming-like

boundary constructed by using the a spending function a ð24; tÞ of the g
family. 4444 patients were randomized at 94 centers in Scandinavia between

May 1988 and August 1989. At the very first DMC (was actually named

DSMC for the 4S) meeting prior to the first scheduled interim analysis, the

DMC requested that an additional interim analysis be conducted at 100

deaths to ascertain that smivastatin treatment would not render harm in early

stages of the trial. Accordingly, 4444 patients were actually randomized and

the trial information was reestimated to be approximately 440 deaths and the

total number of analyses was revised to four (M ¼ 4; three interims and one

final). The 4S was then planned as a minimum of one-year recruitment

period and a three-year follow up period on the last randomized patient or

the total trial information of 440 deaths were reached, whichever came last.

The revised plan for analyses were again at unequal information times

(t1 ¼ 0:23; 100 deaths; t2 ¼ 0:46; 200 deaths; t3 ¼ 0:80; 350 deaths; and

t4 ¼ 1:00; 440 deaths). The group sequential boundary was revised to {3.200,
2.885, 2.341, 2.022} based on the predefined að24; tÞ spending function.

Having examined the 3rd interim analysis results thoroughly, the DMC

(May 27, 1994) advised that the 4S should be stopped as soon as possible

because of overwhelming efficacy in primary endpoint as evidenced in

boundary crossing. After careful consultation with the SC chairman, August

1, 1994 was chosen as the cutoff date at which it was anticipated approximately

that the protocol-specified total trial information target of 440 deaths would

be reached. Highly significant results were observed for both the primary
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endpoint — total mortality (hazard ratio — simvastatin to placebo: HR ¼ 0.70,

p ¼ :0003) and secondary endpoints (e.g., major coronary events: HR ¼ 0.66,

p ¼ :00001; any coronary events: HR ¼ 0.74, p ¼ :00001).
The error rate spending function approach indeed provided the flexibility in

revising the interim plan and early stopping guidelines as needed for the 4S while

the trial was ongoing. Most importantly, the DMC of the 4S was able to perform

its chartered duty and maintained not only the high ethics, but also the total

integrity of the landmark trial.

There are also other developments in GSMs such as repeated confidence

intervals and sequential estimation following stopping that are worth noting as

follows.

Jennison and Turnbull58 developed a repeated confidence interval (RCI)

approach in the group sequential setting. Simply, the RCIs can be constructed by

inverting the group sequential tests into a sequence of confidence intervals

½mLi;mUi	; i ¼ 1;…;M such that the overall coverage probability for the

unknown m is 12 a: In inverting the RCIs the same boundary or critical values
cis for repeated hypothesis tests are used. The uses of the RCI and hypothesis

testing approaches will yield the same conclusion regarding the null hypothesis

H0: m ¼ 0:However, the RCIs provide more information. The error rate spending
approach application to the RCI approach has the same advantages as in group

sequential testing in that either the timing or the number of interim analyses via

the RCIs can be flexible. Similarly, the total expected information must be

determined for the design and used to calculate the information fraction for

a prespecified error rate spending function. The RCIs are especially useful for

group sequential equivalence trials that are designed to test whether two

treatments have an effect within a specified equivalence margin and thus can be

considered interchangeable.

Once a trial is stopped or completed, one would like to estimate the treatment

effect. Hughes and Pocock59 pointed out that clinical trials that stopped early

are prone to overestimate the true treatment effect. In fact, the naı̈ve estimates

are biased after a sequential trial has been stopped and appropriate adjustments are

needed. Different proposals60–63 have beenmade to construct confidence intervals

with correct coverage probability following a group sequential design. These

proposals suggest different ways to order the sample space for sequential trials

and none is considered universally superior. Hughes and Pocock58

proposed a Bayesian “shrinkage” approach, which would require the choice

of an appropriate prior distribution. (TheBayesian approach is beyond the scope of

this discussion.)

One particular issue of interest is what to do when the group sequential

boundary is crossed, but the independent DMC decides for some compelling

reasons (e.g., to gain extended patient experience on safety and/or efficacy) that

the trial should continue. One simple and straightforward approach64 is to

recapture the already spent a and redistribute it over the remainders of the trial.
Overall, the error rate spending function approach generalizes the classic

GSMs, which provides not only the control of error probabilities, but also the
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flexibility in performing interim analyses in practice. The traditional GSMs

have been primarily focused on early termination of a trial, for ethical and/or

economic reasons. Recently, considerable interest has also been placed in

possibly extending a trial beyond its originally planned sample size and/or

duration, based on findings of interim data. It also includes converting a fixed

design into a sequential trial. These important topics will be reviewed in the

following sections, in particular, in the discussions of CP and adaptive

design.

V. THE CONDITIONAL POWER (CP) APPROACH

Next, we will discuss the CP approach, which also has made major impact

on design and conduct of clinical trials for the past two decades.

A. CURTAILMENT VS. STOCHASTIC CURTAILMENT

The method of curtailment was used often in sampling plans.65 In a simple

sampling plan, a fixed number N items of a batch are inspected, and if n ð, NÞ
or more items are found defective, the batch will be rejected. This process can be

curtailed if n items are found defective before all N items have been examined.

However, it is important to note that this curtailment can be made only for the

purpose of rejection or acceptance. To estimate the probability of an item being

defective, curtailment may cause bias and reduction of information.

A similar idea can be applied to hypothesis testing. For example, to test

whether a coin is bias, we may conduct an experiment of tossing the coin

400 times. The test statistic is

Z ¼ ðH 2 200Þ=pð400 £ 0:5 £ 0:5Þ;

where H ¼ the total number of heads. If we choose a two-sided a-level of 0.05,
we may reject the null hypothesis that the coin is unbiased, if lZl $ 1:96;
or lH-200l $ 20: Now, suppose after flipping the coin 350 times and having

observed 220 heads, we can predict for sure that H $ 220: For the purpose
of hypothesis testing, the experiment can then be curtailed. In clinical trials,

curtailment rarely occurs. By the time the final decision can be predicted with

certainty, it is close to the end of the trial, and people involved in the trial usually

choose to finish it. Instead, a modification of curtailment, called stochastic

curtailment or the use of CP, is the subject of interest.

As discussed in previous sections that before the GSMs were introduced in

the 1970s, data were monitored periodically in many NIH-sponsored

clinical trials, even if the study was a fixed design. In many of those long-term

clinical trials, the concept of CP was found to be a helpful statistical tool to

answer questions raised by the clinicians. CP is the probability, conditional on

the accrued data that the final Z-value will fall into the rejection or acceptance
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region. If the final outcome of a trial can be predicted with a high probability (i.e.,

if the CP is very high or very low), perhaps the trial should be terminated early.

Even in preclinical studies, the concept of CP was often discussed during the

course of an experiment. For example, when a NIH intramural scientist requests

for 100 rats to evaluate a new compound, the Animal Use Committee may grant

only 50. Another 50 will be granted, if the results from the first 50 rats are

“promising.” Here, “promising” can be translated loosely as “if the trend of the

data continues, the probability of obtaining a positive result is high.”

Conceptually, simulations can be used to evaluate CP even under fairly

complicated settings. However, in many practical situations, CP can be computed

easily if the underlying statistic follows the Brownian motion process. To

simplify our discussion, again, we follow the B-value approach of Lan and

Wittes32 and start with the simplest one-sample case for one-sided hypothesis

testing. This statistical framework can be generalized to many more complex

settings for two-sample comparisons in clinical trials, as discussed in the previous

section.

Now, let us first assume that we have extensive experience with a standard

treatment, and the distribution of the patients’ responses, after standardization,

are known to be normal with zero mean and unit variance. A new test treatment

is being tested for benefit. Denote the response of a new test treatment group

patient by X , Nðm; 1Þ: Assume that a larger response is a better outcome, so the
hypothesis being considered is

H0 : m ¼ 0 vs: Ha : m ¼ m0 . 0;

and the test statistic is

Z ¼ ðX1 þ X2 þ · · ·þ XNÞ=pN:
If a ¼ 0:025; the rejection region is Z $ 1:96: Suppose the anticipated treatment
effect is m ¼ m0 . 0; then under this simple alternative,

EðZÞ ¼ u ¼ Nm0=
p
N ¼ p

Nm0:

To reach a power of, say, 85% for this given treatment effect, the sample size

required is obtained by solving the equation

EðZÞ ¼ p
Nm0 ¼ za þ zb ¼ 1:96þ 1:04 ¼ 3:0:

Note that for this choice of sample size N; the power is 85% only if the treatment

effect is indeed m ¼ m0 as stated in the protocol. The “real power” depends on the
real treatment effect m; which is unfortunately “unknown.”

After n observations ðn , NÞ aremade, the interim Z-value, Zn ¼
P
1;n Xi=

p
n;

provides us some information for projecting the behavior of ZN : Unconditionally,
the expected value of Zn ism0

p
n, which increases with n along a square root trend.

If Zn is greater (less) than m0
p
n; then the “observed treatment effect ð 
XÞ” will be

greater (less) than m0: Obviously, a linear trend is a lot easier to deal with, and
a square root trend can be converted to a linear trend bymultiplying another square
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root of the time parameter. This will be the motivation for introducing the B-value

again as follows.

Following the decomposition suggested by Lan and Wittes,32 we rewrite

ZN ¼
pðn=NÞ·

X
1;n

Xi=
p
n

0@ 1Aþ
X

nþ1;N
Xi=

p
N

0@ 1A ¼ p
tZn þ

X
nþ1;N

Xi=
p
N

0@ 1A:
If we define information time t ¼ n=N ð0 # t # 1Þ; and rewrite Zn as Zt and
Bt ¼ Zt

p
t (note that to simplify the presentation, the symbols and expressions

used for the B-values herein are slightly different from those shown in the

previous section), then ZN ¼ Z1 ¼ B1 at t ¼ 1 and the above expression becomes

Z1 ¼ B1 ¼ Bt þ ðB1 2 BtÞ:
Once again, three important properties of this decomposition are listed below:

(i) Bt and B1 2 Bt are normal and independent.

(ii) EðBtÞ ¼ tu and EðB1 2 BtÞ ¼ ð12 tÞu:
(iii) VðBtÞ ¼ t and VðB1 2 BtÞ ¼ 12 t:

These are the basic properties of a Brownian motion process with a linear drift u:
(For the serious readers, refer to the excellent textbook by Siegmund66 for

details.) Note that during the interim analysis, because X1;X2;…;Xn are fixed, Zt
and Bt are also fixed. Only the future observations Xnþ1;…;XN are random.

Therefore, part of the ð100 £ t%Þ variation of Z1 is fixed, and the unconditional
variance VðZ1Þ ¼ 1 is reduced to a conditional variance of VCðZ1Þ ¼ 12 t
according to (iii) above. Similarly, because Bt is fixed, (ii) implies that the

conditional mean ECðZ1Þ ¼ Bt þ EðB1 2 BtÞ ¼ Bt þ uð12 tÞ: Note that the

value of ECðZ1Þ depends on u ¼ m
p
N; which contains the unknown treatment

effect m as a factor. A graphic explanation of this approach to an interim analysis

is given in the example below.

Example 1. (The reader should refer to Figure 14.2 while reading the

example.)

Consider a study with m0 ¼ 0:2: If the desired power is 85%, then solve for N
from 0:2 £ pN ¼ 3) N ¼ 225: Assume interim data were analyzed at n ¼ 90

with a Z-value of 2.864, then the information time t ¼ 90=225 ¼ 0:4 and

Z0:4 ¼ 2:864; a very encouraging result. The corresponding B-value is B0:4 ¼
2:864 £ p0:4 ¼ 1:8:
This trial starts at ðt ¼ 0; Bt¼0Þ ¼ ð0; 0Þ; and the interim position is ðt;BtÞ ¼
ð0:4; 1:8Þ at t ¼ 0:4: From this point on, the trend of the data depends on the

unknown parameter u: Let us consider three relevant trends:

(i) The hypothetical trend u ¼ 3: This one assumes that the treatment
effect m ¼ m0 ¼ 0:2 as assumed and stated in the protocol. During the
design stage, we expect the B-value goes up along the straight line with

slope ¼ 3, and reaches B1 ¼ Z1 ¼ 3 at the end of the study ðt ¼ 1Þ:
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The expected value of Bt at t ¼ 0:4 is 3 £ 0:4 ¼ 1:2: Currently, we
take an interim look and observed Bt ¼ B0:4 ¼ 1:8; which is 50%

greater than 1.2. This indicates that the observed treatment effect 
x is

50% greater than the hypothetical treatment effect m0 stated in the

protocol (i.e., 0.3 vs. 0.2). Note that our current position at (0.4, 1.8) is

fixed. From this point on, the trend of the data depends on the true

value of u ¼ p
Nm: Under m ¼ m0; u ¼ 3 and the future B-values will

move along a line with slope ¼ 3, or, parallel to the line starting at

(0, 0) heading toward (1, 3). At the end of the trial ðt ¼ 1Þ; we expect
the final Z-value to be ECðZ1Þ ¼ 1:8þ 0:6 £ 3 ¼ 3:6; i.e., at an
expected position (1, 3.6).

(ii) Similarly, under the current trend of u ¼ 4:5; ECðZ1Þ ¼ 1:8þ 0:6 £
4:5 ¼ 4:5:

(iii) Under the null trend u ¼ 0; ECðZ1Þ ¼ 1:8þ 0 ¼ 1:8:

Once the conditional mean and variance are determined, the evaluation of CP is

straightforward.

ðiÞ P½Z1¼B1$ 1:96lB:4¼ 1:8; u¼ 3	
¼P

B123:6ffiffiffi
:6

p $
1:9623:6ffiffiffi

:6
p lB:4¼ 1:8; u¼ 3

� �
¼P½Nð0;1Þ$22:12	 ¼ 0:9830

ðiiÞ P½Z1¼B1$ 1:96lB:4¼ 1:8; u¼ 4:5	

¼P
B124:5ffiffiffi

:6
p $

1:9624:5ffiffiffi
:6

p lB:4¼ 1:8; u¼ 4:5

� �
¼P½Nð0;1Þ$23:28	 ¼ 0:9995

4.5
(ii) current trend

3.6
(i) hypothetical
trend
3

(0.4, 1.8) 1.8
(iii) Null trend

(0.4, 1.2)

0 0.4 1.0

1.8
1.2

= 1.5 = 0.3
0.2

τ

FIGURE 14.2 Example of trends.
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ðiiiÞ P½Z1¼B1$ 1:96lB:4¼ 1:8; u¼ 0	 ¼P Nð0;1Þ$ 1:9621:8ffiffiffi
:6

p
� �

¼P½Nð0;1Þ$ 0:21	 ¼ 0:4168

For given Bt at the interim information time t and the linear drift (trend) para-
meter u; the above computations for the CP that Z1¼B1$ c can be summarized

by the following equation:

CP¼P½B1$ clBt;u	 ¼P
B12Bt2 ð12 tÞuffiffiffiffiffiffiffi

12 t
p $

c2Bt2 ð12 tÞuffiffiffiffiffiffiffi
12 t

p lBt;u
� �

¼F
Btþð12 tÞu2 cffiffiffiffiffiffiffi

12 t
p

� �
: ð14:1Þ

B. EFFECT ON TYPE I ERROR RATE

Even though the use of CP as a statistical tool in interim analysis is very natural,

it may affect the a-level and the power of the trial. We only present this effect on

the a-level. (The effect on the power will be similar.) Note that a is evaluated

under the null hypothesis, and therefore, to evaluate the effect of stochastic

curtailment on a; we need to evaluate CP at u ¼ 0: Consider the simple case with
only one interim analysis at t ¼ 0:5 taken, and the DMC decides to stop early and
claim beneficial effect of the new treatment if:

P½Z1$ 1:96lZt¼0:5; u¼ 0	$ g¼ 0:8 or applying Eq: ð14:1Þ above; Z0:5$ 3:61:

Note that the rejection region for the fixed design is {Z1$ 1:96}: With the

stopping potential during interim analysis at information time t¼ 0:5;
the rejection region becomes {Z0:5$ 3:61 or Z1$ 1:96}: It is obvious that the
a-level will be inflated to a value greater than 0.025. For this specific example,
the a-level is 0.02502 — the inflation is almost negligible.

More generally, we may take interim analysis more than once, and it helps

to explore its impact on the inflation of a: Let us consider the case where M
interim analyses were performed at t ¼ 1=M;…;M=M ¼ 1; and conclude that
the treatment is better, if at any interim analysis,

P½Z1 $ 1:96lZt; u ¼ 0	 $ g for some prespecified g ðsay 0:8Þ . a ¼ 0:025:

The effect of stochastic curtailment on the probability of Type I error for g ¼ 0:8
is shown in Table 14.2.

The final row gives the upper bound of the a inflation. The proof of this upper
bound can be found in Lan et al.4

In practice, a few interim analyses on accumulating data via stochastic

curtailment the inflation on a is relatively small. However, most people
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feel uncomfortable with any a inflation, and stochastic curtailment is rather

conservative for early termination and therefore, is rarely used to stop a trial early

for benefit. (It may sometimes be used in corroboration with the group sequential

boundary described earlier.) Let us consider this a inflation from another point

of view, and try to find a remedy in practice to maintain the a-level. Try to
imagine 0.025 is the amount of Type I error probability allowed to be spent for

the entire trial. For a fixed design, we plan to spend all the a ¼ 0:025 at the end of
the study ðt ¼ 1Þ: To allow for early termination for benefit, we increase the

chance of committing a Type I error, or, spend additional a during interim

analyses. Therefore, to allow for early termination and maintain the same

a ¼ 0:025; it is natural to plan on spending the total amount of 0.025 during the
course of the study. This idea has already been elaborated in the previous section

on the GSMs and a spending function approach. It should be noted that CP is

used mostly for early termination of a trial for futility, though recently it has been

often applied in sample size reestimation (SSR).

C. TWO-SAMPLE COMPARISONS

The idea of B-value introduced for the one-sample case can be extended to

various two-sample comparisons. Let us consider some cases where the method

applies.

1. Comparisons of Two Means

Let us assume that the response from a test treatment group patientX , NðmX;s
2Þ

and the response from a control treatment group patient Y , NðmY ;s
2Þ:We are

interested in testing

H0 : mX ¼ mY vs: Ha : mX . mY :

Assume the target sample size is N and there will be ðN=2Þ patients equally
randomized to each of the new treatment and standard treatment groups, and s is
known. In practice, s is replaced by the sample standard deviation. The test

TABLE 14.2
Stochastic Curtailment on Type I Error Rate

M Type I Error Rate (a)

1 0.0250

5 0.0255

8 0.0259

12 0.0263

· · · · · ·

! 1 ! a/g ¼ 0.0250/0.8 ¼ 0.03125
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statistic in this case is simply

Z ¼ 
X2 
Y

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=M þ 1=M

p ¼ 
X2 
Y

s
ffiffiffiffiffiffi
N=4

p and

EZ ¼ mX 2 mY

s

ffiffiffi
N

p ffiffiffiffiffiffiffiffiffi
1

2
£ 1

2

r
¼ D

ffiffiffi
N

p ffiffiffiffiffiffiffiffiffi
1

2
£ 1

2

r
:

The first factor D is sometimes called “Cohen’s delta”— a standardized treatment

effect. In fact, it is simply the anticipated treatment difference expressed in units

of standard deviations. Inside the square roots, the first factor N is the total sample

size, and the second factor ð1=2Þ £ ð1=2Þ is the two-sample factor indicating
that the patients are equally allocated to the new test and standard treatment

groups. For a “1:2” allocation of patients, the two-sample factor will become

ð1=3Þ £ ð2=3Þ ¼ 2=9:
To evaluate the sample size for given a; b and D; solve for N from the

equation

EðZÞ ¼ D
p
N
pð1=2·1=2Þ ¼ D

pðN=4Þ ¼ za þ zb:

During interim with n combined observations, t < n=N: This approximation
formula is very accurate in practice, assuming the randomization allocates about

the same number of patients into each group. A rigorous definition of t can be
found in Lan and Zucker33 and Lan et al.52

2. Comparison of Two Survival Distributions

Denote the hazard functions as lT and lC; respectively, for the new test and the

standard control treatment groups. Under the proportion hazards assumption,

lc=lt ¼ HR is a constant over follow up time. Under this framework,

EðZlogrankÞ ¼ lnðlc=ltÞpðD=4Þ ¼ D
pðD=4Þ;

where D is the expected number of events (e.g., deaths) in the trial. To evaluate

the sample size N for given a; b; and D; we first solve for D from the equation

EðZÞ ¼ lnðlc=ltÞ
pðD=4Þ ¼ za þ zb:

Randomize N patients into the study and follow them untilD events are observed.

Note the equation above is similar to that for the comparison of two means.

The treatment effect D is replaced by lnðlc=ltÞ and N is replaced by D; the
expected number of events in the study.

Example 2. The Beta-Blocker Heart Attack Trial (BHAT)67,68 was a random-

ized trial sponsored by the National Heart, Lung, and Blood Institute (NHLBI).

The trial compared propranonol (a b-blocker) with placebo in 3,837 patients and
the primary endpoint was total mortality of all causes. On October 2, 1981,

Interim Analysis and Adaptive Design in Clinical Trials 273



BHAT was terminated 9 months earlier than scheduled because of an observed

benefit of propranonol. Right before the final DMC meeting, the observed

number of events was d ¼ 318; and the final number of events was estimated to
be D ¼ 398: The information time for the DMC meeting was t ¼ 318=398 ¼
0:8; with Z0.8(logrank) ¼ 2.82 and a B-value B0:8 ¼ 2:82 £ p0:8 ¼ 2:52: If the
proportional hazards assumption was valid, then:

(a) Under the current trend, ECðZ1Þ ¼ 3:15 and CP ¼ 99.61%.

(b) Under the null trend, ECðZ1Þ ¼ 2:52 and CP ¼ 89.44%.

3. Comparison of Two Proportions

Same as in the case of two means, except that the Xs are Bernoulli ðpXÞ and the
Ys are Bernoulli ðpY Þ: The role of s is replaced by pð12 pÞ:Again, during interim
analysis with n combined observations, t < n=N:

a. Bayesian Intuition

Note that during interim analysis, the CP depends on the unknown value of the

treatment effect, u; which determines the distribution of future observations.
During the DMC meetings, the DCC may present CP(u) for a spectrum

of values of u: The DMC members then use this information to determine

whether the trial should be terminated early. A Bayesian approach would use the

predictive probability69 — a weighted average of CP(u) by the posterior

distribution of u — for consideration of early termination. In practice, we have

found that this Bayesian approach has been applied frequently in some informal

way.70 First, the DMC members have different scientific backgrounds, and each

member uses his/her own prior distribution, which may not be the same for all

the members. Second, these members may have different exposure to the new

test treatment. Note that the clinicians on the board are experts in the therapeutic

areas being studied; they may have access to external information about the

new treatment, which they may not be allowed to share with other members

of the DMC. Finally, when a DMC member gathers all the information available,

the member probably may not formally derive a predictive power, but may

derive some intuitive value, and therefore, the somewhat Bayesian decision may

well be reflected in the vote on early termination.

To control the a-level, CP should be evaluated at u ¼ 0: If CP(0) is high,
then the use of CP to stop early for benefit will only inflate the a-level
slightly. This special aspect is only a small part of the CP consideration

during the discussion in the DMC meetings. The informal Bayesian

modification as described above and other medical considerations frequently

carry much more weight than the control of the a-level in the early stopping
decision process.
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D. SAMPLE SIZE REESTIMATION (SSR)

The CP approach can be easily extended to modify the sample size in midcourse

of a trial when the treatment effect size D is estimated from the interim data. If the

CP is used to stop a trial early to claim futility, the a-level will be reduced.
This reduction can be used to compensate for the inflation of the a-level caused
by the modification of the sample size during the trial.

Now, consider a design with an interim analysis where the data are analyzed

at the information time t; use the sample estimates for mx; my; and s (in a simple
case of comparison of two means) to evaluate the CP under the current trend and

apply the following rules:

1. If CP # gL (lower limit), stop the trial and accept H0.

2. If CP $ gU (upper limit), continue to the scheduled end of the trial and
reject H0 if the final Z $ za:

3. If gL , CP , gU; then reestimated the sample size to mN ðm . 1Þ and
extend the trial so that CPmN (the CP under the current trend after trial

extension to mN patients) ¼ gU. Reject H0 if the final Z $ za:

A simulation study by Lan and Trost71 demonstrated that under very general

conditions, the Type I error rate can be preserved.

VI. ADAPTIVE DESIGN

What is “adaptive design”? Simply, adaptive design is used loosely to capture

the entire process of taking an interim look/analysis at the accumulating data of

an ongoing clinical trial, then modify aspects of the trial design, conduct, and/or

analysis in midstream of the trial based on feedback or learning from the

interim results. This allows one to improve expected trial outcomes during the

experiment, while still being able to carry out GCP and reach good statisti-

cal decisions in a timely fashion. Therefore, adaptive design sometimes can

offer significant ethical and cost advantages over standard fixed design.

Historically, there has not been enough statistical research to support the need

for an adaptive design in clinical trials. The major concern lies in that potential

bias may be introduced by a midcourse change in clinical practice resulting

from the interim analysis. Nonetheless, the bias can be minimized and the

integrity of the trial can be preserved when dissemination of the unblinded

interim results is restricted and is on a “need to know” basis. That is, the interim

results should not be made available to those directly involved in the

operations of the trial (e.g., investigators, monitors, and some key clinical

project members).

Undoubtedly, adaptive design and interim analysis are closely related.

Via interim analysis the adaptive design injects appropriate midstream trial
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design and conduct modifications (see Whitehead et al.,72 Hwang,73 Wittes,74).

These may involve the following, for example:

† Fine tune patient entry (inclusion/exclusion) criteria.

† Switch trial objectives and/or change trial endpoints.

† Extend a trial in upward sample size adjustment (SSR) or trial duration.

† Drop treatment groups/arms and reallocate patients.

† Stop trial early for overwhelming efficacy, futility, or harm.

† Select doses.

† Modify analytic methods.

Any adaptive design features should be defined in the protocol a priori

closely in junction with the interim analysis plan. Adaptive design can be grossly

classified into two categories: Interim adaptation and stagewise adaptation. We

will briefly review these designs without technical details as follows.

A. INTERIM ADAPTATION

This class of adaptive designs involves the use of an internal pilot74–77 or an

interim analysis to evaluate accumulating data in midstream using GSMs, CP, or

combination. (Because both the GSMs via error rate spending and CP approaches

were discussed extensively in Sections IV and V, no further discussion will be

given herein.) The data of the internal pilot or interim analysis are considered as

an integral part of the accumulating data of the trial. At conclusion of the trial all

data are pooled for analysis as a whole. Internal adaptation is applicable to both

early phase exploratory as well as late phase confirmatory trials with more use in

the latter. In particular, extensive work has been engaged by many authors in

sample size reestimation and/or trial extension (Gould,78 Gould and Shih,79

Herson and Wittes,80 Proschan and Hunsberger,81 Shih and Gould,82 Lan and

Trost,71 Cui et al.,83 Gould,84 Denne,85 Li et al.,86 Proschan et al.,87 Jennison and

Turnbull,88 to name just a few). Few others have also researched in interim

change of objectives and/or endpoints.89 Estimation of parameters can be carried

out via interim analysis based on either blinded or unblinded data. The effects on

both the Type I error rate (a) and power ð12 bÞ are in general small in

magnitude. When using the GSMs for sample size reestimation the need for

modification in a spending and information time should be incorporated. While

the CP approach via the B-values is simple to use, one must choose an appropriate

trend (currently observed, null, or hypothetical one) to follow. It is unclear as to

how many adaptations are feasible and acceptable, though in general, the

consensus is once in the early or midstage, but not in the very late stage of the

trial. Many authors prefer sample size reestimation be performed on blinded data

to minimize possible bias and maintain trial credibility. Nonetheless, without

knowing the observed treatment effect at interim, sample size reestimation might

be “shooting darts in total darkness.” In particular, if the observed treatment

Statistics in the Pharmaceutical Industry276



effect is in fact substantially smaller than expected, it is doubtful whether one

should increase the sample size at all, regardless of the observed variance.

B. STAGEWISE ADAPTATION

Stagewise (external) adaptation involves a stepwise testing scheme. In a simple

and straightforward two-stage design it begins with a small pilot study and

follows up with an extended large main study. Then, global results are obtained

and decision making is reached by combining p-values, not pooling data of the

pilot and main studies. The small pilot study is “external” to the main study and

the pilot and main are considered independent studies. Stagewise adaptation can

be two- or multi-stage, but it seldom goes beyond three stages in practice. In early

phase of new drug development the following situations a priorimay be relevant

for use of the stagewise adaptation design:

† The objectives of the trial are not well defined.

† The clinically relevant endpoints are not well known.

† The treatment effect size or clinically meaningful difference is unsure.

† The variance is uncertain.

† The therapeutic or effective doses are not readily determined.

The stagewise adaptation design, in contrast to group sequential designs, allows

for an estimation of the final sample size using the results of the pilot study.

The approach is based on the combination of the independent one-sided p-values

of the sequence of pilot and main studies by Fisher’s combination test. This

procedure is well described by Bauer and Köhne90 and it can be briefly

summarized for a two-stage design as follows:

† Plan and conduct two independent randomized studies in sequence:

namely, a small external pilot study and an extended large main study.

† Utilize information from the pilot study to adapt the main study for

refined design and conduct (e.g., relevant objectives, endpoints, patient

entry criteria, sample size, effect size, variance, and dose). Also, obtain

the p-value, p1; of the pilot study.
† Let aL; ca # aL # a be the lower critical limit so that p1 # aL rejects

the null and stops at the end of the pilot study (claim effect early),

where ca is the critical value for the combination test at the end of trial.

Let aU; a # aU # 1 be the upper critical limit so that p1 $ aU accepts
the null and stops (claim no effect at all). Otherwise, adapt the main

study for the second stage.

† At the end of the main study combine the p-values of both the pilot ( p1)

and main ( p2) studies to a global test by Fisher’s product criterion so

that reject the null, when p1p2 # ca: A practical choice for early phase

exploratory trials could be aU ¼ 0:5; aL ¼ 0:0233; and ca ¼ 0:0087 at
a ¼ 0:05: For an experiment wise Type I error rate (a ¼ 0:10; 0.05,
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0.025, 0.01) possible values for aL; aU; and the corresponding ca can
be found in Table 1 of Bauer and Köhne.90

Stagewise adaptation design represents a flexible alternative to fixed design

in the case of uncertainty to make a definitive decision. In particular, it adapts to

the experimental paradigm of clinical pharmacology — stepwise and flexibility.

A price to pay is statistical power loss due to combining p-values instead of

data pooling as well as potential time increase due to stagewise design. For

additional work in stagewise design, refer to Bauer and Röhmel,91 Hothorn and

Martin,92 Posch and Bauer,93 Liu and Chi,94 and Posch et al.95 Also, Chapter 13

provides the adaptive design perspective on interim analysis and bias in clinical

trials.

VII. DISCUSSION

Performing planned interim analyses on accumulating data in clinical trials is

a frequent and often necessary practice. Recent development of sequential

methodology has had a major impact on the design and analysis of controlled

clinical trials. This is evident in large clinical trials with long term patient follow

up, in particular, the confirmatory trials that are government or industry

sponsored. For ethical, economic, and/or administrative reasons (not strongly

recommended), interim analyses are often planned and conducted in clinical

trials for evidence of safety and efficacy. Undoubtedly, interim analysis, planned

or unplanned, in particular the latter, may introduce bias and inflate the error

probabilities. ICH E9 Guidance9 has raised serious concerns about improper

planning and conduct of interim analysis. Specifically, it calls for “all interim

analyses should be carefully planned in advance and described in the protocol.

Special circumstances may dictate the need for an interim analysis that was not

defined at the start of a trial. In these cases, a protocol amendment describing the

interim analysis must be completed prior to unblinded access to treatment

comparison data. … The execution of an interim analysis must be a completely

confidential process because unblinded data and results are potentially involved.

The staff involved in the conduct of the trial should remain blind to the results

of such analyses, because of the possibility that their attitudes to the trial will

be modified and cause changes in the characteristics of patients to be recruited

or biases in treatment comparisons. … Any interim analysis that is not planned

appropriately …may flaw the results of a trial and possibly weaken confidence in

the conclusions drawn. Therefore, such analyses should be avoided. If unplanned

interim analysis is conducted, the study report should explain why it was

necessary, the degree to which blindness had to be broken, provide an assessment

of the potential magnitude of bias introduced, and the impact on the interpretation

of the results.”

Recent developments in sequential methods have been fruitful. In particular,

the error rate spending function and CP approaches (either used independently
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or in combination) have rendered useful and flexible tools. Along with the global

regulatory guidance and education in clinical trial conduct have brought better

understanding and thus provided logical avenues of planning and conducting

interim analysis in clinical trials. Involving independent DMC that charters data

and safety monitoring and trial decision-making recommendations (e.g., early

trial stopping) for the sponsor further has strengthened the credibility and

integrity of the trial.

No one could foresee all aspects of a trial in advance, particularly, in cases

where the trial involves brand new therapeutic/disease areas and therefore,

adaptive design in many situations is a necessity. It is possible to rescue or salvage

a costly critical trial in midcourse via adaptive design and interim analysis. Most

often, it involves sample size reestimation or trial extension. Occasionally, it may

involve switching trial objectives or curtailing ineffective or toxic treatments/

doses. Again, the error rate spending function and CP approaches are proven

useful.

It is possible to salvage a trial in midcourse (e.g., for lack of power), but the

adaptability to do this always has a price (e.g., bias, error probability inflation,

more patients, longer duration, more costly, and trial credibility compromise).

Therefore, it is advisable to think through all aspects of the trial including the

power requirement fully in advance before finalizing and launching a trial.

It should be borne in mind that adaptive design is by no means a cure all - it

mends mild deficiency at midcourse of a trial, but it would not cure a poorly

designed and executed trial. Regardless of the design or sequential methods

chosen, it should be planned a priori at trial design and executed according to

GCP and good statistical practice (GSP); the ultimate goal should always be

to minimize bias and control error probabilities to maintain the scientific and

ethical integrity of the trial.
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I. INTRODUCTION

The Food and Drug Administration (FDA) is responsible for evaluating the data,

statistical analyses, reliability, and validity of conclusions of clinical studies

performed by sponsors including the pharmaceutical industry and submitted to

FDA in support of the efficacy and safety of new drugs. Also, the FDA reviews and

comments on important protocols submitted by the pharmaceutical industry or

other sponsors prior to the conduct of these trials, and evaluates the data and

conclusions from completed studies submitted in a NewDrugApplication (NDA).

In many situations the appropriateness of an analysis with data monitoring

strategies and interim analysis is a critical issue in the evaluation of the evidence.

There has been a tremendous change in the environment for data monitoring

and interim analysis of clinical trials over the last decade. While the initial

experience with data monitoring occurred in large government-sponsored trials,

the recent experience has shown an increase in such trials conducted for

the pharmaceutical industry. Much of the early experience gained from
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government-sponsored trials involved data monitoring carried out by a committee

assigned for that function. The data monitoring is a critical function put in place to

protect patients in clinical trials and to maintain the integrity of the trial under

unmasked access to trial data. The statistical analysis of comparative interim study

results is an important strategy that helps in making critical decisions regarding

the continued conduct of a clinical trial to meet its intended objective and the

termination of trials when the risk to patients is determined to be unwarranted.

Several factors have made the early access to and analysis of accruing data a

reality. One such factor is the advances in computerization, which ensures timely

entry of clinical trial data from case report form into a computer data base, and its

timely auditing and cleaning through call backs and visits to the site. Improved

electronic data collection strategies are emerging all the time. Another is that

virtually all trials for life-threatening diseases are carried out with some type

of monitoring and interim analysis, and it is almost standard practice today that

such methods are planned in the protocol. Just as important to the increased

consideration of interim analysis strategies is the current availability of a variety of

statistical methodologies, computer programs to implement them, and the

continuing development and refinement of statistical methodologies to guide

decision making for trial planning, monitoring, and early termination, including

PEST Reading University,1 EAST 2000 from Cytel Software,2 and SeqTrial

from MathSoft.3

Another example of data monitoring strategies receiving attention is the

recent research in adaptive designs to deal with midcourse changes of study and

sample-size reestimation, but currently there are few examples of actual

implementation. For that reason, this chapter will not consider this issue further.

Finally, an important stimulus to data-monitoring practices is the monitoring

of multiple trials within a drug-development program. Pharmaceutical sponsors

are increasingly subject to intensive time pressure in drug-development

strategies and there are examples of blending/compressing earlier phase studies,

perhaps dose ranging/response studies with later phase efficacy confirmatory

trials. In a drug-development environment focused on earliest time to market,

especially for new therapies, multiple confirmatory trials may be ongoing

simultaneously under vague monitoring strategies. The monitoring function

for these broader situations may or may not be carried out by a formally

established data-monitoring committee (DMC), but when it is, the methodo-

logies used and the role of the DMC, for both independently externally

monitored trials and internal pharmaceutical sponsor monitoring, need written

operating standards.

II. A BRIEF REGULATORY HISTORY

The following is a brief regulatory history of the attention given to datamonitoring

and interim analysis. Federal regulations recognize the role for monitored
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clinical trials that incorporate interim analysis. Section 314.126(7) of the Code

of Federal Regulations4 concerns the criteria for an adequate and well-controlled

study and it states that there should be an analysis of the results of a study

adequate to assess the effects of the drug. The regulations state that the effects

of any interim analysis performed should be assessed.

In 1985, an amendment to these regulations (CFR 314.50(d)(6)) introduced

the requirement for the type and format of documentation of evidence of efficacy

and safety that is generally required to be submitted in a NDA by a sponsor.

This amendment introduced the requirement for a separate Statistical Section as

one of the technical sections to be submitted by a sponsor in a NDA.

To implement this change, in July 1988, FDA updated its guidelines for how

sponsors prepare these clinical and statistical sections of a NDA. In the Guideline

for the Format and Content of the Clinical and Statistical Sections of a New Drug

Application,5 the FDA expressed the need for full documentation of all interim

analyses, formal or informal, performed for any clinical study. This requirement

for documentation of all interim analyses was intended to address those studies

that were planned, designed, and analyzed in some formal manner, though FDA

was aware that studies were being monitored and analyzed without any formal

prospective plan. This guidance has been updated and much of its content

incorporated in an international guidance called ICH E3 Structure and Content

of Clinical Study Reports.6

In the early 1990s, most of the discussions in the statistical and clinical trial

literature concerned models and methods for monitoring large publicly funded

mortality endpoint trials. Because there was little in the literature that concerned

the process of data monitoring and interim analysis as carried out by the

pharmaceutical industry, it was decided that these evolving issues needed

broader input. FDA held a public workshop7 in conjunction with the

Pharmaceutical Manufacturers Association (PMA) on the topic of clinical trial

monitoring and interim analysis in pharmaceutical industry-supported trials. It

was the first time FDA publicly addressed how the pharmaceutical industry was

utilizing data-monitoring strategies including the statistical methods

in monitoring clinical trials, and how these processes and procedures for

monitoring trials were implemented. A position paper from the industry, under

the Writing Committee chairmanship of Ronald Kershner, reflected the issues

and concerns at that time, and a meeting in 1993 at the National Institutes

of Health (NIH) on data monitoring covered some of the industry8,9 and

regulatory concerns.10

A summary of the themes covered at the February 1993 workshop included:

1. Clarifying the purposes and procedures of monitoring industry-

sponsored trials for unexpected toxicity and efficacy.

2. Operational aspects of implementing trial monitoring, including the

responsibilities, organizational structures, and standard operating

procedures (SOPs) for monitoring a study.
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3. The statistical aspects of planning interim analyses of an interim

analyzed trial with stopping rules (strategies, boundaries) for reaching

planned completion of a trial with multiple endpoints and subgroups.

4. Reporting and documentation of how the trial was actually carried out

including relevance of the analysis to what was planned as well as

to what was actually carried out.

5. What types of communications, interactions, and information flow

among the sponsors, DMCs, and FDA are appropriate including types

of confidentiality of sharing of the results.

6. What types of trials should have external DMCs.

7. Which types of trial monitoring and situations allow for no penalty

statistical looks.

The most visible and perhaps impactful contribution to the regulatory

perspective on interim analysis and data monitoring came about during the last

part of the 1990s. The International Conference on Harmonization (ICH)

of Technical Standards11–13 is an effort of three regions, viz., the United States,

Japan, and the European Union, with the pharmaceutical industry and regulators

in those regions to standardize criteria for clinical trials as well as other topics.

The ICH E9 Statistical Principles in Clinical Trials14 is a guidance, finalized and

made available in 1998, which addresses mainly statistical concepts including the

role of data monitoring primarily from the statistical perspective. There are four

sections of the ICH E9 guidance, which address aspects of data monitoring and

interim analysis.

The first is Section 3.4, which describes the use of Group Sequential Designs

for the purpose of conducting interim analysis. While it is recognized that these

designs are not the only designs for this purpose, the practicality of assessing

outcomes by treatment group at periodic intervals during the trial is appreciated.

In this section there is a description of the need for statistical methods to be fully

specified in advance of the availability of the treatment outcomes and subject

treatment assignment. This section also contains a discussion of an independent

data-monitoring committee (IDMC) defined in ICH E615 to review or to conduct

the interim analysis, and it recognizes that the design used most widely and

successfully in large, long-term trials of mortality and major nonfatal endpoints

is also used in other trials. In particular, it is recognized that safety must be

monitored in all trials and thus the need for formal procedures to cover early

stopping for safety reasons is encouraged.

The second is Section 4.1, dealing with trial monitoring and interim analysis.

Here there is a distinction made between two types of monitoring. One type

concerns the oversight of the quality of the trial, while the other involves the

breaking of the blind (unmasking) to make treatment comparisons (i.e., interim

analysis). Each type of trial monitoring entails different staff responsibilities and

involves access to different types of trial data and information. It is noted that

different principles apply for the control of potential statistical and operational
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bias in each of these situations. Emphasis is made that the protocol or appropriate

amendments prior to a first analysis should contain the statistical plans for

the interim analysis to prevent bias.

The third is Section 4.5, on interim analysis and early stopping, containing

a definition of what is considered an interim analysis, and the various goals of an

interim analysis. The concepts of stopping boundaries and flexible alpha

spending functions are described. There is a reinforcement of the principle that

the execution of an interim analysis should be a confidential process and that all

staff (other than the IDMC) involved in the conduct of the trial should be blind to

the results of such analyses. This is because of the possibility that their attitudes

to the trial will be modified and cause changes in the characteristics of patients to

be recruited, thus causing biases in treatment comparisons. Most clinical trials

designed to support the efficacy and safety of an investigational product should

proceed to full completion of planned sample-size accrual. It is also recognized

that only a subset of trials will involve the study of serious life-threatening

outcomes or mortality, which may need sequential monitoring of comparative

treatment effects. The guidance recognizes the need for external IDMCs for some

trials of major public health importance. It also recognizes that when a sponsor

assumes the role of monitoring safety and efficacy comparisons with unblinded

access to data from a clinical trial that the sponsor financed, special care should

be taken to protect the integrity of the trial and limit appropriate sharing

of information. A strong recommendation against unplanned interim analysis

is given.

The fourth is Section 4.6, which discusses the role of the IDMC. Here there is

a call for written operating procedures and the maintenance of records of all its

meetings, including interim results that would be available for review at trial

completion. The independence of the IDMC is emphasized to control the sharing

of important comparative information and to protect the integrity of the trial from

adverse impact resulting from access to trial information. Also included is a

general statement about composition of the committee containing clinical

trial scientists knowledgeable in the appropriate disciplines, including

statistics. Finally, there is the clear advice that if pharmaceutical sponsor

representatives are on the IDMC, operating procedures of the committee should

be defined to control dissemination of interim trial results within the sponsor

organization.

In recognition of the increasing attention to the data-monitoring function and

the concept of an independent DMC, FDA in 2001 issued for public comment

a draft guidance for clinical trial sponsors titled On the Establishment and

Operation of Clinical Trial Data Monitoring Committees.16 One of the issues

addressed in this draft guidance is the concept of the independence of the

committee and especially of the statistician who has access to unmasked or

unblinded grouped efficacy and safety comparisons. Here are some of the

concerns regarding the potential bias that might be introduced during the interim

analysis and data-monitoring process when independence among trial conduct,

trial analysis, and monitoring is an issue.
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III. INTRODUCING BIAS INTO THE MONITORING

PROCESS: SOME CONCERNS

From a statistical perspective there are two sources of bias which may be of more

or less concern depending upon the independence of the group charged with

monitoring a clinical trial. The first source relates to the process of monitoring

a trial that may unblind the trial in subtle or partial ways to participants,

investigators, or possibly to management of the trial’s sponsor. This may have

potential for influencing biased allocation schemes for future patients entered

into a trial, changing the outcome or assessment criteria during the trial in

a manner to inappropriately optimize observed effects for a treatment, dropping

centers or sites that may be experiencing less favorable relative treatment

benefits, or changing the protocol in some way that is not taken into account in

the ultimate analysis. All these issues impact on the relative treatment

comparisons in ways that may produce estimates or inferences not reflecting

the true effect of a test drug in the appropriate patient population, especially

when not discussed, analyzed, or documented in a trial report.

