


Pharmaceutical 
Statistics



DRUGS AND THE PHARMACEUTICAL SCIENCES
A Series of Textbooks and Monographs

Executive Editor
James Swarbrick
PharmaceuTech, Inc.

Pinehurst, North Carolina

Advisory Board

Larry L. Augsburger
University of Maryland

Baltimore, Maryland

Jennifer B. Dressman
University of Frankfurt Institute of

Pharmaceutical Technology

Frankfurt, Germany

Anthony J. Hickey
University of North Carolina

School of Pharmacy

Chapel Hill, North Carolina

Ajaz Hussain
Sandoz

Princeton, New Jersey

Joseph W. Polli
GlaxoSmithKline

Research Triangle Park

North Carolina

Stephen G. Schulman
University of Florida

Gainesville, Florida

Yuichi Sugiyama
University of Tokyo, Tokyo, Japan

Geoffrey T. Tucker
University of Sheffield

Royal Hallamshire Hospital

Sheffield, United Kingdom

Harry G. Brittain
Center for Pharmaceutical Physics

Milford, New Jersey

Robert Gurny
Universite de Geneve

Geneve, Switzerland

Jeffrey A. Hughes
University of Florida College

of Pharmacy

Gainesville, Florida

Vincent H. L. Lee
US FDA Center for Drug

Evaluation and Research

Los Angeles, California

Kinam Park
Purdue University

West Lafayette, Indiana

Jerome P. Skelly
Alexandria, Virginia

Elizabeth M. Topp
University of Kansas

Lawrence, Kansas

Peter York
University of Bradford

School of Pharmacy

Bradford, United Kingdom



For information on volumes 1–151 in the Drugs and Pharmaceutical Science Series,
Please visit www.informahealthcare.com

152. Preclinical Drug Development, edited by Mark C. Rogge and David R. Taft
153. Pharmaceutical Stress Testing: Predicting Drug Degradation, edited by Steven W. Baertschi
154. Handbook of Pharmaceutical Granulation Technology: Second Edition, edited by Dilip M.

Parikh
155. Percutaneous Absorption: Drugs–Cosmetics–Mechanisms–Methodology, Fourth Edition,

edited by Robert L. Bronaugh and Howard I. Maibach
156. Pharmacogenomics: Second Edition, edited by Werner Kalow, Urs A. Meyer and Rachel F.

Tyndale
157. Pharmaceutical Process Scale-Up, Second Edition, edited by Michael Levin
158. Microencapsulation: Methods and Industrial Applications, Second Edition, edited by Simon

Benita
159. Nanoparticle Technology for Drug Delivery, edited by Ram B. Gupta and Uday B. Kompella
160. Spectroscopy of Pharmaceutical Solids, edited by Harry G. Brittain
161. Dose Optimization in Drug Development, edited by Rajesh Krishna
162. Herbal Supplements-Drug Interactions: Scientific and Regulatory Perspectives, edited by

Y. W. Francis Lam, Shiew-Mei Huang, and Stephen D. Hall
163. Pharmaceutical Photostability and Stabilization Technology, edited by Joseph T. Piechocki

and Karl Thoma
164. Environmental Monitoring for Cleanrooms and Controlled Environments, edited by Anne

Marie Dixon
165. Pharmaceutical Product Development: In Vitro-ln Vivo Correlation, edited by Dakshina

Murthy Chilukuri, Gangadhar Sunkara, and David Young
166. Nanoparticulate Drug Delivery Systems, edited by Deepak Thassu, Michel Deleers, and Yash-

want Pathak
167. Endotoxins: Pyrogens, LAL Testing and Depyrogenation, Third Edition, edited by Kevin L.

Williams
168. Good Laboratory Practice Regulations, Fourth Edition, edited by Anne Sandy Weinberg
169. Good Manufacturing Practices for Pharmaceuticals, Sixth Edition, edited by Joseph D. Nally
170. Oral-Lipid Based Formulations: Enhancing the Bioavailability of Poorly Water-soluble

Drugs, edited by David J. Hauss
171. Handbook of Bioequivalence Testing, edited by Sarfaraz K. Niazi
172. Advanced Drug Formulation Design to Optimize Therapeutic Outcomes, edited by Robert

O. Williams III, David R. Taft, and Jason T. McConville
173. Clean-in-Place for Biopharmaceutical Processes, edited by Dale A. Seiberling
174. Filtration and Purification in the Biopharmaceutical Industry, Second Edition, edited by

Maik W. Jornitz and Theodore H. Meltzer
175. Protein Formulation and Delivery, Second Edition, edited by Eugene J. McNally and Jayne E.

Hastedt
176. 176 Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms, Third Edition, edited

by James McGinity and Linda A. Felton
177. Dermal Absorption and Toxicity Assessment, Second Edition, edited by Michael S. Roberts

and Kenneth A. Walters
178. Preformulation Solid Dosage Form Development, edited by Moji C. Adeyeye and Harry G.

Brittain
179. Drug-Drug Interactions, Second Edition, edited by A. David Rodrigues
180. Generic Drug Product Development: Bioequivalence Issues, edited by Isadore Kanfer and

Leon Shargel
181. Pharmaceutical Pre-Approval Inspections: A Guide to Regulatory Success, Second Edi-

tion, edited by Martin D. Hynes III
182. Pharmaceutical Project Management, Second Edition, edited by Anthony Kennedy
183. Modified Release Drug Delivery Technology, Second Edition, Volume 1, edited by Michael

J. Rathbone, Jonathan Hadgraft, Michael S. Roberts, and Majella E. Lane



184. Modified-Release Drug Delivery Technology, Second Edition, Volume 2, edited by Michael
J. Rathbone, Jonathan Hadgraft, Michael S. Roberts, and Majella E. Lane

185. The Pharmaceutical Regulatory Process, Second Edition, edited by Ira R. Berry and Robert
P. Martin

186. Handbook of Drug Metabolism, Second Edition, edited by Paul G. Pearson and Larry C.
Wienkers

187. Preclinical Drug Development, Second Edition, edited by Mark Rogge and David R. Taft
188. Modern Pharmaceutics, Fifth Edition, Volume 1: Basic Principles and Systems, edited by

Alexander T. Florence and Jürgen Siepmann
189. Modern Pharmaceutics, Fifth Edition, Volume 2: Applications and Advances, edited by

Alexander T. Florence and Jürgen Siepmann
190. New Drug Approval Process, Fifth Edition, edited by Richard A. Guarino
191. Drug Delivery Nanoparticulate Formulation and Characterization, edited by Yashwant

Pathak and Deepak Thassu
192. Polymorphism of Pharmaceutical Solids, Second Edition, edited by Harry G. Brittain
193. Oral Drug Absorption: Prediction and Assessment, Second Edition, edited by Jennifer J.

Dressman, Hans Lennernas, and Christos Reppas
194. Biodrug Delivery Systems: Fundamentals, Applications, and Clinical Development, edited

by Mariko Morishita and Kinam Park
195. Pharmaceutical Process Engineering, Second Edition, Anthony J. Hickey and David

Ganderton
196. Handbook of Drug Screening, Second Edition, edited by Ramakrishna Seethala and Litao

Zhang
197. Pharmaceutical Powder Compaction Technology, Second Edition, edited by Metin Celik
198. Handbook of Pharmaceutical Granulation Technology, Dilip M. Parikh
199. Pharmaceutical Preformulation and Formulation, Second Edition: A Practical Guide from

Candidate Drug Selection to Commercial Dosage Form, edited by Mark Gibson
200. International Pharmaceutical Product Registration, Second Edition, edited by Anthony C.

Cartwright and Brian R. Matthews
201. Generic Drug Product Development: International Regulatory Requirements for Bioe-

quivalence, edited by Isadore Kanfer and Leon Shargel
202. Proteins and Peptides: Pharmacokinetic, Pharmacodynamic, and Metabolic Outcomes,

edited by Randall J. Mrsny and Ann Daugherty
203. Pharmaceutical Statistics: Practical and Clinical Applications, Fifth Edition, Sanford Bolton

and Charles Bon



Sanford Bolton 
Consultant 

Tucson, Arizona, USA 
Charles Bon 

Biostudy Solutions, LLC 
Wilmington, North Carolina, USA

Pharmaceutical 
Statistics 

Practical and Clinical Applications

F I F T H  E D I T I O N 



Informa Healthcare USA, Inc.
52 Vanderbilt Avenue
New York, NY 10017

C© 2010 by Informa Healthcare USA, Inc.
Informa Healthcare is an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 1-4200-7422-9
International Standard Book Number-13: 978-1-4200-7422-2 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been
made to publish reliable data and information, but the author and the publisher cannot assume responsibility for
the validity of all materials or for the consequence of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for
a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system
of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Bolton, Sanford, 1929–
Pharmaceutical statistics : practical and clinical applications / Sanford Bolton,

Charles Bon. – 5th ed.
p. ; cm. – (Drugs and the pharmaceutical sciences ; 203)

Includes bibliographical references and index.
ISBN-13: 978-1-4200-7422-2 (hardcover : alk. paper)
ISBN-10: 1-4200-7422-9 (hardcover : alk. paper) 1. Pharmacy–Statistical methods.

I. Bon, Charles, 1949– II. Title. III. Series: Drugs and the pharmaceutical sciences ; 203.
[DNLM: 1. Pharmacy–methods–Laboratory Manuals. 2. Statistics as Topic–Laboratory

Manuals. W1 DR893B v.203 2009 / QV 25 B694p 2009]
RS57.B65 2009
615′.1072–dc22

2009039659

For Corporate Sales and Reprint Permission call 212-520-2700 or write to: Sales Department, 52 Vanderbilt
Avenue, 7th floor, New York, NY 10017.

Visit the Informa Web site at
www.informa.com

and the Informa Healthcare Web site at
www.informahealthcare.com



To my wife, Phyllis

always present,
always sensitive,

always inspirational

—S. B.

To Sanford Bolton
my mentor who kindled my love of statistics,

and to my wife, Marty,
who did the same for the other areas of my life

—C. B.





Preface

This is the fifth edition of Pharmaceutical Statistics. The first edition was published 25 years ago
when there were no statistical texts, as far as I know, which were directed toward nonstatisti-
cian researchers in academia or the pharmaceutical industry. Although, such a book was not
immediately recognized as being an important adjunct to pharmaceutical research, soon after
its publication, the passage of time has clearly confirmed the need for a statistics book that is
useful for the pharmaceutical scientist. The practical examples with a discussion of the pharma-
ceutical and clinical consequences have helped to give the pharmaceutical researcher another
dimension.

When I first wrote this book in the early 1980s, using a typewriter and two fingers, one of
my aims was to document my experience and have a book that could be my personal reference.
In each new edition, I have added new material based on new experiences that I think will be
useful to the pharmaceutical community as well as to enhance the book as my own reference.

This new edition has some new features. We have expanded some of the tables in the
appendix to make them more complete. A more detailed explanation of one- and two-sided
statistical tests and when they are applicable has been included. We have updated some of the
material related to clinical trials. We have updated statistical applications to bioequivalence, as
well as various designs used in bioequivalence studies. A program to calculate the number of
subjects in bioequivalence trials under a number of assumptions has been added to the disk
accompanying the book. We have also added some new material explaining in more detail the
assumptions and applications of nonparametric methods, including application of the binomial
distribution to put upper confidence limits on the proportion of successes and failures in a
sample. We have included the application of confidence intervals for a ratio, using a method
based on Fieller’s Theorem. An interesting relationship between the mean and median of a
sample is included, with a derivation.

Finally, we have done our best to remove typos and any errors that we have discovered
from the fourth edition. Unfortunately, with so much material, it seems impossible to be perfect.
However, we strive for perfection, to do our best, and we look forward to comments, criticisms,
and ideas from our readers to improve the book, or include new material for the sixth edition.

Before leaving this introduction, again I give thanks to my teachers, my students, my
colleagues, my readers, and my work with pharmaceutical problems from pharmaceutical
firms of all sizes and shapes that continue to challenge and teach me.

I want to acknowledge those who have helped me both as a person and scientist, and
helped me grow. In particular, I owe debts of gratitude to two mentors, now deceased, Dr. Takeru
Higuchi and Dr. John Fertig. I acknowledge the institutions that encouraged me to write this
book, and allowed me to apply the knowledge to apply statistical applications to pharmaceutical
problems, that is, University of Wisconsin, Columbia University and St. John’s University in
Queens, NY. Finally, thanks to my family, friends, and students, all of whom have made my life
more full and have been my family. Special thanks to my wife, Phyllis Bolton, Mohan Sondhi,
Salah Ahmed, Spiro Spireas, Charles DiLiberti, Chuck Bon Jerry Reinstein, Robert and Maria
Bell, Lama Pema, Mrs. Popoff, and The University of Arizona Guitar Department, to mention
only a few.

Sanford Bolton
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1 Basic Definitions and Concepts

Statistics has its own vocabulary. Many of the terms that comprise statistical nomenclature
are familiar: some commonly used in everyday language, with perhaps, somewhat different
connotations. Precise definitions are given in this chapter so that no ambiguity will exist when
the words are used in subsequent chapters. Specifically, such terms as discrete and continuous
variables, frequency distribution, population, sample, mean, median, standard deviation, variance, coef-
ficient of variation (CV), range, accuracy, and precision are introduced and defined. The methods
of calculation of different kinds of means, the median, standard deviation, and range are also
presented. When studying any discipline, the initial efforts are most important. The first chap-
ters of this book are important in this regard. Although most of the early concepts are relatively
simple, a firm grasp of this material is essential for understanding the more difficult material
to follow.

1.1 VARIABLES AND VARIATION
Variables are the measurements, the values, which are characteristic of the data collected in
experiments. These are the data that will usually be displayed, analyzed, and interpreted in a
research report or publication. In statistical terms, these observations are more correctly known
as random variables. Random variables take on values, or numbers, according to some corre-
sponding probability function. Although we will wait until chapter 3 to discuss the concept
of probability, for the present we can think of a random variable as the typical experimental
observation that we, as scientists, deal with on a daily basis. Because these measurements may
take on different values, repeat measurements observed under apparently identical conditions
do not, in general, give the identical results (i.e., they are usually not exactly reproducible).
Duplicate determinations of serum concentration of a drug one hour after an injection will
not be identical no matter if the duplicates come from (a) the same blood sample or (b) from
separate samples from two different persons or (c) from the same person on two different
occasions. Variation is an inherent characteristic of experimental observations. To isolate and
to identify particular causes of variability require special experimental designs and analy-
sis. Variation in observations is due to a number of causes. For example, an assay will vary
depending on

1. the instrument used for the analysis;
2. the analyst performing the assay;
3. the particular sample chosen;
4. unidentified, uncontrollable background error, commonly known as “noise.”

This inherent variability in observation and measurement is a principal reason for the
need of statistical methodology in experimental design and data analysis. In the absence of
variability, scientific experiments would be short and simple: interpretation of experimental
results from well-designed experiments would be unambiguous. In fact, without variability,
single observations would often be sufficient to define the properties of an object or a system.
Since few, if any, processes can be considered absolutely invariant, statistical treatment is often
essential for summarizing and defining the nature of data, and for making decisions or inferences
based on these variable experimental observations.



2 CHAPTER 1

1.1.1 Continuous Variables
Experimental data come in many forms.∗ Probably the most commonly encountered variables
are known as continuous variables. A continuous variable is one that can take on any value within
some range or interval (i.e., within a specified lower and upper limit). The limiting factor for the
total number of possible observations or results is the sensitivity of the measuring instrument.
When weighing tablets or making blood pressure measurements, there are an infinite number
of possible values that can be observed if the measurement could be made to an unlimited
number of decimal places. However, if the balance, for example, is sensitive only to the nearest
milligram, the data will appear as discrete values. For tablets targeted at 1 g and weighed to the
nearest milligram, the tablet weights might range from 900 to 1100 mg, a total of 201 possible
integral values (900, 901, 902, 903, . . ., 1098, 1099, 1100). For the same tablet weighed on a more
sensitive balance, to the nearest 0.1 mg, values from 899.5 to 1100.4 might be possible, a total of
2010 possible values, and so on.

Often, continuous variables cannot be easily measured but can be ranked in order of
magnitude. In the assessment of pain in a clinical study of analgesics, a patient can have a
continuum of pain. To measure pain on a continuous numerical scale would be difficult. On
the other hand, a patient may be able to differentiate slight pain from moderate pain, moderate
pain from severe pain, and so on. In analgesic studies, scores are commonly assigned to pain
severity, such as no pain = 0, slight pain = 1, moderate pain = 2, and severe pain = 3. Although
the scores cannot be thought of as an exact characterization of pain, the value 3 does represent
more intense pain than the values 0, 1, or 2. The scoring system above is a representation of a
continuous variable by discrete “scores” that can be rationally ordered or ranked from low to
high. This is commonly known as a rating scale, and the ranked data are on an ordinal scale.
The rating scale is an effort to quantify a continuous, but subjective, variable.

1.1.2 Discrete Variables
In contrast to continuous variables, discrete variables can take on a countable number of values.
These kinds of variables are commonly observed in biological and pharmaceutical experiments
and are exemplified by measurements such as the number of anginal episodes in one week or
the number of side effects of different kinds after drug treatment. Although not continuous,
discrete data often have values associated with them that can be numerically ordered according
to their magnitude, as in the examples given earlier of a rating scale for pain and the number of
anginal episodes per week.

Discrete data that can be named (nominal), categorized into two or more classes, and
counted are called categorical variables, or attributes; for example, the attributes may be different

∗ For a further discussion of different kinds of variables, see section 15.1.
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side effects resulting from different drug treatments or the presence or absence of a defect in
a finished product. These kinds of data are frequently observed in clinical and pharmaceutical
experiments and processes. A finished tablet classified in quality control as “defective” or “not
defective” is an example of a categorical or attribute type of variable. In clinical studies, the cat-
egorization of a patient by sex (male or female) or race is a classification according to attributes.
When calculating ED50 or LD50, animals are categorized as “responders” or “nonresponders” to
various levels of a therapeutic agent, a categorical response. These examples describe variables
that cannot be ordered. A male is not associated with a higher or lower numerical value than a
female.

Continuous variables can always be classified into discrete classes where the classes
are ordered. For example, patients can be categorized as “underweight,” “normal weight,”
or “overweight” based on criteria such as those listed in Metropolitan Life Insurance tables
of “Desirable Weights for Men and Women” [l]. In this example, “overweight” represents a
condition that is greater than “underweight.”

Thus we can roughly classify data as

1. continuous (blood pressure, weight);
2. discrete, associated with numbers and ordered (number of anginal episodes per week);
3. attributes: categorical, ordered (degree of overweight);
4. attributes: categorical, not ordered (male or female).

1.2 FREQUENCY DISTRIBUTIONS AND CUMULATIVE FREQUENCY DISTRIBUTIONS

1.2.1 Frequency Distributions
An important function of statistics is to facilitate the comprehension and meaning of large quan-
tities of data by constructing simple data summaries. The frequency distribution is an example
of such a data summary, a table or categorization of the frequency† of occurrence of variables
in various class intervals. Sometimes a frequency distribution of a set of data is simply called
a “distribution.” For a sampling of continuous data, in general, a frequency distribution is
constructed by classifying the observations (variables) into a number of discrete intervals. For
categorical data, a frequency distribution is simply a listing of the number of observations in
each class or category, such as 20 males and 30 females entered in a clinical study. This procedure
results in a more manageable and meaningful presentation of the data.

† The frequency is the number of observations in a specified interval or class: for example, tablets weighing
between 300 and 310 mg, or the number of patients who are female.
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Table 1.1 Serum Cholesterol Changes (mg%) for 156 Patients After Administration

of a Drug Tested for Cholesterol-Lowering Effecta

17 −12 25 −37 −29 −39

−22 0 −22 −63 34 −31

−64 −12 −49 5 −8 33

−50 −7 16 −11 −38 −17

0 −9 −21 1 2 −30

−32 −34 −14 −18 5 6

24 −6 −49 −8 −49 −37

−25 −12 14 10 −41 −66

−31 35 21 −19 −27 17

−6 −17 −6 1 −28 40

−31 17 −54 −27 −16 16

−44 10 −3 −3 5 6

−19 9 −10 −20 −9 −8

−10 −11 11 −39 19 −32

4 −15 −18 35 6 20

46 24 −27 −19 5 −60

27 23 −22 −1 12 −27

−13 −39 39 −34 −97 −26

38 14 −47 8 26 −15

−62 12 −53 11 21 −47

−54 −11 −5 0 55 34

−69 −11 −44 20 −50 19

0 −25 −24 −4 14 2

−34 16 −23 −71 −58 9

9 2 −2 −58 13 14

17 −13 −22 −3 −17 1

aA negative number means a decrease and a positive number means an increase.

Table 1.1 is a tabulation of serum cholesterol changes resulting from the administration of
a cholesterol-lowering agent to a group of 156 patients. The data are presented in the order in
which results were reported from the clinic.

A frequency distribution derived from the 156 cholesterol values is shown in Table 1.2.
This table shows a tabulation of the frequency, or number, of occurrences of values that fall
into the various class intervals of “serum cholesterol changes.” Clearly, the condensation of
the data as shown in the frequency distribution in Table 1.2 allows for a better “feeling” of
the experimental results than do the raw data represented by the individual 156 results. For
example, one can readily see that most of the patients had a lower cholesterol value in response
to the drug (a negative change) and that most of the data lie between −60 and +19 mg%.

When constructing a frequency distribution, two problems must be addressed. The first
problem is how many classes or intervals should be constructed, and the second problem is
the specification of the width of each interval (i.e., specifying the upper and lower limit of each
interval). There are no definitive answers to these questions. The choices depend on the nature

Table 1.2 Frequency Distribution of Serum Cholesterol Changes

Class interval Frequency

−100 to −81 (−100.5 to −80.5) 1

−80 to −61 (−80.5 to −60.5) 6

−60 to −41 (−60.5 to −40.5) 16

−40 to −21 (−40.5 to −20.5) 31

−20 to −1 (−20.5 to −0.5) 40

+0 to +19 (−0.5 to + 19.5) 43

+20 to +39 (+19.5 to +39.5) 16

+40 to +59 (+39.5 to +59.5) 3

Data taken from Table 1.1.
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Table 1.3 Frequency Distribution of Serum Cholesterol

Changes Using 16 Class Intervals

Class interval Frequency

−100 to −91 1

−90 to −81 0

−80 to −71 1

−70 to −61 5

−60 to −51 6

−50 to −41 10

−40 to −31 14

−30 to −21 17

−20 to −11 22

−10 to −1 18

0 to +9 22

−10 to +19 21

+20 to +29 9

+30 to +39 7

+40 to +49 2

+50 to +59 1

of the data and good judgment. The number of intervals chosen should result in a table that
considerably improves the readability of the data. The following rules of thumb are useful to
help select the intervals for a frequency table:

1. Choose intervals that have significance in relation to the nature of the data. For example,
for the cholesterol data, intervals such as 18 to 32 would be cumbersome and confusing.
Intervals of width 10 or 20, such as those in Tables 1.2 and 1.3, are more easily comprehended
and manipulated arithmetically.

2. Try not to have too many empty intervals (i.e., intervals with no observations). The half of
the total number of intervals that contain the least number of observations should contain
at least 10% of the data. The intervals with the least number of observations in Table 1.2
are the first two intervals (−100 to −81 and −80 to −61) and the last two intervals (+ 20 to
+39 and +40 to +59) (one-half of the eight intervals), which contain 26% or 17% of the 156
observations.

3. Eight to twenty intervals are usually adequate.

Table 1.3 shows the same 156 serum cholesterol changes in a frequency table with 16
intervals. Which table gives you a better feeling for the results of this study, Table 1.2 or
Table 1.3? (See also Exercise Problem 3.)

The width of all the intervals, in general, should be the same. This makes the table easy to
read and allows for simple computations of statistics such as the mean and standard deviation.
The intervals should be mutually exclusive so that no ambiguity exists when classifying values.
In Tables 1.2 and 1.3, we have defined the intervals so that a value can be categorized only in one
class interval. In this way, we avoid problems that can arise when observations are exactly equal
to the boundaries of the class intervals. If the class intervals were defined so as to be continuous,
such as −100 to −90, −90 to −80, −80 to −70, and so on, one must define the class to which
a borderline value belongs, either the class below or the class above, a priori. For example, a
value of −80 might be defined to be in the interval −80 to −70.

Another way to construct the intervals is to have the boundary values have one more
“significant figure” than the actual measurements so that none of the values can fall on the
boundaries. The extra figure is conveniently chosen as 0.5. In the cholesterol example, measure-
ments were made to the nearest mg%; all values are whole numbers. Therefore, two adjacent
values can be no less different than 1 mg%, +10, and +11, for example. The class intervals could
then have a decimal of 0.5 at the boundaries, which means that no value can fall exactly on a
boundary value. The intervals in parentheses in Table 1.2 were constructed in this manner. This
categorization, using an extra figure that is halfway between the two closest possible values,
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makes sense from another point of view. After rounding off, a value of +20 can be considered to
be between 19.5 and 20.5, and would naturally be placed in the interval 19.5 to 39.5, as shown in
Table 1.2.

1.2.2 Stem-and-Leaf Plot
An expeditious and compact way of summarizing and tabulating large amounts of data, by
hand, known as the stem-and-leaf method [2], is best illustrated with an example. We will use the
data from Table 1.1 to demonstrate the procedure.

An ordered series of integers is conveniently chosen (see below) to cover the range of
values. The integers consist of the first digit(s) of the data, as appropriate, and are arranged
in a vertical column, the “stem.” By adding another digit(s) to one of the integers in the stem
column (the “leaves”), we can tabulate the data in class intervals as in a frequency table. For the
data of Table 1.1, the numbers range from approximately −100 to +60. The stem is conveniently
set up as follows:

−10 −7 −4 −1 +1 +4

−9 −6 −3 −0 +2 +5

−8 −5 −2 +0 +3 +6

In this example, the stem is the first digit(s) of the number and the leaf is the last digit. The
first value in Table 1.1 is 17. Therefore, we place a 7 (leaf) next to the + 1 in the stem column.
The next value in Table 1.1 is −22. We place a 2 (leaf) next to −2 in the stem column, and so
on. Continuing this process for each value in Table 1.1 results in the following stem-and-leaf
diagram.

−10

−9 7

−8

−7 1

−6 4 2 9 3 6 0

−5 0 4 4 3 8 0 8

−4 4 9 9 7 4 1 9 7

−3 2 1 1 4 4 9 7 9 4 8 9 1 0 7 2

−2 2 5 5 2 1 7 2 4 3 2 7 0 9 7 8 6 7

−1 9 0 3 2 2 2 7 1 5 1 1 3 4 0 8 1 8 9 9 6 7 7 5

−0 6 7 9 6 6 3 5 2 8 3 1 4 3 8 9 8

+0 0 4 0 9 0 9 2 5 1 1 8 0 2 5 5 6 5 6 6 2 9 1

+1 7 7 0 7 4 2 6 6 4 1 0 1 9 2 6 4 3 7 6 9 4

+2 4 7 4 3 5 1 0 1 0

+3 8 9 9 5 4 3 4

+4 6 0

+5 5

+6

This is a list of all the values in Table 1.1. The distribution of this data set is easily visualized
with no further manipulation. However, if necessary, one can easily construct a frequency dis-
tribution from the configuration of data resulting from the stem-and-leaf tabulation. (Note that
all categories in this particular example can contain as many as 10 different numbers except for
the −0 category, which can contain only 9 numbers, −1 to −9 inclusive. This “anomaly” occurs
because of the presence of both positive and negative values and the value 0. In this example,
0 is arbitrarily assigned a positive value.) In addition to the advantages of this tabulation noted
above, the data are in the form of a histogram, which is a common way of graphically displaying
data distributions (see chap. 2).
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Table 1.4 Frequency Distribution of Tablet Potencies

Frequency
Potency (mg) Wi

a Xi
b

89.5–90.5 1 90

90.5–91.5 0 91

91.5–92.5 2 92

92.5–93.5 1 93

93.5–94.5 5 94

94.5–95.5 1 95

95.5–96.5 2 96

96.5–97.5 7 97

97.5–98.5 10 98

98.5–99.5 8 99

99.5–100.5 13 100

100.5–101.5 17 101

101.5–102.5 13 102

102.5–103.5 9 103

103.5–104.5 0 104

104.5–105.5 0 105

105.5–106.5 5 106

106.5–107.5 4 107

107.5–108.5 0 108

108.5–109.5 0 109

109.5–110.5 2 110∑
Wi = 100

aWi is the frequency.
b Xi is the midpoint of the interval.

1.2.3 Cumulative Frequency Distributions
A large set of data can be conveniently displayed using a cumulative frequency table or plot.
The data are first ordered and, with a large data set, may be arranged in a frequency table with
n class intervals. The frequency, often expressed as a proportion (or percentage), of values equal
to or less than a given value, Xi, is calculated for each specified value of Xi, where Xi is the upper
point of the class interval (i = 1 to n). A plot of the cumulative proportion versus X can be used
to determine the proportion of values that lie in some interval, that is, between some specified
limits. The cumulative distribution for the tablet potencies in Table 1.4 is shown in Table 1.5 and

Table 1.5 Cumulative Frequency Distribution of Tablet Potencies

Potency, Xt(mg)a Cumulative frequency (≤X) Cumulative proportion

90.5 1 0.01

92.5 3 0.03

93.5 4 0.04

94.5 9 0.09

95.5 10 0.10

96.5 12 0.12

97.5 19 0.19

98.5 29 0.29

99.5 37 0.37

100.5 50 0.50

101.5 67 0.67

102.5 80 0.80

103.5 89 0.89

106.5 94 0.94

107.5 98 0.98

110.5 100 1.00

Data taken from Table 1.4.
a Xt is the upper point of the class interval in Table 1.4, excluding null intervals.
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Figure 1.1 Cumulative proportion plot for data in Table 1.5 (tablet potencies).

plotted in Figure 1.1. The cumulative proportion represents the proportion of values less than
or equal to Xi (e.g., 29% of the values are less than or equal to 98.5). Also, for example, from an
inspection of Figure 1.1, one can estimate the proportion of tablets with potencies between 100
and 105 mg inclusive, equal to approximately 0.48 (0.91 at 105 mg minus 0.43 at 100 mg). (See
also Exercise Problem 5.)

The cumulative distribution is a very important concept in statistics. In particular, the
application of the cumulative normal distribution, which is concerned with continuous data,
will be discussed in chapter 3. A more detailed account of the construction and interpretation
of frequency distributions is given in Refs. [3–5].

1.3 SAMPLE AND POPULATION
Understanding the concepts of samples and populations is important when discussing statistical
procedures. Samples are usually a relatively small number of observations taken from a relatively
large population or universe. The sample values are the observations, the data, obtained from
the population. The population consists of data with some clearly defined characteristic(s). For
example, a population may consist of all patients with a particular disease, or tablets from a
production batch. The sample in these cases could consist of a selection of patients to participate
in a clinical study, or tablets chosen for a weight determination. The sample is only part of
the available data. In the usual experimental situation, we make observations on a relatively
small sample in order to make inferences about the characteristics of the whole, the population.
The totality of available data is the population or universe. When designing an experiment,
the population should be clearly defined so that samples chosen are representative of the
population. This is important in clinical trials, for example, where inferences to the treatment
of disease states are crucial. The exact nature or character of the population is rarely known,
and often impossible to ascertain, although we can make assumptions about its properties.
Theoretically, a population can be finite or infinite in the number of its elements. For example,
a finished package contains a finite number of tablets; all possible tablets made by a particular
process, past, present, and future, can be considered infinite in concept. In most of our examples,
the population will be considered to be infinite, or at least very large compared to the sample
size. Table 1.6 shows some populations and samples, examples that should be familiar to the
pharmaceutical scientist.

1.3.1 Population Parameters and Sample Statistics
“Any measurable characteristic of the universe is called a parameter” [6]. For example, the
average weight of a batch of tablets or the average blood pressure of hypertensive persons
in the United States are parameters of the respective populations. Parameters are generally
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Table 1.6 Examples of Samples and Populations

Population Sample

Tablet batch Twenty tablets taken for content uniformity

Normal males between ages 18 and 65 years

available to hospital

Twenty-four subjects selected for a phase I clinical

study

Sprague–Dawley weaning rats 100 rats selected to test possible toxic effects of a

new drug candidate

Analysts working for company X Three analysts from a company to test a new

assay method

Persons with diastolic blood pressure between 105

and 120 mm Hg in the United States

120 patients with diastolic pressure between 105

and 120 mm Hg to enter clinical study to

compare two antihypertensive agents

Serum cholesterol levels of one patient Blood samples drawn once a week for 3 months

from a single patient

denoted by Greek letters; for example, the mean of the population is denoted as �. Note that
parameters are characteristic of the population, and are values that are usually unknown to us.

Quantities derived from the sample are called sample statistics. Corresponding to the true
average weight of a batch of tablets is the average weight for the small sample taken from the
population of tablets. We should be very clear about the nature of samples. Emphasis is placed
here (and throughout this book) on the variable nature of such sample statistics. A parameter,
for example, the mean weight of a batch of tablets, is a fixed value; it does not vary. Sample
statistics are variable. Their values depend on the particular sample chosen and the variabil-
ity of the measurement. The average weight of 10 tablets will differ from sample to sample
because

1. we choose 10 different tablets at each sampling;
2. the balance (and our ability to read it) is not exactly reproducible from one weighing to

another.

An important part of the statistical process is the characterization of a population by
estimating its parameters. The parameters can be estimated by evaluating suitable sample
statistics. The reader will probably have little trouble in understanding that the average weight
of a sample of tablets (a sample statistic) estimates the true mean weight (a parameter) of the
batch. This concept is elucidated and expanded in the remaining sections of this chapter.

1.4 MEASURES DESCRIBING THE CENTER OF DATA DISTRIBUTIONS

1.4.1 The Average
Probably the most familiar statistical term in popular use is the average, denoted by X (X bar).
The average is also commonly known as the mean or arithmetic average. The average is a sum-
marizing statistic and is a measure of the center of a distribution, particularly meaningful if
the data are symmetrically distributed below and above the average. Symbolically, the mean is
equal to

∑N
i=1 Xi

N
(1.1)

the sum of the observations divided by the number of observations.
∑N

i=1 Xi is the sum of the
N values, each denoted by Xi, (X1, X2, . . . , Xn), where i can take on the values 1, 2, 3, 4, . . . , n.‡

‡ For the most part, when using summation notation in this book, we will not use the full notation, such as∑N
i=1 Xi , but rather

∑
X, the i notation being implied, unless otherwise stated.
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The average of the values 7, 11, 6, 5, and 4 is

7 + 11 + 6 + 5 + 4
5

= 6.6.

This is an unweighted average, each value contributing equally to the average.

1.4.2 Other Kinds of Averages
When averaging observations, we usually think of giving each observation equal weight. The
usual formula for the average (

∑
Xi/N) gives each value equal weight. If we believe that the

values to be averaged do not carry the same weight, then we should use a weighted average.
The average of three cholesterol readings 210, 180, and 270 is (660)/3 = 220. Suppose that the
value of 210 is really the average of two values (200 and 220), we might want to consider giving
this value twice as much weight as the other two values, resulting in an average

210 + 210 + 180 + 270
4

= 217.5

or

2 × 210 + 180 + 270
2 + 1 + 1

= 217.5.

The formula for a weighted average, Xw is

∑
Wi Xi∑

Wi
, (1.2)

where Wi is the weight assigned to the value Xi. The weights for the calculation of a weighted
average are often the number of observations associated with the values Xi. This concept is
illustrated for the calculation of the average for data categorized in the form of a frequency
distribution. Table 1.4 shows a frequency distribution of 100 tablet potencies. The frequency
is the number of observations of tablets in a given class interval, as defined previously. The
frequency or number of tablets in a “potency” interval is the weight used in the computation of
the weighted average. The value X associated with the weight is taken as the midpoint of the
interval; for example, for the first interval, 89.5 to 90.5, X1 = 90. Applying Eq. (1.2), the weighted
average is

∑
Wi Xi/

∑
Wi :

1 × 90 + 0 × 91 + 2 × 92 + 1 × 93 + 5 × 94 + · · · + 4 × 107 + 2 × 110
1 + 0 + 2 + 1 + 5 + · · · + 4 + 2

,

which equals 10,023/100 = 100.23 mg.
It is not always obvious when to use a weighted average, and one should have a substantial

knowledge of the circumstances and nature of the data in order to make this decision. In the
previous example, if the 210 value (the average of two observations) came from one patient and
the other values were single observations from two different patients, one may not want to use a
weighted average. The reasoning in this example may be that this average is meant to represent
the true average cholesterol of these three patients, each with different cholesterol levels. There
does not seem to be a good reason to give twice as much weight to the “210” patient because
that patient happened to have two readings. This may be more clearly seen if the patient had
100 readings and the other two patients only a single reading. The unweighted average would
be very close to the average of the patient with the 100 readings and would not represent the
average of the three patients. In this example, the average of three values (one value for each
patient) would be a better representation of the average, (210 + 180 + 270)/3 = 220.
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Table 1.7 Distribution of Particle Size of Powder

Midpoint Log sieve
Sieve size Size (Y ) Weight (W) (WT ) × (Y )

10a 2.3026 19.260 44.3478

30 3.4012 24.015 81.6797

50 3.1920 22.240 87.0034

70 4.2485 7.525 31.9699

90 4.4998 6.515 29.3163

150b 5.0106 20.445 102.4424

Sum 100.00 376.7595

a10 is for sieve size less than 20, that is, between 0 and 20.
b150 is substituted for >100.

If the four values were obtained from one patient where the 210 average came from one
laboratory and the other two values from two different laboratories, the following reasoning
might be useful to understand how to treat the data properly. If the different laboratories used
the same analytical method that was expected to yield the same result, a weighted average
would be appropriate (give twice the weight to the 210 value). If the laboratories have different
methods that give different results for the same sample, an unweighted average may be more
appropriate.

The distribution of particle size of a powdered blend is often based on the logarithm of the
particle size (see sect. 10.1.1). The quantity (weight) of powder in a given interval of particle size
may be considered a weighting factor when computing the average particle size. Table 1.7 shows
the particle size distribution (frequency distribution) of a powder, where the class intervals are
based on the logarithm of the sieve size fractions. The weighted average can be calculated as

Xw =
∑

weight × (log sieve size)∑
(weights)

. (1.3)

The weight is the percentage of powder found for a given particle size (or interval of sieve
sizes). Note that for this example, the sieve size is taken as the midpoint of the untransformed
class (sieve size) interval.

From Eq. (1.3), weighted average = 376.7595/100.0 = 3.7676. Since sieve size is in log
terms, the antilog of 3.7676 = 43.3 is an estimate of the average particle size. (For more advanced
methods of estimating the parameters of particle size distributions, see Refs. [7,8].)

The calculation of the variance of a weighted average is dependent on the nature
of the weighted average and an experienced statistician should be consulted if neces-
sary (see SAS manual for options). This more advanced concept is discussed further in
section 1.5.5.

Two other kinds of averages that are sometimes found in statistical procedures are the
geometric and harmonic means. The geometric mean is defined as

n
√

X1 · X2 · X3 · · · Xn

or the nth root of the product of n observations.
The geometric mean of the numbers 50, 100, and 200 is

3
√

50 · 100 · 200 = 3
√

1,000,000 = 100.

If a measurement of population growth shows 50 at time 0, 100 after one day, and 200 after
two days, the geometric mean (100) is more meaningful than the arithmetic mean (116.7).
The geometric mean is always less than or equal to the arithmetic mean, and is meaning-
ful for data with logarithmic relationships. (See also sect. 15.1.1.) Note that the logarithm of
3
√

50 · 100 · 200 is equal to [log 50 + log 100 + log 200]/3, which is the average of the logarithms
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Figure 1.2 Average illustrated as balancing forces.

of the observations. The geometric mean is the antilog of this average (the antilog of the average
is 100).

The harmonic mean is the appropriate average following a reciprocal transformation
(chap. 10). The harmonic mean is defined as

N∑
1/Xi

.

For the three observations 2, 4, and 8 (N = 3), the harmonic mean is

3
1/2 + 1/4 + 1/8

= 3.429.

1.4.3 The Median
Although the average is the most often used measure of centrality, the median is also a common
measure of the center of a data set. When computing the average, very large or very small
values can have a significant effect on the magnitude of the average. For example, the average
of the numbers 0, 1, 2, 3, and 34 is 8. The arithmetic average acts as the fulcrum of a balanced
beam, with weights placed at points corresponding to the individual values, as shown in Figure
1.2. The single value 34 needs four values, 0, 1, 2, and 3, as a counterbalance. Also, the median
may be a more appropriate measure of central tendency for skewed distributions such as the
log-normal distribution (see sect. 10.1.1).

The median represents the center of a data set, without regard for the distance of each point
from the center. The median is the value that divides the data in half, half the values being less
than and half the values greater than the median value. The median is easily obtained when the
data are ranked in order of magnitude. The median of an odd number of different§ observations
is the middle value. For 2N + 1 values, the median is the (N + l)th ordered value. The median of
the data 0, 1, 2, 3, and 34 is the third (middle) value, 2(N = 2, 2N +1 = 5 values). By convention,
the median for an even number of data points is considered to be the average of the two center
points. For example, the median of the numbers, 0, 1, 2, and 3 is the average of the center points,
1 and 2, equal to (1 + 2)/2 = 1.5. The median is often used as a description of the center of a
data set when the data have an asymmetrical distribution. In the presence of either extremely
high or extremely low outlying values, the median appears to describe the distribution better
than does the average. The median is more stable than the average in the presence of extreme
observations. A very large or very small value has the same effect on the calculation of the
median as any other value, larger or smaller than the median, respectively. On the other hand,
as noted previously, very large and very small values have a significant effect on the magnitude
of the mean.

The distribution of individual yearly incomes, which have relatively few very large values
(the multimillionaires), serves as a good example of the use of the median as a descriptive
statistic. Because of the large influence of these extreme values, the average income is higher
than one might expect on an intuitive basis. The median income, which is less than the average
income, represents a figure that is readily interpreted; that is, one-half of the population earns
more (or less) than the median income.

The distribution of particle sizes for bulk powders used in pharmaceutical products is often
skewed. In these cases, the median is a better descriptor of the centrality of the distribution than

§ If the median value is not unique, that is, two or more values are equal to the median, the median is calculated
by interpolation (3).
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is the mean [9]. The median is less efficient than the mean as an estimate of the center of a
distribution; that is, the median is more variable [10]. For most of the problems discussed in this
book, we will be concerned with the mean rather than the median as a measure of centrality.

An interesting, but not well documented, relationship between the mean and median
shows that for positive numbers, the mean must be greater than half the median. This can be
proven simply as follows:

Consider 2N + 1 numbers whose median is “M” and mean is “m.” We will choose an
odd number of values so that the median is well defined. The mean, m, is the sum of all the
numbers divided by 2N + 1. Of the 2N + 1 numbers, N + 1 is greater than or equal to the
median, M. Therefore, m is greater than or equal to (N + 1)M/(2N + 1). But (N + 1)/(2N + 1) >
1/2. Therefore, m > M/2. Therefore the mean must be greater than half the median.

For example, consider the following extreme example. The data consist of the following
values: 1, 1, 1, 999.5, 1000, 10,001,000. The median is 999.5. The mean is 571.8. 571.8 is greater
than 999.5/2.

The median is also known as the 50th percentile of a distribution. To compute percentiles,
the data are ranked in order of magnitude, from smallest to largest. The nth percentile denotes
a value below which n% of the data are found, and above which (100 − n) % of the data are
found. The 10th, 25th, and 75th percentiles represent values below which 10%, 25%, and 75%,
respectively, of the data occur. For the tablet potencies shown in Table 1.5, the 10th percentile is
95.5 mg; 10% of the tablets contain less than 95.5 mg and 90% of the tablets contain more than
95.5 mg of drug. The 25th, 50th, and 75th percentiles are also known as the first, second, and
third quartiles, respectively.

The mode is less often used as the central, or typical, value of a distribution. The mode
is the value that occurs with the greatest frequency. For a symmetrical distribution that peaks
in the center, such as the normal distribution (see chap. 3), the mode, median, and mean are
identical. For data skewed to the right (e.g., incomes), which contain a relatively few very large
values, the mean is larger than the median, which is larger than the mode (Fig. 10.1).

1.5 MEASUREMENT OF THE SPREAD OF DATA
The mean (or median) alone gives no insight or information about the spread or range of values
that comprise a data set. For example, a mean of five values equal to 10 may comprise the
numbers

0, 5, 10, 15, and 20 or 5, 10, 10, 10, and 15.

The mean, coupled with the standard deviation or range, is a succinct and minimal descrip-
tion of a group of experimental observations or a data distribution. The standard deviation
and the range are measures of the spread of the data; the larger the magnitude of the standard
deviation or range, the more spread out the data are. A standard deviation of 10 implies a wider
range of values than a standard deviation of 3, for example.

1.5.1 Range
The range, denoted as R, is the difference between the smallest and the largest values in the data
set. For the data in Table 1.1, the range is 152, from −97 to +55 mg%. The range is based on only
two values, the smallest and largest, and is more variable than the standard deviation (i.e., it is
less stable).

1.5.2 Standard Deviation and Variance
The standard deviation, denoted as s.d. or S, is calculated as

√∑
(X − X)2

N − 1
, (1.4)

where N is the number of data points (or sample size) and
∑

(X − X)2 is the sum of squares of the
differences of each value from the mean, X. The standard deviation is more difficult to calculate
than is the range.
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Table 1.8 Calculation of the Standard Deviation

X X X − X (X − X)2

101.8 103 −1.2 1.44

103.2 103 0.2 0.04

104.0 103 1.0 1.00

102.5 103 −0.5 0.25

103.5 103 0.5 0.25∑
X = 515

∑
(X − X)2 = 2.98

s.d. =
√∑

(X − X)2

N − 1
=
√

2.98
4

= 0.86

Consider a group of data points: 101.8, 103.2, 104.0, 102.5, and 103.5. The mean is 103.0.
Details of the calculation of the standard deviation are shown in Table 1.8. The difference
between each value and the mean is calculated: X − X. These differences are squared, (X − X)2,
and summed. The sum of the squared differences divided by N − 1 is calculated, and the square
root of this result is the standard deviation.

With the accessibility of electronic calculators and computers, it is rare, nowadays, to hand
compute a mean and standard deviation (or any other calculation, for that matter). Nevertheless,
when computing the standard deviation by hand (or with the help of a calculator), a well-known
shortcut computing formula is recommended. The shortcut is based on the identity

∑
(X − X)2 =

∑
X2 − (

∑
X)2

N
.

Therefore,

s.d. =
√∑

X2 − (
∑

X)2
/ N

N − 1
, (1.5)

where
∑

X2 is the sum of each value squared and (
∑

X)2 is the square of the sum of all the
values [(

∑
X)2/N is also known as the correction term]. We will apply this important formula,

Eq. (1.5), to the data above to illustrate the calculation of the standard deviation. This result will
be compared to that obtained by the more time-consuming method of squaring each deviation
from the mean (Table 1.8).

∑
(X − X)2 = 101.82 + 103.22 + 104.02 + 102.52 + 103.52 − 5152

5
= 2.98.

The standard deviation is
√

2.98/4 = 0.86, as before.
The variance is the square of the standard deviation, often represented as S2. The variance

is calculated as

S2 =
∑

(X − X)2

N − 1
. (1.6)

In the example of the data in Table 1.8, the variance, S2, is

2.98
4

= 0.745.

A question that often puzzles new students of statistics is: Why use N − 1 rather than N in
the denominator in the expression for the standard deviation or variance [Eqs. (1.4) and (1.6)]?
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The variance of the population, a parameter traditionally denoted as �2 (sigma squared), is
calculated as¶:

�2 =
∑

(X − X)2

N
, (1.7)

where N is the number of all possible values in the population. The use of N − 1 rather than N
in the calculation of the variance of a sample (a sample statistic) makes the sample variance an
unbiased estimate of the population variance. Because the sample variance is variable (a random
variable), in any given experiment, S2 will not be exactly equal to the true population variance,
�2. However, in the long run, S2 (calculated with N − 1 in the denominator) will equal �2,
on the average. “On the average” means that if samples of size N were repeatedly randomly
selected from the population, and the variance calculated for each sample, the averages of these
calculated variance estimates would equal �2. Note that the sample variance is an estimate of
the true population variance �2.

If S2 estimates �2 on the average, the sample variance is an unbiased estimate of the
population variance. It can be proven that the sample variance calculated with N − 1 in the
denominator is an unbiased estimate of �2. To try to verify this fact by repeating exactly the same
laboratory or clinical experiment (if the population variance were known) would be impractical.
However, for explanatory purposes, it is often useful to illustrate certain theorems by showing
what would happen upon repeated sampling from the same population. The concept of the
unbiased nature of the sample variance can be demonstrated using a population that consists of
three values: 0, 1, and 2. The population variance,

∑
(X − X)2/3, is equal to 2/3 [see Eq. (1.7)].

Using the repeated sample approach noted above, samples of size 2 are repeatedly selected at
random from this population. The first choice is replaced before selection of the second choice
so that each of the three values has an equal chance of being selected on both the first and second
selection. (This is known as sampling with replacement.) The following possibilities of samples of
size 2 are equally likely to be chosen:

0, 1; 1, 0; 0, 2; 2, 0; 1, 2; 2, 1; 1, 1; 2, 2; 0, 0

The sample variance∗∗ of these nine pairs are [
∑

(X − X)2/(N − 1)] 0.5, 0.5, 2, 2, 0.5, 0.5,

0, 0, and 0, respectively. The average of the nine equally likely possible variances is

0.5 + 0.5 + 2 + 2 + 0.5 + 0.5 + 0 + 0 + 0
9

= 6
9

= 2
3
,

which is exactly equal to the population variance. This demonstrates the unbiased character of
the sample variance. The sample standard deviation [Eq. (1.4)] is not an unbiased estimate of
the population standard deviation, �, which for a finite population is calculated as

√∑
(X − X)2

N
. (1.8)

The observed variance is not dependent on the sample size. The sample variance will
equal the true variance “on the average,” but the variability of the estimated variance decreases
as the sample size increases. The unbiased nature of a sample estimate of a population parameter,
such as the variance or the mean, is a desirable characteristic. X, the sample estimate of the true
population mean, is also an unbiased estimate of the true mean. (The true mean is designated
by the Greek letter �. In general, population parameters are denoted by Greek letters as noted
previously.)