The second source of bias relates to the appropriate statistical quantification

of uncertainty, usually captured in calculation of p-values and more specifically

in estimates of treatment effects, confidence intervals for the treatment effects,

and other measures of statistical uncertainty. Most clinical trial questions

are posed in terms of a hypothesis and the statistical research on repeated

significance testing of accumulating data in clinical studies has articulated well

the implications on Type I error of excessive statistical tests of hypotheses,

the probability of concluding that a drug produces an effect when in fact it

does not.17,18

Thus, the changes and new guidances that have evolved over the last decade

or so can be viewed as the FDA’s intent to minimize naive or unknowledgeable

clinical trial practices that can potentially adversely impact on the credibility of

a trial submitted for regulatory purposes.

The population of controlled clinical trials submitted to the FDA generally

fall into three classes:

1. Trials with IDMCs (external to the sponsor), most of which are in

life-threatening diseases or use mortality endpoints. These trials

should have and almost always do have protocols that use planned

interim analysis strategies employing some form of group sequential

methods with stopping rules specified in various levels of detail.

There are several models followed in these trials, the most frequent

of which is along the lines of the large government-sponsored trials

by the NIH.

2. Trials in nonlife-threatening diseases, which do not have independent

(e.g., internal to the sponsor) DMCs to monitor and may have

unplanned analysis or unusual proposals for termination (usually with

no published methodology), or questions regarding termination not
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planned in the protocol. This is the population of trials that can be

problematic and these trials are discouraged.

3. Controlled trials for which the trial sponsor has no expressed intention

of terminating earlier than planned completion (assuming this is well

stated in a protocol) but which are being monitored for safety but not

formally for efficacy outcomes.

The FDA’s advice to sponsors for these trials is consistent with the principles

in the ICH E9 guidance discussed above. We describe in the next sections

the spirit of this advice.

A. PROTOCOL

The monitoring of interim results should be planned in advance, preferably with

a limited number of interim analyses focused on key endpoints. A protocol should

describe:

Sample size planning assumptions, duration or follow up, and degree

of certainty in these planning estimates (e.g., target event rates and minimal

difference between treatment and control worth detecting), and also the degree

of skepticism regarding the expected treatment effects, etc.

Strategies or contingency plans for stopping the trial earlier than planned in

the case of efficacy monitoring and toxicity monitoring (each may require

separate decision criteria and boundaries that can be asymmetric) should be

described. If group sequential methods are used, there should be some discussion

of the timing and number of looks, at least the class or shape of the Type I

spending function that is planned to be used and not changed as a result of

data-driven analyses.

There are a number of routine situations of interest which must be dealt with.

These situations include terminating a trial for better than expected efficacy,

terminating a trial for lack of expected efficacy, terminating a trial for

unexpected toxicity, modifying a trial design on the basis of comparative results

observed during the monitoring of the trial, dropping one arm of a trial in a

multi-arm trial, and adjusting the sample size of a trial upwards to maintain

planned statistical power because of lower event rates or higher variability than

hypothesized.

Statistical methodology is now available to appropriately deal with each

of these situations, or at least provide a sensible strategy to follow. However,

practitioners may not either be aware of the need for it or ignore it. This is why

the training of DMC members in the theory and methods of interim analyses is

needed for modern trials that will be subjected to interim analysis. Trial planners

should be well trained in these methods and with case studies of other monitored

trials as the success and integrity of a clinical trial depends upon how well these

concepts are planned and articulated in the protocol and handled in committee

decisions.
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B. ADMINISTRATIVE LOOKS

The pharmaceutical industry in the late 1980s and early 1990s proposed the

concept of administrative looks, which are intended, among other things, to allow

for access not only to summaries of patient entry characteristics, accrual patterns,

and other administrative data of interest, but also to relative treatment differences

on primary and secondary outcomes during the trial but with no expectation

to change, modify, or terminate the trial.

The concept of an “administrative” look cannot be separated from the data-

monitoring responsibility. Particularly important is the issue of access to

unblinded summarized group results of efficacy and safety outcomes and the

potential, regardless of intention, of possible early stopping, possible upsizing or

downsizing of the trial, changing endpoints in a manner that favors one treatment

group, or other variations. As a result of such an administrative look, it is natural

to ask questions regarding the practices, procedures, reporting, and documen-

tation requirements regarding unblinding of trial results: who has access to the

data in the decision-making chain, what safeguards there are for maintaining the

integrity of the trial, which trials deserve internal versus external monitoring

groups, or when is it advisable to use external monitoring committees versus

internal monitoring committees, etc. Any “administrative look” at accruing study

results which is not intended to stop a trial early but which allows for unblinded

relative treatment efficacy comparisons should be done cautiously in a manner

that does not allow early termination of a trial for rejection of the null hypothesis.

This can operationally be accomplished by use of a very conservative spending

function during the entire duration of the trial, which essentially leaves one with

the same statistical criteria at the completion of a trial as a fixed trial concept

would have achieved.

These issues speak to the need for planned SOPs to be in place prior to a trial so

as to ensure that unanticipated decisions are made in the context of some planned

structure and that all responsible parties are aware of the issues beforehand.

In a broader context, the FDA is concerned about its proper role in the

interaction with sponsors, and with IDMCs external to the sponsor and the

mechanisms for flow of information, particularly in life-threatening disease areas

where special regulations focus on expediting therapies to patients. An evolving

consensus is that the FDA does not need to be in any decision-making role for a

study or an IDMC. Therefore, the FDA has considered it unwise for staff to be

made aware of or have access to unmasked interim treatment effects by group and

to be brought into the decision-making process for whether a trial should continue

or be terminated. This is a sponsor responsibility in conjunction with the

recommendation of its data safety monitoring committee.
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I. THE PROBLEM: INTERINDIVIDUAL HUMAN BIOLOGICAL

VARIATION AND DRUG RESPONSE

Traditional drug development from a statistical perspective is focused on the

marginal fit of the drug to the average of the population. The entire process of

development of compounds during the preclinical phase is based on a

mechanistic reductionist approach to human biology which must ignore

interindividual human biological variation because of the nature of the process.

Towards an attempt to identify compounds that are most likely to succeed in the

clinic, during this phase there are numerous, extensive, carefully designed studies

on the absorption, distribution, metabolism, excretion and toxicity of compounds.
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Despite these extensive efforts there is an industry-wide high failure rate of

compounds that reach the clinical phase of development. Compound toxicity and

unanticipated biological complexities are two primary reasons often causing

failure. Such failure also reflects the pervasive nature of human interindividual

variation in the population that is not sampled extensively for safety and rigorous

clinical design reasons, during the clinical phases of compound development. It

has been recognized that having additional knowledge about relevant features of

biology, reflected as biomarkers of drug response, may facilitate higher success

rates for compounds which reach the clinic.

Technological advances have resulted in unprecedented capabilities for

measuring human biology at the genetic, gene expression, protein and metabolite

levels. Such capabilities present innumerable possibilities for these measures on

each subject in a study, across different levels in the biological hierarchy from

genes to metabolites with the expectation that knowledge and analysis of these

vast numbers of measures will facilitate the development of safer, more effective

compounds. This expectation comes with the realization that, by studying

interindividual variation in such measures in relation to the same in drug

response, the possibility that subgroups of subjects in the population that would

be more appropriate to receive the drug than others, may be identified. There is a

fundamental tension developing between the traditional treatment for the average

of the population and the desire to treat the individual. This chapter will focus on

key statistical challenges faced by pharmacogenomics studies of human disease

and drug response, especially the genetics studies.

II. COMPLEX ADAPTIVE SYSTEMS, HUMAN

HEALTH, AND DRUG RESPONSE

The following often ignored features of complex adaptive systems are relevant to

the statistical analyses and study design as statisticians are presented with such

vast numbers of measures of human biology in studies, conducted to understand the

role of interindividual variation in any one or combination of these measures

in the risk and progression of disease and drug response. Each individual in

the population is a complex adaptive system and the fundamental unit of

organization.1 This means that the functional phenome type of the individual is

dynamic with time. At any point of time, the functional phenome type is the product

of the interaction between the unique genome type of the individual and suite of

internal and external environmental experiences specific to the individual over its

lifetime to that point.2,3 This individual-specific genome type-environment

interaction is ignored because the individual is considered as the experimental

unit in designed clinical trials, with a necessity to focus on a small number of highly

specific features of biological complexity as measures of response or covariates in

relation to drug response. Traditionally, the other unmeasured aspects of biological

complexity may be simultaneously coupled to the response and other covariates

of drug treatment, as part of this genome type-environment interaction
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for the individual. Such complexities are captured as part of the random error term

in the statistical model. To assume the random error term as independent and

identically distributed among experimental units, has critical implications when

considered in the context of these complex biological interactions and attempts to

reveal the aspects relevant to prediction of drug response or risk of disease. The

advances in technological capacity to measure human biology now presents a

paradox to the statistician in collaborating with physicians, geneticists and bio-

logists, as decisions must be made as to where and how to include many such

measures that should not be considered part of the random error term.

Some measures of health or disease or drug response may be emergent

features based on interactions among many agents, including genes, proteins,

metabolites and environments that include drugs.1 Emergent features, by

definition, are not predictable from the considerations of separate contributions

of agents in models. Manifestation of such emergent features is the result of

complex, nonlinear, dynamic interactions among agents. One of the most

difficult challenges for statisticians is to discover the salient aspects of such

emergent features which are detectable in statistical interactions. This is at least

partly true because of the vast potential for the considerations of prospective

interactions in statistical models where so many agents can now be measured for

each subject. These interactions will often be considered in simple, linear,

additive models with relatively small sample sizes. Such linear, additive

modeling approaches may often fail to detect important interactions and will

only serve as first approximations attempting to identify some relevant features

of the biology. Of course trade-offs are needed to simplify the complexity in

modeling efforts. Solely using such simple approaches might lead to missing

much relevant biology, and it is clear that more sophisticated interaction models

are needed.3–6

The many agents in human complex adaptive systems participate in a

dynamic network and most may not be direct causes of disease, health or drug

response.1 Despite the tremendous successes in identifying single genes

responsible for human inborn errors of metabolism and mutations, such diseases

represent only a small fraction of the noninfectious human disease load. The bulk

of the noninfectious human disease load is due to complex, multifactorial

disorders.7 For these diseases, there is likely to be a more extensive, but largely

unexplored, role of interindividual genetic variation in the dynamics of network

of agents that would facilitate an enhanced understanding of interindividual

variation in human disease and drug response.8,9 The majority of human studies

outside the pharmaceutical industry are based on single cross-sectional samples

from the population of inference. The longitudinal nature of clinical trial, coupled

with its tremendous capacity to measure human biology, presents unprecedented

opportunities to model the dynamics of measured aspects of biological networks,

relevant to better understanding of interindividual variation in drug response and

human disease.

Networks of agents are organized hierarchically and heterarchically10 into

fields that are domains of relational order among agents11 such that there
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are stronger relationships among agents within the fields and weaker relationships

among fields.12 The traditional characterizations of molecular pathways reflect

this organization to a degree, but as a static view. From the perspective of complex

adaptive systems, this organized substructure of networks reflects a dynamic view

that is relevant to statisticians, but is largely unexplored, in the development and

applications of statistical analyses. Relative to the traditional focus of statistical

analyses on first moments, it expands the emphasis of the role of genetic variation

in influencing higher moments that include the variance of agents13,14 and

covariance relationships among agents,1,9 which can be dynamic with time and

environmental context, in complex human disease and drug response. It also

emphasizes the need to be cognizant that the models used only reflect associations

and not causation.

The unique genome type of each individual provides the initial conditions

and the capacity for change in response to environmental variation at any point of

time. The capacity for change at any point of time has been traditionally referred

to as the norm of reaction between genotype and response to environmental

change by the geneticists. It is this norm of reaction in the defined time period of a

clinical trial, which is the focus of genetic studies of drug response. For

enhancing our understanding about the role of genetic variation in risk of disease

and drug response, the difficult challenge to statisticians and biologists is to

identify the relevant predictive combinations of shared genome type and

environment features. There is difficulty at the genome level to identify such

shared features, because there are more than 10 million single nucleotide

polymorphisms (SNPs) known, the most common type of genetic polymorphism

in the human genome, and likely there are more than 30,000 genes from which to

sample such features. The complex nature of the problem, with a vast number of

possible combinations to consider, makes the traditional linear additive modeling

process difficult in comparison to the challenge. It is also clear that new

approaches need to include the possibility that many models with different sets of

combinations of interacting agents as predictors may have similar predictive

capabilities.15 The statistician has to consider development of many new tools to

deal with this problem.

III. FRAMEWORK FOR QUESTIONS

Consideration of these key features of complex adaptive systems that are

relevant to understanding the role of genetic variation in complex human

diseases and drug response, suggests the simplified framework for defining

questions to drive the development of statistical analyses and study design

presented in Figure 16.1. This framework represents the complex biological

hierarchy in three levels with genetic variation, which contains the DNA

polymorphisms including SNPs at the bottom; the intermediate traits represented

by gene expression (mRNA), proteins and metabolites and other physiological

and biochemistry measures in the middle; and the disease and drug response

endpoints at the top of the figure.
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A key question is whether genetic variation at the DNA level can directly

predict disease risk and drug response endpoints (Question 1 in Figure 16.1).

This is because genotypes representing one or more polymorphisms within and

among genes are generally considered fixed over an individual’s life history,

whereas the intermediate traits are usually in constant flux as part of the

homeodynamics of adaptive responses to internal and external environmental

changes. The fixed nature of genotypes is an advantage for developing potential

diagnostics for disease risk or drug response if predictive genotypes can be

identified. Because mRNA expression potentially varies with time, pharmaco-

genomics, which includes DNA and mRNA in studies of interindividual

variation in disease risk or drug response, is split between the two levels as

shown in Figure 16.1. The combination of the DNA and intermediate trait levels

represents the collective set of potential agents those are biomarkers of disease

risk and drug response. There is also much interest in whether intermediate

traits such as gene expression, proteins or metabolites may also be predictive of

disease or drug response (Question 2 in Figure 16.1) or whether genotype

influences on disease or drug response may be manifested indirectly through

influences on the intermediate traits (Question 3 in Figure 16.1). This figure

anticipates the upcoming development of systems biology which will attempt to

put the “omics” together with an integrated approach to better understand

interindividual variation in the complexities of biology that includes drug

response.

IV. ADDITIONAL CHALLENGES

There are numerous additional challenges faced by the statistician that are

specific to genetic studies, including those related to the fact that particular alleles

Genetic Variation
(SNPs, other DNA polymorphisms)

Intermediate Traits
(mRNA, Proteins, Metabolites,

other Physiological and Biochemistry Measures)
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Drug response: safety, efficacy, toxicity)
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2?

3?
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FIGURE 16.1 Framework for questions.
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of genetic polymorphisms are passed together on chromosomes from generation

to generation, during the course of evolutionary time.16–23 This shared evolution

among polymorphisms has many implications for the development of statistical

methods and design of clinical trial studies. There are many new specific

methodologies that have been developed over the last 30 years, and especially

in the last 10 years, which attempt to take into account some of the

special dependencies among polymorphisms within and among individuals and

the consequences for considerations in samples of individuals from the

population.

Additional genetic challenges relate to the fact that a clinical trial is

composed of individuals from different racial or ethnic populations that may

also differ in the frequencies of relevant genetic polymorphisms. The mixture of

samples from such populations means that it may be necessary to account for

such genetic stratification in the analyses to help avoid spurious associ-

ations.24–26 The traditional self-reported race or ethnicity labels may not be an

accurate reflection of the underlying genetic structure and can impact the

inferences from genetic association studies that do not consider the potential

effects of mixtures of subjects from different population gene pools in the study

sample.27 Familiarity with many advances in statistical genetic methodologies

would help the statistician, new to this area, to develop new methodologies

required.

The many statistical tests and models which need to be applied in the context

of relatively small sample sizes present additional difficulties from the

perspective of the tradition of multiplicity adjustment. This challenge is not

specific to genetic studies. Although there have also been significant develop-

ments in this area (for example, Refs. 28–31), false positive results are likely to

be a common feature32 of such massive studies compared to the relatively small

sample sizes which will be typical of most studies for the foreseeable future.

Compared with many years ago, there is a strong emphasis now placed on

replicating associations of interest in one or more additional independent studies

before those are deemed relevant for additional follow-up.

V. CONCLUSION

This is an exciting time for the statisticians in the pharmaceutical industries. The

massive amount of data that will be produced at all levels in the biological

hierarchy in the near future may be a dream-come-true for many. The challenges

described in this paper are daunting but the progress and success in moving away

from the fit of the drug for the average of population towards the individual will

be measured, in part, by the extent of creativity and innovativeness of the

statisticians, in collaboration with physicians, geneticists and biologists towards

development of new analytical methodologies for understanding interindividual

variation of human disease and drug response by recognizing relevant features

and contexts of human complex adaptive systems.
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I. INTRODUCTION

Experience has taught us that any drug has additional actions besides the efficacy

activity for which the medication was approved. If a second activity is also

therapeutic, then the sponsor may win approval for an additional indication.

More often there is a set of routine side effects that are associated with the

drug. A typical set might include dizziness, headaches, dry mouth, and so forth.

Occasionally, some years after a drug has been approved, the scientific commu-

nity discovers that there is a serious side effect such as an increased rate of heart

valve problems or an increased rate of strokes or an increased rate of suicide.

Depending on the characteristics of each situation, the drug may have new

restrictions placed on its use or may be removed from the marketplace.
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The statistician recognizes the primary role of sample size in these

determinations. A series of a few thousand patients is often sufficient to prove

efficacy. Routine side effects are also quite common, effecting in the range of 5%

or more of patients, and thus are usually characterized during the efficacy studies.

The less common side effects by their very nature involve fewer than 1% of

patients, often in the neighborhood of 1 in 1000. Thus, in the voluminous records

that are prepared for a New Drug Application (NDA), there may be three cases of

a serious problem. Unfortunately, those three cases are surrounded by a dozen

other situations in which there are three cases of a serious problem but the other

cases are the random occurrences expected when all of the serious problems

experienced by a diverse group of sick patients are recorded. The rate of 1 in 1000

will place the situationmore in the anecdotal category than in the category inwhich

statistical analysis is conclusive. If the rate is 1 in 10,000, then perhaps no instance

of adverse reaction has yet been seen by the time the drug is approved.

Then after approval, the drug is placed in the marketplace and thousands or

tens of thousands of patients start using it. With larger numbers, the true statistical

facts may start to sort themselves out. Random events will not be higher than

background risks but true rare side effects can be found. An exceptionally difficult

task is how to find these rare side effects (less than 1 in 1000) with some reasonable

expenditure of funds. Randomized controlled clinical trials are in general too

expensive and too restricted to provide these answers. The more likely solution

is to depend on observational studies in the realm of epidemiology. The field of

Pharmacoepidemiology has emerged to resolve these problems. One example of

the difficulties involved in these evaluations was given by Psaty et al.1

A number of situations can lead to an adverse drug reaction (ADR). The

material may accumulate in an individual so the dose to that individual is large.

The person may be taking one or more other drugs and the interaction between

two or more medications causes the problem. The person may be consuming a

particular food and the problem is caused by interaction between the food and the

drug. The person may be exposed to an environmental factor and the interaction

between that factor and the drug causes the problem.2 Because the list of possible

interacting materials is extensive, it is impossible in a routine system to record

enough information to isolate the problem. If there is a specific hypothesis, then a

designed study can be created to reveal whether the putative factors cause the

reaction or not. No system has ever been universally found to be acceptable.3

The Food and Drug Administration (FDA) has an Adverse Event Reporting

System (AERS) to collect spontaneous adverse event (AE) reports worldwide for

FDA approved drugs. The AERS was intended in part to pick up rare AEs, but it

may fail when a rare AE is confounded with common population risks.4

Postmarketing studies, often called Phase IV studies, are important methods

used to obtain more specific information about adverse reactions. For some

products, the sponsor arranges to gather information on possible side effects after

the drug enters the marketplace. These observational studies are in the realm of

epidemiology. Usually there is a particular concern and the studies can be

oriented towards answering a particular question. Perhaps a suspicious result
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appeared in the Phase III studies or other drugs in the same class are known

to have characteristic side effects or the follow up period needs to be extended.

Then these epidemiological studies, frequently involving thousands of patients,

are used to provide answers. Another use is pharmacoeconomic evaluations.5

One other method to provide information on side effects is to have an

ongoing registry of ADRs. After the thalidomide tragedy,6 several such systems

were established. More recent developments in computers and websites have

enabled more modern systems to be functional. The United States FDA

established a system called MedWatch in order to monitor “serious adverse

reactions.”7 The FDA MedWatch Form can be seen in the last page of the

Physicians’ Desk Reference.8 Serious events are any events that are fatal, life-

threatening, permanently or significantly disabling, require or prolong

hospitalization, cause a congenital anomaly, or need interventions to prevent

permanent impairment or damage.

On the nongovernmental side are systems like the Boston Collaborative Drug

Surveillance Program which was established in 1966. Cooperation between this

unit and the Group Health Cooperative of Puget Sound located in Seattle,

Washington and with the General Practice Research Database of the United

Kingdom has resulted in more than 200 publications to help “quantify the

potential adverse effects of prescription drugs.” Also, a web-based database

(www.clinicalstudyresults.org) sponsored by Pharmaceutical Research and

Manufacturers of America (PhRMA), makes “clinical trial results for U.S.-

marketed pharmaceuticals more transparent,” including negative studies.

Relevant AE information can be found at this site.

Another example is the Canadian database CADRIS (Canada’s Adverse Drug

Reaction Information System). Experience shows that all of these systems will

involve underreporting of the true rate of any reaction. Therefore CADRIS

cautions “it is impossible to project true incidence rates of adverse reactions

based on the information captured by CADRIS.” The Australian Adverse Drug

Reactions Advisory Committee of the Therapeutic Goods Administration

produces the Australian Adverse Drug Reactions Bulletin six times a year to

update readers. All of these systems depend on physicians and patients to report

putative adverse reactions so that a careful statistical analysis then has the

opportunity, after adjusting for, or accounting for, the many potential biases in

the system, to ascertain real problems from the apparent problems.

In the second edition of this book, Kathy Karpenter Wille described

“Postmarketing Studies and Adverse Drug Experiences: The Role of Epidemio-

logy.”9 Updated excerpts from that chapter follow to enable the reader to

understand more about the advantages and limitations of postmarketing studies.

II. DEFINITION

Epidemiology is the study of the ways in which factors influence the patterns of

disease occurrence in human populations.10 Its application in the pharmaceutical
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industry can be from two views. First, when applied in the classical sense,

descriptive epidemiology can be used during the drug development phase to

clearly define the natural history of the disease to be treated. Second, drugs

are factors that influence the patterns of disease occurrence in human

populations; epidemiologic methods can be used to evaluate the benefits and

risks of drugs in the treatment of diseases.

There are three main types of descriptive studies: correlational studies, case

reports and case series, and cross-sectional surveys. These, types of studies are

valuable in raising hypotheses; however, they are of limited value in testing

hypotheses. To test hypotheses, either an observational or an interventional study

is required. In observational studies, the investigator cannot allocate patients to

exposure or any factors affecting disease status. Differences between groups can

only be observed, not created experimentally. In an interventional study, the

investigator randomizes the patient to the exposure.11 In the pharmaceutical

industry, observational studies are known as epidemiologic studies, and

interventional studies are known as clinical trials. Clinical trials are the gold

standard in establishing the efficacy of drugs. However, epidemiology is a tool

that is useful in overcoming some limitations of clinical trials. Thus,

observational trials complement interventional trials.

A. LIMITATIONS OF CLINICAL TRIALS

The randomized controlled clinical trial is the scientist’s most powerful tool in

establishing efficacy; however, the clinical trial is an imperfect tool. We can only

obtain information in a limited number of patients within a limited spectrum

of the disease state.

As information is accumulated prior to approval (Phases I, II, and III), the

number of patients studied is only a small fraction of the number of patients that

will be treated subsequent to approval. During Phase I trials, perhaps 20 to 40

normal, healthy volunteers will be studied. Phase II studies may involve 100 to

200 patients with the diseases of interest. In Phase III studies, the total number

of patients studied rarely exceeds 3000, and this number may be much smaller.

Relative to those who will be using the drug after approval, this is typically

a small number of patients.

Clinical trials are conducted under strictly defined conditions on a carefully

demarcated group of patients who are chosen to be as homogeneous as possible.

The drug will be used under much broader conditions in a variety of patients in

general use.12 Because of the limited number of patients studied, it is unlikely

that AEs occurring with a low frequency will be detected.

In order to have a 95% probability of observing at least one AE that has a

true occurrence rate of 1 in 10,000, you would have to observe nearly 30,000

people. This follows from the Poisson probability law with parameter np, where

n is the number of people observed and p is the incidence rate. Table 17.1 gives

the study sizes for several combinations of rates and probability of observing at

least one event. Note that when the probability of observing at least one event
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is 95%, the resulting sample size is generally three times the inverse of the rate.

This is sometimes known as the “rule of three.”13 The magnitude of these

numbers indicates that it would be a logistic nightmare to plan a clinical trial

to detect or compare rare AEs.

B. STRENGTHS OF CLINICAL TRIALS

Randomization is the key to the strength of clinical trials. A primary role is to

prevent bias in the allocation of treatments. This is the predominant way of

controlling for potential confounding variables, particularly confounding by

indication.12 In practice, a physician treats a patient based on the symptoms

presented. Most believe that the baseline characteristics of a patient affect the

prognosis of that patient. If all patients presenting with similar baseline

symptoms are treated with the same drug, and those patients presenting with

different symptoms are treated with a different drug, then the association of drug

and outcome is confounded by the baseline symptoms. Randomization ensures

that patients have an equal probability of receiving the treatments under

evaluation.

Compared to observational epidemiologic trials, intervention in the disease

process by allocating patients to a treatment makes it easier to evaluate the effect.

Prior to approval, the efficacy of the drug must be established; therefore, the

clinical trial is the standard. The value of the epidemiologic trial is realized after

the drug has been approved. The epidemiologic trial is used to further study

the safety of a drug by examining the occurrence of rare AEs. In addition, the

TABLE 17.1
Number of Persons Required to Observe at Least One Occurrence of an

Adverse Event (AE)

Probability of Observing at Least One AE

Frequency of AE 95% 90% 85% 80%

1/ 100 300 231 190 161

1/ 500 1498 1151 949 805

1/ 1000 2996 2303 1898 1610

1/ 5000 14,979 11,513 9486 8047

1/ 10,000 29,958 23,026 18,972 16,095

1/ 20,000 59,915 46,052 37,943 32,189

1/ 30,000 89,872 69,078 56,914 48,284

1/ 50,000 149,787 115,130 94,856 80,472

1/100,000 299,574 230,259 189,712 160,944

1/500,000 1,497,867 1,151,293 948,560 804,719
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epidemiologic trial can also be used to study the economic benefits, health status,

and quality of life related to drug treatment.

III. POSTMARKETING STUDIES

A. INTRODUCTION

Phase IV clinical trials are those that conducted after a drug has been approved

and marketed. Some Phase IV studies are requested by the FDA as a condition for

approval. Others are initiated voluntarily by the manufacturer to further

investigate the drug. The typical Phase IV study uses a more heterogeneous

population and is designed to more closely recreate the conditions found in

general usage. The randomized controlled trial may be used to establish efficacy

relative to a competitor or to broaden labeling claims.

As the drug becomes more widely distributed through marketing, previously

unreported AEs are likely to be described. Epidemiologic studies provide

a methodology for evaluating the risks of AEs that were not detected prior to

marketing. Not only should the natural history of the disease be understood, but

also the pharmacologic action of a drug needs consideration in the interpretation

of the data from such studies.14 The application of epidemiologic methods to the

study of drug effects has emerged as a specialized field of epidemiology, known

as pharmacoepidemiology.12

Pharmacoepidemiology joins together epidemiology and pharmacology, the

study of the properties and reactions of drugs with respect to their therapeutic

values. Most research referred to as pharmacoepidemiology occurs once a drug

has been approved for marketing.15 The discipline of pharmacoepidemiology is

growing rapidly; there are meetings and journals dedicated to this topic. The

application of pharmacoepidemiology will continue to grow as requests by the

FDA for postmarketing studies increase and as the FDA comes to a decision

about the interpretation of what constitutes the “adequate and well controlled

investigations” required for drug approval.16

B. OBSERVATIONAL COHORT STUDIES

In observational cohort studies, whether prospective or retrospective, the patients

or subjects are classified based on the presence or absence of exposure (to the

drug). In a prospective study, patients are followed to a specified endpoint, or

until the occurrence of the outcome of interest (an AE or disease). In a

retrospective study, patients or subjects are still classified according to exposure;

however, enough time has elapsed so the event of interest will have had the

opportunity to occur. The controlled cohort study most closely resembles the

controlled clinical trial, and it shares many of the same limitations of the clinical

trial.17 To detect differences in the rates of rare AEs, the sample size may be so

large as to make this study design impractical. Further, because they are

nonrandomized, cohort studies are subject to confounding by indication.18
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C. CASE–CONTROL STUDIES

A case–control study is an observational study in which cases (those with

the disease or outcome of interest) and controls (those without the disease

or outcome of interest) are selected. Patients are interviewed or medical records

may be reviewed to determine the presence or absence of exposure prior to the

development of disease or some other outcome. The exposure in the cases is then

compared to the exposure among the controls, and inferences are drawn.11

Since the participants for case–control studies are selected on the basis of

disease status, the design allows for selection of adequate numbers of diseased

(and nondiseased) individuals to detect a significant difference. This design is

particularly valuable when the disease or side effect being studied is rare.

Case–control studies provided the first clear evidence that oral contra-

ceptives do increase the risk of thromboembolic and thrombotic disease.19 Based

on the results of the case–control studies, which were further substantiated with

the results from cohort studies, the product labeling for several oral contra-

ceptives warns of the increased risk of thromboembolic and thrombotic disease

users of oral contraceptives.8

Major problems encountered with the case–control study are selection bias,

resulting from differential selection of cases and controls based on exposure

status, and differential recording or reporting of exposure information based on

disease status.11 Ideally, the cases would be all those occurring in a specific

population (for example, a case registry, hospital records, or a Health

Maintenance Organization) over a well-defined period of time, and the controls

should be a sample of the population from which the cases developed.20

When studying the role of drugs in relation to disease status, it is important to

remember that drug exposure is usually related to some underlying illness. In the

more traditional case–control study the exposure (diet, occupation, chemical

exposure, smoking history) tends to predate any medical problem. Thus, when

evaluating the data from a case–control study in which a drug is hypothesized to

be related to a disease, it is important to consider whether the underlying medical

condition is related to the illness currently under investigation.21

D. EVALUATION OF EPIDEMIOLOGIC STUDIES

The interpretation of results and the conduct of epidemiological studies,

particularly case–control studies, are often subjected to criticism and

debate.22–25 The following points should be considered in the evaluation of

epidemiologic studies:

(1) The research hypothesis should be stated prior to collecting the data.

If a relationship was not a part of the research hypothesis, then

associations found subsequent to collection of data should be

viewed as hypothesis generating. “Data dredging” brings up all the

statistical issues associated with multiple comparisons. Some results
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from case–control trials found through data dredging have been

contradicted, or the results cannot be confirmed with a cohort study.

(2) In clinical trials, a great deal of effort is expended to ascertain the

eligibility of patients; similar effort should take place in epidemio-

logic trials. For example, the researcher needs to ensure that the

disease or AE does not precede exposure. Exposure and disease status

should be clearly defined and verified.

(3) The data need to be obtained as objectively as possible. Relying on the

memory of individuals to obtain exposure information can be

misleading because of “recall bias”. Cases may spend more effort

searching their distant memory than controls. Studies should involve

efforts to verify the patients’ reports. For example, if a patient says a

medication was taken, can this be verified through prescription

records?

(4) To avoid selection bias, diagnosis of disease must be sought with equal

rigor in the exposed group and the unexposed group. Preferably, the

interviewer will be blinded to the exposure status.

E. AUTOMATED DATABASES

Data sources that link drug histories with medical care records can be used by

pharmacoepidemiologists to investigate drugs and their relationship to ADRs in

a specific population. If there are regulatory decisions to be made, particularly

if there is some question about the safety of a drug, the study should be

performed quickly. Automated databases provide a rapid means to identify

large numbers of individuals who were exposed to a drug or who developed a

disease.

The database should provide information on drug utilization, diagnosis, and

demographics. There are many sources available for such data, and it is important

to understand the circumstances under which the data were collected if the results

are to be interpreted correctly. For example, if outpatient diagnostic codes are

related to health insurance reimbursement, the incidence of this code selection

may not reflect that of the general population.

The primary advantage of a large linked database is that of speed of access

and flexibility.26 The recorded exposures will include a vast array of drugs, and

there will be different types of outcomes. Thus, the study possibilities are

virtually limitless. Unfortunately, the large automated database cannot be used to

study drugs that are not yet being prescribed, and even these databases cannot be

used to detect very rare events (less than 1 in a 1000) with accuracy. However, the

automated database is one of the most useful resources for epidemiologic

investigations available to the pharmaceutical industry. If there is some

indication of a safety issue, say the sponsor is getting reports of a previously

unreported AE, the large linked database provides a means for testing a

hypothesis in a comparatively short period of time.
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IV. SURVEILLANCE/EPIDEMIOLOGIC INTELLIGENCE

A. INTRODUCTION

As discussed earlier, during Phase I through Phase III of drug development, the

drug is studied within a limited population, the conditions under which a drug is

studied are closely circumscribed and the duration of administration is limited.

Thus, adverse reactions that are unlikely to be detected prior to marketing are

(i) those that occur with a rare incidence (less than 1 in 10,000); (ii) those

resulting from a specific interaction with concomitant drug therapies

or a concurrent disease; or (iii) those requiring a long latency. One tool for

detecting previously unreported adverse reactions is spontaneous reporting.

B. SPONTANEOUS REPORTING SYSTEM

Faich27 has defined surveillance as the “systematic detection of drug-induced

reactions by practical, uniform methods.” One important aspect of this

surveillance is the maintenance of a system for the reporting of ADRs. The

FDA has a program to monitor ADRs of marketed drugs. The FDA monitoring

program is based on reports that arise from the usual practice of medicine. This is

experienced during the marketing phase, in contrast to AEs that arise from

clinical trials prior to approval of the NDA. Reports can be made directly to the

FDA, but more frequently, reports by health professionals and consumers are

forwarded directly to the drug manufacturer. The manufacturer is required by law

to submit all reports to the FDA. If the reaction is serious and not already listed in

the product labeling, it must be submitted to the FDA within 15 working days of

initial receipt of the information. All other spontaneous reports are submitted to

the FDA periodically. When the FDA receives these reports, they are entered into

a computer database. These data are reviewed and analyzed by the Office of

Epidemiology and Biostatistics at the FDA, and they are available upon request

through Freedom of Information.

C. INTERPRETING AND SUMMARIZING SPONTANEOUS DATA

Spontaneous reporting can provide a timely signal of risk. This early warning

system was instrumental in establishing the association between flank pain

syndrome (flank pain and transient liver failure) and suprofen, a nonsteroidal

antiinflammatory drug.28 Marketing of suprofen began in the United States in

January of 1986, and by mid-March, five or six cases had been reported. In late

April a “Dear Doctor letter” was sent out to more than 170,000 physicians. By

the end of June, the FDA had received 117 reports of flank pain syndrome.

Eventually, 366 cases were reported. In 291 of the 366 cases, the date of onset

of flank pain syndrome was available, and it was possible to demonstrate

a correlation between the number of cases of flank pain syndrome and suprofen

usage.
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The early warning system worked well in this context, because the event

was unusual in the population not treated with suprofen, and the onset of flank

pain syndrome occurred very shortly after taking one or two doses of suprofen.

In addition, the individuals taking suprofen were healthy, so there were

relatively few underlying diseases or concomitant exposures to confound the

results.

The spontaneous reporting system is best used for signaling. One must

remember that ‘calculated rates’ are ‘reporting rates,’ not ‘true incidence rates.’

These usually have to be expressed in terms of sales or prescriptions written.

Under-reporting is a common problem with this system. Physicians may not be

aware of this system, or they may be concerned about possible litigation.27 The

surveillance system was designed to detect possible safety problems with drugs,

because they cannot all be known at the time of marketing, so physicians are

encouraged to report all suspected adverse reactions. For any given report, there

is no certainty that the suspected drug caused the reaction. Comparisons of drugs

should not be made from this system; drugs are approved at different times, and

they are monitored under different circumstances. The length of time a drug has

been marketed, the drug class, recent publicity, or any number of other factors

influence reporting.

Manufacturers are required to report an increase in serious, labeled ADRs.

An increase in reports could signal a change in awareness or in patterns of use

of the medication. An increase could indicate increasing rates of ADRs

associated with longer administration of the drug, or an increase in reporting rates

could reflect an increase in the occurrence of that disease in the population that is

independent of drug administration. An increase in reports might also be

a reaction to a media report. The reasons for an increase in the reports of serious,

labeled ADRs are many, and probably cannot be discerned from the surveillance

system. The surveillance system is a signaling system; an analytic study

is frequently required to test the hypotheses it generates.

The reports for labeled ADRs should be reviewed at least as frequently as the

cycle for submitting periodic reports. When a significant increase in frequency is

found, a narrative summary must be submitted within 15 working days of

its detection. Two approaches for detecting increased frequencies have

been suggested, an arithmetic approach and a statistically based approach.

Briefly, the arithmetic approach calls for reporting a doubling of reports from the

comparative reporting period to the current reporting period after an appropriate

adjustment for changes in drug usage has been made. Using the statistically based

approach, the manufacturer would be required to report an increase in excess of

the upper 95% confidence limit for the comparative reporting period after

adjustment for drug usage.

The statistical approach uses a large sample approximation that is valid when

the number of ADR reports is large. Norwood and Sampson29 have developed an

exact procedure based on a Poisson distribution to monitor ADRs that occur with

a low frequency.
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V. SUMMARY

One important role of epidemiology in the pharmaceutical industry is to evaluate

the safety of a drug. More specifically, epidemiology is used to evaluate the

relationship of a drug to AEs. Ideally, a signal would be detected through

the spontaneous reporting system. Then, an epidemiologic study might be

conducted to test the hypothesis; the data for the study could be drawn from

an automated database. An inference would be drawn from the study results

based on a scientific rationale. If the conclusion is that there is indeed a risk

related to drug treatment, evaluation of the risk then requires an assessment of the

benefits of the treatment. Benefit can be measured in terms of quality of life and

economic reflections.

Unfortunately, the safety of a drug can easily become an emotional and

sensational issue. There are situations in which the data are inadequate for

drawing a scientifically supported conclusion, but they are of sufficient interest to

attract comments by the press and the public. Once the media have mobilized the

public against a drug, the damage is frequently irrevocable, even if the data are

shown to be inadequate or subsequent studies exonerate the drug.30When there is

a safety issue, the pharmaceutical company must act promptly to evaluate

the relationship of the adverse drug reports and the drug.
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I. INTRODUCTION

Contract Research Organizations (CROs) have played an increasingly important

role in pharmaceutical research over the past decade. The role of these

organizations within the pharmaceutical industry and their interactions with

pharmaceutical companies in development of new drugs have been discussed in

this chapter. CROs are defined in accordance with the services they provide and

in terms of the organizational structure. The importance of CROs is then assessed

by the amount of work they do in support of the clinical research activities

by pharmaceutical companies. The underlying reasons for engaging CROs by

the pharmaceutical companies and the role of statisticians in CROs keeping

the statistical applications requirements in pharmaceutical industry in view are

discussed from two different perspectives, viz., the role of statisticians in
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the pharmaceutical industry in interfacing with a CRO, and the role of CRO

statisticians in performing necessary work within their own organizations as

well as in interfacing with the client companies.

II. WHAT IS A CRO?

A CRO is defined in the Code of Federal Regulations (21 CFR Ch. 1, Sect. 312.3)

as follows:

CRO means a person that assumes, as an independent contractor

with the sponsor, one or more of the obligations of the sponsor,

e.g., design of a protocol, selection or monitoring of investigations,

evaluation of reports, and preparation of materials to be submitted to

the Food and Drug Administration.

This definition encompasses a broad range of activities or services but the

primary services provided by CROs are those associated with planning and

managingofclinical trials,datamanagement,analysis,andreportingof theresultant

outcome. More specifically, these services are:

Project planning and management

Design of clinical trial, including protocol and development of case report

form

Management of clinical trials and in-site monitoring of investigations

Clinical data management

Statistical analysis, reporting, and consultation

Preparation of final clinical study reports and regulatory submissions

Support services at regulatory meetings

Regulatory affairs services

Project planning and management, involves formulating a detailed clinical

development plan for a compound, device, or biologic, implementation and

managing the execution thereafter. Remaining activities are key elements in the

execution of the clinical development plan. The pharmaceutical company that is

developing the compound may perform all of these activities, or any subset may

be contracted to one or more CROs.

A full-service CRO is one that can provide the full range of activities

associatedwith clinical development of a compound, device, or biologic. However

only a small proportion of CROs can claim to have these capabilities. Themajority

of CROs offer some subset out of the complete list of services, or are particularly

capable only in certain areas of the clinical development process. Therefore CROs

range from very large organizations with clinical research capabilities as good as

that of a major pharmaceutical company to a single individual or small

organization operating in a narrow niche and offering specific services to the
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sponsoring company. Based on size of the organization and spectrum of offerings,

the structure of a CRO depends on the number of employees and the range

of services provided. In general, contrary to pharmaceutical companies even

a full-service CRO will have fewer levels of decision-making authorities.

III. IMPORTANCE OF CROs IN PHARMACEUTICAL

CLINICAL RESEARCH

CROs have become critical participants in pharmaceutical clinical research.

The contract research market continues to grow at 13 to 15% per year.1 As of

December 2003, CROs controlled approximately 70% of the pharmaceutical

outsourcing market.2 Out of an estimated 1000 CROs currently in operation, only

a handful have truly global capabilities,3 but having experienced a six-fold

market increase in the past decade, CROs account for some 10% of spending by

R&D sponsors and are involved in about two-thirds of clinical projects.4,5

The recent emergence of trade associations and specialists conferences dealing

with CRO issues is another indication of the development and maturation of the

CRO industry. In 2002, the Association for Clinical Research Organizations

(ACRO) was formed to represent the trade group for large CROs, while another

competing organization, yet unnamed, was formed in May 2004 for smaller

CROs at “The Partnerships with CROs (and Other Outsourcing Providers)”

conference in Orlando, Florida.1

To appreciate the change in the CRO industry it is interesting to compare

survey results about a decade apart on research trends and involvements of CROs.

Barnett Associates, Inc. conducted a survey of companies using CROs in 1989 for

the Associates of Clinical Pharmacology.6 The purpose of this survey was to

determine key trends in pharmaceutical research over the following decade

(the 1990s). A survey instrument was sent to “opinion leaders” in 26 companies

and responses were received from 17. One of the eight trends reported was

CROs will be increasingly involved in all aspects of the clinical

research process, including managing clinical research projects and

monitoring study sites for the industry.

Participants were asked to describe their past, current, and anticipated use of

CROs for handling of complete development programs, as well as for

components of the programs. Only six out of the 17 responding companies

contracted full clinical development programs to CROs, and that accounted for

only 5 to 15% of their development programs. Some of the smaller companies

reported much more extensive use of CROs for this purpose. The sample,

however, was heavily skewed toward the larger companies (14 out of the 17

respondents were among the largest 30 pharmaceutical companies); therefore,

this could not necessarily be cited as a representative trend among smaller

companies.
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Of the 17 responding companies, 10 reported using CROs for the selection

of investigators through writing of final study reports for about 8% of their

studies. Only six of these companies, however, reported using CROs for these

services 3 years earlier for only about 5% of their studies. A definite trend

towards increased use of CROs for monitoring of individual studies was also

indicated. In addition, the survey that 12 out of 17 respondents currently use

CROs to monitor 5 to 10% of their studies, and 5 projected the use of CROs

to monitor up to 17% of their studies 3 years later, increasing up to 25% 5 to

7 years later.