¶ Strictly speaking, this formula is for a population with a finite number of data points.
∗∗ For samples of size 2, the variance is simply calculated as the square of the difference of the values divided by

2, d2/2. For example, the variance of 0 and 1 is (1 – 0)2/2 = 0.5.
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One should be aware that some calculators having a built-in function for calculating the
standard deviation use N in the denominator of the formula for the standard deviation. As we
have emphasized above, this is correct for the calculation of the population standard deviation
(or variance), and will be close to the calculation of the sample standard deviation when N is
large.

The value of N − 1 is also known as the degrees of freedom for the sample (later we will
come across situations where degrees of freedom are less than N − 1). The concept of degrees of
freedom (denoted as d.f.) is very important in statistics, and we will have to know the degrees
of freedom for the variance estimates used in statistical tests to be described in subsequent
chapters.

Another common misconception is that the standard deviation (or variance) of a sample
becomes smaller as the sample size increases. The standard deviation of a sample is an estimate
of the true standard deviation. The true standard deviation is a constant and does not change
with a change in sample size. However, we can say that the estimate of the true standard
deviation as observed in a sample is more reliable and less variable as the sample size increases.
But, on the average, the standard deviation of a small or large sample will approximate the true
standard deviation. As discussed later in this chapter (sect. 1.5.4), the standard deviation of a
mean will decrease with larger sample sizes.

1.5.3 Coefficient of Variation
The variability of data may often be better described as a relative variation rather than as an
absolute variation, such as that represented by the standard deviation or range. One common
way of expressing the variability, which takes into account its relative magnitude, is the ratio
of the standard deviation to the mean, s.d./X. This ratio, often expressed as a percentage, is
called the coefficient of variation, abbreviated as CV, or RSD, the relative standard deviation.
A CV of 0.1 or 10% means that the s.d. is one-tenth of the mean. This way of expressing
variability is useful in many situations. It puts the variability in perspective relative to the
magnitude of the measurements and allows a comparison of the variability of different kinds
of measurements. For example, a group of rats of average weight 100 g and s.d. of 10 g has the
same relative variation (CV) as a group of animals with average weight 70 g and s.d. of 7 g.
Many measurements have an almost constant CV, the magnitude of the s.d. being proportional
to the mean. In biological data, the CV is often between 20% and 50%, and one would not be
surprised to see an occasional CV as high as 100% or more. The relatively large CV observed
in biological experiments is due mostly to “biological variation,” the lack of reproducibility in
living material. On the other hand, the variability in chemical and instrumental analyses of
drugs is usually relatively small. Thus it is not unusual to find a CV of less than 1% for some
analytical procedures.

1.5.4 Standard Deviation of the Mean (Standard Error of the Mean)
The s.d. is a measure of the spread of a group of individual observations, a measure of their
variability. In statistical procedures to be discussed in this book, we are more concerned with
making inferences about the mean of a distribution rather than with individual values. In
these cases, the variability of the mean rather than the variability of individual values is of
interest. The sample mean is a random variable, just as the individual values that comprise the
mean are variable. Thus, repeated sampling of means from the same population will result in a
distribution of means that has its own mean and s.d.

The standard deviation of the mean, commonly known as the standard error of the mean, is a
measure of the variability of the mean. For example, the average potency of the 100 tablets shown
in Table 1.4 may have been determined to estimate the average potency of the population, in
this case, a production batch. An estimate of the variability of the mean value would be useful.
The mean tablet potency is 100.23 mg and the s.d. is 3.687. To compute the s.d. of the mean (also
designated as SX), we might assay several more sets of 100 tablets and calculate the mean potency
of each sample. This repeated sampling would result in a group of means, each composed of
100 tablets, with different values, such as the five means shown in Table 1.9. The s.d. of this
group of means can be calculated in the same manner as the individual values are calculated
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Table 1.9 Means of Potencies of Five Sets of

100 Tablets Selected from a Production Batch

Sample Mean potency

1 99.84

2 100.23

3 100.50

4 100.96

5 100.07

[Eq. (1.4)]. The s.d. of these five means is 0.431. We can anticipate that the s.d. of the means will
be considerably smaller than the s.d. calculated from the 100 individual potencies. This fact is
easily comprehended if one conceives of the mean as “averaging out” the extreme individual
values that may occur among the individual data. The means of very large samples taken from
the same population are very stable, tending to cluster closer together than the individual data,
as illustrated in Table 1.9.

Fortunately, we do not have to perform real or simulated sampling experiments, such as
weighing five sets of 100 tablets each, to obtain replicate data in order to estimate the s.d. of
means. Statistical theory shows that the s.d. of mean values is equal to the s.d. calculated from
the individual data divided by

√
N, where N is the sample size††:

SX = S√
N

. (1.9)

The s.d. of the numbers shown in Table 1.4 is 3.687. Therefore, the s.d. of the mean for
the potencies of 100 tablets shown in Table 1.4 is estimated as S/

√
N = 3.687/

√
100 = 0.3687.

This theory verifies our intuition; the s.d. of means is smaller than the s.d. of the individual
data points. The student should not be confused by the two estimates of the s.d. of the mean
illustrated above. In the usual circumstance, the estimate is derived as S/

√
N (0.3687 in this

example). The data in Table 1.3 were used only to illustrate the concept of a s.d. of a mean. In
any event, the two estimates are not expected to agree exactly; after all SX is also a random
variable and only estimates the true value, �/

√
N .

As the sample size increases, the s.d. of the mean becomes smaller and smaller. We can
reduce the s.d. of the mean, SX , to a very small value by increasing N. Thus means of very large
samples hardly vary at all. The concept of the s.d. of the mean is important, and the student will
find it well worth the extra effort made to understand the meaning and implications of SX.

1.5.5 Variance of a Weighted Average‡‡

The general formula for the variance of a weighted average is

S2
w =

(∑
W2

i S2
i

)
(
∑

Wi )
2 (1.10)

where S2
i is the variance of the ith observation. To compute the variance of the weighted mean,

we would need to have an estimate of the variance of each observation.
If the weights of the observations are taken to be 1

/
S2

i (the reciprocal of the variance, a
common situation), then S2

w = 1
/∑

(1
/

S2
i ). This formula can be applied to the calculation of

the variance of the grand average of a group of i means where the variance of the individual
observations is constant, equal to S2. (We know that the variance of the grand average is S2/N,
where N = ∑

ni .) The variance of each mean, S2
i , is S2/ni , where ni is the number of observations

†† The variance of a mean, S2
X
, is S2/N.

‡‡ This is a more advanced topic.
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in group i. In this example, the weights are considered to be the reciprocal of the variance, and
S2

w = 1/
∑

(ni
/

S2) = S2/
∑

ni . Of course, we need to know S2 (or have an estimate) in order
to calculate (or estimate) the variance of the average. An estimate of the variance, S2, in this
example is

∑
ni (Yi − Yw)2/(N − 1), where the ni acts as the weights and N is the number of

observations.
The following calculation can be used to estimate the variance where a specified number

of observations is available as a measure of the weight (as in a set of means). The variance of a
set of weighted data can be estimated as follows:

estimated variance =
∑

Wi
(
Yi − Yw

)2∑
Wi − 1

, (1.11)

where Wi is the weight associated with Yi, and Yw = weighted average of Y.
A shortcut formula is

[∑(
Wi Y2

i

)−∑
(Wi Yi )2

/∑
(Wi )

]
∑

Wi − 1
. (1.12)

Example:

The diameters of 100 particles were measured with the results shown in Table 1.10.
From Eq. (1.12), the variance is estimated as [89,375 − (2425)2/100]/99 = 308.8. s.d. = √

308.8 =
17.6. The s.d. of the mean is 17.6/

√
100 = 1.76. Note: The weighted average is 2425/100 =

24.25.
In this example, it makes sense to divide the corrected sum of squares by (N − 1), because this

sum of squares is computed using data from 100 particles. In some cases, the computation
of the variance is not so obvious.

1.6 CODING
From both a practical and a theoretical point of view, it is useful to understand how the mean
and s.d. of a group of numbers are affected by certain arithmetic manipulations, particularly
adding a constant to, or subtracting a constant from each value; and multiplying or dividing
each value by a constant.

Consider the following data to exemplify the results described below:

2, 3, 5, 10

Mean = X = 5
Variance = S2 = 12.67
Standard deviation = S = 3.56

Table 1.10 Data for Calculation of Variance of a Weighted Mean

Diameter (m) Midpoint
Number of particles

= weight Weight × midpoint Weight × midpoint2

Yi Wi WiYi WiY2
i

0–10 5 25 125 625

10–20 15 35 525 7875

30–40 35 15 525 18,375

40–60 50 25 1250 62,500

Sum 100 2425 89,375
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1. Addition or subtraction of a constant will cause the mean to be increased or decreased by
the constant, but will not change the variance or s.d. For example, adding + 3 to each value
results in the following data:

5, 6, 8, 13

X = 8
S = 3.56

Subtracting 2 from each value results in

0, 1, 3, 8

X = 3
S = 3.56

This property may be used to advantage when hand calculating the mean and s.d. of very
large or cumbersome numbers. Consider the following data:

1251, 1257, 1253, 1255

Subtracting 1250 from each value we obtain

1, 7, 3, 5

X = 4
S = 2.58

To obtain the mean of the original values, add 1250 to the mean obtained above, 4. The
s.d. is unchanged. For the original data

X = 1250 + 4 = 1254
S = 2.58

This manipulation is expressed in Eq. (1.13) where Xi represents one of n observations
from a population with variance �2. C is a constant and X is the average of the Xi’s.

Average (Xi + C) =
∑ Xi + C

n
= X + C

Variance (Xi + C) = �2 (1.13)

2. If the mean of a set of data is X and the s.d. is S, multiplying or dividing each value by
a constant k results in a new mean of k X or X

/
k, respectively, and a new s.d. of kS or S/k,

respectively. Multiplying each of the original values above by 3 results in

6, 9, 15, 30

X = 15 (3 × 5)
S = 10.68 (3 × 3.56)
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Dividing each value by 2 results in

1, 1.5, 2.5, 5

X = 2.5
(

5
2

)

S = 1.78
(

3.56
2

)

In general,

Average (C · Xi ) = C X
Variance (C · Xi ) = C2�2 (1.14)

These results can be used to show that a set of data with mean X and s.d. equal to S can
be converted to data with a mean of 0 and a s.d. of 1 (as in the “standardization” of normal
curves, discussed in sect. 3.4.1). If the mean is subtracted from each value, and this result is
divided by S, the resultant data have a mean of 0 and a s.d. of 1. The transformation is

X − X
S

. (1.15)

Standard scores are values that have been transformed according to Eq. (1.15) [11]. For
the original data, the first value 2 is changed to (2 − 5)/3.56 equal to −0.84. The interested
reader may verify that transforming the values in this way results in a mean of 0 and a s.d. of 1.

1.7 PRECISION, ACCURACY, AND BIAS
When dealing with variable measurements, the definitions of precision and accuracy, often
obscure and not distinguished in ordinary usage, should be clearly defined from a statisti-
cal point of view.

1.7.1 Precision
In the vocabulary of statistics, precision refers to the extent of variability of a group of mea-
surements observed under similar experimental conditions. A precise set of measurements is
compact. Observations, relatively close in magnitude, are considered to be precise as reflected
by a small s.d. (Note that means are more precisely measured than individual observations
according to this definition.) An important, sometimes elusive concept is that a precise set of
measurements may have the same mean as an imprecise set. In most experiments with which
we will be concerned, the mean and s.d. of the data are independent (i.e., they are unrelated).
Figure 1.3 shows the results of two assay methods, each performed in triplicate. Both methods
have an average result of 100%, but method II is more precise.

Figure 1.3 Representation of two analytical methods with the same accuracy but different precisions.
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Figure 1.4 In vitro dissolution results for two formulations using two different methods and in vivo blood level

versus time results. Methods A and B, in vitro; C, in vivo.

1.7.2 Accuracy
Accuracy refers to the closeness of an individual observation or mean to the true value. The
“true” value is the result that would be observed in the absence of error (e.g., the true mean
tablet potency or the true drug content of a preparation being assayed). In the example of the
assay results shown in Figure 1.3, both methods are apparently equally accurate (or inaccurate).

Figure 1.4 shows the results of two dissolution methods for two formulations of the same
drug, each formulation replicated four times by each method. The objective of the in vitro
dissolution test is to simulate the in vivo oral absorption of the drug from the two dosage-form
modifications. The first dissolution method, A, is very precise but does not give an accurate
prediction of the in vivo results. According to the dissolution data for method A, we would
expect that formulation I would be more rapidly and extensively absorbed in vivo. The actual
in vivo results depicted in Figure 1.4 show the contrary result. The less precise method, method
B in this example, is a more accurate predictor of the true in vivo results. This example is
meant to show that a precise measurement need not be accurate, nor an accurate measurement
precise.

Of course, the best circumstance is to have data that are both precise and accurate. If
possible, we should make efforts to improve both the accuracy and precision of experimental
observations. For example, in drug analysis, advanced electronic instrumentation can greatly
increase the accuracy and precision of assay results.

1.7.3 Bias
Accuracy can also be associated with the term bias. The notion of bias has been discussed in
section 1.4 in relation to the concept of unbiased estimates (e.g., the mean and variance). The
meaning of bias in statistics is similar to the everyday definition in terms of “fairness.” An
accurate measurement, no matter what the precision, can be thought of as unbiased, because an
accurate measurement is a “fair” estimate of the true result. A biased estimate is systematically
either higher or lower than the true value. A biased estimate can be thought of as giving an
“unfair” notion of the true value. For example, when estimating the average result of experi-
mental data, the mean, X, represents an estimate of the true population parameter, �, and in this
sense is considered accurate and unbiased. An average blood pressure reduction of 10 mm Hg
due to an antihypertensive agent, derived from data from a clinical study of 200 patients, can
be thought of as an unbiased estimate of the true blood pressure reduction due to the drug,
provided that the patients are appropriately selected at “random.” The true reduction in this
case is the average reduction that would be observed if the antihypertensive effect of the drug
were known for all members of the population (e.g., all hypertensive patients). The outcome of
a single experiment, such as the 10 mm Hg reduction observed in the 200 patients above, will in
all probability not be identical to the true mean reduction. But the mean reduction as observed
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Figure 1.5 Bias in determining the effect of an antihypertensive drug.

in the 200 patients is an accurate and unbiased assessment of the population average. A biased
estimate is one which, on the average, does not equal the population parameter. In the example
cited above for hypertensives, a biased estimate would result if for all patients one nurse took all
the measurements before therapy and another nurse took all measurements during therapy, and
each nurse had a different criterion or method for determining blood pressure. See Figure 1.5 for
a clarification as to why this procedure leads to a biased estimate of the drug’s effectiveness in
reducing blood pressure. If the supine position results in higher blood pressure than the sitting
position, the results of the study will tend to show a bias in the direction of too large a blood
pressure reduction.

The statistical estimates that we usually use, such as the mean and variance, are unbiased
estimates. Bias often results from (a) the improper use of experimental design; (b) improper
choice of samples; (c) unconscious bias, due to lack of blinding, for example; or (d) improper
observation and recording of data, such as that illustrated in Figure 1.5.

1.8 THE QUESTION OF SIGNIFICANT FIGURES
The question of significant figures is an important consideration in statistical calculations and
presentations. In general, the ordinary rules for retaining significant figures are not applicable to
statistical computations. Contrary to the usual rules for retaining significant figures, one should
retain as many figures as possible when performing statistical calculations, not rounding off
until all computations are complete.

The reason for not rounding off during statistical computations is that untenable answers
may result when using computational procedures that involve taking differences between values
very close in magnitude if values are rounded off prior to taking differences. This may occur
when calculating “sums of squares” (the sum of squared differences from the mean) using the
shortcut formula, Eq. (1.4), for the calculation of the variance or s.d. The shortcut formula for∑

(X − X)2 is
∑

X2 − (
∑

X)2/N that cannot be negative, and will be equal to zero only if all the
data have the same value. If the two terms,

∑
X2 and (

∑
X)2

/N, are very similar in magnitude,
rounding off before taking their difference may result in a zero or negative difference. This
problem is illustrated by calculating the s.d. of the three numbers 1.19, 1.20, and 1.21. If the
squares of these numbers are first rounded off to two decimal places, the following calculation
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of the s.d. results:

S =

√√√√∑
(X2 −∑

X)2
/

N

N − 1
=
√

1.42 + 1.44 + 1.46 − 3.62/3
2

=
√

4.32 − 4.32
2

= 0.

The correct s.d. calculated without rounding off is 0.01.
Computers and calculators carry many digits when performing calculations and do not

round off further unless instructed to do so. These instruments retain as many digits as their
capacity permits through all arithmetic computations. The possibility of rounding off, even
considering the large capacity of modern computers, can cause unexpected problems in sophis-
ticated statistical calculations, and must be taken into account in preparing statistical software
programs. These problems can usually be overcome by using special programming techniques.

At the completion of the calculations, as many figures as are appropriate to the situation
can be presented. Common sense and the usual rules for reporting significant figures should
be applied (see Ref. [9] for a detailed discussion of significant figures). Sokal and Rohlf [9]
recommend that, if possible, observations should be measured with enough significant figures
so that the range of data is between 30 and 300 possible values. This flexible rule results in a
relative error of less than 3%. For example, when measuring diastolic blood pressure, the range
of values for a particular group of patients might be limited to 60 to 130 mm Hg. Therefore,
measurements to the nearest mm Hg would result in approximately 70 possible values, and
would be measured with sufficient accuracy according to this rule. If the investigator can make
the measurement only in intervals of 2 mm Hg (e.g., 70 and 72 mm Hg can be measured, but not
71 mm Hg), we would have 35 possible data points, which is still within the 30 to 300 suggested
by this rule of thumb. Of course, rules should not be taken as “written in stone.” All rules should
be applied with judgment.

Common sense should be applied when reporting average results. For example, reporting
an average blood pressure reduction of 7.42857 for 14 patients treated with an antihypertensive
agent would not be appropriate. As noted above, most physicians would say that blood pressure
is rarely measured to within 2 mm Hg. Why should one bother to report any decimals at all for
the average result? When reporting average results, it is generally good practice to report the
average with a precision that is “reasonable” according to the nature of the data. An average of
7.4 mm Hg would probably suffice for this example. If the average were reported as 7 mm Hg,
for example, it would appear that too much information is suppressed.

KEY TERMS
Accuracy Precision
Attributes Random variable
Average (X) Range
Bias Ranking
Coding Rating scale
Coefficient of variation (CV) Sample
Continuous variables Significant figures
Correction term (CT) Standard deviation (s.d., S)
Cumulative distribution Standard error of the mean (S X)
Degrees of freedom (d.f.) Standard score
Discrete variables Treatment
Frequency distribution Unbiased sample
Geometric mean Universe
Harmonic mean Variability
Mean (X) Variable
Median Weighted average
Population
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EXERCISES
1. List three experiments whose outcomes will result in each of the following kinds of

variables:
(a) Continuous variables
(b) Discrete variables
(c) Ordered variables
(d) Categorical (attribute) variables

2. What difference in experimental conclusions, if any, would result if the pain scale dis-
cussed in section 1.1 were revised as follows no pain = 6, slight pain = 4, moderate
pain = 2, and severe pain = 0? (Hint: see sect. 1.6.)

3. (a) Construct a frequency distribution containing 10 class intervals from the data in
Table 1.1.

(b) Construct a cumulative frequency plot based on the frequency distribution from
part (a).

4. What is the average result based on the frequency distribution in part (a) of problem 3?
Use a weighted-average procedure.

5. From Figure 1.1, what proportion of tablets have potencies between 95 and 105 mg?
What proportion of tablets have a potency greater than 105 mg?

6. Calculate the average and standard deviation of (a) the first 20 values in Table 1.1, and (b)
the last 20 values in Table 1.1. If these data came from two different clinical investigators,
would you think that the differences in these two sets of data can be attributed to
differences in clinical sites? Which set, the first or last, is more precise? Explain your
answer.

7. What are the median and range of the first 20 values in Table 1.1?

8. (a) If the first value in Table 1.1 were +100 instead of +17, what would be the values of
the median and range for the first 20 values?

(b) Using the first value as 100, calculate the mean, standard deviation, and variance.
Compare the results for these first 20 values to the answers obtained in Problem 6.

§§∗∗9. Given the following sample characteristics, describe the population from which the
sample may have been derived. The mean is 100, the standard deviation is 50, the
median is 75, and the range is 125.

∗∗10. If the population average for the cholesterol reductions shown in Table 1.1 were some-
how known to be 0 (the drug does not affect cholesterol levels on the average), would
you believe that this sample of 156 patients gives an unbiased estimate of the true aver-
age? Describe possible situations in which these data might yield (a) biased results; (b)
unbiased results.

∗∗11. Calculate the average standard deviation using the sampling experiment shown in sec-
tion 1.5.2 for samples of size 2 taken from a population with values of 0, 1, and 2 (with
replacement). Compare this result with the population standard deviation. Is the sample
standard deviation an unbiased estimate of the population standard deviation?

12. Describe another situation that would result in a biased estimate of blood pressure
reduction as discussed in section 1.7.3 (Fig. 1.5).

13. Verify that the standard deviation of the values 1.19, 1.20, and 1.21 is 0.01 (see sect. 1.8).
What is the standard deviation of the numbers 2.19, 2.20, and 2.21? Explain the result of
the two calculations above.

§§ The double asterisk indicates optional, more difficult problems.
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14. For the following blood pressure measurements: 100, 98, 101, 94, 104, 102, 108, 108,
calculate (a) the mean, (b) the standard deviation, (c) the variance, (d) the coefficient of
variation, (e) the range, and (f) the median.

∗∗15. Calculate the standard deviation of the grouped data in Table 1.2. (Hint : S2 =[∑
Ni X2

i − (
∑

Ni Xi )2/(
∑

Ni )
]
/(
∑

Ni − 1); see Ref. [3]. Ni = frequency per group with
midpoint Xi )

16. Compute the arithmetic mean, geometric mean, and harmonic mean of the following set
of data. 3, 5, 7, 11, 14, 57

If these data were observations on the time needed to cure a disease, which mean
would you think to be most appropriate?

17. If the weights are 2, 1, 1, 3, 1, and 2 for the numbers 3, 5, 7, 11, 14, and 57 (Exercise 16),
compute the weighted average and variance.
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2 DATA GRAPHICS

“The preliminary examination of most data is facilitated by the use of diagrams. Diagrams prove
nothing, but bring outstanding features readily to the eye; they are therefore no substitute for
such critical tests as may be applied to the data, but are valuable in suggesting such tests, and in
explaining the conclusions founded upon them.” This quote is from Ronald A. Fisher, the father
of modern statistical methodology [1]. Tabulation of raw data can be thought of as the initial
and least refined way of presenting experimental results. Summary tables, such as frequency
distribution tables, are much easier to digest and can be considered a second stage of refine-
ment of data presentation. Summary statistics such as the mean, median, variance, standard
deviation, and the range are concise descriptions of the properties of data, but much informa-
tion is lost in this processing of experimental results. Graphical methods of displaying data
are to be encouraged and are important adjuncts to data analysis and presentation. Graphical
presentations clarify and also reinforce conclusions based on formal statistical analyses. Finally,
the researcher has the opportunity to design aesthetic graphical presentations that command
attention. The popular cliché “A picture is worth a thousand words” is especially apropos to
statistical presentations. We will discuss some key concepts of the various ways in which data
are depicted graphically.

2.1 INTRODUCTION
The diagrams and plots that we will be concerned with in our discussion of statistical methods
can be placed broadly into two categories:

1. Descriptive plots are those whose purpose is to transmit information. These include dia-
grams describing data distributions such as histograms and cumulative distribution plots
(see sect. 1.2.3). Bar charts and pie charts are examples of popular modes of communicating
survey data or product comparisons.

2. Plots that describe relationships between variables usually show an underlying, but unknown
analytic relationship between the variables that we wish to describe and understand. These
relationships can range from relatively simple to very complex, and may involve only two
variables or many variables. One of the simplest relationships, but probably the one with
greatest practical application, is the straight-line relationship between two variables, as
shown in the Beer’s law plot in Figure 2.1. Chapter 7 is devoted to the analysis of data
involving variables that have a linear relationship.

When analyzing and depicting data that involve relationships, we are often presented
with data in pairs (X, Y pairs). In Figure 2.1, the optical density Y and the concentration X are
the data pairs. When considering the relationship of two variables, X and Y, one variable can
often be considered the response variable, which is dependent on the selection of the second
or causal variable. The response variable Y (optical density in our example) is known as the
dependent variable. The value of Y depends on the value of the independent variable, X (drug
concentration). Thus, in the example in Figure 2.1, we think of the value of optical density as
being dependent on the concentration of drug.

2.2 THE HISTOGRAM
The histogram, sometimes known as a bar graph, is one of the most popular ways of presenting
and summarizing data. All of us have seen bar graphs, not only in scientific reports but also in
advertisements and other kinds of presentations illustrating the distribution of scientific data.
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Figure 2.1 Beer’s law plot illustrating a linear relationship between two variables.

The histogram can be considered as a visual presentation of a frequency table. The frequency, or
proportion, of observations in each class interval is plotted as a bar, or rectangle, where the area
of the bar is proportional to the frequency (or proportion) of observations in a given interval.
An example of a histogram is shown in figure 2.2, where the data from the frequency table in
Table 1.2 have been used as the data source. As is the case with frequency tables, class intervals
for histograms should be of equal width. When the intervals are of equal width, the height of
the bar is proportional to the frequency of observations in the interval. If the intervals are not of
equal width, the histogram is not easily or obviously interpreted, as shown in Figure 2.2(B).

The choice of intervals for a histogram depends on the nature of the data, the distribution
of the data, and the purpose of the presentation. In general, rules of thumb similar to that used

Figure 2.2 Histogram of data derived from

Table 1.2.
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for frequency distribution tables (sect. 1.2) can be used. Eight to twenty equally spaced intervals
usually are sufficient to give a good picture of the data distribution.

2.3 CONSTRUCTION AND LABELING OF GRAPHS
Proper construction and labeling of graphs are crucial elements in graphical data representation.
The design and actual construction of graphs are not in themselves difficult. The preparation
of a good graph, however, requires careful thought and competent technical skills. One needs
not only a knowledge of statistical principles, but also, in particular, computer and drafting
competency. There are no firm rules for preparing good graphical presentations. Mostly, we
rely on experience and a few guidelines. Both books and research papers have addressed the
need for a more scientific guide to optimal graphics that, after all, is measured by how well the
graph communicates the intended messages(s) to the individuals who are intended to read and
interpret the graphs. Still, no rules will cover all situations. One must be clear that no matter
how well a graph or chart is conceived, if the draftsmanship and execution is poor, the graph
will fail to achieve its purpose.

A “good” graph or chart should be as simple as possible, yet clearly transmit its intended
message. Superfluous notation, confusing lines or curves, and inappropriate draftsmanship
(lettering, etc.) that can distract the reader are signs of a poorly constructed graph. The books
Statistical Graphics, by Schmid [2], and The Visual Display of Quantitative Information by Tufte
[3] are recommended for those who wish to study examples of good and poor renderings of
graphic presentations. For example, Schmid notes that visual contrast should be intentionally
used to emphasize important characteristics of the graph. Here, we will present a few examples
to illustrate the recommendations for good graphic presentation as well as examples of graphs
that are not prepared well or fail to illustrate the facts fairly.

Figure 2.3 shows the results of a clinical study that was designed to compare an active
drug to a placebo for the treatment of hypertension. This graph was constructed from the X, Y
pairs, time and blood pressure, respectively. Each point on the graph (+ , �) is the average blood
pressure for either drug or placebo at some point in time subsequent to the initiation of the
study.

Proper construction and labeling of the typical rectilinear graph should include the fol-
lowing considerations:

1. A title should be given. The title should be brief and to the point, enabling the reader to
understand the purpose of the graph without having to resort to reading the text. The title
can be placed below or above the graph as in Figure 2.3.

2. The axes should be clearly delineated and labeled. In general, the zero (0) points of both axes
should be clearly indicated. The ordinate (the Y axis) is usually labeled with the description
parallel to the Y axis. Both the ordinate and abscissa (X axis) should be each appropriately
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Figure 2.3 Blood pressure as a function of time in a clinical study comparing drug and placebo with a regimen

of one tablet per day. �, placebo (average of 45 patients); +, drug (average of 50 patients).
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Figure 2.4 Various graphs of the same data presented in different ways. Exercise time at various time intervals

after administration of single doses of two nitrate products. � = Drug I, � = Drug II.

labeled and subdivided in units of equal width (of course, the X and Y axes almost always
have different subdivisions). In the example in Figure 2.3, note the units of mm Hg and
weeks for the ordinate and abscissa, respectively. Grid lines may be added [Fig. 2.4(E)] but,
if used, should be kept to a minimum, not be prominent and should not interfere with the
interpretation of the figure.

3. The numerical values assigned to the axes should be appropriately spaced so as to nicely
cover the extent of the graph. This can easily be accomplished by trial and error and a little
manipulation. The scales and proportions should be constructed to present a fair picture of
the results and should not be exaggerated so to prejudice the interpretation. Sometimes, it
may be necessary to skip or omit some of the data to achieve this objective. In these cases,
the use of a “broken line” is recommended to clearly indicate the range of data not included
in the graph (Fig. 2.4).
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4. If appropriate, a key explaining the symbols used in the graph should be used. For example,
at the bottom of Figure 2.3, the key defines � as the symbol for placebo and + for drug. In
many cases, labeling the curves directly on the graph (Fig. 2.4) results in more clarity.

5. In situations where the graph is derived from laboratory data, inclusion of the source of the
data (name, laboratory notebook number, and page number, for example) is recommended.

Usually graphs should stand on their own, independent of the main body of the text.
Examples of various ways of plotting data, derived from a study of exercise time at various

time intervals after administration of a single dose of two long-acting nitrate products to anginal
patients, are shown in Figures 2.4(A) to 2.4(E). All of these plots are accurate representations of
the experimental results, but each gives the reader a different impression. It would be wrong to
expand or contract the axes of the graph, or otherwise distort the graph, in order to convey an
incorrect impression to the reader. Most scientists are well aware of how data can be manipulated
to give different impressions. If obvious deception is intended, the experimental results will not
be taken seriously.

When examining the various plots in Figure 2.4, one could not say which plot best repre-
sents the meaning of the experimental results without knowledge of the experimental details,
in particular the objective of the experiment, the implications of the experimental outcome, and
the message that is meant to be conveyed. For example, if an improvement of exercise time of
120 seconds for one drug compared to the other is considered to be significant from a medical
point of view, the graphs labeled A, C, and E in Figure 2.4 would all seem appropriate in con-
veying this message. The graphs labeled B and D show this difference less clearly. On the other
hand, if 120 seconds is considered to be of little medical significance, B and D might be a better
representation of the data.

Note that in plot A of Figure 2.4, the ordinate (exercise time) is broken, indicating that
some values have been skipped. This is not meant to be deceptive, but is intentionally done
to better show the differences between the two drugs. As long as the zero point and the break
in the axis are clearly indicated, and the message is not distorted, such a procedure is entirely
acceptable.

Figures 2.4(B) and 2.5 are exaggerated examples of plots that may be considered not to
reflect accurately the significance of the experimental results. In Figure 2.4(B), the clinically
significant difference of approximately 120 seconds is made to look very small, tending to
diminish drug differences in the viewer’s mind. Also, fluctuations in the hourly results appear
to be less than the data truly suggest. In Figure 2.5, a difference of 5 seconds in exercise time
between the two drugs appears very large. Care should be taken when constructing (as well as
reading) graphs so that experimental conclusions come through clear and true.

6. If more than one curve appears on the same graph, a convenient way to differentiate the
curves is to use different symbols for the experimental points (e.g., ◦, ×, �, �, +) and, if
necessary, connecting the points in different ways (e.g., —.—.—., . . . . . ., –.–.–.–). A key or
label is used, which is helpful in distinguishing the various curves, as shown in Figures 2.3
to 2.6. Other ways of differentiating curves include different kinds of crosshatching and use
of different colors.

Figure 2.5 Exercise time at various time inter-

vals after administration of two nitrate products.

•, product I; +, product II.
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Figure 2.6 Plot of dissolution of four successive

batches of a commercial tablet product. � = batch

I, • = batch II, × = batch 3, � = batch 4.

7. One should take care not to place too many curves on the same graph, as this can result in
confusion. There are no specific rules in this regard. The decision depends on the nature of
the data, and how the data look when they are plotted. The curves graphed in Figure 2.7
are cluttered and confusing. The curves should be presented differently or separated into
two or more graphs. Figure 2.8 is a clearer depiction of the dissolution results of the five
formulations shown in Figure 2.7.

8. The standard deviation may be indicated on graphs as shown in Figure 2.9. However, when
the standard deviation is indicated on a graph (or in a table, for that matter), it should be
made clear whether the variation described in the graph is an indication of the standard
deviation (S) or the standard deviation of the mean (Sx̄). The standard deviation of the
mean, if appropriate, is often preferable to the standard deviation not only because the
values on the graph are mean values, but also because Sx̄ is smaller than the s.d., and
therefore less cluttering. Overlapping standard deviations, as shown in Figure 2.10, should
be avoided, as this representation of the experimental results is usually more confusing than
clarifying.

9. The manner in which the points on a graph should be connected is not always obvious.
Should the individual points be connected by straight lines, or should a smooth curve that
approximates the points be drawn through the data? (See Fig. 2.11.) If the graphs represent
functional relationships, the data should probably be connected by a smooth curve. For
example, the blood level versus time data shown in Figure 2.11 are described most accurately
by a smooth curve. Although, theoretically, the points should not be connected by straight
lines as shown in Figure 2.11(A), such graphs are often depicted this way. Connecting the
individual points with straight lines may be considered acceptable if one recognizes that
this representation is meant to clarify the graphical presentation, or is done for some other
appropriate reason. In the blood-level example, the area under the curve is proportional to
the amount of drug absorbed. The area is often computed by the trapezoidal rule [4], and
depiction of the data as shown in Figure 2.11(A) makes it easier to visualize and perform
such calculations.

Figure 2.12 shows another example in which connecting points by straight lines is con-
venient but may not be a good representation of the experimental outcome. The straight line
connecting the blood pressure at zero time (before drug administration) to the blood pressure
after two weeks of drug administration suggests a gradual decrease (a linear decrease) in blood

Figure 2.7 Plot of dissolution time of five dif-

ferent commercial formulations of the same drug.

• = product A, � = product B, × = product C,

� = product D, � = product E.
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Figure 2.8 Individual plots of dissolution of the five formulations shown in Fig. 2.7.

pressure over the two-week period. In fact, no measurements were made during the initial
two-week interval. The 10-mm Hg decrease observed after two weeks of therapy may have
occurred before the two-week reading (e.g., in one week, as indicated by the dashed line in
Fig. 2.12). One should be careful to ensure that graphs constructed in such a manner are not
misinterpreted.

Figure 2.9 Plot of exercise time as a function of time for an antianginal drug showing mean values and standard

error of the mean.
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Figure 2.10 Graph comparing two antianginal drugs that is confusing and cluttered because of the overlapping

standard deviations. •, drug A; o, drug B.

2.4 SCATTER PLOTS (CORRELATION DIAGRAMS)
Although the applications of correlation will be presented in some detail in chapter 7, we will
introduce the notion of scatter plots (also called correlation diagrams or scatter diagrams) at this
time. This type of plot or diagram is commonly used when presenting results of experiments.
A typical scatter plot is illustrated in Figure 2.13. Data are collected in pairs (X and Y) with the
objective of demonstrating a trend or relationship (or lack of relationship) between the X and
Y variables. Usually, we are interested in showing a linear relationship between the variables
(i.e., a straight line). For example, one may be interested in demonstrating a relationship (or
correlation) between time to 80% dissolution of various tablet formulations of a particular drug

Figure 2.11 Plot of blood level versus time data illustrating two ways of drawing the curves.

Figure 2.12 Graph of blood pressure reduction with time of

antihypertensive drug illustrating possible misinterpretation

that may occur when points are connected by straight lines.
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Figure 2.13 Scatter plot showing the correlation of dissolution time and in vivo absorption of six tablet formula-

tions. �, formulation A; ×, formulation B; •, formulation C; �, formulation D; �, formulation E; +, formulation F.

and the fraction of the dose absorbed when human subjects take the various tablets. The data plotted
in Figure 2.13 show pictorially that as dissolution increases (i.e., the time to 80% dissolution
decreases) in vivo absorption increases. Scatter plots involve data pairs, X and Y, both of which
are variable. In this example, dissolution time and fraction absorbed are both random variables.

2.5 SEMILOGARITHMIC PLOTS
Several important kinds of experiments in the pharmaceutical sciences result in data such
that the logarithm of the response (Y) is linearly related to an independent variable, X. The
semilogarithmic plot is useful when the response (Y) is best depicted as proportional changes
relative to changes in X, or when the spread of Y is very large and cannot be easily depicted
on a rectilinear scale. Semilog graph paper has the usual equal interval scale on the X axis and
the logarithmic scale on the Y axis. In the logarithmic scale, equal intervals represent ratios. For
example, the distance between 1 and 10 will exactly equal the distance between 10 and 100 on a
logarithmic scale. In particular, first-order kinetic processes, often apparent in drug degradation
and pharmacokinetic systems, show a linear relationship when log C is plotted versus time.
First-order processes can be expressed by the following equation:

log C = log C0 − kt
2.3

(2.1)

where C is the concentration at time t, C0 the concentration at time 0, k the first-order rate
constant, t the time, and log represents logarithm to the base 10.

Table 2.1 shows blood-level data obtained after an intravenous injection of a drug
described by a one-compartment model [3].

Figure 2.14 shows two ways of plotting the data in Table 2.1 to demonstrate the linearity
of the log C versus t relationship.

1. Figure 2.14(A) shows a plot of log C versus time. The resulting straight line is a consequence
of the relationship of log concentration and time as shown in Eq. 2.1. This is an equation of
a straight line with the Y intercept equal to log C0 and a slope equal to −k/2.3. Straight-line
relationships are discussed in more detail in chapter 8.

Table 2.1 Blood Levels After Intravenous Injection of Drug

Time after injection, t (hr) Blood level, C (�g/mL) Log blood level

0 20 1.301

1 10 1.000

2 5 0.699

3 2.5 0.398

4 1.25 0.097
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Figure 2.14 Linearizing plots of data from Table 2.1. (Plot A) log C versus time; (plot B) semilog plot.

2. Figure 2.14(B) shows a more convenient way of plotting the data of Table 2.1, making use of
semilog graph paper. This paper has a logarithmic scale on the Y axis and the usual arithmetic,
linear scale on the X axis. The logarithmic scale is constructed so that the spacing corresponds
to the logarithms of the numbers on the Y axis. For example, the distance between 1 and 2 is
the same as that between 2 and 4. (Log 2−log 1) is equal to (log 4−log 2). The semilog graph
paper depicted in Figure 2.14(B) is two-cycle paper. The Y (log) axis has been repeated two
times. The decimal point for the numbers on the Y axis is accommodated to the data. In our
example, the data range from 1.25 to 20 and the Y axis is adjusted accordingly, as shown in
Figure 2.14(B). The data may be plotted directly on this paper without the need to look up
the logarithms of the concentration values.

2.6 OTHER DESCRIPTIVE FIGURES
Most of the discussion in this chapter has been concerned with plots that show relationships
between variables such as blood pressure changes following two or more treatments, or drug
decomposition as a function of time. Often occasions arise in which graphical presentations are
better made using other more pictorial techniques. These approaches include the popular bar
and pie charts. Schmid [2] differentiates bar charts into two categories: (a) column charts in which
there is a vertical orientation and (b) bar charts in which the bars are horizontal. In general, the
bar charts are more appropriate for comparison of categorical variables, whereas the column
chart is used for data showing relationships such as comparisons of drug effect over time.

Bar charts are very simple but effective visual displays. They are usually used to compare
some experimental outcome or other relevant data where the length of the bar represents the
magnitude. There are many variations of the simple bar chart [2]; an example is shown in Figure
2.15. In Figure 2.15(A), patients are categorized as having a good, fair, or poor response. Forty
percent of the patients had a good response, 35% had a fair response, and 25% had a poor
response.

Figure 2.15(B) shows bars in pairs to emphasize the comparative nature of two treatments.
It is clear from this diagram that Treatment X is superior to Treatment Y. Figure 2.15(C) is another
way of displaying the results shown in Figure 2.15(B). Which chart do you think better sends
the message of the results of this comparative study, Figure 2.15(B) or 2.15(C)? One should be
aware that the results correspond only to the length of the bar. If the order in which the bars
are presented is not obvious, displaying bars in order of magnitude is recommended. In the
example in Figure 2.15, the order is based on the nature of the results, “Good,” “Fair,” and
“Poor.” Everything else in the design of these charts is superfluous and the otherwise principal
objective is to prepare an aesthetic presentation that emphasizes but does not exaggerate the
results. For example, the use of graphic techniques such as shading, crosshatching, and color,
tastefully executed, can enhance the presentation.

Column charts are prepared in a similar way to bar charts. As noted above, whether or not
a bar or column chart is best to display data is not always clear. Data trends over time usually
are best shown using columns. Figure 2.16 shows the comparison of exercise time for two drugs
using a column chart. This is the same data used to prepare Figure 2.4(A) (also, see Exercise
Problem 8 at the end of this chapter).
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Figure 2.15 Graphical representation of patient responses to drug therapy.
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Figure 2.16 Exercise time for two drugs in the form of a column chart using data of Figure 2.4.

Pie charts are popular ways of presenting categorical data. Although the principles used in
the construction of these charts are relatively simple, thought and care are necessary to convey
the correct message. For example, dividing the circle into too many categories can be confusing
and misleading. As a rule of thumb, no more than six sectors should be used. Another problem
with pie charts is that it is not always easy to differentiate two segments that are reasonably
close in size, whereas in the bar graph, values close in size are easily differentiated, since length
is the critical feature.

The circle (or pie) represents 100%, or all of the results. Each segment (or slice of pie) has an
area proportional to the area of the circle, representative of the contribution due to the particular
segment. In the example shown in Figure 2.17(A), the pie represents the anti-inflammatory
drug market. The slices are proportions of the market accounted for by major drugs in this
therapeutic class. These charts are frequently used for business and economic descriptions, but
can be applied to the presentation of scientific data in appropriate circumstances. Figure 2.17(B)
shows the proportion of patients with good, fair, and poor responses to a drug in a clinical trial
(see also Fig. 2.15).

Of course, we have not exhausted all possible ways of presenting data graphically. We
have introduced the cumulative plot in section 1.2.3. Other kinds of plots are the stick diagram
(analogous to the histogram) and frequency polygon [5]. The number of ways in which data
can be presented is limited only by our own ingenuity. An elegant pictorial presentation of
data can “make” a report or government submission. On the other hand, poor presentation of
data can detract from an otherwise good report. The book Statistical Graphics by Calvin Schmid
is recommended for those who wish detailed information on the presentation of graphs and
charts.

Figure 2.17 Examples of pie charts.
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KEY TERMS
Bar charts Independent variables
Bar graphs Key
Column charts Pie charts
Correlation Scatter plots
Data pairs Semilog plots
Dependent variables
Histogram

EXERCISES
1. Plot the following data, preparing and labeling the graph according to the guidelines out-

lined in this chapter. These data are the result of preparing various modifications of a
formulation and observing the effect of the modifications on tablet hardness.

Formulation modification

Starch (%) Lactose (%) Tablet hardness (kg)

10 5 8.3

10 10 9.1

10 15 9.6

10 20 10.2

5 5 9.1

5 10 9.4

5 15 9.8

5 20 10.4

(Hint: Plot these data on a single graph where the Y axis is tablet hardness and the X axis
is lactose concentration. There will be two curves, one at 10% starch and the other at 5%
starch.)

2. Prepare a histogram from the data of Table 1.3. Compare this histogram to that shown in
Figure 2.2(A). Which do you think is a better representation of the data distribution?

3. Plot the following data and label the graph appropriately.

X: response Y : response
Patient to product A to product B

1 2.5 3.8

2 3.6 2.4

3 8.9 4.7

4 6.4 5.9

5 9.5 2.1

6 7.4 5.0

7 1.0 8.5

8 4.7 7.8

What conclusion(s) can you draw from this plot if the responses are pain relief scores, where
a high score means more relief?

4. A batch of tables was shown to have 70% with no defects, 15% slightly chipped, 10%
discolored, and 5% dirty. Construct a pie chart from these data.

5. The following data from a dose–response experiment, a measure of physical activity, are the
responses of five animals at each of three doses.
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Dose (mg) Responses

1 8, 12, 9, 14, 6

2 16, 20, 12, 15, 17

4 20, 17, 25, 27, 16

Plot the individual data points and the average at each dose versus (a) dose, (b) log dose.

6. The concentration of drug in solution was measured as a function of time.

Time (weeks) Concentration

0 100

4 95

8 91

26 68

52 43

(a) Plot concentration versus time.
(b) Plot log concentration versus time.

7. Plot the following data and label the axes appropriately.

X: Cholesterol Y : Triglycerides
Patient (mg%) (mg%)

1 180 80

2 240 180

3 200 70

4 300 200

5 360 240

6 240 200

Tablet X : Tablet potency (mg) Y : Tablet weight (mg)

1 5 300

2 6 300

3 4 280

4 5 295

5 6 320

6 4 290

8. Which figure do you think best represents the results of the exercise time study. Figure 2.16
or Figure 2.4(A)? If the presentation were to be used in a popular nontechnical journal read
by laymen and physicians, which figure would you recommend?
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3 Introduction to Probability: The Binomial
and Normal Probability Distributions

The theory of statistics is based on probability. Some basic definitions and theorems are intro-
duced in this chapter. This elementary discussion leads to the concept of a probability dis-
tribution, a mathematical function that assigns probabilities for outcomes in its domain. The
properties of (a) the binomial distribution, a discrete distribution, and (b) the normal distribu-
tion, a continuous distribution, are presented. The normal distribution is the basis of modern
statistical theory and methodology. One of the chief reasons for the pervasion of the normal
distribution in statistics is the central limit theorem, which shows that means of samples from
virtually all probability distributions tend to be normal for large sample sizes. Also, many of
the probability distributions used in statistical analyses are based on the normal distribution.
These include the t, F, and chi-square distributions. The binomial distribution is applicable to
experimental results that have two possible outcomes, such as pass or fail in quality control, or
cured or not cured in a clinical drug study. With a minimal understanding of probability, one
can apply statistical methods intelligently to the simple but prevalent problems that crop up in
the analysis of experimental data.

3.1 INTRODUCTION
Most of us have an intuitive idea of the meaning of probability. The meaning and use of
probability in everyday life is a subconscious integration of experience and knowledge that
allows us to say, for example: “If I purchase this car at my local dealer, the convenience and
good service will probably make it worthwhile despite the greater initial cost of the car.” From
a statistical point of view, we will try to be more precise in the definition of probability. The
Random House Dictionary of the English Language defines probability as “The likelihood of an
occurrence expressed by the ratio of the actual occurrences to that of all possible occurrences;
the relative frequency with which an event occurs, or is likely to occur.” Therefore, the probability
of observing an event can be defined as the proportion of such events that will occur in a large
number of observations or experimental trials.

The approach to probability is often associated with odds in gambling or games of chance,
and picturing probability in this context will help its understanding. When placing a bet on the
outcome of a coin toss, the game of “heads and tails,” one could reasonably guess that the
probability of a head or tail is one-half (1/2) or 50%. One-half of the outcomes will be heads and
one-half will be tails. Do you think that the probability of observing a head (or tail) on a single
toss of the coin is exactly 0.5 (50%)? Probably not, a probability of 50% would result only if the
coin is absolutely balanced. The only way to verify the probability is to carry out an extensive
experiment, tossing a coin a million times or more and counting the proportion of heads or tails
that result.

The gambler who knows that the odds in a game of craps favor the “house” will lose in the
long run. Why should a knowledgeable person play a losing game? Other than for psychological
reasons, the gambler may feel that a reasonably good chance of winning on any single bet is
worth the chance, and maybe “Lady Luck” will be on his side. Probability is a measure of
uncertainty. We may be able to predict accurately some average result in the long run, but the
outcome of a single experiment cannot be anticipated with certainty.

3.2 SOME BASIC PROBABILITY
The concept of probability is “probably” best understood when discussing discontinuous or dis-
crete variables. These variables have a countable number of outcomes. Consider an experiment
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in which only one of two possible outcomes can occur. For example, the result of treatment
with an antibiotic is that an infection is either cured or not cured within five days. Although
this situation is conceptually analogous to the coin-tossing example, it differs in the following
respect. For the coin-tossing example, the probability can be determined by a rational examina-
tion of the nature of the experiment. If the coin is balanced, heads and tails are equally likely;
the probability of a head is equal to the probability of a tail = 0.5. In the case of the antibiotic
cure, however, the probability of a cure is not easily ascertained a priori, that is, prior to per-
forming an experiment. If the antibiotic were widely used, based on his or her own experience,
a physician prescriber of the product might be able to give a good estimate of the probability of
a cure for patients treated with the drug. For example, in the physician’s practice, he or she may
have observed that approximately three of four patients treated with the antibiotic are cured.
For this physician, the probability that a patient will be cured when treated with the antibiotic
is approximately 75%.

A large multicenter clinical trial would give a better estimate of the probability of success
after treatment. A study of 1000 patients might show 786 patients cured; the probability of a
cure is estimated as 0.786 or 78.6%. This does not mean that the exact probability is 0.786. The
exact probability can be determined only by treating the total population and observing the
proportion cured, a practical impossibility in this case. In this context, it would be fair to say
that exact probabilities are nearly always unknown.