More recently, the Tufts Center for the Study of DrugDevelopment conducted

three surveys between 1998 and 2003 “to characterize CRO demographics, CRO

interactions with sponsors and other outsourcing entities, expansion and

contraction in sponsor demand for CRO services, and the response of CROs to

the factors shaping the transformation of the R&D environment.”7 Among the

findings reported by authors Christopher-PaulMilne, and Cherie Paquette, A.B. of

the Tufts Center for the Study of Drug Development, the following well illustrate

the establishment of CROs as critical participants in clinical research in the last

decade.

1. With the globalization, multinational availability of CRO services is

increasing. This follows the trend of the financial and IT sectors and also has been

facilitated by the International Conference on Harmonisation (ICH) and the

expansion of international trade, communication and travel. Asia and Australia

appear to be the growth targets.

2. Patient recruitment is becoming more difficult and accounts for

a significant portion of clinical development delays and R&D budget resources.

“As academic medical centers (AMCs) have waned as the partner-of-choice of

sponsors for conducting clinical trials, CROs have become conduits to patients

and investigators that were formally the natural preserve of the AMCs. CRO

methods for recruitment are resource-intensive and dependent on personal

contact and relationship building, — something that CROs are more willing and

better positioned to do than the pharmaceutical firms (or biotech, for different

reasons). The CRO cog in the R&D wheel is kept in place by their continued

access to patients, which now necessitates global reach. The hands-on methods

used by CROs for recruitment are well-suited to non-traditional countries where

the technology infrastructure is variable, recruitment service providers are not

consistently available, and cultural taboos or even regulatory restrictions may

limit media or Internet advertising… as obstacles for recruitment through

hospitals and private practices are likely to increase in the US and Europe with

the implementation of the Heath Insurance Portability & Accountability Act

(HIPAA) regulations and the European Clinical Trials Directive, access to

patients will drive further globalization of CRO services.”7

3. From a regulatory perspective, while the Clinical Trial Directive is

predicted to have a large eventual impact on submissions, processes and

clinical research in the European Union, no final perspective emerged out by
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the implementation date, i.e., May 1, 2004 because of nonuniform timelines in

implementation across the member states. In contrast, in the U.S.A., the impact

of the FDA Modernization Act (FDAMA) of 1997 and PDUFA III are clearer.

These contained provisions intended to encourage conducting pediatric as well

as pharmaco-economic studies, development of medicines for serious and life-

threatening diseases (the fast-track provisions), submission of efficacy

supplements, harmonization of regulatory requirements and the fulfillment of

postmarketing commitments (PMCs). These have directly and indirectly given

rise to an increase in demand for related CRO services, especially in the areas

of pediatric research (although this has declined since the temporary demise of

the pediatric rule in late 2002), supplemental studies, bio-availability,

postmarketing studies, and studies in serious and life-threatening diseases.

The demand for pharmaco-economic studies which showed an initial increase,

decreased in recent years. Also, there has been higher than expected demand

for preclinical and early clinical development services, as well as for

postmarketing services.

According to the Tufts researchers, “CROs have shown themselves to be

highly adaptable and have increased their value to sponsors by serving as

reservoirs of specialized skills and resources in a highly unsettled R&D

environment. Access to patients and the provision of global services will help to

maintain CRO viability in the short-term. Long-term goals should include

managing the CRO-sponsor relationship to maximize resource utilization and

minimize cost and delay, acquiring new competencies ahead of the demand

curve, and addressing sponsor concerns about staff turnover, company stability,

and competing demands for resources.”7

In another recent trend, the FDA has adopted a more consultative approach

with sponsors in the postFDAMA era, which has led to increased demand for

consultative services, including protocol design, representation at FDA meetings

(preIND, preNDA, End of Ph II), clinical development planning and expert

advisory services. In addition to the proliferation of niche providers of such

services, the impact is also evident in some larger CROs (such as Parexel,

Quintiles and PRA International) providing consultative services.

Another development has been the increase in demand for Data Monitoring

Committee (DMC) work for larger morbidity and mortality trials, stemming in

part from increased awareness of the need for DMCs, which was also reflected in

the 2001 FDA draft guidance on that subject. This work tends to involve CRO

statisticians in particular, performing either the role of Independent Statistician

reporting to the DMC or, more rarely, that of Voting Statistician on the DMC.

It is now quite common for CROs to be involved in the former role and also as

the Data Analysis Center for the DMC, performing unblinded analyses

independently of the trial project team to avoid biasing the trial. Voting

membership has a more limited role among CROs, partly because of the level of

experience required, but some CROs (e.g., PRA International) also perform this

function as a matter of routine.
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IV. WHY DO PHARMACEUTICAL COMPANIES USE CROs?

The time required to bring a new product to market has been the basic reason for

the pharmaceutical companies to outsource clinical development and related

activities to CROs as against mobilizing internal resources to do it. The time

required to bring a new product to market is quite long relative to its patent life

but the pressure of competition makes it extremely important to get a new product

to market as quickly as possible even before any other company with similar

product does it. Saving a few months or even days can result in million of dollars

in additional revenue. If a company does not have trained staff available when a

new pharmaceutical entity reaches the clinical development stage, valuable time

could be lost before the necessary resources could be acquired and deployed.

Addition of resources for the clinical development has to match with the

company’s research activities and the creation of increased capacity for the

clinical development should not be proved to be redundant at any time. The use of

CROs with relevant experience and resources therefore becomes the obvious

choice to avoid the delays. This strategy also avoids a commitment to resources

for which the need may soon disappear. Used in this way, CROs become a shared

resource among many companies. This helps smoothening out the peaks in the

workload for individual companies caused by fluctuating number of compounds

at the development stage.

Another reason why pharmaceutical companies may turn to CROs is that

CROs have minimum mobilization time and are often able to focus resources

more quickly on a new project than pharmaceutical companies can. This can

be attributed, at least in part, to the fewer levels of decision making authorities

in CROs.

CROs can play an even more important role for new companies or start-up

companies that have compounds at the development stage with no drug

development capabilities. CROs provide these companies with a way to begin

development of new pharmaceutical entities immediately without having to wait

until they can develop the capabilities internally. Such companies would find it

even more difficult to build the resources internally than companies that already

have some clinical development staff but who would require additional personnel

to undertake a new project. The start-up companies lack the basic infrastructure

and the expertise necessary to assemble such resources quickly. This is the

situation, for example, with many emerging biotech companies.

A pharmaceutical company may also use a CRO because of a special

expertise the CRO has acquired. The CRO may have recent valuable experience

in an area where the pharmaceutical company does not have. (The DMC work

discussed already provides an example.) CROs can pass on the benefit of their

experience gained from different clients on similar projects and while addressing

a new project, the CROs can evolve the best combination of the different

approaches they encountered.

The trend toward internationalization of drug development already noted in

the previous section provides a final reason why pharmaceutical companies turn
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to CROs for assistance. The high cost and the lengthy time required to develop a

new drug are compelling reasons to use data from studies undertaken in other

countries when applying for registration within a given country. More uniform

regulatory requirements and increased acceptance of data from other countries by

regulatory authorities have made this much more feasible than it used to be in the

past. Companies with international operations have moved, or are moving, to

standard procedures depending on the country of operation in order to meet the

goal of international drug development. For companies without an international

presence, CROs provide means for accomplishing this goal. These companies

can pursue development in different countries through CROs that have

established operations in the target countries. Many CROs have created

international operations specifically to meet the increased demand for

international drug development.

V. THE ROLE OF THE STATISTICIAN IN CRO ACTIVITIES

The role of the statistician in CRO activities depends on whether the statistician

works for the CRO or the sponsoring company. It also depends on the type of

company contracting the services of the CRO and the amount of responsibility

they are willing to transfer to the CRO. If the sponsor has no statistician, as might

be the case for a start-up company, the statistician for the CRO would assume the

full responsibility associated with the analysis and reporting function for a

clinical trial or clinical development program. In this case, the CRO statistician’s

function would be essentially the same as that of a statistician working for the

sponsoring company. Various aspects of this function are addressed in other

chapters of this book and will not be dwelt on here. Consultative, design and

regulatory interaction functions have become increasingly common statistical

outsourcing requests in recent years.

The above would also hold if the sponsoring company assigned full

responsibility for a program to the CRO. Such a complete transfer of

responsibility, although increasingly common, is not the norm. Attention must

then be given to the issues interaction between the company statistician and the

CRO statistician to accomplish the objectives of the program effectively.

This issue, along with related aspects of the interaction between the sponsor and

the CRO, will be the focus of the remainder of this chapter.

When a study or program is contracted to a CRO, the freedom given to the

CRO’s statistician to control the statistical aspects of the program must be made

clear. This is especially important if the only portion of the studies that constitute

a development program are contracted to the CRO. In such cases, care must be

taken to ensure that the statistical approach is consistent among studies.

For example, the choice between parametric and nonparametric analysis may

appear arbitrary for one study, while in another the choice seems to be obvious.

Similarly, the choice between the Cochran–Mantel–Haenszel procedure and

some other categorical data analysis such as a log-linear model analysis may be
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primarily a matter of preference. Consistency among studies should then dictate

which analytic approach is used in the primary analysis. The primary project

statistician for the sponsoring company must, in such cases, assume a major role

in coordinating the analyses between the sponsor and the CRO. The statistical

approach, conventions to be followed, and formats to be used must be

determined and communicated to everyone involved. This does not mean,

however, that the statistician of the sponsoring company should necessarily

dictate the approach. Selection of the best approach should be a joint effort

between the sponsor and CRO statisticians who are involved in the analysis.

The key to the success of the project is good communication by both parties

throughout the process.

In the early stage of the project, good communication regarding analysis and

reporting issues is especially important. It is, in fact, desirable to have as much

information as possible during the resource planning phase of the project. This

will allow for a more realistic estimate of the work to be done. The sponsoring

company’s statistician can help facilitate this by making sure that the

specifications for the project clearly delineate any special analysis and reporting

considerations. Although the statistician may not be responsible for developing

the project description, she or he should still be involved in preparing the

specifications for the analysis and reporting. Sample reports and examples of

tabular displays in the desired format can be quite helpful in communicating such

requirements and have become a standard part of industry Statistical Analysis

Plans (SAPs). Additional background information, including findings and data

problems from similar studies, can also help prevent time from being spent

ineffectively during the analysis process. Failure to establish realistic

expectations and clear specifications for the services required can lead to a poor

working relationship and unfulfilled objectives.

In the situation discussed above, it is clear that the primary project statistician

for the sponsoring company must use strong project management skills in

coordinating the analysis and reporting. Although this is also true when the

project is handled entirely within the company, additional considerations are

necessary when a CRO is used for some studies. It must be recognized that

the CRO statisticians are not part of the statistical culture of the sponsoring

company. Thus, they may not be accustomed to the same conventions and ways

of doing things as those within the company. Failure to communicate this kind of

information early in the process can lead to misunderstandings and to infructuous

and expensive iterations in the analysis and reporting process. These, in turn, can

lead to unwarranted delays in completion of the project.

The statistician for the CRO can also help facilitate the kind of interaction

between the sponsor and the CRO that is essential to a successful joint

development program. Preparing detailed analysis plans and submitting those to

the sponsor for approval prior to performing the analysis and preparing the reports

for a project will ensure mutual understanding with regards to its content and

approach. The plans should indicate specific tabular summaries to be included and

the formats for presentation. Such measures, by providing a focused plan of attack
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for the statistician and statistical programmers to follow, can substantially increase

the efficiency of the analysis and reporting process.

A complete development program is contracted to the CRO with the intention

of transferring the full responsibility for coordinating the analysis and reporting

function. If, however, the sponsoring company has a strong internal statistical

group, some interaction between the sponsor and CRO statisticians is still

important. A certain statistical culture is likely to exist within the company which

may have an impact on the statistical approach that is used and the conventions

those are followed in presenting the data. Reviewers of the report will have

certain expectations and may wish to retain a certain amount of control over what

is done. It is incumbent upon the CRO statistician to be aware of these issues and

to address them early in the program. As in the case of a joint development

program, detailed analysis plans approved by the sponsor can enhance

understanding and reduce the number of iterations required to complete the

analyses and reports.

The purely statistical aspects of the work are the same and require the same

basic knowledge and training no matter whether a statistician works for a

pharmaceutical company or a CRO. Clearly, however, it is beneficial for a CRO

statistician to have previous experience for a pharmaceutical company. Such

experience provides a greater understanding of the needs of the pharmaceutical

companies and the analysis and reporting processes within the organization.

Similarly, many pharmaceutical and biotech companies now consider CRO

background to be a substantial asset in a prospective statistician, as CROs often

provide broad experience across many protocols as well as standards and cultures

of diverse clientele. Joint clinical development programs between CROs and

pharmaceutical companies demand additional skill for strong communication and

project management. These are required on both sides if the analysis and

reporting function are to be effectively accomplished through the joint efforts

of two independent organizations.
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I. INTRODUCTION

The swelling costs for drug development combined with increasing price

pressure on drugs imply that the home market has become too small for many

pharmaceutical companies. One solution to this problem has been to expand

the markets and globalize the business. The process of globalization started

in the U.S.A. and Europe in the 1970s, but has accelerated since the 1990s.

This process has been further facilitated by the recent opening up of the former

Soviet Union with its satellite states and through the open policy of China.

In the pharmaceutical industry, globalization may involve multinational

research, development, marketing application, manufacturing, and sales of new

drugs in different parts of the world. One underlying driver of globalization

is competition. When globalization took hold, competition got tougher.1

The pharmaceutical industry is a particularly highly competitive industry in

addition to its being highly regulated. Continuous research and development to

feed the pipeline of new compounds is a way of staying ahead of competitors and

may even become a matter of survival for many pharmaceutical companies.

In consequence, a global pharmaceutical company has to evaluate its strategy

of global resource allocation and its efficient use to optimize productivity and

enhance its ability to compete.

Statistics is a field that makes an important contribution to drug develop-

ment from early discovery to the commercialization of a product. In particular,

the clinical trial phases engage statisticians in the design, conduct, analysis, and

interpretation of data, in which both scientific and operational contributions

are provided. This chapter will focus on the global harmonization of drug

development in the international pharmaceutical industry from the clinical

statistics perspective. We will discuss the current trends of the pharmaceutical

industry with regard to globalization, its alignment to the current trends, what

opportunities and possible downside we may face, and give our conclusions

on the bottom line of global harmonization in the drug development process.

II. CURRENT TRENDS

A. ECONOMIC ENVIRONMENT

The development of a new drug is a very lengthy and costly process. In 1991,

DiMasi et al.2 found that from synthesis of a new chemical entity (NCE) in the lab

to the final approval for marketing as a new drug, it would typically take more
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than a decade and cost $231 million. The trend of high cost in pharmaceutical

research and development has continued to climb at a much higher rate than

inflation during the last decade3 and in the 2000s the development cost of a

new drug has escalated to $802 million dollars.4 This is also evident from the

Center for Medicine Research (CMR) data as illustrated in the following graph

(Figure 19.1).

Sales and R&D expenditure follow parallel upward curves, whereas develop-

ment time is flat and number of new drugs decreases by about 40%. These

two opposite trends imply that it costs increasingly more to develop a new drug

and also that it is more and more difficult to successfully develop a new drug for

marketing. This indicates that each drug that reaches the market needs to generate

higher revenues to compensate for the increased costs.

Next to the increase in development cost, we see pressure from governments

all over the world to limit the costs for healthcare, including treatment with

pharmaceuticals. Therefore, the health economic documentation of a new drug

becomes more and more important for the industry, primarily for justifying prices

and reimbursements.

Another challenge presented to the pharmaceutical industry is that the

patents of many major drugs expire in the mid 2000s, including the block-

busters of Merck’s Zocor and Pfizer’s Norvasc, for example. As a consequence,

pharmacists are encouraged to use generics, prices for drugs are forced down,

and some drugs are no longer reimbursed. All trends tend to put pressure on

the margin and force companies to lower their costs and broaden their markets
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to increase sales. These trends prescribe a difficult time for the pharmaceutical

industry in the mid 2000s.

On the other hand, the pharmaceutical market has continued to grow, though

at a slower rate. For example, from November 2002 to October 2003, the world

pharma annual sales still went up by 7% to $307 billion at constant exchange

rates as reported by Scrip.5 For the U.S.A., it went up 10% to $159.4 billion, with

income from sales more than the rest of the world combined. It is expected

that this trend will continue in the next decade, because the baby boomers will

increase demand of drugs not only to treat diseases, but also to improve their

quality of life.

B. SPREADING RISKS AND SYNERGY EFFECTS

With the trends of increasing costs to discover and develop new drugs and bring

them to the market, pharmaceutical companies have to develop their business

strategies to countervail these challenges. The common strategies are, for

examples, merger, partnering, outsourcing (onshore and offshore), cosourcing,

copromotion, cross-licensing, reengineering, and global harmonization of relevant

processes and systems, as part of corporate strategy to enhance productivity and

profitability and reduce the time to an optimal market share.

Merger is certainly a convenient way to compensate for the shortage of

pipeline or to synergize expertise and resources. The merger trend in the

pharmaceutical industry seems to be getting heated. In the five years from 1998

to 2003, Johnson & Johnson bought 34 companies and used its marketing

power to turn some of their products into blockbusters, e.g., the arthritis drug,

Remicade, from Centocor as reported by Arner and Weintraub.6 Certainly,

there are some more famous mega-mergers, e.g., Pfizer with Warner Lambert

and Pharmacia, Ciba-Geigy with Sandoz, Glaxo with Burroughs Wellcome

and SmithKline Beecham, Hoechst Roussel with Marion Merrell Dow and

Rhone-Poulenc Rorer to become Aventis that was merged into Sanofi-Aventis,

Astra with Zeneca, among others. Each of the aforementioned companies

may have been the result of several mergers in the past as illustrated in the

case of Sanofi-Aventis. In general, these mergers often aim at complementing

the product portfolio for higher revenue and eliminate duplicate resources to

reduce costs. Reducing the time to a good market share, spreading the risk and

the other trends mentioned above, mean for the clinical statistician a much

higher possibility of exposure to the outside world. The actual scenarios range

from new colleagues in a merger setting to cooperation in a partnership or

CRO setting.

Another trend in the pharmaceutical industry is to increase the development

activities in lower cost countries, so called offshoring. Recruitment of patients

for clinical trials in these countries is rapidly increasing. Some companies have

even set up clinical development centers or data management centers in lower

cost countries as the high tech industry did.7
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C. COOPERATION AMONG REGULATORYAUTHORITIES, INDUSTRY,

AND MEDICAL ORGANIZATIONS

Countries in the industrialized world recognized at different times in different

regions that it was important to have an independent evaluation of medicinal

products before they are allowed on the market, because some of them

experienced tragic incidences (e.g., Elixir Sulfanilamide disaster and Thalido-

mide tragedy) of using medicinal products in their countries in the early to

mid 20th century. During the 1960s and 1970s, those developed countries had

experienced a rapid increase of laws, regulations, and guidelines for reporting

and evaluating the data on safety, quality, and efficacy of new medicinal

products. In the meantime, the pharmaceutical industry started expanding

internationally to new global markets. Although the regulatory authorities in

different countries required similar scientific data to evaluate the safety, quality,

and efficacy of new medicinal products, the detailed technical requirements in

different countries or regions were so different that the industry found it necessary

to duplicate many expensive and time consuming studies in animals or humans in

order to market new drugs in different markets. These diverging regulatory

requirements resulted in escalation of R&D costs, more expensive health care

to the public, and delayed availability of safe and efficacious drugs to patients

in need.

In the 1980s, countries in the European Community started seeking harmoni-

zation of regulatory requirements. Their success in the regulatory harmonization

prompted discussion on expanding the harmonization to other parts of the

industrialized world. During that period, there were several bilateral discus-

sions among regulatory authorities of Europe, Japan, and the U.S., i.e.,

the European Agency for the Evaluation of Medicinal Products (EMEA), the

Ministry of Health, Labor and Welfare (MHLW), and the Food and Drug

Administration (FDA), respectively, on possibilities of harmonization among

their regions. In the meantime, the authorities approached the International

Federation of Pharmaceutical Manufacturers’ Associations (IFPMA) to discuss

a joint regulatory-industry initiative on international harmonization and the

International Conference on Harmonization (ICH) was conceived. In April 1990,

the European Federation of Pharmaceutical Industries and Associations (EFPIA)

hosted a meeting in Brussels, at which ICH was officially born.

Under ICH Guidelines,8 sponsors of new drug applications now will be able

to submit dossier or NDA documents to Europe and the U.S. using the Common

Technical Documents structure. More or less the same data of same studies from

different parts of the world in the same format can be used for most parts of the

submission, and to Japan with some additional data from “Bridging Studies” as

described in ICH-E5 Guideline. ICH has developed many other guidelines

pertinent for clinical statistics, including ICH-E3 (The structure and content of

a clinical study report), ICH-E9 (Statistical principles for clinical trials), and

ICH-E10 (The choice of control in clinical trials) that provide good statistical

guidelines for trial design, analysis, and presentation of results. Following ICH
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guidelines as accepted by EU, U.S., and Japan for new drug development,

the pharmaceutical industry will be able to reduce a considerable amount of

costs and to reduce the development time to register their drugs in different

markets.

In the implementation of the above ICH guidelines, it was recognized by the

European central regulatory body, EMEA, that they needed to be complemented

in a number of areas to be fully effective. Therefore, EMEA initiated the

development of a number of so called “Points to Consider” documents with

the aim to facilitate the review of submissions and at the same time guide the

pharmaceutical industry of the expected application of the ICH guidelines.

These documents cover topics such as meta-analysis of clinical trials, handling

of missing data, and multiplicity.9 Examples of other cooperative efforts that

have resulted in global standards are the Medical Dictionary for Regulatory

Activities (MedDRA) for coding of adverse events and ICD-10 for classifications

of diseases, which will be gradually replaced by MedDRA.

D. INCREASING COOPERATION AMONG COMPANIES

Among pharmaceutical companies, the cooperation is increasing, particularly

with regard to political and regulatory issues. The Pharmaceutical Research

and Manufacturers of America (PhRMA) is an organization representing “the

country’s leading research-based pharmaceutical and biotechnology companies,

which are devoted to inventing medicines that allow patients to live longer,

healthier, and more productive lives.” Through PhRMA, its members pursue their

cooperation to voice their interests and concerns to the government bodies

like Congress or FDA about health care policies or pharmaceutical industry

regulations. They frequently use their influence to lobby law-makers on drug

related policy that may have profound effects on the pharmaceutical industry.

Within the pharmaceutical industry, leaders of biostatistics and data management

have plenty of opportunities to make their share of contribution through the

Biostatistics and Data Management Technical Group (BDMTG) in the PhRMA.

For instance, the BDMTG has established task forces to study specific issues and

convey the issues and possible solutions to the FDA’s attention. In the meantime,

through their interaction with the FDA, they develop a partnership with the

regulatory agency for the process of new drug development. In Europe the

PhRMA equivalent is the EFPIA. There are no formal relations between EFPIA

and the statistics community in Europe, except for some occasional contacts in

relation to review of guidance documents.

In order to achieve further cooperation among companies to enhance

efficiency to collect, process, and report data and information of clinical trials,

the Clinical Data Interchange Standards Consortium (CDISC) was formed.

The CDISC is an open, multidisciplinary, nonprofit organization committed to the

development of industry standards to support the electronic acquisition, exchange,

submission, and archiving of clinical trials data and metadata for medical

and biopharmaceutical product development. Its impact will be dependent on
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the acceptance of the outcome among industries and its recognition by regulatory

bodies. The FDA has been engaged in developing CDISC as submission data

standards, which will be compatible with a greater scope of more general health

data standards, called HL7, which was accepted by the U.S. Department of Health

and Human Services. The impact of CDISC on the pharmaceutical industry and

other regulatory bodies could be profound. Further details onCDISC can be seen at

the website of http://www.cdisc.org/standards/index.html.

E. BUILDING A STRONG PROFESSIONAL COMMUNITY

The pharmaceutical industry requires highly sophisticated research and

development. Statistics is an indispensable and integral part of R&D. Every

year the Drug Information Association (DIA) has held numerous workshops on

various topics about pharmaceutical R&D, including many statistics-related

ones. Through DIA, statisticians in this industry have great opportunity to interact

and develop a strong professional group within DIA. The American Statistical

Association (ASA) established a Biopharmaceutical Section to provide a forum

for statisticians working on pharmaceutical problems. The members of this

section are very active in the ASA and have strong common interest to exchange

their experiences, ideas, and regulatory information. It is interesting to note

that in each annual joint statistical meetings, the sessions sponsored by the

Biopharmaceutical Section always show very high attendance. Another statistical

association that has regular activities in the biopharmaceutical area is the

International Chinese Statistical Association (ICSA). Since 1990, the ICSA has

regularly sponsored symposia on the themes of biopharmaceutical statistics.

In Europe, the European Federation of Statisticians in the Pharmaceutical

Industry (EFSPI) is the leading statistical body with professional activities

focused on the pharmaceutical industry. The objectives of the EFSPI are:

“To promote professional standards of statistics and the standing of the statistical

profession in matters pertinent to the European pharmaceutical industry; To

offer a collective expert input on statistical matters to national and international

authorities and organizations; To exchange information on and harmonize

attitudes to the practice of statistics in the European pharmaceutical industry and

within the member groups.” Its members come from various European countries

and its impact on the development of pharmaceutical statistics is well recognized.

The largest national group within EFSPI is Statisticians in the Pharmaceutical

Industry (PSI), which is based in the U.K. but with members from all over Europe.

F. IMPLICATION OF CURRENT TRENDS ON CLINICAL STATISTICS

Current trends of globalization in the pharmaceutical industry present

challenges and opportunities to clinical statisticians. These trends concern an

organization’s outsourcing strategies, definition of common roles and responsi-

bilities across the company, recruitment, training and education of staff, and finally

the development of a globally harmonized process for the statistical work
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including sharing of resources and best practices. Other aspects concern global

clinical development plans and the issue of bridging data from one region to

another.

As mentioned earlier, drug development is a very lengthy and costly process.

A clinical statistician can contribute to the process in many ways. For example, in

the global drug development, harmonized statistical processes within a company

can increase the efficiency in statistical work and reduce the chance of errors in

statistical programming and data analyses, and thus shorten the development

time. Efficient clinical trial design can reduce study costs and increase trial

sensitivity to enhance the chance of a positive study. Presentation of more precise

and accurate clinical data to regulatory agencies can be more convincing and

will raise the chance of drug approval. Clinical statistics plays a critical role in

these examples. In general, according to DiMasi,4 clinical phases of a new drug

development is most costly ($467 million in mean cost) and time consuming

(72.1 months in mean time). The potential impact of clinical statistics on clinical

development can be quite large. For instance, if statisticians can increase the

success rates of drugs moving through clinical trials from currently estimated

21.5% to 33% by more efficient design, the average development costs can be

reduced by $242 million for a drug, as calculated by DiMasi.4

G. AVAILABILITY OF ADVANCED TECHNOLOGYALLOWING

METHODOLOGY IN MODELING AND SIMULATION

Rapid increase of computer power and advanced technology turned drug

discovery and research to a new era. Progress in genomics, including the

complete sequencing of all human genes, enables many pharmaceutical

companies to understand better the relationship of a disease and some relevant

genes. Similarly, through the progress in proteomics, lab scientists try to

understand the influence of protein on certain diseases. Many traditional animal

studies became obsolete in drug discovery since the Genomics Revolution. Even

some early clinical trials can be simulated in computer, so called in silico. Some

major pharmaceutical companies can test their hypotheses on virtual patients in

computer. They can also analyze relationship of genes or proteins to some

diseases. With the help of advanced technology and computer power, the

pharmaceutical companies can not only minimize the discovery waste, but also

reduce clinical development time. Statisticians can play an important role as

shown in Chapter Q.

H. INCREASED EXPOSURE TO PUBLIC SCRUTINY

Governments and regulatory agencies in the different regions and countries have

been following the pharmaceutical industry for decades with ever-increasing

attention. Clinical statisticians are used to guidelines and demands from the

authorities and Institutional Review Boards. Meetings with the FDA on design of

programs and studies to discuss the type and format of data for a file or to defend
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a dossier are quite common experiences for project statisticians. Safety in studies

in life-threatening disease is nowadays routinely followed by Data Monitoring

Committees (DMCs). These committees operate independently of the sponsor

and are formed by experts from outside the pharmaceutical industry. One of

the members is a statistician. The DMC has a big influence on the study because

this committee can advise whether to stop or continue a study. The sponsor’s

statistician influences defining the roles and responsibilities of the DMC and

plays an important role in the provision of the data. Many times statisticians are

heavily involved in discussions on blinding issues. Next to the Data Monitoring

Committee, there is a Steering Committee in many large studies. The steering

committee is a new influential stakeholder, e.g., during protocol development.

For a clinical statistician the existence of DMCs and steering committees means

more interactions with the outside world.

A more recent development is the growing influence of external scientific

world and public opinion. In addition to those committees around a study,

academia and scientific bodies can influence clinical development. This ranges

from the role of the investigators in clinical studies, ownership of data of studies to

publications of the results. Statisticians in all companies share the value of carrying

out their analyses in an unbiased way and publishing the results objectively.

This role, however, is not always recognized by public opinion or the scientific

community. In a joint editorial, Davidoff et al.10 plead for more awareness of

sponsor relationship and scientific integrity. They proposed to strengthen the role

of the investigators: “We encourage investigators to use the revised ICMJE

requirements on publication ethics to guide the negotiation of research contracts.

Those contracts should give researchers a substantial say in trial design, access

to the raw data, responsibility for data analysis and interpretation, and the right to

publish.” This proposal was not strictly implemented as such, but it stresses the

importance to keep the quality and integrity of the studies, analyses, and reports at

the highest level. It also encourages statisticians in their independent role and

statistical ethics.

Another highly influential factor is formed by large-scale outcome studies.

For instance, the Women’s Health Initiative (WHI) trial of estrogen plus

progestin in healthy postmenopausal women11 resulted in a profound impact on

the clinical practice in hormone replacement therapy. Another example with

similar impact in the clinical practice in prevention of cardiovascular events

was the ALLHAT study.12,13 Discussions on the design and results of these

high-profile studies take place in the public arena. In this manner clinical

statisticians and their methodology become exposed to a much broader scrutiny.

III. INDUSTRY ALIGNMENT TO CURRENT TRENDS

As was described above, many global harmonization initiatives are pursued

in different domains of clinical drug development involving the scientific

community in general, regulatory agencies, and the international pharmaceutical
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industry in particular. In addition, internal industry demand for increased

efficiency and cross-country cooperation drives the work for change towards

increased global harmonization. For companies that have developed through

organic growth or local acquisitions, this harmonization could be more naturally

incorporated into the development of the company. However, for companies that

are mergers of companies of different origins this puts additional strain on the

process of global harmonization in terms of organization, processes, and human

resources.

A. ORGANIZATION

The balance between a project-dominated and a function-dominated organization

varies across companies and over time within a company. However, in most

companies the clinical statisticians belong to one functional organization and are

assigned to projects as needs arise. For nonclinical statisticians the picture is

more scattered — in some companies these are organized together with the

clinical statisticians, in others they are separately organized or directly employed

by the nonclinical functions they are supporting.

For larger companies operating from different sites, each site usually has

a group of statisticians. The reporting line for these statisticians is either to a local

clinical function, possibly with a coordinating global skills leader, or directly to

a global head of statistics. The latter model seems to dominate in larger inter-

national companies. It gives the statistics function a more pronounced global

leadership and responsibility.

In most companies statistical programming and sometimes data management

also belong to one and the same skills center enabling a close cooperation

concerning operational matters and skills and capability development.

B. OUTSOURCING

Contract Research Organizations (CROs) are frequently used within the pharma-

ceutical industry for outsourcing of data management, monitoring, and sometimes

also statistical work. The use of CROs for statistical work is more likely when

a complete study from protocol to report is outsourced. Otherwise, the statistical

design and statistical analysis are usually regarded as strategic elements of

a clinical study and are therefore usually performed by inhouse experts. As a result

of the globalization of drug development, the pharmaceutical industry is starting to

build alliances with large global CROs for these activities. This will create benefits

from large-scale agreements and promote consistent and efficient cooperation

across countries and projects. There is little evidence yet of the use of resources

in lower cost countries for statistical work. Planning, analysis, and reporting of

clinical trials are usually done in close cooperationwith the rest of the development

team and cannot easily be done from long distance. Areas where there might be

potential for use of such resources are for programming of descriptive statistical

output and macros. Further detailed discussion on CROs can be seen in Chapter T.
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C. ROLES AND RESPONSIBILITIES

The structure of statistical work in clinical drug development is rather well

established in the pharmaceutical industry. Roles like Study Statistician and

Project Statistician exist inmost companies with small variations in responsibility.

The former role is responsible for an individual study, the latter role for a whole

project involving many studies from all phases. The Project Statistician usually

also has a leadership role in relation to the Study Statisticians in the project.

Higher level statistical roles may also exist such as Global Project Statistician

with global responsibility for all projects formed around different indications

or pharmaceutical formulations of a drug. Some companies have also appointed

Statistical Experts for a whole Therapeutic Area. Other roles may exist, for

example, Research Statistician with primary focus on methods development or

with responsibility for certain capability areas, such as modeling and simulation

or Bayesian methodology.

For an efficient and transparent cooperation across sites and countries it is

important that these roles are given similar definitions. This should be easier

to accomplish than trying to harmonize job titles, which appear to be more

dependent on the local environment.

D. RECRUITMENT, TRAINING, AND EDUCATION

Statisticians in the pharmaceutical industry have the privilege of belonging to

a strong professional community. Many in the U.S.A. and Europe have a broadly

similar academic background with usually a M.Sc. or a Ph.D. in statistics or

mathematical statistics. However, “Statistician” is not generally a profession

protected by public authorization, even though certification schemes are in place

in some countries, for example, United Kingdom, The Netherlands, Germany,

and Spain. Therefore, a person could in principle be a statistician without any

formal training at all. In Europe there is a large variation in educational programs

that could lead to a statistical degree, and more or less statistics can be combined

with many different subjects. An EFSPI Working Party14 made an attempt to

define the criteria for a “Qualified Statistician,” which could be used as a

reference for an appropriate background of a statistician in the international

pharmaceutical industry.

The pharmaceutical statistical science has developed into a rather

homogenous discipline through the decisive influence from the U.S. regulatory

agency, and more recently also from the European regulators, and from some

strong academic institutions in the U.S.A. and United Kingdom. This has created

a favorable breeding ground for international recruitment of statisticians to the

pharmaceutical industry and for secondment of individuals between groups

at different sites. The same statistical language is spoken in most places.

However, the development of methodology has created a number of

subspecialities, for example, in bioequivalence, sequential designs, interim

analysis, and multiplicity. A global company is in a better position to develop
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the necessary critical mass for exploiting these new opportunities and to share

experience and expert knowledge across sites and projects within the company.

Statistical work in a pharmaceutical industry is mostly about application

of statistical methodology in medical and biological research. Therefore,

understanding of the medical and biological aspects of the research is essential

apart from being an expert in the possibilities and limitations of statistical

methodology. In particular, the Global Project Statisticians also face other

challenges in a global environment, for example, they must lead teams of

statisticians from many countries, handle regulatory interactions across the world

regarding statistical issues, and balance contending wills expressed by strong

investigators from different parts of the world.

E. HARMONIZATION OF PROCESSES

From a statistical point of view the clinical development of a drug represents the

conducting of a series of clinical studies each containing a more or less fixed

sequence of events. This includes the development of a study protocol and case

report forms, data capture, cleaning and validation of data, the creation of a

study database, statistical analysis, interpretation and reporting of study results,

and finally a publication in most of the cases as depicted in Figure 19.2.

In all of these activities the study statistician is either accountable or a major

contributor. Within this framework the actual carrying through of these activities

can be done in a number of ways using different templates and standards,

different division of labor on functions and roles, and using different tools. It is

a general aspiration for a global company to harmonize these processes across

different sites and projects. By doing so multiple different working practices,
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• Patient data listings
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FIGURE 19.2 High-level process description for a clinical study.
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supporting technologies and tools can be eliminated and more efficient

cooperation could be established within all parts of the company. This will

also facilitate simplification and streamlining of generic core activities so

statistical experts could focus their time and talents on value-added activities in

studies, data and reports. See for example a report from the Pharmacia experience

by Mc Glynn.15

F. GLOBAL CLINICAL DEVELOPMENT PLANS

It is now common that large international companies already from the outset plan

for a global development of a new drug. The series of clinical studies to be

performed then need to cover variations in incidence and prevalence of the

disease between countries, different medical practices, different control

treatments, and different regulatory standards. For example, the requirement

for placebo-controlled studies and the possibilities to actually perform such

studies in different countries is going to be a major challenge for the future and

is something that must be accounted for early in the clinical development plan as

reported by Huitfeldt et al.16

Current standards of confirmatory therapeutic and outcome studies

necessitate that the conducting of large multinational clinical studies will involve

thousands of patients. Pharmaceutical companies with a broad international

presence can set up such large-scale studies much easier than smaller local

companies through the engagement of their local marketing companies and the

collaboration with international cooperative groups. These studies do present

special statistical challenges for the design, conduct, analysis, and interpretation.

Statisticians will necessarily play an essential role in such studies, not least in the

sample size calculation, which becomes particular critical both with respect to

the costs and feasibility.

Another major statistical challenge is to plan for the possibilities to use data

from one region for registration in another region. Therefore, for a successful

global submission the bridging strategies should be part of the global clinical

development plan. See Section III.G below.

For a large clinical program involving many countries it will be fruitful to

have a far reaching coordination and harmonization of the statistical approaches,

possibly documented in a project wide statistical planning guideline. In such

a document the general principles to be adopted by the project could be outlined,

including common rules for the analysis of studies, handling of missing data,

definition of analysis populations, analysis of safety and tolerability data, and also

approaches to any meta-analyses to be performed for the integrated summaries of

efficacy and safety including templates for cross-study data presentations. These

approaches should then satisfy the highest scientific standards and regulatory

requirements (usually with FDA as the objective) to ensure a successful

worldwide registration.

It is also important to develop a common technical environment for all

statisticians involved in a project regardless of location. Such an environment
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could include standard variable definitions and rules for derived variables,

common coding conventions and dictionaries, common data cleaning and

validation procedures, a unified definition of the database structure, standard

access of data from a reporting database or a clinical data warehouse, common

structure for organizing analysis datasets, programs, and outputs. In addition, it is

very useful to develop a set of validated and documented programs (macros)

easily accessible to produce standard output, e.g., patient data listings, patient

demographics, safety data, and medical history. In order to accomplish this wish-

list one has to invest a lot of resources, but this investment is profitable in the long

run and can release energy and power to the essential scientific issues.

G. STATISTICAL ASPECTS ON BRIDGING

Most global development programs have a core consisting of a major registration

package for the U.S./Europe supplemented by global and/or local programs for

market development and support. For Japan and other Asian countries this core

package cannot be used as such without being supplemented by additional

studies, so called bridging studies. The purpose of these is to support the

extrapolation of the conclusions from clinical trials performed in one region to

another region, usually from the Western to Asian countries by linking the two

regions with regard to some key characteristics. These key characteristics could

be based on pharmacokinetic or pharmacodynamic variables but also on clinical

efficacy and/or safety variables. Regions can differ in a number of aspects such as

genetic, demographic, nutritional, or medical practice. From a statistical point of

view bridging studies pose a number of challenges including nonrandomized

comparisons, assessment of equivalence or nonequivalence, and sample size.

Because of the nonrandomized nature of bridging studies, the collection of

appropriate covariates becomes particularly important in order to evaluate any

nonequivalence by adjusting for such covariates. The sample size in a bridging

study is a balance between feasibility and a formal approach based on a power

analysis. It is also a balance between regulatory requirements and the need

for the company to ensure an effective and safe treatment for the new region. A

more regulated bridging has been possible by the ICH guideline “Ethnic factors

in the acceptability of foreign data.”8 Further statistical aspects of bridging can be

found in Liu and Chow17 and Chapter 20.

IV. THE OTHER SIDE OF THE COIN AND HR PERSPECTIVES

The previous section may have given the impression that harmonization and

globalization only have advantages. Everyone who has been involved in these

processes, however, will agree that these trends seem unavoidable though not

necessarily always advantageous and/or easy to handle in all aspects. This section

will focus on the other side of the coin.
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A. ORGANIZATION

As described earlier, most companies have some sort of matrix organization in

which in general the statisticians belong to a functional organization and are

assigned to projects. This is a complex structure that inherently brings ambiguities

in decision making. Decision lines can be long and many stakeholders are

involved. The decision power is further diluted when different sites in different

countries or even different continents are involved in global projects. In the end

this can lead to decisions being taken “too late” or by managers who are “too far”

from the work floor.

B. ROLES AND RESPONSIBILITIES

Although the role of a Project Statistician does not seem to change greatly when

moving into a global arena, the need for communicational, social, and political

skills becomes evenmore prominent.Onemust be able to handle different cultures,

different ways of communication, and company politics. Managing, or maybe

better “influencing,” people from a long distance, both in geographical and cultural

meaning, can be quite a challenge. Project Statisticians therefore, should be

highly communicative and comfortable with video- and tele-conferencing, and

use E-mail in a proper way. The cultural background influences the way of

communication. Statisticians working on a global scale, so called Global Project

Statisticians in some companies, should be able to understand the “real” message,

regardless of the exact words of the message.

Of course, company politics is not a new phenomenon. However, Global

Project Statisticians will have a much wider internal interaction than in the past

and thus will more likely be confronted with company politics. This global focus

makes life for statisticians much more challenging, interesting, and rewarding.

So, from a dull number cruncher who would never leave his room far away, the

statistician has changed into a player on the global scene. Statisticians travel

all over the world and expatriate statisticians are no longer an exception.

C. RECRUITMENT, TRAINING, AND EDUCATION

With these social, cultural, and political skills becoming more and more

important in the global collaboration, one can wonder whether the technical,

statistical background still should be the main driver when appointing new

leaders in the statistical arena. However, strong strategic thinking is expected

from these persons. Therefore, the Global Project Statisticians and managers in

the statistical departments should have a strong training in statistics. This is

indeed the usual background of statisticians in the pharmaceutical industry.

Already at recruitment the social and communicational skills form an important

aspect in the choice. Furthermore, training and career development are very much

focused on the social, political, and leadership skills.
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D. CULTURAL ASPECTS

In spite of the professional concordance that exists among statisticians involved

in clinical drug development, this cannot conceal some major differences that

exist between companies and between countries regarding cultural matters.

These cultural differences make cross-country cooperation sometimes difficult

and rather challenging. They could concern not only different native languages,

but also differences in management styles, performance assessment, common

values, etc. These aspects of globalization are not specific to statisticians,

but cannot be ignored in the belief that the strong professional solidarity could

smooth over such differences.

Cultural or political differences can also cause the regulatory authorities or

governments to set different requirements, which can complicate the work of

a statistician. One example is the requirement about part of the demographic data

that need to be assembled, namely race and ethnic origin (see, e.g., the FDA’s

draft guideline). The classification required can easily be implemented in the

U.S., but is difficult to handle or even illegal in some other countries. A

statistician will ask for a consistent classification over all sites in a study and

project. If this does not happen, one can easily end up with overlapping classes,

causing the disposition of subjects to become incomprehensible and the

programming of tables highly complicated.

E. BALANCE BETWEEN HARMONIZATION, STANDARDIZATION,

AND FLEXIBILITY

As indicated above, harmonization of processes will aim to increase the

efficiency and free resources for value-added statistical activities. However,

there is a balance between harmonization and standardization and flexibility.

Global harmonization in general brings a quite strict system of standard

procedures, with a major part laid down in operating procedures, standards and

computer applications. Maintaining the standards can become a major effort.

Or worse, there is a clear danger that the standards become a goal in themself.

In this setting, changing the standards gets very complicated due to the

many stakeholders and interdependencies. For instance, changing the protocol

numbering system, which for statisticians is hardly relevant, can be an enormous

challenge since so many departments use these numbers, ranging from controllers

and financial people to clinical monitors in the field. These standards and the

difficulty of changing them can seriously decrease the flexibility and become

counterproductive.

Many companies therefore have a hierarchy of standards: the core or

company standards refer to all activities, like the Adverse Event form. The

level below the company standards is of the therapeutic area standards, followed

by the project standards. In most companies the statistical standards within

a project are maintained by the Global Project Statistician. This seems to be the

right balance between short decision lines and flexibility versus efficiency,
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predictability of output, and smooth interfacing. Next, more flexibility is brought

into the early phases of clinical development. For phase I studies in general, less

strict standards are used. A similar attitude is seen with regard to early phase II

activities.

The danger of too rigid standards can even be truer for the IT-applications

and -systems. Especially, if no sensible split up is made, in independent modules

with a limited number of interdependencies, it is very likely that the systems

become so complicated that no one can oversee the whole and the effect

of changes can only be sorted out by trial and error. A good example of an activity

with many interdependencies and stakeholders is the randomization.