3.2.1 Some Elementary Definitions and Theorems

1. 0 ≤ P(A) ≤ 1 (3.1)

where P(A) is the probability of observing event A. The probability of any event or experimental
outcome, P(A), cannot be less than 0 or greater than 1. An impossible event has a probability of
0. A certain event has a probability of 1.

2. If events A, B, C, . . . are mutually exclusive, the probability of observing A or B or C. . .

is the sum of the probabilities of each event, A, B, C, . . .. If two or more events are “mutually
exclusive,” the events cannot occur simultaneously, that is, if one event is observed, the other
event(s) cannot occur. For example, we cannot observe both a head and a tail on a single toss of
a coin.

P(A or B or C . . .) = P(A) + P(B) + P(C) + · · · (3.2)

An example frequently encountered in quality control illustrates this theorem. Among
1,000,000 tablets in a batch, 50,000 are known to be flawed, perhaps containing specks of grease.
The probability of finding a randomly chosen tablet with specks is 50,000/1,000,000 = 0.05 or 5%.
The process of randomly choosing a tablet is akin to a lottery. The tablets are well mixed, ensuring
that each tablet has an equal chance of being chosen. While blindfolded, one figuratively chooses
a single tablet from a container containing the 1,000,000 tablets (see chapter 4 for a detailed
discussion of random sampling). A gambler making an equitable bet would give odds of 19 to
1 against a specked tablet being chosen (1 of 20 tablets is specked). Odds are defined as

P(A)
1 − P(A)

.

There are other defects among the 1,000,000 tablets. Thirty thousand, or 3%, have chipped
edges and 40,000 (4%) are discolored. If these defects are mutually exclusive, the probability of
observing any one of these events for a single tablet is 0.03 and 0.04, respectively [Fig. 3.1(A)].
According to Eq. (3.2), the probability of choosing an unacceptable tablet (specked, chipped,
or discolored) at random is 0.05 + 0.03 + 0.04 = 0.12, or 12%. (The probability of choosing an
acceptable tablet is 1 − 0.12 = 0.88.)
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Figure 3.1 Probability distribution for tablet attributes.

3. P (A) + P (B) + P (C) + · · · = 1 (3.3)

where A, B, C, . . . are mutually exclusive and exhaust all possible outcomes.
If the set of all possible experimental outcomes are mutually exclusive, the sum of the

probabilities of all possible outcomes is equal to 1. This is equivalent to saying that we are
certain that one of the mutually exclusive outcomes will occur.

All the four events in Figure 3.1 do not have to be mutually exclusive. In general:
4. If two events are not mutually exclusive,

P(A or B) = P(A) + P(B) − P(A and B). (3.4)

Note that if A and B are mutually exclusive, P(A and B) = 0, and for two events, A and B,
Eqs. (3.2) and (3.4) are identical. (A and B) means the simultaneous occurrence of A and B. (A
or B) means that A or B or both A and B occur. For example, some tablets with chips may also
be specked. If 20,000 tablets are both chipped and specked in the example above, one can verify
that 60,000 tablets are specked or chipped.

P(specked or chipped) = P(specked) + P(chipped) − P(specked or chipped)
= 0.05 + 0.03 − 0.02 = 0.06
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Figure 3.2 Distribution of tablet attributes where attributes are not all mutually exclusive.

The probability of finding a specked or chipped tablet is 0.06. Thirty thousand tablets are
only specked, 10,000 tablets are only chipped, and 20,000 tablets are both specked and chipped;
a total of 60,000 tablets specked or chipped. The distribution of tablet attributes under these
conditions is shown in Figure 3.2. (Also, see Exercise Problem 23.)

With reference to this example of tablet attributes, we can enumerate all possible mutually
exclusive events. In the former case, where each tablet was acceptable or had only a single
defect, there are four possible outcomes (specked, chipped edges, discolored, and acceptable
tablets). These four outcomes and their associated probabilities make up a probability distribution,
which can be represented in several ways, as shown in Figure 3.1. The distribution of attributes
where some tablets may be both specked and chipped is shown in Figure 3.2. The notion of a
probability distribution is discussed further later in this chapter (sect. 3.3).

5. The multiplicative law of probability states that

P(A and B) = P(A|B) P(B), (3.5)

where P(A|B) is known as the conditional probability of A given that B occurs. In the present
example, the probability that a tablet will be specked given that the tablet is chipped is [from
Eq. (3.5)]

P(specked | chipped) = P(specked and chipped)
P(chipped)

= 0.02
0.03

= 2
3
.

Referring to Figure 3.2, it is clear that 2/3 of the chipped tablets are also specked. Thus,
the probability of a tablet being specked given that it is also chipped is 2/3.
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3.2.2 Independent Events
In games of chance, such as roulette, the probability of winning (or losing) is theoretically the
same on each turn of the wheel, irrespective of prior outcomes. Each turn of the wheel results
in an independent outcome. The events, A and B, are said to be independent if a knowledge of
B does not affect the probability of A. Mathematically, two events are independent if

P(A| B) = P(A). (3.6)

Substituting Eq. (3.6) into Eq. (3.5), we can say that if

P(A and B) = P(A)P(B), (3.7)

then A and B are independent. When sampling tablets for defects, if each tablet is selected at random
and the batch size is very large, the sample observations may be considered independent. Thus,
in the example of tablet attributes shown in Figure 3.4, the probability of selecting an acceptable
tablet (A) followed by a defective tablet (B) is

(0.88)(0.12) = 0.106.

The probability of selecting two tablets, both of which are acceptable, is 0.88 × 0.88 =
0.7744.

3.3 PROBABILITY DISTRIBUTIONS—THE BINOMIAL DISTRIBUTION
To understand probability further, one should have a notion of the concept of a probability dis-
tribution, introduced in section 3.2. A probability distribution is a mathematical representation
(function) of the probabilities associated with the values of a random variable.

For discrete data, the concept can be illustrated by using the simple example of the outcome
of antibiotic therapy introduced earlier in this chapter. In this example, the outcome of a patient
following treatment can take on one of two possibilities: a cure with a probability of 0.75 or
a failure with a probability of 0.25. Assigning the value 1 for a cure and 0 for a failure, the
probability distribution is simply

f (1) = 0.75
f (0) = 0.25.

Figure 3.3 Probability distribution of a bino-

mial outcome based on a single observation.
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Table 3.1 Some Examples of Binomial Data in Pharmaceutical Research

Experiment or process Dichotomous data

LD50 determination Animals live or die after dosing. Determine dose that kills 50% of

animals

ED50 determination Drug is effective or not effective. Determine dose that is effective in

50% of animals

Sampling for defects In quality control, product is sampled for defects. Tablets are

acceptable or unacceptable

Clinical trials Treatment is successful or not successful

Formulation modification A. Palatability preference of old and new formulation B. New

formulation is more or less available in crossover design

Figure 3.3 shows the probability distribution for this example, the random variable being
the outcome of a patient treated with the antibiotic. This is an example of a binomial distribution.
Another example of a binomial distribution is the coin-tossing game, heads or tails where the
two outcomes have equal probability, 0.5. This binomial distribution (p = 0.5) has application
in statistical methods, for example, the Sign test (sect. 15.2).

When a single observation can be dichotomized, that is, the observation can be placed into
one of two possible categories, the binomial distribution can be used to define the probability
characteristics of one or more such observations. The binomial distribution is a very important
probability distribution in applications in pharmaceutical research. The few examples noted in
Table 3.1 reveal its pervading presence in pharmaceutical processes.

3.3.1 Some Definitions
A binomial trial is a single binomial experiment or observation. The treatment of a single patient
with the antibiotic is a binomial trial. The trial must result in only one of two outcomes, where
the two outcomes are mutually exclusive. In the antibiotic example, the only possible outcomes
are that a patient is either cured or not cured. In addition, only one of these outcomes is possible
after treatment. A patient cannot be both cured and not cured after treatment. Each binomial
trial must be independent. The result of a patient’s treatment does not influence the outcome of
the treatment for a different patient. In another example, when randomly sampling tablets for a

Figure 3.4 Probability distribution of binomial with p = 0.5 and N = 3.
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binomial attribute, chipped or not chipped, the observation of a chipped tablet does not depend
on or influence the outcome observed for any other tablet.

The binomial distribution is completely defined by two parameters: (a) the probability
of one or the other outcome, and (b) the number of trials or observations, N. Given these
two parameters, we can calculate the probability of any specified number of successes in N
trials. For the antibiotic example, the probability of success is 0.75. With this information, we
can calculate the probability that three of four patients will be cured (N = 4). We could also
calculate this result, given the probability of failure (0.25). The probability of three of four
patients being cured is exactly the same as the probability of one of four patients not being
cured.

The probability of success (or failure) lies between 0 and 1. The probability of failure (the
complement of a success) is 1 minus the probability of success [1 − P(success)].

Since the outcome of a binomial trial must be either success or failure, P(success) +
P(failure) = 1 [see Eq. (3.3)].

The standard deviation of a binomial distribution with probability of success, p, and N
trials is

√
pq/N, where q = 1 − p. The s.d. of the proportion of successes of antibiotic treatment

in 16 trials is
√

0.75 × 0.25/16 = 0.108 (also see sect. 3.3.2).
The probability of the outcome of a binomial experiment consisting of N trials can be

computed from the expansion of the expression

(p + q )N, (3.8)

where p is defined as the probability of success and q is the probability of failure. For example,
consider the outcomes that are possible after three tosses of a coin. There are four (N + 1)
possible results

1. three heads;
2. two heads and one tail;
3. two tails and one head;
4. three tails.

For the outcome of the treatment of three patients in the antibiotic example, the four
possible results are

1. three cures;
2. two cures and one failure;
3. two failures and one cure;
4. three failures.

The probabilities of these events can be calculated from the individual terms from the
expansion of (p + q )N, where N = 3, the number of binomial trials.

(p + q )3 = p3 + 3p2q + 3pq 2 + q 3

If p = q = 1/2 , as is the case in coin tossing, then

p3 = (1/2)3 = 1/8 = P(three heads)

3p2q = 3/8 = P(two heads and one tail)

3pq 2 = 3/8 = P(two tails and one head )

q 3 = 1/8 = P(three tails)
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If p = 0.75 and q = 0.25, as is the case for the antibiotic example, then

p3 = (0.75)3 = 0.422 = P(3 cures)

3p2q = 3(0.75)2(0.25) = 0.422 P(2 cures and 1 failure)

3pq 2 = 3(0.75)(0.25)2 = 0.141 P(1 cure and 2 failures)

q 3 = (0.25)3 = 0.016 = P(3 failures)

The sum of the probabilities of all possible outcomes of three patients being treated or
three sequential coin tosses is equal to 1 (e.g., 1/8 + 3/8 + 3/8 + 1/8 = 1).

This is true of any binomial experiment because (p + q )N must equal 1 by definition (i.e.,
p + q = 1). The probability distribution of the coin-tossing experiment with N = 3 is shown in
Figure 3.4. Note that this is a discrete distribution. The particular binomial distribution shown
in the figure comprises only four possible outcomes (the four sticks).

A gambler looking for a fair game, one with equitable odds, would give odds of 7 to 1 on
a bet that three heads would be observed in three tosses of a coin. The payoff would be eight
dollars (including the dollar bet) for a one-dollar bet. A bet that either three heads or three tails
would be observed would have odds of 3 to 1. (The probability of either three heads or three tails
is 1/4 = 1/8 + 1/8.)

To calculate exact probabilities in the binomial case, the expansion of the binomial, (p + q )N

can be generalized by a single formula:

Probability of X successes in N trials =
(

N
X

)
pxq N−X. (3.9)

(
N
X

)
is defined as

N!
X!(N − X)!

(Remember that 0! is equal to 1.)
Consider the binomial distribution with p = 0.75 and N = 4 for the antibiotic example.

This represents the distribution of outcomes after treating four patients. There are five possible
outcomes

no patients are cured;
one patient is cured;
two patients are cured;
three patients are cured;
four patients are cured.

The probability that three of four patients are cured can be calculated from Eq. (3.9)

(
4
3

)
(0.75)3(0.25)1 = 4 · 3 · 2 · 1

1 · 3 · 2 · 1
(0.42188)(0.25) = 0.42188.

The meaning of this particular calculation will be explained in detail in order to gain some
insight into solving probability problems. There are four ways in which three patients can be
cured and one patient not cured (Table 3.2). Denoting the four patients as A, B, C, and D, the
probability that patients A, B, and C are cured and patient D is not cured is equal to

(0.75)(0.75)(0.75)(0.25) = 0.1055, (3.10)
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Table 3.2 Four Ways in Which Three of Four Patients Are Cured

1 2 3 4

Patients cured A, B, C A, B, D A, C, D B, C, D

Patients not cured D C B A

where 0.25 is the probability that patient D will not be cured. There is no reason why any of the
four possibilities shown in Table 3.2 should occur more or less frequently than any other (i.e.,
each possibility is equally likely). Therefore, the probability that the antibiotic will successfully
cure exactly three patients is four times the probability calculated in Eq. (3.10)

4(0.1055) = 0.422.

The expression
(

4
3

)
represents a combination, a selection of three objects, disregarding

order, from four distinct objects. The combination,
(

4
3

)
, is equal to 4, and, as we have just

demonstrated, there are four ways in which three cures can be obtained from four patients.
Each one of these possible outcomes has a probability of (0.75)3(0.25)1. Thus, the probability of
three cures in four patients is 4(0.75)3 (0.25)1 as before.

The probability distribution based on the possible outcomes of an experiment in which
four patients are treated with the antibiotic (the probability of a cure is 0.75) is shown in Table
3.3 and Figure 3.5. Note that the sum of the probabilities of the possible outcomes equals 1, as is
also shown in the cumulative probability function plotted in Figure 3.5(B). The cumulative dis-
tribution is a nondecreasing function starting at a probability of zero and ending at a probability
of 1. Figures 3.1 and 3.2, describing the distribution of tablet attributes in a batch of tablets, are
examples of other discrete probability distributions.

Statistical hypothesis testing, a procedure for making decisions based on variable data is
based on probability theory. In the following example, we use data observed in a coin-tossing
game to decide whether or not we believe the coin to be loaded (biased).

You are an observer of a coin-tossing game and you are debating whether or not you
should become an active participant. You note that only one head occurred among 10 tosses of
the coin. You calculate the probability of such an event because it occurs to you that one head in
10 tosses of a coin is very unlikely; something is amiss (a “loaded” coin!). Thus, if the probability
of a head is 0.5, the chances of observing one head in 10 tosses of a coin is less than 1 in 100
(Exercise Problem 18). This low probability suggests a coin that is not balanced. However, you
properly note that the probability of any single event or outcome (such as one head in 10 trials)
is apt to be small if N is sufficiently large. You decide to calculate the probability of this perhaps
unusual result plus all other possible outcomes that are equally or less probable. In our example,
this includes possibilities of no heads in 10 tosses, in addition to one or no tails in 10 tosses.
These four probabilities (no heads, one head, no tails, and one tail) total approximately 2.2%.
This is strong evidence in favor of a biased coin. Such a decision is based on the fact that the
chance of obtaining an event as unlikely or less likely than one head in 10 tosses is about 1 in

Table 3.3 Probability Distribution for Outcomes of

Treating Four Patients with an Antibiotic

Outcome Probability

No cures 0.00391

One cure 0.04688

Two cures 0.21094

Three cures 0.42188

Four cures 0.31641
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Figure 3.5 Probability distribution graph for outcomes of treating four patients with an antibiotic.

50 (2.2%) if the coin is balanced. You might wisely bet on tails on the next toss. You have made a
decision: “The coin has a probability of less than 0.5 of showing heads on a single toss.”

The probability distribution for the number of heads (or tails) in 10 tosses of a coin (p =
0.5 and N = 10) is shown in Figure 3.6. Note the symmetry of the distribution.

Although this is a discrete distribution, the “sticks” assume a symmetric shape similar to
the normal curve. The two unlikely events in each “tail” (i.e., no heads or tails or one head or one
tail) have a total probability of 0.022. The center and peak of the distribution is observed to be
at X = 5, equal to NP, the number of trials times the probability of success. (See also Appendix
Table IV.3, p = 0.5, N = 10.)

The application of binomial probabilities can be extended to more practical problems than
gambling odds for the pharmaceutical scientist. When tablets are inspected for attributes or
patients treated with a new antibiotic, we can apply a knowledge of the properties of the binomial
distribution to estimate the true proportion or probability of success, and make appropriate
decisions based on these estimates.

3.3.2 Summary of Properties of the Binomial Distribution
1. The binomial distribution is defined by N and p. With a knowledge of these parameters, the

probability of any outcome of N binomial trials can be calculated from Eq. (3.9). We have
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Figure 3.6 Probability distribution for p = 0.5 and N = 10.

noted that the sum of all possible outcomes of a binomial experiment with N trials is 1,
which conforms to the notion of a probability distribution.

2. The results of a binomial experiment can be expressed either as the number of successes or as a
proportion. Thus, if six heads are observed in 10 tosses of a coin, we can also say that 60% of the
tosses are heads. If 16 defective tablets are observed in a random sample of 1000 tablets, we
can say that 1.6% of the tablets sampled are defective. In terms of proportions, the true mean
of the binomial population is equal to the probability of success, p. The sample proportion
(0.6 in the coin-tossing example and 0.016 in the example of sampling for defective tablets)
is an estimate of the true proportion.

3. The variability of the results of a binomial experiment is expressed as a standard deviation.
For example, when inspecting tablets for the number of defectives, a different number of
defective tablets will be observed depending on which 1000 tablets happen to be chosen.
This variation, dependent on the particular sample inspected, is also known as sampling
error. The s.d. of a binomial distribution can be expressed in two ways, depending on the
manner in which the mean is presented (i.e., as a proportion or as the number of successes).
The s.d. in terms of proportion of successes is

√
pq
N

. (3.11)

In terms of number of successes, the s.d. is√
Npq , (3.12)

where N is the sample size, the number of binomial trials. As shown in Eqs. (3.11) and (3.12),
the s.d. is dependent on the value of P for binomial variables. The maximum s.d. occurs when
p = q = 0.5, because Pq is maximized. The value of pq does not change very much with varying
P and q until P or q reach low or high values, close to or more extreme than 0.2 and 0.8.

p q pq

0.5 0.5 0.25

0.4 0.6 0.24

0.3 0.7 0.21

0.2 0.8 0.16

0.1 0.9 0.09



INTRODUCTION TO PROBABILITY 51

4. When dealing with proportions, the variability of the observed proportion can be made as
small as we wish by increasing the sample size [similar to the s.d. of the mean of samples of
size N, Eq. (1.8)]. This means that we can estimate the proportion of “successes” in a popu-
lation with very little error if we choose a sufficiently large sample. In the case of the tablet
inspection example above, the variability (s.d.) of the proportion for samples of size 100 is

√
(0.016)(0.984)

100
= 0.0125.

By sampling 1000 tablets, we can reduce the variability by a factor of 3.16
(
√

100/1000 = 1/3.16). The variability of the estimate of the true proportion (i.e., the sample
estimate) is not dependent on the population size (the size of the entire batch of tablets in
this example), but is dependent only on the size of the sample selected for observation. This
interesting fact is true if the sample size is considerably smaller than the size of the population.
Otherwise, a correction must be made in the calculation of the s.d. [4]. If the sample size is no
more than 5% of the population size, the correction is negligible. In virtually all of the examples
that concern us in pharmaceutical experimentation, the sample size is considerably less than
the population size. Since binomial data are often easy to obtain, large sample sizes can often
be accommodated to obtain very precise estimates of population parameters. An oft-quoted
example is that a sample size of 6000 to 7000 randomly selected voters will be sufficient to
estimate the outcome of a national election within 1% of the total popular vote. Similarly, when
sampling tablets for defects, 6000 to 7000 tablets will estimate the proportion of a property of
the tablets (e.g., defects) within, at most, 1% of the true value. (The least precise estimate occurs
when p = 0.5.)

3.3.3 Confidence Limits with N Observations and Zero Successes or Failures
If one observes N independent binomial variables with zero successes (or failures), it is often
of interest to place confidence limits on the true proportion of successes in the universe. As
way of illustration, suppose we are testing an injectable product for sterility. There is no way of
guaranteeing that all items in the batch will be sterile without 100% testing. Since the test may
be destructive, a sample is taken. We expect to find all of the items tested to be sterile, that is,
100% sterile. One, then, may ask, what are the confidence limits for the true proportion of items
in the batch that are sterile. The upper limit will be 100%. That is, if we see N items that are
sterile, it is certainly possible that all of the items in the batch are sterile. The lower limit may
be calculated as follows:

Lower confidence limit = pN = P, (3.12A)

Where, p is the lower confidence limit, P = 1 − probability of the confidence interval (e.g (1 − 0.95
for a 95% confidence interval) and N is the sample size. Note that the upper limit is 1.00.

Example:
One thousand (1000) items in a batch of 100,000 are tested for sterility with no failures

(100% successes). What is the 95% confidence interval for the true proportion of sterile items in
the batch.

Eq. (3.12A) can be written as ln(p) = ln(P)/N
ln(p) = ln(1 − 0.95)/1000 = (−2.996/1000)
p = 0.997.
That is, the 95% confidence interval for the proportion of sterile items is 0.997 to 1.00.
The 99% confidence interval is:
ln(p) = ln(1 − 0.99)/1000 = (−4.61/1000)
p = 0.995.
The 99% confidence interval for the proportion of sterile items is 0.9954 to 1.00.
(Note that 0.99541000 = 0.01.)
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3.3.4 The Negative Binomial Distribution [5,6]
The negative binomial distribution does not have wide use in the pharmaceutical sciences, but
can be useful in special situations. In a clinical trial, we might ask, for example, “How many
successive cures can we expect to observe before seeing a failure, with a knowledge of the cure
rate?” In quality control, we may be interested in the expected number of consecutive successes
before a failure is observed, given the rate of failure. Another question might be, “What is the
average number of consecutive good tablets observed before a failure is observed?” In general,
the probability function is

=
(

k + r − 1
k

)
{Pr } {1 − Pr } , (3.12B)

where 0 <P <1 , the probability of a success.
If r = 1, this is the probability distribution of failures before the first success. This can also

be stated as the probability of success on the (k + 1)th trial after k failures.
If r = 1, Eq. (3.11A) reduces to

{P} {1 − Pk} . (3.12C)

Consider the following question: What is the probability that we will observe 50 good
tablets before observing a split tablet on the 51st tablet. The probability of a split tablet is 0.01.
Here, p = 0.99. (A good tablet is considered a failure in this context.) From Eq. (3.12C), the
probability is

0.99
(
1 − 0.9950) = 0.599.

What is the average number of good tablets that a patient would take before he/she
observes a split tablet. This can be calculated by using the negative binomial distribution.

The average number of good tablets before a split tablet is observed is P/q, where P is the
probability of a good tablet (0.99) and q is (1 − P) equal to 0.01.

The average is
0.99
0.01

= 99 tablets.

Therefore, on the average, a patient would take 99 tablets before encountering a split
tablet. If the tablet is taken once a day, it would take 99 days on the average before a split tablet
was observed (5,6).

3.4 CONTINUOUS DATA DISTRIBUTIONS
Another view of probability concerns continuous data such as tablet dissolution time. The
probability that any single tablet will have a particular specified dissolution result is 0, because
the number of possible outcomes for continuous data is infinite. Probability can be conceived as
the ratio of the number of times that an event occurs to the total number of possible outcomes. If
the total number of outcomes is infinite, the probability of any single event is zero. This concept
can be confusing. If one observes a large number of dissolution results, such as time to 90%
dissolution, any particular observation might appear to have a finite probability of occurring.
Analogous to the discussion for discrete data, could we not make an equitable bet that a result
for dissolution of exactly 5 minutes 13 seconds, for example, would be observed? The apparent
contradiction is due to the fact that data that are continuous, in theory, appear as discrete data
in practice because of the limitations of measuring instruments, as discussed in chapter 1. For
example, a sensitive clock could measure time to virtually any given precision (i.e., to small
fractions of a second). It would be difficult to conceive of winning a bet that a 90% dissolution
time would occur at a very specific time, where time can be measured to any specified degree
of precision (e.g., 30 minutes 8.21683475. . . seconds).
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Figure 3.7 A normal distribution.

With continuous variables, we cannot express probabilities in as simple or intuitive a fash-
ion as was done with discrete variables. Applications of calculus are necessary to describe
concepts of probability with continuous distributions. Continuous cumulative probability dis-
tributions are represented by smooth curves (Fig. 3.7) rather than the step-like function shown in
Figure 3.5(B). The area under the probability distribution curve (also known as the cumulative
probability density) is equal to 1 for all probability functions. Thus the area under the normal
distribution curve in Figure 3.7(A) is equal to 1.

3.4.1 The Normal Distribution
The normal distribution is an example of a continuous probability density function. The normal
distribution is most familiar as the symmetrical, bell-shaped curve shown in Figure 3.8. A
theoretical normal distribution is a continuous probability distribution and consists of an infinite
number of values. In the theoretical normal distribution, the data points extend from positive
infinity to negative infinity. It is clear that scientific data from pharmaceutical experiments
cannot possibly fit this definition. Nevertheless, if real data conform reasonably well with
the theoretical definition of the normal curve, adequate approximations, if not very accurate
estimates of probability, can be computed based on normal curve theory.

The equation for the normal distribution (normal probability density) is

Y = 1

�
√

2�
e−(1/2)(X−�)2/�2

, (3.13)

where � is the s.d., � the mean, X the value of the observation, e the base of natural logarithms,
2.718 . . .; and Y the ordinate of normal curve, a function of X.
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Figure 3.8 A typical normal curve.

The normal distribution is defined by its mean, �, and its s.d., � [see Eq. (3.13)]. This
means that if these two parameters of the normal distribution are known, all the properties of
the distribution are known. There are any number of different normal distributions. They all have
the typical symmetrical, bell-shaped appearance. They are differentiated only by their means, a
measure of location, and their s.d., a measure of spread. The normal curve shown in Figure 3.8
can be considered to define the distribution of the potencies of tablets in a batch of tablets. Most
of the tablets have a potency close to the mean potency of 50 mg. The farther the assay values are
from the mean, the fewer the number of tablets there will be with these more extreme values. As
noted above, the spread or shape of the normal distribution is dependent on the s.d. A large s.d.
means that the spread is large. In this example, a larger s.d. means that there are more tablets
far removed from the mean, perhaps far enough to be out of specifications (Fig. 3.9).

In real-life situations, the distribution of a finite number of values often closely approxi-
mates a normal distribution. Weights of tablets taken from a single batch may be approximately
normally distributed. For practical purposes, any continuous distribution can be visualized as
being constructed by categorizing a large amount of data in small equilength intervals and con-
structing a histogram. Such a histogram can similarly be constructed for normally distributed
variables.

Suppose that all the tablets from a large batch are weighed and categorized in small
intervals or boxes (Fig. 3.10). The number of tablets in each box is counted and a histogram
plotted as in Figure 3.11. As more boxes are added and the intervals made shorter, the intervals
will eventually be so small that the distinction between the bars in the histogram is lost and a
smooth curve results, as shown in Figure 3.12. In this example, the histogram of tablet weights
looks like a normal curve.

Areas under the normal curve represent probabilities and are obtained by appropriate
integration of Eq. (3.13). In Figure 3.7, the probability of observing a value between Z1 and Z2
is calculated by integrating the normal density function between Z1 and Z2.

Figure 3.9 Two normal curves with different

standard deviations.
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Figure 3.10 Categorization of tablets from a tablet batch by weight.

Figure 3.11 Histogram of tablet weights.
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Figure 3.12 Histogram of tablet weights with small class intervals.
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Figure 3.13 Area under normal curve as a representation of proportion of tablets in an interval.

This function is not easily integrated. However, tables are available that can be used to
obtain the area between any two values of the variable, Z. Such an area is illustrated in Figure
3.7(A). If the area between Z1 and Z2 in Figure 3.7 is 0.3, the probability of observing a value
between Z1 and Z2 is 3 in 10 or 0.3. In the case of the tablet potencies, the area in a specified
interval can be thought of as the proportion of tablets in the batch contained in the interval. This
concept is illustrated in Figure 3.13.

Probabilities can be determined directly from the cumulative distribution plot as shown
in Figure 3.7(B) (see Exercise Problem 9). The probability of observing a value below Z1 is 0.6.
Therefore, the probability of observing a value between Z1 and Z2 is 0.9 − 0.6 = 0.3.

There are an infinite number of normal curves depending on � and �. However, the area
in any interval can be calculated from tables of cumulative areas under the standard normal
curve. The standard normal curve has a mean of 0 and a s.d. of 1. Table IV.2 in App. IV is a table
of cumulative areas under the standard normal curve, giving the area below Z (i.e., the area
between −∞ and Z). For example, for Z = 1.96, the area in Table IV.2 is 0.975. This means that
97.5% of the values comprising the standard normal curve are less than 1.96, lying between −∞
and 1.96. The normal curve is symmetrical about its mean. Therefore, the area below −1.96 is
0.025 as depicted in Figure 3.14. The area between Z equal to −1.96 and +1.96 is 0.95. Referring
to Table IV.2, the area below Z equal to +2.58 is 0.995, and the area below Z = −2.58 is 0.005.
Thus the area between Z equal to −2.58 and +2.58 is 0.99. It would be very useful for the reader
to memorize the Z values and the corresponding area between ±Z as shown in Table 3.4. These
values of Z are commonly used in statistical analyses and tests.

Figure 3.14 Symmetry of the normal curve.
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Table 3.4 Area Between ±( for Some

Commonly Used Values of Z

Z Area between ±Z

0.84 0.60

1.00 0.68

1.28 0.80

1.65 0.90

1.96 0.95

2.32 0.98

2.58 0.99

The area in any interval of a normal curve with a mean and s.d. different from 0 and 1,
respectively, can be computed from the standard normal curve table by using a transformation.
The transformation changes a value from the normal curve with mean � and s.d. �, to the
corresponding value, Z, in the standard normal curve. The transformation is

Z = X − �

�
. (3.14)

The area (probability) between −∞ and X (i.e., the area below X) corresponds to the value
of the area below Z from the cumulative standard normal curve table. Note that if the normal
curve that we are considering is the standard normal curve itself, transformation results in the
identity

Z = X − 0
1

= X.

Z is exactly equal to X, as expected. Effectively the transformation changes variables with a
mean of � and a s.d. of � to variables with a mean of 0 and a s.d. of 1.

Suppose in the example of tablet potencies that the mean is 50 and the s.d. is 5 mg. Given
these two parameters, what proportion of tablets in the batch would be expected to have more
than 58.25 mg of drug? First we calculate the transformed value, Z. Then the desired proportion
(equivalent to probability) can be obtained from Table IV.2. In this example, X = 58.25, � = 50,
and � = 5. Referring to Eq. (3.14), we have

Z = X − �

�

= 58.25 − 50
5

= 1.65.

According to Table IV.2, the area between −∞ and 1.65 is 0.95. This represents the prob-
ability of a tablet having 58.25 mg or less of drug. Since the question was, “What proportion
of tablets in the batch have a potency greater than 58.25 mg?”, the area above 58.25 mg is the
correct answer. The area under the entire curve is 1; the area above 58.25 mg is 1 − 0.95, equal to
0.05. This is equivalent to saying that 5% of the tablets have at least 58.25 mg (58.25 mg or more)
of drug in this particular batch or distribution of tablets. This transformation is illustrated in
Figure 3.15.

One should appreciate that since the normal distribution is a perfectly symmetrical con-
tinuous distribution that extends from − ∞ to + ∞, real data never exactly fit this model.
However, data from distributions reasonably similar to the normal can be treated as being nor-
mal, with the understanding that probabilities will be approximately correct. As the data are
closer to normal, the probabilities will be more exact. Methods exist to test if data can reason-
ably be expected to be derived from a normally distributed population [1]. In this book, when
applying the normal distribution to data we will either (a) assume that the data are close to
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Figure 3.15 Z transformation for tablets with

mean of 50 mg and s.d. of 5 mg.

normal according to previous experience or from an inspection of the data, or (b) that deviations
from normality will not greatly distort the probabilities based on the normal distribution.

Several examples are presented below which further illustrate applications of the normal
distribution.

Example 1: The U.S. Pharmacopia (USP) weight test for tablets states that for tablets
weighing up to 100 mg, not more than 2 of 20 tablets may differ from the average weight by
more than 10%, and no tablet may differ from the average weight by more than 20% [2]. To
ensure that batches of a 100-mg tablet (labeled as 100 mg) will pass this test consistently, a
statistician recommended that 98% of the tablets in the batch should weigh within 10% of the
mean. One thousand tablets from a batch of 3,000,000 were weighed and the mean and s.d.
were calculated as 101.2 ± 3.92 mg. Before performing the official USP test, the quality control
supervisor wishes to know if this batch meets the statistician’s recommendation. The calculation
to answer this problem can be made by using areas under the standard normal curve if the tablet
weights can be assumed to have a distribution that is approximately normal. For purposes of
this example, the sample mean and s.d. will be considered equal to the true batch mean and
s.d. Although not exactly true, the sample estimates will be close to the true values when a
sample as large as 1000 is used. For this large sample size, the sample estimates are very close
to the true parameters. However, one should clearly understand that to compute probabilities
based on areas under the normal curve, both the mean and s.d. must be known. When these
parameters are estimated from the sample statistics, other derived distributions can be used to
calculate probabilities.

Figure 3.16 shows the region where tablet weights will be outside the limits, 10% from the
mean (� ± 0.1 �), that is, 10.12 mg or more from the mean for an average tablet weight of 101.2
mg (101.2 ± 10.12 mg). The question to be answered is: What proportion of tablets are between

Figure 3.16 Distribution of tablets with mean weight 101.2 mg and s.d. equal to 3.92.
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91.1 and 111.3 mg? If the answer is 98% or greater, the requirements are met. The proportion of
tablets between 91.1 and 111.3 mg can be estimated by computing the area under the normal
curve in the interval 91.1 to 111.3, the unshaded area in Figure 3.16. This can be accomplished
by use of the Z transformation and the table of areas under the standard normal curve (Table
IV.2). First, we calculate the areas below 111.3 by using the Z transformation

Z = X − �

�
= 111.3 − 101.2

3.92
= 2.58.

This corresponds to an area of 0.995 (see Table IV.2). The area above 111.3 is (1 − 0.995) =
0.005 or 1/200. Referring to Figure 3.16, this area represents the probability of finding a tablet
that weighs 111.3 mg or more. The probability of a tablet weighing 91.1 mg or less is calculated
in a similar manner

Z = 91.1 − 101.2
3.92

= −2.58.

Table IV.2 shows that this area is 0.005; that is, the probability of a tablet weighing between
−∞ and 91.1 mg is 0.005. The probability that a tablet will weigh more than 111.3 mg or less
than 91.1 mg is 0.005 + 0.005, equal to 0.01. Therefore, 99% (1.00 − 0.01) of the tablets weigh
between 91.1 and 111.3 mg and the statistician’s recommendation is more than satisfied. The
batch should have no trouble passing the USP test.

The fact that the normal distribution is symmetric around the mean simplifies calculations
of areas under the normal curve. In the example above, the probability of values exceeding
Z equal to 2.58 is exactly the same as the probability of values being less than Z equal to −2.58.
This is a consequence of the symmetry of the normal curve, 2.58 and −2.58 being equidistant
from the mean. This is easily seen from an examination of Figure 3.16.

Although this batch of tablets should pass the USP weight uniformity test, if some tablets
in the batch are out of the 10% or 20% range, there is a chance that a random sample of 20 will
fail the USP test. In our example, about 1% or 30,000 tablets will be more than 10% different from
the mean (less than 91.1 or more than 111.3 mg). It would be of interest to know the chances,
albeit small, that of 20 randomly chosen tablets, more than 2 would be “aberrant.” When 1% of
the tablets in a batch deviate from the batch mean by 10% or more, the chances of finding more
than 2 such tablets in a sample of 20 is approximately 0.001 (1/1000). This calculation makes
use of the binomial probability distribution.

Example 2: During clinical trials, serum cholesterol, among other serum components, is
frequently monitored to ensure that a patient’s cholesterol is within the normal range, as well
as to observe possible drug effects on serum cholesterol levels. A question of concern is: What is
an abnormal serum cholesterol value? One way to define “abnormal” is to tabulate cholesterol
values for apparently normal healthy persons, and to consider values very remote from the
average as abnormal. The distribution of measurements such as serum cholesterol often has an
approximately normal distribution.

The results of the analysis of a large number of “normal” cholesterol values showed a
mean of 215 mg% and a s.d. of 35 mg%. This data can be depicted as a normal distribution
as shown in Figure 3.17. “Abnormal” can be defined in terms of the proportion of “normal”
values that fall in the extremes of the distribution. This may be thought of in terms of a gamble.
By choosing to say that extreme values observed in a new patient are abnormal, we are saying
that persons observed to have very low or high cholesterol levels could be “normal,” but the
likelihood or probability that they come from the population of normal healthy persons is
small. By defining an abnormal cholesterol value as one that has a 1 in 1000 chance of coming
from the distribution of values from normal healthy persons, cutoff points can be defined for
abnormality based on the parameters of the normal distribution. According to the cumulative
standard normal curve, Table IV.2, a value of Z equal to approximately 3.3 leaves 0.05% of the
area in the upper tail. Because of the symmetry of the normal curve, 0.05% of the area is below
Z = −3.3. Therefore, 0.1% (1/1000) of the values will lie outside the values of Z equal to ± 3.3
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Figure 3.17 Distribution of “normal” cholesterol values.

in the standard normal curve. The values of X (cholesterol levels) corresponding to Z = ±3.3
can be calculated from the Z transformation.

Z = X − �

�
= X − 215

35
= ±3.3

X = 215 ± (3.3)(35) = 99 and 331.

This is equivalent to saying that cholesterol levels that deviate from the average of “nor-
mal” persons by 3.3 s.d. units or more are deemed to be abnormal. For example, the lower limit
is the mean of the “normals” minus 3.3 times the s.d. or 215 − (3.3)(35) = 99. The cutoff points
are illustrated in Figure 3.17.

Example 3: The standard normal distribution may be used to calculate the proportion
of values in any interval from any normal distribution. As an example of this calculation,
consider the data of cholesterol values in Example 2. We may wish to calculate the proportion
of cholesterol values between 200 and 250 mg%.

Examination of Figure 3.18 shows that the area (probability) under the normal curve
between 200 and 250 mg% is the probability of a value being less than 250 minus the probability
of a value being less than 200. Referring to Table IV.2, we have

Probability of a value less than 250

250 − 215
35

= 1 = Z probability = 0.841.

Probability of a value less than 200

200 − 215
35

= −0.429 = Z probability = 0.334.

Therefore, the probability of a value falling between 250 and 200 is

0.841 − 0.334 = 0.507.

3.4.2 Central Limit Theorem
“Without doubt, the most important theorem in statistics is the central limit theorem” [3]. This
theorem states that the distribution of sample means of size N taken from any distribution with
a finite variance �2 and mean � tends to be normal with variance �2/N and mean �. We have
previously discussed the fact that a sample mean of size N has a variance equal to �2/N. The
new and important feature here is that if we are dealing with means of sufficiently large sample
size, the means have a normal distribution, regardless of the form of the distribution from which
the samples were selected.
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Figure 3.18 Illustration of the calculation of propor-

tion of cholesterol values between 200 and 250 mg%.

How large is a “large” sample? The answer to this question depends on the form of the
distribution from which the samples are taken. If the distribution is normal, any size sample will
have a mean that is normally distributed. For distributions that deviate greatly from normality,
larger samples will be needed to approximate normality than distributions that are more similar
to the normal distributions (e.g., symmetrical distributions).

The power of this theorem is that the normal distribution can be used to describe most
of the data with which we will be concerned, provided that the means come from samples of
sufficient size. An example will be presented to illustrate how means of distributions far from
normal tend to be normally distributed as the sample size increases. Later in this chapter, we will
see that even the discrete binomial distribution, where only a very limited number of outcomes
are possible, closely approximates the normal distribution with sample sizes as small as 10 in
symmetrical cases (e.g. P = q = 0.5).

Consider a distribution that consists of outcomes 1, 2, and 3 with probabilities depicted in
Figure 3.19. The probabilities of observing values of 1, 2, and 3 are 0.1, 0.3, and 0.6, respectively.
This is an asymmetric distribution, with only three discrete outcomes. The mean is 2.5. Sampling
from this population can be simulated by placing 600 tags marked with the number 3, 300 tags
marked with the number 2, and 100 tags marked with the number 1 in a box. We will mix up
the tags, select 10 (replacing each tag and mixing after each individual selection), and compute
the mean of the 10 samples. A typical result might be five tags marked 3, four tags marked 2,
and one tag marked 1, an average of 2.4. With a computer or programmable calculator, we can
simulate this drawing of 10 tags. The distributions of 100 such means for samples of sizes 10
and 20 obtained from a computer simulation are shown in Figure 3.20. The distribution is closer
to normal as the sample size is increased from 10 to 20. This is an empirical demonstration of
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1 2 3 Figure 3.19 Probability distribution of outcomes 1, 2,

and 3.

Figure 3.20 Distribution of means of sizes 10 and

20 from population shown in Figure 3.19.

the central limit theorem. Of course, under ordinary circumstances, we would not draw 100
samples each of size 10 (or 20) to demonstrate a result that can be proved mathematically.

3.4.3 Normal Approximation to the Binomial
A very important result in statistical theory is that the binomial probability distribution can be
approximated by the normal distribution if the sample size is sufficiently large (see sect. 3.4.2).
A conservative rule of thumb is that if NP (the product of the number of observations and
the probability of success) and Nq are both greater than or equal to 5, we can use the normal
distribution to approximate binomial probabilities. With symmetric binomial distributions,
when P = q = 0.5, the approximation works well for NP less than 5.

To demonstrate the application of the normal approximation to the binomial, we will
examine the binomial distribution described above, where N = 10 and p = 0.5. We can superim-
pose a normal curve over the binomial with � = 5 (number of successes) and standard deviation√

NPq = √
10(0.5)(0.5) = 1.58, as shown in Figure 3.21.

The probability of a discrete result can be calculated by using the binomial probability
[Eq. (3.9)] or Table IV.3. The probability of seven successes, for example, is equal to 0.117. In a
normal distribution, the probability of a single value cannot be calculated. We can only calculate
the probability of a range of values within a specified interval. The area that approximately
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corresponds to the probability of observing seven successes in 10 trials is the area between 6.5
and 7.5, as illustrated in Figure 3.21. This area can be obtained by using the Z transformation
discussed earlier in this chapter [Eq. (3.14)]. The area between 6.5 and 7.5 is equal to the area
below 7.5 minus the area below 6.5.

Area below 6.5 Z = 6.5−5
1.58 = 0.948 from Table IV.2, area = 0.828.

Area below 7.5
Z = 7.5−5

1.58 = 1.58 from Table IV.2, area = 0.943.
Therefore, the area (probability) between 6.5 and 7.5 is

0.943 − 0.828 = 0.115.

This area is very close to the exact probability of 0.117.

The use of X ± 0.5 to help estimate the probability of a discrete value, X, by using a
continuous distribution (e.g., the normal distribution) is known as a continuity correction. We
will see that the continuity correction is commonly used to improve the estimation of binomial
probabilities by the normal approximation (chap. 5).

Most of our applications of the binomial distribution will involve data that allow for the use
of the normal approximation to binomial probabilities. This is convenient because calculations
using exact binomial probabilities are tedious and much more difficult than the calculations
using the standard normal cumulative distribution (Table IV.2), particularly when the sample
size is large.

3.5 OTHER COMMON PROBABILITY DISTRIBUTIONS

3.5.1 The Poisson Distribution
Although we will not discuss this distribution further in this book, the Poisson distribution
deserves some mention. The Poisson distribution can be considered to be an approximation
to the binomial distribution when the sample size is large and the probability of observing a
specific event is small. In quality control, the probability of observing a defective item is often
calculated by using the Poisson. The probability of observing X events of a given kind in N
observations, where the probability of observing the event in a single observation is P, is

P(X) = �Xe−�

X!
(3.15)

where � =NP, e the base of natural logarithms (2.718. . .), and N the number of observations.
We may use the Poisson distribution to compute the probability of finding one defective

tablet in a sample of 100 taken from a batch with 1% defective tablets. Applying Eq. (3.15), we
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have

N = 100 P = 0.01 NP = � = (100)(0.01) = 1

P(1) = (1)1(e−1)
1!

= e−1 = 0.368.

The exact probability calculated from the binomial distribution is 0.370. (See Exercise
Problem 8.)

3.5.2 The t Distribution (“Student’s t”)
The t distribution is an extremely important probability distribution. This distribution can be
constructed by repeatedly taking samples of size N from a normal distribution and computing
the statistic

t = X̄ − �

S/
√

N
,

where X̄ is the sample mean, � the true mean of the normal distribution, and S the sample
standard deviation. The distribution of the t’s thus obtained forms the t distribution. The exact
shape of the t distribution depends on sample size (degrees of freedom), but the t distribution
is symmetrically distributed about a mean of zero, as shown in Figure 3.22(A).

To elucidate further the concept of a sampling distribution obtained by repeated sampling,
as discussed for the t distribution above, a simulated sampling of 100 samples each of size 4
(N = 4) was performed. These samples were selected from a normal distribution with mean
50 and standard deviation equal to 5, for this example. The mean and standard deviation of
each sample of size 4 were calculated and a t ratio [Eq. (3.16)] constructed.

The distribution of the 100 t values thus obtained is shown in Table 3.5. The data are plotted
(histogram) together with the theoretically derived t distribution with 3 degrees of freedom
(N − 1 = 4 − 1 = 3) in Figure 3.23. Note that the distribution is symmetrically centered around
a mean of 0, and that 5% of the t values are 3.18 or more units from the mean (theoretically).

3.5.3 The Chi-Square (�2) Distribution
Another important probability distribution in statistics is the chi-square distribution. The chi-
square distribution may be derived from normally distributed variables, defined as the sum of
squares of independent normal variables, each of which has mean 0 and standard deviation 1.
Thus, if Z is normal with � = 0 and � = 1,

� 2 =
∑

Z2
i . (3.17)

t
0

(A) (B) (C)

2 4

1 d.f.

3 d.f.

χ2 F

F2, 2

F6, 25

2 4 6

Figure 3.22 Examples of typical probability distributions.
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Table 3.5 Frequency Distribution of 100 t Values

Obtained by Simulated Repeat Sampling from a

Normal Distribution with Mean 50 and Standard

Deviation 5a

Class interval Frequency

−5.5 to −4.5 1

−4.5 to −3.5 2

−3.5 to −2.5 2

−2.5 to −1.5 11

−1.5 to −0.5 18

−0.5 to +0.5 29

+0.5 to +1.5 21

+1.5 to +2.5 9

+2.5 to +3.5 4

+3.5 to +4.5 2

+4.5 to +5.5 1

aSample size = 4.

Figure 3.23 Simulated t distribution (d.f. = 3)

compared to a theoretical t distribution.

Applications of the chi-square distribution are presented in chapters 5 and 15. The chi-
square distribution is often used to assess probabilities when comparing discrete values from
comparative groups, where the normal distribution can be used to approximate discrete prob-
abilities.

As with the t distribution, the distribution of chi-square depends on degrees of freedom,
equal to the number of independent normal variables as defined in Eq. (3.17). Figure 3.22(B)
shows chi-square distributions with 1 and 3 degrees of freedom.

3.5.4 The F Distribution
After the normal distribution, the F distribution is probably the most important probability
distribution used in statistics. This distribution results from the sampling distribution of the
ratio of two independent variance estimates obtained from the same normal distribution. Thus,
the first sample consists of N1 observations and the second sample consists of N2 observations

F = S2
1

S2
2

. (3.18)

The F distribution depends on two parameters, the degrees of freedom in the numerator (N1 − 1)
and the degrees of freedom in the denominator (N2 − 1). This distribution is used to test for
differences of means (analysis of variance) as well as to test for the equality of two variances.
The F distribution is discussed in more detail in chapters 5 and 8 as applied to the comparison
of two variances and testing of equality of means in the analysis of variance, respectively.
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3.6 THE LOG-NORMAL DISTRIBUTION
The log-normal distribution results from a distribution, skewed to the right (see Fig. 10.1). Such
data, when transformed into logs, exhibit the properties of a normal distribution. Thus, the logs
of the original skewed data are normally distributed. The log-normal distribution is an important
distribution in applications to the pharmaceutical sciences. Two important applications are in the
analysis of bioequivalence data (see chap. 11) and particle size analysis. Some of the properties
of a log-normal distribution are presented at this time as applied to the analysis of particle size
of active drug substances and powders, such as excipients. This application is important, as
the particle size of ingredients in common dosage forms may profoundly affect the therapeutic
activity of the active ingredient.

3.6.1 Statistical Analysis of Particle Size
Typically, to characterize the particle size of a powdered substance, one defines the characteris-
tics of the distribution of particles as previously described in this book (chap. 1), the mean, the
standard deviation, and percentiles, particularly the 50th percentile or the median.

If the distribution of the particles followed an approximately normal distribution, the
median and mean would be the “identical.” However, experience shows that the particle size
distribution is typically skewed to the right and follows an approximately log-normal distribu-
tion. We will not be concerned with the question of how to measure particle size, but for the
present discussion, we will be measuring the diameter of the particles, assuming that the parti-
cles are perfect spheres. This measurement is also known as the spherical equivalent diameter.
This is the diameter of a sphere that would have the equivalent volume of the irregular-shaped
particle [7]. We will assume that the diameters have a log-normal distribution. Consider the
data in Table 3.6 [7] that describe the distribution of diameters in the form of a frequency
table.

The cumulative distribution is shown in Figure 3.24. Figure 3.24 is a special kind of
graph that plots the cumulative distribution of the logs of the diameters on a probability scale,
sometimes referred to as a probability plot. In this example, the X axis represents the area
under a normal curve in terms of standard deviations (the standard normal curve). The Y axis
represents the cumulative distribution of the logarithms of the diameters. Thus, the cumulative
distribution of the logs of the diameters is conveniently shown on log-probability paper. If the
distribution is log-normal, such a plot should show a straight line. That is, cumulative data
plotted on probability paper will show a straight line if the data are normally distributed.