The procedures and systems for randomization form a fundamental basis for

the clinical studies as every statistician knows. Many parties, often in quite

different parts of a pharmaceutical company, are involved or rely upon the

randomization system. During development of such a system, pressure will be

high to adapt the system to the wishes and standards of the different departments.

Management should be very keen to keep the scope of the system limited and

the interfaces simple.

Other situations where different standards will collapse, are partnering,

merging, or take over. During take over it is likely that the standards of the

company taking over are imposed upon the other. This brings a big shocking

effect. People may interpret this forced change as a statement of low performance

in the past. This of course is not true: there are many ways to do a job, with

negligible differences in final output. Next, this change will bring a feeling

of discomfort, since one has to get accustomed to the new standards and find

the ways to go. A statistician going from one company to another will have

a similar experience.

F. GLOBALIZATION AND THE INDIVIDUAL

The overload of SOPs, guidelines (who really knows all ICH-guidelines?)

and other standards can make a statistician new to the industry wonder what kind

of world the person has entered. For the “senior” employees this may look like

a well defined and well structured environment in which it is clear to see what

your degrees of freedom are. A newcomer can be highly uncertain of what

he/she is allowed to decide upon personally, and where to go if one wants to

know personal authority in changing the standards. So, this might lead to lack of

ownership and critical attitude. This will lower motivation and probably will

negatively impact the quality of the work.

The high degree of regulation can seriously lower the drive for innovation

and become a denominational factor for more experienced statisticians. People

will be inclined to follow the routes that others have already taken, or that they

have taken themselves in the past, and are less willing to take risks and follow

other routes. Even if one really sees opportunities and is willing to take another

course, it can take enormous perseverance to change the course of the company,

like a small individual trying to change the course of a huge ship. This is
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detrimental to innovation and flexibility. Statisticians should realize that the

standards are there to help them and free their time for highly value added

activities, which will increase productivity in the end.

Therefore, management should strive for a good mix of people: innovators,

who will keep looking for other routes and will challenge standards, and builders,

who can form the backbone of the company and will keep the processes,

applications, and systems going and modify where needed.

G. HARMONIZATION, REGULATORYAUTHORITIES, AND GOVERNMENTS

Despite the ICH-initiatives and the globalization trend in societies, still there

are strong differences between countries, which impact the job of a statistician.

Noninferiority, just to name one subject, is treated differently by the FDA and

the EMEA (see Huitfeldt et al.16). The position on placebo-controlled studies is

also far from unanimous over the globe. Even if the regulatory authorities would

be able to come to a complete harmonization of their requirements, cultural

differences will remain a contributor to differences in results and final decisions

on the dossier. Balant and Balant-Gorgia18 give an interesting overview of

cultural aspects that can contribute to the drug response.

V. SUMMARY AND CONCLUSIONS

Drug development is increasingly expensive. There is a pressure on prices from

regulators and customers; fewer and fewer new drugs reach the market, and

companies encounter increasing competition as never before. These trends result

in continuing attempts to expand the markets and globalize the business by the

pharmaceutical industry in order to save costs and increase revenues through

spreading of risks and seeking synergy of effects from mergers and partnerships.

This is facilitated by the technical and scientific development, which supports

the global aspirations by the industry through increasing cooperations between

regulatory authorities, industry, and medical organizations.

Clinical statistics is an important contributor through all phases of the clinical

development and the current trends of globalization present many challenges and

opportunities. This affects organization, outsourcing, roles and responsibilities,

recruitment, training and education of staff, and processes for the statistical work.

Other aspects of globalization relate to the clinical development plan including

the statistical aspects of bridging, and the need for global standards and a common

technical environment.

Clinical statistics is not only affected by these trends but should also take

responsibility to lead the technical and statistical aspects of this development in

terms of implementing standards, controlling for variability, sensible analyses

and interpretation of multinational studies and programs, etc.

The downside of this development is the risk for large unwieldy organiza-

tions with decision-makers far away from the shop floor. A too far reaching
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standardization is difficult to pursue and maintain and has a tendency to conserve

old thinking and prevent innovation and flexibility to flourish. Working in an

international environment puts additional strains on communication, social and

language skills, and adaptation to different cultural environments.

Globalization of the pharmaceutical industry seems to prevail and even

be further reinforced. Clinical biostatistics is heavily affected by this develop-

ment but can also make significant contributions to the capitalization of the

opportunities created thereby. Much of the standardization and harmonization

that follow globalization of the industry can, if sensibly implemented, allow the

clinical statisticians to focus on the added value of their scientific and operational

contributions.
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I. INTRODUCTION

Research and development (R&D) of a pharmaceutical product requires

considerable time as well as a large amount of resources (human, money, etc.).

It is said1 that it takes around 15 years from the start of research on a compound of

future pharmaceutical product to its registration as a new drug, and that the success

rate is one out of some 12,000. Against this background, many of the

pharmaceutical companies are working hard to develop global strategies

to promote efficiency as well as concentration of pharmaceutical research and
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development. Merger and acquisition (M&A) has been on the sharp increase

especially in the U.S. and European countries against the backdrop of

liberalization of trade and investment — the pharmaceutical industry is no

exception. Many major pharmaceutical companies have been making strong

efforts to expand business overseas.

The activities of the International Conference on Harmonization (ICH) must

have added great momentum to such globalization of the pharmaceutical industry

and new drug development. Out of many guidelines adopted at the ICH, the

guideline on “Ethnic factors in the acceptability of foreign clinical data” has been

exerting great influence on the strategy of new drug development in the world.2,3

This guideline has been put to practical use since 1998, and several issues to be

considered in successfully implementing it have been pointed out.

This chapter presents the historical background and the current status

of international harmonization concerning new drug development, focusing

on the handling of foreign clinical data, and discusses some statistical issues to

be considered to promote the use of foreign clinical data for new drug registration.

II. GLOBALIZATION OF PHARMACEUTICAL INDUSTRY

AND NEW DRUG DEVELOPMENT

Table 20.1 shows the pharmaceutical sales by region in 2003.4 The pharma-

ceutical industry will be one of the few growth industries that will lead the world

economy in the future. It is expected that the world market in pharmaceuticals will

grow steadily for the foreseeable future. It should be noted that almost all the ten

top selling products are marketed worldwide.

Striving to secure the scale of R&D cost, to supplement the pipeline of future

new drugs, and to expand the sales force in the circumstances where the steep

TABLE 20.1
Pharmaceutical Sales by Region in 2003

Region Sales ($ billion) % Global Sales

North America 229.5 49

European Union 115.4 25

Rest of Europe 14.3 3

Japan 52.4 11

Asia, Africa, and Australia 37.3 8

Latin America 17.4 4

TOTAL 466.3 100

IMS World Review 2004. www.ims-global.com
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surge of R&D expenditure is anticipated in this biotechnology age, about half of

the top 20 pharmaceutical companies have experienced merger or acquisition

during these ten years. Although some doubt has been raised as to just getting

bigger and bigger,5 this trend is expected to continue. Actually, almost all of the

top companies have been doing business such as research and sales of

pharmaceuticals globally, and some new drugs that were developed

simultaneously in the world have already been marketed in European countries,

Japan, and the U.S. There has been a recognized need to find ways to

reduce development time, to reduce duplication of efforts and wastage of clinical

and animal resources, and thereby, to reduce costs for new drug development.

The biotechnology revolution makes the situation even more urgent.

III. INTERNATIONAL HARMONIZATION OF PHARMACEUTICAL

REGULATION AND ICH

From the viewpoint of saving resources as well as providing new drugs to patients

sooner, there will be a great impact if pharmaceutical companies can utilize data

for new drug registration that were collected in foreign countries, without

conducting additional domestic studies. Based on this kind of idea, when utilizing

foreign data including data from clinical studies, expectation of expanding the

range and depth had been increasing, reflecting the recent globalization of new

drug development. In addition to the globalization and consolidation in the

industry, governments in charge of pharmaceutical regulation found a need to

increase communication with each other, and thus formed bilateral and

multilateral efforts for this purpose.

The International Conference on Harmonisation of Technical Requirements

for Registration of Pharmaceuticals for Human Use is a joint regulatory-industry

initiative on international harmonization with the aim to provide availability of

new drugs to patients sooner through harmonizing technical requirements of new

drug registration in Europe, Japan, and the United States. This is done by

promoting mutual acceptance of new drug registration data, and by avoiding

duplication of clinical and animal studies without compromising the regulatory

obligations of securing safety and effectiveness. It was established in 1990 as a

joint regulatory-industry effort to improve, through harmonization, the efficiency

of the process for developing and registering good quality, safe and effective new

drugs in the world. A variety of topics, mainly in the three areas, i.e., quality

(chemical and pharmaceutical quality assurance), safety (in vitro and in vivo

nonclinical studies), and efficacy (clinical studies) were chosen, and have been

discussed toward establishing harmonized guidelines. Its general process is to

identify and then reduce differences in technical requirements for new

drug development among regulatory agencies. Agreement has been made on

more than 50 topics, and harmonized guidelines have been implemented in the

three regions.
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IV. ICH E-5 GUIDELINE

A. HISTORY

When a substantial body of clinical data, including those of Phase III confirmatory

studies, has been gathered in certain regions, global drug development would be

accelerated if the evidence of efficacy and safety could be extrapolated to another

region without repeating clinical studies on the same scale in the new region.

This is the principal concept for utilizing foreign clinical data.

Historically, it was recognized widely in the three regions (European

countries, Japan, and the United States) that ethnic and regional differences that

could influence the evaluation of new drugs are unavoidable barriers in accepting

foreign clinical data. Each region established its regulation in the 1980s concern-

ing the conditions for registration of new drugs based on foreign clinical data.

Although emphasizing the importance of the quality of the clinical studies

conducted in foreign countries, each region showed the policy that foreign clinical

data would be acceptable as long as it was applicable to the domestic population

and its medical practice, which had been serving in practice as an impediment to

the use of foreign clinical data.6,7

The former policy on the handling of foreign clinical data in Japan was

published by the Ministry of Health and Welfare (MHW) in 1985.7 It was based

on the research conducted by MHW that pointed out the following issues to be

considered in the use of foreign clinical data:

(a) Racial difference between Japanese and Caucasians/Whites/Blacks,

and the difference of environment and medical practice between Japan

and other countries.

(b) Credibility and quality of foreign clinical data.

As a result, MHWdeclared that, although foreign clinical data with credibility

and quality could be used as newdrug registration data, the following three types of

studies, in principle, should be conducted in Japan: (a) pharmacokinetic studies,

(b) dose-response studies, and (c)well-controlled studies to demonstrate the drug’s

efficacy and safety. It was a time when no guidelines on good clinical practice

(GCP) had been established, nor had new drug development been globalized.

Under these circumstances, the research report emphasized the difference of

pharmacokinetics, efficacy and safety between Japanese and other populations.

The issue “ethnic factors to be considered in the acceptability of foreign

clinical data,” which was proposed by Japan, was adopted as a formal topic (Topic

E-5) at the ICHmeeting in 1992.After that, the ExpertWorkingGroup of this topic

continued to work extensively, and the draft guideline was agreed on in March of

1997, whichwas released for comments afterwards. The guideline was finalized in

February of 1998, and was implemented in the three regions in 1998.2 This ICH

guideline recommends regulatory and development strategies to permit clinical

data collected in one region to be used for the support of drug registration in

another region while allowing for the influence of ethnic factors.

Statistics in the Pharmaceutical Industry348



B. ETHNIC FACTORS

A critical issue in utilizing foreign clinical data is the role of ethnic factors, i.e., the

difference in efficacy and safety between populations. The word “ethnicity”

originates from the Greek word “ethnos” meaning nation or people. Ethnic factors

are factors that relate to race or to a large ethnic population classified based on

common characteristics and customs. The ICH guideline clarifies ethnic factors

related to drug evaluation and classifies them into two categories, i.e., intrinsic

ethnic factors and extrinsic ethnic factors. It discusses their potential influence on

efficacy, safety, and dose/dosage regimens of a new drug, as well as themethods to

evaluate their influence.While examples of intrinsic ethnic factors include genetic

polymorphism and sensitivity of receptors, medical practice and clinical trial

methodology are examples of extrinsic ethnic factors.

Intrinsic ethnic factors are factors associated with the drug’s recipient.

The difference of pharmacokinetic profiles due to genetic polymorphism of a

metabolic enzyme is one of the typical examples of the effect of intrinsic factors.

It is reported that there exist rapid acetylators and slow acetylators for certain

drugs such as isoniazid (anti tuberculosis),8 and the ratios of rapid/slow are

different among races. Their plasma concentration curves often show a great

difference, and it would lead to the difference of clinical response and safety

among races. The differences of responses to b-blockers and ACE inhibitors

between Whites and Blacks are reported as examples of pharmacodynamic

difference among races.9,10

On the other hand, extrinsic ethnic factors are associated with culture and

environment of the regions/populations. Examples of extrinsic ethnic factors are

the difference of diagnosis criteria, intervention including concomitant medi-

cation, and endpoints/evaluation method in clinical studies among regions. The

existence of extrinsic ethnic factors and the degree of their influence is hard to

evaluate precisely. Nevertheless, if diagnostic methods or criteria for a certain

disease are different among regions, the target population of clinical studies or

treatment could be different among them.Also it can be supposed that the degree of

apparent effect of a certain drug differs due to the difference of concomitant

medications to the disease among regions, which could lead to a considerable

difference in the evaluation of the drug’s benefit/risk. Actually, there are some

drugs of which the recommended dosages are different greatly among regions, and

the difference seems to have no relation to the degree of deficiency of the drugs’

metabolizing enzymes among the races.11

It is reported that higher incidence of vasospastic response in the early post

Acute Myocardial Infarction (AMI) phase is observed in Japanese compared with

Caucasians.12 Although the causes have not been clarified so far, this has resulted

in the difference of medication for the prevention of recurrence of ischemic heart

diseases between the populations: calcium antagonists are predominantly

prescribed for Japanese and b-blockers for Caucasians. The ICH guideline

emphasizes that the influence of such intrinsic and extrinsic ethnic factors should

be ascertained in considering the use of foreign clinical data.
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C. BRIDGING STUDY

A bridging study is a clinical study conducted in a new region to evaluate the

possibility of building a bridge between the original and the new region, in other

words, to evaluate the applicability of clinical data collected in the original

(foreign) region to the new (domestic) population. The ICH guideline classifies

the bridging study into the following three types: (a) no need for clinical

bridging study (pharmacokinetic studies serve as bridging studies), (b)

controlled pharmacodynamic studies, and (c) controlled clinical studies.

When “similarity” is shown as a result of the bridging study, and the foreign

clinical data are judged to be applicable to the population in the new region, the

foreign clinical data package becomes acceptable as a basis for registration of

the new drug in the new region. Regretfully, the ICH guideline does not describe

practical approaches as to what kind of a bridging study should be planned and

conducted under a specific situation. Also, it does not describe practical criteria

as to the judgment of similarity of the study results, which affects the sample

size of the bridging study.

A simpler bridging study would be better as far as pharmaceutical

companies are concerned. On the contrary, from the viewpoint of regulatory

agencies, it is often difficult to evaluate the influence of ethnic factors including

extrinsic ones by evaluating only pharmacokinetic data that are collected under

rather experimental circumstances and provide little information on clinical

evaluation. The experience of judgment on the approvability of new drugs based

on foreign clinical data is another important factor.

The necessity and the content of a bridging study cannot be decided

mechanically, because the situations are unique to the factors such as the

characteristics of the drug under investigation, its targeted disease, and the

experience of the regulatory body. Importantly, we should continue to accumulate

our experience and endeavor to improve the environment for enabling a more

simple bridging study by adopting surrogate/pharmacodynamic endpoints and

shorter study period leading to the realization of the spirit of ICH.

V. STATISTICAL ISSUES IN EVALUATING THE ACCEPTABILITY

OF FOREIGN CLINICAL DATA

A. PHARMACOKINETIC STUDY

Although our ultimate goal in the judgment of usability of foreign clinical data

is to confirm the similarity of clinical response (efficacy and safety) to the drug

between populations in different regions, it would be of great help if we can

identify the existence as well as the degree of the influence of intrinsic ethnic

factors on pharmacokinetic profiles.

Comparison of pharmacokinetic profiles between the populations in

the original (foreign) region and the new region is an essential step in

considering the use of foreign clinical data. When we evaluate the similarity
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of pharmacokinetic profiles between populations, it would be a usual way to

select some pharmacokinetic parameters of interest and compare them between

the populations. The parameters need to be linked to the knowledge about the

relationship between the pharmacokinetic profiles and the pharmacodynamic

response. Several different approaches have been applied for the calculation of

average pharmacokinetic parameters, including the naı̈ve averaged data

approach, the standard two-stage approach, and the simultaneous approach

(mixed-effects model). Each method has its pros and cons, and it is important

that the obtained results are robust in order to make a correct comparison.

The strictness of comparison should depend on the degree of evidence for

the similarity of clinical efficacy and safety between the populations.

Recently the mixed-effects approach has been often used in new drug

development because it offers the possibility of gaining integrated information on

pharmacokinetics from relatively sparse data obtained from study subjects. In

the analysis of population pharmacokinetics, nonlinear mixed-effects models are

usually used, and the maximum likelihood method is generally employed for the

estimation of population pharmacokinetic parameters. Because of the statistical

complexity, careful attention must be paid to some statistical issues in order

to obtain reliable and robust results.

Because pharmacokinetic models are nonlinear in individual-specific

pharmacokinetic parameters, log likelihood functions in population pharmaco-

kinetic modeling involve a multiple integral that has no closed-form solutions.

One of the remedies is to approximate the nonlinear model by using the first order

Taylor expansion around the mean value 0 of the interindividual variation.

This approximation converts a nonlinear form in individual and random effects to

a linear form. However, during this process, the second (which corresponds to

interindividual variation) and further terms are ignored indicating that there is no

variation among subjects.13 This may introduce bias if the above condition does

not hold. Also, as already pointed out, this approach gives biased estimates

for population means and variances of pharmacokinetic parameters when

the parameters are highly correlated within a subject.14

In addition, although it is one of the merits for nonlinear mixed-effects model

that we can use all the data obtained in the study including those of patients who

have dropped out from the study, we need to pay attention to the handling of

missing data.15We may face the situation that there is a difference in pharmaco-

kinetic profiles between the patients who have completed the study and those who

have dropped out, and we cannot validate the model to describe the difference.

B. EVALUATION OF EFFICACY

Evaluation of efficacy in the bridging study has two aspects to be considered:

design issues and statistical issues. In conducting a bridging study, securing the

quality and credibility of the data is essential. At the same time, comparability of

the data is an important factor from the viewpoint of study design, because the

evaluation of extrapolatability is examined based on the similarity between the
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data obtained from the bridging study and the corresponding foreign clinical data.

The evaluation can be done more easily and precisely if the designs of the studies

are similar. As for the endpoints used in the study, validity (reflecting clinically

relevant effects properly), inter/intra-rater reliability, and objectivity are required.

Also we should pay attention not only to the difference of entry criteria but also to

the actual demographic data of the patients participating in the study.16

As for statistical issues, we should bear in mind that the ICH guideline does

not require “same” efficacy but only “similar” efficacy for the data from both

regions. Estimation of the efficacy becomes critical in the evaluation of the

similarity of the data between populations. This is different from the regular

statistical practice of the evaluation in new drug application, viz., hypothesis test.

The challenge is that the estimated efficacy from a small bridging study must be

robust. Several approaches to examining the similarity have been proposed.17–19

Another issue is the sample size calculation of the bridging study without

specification of type I and II errors. It is preposterous in a spirit of ICH if a

bridging study requires a sample size equal to that in the original study. Further

research is required regarding the definition of “similarity” and the associated

sample size calculation.

C. EVALUATION OF SAFETY

In considering the use of foreign clinical data for new drug registration, the issue

of the drug’s safety is apt to take a back seat to the issue of efficacy. Actually, the

ICH guideline does not spare a lot of pages for the discussion on the extra-

polatability of safety data to the new region.

In the first place, efficacy and safety are inseparable in dealing with pharma-

ceuticals, and the issue of safety should not be belittled. We cannot deny the

possibility that the safety profiles of the drug differ among regions/populations

because of the influence of ethnic factors such as the difference of medical

practices among regions. In general, however, it requires a much larger database

(sample size, duration of treatment) for the evaluation of safety of a new

drug compared with the case for the efficacy. Therefore it would be a practical and

reasonable approach to leave the further safety evaluation to the postmarketing

surveillance if we find no major concern for its safety after assessing the safety

database composed of foreign clinical studies and the bridging study for efficacy.

The postmarketing safety study comes to play a very important part in the

process of new drug development and evaluation. As for new drugs that are

approved mainly based on foreign clinical data without having enough domestic

safety information, more attention should be paid to their postmarketing

surveillance especially during the period just after the launch on the market. The

case for gefitinib (a drug for patients with advanced nonsmall cell lung cancer)

and severe acute interstitial pneumonia in Japan reminds us of this lesson.20 The

method of postmarketing safety study, including the number of patients and the

duration of exposure to the drug, should be investigated from a statistical

viewpoint based on the character of each drug.
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Owing to the adoption of the ICH guideline, new drugs that have been

approved with safety database mainly composed of foreign clinical studies are

expected to be more common in the near future. In such cases, fortunately, fairly

large amounts of safety data obtained from such foreign clinical studies are often

available before initiating postmarketing safety studies in the new region.

How we plan and conduct postmarketing safety studies effectively as well as

efficiently by best utilizing such information is our challenge.21We would like to

encourage further discussions on the issue of safety evaluation from the

viewpoint of utilizing foreign clinical data for new drug registration.

VI. CONCLUSIONS AND EXPECTATION FOR GLOBAL

DRUG DEVELOPMENT

When we consider the use of foreign clinical data, we fall in a dilemma between

the two ideas that are both the key words of the ICH activity:

(a) Reduce the resources for new drug development, and provide safe and

effective new drugs for patients sooner.

(b) Should not compromise on securing the safety and efficacy of new

drugs.

Thus, regulatory agencies face a challenge when they make a judgment about

the safety and efficacy of new drugs for their citizens based on data gathered in a

different region. Many years have passed since the implementation of the ICH

guideline, and each regulatory agency has been accumulating its experience on

evaluating foreign clinical data. In Japan, more than ten new drugs have been

registered mainly based on foreign clinical data, and a lot of promising products

are under development according to the principle of the guideline.

Most parts of the ICH guideline are written on the assumption that the foreign

clinical data have been already collected and the sponsor conducts a bridging

study afterward (retrospective approach). However, in order to make a new drug

available to the patients sooner, worldwide simultaneous development is

preferable. Conduct of the international multi-center collaborative study is one

of the solutions, by which we can establish the efficacy and safety of the new

drug; at the same time we can evaluate the influence of ethnic factors among

different populations. Although they are a kind of large simple trial and are not

studies for obtaining regulatory registration, some successfully conducted

multinational clinical studies have been reported, where many centers in Asia,

Europe, and North America participated.22,23

Because of the fast-paced development in biotechnology, the way of looking

at intrinsic ethnic factors has been changing. Schwartz24 pointed out that some

articles dealing with the effects of racial/ethnic factors on drugs’ efficacy and

safety offer “no plausible biologic justification for making such distinctions,” and

that “race is a social construct, not a scientific classification.” With the advance of
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human genomic analysis, the intrinsic ethnic factors are expected to take account

in due time of the issue of genetic factors.

Concerning extrinsic ethnic factors, the great efforts of ICH for the

establishment of a number of harmonized guidelines have resulted in the

harmonization of design and methods of clinical studies, and the influence of

extrinsic ethnic factors related to the methodology and conduct of clinical studies

have been becoming a legacy. On the other hand, as for the extrinsic ethnic

factors related to medical practice in general, the overall trend seems to be

moving toward global harmonization (see Chapter 19 for relevant information),

but we need further to accumulate our experience and to evaluate it.

The situation surrounding the issue of ethnic factors has been changing

rapidly in some fields and gradually in others from the time when the ICH

guideline was established in 1998. The strategy of new drug development in the

worldwide market has been changing as well. But it should be kept in mind that

the points we presented in the previous sections will remain valid for the near

future. We expect continued rigorous discussion on these issues.
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I. INTRODUCTION

One of the steps necessary for characterizing a new drug dosage form is to conduct

an in vivo bioavailability study. The Food and Drug Administration (FDA)

requires that pharmaceutical companies perform these studies in order to produce

a new drug application (NDA) or an abbreviated new drug application (ANDA).

Specific details related to the requirements for an NDA are presented in the

Federal Register (January 7, 1977)1 while Cabana and Douglas2 give bioavail-

ability guidelines for investigational new drug application (IND) development.

Bioavailability, as defined by Metzler,3 “includes the study of the factors

which influence and determine the amount of active drug which gets from the

administered dose to the site of pharmacologic action as well as the rate at

which it gets there.” Since it is often difficult or impossible to measure drug at its

site of action, drug concentrations in the systemic circulation (blood, plasma

or serum) are used as a surrogate. The object of bioavailability study is to

quantify the relative amount and rate of absorption of the administered drug

which reaches the general circulation intact. It may be noted that the FDA has

defined bioavailability as “the rate of ingredient and extent to which it is

absorbed.”

There are a number of types of biopharmaceutic studies those involve

measurement of bioavailability of one or more dosage forms, viz.:

Absolute bioavailability: These studies involve a comparison of

a nonparenteral dosage form (e.g., an oral form) relative to an IV (intra-

venous) solution.

Relative bioavailability or bioequivalence: These studies are used

to determine if the rate and extent of a test formulation are equivalent to

those of a reference formulation. These studies are discussed in details in

this chapter.

ADME (Absorption, Distribution, Metabolism, Excretion): These studies

are run to determine the pharmacokinetics andmetabolic profile of a dosage

form.

Dose proportionality: These studies are conducted to determine the

correlation between increase in doses of a drug and its bioavailability.

In course of development of a drug, many other special studies, such

as, determination of the effects of renal impairment, food, and concomitant

medications on the bioavailability of the drug, are conducted.

Factors influencing the estimate of the bioavailability of a dosage form are

numerous but essentially fall into two categories. The first is made up of physical
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characteristics of the dosage form and includes such items as tablet compression

force, particle size, solubility, and dissolution rate. The second category contains

certain design factors which can affect the drug level profile. For example, the

choice and spacing of the sampling times must be carefully chosen so that

the drug concentration can be accurately determined. The choice of sampling

times also affects the precision of estimates of the pharmacokinetic parameters.

The amount of physical activity permitted during a study and whether or not

a subject fasted prior to administration of medication are the other design factors

having marked effects on drug levels. However, even under controlled conditions

blood and urine concentrations often differ markedly, even for subjects with

similar ages, heights, weights, general health, and other demographic factors

(Gibaldi,4 Chapter 7).

To establish the bioavailability of a dosage form, a multidisciplinary

approach to design and analysis of these studies is mandatory. To determine

which of the factors need to be controlled, whether patients or healthy volunteers

should be studied, and what statistical design will yield the required information,

a statistician’s input to the planning is a must. The purpose of this chapter is to

provide some insight into the choice of design and method of statistical analysis

of single-dose in vivo bioavailability studies.

II. BIOAVAILABILITY OF A SINGLE FORMULATION

A. COMPARTMENTAL MODELS

For determination of the pharmacokinetic properties of a drug it is frequently

useful to represent the body as a system of interconnected compartments.

The compartments are more of a conceptual device useful for analyzing drug

concentration data than having only limited physiological meaning. The

commonly used compartmental models are the one-compartment (Figure 21.1)

and the two-compartment types (Figure 21.2).

In Figure 21.1 the entire body is viewed as a single-compartment with Ka
representing the rate of absorption of drug into the system and Ke, the rate of

elimination of drug from the system. Gibaldi and Perrier5 point out that viewing

the body as a one-compartment model does not mean that the concentration of

drug throughout the body tissues at any given time is same, rather the model does

assume that the changes of drug concentrations in plasma quantitatively reflect

COMPARTMENT
1

Ka

Ke

FIGURE 21.1 One-compartment model.
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drug concentration changes in the tissues. A system of two compartments is

shown in Figure 21.2. Typically the first compartment is taken to represent blood

plasma and the second compartment the peripheral tissues. The constants K12 and

K21 represent transfer rates of drug between plasma and tissue, and Ke denotes

the elimination rate of the drug.

Input of drug into the model is usually assumed to be zero or first order,

depending on the route of administration, while elimination from the

compartments and transfer between compartments are assumed to be of first

order. By zero order input, we mean the input rate of drug to be constant; first

order input and elimination implies the input and elimination rates to be

proportional, respectively, to the amount of drug at the absorption site and to

the amount of drug in the compartment through which the drug is eliminated. The

above assumptions regarding rates of input, transfer, and elimination require that

the equation relating the concentration of drug to time can be rewritten as a sum

of exponentials. For example, the equation corresponding to the concentration of

drug in the single-compartment model (Figure 21.1) is as follows:

CðtiÞ ¼ FD

V

Ka
Ka 2 Ke

ðe2Keti 2 e2Kati Þ ð21:1Þ

where

CðtiÞ ¼ concentration of drug in the compartment at time ti
F ¼ fraction of the dose that is absorbed

D ¼ dose of drug

V ¼ apparent volume of distribution of the drug

Ka ¼ absorption rate constant

Ke ¼ elimination rate constant

Note that for suitable choices of aj and lj, the right-hand side of Equation 21.1
can be written as X

aje
2ljtj

Equation 21.1 is appropriate when the drug is administered orally. If the drug

is administered through IV injection or some other route of administration

COMPARTMENT
1

Ka

Ke

COMPARTMENT
2

K12

K21

FIGURE 21.2 Two-compartment model.
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and the body is viewed as a single compartment, then Equation 21.1 would no

longer be appropriate. Wagner6 discussed the one-compartment and various

multicompartment models and provides equations for the concentration of drug

in the various compartments following several different routes of administration.

B. PARAMETER ESTIMATION

1. Individual Modeling

Table 21.1 displays concentrations of drug A in whole blood for one subject

following a single oral solution of 260 mg. The first step in the analysis of such

data is identification of the underlying model, usually based on information

obtained from a preliminary study or from reported published data. If such

additional data are not available, fitting the sequence of concentrations to the

equations generated by both the one-compartment and two-compartment systems

should be attempted. Computer programs utilizing nonlinear least-squares

algorithms are usually employed to obtain best-fitting estimates of the

pharmacokinetic parameters (e.g., Ka, Ke) for a particular model. The criterion

of goodness of fit is usually taken to be minimization of the quantity

Xn
i¼1

ðYi 2 ŶiÞ2 ð21:2Þ

where Yi is the observed concentration at time ti, Ŷi is the concentration predicted

by the fitted model at time ti, and n is the number of samples collected from the

subject. Hence we attempt to find the set of estimates of the pharmacokinetic

parameters that minimizes the residual sum of squares.

TABLE 21.1
Concentration of Drug A in Whole Blood

Sampling Time (h) Concentration (ng/ml)

0.5 0.70

1.0 1.11

2.0 1.36

3.0 1.17

4.0 0.99

6.0 0.71

8.0 0.50

10.0 0.31

14.0 0.14

18.0 0.06

24.0 0.20
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Several problems make the fitting procedure difficult. First, because the

algorithm employs iterative techniques, they usually require initial estimates

of the parameters. In addition, if one considers the residual sum of squares

(Equation 21.2) as a pþ 1 dimensional surface (where p ¼ number of

parameters), it is easy to envision other problems. This surface may have many

peaks and valleys causing the program to converge to a local and not to a global

minimum. Additionally, the minimum may occur at a nearly flat spot on the

surface, implying that there is a wide range of parameter values which give

approximately the same value of Equation 21.2. Fortunately, these difficulties can

often be overcome if one has available initial estimates of the parameters that are

fairly close to the true values. One method to obtain initial estimates is discussed

in Appendix A.

Example. As an illustration of the model-fitting technique, the data presented

in Table 21.1 were fit to Equation 21.1 using the program WinNonLin.7 In

this particular example, F was unknown, so the parameters to be estimated

were Ka, Ke, and V=F: A portion of the output from the program is presented in

Tables 21.2 and 21.3. The model fits the data fairly well, at least as evidenced

by the residuals.

There are several factors that must be considered in assessing the adequacy of

the model. In particular, one should always make a careful comparison of the

observed and predicted concentrations. Examination of the concentration time

profile may reveal a delay in the start of absorption at zero or near zero

concentrations at the first sampling time(s). This indicates the need for a lag time

in the model. Equation 21.1 with a lag time incorporated into the model can be

written as

CðtiÞ ¼ FD

V

Ka
Ka 2 Ke

½e2Keðti2LÞ 2 e2Kaðti2LÞ	 ð21:3Þ

A lag time dose not improve the fit with this data set, but may considerably

improve the fit with other data sets.

TABLE 21.2
WinNonLin Nonlinear Estimation Program

Parameter Estimate Standard Error 95% Confidence Interval

Volume/F 0.519007 0.013550 0.487760 0.550253 Univariate

0.470458 0.567556 Planar

Ka 1.019687 0.054103 0.894925 1.144449 Univariate

0.825838 1.213536 Planar

Ke 0.202623 0.005682 0.189520 0.215727 Univariate

0.182264 0.222983 Planar
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In assessing the validity of the parameter estimates, the widths of the

confidence limits need to be considered. Two types of limits can be seen to be

available per Table 21.2. The univariate limits are calculated in the usual way as

the parameter estimate (^ ) the appropriate t statistic multiplied by the standard

error of the parameter estimate. The planar limits are derived from an estimated

95% joint confidence region for the parameters and will always be wider than the

univariate limits. From the width of the confidence limits reported in Table 21.2,

it can be concluded that there are variety of estimated parameters that yield

equivalently good fits of Equation 21.1 to the data.

In addition, it should always be checked to see if there are systematic

deviations from the fitted model. This is easily done by inspection of the residual

values in Table 21.3. For example, if the model overestimates larger

concentrations and underestimates smaller concentrations, then one should try

weighting the observed concentrations, the Y values, by 1=EðYÞ or 1=pEðYÞ:
Other weighting schemes may help remove other biases. If weights are used,

TABLE 21.3
WinNonLin Nonlinear Estimation Program. Summary of Nonlinear

Estimation

X Observed Y Calculated Y Residual Weight SE 2 Y Standardized Residual

0.5 0.7000 0.7287 20.0287 0.1841 0.0197 21.4983

1.0 1.1100 1.0962 0.0138 0.1161 0.0216 0.5087

2.0 1.3600 1.2905 0.0695 0.0947 0.0182 2.0568

3.0 1.1700 1.1965 20.0265 0.1101 0.0190 20.8789

4.0 0.9900 1.0285 20.0385 0.1301 0.0181 21.4092

6.0 0.7100 0.7076 0.0024 0.1815 0.0128 0.0962

8.0 0.5000 0.4747 0.0253 0.2577 0.0096 1.1940

10.0 0.3100 0.3169 20.0069 0.4156 0.0084 20.4241

14.0 0.1400 0.1409 20.0009 0.9203 0.0064 20.0899

18.0 0.0600 0.0627 20.0027 2.1474 0.0042 20.3869

24.0 0.0200 0.0186 0.0014 6.4423 0.0018 0.3321

Corrected sum of squared observations ¼ 2.25042

Weighted corrected sum of squared observations ¼ 0.728326

Sum of squared residuals ¼ 0.872375 £ 1022
Sum of weighted squared residuals ¼ 0.111569 £ 1022
S ¼ 0.11809421 with 8 degrees of freedom

Correlation (observed, predicted) ¼ 0.9981

AIC (Akaike Information Criteria) ¼ 268.78113
SBC (Schwarz’s Bayesian Criteria) ¼ 267.58745
AUC (0 to last time) computed by trapezoidal rule ¼ 9.46750

For this example, the weight for each observation was taken as WT ¼ 1/y. The weights were than

normalized so that the sum of the weights equals the number of observations, 11.
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the criteria for “best” fit would be to use those estimated parameters that

minimize Xn
i¼1

WiðYi 2 ŶiÞ2

where Wi is the weight assigned to the ith concentration. An excellent review

of this topic was presented by Peck et al.8

An examination of the residual values can also help identify outliers or

aberrant observations. Least-squares procedures are very sensitive to outliers and

the presence of one in the data set can cause sizable bias in the parameter

estimates. To combat this problem Rodda et al.9 have developed a nonparametric

procedure which lessens the effect that an aberrant observation has upon the

estimates of the parameters. Their procedure, known as Ordered Simultaneous

Estimation Procedure (OSEP), performed quite well relative to least-squares

procedures on simulated data sets containing several different types of outliers.

The OSEP procedure is recommended when the true model is known and outliers

are known to exist.

Giltinan and Ruppert10 have demonstrated the use of the generalized least-

squares estimator (GLS) in pharmacokinetic modeling. Sheiner et al.11 applied

extended least squares (ELS) to obtain the regression and variance parameters

simultaneously. ELS is equivalent to the maximum likelihood estimator (ML)

using the normal likelihood function. The advantages and the disadvantages of the

ELS method have been discussed extensively by Jobson and Fuller,12 Carroll and

Ruppert13 and van Houwelingen14 in the statistical literature, and by Finney15 in

the pharmacokinetic literature. Beal and Sheiner16 have compared GLS and the

modified extended iteratively reweighted least-squares estimators (MEIRLS).

Their results indicated that these two estimators have similar efficiencies and

both are superior to ELS. The approach using Bayes’ theorem was discussed by

Katz et al.17 and Racine-Poon.18

2. Population Modeling

It has been explained how the estimates of pharmacokinetic parameters based

on data obtained from a single subject are derived. In a multisubject trial, the

distribution of the parameter values in the population is usually estimated.

As Steimer et al.19 indicated, there are two types of data from the multisubject

studies, e.g., experimental data and observational data. The experimental studies

involve healthy volunteers. Such studies are well designed with balanced and less

variable data. The results of the studies provide the estimates of basic

pharmacokinetic parameters and information for adjusting the individual dosage

regimens.

Population studies, which are unbalanced and more variable than the

experimental studies, involve the collection of observational data from the treated

patients in the efficacy trials. The results of the observational studies can be used
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for pharmacokinetic screening and postmarketing surveillance. Reference is

drawn to Whiting et al.20 and Grasela et al.21 for more discussion of the

applications of these data.

Many procedures have been developed for population modeling with the

basic assumption, that the subjects have a common pharmacokinetic model.

Certainly, the Naive-Pooled-Data and Naive-Averaging-of-Data approach are

biased and not efficient.19,22,23 Another approach is called the “Two-Stage

Method.” In the first stage of this method, individual data are fitted to obtain the

individual parameter estimate using the methods suggested in Section II.B.

The final population parameter estimate is obtained using the combined

individual estimates. To apply this method, each subject needs sufficient data

to derive a reasonable individual estimate. The simple two-stage method does not

consider the variability associated with each individual estimate. It often

underestimates the variabilities associated with the population parameters.

A modified two-stage method was proposed by Prevost,24 which incorporated

both inter- and intra-subject variabilities in the model. The two-stage method

approach using Bayes’ theorem was discussed by Katz and D’Argenio,25

Racine-Poon,18 and Racine-Poon and Smith.26 A comprehensive review of

different analytical strategies and applications was provided by Yuh et al.27

Weiner and Jordan28 have investigated a procedure that fits all subjects

simultaneously allowing the pharmacokinetic parameters to be functions of

known physiological factors. Particularly, V , the apparent volume of distribution,

is frequently related to body weight or body surface area. This can be of particular

importance if the estimates of pharmacokinetic parameters are used to predict

drug levels at steady state. Sheiner and Beal29–31 proposed a nonlinear mixed

effects model (NONMEM) using ELS with the first order approximation to pool

the individual data to obtain a population estimate and the individual estimates

simultaneously. A computationally intensive procedure using the nonparametric

ML was derived by Mallet.32 Steimer et al.19 and Katz23 have reviewed these

procedures. The nonlinear mixed affects model approach is preferred for the

observational data because the lack of the quality of the individual data. Linstrom

and Bates33 have developed a new computing algorithm using the NONMEM

approach while Gelfand et al.34 proposed a full Bayesian procedure using Gibb’s

sampler. Since it is difficult to define the criteria for evaluating different

procedures, it has not been determined which of the above methods is best in any

given situation. ELS is the procedure with a commercial computer package based

on NONMEM.35 Starting with version 8, SAS introduced PROC NLMIXED36

for nonlinear mixed modeling. It has similar functionality as NONMEM’s

$PRED for models that can be specified on one’s own, however, it has nothing

comparable to PREDPP, which is a subroutine of NONMEM software

specialized to the kinds of predictions in pharmacokinetic data analysis.

PROC NLMIXED has options for exact maximum likelihood estimation using

quadrature-based methods in addition to first order approximation methods such

as those in NONMEM. PKBugs37 is an efficient and user-friendly interface for

specifying complex population pharmacokinetic models within WinBUGS
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software,38 which is a Bayesian modeling framework that can be used to analyze

pharmacokinetic data. PKBugs makes Markov Chain Monte Carlo (MCMC)39, 40

techniques available to practitioners in the field of population pharmacokinetics

(PK) via a short-hand notation for data entry as in NONMEM. It is recommended

that the analyst analyzes the data using several of the above methods before

drawing any definitive conclusion.

III. COMPARATIVE BIOAVAILABILITY STUDIES

A. INTRODUCTION

Thus far assessing the bioavailability of a single formulation has been dealt with,

frequently, though, it is necessary to conduct comparative bioavailability studies.

For example, one of the requirements for producing an ANDA is to compare the

bioavailability of the new generic formulation to a standard or reference

formulation and changes in manufacturing practice may necessitate conducting

a comparative bioavailability study.

In this section guidelines regarding the choice of criteria for comparison

of two dosage forms have been provided and the designs as well as analyses most

commonly used in relative bioavailability trials have been discussed. Other

pharmacokinetic studies such as food effect, age effect and dose proportionality

studies can be assessed using similar principles. Following FDA’s Bioequiva-

lence Public Hearing, the statistical decision criteria for solid dosage formulation

bioequivalence studies were clearly defined.41

B. CHOICE OF THE CRITERIA FOR COMPARISON

Prior to discussion of the design and analysis of relative bioavailability studies,

several choices of the bioavailability criteria for comparing the two dosage forms

will be first discussed. In practice it is customary to choose several criteria, each

related to specific aspects of the drug concentration profiles, with which the

formulations are compared. The choices depend on the type of bioavailability

study conducted. For example, the criteria for comparing the timed-release

capsule with an immediate-release tablet may differ from those for comparing

a single formulation of drug manufactured at different locations. The following

are the criteria commonly used as a basis for comparing two formulations. For

a given study, the investigator chooses one or more of these variables as a basis

for comparing the two dosage formulations.

1. Area under the Concentration Curve

Area under the concentration curve (AUC), the integral of concentration of the

drug over time, measures the total amount of drug absorbed. AUC is probably

the commonly used variable for comparing two formulations. For a given profile,

this quantity is usually calculated from the sequence of plasma concentrations
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by the trapezoidal rule

AUCo2t ¼
XN
i¼2

CðtiÞ þ Cðti21Þ
2

ðti 2 ti21Þ ð21:4Þ

where t0 ¼ 0 and N is the number of samples those were taken after admini-

stration of the dosage form. Equation 21.4 should be used as an estimate of total

absorption only if CðtNÞ is zero or near-zero. Otherwise, the bioavailability of the
formulation could be seriously underestimated. If CðtNÞ is somewhat greater than
zero, then the AUC should be extrapolated to infinite time by adding the term

CðtNÞ=l to the value of Equation 21.4. In the additional term, l represents the
terminal rate constant. However, it is preferred to report AUC(0: last quantifiable

concentration) if l cannot be precisely estimated.

2. Peak Concentration (Cmax)

Peak concentration is usually calculated as the maximum observed CðtiÞ:
Although in actuality, the peak concentration will most likely be higher and occur

at some time point other than one of the sampling times, the approximation

is usually adequate for comparative purposes.

3. Time to Peak Concentration (Tmax)

Time to peak concentration is usually taken to be the time at which the maximum

concentration was observed. Tmax and Cmax are used jointly to measure the rate

of absorption.

4. Cumulative Percentage of Drug Recovered (Ac
%)

It is applicable to urine data and the cumulative percentage of drug recovered is

calculated as the cumulative amount recovered in some time interval (e.g., 24 h)

divided by the initial dose. As with AUC, Ac
% can be extrapolated to infinity

as well.6

5. Estimated Absorption Rate (Ka)

It is sometimes desirable to compare two formulations on the basis of their

estimated absorption rates. For example, suppose that in order to lengthen the

period of time through which a tablet retains its potency, a pharmaceutical firm

begins to manufacture the tablets with a new protective coating. It would then be

of interest to compare the absorption rate of the coated tablets with that of

the uncoated ones. As discussed in Section III.B, first it is necessary to be able

to identify the underlying pharmacokinetic model in order to estimate Ka:

6. Elimination Half-Life

The elimination half-life of a drug, t1=2, can be estimated by dividing 0.693 by the

absolute value of the slope of the terminal linear phase of the concentration
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profile when plotted on semi-log scale. For the model displayed in Figure 21.1,

t1=2 ¼ 0:693=Ke:

7. Concentration Profiles

Instead of comparing formulations on the basis of univariate values derived from

the sequence of blood levels, the entire concentration profiles can be compared

using a multivariate method such as profile analysis (Ref. 42, pp. 205–216).

This can help distinguishing between two formulations those differ in onset

and duration but are equivalent in terms of AUC.

One inherent problem in the statistical evaluation of these data is that the

parameters (1–6) are estimated rather than measured directly. Often, the standard

errors of the estimates are quite heterogeneous across subjects and that may

invalidate the assumptions underlying an analysis of variance.

Many of the variables discussed above can be estimated in an alternative

manner, by taking an appropriate function of the estimated pharmacokinetic

parameters. For example, by integrating Equation 21.1 from zero to infinity, one

can show that the estimate of AUC is FD=V̂K̂: Other expressions can be

derived for peak concentration and time-to-peak concentration. This method of

estimation is not to be recommended unless the underlying pharmacokinetic

model can be identified and the parameters be accurately estimated. Because of

problems associated with model misspecification, regulatory agencies prefer

calculation of parameters by the above methods rather than from fitted

parameters.

For bioequivalence studies, AUC and Cmax are the primary response

variables. Tmax is not considered to be a primary response variable due to its

highly discrete nature.43 Pharmacokinetic constants, elimination half-life, and the

concentration–time profile are also considered as secondary variables. For urine

samples, the cumulative percentages of drug recovered are often used as the

primary response variables. If a multiple dose study is conducted, the minimum

plasma concentration (Cmin) and the fluctuation index ½ðCmax 2 CminÞ=Cavg	,
both of which are measured under steady-state conditions, are also parameters

of interest.41

C. DESIGNING A COMPARATIVE BIOAVAILABILITY STUDY

It is well known that the inter-subject variability is larger than the intra-subject in

the bioavailability of most of the drug formulations. As a result, designs that

enable each subject to serve as his or her own control are most frequently

employed in comparative bioavailability studies except for drugs with an

extremely long half-life or toxicity problems. Such designs have an advantage

over other designs because the former, the comparison of formulations is free

from subject-to-subject variation. One example of such a design, viz., the

two-period crossover design, is presented in Table 21.4.44 It may be noted that

each subject received each of the two formulations according to one of two
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predetermined sequences. Between each dose period there is a wash-out period

of sufficient length to ensure that the first drug has been eliminated from the

subject’s system. The wash-out period should be at least five times the terminal

half-life of the drug.

The design presented in Table 21.4 can easily be extended to compare more

than two formulations. These larger crossover designs are usually constructed so

that the allocation of formulations to periods forms a Latin square design.

One such design for comparing four formulations is presented in Table 21.5.

In a 2 £ 2 crossover design, the carry over effect is confounded with the
formulation, sequence, and period effect unless the Balaam design (crossover

design with extra periods, Table 21.6) is utilized. Using this type of design, it is

possible to only estimate the within-subject variability but the formulation by

subject interaction45–47 can also be assessed.

Westlake48 has discussed the use of balanced incomplete block designs for

comparative bioavailability studies involving a large number of treatments. Yuh

and Ruberg49 have presented several balanced and unbalanced crossover designs

using an oversampling technique for a drug to drug interaction study (Table 21.7).

D. SAMPLING TIMES

The next step in designing the study is to determine the number and spacing

of collection times for the plasma or urine samples. There are several guidelines

that can be helpful in selecting the times for drawing samples.

TABLE 21.4
A Two-Period Crossover Design

Period

Sequence 1 2

1 A B

2 B A

TABLE 21.5
A Four-Period Crossover Design

Period

Sequence 1 2 3 4

1 A B C D

2 B D A C

3 C A D B

4 D C B A
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A control urine or plasma sample should always be taken just prior to

administration of drug. This ensures that subject has no residual amounts of drug

in his or her system from previous study days and that the subject has not

inadvertently ingested the drug with some concurrent medication or food.

The remaining samples should be taken at times sufficient to determine the

profiles of the concentration curves. For orally administered drugs, samples

should be taken most frequently during the absorption phase when the profile is

most rapidly changing and less frequently during the elimination phase.

If pharmacokinetic parameters are to be estimated from the data, the total

number of samples should be sufficiently large so that there are enough degrees of

freedom to estimate s 2 (e.g.,$6) to allow for a reasonable test of the adequacy of

the compartmental model. In addition, the plasma or urine concentrations should

have returned to near-zero levels by the time the last sample is taken. For more

discussion about optimal sampling design, we refer to the papers by D’Argenio,50

DiStefano,51,52 Landaw,53 Katz and D’Argenio,25 and Drusano et al.54

Once the appropriate design has been determined for the bioavailability

study, the final step is to determine the number of subjects to be included in the

study. Since it is closely related to the method of data analyses, the sample size

calculation will be discussed in the next section.

TABLE 21.6
An Extra-Period Crossover Design

Period

Sequence 1 2 3

1 A B A

2 B A B

TABLE 21.7
Incomplete Partially Balanced Crossover Design

Period

Sequence 1 2 3 4

1 A E C D

2 B F D E

3 C G E F

4 D A F G

5 E B G A

6 F C A B

7 G D B C0
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Having discussed various considerations in design comparative trials and

the choice of the criteria for comparison, the following paragraphs will discuss

the analysis of such data.

IV. ANALYSIS OF COMPARATIVE BIOAVAILABILITY STUDIES

A. ANALYSIS OF VARIANCEMODEL

Before performing an analysis of the data it should be first ensured that the

concentrations of drug in the predosing samples are at or near the lower limit

of quantitation. If other than trace amounts are measured in these control samples,

then it is recommended to analyze only the first-period data. In this case, the

investigator should notice that there is only half data available for the analysis

and the comparison is inter-subject instead of intra-subject. The analysis would

then proceed along the lines of a oneway analysis of variance. For the remainder

of the discussion it will now be assumed that, at most, trace amounts of drug

are measured in the control samples.

Because the control samples can be used to check on the existence of residual

effects, the data analysis can be proceeded with the model without residual effect

(Equation 21.5), to allow for testing of equality of sequence, treatment, and

period effects:

Yijk ¼ mþ ci þ zij þ pk þ wl þ 1ijk ð21:5Þ

where

Yijk ¼ univariate response [log-transformed (AUC), peak concentration,

etc.] for the j th subject within the i th sequence at period k

m ¼ overall mean

Ci ¼ effect of the i th sequence

zij ¼ effect of the j th subject within the i th sequence

pk ¼ effect of the k th period

wl ¼ effect of the l th formulation

1ijk ¼ random error

The analysis of variance for more complicated crossover designs is

discussed in Ref 55. In addition, Westlake48 as well as Yuh and Ruberg49

have discussed the analysis of the balanced and partially balanced incomplete

crossover designs.

Example. A study was undertaken to compare the relative bioavailabilities

of two batches of drug B in terms of the 0 to 24 h AUC (Table 21.8). This study

involved a two-period crossover design with 12 subjects randomly allocated

to each of the two sequences. The log-transformed AUC was analyzed using
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an ANOVA model, with fixed effects for sequence, period, formulation, and

random effect for subject, nested within the sequence. The least-squared mean

of the difference and its 90% confidence interval were calculated from the fitted

model, the least-squared mean of the difference and its 90% CI were then

anti-log-transformed to obtain the estimate of the ratio and its 90% confidence

interval. The least-squared means of each formulation and their 95% confidence

intervals were calculated in a similar manner.

Figure 21.3 is the scatter plot for the log-AUCofformulation1vs. formulation 2.

The plot suggests there are two outliers, subjects 5 and 9. Therefore, the data were

analyzed with or without these subjects. The results are reported in Table 21.9.

Usually the results from the analysis including the outliers should be reported,

while the analysis excluding outliers serves only for the purpose of sensitivity

assessment.

TABLE 21.8
Area under the Curve (0–24 h)

Period 1 Period 2

Subject Formulation AUC (mg h/ml) (0–24 h) Formulation AUC (mg h/ml) (0–24 h)

1 2 1697.45 1 1636.21

2 1 800.54 2 636.29

3 2 1050.98 1 615.61

4 1 1049.72 2 1013.16

5 2 936.53 1 113.20

6 1 1504.35 2 1094.96

7 2 1277.87 1 1603.63

8 2 1548.28 1 1411.44

9 2 964.41 1 129.55

10 1 1458.60 2 1341.08

11 1 1602.51 2 1470.85

12 1 688.35 2 576.33

13 1 1841.53 2 1312.68

14 1 1259.93 2 1037.75

15 1 1227.14 2 931.89

16 2 1339.08 1 1241.25

17 2 931.91 1 613.14

18 2 1136.23 1 547.66

19 2 1534.56 1 823.46

20 2 794.44 1 952.24

21 1 1538.59 2 1131.16

22 1 874.06 2 1133.22

23 2 1478.62 1 1385.12

24 1 1328.58 2 1131.90
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FIGURE 21.3 Scatter plot of log-AUC (formulation 1 vs. formulation 2).

TABLE 21.9
Analysis of AUC Data

Source df Sum of squares of log-AUC F p-value

Sequences 1 0.027 0.295 0.5919

Subjects (sequence) 22 2.018 — —

Periods 1 0.427 9.198 0.0061

Formulations 1 0.018 0.392 0.5381

Error 22 1.022 — —

Geometric mean of AUC C.I.

Summary of Results

Formulation 1 925.76 (748.69, 1012.51)*

Formulation 2 1012.51 (818.84, 1251.70)*

Ratio (1 vs. 2) 91.4% (71.5%, 116.9%)**

Summary of Results without Subjects 5 and 9

Formulation 1 1111.48 (982.88, 1256.61)*

Formulation 2 1135.53 (1004.15, 1284.10)*

Ratio (1 vs. 2) 100.6% (88.7%, 108.0%)**

*95% confidence interval; **90% confidence interval.
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B. THE POWER APPROACH

Because the objective of the bioavailability studies is to show that the test

formulation is equivalent to the reference formulation, the FDA used a decision

criterion which is based on the power of the test, to detect a 20% difference

between the reference and test treatment means. This rule stated that the two

formulations are bioequivalent, if the p-value for the formulation effect is greater

than a prespecified level of significance and the power of the test to detect a 20%

difference between the reference and test means, is greater than or equal to

80%. This rule is no longer used by the FDA and other agencies as the primary

criterion for assessment of bioequivalence.

C. CONFIDENCE INTERVAL APPROACH

The development of the bioequivalence of two formulations discussed in

Section IV.A was based on the classical theory of hypothesis testing.

Traditionally, this methodology has been applied in those situations where it is

desired to show that a significant difference exists in the effects of two treatments;

usually, though, this is not the objective of a comparative bioavailability study.

Instead, it is usually desired to assess the difference in the relative

bioavailabilities of the two formulations in terms of some univariate measure

such as AUC, and determine if the difference is within acceptable limits. It would

thus seem that a confidence interval approach might be more appropriate in some

instances. Westlake,56 Metzler,3 Shirley,57 and O’Quigley and Baudoin58 have

discussed this approach in the context of comparative bioavailability trials.

In general, the 90% confidence interval for the ratio in formulation means

is computed as follows:


XT 2 
XR

XR

^
tn;0:975Sd

XR

� �
þ 1

� �
£ 100% ð21:6Þ

where


Xi ¼ mean observed response with formulation i, i ¼ T,R (where T and R

denote the test and reference formulations)

Sd ¼ standard error of the difference in formulation means using the error

mean square obtained from the analysis of variance

n ¼ degrees of freedom for error.

Substituting the appropriate values into Equation 21.6 we obtain (84.7%,

112.6%) as the 90% confidence interval for the ratio in formulation means.

Thus, these two formulations are considered bioequivalent if we use^20% as the

acceptable limits. Also, the end points of this percent-scaled confidence interval

are obtained by treating the reference mean as a constant. The correct (exact)

confidence interval for the ratio of the means can be obtained using Fieller’s
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theorem.59,60 Note that this asymmetric exact confidence interval is usually

somewhat wider than the approximate confidence interval.

Westlake61 has also modified the confidence interval approach and developed

a confidence interval symmetric about the origin. Mantel62 indicated that these

symmetric confidence intervals do not show the location of the sample value

and they are always longer than the traditional confidence interval. However, as

Westlake mentioned, the symmetric interval is used merely as a decision making

tool. It is noted that the confidence coefficient for the Westlake interval is always

greater than 12a:Again, since the sample mean is used as a constant, Westlake’s

symmetric confidence interval is only an approximation. The exact symmetric

confidence interval has been derived by Mandallaz and Mau.63 We refer to

Steinijans and Diletti,64 Kirkwood,65 and Metzler66 for additional discussions of

the use of the symmetric confidence interval.

D. BAYESIAN APPROACH

Rodda and Davis67 first suggested that bioequivalence could be assessed using

Bayesian analysis. They computed the posterior probability— the observed relative

bioavailability is within the acceptable limits. Selwyn et al.68 have also proposed a

Bayesian procedure using a more complex statistical model. Rodda and Davis’ rule

is equivalent to Westlake’s while the decision rule based on Mandallaz and Mau’s

confidence interval is equivalent to that using the Bayesian procedure proposed by

Selwyn and Hall.69 Gelfand et al.34 suggested a Bayes procedure using Gibb’s

sampler to evaluate bioavailability or bioequivalence studies.

Example. For the example in Section II.B, if Yik (i ¼ 1 to 24, k ¼ 1,2) are the

AUC of subject i in period k, we may specify a Bayesian model as follows:

Yik , log-Normalðmik;s1
2Þ

mik ¼ mþ ½ð2-sequenceiÞð22 kÞ þ ðsequencei 2 1Þðk2 1Þ	wþ ð22 kÞpþ di

di , Normalð0;s22Þ
m;p;w , Normalð0; 126Þ
1=s21; 1=s

2
2 , Gammað0:001; 0:001Þ

After running WinBUGS 1.4,38 we obtained the mean (standard deviation) ratio

of formulation, 0.92 (0.14), the 95% creditable interval, (0.71, 1.11), and the

probability the ratios fall into (0.8, 1.25) 0.78.

E. ANDERSON AND HAUCK’S PROCEDURE

Because of the nature of equivalence trials, an alternative hypothesis that the

difference of the two formulation means will fall within a prespecified interval

has to be setup. This concept was discussed originally by Lehmann70
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and Bondy.71 Anderson and Hauck72 have adopted this idea using the following

pair of hypotheses:

H0 : mT 2 mR # logð0:8Þ or mT 2 mR $ logð1:25Þ
H1 : logð0:8Þ , mT 2 mR , logð1:25Þ

where mT and mR are the expectations of the log-transformed pharmacokinetic
parameters. Note that the null hypothesis states that the two formulation means

are not equivalent while the alternative hypothesis states those to be equivalent.

The test statistic they consider is

T ¼ 
XT 2 
XR 2 1=2½logð0:8Þ2 logð1:25Þ	
Sð1=nT þ 1=nRÞ

where the X’s and n’s are the sample means (in the logarithmic scale) and sample

sizes, respectively, and S is the standard deviation (square root of MSE) obtained

from the analysis of variance model. As they discussed, the distribution of T is

generally unknown. Thus, the exact critical value cannot be found. However, the

Student’s t distribution can be used as an adequate approximation. A similar

approach was used by Rocke.73 It is noted that there is a small probability that the

null hypothesis will be rejected even when the difference of the two means is not

within the acceptable limits.

F. TWO ONE-SIDED TESTS PROCEDURE

Schuirmann74 proposed a procedure that consists of two pairs of testing

hypotheses:

H01 : mT 2 mR # logð0:8Þ
H11 : mT 2 mR . logð0:8Þ

and
H02 : mT 2 mR # logð1:25Þ
H12 : mT 2 mR . logð1:25Þ

where mT and mR are the expectations of the log-transformed pharmacokinetic
parameters. It may be noted that this procedure was originally developed based

on the untransformed values.

This procedure decomposes the interval hypotheses H0 and H1 into two sets

of onesided hypotheses. This two one-sided tests procedure will conclude

equivalence of two formulation means if and only if bothH01 andH02 are rejected

at a chosen nominal level of significance (e.g., 0.05). The design rule based on

the two one-sided tests procedure ða ¼ 0:05Þ is equivalent to the rule, based on
the traditional 90% confidence interval.

In the same paper, Schuirmann also compared the rejection regions and the

probability characteristics of his procedure to the power approach and showed that

the two one-sided tests procedure is superior to the power approach in general.
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Metzler66 performed a simulation study to evaluate the power of different decision

rules — two one-sided tests procedure (traditional confidence interval),

Westlake’s symmetric confidence interval (Rodda and Davis’ procedure),

Mandallaz and Mau’s approach, and Anderson and Hauck’s procedure.

He defined the power of a decision rule for bioequivalence to be the probability

of rejecting bioequivalence of a test formulation given the true relative

bioavailability. Based on the probability of rejection curve, Westlake’s rule

is similar to the Anderson and Hauck’s procedure if the coefficient of variation is

less than 20%. The probability of rejection is close to 0.90 for all rules except the

one based on the two one-sided tests procedure. To make this rule alike others,

a larger value (viz., 2 £ a) should be used. If the coefficient of variation is greater
than or equal to 30%, only the rule byMandallaz andMau is different from others.

Example. For the example in Section II.B, the log-transformed AUC was

analyzed using an ANOVA model with fixed effects for sequence, period,

formulation, and random effect for subject nested within the sequence. The least-

squared mean of the difference and its 90% confidence interval were calculated

from the fitted model; the least-squared mean of the difference and its 90% CI

were then antilog-transformed to obtain the estimate of the ratio and its

90% confidence interval. The least-squared means of each formulation and their

95% confidence intervals were calculated in a similar manner.

The results are reported in Table 21.10.

G. INDIVIDUAL AND POPULATION BIOEQUIVALENCE

Thus far, the so-called average bioequivalence has been discussed, which

concerns only the similarity of the mean values between the innovator drug

product and its generic copies in terms of AUC and Cmax. Theoretically, this may

TABLE 21.10
Analysis of AUC Data

Geometric Mean of AUC C.I.

Summary of Results

Formulation 1 925.76 (748.69, 1012.51)*

Formulation 2 1012.51 (818.84, 1251.70)*

Ratio (1 vs. 2) 91.4% (71.5%, 116.9%)**

Summary of Results without Subjects 5 and 9

Formulation 1 1111.48 (982.88, 1256.61)*

Formulation 2 1135.53 (1004.15, 1284.10)*

Ratio (1 vs. 2) 100.6% (88.7%, 108.0%)**

*95% confidence interval; **90% confidence interval.
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not be sufficient because the bioavailability is a random variable; the similarity

of the mean values does not guarantee the similarity of the distribution. In addition

to the mean values, the variances of AUC and Cmax should be taken into

consideration as well. If a bioequivalence criterion takes the mean values of AUC

and Cmax as well as the variances of AUC and Cmax into account, then the

bioequivalence defined by this criterion is called population bioequivalence.

The equivalence of the distributions of AUC and Cmax between formulations does

not guarantee the similarity of the equivalences among individual patients.

In others words, the subject by formulation interaction should be taken into

consideration as well, while discussing bioequivalence. If a bioequivalence

criterion takes into account not only the mean values and variances but also the

subject by formulation interaction, then the bioequivalence defined by this

criterion is called individual bioequivalence.

The variability of pharmacokinetic parameters can be divided into three

components: difference in average bioavailabilities, variance of the subject-by-

formulation interaction, and difference in intra-subject variabilities. Accordingly,

bioequivalence criteria should be able to control all these three components.

Criteria can either be set for each individual characteristic separately which are

called disaggregate criteria, or a single criterion rule which controls all three

characteristics simultaneously, which is called aggregate criteria. According to

the distribution measures, both population and individual bioequivalence criteria

can be grouped as either moment-based or probability-based criteria.

The early attempt for individual bioequivalence was reflected in a FDA-

proposed rule of the late 1970s which used the individual ratios. This rule states

that two formulations are equivalent if and only if at least 75% of these individual

ratios are between the 75 and 125% limits. As an example, the data reported in

Table 21.11 is considered. It may be noted that six out of 18 (33%) of the subjects

had a bioavailability on formulation one within 25% of that of formulation two.

Clearly, these two formulations are not bioequivalent if the 75/75 rule is applied.

As Westlake75 pointed out, the underlying principle of this 75/75 rule is similar to

the construction of the tolerance interval. Haynes76 performed a simulation study

to investigate the 75/75 rule and showed that there is a greater probability to

accept the test formulation if the coefficients of variations for the test and

reference formulations are identical and smaller, respectively. In addition, a test

formulation compared to a reference formulation with equal variability had less

chance of acceptance than the case when the reference formulation has smaller

variability.

However, if the individual ratio is the parameter of clinical interest,

a confidence interval for the central tendency of these individual ratios77,78

should be constructed. Yuh also indicated that the individual bioequivalence

is similar to the percentage change from baseline in the conventional efficacy

trials. This parameter is more difficult to analyze because it is a ratio of two

random variables. That is, the ratios are not normally distributed even if the

original random variables are normally distributed. Thus, the sample median

or a robust estimator should be used to assess the central tendency of these
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ratios.78 Anderson and Hauck79 also discussed a procedure for treating the

individual ratio as a binary response.

Yuh80 proposed to assess bioequivalence using the concordance correlation.

The concordance correlation measures a combination of the formulation —mean

and variability differences and the linear correlation between the formulations.

Note that the concordance correlation is equal to one if two formulations have

identical means and variabilities and the linear correlation is equal to one.

Various moment-based criteria have been proposed.79, 81–83 In 1997, FDA82

proposed the following criterion for population bioequivalence

ðmT 2 mRÞ2 þ ðs2
TT 2 s2

TRÞ2 uPmaxðs2
TR;s

2
T0Þ , 0

where

mT ¼ population average response of the log-transformed measure for

the test formulation

mR ¼ population average response of the log-transformed measure for

the reference formulation

s2
TT ¼ total variance of the test formulation

s2
TR ¼ total variance of the reference formulation

TABLE 21.11
Listing of Individual Ratios (%)

Subject AUC Reference (2) AUC Test (1) Ratio (Formulation 1/Formulation 2) (%)

1 1735 3340 193

2 2594 2613 101

3 2526 1138 45

4 2344 2738 117

5 938 1287 137

6 1022 1284 126

7 1339 1930 144

8 2463 2120 86

9 2779 1613 58

10 2256 3052 135

11 1438 2549 177

12 1833 1310 71

13 3852 2254 59

14 1262 1964 156

15 4108 1755 43

16 1864 2302 124

17 1829 1682 92

18 2059 1851 90

Median 109

(Min/Max) (43, 193)
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s2T0 ¼ specified constant total variance

uP ¼ bioequivalence limit

and the criterion for individual bioequivalence

ðmT 2 mRÞ2 þ s2D þ ðs2WT 2 s2WRÞ2 uImaxðs2WR;s
2
W0Þ , 0

where

mT ¼ population average response of the log-transformed measure for

the test formulation

mR ¼ population average response of the log-transformed measure for

the reference formulation

s2D ¼ subject-by-formulation interaction variance component

s2WT ¼ within-subject variance of the test formulation

s2WR ¼ within-subject variance of the reference formulation

s2W0 ¼ specified constant total variance

uI ¼ bioequivalence limit.

To test for population or individual bioequivalence between the test and the

reference formulations, the estimates of the left-hand side and their upper

confidence limits need to be calculated. If the upper limit is less than zero, the test

formulation is bioequivalent to the reference formulation in the chosen sense.

WinNonLin software has the functionality to perform these tests.

Conventional nonreplicated designs, such as the two by two crossover design,

can be used for average and population bioequivalence comparisons. Replicated

crossover designs are required because individual bioequivalence relies on the

estimated within-subject, within-formulation variation, and the correlation

between formulations.

The FDA proposed criteria for population and individual bioequivalence

described above employ aggregate statistics which combines information related

to the differences in bioavailability among formulation means and the differences

in bioavailability variation of formulations (between and within subjects), and the

correlation between formulations. Given the initial model and assumptions, the

mathematical theory is very interesting. However, a number of practical and

technical challenges should be addressed. The clinical relevance of a subject by

formulation interaction as measured by s2D has not been demonstrated. To date,
no association between clinical failure and this interaction has been illustrated.

As a consequence of the aggregate criteria, a numerical trade-off occurs between

various terms, e.g., a substantive difference in means can be compensated by a

decrease in within-subject variance in the test formulation relative to the

reference formulation. The proposed criteria do not mandate a hierarchical

testing process (i.e., the order of the means, the variances, and s2D). In other
words, a successful demonstration of individual bioequivalence does not imply

population or average bioequivalence. It is recognized that the individual
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bioequivalence approach tries to address to the “switchability” issue between two

test products. In 2003, the FDA, deleted the individual bioequivalence approach

from the draft guidance84 and recommended sponsors to continue usage of the

average bioavailability approach as the primary method.

Statistical methods to evaluate population and individual bioequivalence

trials remain to be scientifically challenging and interesting. Carrasco and Jover85

introduced the structural equation model (SEM) for assessing individual

bioequivalence. Dragalin et al.86 used the Kullback–Leibler divergence (KLD)

as a measure of discrepancy between the distributions of two formulations,

which declares bioequivalence of two formulations if the upper bound of a

level-a confidence interval for the KLD is less than a predefined regulatory

criterion. This new methodology overcomes some disadvantages of the

corresponding measures recommended by FDA. In particular the KLD: (i)

possesses the natural hierarchical property (IBE) PBE) ABE); (ii) satisfies

the properties of a true distance metric; (iii) is invariant to monotonic

transformations of the data; (iv) generalizes easily to the multivariate case

where equivalence on more than one parameter (for example, AUC, Cmax and

Tmax) is of interest, and (v) is applicable to a wide range of distributions of the

response variable (for example, those in the exponential family). A review of

different statistical approaches was provided by Chow and Liu in order to

understand the theories behind various methods.87

H. CHOOSING THE SAMPLE SIZE

One component of a bioavailability study is to determine the number of subjects

to be included in the study. Here the sample size estimation strategy using the

average bioequivalence criterion and the two one-sided t-tests procedure have

been demonstrated. Suppose the log-transformed pharmacokinetic data are to be

analyzed. If significance level is assumed to be a, the probability of the type II
error be b, the expected difference of the log-transformed pharmacokinetic data
be u, the equivalence margin be d, and the standard deviation of the log-

transformed pharmacokinetic data be s, then one way to calculate the sample size
is given as follows:

n ¼ int 2
½taðnÞ þ tb=2ðnÞ	2

min{ðd2 uÞ2; ð2d2 uÞ2} s
2

( )
þ 1

Because the number of subjects, n, on the right hand side is unknown, the

calculation will be iterative, starting with an initial value, n0, n1 is calculated; nmþ1
is calculated from nm; the process is continued till n is unchangeable. For a parallel

design the if s is the total standard deviation, then the n is the number of subjects
for each group. For a crossover design, if s is the intra-subject standard deviation,
then n is the total number of subjects (because each subject will give a pair of data

points).
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When designing a crossover study there is no intra-subject standard deviation

available, which can be then calculated from the inter-subject standard deviation

as sintra ¼
pð12 rÞs, where r is the intra-subject correlation coefficient, which

is oftentimes assumed to be 0.5.

I. OTHER TOPICS

Other approaches include the transformation and nonparametric methods. There

are several reasons one may perform a logarithmic transformation of the

pharmacokinetic parameters. Both Westlake88 and Rodda47 gave a good

discussion of the rationale for performing the transformation. An Advisory

Committee to FDA recommended a logarithmic transformation of pharmaco-

kinetic data. However, our experience shows that the distribution of the difference

in formulations is usually symmetric if the subject effect is removed (as in the

analysis of a crossover study). It should be noted that the acceptable lower (upper)

limit under an anti-logarithmic transformation is 80% (125%) and the power

calculation is different from that using the raw data.

If the underlying distribution is not normally distributed or there are potential

outliers, nonparametric methods may be utilized to assess bioequivalence.

Several nonparametric methods have been proposed for the crossover

studies.89–92 These methods except for Hodges–Lehman methods are useful

for testing hypotheses; however, such methods may not be appropriate for the

purpose of estimation because, clinically, it is difficult to interpret the confidence

interval on the rank scale.

If studies involve more than two treatments, multiple confidence intervals

for each pharmacokinetic parameter will be constructed and adjustments for these

multiple comparisons should be made. However, most classical procedures are

developed to adjust Type I error which may widen the confidence interval.

Little work has been done to address the issue of adjustment of multiple

confidence intervals.

If a crossover study design is used, a logical approach will utilize the within-

subject comparisons and the individual ratio is also a parameter of interest. It may

be noted that if the logarithmic transformation is performed, the individual ratios

have to be implicitly analyzed. Replicated designs can be important because

these can provide a good estimate for inter- and intra-subject variability,

respectively. These designs can also adjust for carry over effects. Clearly, there

are many unanswered questions and more research needs to be done in the

future.
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APPENDIX A. PEELING TECHNIQUE FOR OBTAINING

STARTING VALUES

The importance of good starting values in obtaining the best estimates of the

parameters has been previously discussed. In this section, one method of

obtaining initial estimates is discussed. The method will be illustrated

by estimating the parameters in Equation 21.1 for the simulated data presented

in Table 21.12. The first step is to plot the data on semi logarithmic paper, as in

Figure 21.4. It may be noted that in Equation 21.1 if it is assumed that Ka . Ke
(which is true for most drugs), then for large enough t, the second exponential

term is near-zero. Let TðtiÞ denote the equation of this terminal phase. Then

TðtiÞ ¼ FD

V

Ka
Ka 2 Ke

e2Keti ðA21:1Þ

Taking logarithms to base 10 of both sides we obtain

log TðtiÞ ¼ log
FD

V

Ka
Ka 2 Ke

� �
2

Keti
2:303

ðA21:2Þ

Thus, if a line is drawn through those points lying on the terminal linear portion

of the curve on semilog scale, it would have slope of 2Ke=2:303 and would
intercept

log
FD

V

Ka
Ka 2 Ke

� �
The constant 2.303 is the reciprocal of the log to base 10 of e. Although working

with logarithms to base 10 may be somewhat unusual since the underlying

TABLE 21.12
Simulated Data

Time Concentration Extrapolated Concentration Using T(ti) Residual Concentration R(ti)

0.5 35.43 80.60 45.17

1.0 45.47 66.29 20.82

1.5 45.33 54.52 9.19

2.0 40.85 44.84 3.99

2.5 35.25

3.0 29.68

5.0 13.78

7.0 6.19

9.0 2.78

11.0 1.27
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pharmacokinetic models can be written as sums of exponentials, it is the

conventional methodology of practitioners in this area and its use will be adopted

here. In Figure 21.4 it has been seen that the last six points fall nearly in a straight

line. Selecting the first and last of these six values, the slope can be estimated by

logTð11Þ2 logTð2:5Þ
112 2:5

¼ 0:17

Thus Ke ¼ 20:17ð22:303Þ ¼ 0:39 and the estimated intercept from Figure 21.4

is log(98). We have then that

TðtjÞ ¼ logð98Þ2 0:17ti ðA21:3Þ

If Equation 21.1 is subtracted from Equation A21.1 and call the result RðtiÞ,
we have

RðtiÞ ¼ FD

V

Ka
Ka 2 Ke

e2Kati ðA21:4Þ

Again, taking logs of both sides of Equation A21.4, it is noted that log RðtiÞ
is linear with slope 2Ka=2:303 and intercept

log
FD

V

Ka
Ka 2 Ke

� �
To obtain an estimate of Ka Equation A21.3 is first used to obtain extrapolated

concentrations for those four points not in the terminal linear portion of the curve.
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FIGURE 21.4 Application of the Peeling technique for estimating the pharmacokinetic

parameter in a one-compartment model.
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These values are recorded in the third column of Table 21.11. Then RðtiÞ,
i ¼ 1; 2; 3; 4, are obtained by subtracting column three from column two. The

slope of log RðtiÞ can easily be found to be 20.69; thus Ka ¼ 20:69ð22:303Þ ¼
1:59: Using the intercept of either log TðtiÞ or log RðtiÞ (they should be equal),
one can estimate either V or V=F depending on whether or not F is a known

quantity. If the two intercepts did not coincide, the implication is that a lag time

is needed in the model.

The true values used in simulating the data were Ka ¼ 1:50 and Ke ¼ 0:40
with a ¼ 0:01: Although the estimated values were very close to the true values
of the parameters in this example, this will not always be the case. It is sometimes

difficult to determine which points to include as lying on the terminal linear

portion of the curve. This is especially the case when Ka and Ke are nearly equal.

Wagner6 (pp. 59–63) illustrates the use of the peeling technique for more

complicated models.

As is evidenced by the discussions in Sections II and III, model identification

can be quite difficult. Even if the model can be assumed to be known, it may

be difficult to obtain precise estimates of the pharmacokinetic parameters.

Alternative models are available if estimates of the pharmacokinetic parameters

are not needed. For example, splines and polynomial models often give good fits

to drug concentration data. Usually, though, estimates of the pharmacokinetic

parameters are needed to predict blood levels after multiple dosing (Ref. 6,

pp. 144–147).
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I. INTRODUCTION

The stability of a drug substance or drug product is the capacity of that substance

or product to remain within the established acceptance criteria to ensure its

identity, strength, quality, and purity within a specified period of time.

Regulatory agencies require that adequate testing be performed by an applicant

to demonstrate the stability of the drug substance or product in support of the

approval for a marketing registration application. The purpose of stability testing

is to provide evidence on how the quality of a drug substance or product varies

with time under the influence of a variety of environmental factors, such as

temperature, humidity, and light. This assessment is used to establish the

recommended storage conditions and a retest period for the drug substance or

a shelf-life for the drug product.

A retest period is the period of time during which a drug substance is

expected to remain within its acceptance criterion and, therefore, can be used

without testing in the manufacture of a given drug product, provided that the drug

substance has been stored under the defined conditions. A shelf-life (also referred

to as expiration dating period) is the period of time during which a drug product
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is expected to remain within the approved acceptance criteria, provided that the

drug product has been stored under the conditions defined on the container label.

The International Conference on Harmonization (ICH) of Technical

Requirements for Registration of Pharmaceuticals for Human Use has in recent

years issued a series of guidelines on the design and conduct of stability studies of

pharmaceuticals, and on the evaluation of stability data derived from such studies.

ICH Q1A (R2) Stability Testing 11/21/2003 of New Drug Substances and

Products1 defines the core stability data package that is sufficient to support the

registration of a new drug application in the tripartite regions of the European

Union, Japan, and the United States. Q1A(R2) recommends that at least three

primary batches of the drug substance and product be tested for stability at

prescribed storage conditions and time points. ICHQ1DBracketing andMatrixing

Designs for Stability Testing of New Drug Substances and Products2 provides

guidance on reduced designs for stability studies. It outlines the circumstances

under which a bracketing or matrixing design can be used. Bracketing is a reduced

design where only samples of the extremes of a factor are tested at all time points.

Matrixing is a reduced design where a selected subset of the total number of

possible samples from all factor combinations would be tested at a specified time

point. ICHQ1E StabilityDataEvaluation3 describes the principles of stability data

evaluation and various approaches to the statistical analysis of stability data in

establishing a retest period for the drug substance or a shelf-life for the drug

product, which would satisfy regulatory requirements.

Although these guidelines have provided harmonized guidance in the three

ICH regions on the designs, conduct, and data analysis of stability studies to

support a drug application registration, the discussion on statistical detail is

limited.

In this chapter, the discussion will focus on the statistical aspects of stability

studies in general. In Section II, various statistical designs suitable for stability

studies will be discussed, including full and fractional factorials. In Section III,

statistical analyses for simple and complex stability studies will be discussed in

detail. Alternative statistical analyses based on the mixed-effects model and on an

equivalence approach will be presented in Section IV.

II. DESIGNS OF STABILITY STUDY

The main application of statistics to stability studies is in the estimation of the

shelf-life for the product. Historically, this has been a simple problem of linear

regression, where the shelf-life was determined by the earliest intersection of one

of the 95% confidence bands around the regression line constructed from the

long-term data of a single batch or from the combined data of several batches.4–6

In an effort to save cost and resources, several complicated designs have been

proposed.7–11 These include fractional factorial designs and other strategies.

However, their applicability to a given case needs to be cautiously evaluated.
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In the simplest case, a sufficient number of container units from a batch are

put on long-term storage in a controlled environment (e.g., 258C/60%RH), and
samples are taken from the chamber at predetermined time points, namely, at 0, 3,

6, 9, 12, 18, 24, 36, 48, etc., months, and tested for appropriate physical,

chemical, biological, and microbiological attributes. The concentration of time

points during the first year provides an early warning system to unexpected loss in

stability. To support the marketing application of a drug product, the stability

of a minimum of three batches needs to be evaluated. The minimum of three

batches is a compromise between cost and statistical requirements for estimating

between-batch variability. In the data analysis it can be determined whether data

from the batches can be combined, when it would usually lead to a longer shelf-

life estimate.

Many products are supplied in several strengths and different container

closure systems, e.g., bottle, blister pack, and various container sizes and fills.

In the traditional design, at least three batches of each configuration of strength

and container size need to be put on stability for the estimation of the shelf-life

of the combination. This leads to either independent designs for individual

strength/ container combinations or one overall factorial design in which the

effects of batch, strength, container, etc., on the stability of the dosage form are

investigated. If the assumption of equal variances across the various combinations

of factors holds, the potential advantage of the full factorial over separate

regression models lies in the common error term and the potential pooling of data

across design factors. Combining the data will lead to a higher precision in the

error variance estimation when the model used is correct. If the data can be pooled

across design factors, a common and usually longer shelf-life may be applied to

all product configurations. However, a full factorial design can be costly.

In an effort to save resources and time, several types of reductions from the

full factorial design have been proposed, most notably bracketing and matrixing.

However, not each product is amenable to these approaches. For example,

bracketing or matrixing can be applied to various strengths of a tablet dosage

form only if they come from basically the same granulation or have closely

related formulations. For more detailed prerequisites, ICH Q1D should be

consulted.

Bracketing is an approach in which only the extreme configurations of

strength and container are studied. The basic assumption is that the configurations

of strength and container studied are no more stable than those not studied.

Care needs to be taken that the numeric extremes (e.g., highest strength versus

lowest strength, largest bottle versus smallest bottle) are not automatically

assumed to represent the most and least stable configurations.12,13 Surface area to

headspace ratios in a container or other similar assessment of product

vulnerability to moisture, oxygen, and light need to be evaluated in determining

which configurations represent the extremes. A bracketing design can be

considered as separate studies (of the extreme configurations) or as one study, and

the data obtained should be analyzed accordingly. Table 22.1 gives an example

of a bracketing design.
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Matrixing is a design of a stability schedule, in which only a fraction of the

samples are tested at a specified time point. Statistically, it is a fractional factorial

approach. All configurations of the design factors, e.g., strength and container size,

are considered in one factorial design, but only a fraction of all possible factor

combinations is tested at any specified time points. Subsets of factor combinations

vary across time points. Certain prerequisites, such as common granulation, etc.,

need to be met before a multiple factor analysis approach can be considered. For

further information, ICH Q1D should be consulted. As it is assumed that the

stability of the samples tested represents the stability of all samples, matrixing over

factors with different expected stability patterns (such as, different container

closure systems or different storage conditions) is not acceptable. The simplest

matrixing approach involves reducing the testing schedule of each batch (see

Table 22.2). For regulatory purposes, certain time points (e.g., 0, 12, 24 months)

are required on all batches, others may be matrixed. A much greater reduction in

TABLE 22.1
Example of a Bracketing Design

Strength 50 mg 75 mg 100 mg

Batch 1 2 3 1 2 3 1 2 3

Container size 15 ml T T T T T T

100 ml

500 ml T T T T T T

Key: T ¼ Sample tested

TABLE 22.2
Examples of Matrixing Designs on Time Points for a Product with wo

Strengths

One-Half Reduction One-Third Reduction

Strength
Time point
(months) 0 3 6 9 12 18 24 36 0 3 6 9 12 18 24 36

S1 Batch 1 T T T T T T T T T T T T

Batch 2 T T T T T T T T T T T T

Batch 3 T T T T T T T T T T T T

S2 Batch 1 T T T T T T T T T T T T

Batch 2 T T T T T T T T T T T T

Batch 3 T T T T T T T T T T T

Key: T ¼ Sample tested
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cost and resources occurs when design factors as well as time points are matrixed

(see Table 22.3). The savings of a matrixed design over a full design are obvious.

Care must be taken to ensure that the matrixing design results in a valid fractional

factorial design which can be statistically analyzed. However, because of the

reduced amount of data collected, certain terms of the model may become

nonestimable and the studymay instead have to be analyzed using separate models

on disjoint subsets. Therefore, an applicant assumes the risk of possibly estimating

a shorter shelf-life than had a full model been employed.

In rare occasions, bracketing and matrixing can be combined into a single

design.

The above mentioned discussions on the use of bracketing and matrixing

designs cover the basic regulatory needs. There are more detailed design criteria

discussed in the literature. Nordbrock10 suggested choosing between designs

based on the power of detecting differences in slopes of desired factors. Nordbrock

uses the term “matrixing” and “fractional factorial-type designs” for bracketing

and matrixing, respectively. He listed ten different designs starting with a

complete factorial and designs with combinations of reduced time points and

various reduced factors. Though some aspects of his approach (e.g., including

different container closure systems or considering different storage conditions in

one design) may be controversial, he recommended choosing the most powerful

design among designs that are acceptable and of equal sample size, to increase

savings in cost and resources. Ju and Chow14 on the other hand recommended

that the precision of the shelf-life estimate should determine which design to use.

TABLE 22.3
Examples of Factor and Time Matrixing Designs for a Product with Three

Strengths and Three Container Sizes

Strength

S1 S2 S3

Container size A B C A B C A B C

Batch 1 T1 T2 T2 T1 T1 T2

Batch 2 T3 T1 T3 T1 T1 T3

Batch 3 T3 T2 T2 T3 T2 T3

Key:

Time-point (months) 0 3 6 9 12 18 24 36

T1 T T T T T T T

T2 T T T T T T

T3 T T T T T T

S1, S2, and S3 are different strengths. A, B, and C are different container sizes. T ¼ Sample tested
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For a fixed sample size, they proposed the design with the best precision for

estimating shelf-life. For a fixed, desired precision, the design with the smallest

sample size is considered the best choice. DeWoody and Raghavarao15 developed

a method for choosing the time vectors such that the design is optimal in terms of

maximum information per unit cost. Although the full factorial provides

maximum information, it is also the most costly design. For a fixed (reduced)

number of time points, the design with the largest information per unit cost is

considered optimal. However, as the number of time points is decreased, the

variance of the slope contrast increases and may become unacceptably large.

Therefore, DeWoody and Raghavarao suggested evaluating on a product-by-

product basis which design may represent the best combination of cost versus the

expected degradation rate and variance. Murphy16 proposed several efficiency

measures to show that a typical matrix design where each batch has a different

(reduced) time schedule, is inferior to a uniform matrix design where each batch

has the same time schedule. The time schedule has been reduced in such a way that

the remaining time points are concentrated at the beginning and at the end of the

study. If the uniformmatrix design is to be considered, it may be prudent to consult

with the regulatory agency first to obtain concurrence that there is no concern

regarding undue loss of information about stability early on and/or pattern

(curvature) of the data. Pong and Raghavarao17 compared the power for detecting

a significant difference between slopes and the mean square error to evaluate the

precision of the estimated shelf-life of bracketing and matrixing designs. They

found the power of both designs to be similar. Based on the conditions under study,

they concluded that bracketing appears to be a better design than matrixing in

terms of the precision of the estimated shelf-life.

A different perspective was proposed by Kleijn and Lakeman11 for

postmarketing stability surveillance, i.e., for confirming an approved shelf-life.

In this proposal, not only the amount of testing, but also the testing time schedule

is challenged. They proposed to put a single batch per year on stability and test all

batches on a “selected date” once a year or less often. The use of this approach

should be carefully evaluated before applying it. In addition, the applicability of

this approach to the estimation of the shelf-life during the marketing application

has not been established.