From Table 3.6 and Figure 3.24, the mean, median, and other percentiles, such as the 10th
and 90th percentile, as well as the standard deviation can be ascertained for the log-transformed
values. For example, referring to Figure 3.24, the median is represented by the 50% point on
the probability scale, 10 �m for diameters (see below). Thus, the log-normal distribution can be
conveniently characterized by these well-known parameters.

For example, inspection of Figure 3.24 shows that the 90th percentile is approximately
20 �m for the log-transformed diameters. Note, that for a log-normal distribution, the mean is
larger than the median based on the original, untransformed numbers. The mean of the original,
untransformed diameters is 12.25 mu. The median of the untransformed and transformed
numbers does not change, 10 mu, when the median of the logs is back-transformed to the
original numbers. The distribution of the logs of the diameters, however, will be normal, and
shows a symmetric distribution where the mean and median are the same. Table 3.6 shows
particle diameters in intervals (bins), and includes calculations based on the diameters and the
mass or weight, as explained below.

As previously noted, typically, the distribution of diameters is considered to have a log-
normal distribution. This distribution is based on the frequency of particles in the intervals
describing the distribution (The first five columns in Table 3.6). The mean of the untransformed
diameters is 12.25 mu as computed for data in the form of frequency tables (see sect. 1.2).
Note that the mean of the log-transformed diameters is 2.300. The antilog of 2.300 is 9.97 or
approximately 10, the same as the median.

Another way in which the particle distribution is described is by weight. If the density of
the particles is considered constant, the weight will be proportional to the cube of the diameter.
Note that the weight of a spherical particle is equal to volume x density. The volume of a
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Table 3.6 Calculation of Some Average Diameters [7]

Interval
Diameter (D)

(midsize)
Frequency

(N)

Cumulative
frequency
(frequency)

Cum. %
frequency
(frequency)

Diameter ×
frequency
(D × N) ln(diameter)

1–1.4 1.2 2 2 0.2 2.4 0.182

1.4–2.0 1.7 5 7 0.7 8.5 0.531

2.0–2.8 2.4 14 21 2.1 33.6 0.875

2.8–3.6 3.2 60 81 8.1 192 1.163

3.6–6.0 4.8 100 181 18.1 480 1.569

6.0–7.6 6.8 190 371 37.1 1292 1.917

7.6–12.4 10 250 621 62.1 2500 2.303

12.4–15.6 14 160 781 78.1 2240 2.639

15.6–22.4 19 110 891 89.1 2090 2.944

22.4–29.6 26 70 961 96.1 1820 3.258

29.6–42.4 36 28 989 98.9 1008 3.584

42.4–59.6 51 10 999 99.9 510 3.932

59.6–84.4 72 1 1000 100 72 4.277

Total 1000 12248.5

Average 12.2485

Interval
Diameter (D)

(midsize)
N × ln

(diameter)
Cum. N ×

ln(D) ND3 Cum. ND3
Cum. %
(cum. ND3)

1–1.4 1.2 0.365 0.365 3.456 3.5 6.01E-07

1.4–2.0 1.7 2.653 3.018 24.565 28.0 4.87E-06

2.0–2.8 2.4 12.257 15.274 193.536 221.6 3.85E-05

2.8–3.6 3.2 69.789 85.063 1966.08 2187.6 0.00038

3.6–6.0 4.8 156.862 241.925 11059.2 13246.8 0.002303

6.0–7.6 6.8 364.215 606.140 59742.08 72988.9 0.012687

7.6–12.4 10 575.646 1181.787 250000 322988.9 0.056143

12.4–15.6 14 422.249 1604.036 439040 762028.9 0.132458

15.6–22.4 19 323.888 1927.924 754490 1516518.9 0.263606

22.4–29.6 26 228.067 2155.991 1230320 2746838.9 0.477465

29.6–42.4 36 100.339 2256.329 1306368 4053206.9 0.704542

42.4–59.6 51 39.318 2295.648 1326510 5379716.9 0.935121

59.6–84.4 72 4.277 2299.924 373248 5752964.9 1

Total 2299.9242 5752964.917

Average 2.2999242 5752.964917

Average diameter = 12.2485; Standard deviation = 8.52766; CV = s.d./average diameter = 0.69622; GSD = Geometric s.d. from

Figure 3.24 = ∼1.9; CV = ∼0.745; ln(GSD) = 0.642.
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Figure 3.24 Log-probability plot of distribution from Table 3.6 [7].
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sphere is 4/3 pi (radius)3. The distribution can be described by the cube of the diameters (which
are proportional to the weights of the particles) in each interval (see the last three columns in
Table 3.6). The median weight is sometimes defined by particle size analysts as the particle
diameter below which 50% of the weights lie. This is not the typical definition of the median.
Using the usual definition, the median weight would be that weight that would have 50% of
the weight below (and above) that value. For example, in Table 3.6, the usual definition would
be the 50% cumulative point in the column labeled “Cum ND,3” a value somewhat greater than
2,746,839, because that defines the weight that has 50% of the weight above and below this
value. However, the median weight is often described in particle size analysis as the diameter
that corresponds to the median weight, not the usual definition. From Figure 3.6 and Table 3.24, this
value is 31 mu. Because this definition of the median weight, as often described by particle size
analysts, is different from the usual definition, and there are several definitions of the median
particle size [7,8], one should clearly explain how the median is derived.

Thus, there is some disconnect in these definitions. For example, the mean of the distribu-
tion would depend on whether we are talking about diameters or weights, and how the values
are determined. For example, the determination of the mean of the particle distribution could
be determined on a weight basis or diameter basis. Not only would the answers be different
depending on the definition, but the distribution of particles will also depend on the definitions,
whether we are talking about weight or diameters.

Other parameters can be determined from Figure 3.24 and Table 3.6. The coefficient of
variation (CV = s.d./mean) for the diameters from Table 3.6 is 8.528/12.249 = 0.696. The
geometric standard deviation (GSD) can be determined from the log-probability plot (Fig. 3.24).
The standard deviation can be read from the plot as the distance of the cumulative diameters
between the 50th percentile and 84th percentile. Note that one standard deviation encompasses
34% of the area above the mean or median. This GSD is approximately 1.9. It can be shown that
the log (ln) of the GSD is equal to the CV of the untransformed data, equals approximately, 0.64.
This is close to the observed CV of the untransformed diameters, 0.696. The CV based on the
log-transformed diameters can be estimated by using the following equation:

CV =√{e (GSD2−1)}
=√{e (0.642−1)} = 0.74.

Note that these are theoretical concepts, so that one does not expect the observed and
theoretical values to be identical. Of course, we do not expect data to exactly conform to a
log-normal distribution, just as we do not expect real data to exactly conform to a normal
distribution. (For more detailed discussion of particle size analysis, see Refs. [7,8].)

KEY TERMS

Binomial distribution
Binomial formula
Binomial trial
Central limit theorem
Chi-square distribution
Combinations
Conditional probability
Continuous distribution
Cumulative distribution
Density function
Discontinuous variable
Discrete distribution
Distribution
Equally likely
Event
Failure
F distribution
Independent events

Log-normal distribution
Multiplicative probability
Mutually exclusive
Negative binomial distribution
Normal distribution
Outcome
Poisson distribution
Population
Probability distribution
Proportion
Random
Randomly chosen
Standard normal distribution
Success
t distribution
Variability
Factorial
Z transformation
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EXERCISES
1. Explain why do you think that a controlled multicenter clinical study better estimates the

probability of a patient responding to treatment than the observations of a single physician
in daily practice.

2. Describe the population that represents the multicenter antibiotic clinical study described
in section 3.3.

3. Give three examples of probability distributions that describe the probability of outcomes
in terms of attributes.

4. Explain why 30,000 tablets are only specked if 20,000 tablets are both chipped and specked
as described in section 3.2. What is the probability, in the example described in section 3.2,
of finding a specked tablet or a chipped tablet? (Hint: Count all the tablets that have either
a speck or a chip.) See Eq. (3.4).

5. In a survey of hospital patients, it was shown that the probability that a patient has high
blood pressure given that he or she is diabetic was 0.85. If 10% of the patients are diabetic
and 25% have high blood pressure:
(a) What is the probability that a patient has both diabetes and high blood pressure?
(b) Are the conditions of diabetes and high blood pressure independent? [Hint: See Eqs.

(3.5), (3.6), and (3.7).]

6. Show how the result 0.21094 is obtained for the probability of two of four patients being
cured if the probability of a cure is 0.75 for each patient and the outcomes are independent
(Table 3.2). (Enumerate all ways in which two of four patients can be cured, and compute
the probability associated with each of these ways.)

7. What is the probability that three of six patients will be cured if the probability of a cure is
60%?

8. Calculate the probability of one success in 100 trials if p = 0.01.

9. From the cumulative plot in Figure 3.7(B), estimate the probability that a value, selected at
random, will be (a) greater than Z0; (b) less than Z0.

10. What is the probability that a normal patient has a cholesterol value below 170
(� = 215, � = 35)?

11. If the mean and standard deviation of the potency of a batch of tablets are 50 and 5 mg,
respectively, what proportion of the tablets have a potency between 40 and 60 mg?

12. If a patient has a serum cholesterol value outside normal limits, does this mean that the
patient is abnormal in the sense of having a disease or illness?

13. Serum sodium values for normal persons have a mean of 140 mEq/L and a s.d. of 2.5. What
is the probability that a person’s serum sodium will be between 137 and 142 mEq/L?

14. Data were collected over many years on cholesterol levels of normal persons in a New York
hospital with the following results based on 100,000 readings. The mean is 205 mg%; the
s.d. is 45. Assuming that the data have a normal distribution, what is the probability that
a normal patient has a value greater than 280 mg%?

15. In the game of craps, two dice are thrown, each dice having an equal probability of showing
one of the numbers 1 to 6 inclusive. Explain why the probability of observing a point of 2
(the sum of the numbers on the two dice) is 1/36.

16. Is the probability of observing two heads and one tail the same under the two following
conditions: (a) simultaneously throwing three coins; (b) tossing one coin three consecutive
times? Explain your answer.

17. What odds would you give of finding either none or one defective tablet in a sample of size
20 if the batch of tablets has 1% defective? Answer the same question if the sample size is
100.



70 CHAPTER 3

18. What is the probability of observing exactly one head in 10 tosses of a coin?
§§19. The chance of obtaining a cure using conventional treatment for a particular form of

cancer is 1%. A new treatment being tested cures two of the first four patients tested.
Would you announce to the world that a major breakthrough in the treatment of this
cancer is imminent? Explain your answer.

20. What is the s.d. for the binomial experiments described in Problems 17 and 19? (Answer
in terms of NPq and Pq/N.)

§§21. In screening new compounds for pharmacological activity, the compound is adminis-
tered to 20 animals. For a standard drug, 50% of the animals show a response on the
average. Fifteen of the twenty animals show the response after administration of a new
drug. Is the new drug a promising candidate? Why? [Hint: Compute the s.d. of the
response based on p = 0.5. See if the observed response is more than 2 s.d.’s greater than
0.5.]

22. Using the binomial formula, calculate the probability that a sample of 30 tablets will
show 0 or 1 defect if there are 1% defects in the batch. (What is the probability that there
will be more than one defect in the sample of 30?)

23. The following expression can be used to calculate the probability of observing A or B or
C (or any combination of A, B, C)

P(A or B or C) = P(A) + P(B) + P(C) − P(A and B)
−P(A and C) − P(B and C) + P(A and B and C).

A survey shows that 85% of people with colds have cough, rhinitis, pain, or a combination
of these symptoms. Thirty-five percent have at least cough, 50% have at least rhinitis, and 50%
have at least pain. Twenty percent have (at least) cough and rhinitis, 15% have cough and pain,
and 25% have rhinitis and pain. What percentage have all three symptoms?
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4 Choosing Samples

The samples are the units that provide the experimental observations, such as tablets sampled
for potency, patients sampled for plasma cholesterol levels, or tablets inspected for defects. The
sampling procedure is an essential ingredient of a good experiment. An otherwise excellent
experiment or investigation can be invalidated if proper attention is not given to choosing
samples in a manner consistent with the experimental design or objectives. Statistical treatment
of data and the inference based on experimental results depend on the sampling procedure. The
way in which samples should be selected is not always obvious, and requires careful thought.

The implementation of the sampling procedure may be more or less difficult depending
on the experimental situation, such as that which we may confront when choosing patients for
a clinical trial, sampling blends, or choosing tablets for quality control tests. In this chapter,
we discuss various ways of choosing samples and assigning treatments to experimental units
(e.g., assigning different drug treatments to patients). We will briefly discuss various types of
sampling schemes, such as simple random sampling, stratified sampling, systematic sampling,
and cluster sampling. In addition, the use of random number tables to assign experimental units
to treatments in designed experiments will be described.

4.1 INTRODUCTION
There are many different ways of selecting samples. We all take samples daily, although we
usually do not think of this in a statistical sense. Cooks are always sampling their wares, tasting
the soup to see if it needs a little more spice, or sampling a gravy or sauce to see if it needs more
mixing. When buying a car, we take a test ride in a “sample” to determine if it meets our needs
and desires.

The usual purpose of observing or measuring a property of a sample is to make some
inference about the population from which the sample is drawn. In order to have reasonable
assurance that we will not be deceived by the sample observations, we should take care that
the samples are not biased. We would clearly be misled if the test car was not representative of
the line, but had somehow been modified to entice us into a sale. We can never be sure that the
sample we observe mirrors the entire population. If we could observe the entire population, we
would then know its exact nature. However, 100% sampling is virtually never done. (One well-
known exception is the U.S. census.) It is costly, time consuming, and may result in erroneous
observations. For example, to inspect each and every one of 2 million tablets for specks, a tedious
and time consuming task, would probably result in many errors due to fatigue of the inspectors.

Destructive testing precludes 100% sampling. To assay each tablet in a batch does not
make sense. Under ordinary circumstances, no one would assay every last bit of bulk powder
to ensure that it is not adulterated.

The sampling procedure used will probably depend on the experimental situation. Factors
to be considered when devising a sampling scheme include

1. The nature of the population. For example, can we enumerate the individual units, such
as packaged bottles of a product, or is the population less easily defined, as in the case of
hypertensive patients?

2. The cost of sampling in terms of both time and money.
3. Convenience. Sometimes it may be virtually impossible to carry out a particular sampling

procedure.
4. Desired precision. The accuracy and precision desired will be a function of the sampling

procedure and sample size.
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Sampling schemes may be roughly divided into probability sampling and nonprobability sam-
pling (sometimes called authoritative sampling). Nonprobability sampling methods often are
conceptually convenient and simple. These methods are considered as methods of convenience
in many cases. Samples are chosen in a particular manner because alternatives are difficult. For
example, when sampling powder from 10 drums of a shipment of 100 drums, those drums that
are most easily accessible might be the ones chosen. Or, when sampling tablets from a large con-
tainer, we may conveniently choose from those at the top. A “judgment” sample is chosen with
possible knowledge that some samples are more “representative” than others, perhaps based
on experience. A quality control inspector may decide to inspect a product during the middle
of a run, feeling that the middle is more representative of the “average” product than samples
obtained at the beginning or end of the run. The inspector may also choose particular containers
for inspection based on knowledge of the manufacturing and bottling procedures. A “haphaz-
ard” sample is one taken without any predetermined plan, but one in which the sampler tries
to avoid bias during the sampling procedure. Nonprobability samples often have a hidden bias,
and it is not possible to apply typical statistical methods to estimate the population parameters
(e.g., � and �) and the precision of the estimates. Nonprobability sampling methods should not
be used unless probability sampling methods are too difficult or too expensive to implement.

We will discuss procedures and some properties of common probability sampling methods.
Objects chosen to be included in probability samples have a known probability of being included
in the sample and are chosen by some random device.

4.2 RANDOM SAMPLING
Simple random sampling is a common way of choosing samples. A random sample is one in
which each individual (object) in the population to be sampled has an equal chance of being
selected. The procedure of choosing a random sample can be likened to a bingo game or a
lottery where the individuals (tags, balls, tablets, etc.) are thoroughly mixed, and the sample
chosen at “random.” This ensures that there is no bias; that is, on the average, the estimates of the
population parameters (e.g., the mean) will be accurate. However, one should be aware, that in
any single sample, random sampling does not ensure an accurate estimate of the mean and/or
the standard deviation. An example of the lack of reliability of small samples can be shown
based on the batting statistics of a 0.250 hitter in a given game. We would expect one hit in four
times at bat, on the average. Suppose the batter comes up four times in the game. What is the
probability that he will get exactly one hit? Applying the binomial theorem, the probability is
42%. See Problem number 12 at the end of this chapter.

Many statistical procedures are based on an assumption that samples are chosen at ran-
dom. Simple random sampling is most effective when the variability is relatively small and
uniform over the population [1].

In most situations, it is not possible to mix the objects that constitute the population and
pick the samples out of a “box.” But if all members of the population can be identified, a unique
identification, such as a number, can be assigned to each individual unit. We can then choose
the sample by picking numbers, randomly, from a box using a lottery-like technique. Usually,
this procedure is more easily accomplished through the use of a table of random numbers.
Random numbers have been tabulated extensively [2]. In addition to available tables, computer-
generated random numbers may be used to select random samples or to assign experimental
units randomly to treatments as described below.

4.2.1 Table of Random Numbers
Random numbers are frequently used as a device to choose samples to be included in a survey,
a quality control inspection sample, or to assign experimental units to treatments such as
assigning patients to drug treatments. The first step that is often necessary in the application
of a table of random numbers is to assign a number to each of the experimental units in the
population or to the units potentially available for inclusion in the sample. The numbers are
assigned consecutively from 1 to N, where N is the number of units under consideration. The
experimental units may be patients to be assigned to one of two treatments or bottles of tablets
to be inspected for defects. We then choose a “starting point” in the table of random numbers,
in some “random” manner. For example, we can close our eyes and point a finger on a page of
the random number table, and this can be the starting point. Alternatively, the numbers thus
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chosen can be thought of as the page, column, and row number of a new starting point. Using
this random procedure, having observed the numbers 3674826, we would proceed to page 367,
column 48, and row 26 in a book such as A Million Random Digits [2]. This would be the starting
point for the random section. If the numbers designating the starting point do not correspond
to an available page, row, or column, the next numbers in sequence (going down or across the
page as is convenient) can be used, and so on.

Table IV.1 is a typical page from a table of random numbers. The exact use of the table
will depend on the specific situation. Some examples should clarify applications of the random
number table to randomization procedures.

1. A sample of 10 bottles is to be selected from a universe of 800 bottles. The bottles are
numbered from 1 to 800 inclusive. A starting point is selected from the random number
table and three-digit numbers are used to accommodate the 800 bottles. Suppose that the
starting point is row 6 and column 21 in Table IV.1. (The first three-digit number is 177.) If a
number greater than 800 appears or a number is chosen a second time (i.e., the same number
appears twice or more in the table), skip the number and proceed to the next one. The first
10 numbers found in Table IV.1 with the starting point above and subject to the foregoing
restraints are (reading down) 177, 703, 44, 127, 528, 43, 135, 104, 342, and 604 (Table 4.1). Note
that we did not include 964 because there is no bottle with this number; only 800 bottles are
available. These numbers correspond to the 10 bottles that will be chosen for inspection.

2. Random numbers may be used to assign patients randomly to treatments in clinical trials.
Initially, the characteristics and source of the patients to be included in the trial should be
carefully considered. If a drug for the treatment of asthma were to be compared to a placebo

Table 4.1 Excerpt from Table IV.1

Column 21

Row 6 17 7

70 3

04 4

12 7

52 8

04 3

13 5

96 4

10 4

34 2

60 4
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treatment, the source (or population) of the samples to be chosen could be all asthmatics in
this country. Clearly, even if we could identify all such persons, for obvious practical reasons
it would not be possible to choose those to be included in the study using the simple random
sampling procedure described previously.

In fact, in clinical studies of this kind, patients are usually recruited by an investigator
(physician), and all patients who meet the protocol requirements and are willing to participate
are included. Most of the time, patients in the study are randomly assigned to the two or more
treatments by means of a table of random numbers or a similar “random” device. Consider a
study with 20 patients designed to compare an active drug substance to an identically appearing
placebo. As patients enter the study, they are assigned randomly to one of the treatment groups,
10 patients to be assigned to each group. One way to accomplish this is to “flip” a coin, assigning,
for example, heads to the active drug product and tails to the placebo. After 10 patients have
been assigned to one group, the remaining patients are assigned to the incomplete group.

A problem with a simple random assignment of this kind is that an undesirable allocation
may result by chance. For example, although improbable, the first 10 patients could be assigned
to the active treatment and the last 10 to the placebo, an assignment that the randomization
procedure is intended to avoid. (Note that if the treatment outcome is associated with a time
trend due to seasonal effects, physician learning, personnel changes, etc., such an assignment
would bias the results.) In order to avoid this possibility, the randomization can be applied
to subgroups of the sample, sometimes called a block randomization. For 20 patients, one
possibility is to randomize in groups of 4, 2 actives and 2 placebos to be assigned to each group
of 4. This procedure also ensures that if the study should be aborted at any time, approximately
equal numbers of placebo and active treated patients will be included in the results. Another
application of blocking is to adjust the randomization for baseline variables, such as sex, duration
of disease, and so on.

If the randomization is performed in groups of 4 as recommended, the following patient
allocation would result. (Use Table 4.1 for the random numbers as before, odd for placebo, even
for active.)

Patient Random no. Drug Comment

1 1 P

2 7 P

3 — D

4 — D Assign D to patient 3 and 4 to ensure equal allocation of

D and P in the subgroup

5 0 D

6 1 P

7 5 P

8 — D Assign D to patient 8 to ensure equal allocation of D and

P in the subgroup

9 0 D

10 1 P

11 9 P

12 — D Assign D to patient 12 to ensure equal allocation of D

and P in the subgroup

13 1 P

14 3 P

15 — D

16 — D Assign D to patients 15 and 16 to ensure equal

allocation of D and P in the subgroup

17 6 D

18 7 P

19 0 D

20 — P Assign D to patient 20 to ensure equal allocation of D

and P in the subgroup
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Table 4.2 Excerpt from Table IV.1: Assignment of First 10 Numbers Between 1

and 20 to Placebo

Column 11

Row 11 44 22 78 84 26 04 33 46 09 52

59 29 97 68 60 71 91 38 67 54 13 58 18 24 76

48 55 90 65 72 96 57 69 36 10 96 46 92 42 45

66 37 32 20 30 77 84 57 03 29 10 45 65 04 26

68 49 69 10 82 53 75 91 93 30 34 25 20 57 27

83 62 64 11 12 67 19

The source and methods of randomization schemes for experiments or clinical studies
should be documented for U.S. Food and Drug Administration submissions or for legal pur-
poses. Therefore, it is a good idea to use a table of random numbers or a computer-generated
randomization scheme for documentation rather than the coin-flipping technique. One should
recognize, however that the latter procedure is perfectly fair, the choice of treatment being due
to chance alone. Using a table of random numbers, a patient may be assigned to one treatment
if an odd number appears and to the other treatment if an even number appears. We use single
numbers for this allocation. If even numbers are assigned to drug treatment, the numbers in
Table 4.1 would result in the following assignment to drug and placebo (read numbers down
each column, one number at a time; the first number is 1, the second number is 7, the third
number is 0, etc.).

Patient Patient Patient Patient

1 1 P 6 0 D 11 6 D 16 2 D

2 7 P 7 1 P 12 7 P 17 4 D

3 0 D 8 9 P 13 0 D 18 3 P

4 1 P 9 1 P 14 4 D

5 5 P 10 3 P 15 2 D

Since 10 patients have been assigned to placebo (P), the remaining two patients are
assigned to drug (D). Again, the randomization can be performed in subgroups as described in
the previous paragraph. If the randomization is performed in subgroups of size 4, for example,
the first 4 patients would be assigned as follows: patients 1 and 2 to placebo (random numbers
1 and 7), and patients 3 and 4 to drug to attain equal allocation of treatments in this sample of 4.

Another approach is to number the patients from 1 to 20 inclusive as they enter the study.
The patients corresponding to the first 10 numbers from the random number table are assigned
to one of the two treatment groups. The remaining patients are assigned to the second treatment.
In our example, the first 10 numbers will be assigned to placebo and the remaining numbers to
drug. In this case, two-digit numbers are used from the random number table. (The numbers
1–20 have at most two digits.) Starting at row 11, column 11 in Table IV.1 and reading across,
the numbers in Table 4.2 represent patients to be assigned to the first treatment group, placebo.
Reading across, the first 10 numbers to appear that are between 1 and 20 (disregarding repeats),
underlined in Table 4.2, are 4, 9, 13, 18, 10, 20, 3, 11, 12, and 19. These patients are assigned to
placebo. The remaining patients, 1, 2, 5, 6, 7, 8, 14, 15, 16, and 17, are assigned to drug.

Randomization in clinical trials is discussed further in section 11.2.6.

4.3 OTHER SAMPLING PROCEDURES: STRATIFIED, SYSTEMATIC,
AND CLUSTER SAMPLING

4.3.1 Stratified Sampling
Stratified sampling is a procedure in which the population is divided into subsets or strata, and
random samples are selected from each strata. Stratified sampling is a recommended way of
sampling when the strata are very different from each other, but objects within each stratum are
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alike. The precision of the estimated population mean from this sampling procedure is based
on the variability within the strata. Stratified sampling will be particularly advantageous when
this within-object variability is small compared to the variability between objects in different
strata. In quality control procedures, items are frequently selected for inspection at random
within specified time intervals (strata) rather than in a completely random fashion (simple
random sampling). Thus we might sample 10 tablets during each hour of a tablet run. Often,
the sample size chosen from each stratum is proportional to the size of the stratum, but in some
circumstances, disproportionate sampling may be optimal. The computation of the mean and
variance based on stratified sampling can be complicated, and the analysis of the data should
take stratification into account [1]. In the example of the clinical study on asthmatics (see sect.
4.2.1), the stratification could be accomplished by dividing the asthmatic patients into subsets
(strata) depending on age, duration of illness, or severity of illness, for example. The patients are
assigned to treatments randomly within each subset. (See randomization in blocks above.) Note
in this example that patients within each stratum are more alike than patients from different
strata.

Consider an example of sampling tablets for drug content (assay) during a tablet run. If
we believe that samples taken close in time are more alike than those taken at widely differing
times, stratification would be desirable. If the tableting run takes 10 hours to complete, and a
sample of 100 tablets is desired, we could take 10 tablets randomly during each hour, a stratified
sample. This procedure would result in a more precise estimate of the average tablet potency
than a sample of 100 tablets taken randomly over the entire 10-hour run.

Although stratified sampling often results in better precision of the estimate of the pop-
ulation mean, in some instances the details of its implementation may be more difficult than
those of simple random sampling.

4.3.2 Systematic Sampling
Systematic sampling is often used in quality control. In this kind of sampling, every nth item
is selected (e.g., every 100th item). The initial sample is selected in a random manner. Thus,
a quality control procedure may specify that 10 samples be taken at a particular time each
hour during a production run. The time during the hour for each sampling may be chosen in
a random manner. Systematic sampling is usually much more convenient, and much easier to
accomplish than simple random sampling and stratified sampling. It also results in a uniform
sampling over the production run, which may result in a more precise estimate of the mean.
Care should be taken that the process does not show a cyclic or periodic behavior, because
systematic sampling will then not be representative of the process. The correct variance for the
mean of a systematic sample is less than that of a simple random sample if the variability of the
systematic sample is greater than the variability of the entire set of data.

To illustrate the properties of a systematic sample, consider a tableting process in which
tablet weights tend to decrease during the run, perhaps due to a gradual decrease in tableting
pressure. The press operator adjusts the tablet pressure every hour to maintain the desired
weight. The tablet weights during the run are illustrated in Figure 4.1. If tablets are sampled
45 minutes after each hour, the average result will be approximately 385 mg, a biased result.

If the data appear in a random manner, systematic sampling may be desirable because it
is simple and convenient to implement. As noted above, “systematic sampling is more precise
than random sampling if the variance within the systematic sample is larger than the population
variance as a whole.” Another way of saying this is that systematic sampling is precise when
units within the same sample are heterogeneous, and imprecise when they are homogeneous
[3]. In the tableting example noted in the previous paragraph, the units in the sample tend to
be similar (precise) and systematic sampling is a poor choice. (See Exercise Problem 11 for an
example of construction of a systematic sample.)

4.3.3 Cluster Sampling
In cluster sampling, the population is divided into groups or clusters each of which contain
“subunits.” In single-stage cluster sampling, clusters are selected at random and all elements of
the clusters chosen are included in the sample (4).
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Figure 4.1 Illustration of problem with systematic sampling when process shows periodic behavior.

Two-stage cluster sampling may be used when there are many “primary” units, each of
which can be “subsampled.” For example, suppose that we wish to inspect tablets visually,
packaged in the final labeled container. The batch consists of 10,000 bottles of 100 tablets
each. The primary units are the bottles and the subsample units are the tablets within each
bottle. Cluster sampling, in this example, might consist of randomly selecting a sample of 100
bottles, and then inspecting a random sample of 10 tablets from each of these bottles, thus
the nomenclature, “two-stage” sampling. Often, cluster sampling is the most convenient way
of choosing a sample. In the example above, it would be impractical to select 1000 tablets at
random from the 1,000,000 packaged tablets (10,000 bottles × 100 tablets per bottle).

For a continuous variable such as tablet weights or potency, the estimate of the variance
of the mean in two-stage cluster sampling is

(1 − f1)S2
1/n + [

S2
2/(nm)

]
( f1(1 − f2)) (4.1)

where S2
1 is the estimate of the variance among the primary unit means (the means of bottles).

S2
2 is the estimate of the variance of the subsample units, that is, units within the primary

units (between tablets within bottles). f1 and f2 are the sampling fractions of the primary and
subsample units, respectively. These are the ratios of units sampled to the total units available.
In the present example of bottled tablets,

f1 = 100 bottles/10,000 bottles = 0.01 (100 bottles are randomly selected from 10,000)
f 2 = 10 tablets/100 tablets = 0.1 (10 tablets are randomly selected from 100 for each of the

100 bottles)
n = number of primary unit samples (100 in this example)
m = number of units sampled from each primary unit (10 in this example).

If, in this example, S2
1 and S2

2 are 2 and 20, respectively, from Eq. (4.1), the estimated
variance of the mean of 1000 tablets sampled from 100 bottles (10 tablets per bottle) is

(1 − 0.01)(2)
100

+
[

20
(100 × 10)

]
(0.01)(0.9) = 0.01998.

If 1000 tablets are sampled by taking 2 tablets from each of 500 bottles, the estimated
variance of the mean is

(1 − 0.05)(2)
500

+
[

20
(500 × 2)

]
(0.05)(0.98) = 0.00478.

This example illustrates the increase in efficiency of sampling more primary units. The
variance obtained by sampling 200 bottles is approximately one-half that of sampling 100 bottles.
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If f1 is small, the variance of the mean is related to the number of primary units sampled (n) equal
to approximately S2

1/n. Cost and time factors being equal, it is more efficient to sample more
primary units and fewer subsample units given a fixed sample size. However, in many situations
it is not practical or economical to sample a large number of primary units. The inspection of
tablets in finished bottles is an example where inspection of many primary units (bottles) would
be costly and inconvenient. See Exercise Problems 9 and 10 for further illustrations.

4.4 SAMPLING IN QUALITY CONTROL
Sampling of items for inspection, chemical, or physical analysis is a very important aspect of
quality control procedures. For the moment, we will not discuss the important question: “What
sample size should we take?” This will be discussed in chapter 6. What concerns us here is how
to choose the samples. In this respect, the important points to keep in mind from a statistical
point of view are as follows:

1. The sample should be “representative.”
2. The sample should be chosen in a way that will be compatible with the objectives of the

eventual data analysis.

For example, when sampling tablets, we may be interested in estimating the mean and
standard deviation of the weight or potency of the tablet batch. If 20 tablets are chosen for
a weight check during each hour for 10 hours from a tablet press (a stratified or systematic
sample), the mean and standard deviation are computed in the usual manner if the production
run is uniform resulting in random data. However, if warranted, the analysis should take into
account the number of tablets produced each hour and the uniformity of production during the
sampling scheme. For example, in a uniform process, an estimate of the average weight would
be the average of the 200 tablets, or equivalently, the average of the averages of the 10 sets of
20 tablets sampled. However, if the rate of tablet production is doubled during the 9th and 10
hours, the averages obtained during these two hours should contribute twice the weight to the
overall average as the average results obtained during the first eight hours. For further details
of the statistical analysis of various sampling procedures, the reader is referred to Refs. [1,3].

Choosing a representative sample from a bulk powder, as an example, is often based
on judgment and experience more than on scientific criteria (a “judgment” sample). Rules for
sampling from containers and for preparing powdered material or granulations for assay are,
strictly speaking, not “statistical” in nature. Bulk powder sampling schemes have been devised
in an attempt to obtain a representative sample without having to sample an inordinately large
amount of material. A common rule of thumb, taking samples from

√
N + 1 containers (N

is the total number of containers), is a way to be reasonably sure that the material inspected
is representative of the entire lot, based on tradition rather than on objective grounds. Using
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this rule, given a batch of 50 containers, we would sample (
√

50 + 1 = 8) containers. The eight
containers can be chosen using a random number table (see Exercise Problem 3).

Sampling plans for bulk powders and solid mixes such as granulations usually include
the manner of sampling, the number of samples, and preparation for assay with an aim of
obtaining a representative sample. One should bear in mind that a single assay will not yield
information on variability. No matter what precautions we take to ensure that a single sample
of a mix is representative of a batch, we can only estimate the degree of homogeneity by
repeating the procedure one or more times on different portions of the mix. Repeat assays on
the same sample gives an estimate of analytical error, not homogeneity of the mix. For a further
discussion of this concept see chapter 13.

An example of a procedure for sampling from large drums of a solid mixture is to insert
a thief (a device for sampling bulk powders) and obtain a sample from the center of the
container. A grain thief may be used to take samples from more than one part of the container.
(If samples are to be taken for purposes of content uniformity, thieves that can sample small
samples such as one or more tablets weights are recommended.) This procedure is repeated
for an appropriate number of containers and the samples thoroughly mixed. The sample to
be submitted for analysis is mixed further and quartered, rejecting two diagonal portions. The
mixing and quartering is repeated until sufficient sample for analysis remains.

Other ideas on sampling for quality control and validation can be found in section 13.1.1.

KEY TERMS
Blocking
Cluster sample Sample
Haphazard sample Sampling with replacement
Judgment sample Simple random sample
Multistage sample Stratified sample
Nonprobability sample Systematic sample
Probability sample Table of random numbers
Representative sample Two-stage cluster sample

EXERCISES
Use the table of random numbers (Tables IV.1) to answer the following questions.

1. Twenty-four patients are recruited for a clinical study, 12 patients to be randomly assigned
to each of two groups, A and B. The patients come to the clinic and are entered into the
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study chronologically, randomly assigned to treatment A or B. Devise a schedule showing
to which treatment each of the 24 patients is assigned.

2. Devise a randomization scheme similar to that done in Problem 1 if 24 patients are to be
assigned to three treatments.

3. Thirty drums of bulk material are to be sampled for analysis. How many drums would
you sample? If the drums are numbered 1 to 30, explain how you chose drums and take
the samples.

4. A batch of tablets is to be packaged in 5000 bottles each containing 1000 tablets. It takes
four hours to complete the packaging operation. Ten bottles are to be chosen for quality
control tests. Explain in detail how would you choose the 10 bottles.

5. Devise a randomization scheme to assign 20 patients to drug and placebo groups
(10 patients in each group) using the numbers shown in Table 4.1 by using even num-
bers for assignment to drug and odd numbers for assignment to placebo.

6. Describe two different ways in which 20 tablets can be chosen during each hour of a tablet
run.

7. One hundred bottles of a product, labeled 0 to 99 inclusive, are available to be analyzed.
Analyze five bottles selected at random. Which five bottles would you choose to analyze?

8. A batch of tablets is produced over an eight-hour period. Each hour is divided into four
15-minute intervals for purposes of sampling. (Sampling can be done during 32 intervals,
four per hour for eight hours.) Eight samples are to be taken during the run. Devise (a)
a simple random sampling scheme, (b) a stratified sampling scheme, and (c) a systematic
sampling scheme. Which sample would you expect to have the smallest variance? Explain.

9. The average potencies of tablets in 20 bottles labeled 1 to 20 are

Bottle number Potency

1 312

2 311

3 309

4 309

5 310

6 308

7 307

8 305

9 306

10 307

11 305

12 301

13 303

14 300

15 299

16 300

17 300

18 297

19 296

20 294

(a) Choose a random sample of five bottles. Calculate the mean and standard deviation.
(b) Choose a systematic sample, choosing every 4th sample, starting randomly with one

of the first four bottles. Calculate the mean and standard deviation of the sample.
(c) Compare the averages and standard deviations of the two samples and explain your

results. Compare your results to those obtained by other class members.
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10. Ten containers each contain four tablets. To estimate the mean potency, two tablets are to
be randomly selected from three randomly chosen containers. Perform this sampling from
the data shown below. Estimate the mean and variance of the mean. Repeat the sampling,
taking three tablets from two containers. Explain your results. Compute the mean potency
of all 40 tablets.

Container Tablet potencies (mg)

1 290 289 305 313

2 317 300 285 327

3 288 322 306 299

4 281 305 309 289

5 292 295 327 283

6 286 327 297 314

7 311 286 281 288

8 306 282 282 285

9 313 301315 285

10 283 327 315 322

11. Twenty-four containers of a product are produced during eight minutes, three containers
each minute. The drug content of each container is shown below

Minute Container assay

1 80 81 77

2 78 76 76

3 84 83 86

4 77 77 79

5 83 81 82

6 81 79 80

7 82 79 81

8 79 79 80

Eight containers are to be sampled and analyzed for quality control. Take a sample of eight
as follows:

(a) Simple random sample.
(b) Stratified sample; take one sample at random each minute.
(c) Systematic sample; start with the first, second, or third container and then take every

third sample thereafter.
Compute the mean and the variance of each of your three samples (a, b, and c). Discuss
the results. Which sample gave the best estimate of the mean? Compare your results
to those obtained from the other students in the class.

12. What is the probability that a batter with a 0.250 average will get exactly one hit in four
times at bat? Answer: Probability of one hit in 4 times at bat is 4 × (1/4) × (3/4)3 = 108/256
= 0.421875, less than one-half of the time.
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5 Statistical Inference: Estimation and Hypothesis
Testing

Parameter estimates obtained from samples are usually meant to be used to estimate the true
population parameters. The sample mean and variance are typical estimators or predictors of
the true mean and variance, and are often called “point” estimates. In addition, an interval that is
apt to contain the true parameter often accompanies and complements the point estimate. These
intervals, known as confidence intervals, can be constructed with a known a priori probability of
bracketing the true parameters. Confidence intervals play an important role in the evaluation
of drugs and drug products.

The question of statistical significance pervades much of the statistics commonly used in
pharmaceutical and clinical studies. Advertising, competitive claims, and submissions of sup-
porting data for drug efficacy to the FDA usually require evidence of superiority, effectiveness,
and/or safety based on the traditional use of statistical hypothesis testing. This is the technique
that leads to the familiar statement, “The difference is statistically significant” (at the 5% level
or less, for example), words that open many regulatory doors. Many scientists and statisticians
feel that too much is made of testing for statistical significance, and that decisions based on such
statistical tests are often not appropriate. However, testing for statistical significance is one of
the backbones of standard statistical methodology and the properties and applications of such
tests are well understood and familiar in many experimental situations. This aspect of statistics
is not only important to the pharmaceutical scientist in terms of applications to data analysis
and interpretation, but is also critical to an understanding of the statistical process. Since much
of the material following this chapter is based largely on a comprehension of the principles
of hypothesis testing, the reader is urged to make special efforts to understand the material
presented in this chapter.

5.1 STATISTICAL ESTIMATION (CONFIDENCE INTERVALS)
We will introduce the concept of statistical estimation and confidence intervals before beginning
the discussion of hypothesis testing. Scientific experimentation may be divided into two classes:
(a) experiments designed to estimate some parameter or property of a system, and (b) compara-
tive experiments, where two or more treatments or experimental conditions are to be compared.
The former type of experiment is concerned with estimation and the latter is concerned with
hypothesis testing.

The term estimation in statistics has a meaning much like its meaning in ordinary usage.
A population parameter is estimated based on the properties of a sample from the population.
We have discussed the unbiased nature of the sample estimates of the true mean and variance,
designated as X and S2 (sects. 1.4 and 1.5). These sample statistics estimate the population
parameters and are considered to be the best estimates of these parameters from several points
of view.∗ However, the reader should understand that statistical conclusions are couched in
terms of probability. Statistical conclusions are not invariant as may be the case with results of
mathematical proofs. Without having observed the entire population, one can never be sure that
the sample closely reflects the population. In fact, as we have previously emphasized, sample
statistics such as the mean and variance are rarely equal to the population parameters.

∗ These “point” estimates are unbiased, consistent, minimum variance estimates. Among unbiased estimators,
these have minimum variance, and approach the true value with high probability as the sample size gets very
large.
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Nevertheless, the sample statistics (e.g., the mean and variance) are the best estimates we
have of the true parameters. Thus, having calculated X and S2 for potencies of 20 tablets from
a batch, one may very well inquire about the true average potency of the batch. If the mean
potency of the 20 tablets is 49.8 mg, the best estimate of the true batch mean is 49.8 mg. This is
known as the point estimate. Although we may be almost certain that the true batch mean is not
exactly 49.8 mg, there is no reason, unless other information is available, to estimate the mean
to be a value different from 49.8 mg.

The discussion above raises the question of the reliability of the sample statistic as an
estimate of the true parameter. Perhaps one should hesitate in reporting that the true batch
mean is 49.8 mg based on data from only 20 tablets. One might question the reliability of such
an estimate. The director of quality control might inquire: “How close do you think the true
mean is to 49.8 mg?” Thus, it is a good policy when reporting an estimate such as a mean to
include some statement as to the reliability of the estimate. Does the 49.8-mg estimate mean
that the true mean potency could be as high as 60 mg, or is there a high probability that the true
mean is not more than 52 mg? This question can be answered by use of a confidence interval. A
confidence interval is an interval within which we believe the true mean lies. We can say, for
example, that the true batch mean potency is between 47.8 and 51.8 mg with 95% probability.
The width of the interval depends on the properties of the population, the sample estimates of
the parameters, and the degree of certainty desired (the probability statement).

Since most of the problems that we will encounter are concerned with the normal distribu-
tion, particularly sampling of means, we are most interested in confidence intervals for means.
If the distribution of means is normal and � is known, an interval with confidence coefficient,
P (probability), can be computed using a table of the cumulative standard normal distribution,
Table IV.2. A two-sided confidence interval, symmetric about the observed mean, is calculated
as follows:

P % confidence interval = X ± Zp�√
N

(5.1)

where X is the observed sample mean, N the sample size, � the population standard deviation,
and Zp the normal deviate corresponding to the (P+l)/2 percentile of the cumulative standard
normal distribution (Table IV.2).

For the most commonly used 95% confidence interval, Z = 1.96, corresponding to
(0.95 + l)/2 = 0.975 of the area in the cumulative standard normal distribution. Other common
confidence coefficients are 90% and 99%, having values of Z equal to 1.65 and 2.58, respectively.
The probability statement, for example, 90%, 95%, 99%, depends on the context. Therefore, one
cannot say that one probability is “better” than another. For example, in bioequivalence studies,
a 90% confidence interval is most appropriate (see chap. 11). Inspection of Table IV.2 shows that
the area in the tails of a normal curve between ± 1.65, ± 1.96, and ±2.58 standard deviations
from the mean is 90%, 95%, and 99%, respectively. This is illustrated in Figure 5.1 (see also
Table 3.4).

Before presenting examples of the computation and use of confidence intervals, the reader
should take time to understand the concept of a confidence interval. The confidence interval
changes depending on the sample chosen because, although �† and N remain the same, X
varies from sample to sample. A confidence interval using the mean from any given sample
may or may not contain the true mean. Without knowledge of the true mean, we cannot say
whether or not any given interval contains the true mean. However, it can be proven that when
intervals are constructed according to Eq. (5.1), P% (e.g., 95%) of such intervals will contain
the true mean. Figure 5.2 shows how means of size N, taken from the same population, generate
confidence intervals. Think of this as means of size 20, each mean generating a confidence
interval [Eq. (5.1)]. For a 95% confidence interval, 19 of 20 such intervals will cover the true
mean, �, on the average. Any single interval has a 95% chance of covering the true mean, a

† � is assumed to be known in this example.
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Figure 5.1 Areas in the tails of a standard normal curve.

priori. Of course, one would not usually take many means in an attempt to verify this concept,
which can be proved theoretically. Under usual circumstances, only a single mean is observed
and a confidence interval computed. This interval may not cover the true mean, but we know
that 19 of 20 such intervals will cover the true mean.

Looking at the confidence interval from another point of view, suppose that a mean of
49.8 mg was observed for a sample size of 20 with �/

√
N, (�x) equal to 2. According to Eq. (5.1),

the 95% confidence interval for the true mean is 49.8 ± 1.96(2) = 45.9 to 53.7 mg. Figure 5.3 shows
that if the true mean were outside the range 45.9 to 53.7, the observation of the sample mean,
49.8 mg, would be very unlikely. The dashed curve in the figure represents the distribution of
means of size 20 with a true mean of 54.7 and �x = 2. In this example, the true mean is outside
the 95% confidence interval, and the probability of observing a mean from this distribution as
small as 49.8 mg or less is less than 1% (see Exercise Problem 1). Therefore, one could conclude
that the true mean is probably not as great as 54.7 mg based on the observation of a mean of
49.8 mg from a sample of 20 tablets.

5.1.1 Confidence Intervals Using the t Distribution
In most situations in which confidence intervals are computed, �, the true standard deviation,
is unknown, but is estimated from the sample data. A confidence interval can still be computed
based on the sample standard deviation, S. However, the interval based on the sample standard
deviation will tend to be wider than that computed with a known standard deviation. This is
reasonable because if the standard deviation is not known, one has less knowledge of the true
distribution and consequently less assurance of the location of the mean.

The computation of the confidence interval in cases where the standard deviation is
estimated from sample data is similar to that shown in Eq. (5.1) except that a value of t is
substituted for the Z value

P% confidence interval = X ± tS√
N

. (5.2)

Values of t are obtained from the cumulative t table, Table IV.4, corresponding to a P%
confidence interval.

The appropriate value of t depends on degrees of freedom (d.f.), a concept that we encoun-
tered in section 1.5.2. When constructing confidence intervals for means, the d.f. are equal to
N − 1, where N is the sample size. For samples of size 20, d.f. = 19 and the appropriate values
of t for 90%, 95%, or 99% confidence intervals are 1.73, 2.09, and 2.86, respectively. Examination
of the t table shows that the values of t decrease with increasing d.f., and approach the corre-
sponding Z values (from the standard normal curve) when the d.f. are large. This is expected,
because when d.f. = ∞, the standard deviation is known and the t distribution coincides with
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Lower limit
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Samples of size 20

95%
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X

Figure 5.2 Concept of the confidence interval.

Figure 5.3 This figure shows that a mean of 49.8 is unlikely to be observed if the true mean is 54.7 (confidence

interval = 45.9–53.7).

the standard normal distribution. We will talk more of the t distribution later in this chapter
(see also sect. 3.5).

5.1.2 Examples of Construction of Confidence Intervals
Example 1: Confidence interval when � is unknown and estimated from the sample. The labeled potency
of a tablet dosage form is 100 mg. Ten individual tablets are assayed according to a quality control
specification. The 10 assay results shown in Table 5.1 are assumed to be sampled from a normal
distribution. The sample mean is 103.0 mg and the standard deviation is 2.22. A 95% confidence
interval for the true batch mean [Eq. (5.1)] is

103 ± 2.26
(

2.22√
10

)
= 101.41 to 104.59.

Table 5.1 Assay Results for 10 Randomly Selected Tablets

(mg)

101.8 104.5

102.6 100.7

99.8 106.3

104.9 100.6

103.8 105.0

X = 103.0 S = 2.22
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Note that the t value is 2.26. This is the value of t with 9 d.f. (N = 10) for a 95% confidence
interval taken from Table IV.4.

Example 2: Confidence interval when � is known. Suppose that the standard deviation were
known to be equal to 2.0. The 95% confidence interval for the mean is [Eq. (5.1)]

X ± 1.96�√
N

= 103.0 ± 1.96(2.0)√
10

= 101.76 to 104.24.

The value 1.96 is obtained from Table IV.2 (Z = 1.96 for a two-sided symmetrical confi-
dence interval) or from Table IV.4 for t with ∞ d.f.

Two questions arise from this example.

1. How can we know the s.d. of a batch of tablets without assaying every tablet?
2. Why is the s.d. used in Example 2 different from that in Example 1?

Although it would be foolhardy to assay each tablet in a batch (particularly if the assay
were destructive, that is, the sample is destroyed during the assay process), the variance of a
“stable” process can often be precisely estimated by averaging or pooling the variance over
many batches (see also sect. 12.2 and App. I). The standard deviation obtained from this pooling
is based on a large number of assays and will become very stable as long as the tableting process
does not change. The pooled standard deviation can be assumed to be equal to or close to the
true standard deviation (Fig. 5.4).

The answer to the second question has actually been answered in the previous paragraph.
The variance of any single sample of 10 tablets will not be identical to the true variance, 22 or
4 in the example above. If the average variance over many batches can be considered equal to
or very close to the true variance, the pooled variance is a better estimate of the variance than
that obtained from 10 tablets. This presupposes that the variance does not change from batch
to batch. Under these conditions, use of the pooled variance rather than the individual sample
variance will result in a narrower confidence interval, on the average.

Example 3: Confidence Interval for a Proportion.(a) In a preclinical study, 100 untreated (con-
trol) animals were observed for the presence of liver disease. After six months, 25 of these
animals were found to have the disease. We wish to compute a 95% confidence interval for
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Figure 5.4 Pooling variances over batches, a good estimate of the true variance of a stable process (same

sample size per batch).
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the true proportion of animals who would have this disease if untreated (after six months). A
confidence interval for a proportion has the same form as that for a mean. Assuming that the
normal approximation to the binomial is appropriate, the confidence interval is approximately

p̂ ± Z

√
p̂q̂
N

, (5.3)

where p̂ is the observed proportion, q̂ = 1 − p̂, Z the appropriate cutoff point from the normal
distribution (Table IV.2), and N the sample size.