III. METHODS FOR SHELF-LIFE DETERMINATION

A. ANCOVA MODELING OF SIMPLE STABILITY STUDIES

In this section, a drug product that is produced in only one strength and container

size is considered. Without loss of generality, one can assume that the drug

attribute changes linearly with time, (e.g., potency assay decreases linearly as

time increases). Other cases can be treated similarly. Currently, FDA and most

pharmaceutical companies use simple linear regression to analyze long-term

stability data collected under room temperature conditions. The simple linear
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regression model for this approach is

YðtÞ ¼ aþ bt þ 1t ð22:1Þ
where YðtÞ denotes the attribute value of the batch at month t; a and b are the

intercept and slope parameters, respectively, and 1t is the model error term that is

iid and follows a Nð0;s 2Þ distribution. a and b are the parameters to be estimated
and assumed to be fixed.5,6,18

As the data from a single batch cannot capture batch-to-batch variability,

a stability study is conducted with a minimum of three batches. To model the

linear regressions of multiple batches of the same drug product, the ANCOVA

model is often used,

YiðtÞ ¼ a0 þ ai þ ðb0 þ biÞt þ 1it ð22:2Þ

where a0 and b0 are the common intercept and slope parameters, respectively,
shared by all batches, and ai and bi are the deviations of the individual intercept
and slope of the ith batch from a0 and b0; respectively.

One of the most important chemical attributes is the potency assay, whose

results represent the contents of the drug substance or active ingredient. It is

expressed in percent of label claim or a transformation thereof. If a product has

more than one active ingredient, the analysis is performed on each ingredient

separately. Degradation products of the active ingredient, whose levels increase

with time, are also very important measures of stability and are similarly analyzed.

Other attributes, e.g., pH, preservative contents, dissolution, etc., are similarly

analyzed, usually in their original units or an appropriate transformation to

improve linearity.

In practice, stability data may vary sufficiently between batches so that the

individual regression lines may have different intercepts and/or slopes. However,

the collected stability data can be fitted with one of the following models:5

1. Model 1: different intercepts and different slopes (Figure 22.1a),

YiðtÞ ¼ a0 þ ai þ ðb0 þ biÞt þ 1it

2. Model 2: common intercept but different slopes (Figure 22.1b),

YiðtÞ ¼ a0 þ ðb0 þ biÞt þ 1it

3. Model 3: common slope but different intercepts (Figure 22.1c),

YiðtÞ ¼ a0 þ ai þ b0t þ 1it

4. Model 4: common slope and common intercept (Figure 22.1d),

YiðtÞ ¼ a0 þ b0t þ 1it
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Determining which of the above models best fit the data is accomplished by

testing the equality of slopes and/or intercepts of the regression lines. If the

regression lines are shown to be similar, the data may be pooled to obtain

a common slope and/or intercept.

The pooling tests of slope and intercept are conducted in hierarchical order,

i.e., the poolability of slopes is tested before the poolability of intercepts. The null

and alternative hypotheses of the slope poolability test are,

H0 : bi ¼ 0 ;i; versus Ha : bi – 0; for some i: ð22:3Þ

A common slope is accepted if H0 is not rejected. Once a common slope is

accepted, the poolability of the intercepts is tested by the following hypotheses,

H0 : ai ¼ 0 ;i; versus Ha : ai – 0; for some i: ð22:4Þ

A common intercept is accepted if H0 is not rejected. The determination of the

final model is based on the results of the hierarchical testing of hypotheses (22.3)

and (22.4).

The hierarchical testing procedure can be carried out in a single ANCOVA

modeling step with the hierarchical partitioning of the total sum of squares,

i.e., the Type I sums of squares. In fact, with the ANCOVA model and the Type I

sums of squares, the following tests are performed.

a. Model 1 c. Model 3

b. Model 2 d. Model 4

FIGURE 22.1 Four regression models.
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The total sum of squares, SStot, is partitioned into the sum of squares because

of regression, SSreg, andXX
ðYij 2 
Y::Þ2
SStot

¼
XX

ðŶij 2 
Y::Þ2
SSreg

þ
XX

ðYij 2 ŶijÞ2
SSres

the residual sum of squares, SSres where Yij is the product characteristic at the

jth time point of the ith batch of a drug.

The residual sum of squares is further partitioned into the sum of squares due

to the variation about the individual regression equations, SSresin, the sum of

squares due to the variation between individual slopes and the average slope,

SSslopein, the sum of squares due to the variation about the regression of batch

means, SSregmn, and the sum of squares due to the variation between the regression

of the means and the common slope, SSslopemn:

XX
ðYij 2 a2 bXijÞ2 ¼

XX
½Yij 2 ðai þ biXijÞ	2 þ

X
ðbi 2 
bÞ2

X
ðXij 2 
Xi:Þ2

þ
X

JI½ 
Yi: 2 ðâþ b̂ 
Xi:Þ	2 þ ð
b2 bÞ2P
Jið 
Xi: 2 
X::Þ2

� �21 PPðXij 2 
Xi:Þ2
h i21

The above components are expressed by the following notations:

SSres ¼ SSresin þ SSslopein þ SSregmn þ SSslopemn

a. Test for equality of slopes. With these partitions, the statistic Fslope ¼
MSslopein/MSresin follows an FðI 2 1;SiJi 2 2IÞ distribution under H0 of

(22.3). To reject H0; Fslope should have a p-value less than .25.
3,5,6,18,19

The decision of a common slope is made if the Fslope test fails to reject

H0 of (22.3).

b. Test for equality of intercepts given parallel lines. Similarly, the statistic

Fintercept ¼ MSregmn/MSresin follows an FðI 2 1;SiJi 2 2IÞ distribution
underH0 of (22.4). To reject H0; Fintercept should have a p-value less than
.25. The decision of a common intercept is made if the Fintercept test fails

to reject H0 of (22.4).

At the end of the above two hypothesis tests, one of the following models is

selected for fitting the stability data of a drug product:

i. Individual slopes and intercepts (i.e., Model 1) ifH0 of (22.3) is rejected.

Model 2 is considered as a special case of Model 1,

ii. Individual intercepts but common slope (i.e., Model 3) if H0 of (22.4) is

rejected but H0 of (22.3) is not,

iii. Common slope and intercept (i.e., Model 4) if H0 of both (22.3) and

(22.4) are not rejected.

Stability Studies of Pharmaceuticals 399



The slopes and intercepts can be estimated using the final ANCOVA model. The

standard errors of the estimates and the confidence bands around the regression

lines can be obtained according to the selected model. However, even if only

individual regression lines can be fitted, the estimated variance of the error term

of the full model using data of all batches may be used in the construction of the

confidence bands.

In theory, the shelf-life of each batch is the date when the expected value of the

regression line intersects the acceptance criteria of the attribute (Figure 22.2).

Statistically, the shelf-life is estimated by the time the confidence band intersects

with the acceptance criteria of the attribute. When two-sided acceptance criteria

are of concern, the proper shelf-life is based on the earliest intersection of the

confidence bands with the acceptance criteria. When each batch is represented by

an individual regression line, a shelf-life is determined for each batch based on its

regression line. The shelf-life estimate for the product is determined by the

minimumof all estimated shelf-lives. The same concept applies alsowhen the drug

product contains more than one active ingredient or when several product

attributes are studied. In these cases, the shelf-life of the drug product is also

determined by the minimum of any estimate based on all active ingredients and/or

all studied attributes.

When evaluating stability data in support of a proposed shelf-life T0, which in

general may be 3 to 12 months longer than the last observed time point, the

(minimum) estimated shelf-life T* based on all batches will be compared with

T0: T0 is granted if T
* . T0:

The ANCOVA modeling of shelf-life determination of a single drug product

can be illustrated with the following example.

Example 1. The stability data of three batches of a single drug product were

collected at 0, 3, 6, 9, 12, and 18 months with the objective to claim 30 months for

the shelf-life of the product. The data are shown in Table 22.4.

True Regression Line

Confidence Limit of the Estimate

%
of

La
be

lC
la

im

Time in Months

True Shelf Life
Estimated Shelf Life

Estimated Regression Line

FIGURE 22.2 Shelf-life estimation.

Statistics in the Pharmaceutical Industry400



The original ANCOVA model is

YiðtÞ ¼ a0 þ ai þ ðb0 þ biÞt þ e t

where i ¼ 1, 2, 3 (batch), t ¼ month, 1t , Nð0;sÞ:
The SAS statement of the ANCOVA model used is

MODEL Y ¼ TIME BATCH TIME £ BATCH=SS1;

The three fitted individual lines are

YðtÞ ¼ 104:072 0:1667t

YðtÞ ¼ 103:042 0:1310t

YðtÞ ¼ 103:752 0:2262t:

They intersect the lower acceptance criterion (95% LC) at approximately 39, 39,

and 30 months, respectively (Figure 22.3).

TABLE 22.4
Stability Data of Three Batches of a Product

Time Point (month)

Batch 0 3 6 9 12 18

Batch 1 103 104 104 103 102 101

Batch 2 102 103 103 102 102 100

Batch 3 103 102 101 101 100 99
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BATCH #1 OBSERVED BATCH#1 PREDICT
BATCH#1 LCL BATCH #1 UCL
BATCH #2 OBSERVED BATCH #2 PREDICT
BATCH #2 LCL BATCH #2 UCL
BATCH #3 OBSERVED BATCH #3 PREDICT
BATCH #3 LCL BATCH #3 UCL

FIGURE 22.3 Individual regression lines of example 1.
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A significance level of .25 is used for both the pooling tests of slope, H0 : bi ¼ 0

and intercept, H0 : ai ¼ 0: There is no statistically significant difference between
the slopes ( p-value ¼ .252). But the intercepts are considered different

( p-value ¼ .045) (Table 22.5).

These results lead to three parallel regression lines with different intercepts for

the three batches as shown in Figure 22.4. The three fitted regression lines are

Y1ðtÞ ¼ 103:2862 0:1746t;

Y2ðtÞ ¼ 104:1442 0:1746t;

Y3ðtÞ ¼ 103:4302 0:1746t:

TABLE 22.5
ANCOVA Results of Example 1

Source DF Sum of Squares Mean Square F Value Pr > F

Model 5 27.167 5.433 14.09 , .0001

Error 15 5.786 0.386

Corrected Total 20 32.952

Source DF Type I SS Mean Square F Value Pr > F

Month 1 23.0476 23.0476 59.75 , .0001

batch 2 2.9524 1.4762 3.83 .0454

Month £ batch 2 1.1667 0.5833 1.51 .2522
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BATCH #2 OBSERVED BATCH #2 PREDICT
BATCH #2 LCL BATCH #2 UCL
BATCH #3 OBSERVED BATCH #3 PREDICT
BATCH #3 LCL BATCH #3 UCL
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FIGURE 22.4 Parallel regression lines of example 1.
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Their 95% confidence bounds intersect with the lower acceptance criterion at

approximately 42, 39, and 36 months. Hence a 30-month shelf-life is supported.

B. ANCOVA MODELING OF STABILITY STUDIES DESIGNED

WITH MULTIPLE FACTORS

As described in the previous section, the ANCOVA modeling application to

the simple three-batch single product study has the feature of hierarchical

testing for pooling of slopes and intercepts embedded in the single layout of

the ANCOVA results. The equality tests of slopes and intercepts are handled

in a hierarchical manner using the type I sum of squares of the ANCOVA

model in SAS. Extention of the same ANCOVA application to a complicated

multiple factor design requires a prespecified hierarchical ordering of the sums

of squares partitions and of the pooling tests. For example, in a stability study

designed with multiple levels of strength, container size, and batch, the

ANCOVA model with all factors and interactions can be represented by (22.5)

below

Yspbt ¼ aþ as þ ap þ ab þ asp þ asb þ apb þ aspb þ bt þ bst þ bpt

þ bbt þ bspt þ bsbt þ bpbt þ bspbt þ e spbt ð22:5Þ

where the subscript s ¼ 1 to S represents the level of the strength, p ¼ 1 to P

represents the level of container size, and b ¼ 1 to B represents the level

of batch. Moreover, a’s represent the intercepts of the regression lines: ai
represents the effect of factor i on the intercept, aij represents the 2-way

interaction effect of factors i and j on the intercept, aijk represents the 3-way
interaction effect of factors i, j, and k on the intercept. Similar to the way of the

a’s represent the intercept coefficients, the b’s represent the slope coefficients
of the regression lines. Finally, the random error term follows a standard

normal distribution with mean zero and variance s2: Here, model (22.5) is
known as the preliminarily specified model. Through tests of equality of slopes

and intercepts specified in the preliminary model, Model (22.5) may be

reduced to a simpler model. Then, the final simpler model reduced from

Model (22.5) will be used to estimate the shelf-life for the drug product

studied. For example, if through a hierarchical testing procedure, the data

support the elimination of bspb, aspb, bsp, asp, bpb, apb, bsb; asb in Model

(22.5) by not rejecting H0 : bspb ¼ 0, H0 : aspb¼0, H0 : bsp ¼ 0, H0 : asp ¼ 0,

H0 : bpb ¼ 0, H0 : apb ¼ 0, H0 : bsb ¼ 0, H0 : asb ¼ 0, then the full model is

reduced to

Yspbt ¼ aþ as þ ap þ ab þ bt þ bst þ bpt þ bbt þ e spbt ð22:6Þ

As a comparison, the linear regression lines fitted with Model (22.6) are more

clustered than the regression lines fitted using Model (22.5) and will lead to

longer estimated expiration dating periods. Thus, the sponsor may take
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advantage of choosing a reduced model like (22.6) after testing which terms

in Model (22.5) can be dropped to avoid the possibility of getting shorter

estimated expiration dating periods for some strength-container size

combinations.

To extend the model building process from a single-factor to a multi-factor

stability design, the ANCOVA modeling application requires a prespecified

hierarchical ordering of the pooling tests. For example, it may be defined as

follows,

(a) H0 : bspb ¼ 0; strength-by-container size-by-batch interaction for slope
(b) H0 : aspb ¼ 0; strength-by-container size-by-batch interaction for

intercept

(c) H0 : bsb ¼ 0; strength-by-batch interaction for slope
(d) H0 : asb ¼ 0; strength-by-batch interaction for intercept
(e) H0 : bpb ¼ 0; container size-by-batch interaction for slope
(g) H0 : apb ¼ 0; container size-by-batch interaction for intercept
(h) H0 : bsp ¼ 0; strength-by-container size interaction for slope
(i) H0 : asp ¼ 0; strength-by-container size interaction for intercept
(j) H0 : bb ¼ 0; batch slope
(k) H0 : ab ¼ 0; batch intercept
(l) H0 : bs ¼ 0; strength slope
(m) H0 : as ¼ 0; strength intercept
(n) H0 : bp ¼ 0; container size slope
(o) H0 : ap ¼ 0; container size intercept.

Whenever a null hypothesis of the pooling test is rejected, the pooling test

of the rest of the interactions or main factors contained in the significant

interactions will not be performed. The shelf-life estimate for each strength-

container size combination of the product is then determined by the date of the

intersection of the one-sided 95% confidence limit based on the reduced model

with the specification level for a given attribute. A regulatory shelf-life of each

strength-container size combination of the product is determined by comparing

the estimate with the shelf-life targeted. If the product has an estimate of shelf-

life longer than the proposed shelf-life, the proposed shelf-life will be accepted as

the regulatory shelf-life. Otherwise the shorter time estimate will be used as the

regulatory shelf-life.

The extension of the single-factor ANCOVA modeling procedure to a multi-

factor model causes some serious difficulties in the selection of the final model for

expiration dating estimation. First, the hierarchical ordering of pooling tests

restricts the possibility of pooling patterns and eliminates many pooling

opportunities. Second, using different hierarchical orderings of pooling tests

may lead to different final models and result in different estimated shelf-lives for

strength-container size combinations of the product. For instance, in the last

example, it is also possible to change the ordering of the testing of the interactions

of strength with batch, container size with batch, and strength with container size.
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With no specific restriction, there are six ordering patterns. Similarly, the ordering

of the main factors leads also to six patterns. The 36 distinct orderings may lead

to 36 different shelf-life settings for the products.

The heterogeneity test of the slopes across various levels of batch, strength,

and container size is carried out by testing the hypotheses,

H0 : bspb ¼ 0 against Ha : bspb – 0 ð22:7Þ
Similarly, the heterogeneity test of intercepts across various levels of batch,

strength, and container size is carried out by testing

H0 : aspb ¼ 0 against Ha : aspb – 0 ð22:8Þ
The remaining heterogeneity tests and test for main effects follow the same

procedure as in (22.7) and (22.8).

Note that the decision of pooling is made if H0 of (22.7) or (22.8) is not

rejected. Because more degrees of freedom are associated with the estimate of

error term variance in the reduced model than in the full fixed model (22.1), the

shelf-life estimated by the reduced model is usually longer than that estimated by

the full fixed model (22.5). However, with the limited number of observation

times, the major concern of the pooling tests is their power to reject the null

hypothesis, especially in matrixing and bracketing designs. Hence, in order to

reduce the rate of falsely pooling because of lack of testing power, Brancroft19

and other authors20–23 proposed the use of a larger significance level such as

a ¼ :25 for preliminary tests of hypothesis. Controlling the primary and overall
type I error rate for the estimation or testing of the proposed shelf-life is of

primary concern.

For this reason, the primary objective for the stability study is restated by

Chen and Tsong24,25 and stated as an alternative in ICH Q1E3 as follows,

H0 : Tspb # T0 for some s; p; b versus Ha : Tspb . T0 for all s; p; b ð22:9Þ
where T0 is the manufacturer proposed common shelf-life for all strength-

container size combinations of the product within the maximum extension

beyond the last time point with observed data, and Tspb is the true shelf-life

of the specific combination of the product. Clearly, this restated objective of the

stability study emphasizes that the stability study is designed to collect data in

support of the sponsor’s claim of a specific shelf-life T0 for the product. In order

to make the claim, the sponsor is responsible to collect data to demonstrate that

batches of each factor level combination tested have shelf-lives longer than the

targeted shelf-life T0: Then, a T0 shelf-life is statistically supported when H0 is

rejected with data of the available batches (i.e., all batches in each combination

of factor level have true shelf-lives longer than T0). By rejecting H0; it establishes
that all Tspb’s are longer than T0: A good testing procedure is the one that can

properly control the type I error rate for testing (22.9).

In addition, for multiple factor stability designs, when the result failed to

reject (22.9), the design data are split into subsets for testing different multiple
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hypotheses to accommodate the different shelf-lives for different strength-

container size combinations of the product.

For potency stability, for instance, the hypotheses (22.9) are tested by

comparing the lower one-sided 95% confidence limit with the acceptance

criterion at T0: Pooling tests should be considered with properly controlling of the
type I error rate in the test of the primary hypotheses (22.9). Chen and Tsong24

evaluated the simple case of a standard stability study with three batches using

various significance levels for the slope pooling test in order to control the type I

error rates of the test of the hypotheses (22.9) at .05 and .10 levels under a set of

specific conditions, in particular that one of the three batches has an expected

shelf-life equal to T0: In the paper, the simulation algorithm that determined

the significance level for testing hypothesis (22.7) so that a type I error rate of

.05 or .10 for testing the primary objective null hypothesis (22.9) is preserved,

consists of the following two stages: (i) the determination of the detectable

parameter value for the slope differences and (ii) the determination of the a
significance level for testing hypothesis (22.7). In the first stage, for each

specified false positive rate of rejecting the primary objective null hypothesis

H0: Mink¼1 to 3 ðTkÞ # T0; the algorithm determines the slope differences among

the three batches such that the rate of falsely rejecting the primary objective null

hypothesis H0; induced by falsely pooling slope differences, is not less than or
equal to the prespecified false positive rate. In the second stage, for each specified

false positive rate, the algorithm determines the significance level of rejecting the

hypothesis of equal slopes under the slope differences determined from the first

stage, in order to preserve a prespecified Type I error rate in the test of the

hypothesis (22.9). Finally, the significance level for testing the hypothesis of

equal slopes is equal to the maximum of the significance levels determined for

each false positive rate used in the simulation.

The authors reported that in order to keep the type I error rates at .05 and .1

levels not inflated when testing H0: Mink¼1 to 3 ðTkÞ # 18; significance levels up
to .7 and .45, respectively are needed when testing for equality of slopes and

using one year data with large standard deviations such as 0.2, 0.4, 0.8, and

1.4% of the labeling claim. Moreover, the simulation study indicated that the

curves for the significance levels for the slope pooling tests at the selected false

positive rates, which controlled the type I error rates at .05 and .1 levels in the

test of hypothesis (22.9), were similar among the four data standard deviations.

The curve delineating the relationship between the significance levels for testing

the hypothesis (22.7) of slope equality and the false positive rates specified

for testing the primary hypothesis of (22.9) using data with standard deviation

of 0.2 is presented in Figure 22.5. In this figure, each significance level is

determined by the simulation algorithm to bring down the associated false

positive rate to the Type I error rate of 5% for testing the primary objective null

hypothesis of (22.9).

From Figure 22.5, one notes that the significance level for testing the

preliminary hypothesis of equal slopes increases for false positive rates ranging

from .05 to .25, and decreases after the false positive rate becomes greater
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than .25. In order to keep the type I error in the test of the primary objective null

hypothesis of (22.9) at .05 not inflated, the maximum significance level could be

as high as .7 for controlling a false positive rate of .25.

As mentioned above, this is just a simulation of a simple case of three

batches with a requested shelf-life of 18 months. However, the results from this

simulation indicate that because of a lack of power for testing slope differences,

high significance levels are required to provide higher levels of power. Thus the

test procedure is able to detect when the slopes of three batches are different

under the most variable condition and brings down the false positive rate to

a prespecified Type I error rate in the test of primary objective null hypothesis

of (22.9).

A generalization of Bancroft’s proposal to the multi-factor stability study was

proposed by Fairweather et al.26 They proposed to use a significance level of

.25 for any batch-related pooling test of main factor and interactions and

a significance level of .05 for all other pooling tests. These significance levels are

currently recommended in ICH Q1E.3

Because of the difficulties of directly extending the ANCOVA modeling

procedure from a simple single factor three-batch study to a multi-factor study,

a more flexible version of ANCOVA modeling is proposed. It is proposed based

on a stepwise selection procedure. The basic hierarchical ordering of pooling test

is as follows:

1. Testing the slope term before the corresponding intercept term for an

interaction or a main effect.

2. Testing a higher level interaction before a lower level interaction.
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FIGURE 22.5 Significance level required at each false positive rate in keeping Type I

error rate of .05 not inflated.
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3. Factors in the interaction test will not be pooled once the interaction is

significant. Once an interaction is significant, its members cannot be

tested for pooling, whether as lower level interactions or asmain effects.

The testing rule for pooling can be described as follow:

1. Fitting the data with the initial ANCOVA model (e.g., full model) and

comparing the confidence limit of the attribute with the quality

acceptance criterion at T0: If the confidence limit of the full model, i.e.,
of each strength-container size combination of the product, is within

the acceptance criterion, H0 of (22.9) is rejected and T0 is the shelf-life

supported for all product combinations with no need of any pooling

tests. Otherwise go to step 2.

2. Comparing the p-value of the slope term of the highest order

interaction with the properly prespecified significance level for pooling

(usually .25 since batch will be one factor). If it is significant (i.e., the

p-value is smaller than the significance level), the full model is final.

Otherwise the model can be reduced by the highest order interaction

term.

3. Refitting the data with the reduced model. Among the next highest

level of interactions, if there is more than one term of the same degree,

the batch-related terms will be considered for elimination first. Among

them, the one with the largest p-value will be considered for

elimination first. This is done by comparing the p-value of interaction

slope term of the next highest order with the properly prespecified

significance level for pooling. If it is significant (i.e., the p-value is

smaller than the significance level), this term and all terms of lesser

order of the involved factors cannot be eliminated from the model.

Otherwise reduce the model by the nonsignificant term.

4. Repeating the procedure for all batch-related interactions of the same

order. When all of them could be deleted, repeating the procedure for

all nonbatch related interactions of the same order, again starting with

the one with the highest p-value. When not all interactions can be

deleted, continue with the highest order term having none of the factors

that were part of a significant term.

5. Refitting the data with the reduced model and comparing the

confidence limit of each strength-container size combination of the

product with the quality acceptance criterion at T0: If all the confidence
limits are within the acceptance criteria, H0 of (22.9) is rejected and T0
is the shelf-life supported for all strength-container size combinations

of the product and no further modeling is needed. Otherwise go to the

next step.

6. Repeat the pooling test of Step 2 to 5 for the corresponding intercept

of the eliminated slope term until either H0 of (22.9) is rejected

and the associated claim that T0 is the uniform shelf-life for all
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strength-container size combinations of the product, or a final model is

identified.WhenH0 of (22.9) cannot be rejected for all combinations for

a uniform shelf-life, the product shelf-life should be determined

individually by comparing the confidence limits of the remaining

factors and interactions with the acceptance criterion/criteria at T # T0:

For illustrative purpose, the above procedure is applied to single factor with three

batches in the example below.

The sample means and the 95% confidence limits of Y24 of the three batches

calculated from the final model of example 1 are given below:

Estimate and 95% CI using Model (22.2)

Batch Lower Limit Mean Upper Limit

1 99.057 99.952 100.85

2 98.343 99.238 100.13

3 98.200 99.095 99.991

It is clear that the 95% confidence intervals for the assay at 24 months of

all three batches are between 95 and 105% of the label claim of the attribute.

Hence the null hypothesis of (22.9) is rejected and a 24-month shelf-life is

supported.

Example 2 below is used to illustrate the proposed stepwise ANCOVA

modeling in a multiple factor stability study.

Example 2. A stability design with two levels of strength (10 mg, 40 mg),

four levels of container sizes (3, 30, 100, and 1000 count bottles) and three

batches in cross-classification is considered. Measurements were made at 0, 3, 6,

9, 12, and 18 months with the objective of a T0 ¼ 30 months shelf-life. The assay

measurements are given in Table 22.6.

For the stability of potency, we consider the two-sided acceptance criteria,

SL ¼ 95% and SU ¼ 105% of label claim. Assume a full linear fixed effects

model as the original model,

Yspbt ¼ a0 þ as þ ap þ ab þ asp þ asb þ apb þ aspb þ b0t

þ bst þ bpt þ bbt þ bspt þ bsbt þ bpbt þ bspbt þ e spbt

where a0 and b0 are the general mean intercept and slope, respectively, as . and

bs are the strength effect on the intercept and slope, respectively, ap and bp are
the container size effect on the intercept and slope, respectively, asp and bsp
are the interaction effect between strength and container size effect on the

intercept and slope, respectively, ab and bb are the batch effect on the intercept
and slope, respectively, asb and bsb are the interaction effect between batch and
strength on the intercept and slope, respectively, apb and bpb are the interaction
effect between batch and container size effect on the intercept and slope,

respectively, aspb and bspb are the interaction effect among container size, batch,
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and strength on the intercept and slope, respectively, and e spbt is the data random
error term that follows the standard normal distribution with mean zero and

varianceF:2 In this example, the significance levels of the pooling tests proposed
by Fairweather et al. are used.

Results of the ANCOVA using the full model are given in Table 22.7. The

first pooling test is H0 : bspb ¼ 0 vs. Ha : bspb – 0: Since the p-value of the F test
is .9254 . .25, this term can be eliminated from the model.

The reduced model without thebspb term is then used to test the corresponding

intercept term aspb by testing H0 : aspb ¼ 0 vs. Ha : aspb – 0: After removing
terms through stepwise modeling and pooling tests, the final model below is

obtained.

Yspbt ¼ a0 þ as þ ap þ ab þ asp þ apb þ b0t þ e spbt

TABLE 22.6
Stability Data of a Multiple Factor Stability Study

Time in Months

Strength Container Size Batch 0 3 6 9 12 18

10 3 1 102 103 103 102 2 100

2 103 102 103 101 100 101

3 102 103 102 103 101 101

30 1 103 102 101 101 100 99

2 104 103 101 102 101 100

3 103 103 101 101 101 99

100 1 104 103 102 101 102 101

2 104 103 103 101 101 100

3 103 102 101 102 101 100

1000 1 103 103 101 102 101 100

2 102 103 101 102 100 99

3 103 102 101 101 100 99

40 3 1 104 103 102 103 101 100

2 103 102 102 101 100 100

3 103 102 101 101 100 100

10 1 103 102 102 101 100 100

2 104 102 103 101 100 100

3 104 103 101 102 100 99

100 1 103 103 101 102 100 99

2 104 103 101 102 100 100

3 102 103 101 102 100 99

1000 1 105 104 102 103 101 101

2 102 103 102 101 100 100

3 103 103 101 102 100 99
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TABLE 22.7
Results of ANCOVA of the Original Full Model of Example 2

Source DF Sum of Squares Mean Square F Value Pr > F

Model 47 217.417 4.626 10.15 , .0001

Error 96 43.743 0.456

Corrected Total 143 261.160

Source DF Type III SS Mean Square F Value Pr > F

BATCH 2 1.313 0.656 1.44 .2419

STRENGTH 1 0.591 0.591 1.30 .2576

CONTAINER SIZE 3 0.634 0.211 0.46 .7082

BATCH £ CONTAINER SIZE 6 6.224 1.037 2.28 .0425

BATCH £ STRENGTH 2 0.931 0.465 1.02 .3640

CONT. SIZE £ STRENGTH 3 0.949 0.316 0.69 .5578

BATCH £ CONT. £ STRENGTH 6 1.363 0.227 0.50 .8080

MONTH 1 185.534 185.534 407.18 , .0001

MONTH £ CONTAINER SIZE 3 2.777 0.926 2.03 .1146

MONTH £ BATCH 2 0.012 0.006 0.01 .9866

MONTH £ STRENGTH 1 1.302 1.302 2.86 .0942

MONTH £ BATCH £ CONT. SIZE 6 2.237 0.373 0.82 .5585

MONTH £ BATCH £ STRENGTH 2 0.496 0.248 0.54 .5818

MONTH £ CONT. £ STRENGTH 3 0.526 0.175 0.38 .7642

MONT £ BATCH £ CONT. £ STREN 6 0.873 0.146 0.32 .9254

TABLE 22.8
ANCOVA Results of the Last Final Model of Example 2

Source DF Sum of Squares Mean Square F Value Pr > F

Model 16 205.082 12.818 29.03 , .0001

Error 127 56.078 0.442

Corrected Total 143 261.160

Source DF Type III SS Mean Square F Value Pr > F

BATCH 2 3.764 1.882 4.26 .0162

STRENGTH 1 0.063 0.063 0.14 .7074

CONTAINER SIZE 3 1.354 0.451 1.02 .3852

BATCH £ CONT. S. 6 9.125 1.521 3.44 .0035

CONT. £ STRENGTH 3 5.243 1.748 3.96 .0098

MONTH 1 185.534 185.534 420.18 , .0001
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Results of ANCOVAusing the finalmodel are given in Table 22.8. The p-values of

the remaining factors indicate that none of the factors can be eliminated from the

model.

The fitted regression lines of all batches of all strength-container size

configurations intersect with the SL at time points no shorter than 30 months

(Table 22.9). The results indicate that all observed strength-container size

configurations have no less than 30 months of shelf-life. Extrapolating to future

batches, one can compare the estimate of Yspb at the 30th month with SL and SU to

determine if the results support the 30-month shelf-life. In this case, the 95%

confidence interval of the mean of Yspb at the 30th month lies between SL and SU,

which indicates that all batches of all configurations support the proposed

30 months shelf-life (Table 22.9).

The same approach described above can be used for stability studies using

incomplete block designs such as the matrix design. When a multi-factor stability

design is used, with proper justification based on known chemical properties

TABLE 22.9
Estimates of mspb at the 30th Month of Each Strength-Container Size-Batch

Configuration

Strength Cont. Batch Mean LCL UCL Time of Intersection

10 3 1 97.918 97.319 98.516 36

10 3 2 97.418 96.819 98.016 36

10 3 3 97.501 96.903 98.100 36

10 30 1 96.890 96.292 97.489 36

10 30 2 97.473 96.875 98.072 36

10 30 3 97.140 96.542 97.739 36

10 100 1 97.779 97.181 98.377 36

10 100 2 97.862 97.264 98.461 36

10 100 3 97.362 96.764 97.961 36

10 1000 1 97.696 97.097 98.294 36

10 1000 2 96.779 96.181 97.377 30

10 1000 3 96.696 96.097 97.294 30

40 3 1 97.640 97.042 98.239 36

40 3 2 97.140 96.542 97.739 36

40 3 3 97.223 96.625 97.822 36

40 30 1 97.001 96.403 97.600 36

40 30 2 97.585 96.986 98.183 36

40 30 3 97.251 96.653 97.850 36

40 100 1 97.279 96.681 97.877 36

40 100 2 97.362 96.764 97.961 36

40 100 3 96.862 96.264 97.461 36

40 1000 1 98.196 97.597 98.794 42

40 1000 2 97.279 96.681 97.877 36

40 1000 3 97.196 96.597 97.794 36
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of the product, some of the factors may be eliminated from the original model to

increase the power of the pooling test for the remaining terms in the model.

Example 3. A matrix stability design with the same two levels of strength

(10 mg, 40 mg), four levels of container sizes (3, 30, 100, and 1000 count

bottles), and three batches in a cross classification experiment as in Example 2 are

considered. Measurements were made incompletely at 0, 3, 6, 9, and 12 months

with the objective of a T0 ¼ 30 months shelf-life. The assay measurements are

given in Table 22.10.

When planning a matrix stability study, it is assumed that the properties of the

chemical used in the product are well known, and that the product has no

heterogeneity in degradation changes due to the size of packaging. For example,

it may be agreed upon between the manufacturer and the regulatory agency that

TABLE 22.10
Stability Data of a Matrix Design Stability Study

Time in Months

Strength Container Size Batch 0 3 6 9 12 18

10 3 1 102 X 103 102 101 X

2 103 102 X 101 100 101

3 102 103 102 X 101 101

30 1 103 102 X 101 100 99

2 104 103 101 X 101 100

3 103 X 101 101 101 X

100 1 104 103 102 X 102 101

2 104 X 103 101 101 X

3 103 102 X 102 101 100

1000 1 103 X 101 102 101 X

2 102 103 X 102 100 99

3 103 102 101 X 100 99

40 3 1 104 103 X 103 101 100

2 103 102 102 X 100 100

3 103 X 101 101 100 X

10 1 103 102 102 X 100 100

2 104 X 103 101 100 X

3 104 103 X 102 100 99

100 1 103 X 101 102 100 X

2 104 103 X 102 100 100

3 102 103 101 X 100 99

1000 1 105 104 X 103 101 101

2 102 103 102 X 100 100

3 103 X 101 102 100 X

Stability Studies of Pharmaceuticals 413



all slope interaction terms relating to packaging may be eliminated from linear

modeling. In addition, it may also be assumed that there is no expected intercept

difference among container sizes. Hence all intercept terms related to packaging

may also be eliminated from the initial model. The initial linear fixed effects

model to be considered for a product satisfying the above assumptions is as

follows:

Yspbt ¼ a0 þ as þ ap þ ab þ asb þ b0t þ bst þ bpt þ bbt þ bsbt þ e spbt

The results of the analysis using the model are given in Table 22.11.

Results of the analysis show that the strength-batch slope interaction bsb is first
eliminated from the model. The remaining terms that are sequentially eliminated

from the ANCOVA model are batch-strength intercept interaction ðasbÞ; batch
slope term ðbbÞ; container size slope term ðbpÞ; and container size intercept

term ðapÞ: After removing all the above terms, the reduced ANCOVA model is

Yspbt ¼ a0 þ as þ ab þ b0t þ bst þ e spbt

Results of the analysis using the above-reduced model as the final model are

given in Table 22.12.

The 95% confidence intervals of the mean attribute value m for each of the

strength-container size-batch configurations at 30 months based on the final

reduced ANCOVA model are given in Table 22.13. Because all the confidence

intervals lie between the acceptance limits (i.e., 95% and 105% of label claim), it

is clear that the stability data support the 30-month shelf-life for all strength-

container size configurations of the product. An alternative way to determine

if the requested 30-month shelf-life is supported by the data is by comparing

TABLE 22.11
ANCOVA Analysis of the Original Model of Example 3

Source DF Sum of Squares Mean Square F Value Pr > F

Model 17 157.571 9.269 17.38 , .0001

Error 94 50.143 0.533

Corrected Total 111 207.714

Source DF Type III SS Mean Sq. F Value Pr > F

PKG 3 1.173 0.391 0.73 .535

BATCH 2 1.320 0.660 1.24 .295

STRENGTH 1 1.283 1.283 2.41 .124

BATCH £ STRENGTH 2 0.388 0.194 0.36 .696

MONTH £ BATCH 2 0.436 0.218 0.41 .666

MONTH £ STRENGTH 1 1.777 1.777 3.33 .071

MONTH £ BATCH £ STRENGTH 2 0.276 0.138 0.26 .772

MONTH £ CONTAINER SIZE 3 2.671 0.890 1.67 .179
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TABLE 22.12
ANCOVA Results of the Reduced Model of Example 3

Source DF Sum of Squares Mean Square F Value Pr > F

Model 8 152.828 19.104 35.85 , .0001

Error 103 54.886 0.533

Corrected Total 111 207.714

Source DF Type III SS Mean Square F Value Pr > F

PKG 3 0.828 0.276 0.52 .6707

BATCH 2 4.880 2.440 4.58 .0124

STRENGTH 1 1.220 1.220 2.29 .1333

MONTH £ STRENGTH 2 147.599 73.799 138.49 , .0001

TABLE 22.13
Estimate of m Values of Each Configuration at 30th Month

and Intersection Time

Strength Cont. Size Batch Ŷ LCL UCL
Time of Size
Intersection

10 3 1 98.072 97.301 98.843 36

10 3 2 97.828 97.065 98.592 36

10 3 3 97.565 96.798 98.331 36

10 30 1 98.072 97.301 98.843 36

10 30 2 97.828 97.065 98.592 36

10 30 3 97.565 96.798 98.331 36

10 100 2 97.828 97.065 98.592 36

10 100 3 97.565 96.798 98.331 36

10 1000 1 98.072 97.301 98.843 36

10 1000 2 97.828 97.065 98.592 36

10 1000 3 97.565 96.798 98.331 36

40 3 1 97.190 96.427 97.954 30

40 3 2 96.946 96.180 97.713 30

40 3 3 96.683 95.912 97.454 30

40 30 1 97.190 96.427 97.954 30

40 30 2 96.946 96.180 97.713 30

40 30 3 96.683 95.912 97.454 30

40 100 1 97.190 96.427 97.954 30

40 100 2 96.946 96.180 97.713 30

40 100 3 96.683 95.912 97.454 30

40 1000 1 97.190 96.427 97.954 30

40 1000 2 96.946 96.180 97.713 30

40 1000 3 96.683 95.912 97.454 30
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the shortest estimated shelf-life of all configurations with the target shelf-life of

30 months. The estimated shelf-lives are given in Table 22.13. It is clear that

a single 30-month shelf-life for all strength-container size configurations is

supported.

IV. ALTERNATIVE APPROACHES FOR SHELF-LIFE

DETERMINATION

Most of the alternative procedures that have been proposed in the literature are

for single-factor designs. However, the generalization to studies using multi-

factor designs may be derived. Random or mixed effects ANCOVA models were

proposed in the literature for the analysis of the stability study data27–30 either

when batches are nested within some of the main factors or when the number

of batches is large. Chow and Shao27–28 proposed the use of the random or mixed

effect model for upscaling or manufacturing stability studies. They also

recommended the use of the prediction interval instead of the confidence interval

of mean in the estimation of expiration dating periods. Chen, Hwang, and

Tsong31 proposed that when using a mixed effects model in shelf-life

determination, a test for zero variance of slope or intercept is needed for pooling

data of individual batches.

Ruberg et al.32–33 proposed an alternative test for pooling data of individual

batches. They proposed to test the following hypotheses of slopes and intercepts

H0 : lbj 2 bj0 l $ d for some j – j0; versus Ha : lbj 2 bj0 l , d for all j; j0

and

H0 : laj 2 aj0 l $ d0 for some j; j0; versus Ha : laj 2 aj0 l , d 0 for j; j0

However, no equivalent limits were proposed in the paper. A simulation study

showed comparable results of their slope equality test with the ANCOVA

approach with an appropriately chosen equivalent limit D. Lin and Tsong34

discussed the problem of using a fixed equivalence limit in this alternative

approach. They showed through simulation that depending on the slope values,

but with the same equivalence limit, the test can yield different results and have

different impact on the shelf-life estimation of a drug product.

Yoshioka et al.35,36 revisited the equivalence approach and proposed to pool

the batches if the difference in shelf-life between any two batches is within an

equivalence limit that is a percentage of the sample mean shelf-life. Yoshioka

et al.’s range-based test is proposed to test the hypotheses

H0 : lTj 2 Tj0 l $ gMaxj Tj for some j – j0;

versus

Ha : lTj 2 Tj0 l , gMaxj Tj for all j; j
0 ð22:10Þ

Statistics in the Pharmaceutical Industry416



where g is a prespecified proportion such that 0 # g # 1: Yoshioka et al.36

compared the range-based equivalence test with g ¼ 0:15 and the ANCOVA
approach through a Monte Carlo simulation and found that the proposed method

is more powerful in rejecting pooling when the batches have different shelf-lives.

However, there is no proper statistical justification for the equivalence approach.

Tsong et al.37 proposed a pooling test based on equivalence testing of the mean

value of the characteristic at the proposed shelf-life. Specifically, they proposed

the following to test

H0 : lYjðT0Þ2 YPðT0Þl $ dT0 for some j ¼ 1 to J

versus

Ha : lYjðT0Þ2 YPðT0Þl , dT0 for all j ¼ 1 to J

where T0 is the proposed shelf-life, YjðT0Þ and YPðT0Þ are the mean values of the
jth batch and the average of all batches at T0; respectively, and dT0 is a proposed
equivalence limit.
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I. INTRODUCTION

In many of the drug experiments performed in the pharmaceutical industry, at

least two drugs or at least two levels of one drug are considered. As a

consequence of these experiments, questions related to picking out drugs or dose

levels which are different from others are often generated. However, it is rare that

some overall test of a null hypothesis provides researchers with specific details to

answer the questions of interest. Because overall tests tend to average out real

effects with negligible effects, they may fail to detect important features. Even if

an overall test is significant, further analyses may be necessary to determine

which specific differences among the treatments are clinically important. These

“further analyses” constitute performing multiple comparisons among the

treatments to detect those effects which are of prime interest to the researchers.

II. DESCRIPTION AND TAXONOMY OF MULTIPLE

COMPARISON PROCEDURES

A. TERMS

Suppose we have a drug trial with k distinct treatments (different dosage levels,

for example) that are randomly allocated to distinct experimental units

(rats, patients, baboons, etc.). Suppose yij is the response of the jth experimental

unit in the ith treatment group. If the responses are quantitative (interval or ratio

scale), it is common to summarize the responses of the ni experimental units to the

ith treatment by their arithmetic mean, 
yi:
A linear combination of treatment means is defined as

L1 ¼ c1 
y1 þ c2 
y2 þ · · ·þ ck 
yk ¼
Xk
i¼1

ci 
yi

{ !
ð23:1Þ

where the ci are given constants. If ðc1 þ c2 þ · · ·þ ckÞ equals zero

Xk
i¼1

ci ¼ 0

" #

this linear combination is known as a contrast. A contrast is said to be pairwise

if exactly two of the coefficients ci are nonzero (one being the negative of the

other in value and the other k2 2 being zero).
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If there is a second contrast

L2 ¼ d1 
y1 þ d2 
y2 þ · · ·þ dk 
yk ¼
Xk
i¼1

di 
yi

{ !
ð23:2Þ

where ðd1 þ d2 þ · · ·þ dkÞ equals zeroXk
i¼1

di ¼ 0

" #

the two contrasts L1 and L2 are said to be orthogonal if those are uncorrelated, i.e.,

provided

c1d1
n1

þ c2d2
n2

þ · · ·þ ckdk
nk

¼ 0
Xk
i¼1

cidi
ni

¼ 0

" #

A set of k2 1 (or fewer) contrasts is said to be an orthogonal set of contrasts

provided all possible pairs of contrasts in the set are orthogonal.

A contrast is said to be an a priori contrast if its coefficients were determined

before the results of the experiment were analyzed, whereas a contrast is an

a posteriori contrast if the coefficients were only formulated after the results of the

experiment had been looked at (implying that the coefficients were chosen after

seeing patterns in the results).

A treatment is said to be a control if it is the standard of comparison in the

experiment. A control may be a placebo if it contains no pharmacologically

active agent, or it may be some active treatment that has become the standard

comparison in that clinical, experimental, research, or therapeutic area.