In the present example, a 95% confidence interval is

0.25 ± 1.96

√
(0.25)(0.75)

100
= 0.165 to 0.335.

The true proportion is probably between 16.5% and 33.5%.‡ Notice that the mean is equal
to the observed proportion and that the normal approximation to the binomial distribution
makes use of the Z value of 1.96 for the 95% confidence interval from the cumulative normal
distribution. The standard deviation is computed from Eq. (3.11), � = √

p̂q̂/N.
A 99% confidence interval for the true proportion is

0.25 ± 2.58

√
(0.25)(0.75)

100
= 0.138 to 0.362.

Note that the 99% confidence interval is wider than the 95% interval. The greater the
confidence, the wider is the interval. To be 99% “sure” that the true mean is contained in
the interval, the confidence interval must be wider than that which has a 95% probability of
containing the true mean.

(b) To obtain a confidence interval for the true number of animals with liver disease when
a sample of 100 shows 25 with liver disease, we use the standard deviation according to Eq.
(3.12), � = √

Np̂q̂ . A 95% confidence interval for the true number of diseased animals (where
the observed number is Np̂ = 25) is

Np̂ ± 1.96
√

Np̂q̂ = 25 ± 1.96
√

(100)(0.25)(0.75)
= 16.5 to 33.5.

This answer is exactly equivalent to that obtained using proportions, in part (a) (16.5/100 =
0.165 and 33.5/100 = 0.335). Further examples of symmetric confidence intervals are presented
in conjunction with various statistical tests in the remaining sections of this chapter. In particular,
confidence intervals for the true difference of two means or two proportions are given in sections
5.2.2, 5.2.3, and 5.2.6.

An interesting, special confidence interval that is useful for proportions is the case where
0 successes or failures are observed in N trials. For example, this situation arises in data from
quality control and clinical trials. When inspecting individual items for sterility, we may observe
zero defects in 1000 items inspected. In a clinical trial, we may observe no side effects of a
particular kind in 200 patients. In these cases, it is of interest to put an upper bound on the
proportion of failures, where failure in the above examples is the observation of a nonsterile
item or a particular side effect. This can be calculated using a confidence interval. In these
situations, we observe 100% successes and 0% failures, and the lower confidence interval is
0%. (We cannot have less than 0 failures.) We will put an upper limit on the true proportion
of failures, equal to a lower limit on the proportion of successes. This may be thought of as a

‡ Both Np̂ and Nq̂ should be equal to or greater than 5 when using the normal approximation to the binomial
(sect. 3.4.3).
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one-sided confidence interval. To compute the probability of 0 failures in N trials, we can apply
the binomial formula (from chap. 3)

Probability of X successes in N trials =
(

N
X

)
Pxq N−X. (3.9)

When X = N (i.e., all N trials are successes), the probability of X = N successes is PN.
To obtain a lower limit for the proportion of successes based on a 95% confidence interval,

we compute the value of p that results in a probability of 0.05, when we have all the observations
successful. This computation uses the following formula:

0.05 = pN.
A 95% confidence interval for the true proportion of failure is 1 − p.

Suppose that inspection of 1000 ampoules in a batch of 30,000 shows that all items are
sterile. With 95% confidence what is the upper limit of potential nonsterile ampoules in the
batch.

0.05 = p1000. The log of p can be calculated as log(0.05)/1000 = −0.002996. p = the antilog
of −0.002996 = 0.997. The upper limit for the proportion of failures is 1 − 0.997 = 0.003 or 3 in
a thousand. We conclude that with 95% probability, there are no more than 3 failures in 1000
items. We see that it is impossible to guarantee 100% successes without inspecting each item (see
also sampling, chap. 4). Certainly, this is not possible if the sampling is destructive. Of course,
the intensity of sampling is dependent on cost and the potential risks to the consumer (patients)
if failures exist in the batch.

Another useful application is the Negative Binomial, Time to Failure, described in
chapter 3.

5.1.3 Asymmetric Confidence Intervals

5.1.3.1 One-Sided Confidence Intervals
In most situations, a two-sided confidence interval symmetric about the observed mean seems
most appropriate. This is the shortest interval given a fixed probability. However, there are
examples where a one-sided confidence interval can be more useful. Consider the case of a
clinical study in which 18 of 500 patients treated with a marketed drug report headaches as
a side effect. Suppose that we are only concerned with an “upper limit” on the proportion of
drug-related headaches to be expected in the population of users of the drug. In this example,
when constructing a 95% interval, we use a Z (or t) value that cuts off 5% of the area in the
upper tail of the distribution, rather than the 2.5% in each tail excluded in a symmetric interval.
Using the normal approximation to the binomial, the upper limit is

p + Z
√

pq
N

= 18
500

+ 1.65

√
(0.036)(0.964)

500

= 0.036 + 0.014 = 0.050.

Based on the one-sided 95% confidence interval, we conclude that the true proportion
of headaches among drug users is probably not greater than 5%. Note that we make no state-
ment about the lower limit, which must be greater than 0. Another application of a one-sided
confidence interval is presented in section 7.5, as applied to the analysis of stability data. If a one-
sided confidence interval is to be used for regulatory decisions or other “official” applications,
the rationale for using a one-sided rather than a two-sided interval should be clearly explained
prior to the experiment (see also sect. 5.1.3 explaining one-sided confidence intervals).

5.1.3.2 Other Asymmetric Confidence Intervals
In general, many P% confidence intervals can be constructed by suitably allocating (1 − P)% of
the area to the lower and upper tails of the normal distribution. For example, a 95% confidence
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Figure 5.5 A 95% asymmetric confidence interval with X = 1.02, s.d. = 0.2, and N = 20.

interval may be constructed by placing 1% of the area in the lower tail and 4% in the upper tail.
This is not a common procedure and a good reason should exist before one decides to make such
an allocation. Westlake [1,2] has proposed such an interval for the construction of confidence
intervals in bioequivalence studies. In these studies, a ratio of some property (such as maximum
serum concentration) of two products is compared. Westlake argues that an interval symmetric
about the ratio 1.0 is more useful than one symmetric about the observed sample mean. The
interval often has the great majority of the area in either the lower or upper tail, depending on
the observed ratio. For a ratio greater than 1.0, most of the area will be in the upper tail and
vice versa. Figure 5.5 illustrates this concept with a hypothetical example for products with an
average ratio of 1.02. If the standard deviation is unknown and is estimated as 0.2 with 19 d.f.
(N = 20), a 95% symmetric interval would be estimated as

1.02 ± (2.1)(0.2)√
20

= 1.02 ± 0.094 = 0.926 to 1.114.

To construct the Westlake interval, a symmetric interval about 1.0, detailed tables of the
t distribution are needed [1]. In this example, t values of approximately 1.78 and −2.70 will
cutoff 4.3% of the area in the upper tail and 0.7% in the lower tail, respectively. This results in
an upper limit of 1.02 + 0.08 = 1.10 and a lower limit of 1.02 − 0.12 = 0.90, symmetric about 1.0
(1.0 ± 0.1).

Examples of confidence intervals for bioequivalence testing are given in chapters 11
and 15.

The remainder of this chapter will be concerned primarily with testing hypotheses, cate-
gorized as follows:

1. Comparison of the mean of a single sample (group) to some known or standard mean
[single-sample (group) tests].

2. Comparison of means from two independent samples (groups) [two independent samples
(groups) test, a form of the parallel-groups design in clinical trials].

3. Comparison of means from related samples (paired-sample tests).
4. One- and two-sample tests for proportions.
5. Tests to compare variances.

5.2 STATISTICAL HYPOTHESIS TESTING
To introduce the concept of hypothesis testing, we will use an example of the comparison of
two treatment means (a two-sample test) that has many applications in pharmaceutical and
clinical research. The details of the statistical test are presented in section 5.2.2. A clinical study
is planned to compare the efficacy of a new antihypertensive agent to a placebo. Preliminary
uncontrolled studies of the drug in humans suggest antihypertensive activity of the order of
a drop of 10 to 15 mm Hg diastolic blood pressure. The proposed double- blind clinical trial
is designed to study the effects of a once-a-day dose of tablets of the drug in a group of
hypertensive patients. A second group of patients will receive an identical-appearing placebo.
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Table 5.2 Average Results and Standard Deviation of a Clinical Study

Comparing Drug and Placebo in the Treatment of Hypertension

Drug Placebo

Number of patients 11 10

Average blood pressure reduction (mm Hg) 10 1

Standard deviation 11.12 7.80

Blood pressure will be measured prior to the study and every two weeks after initiation of
therapy for a total of eight weeks. For purposes of this presentation, we will be concerned
only with the blood pressure at baseline (i.e., pretreatment) and after eight weeks of treatment.
The variable that will be analyzed is the difference between the eight-week reading and the
pretreatment reading. This difference, the change from baseline, will be called � (delta). At the
completion of the experiment, the average change from baseline will be compared for the active
group and the placebo group in order to come to a decision concerning the efficacy of the drug in
reducing blood pressure. The design is a typical parallel-groups design and the implementation
of the study is straightforward. The problem, and question, that is of concern is: “What statistical
techniques can be used to aid us in coming to a decision regarding the treatment (placebo and
active drug) difference, and ultimately to a judgment of drug efficacy?”

From a qualitative and, indeed, practical point of view, a comparison of the average change
in blood pressure for the active and placebo groups, integrated with previous experience, can
give some idea of drug efficacy. Table 5.2 shows the average results of this study. (Only 21
patients completed the study.) Based on the results, our “internal computer” might reason as
follows: “The new drug reduced the blood pressure by 10 mm Hg compared to a reduction
of 1 mm Hg for patients on placebo. That is an impressive reduction for the drug”; or “The
average reduction is quite impressive, but the sample size is small, less than 12 patients per
group. If the raw data were available, it would be of interest to see how many patients showed
an improvement when given the drug compared to the number who showed an improvement
when given placebo.” Particularly for small samples, one should examine the raw data. Such
an examination of the clinical results may give an intuitive feeling of the effectiveness of a drug
product. At one time, not very long ago, presentation of such experimental results accompanied
by a subjective evaluation by the clinical investigator was important evidence in the support of
efficacy of drugs. If the average results showed that the drug was no better than the placebo,
the drug would probably be of little, if any interest.

One obvious problem with such a subjective analysis is the potential lack of consistency in
the evaluation and conclusions that may be drawn from the same results by different reviewers.
Also, although some experimental results may appear to point unequivocally to either efficacy
or lack of efficacy, the inherent variability of the experimental data may be sufficiently large
to obscure the truth. In general, subjective perusal of data is not sufficient to separate drug-
related effects from random variability. In particular, comparing average results from small
samples without a proper statistical analysis can be problematic. Statistical hypothesis testing
is an objective means of assessing whether or not observed differences between treatments can
be attributed to experimental variation (error). Good experimental design and data analysis
are essential if clinical studies are to be used as evidence for drug safety and efficacy. This is
particularly critical when such evidence is part of a New Drug Application (NDA) for the FDA,
or for use for advertising claims.

The statistical evaluation or test of treatment differences is based on the ratio of the observed
treatment difference (drug minus placebo in this example) to the variability of the difference. A
large observed difference between drug and placebo accompanied by small variability is the
most impressive evidence of a real drug effect (Fig. 5.6).

The magnitude of the ratio can be translated into a probability or “statistical” statement
relating to the true but unknown drug effect. This is the basis of the common statement “statis-
tically significant,” implying that the difference observed between treatments is real, not merely
a result of random variation. Statistical significance addresses the question of whether or not
the treatments truly differ, but does not necessarily apply to the practical magnitude of the drug
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Figure 5.6 Mark of a real drug effect: a large

difference between drug and placebo with small

variation.

effect. The possibility exists that a small but real drug effect has no clinical meaning. Such judg-
ments should be made by experts who can evaluate the magnitude of the drug effect in relation
to the potential use of the drug vis-à-vis other therapeutic alternatives.

The preliminary discussion above suggests the procedure used in testing statistical
hypotheses. Broadly speaking, data are first collected for comparative experiments accord-
ing to an appropriate plan or design. For comparative experiments similar to that considered in
our example, the ratio of the difference of the averages of the two treatments to its experimental
error (standard deviation) is referred to an appropriate tabulated probability distribution. The
treatment difference is deemed “statistically significant” if the ratio is sufficiently large relative
to the tabulated probability values.

The testing procedure is based on the concept of a null hypothesis. The null hypothesis
is a hypothetical statement about a parameter (such as the mean) that will subsequently be
compared to the sample estimate of the parameter, to test for treatment differences. In the
present example, the null hypothesis is

H0 : �1 = �2 or � = �1 − �2 = 0.

H0 refers to the null hypothesis. �1 and �2 refer to the true blood pressure change from
baseline for the two treatments. � is the hypothesized average difference of the change of blood
pressure from baseline values for the new drug compared to placebo.

� = true average reduction in blood pressure due to drug minus true average
reduction in blood pressure due to placebo

The sample estimate of � is designated as �, and is assumed to have a normal distribution.
The fact that H0 is expressed as a specific difference (zero in this example), as opposed to a more
general difference (H0 : � 
= 0), is an important concept. The test of “no difference” or some
specific difference (e.g., � = 2) is usually much more easily conceptualized and implemented
than a test of some nonspecific difference.

The format of the null hypothesis statement is not always immediately apparent to those
unfamiliar with statistical procedures. Table 5.3 shows some examples of how null hypothesis
statements can be presented. The alternative hypothesis specifies alternative values of the
parameter, which we accept as true if the statistical test leads to rejection of the null hypothesis.
The alternative hypothesis includes values not specified in the null hypothesis. In our example,
a reasonable alternative would include all values where the true values of the two means were
not equal, typically stated as follows:

Ha : �1 
= �2.

As noted above, the magnitude of the ratio of the (observed difference minus the hypo-
thetical difference) to its variability, the s.d. of the observed difference, determines whether or



92 CHAPTER 5

Table 5.3 Examples of the Null Hypothesis for Various Experimental Situations

Study Null hypothesis Comments

Effect of drug therapy on cholesterol

level compared to placebo

H0 : �1 = �2 or
H0: �1 − �2 = 0 or
H0:� = 0

�1 refers to the true average cholesterol

with drug and �1 refers to true

average cholesterol with placebo

Effect of antibiotic on cure rate H0 : p0 = 0.8 p0 refers to the true proportion of

patients cured; H0 states that the

hypothetical cure rate is 80%

Average tablet weight for quality control H0 : w = 300 mg The target weight is a mean of 300 mg

Testing two mixing procedures with

regard to homogeneity of the two

mixes

H0 : �2
1

= �2
2

The variance of the samples from the

two procedures is hypothesized to be

equal

Test to see if two treatments differ H0 : �1 
= �2 This statement cannot be tested; H0

must be specified as a specific

difference or a limited range of

differences

not H0 should be accepted or rejected. A large ratio leads to rejection of H0, and the difference
is considered to be “statistically” significant. The specific details for testing simple hypotheses
are presented below, beginning with the most elementary example, tests of a single mean.

5.2.1 Case I: Test of the Mean from a Single Population (One-Sample Tests),
an Introduction to a Simple Example of Hypothesis Testing

The discussion above was concerned with a test to compare means from samples obtained
from two groups, a drug group and a placebo group. The tests for a single mean are simpler
in concept, and specific steps to construct this test are presented below. The process for other
designs in which statistical hypotheses are tested is essentially the same as for the case described
here. Other examples will be presented in the remainder of this chapter and, where applicable,
in subsequent chapters of this book. The concept of hypothesis testing is important, and the
student is well advised to make an extra effort to understand the procedures described below.

Data often come from a single population, and a comparison of the sample mean to some
hypothetical or “standard” (known) value is desired. The examples shown in Table 5.4 are
typical of those found in pharmaceutical research. The statistical test compares the observed
value (a mean or a proportion, for example) to the hypothetical value.

To illustrate the procedure, we will consider an experiment to assess the effects of a change
in manufacturing procedure on the average potency of a tablet product. A large amount of data
was collected for the content of drug in the tablet formulation during a period of several years.
The manufacturing process showed an average potency of 5.01 mg and a standard deviation
of 0.11, both values considered to be equal to the true process parameters. A new batch was
made with a modification of the usual manufacturing procedure. Twenty tablets were assayed

Table 5.4 Examples of Experiments Where a Single Population Mean Is Observed

Sample mean Hypothetical or standard mean

Average tablet potency of N tablets Label potency

Preference for product A in a paired preference test 50% are hypothesized to prefer product A

Average dissolution of N tablets Quality control specifications

Proportion of patients cured by a new drug Cure rate of P% based on previous therapy with a

similar drug

Average cholesterol level of N patients under therapy Hypothetical or standard value based on large

amount of data collected by clinical laboratory

Average blood pressure reduction in N rats in

preclinical study

Hypothetical average reduction considered to be of

biological and clinical interest

Average difference of pain relief for two drugs taken by

the same patients

Average difference (�) is hypothesized to be 0 if

the drugs are identical
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Table 5.5 Results of 20 Single-Tablet Assays from a Modification

of a Process with a Historical Mean of 5.01 mg

5.13 5.04 5.09 5.00

4.98 5.03 5.01 4.99

5.20 5.08 4.96 5.18

5.08 5.06 5.02 5.24

4.99 5.17 5.06 5.00

X = 5.0655 mg S = 0.0806

� (historical) = 0.11

and the results are shown in Table 5.5. The objective is to determine if the process modification
results in a change of average potency from the process average of 5.01, the value of � under
the null hypothesis.

The steps for designing and analyzing this experiment are as follows:

1. Careful planning of the experiment ensures that the objectives of the experiment are addressed
by an appropriate experimental design. The testing of a hypothesis where data are derived
from a poorly implemented experiment can result in invalid conclusions. Proper design
includes the choice and number of experimental units (patients, animals, tablets, etc.). Other
considerations of experimental design and the manner in which observations are made are
addressed in chapters 6, 8, and 11. Sample size may be determined on a scientific, statistical
basis, but the choice is often limited by cost or time considerations, or the availability of
experimental units. In the present example, the routine quality control content uniformity
assay of 20 tablets was the determinant of sample size, a matter of convenience. The 20
tablets were chosen at random from the newly manufactured batch.

2. The null hypothesis and alternative hypothesis are defined prior to the implementation of the
experiment or study. The usual test will be two sided

H0 : � = �0 Ha : � 
= �0.

However, in the example below we will also discuss a one-sided test

H0 : � ≤ 5.01mg Ha : � > 5.01mg.

The objective of this experiment is to see if the average potency of the batch prepared
with the modified procedure is different from that based on historical experience (5.01 mg).
The null hypothesis takes the form of “no change,” as discussed previously. To conclude that
the new process has caused a change, we must demonstrate that the alternative hypothesis
is true by rejecting the null hypothesis. The alternative hypothesis complements the null
hypothesis. The two hypotheses are mutually exclusive and, together, in this example, cover
all relevant possibilities that can result from the experiment. Either the average potency is
5.01 mg (H0) or it is not (Ha). This is known as a two-sided (or two-tailed) test, suggesting that
the average drug potency of the new batch can conceivably be smaller as well as greater
than the historical process average of 5.01 mg. A one-sided test allows for the possibility of
a difference in only one direction. Suppose that the process average of 5.01 mg suggested
a preferential loss of drug during processing based on the theoretical amount added to the
batch (e.g., 5.05 mg). The new procedure may have been designed to prevent this loss. Under
these circumstances, one might hypothesize that the potency could only be greater (or, at
least, not less) than the previous process average. Under this hypothesis, if the experiment
reveals a lower potency than 5.01 mg, this result would be attributed to chance only; that is,
although the average potency, in truth, is equal to or greater than 5.01 mg, chance variability
may result in an experimental outcome where the observed average is “numerically” less
than 5.01 mg. Such a result could occur, for example, as a result of a chance selection of
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Table 5.6 Alpha and Beta Probabilities in Hypothesis Testing

(Errors When Accepting or RejectingH0)

Ha (a specific
H0 is true alternative) is true

H0 is rejected Alpha (�) 1 − beta
H0 is accepted 1 − alpha Beta (	)

tablets of low potency for the assay sample. For a one-sided test, the null and alternative
hypotheses may take the following form as noted above

H0 : � ≤ 5.01mg Ha : � > 5.01mg.

3. The level of significance is specified. This is the well-known p value associated with statements
of statistical significance. The concept of the level of significance is crucial to an understand-
ing of statistical methodology. The level of significance is defined as the probability that
the statistical test results in a decision to reject H0 (a significant difference) when, in fact, the
treatments do not differ (H0 is true). This concept will be clarified further when we describe
the statistical test. By definition, the level of significance represents the chance of making a
mistake when deciding to reject the null hypothesis. This mistake, or error, is also known
as the alpha (�) error or error of the first kind (Table 5.6). Thus, if the statistical test results
in rejection of the null hypothesis, we say that the difference is significant at the � level. If
� is chosen to be 0.05, the difference is significant at the 5% level. This is often expressed,
equivalently, as p < 0.05. Figure 5.7 shows values of X that lead to rejection of H0 for a
statistical test at the 5% level if � is known.

The beta (	) error is the probability of accepting H0 (no treatment difference) when, in
fact, some specified difference included in Ha is the true difference. Although the evaluation
of the 	 error and its involvement in sample-size determination is important, because of
the complex nature of this concept, further discussion of this topic will be delayed until
chapter 6.

The choice of magnitude of �, which should be established prior to the start of the
experiment, rests on the experimenter or sponsoring organization. To make this choice, one
should consider the risks or consequences that will result if an � error is made, that is,
the error made when declaring that a significant difference exists when the treatments are
indeed equivalent. Alpha should be defined prior to the experiment. It certainly would be
unfair to choose an alpha after the results are obtained. Traditionally, � is chosen as 5% (0.05),
although other levels such as 1% or 10% have been used. A justification for a level other
than 5% should be forthcoming. An � error of 5% means that a decision that a significant
difference exists (based on the rejection of H0) has a probability of 5% (1 in 20) or less of being
incorrect (P less than or equal to 0.05). Such a decision has credibility and is generally accepted
as “proof” of a difference by regulatory agencies. When using the word “significant,” one

Probability
X̄ ≤ μ0 – 1.96 σ /√N

= 0.025

X 

 μ0 – 1.96 σ /√N  μ0 + 1.96 σ /√N

Probability
X̄  ≥ μ0 – 1.96 σ /√N

= 0.025

 μ0

95%
Accept H0

Reject H0 Reject H0

Figure 5.7 Region of rejection (critical region)

in a statistical test (two-sided) at the 5% level

with �2 known.
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infers with a large degree of confidence that the experimental result does not support the
null hypothesis.

An important concept is that if the statistical test results in a decision of no significance,
the conclusion does not prove that H0 is true or, in this case, that the average potency is
5.01 mg. Usually, “nonsignificance” is a weak statement, not carrying the clout or authority
of the statement of “significance.” Note that the chance of erroneously accepting H0 is
equal to 	 (Table 5.6). This means that 	 percent of the time, a nonsignificant result will be
observed (H0 is accepted as true), when a true difference specified by Ha or greater truly
exists. Unfortunately, a good deal of the time when planning experiments, unlike �, 	 is not
fixed in advance. The 	 level is often a result of circumstance. In most experiments, 	 is a
consequence of the sample size, which is often based on considerations other than the size
of 	. However, the sample size is best computed with the aid of a predetermined value of 	
(see chap. 6). In our experiment, 	 was not fixed in advance. The sample of 20 tablets was
chosen as a matter of tradition and convenience.

4. The sample size, in our example, has been fixed based on considerations that did not include
	, as discussed above. However, the sample size can be calculated after � and 	 are specified,
so that the experiment will be of sufficient size to have properties that will satisfy the choice
of the � and 	 errors (see chap. 6 for further details).

5. After the experiment is completed, relevant statistics are computed. In this example and
most situations with which we will be concerned, mean values are to be compared. It is at
this point that the statistical test of significance is performed as follows. For a two-sided test,
compute the ratio

Z =
∣∣X − �0

∣∣√
�2/N

=
∣∣X − �0

∣∣
�/

√
N

. (5.4)

The numerator of the ratio is the absolute value of the difference between the observed
and hypothetical mean. (In a two-sided test, low or negative values as well as large positive
values of the mean lead to significance.) The variance of (X − �0)§ is equal to

�2

N
.

The denominator of Eq. (5.4) is the standard deviation of the numerator. The Z ratio
[Eq. (5.4)] consists of a difference, divided by its standard deviation. The ratio is exactly the Z
transformation presented in chapter 3 [Eq. (3. 14)], which transforms a normal distribution with
mean � and variance �2 to the standard normal distribution (� = 0, �2 = 1).

In general, �2 is unknown, but it can be estimated from the sample data, and the sample
estimate, S2, is then used in the denominator of Eq. (5.4). An important question is how to
determine if the ratio

t =
∣∣X − �0

∣∣√
S2/N

(5.5)

leads to a decision of “significant.” This prevalent situation (�2 unknown); will be discussed
below.

As discussed above, significance is based on a probability statement defined by �. More
specifically, the difference is considered to be statistically significant (H0 is rejected) if the
observed difference between the sample mean and �0 is sufficiently large so that the observed
or larger differences are improbable (probability of � or less, e.g., p ≤ 0.05) if the null hypothesis
is true (� = 5.01 mg). In order to calculate the relevant probability, the observations are assumed
to be statistically independent and normally distributed.

§ The variance of (X − �0) is equal to the variance of X because �0 is constant and has a variance of 0.
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With these assumptions, the ratio shown in Eq. (5.4) has a normal distribution with mean
equal to 0 and variance equal to 1 (variance known, the standard normal distribution). The
concept of the � error is illustrated in Figure 5.7. The values of X that lead to rejection of the null
hypothesis define the “region of rejection,” also known as the critical region. With a knowledge of
the variance, the area corresponding to the critical region can be calculated using the standard
normal distribution. The probability of observing a mean value in the critical region of the
distribution defined by the null hypothesis is �. This region is usually taken as symmetrical
areas in the tails of the distribution, with each tail containing �/2 of the area (21/2% in each tail at
the 5% level) for a two-tailed test. Under the null hypothesis and the assumption of normality, X
is normal with mean �0 and variance �2/N. The Z ratio [Eq. (5.4)] is a standard normal deviate,
as noted above. Referring to Table IV.2, the values of X that satisfy

X − �0

�/
√

N
≤ −1.96 or

X − �0

�/
√

N
≥ +1.96 (5.6)

will result in rejection of H0 at the 5% level. The values of X that lead to rejection of H0 may be
derived by rearranging Eq. (5.6).

X ≤ �0 − 1.96�√
N

or X ≥ �0 + 1.96�√
N

(5.7)

or, equivalently,

∣∣X − �0
∣∣ ≥ 1.96�√

N
. (5.8)

If the value of X falls in the critical region, as defined in Eqs. (5.7) and (5.8), the null
hypothesis is rejected and the difference is said to be significant at the � (5%) level.

The statistical test of the mean assay result from Table 5.5 may be performed: (a) assuming
that � is known (� = 0.11) or (b) assuming that � is unknown, but estimated from the sample
(S = 0.0806).

The following examples demonstrate the procedure for applying the test of significance
for a single mean.

(a) One-sample test, variance known. In this case, we believe that the large quantity of
historical data defines the standard deviation of the process precisely, and that this standard
deviation represents the variation in the new batch. We assume, therefore, that �2 is known. In
addition, as noted above, if the data from the sample are independent and normally distributed,
the test of significance is based on the standard normal curve (Table IV.2). The ratio as described
in Eq. (5.4) is computed using the known value of the variance. If the absolute value of the
ratio is greater than that which cuts off �/2 percent of the area (defining the two tails of the
rejection region, Fig. 5.7), the difference between the observed and hypothetical means is said to
be significant at the � level. For a two-sided test, the absolute value of the difference is used because
both large positive and negative differences are considered evidence for rejecting the null
hypothesis.

In this example, we will use a two-sided test, because the change in potency, if any, may
occur in either direction, higher or lower. The level of significance is set at the traditional 5%
level.

� = 0.05

Compute the ratio [Eq. (5.4)]

Z =
∣∣X − �0

∣∣
�/

√
N

= |5.0655 − 5.01|
0.11/

√
20

= 2.26.
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Critical
region

X ≤ μ0 + 1.65 σ /√N

 μ0 + 1.65 σ μ0

95%

Reject H0 Figure 5.8 Rejection region for a one-sided test.

At the 5% level values of |Z| ≥ 1.96 will lead to a declaration of significance for a two-sided
test [Eq. (5.6)]. Therefore, the new batch can be said to have a potency different from previous
batches (in this case, the mean is greater).

The level of significance is set before the actual experimental results are obtained. In the
previous example, a one-sided test at the 5% level may be justified if convincing evidence were
available to demonstrate that the new process would only result in mean results equal to or
greater than the historical mean. If such a one-sided test had been deemed appropriate, the null
hypothesis would be

H0 : � = 5.01 mg.

The alternative hypothesis, Ha : � > 5.01 mg, eliminates the possibility that the new
process can lower the mean potency. The concept is illustrated in Figure 5.8. Now the rejec-
tion region lies only in values of X greater than 5.01 mg, as described below. An observed value
of X below 5.01 mg is considered to be due only to chance (or it may be of no interest to us in
other situations).

The rejection region is defined for values of X equal to or greater than �0 + 1.65�/
√

N
[or, equivalently, (X − �0)/(�/N) ≥ 1.65] because 5% of the area of the normal curve is found
above this value (Table IV.2). This is in keeping with the definition of �: If the null hypothesis
is true, we will erroneously reject the null hypothesis 5% of the time. Thus, we can see that
a smaller difference is needed for significance using a one-sided test; the Z ratio need only
exceed 1.65 rather than 1.96 for significance at the 5% level. In the present example, values of
X ≥ [5.01 + 1.65(0.11)/

√
20] = 5.051 will lead to significance for a one-sided test. Clearly, the

observed mean of 5.0655 is significantly different from 5.01 (p < 0.05). Note that in a one-sided
test, the sign of the numerator is important and the absolute value is not used.

Usually, statistical tests are two-sided tests. One-sided tests are warranted in certain cir-
cumstances. However, the choice of a one-sided test should be made a priori, and one must
be prepared to defend its use. As mentioned above, in the present example, if evidence were
available to show that the new process could not reduce the potency, a one-sided test would be
acceptable. To have such evidence and convince others (particularly, regulatory agencies) of its
validity is not always an easy task. Also, from a scientific point of view, two-sided tests are desir-
able because significant results in both positive and negative directions are usually of interest.

(b) One-sample test, variance unknown. In most experiments in pharmaceutical research, the
variance is unknown. Usually, the only estimate of the variance comes from the experimental
data itself. As has been emphasized in the example above, use of the cumulative standard
normal distribution (Table IV.2) to determine probabilities for the comparison of a mean to a
known value (�0) is valid only if the variance is known.

The procedure for testing the significance of the difference of an observed mean from a
hypothetical value (one-sample test) when the variance is estimated from the sample data is the
same as that with the variance known, with the following exceptions:

1. The variance is computed from the experimental data. In the present example, the variance
is (0.0806)2; the standard deviation is 0.0806 from Table 5.5.
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Normal distribution

t Distribution
6 d.f.

t Distribution
20 d.f.

0

Figure 5.9 t distribution compared to the standard normal distribution.

2. The ratio is computed using S2 instead of �2 as in Eq. (5.8a). This ratio

t =
∣∣X − �0

∣∣√
S2/N

(5.8a)

is not distributed as a standard normal variable. If the mean is normally distributed, the ratio
[Eq. (5.5)] has a t distribution. The t distribution looks like the standard normal distribution
but has more area in the tails; the t distribution is more spread out. The shape of the t distri-
bution depends on the d.f. As the d.f. increase the t distribution looks more and more like the
standard normal distribution as shown in Figure 5.9. (Also, see sect. 3.5.2.) When the d.f. are
equal to ∞ the t distribution is identical to the standard normal distribution (i.e., the variance
is known).

The t distribution is a probability distribution that was introduced in section 5.1.1 and
chapter 3. The area under the t distributions shown in Figure 5.9 is 1. Thus, as in the case
of the normal distribution (or any continuous distribution), areas within specified intervals
represent probabilities. However, unlike the normal distribution, there is no transformation
that will change all t distributions (differing d.f.’s) to one “standard” t distribution. Clearly, a
tabulation of all possible t distributions would be impossible. Table IV.4 shows commonly used
probability points for representative t distributions. The values in the table are points in the t
distribution representing cumulative areas (probabilities) of 80%, 90%, 95%, 97.5%, and 99.5%.
For example, with d.f. = 10, 97.5% of the area of the t distribution is below a value of t equal to
2.23 (Fig. 5.10).

Note that when d.f. = ∞, the t value corresponding to a cumulative probability of 97.5%
(0.975) is 1.96, exactly the same value as that for the standard normal distribution. Since the
t distribution is symmetrical about zero, as is the standard normal distribution, a t value of
−2.23 cuts off 1 − 0.975 = 0.025 of the area (d.f. = 10). This means that to obtain a significant

2.5% 2.5%

–2.23 0

97.5 % of area
below t = 2.23

2.23
Figure 5.10 t distribution with 10 degrees of

freedom.
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difference of means at the 5% level for a two-sided test and d.f. equal to 10, the absolute value
of the t ratio [Eq. (5.5)] must exceed 2.23. Thus the t values in the column headed “0.975” in
Table IV.4 are values to be used for two-tailed significance tests at the 5% level (or for a two-sided
95% confidence interval). Similarly, the column headed “0.95” contains appropriate t values for
significance tests at the 10% level for two-sided tests, or the 5% level for one-sided tests. The
column headed “0.995” represents t values used for two-sided tests at the 1% level, or for 99%
confidence intervals.

The number of d.f. used to obtain the appropriate value of t from Table IV.4 is the d.f.
associated with the variance estimate in the denominator of the t ratio [Eq. (5.5)]. The d.f. for a
mean are N − 1, or 19(20 − 1) in this example. The test is a two-sided test at the 5% level. The t
ratio is

t =
∣∣X − �0

∣∣
S/

√
N

= |5.0655 − 5.01|
0.0806/

√
20

= 3.08.

The value of t needed for significance for a two-sided test at the 5% level is 2.09 (Table IV.4;
19 d.f.). Therefore, the new process results in a “significant” increase in potency (p < 0.05).

A 95% confidence interval for the true mean potency may be constructed as described in
section 5.1.1 [Eq. (5.2)]

5.0655 ± 2.09
(

0.0806√
20

)
= 5.028 to 5.103 mg.

Note that the notion of the confidence interval is closely associated with the statistical test.
If the confidence interval covers the hypothetical value, the difference is not significant at the
indicated level, and vice versa. In our example, the difference was significant at the 5% level,
and the 95% confidence interval does not cover the hypothetical mean value of 5.01.

Example 4: As part of the process of new drug research, a pharmaceutical company places
all new compounds through an “antihypertensive” screen. A new compound is given to a
group of animals and the reduction in blood pressure measured. Experience has shown that a
blood pressure reduction of more than 15 mm Hg in these hypertensive animals is an indication
for further testing as a new drug candidate. Since such testing is expensive, the researchers
wish to be reasonably sure that the compound truly reduces the blood pressure by more than
15 mm Hg before testing is continued; that is, they will continue testing only if the experimental
evidence suggests that the true blood pressure reduction is greater than 15 mm Hg with a high
probability.

Ho : � ≤ 15mmHg reduction Ha : � > 15mmHg reduction

The null hypothesis is a statement that the new compound is unacceptable (blood pressure
change is equal to or less than 15 mm Hg). This is typical of the concept of the null hypothesis.
A rejection of the null hypothesis means that a difference probably exists. In our example, a
true difference greater than 15 mm Hg means that the compound should be tested further. This
is a one-sided test. Experimental results showing a difference of 15 mm Hg or less will result in
a decision to accept H0, and the compound will be put aside. If the blood pressure reduction
exceeds 15 mm Hg the reduction will be tested for significance using a t test.

� = 10%(0.10)

The level of significance of 10% was chosen in lieu of the usual 5% level for the following
reason. A 5% significance level means that 1 time in 20 a compound will be chosen as effective
when the true reduction is less than 15 mm Hg. The company was willing to take a risk of 1 in
10 of following up an ineffective compound in order to reduce the risk of missing potentially
effective compounds. One should understand that the choice of alpha and beta errors often
is a compromise between reward and risk. We could increase the chances for reward, but we
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Table 5.7 Blood Pressure Reduction Caused by a New

Antihypertensive Compound in 10 Animals (mm Hg)

15 12

18 17

14 21

8 16

20 18

X = 15.9 S = 3.87

could simultaneously increase the risk of failure, or, in this case, following up on an ineffective
compound. Other things being equal, an increase in the � error decreases the 	 error; that is,
there is a smaller chance of accepting H0 when it is false. Note that the t value needed for
significance is smaller at the 10% level than that at the 5% level. Therefore, a smaller reduction
in blood pressure is needed for significance at the 10% level. The standard procedure in this
company is to test the compound on 10 animals. The results shown in Table 5.7 were observed
in a test of a newly synthesized potential antihypertensive agent.

The t test is [Eq. (5.5)]

t = 15.9 − 15

3.87/
√

10
= 0.9

1.22
= 0.74.

The value of t needed for significance is 1.38 (Table IV.4; one-sided test at the 10% level with
9 d.f.). Therefore, the compound is not sufficiently effective to be considered further. Although
the average result was larger than 15 mm Hg, it was not sufficiently large to encourage further
testing, according to the statistical criterion.

What difference (reduction) would have been needed to show a significant reduction,
assuming that the sample variance does not change? Equation (5.5) may be rearranged as
follows: X = t(S)/

√
N + �0. If X is greater than or equal to t(S)/

√
N + �0, the average reduction

will be significant, where t is the table value at the � level of significance with (N − 1) d.f. In our
example,

t(S)√
N

+ �0 = (1.38)(3.87)√
10

+ 15 = 16.7.

A blood pressure reduction of 16.7 mm Hg or more (the critical region) would have resulted
in a significant difference. (See Exercise Problem 10.)

5.2.2 Case II: Comparisons of Means from Two Independent Groups (Two Independent
Groups Test)

A preliminary discussion of this test was presented in section 5.2. This most important test
is commonly encountered in clinical studies (a parallel-groups design). Table 5.8 shows a few
examples of research experiments that may be analyzed by the test described here. The data

Table 5.8 Some Examples of Experiments That May Be Analyzed by the Two-

Independent- Groups Test

Clinical studies Active drug compared to a standard drug or placebo; treatments

given to different persons, one treatment per person

Preclinical studies Comparison of drugs for efficacy and/or toxicity with treatments

given to different animals

Comparison of product

attributes from two

batches

Tablet dissolution, potency, weight, etc., from two batches
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of Table 5.2 will be used to illustrate this test. The experiment consisted of a comparison of an
active drug and a placebo where each treatment is tested on different patients. The results of the
study showed an average blood pressure reduction of 10 mm Hg for 11 patients receiving drug,
and an average reduction of 1 mm Hg for 10 patients receiving placebo. The principal feature of
this test (or design) is that treatments are given to two independent groups. The observations in
one group are independent of those in the second group. In addition, we assume that the data
within each group are normally and independently distributed.

The steps to be taken in performing the two independent groups test are similar to those
described for the one-sample test (see sect. 5.2.1).

1. Patients are randomly assigned to the two treatment groups. (For a description of the method of
random assignment, see chap. 4.) The number of patients chosen to participate in the study
in this example was largely a consequence of cost and convenience. Without these restraints,
a suitable sample size could be determined with a knowledge of 	, as described in chapter
6. The drug and placebo were to be randomly assigned to each of 12 patients (12 patients
for each treatment). There were several dropouts, resulting in 11 patients in the drug group
and 10 patients in the placebo group.

2. The null and alternative hypotheses are

H0: �1 − �2 = � = 0 Ha : � 
= 0.

We hypothesize no difference between treatments. A “significant” result means that
treatments are considered different. This is a two-sided test. The drug treatment may be
better or worse than placebo.

3. � is set at 0.05.
4. The form of the statistical test depends on whether or not variances are known. In the usual

circumstances, the variances are unknown.

5.2.2.1 Two Independent -Groups Test, Variances Known
If the variances of both groups are known, the ratio

Z = X1 − X2 − (�1 − �2)√
�2

1 /N1 + �2
2 /N2

(5.9)

has a normal distribution with mean 0 and standard deviation equal to 1 (the standard normal
distribution). The numerator of the ratio is the difference between the observed difference of the
means of the two groups (X1 − X2) and the hypothetical difference (�1 − �2 according to H0).
In the present case, and indeed in most of the examples of this test that we will consider, the
hypothetical difference to be zero (i.e., H0 : �1 − �2 = 0). The variability of (X1 − X2)¶ (defined
as the standard deviation) is equal to

√
�2

X1
+ �2

X2

[as described in App. I, if A and B are independent, �2(A− B) = �2
A + �2

B]. Thus, as in the one-
sample case, the test consists of forming a ratio whose distribution is defined by the standard
normal curve. In the present example (test of an antihypertensive agent), suppose that the
variances corresponding to drug and placebo are known to be 144 and 100, respectively. The
rejection region is defined by �. For � = 0.05, values of Z greater than 1.96 or less than −1.96
( |Z| ≥ 1.96) will lead to rejection of the null hypothesis. Z is defined by Eq. (5.9).

¶ The variance of (X1 − X2) − (�1 − �2) is equal to the variance of (X1 − X2) because �1 and �2 are constants
and have a variance equal to zero.
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For a two-sided test

Z =
∣∣X1 − X2

∣∣√
�2

1 /N1 + �2
2 /N2

,

X1 = 10, X2 = 1, N1 = 11, and N2 = 10.

Thus,

Z= |10 − 1|√
144/11 + 100/10

= 1.87.

Since the absolute value of the ratio does not exceed 1.96, the difference is not significant
at the 5% level. From Table IV.2, the probability of observing a value of Z greater than 1.87 is
approximately 0.03. Therefore, the test can be considered significant at the 6% level [2(0.03) =
0.06 for a two-tailed test]. The probability of observing an absolute difference of 9 mm Hg or
more between drug and placebo, if the two products are identical, is 0.06 or 6%.

We have set � equal to 5% as defining an unlikely event from a distribution with known
mean (0) and variance (144/11 + 100/10 = 23.1). An event as far or farther from the mean
(0) than 9 mm Hg can occur six times in a 100 if H0 is true. Alternatively, the conclusion may
be stated that the experimental results were not sufficient to reject H0 because we set � at
5% a priori (i.e., before performing the experiment). In reality, there is nothing special about
5%. The use of 5% as the � level is based strongly on tradition and experience, as mentioned
previously. Should significance at the 6% level result in a different decision than a level of 5%? To
document efficacy, a significance level of 6% may not be adequate for acceptance by regulatory
agencies. There has to be some cutoff point; otherwise, if 6% is acceptable, why not 7% and so
on? However, for internal decisions or for leads in experiments used to obtain information for
further work or to verify theories, 5% and 6% may be too close to “call.” Rather than closing
the door on experiments that show differences at p = 0.06, one might think of such results as
being of “borderline” significance, worthy of a second look and/or further experimentation.
In our example, had the difference between drug and placebo been approximately 9.4 mm Hg,
we would have called the difference “significant,” rejecting the hypothesis that the placebo
treatment was equal to the drug.

P values are often presented with experimental results even though the statistical test
shows nonsignificance at the predetermined � level. In this experiment, a statement that p =
0.06 (“The difference is significant at the 6% level”) does not imply that the treatments are
considered to be significantly different. We emphasize that if the � level is set at 5%, a decision
that the treatments are different should be declared only if the experimental results show that
p ≤ 0.05. However, in practical situations, it is often useful for the experimenter and other
interested parties to know the p value, particularly in the case of “borderline” significance.

5.2.2.2 Two- Independent -Groups Test, Variance Unknown
The procedure for comparing means of two independent groups when the variances are esti-
mated from the sample data is the same as that with the variances known, with the following
exceptions:

1. The variance is computed from the sample data. In order to perform the statistical test to be
described below, in addition to the usual assumptions of normality and independence, we
assume that the variance is the same for each group. (If the variances differ, a modified procedure
can be used as described later in this chapter.) A rule of thumb for moderate-sized samples (N
equal 10–20) is that the ratio of the two variances should not be greater than 3 to 4. Sometimes,
in doubtful situations, a test for the equality of the two variances may be appropriate (see
sect. 5.3) before performing the test of significance for means described here. To obtain
an estimate of the common variance, first compute the variance of each group. The two
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variances are pooled by calculating a weighted average of the variances, the best estimate of
the true common variance. The weights are equal to the d.f., N1 − 1 and N2 − 1, for groups
1 and 2, respectively. N1 and N2 are the sample sizes for the two groups. The following
formula may be used to calculate the pooled variance

S2
p = (N1 − 1)S2

1 + (N2 − 1)S2
2

N1 + N2 − 2
. (5.10)

Note that we do not calculate the pooled variance by first pooling together all of
the data from the two groups. The pooled variance obtained by pooling the two separate
variances will always be equal to or smaller than that computed from all of the data combined
disregarding groups. In the latter case, the variance estimate includes the variability due
to differences of means as well as that due to the variance within each group (see Exercise
Problem 5). Appendix I has a further discussion of pooling variance.

2. The ratio that is used for the statistical test is similar to Eq. (5.9). Because the variance, S2
p (pooled

variance), is estimated from the sample data, the ratio

t = (X1 − X2) − (�1 − �2)√
S2

p/N1 + S2
p/N2

= (X1 − X2) − (�1 − �2)

Sp
√

1/N1 + 1/N2
(5.11)

is used instead of Z [Eq. (5.9)]. The d.f. for the distribution are determined from the variance
estimate, S2

p. This is equal to the d.f., pooled from the two groups, equal to (N1 − 1) + (N2 −
1) or N1 + N2 − 2.

These concepts are explained and clarified, step by step, in the following examples.
Example 5: Two different formulations of a tablet of a new drug are to be compared

with regard to rate of dissolution. Ten tablets of each formulation are tested, and the percent
dissolution after 15 minutes in the dissolution apparatus is observed. The results are tabulated
in Table 5.9. The object of this experiment is to determine if the dissolution rates of the two
formulations differ. The test for the “significance” of the observed difference is described in
detail as follows:

1. State the null and alternative hypotheses:

H0 : �1 = �2 Ha : �1 
= �2

Table 5.9 Percent Dissolution After 15 Minutes for Two Tablet

Formulations

Formulation A Formulation B

68 74

84 71

81 79

85 63

75 80

69 61

80 69

76 72

79 80

74 65

Average 77.1 71.4

Variance 33.43 48.71

s.d. 5.78 6.98
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�1 and �2 are the true mean 15-minute dissolution values for formulations A and B, respec-
tively. This is a two-sided test. There is no reason to believe that one or the other formulation
will have a faster or slower dissolution, a priori.

2. State the significance level � = 0.05. The level of significance is chosen as the traditional 5%
level.

3. Select the samples. Ten tablets taken at random from each of the two pilot batches will be
tested.

4. Compute the value of the t statistic [Eq. (5.11)]:

∣∣X1 − X2 − (�1 − �2)
∣∣

Sp
√

1/N1 + 1/N2
= t = |77.1 − 71.4|

Sp
√

1/10 + 1/10

X1 = 77.1 and X2 = 71.4 (Table 5.9). N1 = N2 = 10 (d.f. = 9 for each group). Sp is calculated from
Eq. (5.10)

Sp =
√

9(33.43) + 9(48.71)
18

= 6.41.

Note that the pooled standard deviation is the square root of the pooled variance, where the
pooled variance is a weighted average of the variances from each group. It is not correct to average
the standard deviations. Although the sample variances of the two groups are not identical, they
are “reasonably” close, close enough so that the assumption of equal variances can be considered
to be acceptable. The assumption of equal variance and independence of the two groups is more
critical than the assumption of normality of the data, because we are comparing means. Means
tend to be normally distributed even when the individual data do not have a normal distribution,
according to the central limit theorem. The observed value of t (18 d.f.) is

t =
∣∣X1 − X2

∣∣
Sp
√

1/N1 + 1/N2
= |77.1 − 71.4|

6.41
√

2/10
= 1.99.

Values of t equal to or greater than 2.10 (Table IV.4; d.f. = 18) lead to rejection of the
null hypothesis. These values, which comprise the critical region, result in a declaration of
“significance.” In this experiment, the value of t is 1.99, and the difference is not significant at
the 5% level (p > 0.05). This does not mean that the two formulations have the same rate of
dissolution. The declaration of nonsignificance here probably means that the sample size was
too small; that is, the same difference with a larger sample would be significant at the 5% level.
Two different formulations are apt not to be identical with regard to dissolution. The question
of statistical versus practical significance may be raised here. If the dissolutions are indeed
different, will the difference of 5.7% (77.1–71.4%) affect drug absorption in vivo? A confidence
interval on the difference of the means may be an appropriate way of presenting the results.

5.2.2.3 Confidence Interval for the Difference of Two Means
A confidence interval for the difference of two means can be constructed in a manner similar to
that presented for a single mean as shown in section 5.1 [Eq. (5.2)]. For example, a confidence
interval with a confidence coefficient of 95% is

(X1 − X2) ± (t)Sp

√
1

N1
+ 1

N2
, (5.12)

t is the value obtained from Table IV.4 with appropriate d.f., with the probability used for a two-
sided test. (Use the column labeled “0.975” in Table IV.4 for a 95% interval.) For the example
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discussed above (tablet dissolution), a 95% confidence interval for the difference of the mean
15-minute dissolution values [Eq. (5.12)] is

(77.1 − 71.4) ± 2.10(6.41)(0.447) = 5.7 ± 6.02 = −0.32% to 11.72%.

Thus the 95% confidence interval is from −0.32% to 11.72%.