Numbers assigned to objects in the process of measurement, can have various

properties, which determine the kinds of things that can be done with the

measurements in their analysis. The four measurement scales are: nominal,

ordinal, interval, and ratio. A measurement is said to be nominal when it serves

only to distinguish the objects being measured into mutually exclusive and

exhaustive groups. The most common examples of nominal scales in

pharmaceutical trial are the presence or absence of various outcomes, viz., side

effects, deaths, strokes, tumors, etc., where presence of the outcome is indicated

by 1 and its absence by 0. The measurements are said to possess the ordering

property in addition to distinguishability when the measurements taken on the

objects can be ordered (oriented) in some sensible way, and under such

circumstances the scale of measurement is said to be ordinal. Severity scales and

quality-of-outcome judgments are common ordinal scales used in drug

trial. Measurements made on nominal or ordinal scales are commonly called

qualitative measurements because these tend to reflect qualitative aspects of the

things measured. In addition to the distinguishability and ordering properties,

intervals of the same length chosen from various locations on the scale have equal

meaning in case of measurements made on an interval scale. Measurements

of time at a location and temperature on a Fahrenheit or Celsius scale in a drug
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study are interval measurements. In addition to these three previously mentioned

properties (distinguishability, ordering, and equality of intervals), if the

measurements are such that the ratio of the two observations gives the sense

of their relative magnitude, the scale of measurements is said to be ratio.

This latter property also generally means that the zero point on the scale

corresponds to absence of the item or count being measured. Heights, weights,

volumes, concentrations and time intervals are common examples of ratio scales

in pharmaceutical studies.

If the responses yij are at least ordinal (ordinal, interval, or ratio), they can

be ranked from smallest to largest and these ranks are denoted by rij: For each
of i ¼ 1; 2;…; k; the rank sums are

Ri ¼ ri1 þ ri2 þ · · ·þ rini : ¼
Xni
i¼1

rij

{ !

and the mean ranks are


Ri ¼ Ri
ni

The overall mean rank is 
R ¼ ðN þ 1Þ=2; where

N ¼
Xk
i¼1

ni

Multiple comparisons with ordinal scales generally use contrasts of rank means

instead of the response means, or contrasts of rank sums if the sample sizes

are equal.

If the observations are made on a nominal scale (with one denoting the

presence and zero the absence of the trait being studied) then the mean response


yi is the proportion of the sample possessing the trait. With these nominal

scales, multiple comparisons are based on contrasts of proportions. Although it

is clear that multiple comparisons can be used with all kind of measurements,

the type of procedure and its properties and the critical value tables used will

somewhat vary.

As a test of the significance of a contrast, its computed value is compared

with that of a certain allowance and if the absolute value of the contrast exceeds

its allowance, it is significant at a chosen level of probability (statistical

significance). Two-sided confidence limits may also be obtained by adding the

allowance to and subtracting it from the value of the contrast. The differences

between the various multiple comparison procedures lie in the way in which the

respective allowances are determined.

Before we indicate how the allowances are calculated, it is essential to

understand the concept of error rates. Error means the error of rejecting a null

hypothesis when it is true (the so-called Type I error).
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Tukey1 distinguished among three error rates. For the present purposes,

however, only two of those can be focused on, viz., the comparison error rate

and the family (or, more correctly, “familywise”) error rate. Tamhane2 defined

a family as a set of contextually related inferences (comparisons) from which

some common conclusions are drawn or decisions are made. The determination

of what constitutes a family is difficult and is a controversial issue among

statisticians. For further elaboration of this point, see Miller3 (pp. 31–35) and

Westfall et al.4 (p. 5). We also include another error rate, called the false

discovery rate, which was introduced by Benjamini and Hochberg.5

The following definitions are based on a long series of such comparisons

made over many experiments:

Comparison error rate

¼ Number of comparisons leading to rejecting a true null hypothesis

Total number of comparisons

Family ðfamilywiseÞ error rate
¼ Number of families in which one or more true null hypotheses are rejected

Total number of families

False discovery rate ðFDRÞ
¼ Number of comparisons leading to rejecting a true null hypothesis

Total number of rejected null hypotheses

First a standard t test is considered for comparing two treatment means.

This consists of determining the difference between the two means and dividing

by its standard error. The null hypothesis that the two groups have same

population mean is rejected, if the absolute value of the result exceeds the

appropriate critical value tabulated for the Student’s t distribution at the prob-

ability level a: Thus, the allowance for the difference between the two means
is the critical value of Student’s t multiplied by the standard error of the

difference between the two means. Such a test controls the comparison error rate

at level a:
Now the effect of performing multiple t tests in the same experiment is

considered, each one at the probability level a: Provided that the contrasts are
selected in advance (that is, these are not determined on the basis of the results

of the experiment), it will still be true that, among many such tests in a large

number of experiments, a proportion a of those for which the null hypothesis is
actually true, will be falsely labeled significant. This outcome is not altered by the

fact that the tests performed within the same experiment are correlated to some

extent. Thus, for multiple t tests carried out at a fixed level of significance, a; the
comparison error rate is controlled at the level a:

With family being the unit, the family error rate takes into account the

entire set of comparisons. It measures the relative frequency with which families

containing one or more comparisons falsely labeled significant occur among
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all families. This is appropriate in situations where conclusions are based on the

whole set of comparisons in the family. Under such situations the existence of a

single error within a family might jeopardize the conclusions. For example,

suppose an experiment is performed to compare several new treatments with a

standard with the object of selecting one of them for future use. The family of

comparisons of interest might consist of each new treatment vs. the standard. The

experiment would be totally baseless if the comparison in error happened to be

the one involving the selected treatment because it could result in the replacement

of the standard by a treatment that was not really superior to it.

When the family error rate is controlled, the allowance depends upon the

number of treatment groups but not upon the actual number of comparisons

within the family. Thus, without affecting the nominal value of error rate, some

of the methods can be extended to a wider class of contrasts, so that additional

comparisons can be added after observing how the data have turned out.

When the family contains a large number of inferences, controlling the

family error rate may be too stringent a requirement, resulting in the test

procedure with low power. Under such situation, the FDR may be useful as it

provides control of the family error rate only when all the null hypotheses in

the family are true. This is called “weak control” of the family error rate.

In a family of multiple comparisons, we can make correct or incorrect

decisions. For a family F; the error rate is PðFÞ; the probability of making an
incorrect decision, hence 12 PðFÞ is the probability of making a correct decision
when the null hypothesis is true. Suppose there are s individual statements in

the family which may be correct or incorrect. If PðSjÞ is the probability that the
jth statement is incorrect, then the Bonferroni inequality

12 PðFÞ $ 12 PðS1Þ2 PðS2Þ2 · · ·2 PðSkÞ ¼ 12
Xs
j¼1

PðSjÞ ð23:3Þ

can be used to place a lower bound on the probability of making a correct

decision for the family. For example, if s ¼ 5

PðSjÞ ¼ 0:05; 12 PðFÞ $ 12 5a ¼ 0:75

It is noticed that this inequality does not rely on the knowledge of joint

relationships among the decisions. Games6 gives a table based on Šidák’s7

inequality, which produces a better lower bound. Šidák’s inequality is

12 PðFÞ $ ½12 PðS1Þ	½12 PðS2Þ	· · ·½12 PðSsÞ	 ¼
Ys
j¼1

½12 PðSjÞ	 ð23:4Þ

and with the same values used in the evaluation of the Bonferroni inequality,

the Šidák bound is

12 PðFÞ $ ð12 aÞ5 ¼ ð0:95Þ5 ¼ 0:77
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In drug studies, some or all of k treatments are sometimes related to each

other in a quantitative way. If certain treatments are related as if these were

measured on either an interval or a ratio scale of measurement, the functional

relationship among these treatments can be exploited to determine functional

relationships among the responses to these treatments. Quite often this occurs

when the experimenter is interested in a dose–response relationship and may use

functions such as orthogonal polynomials to determine the degree of the

polynomial that best fits the dose–response curve.

B. DESCRIPTIONS OF MULTIPLE COMPARISON PROCEDURES

In what follows, 
y1; 
y2;…; 
yk refer to the observed treatment means and s
2 to an

estimate of variance (from an analysis of variance table) that is based on, say,

f degrees-of-freedom (df). Also, s is the positive square root of s2 and is known as

the standard deviation. These means and the standard deviation summarize the

experimental results of interest for making treatment comparisons, regardless

of what experimental design was used to generate the data. It will be assumed that

the variances within each treatment group are homogeneous. Where this is not

true, the formulas quoted will require modification, as described in some of the

references given.

1. The Least Significant Difference and Multiple t Test Procedures

The least significant difference (LSD) procedure and the multiple t test use the

well known Student’s t test but the LSD procedure is a two-step method, starting

with an F-test at level a and followed by multiple t-tests only if the value of F is
significant, see Hochberg and Tamhane8 (p. 3). Use of the LSD procedure

without the preliminary F test is sometimes called the “unprotected”

LSD procedure. For any contrast, say L1, which is defined in Equation 23.1,

the allowance is

LSD ¼ ta; f sc ¼ ta; f s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21=n1 þ · · ·þ c2k=nk

q
ð23:5Þ

where sc is the standard error of the contrast, and ta; f is the appropriate two-tailed

upper a point of Student’s t distribution with f df. If the intention is to compare
two treatments in a pairwise comparison, such as treatment 1 and treatment 2 as

the difference between their means


y1 2 
y2 ðc1 ¼ þ1; c2 ¼ 21; cj ¼ 0 for j ¼ 3; 4;…; kÞ:
the allowance becomes

LSD ¼ ta; f sd ¼ ta; f s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n211 þ n212

q
ð23:6Þ

where sd is the standard error of the difference between the two means. Use of

the unprotected LSD procedure or multiple t tests for a priori comparisons with
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quantitative data will lead to the occurrence of results falsely labeled significant

in a proportion a of the comparisons; that is, the procedure controls the

comparison error rate at the level a: If the absolute value of the computed
contrast exceeds the allowance, the contrast is said to be statistically significant

and an appropriate interpretation can be made.

2. S Method

The S method, otherwise known as Scheffé’s9 fully-significant-difference (FSD)

method, controls the familywise error rate at any desired level a: This is achieved
by replacing ta; f in the formula for the LSD allowance byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2 1ÞFa;m21; f
q

where Fa;m21; f is the upper a point of the F distribution with m2 1 numerator

df and f denominator df.

½Note : when m ¼ 2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 1ÞFa;m21; f

q
¼

ffiffiffiffiffiffiffi
Fa;1; f

q
¼ ta; f :	

Here m is the number of means involved in the family of comparisons ðm # kÞ;
while the allowance for any contrast, say L1; is given by

FSD ¼ sc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 1ÞFa;m21;f

q
¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 1ÞFa;m21;f ðc21=n1 þ · · ·þ c2m=nmÞ

q ð23:7Þ

Since the S method controls the familywise error rate at the level a for all

possible contrasts which can be formed from the treatment means, it is not

necessary to specify a priori the particular contrasts of interest. A posteriori

contrasts suggested by the data can be added and tested without affecting the

nominal value of the error rate.

3. T Method

Like the S method, the T method, otherwise known as Tukey’s1 wholly-

significant-difference (WSD) method, controls the family error rate. It is

particularly well suited, when the main interest is in testing all the differences

between m # k treatment means when these are taken in pairs, because

the allowances for these contrasts are considerably smaller than those for the

S method. The allowance for any contrast, say L1; is given by

WSD ¼ qa;m; f s

Xm
i¼1

Xm
j¼1

cþi c
2
j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n21i þ n21j

q
1

2

Xm
i¼1
lcil

ð23:8Þ
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where lcl represents the absolute value of the constant c; cþi ¼ maxðci; 0Þ;
c2j ¼ minðcj; 0Þ and qa;m; f is the upper a point of the distribution of the

Studentized range for m means and f df. For a difference such as 
y1 2 
y2;
the allowance simplifies to

WSD ¼ qa;m; f s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ðn211 þ n212 Þ

q
ð23:9Þ

4. Orthogonal Contrasts

Another method, also from Tukey,1 controls the family error rate when the family

consists of a set of orthogonal contrasts (TOC: Tukey orthogonal contrasts). To

obtain the required allowance, ta; f in Equation 23.5 for the LSD is replaced

with t 0a;p; f ; the upper a point of the distribution of the Studentized maximum

modulus, where p is the number of contrasts in the orthogonal set with f df. The

Studentized maximum modulus is the maximum of p independent normal

variates with mean zero, divided by an estimate of the standard error. This

distribution coincides with Student’s t for a single comparison ð p ¼ 1Þ but
its percentage points exceed those of Student’s t for two or more orthogonal

contrasts in the set. With this method, the allowance for any contrast L1 in a set of

p mutually orthogonal contrasts is

TOC ¼ t 0a;p; f sc ¼ t 0a;p; f s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21=n1 þ · · ·þ c2k=nk

q
ð23:10Þ

This concept can be extended to test other contrasts that can be expressed

as linear combinations of the p contrasts in the orthogonal set without modifying

the error rate.

Orthogonal contrasts arise in analysis of variance when a treatment sum

of squares is partitioned into single-degree-of-freedom components. In a clinical

trial with four distinct treatments, for example, the treatment sum of squares

can be partitioned into three mutually orthogonal contrasts of interest. One way

to obtain a single overall test is to add together these three orthogonal sums

of squares and apply an F test with 3 and f df. Another way is to test the p ¼ 3

contrasts separately by using this multiple comparison procedure based on the

Studentized maximum modulus distribution. The latter tests will have the same

type I error probability as the F test, but with greater power to detect a failure in

validity which has affected one or more of the specified orthogonal contrasts.

5. Comparisons with a Control or Standard

Many times in clinical trials and dose–response studies, one of the groups has

a special status and the comparisons of interest are those between the other

treatment means and the specified mean. Examples of such comparisons are

between several test treatments and a control or standard treatment and between a

new drug and several reference standard drugs. Let 
y1 be themean for the specified

group; then the contrasts of primary interest are 
y2 2 
y1; 
y3 2 
y1;…; 
yk 2 
y1:
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For control of the family error rate, the upper a point of a multivariate Student’s
t distribution is required in place of ta; f in the LSD allowance (Equation 23.5). This

procedure is frequently called Dunnett’s test; the allowance for these contrasts

(MCC: Multiple Comparisons with a Control) is

MCC ¼ t00a;k21; f sd ¼ t00a;k21; f s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n21i þ n211

q
ð23:11Þ

where t 00a;k21; f is the uppera point of a ðk2 1Þ-variate Student’s t distributionwith
correlations rij ¼ lilj; li ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ n1=ni

p
; and f df. The allowance can be

extended to test any weighted mean of the treatment means vs. the control mean.

6. Stepwise (Step-down and Step-up) Tests

In testing a set of k contrasts, such as a set of orthogonal contrasts or a set

of contrasts representing differences between several treatments and a specified

treatment, the power for detecting true differences can be increased by

performing the tests in “stepwise” fashion. Denoted by ti the statistic for testing

the ith contrast, ranked in ascending order so that lt1l # · · · # ltkl; where ltil
denotes the absolute value (the value with any negative sign deleted) of ti:
(For one-sided tests, the actual t’s instead of their absolute values should be

ordered.) Denote by c1;…; ck a set of critical values to be used in the tests, ci
being the critical value to be used with ltil: In stepwise testing, the tests are
carried out sequentially. Step-down tests start with the largest one, ltkl; and
continue downwards towards lt1l until an insignificant result is obtained. At this
point testing stops (and all remaining tests are automatically insignificant). In

other words, the ith contrast is declared significant provided that ltkl $
ck; ltk21l $ ck21;…; ltil $ ci: The reason for the increase in power is that the
c’s become smaller as i decreases, making it easier to find significance. In fact,

the smallest one, c1; is the same as used in the LSD test.

Step-up tests, on the other hand, start with lt1l and continue upwards towards
ltkl: As long as an insignificant result occurs, testing continues to the next ti:
As soon as a significant result is obtained, the testing stops (and all remaining

tests are automatically significant). In other words, the ith contrast is declared

significant if at least one of lt1l; lt2l;…; ltil exceeds its critical value.
The critical constants needed for the tests depend upon the particular

contrasts being tested. The set of c’s required for step-up tests will ordinarily be

slightly larger than the c’s required for step-down tests, except for c1;which is the
same for both. Depending on how many of the k contrasts are expected to

correspond to real effects it can be concluded whether a step-down or a step-up

procedure is better in terms of power. If there are only one or a few in this

category, step-down is better; if all or most of them are in this category, step-up is

better (see Dunnett and Tamhane,10 who considered the case of testing a set of

equally-correlated contrasts). In Section III.B, a practical example is described.
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7. Multiple Range Tests

The multiple range tests, known as the Student–Newman–Keuls (SNK) and

Duncan (DCN) procedures, after Newman,11 Keuls12 and Duncan,13 may be

considered as modifications of the T method although these were developed

independently. These are stepwise tests and are used when pairwise comparisons

of the treatment means are of interest.

These procedures are illustrated for the case where the means are based on

equal sample sizes. The k treatment means are ranked from the lowest to the

highest:


yð1Þ # 
yð2Þ # · · · # 
yðkÞ

To test the difference between any two means, say


yðiÞ 2 
yði0Þ ði . i0Þ
the WSD allowance is qa;k0; f s
y no matter which pair is being compared, where

s
y ¼ s=
ffiffi
n

p
is the standard error of a mean. The SNK procedure, on the other hand,

uses the allowance

SNK ¼ qa;k 0; f s
y ð23:12Þ
where k 0 is the number of means lying between and including the two being
compared (i.e., k 0 ¼ li2 i0lþ 1; where i and i0 represent the rank order of the two
means being compared). Thus the SNK allowance is smaller than the WSD

allowance except for comparisons of two extreme means, in which case these are

equal. Once a pair of ordered means ð 
yði0Þ; 
yðiÞÞ is tested and is found to be

insignificant, no other pair of treatments whose means fall between 
yði0Þ and 
yðiÞ
can be declared to be significant.

In Duncan’s multiple range test, the allowance is

DCN ¼ qa 0;k 0; f s
y ð23:13Þ
where k 0; as in the SNK allowance (Equation 23.12), is the number of means

between and including the two being tested, while a 0 is equal to 12 ð12 aÞk 021:
This choice of the percentage point of the Studentized range statistic is based on

the concept of error rate per degree-of-freedom.13 The DCN (Equation 23.13)

allowances are smaller than the WSD (Equation 23.8) and the SNK allowances

(Equation 23.12) but larger than those of the LSD (Equation 23.5) method.

The SNK method does not control the family error rate to be #a in all

cases. Several authors have proposed modifications to correct this deficiency.

The Tukey–Welsch modification8 (p. 69), which proceeds as in the SNK proce-

dure except that a in Equation 23.6 is replaced by ak 0 ¼ 12 ð12 aÞk 0=k for
k 0 # k2 2 and is a good method to be used. Regarding DCN, the error rate

per degree-of-freedom concept on which it is based has been criticized by

Miller3 (pp. 87–89), Hsu14 (pp. 129–130) and others; most statisticians no longer

recommend it.
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Duncan has also developed another method,15 called an adaptive k-ratio t test

for comparing all treatments in pairs, in which the size of the allowance is a

function of the value of the F-statistic for testing treatment homogeneity.

However, multiple range tests continue to be popular among practitioners,

particularly in the agricultural areas, although considerable criticism exists about

their indiscriminant use.16

8. Confidence Intervals

In most of the discussion above, it has been assumed that the interest is in

significance testing. The estimate of the value of each contrast is simply the

observed value of the contrast; two-sided confidence limits are easily obtained by

adding and subtracting the value of the appropriate allowance. There is the same

choice between methods of determining the allowance in confidence interval

estimation as in significance testing: the confidence coefficient, 12 a;may apply
to each confidence interval separately or jointly to all the confidence intervals

in a family. Thus, corresponding to the comparison and family error rates of

multiple hypotheses testing, separate and joint (or simultaneous) confidence

coefficients for confidence interval estimation are available. There is no confidence

interval procedure corresponding to the SNK and DCN tests.

9. Comparisons with the Best

A method called multiple comparisons with the best (MCB) was developed by

Hsu14 (chapter 4, pp. 81–118). It is related to the MCC method above, although it

is quite different from it. Instead of comparing the treatments with a specified

treatment as in the MCCmethod, each treatment is compared with whichever one

of the remaining treatments appears to be the best one. Thus we compare 
yi with

maxj–i 
yj (assuming a larger treatment effect is better). The resulting contrasts,


yi 2maxj–i 
yj; are not linear contrasts like the others we have discussed, but are a
particular kind of nonlinear function of the means. However, these can be used to

form a set of simultaneous confidence intervals for the corresponding parameters

mi 2maxj–imj where mi denotes the true mean for the ith treatment. The MCB

method uses the MCC allowance t 00a;k21; f sd; but with the following difference
from the customary confidence intervals: if a one-sided value of t 00a;k21; f is
specified, the confidence intervals are constrained to contain the value zero. The

effect of above leads to a confidence interval for the ith treatment whose lower

limit is zero meaning the treatment to be the best. Similarly, a confidence interval

with upper limit as zero means that the treatment is not the best, but it does not

provide a lower bound on how much worse it is than the true best. If a two-sided

value t 00a;k21; f is specified, the confidence intervals are not constrained in this way
and these have the same form as the usual two-sided confidence intervals. For an

illustrative numerical example, see Hsu14 (pp. 86–87 and 108).
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10. Nonparametric Procedures

The multiple comparison procedures discussed so far have dealt exclusively with

quantitative data. However, many times in clinical trial or dose-response animal

studies, the data which need to be analyzed are only qualitative.

Using the ranks, rij; of the observations and the mean ranks 
Ri; the family
error rate is controlled and the allowance for a one-way design is approximately

(KWA: after Kruskal and Wallis)

KWA ¼ qa;k;1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kðknþ 1Þ

12

r
ð23:14Þ

where qa;k;1 is the upper a percentile point of the range of k independent standard
normal random variables. Here two treatments are said to be significantly

different if the absolute value of the difference of their mean ranks is larger than

the allowance KWA. The procedure does not apply to general contrasts.

If one wishes to compare the k2 1 treatments with a control when the data are

ranks, controlling the family error rate yields an allowance that is approximately

(KWC: after Kruskal–Wallis control)

KWC ¼ lmla;k21;1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kðknþ 1Þ

6

s
ð23:15Þ

where lmla;k21;1=2 is the upper a point of the maximum absolute value of k2 1

standard normal random variables with correlation 1
2
: Both of these are based on

the Kruskal–Wallis17 test.

If the ranks came from a two-way design where the k treatments are ranked

within each of n blocks, control of the family error rate for all pairwise

comparisons yields an approximate allowance of

FRI ¼ qa;k;1

ffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ
12n

r
ð23:16Þ

where qa;k;1 is, as before, the upper a point of the range of k independent

standard normal random variables (FRI: Friedman).

When treatment 1 is the control or standard and the paired comparisons

of interest all involve treatment 1, the ranks derived from a two-way design

provide an experimentwise control of the error rate with the approximate

allowance

FRC ¼ lmla;k21;1=2

ffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ
6n

s
ð23:17Þ

where lmla;k21;1=2 is the upper a point of the maximum absolute value of k2 1

standard normal random variables with the correlation 1
2
(FRC: Friedman
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control). Both of these allowances are based on the Friedman18 test statistic.

When ties are present in the ranks, these procedures need to be modified.19

11. Multiple Comparisons between Dose Levels and a Zero Dose

The procedures proposed by Williams20,21 are found to be appropriate in the

special multiple comparisons case, where the object is to establish the

minimum dose at which some undesirable response is first observed when

compared with a zero dose. Where the usual normality assumption is not

justified in data, Shirley22 outlined a similar procedure based on the means of

ranks of responses rather than the responses themselves. These procedures

assume that the dose–response curve is monotonic even though the observed

data may not be.

If the first treatment 1 is the zero dose control and the other k2 1 treatments

are a series of increasing doses of the same therapeutic agent, then for the

Williams test, the response to the ith dose is determined by

M̂i ¼ max2#u#imini#v#k
Xv
j¼u


yj

v2 uþ 1
ð23:18Þ

for i ¼ 2; 3;…; k: This estimate guarantees that M̂2 # M̂3 # · · · # M̂k21 # M̂k:
Once these estimates are obtained, the differences M̂i 2 
y1; i ¼ k; k2 1;…; 3; 2
are successively compared to the allowances (WIL: Williams)

WIL ¼ 
ta;k21; f s
y
ffiffi
2

p ð23:19Þ

where 
ta;k21; f is the upper a percentage point of the averaged Student’s

t distribution for k2 1 dosage levels (apart from the control) and f residual df.

12. Multiple Comparisons of Proportions (0–1 Data)

If the k experimental groups contain binary responses so that the means 
yi are

proportions of experimental units in that group with the characteristics of interest,

Knoke23 showed that multiple comparisons based on the F distribution such as

Scheffé’s procedure (Equation 23.7) are suitable provided n $ 10 and the true

proportions lie between .2 and .8.

When a two-way design has been used to obtain the proportions of interest,

Bhapkar and Somes24 showed how the procedures of weighted least squares and

suitably chosen x 2 values can be used to construct allowances based on the

Scheffé-type multiple comparison.

It is recommend that readers refer to the book on resampling-based multiple

testing methods by Westfall and Young25 for a different approach to these

applications which is also applicable to a wide range of other problems where

assumptions of normality and homogeneous variances may not be justified.
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13. Other Methods

The commonly used multiple comparison tests have been described, but there

are several others that have been proposed in the literature. A method has been

described by Gabriel26 that tests groups of means on the basis of their sums

of squares values, as in an analysis of variance, rather than dealing with contrasts.

Krishnaiah27 describes what he calls a finite intersection method for testing a set

of contrasts chosen a priori; the critical region for these contrasts is the

intersection of the usual critical regions for testing the individual contrasts with

its size equated to 12 a: His method coincides with the standard methods if the
set of contrasts coincides with that of one of the standard methods, such as all

differences from a control, or all pairs of treatment differences. If it is not possible

to determine the critical region exactly, he uses Bonferroni or Sidák bounds as an

approximation. Hochberg and Rodriguez28 have devised a class of “intermedi-

ate” procedures for testing contrasts which are, in a sense, midway between the

Tukey T method and the Scheffé S method. These are based on enlarging the set

of contrasts of primary interest to the investigator from the set of all pairwise

comparisons, on which the T method is based, to include additional contrasts of

a specific type, such as all differences between single treatment means and means

of two treatments, or all differences between means of pairs of treatments.

The method produces shorter allowances than either the Tmethod or the Smethod

for contrasts of the particular type specified. Several authors, such as Bradu and

Gabriel29 and Johnson,30 have advocated multiple comparison procedures for

testing contrasts of the interaction effects in two-way experimental designs,

but the examples used to illustrate the methods raise questions concerning their

actual utility in practice.

14. Allocation of Observations among the Treatment Groups

For most of the methods, the contrasts of interest are symmetric in the treatment

groups and there is no reason for having certain means estimated more precisely

than others by allocating unequal numbers of observations to the treatment

groups. An exception occurs when the investigator has special interest in one of

the treatment means, such as the mean for control or standard. Intuitively, one

should allocate a higher proportion of the observations to the control or standard,

if the investigator is interested mainly in the treatment vs. control contrasts.

The problem of optimum allocation in this situation has been investigated by

Bechhofer31 and Bechhofer and Nocturne.32 They showed that, when the

variances are equal in the various treatment groups, the optimum allocation

approaches the familiar “square root” rule asymptotically, namely, the ratio of the

number of observations assigned to the control to the number assigned to any

treatment should be
ffiffi
k

p
; where k is the number of noncontrol treatments. This is

optimum as the size of the experiment approaches infinity; the optimum can be

quite different than this, when the sample sizes are small and error rates larger

than the customary 1% or 5% are adopted.
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C. SUMMARY TAXONOMY

The purpose of Table 23.1 is to summarize all the techniques discussed in

Section II.B of this chapter by considering the allowance short-form name, the

error rate, whether it is pairwise oriented or general-contrast-oriented and the key

distribution that is needed to compute the allowance.

D. COMMON SOURCES OF TABLES

When it comes to applying multiple comparison procedures, one needs to refer

to tabulations of percentage points of the needed distributions. Student’s t

and F distributions can be found in many statistics books, so none will be

recommended here. Table 23.2 outlines the common sources of tables.

TABLE 23.1
Summary Taxonomy of Multiple Comparison Procedures

Allowance Error rate
Type of
contrast Design

Parametric/
Nonparametric Distribution

LSD Comparison General Any Parametric t

FSD Family General Any Parametric F

WSD Family General Any Parametric Studentized range

TOC Family Orthogonal Any Parametric Studentized

maximum modulus

MCC Family Control Any Parametric Multivariate t

SNK Family Pairwise Any Parametric Studentized range

DCN df Pairwise One-way Nonparametric Normalized range

KWC Experiment Control

(pairwise)

One-way Nonparametric Correlated

multivariate normal

FRI Experiment Pairwise Two-way Nonparametric Normalized range

FRC Experiment Control

(pairwise)

Two-way Nonparametric Correlated

multivariate normal

WIL Experiment Control Any Parametric Averaged t

TABLE 23.2
Multiple Comparison Critical Table Sources

Distribution Symbol f k % Reference

Studentized range qa;k n r 5,1 3 (pp. 234–238)
Studentized range, for a 0 ¼ 12 ð12 aÞk21 qa 0 ;k n p 5,1 3 (pp. 243–246)
Studentized maximum modulus t 0a;p n k 10,5,1 3 (p. 278)
Multivariate t t 00a;k n p 20,10,5,1 33 (pp. 70–343)
Normalized range qa;k;1 1 k 20,10,5,…,0.01 19 (p. 330)
Correlated multivariate normal lmla;k21; 1

2
1 ‘ 5,1 19 (p. 365)

Averaged t 
ta;k21 n k 5,1 20 (pp. 107–108)
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III. MULTIPLE COMPARISON TESTS IN PRACTICE

It may be recalled that the experiment has been performed to study the effects of

k different treatments. The experimenter will be interested in making inferences

about the “true” values of the treatment effects, which may take the form of either

tests of hypotheses concerning certain contrasts or the estimation of confidence

limits on their population values. There may be several contrasts which are

of interest to the experimenter, but this does not necessarily mean that one of the

multiple comparisons procedures must be used to make the inferences. The choice

between using a multiple comparison test or an ordinary t test (or some equivalent

method) depends on whether it is more appropriate to control the family error rate

or the comparison error rate. If the user cannot decide which error rate is

more appropriate, some statisticians would advise the user to use a multiple

comparison procedure on the grounds that it is the conservative course of action

to take, since setting the family error rate at some value a ensures that the

comparison error rate will be less than a:
These error rates refer to Type I error (rejecting null hypotheses which are

true). But there are other types of error to be concerned about as well, namely,

failing to reject null hypotheses which are false (Type II errors) and the use of

a multiple comparison procedure in place of a standard test, such as a t test will

result in an increase in the probability of making a Type II error. In other words,

the power of the test decreases.

A. IS A MULTIPLE COMPARISON PROCEDURE NEEDED?

Here, some typical examples arising in pharmaceutical research to illustrate

some of the reasons for using (or not using) multiple comparison procedures

will be considered. In general, the use of an appropriate multiple comparison

test to make inferences concerning treatment contrasts is indicated in the

following situations:

1. To make an inference concerning a particular contrast which has been

selected on the basis of how the data have turned out.

2. To make an inference which requires the simultaneous examination

of several treatment contrasts.

3. In “data dredging,” viz., assembling the data in various ways

to determine whether some interesting differences will emerge.

On the other hand, multiple comparison procedures are usually not

appropriate when particular contrasts to be tested are selected in advance

and are reported individually rather than as a group. In such situations, the

comparison error rate is usually of primary concern and the standard tests

of significance can be used, rather than a multiple comparison test.

For simplicity, it will be assumed in the examples considered in the rest of this

section that the responses observed in an experiment, give rise to quantitative
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data, that the latter satisfy standard assumptions of model I (treatments fixed)

analysis of variance and that there is equal replication of each of the k treatments.

Thus (as in Section II.B), the data from the experiment can be summarized in the

form of a set of values: 
y1; 
y2;…; 
yk and s2 where 
yi is the mean response for

the ith treatment ði ¼ 1; 2;…; kÞ and s2 is a variance estimate based on f df. The
standard error of any treatment difference 
yi 2 
yj is represented by sd: For a one-
way design with n observations on each treatment, for example, f ¼ kðn2 1Þ and
sd ¼ s

ffiffiffiffiffi
2=n

p
:

1. Testing a Selected Contrast

When a set of experimental data is examined, it often happens that some particular

feature of the configuration of treatment means raises questions as to whether

or not it is significant. Consider, for example, the data shown in Table 23.1

of Dunnett35which represent measurements of the percentage fat content of breast

muscle in cockerels on four different treatments: 1, 2, 3, and 4. The following

mean values were obtained:


y1 ¼ 2:493; 
y2 ¼ 2:398; 
y3 ¼ 2:240; 
y4 ¼ 2:494

The birds that received treatment 1 were untreated controls while treatments

2, 3 and 4 were particular drugs. Each treatment mean shown was based on

20 independent values. The error mean square was s2 ¼ 0:1086 with f ¼ 64 df,

calculated from the analysis of variance, from which the standard error of

the difference between any two treatments is sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1086 £ 2=20p ¼ 0:104:

The analysis of variance F test for testing the between-treatments mean square

was significant, although it is not necessary to do a preliminary F test before

proceeding with multiple comparisons (as some texts recommend). Performing a

preliminary F test may miss important single effects which become diluted

(averaged out) with other effects.

On examining these results, the experimenter was somewhat surprised at

the low value for treatment group 3 and raised a question whether it is

significantly different from the control. Thus, he is asking whether the contrast


y1 2 
y3 ¼ 0:253 is significantly different from zero.

To test the significance of a contrast, its observed value is compared with an

allowance which is calculated by one of the methods described in Section II.

Using the LSD, we have LSD ¼ ta; f sd; where ta; f is the upper a point of

Student’s t distribution with f ¼ 64 df. From tables of Student’s t percentage

points, we find that t:05;64 ¼ 2:00 and the LSD allowance becomes .208, so the

contrast 
y1 2 
y3 ¼ 0:253 would be judged significant. However, the LSD is

inappropriate as an allowance in this case, because it does not take into account

the fact that 
y1 2 
y3 is a selected contrast: it was chosen specifically because the

value of 
y3 was observed to be low.

To decide on the appropriate allowance to use in this case, it is necessary to

determine the family of contrasts from which this one was selected. In the present

case, if it can be assumed that only contrasts which involve differences from
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the control would be considered for statistical testing, then the family consists

of 
y1 2 
y2; 
y1 2 
y3 and 
y1 2 
y4: The appropriate allowance for the selected

contrast is MCC ¼ t 00a;k; f sd; taking t
00
0:05;4;64 ¼ 2:41 from Dunnett,35 (Table 2) in

we obtain MCC ¼ 0:251: Thus, the contrast of interest is still significant although
barely so.

On the other hand, if other contrasts might also have caught the

experimenter’s eye and the configuration of observed treatment means turned

out differently, then the family would have to be enlarged and a different multiple

comparison test used. For instance, if all differences between two means are

included, the T method of Tukey should be used and the allowance becomes

WSD ¼ qa;k; f s
y ¼ 3:74 £ 0:0737 ¼ 0:276; where q0:05;4;64 ¼ 3:74 was obtained
from tables of the Studentized range.

The need to test selected contrasts arises frequently in pharmaceutical

research. Suppose a new drug is under development and many chemicals

of related structure to a known active compound can be synthesized. It may

happen that several potential candidates become available, and a choice has to be

made to decide which one should be carried through to the clinical trial stage.

Let k be the number of candidates, where k $ 2; and suppose an experiment
is to be performed to measure a particular response, with the one producing the

highest mean response to be selected. It may be noted that it is not a question

of determining one which is significantly better than the others but simply

of picking the one which produces the highest observed mean. There are

interesting statistical problems involved in the design of the experiment so that

the best candidate will have sufficiently high probability of producing a higher

mean than any of the others. We will not consider these here, but we refer

the interested reader to Gibbons et al.36

In such an experiment, a control or placebo treatment is often included for the

purpose of estimating the “no-effect” response level. Let the no-effect treatment

mean be 
y0 and let the observed treatment means be 
y1; 
y2;…; 
yk: Then the

experimenter chooses 
ymax ¼ max{
y1; 
y2;…; 
yk} and the drug corresponding to


ymax is the one chosen to undergo further development in preparation for clinical

trials. Having chosen it, however, the company management might wish to be

assured that 
ymax is significantly different from 
y0:What p-value can we associate

with 
ymax 2 
y0? Clearly, this is a selected contrast and the family consists of all


yi 2 
y0; i ¼ 1; 2;…; k: Thus the appropriate p-value is determined from the

MCC test previously discussed. Calculation of t 00 ¼ ð 
ymax 2 
y0Þ=sd and reference
to the percentage points of the multivariate t distribution, with the degrees-of-

freedom associated with sd; tabulated in Bechhofer and Dunnett33 gives the

required p-value by interpolation. Or it can be computed using software based on

the algorithm in Ref. 34, which can be downloaded from http://lib.stat.cmu.edu/

apstat/251. Note that if a different number n0 of observations had been obtained

on the control than the number n on each treatment, then sd ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n211

q
and

the correlation coefficient r ¼ 1=ð1þ n0=nÞ would be used instead of r ¼ 1
2

in using either the tables or the computing software.

When and How to Do Multiple Comparisons 439

http://lib.stat.cmu.edu/apstat/251
http://lib.stat.cmu.edu/apstat/251


2. Comparisons between a New Drug and Active
and Placebo Controls

This example illustrates that there are situations where the set of contrasts of

interest in an experiment forms more than one family. Suppose a pharmaceutical

company has developed a new drug that it wishes to market. To obtain permission

from the regulatory authorities to do this, detailed information about the new drug

must be submitted, including evidence about its compliance with the claimed

activity and superiority over the existing drugs already in the market. Such

evidence is obtained from clinical trials, in which the efficacy of the new drug

is compared with one or more reference drugs and a placebo. In addition to

providing a baseline for measuring the efficacy of the new drug, the purpose of

the placebo is to verify that the trial is able to distinguish between the placebo

and the known active drugs (referred to as the sensitivity of the trial). For ethical

reasons it may not always be possible to include a placebo.

One way to design the efficacy trials would be to set up a number of trials, in

each of which there are two treatment groups, one receiving the new drug and the

other one of the reference drugs, and perhaps a third group receiving the placebo.

However, a more efficient experimental design is to include all the treatments of

interest together in each clinical trial. Suppose there are kð$ 1Þ reference drugs.
Then each trial provides a set of k þ 2 observed treatment means: 
y1; 
y2;…; 
yk
the means for the k reference drugs, 
yT the mean for the test drug and 
y0 the mean

for the placebo. Comparisons can be made either between the observed means

within each trial or between appropriate mean values over the entire set of trials.

In either case, multiple comparisons are involved and the statistician is faced

with the problem of deciding which is the proper test to use.

It is necessary to consider first which treatment comparisons are of interest to

the pharmaceutical company and to the regulatory agency. Although any contrast

among the k þ 2 treatment means is potentially of some interest, it must be

remembered that the main purpose of the trial is to: (1) demonstrate that the

new drug is active relative to the placebo, (2) verify the sensitivity of the trial by

comparing the known actives with the placebo and (3) compare the efficacy of

the new drug with that of the reference drugs. Other comparisons, such as

comparisons among the known actives, are superfluous to the main purpose of

the trial. Thus, the comparisons of primary interest are limited to the particular set of

2k þ 1 contrasts and form three families: (1) 
yT 2 
y0 representing the difference

between the test drug and placebo, (2) 
y1 2 
y0;…; 
yk 2 
y0 representing the

differences between the reference drugs and placebo and (3) 
yT 2 
y1;…; 
yT 2 
yk
representing the differences between the test drug and the reference drugs.

Inferences concerning this set of contrasts can be made either by performing

significance tests or by calculating confidence limits. For significance testing,

appropriate null hypotheses have to be specified. Since the pharmaceutical firm

must establish that the new drug is active, the first step is to compare it with the

placebo by testing the null hypothesis that the difference of the true mean of the

new drug and the true mean of the placebo is zero, vs. the alternative hypothesis
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that the true difference is nonzero (or perhaps positive). The contrast for testing

the null hypothesis is 
yT 2 
y0 and because this contrast is chosen because it is

pertinent for this particular null hypothesis, not because it is selected on the basis

of the observed data as in the previous example (even though it may indeed be the

largest contrast in the set), the appropriate allowance for determining its

significance is the LSD (Equation 23.5). Use of the LSD test at a particular

significance level a guarantees that the probability of finding a significant

difference between its new drug and the placebo when the new drug is really

not different from the placebo, does not exceed a: This error rate is not affected
by the fact that there are other treatments in the experiment.

Unless this particular treatment contrast 
yT 2 
y0 is sufficiently significant,

i.e., has a sufficiently small p-value associated with it to establish that the

response to the new drug is indeed different from the placebo response, the testing

of the remaining contrasts involving 
yT is rather academic. Thus the testing of

the remaining contrasts is conditional on a significant difference having been

obtained for 
yT 2 
y0:
The next set of contrasts to test, namely 
y1 2 
y0;…; 
yk 2 
y0; pertains to the

sensitivity of the trial. Because these are differences between known actives and

a placebo, we expect all of them to test significant. If any of them fail to show

significance, then we have failed to establish the sensitivity of the trial, at least

with respect to the particular reference drugs which do not differ significantly

from the placebo. Berger37 had the insight to realize that the type of test where

all null hypotheses are to be rejected, to establish that a particular state of

affairs pertains, requires a different type of multiple comparisons test. The null

hypothesis to be tested is that at least one of the differences between the true mean

of a reference standard and the true mean of the placebo is zero, vs. the alternative

hypothesis that all the differences are positive (for a 1-sided test), or nonzero (for

a 2-sided test). As Berger showed, the correct test for each is an ordinary

comparisonwise test at level a (i.e., a t-test). This was considered in detail

by Laska and Meisner38 and was the basis of their “min” test. Thus, each of the

contrasts 
yi 2 
y0 is tested for significance by a t-test and sensitivity is established

if all of the 
yi 2 
y0 exceed their allowances.

Dunnett and Tamhane39 proposed the use of a step-up test (see Section

AII.B.7), with the critical value c1 identical with that of a t-test so that the step-up

test also establishes sensitivity when the min test does. The advantage of the step-

up test is that if one or more of the 
yi 2 
y0 fail to exceed the allowance based on

c1; it might still be possible to establish “partial sensitivity” with respect to some
of the reference drugs. For example, if 
y1 2 
y0 does not reach significance with

respect to its allowance based on c1 but 
y2 2 
y0 is significant with respect to c2;
then it can be concluded that, although the first reference standard fails to satisfy

the sensitivity criterion, all the remaining standards do (we assume we have

ordered the reference drugs according to their t-values as described for stepwise

testing).

While ordinarily it is not necessary for the pharmaceutical company to

establish a significant difference between a new drug and any of the reference
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drugs to justify it being allowed to go on the market, it would clearly be to the

company’s advantage to be able to do so if it can. The null hypothesis to be tested

is that the new drug is not superior to any of the reference drugs, vs. the

alternative that the new drug is superior to at least one of the reference drugs.

Rejection of the null hypothesis indicates that the new drug is superior to at least

one of the reference drugs and thus strengthens the case of the pharmaceutical

company to have it allowed on the market.

To test the null hypothesis with a specified upper bound on the probability of

rejecting the null hypothesis when it is true, an extension of the step-down

procedure described for equal sample sizes in Miller3 (p. 86) can be used; see

Dunnett and Tamhane.40 The t-statistics for the set of contrasts 
yT 2 
y1;…; 
yT 2

yk are ordered as described in Section II.B.7 and compared with critical values

c1; c2;…; ck: These critical values are the same as those used in the MCC

allowance (Equation 23.11). The largest t statistic tk is thus compared with the

MCC allowance for k comparisons; if it is significant, the next largest tk21
is compared with the MCC allowance for k2 1 comparisons; and so on. This

step-down procedure is analogous to the step-down of the Studentized range in the

SNK procedure in Section II.B.8 of this chapter.

Thus the three families of contrasts for comparing first the test drug with the

placebo, then the known active drugs with the placebo and finally the test drug

with the known active drugs, can each be tested separately using an appropriate

a-level test for each family. Because each family is tested conditionally on

significance having been found for any previous families, the use of level a for
each family ensures that the overall error rate is also less than a: So there is no
need to consider the entire set of 2k þ 1 contrasts as a single family, which would

result in a decrease in the power. This is discussed in more detail in Ref. 39.

For example, suppose k ¼ 2 and the following treatment means are obtained:


y0 ¼ 6:9; 
yT ¼ 10:2; 
y1 ¼ 7:6 and 
y2 ¼ 9:0 with sd ¼ 1:22 and f ¼ 20 degrees-

of-freedom. Then the new drug would be declared significantly different from the

placebo since ð 
yT 2 
y0Þ=sd ¼ 2:70; which exceeds the a ¼ 0:01 point (two-tail)
of Student’s t with 20 df ðt:01;20 ¼ 2:086Þ: Next, it would be declared

superior to drug 1, since 
yT 2 
y1 ¼ 2:6 exceeds the allowance MCC ¼ t 000:05;2;20
sd ¼ ð2:03Þð1:22Þ ¼ 2:5; but not to drug 2, since 
yT 2 
y2 ¼ 1:2 does not exceed
the allowance MCC ¼ t 00:05;1;20 sd ¼ ð1:72Þð1:22Þ ¼ 2:1 (using one-tail values

for these tests, due to the fact that the alternative hypothesis is one-sided).

3. Combination Drugs

The use of combination drugs has been a problem of special concern

to pharmaceutical companies and the regulatory authorities. There are many

possible reasons for combining more than one drug together in the same tablet

or capsule. Sometimes, a second drug is added to counteract a possible side effect

of the main drug. Sometimes the range of action can be increased by including

more than one drug, such as, in controlling an infection where it is not known

which drug would be the best one to use against the particular microorganism
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causing the infection. Whatever may be the reason for combining two or more

drugs together, the regulatory agency would require evidence from the sponsor

of the product that of the combination is more useful medically than each of its

components (see Gibson and Overall41).

The whole question of demonstrating the efficacy of a combination drug

product is very complex, and only one aspect of it will be considered here to

illustrate the use of simultaneous inference. Suppose there is just one response

to the drug to be considered, such as a fall in systolic blood pressure.

If a combination drug is proposed to bring about this response, it would be

necessary to establish that the combination is significantly better than each of

the others. This would involve simultaneous inferences concerning the

differences between the mean for the combination drug (e.g., drug 1) and

the means for each of the components (drugs 2; 3;…; k) assumed to be k2 1

in number. It will be required to test the null hypothesis, that the true mean of

the combination drug is less than or equal to the true mean of at least one

component vs. the alternative that it exceeds all the components. The

similarity between the null hypothesis being tested here and the one for testing

for sensitivity in the previous example may be noted. Here, rejection of the

null hypothesis requires each of the differences 
y1 2 
yi; i ¼ 2; 3;…; k; to fall in
the rejection region rather than merely the largest one. The critical value

needed to test these differences, chosen to achieve a test of size a for all true

differences consistent with the null hypothesis, is based on the a-point of
univariate (not multivariate) Student’s t:

4. Data Dredging

In most experiments, the main treatment comparisons of interest are determined

prior to doing the experiment. The purpose of doing the experiment is usually to

estimate certain prespecified treatment effects, not to look for new leads to follow

up. Nevertheless, having tested the main treatment effects of interest, it can be

tempting to look at the data in other ways just in case “something might show

up.” This may be particularly the case in medical experiments involving human

patients, since a large amount of subsidiary information is usually available about

the patients, and it may be worthwhile to examine other effects too. In a trial to

compare two or more treatments, for example, in addition to comparing the mean

responses of the treatment groups, the experimenter may wish to make additional

comparisons between subgroups of patients. For instance, the experimenter may

wish to determine whether male patients respond more than females, whether the

age of the patient is a factor, and so on. This process can generate quite a large

number of comparisons to be made in addition to the primary comparisons which

were the main reasons for doing the experiment.

The best way to treat such comparisons is in an ad hoc manner, without

trying to attach any p-value to them or doing any formal test of significance. Any

effect which looks interesting (by virtue of it being large compared to its

standard error) should be looked upon as something to be studied further in
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another trial. However, if the experimenter must calculate a p-value, it would be

necessary to take account of the actual number of comparisons those have been

attempted, and use the Bonferroni method to arrive at a p-value, which would be

an upper bound on the actual value of p: Shafer and Olkin42 have considered this
problem and obtained a mathematical justification for the use of the Bonferroni

method in this way.

For example, suppose a clinical trial is done to compare two drugs, denoted by

A and B, with n ¼ 100 subjects assigned to each of the treatments. The main

comparison in the trial would be the mean response 
yA on drug A vs. the mean

response 
yB on drug B and the standard error of 
yA 2 
yB could be determined. Now

suppose the subjects are split according to their sex, and measures of the treatment

differences obtained separately for the males and females, giving 
yA;m 2 
yB;m for

the males and 
yA; f 2 
yB; f for the females. Similar splits could be obtained on the

basis of age, disease severity, and a number of other factors, each one providing a

measure of the treatment difference and a standard error depending on the

number of subjects. Selecting a particular treatment difference because it is large

compared to its standard error would have to be assessed by referring the value of

its ð 
yA 2 
yBÞ=sd to Student’s t distribution with the appropriate degrees-of-

freedom, andmultiplying the p obtained from the t distribution by the total number

of such comparisons made, according to the Bonferroni method. Thus, if the .005

point of Student’s twere reached and 30 such tests had been made, an upper bound

on the p-value associated with the comparison would be ð0:005Þð30Þ ¼ 0:15:

5. Drug Screening

The purpose of drug screening is to test chemical compounds for a desired type

of activity separating the active compounds from inactive ones. Over the years,

many improvements have been developed in the laboratory testing procedures,

particularly from the in vivo testing (i.e., in animals) as originally used to in vitro

and in silicon testing methods which are common today: see Ruben and

Neubauer43 and Lam et al.44 These changes have greatly increased the numbers

of compounds which can be screened, leading to so-called “high throughput

screening” methods.

Let k be the number of compounds tested in a screening experiment and

denote by 
yi the observed response for the ith compound ði ¼ 1; 2;…; kÞ: Usually
there is a control group producing a response 
y0 to estimate the inactive response

level, although sometimes the mean response of all the compounds in the

experiment is used instead, on the assumption that most of the compounds

are inactive. Then a decision to accept a compound as active (which is called a

“lead” or a “positive”), to reject it or to repeat the test is based on the magnitude

of the difference 
yi 2 
y0 ði ¼ 1; 2;…; kÞ; or on its cumulative mean value if a
multistage testing procedure is used and the compound has been tested

previously. In terms of hypothesis testing, let ui denote the increase in activity
between the ith compound and the control. We test the hypothesis Hi: ui # 0 vs.

the alternative that ui . 0; rejection of Hi means that the ith compound has been

Statistics in the Pharmaceutical Industry444



classified as “positive.” For a particular drug screening procedure, among its

important properties are the proportions of compounds which are correctly

classified as active or inactive in the long run. Similar issues arise in the analysis

of DNA microarray data (see Lee and Whitmore45).

Because the main interest is usually to make separate inferences for each

compound tested in the experiment, screening methods traditionally have been

designed to control the comparison error rate to be # a: A false positive will be

detected by subsequent testing but valuable resources are used in the process.

On the other hand, a false negative may mean that an effective treatment has been

lost. For specified sample sizes, the value of a is chosen to achieve a balance

between these two errors by discarding most of the inactives while selecting most

of the actives (see Davies46). Some approaches choose a indirectly by seeking to
optimize a measure of the efficiency of the screening procedure, such as the

expected number of active compounds detected for a given amount of screening

(see Davies46 and also King47). However a is determined, the critical constant(s)
for determining which compounds to select depend directly on the value of a:
Examples of screening procedures for detecting anticancer compounds are given

in Armitage and Schneiderman48 and Vogel and Haynes.49

The FDR offers a different approach. Developed by Benjamini and Hochberg5

as an alternative to controlling the family error rate, they also recommended its use

in screening applications. Their procedure can be applied to the p-values

corresponding to the test statistics arising from a screening experiment. Denote the

ordered p-values by pð1Þ # pð2Þ # · · · # pðkÞ: These are compared in a stepwise
manner to a set of critical bounds c1;…; ck which are certain fractions of a: In their
method, these bounds are defined as ci ¼ ia=k ði ¼ 1;…; kÞ;which vary from a=k
for i ¼ 1 to a for i ¼ k in a linear manner. The aim is to determine a number m;
denoting the number of compounds to be selected, wherem is defined as the largest

i for which pðiÞ # ci: Then we classify the m compounds with p-values # cm as

positives. This method is step-up, which means that it starts with the least

significant p-value, pðkÞ:Thus, we first trym ¼ k : if pðkÞ # ck ¼ a; thenm ¼ k and

we stop. If not, we trym ¼ k2 1 : if pðk21Þ # ck21 ¼ ðk2 1Þa=k; thenm ¼ k2 1

andwe stop; etc. The final step, if we go this far, is to trym ¼ 1: if pð1Þ # c1 ¼ a=k;
then m ¼ 1; otherwise m ¼ 0 and no compound is selected as positive.

For example, suppose there are k ¼ 100 compounds in the screening

experiment and we wish to control the FDR to be # a ¼ :10: Then the critical
bounds for the ordered p-values are :001; :002;…; :100 and we apply the rule
given above to find the value of m: Say we obtain m ¼ 5: then cm ¼ :005 and we
select the five compounds with p-values # :005 as positive.

Which of these two approaches, controlling the comparison error rate or the

FDR, is more suitable depends on the needs of the particular application. If

the main interest is to make inferences about each compound separately, without

regard to the decisions made about other compounds tested in the same

experiment, a method for which the comparison error rate is # a is a reasonable
choice, using an appropriate value of a: It enables the investigator, by the choice
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of a; to have direct control over the criterion which determines whether

a compound is selected for further investigation.

Control of the FDR may be more appropriate in a situation where the

experimenter has insufficient information about the population of compounds

under test to make an appropriate choice of the value of a for controlling the

comparison error rate: for example, if a new category or class of compounds

is being tested and no information is available about the proportion of true actives

it contains. With FDR control, which provides weak control of the family error

rate, the probability of finding a false lead when no true actives are present is

equal to the value chosen for a: On the other hand, if the new class turns out to be

a rich source of true actives, FDR control adapts to this by increasing the

probability of finding leads.

B. ANALYSIS OF A RANDOMIZED TRIAL

The following fictitious randomized trial was constructed to illustrate a variety

of different multiple comparison procedures with the same set of data.

This trial was mounted by Canpharm Pharmaceutical Company to test

out a new nonsteroidal anti-inflammatory drug (NSAID) called Arthritol.

Animal studies had shown that the relative potency of Arthritol was estimated to

be 0.90 when compared with plain aspirin. Consequently, a one-way randomized

trial was designed with a placebo, a standard of 20 mg aspirin, and four dose levels

of Arthritol: 10, 15, 20, and 25 mg. Sample size calculations dictated that n ¼ 11

patients were to be randomly allocated to each of the six treatment groups.

The outcome measure chosen was the pooled index developed by Smythe

et al.,50 which was measured by an independent assessor (IA) in these

Rheumatoid Arthritis (RA) patients before and after a 2-week treatment period.

The IA was unaware of the treatment group to which any patient belonged.

The results of this trial are displayed in Table 23.3. Preliminary analyses

showed there was no difference in the measures of variation51 [Fmax ¼ 3:36;
critical Fmaxða ¼ :05:; k ¼ 6; n ¼ 10Þ ¼ 6:92]. For purposes of estimating the

variance to be used in the multiple comparison procedures, a one-way analysis

of variance was calculated and is displayed in Table 23.4.

Although this ANOVA showed that the treatments were quite different

ðP # :001Þ; this was anticipated. Before the study was conducted, however,

the following questions were of interest:

1. Is any dose of Arthritol different from placebo?

2. What is the lowest dose of Arthritol that is better than placebo?

3. Is any dose of Arthritol different from aspirin at 20 mg?

4. What is the nature of the dose-response of Arthritol? Is it linear, or does

it need a higher degree polynomial?

It was also agreed that once a specific multiple comparison procedure was

chosen to answer a question, the testing would be done at a ¼ :05:
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TABLE 23.3
Results of Arthritol Randomized Trial

Treatment Group

Patient Number ( j ) Placebo Aspirin (20 mg) Arthritol dose (mg)

10 15 20 25 Total
i 5 1 2 3 4 5 6

1 1.0 1.3 2.1 1.9 2.5 6.5

2 20.6 2.7 1.1 1.0 2.0 3.0

3 0.7 2.1 2.4 0.9 4.0 2.4

4 1.4 0.7 0.1 1.7 4.0 3.5

5 1.0 3.6 0.1 1.9 1.9 4.3

6 1.8 1.9 20.1 1.5 3.3 3.3

7 0.2 3.9 20.3 2.2 4.3 2.3

8 1.7 20.8 0.8 3.7 2.1 2.7

9 0.4 2.2 20.6 0.1 2.8 2.6

10 1.0 1.9 0.6 20.1 2.4 4.7

11 0.2 2.8 0.3 0.6 2.7 4.7

n 11 11 11 11 11 11 66P11
j¼1 yij 8.8 22.3 6.5 15.4 32.0 40.0 125.0P11
j¼1 y2ij 12.18 62.59 12.95 33.08 100.54 162.16 383.50


yi 0.80 2.03 0.59 1.40 2.91 3.64 1.89

si 0.72 1.32 0.95 1.07 0.86 1.29 1.50

Observations were generated by adding N(0,1) random variables to the six treatment effects 0.5, 2.0,

0.6, 1.3, 3.0 and 4.1, respectively.

TABLE 23.4
ANOVA of Arthritol Trial

Source df SS MS F P

Mean 1 236.742

Treatments (cfm)a 5 79.4521 15.89 14.17 0.001

Residual 60 67.3054 1.12

Total 66 383.5

Mean 1 236.742

Total (cfm) 65 146.75

a cfm, corrected for the mean.

When and How to Do Multiple Comparisons 447



To answer question 1, the MCC allowance (Equation 23.11) is employed

where s ¼ ffiffiffiffiffiffiffi
1:121

p ¼ 1:059; f ¼ 60; k ¼ 4þ 1 ¼ 5; the four doses of Arthritol
plus the placebo. Then t 00:05;4;60 ¼ 2:51:

MCC ¼ ð2:51Þð1:059Þð ffiffi
2

p Þffiffiffi
11

p ¼ 1:133

The paired comparisons of interest are


y3 2 
y1 ¼ 20:21; 
y4 2 
y1 ¼ 0:60; 
y5 2 
y1 ¼ 2:11; 
y6 2 
y1 ¼ 2:84

Doses 20 and 25 mg of Arthritol are significantly different from placebo,

but doses 10 and 15 are not significantly different from placebo.

To answer question 3, the same allowance MCC is used. This time, the paired

comparisons of interest are


y3 2 
y2 ¼ 21:44; 
y4 2 
y2 ¼ 20:63; 
y5 2 
y2 ¼ 0:88; 
y6 2 
y2 ¼ 1:61

Consequently, 10 mg of Arthritol is significantly lower than the 20 mg of aspirin

and the 25 mg of Arthritol is significantly higher than the aspirin dose. Also,

both the 15 and 20 mg doses of Arthritol are not significantly different from

the aspirin dose.

Question 2 can be dealt with by using the WIL (Equation 23.19) allowance.

Here a ¼ :05; k2 1 ¼ 4; f ¼ 60 so 
t:05;4;60 ¼ 1:78: Now

WIL ¼ ð1:78Þð1:059Þð ffiffi
2

p Þffiffiffi
11

p ¼ 0:804

Then

M̂3 ¼ 
y1 þ 
y3
2

¼ 0:695; M̂4 ¼ 
y4 ¼ 1:40; M̂5 ¼ 
y5 ¼ 2:91; M̂6 ¼ 
y6 ¼ 3:64

Hence

M̂6 2 
y1 ¼ 2:84; M̂5 2 
y1 ¼ 2:11; M̂4 2 
y1 ¼ 0:60; M̂3 2 
y1 ¼ 20:105
By comparing these differences to the allowance WIL ¼ .804, a dose of 20 mg

of Arthritol or more gives a significantly higher response than the placebo.

To answer question 4, a set of orthogonal contrasts is applied to the four

treatment means 
y3; 
y4; 
y5 and 
y6: Since the linear, quadratic and cubic poly-
nomial terms can be fitted to four means, p ¼ 3: Also a ¼ :05; f ¼ 60 and the

critical value used is

t0:05;3;50 ¼ 2:46 for TOC ¼ ð2:46Þð1:059Þffiffiffi
11

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ · · ·þ c26

q
where, for these contrasts, c1 ¼ c2 ¼ 0: Table 23.5 displays the actual

computations.

Since only the linear contrast exceeds its critical value given by TOC,

the evidence indicates that responseofArthritol canbedescribed as linear in the dose

range given. Strictly speaking, this conclusion should cause the experimenter
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to revise the answers to questions 1 and 3. If the response function is linear down to

zero, any dose is different from the placebo; and bioassay methods could be used

to estimate the dose which gives the same response as aspirin. These could also be

used to estimate the dose which is equivalent to placebo.
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I. INTRODUCTION

The reference interval, also known as the reference range or normal range,

includes the central 95% of an analyte (where an analyte is “any substance or

chemical constituent of blood, urine, or other body fluid that is analyzed”)

measured in a presumed healthy population. The reference interval is used when

there is no clear definition of disease. By this definition, unhealthy, or abnormal

patient analyte values, would lie in the lower and upper 2.5%. In cases where the

disease is defined, for example,1 glucose concentration levels above 110 mg/dL

are associated with diabetes,2 the reference interval derived for the central 95% of

the population is not used. It should be noted that the reference interval is by its
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nature a guideline and when combined with other clinical data helps define the

clinical status of a patient. However, often in clinical practice the reference

interval is misused as an absolute definition of health status. For this reason,

the traditional term “normal range” has been mostly replaced by “reference

range,” or more correctly, “reference interval,” in current practice.

For reasons of simplicity the reference intervals derived by hospitals are often

all-inclusive. This means that the population of interest may contain many

diverse subgroups, e.g., age groups, genders, ethnic groups, etc., and they may be

combined. Therefore, the published reference intervals may be inaccurate for the

individual subgroups. In clinical trials one may have a well-defined cohort for

which the published reference intervals do not apply. In this chapter we discuss

strategies for obtaining reference intervals for these cohorts.

The derivation of the reference intervals are based on results from

nonparametric statistics as well as classical Normal theory.10 Examples of the

use of the reference interval for serum chemistry analytes include creatinine,

albumin, and total protein. High creatinine values are indicative of poor kidney

function. Low value of albumin occurs with poor nutrition and/or leakage through

the glomerular membrane, while high value occurs in dehydration. Low values of

total protein are often due to low values of albumin, while high values may be due

to overproduction of immunoglobulins.3 Two professional organizations have

provided guidelines for the determination of reference intervals. The National

Committee for Clinical Laboratory Sciences (NCCLS)1 and the International

Federation of Clinical Chemistry (IFCC)4–9 are in general agreement.

II. REFERENCE INTERVALS AND PERCENTILE ESTIMATORS

Consider a sample of n independent and identically distributed random

variables from a population with cumulative distribution function (cdf) Fð·Þ;
and continuous probability density function (pdf), f ð·Þ: In other words, ~X ¼
ðX1;X2;…;XnÞ , Fð·Þ; and the reference interval based on this sample is defined
as ðLð ~XÞ;Uð ~XÞÞ where Lð ~XÞ and Uð ~XÞ are the lower and upper endpoints of the
reference interval. The 100(1-a)% reference interval is the same as a prediction

interval, i.e., if Xnþ1 is another (independent) random variable from the same

population then,

PðLð ~XÞ # Xnþ1 # Uð ~XÞÞ ¼ 12 a ð24:1Þ

Here Xnþ1 is the patient’s analyte value and the purpose is to see whether or
not this value lies within the limits set by the reference interval. Further, it is

customary for the reference interval to be symmetric in the sense that the central

100(1 2 a)% of the population will lie within its limit. Hence, Lð ~XÞ and Uð ~XÞ are
estimators of the lower and upper (a/2) percentiles, respectively. For the
traditional 95% reference interval, a ¼ 0.05, and the reference interval consists

of estimates of the lower and upper 2.5 percentiles.
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III. TRADITIONAL NORMAL-THEORY APPROACH

Consider the classical situation where X1, X2 ,…,Xn form a random sample from

a Gaussian (Normal) distribution with unknown mean, m, and variance, s 2, i.e.,

Xi , Nðm;s 2Þ; for i ¼ 1;…; n: Further, the “future” observation, Xnþ1, is also
from this population and independent from the random sample. Thus, we have the

following results based on Normal theory:


X2 m

s
, N 0;

1

n

� �
;

Xnþ1 2 m

s
, Nð0; 1Þ;

yielding,

Xnþ1 2 
X

s
, N 0; 1þ 1

n

� �
;

Xnþ1 2 
X

s
ffiffiffiffiffiffiffiffiffiffi
1þ 1=n

p , Nð0; 1Þ;

and

Xnþ1 2 
X

S
ffiffiffiffiffiffiffiffiffiffi
1þ 1=n

p , tn21; ð24:2Þ

where S is the sample standard deviation, S ¼ ��
1=ðn2 1Þ�Pn

i¼1 ðXi 2 
XÞ2�1=2;
and tn21 is a Student’s t-distribution with (n 2 1) degrees of freedom.11 Thus, the

95% prediction interval for Xnþ1, or, in other words, the reference interval is:


x^ tðn21Þa=2 s

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

n
p

s
ð24:3Þ

where 
x is the observed sample mean, s is the observed sample standard

deviation, tðn21Þa=2 is the upper a/2 percentile from a Student’s t-distribution with

(n 2 1) degrees of freedom, and n is the sample size. In a formula,

Lð~xÞ ¼ 
x2 tðn21Þa=2 s

ffiffiffiffiffiffiffiffi
1þ 1

n

r
;

and

Uð~xÞ ¼ 
xþ tðn21Þa=2 s

ffiffiffiffiffiffiffiffi
1þ 1

n

r
; ð24:4Þ

where ~x ¼ ðx1; x2;…; xnÞ are the observed values.
For example, consider the data in Table 24.1 that represent a sample of 120

determinations of lactate dehydrogenase (LDH) in young females. The data are

from an unscreened population and is representative of what is most easily
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TABLE 24.1
Serum Lactate Dehydrogenase for Young Females: Observations and Order

Statistics

i X(i ) i X(i ) i X(i )

1 321 41 537 81 717

2 324 42 538 82 720

3 357 43 544 83 723

4 377 44 547 84 729

5 387 45 549 85 739

6 403 46 550 86 762

7 423 47 552 87 766

8 428 48 553 88 792

9 431 49 555 89 797

10 434 50 564 90 814

11 436 51 569 91 814

12 442 52 572 92 819

13 447 53 573 93 825

14 448 54 575 94 828

15 448 55 576 95 830

16 452 56 576 96 838

17 457 57 581 97 838

18 466 58 590 98 845

19 467 59 603 99 853

20 469 60 608 100 864

21 469 61 609 101 900

22 472 62 622 102 934

23 472 63 635 103 939

24 478 64 642 104 958

25 480 65 644 105 983

26 481 66 650 106 1023

27 483 67 651 107 1077

28 490 68 653 108 1082

29 492 69 663 109 1130

30 493 70 672 110 1144

31 500 71 673 111 1168

32 509 72 674 112 1333

33 512 73 684 113 1368

34 513 74 687 114 1383

35 519 75 691 115 1385

36 531 76 694 116 1404

37 532 77 698 117 2327

38 533 78 713 118 2614

39 534 79 716 119 4537

40 536 80 717 120 66592
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collected from a pediatric population. The sample mean and standard deviation

are equal to 1277.8 and 6031.7 IU. Using Equation 24.4 above, the limits of the

95% reference interval are derived as follows:

Lð~xÞ ¼ 1277:82 tð119Þ0:025 £ 6031:7 £
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

120

r
¼ 210; 715

Uð~xÞ ¼ 1277:8þ tð119Þ0:025 £ 6031:7 £
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

120

r
¼ 13; 271

Note the effect that the large outliers have on these traditional estimates of the

mean and standard deviation, and thus on the derived reference interval. While

this example is extreme, it is illustrative of the problem of outliers that will be

discussed later. Also note that the lower limit of the reference interval is less than

zero (which is physiologically impossible). As a general practice, when the lower

limit is less than zero, it should be reported as equal to zero.

Note that the reference interval represented by Equation 24.4 is valid only in

the case where the population of analytical values has a Gaussian distribution.

This is true regardless of the number of observations because even when the

Central Limit Theorem holds (i.e., the distribution of the sample mean is

approximately Gaussian), the distribution of Xnþ1 is the same as the parent
population; thus Equation 24.2 does not hold in general. This is in contrast to the

problem of deriving a confidence interval for the population mean, m, where use
of the Central Limit Theorem is (generally) valid.11

IV. DATA TRANSFORMATION TO ACHIEVE NORMALITY

It is often the case that real data are skewed and therefore not Gaussian. However,

it is often possible to transform the data, so that the transformed sample appears

to have come from a Gaussian population. A popular family of transformations is

the power transformations from Box and Cox:

y ¼
xl 2 1

l
l – 0

lnðxþ cÞ l ¼ 0

8><>: ð24:5Þ

where x is the original, untransformed data point. The constants, l and c are

derived using maximum likelihood methodology.12

For example, consider the data from Table 24.1. The value for l for the 120
observations was 0.7. The histogram for the transformed data is given in

Figure 24.1. Clearly, these transformed data appears closer to a Gaussian

distribution than the original data in Figure 24.2. Applying the estimators in

Equation 24.4, and then backtransforming to get the original scale, yields the

following 95% reference interval: (351, 1730).
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V. NONPARAMETRIC APPROACH USING ORDER STATISTICS

For the reason stated above, it is desirable to use quantile or percentile estimators

that do not depend on the underlying distribution of analytical values. Such

distribution-free estimators are based on the order statistics from the sample.

Consider the random sample X1;X2;…;Xn; from the distribution, Fð·Þ; and
the associated order statistics Xð1Þ # Xð2Þ # … # XðnÞ. An estimator of the pth
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FIGURE 24.1 Histogram of transformed LDH values for female children with fitted

Gaussian curve. The value of the l-parameter is approximately ¼ 20.7. The p-value for
the Anderson-Darling test is approximately 0.06.
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FIGURE 24.2 Histogram of LDH values for female children. 118 out of the 120 values

are included in the figure. The two largest values were omitted to prevent the scale from

being distorted. The p-value for the Anderson-Darling test is less than 0.005 (small

p-values indicate a nonGaussian distribution).
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quantile, F21ð pÞ; is XðjnÞ where jn is approximately equal to n £ p: For example,
if the sample size is 100, then an estimator of the 95th percentile is Xð95Þ: It can be
shown that the quantile estimator based on order statistics are consistent for

F21ð pÞ and do not depend on Fð·Þ so long as jn=n! p when n!1:13 Such
estimators are referred to as nonparametric estimators.

It should be noted that there is no generally accepted exact form for

the sample quantile estimator, except for the sample median. For example, if the

sample size is 100, then two reasonable estimators of F21ð:95Þ; F̂21ð:95Þ; are Xð95Þ
and ðXð95Þ þ Xð96ÞÞ=2: Further, the statistical software package (SASw) allows for

the choice of five different definitions of the estimator of the p th quantile, or

percentile:

Definition 1.

F̂21ð pÞ ¼ ð12 rÞXð jÞ þ rXð jþ1Þ
where j ¼ ½np	 and r ¼ np2 j;

Definition 2.

F̂21ð pÞ ¼
XðiÞ r – 0:5;

Xð jÞ r ¼ 0:5 and j is even;

Xð jþ1Þ r ¼ 0:5 and j is odd;

8>><>>:
where i ¼ ½npþ 0:5	

Definition 3.

F̂21ð pÞ ¼
Xð jÞ r ¼ 0;

Xð jþ1Þ r . 0;

(

Definition 4.

F̂21ð pÞ ¼
ðXð jÞ þ Xð jþ1ÞÞ=2 r ¼ 0;

Xð jþ1Þ r . 0;

(

Definition 5.

F̂21ð pÞ ¼ ð12 rÞXð jÞ þ rXð jþ1Þ
where j ¼ ½ðnþ 1Þp	; r ¼ ðnþ 1Þp2 j; and Xðnþ1Þ ; XðnÞ;
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where [x] is the integer part of x. For our purposes we use the percentile estimator

corresponding to Definition 4.14 (Note that this is the same as PCTLDEF number

5 in SASw, which is the default.) In contrast, both the NCCLS1 and Harris and

Boyd (1995)10 use the percentile estimator corresponding to Definition 5.

For example, consider the data from Table 24.1. The standard 95%

reference interval consists of estimates of the 2.5 and 97.5 percentiles. Thus,

to compute the 97.5 percentile, p ¼ 0.975 and n ¼ 120 in this case. Using

Definition 4 above, the 2.5 percentile is computed as follows:

j ¼ ½120 £ 0:025	 ¼ 3 and r ¼ 120 £ 0:0252 j ¼ 0:

Thus, the 2.5 percentile is estimated by ðXð3Þ þ Xð4ÞÞ=2 ¼ ð357þ 377Þ=2 ¼
367: Similarly, the 97.5 percentile is computed as follows:

j ¼ ½120 £ 0:975	 ¼ 117 and r ¼ 120 £ 0:9752 j ¼ 0:

Thus, the 97.5 percentile is estimated by ðXð117Þ þ Xð118ÞÞ=2 ¼ ð2327þ
2614Þ=2 ¼ 2470:5: The resulting 95% reference interval, based on Definition 4

is approximately (367, 2471).

Using Definition 5 above, the 2.5 percentile is computed as follows:

j ¼ ½ð120þ 1Þ £ 0:025	 ¼ 3 and r ¼ ð120þ 1Þ £ 0:0252 3 ¼ 0:025;

so the 2.5 percentile is estimated by ð12 0:025ÞXð3Þ þ 0:025Xð4Þ ¼ 0:975 £
357þ 0:025 £ 377 ¼ 357:5: Similarly, the 97.5 percentile is computed as

follows:

j ¼ ½ð120þ 1Þ £ 0:975	 ¼ 117 and

r ¼ ð120þ 1Þ £ 0:9752 117 ¼ 0:975;

so the 97.5 percentile is estimated by ð12 0:975ÞXð117Þ þ 0:975Xð118Þ ¼
0:025 £ 2327þ 0:975 £ 2614 ¼ 2606:825: The resulting 95% reference interval,

based on Definition 5 is approximately (358, 2607).

It is not unusual for extreme percentiles to differ depending upon the

definition used. In the example above, the nonparametric reference interval based

on Definition 5 is approximately 7% wider than that based on Definition 4.

Another nonparametric quantile estimator is described by Harrel and Davis

(1982)15 and is a smoother estimator being a weighted average of all of the order

statistics in the sample:

F̂21ð pÞ ¼
Xn
i¼1

Wn;iXðiÞ; ð24:6Þ

where

Wn;i¼ Ii=n{pðnþ1Þ;ð12pÞðnþ1Þ}2 Iði21Þ=n{pðnþ1Þ;ð12pÞðnþ1Þ} ð24:7Þ
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and Ixða;bÞ is the incomplete beta function, i.e.,

Ixða;bÞ¼ GðaþbÞ
GðaÞGðbÞ

ðx

0
ta21ð12 tÞb21dt ð24:8Þ

and Gð yÞ is the gamma function, i.e.,
Gð yÞ¼

ð1
0
ty21e2tdt ð24:9Þ

(see Davis16). Equation 24.6 represents a bootstrap calculation of the quantile

estimator represented by Definition 5. Consider a pseudo-sample consisting of n

observations that are sampled, with replacement, from the original data set

(consisting of n values). From this pseudo-sample the quantile estimator is

computed according to Definition 5. The bootstrapped estimator (Equation 24.6)

is then the average of all such possible estimators.17

Using the data in Table 24.1, the 95% reference interval based on the Harrel

and Davis percentile estimators is approximately (361, 7651). Note that because

these estimators are smoother than the traditional nonparametric estimators, all

data values get nonzero weight. As a result, the gross outlier, 66592, has an

adverse effect on the upper limit. Here is another case where there is a clear

need to identify and eliminate outliers from the calculations of the reference

intervals.

The derivation of extreme quantiles poses a delicate balancing act.

Information must be extracted from that portion of the sample where the data

may exhibit extreme behavior. The robust method of deriving reference intervals

was proposed by Horn et al.18 Recall the reference interval based on the Gaussian

distribution (Equation 24.3): 
x^ tðn21Þa=2 s
pð1þ ð1=nÞÞ: This can be rewritten as:


x^ tðn21Þa=2

ffiffiffiffiffiffiffiffiffiffi
s2 þ s2

n

s
:

The sample mean, 
x; is the estimate of the center of the distribution, s2=n is an
estimate of the variability of 
x; and s2 is an estimate of the variability of the next
value drawn from the distribution, Xnþ1. These estimators give equal weight to all
observations and are therefore susceptible to outliers (see below). The robust

method uses estimators that give different weights (between zero and one) to each

observation depending on how far away the observation is from the bulk of the

data. See Horn et al.18 for details. Since the robust estimators are not formally

functions of the order statistics they are amenable to transformation, like the

Gaussian estimator in Equation 24.3.

We end this section by noting the effect of the sample size, n, on the

nonparametric estimator. Using the percentile estimator in Definition 5, it is

clear that,

ðnþ 1Þ p $ 1 or n $
1

p
2 1; ð24:10Þ
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where p is the lower percentile ð p , 0:5Þ: For example, to calculate a 95%

reference interval, the lower percentile corresponds to p ¼ 0:025; and thus, at
least 39 observations are required. In this case, the 95% reference interval is

defined by xð1Þ and xðnÞ; the observed minimum and maximum values. If fewer

than 39 observations are available and a 95% reference interval is required, then

the nonparametric approach may not be valid.

VI. PRECISION OF REFERENCE INTERVAL ENDPOINTS

The reference interval is defined by the two estimators, Lð ~XÞ and Uð ~XÞ defined
in Equation 24.1. These statistics are point estimators of the parameters

F21ða=2Þ and F21ð12 a=2Þ; respectively. It is often desirable to derive

confidence intervals for these parameters. The NCCLS recommends that

90% confidence intervals be used for the endpoints of 95% reference

intervals.1,19 Calculations of the confidence intervals for the reference interval

endpoints will be described for the classical Normal-based case and the

nonparametric case.

The (1 2 a)100% reference interval based on the assumption that the data

come from a Gaussian distribution (Equation 24.4) is as follows:

Lð~xÞ ¼ F̂21ða=2Þ ¼ 
x2 tðn21Þa=2 s

ffiffiffiffiffiffiffiffi
1þ 1

n

r
and

Uð~xÞ ¼ F̂21ð12 a=2Þ ¼ 
xþ tðn21Þa=2 s

ffiffiffiffiffiffiffiffi
1þ 1

n

r ð24:11Þ

Using mathematical theory, it is can be shown that the ð12 gÞ100%
confidence intervals for F21ða=2Þ and F21ð12 a=2Þ are as follows,

F̂21ða=2Þ^ zg=2·sa=2 and F̂21ð12 a=2Þ^ zg=2·sa=2

where

sa=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ z2a=2Þ·

s2

2n

s
ð24:12Þ

and za=2 is the upper (a/2) percentile from a standard Gaussian distribution.8 For

example, the 90% confidence intervals (g ¼ 0.10) for the lower and upper

endpoints of the 95% reference interval are as follows:

F̂21ð:025Þ^ 2:81· sffiffi
n

p and F̂21ð:975Þ^ 2:81· sffiffi
n

p ; ð24:13Þ

where F̂21ð:025Þ and F̂21ð:975Þ are computed using Equation 24.11 above.

Using the data from Table 24.1 and the reference interval computed using

Equation 24.4, the 90% confidence interval for the lower limit (210,715) of
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the 95% reference interval is as follows:

210; 715^ 2:81 £ 6031:7ffiffiffiffiffi
120

p ¼ ð212;262;29;168Þ:

However, if the lower limit was set equal to zero, then the confidence interval

would be (21547, 1547). As before, if negative limits are set equal to zero, the
reported 90% confidence interval for the lower limit would be (0, 1547).

Similarly, the 90% confidence interval for the upper limit (13,271) of the

95% reference interval is as follows:

13; 271^ 2:81 £ 6031:7ffiffiffiffiffi
120

p ¼ ð11;724; 14;818Þ:

As shown in Figure 24.2, the raw data do not follow a Gaussian distribution.

Recall that applying the Box-Cox transformation in Equation 24.5 to these data

resulted in a value of l ¼ 20.7 and after back-transforming resulted in the 95%
reference interval: (351, 1730). In order to compute confidence intervals for each

of these two endpoints, confidence intervals for each must first be derived on the

transformed data, and then back-transformed. This process yields the 90%

confidence interval for the lower limit as (330, 374). Similarly, that for the upper

limit is (1448, 2120). Note that as a result of the transformation, the point

estimates of the reference interval limits are not exactly in the center of their

respective confidence intervals.

The nonparametric reference interval endpoints are based on sample order

statistics. In this case

Lð~xÞ ¼ F̂21ða=2Þ ¼ xðrÞ and Uð~xÞ ¼ F̂21ð12 a=2Þ ¼ xðn2rþ1Þ

where xðrÞ is the rth order statistic or a linear (convex) combination of adjacent
order statistics, depending on which of the five definitions of the sample

percentile is used. The upper endpoint, xðn2rþ1Þ; is the symmetric counterpart to
xðrÞ; in other words, if xðrÞ ¼ g·xðiÞ þ ð12 gÞ·xðiþ1Þ; where i is an integer and

0 # g # 1, then xðn2rþ1Þ ¼ g·xðn2iþ1Þ þ ð12 gÞ·xðn2iÞ: Again, using mathe-

matical theory, it is easily shown that the ð12 gÞ100% confidence interval for

F21ða=2Þ consists of the interval defined by the two order statistics ðxðlÞ; xðrÞÞ
where, Xr21

i¼l

n

i

{ !
ða=2Þið12 a=2Þn2i $ g: ð24:14Þ

Since the indices of the order statistics are not unique it is reasonable to chose

l and r so that r 2 l is as small as possible. By symmetry, the ð12 gÞ100%
confidence interval for F21ð12 a=2Þ consists of the interval defined by the two
order statistics ðxðn2rþ1Þ; xðn2lþ1ÞÞ where l and r are defined by Equation 24.14

above.20
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For the Harrel and Davis and robust methods (transformed and not

transformed) there are no formulas for the confidence intervals of the reference

interval endpoints. For these methods bootstrap simulations are used to derive

90% confidence intervals for the estimators of the reference interval limits.

Recall that there is a minimum required sample size for the (1 2 a)100%
reference interval that depends on a. For example, a 95% reference interval

requires at least 39 observations (this interval would consist of the minimum and

maximum values). There is also a minimum required sample size to determine

the (1 2 g)100% confidence interval for the nonparametric reference interval

endpoints. This minimum sample size increases as the desired level of confidence

increases. The NCCLS recommends a minimum of 120 observations be used to

determine reference intervals. Note that this is the minimum sample size required

to derive 90% confidence intervals for the nonparametric 95% reference interval

endpoints. Thus, if n ¼ 120 then the 90% confidence intervals for the lower and

upper endpoints of the 95% reference interval are as follows1:

ðxð1Þ; xð7ÞÞ and ðxð114Þ; xð120ÞÞ

Using the data from Table 24.1, the 90% confidence interval for the lower

limit of the nonparametric 95% reference interval is (321, 423), and that of the

upper limit is (1383, 66592).

VII. OUTLIERS

In an ideal situation all of the data would be from a clearly defined healthy test

population and contain no outliers. However, as can be seen from the real data in

Table 24.1 this is often not the case. Thus, it is desirable to minimize the effect

that the outliers have on the estimation of the reference interval. Many methods

of outlier detection have been described in the literature.21 The NCCLS

recommends Dixon’s method if outlier detection is desired.1 In this method, x(n)
is identified as an outlier if x(n)–x(n21) . (x(n)–x(1))/3. If x(n) is identified as an

outlier then x(n21) is examined similarly. The process is repeated until no other

outliers are found. Using the data from Table 24.1, with n ¼ 120, it can be seen

that (66592 2 4537) ¼ 62055 . (66592 2 321)/3 ¼ 66271/3, or, 22090.33.

Next the value of 4537 is tested in the same manner and found to be an outlier

as well. Lastly, the value of 2614 is tested and found not to be an outlier. Thus,

Dixon’s method would identify the two largest values, x(119) and x(120), as

outliers.

Another method of identifying outliers is due to Tukey.22 This method

identifies outside values as those that are less than Q1 2 1.5 £ IQR or greater

than Q3 þ 1.5 £ IQR, where Q1 and Q3 are the lower and upper quartiles and
IQR ¼ Q1 2 Q3, the inter-quartile range. It should be noted that for a Gaussian

population, only 0.7% of the values lies outside these (population)

limits. Using Definition 4 for the quartile estimates, Q1 is (x(30) þ x(31))/2, or
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496.5, Q3 is (x(90) þ x(91))/2, or 814, and the IQR ¼ 814 2 496.5 ¼ 317.5.

Thus, this method would identify as outliers those values less than

496.5 2 1.5 £ 317.5 ¼ 20.25 or greater than 814 þ 1.5 £ 317.5 ¼ 1290.25,

i.e., the nine largest values, x(112) through x(120).

Lastly, a method for outlier detection is presented, which was developed

for the reference interval problem. This method first transforms the data using

the Box-Cox approach (Equation 24.5) and then identifies outliers using the

Tukey method on the transformed data.23 Using this approach on the

data from Table 24.1, the two largest values, x(119) and x(120), are identified as

outliers.

Dixon’s method can fail to identify all of the outliers if they occur in a cluster.

This is often referred to as the “masking effect.” In other words, if x(n21) is itself

a gross outlier, it can mask the fact that x(n) is a gross outlier. Tukey’s method

may identify too many observations as outliers if the data are skewed. The last

method may identify too few outliers if the outliers cause a transformation that

masks their effect. There are no welldefined rules unless strict assumptions are

made as to the nature of the underlying population.

For example, consider the data from Table 24.1 with the two largest values

deleted as outliers. We will refer to this as the truncated sample. The distribution

of the truncated sample can be seen in Figure 24.2 (note that the two

largest values were omitted from the histogram so as not to distort the scale).

Note, however, Figure 24.3 gives a histogram of the transformed

truncated sample. In this case, the Anderson-Darling test24 of Normality does

not reject.
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FIGURE 24.3 Histogram of transformed LDH values for female children with fitted

Gaussian curve. The two largest values were identified as outliers and removed. The

subsequent value of the l-parameter is approximately ¼ 20.8. The p-value for the

Anderson-Darling test is greater than 0.25.
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VIII. SUMMARY OF METHODS TO DERIVE

REFERENCE INTERVALS

There are a number of choices that can be made to derive reference intervals.

These include the nonparametric estimators (as recommended by the NCCLS1),

traditional Normal theory estimators as well as robust estimators, which may

require transformation of the data. Outliers pose a potential problem, and in

general, may make the reference interval too wide, thus misclassifying

nonhealthy individuals as healthy. Table 24.2 summarizes the results using the

data from Table 24.1. We observe that outliers drastically affect the reference

interval calculation. As demonstrated in this example outlier detection is

necessary. With outliers removed the recommended nonparametric procedure

provides reasonably medically conservative limits, i.e., erring on the side of false

positives as opposed to false negatives. However, removal of outliers in this case

reduces the number of usable observations to the extent that the recommended

TABLE 24.2
Comparison of Reference Interval Estimators for Serum LDH in 120 Young

Females

90% Confidence Intervals

95% Reference Interval Lower Limit Upper Limit

Results Based on 120 Observations from Table 24.1

Method

Nonparametric (367, 2471) (321, 423) (1383, 66592)

Harrel-Davis (361, 7651) (332, 409) (1463, 39498)

Gaussian

Not Transformed (0, 13271) (0, 1547) (11724, 14818)

Transformed (351, 1730) (330, 374) (1448, 2120)

Robust

Not Transformed (361, 1991) (321, 423) (1310, 2691)

Transformed (341, 1668) (322, 377) (1372, 2192)

Results Based on 118 Observations from Table 24.1

Method

Nonparametric (357, 1404) a a

Harrel-Davis (352, 1829) (328, 402) (1342, 2370)

Gaussian

Not Transformed (36, 1357) (0, 112) (1271, 1443)

Transformed (362, 1567) (343, 383) (1329, 1894)

Robust

Not Transformed (352, 1567) (337, 383) (1246, 1859)

Transformed (359, 1578) (337, 383) (1305, 1922)

a Sample size, 118, is too small to compute 90% Confidence Intervals.

Statistics in the Pharmaceutical Industry466



90% confidence intervals for the nonparametric limits are not attained.

The Gaussian and robust methods are not as adversely affected in terms of

confidence interval computation.

We observed that, transforming the data is necessary if Gaussian methods are

used, but transformation is not as critical for the robust methods. All of the

methods, except for the Gaussian using untransformed data, give reasonable

results when the outliers are removed.

In conclusion, if the sample has no outliers removed, or has them removed

and is reasonably large (at least 120), then any of these methods should give

reasonable reference intervals. (The exception is the Gaussian method on

nonNormal data.) However, if the sample size is smaller, then the robust methods

should be considered.
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