5.2.2.4 Test of Significance If Variances of the Two Groups Are Unequal
If the two groups can be considered not to have equal variances and the variances are estimated
from the samples, the usual t test procedure is not correct. This problem has been solved and is
often denoted as the Behrens–Fisher procedure. Special tables are needed for the solution, but
a good approximate test for the equality of two means can be performed using Eq. (5.13) [3].

t = (X1 − X2)√
S2

1/N1 + S2
2/N2

(5.13)

If N1 = N2 = N, then the critical t is taken from Table IV.4 with N − 1 instead of the usual
2(N − 1) d.f. If N1 and N2 are not equal, then the t value needed for significance is a weighted
average of the appropriate t values from Table IV.4 with N1 − 1 and N2 − 1 d.f.

Weighted average of t values = w1t1 + w2t2
w1 + w2

,

where the weights are

w1 = S2
1

N1
, w2 = S2

2

N2
.

To make the calculation clear, assume that the means of two groups of patients treated
with an antihypertensive agent showed the following reduction in blood pressure (mm Hg).

Group A Group B

Mean 10.7 7.2
Variance (S2) 51.8 5.3
N 20 15

We have reason to believe that the variances differ, and for a two-sided test, we first
calculate t′ according to Eq. (5.13)

t′ = |10.7 − 7.2|√
51.8/20 + 5.3/15

= 2.04.

The critical value of t′ is obtained using the weighting procedure. At the 5% level, t with 19 d.f.
= 2.09 and t with 14 d.f. = 2.14. The weighted average t value is

(51.8/20)(2.09) + (5.3/15)(2.14)
(51.8/20) + (5.3/15)

= 2.10.

Since t′ is less than 2.10, the difference is considered to be not significant at the 5% level.
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5.2.2.5 Overlapping Confidence Intervals and Statistical Significance
When comparing two independent treatments for statistical significance, sometimes people
erroneously make conclusions based on the confidence intervals constructed from each treat-
ment separately. In particular, if the confidence intervals overlap, the treatments are considered
not to differ. This reasoning is not necessarily correct. The fallacy can be easily seen from the fol-
lowing example. Consider two independent treatments, A and B, representing two formulations
of the same drug with the following dissolution results:

Treatment N Average s.d.

A 6 37.5 6.2
B 6 47.4 7.4

For a two-sided test, the two-sample t test results in a t value of

t= |47.4 − 37.5|
6.83

√
1/6 + 1/6

= 2.51.

Since 2.51 exceeds the critical t value with l0 d.f. (2.23), the results show significance at the
5% level.

Computation of the 95% confidence intervals for the two treatments results in the follow-
ing:

Treatment A : 37.5 ± (2.57)(6.2)
√

1/6 = 30.99 to 44.01.

Treatment B : 47.4 ± (2.57)(7.4)
√

1/6 = 39.64 to 55.16.

Clearly, in this example, the individual confidence intervals overlap (the values between
39.64 and 44.01 are common to both intervals), yet the treatments are significantly different. The
95% confidence interval for the difference of the two treatments is

(47.4 − 37.5) ± 8.79 = 1.1 to 18.19.

As has been noted earlier in this section, if the 95% confidence interval does not cover 0,
the difference between the treatments is significant at the 5% level.

5.2.2.6 Summary of t-Test Procedure and Design for Comparison of Two Independent Groups
The t-test procedure is essentially the same as the test using the normal distribution (Z test).
The t test is used when the variance(s) are unknown and estimated from the sample data.
The t distribution with ∞ d.f. is identical to the standard normal distribution. Therefore, the t
distribution with ∞ d.f. can be used for normal distribution tests (e.g., comparison of means
with variance known). When using the t test, it is necessary to compute a pooled variance. [With
variances known, a pooled variance is not computed; see Eqs. (5.10) and (5.11).] An assumption
underlying the use of this t test is that the variances of the comparative groups are the same.
Other assumptions when using the t test are that the data from the two groups are independent
and normally distributed. If the variances are considered to be unequal, use the approximate
Behrens–Fisher method.

If H0 is rejected (the difference is “significant”), one accepts the alternative, Ha := �1 
=
�2 or �1 − �2 
= 0. The best estimate of the true difference between the means is the observed dif-
ference. A confidence interval gives a range for the true difference (see above). If the confidence
interval covers 0, the statistical test is not significant at the corresponding alpha level.

Planning an experiment to compare the means of two independent groups usually requires
the following considerations:

1. Define the objective. For example, in the example above, the objective was to determine if the
two formulations differed with regard to rates of dissolution.



STATISTICAL INFERENCE 107

2. Determine the number of samples (experimental units) to be included in the experiment.
We have noted that statistical methods may be used to determine the sample size (chap. 6).
However, practical considerations such as cost and time constraints are often predominating
factors. The sample size of the two groups need not be equal in this type of design, also
known as a parallel-groups or one-way analysis of variance design. If the primary interest is
the comparison of means of the two groups, equal sample sizes are optimal (assuming that
the variances of the two groups are equal). That is, given the total number of experimental
units available (patients, tablets, etc.), the most powerful comparison will be obtained by
dividing the total number of experimental units into two equal groups. The reason for
this is that (1/N1) + (1/N2), which is in the denominator of the test ratio, is minimal when
N1 = N2 = Nt/2 (Nt is the total sample size). In many circumstances (particularly in clinical
studies), observations are lost due to errors, patient dropouts, and so on. The analysis
described here is still valid, but some power will be lost. Power is the ability of the test
to discriminate between the treatment groups. (Power is discussed in detail in chap. 6.)
Sometimes, it is appropriate to use different sample sizes for the two groups. In a clinical
study where a new drug treatment is to be compared to a standard or placebo treatment,
one may wish to obtain data on adverse experiences due to the new drug entity in addition
to comparisons of efficacy based on some relevant mean outcome. In this case, the design
may include more patients on the new drug than the comparative treatment. Also, if the
variances of two groups are known to be unequal, the optimal sample sizes will not be
equal [4].

3. Choose the samples. It would seem best in many situations to be able to apply treatments to
randomly chosen experimental units (e.g., patients). Often, practical considerations make
this procedure impossible, and some compromise must be made. In clinical trials, it is usually
not possible to select patients at random according to the strict definition of “random.” We
usually choose investigators who assign treatments to the patients available to the study in
a random manner.

4. Observations are made on the samples. Every effort should be made to avoid bias. Blinding
techniques and randomizing the order of observations (e.g., assays) are examples of ways to
avoid bias. Given a choice, objective measurements, such as body weights, blood pressure,
and blood assays, are usually preferable to subjective measurements, such as degree of
improvement, psychological traits, and so on.

5. The statistical analysis, as described above, is then applied to the data. The statistical methods
and probability levels (e.g., �) should be established prior to the experiment. However, one
should not be immobilized because of prior commitments. If experimental conditions differ
from that anticipated, and alternative analyses are warranted, a certain degree of flexibility is
desirable. However, statistical theory (and common sense) shows that it is not fair to examine
the data to look for all possible effects not included in the objectives. The more one looks,
the more one will find. In a large data set, any number of unusual findings will be apparent
if the data are examined with a “fine-tooth comb,” sometimes called “data dredging.” If
such unexpected results are of interest, it is best to design a new experiment to explore and
define these effects. Otherwise, large data sets can be incorrectly used to demonstrate a large
number of unusual, but inadvertent, random, and inconsequential “statistically” significant
differences.

5.2.3 Test for Comparison of Means of Related Samples (Paired-Sample t Test)
Experiments are often designed so that comparisons of two means are made on related samples.
This design is usually more sensitive than the two independent groups t test. A test is more
sensitive if the experimental variability is smaller. With smaller variability, smaller differences
can be detected as statistically significant. In clinical studies, a paired design is often described
as one in which each patient acts as his or her own “control.” A bioequivalence study, in which
each subject takes each of a test and reference drug product, is a form of paired design (see sect.
11.4).

In the paired-sample experiment, the two treatments are applied to experimental units
that are closely related. If the same person takes both treatments, the relationship is obvious.
Table 5.10 shows common examples of related samples used in paired tests.
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Table 5.10 Examples of Related Samples

Clinical studies Each patient takes each drug on different occasions (e.g., crossover study)

Each patient takes each drug simultaneously, such as in skin testing; for example, an

ointment is applied to different parts of the body

Matched pairs: two patients are matched for relevant characteristics (age, sex,

disease state, etc.) and two drugs randomly assigned, one to each patient

Preclinical studies Drugs assigned randomly to littermates

Analytical development Same analyst assays all samples

Each laboratory assays all samples in collaborative test

Each method is applied to a homogeneous sample

Stability studies Assays over time from material from same container

The paired t test is identical in its implementation to the one-sample test described in
section 5.2.1. In the paired test, the single sample is obtained by taking differences between the
data for the two treatments for each experimental unit (patient or subject, for example). With N
pairs of individuals, there are N data points (i.e., N differences). The N differences are designated
as �. Example 4, concerning the average reduction in blood pressure in a preclinical screen, was
a paired-sample test in disguise. The paired data consisted of pre- and postdrug blood pressure
readings for each animal. We were interested in the difference of pre- and postvalues (�), the
blood pressure reduction (see illustration below).

In paired tests, treatments should be assigned either in random order, or in some designed
way, as in the crossover design. In the crossover design, usually one-half of the subjects receive
the two treatments in the order A-B, and the remaining half of the subjects receive the treatments
in the opposite order, where A and B are the two treatments. The crossover design is discussed
in detail in chapter 11. With regard to blood pressure reduction, it is obvious that the order
cannot be randomized. The pretreatment reading occurs before the post-treatment reading. The
inflexibility of this ordering can create problems in interpretation of such data. The conclusions
based on these data could be controversial because of the lack of a “control” group. If extraneous
conditions that could influence the experimental outcome are different at the time of the initial
and final observation (pre- and post-treatment), the treatment effect is “confounded” with the
differences in conditions at the two points of observation. Therefore, randomization of the order
of treatment given to each subject is important for the validity of this statistical test. For example,
consider a study to compare two hypnotic drugs with regard to sleep-inducing effects. If the
first drug were given to all patients before the second drug, and the initial period happened
to be associated with hot and humid weather conditions, any observed differences between
drugs (or lack of difference) would be “tainted” by the effect of the weather on the therapeutic
response.

An important feature of the paired design is that the experimental units receiving the two
treatments are, indeed, related. Sometimes, this is not as obvious as the example of the same
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Table 5.11 Results of a Bioavailability Study Comparing a New Formulation (A) to a

Marketed Form (B) with Regard to the Area Under the Blood-Level Curve

Animal A B � = B − A A/B = R

1 136 166 30 0.82

2 168 184 16 0.91

3 160 193 33 0.83

4 94 105 11 0.90

5 200 198 −2 1.01

6 174 197 23 0.88

�̄ = 18.5 R = 0.89

S� = 13.0 SR = 0.069

patient taking both treatments. One can think of the concept of relatedness in terms of the paired
samples being more alike than samples from members of different pairs. Pairs may be devised
in clinical trials by pairing patients with similar characteristics, such as age, sex, severity of
disease, and so on.

Example 6: A new formulation of a marketed drug is to be tested for bioavailability,
comparing the extent of absorption to the marketed form on six laboratory animals. Each
animal received both formulations in random order on two different occasions. The results, the
area under the blood level versus time curve (AUC), are shown in Table 5.11.

H0 : � = 0∗∗ Ha : � 
= 0

This is a two-sided test, with the null hypothesis of equality of means of the paired
samples. (The true difference is zero.) Before the experiment, it was not known which for-
mulation would be more or less bioavailable if, indeed, the formulations are different. The
significance level is set at 5%. From Table 5.11, the average difference is 18.5 and the standard
deviation of the differences (� values) is 13.0. The t test is

t = �̄ − �

S/
√

N
. (5.14)

The form of the test is the same as the one-sample t test [Eq. (5.5)]. In our example, a
two-sided test,

t = |18.5 − 0|
13/

√
6

= 3.84.

For a two-sided test at the 5% level, a t value of 2.57 is needed for significance (d.f. = 5;
there are six pairs). Therefore, the difference is significant at the 5% level. Formulation B appears
to be more bioavailable.

In many kinds of experiments, ratios are more meaningful than differences as a practical
expression of the results. In comparative bioavailability studies, the ratio of the AUCs of the two
competing formulations is more easily interpreted than is their difference. The ratio expresses
the relative absorption of the formulations. From a statistical point of view, if the AUCs for
formulations A and B are normally distributed, the difference of the AUCs is also normally
distributed. It can be proven that the ratio of the AUCs will not be normally distributed and the
assumption of normality for the t test is violated. However, if the variability of the ratios is not
great and the sample size is sufficiently “large,” analyzing the ratios should give conclusions
similar to that obtained from the analysis of the differences. Another alternative for the analysis
of such data is the logarithmic transformation (see chap. 10), where the differences of the

∗∗� is the hypothetical difference and �̄ the observed average difference.
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logarithms of the AUCs are analyzed. (Also see chap. 11, Locke’s approach, for an analysis of
ratios.) For purposes of illustration, we will analyze the data in Table 5.11 using the ratio of the
AUCs for formulations A and B. The ratios are calculated in the last column in Table 5.11.

The null and alternative hypotheses in this case are

H0 : R0 = 1 Ha : R0 
= 1,

where R0 is the true ratio. If the products are identical, we would expect to observe an average
ratio close to 1 from the experimental data. For the statistical test, we chooser � equal to 0.05 for
a two-sided test. Applying Eq. (5.5), where X is replaced by the average ratio R

t =
∣∣R − 1

∣∣
S/

√
6

= |0.89 − 1|
0.069/

√
6

= 3.85.

Note that this is a one-sample test. We are testing the mean of a single sample of ratios
versus the hypothetical value of 1. Because this is a two-sided test, low or high ratios can lead
to significant differences. As in the analysis of the differences, the value of t is significant at the
5% level. (According to Table IV.4, at the 5% level, t must exceed 2.57 for significance.)

A confidence interval for the average ratio (or difference) of the AUCs can be computed in
a manner similar to that presented earlier in this chapter [Eq. (5.2)]. A 95% confidence interval
for the true ratio A/B is given by

A
B

= R ± t(S)√
N

= 0.89 ± 2.57(0.069)√
6

= 0.89 ± 0.07 = 0.82 to 0.96.

Again, the fact that the confidence interval does not cover the value specified by H0 (1)
means that the statistical test is significant at the 5% level.

A more complete discussion of the analysis of bioequivalence data as required by the FDA
is given in chapter 11.

5.2.4 Normal Distribution Tests for Proportions (Binomial Tests)
The tests described thus far in this chapter (normal distribution and t tests as well as confidence
intervals) can also be applied to data that are binomially distributed. To apply tests for binomial
variables based on the normal distribution, a conservative rule is that the sample sizes should be
sufficiently large so that both Np̂ and Nq̂ are larger than or equal to 5. Where p̂ is the observed
proportion and q̂ = 1 − p̂. For symmetric distributions (p ∼= 0.5), this constraint may be relaxed
somewhat. The binomial tests are based on the normal approximation to the binomial and,
therefore, we use normal curve probabilities when making decisions in these tests. To obtain the
probabilities for tests of significance, we can use the t table with ∞ d.f. or the standard normal
distribution (Tables IV.4 and IV.2, respectively). We will also discuss the application of the � 2

(chi-square) distribution to the problem of comparing the “means” of binomial populations.

5.2.4.1 Test to Compare the Proportion of a Sample to a Known or Hypothetical Proportion
This test is equivalent to the normal test of the mean of a single population. The test is

Z = p̂ − p0√
p0q0/N

(5.15)

where p̂ is the observed proportion and p0 the hypothetical proportion under the null hypothesis
H0:p′ = p0.

The test procedure is analogous to the one-sample tests described in section 5.2.1. Because
of the discrete nature of binomial data, a correction factor is recommended to improve the
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normal approximation. The correction, often called the Yates continuity correction, consists of
subtracting 1/(2N) from the absolute value of the numerator of the test statistic [Eq. (5.15)]

Z = | p̂ − p0| − 1/(2N)√
p0q0/N

. (5.16)

For a two-tailed test, the approximation can be improved as described by Snedecor and
Cochran [5]. The correction is the same as the Yates correction if np is “a whole number or ends
in 0.5.” Otherwise, the correction is somewhat less than 1/(2N) (see Ref. [5] for details). In the
examples presented here, we will use the Yates correction. This results in probabilities very close
to those that would be obtained by using exact calculations based on the binomial theorem.
Some examples should make the procedure clear.

Example 7: Two products are to be compared for preference with regard to some attribute.
The attribute could be sensory (taste, smell, etc.) or therapeutic effect as examples. Suppose
that an ointment is formulated for rectal itch and is to be compared to a marketed formulation.
Twenty patients try each product under “blind” conditions and report their preference. The null
hypothesis and alternative hypothesis are

H0:pa = pb or H0 : pa = 0.5 Ḣa : pa 
= 0.5,

where pa and pb are the hypothetical preferences for A and B, respectively. If the products are
truly equivalent, we would expect one-half of the patients to prefer either product A or B. Note
that is a one-sample test. There are two possible outcomes that can result from each observation:
a patient prefers A or prefers B (pa + pb = 1).

We observe the proportion of preferences (successes) for A, where A is the new formulation.
This is a two-sided test; very few or very many preferences for A would suggest a significant
difference in preference for the two products. Final tabulation of results showed that 15 of 20
patients found product A superior (5 found B superior). Does this result represent a “significant”
preference for product A? Applying Eq. (5.16), we have

Z = |15/20 − 0.5| − 1/40√
(0.5)(0.5)/20

= 2.01.

Note the correction for continuity, 1/(2N). Also note that the denominator uses the value
of pq based on the null hypothesis (pa = 0.5), not the sample proportion (0.75 = 15/20). This
procedure may be rationalized if one verbalizes the nature of the test. We assume that the
preferences are equal for both products (pa = 0.5). We then observe a sample of 20 patients to see
if the results conform with the hypothetical preference. Thus, the test is based on a hypothetical
binomial distribution with the expected number of preferences equal to 10 (pa × 20). See Figure
5.11, which illustrates the rejection region in this test. The value of Z = 2.01 (15 preferences in
a sample of 20) is sufficiently large to reject the null hypothesis. A value of 1.96 or greater is

Reject H0 :
5 or fewer
preferences

Reject H0 :
15 or more
preferences

Number of preferences

5 10 15 Figure 5.11 Rejection region for the test of pa =
0.5 for a sample of 20 patients (� = 0.05, two-sided

test).
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significant at the 5% level (Table IV.2). The test of p0 = 0.5 is common in statistical procedures.
The sign test described in chapter 15 is a test of equal proportions (i.e., p0 = q0 = 0.5).

Example 8: A particularly lethal disease is known to result in 95% fatality if not treated.
A new treatment is given to 100 patients and 10 survive. Does the treatment merit serious con-
sideration as a new therapeutic regimen for the disease? We can use the normal approximation
because the expected number of successes and failures both are ≥5, that is, Np0 = 5 and Nq0 =
5 and Nq0 = 95 (p0 = 0.05, N = 100). A one-sided test is performed because evidence supports
the hypothesis that the treatment cannot worsen the chances of survival. The � level is set at
0.05. Applying Eq. (5.16), we have

H0 : p0 = 0.05 H0 : p0 > 0.05

Z = |0.10 − 0.05| − 1/200√
(0.05)(0.95)/100

= 2.06.

Table IV.2 shows that a value of Z equal to 1.65 would result in significance at the 5%
level (one-sided test). Therefore, the result of the experiment is strong evidence that the new
treatment is effective (p < 0.05).

If either Np0 or Nq0 is less than 5, the normal approximation to the binomial may not
be justified. Although this rule is conservative, if in doubt, in these cases, probabilities must
be calculated by enumerating all possible results that are equally or less likely to occur than the
observed result under the null hypothesis. This is a tedious procedure, but in some cases it is the
only way to obtain the probability for significance testing [7]. Fortunately, most of the time, the
sample sizes of binomial experiments are sufficiently large to use the normal approximation.

5.2.4.2 Tests for the Comparison of Proportions from Two Independent Groups
Experiments commonly occur in the pharmaceutical and biological sciences that involve the
comparison of proportions from two independent groups. These experiments are analogous to
the comparison of means in two independent groups using the t or normal distributions. For
proportions, the form of the test is similar. With a sufficiently large sample size, the normal
approximation to the binomial can be used, as in the single-sample test. For the hypothesis:
H0 : pa = pb(pa − pb = 0), the test using the normal approximation is

Z = p̂a − p̂b√
p̂0q̂0(1/N1 + 1/N2)

, (5.17)

where p̂a and p̂b , are the observed proportions in groups A and B, respectively, and N1 and N2
are the sample sizes for groups A and B, respectively, p̂0 and q̂0 are the “pooled” proportion of
successes and failures. The pooled proportion, p̂0, is similar to the pooled standard deviation
in the t test. For proportions, the results of the two comparative groups are pooled together
and the “overall” observed proportion is equal to p̂0. Under the null hypothesis, the probability
of success is the same for both groups, A and B. Therefore, the best estimate of the common
probability for the two groups is the estimate based on the combination of data from the entire
experiment. An example of this calculation is shown in Table 5.12. The pooled proportion, p̂0,
is a weighted average of the two proportions. This is exactly the same as adding up the total
number of “successes” and dividing this by the total number of observations. In the example in

Table 5.12 Sample Calculation for Pooling Proportions from Two

Groups

Group I Group II

N = 20 N = 30

p̂ 1 = 0.8 p̂ 2 = 0.6

p̂ 0 = pooled p = (20 × 0.8 + 30 × 0.6)/(20 + 30) = 0.68
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Table 5.12, the total number of successes is 34, 16 in group I and 18 in group II. The total number
of observations is 50, 30 + 20. The following examples illustrate the computations.

Example 9: In a clinical study designed to test the safety and efficacy of a new therapeutic
agent, the incidence of side effects are compared for two groups of patients, one taking the new
drug and the other group taking a marketed standard agent. Headache is a known side effect
of such therapy. Of 212 patients on the new drug, 35 related that they had experienced severe
headaches. Of 196 patients on the standard therapy, 46 suffered from severe headaches. Can the
new drug be claimed to result in fewer headaches than the standard drug at the 5% level of
significance? The null and alternative hypotheses are

H0 : p1 = p2(p1 − p2) = 0 Ha : p1 
= p2.

This is a two-sided test. Before performing the statistical test, the following computations
are necessary

p̂1 = 35
212

= 0.165

p̂2 = 46
196

= 0.235

p̂0 = 81
408

= 0.199 (q̂0 = 0.801).

Applying Eq. (5.17), we have

Z = |0.235 − 0.165|√
(0.199)(0.801)(1/212 + 1/196)

= 0.07
0.0395

= 1.77.

Since a Z value of 1.96 is needed for significance at the 5% level, the observed difference
between the two groups with regard to the side effect of “headache” is not significant (p > 0.05).

Example 10: In a preclinical test, the carcinogenicity potential of a new compound is
determined by administering several doses to different groups of animals. A control group
(placebo) is included in the study as a reference. One of the dosage groups showed an incidence
of the carcinoma in 9 of 60 animals (15%). The control group exhibited 6 carcinomas in 65
animals (9.2%). Is there a difference in the proportion of animals with the carcinoma in the two
groups (� = 5%)? Applying Eq. (5.17), we have

H0 : p1 = p2 H0 : p1 
= p2

Z = |9/60 − 6/65|√
(15/125)(110/125)(1/60 + 1/65)

= 0.0577
0.058

= 0.99.

Note that p̂1 = 9/60 = 0.15, p̂2 = 6/65 = 0.092, and p̂0 = 15/125 = 0.12.

Since Z does not exceed 1.96, the difference is not significant at the 5% level. This test
could have been a one-sided test (a priori) if one were certain that the new compound could not
lower the risk of carcinoma. However, the result is not significant at the 5% level for a one-sided
test; a value of Z equal to 1.65 or greater is needed for significance for a one-sided test.

Example 11: A new operator is assigned to a tablet machine. A sample of 1000 tablets from
this machine showed 8% defects. A random sample of 1000 tablets from the other tablet presses
used during this run showed 5.7% defects. Is there reason to believe that the new operator
produced more defective tablets than that produced by the more experienced personnel? We
will perform a two-sided test at the 5% level, using Eq. (5.17).

Z = |0.08 − 0.057|√
(0.0685)(0.9315)(2/1000)

= 0.023
0.0113

= 2.04
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Since the value of Z (2.04) is greater than 1.96, the difference is significant at the 5% level. We
can conclude that the new operator is responsible for the larger number of defective tablets
produced at his station, assuming that there is no difference among tablet presses. (See also
Exercise Problem 19.) If a continuity correction is used, the equivalent chi-square test with a
correction as described below is recommended.∗∗

There is some controversy about the appropriateness of a continuity correction in these
tests. D’Agostino et al. [6] examined various alternatives and compared the results to exact
probabilities. They concluded that for small sample sizes (N1and N2 < 15), the use of the Yates
continuity correction resulted in too conservative probabilities (i.e., probabilities were too high
which may lead to a lack of rejection of H0 in some cases).

They suggest that in these situations a correction should not be used. They also suggest
an alternative analysis that is similar to the t test

t = |p1 − p2|
s.d.

√
1/N1 + 1/N2

, (5.18)

where s.d. is the pooled standard deviation computed from the data considering a success
equal to 1 and a failure equal to 0. The value of t is compared to the appropriate t value with
N1 + N2 − 2 d.f. The computation for the example in Table 5.12 is as follows:

For group I, S2
1 = 16−(162/20)

19 = 0.168.

For group II, S2
2 = 18−(182/30)

29 = 0.248.

(Note that for group I the number of successes is 16 and the number of failures is 4. Thus,
we have 16 values equal to 1 and 4 values equal to 0. The variance is calculated from these 20
values.) The pooled variance is

19 × 0.168 + 29 × 0.248
48

= 0.216.

The pooled standard deviation is 0.465.
From Eq. (5.18),

t = |0.8 − 0.6|
0.465

√
1/20 + 1/30

= 1.49.

The t value with 48 d.f. for significance at the 5% level for a two-sided test is 2.01. Therefore,
the results fail to show a significant difference at the 5% level.

Fleiss [7] advocates the use of the Yates continuity correction. He states “Because the
correction for continuity brings probabilities associated with � 2 and Z into close agreement
with the exact probabilities, the correction should always be used.”

5.2.5 Chi-Square Tests for Proportions
An alternative method of comparing proportions is the chi-square (� 2) test. This test results
in identical conclusions as the binomial test in which the normal approximation is used as
described above. The chi-square distribution is frequently used in statistical tests involving
counts and proportions, as discussed in chapter 15. Here, we will show the application to
fourfold tables (2 × 2 tables), the comparison of proportions in two independent groups.

The chi-square distribution is appropriate where the normal approximation to the distri-
bution of discrete variables can be applied. In particular, when comparing two proportions, the
chi-square distribution with 1 d.f. can be used to approximate probabilities. (The values for the

∗∗ The continuity correction can make a difference when making decisions based on the � level, when the statistical
test is “just significant” (e.g., p = 0.04 for a test at the 5% level). The correction makes the test “less significant.”
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Table 5.13 Result of the Experiment Shown in Table 5.12 in the

Form of a Fourfold Table

Group

I II Total

Number of successes 16 18 34

Number of failures 4 12 16

Total 20 30 50

� 2 distribution with one d.f. are exactly the square of the corresponding normal deviates. For
example, the “95%” cutoff point for the chi-square distribution with 1 d.f. is 3.84, equal to 1.962.)

The use of the chi-square distribution to test for differences of proportions in two groups
has two advantages: (a) the computations are easy and (b) a continuity correction can be easily
applied. The reader may have noted that a continuity correction was not used in the examples for
the comparison of two independent groups described above. The correction was not included
because the computation of the correction is somewhat complicated. In the chi-square test,
however, the continuity correction is relatively simple. The correction is most easily described
in the context of an example. We will demonstrate the chi-square test using the data in Table 5.12.
We can think of these data as resulting from a clinical trial where groups I and II represent two
comparative drugs. The same results are presented in the fourfold table shown in Table 5.13.

The chi-square statistic is calculated as follows:

� 2 =
∑ (O − E)2

E
, (5.19)

where O is the observed number in a cell (there are four cells in the experiment in Table 5.13;
a cell is the intersection of a row and column; the upper left-hand cell, number of successes in
group I, has the value 16 contained in it), and E the expected number in a cell.

The expected number is the number that would result if each group had the same pro-
portion of successes and failures. The best estimate of the common p (proportion of successes)
is the pooled value, as calculated in the test using the normal approximation above [Eq. (5.17)].
The pooled, p, p̂0, is 0.68 (34/50). With a probability of success of 0.68 (34/50), we would expect
“13.6” successes for group I (20 × 0.68). The expected number of failures is 20 × 0.32 = 6.4. The
expected number of failures can also be obtained by subtracting 13.6 from the total number of
observations in group I, 20 − 13.6 = 6.4. Similarly, the expected number of successes in group
II is 30 × 0.68 = 20.4. Again the number, 20.4, could have been obtained by subtracting 13.6
from 34.

This concept (and calculation) is illustrated in Table 5.14, which shows the expected values
for Table 5.13. The marginal totals (34, 16, 20, and 30) in the “expected value” table are the same
as in the original table, Table 5.13. In order to calculate the expected values, multiply the two
marginal totals for a cell and divide this value by the grand total. This simple way of calculating

Table 5.14 Expected Values for the Experiment Shown in

Table 5.13

Group

I II Total

Expected number of successes 13.6 20.4 34

Expected number of failures 6.4 9.6 16

Total 20.0 30.0 50
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the expected values will be demonstrated for the upper left-hand cell, where the observed value
is 16. The expected value is

(20)(34)
50

= 13.6.

Once the expected value for one cell is calculated, the expected values for the remaining
cells can be obtained by subtraction.

Expected successes in group II = 34 − 13.6 = 20.4.
Expected failures in group I = 20 − 13.6 = 6.4.
Expected failures in group II = 16 − 6.4 = 9.6.

Given the marginal totals and the value for any one cell, the values for the other three
cells can be calculated. Once the expected values have been calculated, the chi-square statistic
is evaluated according to Eq. (5.19).

∑ (O − E)2

E
= (16 − 13.6)2

13.6
+ (18 − 20.4)2

20.4
+ (4 − 6.4)2

6.4
+ (12 − 9.6)2

9.6
= 2.206

The numerator of each term is (±2.4)2 = 5.76. Therefore, the computation of � 2 can be
simplified as follows:

� 2 = (O − E)2
(

1
E1

+ 1
E2

+ 1
E3

+ 1
E4

)
, (5.20)

where E1 through E4 are the expected values for each of the four cells.

� 2 = (2.4)2
(

1
13.6

+ 1
20.4

+ 1
6.4

+ 1
9.6

)
= 2.206

One can show that this computation is exactly equal to the square of the Z value using the
normal approximation to the binomial. (See Exercise Problem 11.)

The d.f. for the test described above (the fourfold table) are equal to 1. In general, the d.f.
for an R × C contingency table, where R is the number of rows and C is the number of columns,
are equal to (R − 1)(C − 1). The analysis of R × C tables is discussed in chapter 15.

Table IV.5, a table of points in the cumulative chi-square distribution, shows that a value
of 3.84 is needed for significance at the 5% level (1 d.f.). Therefore, the test in this example is not
significant; that is, the proportion of successes in group I is not significantly different from that
in group II, 0.8 and 0.6, respectively.

To illustrate further the computations of the chi-square statistic and the application of the
continuity correction, we will analyze the data in Example 10, where the normal approximation
to the binomial was used for the statistical test. Table 5.15 shows the observed and expected
values for the results of this preclinical study.

Table 5.15 Observed and Expected Values for Preclinical

Carcinogenicity Studya

Drug Placebo Total

Animals with

carcinoma

9(7.2) 6 (7.8) 15

Animals without

carcinoma

51(52.8) 59 (57.2) 110

Total 60 65 125

aParenthetical values are expected values.
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The uncorrected chi-square analysis results in a value of 0.98, (0.99)2. (See Exercise Problem
18.) The continuity correction is applied using the following rule: If the fractional part of the
difference (O − E) is larger than 0 but ≤0.5, delete the fractional part. If the fractional part is
greater than 0.5 or exactly 0, “reduce the fractional part to 0.5.” Some examples should make
the application of this rule clearer.

O − E Corrected for continuity

3.0 2.5
3.2 3.0
3.5 3.0
3.9 3.5
3.99 3.5
4.0 3.5

In the example above, O − E = ±1.8. Therefore, correct this value to ±1.5. The corrected
chi-square statistic is [Eq. (5.20)]

(1.5)2
(

1
7.2

+ 1
7.8

+ 1
52.8

+ 1
57.2

)
= 0.68.

In this example, the result is not significant using either the corrected or uncorrected values.
However, when chi-square is close to significance at the � level, the continuity correction can
make a difference. The continuity correction is more apparent in its effect on the computation
of chi-square in small samples. With large samples, the correction makes less of a difference.

The chi-square test, like the normal approximation, is an approximate test, applying a
continuous distribution to discrete data. The test is valid (close to correct probabilities) when
the expected value in each cell is at least 5. This is an approximate rule. Because the rule is
conservative, in some cases, an expected value in one or more cells of less than 5 can be tolerated.
However, one should be cautious in applying this test if the expected values are too small.

5.2.6 Confidence Intervals for Proportions
Examples of the formation of a confidence interval for a proportion have been presented earlier
in this chapter (Example 3). Although the confidence interval for the binomial is calculated using
the standard deviation of the binomial based on the sample proportion, we should understand
that in most cases, the s.d. is unknown. The sample standard deviation is an estimate of the true
s.d., which for the binomial depends on the true value of the proportion or probability. However,
when we use the sample estimate of the s.d. for the calculations, the confidence interval and
statistical tests are valid using criteria based on the normal distribution (Table IV.2). We do not
use the t distribution as in the procedures discussed previously.

The confidence interval for the true proportion or binomial probability, p0 is

p̂ ± Z

√
p̂q̂
N

, (5.3)

where p̂ is the observed proportion in a sample of size N. The value of Z depends on the
confidence coefficient (e.g., 1.96 for a 95% interval). Of 500 tablets inspected, 20 were found to
be defective ( p̂ = 20/500 = 0.04). A 95% confidence interval for the true proportion of defective
tablets is

p̂ ± 1.96

√
p̂q̂
N

= 0.04 ± 1.96

√
(0.04)(0.96)

500

= 0.04 ± 0.017 = 0.023 to 0.057.
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To obtain a confidence interval for the difference of two proportions (two independent groups), when
the “underlying proportions, p1 and p2 are not hypothesized to be equal (7), use the following
formula:

( p̂1 − p̂2) ± Z

√
p̂1q̂1

N1
+ p̂2q̂2

N2
(5.21)

where p̂1 and p̂2 are the observed proportions in groups I and II, respectively, and N1, and N2
are the respective sample sizes of the two groups. Z is the appropriate normal deviate (1.96 for
a 95% confidence interval).

In the example of incidence of headaches in two groups of patients, the proportion of
headaches observed in group I was 35/212= 0.165 and the proportion in group II was 46/196 =
0.235. A 95% confidence interval for the difference of the two proportions, calculated from Eq.
(5.21), is

(0.235 − 0.165) ± 1.96

√
(0.165)(0.835)

212
+ (0.235)(0.765)

196

= 0.07 ± 0.078 = −0.008 to 0.148.

The difference between the two proportions was not significant at the 5% level in a two-
sided test (see “Test for Comparison of Proportions from Two Independent Groups” in sect.
5.2.4). Note that 95% confidence interval covers 0, the difference specified in the null hypothesis
(H0 : p1 − p2 = 0).††

Fleiss [7] and Hauck and Anderson [8] recommend the use of a continuity correction for
the construction of confidence intervals that gives better results than that obtained without
a correction [Eq. (5.21)]. If a 90% or 95% interval is used, the Yates correction works well if
N1 p1, N1q1, N2 p2, and N2q2 are all greater than or equal to 3. The 99% interval is good for
N1 p1, N1q1, N2 p2, and N2q2 all greater than or equal to 5. The correction is 1/2N1 + 1/2N2.
Applying the correction to the previous example, a 95% confidence interval is

(0.235 − 0.165)

±{1.96 [(0.165)(0.835)/212 + (0.235)(0.765)/196]1/2 + (1/424 + 1/392)}
= 0.070 ± 0.0825 = −0.0125 to 0.1525.

We have noted previously that if the hypothesis test of equality of two proportions is
statistically significant, the confidence interval for the difference of the proportions will not cover
zero (and vice versa). Sometimes, this does not hold when comparing two proportions because
the formulation for the hypothesis test of equal proportions is different from the confidence
interval calculation. In this case, Fleiss [7] recommends changing the hypothesis test statistic by
replacing the denominator in equation 5.17 with the square root of (p1q1) /N1 + (p2q2) /N2.

An approach to sample size requirements using confidence intervals for bioequivalence
trials with a binomial variable is given in section 11.4.8.

5.3 COMPARISON OF VARIANCES IN INDEPENDENT SAMPLES
Most of the statistical tests presented in this book are concerned with means. However, situations
arise where variability is important as a measure of a process or product performance. For
example, when mixing powders for tablet granulations, one may be interested in measuring
the homogeneity of the mix as may be indicated in validation procedures. The “degree” of
homogeneity can be determined by assaying different portions of the mix, and calculating the

†† The form of the confidence interval [Eq. (5.21)] differs from the form of the statistical test in that the latter uses
the pooled variance [Eq. (5.17)]. Therefore, this relationship will not always hold for the comparison of two
proportions.
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standard deviation or variance. (Sample weights equal to that in the final dosage form are most
convenient.) A small variance would be associated with a relatively homogeneous mix, and vice
versa. Variability is also often of interest when assaying drug blood levels in a bioavailability
study or when determining a clinical response to drug therapy. We will describe statistical tests
appropriate for two situations: the comparison of two variances from independent samples,
and the comparison of variances in related (paired) samples. The test for related samples will
be presented in chapter 7 because methods of calculation involve material presented there. The
test for the comparison of variances in independent samples described here assumes that the
data in each sample are independent and normally distributed.

The notion of significance tests for two variances is similar to the tests for means (e.g., the
t test). The null hypothesis is usually of the form

H0 : �2
1 = �2

2 .

For a two-sided test, the alternative hypothesis admits the possibility of either variance
being larger or smaller than the other

H0 : �2
1 
= �2

2 .

The statistical test consists of calculating the ratio of the two sample variances. The ratio
has an F distribution with (N1 − 1) d.f. in the numerator and (N2 − 1) d.f. in the denominator. To
determine if the ratio is “significant” (i.e., the variances differ), the observed ratio is compared
to appropriate table values of F at the � level. The F distribution is not symmetrical and, in
general, to make statistical decisions, we would need F tables with both upper and lower cutoff
points.

Referring to Figure 5.12, if the F ratio falls between FL and FU the test is not significant.
We do not reject the null hypothesis of equal variances. If the F ratio is below FL or above FU,
we reject the null hypothesis and conclude that the variances differ (at the 5% level, the shaded
area in the example of Fig. 5.12). The F table to test the equality of two variances is the same
as that used to determine significance in analysis of variance tests to be presented in chapter 8
(Table IV.6). However, F tables for ANOVA usually give only the upper cutoff points (FU,0.05
in Fig. 5.12, for example).

Nevertheless, it is possible to perform a two-sided test for two variances using the one-
tailed F table (Table IV.6) by forming the ratio with the larger variance in the numerator. Thus, the
ratio will always be equal to or greater than 1. The ratio is then referred to the usual ANOVA F
table, but the level of significance is twice that stated in the table. For example, the values that
must be exceeded for significance in Table IV.6 represent cutoff points at the 20%, 10% or 2%
level if the larger variance is in the numerator. For significance at the 5% level, use Table 5.16, a
brief table of the upper 0.025 cutoff points for some F distributions.

To summarize, for a two-sided test at the 5% level, calculate the ratio of the comparative
variances with the larger variance in the numerator. (Clearly, if the variances in the two groups
are identical, there is no need to perform a test of significance.) To be significant at the 5% level,
the ratio must be equal to or greater than the tabulated upper 2.5% cutoff points (Table 5.16). For
significance at the 10% level or 20% level, for a two-sided test, use the upper 5% or 10% points
in Table IV.6A.

2.5%2.5%

FL, 0.025 FU, 0.05 FU, 0.025

Figure 5.12 Example of two-sided cutoff

points in an F distribution.
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Table 5.16 Brief Table of Upper 0.025 Cutoff Points of the F Distribution

Degrees of
in freedom

Degrees of freedom in numerator

denominator 2 3 4 5 6 8 10 15 20 25 30 ∞
2 39.0 39.2 39.3 39.3 39.3 39.4 39.4 39.4 39.5 39.5 39.5 39.5

3 16.0 15.4 15.1 14.9 14.7 14.5 14.4 14.3 14.2 14.1 14.1 13.9

4 10.6 10.0 9.6 9.4 9.2 9.0 8.8 8.7 8.6 8.5 8.5 8.3

5 8.4 7.8 7.4 7.2 7.0 6.8 6.6 6.4 6.3 6.3 6.2 6.0

6 7.3 6.6 6.2 6.0 5.8 5.6 5.5 5.3 5.2 5.1 5.1 4.9

7 6.5 5.9 5.5 5.3 5.1 4.9 4.8 4.6 4.5 4.4 4.4 4.1

8 6.1 5.4 5.1 4.8 4.7 4.4 4.3 4.1 4.0 3.9 3.9 3.7

9 5.7 5.1 4.7 4.5 4.3 4.1 4.0 3.8 3.7 3.6 3.6 3.3

10 5.5 4.8 4.5 4.2 4.1 3.9 3.7 3.5 3.4 3.4 3.3 3.1

15 4.8 4.2 3.8 3.6 3.4 3.2 3.1 2.9 2.8 2.7 2.6 2.4

20 4.5 3.9 3.5 3.3 3.1 2.9 2.8 2.6 2.5 2.4 2.4 2.1

24 4.3 3.7 3.4 3.2 3.0 2.8 2.6 2.4 2.3 2.3 2.2 1.9

30 4.2 3.6 3.3 3.0 2.9 2.7 2.5 2.3 2.2 2.1 2.1 1.8

40 4.1 3.5 3.1 2.9 2.7 2.5 2.4 2.2 2.1 2.0 1.9 1.6

∞ 3.7 3.1 2.8 2.6 2.4 2.2 2.1 1.8 1.7 1.6 1.6 1.0

For a one-sided test, if the null hypothesis is

H0: �2
A ≥ �2

B H0: �2
A < �2

B .

Perform the test only if S2
A is smaller than S2

B , with S2
B in the numerator. (If S2

A is equal
to or greater than S2

B , we cannot reject the null hypothesis.) Refer the ratio to Table IV.6 for
significance at the 5% (or 1%) level. (The test is one -sided.)

One should appreciate that this statistical test is particularly sensitive to departures from
the assumptions of normality and independence of the two comparative groups.

An example should clarify the procedure. Two granulations were prepared by different
procedures. Seven random samples of powdered mix of equal weight (equal to the weight of
the final dosage form) were collected from each batch and assayed for active material, with the
results shown in Table 5.17. The test is to be performed at the 5% level: H0 : �2

1 = �2
2; Ha: �2

1 
= �2
2.

For a two-sided test, we form the ratio of the variances with a �2
B , the larger variance in the

numerator.

F = 1.297
0.156

= 8.3.

The tabulated F value with 6 d.f. in the numerator and denominator (Table 5.16) is 5.8.
Therefore, the variances can be considered significantly different (P < 0.05); granulation B is
more variable than granulation A. If the test were performed at the 10% level, we would refer
to the upper 5% points in Table IV.6, where a value greater than 4.28 would be significant.

Table 5.17 Assays from Samples from Two Granulations

Granulation A Granulation B

20.6 20.7 20.2 19.0

20.9 19.8 21.5 21.8

20.6 20.4 18.9 20.4

21.0 21.0

X = 20.57 S2 = 0.156 X = 20.4 S2 = 1.297
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If the test were one sided, at the 5% level, for example, with the null hypothesis

H0 : �2
A ≥ �2

B Ha : �2
A < �2

B,

the ratio 1.297/0.156 = 8.3 would be referred to Table IV.6 for significance. Now, a value greater
than 4.28 would be significant at the 5% level.

If more than two variances are to be compared, the F test discussed above is not appro-
priate. Bartlett’s test is the procedure commonly used to test the equality of more than two
variances [1], as described in the following paragraph.

5.4 TEST OF EQUALITY OF MORE THAN TWO VARIANCES
The test statistic computation is shown in Eq. (5.22)

� 2 =
∑

(Ni − 1) ln S2 −
∑

[(Ni − 1) ln S2
1 ], (5.22)

where S2 is the pooled variance and S2
i is the variance of the ith sample.

The computations are demonstrated for the data of Table 5.18. In this example, samples
of a granulation were taken at four different locations in a mixer. Three samples were analyzed
in each of three of the locations, and five samples analyzed in the 4th location. The purpose of
this experiment was to test the homogeneity of the mix in a validation experiment. Part of the
statistical analysis requires an estimate of the variability within each location. The statistical test
(analysis of variance, chap. 8) assumes homogeneity of variance within the different locations.
Bartlett’s test allows us to test for the homogeneity of variance (Table 5.8).

The pooled variance is calculated as the weighted average of the variances, where the
weights are the d.f. (Ni − 1).

Pooled S2 = 2 × 3.6 + 2 × 4.7 + 2 × 2.9 + 4 × 8.3
2 + 2 + 2 + 4

= 5.56∑
(Ni − 1) = 10∑
[(Ni − 1) ln S2

i = 2(1.2809) + 2(1.5476) + 2(l.0647)] + 4(2.1163) = 16.2516

� 2 = 10 × ln (5.56) − 16.2516 = 0.904.

To test � 2 for significance, compare the result to the tabulated value of � 2 (Table IV.5)
with 3 d.f. (1 less than the number of variances being compared) at the appropriate significance
level. A value of 7.81 is needed for significance at the 5% level. Therefore, we conclude that
the variances do not differ. A significant value of � 2 means that the variances are not all equal.
This test is very sensitive to non-normality. That is, if the variances come from non-normal
populations, the conclusions of the test may be erroneous.

See Exercise Problem 22 for another example where Bartlett’s test can be used to test the
homogeneity of variances.

Table 5.18 Results of Variability of Assays of Granulation at Six

Locations in a Mixer

Location N N-1 Variance (S2) ln(S2)

A 3 2 3.6 1.2809

B 3 2 4.7 1.5476

C 3 2 2.9 1.0647

D 5 4 8.3 2.1163
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Table 5.19 Short Table of Lower and Upper Cutoff Points for Chi-Square

Distribution

Degrees of
freedom Lower 2.5% Lower 5% Upper 95% Upper 97.5%

2 0.0506 0.1026 5.99 7.38

3 0.216 0.352 7.81 9.35

4 0.484 0.711 9.49 11.14

5 0.831 1.15 11.07 12.83

6 1.24 1.64 12.59 14.45

7 1.69 2.17 14.07 16.01

8 2.18 2.73 15.51 17.53

9 2.70 3.33 16.92 19.02

10 3.25 3.94 18.31 20.48

15 6.26 7.26 25.00 27.49

20 9.59 10.85 31.41 34.17

30 16.79 18.49 43.77 46.98

60 40.48 43.19 79.08 83.30

120 91.58 95.76 146.57 152.21

5.5 CONFIDENCE LIMITS FOR A VARIANCE
Given a sample variance, a confidence interval for the variance can be constructed in a manner
similar to that for means. S2/�2is distributed as � 2/d.f. The confidence interval can be obtained
from the chi-square distribution, using the relationship shown in Eq. (5.23).

S2(n − 1)
chi-square�/2

≥ �2 ≥ S2(n − 1)
chi-square1−�/2

(5.23)

For example, a variance estimate based on 10 observations is 4.2, with 9 d.f. For a 90%
two-sided confidence interval, we put 5% of the probability in each of the lower and upper tails
of the � 2 distribution. From Table 5.19 and Eq. (5.23), the upper limit is

S2(9/3.33) = 4.2(9/3.33) = 11.45.

The lower limit is

4.2(9/16.92) = 2.23.

The values, 3.33 and 16.92, are the cutoff points for 5% and 95% of the chi-square distri-
bution with 9 d.f.. Thus, we can say that with 90% probability, the true variance is between 2.23
and 11.45. Exercise Problem 23 shows an example of a one-sided confidence interval for the
variance from a content uniformity test.

5.5.1 Rationale for USP Content Uniformity Test
The USP content uniformity test was based on the desire for a plan that would limit acceptance
to lots with sigma (RSD) less than 10% [9]. The main concern is to prevent the release of batches
of product with excessive units outside of 75% to 125% of the labeled dose that may occur for
lots with a large variability. If the observed RSD for 10 units is less than 6%, one can demonstrate
that there is less than 0.05 probability that the true RSD of the lot is greater than 10%. A two-
sided 90% confidence interval for an RSD of 6 for N = 10, can be calculated by taking the square
root of the interval for the variance. In this example, the variance is 36 (RSD = 6). Following the
logic of the previous example, the upper limit of the 90% confidence interval for the variance is
62(9/3.33) = 97.3. Since the upper limit represents a one-sided 95% confidence limit, the upper
limit for the standard deviation(s) is

√
97.3, approximately 10. See also Exercise Problem 24 at

the end of this chapter.
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5.6 TOLERANCE INTERVALS
Tolerance intervals have a wide variety of potential applications in pharmaceutical and clinical
data analysis. A tolerance interval describes an interval in which a given percentage of the
individual items lie, with a specified probability. This may be expressed as

Probability(L ≤ % of population ≤ U) where L is the lower limit and U is the upper limit.
For example, a tolerance interval might take the form of a statement such as, “There is

99% probability that 95% of the population is between 85 and 115.” More specifically, we might
say that there is 99% probability that 95% of the tablets in a batch have a potency between 85%
and 115%. In order to be able to compute tolerance intervals, we must make an assumption
about the data distribution. As is typical in statistical applications, the data will be assumed
to have a normal distribution. In order to compute the tolerance interval, we need an estimate
of the mean and standard deviation. These estimates are usually taken from a set of observed
experimental data.

Given the d.f. for the estimated s.d., the limits can be computed from Table IV.19 in
appendix IV. The factors in Table IV.19 represent multipliers of the standard deviation, similar
to a confidence interval. Therefore, using these factors, the tolerance interval computation is
identical to the calculation of a confidence interval.

P% tolerance interval containing X% of the population = X ± t′ (s.d.)

where t′ is the appropriate factor found in Table IV.19.
The following examples are intended to make the calculation and interpretation clearer.

Table 5.20 Summary of Tests

Test Section

Mean of single population t = X − �

S
√

1/N
5.2.1

Comparison of means from two independent

populations (variances known)

Z = X1 − X2√
� 2

1
/N1 + � 2

2
/N 2

5.2.2

Comparisons of means from two independent

populations (variance unknown)

t = X1 − X2

S p

√
1/N 1 + 1/N 2

5.2.2

Comparison of means from two related

samples (variance unknown)a
t = �

S
√

1/N
5.2.3

Proportion from a single populationb Z = p − p 0√
p 0q 0 N)

Comparison of two proportions from

independent groupsb
Z = p − p 0√

p 0q 0(1/N1 + 1/N 2)
5.2.4

Comparison of variances (two-sided test) F = S2
1

S2
2

5.2.4

(S2
1

> S2
2
)

Confidence limits for variance
(n2 − 1)S2

(n−1)

� 2
�/2

≥ �2 ≥
(n − 1)S2

(n−1)

� 2
1−�/2

5.5

aIf the variance is known, use the normal distribution.
bA continuity correction may be used (5.16 and 5.20).
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Example 1. A batch of tablets was tested for content uniformity. The mean of the 10 tablets
tested was 99.1% and the s.d. was 2.6%. Entering Table IV.19, for a 99% tolerance interval
that contains 99.9% of the population with N = 10 , the factor, t′ = 7.129 . Assuming a normal
distribution of tablet potencies, we can say with 99% probability (99% “confidence”) that 99.9%
of the tablets are within 99.1 % ± 7.129 × 2.6 = 99.1 % ± 18.5 = 80.6 % to 117.6 %.

Example 2. In a bioequivalence study using a crossover design with 24 subjects, the ratio
of test product to standard product was computed for each subject. One of the proposals for
assessing individual bioequivalence is to compute a tolerance interval to estimate an interval
that will encompass a substantial proportion of subjects who take the drug. The average of the
24 ratios was 1.05 with a s.d. of 0.3. A tolerance interval is calculated that has 95% probability of
containing 75% of the population. The factor from Table IV.19 for N = 24 and 95% confidence is
1.557. The tolerance interval is 1.05 ± 1.557 × 0.3 = 1.05 ± 0.47 . Thus, we can say that 75% of the
patients will have a ratio between 0.58 and 1.52 with 95% probability. One of the problems with
such an approach to individual equivalence is that the interval is dependent on the variability,
and highly variable drugs will always show a wide variation of the ratio for different products.
Therefore, using this interval as an acceptance criterion for individual equivalence may not be
very meaningful. Also, this computation assumes a normal distribution, and individual ratios
may deviate significantly from a normal distribution.

Table 5.20 summarizes some tests discussed in this chapter.

KEY TERMS

Alpha level
Alternative hypothesis
Bartlett’s test
Behrens–Fisher test
Beta error
Bias
Binomial trials
Blinding
Cells
Chi-square test
Confidence interval
Continuity correction
Critical region
Crossover design
Cumulative normal distribution
Degrees of freedom
Delta
Error
Error of first kind
Estimation
Expected values
Experimental error
Fourfold table
F test
Hypothesis testing
Independence
Independent groups
Level of significance
Marginal totals

Nonsignificance
Normal curve test
Null hypothesis
One-sample test
One-sided test
One-way analysis of variance
Paired-sample t test
Parallel-groups design
Parameters
Pooled proportion
Pooled variance
Power
Preference tests
Randomization
Region of rejection
Sample size
Sensitive
Significance
t distribution
t test
Tolerance interval
Two-by-two table
Two independent groups t test
Two-tailed (sided) test
Uncontrolled study
Variance
Yates correction
Z transformation

EXERCISES
1. Calculate the probability of finding a value of 49.8 or less if � = 54.7 and � = 2.
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2. If the variance of the population of tablets in Table 5.1 were known to be 4.84, compute
a 99% confidence interval for the mean.

3. (a) Six analysts perform an assay on a portion of the same homogeneous material with
the following results: 5.8, 6.0, 5.7, 6.1, 6.0, and 6.1. Place 95% confidence limits on
the true mean.

(b) A sample of 500 tablets shows 12 to be defective. Place a 95% confidence interval
on the percent defective in the lot.

(c) Place a 95% confidence interval on the difference between two products in which 50
of 60 patients responded to product A, and 25 of 50 patients responded to product
B.

4. (a) Quality control records show the average tablet weight to be 502 mg with a standard
deviation of 5.3. There are sufficient data so that these values may be considered
known parameter values. A new batch shows the following weights from a random
sample of six tablets: 500, 499, 504, 493, 497, and 495 mg. Do you believe that the
new batch has a different mean from the process average?

(b) Two batches of tablets were prepared by two different processes. The potency
determinations made on five tablets from each batch were as follows: batch A: 5.1,
4.9, 4.6, 5.3, 5.5; batch B: 4.8, 4.8, 5.2, 5.0, 4.5. Test to see if the means of the two
batches are equal.

(c) Answer part (a) if the variance were unknown. Place a 95% confidence interval on
the true average weight.

5. (a) In part (b) of Problem 4, calculate the variance and the standard deviation of the
10 values as if they were one sample. Are the values of the s.d. and S2 smaller or
larger than the values calculated from “pooling”?

(b) Calculate the pooled s.d. above by “averaging” the s.d.’s from the two samples. Is
the result different from the “pooled” s.d. as described in the text?

6.

Batch 1 (drug) Pass/fail (improve, worsen) Batch 2 (placebo) Pass/fail (improve, worsen)

10.1 P 9.5 F
9.7 F 8.9 F

10.1 P 9.4 F
10.5 P 10.4 P
12.3 P 9.9 F
11.8 P 10.1 P
9.6 F 9.0 F

10.0 F 9.7 F
11.2 P 9.9 F
11.3 P 9.8 F

(a) What are the mean and s.d. of each batch? Test for difference between the two
batches using a t test.

(b) What might be the “population” corresponding to this sample? Do you think that
the sample size is large enough? Why? Ten objects were selected from each batch for
this test. Is this a good design for comparing the average results from two batches?

(c) Consider values above 10.0 a success and values 10.00 or less a failure. What is the
proportion of successes for batch 1 and batch 2? Is the proportion of successes in
batch 1 different from the proportion in batch 2 (5% level)?

(d) Put 95% confidence limits on the proportion of successes with all data combined.

7. A new analytical method is to be compared to an old method. The experiment is
performed by a single analyst. She selects four batches of product at random and
obtains the following results.
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Batch Method 1 Method 2

1 4.81 4.93

2 5.44 5.43

3 4.25 4.30

4 4.35 4.47

(a) Do you think that the two methods give different results on the average?
(b) Place 95% confidence limits on the true difference of the methods.

8. The following data for blood protein (g/100 mL) were observed for the comparison of
two drugs. Both drugs were tested on each person in random order.

Patient Drug A Drug B

1 8.1 9.0

2 9.4 9.9

3 7.2 8.0

4 6.3 6.0

5 6.6 7.9

6 9.3 9.0

7 7.6 7.9

8 8.1 8.3

9 8.6 8.2

10 8.3 8.9

11 7.0 8.3

12 7.7 8.8

(a) Perform a statistical test for drug differences at the 5% level.
(b) Place 95% confidence limits on the average differences between drugs A and B.

9. For examples 10 and 11, calculate the pooled p and q (p0 and q 0).

10. In Example 4, perform a t test if the mean were 16.7 instead of 15.9.

11. Use the normal approximation and chi-square test (with and without continuity cor-
rection) to answer the following problem. A placebo treatment results in 8 patients out
of 100 having elevated blood urea nitrogen (BUN) values. The drug treatment results
in 16 of 100 patients having elevated values. Is this significantly different from the
placebo?

12. Quality control records show that the average defect rate for a product is 2.8%. Two
hundred items are inspected and 5% are found to be defective in a new batch. Should
the batch be rejected? What would you do if you were the director of quality control?
Place confidence limits on the percent defective and the number defective (out of 200).

¶¶∗∗13. In a batch size of 1,000,000,5000 tablets are inspected and 50 are found defective.
(a) Put 95% confidence limits on the true number of defectives in the batch.
(b) At � = 0.05, do you think that there could be more than 2% defective in the batch?

(∗∗c) If you wanted to estimate the true proportion of defectives within ± 0.1% with
95% confidence, how many tablets would you inspect?

14. In a clinical test, 60 people received a new drug and 50 people received a placebo. Of
the people on the new drug, 40 of the 60 showed a positive response and 25 of the 50
people on placebo showed a positive response. Perform a statistical test to determine if

¶¶The double asterisk indicates optional, more difficult problems.
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the new drug shows more of an effect than the placebo. Place a 95% confidence interval
on the difference of proportion of positive response in the two test groups.

15. In a paired preference test, each of 100 subjects was asked to choose the preference
between A and B. Of these 100, 60 showed no preference, 30 preferred A, and 10
preferred B. Is A significantly preferred to B?

16. Over a long period of time, a screening test has shown a response rate for a control of
20%. A new chemical shows 9 positive results in 20 observations (45%). Would you say
that this candidate is better than the control? Place 99% confidence limits on the true
response rate for the new chemical.

17. Use the chi-square test with the continuity correction to see if there is a significant dif-
ference in the following comparison. Two batches of tablets were made using different
excipients. In batch A, 10 of 100 tablets sampled were chipped. In batch B, 17 of 95
tablets were chipped. Compare the two batches with respect to proportion chipped at
the 5% level.

18. Show that the uncorrected value of chi-square for the data in Table 5.15 is 0.98.

19. Use the chi-square test, with continuity correction, to test for significance (5% level) for
the data in Example 11.

20. Perform a statistical test to compare the variances in the two groups in Problem 6.
H0 : �2

1 = �2
2 ; Ha : �2

1 
= �2
2 . Perform the test at the 10% level.

21. Compute the value of the corrected � 2 statistic for data of Example 11 in 5.2.4. Compute
the t value as recommended by D’Agostino et al. Compare the uncorrected value of Z
with these results.

22. The homogeneity of a sample taken from a mixer was tested after 5, 10, and 15 minutes.
The variances of six samples taken at each time were 16.21, 1.98, and 2.02. Based on the
results of Bartlett’s test for homogeneity of variances, what are your conclusions?

23. Six blend samples (unit dose size) show a variance of 9% (RSD = 3%). Compute a 95%
one-sided upper confidence interval for the variance. Is this interval too large based on
the official limit of 6% for RSD?

24. The USP content uniformity test for 30 units states that the RSD should not exceed
7.8%. Show that there is a 5% probability that the true RSD is less than 10%.
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6 Sample Size and Power

The question of the size of the sample, the number of observations, to be used in scientific
experiments is of extreme importance. Most experiments beg the question of sample size.
Particularly when time and cost are critical factors, one wishes to use the minimum sample size
to achieve the experimental objectives. Even when time and cost are less crucial, the scientist
wishes to have some idea of the number of observations needed to yield sufficient data to answer
the objectives. An elegant experiment will make the most of the resources available, resulting
in a sufficient amount of information from a minimum sample size. For simple comparative
experiments, where one or two groups are involved, the calculation of sample size is relatively
simple. A knowledge of the � level (level of significance), 	 level (1 − power), the standard
deviation, and a meaningful “practically significant” difference is necessary in order to calculate
the sample size.

Power is defined as 1 − 	 (i.e., 	 = 1 − power). Power is the ability of a statistical test to
show significance if a specified difference truly exists. The magnitude of power depends on the
level of significance, the standard deviation, and the sample size. Thus power and sample size
are related.

In this chapter, we present methods for computing the sample size for relatively simple
situations for normally distributed and binomial data. The concept and calculation of power
are also introduced.

6.1 INTRODUCTION
The question of sample size is a major consideration in the planning of experiments, but may not
be answered easily from a scientific point of view. In some situations, the choice of sample size
is limited. Sample size may be dictated by official specifications, regulations, cost constraints,
and/or the availability of sampling units such as patients, manufactured items, animals, and
so on. The USP content uniformity test is an example of a test in which the sample size is fixed
and specified [1].

The sample size is also specified in certain quality control sampling plans such as those
described in MIL-STD-105E [2]. These sampling plans are used when sampling products for
inspection for attributes such as product defects, missing labels, specks in tablets, or ampul leak-
age. The properties of these plans have been thoroughly investigated and defined as described
in the document cited above. The properties of the plans include the chances (probability) of
rejecting or accepting batches with a known proportion of rejects in the batch (sect. 12.3).

Sample-size determination in comparative clinical trials is a factor of major importance.
Since very large experiments will detect very small, perhaps clinically insignificant, differences
as being statistically significant, and small experiments will often find large, clinically significant
differences as statistically insignificant, the choice of an appropriate sample size is critical in the
design of a clinical program to demonstrate safety and efficacy. When cost is a major factor in
implementing a clinical program, the number of patients to be included in the studies may be
limited by lack of funds. With fewer patients, a study will be less sensitive. Decreased sensitivity
means that the comparative treatments will be relatively more difficult to distinguish statistically
if they are, in fact, different.

The problem of choosing a “correct” sample size is related to experimental objectives and
the risk (or probability) of coming to an incorrect decision when the experiment and analysis
are completed. For simple comparative experiments, certain prior information is required in
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order to compute a sample size that will satisfy the experimental objectives. The following
considerations are essential when estimating sample size.

1. The � level must be specified that, in part, determines the difference needed to represent a
statistically significant result. To review, the � level is defined as the risk of concluding that
treatments differ when, in fact, they are the same. The level of significance is usually (but
not always) set at the traditional value of 5%.

2. The 	 error must be specified for some specified treatment difference, �. Beta, 	, is the risk
(probability) of erroneously concluding that the treatments are not significantly different
when, in fact, a difference of size � or greater exists. The assessment of 	 and �, the
“practically significant” difference, prior to the initiation of the experiment, is not easy.
Nevertheless, an educated guess is required. 	 is often chosen to be between 5% and 20%.
Hence, one may be willing to accept a 20% (1 in 5) chance of not arriving at a statistically
significant difference when the treatments are truly different by an amount equal to (or
greater than) �. The consequences of committing a 	 error should be considered carefully.
If a true difference of practical significance is missed and the consequence is costly, 	 should
be made very small, perhaps as small as 1%. Costly consequences of missing an effective
treatment should be evaluated not only in monetary terms, but should also include public
health issues, such as the possible loss of an effective treatment in a serious disease.

3. The difference to be detected, � (that difference considered to have practical significance),
should be specified as described in (2) above. This difference should not be arbitrarily or
capriciously determined, but should be considered carefully with respect to meaningfulness
from both a scientific and commercial marketing standpoint. For example, when comparing
two formulas for time to 90% dissolution, a difference of one or two minutes might be
considered meaningless. A difference of 10 or 20 minutes, however, may have practical
consequences in terms of in vivo absorption characteristics.

4. A knowledge of the standard deviation (or an estimate) for the significance test is necessary.
If no information on variability is available, an educated guess, or results of studies reported
in the literature using related compounds, may be sufficient to give an estimate of the
relevant variability. The assistance of a statistician is recommended when estimating the
standard deviation for purposes of determining sample size.

To compute the sample size in a comparative experiment, (a) �, (b) 	, (c) �, and (d) �
must be specified. The computations to determine sample size are described below (Fig. 6.1).

6.2 DETERMINATION OF SAMPLE SIZE FOR SIMPLE COMPARATIVE EXPERIMENTS
FOR NORMALLY DISTRIBUTED VARIABLES

The calculation of sample size will be described with the aid of Figure 6.1. This explanation is
based on normal distribution or t tests. The derivation of sample-size determination may appear
complex. The reader not requiring a “proof” can proceed directly to the appropriate formulas
below.

Figure 6.1 Scheme to demonstrate calculation of sample size based on �, 	, �, and �: � = 0.05, 	 = 0.10,

� = 5, � = 7; H0: � = 0, Ha: � = 5.
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6.2.1 Paired-Sample and Single-Sample Tests
We will first consider the case of a paired-sample test where the null hypothesis is that the
two treatment means are equal: H0: � = 0. In the case of an experiment comparing a new
antihypertensive drug candidate and a placebo, an average difference of 5 mm Hg in blood
pressure reduction might be considered of sufficient magnitude to be interpreted as a difference
of “practical significance” (� = 5). The standard deviation for the comparison was known, equal
to 7, based on a large amount of experience with this drug.

In Figure 6.1, the normal curve labeled A represents the distribution of differences with
mean equal to 0 and � equal to 7. This is the distribution under the null hypothesis (i.e., drug
and placebo are identical). Curve B is the distribution of differences when the alternative, Ha:
� = 5,∗ is true (i.e., the difference between drug and placebo is equal to 5). Note that curve B is
identical to curve A except that B is displaced 5 mm Hg to the right. Both curves have the same
standard deviation, 7.

With the standard deviation, 7, known, the statistical test is performed at the 5% level as
follows [Eq. (5.4)]:

Z = � − �

�/
√

N
= � − 0

7/
√

N
. (6.1)

For a two-tailed test, if the absolute value of Z is 1.96 or greater, the difference is significant.
According to Eq. (6.1), to obtain the significance

∣∣�∣∣ ≥ � Z√
N

= 7(1.96)√
N

= 13.7√
N

. (6.2)

Therefore, values of � equal to or greater than 13.7/
√

N (or equal to or less than −13.7/
√

N)
will lead to a declaration of significance. These points are designated as �L and �U in Figure 6.1,
and represent the cutoff points for statistical significance at the 5% level; that is, observed
differences equal to or more remote from the mean than these values result in “statistically
significant differences.”

If curve B is the true distribution (i.e., � = 5), an observed mean difference greater than
13.7/

√
N (or less than −13.7/

√
N) will result in the correct decision; H0 will be rejected and we

conclude that a difference exists. If � = 5, observations of a mean difference between 13.7/
√

N
and −13.7/

√
N will lead to an incorrect decision, the acceptance of H0 (no difference) (Fig. 6.1).

By definition, the probability of making this incorrect decision is equal to 	.
In the present example, 	 will be set at 10%. In Figure 6.1, 	 is represented by the area in

curve B below 13.7/
√

N(�U), equal to 0.10. (This area, 	, represents the probability of accepting
H0 if � = 5.)

We will now compute the value of � that cuts off 10% of the area in the lower tail of the nor-
mal curve with a mean of 5 and a standard deviation of 7 (curve B in Figure 6.1). Table IV.2 shows
that 10% of the area in the standard normal curve is below −1.28. The value of � (mean difference
in blood pressure between the two groups) that corresponds to a given value of Z (−1.28, in this
example) is obtained from the formula for the Z transformation [Eq. (3.14)] as follows:

� = � + Z	

(
�√
N

)

Z	 = � − �

�/
√

N
. (6.3)

Applying Eq. (6.3) to our present example, � = 5 − 1.28(7/
√

N). The value of � in Eqs. (6.2)
and (6.3) is identically the same, equal to �U. This is illustrated in Figure 6.1.

∗ � is considered to be the true mean difference, similar to �. � will be used to denote the observed mean difference.
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Table 6.1 Sample Size as a Function of Beta

with � = 5 and � = 7: Paired Test (� = 0.05)

Beta (%) Sample size, N

1 36

5 26

10 21

20 16

From Eq. (6.2), �U = 13.7/
√

N, satisfying the definition of �. From Eq. (6.3), �U = 5 −
1.28(7)/

√
N, satisfying the definition of 	. We have two equations in two unknowns (�U and N),

and N is evaluated as follows:

13.7√
N

= 5 − 1.28(7)√
N

N = (13.7 + 8.96)2

52 = 20.5 ∼= 21.

In general, Eqs. (6.2) and (6.3) can be solved for N to yield the following equation:

N =
( �

�

)2
(Z� + Z	)2, (6.4)

where Z� and Z	
† are the appropriate normal deviates obtained from Table IV.2. In our example,

N= (7/5)2(1.96 + 1.28)2 ∼= 21. A sample size of 21 will result in a statistical test with 90% power
(	 = 10%) against an alternative of 5, at the 5% level of significance. Table 6.1 shows how the
choice of 	 can affect the sample size for a test at the 5% level with � = 5 and � = 7.

The formula for computing the sample size if the standard deviation is known [Eq. (6.4)]
is appropriate for a paired-sample test or for the test of a mean from a single population. For
example, consider a test to compare the mean drug content of a sample of tablets to the labeled
amount, 100 mg. The two-sided test is to be performed at the 5% level. Beta is designated as
10% for a difference of −5 mg (95 mg potency or less). That is, we wish to have a power of 90%
to detect a difference from 100 mg if the true potency is 95 mg or less. If � is equal to 3, how
many tablets should be assayed? Applying Eq. (6.4), we have

N =
(

3
5

)2

(1.96 + 1.28)2 = 3.8.

Assaying four tablets will satisfy the � and 	 probabilities. Note that Z = 1.28 cuts off 90%
of the area under curve B (the “alternative” curve) in Figure 6.2, leaving 10% (	) of the area in
the upper tail of the curve. Table 6.2 shows values of Z� and Z	 for various levels of � and 	
to be used in Eq. (6.4). In this example, and most examples in practice, 	 is based on one tail of
the normal curve. The other tail contains an insignificant area relating to 	 (the right side of the
normal curve, B, in Fig. 6.1)

Equation (6.4) is correct for computing the sample size for a paired- or one-sample test if
the standard deviation is known.

In most situations, the standard deviation is unknown and a prior estimate of the standard
deviation is necessary in order to calculate sample size requirements. In this case, the estimate
of the standard deviation replaces � in Eq. (6.4), but the calculation results in an answer that is
slightly too small. The underestimation occurs because the values of Z� and Z	 are smaller than

† Z	 is taken as the positive value of Z in this formula.
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Table 6.2 Values of Z� and Z	 for Sample-Size Calculations

Z�

One sided Two sided Za
�

1% 2.32 2.58 2.32

5% 1.65 1.96 1.65

10% 1.28 1.65 1.28

20% 0.84 1.28 0.84

aThe value of 	 is for a single specified alternative. For a two-sided test,

the probability of rejection of the alternative, if true, (accept Ha) is virtually

all contained in the tail nearest the alternative mean.

Figure 6.2 Illustration of the calculation of N for tablet assays. X = 95 + � Z	/
√

N = 100 − � Z�/
√

N.

the corresponding t values that should be used in the formula when the standard deviation is
unknown. The situation is somewhat complicated by the fact that the value of t depends on the
sample size (d.f.), which is yet unknown. The problem can be solved by an iterative method,
but for practical purposes, one can use the appropriate values of Z to compute the sample size
[as in Eq. (6.4)] and add on a few extra samples (patients, tablets, etc.) to compensate for the
use of Z rather than t. Guenther has shown that the simple addition of 0.5Z2

�, which is equal
to approximately 2 for a two-sided test at the 5% level, results in a very close approximation to
the correct answer [3]. In the problem illustrated above (tablet assays), if the standard deviation
were unknown but estimated as being equal to 3 based on previous experience, a better estimate
of the sample size would be N + 0.5Z2

� = 3.8 + 0.5(1.96)2 ∼= 6 tablets.

6.2.2 Determination of Sample Size for Comparison of Means in Two Groups
For a two independent groups test (parallel design), with the standard deviation known and
equal number of observations per group, the formula for N (where N is the sample size for each
group) is

N = 2
( �

�

)2
(Z� + Z	)2. (6.5)

If the standard deviation is unknown and a prior estimate is available (s.d.), substitute
s.d. for � in Eq. (6.5) and compute the sample size; but add on 0.25Z2

� to the sample size for each
group.

Example 1: This example illustrates the determination of the sample size for a two indepen-
dent groups (two-sided test) design. Two variations of a tablet formulation are to be compared
with regard to dissolution time. All ingredients except for the lubricating agent were the same
in these two formulations. In this case, a decision was made that if the formulations differed by
10 minutes or more to 80% dissolution, it would be extremely important that the experiment
shows a statistically significant difference between the formulations. Therefore, the pharmaceu-
tical scientist decided to fix the 	 error at 1% in a statistical test at the traditional 5% level. Data
were available from dissolution tests run during the development of formulations of the drug
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and the standard deviation was estimated as 5 minutes. With the information presented above,
the sample size can be determined from Eq. (6.5). We will add on 0.25Z2

� samples to the answer
because the standard deviation is unknown.

N = 2
(

5
10

)2

(1.96 + 2.32)2 + 0.25(1.96)2 = 10.1.

The study was performed using 12 tablets from each formulation rather than the 10 or
11 suggested by the answer in the calculation above. Twelve tablets were used because the
dissolution apparatus could accommodate six tablets per run.

Example 2: A bioequivalence study was being planned to compare the bioavailability of a
final production batch to a previously manufactured pilot-sized batch of tablets that were made
for clinical studies. Two parameters resulting from the blood-level data would be compared:
area under the plasma level versus time curves (AUC) and peak plasma concentration (Cmax).
The study was to have 80% power (	 = 0.20) to detect a difference of 20% or more between the
formulations. The test is done at the usual 5% level of significance. Estimates of the standard
deviations of the ratios of the values of each of the parameters [(final product)/(pilot batch)]
were determined from a small pilot study. The standard deviations were different for the
parameters. Since the researchers could not agree that one of the parameters was clearly critical
in the comparison, they decided to use a “maximum” number of patients based on the variable
with the largest relative variability. In this example, Cmax was most variable, the ratio having a
standard deviation of approximately 0.30. Since the design and analysis of the bioequivalence
study is a variation of the paired t test, Eq. (6.4) was used to calculate the sample size, adding
on 0.5Z2

�, as recommended previously.

N =
( �

�

)2
(Z� + Z	)2 + 0.5(Z2

�)

=
(

0.3
0.2

)2

(1.96 + 0.84)2 + 0.5(1.96)2 = 19.6. (6.6)

Twenty subjects were used for the comparison of the bioavailabilities of the two formula-
tions.

For sample-size determination for bioequivalence studies using FDA recommended
designs, see Table 6.5 and section 11.4.4.

Sometimes the sample sizes computed to satisfy the desired � and 	 errors can be inordi-
nately large when time and cost factors are taken into consideration. Under these circumstances,
a compromise must be made—most easily accomplished by relaxing the � and 	 requirements‡
(Table 6.1). The consequence of this compromise is that probabilities of making an incorrect
decision based on the statistical test will be increased. Other ways of reducing the required
sample size are (a) to increase the precision of the test by improving the assay methodology
or carefully controlling extraneous conditions during the experiment, for example, or (b) to
compromise by increasing �, that is, accepting a larger difference that one considers to be of
practical importance.

Table 6.3 gives the sample size for some representative values of the ratio �/�, �, and 	,
where the s.d. (s) is estimated.

6.3 DETERMINATION OF SAMPLE SIZE FOR BINOMIAL TESTS
The formulas for calculating the sample size for comparative binomial tests are similar to those
described for normal curve or t tests. The major difference is that the value of �2, which is
assumed to be the same under H0 and Ha in the two-sample independent groups t or Z tests,
is different for the distributions under H0 and Ha in the binomial case. This difference occurs
because �2 is dependent on P, the probability of success, in the binomial. The value of P will

‡ In practice, � is often fixed by regulatory considerations and 	 is determined as a compromise.



134 CHAPTER 6

Ta
b

le
6.

3
S

a
m

p
le

S
iz

e
N

e
e

d
e

d
fo

r
T
w

o
-S

id
e

d
t

T
e

s
t

w
it
h

S
ta

n
d

a
rd

D
e
v
ia

ti
o

n
E

s
ti
m

a
te

d

O
n

e-
sa

m
p

le
te

st
Tw

o
-s

am
p

le
te

st
w

it
h

N
u

n
it

s
p

er
g

ro
u

p

A
lp

h
a

=
0.

05
A

lp
h

a
=

0.
01

A
lp

h
a

=
0.

05
A

lp
h

a
=

0.
01

B
et

a
=

B
et

a
=

B
et

a
=

B
et

a
=

E
st

im
at

ed
S

/Δ
0.

01
0.

05
0.

10
0.

20
0.

01
0.

05
0.

10
0.

20
0.

01
0.

05
0.

10
0.

20
0.

01
0.

05
0.

10
0.

20

4
.0

2
9
6

2
1
1

1
7
0

1
2
8

3
8
8

2
8
9

2
4
2

1
9
1

5
8
8

4
1
7

3
3
7

2
5
2

7
7
0

5
7
2

4
7
8

3
7
6

2
.0

7
6

5
4

4
4

3
4

1
0
0

7
5

6
3

5
1

1
4
8

1
0
6

8
6

6
4

1
9
4

1
4
5

1
2
1

9
6

1
.5

4
4

3
2

2
6

2
0

5
8

5
4

3
7

3
0

8
4

6
0

4
9

3
7

1
1
0

8
2

6
9

5
5

1
.0

2
1

1
6

1
3

1
0

2
8

2
2

1
9

1
6

3
8

2
7

2
3

1
7

5
0

3
8

3
2

2
6

0
.8

1
4

1
1

9
8

1
9

1
5

1
3

1
1

2
5

1
8

1
5

1
2

3
3

2
5

2
1

1
7

0
.6

7
1
1

8
7

6
1
5

1
2

1
1

9
1
8

1
3

1
1

9
2
4

1
8

1
5

1
3

0
.5

7
6

5
4

1
0

8
8

7
1
1

8
7

6
1
4

1
1

1
0

8

0
.4

6
5

4
4

8
7

6
6

8
6

5
4

1
0

8
7

6

0
.3

3
5

4
4

3
7

6
6

5
6

5
4

4
8

6
6

5



SAMPLE SIZE AND POWER 135

be different depending on whether H0 or Ha represents the true situation. The appropriate
formulas for determining sample size for the one- and two-sample tests are

One-sample test

N = 1
2

[
p0q0 + p1q1

�2

]
(Z� + Z	)2, (6.7)

where � = p1 − p0; p1 is the proportion that would result in a meaningful difference, and p0 is
the hypothetical proportion under the null hypothesis.

Two-sample test

N =
[

p1q1 + p2q2

�2

]
(Z� + Z	)2, (6.8)

where � = p1 − p2; p1 and p2 are prior estimates of the proportions in the experimental groups.
The values of Z� and Z	 are the same as those used in the formulas for the normal curve or
t tests. N is the sample size for each group. If it is not possible to estimate p1 and p2 prior to
the experiment, one can make an educated guess of a meaningful value of � and set p1 and p2
both equal to 0.5 in the numerator of Eq. (6.8). This will maximize the sample size, resulting in a
conservative estimate of sample size.

Fleiss [4] gives a fine discussion of an approach to estimating �, the practically significant
difference, when computing the sample size. For example, one approach is first to estimate
the proportion for the more well-studied treatment group. In the case of a comparative clinical
study, this could very well be a standard treatment. Suppose this treatment has shown a success
rate of 50%. One might argue that if the comparative treatment is additionally successful for 30%
of the patients who do not respond to the standard treatment, then the experimental treatment
would be valuable. Therefore, the success rate for the experimental treatment should be 50% +
0.3 (50%) = 65% to show a practically significant difference. Thus, p1 would be equal to 0.5 and
p2 would be equal to 0.65.

Example 3: A reconciliation of quality control data over several years showed that the
proportion of unacceptable capsules for a stable encapsulation process was 0.8% (p0). A sample
size for inspection is to be determined so that if the true proportion of unacceptable capsules
is equal to or greater than 1.2% (� = 0.4%), the probability of detecting this change is 80%
(	 = 0.2). The comparison is to be made at the 5% level using a one-sided test. According to
Eq. (6.7),

N = 1
2

[
0.008 · 0.992 + 0.012 · 0.988

(0.008 − 0.012)2

]
(1.65 + 0.84)2

= 7670
2

= 3835.

The large sample size resulting from this calculation is typical of that resulting from
binomial data. If 3835 capsules are too many to inspect, �, 	, and/or � must be increased. In
the example above, management decided to increase �. This is a conservative decision in that
more good batches would be “rejected” if � is increased; that is, the increase in � results in an
increased probability of rejecting good batches, those with 0.8% unacceptable or less.

Example 4: Two antibiotics, a new product and a standard product, are to be compared
with respect to the two-week cure rate of a urinary tract infection, where a cure is bacteriological
evidence that the organism no longer appears in urine. From previous experience, the cure rate
for the standard product is estimated at 80%. From a practical point of view, if the new product
shows an 85% or better cure rate, the new product can be considered superior. The marketing
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division of the pharmaceutical company felt that this difference would support claims of better
efficacy for the new product. This is an important claim. Therefore, 	 is chosen to be 1% (power
= 99%). A two-sided test will be performed at the 5% level to satisfy FDA guidelines. The test
is two-sided because, a priori, the new product is not known to be better or worse than the
standard. The calculation of sample size to satisfy the conditions above makes use of Eq. (6.8);
here p1 = 0.8 and p2 = 0.85.

N =
[

0.08 · 0.2 + 0.85 · 0.15
(0.80 − 0.85)2

]
(1.96 + 2.32)2 = 2107.

The trial would have to include 4214 patients, 2107 on each drug, to satisfy the � and
	 risks of 0.05 and 0.01, respectively. If this number of patients is greater than that can be
accommodated, the 	 error can be increased to 5% or 10%, for example. A sample size of 1499
per group is obtained for a 	 of 5%, and 1207 patients per group for 	 equal to 10%.

Although Eq. (6.8) is adequate for computing the sample size for most situations, the
calculation of N can be improved by considering the continuity correction [4]. This would be
particularly important for small sample sizes

N′ =
[

N
4

][
1 +

√
1 + 8

(N |p2 − p1|)

]2

,

where N is the sample size computed from Eq. (6.8) and N′ is the corrected sample size. In the
example, for � = 0.05 and 	 = 0.01, the corrected sample size is

N′ =
[

2107
4

][
1 +

√
1 + 8

(2107 |0.80 − 0.85|)

]2

= 2186.

6.4 DETERMINATION OF SAMPLE SIZE TO OBTAIN A CONFIDENCE INTERVAL
OF SPECIFIED WIDTH

The problem of estimating the number of samples needed to estimate the mean with a known
precision by means of the confidence interval is easily solved by using the formula for the
confidence interval (see sect. 5.1). This approach has been used as an aid in predicting election
results based on preliminary polls where the samples are chosen by simple random sampling.
For example, one may wish to estimate the proportion of voters who will vote for candidate A
within 1% of the actual proportion.

We will consider the application of this problem to the estimation of proportions. In
quality control, one can closely estimate the true proportion of percent defects to any given
degree of precision. In a clinical study, a suitable sample size may be chosen to estimate the
true proportion of successes within certain specified limits. According to Eq. (5.3), a two-sided
confidence interval with confidence coefficient p for a proportion is

p̂ ± Z

√
p̂q̂
N

. (6.3)

To obtain a 99% confidence interval with a width of 0.01 (i.e., construct an interval that is
within ±0.005 of the observed proportion, p̂ ± 0.005),

Zp

√
p̂q̂
N

= 0.005
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or

N = Z2
p( p̂q̂ )

(W/2)2 (6.9)

N = (2.58)2( p̂q̂ )
(0.005)2 .

A more exact formula for the sample size for small values of N is given in Ref. [5].
Example 5: A quality control supervisor wishes to have an estimate of the proportion of

tablets in a batch that weigh between 195 and 205 mg, where the proportion of tablets in this
interval is to be estimated within ±0.05 (W = 0.10). How many tablets should be weighed? Use
a 95% confidence interval.

To compute N, we must have an estimate of p̂ [see Eq. (6.9)]. If p̂ and q̂ are chosen to
be equal to 0.5, N will be at a maximum. Thus, if one has no inkling as to the magnitude of
the outcome, using p̂ = 0.5 in Eq. (6.9) will result in a sufficiently large sample size (probably,
too large). Otherwise, estimate p̂ and q̂ based on previous experience and knowledge. In the
present example from previous experience, approximately 80% of the tablets are expected to
weigh between 195 and 205 mg ( p̂ = 0.8). Applying Eq. (6.9),

N = (1.96)2(0.8)(0.2)
(0.10/2)2 = 245.9.

A total of 246 tablets should be weighed. In the actual experiment, 250 tablets were
weighed, and 195 of the tablets (78%) weighed between 195 and 205 mg. The 95% confidence
interval for the true proportion, according to Eq. (5.3), is

p ± 1.96

√
p̂q̂
N

= 0.78 ± 1.96

√
(0.78)(0.22)

250
= 0.78 ± 0.051.

The interval is slightly greater than ±5% because p is somewhat less than 0.8 (pq is larger
for p = 0.78 than for p = 0.8). Although 5.1% is acceptable, to ensure a sufficient sample size, in
general, one should estimate p closer to 0.5 in order to cover possible poor estimates of p.

If p̂ had been chosen equal to 0.5, we would have calculated

N = (1.96)2(0.5)(0.5)
(0.10/2)2 = 384.2.

Example 6: A new vaccine is to undergo a nationwide clinical trial. An estimate is desired
of the proportion of the population that would be afflicted with the disease after vaccination. A
good guess of the expected proportion of the population diseased without vaccination is 0.003.
Pilot studies show that the incidence will be about 0.001 (0.1%) after vaccination. What size
sample is needed so that the width of a 99% confidence interval for the proportion diseased in
the vaccinated population should be no greater than 0.0002? To ensure that the sample size is
sufficiently large, the value of p to be used in Eq. (6.9) is chosen to be 0.0012, rather than the
expected 0.0010.

N = (2.58)2(0.9988)(0.0012)
(0.0002/2)2 = 797,809.

The trial will have to include approximately 800,000 subjects in order to yield the desired
precision.
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6.5 POWER
Power is the probability that the statistical test results in rejection of H0 when a specified
alternative is true. The “stronger” the power, the better the chance that the null hypothesis will
be rejected (i.e., the test results in a declaration of “significance”) when, in fact, H0 is false. The
larger the power, the more sensitive is the test. Power is defined as 1 − 	. The larger the 	 error,
the weaker is the power. Remember that 	 is an error resulting from accepting H0 when H0 is
false. Therefore, 1 − 	 is the probability of rejecting H0 when H0 is false.

From an idealistic point of view, the power of a test should be calculated before an exper-
iment is conducted. In addition to defining the properties of the test, power is used to help
compute the sample size, as discussed above. Unfortunately, many experiments proceed with-
out consideration of power (or 	). This results from the difficulty of choosing an appropriate
value of 	. There is no traditional value of 	 to use, as is the case for �, where 5% is usually
used. Thus, the power of the test is often computed after the experiment has been completed.

Power is best described by diagrams such as those shown previously in this chapter
(Figs. 6.1 and 6.2). In these figures, 	 is the area of the curves represented by the alternative
hypothesis that is included in the region of acceptance defined by the null hypothesis.

The concept of power is also illustrated in Figure 6.3. To illustrate the calculation of power,
we will use data presented for the test of a new antihypertensive agent (sect. 6.2), a paired sample
test, with � = 7 and H0 : � = 0. The test is performed at the 5% level of significance. Let us
suppose that the sample size is limited by cost. The sponsor of the test had sufficient funds
to pay for a study that included only 12 subjects. The design described earlier in this chapter
(sect. 6.2) used 26 patients with 	 specified equal to 0.05 (power = 0.95). With 12 subjects,
the power will be considerably less than 0.95. The following discussion shows how power is
calculated.

The cutoff points for statistical significance (which specify the critical region) are defined
by �, N, and �. Thus, the values of � that will lead to a significant result for a two-sided test are
as follows:

Z =
∣∣�∣∣

�/
√

N

� = ±Z�√
N

.

In our example, Z = 1.96 (� = 0.05), � = 7, and N = 12.

� = ±(1.96)(7)√
12

= ±3.96.

Figure 6.3 Illustration of beta or power (1 − 	).
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Values of � greater than 3.96 or less than −3.96 will lead to the decision that the products
differ at the 5% level. Having defined the values of � that will lead to rejection of H0, we obtain
the power for the alternative, Ha: � = 5, by computing the probability that an average result, �,
will be greater than 3.96, if Ha is true (i.e., � = 5).

This concept is illustrated in Figure 6.3. Curve B is the distribution with mean equal to 5
and � = 7. If curve B is the true distribution, the probability of observing a value of � below
3.96 is the probability of accepting H0 if the alternative hypothesis is true (� = 5). This is the
definition of 	. This probability can be calculated using the Z transformation.

Z = 3.96 − 5

7/
√

12
= −0.51.

Referring to Table IV.2, the area below +3.96 (Z = −0.51) for curve B is approximately
0.31. The power is 1 − 	 = 1 − 0.31 = 0.69. The use of 12 subjects results in a power of 0.69 to
“detect” a difference of +5 compared to the 0.95 power to detect such a difference when 26
subjects were used. A power of 0.69 means that if the true difference were 5 mm Hg, the statistical
test will result in significance with a probability of 69%; 31% of the time, such a test will result in
acceptance of H0.

A power curve is a plot of the power, 1 − 	, versus alternative values of �. Power curves can
be constructed by computing 	 for several alternatives and drawing a smooth curve through
these points. For a two-sided test, the power curve is symmetrical around the hypothetical
mean, � = 0, in our example. The power is equal to � when the alternative is equal to the
hypothetical mean under H0. Thus, the power is 0.05 when � = H0 (Fig. 6.4) in the power curve.
The power curve for the present example is shown in Figure 6.4.

The following conclusions may be drawn concerning the power of a test if � is kept
constant:

1. The larger the sample size, the larger the power.
2. The larger the difference to be detected (Ha), the larger the power. A large sample size will

be needed in order to have strong power to detect a small difference.
3. The larger the variability (s.d.), the weaker the power.
4. If � is increased, power is increased (	 is decreased) (Fig. 6.3). An increase in � (e.g., 10%)

results in a smaller Z. The cutoff points are shorter, and the area of curve B below the cutoff
point is smaller.

Power is a function of N, �, �, and �.

Figure 6.4 Power curve for N = 12, � = 0.05, � = 7, and H0: � = 0.
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A simple way to compute the approximate power of a test is to use the formula for sample
size [Eqs. (6.4) and (6.5). for example] and solve for Z	. In the previous example, a single sample
or a paired test, Eq. (6.4) is appropriate:

N =
( �

�

)2
(Z� + Z	)2 (6.4)

Z	 = �

�

√
N − Z�. (6.10)

Once having calculated Z	, the probability determined directly from Table IV.2 is equal to
the power, 1 − 	. See the discussion and examples below.

In the problem discussed above, applying Eq. (6.10) with � = 5, � = 7, N = 12, and
Z� = 1.96,

Z	 = 5
7

√
12 − 1.96 = 0.51.

According to the notation used for Z (Table 6.2), 	 is the area above Z	. Power is the area
below Z	(power = 1 − 	). In Table IV.2, the area above Z = 0.51 is approximately 31%. The
power is 1 − 	. Therefore, the power is 69%.§

If N is small and the variance is unknown, appropriate values of t should be used in place
of Z� and Z	. Alternatively, we can adjust N by subtracting 0.5Z2

� or 0.25Z2
� from the actual

sample size for a one- or two-sample test, respectively. The following examples should make
the calculations clearer.

Example 7: A bioavailability study has been completed in which the ratio of the AUCs for
two comparative drugs was submitted as evidence of bioequivalence. The FDA asked for the
power of the test as part of their review of the submission. (Note that this analysis is different
from that presently required by FDA.) The null hypothesis for the comparison is H0: R = 1,
where R is the true average ratio. The test was two-sided with � equal to 5%. Eighteen subjects
took each of the two comparative drugs in a paired-sample design. The standard deviation was
calculated from the final results of the study, and was equal to 0.3. The power is to be determined
for a difference of 20% for the comparison. This means that if the test product is truly more than
20% greater or smaller than the reference product, we wish to calculate the probability that the
ratio will be judged to be significantly different from 1.0. The value of � to be used in Eq. (6.10)
is 0.2.

Z	 = 0.2
√

16
0.3

− 1.96 = 0.707.

Note that the value of N is taken as 16. This is the inverse of the procedure for determining
sample size, where 0.5Z2

� was added to N. Here we subtract 0.5Z2
� (approximately 2) from N;

18 − 2 = 16. According to Table IV.2, the area corresponding to Z = 0.707 is approximately 0.76.
Therefore, the power of this test is 76%. That is, if the true difference between the formulations
is 20%, a significant difference will be found between the formulations 76% of the time. This
is very close to the 80% power that was recommended before current FDA guidelines were
implemented for bioavailability tests (where � = 0.2).

Example 8: A drug product is prepared by two different methods. The average tablet
weights of the two batches are to be compared, weighing 20 tablets from each batch. The average
weights of the two 20-tablet samples were 507 and 511 mg. The pooled standard deviation was
calculated to be 12 mg. The director of quality control wishes to be “sure” that if the average
weights truly differ by 10 mg or more, the statistical test will show a significant difference, when

§ The value corresponding to Z in Table IV.2 gives the power directly. In this example, the area in the table
corresponding to a Z of 0.51 is approximately 0.69.
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he was asked, “How sure?”, he said 95% sure. This can be translated into a 	 of 5% or a power
of 95%. This is a two independent groups test. Solving for Z	 from Eq. (6.5), we have

Z	 = �

�

√
N
2

− Z�

= 10
12

√
19
2

− 1.96 = 0.609. (6.11)

As discussed above, the value of N is taken as 19 rather than 20, by subtracting 0.25Z2
�

from N for the two-sample case. Referring to Table IV.2, we note that the power is approximately
73%. The experiment does not have sufficient power according to the director’s standards. To
obtain the desired power, we can increase the sample size (i.e., weigh more tablets). (See Exercise
Problem 10.)

6.6 SAMPLE SIZE AND POWER FOR MORE THAN TWO TREATMENTS
(ALSO SEE CHAP. 8)

The problem of computing power or sample size for an experiment with more than two treat-
ments is somewhat more complicated than the relatively simple case of designs with two
treatments. The power will depend on the number of treatments and the form of the null
and alternative hypotheses. Dixon and Massey [5] present a simple approach to determining
power and sample size. The following notation will be used in presenting the solution to this
problem.

Let M1, M2, M3 . . . Mk be the hypothetical population means of the k treatments. The null
hypothesis is M1 = M2 = M3 = Mk. As for the two sample cases, we must specify the alternative
values of Mi. The alternative means are expressed as a grand mean, Mt ± some deviation, Di,
where

∑
(Di ) = 0. For example, if three treatments are compared for pain, Active A, Active B,

and Placebo (P), the values for the alternative hypothesized means, based on a VAS scale for
pain relief, could be 75 + 10 (85), 75 + 10 (85), and 75 − 20 (55) for the two actives and placebo,
respectively. The sum of the deviations from the grand mean, 75, is 10 + 10 − 20 = 0. The power
is computed based on the following equation:


 2 =
∑

(Mi − Mt)2/k
S2/n

, (6.12)

where n is the number of observations in each treatment group (n is the same for each treatment)
and S2 is the common variance. The value of 
 2 is referred to Table 6.4 to estimate the required
sample size.

Consider the following example of three treatments in a study measuring the analgesic
properties of two actives and a placebo as described above. Fifteen subjects are in each treatment
group and the variance is 1000. According to Eq. (6.12),


 2 =
{
(85 − 75)2 + (85 − 75)2 + (55 − 75)2

}
/3

1000/15
= 3.0.

Table 6.4 gives the approximate power for various values of 
 , at the 5% level, as a function
of the number of treatment groups and the d.f. for error for 3 and 4 treatments. (More detailed
tables, in addition to graphs, are given in Dixon and Massey [5].) Here, we have 42 d.f. and three
treatments with 
 = √

3 = 1.73. The power is approximately 0.72 by simple linear interpolation
(42 d.f. for 
 = 1.7). The correct answer with more extensive tables is closer to 0.73.
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Table 6.4 Factors for Computing Power for

Analysis of Variance

d.f. error � Power

Alpha = 0.05, k = 3

10 1.6 0.42

2.0 0.76

2.4 0.80

3.0 0.984

20 1.6 0.62

1.92 0.80

2.00 0.83

3.0 >0.99

30 1.6 0.65

1.9 0.80

2.0 0.85

3.0 >0.99

60 1.6 0.67

1.82 0.80

2.0 0.86

3.0 >0.99

inf 1.6 0.70

1.8 0.80

2.0 0.88

3.0 >0.99

alpha = 0.05, k = 4

10 1.4 0.48

2.0 0.80

2.6 0.96

20 1.4 0.56

2.0 0.88

2.6 986

30 1.4 0.59

2.0 0.90

2.6 >0.99

60 1.4 0.61

2.0 0.92

2.6 >0.99

inf 1.4 0.65

2.0 0.94

2.6 >0.99

Table 6.4 can also be used to determine sample size. For example, how many patients
per treatment group are needed to obtain a power of 0.80 in the above example? Applying
Eq. (6.12),

{(85 − 75)2 + (85 − 75)2 + (55 − 75)2}/3
1000/n

= 
 2.

Solve for 
 2


 2 = 0.2n.
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We can calculate n by trial and error. For example, with N = 20,

0.2N = 4 = 
 2 and 
 = 2.

For 
 = 2 and N = 20 (d.f. = 57), the power is approximately 0.86 (for d.f. = 60, power
0.86). For N = 15 (d.f. = 42, 
 =√

3), we have calculated (above) that the power is approximately
0.72. A sample size of between 15 and 20 patients per treatment group would give a power of
0.80. In this example, we might guess that 17 patients per group would result in approximately
80% power. Indeed, more exact tables show that a sample size of 17(
 = √

(0.2 × 17) = 1.85)
corresponds to a power of 0.79.

The same approach can be used for two-way designs, using the appropriate error term
from the analysis of variance.

6.7 SAMPLE SIZE FOR BIOEQUIVALENCE STUDIES (ALSO SEE CHAP. 11)
In its early evolution, bioequivalence was based on the acceptance or rejection of a hypothesis
test. Sample sizes could then be determined by conventional techniques as described in section
6.2. Because of inconsistencies in the decision process based on this approach, the criteria for
acceptance was changed to a two-sided 90% confidence interval, or equivalently, two one-sided
t test, where the hypotheses are (�1/�2) < 0.8 and (�1/�2) > 1.25 versus the alternative of
0.8 < (�1/�2) < 1.25. This test is based on the antilog of the difference between the averages of
the log-transformed parameters (the geometric mean). This test is equivalent to a two-sided 90%
confidence interval for the ratio of means falling in the interval 0.80 to 1.25 in order to accept
the hypothesis of equivalence. Again, for the currently accepted log-transformed data, the 90%
confidence interval for the antilog of the difference between means must lie between 0.80 and
1.25, that is, 0.8 < antilog (�1/�2) < 1.25. The sample-size determination in this case is not as
simple as the conventional determination of sample size described earlier in this chapter. The
method for sample-size determination for nontransformed data has been published by Phillips
[6] along with plots of power as a function of sample size, relative standard deviation (computed
from the ANOVA), and treatment differences. Although the theory behind this computation is
beyond the scope of this book, Chow and Liu [7] give a simple way of approximating the power
and sample size. The sample size for each sequence group is approximately

N = (t�, 2N−2 + t	, 2N−2 )2
[

CV
(V − �)

]2

, (6.13)

where N is the number of subjects per sequence, t the appropriate value from the t distribution, �
the significance level (usually 0.10), 1 − 	 the power (usually 0.8), CV the coefficient of variation,
V the bioequivalence limit, and � the difference between products.

One would have to have an approximation of the magnitude of the required sample size
in order to approximate the t values. For example, suppose that RSD = 0.20, � = 0.10, power is
0.8, and an initial approximation of the sample size is 20 per sequence (a total of 40 subjects).
Applying Eq. (6.13)

n = (1.69 + 0.85)2[0.20/(0.20 − 0.10)]2 = 25.8.

Use a total of 52 subjects. This agrees closely with Phillip’s more exact computations.
Dilletti et al. [8] have published a method for determining sample size based on the log-
transformed variables, which is the currently preferred method. Table 6.5 showing sample sizes
for various values of CV, power, and product differences is taken from their publication.

Based on these tables, using log-transformed estimates of the parameters would result in
a sample size estimate of 38 for a power of 0.8, ratio of 0.9, and CV = 0.20. If the assumed ratio
is 1.1, the sample size is estimated as 32.

Equation (6.13) can also be used to approximate these sample sizes using log values for V
and �: n = (1.69 + 0.85)2[0.20/(0.223 − 0.105)]2 = 19 per sequence or 38 subjects in total, where
0.223 is the log of 1.25 and 0.105 is the absolute value of the log of 0.9.
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Table 6.5 Sample Sizes for Given CV Power and Ratio (T /R) for Log-Transformed Parametersa

CV Power �r , �x
(%) (%) 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

5.0 70 10 6 4 4 4 4 6 16

7.5 16 6 6 4 6 6 10 34

10.0 28 10 6 6 6 8 16 58

12.5 42 14 8 8 8 12 24 90

15.0 60 18 10 10 10 16 32 128

17.5 80 22 12 12 12 20 44 172

20.0 102 30 16 14 16 26 56 224

22.5 128 36 20 16 20 30 70 282

25.0 158 44 24 20 22 38 84 344

27.5 190 52 28 24 26 44 102 414

30.0 224 60 32 28 32 52 120 490

3.0 80 12 6 4 4 4 6 8 22

7.5 22 8 6 6 6 8 12 44

10.0 36 12 8 6 8 10 20 76

12.5 54 16 10 8 10 14 30 118

15.0 78 22 12 10 12 20 42 168

17.5 104 30 16 14 16 26 56 226

20.0 134 38 20 16 18 32 72 294

22.5 168 46 24 20 24 40 90 368

25.0 206 56 28 24 28 48 110 452

27.5 248 68 34 28 34 58 132 544

30.0 292 80 40 32 38 68 156 642

5.0 90 14 6 4 4 4 6 8 28

7.5 28 10 6 6 6 8 16 60

10.0 48 14 8 8 8 14 26 104

12.5 74 22 12 10 12 18 40 162

15.0 106 30 16 12 16 26 58 232

17.5 142 40 20 16 20 34 76 312

20.0 186 50 26 20 24 44 100 406

22.5 232 64 32 24 30 54 124 510

25.0 284 78 38 28 36 66 152 626

27.5 342 92 44 34 44 78 182 752

30.0 404 108 52 40 52 92 214 888

aSource: From Ref. [8].

For � = 1.10 (log = 0.0953), the sample size is: n = (1.69 + 0.85)2[0.20/ (0.223 − 0.0953)]2 =
16 per sequence or 32 subjects in total.

If the difference between products is specified as zero (ratio = 1.0), the value for t	, 2n−2
in Eq. (6.3) should be two sided (Table 6.2). For example, for 80% power (and a large sample
size) use 1.28 rather than 0.84. In the example above with a ratio of 1.0 (0 difference between
products), a power of 0.8, and a CV = 0.2, use a value of (approximately) 1.34 for t	, 2n−2.

n = (1.75 + 1.34)2[0.2/0.223]2 = 7.7 per group or 16 total subjects.

An Excel program to calculate the number of subjects required for a crossover study under
various conditions of power and product differences, for both parametric and binary (binomial)
data, is available on the disk accompanying this volume.

This approach to sample-size determination can also be used for studies where the out-
come is dichotomous, often used as the criterion in clinical studies of bioequivalence (cured or
not cured) for topically unabsorbed products or unabsorbed oral products such as sucralfate.
This topic is presented in section 11.4.8.
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KEY TERMS

Alpha level Power curve
Attribute “Practical” significance
Beta error Sample size
Confidence interval Sampling plan
Delta Sensitivity
Power Z transformation

EXERCISES
1. Two diets are to be compared with regard to weight gain of weanling rats. If the weight

gain due to the diets differs by 10 g or more, we would like to be 80% sure that we obtain
a significant result. How many rats should be in each group if the s.d. is estimated to be 5
and the test is performed at the 5% level?

2. How many rats per group would you use if the standard deviation were known to be equal
to 5 in Problem 1?

3. In Example 3 where two antibiotics are being compared, how many patients would be
needed for a study with � = 0.05, 	 = 0.10, using a parallel design, and assuming that the
new product must have a cure rate of 90% to be acceptable as a better product than the
standard? (Cure rate for standard = 80%).

4. It is hypothesized that the difference between two drugs with regard to success rate is 0
(i.e., the drugs are not different). What size sample is needed to show a difference of 20%
significant at the 5% level with a 	 error of 10%? (Assume that the response rate is about
50% for both drugs, a conservative estimate.) The study is a two independent samples design
(parallel groups).

5. How many observations would be needed to estimate a response rate of about 50% within
± 15% (95% confidence limits)? How many observations would be needed to estimate a
response rate of 20 ± 15%?

6. Your boss tells you to make a new tablet formulation that should have a dissolution
time (90% dissolution) of 30 minutes. The previous formulation took 40 minutes to 90%
dissolution. She tells you that she wants an � level of 5% and that if the new formulation
really has a dissolution time of 30 minutes or less, she wants to be 99% sure that the
statistical comparison will show significance. (This means that the 	 error is 1%.) The s.d.
is approximately 10. What size sample would you use to test the new formulation?

7. In a clinical study comparing the effect of two drugs on blood pressure, 20 patients were
to be tested on each drug (two groups). The change in blood pressure from baseline mea-
surements was to be determined. The s.d., measured as the difference among individuals’
responses, is estimated from past experience to be 5.
(a) If the statistical test is done at the 5% level, what is the power of the test against an

alternative of 3 mm Hg difference between the drugs (H0 : �1 = �2 or �1 − �2 = 0). This
means: What is the probability that the test will show significance if the true difference
between the drugs is 3 mm Hg or more (Ha : �1 − �2 = 3)?

(b) What is the power if there are 50 people per group? � is 5%.

8. A tablet is produced with a labeled potency of 100 mg. The standard deviation is known
to be 10. What size sample should be assayed if we want to have 90% power to detect a
difference of 3 mg from the target? The test is done at the 5% level.

9. In a bioequivalence study, the ratio of AUCs is to be compared. A sample size of 12 subjects
is used in a paired design. The standard deviation resulting from the statistical test is 0.25.
What is the power of this test against a 20% difference if � is equal to 0.05?

10. How many samples would be needed to have 95% power for Example 8?
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11. In a bioequivalence study, the maximum blood level is to be compared for two drugs. This
is a crossover study (paired design) where each subject takes both drugs. Eighteen subjects
entered the study with the following results. The observed difference is 10 �g/mL. The s.d.
(from this experiment) is 40. A practical difference is considered to be 15 �g/mL. What is
the power of the test for a 15-�g/mL difference for a two-sided test at the 5% level?

12. How many observations would you need to estimate a proportion within ±5% (95%
confidence interval) if the expected proportion is 10%?

13. A parallel design is used to measure the effectiveness of a new antihypertensive drug. One
group of patients receives the drug and the other group receives placebo. A difference of
6 mm Hg is considered to be of practical significance. The standard deviation (difference
from baseline) is unknown but is estimated as 5 based on some preliminary data. Alpha is
set at 5% and 	 at 10%. How many patients should be used in each group?

14. From Table 6.3, find the number of samples needed to determine the difference between the
dissolution of two formulations for � = 0.05, 	 = 0.10, S = 25, for a “practical” difference
of 25 (minutes).
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7 Linear Regression and Correlation

Simple linear regression analysis is a statistical technique that defines the functional relationship
between two variables, X and Y, by the “best-fitting” straight line. A straight line is described
by the equation, Y = A + BX, where Y is the dependent variable (ordinate), X is the independent
variable (abscissa), and A and B are the Y intercept and slope of the line, respectively (Fig. 7.1).∗
Applications of regression analysis in pharmaceutical experimentation are numerous. This
procedure is commonly used

1. to describe the relationship between variables where the functional relationship is known
to be linear, such as in Beer’s law plots, where optical density is plotted against drug
concentration;

2. when the functional form of a response is unknown, but where we wish to represent a trend
or rate as characterized by the slope (e.g., as may occur when following a pharmacological
response over time);

3. when we wish to describe a process by a relatively simple equation that will relate the
response, Y, to a fixed value of X, such as in stability prediction (concentration of drug
versus time).

In addition to the specific applications noted above, regression analysis is used to define
and characterize dose–response relationships, for fitting linear portions of pharmacokinetic
data, and in obtaining the best fit to linear physical–chemical relationships.

Correlation is a procedure commonly used to characterize quantitatively the relationship
between variables. Correlation is related to linear regression, but its application and interpreta-
tion are different. This topic is introduced at the end of this chapter.

7.1 INTRODUCTION
Straight lines are constructed from sets of data pairs, X and Y. Two such pairs (i.e., two points)
uniquely define a straight line. As noted previously, a straight line is defined by the equation

Y = A+ B X, (7.1)

where A is the Y intercept (the value of Y when X = 0) and B is the slope (�Y/�X). �Y/�X is
(Y2 − Y1)/(X2 − X1) for any two points on the line (Fig. 7.1). The slope and intercept define the
line; once A and B are given, the line is specified. In the elementary example of only two points,
a statistical approach to define the line is clearly unnecessary.

In general, with more than two X, y points,† a plot of y versus X will not exactly describe
a straight line, even when the relationship is known to be linear. The failure of experimental
data derived from truly linear relationships to lie exactly on a straight line is due to errors
of observation (experimental variability). Figure 7.2 shows the results of four assays of drug
samples of different, but known potency. The assay results are plotted against the known
amount of drug. If the assays are performed without error, the plot results in a 45◦ line (slope
= 1) which, if extended, passes through the origin; that is, the Y intercept, A, is 0 [Fig. 7.2(A)].

∗ The notation Y = A + BX is standard in statistics. We apologize for any confusion that may result from the
reader’s familiarity with the equivalent, Y = mX + b, used frequently in analytical geometry.

† In the rest of this chapter, y denotes the experimentally observed point, and Y denotes the corresponding point
on the least squares “fitted” line (or the true value of Y, according to context).
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Figure 7.1 Straight-line plot.

Figure 7.2 Plot of assay recovery versus known amount: theoretical and actual data.

In this example, the equation of the line Y = A + BX is Y = 0 + 1(X), or Y = X. Since there is no
error in this experiment, the line passes exactly through the four X, Y points.

Real experiments are not error free, and a plot of X, y data rarely exactly fits a straight
line, as shown in Figure 7.2(B). We will examine the problem of obtaining a line to fit data that
are not error free. In these cases, the line does not go exactly through all of the points. A “good”
line, however, should come “close” to the experimental points. When the variability is small, a
line drawn by eye will probably be very close to that constructed more exactly by a statistical
approach [Fig. 7.3(A)]. With large variability, the “best” line is not obvious. What single line
would you draw to best fit the data plotted in Figure 7.3(B)? Certainly, lines drawn through
any two arbitrarily selected points will not give the best (or a unique) line to fit the totality
of data.

Given N pairs of variables, X, Y, we can define the best straight line describing the
relationship of X and y as the line that minimizes the sum of squares of the vertical distances of
each point from the fitted line. The definition of “sum of squares of the vertical distances of each
point from the fitted line” (Fig. 7.4) is written mathematically as

∑
(y − Y)2, where y represents

the experimental points and Y represents the corresponding points on the fitted line. The line
constructed according to this definition is called the least squares line. Applying techniques of
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Figure 7.3 Fit of line with variable data.

calculus, the slope and intercept of the least squares line can be calculated from the sample data
as follows:

Slope = b =
∑

(X − X)(y − y)∑
(X − X)2

(7.2)

Intercept = a = y − b X (7.3)

Remember that the slope and intercept uniquely define the line.
There is a shortcut computing formula for the slope, similar to that described previously

for the standard deviation

b = N
∑

Xy − (
∑

X)(
∑

y)
N
∑

X2 − (
∑

X)2 , (7.4)

Figure 7.4 Lack of fit due to (A) experimental error and (B) nonlinearity.
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Table 7.1 Raw Data from Figure 7.2(A) to Calculate the Least

Squares Line

Drug potency, X Assay, y Xy

60 60 3600

80 80 6400

100 100 10,000

120 120 14,400∑
X = 360

∑
y = 360

∑
Xy = 34,400∑

X 2 = 34,400

Table 7.2 Raw Data from Figure 7.2(B) Used to Calculate the

Least Squares Line

Drug potency, X Assay, y Xy

60 63 3780

80 75 6000

100 99 9900

120 116 13,920∑
X = 360

∑
y = 353

∑
Xy = 33,600∑

X 2 = 34,400
∑

y2 = 32,851

where N is the number of X, y pairs. The calculation of the slope and intercept is relatively
simple, and can usually be quickly computed using a computer (e.g., EXCEL) or with a hand
calculator. Some calculators have a built-in program for calculating the regression parameter
estimates, a and b.‡

For the example shown in Figure 7.2(A), the line that exactly passes through the four data
points has a slope of 1 and an intercept of 0. The line, Y = X, is clearly the best line for these data,
an exact fit. The least squares line, in this case, is exactly the same line, Y = X. The calculation of
the intercept and slope using the least squares formulas, Eqs. (7.3) and (7.4), is illustrated below.
Table 7.1 shows the raw data used to construct the line in Figure 7.2(A).

According to Eq. (7.4) (N = 4,
∑

X2 = 34,400,
∑

Xy = 34,400,
∑

X = ∑
y = 360),

b = (4)(3600 + 6400 + 10,000 + 14,000) − (360)(360)

4(34,400) − (360)2 = 1

a is computed from Eq. (7.3); a = y − b X(y = X = 90, b = 1). a = 90 − 1(90) = 0. This represents
a situation where the assay results exactly equal the known drug potency (i.e., there is no error).

The actual experimental data depicted in Figure 7.2(B) are shown in Table 7.2. The slope
b and the intercept a are calculated from Eqs. (7.4) and (7.3). According to Eq. (7.4),

b = (4)(33,600) − (360)(353)

4(34,400) − (360)2 = 0.915.

According to Eq. (7.3),

a = 353
4

− 0.915(90) = 5.9.

A perfect assay (no error) has a slope of 1 and an intercept of 0, as shown above. The actual
data exhibit a slope close to 1, but the intercept appears to be too far from 0 to be attributed to
random error. Exercise Problem 2 addresses the interpretation of these results as they relate to
assay method characteristics.

‡ a and b are the sample estimates of the true parameters, A and B.
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This example suggests several questions and problems regarding linear regression analy-
sis. The line that best fits the experimental data is an estimate of some true relationship between
X and Y. In most circumstances, we will fit a straight line to such data only if we believe that the
true relationship between X and Y is linear. The experimental observations will not fall exactly
on a straight line because of variability (e.g., error associated with the assay). This situation (true
linearity associated with experimental error) is different from the case where the underlying
true relationship between X and Y is not linear. In the latter case, the lack of fit of the data to the
least squares line is due to a combination of experimental error and the lack of linearity of the X,
Y relationship (Fig. 7.4). Elementary techniques of simple linear regression will not differentiate
these two situations: (a) experimental error with true linearity and (b) experimental error and
nonlinearity. (A design to estimate variability due to both nonlinearity and experimental error
is given in App. II.)

We will discuss some examples relevant to pharmaceutical research that make use of
least squares linear regression procedures. The discussion will demonstrate how variability is
estimated and used to construct estimates and tests of the line parameters A and B.

7.2 ANALYSIS OF STANDARD CURVES IN DRUG ANALYSIS: APPLICATION
OF LINEAR REGRESSION

The assay data discussed previously can be considered as an example of the construction of a
standard curve in drug analysis. Known amounts of drug are subjected to an assay procedure,
and a plot of percentage recovered (or amount recovered) versus amount added is constructed.
Theoretically, the relationship is usually a straight line. A knowledge of the line parameters A
and B can be used to predict the amount of drug in an unknown sample based on the assay
results. In most practical situations, A and B are unknown. The least squares estimates a and b
of these parameters are used to compute drug potency (X) based on the assay response (y). For
example, the least squares line for the data in Figure 7.2(B) and Table 7.2 is

Assay result = 5.9 + 0.915 (potency). (7.5)

Rearranging Eq. (7.5), an unknown sample that has an assay value of 90 can be predicted
to have a true potency of

Potency = X = y − 5.9
0.915

Potency = 90 − 5.9
0.915

= 91.9.

This point (91.9, 90) is indicated in Figure 7.2 by a cross.

7.2.1 Line Through the Origin
Many calibration curves (lines) are known to pass through the origin; that is, the assay response
must be zero if the concentration of drug is zero. The calculation of the slope is simplified if the
line is forced to go through the point (0,0). In our example, if the intercept is known to be zero,
the slope is (Table 7.2)

b =
∑

Xy∑
X2

= 33,600
602 + 802 + 1002 + 1202 = 0.977.

(7.6)

The least squares line fitted with the zero intercept is shown in Figure 7.5. If this line
were to be used to predict actual concentrations based on assay results, we would obtain
answers that are different from those predicted from the line drawn in Figure 7.2(B). However,
both lines have been constructed from the same raw data. “Is one of the lines correct?” or “Is
one line better than the other?” Although one cannot say with certainty which is the better
line, a thorough knowledge of the analytical method will be important in making a choice.
For example, a nonzero intercept suggests either nonlinearity over the range of assays or the
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Figure 7.5 Plot of data in Table 7.2 with known (0, 0)

intercept.

presence of an interfering substance in the sample being analyzed. The decision of which
line to use can also be made on a statistical basis. A statistical test of the intercept can be
performed under the null hypothesis that the intercept is 0 (H0: A = 0, sect. 7.4.1). Rejection of
the hypothesis would be strong evidence that the line with the positive intercept best represents
the data.

7.3 ASSUMPTIONS IN TESTS OF HYPOTHESES IN LINEAR REGRESSION
Although there are no prerequisites for fitting a least squares line, the testing of statistical
hypotheses in linear regression depends on the validity of several assumptions.

1. The X variable is measured without error. Although not always exactly true, X is often measured
with relatively little error and, under these conditions this assumption can be considered
to be satisfied. In the present example, X is the potency of drug in the “known” sample. If
the drug is weighed on a sensitive balance, the error in drug potency will be very small.
Another example of an X variable that is often used, which can be precisely and accurately
measured, is “time.”

2. For each X, y is independent and normally distributed. We will often use the notation Y.x to show
that the value of Y is a function of X.

3. The variance of y is assumed to be the same at each X. If the variance of y is not constant, but
is either known or related to X in some way, other methods (see sect. 7.7) are available to
estimate the intercept and slope of the line [1].

4. A linear relationship exists between X and Y. Y = A + BX, where A and B are the true parameters.
Based on theory or experience, we have reason to believe that X and Y are linearly related.

These assumptions are depicted in Figure 7.6. Except for location (mean), the distribution
of y is the same at every value of X; that is, y has the same variance at every value of X. In the
example in Figure 7.6, the mean of the distribution of y’s decreases as X increases (the slope
is negative).
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Figure 7.6 Normality and variance assumptions in linear regression.

7.4 ESTIMATE OF THE VARIANCE: VARIANCE OF SAMPLE ESTIMATES
OF THE PARAMETERS

If the assumptions noted in section 7.3 hold, the distributions of sample estimates of the slope
and intercept, b and a, are normal with means equal to B and A, respectively.§ Because of this
important result, statistical tests of the parameters A and B can be performed using normal
distribution theory. Also, one can show that the sample estimates are unbiased estimates of
the true parameters (similar to the sample average, X, being an unbiased estimate of the true
mean, �). The variances of the estimates, a and b, are calculated as follows:

�2
a = �2

Y,x

[
1
N

+ X
2∑

(X − X)2

]
(7.7)

�2
b = �2

Y,x∑
(X − X)2

. (7.8)

�2
Y,x is the variance of the response variable, y. An estimate of �2

Y,x can be obtained from the
closeness of the data to the least squares line. If the experimental points are far from the least
squares line, the estimated variability is larger than that in the case where the experimental
points are close to the least squares line. This concept is illustrated in Figure 7.7. If the data
exactly fit a straight line, the experiment shows no variability. In real experiments the chance of
an exact fit with more than two X, y pairs is very small. An unbiased estimate of �2

Y,x is obtained
from the sum of squares of deviations of the observed points from the fitted line as follows:

S2
Y,x =

∑
(y − Y)2

N − 2
=
∑

(y − y)2 − b2[
∑

(X − X)2]
N − 2

, (7.9)

where y is the observed value and Y is the predicted value of Y from the least squares line
(Y = a + bX) (Fig. 7.7). The variance estimate, S2

Y,x, has N − 2 rather than (N − 1) d.f. because
two parameters are being estimated from the data (i.e., the slope and intercept).

When �2
Y,x is unknown, the variances of a and b can be estimated, substituting S2

Y,x for �2
y,x

in the formulas for the variances [Eqs. (7.7) and (7.8)]. Equations (7.10) and (7.11) are used as
the variance estimates, S2

a and S2
b , when testing hypotheses concerning the parameters A and B.

This procedure is analogous to using the sample estimate of the variance in the t test to compare
sample means.

S2
a = S2

Y,x ×
[

1
N

+ X
2∑

(X − X)2

]
(7.10)

S2
b = S2

Y,x∑
(X − X)2

(7.11)

§ a and b are calculated as linear combinations of the normally distributed response variable, y, and thus can be
shown to be also normally distributed.
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Figure 7.7 Variance calculation from least squares line.

7.4.1 Test of the Intercept, A
The background and formulas introduced previously are prerequisites for the construction of
tests of hypotheses of the regression parameters A and B. We can now address the question
of the “significance” of the Y intercept (a) for the line shown in Figure 7.2(B) and Table 7.2.
The procedure is analogous to that of testing means with the t test. In this example, the null
hypothesis is H0: A = 0. The alternative hypothesis is Ha: A 
= 0. Here the test is two-sided; a
priori, if the intercept is not equal to 0, it could be either positive or negative. A t test is performed
as shown in Eq. (7.12). S2

Y,x and S2
a are calculated from Eqs. (7.9) and (7.10), respectively.

td.f. = t2 = |a − A|√
S2

a

(7.12)

where td.f. is the t statistic with N − 2 d.f., a is the observed value of the intercept, and A is the
hypothetical value of the intercept. From Eq. (7.10)

S2
a = S2

Y,x ×
[

1
N

+ X
2∑

(X − X)2

]
. (7.10)

From Eq. (7.9)

S2
Y,x = 1698.75 − (0.915)2(2000)

2
= 12.15

S2
a = 12.15

[
1
4

+ (90)2

2000

]
= 52.245.

From Eq. (7.12)

t2 = |5.9 − 0|√
52.245

= 0.82.

Note that this t test has 2 (N − 2) d.f. This is a weak test, and a large intercept must be
observed to obtain statistical significance. To define the intercept more precisely, it would be
necessary to perform a larger number of assays. If there is no reason to suspect a nonlinear
relationship between X and Y, a nonzero intercept, in this example, could be interpreted as
being due to some interfering substance(s) in the product (the “blank”). If the presence of a
nonzero intercept is suspected, one would probably want to run a sufficient number of assays
to establish its presence. A precise estimate of the intercept is necessary if this linear calibration
curve is used to evaluate potency.
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7.4.2 Test of the Slope, B
The test of the slope of the least squares line is usually of more interest than the test of the
intercept. Sometimes, we may only wish to be assured that the fitted line has a slope other
than zero. (A horizontal line has a slope of zero.) In our example, there seems to be little doubt
that the slope is greater than zero [Fig. 7.2(B)]. However, the magnitude of this slope has a
special physical meaning. A slope of 1 indicates that the amount recovered (assay) is equal
to the amount in the sample, after correction for the blank (i.e., subtract the Y intercept from
the observed reading of y). An observation of a slope other than 1 indicates that the amount
recovered is some constant percentage of the sample potency. Thus we may be interested in a
test of the slope versus 1.

H0 : B = 1 Ha : B 
= 1

A t test is performed using the estimated variance of the slope, as follows:

t = b − B√
S2

b

. (7.13)

In the present example, from Eq. (7.11),

S2
b = S2

y,x∑
(X − X)2

(7.11)

= 12.15
2000

= 0.006075.

Applying Eq. (7.13), for a two-sided test, we have

t = |0.915 − 1|√
0.006075

= 1.09.

This t test has 2 (N − 2) d.f. (the variance estimate has 2 d.f.). There is insufficient evidence
to indicate that the slope is significantly different from 1 at the 5% level. Table IV.4 shows that
a t of 4.30 is needed for significance at � = 0.05 and d.f. = 2. The test in this example has very
weak power. A slope very different from 1 would be necessary to obtain statistical significance.
This example again emphasizes the weakness of the statement “nonsignificant,” particularly
in small experiments such as this one. The reader interested in learning more details of the
use and interpretation of regression in analytical methodology is encouraged to read chapter 5
in Ref. [2].

7.5 A DRUG STABILITY STUDY: A SECOND EXAMPLE OF THE APPLICATION
OF LINEAR REGRESSION

The measurement of the rate of drug decomposition is an important problem in drug formu-
lation studies. Because of the significance of establishing an expiration date defining the shelf
life of a pharmaceutical product, stability data are routinely subjected to statistical analysis.
Typically, the drug, alone and/or formulated, is stored under varying conditions of tempera-
ture, humidity, light intensity, and so on, and assayed for intact drug at specified time intervals.
The pharmaceutical scientist is assigned the responsibility of recommending the expiration
date based on scientifically derived stability data. The physical conditions of the stability test
(e.g., temperature, humidity), the duration of testing, assay schedules, as well as the number of
lots, bottles, and tablets that should be sampled must be defined for stability studies. Careful
definition and implementation of these conditions are important because the validity and pre-
cision of the final recommended expiration date depends on how the experiment is conducted.
Drug stability is discussed further in section 8.7.

The rate of decomposition can often be determined from plots of potency (or log potency)
versus storage time, where the relationship of potency and time is either known or assumed to



156 CHAPTER 7

be linear. The current good manufacturing practices (CGMP) regulations [3] state that statistical
criteria, including sample size and test (i.e., observation or measurement) intervals for each
attribute examined, be used to assure statistically valid estimates of stability (211.166). The
expiration date should be “statistically valid” (211.137, 201.17, 211.62).

The mechanics of determining shelf life may be quite complex, particularly if extreme
conditions are used, such as those recommended for “accelerated” stability studies (e.g., high-
temperature and high-humidity conditions). In these circumstances, the statistical techniques
used to make predictions of shelf life at ambient conditions are quite advanced and beyond
the scope of this book [4]. Although extreme conditions are commonly used in stability testing
in order to save time and obtain a tentative expiration date, all products must eventually
be tested for stability under the recommended commercial storage conditions. The FDA has
suggested that at least three batches of product be tested to determine an expiration date. One
should understand that different batches may show somewhat different stability characteristics,
particularly in situations where additives affect stability to a significant extent. In these cases
variation in the quality and quantity of the additives (excipients) between batches could affect
stability. One of the purposes of using several batches for stability testing is to ensure that
stability characteristics are similar from batch to batch.

The time intervals chosen for the assay of storage samples will depend to a great extent
on the product characteristics and the anticipated stability. A “statistically” optimal design for
a stability study would take into account the planned “storage” times when the drug product
will be assayed. This problem has been addressed in the pharmaceutical literature [5]. How-
ever, the designs resulting from such considerations are usually cumbersome or impractical. For
example, from a statistical point of view, the slope of the potency versus time plot (the rate of
decomposition) is obtained most precisely if half of the total assay points are performed at time
0, and the other half at the final testing time. Note that

∑
(X − X)2 the denominator of the expres-

sion defining the variance of a slope [Eq. (7.8)], is maximized under this condition, resulting
in a minimum variability of the slope. This “optimal” approach to designating assay sampling
times is based on the assumption that the plot is linear during the time interval of the test. In
a practical situation, one would want to see data at points between the initial and final assay
in order to assess the magnitude of the decomposition as the stability study proceeds, as well
as to verify the linearity of the decomposition. Also, management and regulatory requirements
are better satisfied with multiple points during the course of the study. A reasonable sched-
ule of assays at ambient conditions is 0, 3, 6, 9, 12, 18, and 24 months and at yearly intervals
thereafter [6].

The example of the data analysis that will be presented here will be for a single batch. If
the stability of different batches is not different, the techniques described here may be applied to
data from more than one batch. A statistician should be consulted for the analysis of multibatch
data that will require analysis of variance techniques [6,7]. The general approach is described
in section 8.7.

Typically, stability or shelf life is determined from data from the first three production
batches for each packaging configuration (container type and product strength) (see sect. 8.7).
Because such testing may be onerous for multiple strengths and multiple packaging of the
same drug product, matrixing and bracketing techniques have been suggested to minimize the
number of tests needed to demonstrate suitable drug stability [8].

Assays are recommended to be performed at time 0 and 3, 6, 9, 12, 18 and 24 months,
with subsequent assays at 12-month intervals as needed. Usually, three batches of a given
strength and package configuration are tested to define the shelf life. Because many products
have multiple strengths and package configurations, the concept of a “Matrix” design has been
introduced to reduce the considerable amount of testing required. In this situation, a subset of
all combinations of product strength, container type and size, and so on is tested at a given
time point. Another subset is tested at a subsequent time point. The design should be balanced
“such that each combinations of factors is tested to the same extent.” All factor combinations
should be tested at time 0 and at the last time point of the study. The simplest such design, called
a “Basic Matrix 2/3 on Time Design,” has two of the three batches tested at each time point,
with all three batches tested at time 0 and at the final testing time, the time equal to the desired
shelf life. Table 7.3 shows this design for a 36-month product. Tables of matrix designs show
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Table 7.3 Matrix Design for Three Packages and Three Strengths

Package 1 Package 2 Package 3
Batch
strength 3 6 9 12 18 24 36 3 6 9 12 18 24 36 3 6 9 12 18 24 36

1 5 X X X X X X X X X X X X X X X

1 10 X X X X X X X X X X X X X X X

1 15 X X X X X X X X X X X X X X X

2 5 X X X X X X X X X X X X X X X

2 10 X X X X X X X X X X X X X X X

2 15 X X X X X X X X X X X X X X X

3 5 X X X X X X X X X X X X X X X

3 10 X X X X X X X X X X X X X X X

3 15 X X X X X X X X X X X X X X X

Table 7.3A Matrix Design for Three Batches and Two Strengths

Time points for
testing (mo) 0 3 6 9 12 18 24 36

S Batch 1 T T T T T T

T S1 Batch 2 T T T T T T

R Batch 3 T T T T T

E

N Batch 1 T T T T T

G S2 Batch 2 T T T T T T

T Batch 3 T T T T T

H

designs for multiple packages (made from the same blend or batch) and for multiple packages
and strengths. These designs are constructed to be symmetrical in the spirit of optimality for
such designs. For example, this is illustrated in Table 7.3, looking only at the “5” strength for
Package 1. Table 7.3 shows this design for a 36-month product with multiple packages and
strengths (made from the same blend). For example, in Table 7.3, each batch is tested twice, each
package from each batch is tested twice, and each package is tested six times at all time points
between 0 and 36 months.

With multiple strengths and packages, other similar designs with less testing have been
described [9].

The risks of applying such designs are outlined in the Guidance [8]. Because of the limited
testing, there is a risk of less precision and shorter dating. If pooling is not allowed, individual
lots will have short dating, and combinations not tested in the matrix will not have dating
estimates. Read the guidance for further details. The FDA guidance gives examples of other
designs.

The analysis of these designs can be complicated. The simplest approach is to analyze
each strength and configuration separately, as one would do if there were a single strength and
package. Another approach is to model all configurations including interactions. The assump-
tions, strengths, and limitations of these designs and analyses are explained in more detail in
Ref. [9].

A Bracketing design [10] is a design of a stability program such that at any point in
time only extreme samples are tested, such as extremes in container size and dosage. This is
particularly amenable to products that have similar composition across dosage strengths and
that intermediate size and strength products are represented by the extremes [10]. (See also FDA
Guideline on Stability for further discussion as to when this is applicable.)

Suppose that we have a product in three strengths and three package sizes. Table 7.4 is an
example of a Bracketing design [10].
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Table 7.4 Example of Bracketing Design

Strength Low Medium High

Batch 1 2 3 4 5 6 7 8 9

Container Small T T T T T T

Medium

Large T T T T T T

Table 7.5 Tablet Assays from the Stability Study

Time, X (mo) Assay,a y (mg) Average

0 51, 51, 53 51.7

3 51, 50, 52 51.0

6 50, 52, 48 50.0

9 49, 51, 51 50.3

12 49, 48, 47 48.0

18 47, 45, 49 47.0

aEach assay represents a different tablet.

The testing designated by T should be the full testing as would be required for a single
batch. Note that full testing would require nine combinations, or 27 batches. The matrix design
uses four combinations, or 12 batches.

Consider an example of a tablet formulation that is the subject of a stability study.
Three randomly chosen tablets are assayed at each of six time periods: 0, 3, 6, 9, 12, and
18 months after production, at ambient storage conditions. The data are shown in Table 7.5 and
Figure 7.8.

Given these data, the problem is to establish an expiration date defined as that time when
a tablet contains 90% of the labeled drug potency. The product in this example has a label of
50 mg potency and is prepared with a 4% overage (i.e., the product is manufactured with a
target weight of 52 mg of drug). Note that FDA is currently discouraging the use of overages to
compensate for poor stability.

Figure 7.8 shows that the data are variable. A careful examination of this plot suggests
that a straight line would be a reasonable representation of these data. The application of least
squares line fitting is best justified in situations where a theoretical model exists showing that the
decrease in concentration is linear with time (a zero-order process in this example). The kinetics
of drug loss in solid dosage forms is complex and a theoretical model is not easily derived. In
the present case, we will assume that concentration and time are truly linearly related

C = C0 − K t, (7.14)

Figure 7.8 Plot of stability data from Table 7.3.
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where C is the concentration at time t, C0 the concentration at time 0 (Y intercept, A), K the rate
constant (− slope, − B), and t the time (storage time).

With the objective of estimating the shelf life, the simplest approach to the analysis of
these data is to estimate the slope and intercept of the least squares line, using Eqs. (7.4) and
(7.3). (An interesting exercise would be to first try and estimate the slope and intercept by eye
from Fig. 7.8.) When performing the least squares calculation, note that each value of the time
(X) is associated with three values of drug potency (y). When calculating C0 and K, each “time”
value is counted three times and N is equal to 18. From Table 7.3,∑

X = 144
∑

y = 894
∑

Xy = 6984∑
X2 = 1782

∑
y2 = 44, 476 N = 18

X = 8
∑

(X − X)2 = 630
∑

(y − y)2 = 74

From Eqs. (7.4) and (7.3), we have

b = N
∑

Xy −∑
X
∑

y

N
∑

X2 − (
∑

X)2

= 18(6984) − 144(894)
18(1782) − (144)2 = −3024

11, 340
= −0.267 mg/month (7.4)

a = y − b X

= 894
18

− (−0.267)
144
18

= 51.80. (7.3)

The equation of the straight line best fitting the data in Figure 7.8 is

C = 51.8 − 0.267 t. (7.15)

The variance estimate, S2
Y,x, represents the variability of tablet potency at a fixed time, and

is calculated from Eq. (7.9)

S2
Y,x =

∑
y2 − (

∑
y)2

/N − b2 ∑ (X − X)2

N − 2

= 44,476 − (894)2/18 − (−0.267)2(630)
18 − 2

= 1.825.

To calculate the time at which the tablet potency is 90% of the labeled amount, 45 mg,
solve Eq. (7.15) for t when C equals 45 mg.

45 = 51.80 − 0.267 t
t = 25.5 month.

The best estimate of the time needed for these tablets to retain 45 mg of drug is 25.5 months
(see the point marked with a cross in Fig. 7.9). The shelf life for the product will be less than
25.5 months if variability is taken into consideration. The next section, 7.6, presents a discussion
of this topic. This is an average result based on the data from 18 tablets. For any single tablet,
the time for decomposition to 90% of the labeled amount will vary, depending, for example, on
the amount of drug present at time zero. Nevertheless, the shelf-life estimate is based on the
average result.

7.6 CONFIDENCE INTERVALS IN REGRESSION ANALYSIS
A more detailed analysis of the stability data is warranted if one understands that 25.5 months
is not the true shelf life, but only an estimate of the true value. A confidence interval for the
estimate of time to 45 mg potency would give a range that probably includes the true value.
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Figure 7.9 95% confidence band for “stability” line.

The concept of a confidence interval in regression is similar to that previously discussed for
means. Thus the interval for the shelf life probably contains the true shelf life—that time when
the tablets retain 90% of their labeled potency, on the average. The lower end of this confidence
interval would be considered a conservative estimate of the true shelf life. Before giving the
solution to this problem we will address the calculation of a confidence interval for Y (potency)
at a given X (time). The width of the confidence interval for Y (potency) is not constant, but
depends on the value of X, since Y is a function of X. In the present example, one might wish to
obtain a range for the potency at 25.5 months’ storage time.

7.6.1 Confidence Interval for Y at a Given X
We will construct a confidence interval for the true mean potency (Y) at a given time (X). The
confidence interval can be shown to be equal to

Y ± t(SY,x)

√
1
N

+ (X − X)2∑
(X − X)2

. (7.16)

t is the appropriate value (N − 2 d.f., Table IV.4) for a confidence interval with confidence
coefficient P. For example, for a 95% confidence interval, use t values in the column headed
0.975 in Table IV.4.

In the linear regression model, y is assumed to have a normal distribution with variance
�2

Y,x at each X. As can be seen from Eq. (7.16), confidence limits for Y at a specified value
of X depend on the variance, degrees of freedom, number of data points used to fit the line, and
X − X the distance of the specified X (time, in this example) from X, the average time used in
the least squares line fitting. The confidence interval is smallest for the Y that corresponds to
the value of X equal to X, [the term, X −X, in Eq. (7.16) will be zero]. As the value of X is
farther from X, the confidence interval for Y corresponding to the specified X is wider. Thus the
estimate of Y is less precise, as the X corresponding to Y is farther away from X. A plot of the
confidence interval for every Y on the line results in a continuous confidence “band” as shown in
Figure 7.9. The curved, hyperbolic shape of the confidence band illustrates the varying width
of the confidence interval at different values of X, Y. For example, the 95% confidence interval
for Y at X = 25.5 months [Eq. (7.16)] is

45 ± 2.12(1.35)

√
1

18
+ (25.5 − 8)2

630
= 45 ± 2.1.

Thus the result shows that the true value of the potency at 25.5 months is probably between
42.9 and 47.1 mg (45 ± 2.1).
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7.6.2 A Confidence Interval for X at a Given Value of Y
Although the interval for the potency may be of interest, as noted above, this confidence interval
does not directly answer the question about the possible variability of the shelf-life estimate.
A careful examination of the two-sided confidence band for the line (Fig. 7.9) shows that 90%
potency (45 mg) may occur between approximately 20 and 40 months, the points marked “a”
in Figure 7.9. To obtain this range for X (time to 90% potency), using the approach of graphical
estimation as described above requires the computation of the confidence band for a sufficient
range of X. Also, the graphical estimate is relatively inaccurate. The confidence interval for the
true X at a given Y can be directly calculated, although the formula is more complex than that
used for the Y confidence interval [Eq. (7.16)].

This procedure of estimating X for a given value of Y is often called “inverse prediction.”
The complexity results from the fact that the solution for X, X = (Y − a)/b, is a quotient of
variables. (Y − a) and b are random variables; both have error associated with their measurement.
The ratio has a more complicated distribution than a linear combination of variables such as is
the case for Y = a + bX. The calculation of the confidence interval for the true X at a specified
value of Y is

(X − gX) ± [t(SY,x)/b]
[√

(1 − g)/N + (X − X)2/
∑

(X − X)2

]
1 − g

, (7.17)

where

g = t2(S2
Y,x)

b2
∑

(X − X)2

t is the appropriate value for a confidence interval with confidence coefficient equal to P; for
example, for a two-sided 95% confidence interval, use values of t in the column headed 0.975
in Table IV.4.

A 95% confidence interval for X will be calculated for the time to 90% of labeled potency.
The potency is 45 mg (Y) when 10% of the labeled amount decomposes. The corresponding time
(X) has been calculated above as 25.5 months. For a two-sided confidence interval, applying
Eq. (7.17), we have

g = (2.12)2(1.825)
(−0.267)2(630)

= 0.183

X = 25.5 X = 8 N = 18.

The confidence interval is

[25.5 − 0.183(8)] ± [2.12(1.35)/(−0.267)][
√

0.817/18 + (17.5)2/630]
0.817

= 19.8 to 39.0 months.

Thus, using a two-sided confidence interval, the true time to 90% of labeled potency is
probably between 19.8 and 39.0 months. A conservative estimate of the shelf life would be
the lower value, 19.8 months. If g is greater than 1, a confidence interval cannot be calculated
because the slope is not significantly greater than 0.

The Food and Drug Administration has suggested that a one-sided confidence interval
may be more appropriate than a two-sided interval to estimate the expiration date. For most
drug products, drug potency can only decrease with time, and only the lower confidence band of
the potency versus time curve may be considered relevant. (An exception may occur in the case
of liquid products where evaporation of the solvent could result in an increased potency with
time.) The 95% one-sided confidence limits for the time to reach a potency of 45 are computed
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using Eq. (7.17). Only the lower limit is computed using the appropriate t value that cuts off
5% of the area in a single tail. For 16 d.f., this value is 1.75 (Table IV.4), “g” = 0.1244. The
calculation is

[25.5 − 0.1244(8)] + [1.75(1.35)/(−0.267)][
√

0.8756/18 + (17.5)2/630
0.8756

= 20.6 months.

The one-sided 95% interval for X can be interpreted to mean that the time to decompose
to a potency of 45 is probably greater than 20.6 months. Note that the shelf life based on the
one-sided interval is longer than that based on a two-sided interval (Fig. 7.9).

7.6.3 Prediction Intervals
The confidence limits for Y and X discussed above are limits for the true values, having specified
a value of Y (potency or concentration, for example) corresponding to some value of X, or
an X (time, for example) corresponding to a specified value of Y. An important application of
confidence intervals in regression is to obtain confidence intervals for actual future measurements
based on the least squares line.

1. We may wish to obtain a confidence interval for a value of Y to be actually measured at
some value of X (some future time, for example).

2. In the example of the calibration (sect. 7.2), having observed a new value, y, after the
calibration line has been established, we would want to use the information from the fitted
calibration line to predict the concentration, or potency, X, and establish the confidence
limits for the concentration at this newly observed value of y. This is an example of inverse
prediction.

For the example of the stability study, we may wish to obtain a confidence interval for
an actual assay (y) to be performed at some given future time, after having performed the
experiment used to fit the least squares line (case 1 above).

The formulas for calculating a “prediction interval,” a confidence interval for a future
determination, are similar to those presented in Eqs. (7.16) and (7.17), with one modification. In
Eq. (7.16), we add 1 to the sum under the square root portion of the expression. Similarly, for
the inverse problem, Eq. (7.17) the expression (1 − g)/N is replaced by (N + 1)(1 − g)/N. Thus
the prediction interval for Y at a given X is

Y ± t(SY,x)

√
1 + 1

N
+ (X − X)2∑

(X − X)2
. (7.18)

The prediction interval for X at a specified Y is

(X − gX) ± [t(S)/b]
[√

(N + 1)(1 − g)/N + (X − X)2/
∑

(X − X)2

]
1 − g

. (7.19)

The following examples should clarify the computations. In the stability study example,
suppose that one wishes to construct a 95% confidence (prediction) interval for an assay to be
performed at 25.5 months. (An actual measurement is obtained at 25.5 months.) This interval
will be larger than that calculated based on Eq. (7.16), because the uncertainty now includes
assay variability for the proposed assay in addition to the uncertainty of the least squares line.
Applying Eq. (7.18) (Y = 45), we have

45 ± 2.12(1.35)

√
1 + 1

18
+ 17.52

630
= 45 ± 3.55 mg.

In the example of the calibration line, consider an unknown sample that is analyzed and
shows a value (y) of 90. A prediction interval for X is calculated using Eq. (7.19). X is predicted
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to be 91.9 (see sect. 7.2).

g = (4.30)2(12.15)
(0.915)2(2000)

= 0.134

[91.9 − 0.134(90)] ± (4.3)(3.49)/0.915[
√

5(0.866)/4 + (1.9)2/2000]
0.866

= 72.5 to 111.9.

The relatively large uncertainty of the estimate of the true value is due to the small number
of data points (four) and the relatively large variability of the points about the least squares line
(S2

Y,x = 12.15).

7.6.4 Confidence Intervals for Slope (B) and Intercept (A)
A confidence interval can be constructed for the slope and intercept in a manner analogous to
that for means [Eq. (6.2)]. The confidence interval for the slope is

b ± t(Sb) = b ± t(SY,x)√∑
(X − X)2

. (7.20)

A confidence interval for the intercept is

a ± t(Sa ) = a ± t(SY,x)

√√√√ 1
N

+ X
2∑

(X − X)2
. (7.21)

A 95% confidence interval for the slope of the line in the stability example is [Eq. (7.20)]

(−0.267) ± 2.12(1.35)√
630

= −0.267 ± 0.114

= −0.381 to −0.153.

A 90% confidence interval for the intercept in the calibration line example (sect. 7.2) is
[Eq. (7.21)]

5.9 ± 2.93(3.49)

√
1
4

+ 902

2000
= 5.9 ± 21.2 = −15.3 to 27.1.

(Note that the appropriate value of t with 2 d.f. for a 90% confidence interval is 2.93.)

7.7 WEIGHTED REGRESSION
One of the assumptions implicit in the applications of statistical inference to regression pro-
cedures is that the variance of y be the same at each value of X. Many situations occur in
practice when this assumption is violated. One common occurrence is the variance of y being
approximately proportional to X2. This occurs in situations where y has a constant coefficient of
variation (CV) and y is proportional to X (y = BX), commonly observed in instrumental methods
of analysis in analytical chemistry. Two approaches to this problem are (a) a transformation of
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Table 7.6 Analytical Data for a Spectrophotometric Analysis

Concentration (X) Optical density (y) CV Weight (w)

5 0.105 0.098 0.049 0.04

10 0.201 0.194 0.025 0.01

25 0.495 0.508 0.018 0.0016

50 0.983 1.009 0.018 0.0004

100 1.964 2.013 0.017 0.0001

y to make the variance homogeneous, such as the log transformation (see chap. 10), and (b) a
weighted regression analysis.

Below is an example of weighted regression analysis in which we assume a constant CV
and the variance of y proportional to X2 as noted above. This suggests a weighted regression,
weighting each value of Y by a factor that is inversely proportional to the variance, 1/X2.
Table 7.6 shows data for the spectrophotometric analysis of a drug performed at 5 concentrations
in duplicate.

Equation (7.22) is used to compute the slope for the weighted regression procedure.

b =
∑

wXy −∑
wX

∑
wy
/∑

w∑
wX2 − (

∑
wX) 2

/∑
w

. (7.22)

The computations are as follows:∑
w = 0.04 + 0.04 + . . . + 0.0001 + 0.0001 = 0.1042∑
wXy = (0.04)(5)(0.105) + (0.04)(5)(0.098) + . . . + (0.0001)(100)(1.964) + (0.0001)(100)(2.013)

= 0.19983∑
wX = 2(0.04)(5) + 2(0.01)(10) + . . . + 2(0.0001)(100) = 0.74∑
wy = (0.04)(0.105) + (0.04)(0.098) + . . . + (0.0001)(1.964) + (0.0001)(2.013) = 0.0148693∑
wX2 = 2(0.04)(5)2 + 2(0.01)(10)2 + . . . + 2(0.0001)(100)2 = 10

Therefore, the slope b =

0.19983 − (0.74)(0.0148693)/0.1042
10 − (0.74)2/0.1042

= 0.01986.

The intercept is

a = yw − b(Xw), (7.23)

where yw = ∑
wy/

∑
w and Xw = ∑

wX/
∑

w

a = 0.0148693/0.1042 − 0.01986(0.74/0.1042) = 0.00166. (7.23a)

The weighted least squares line is shown in Figure 7.10.

7.8 ANALYSIS OF RESIDUALS
Emphasis is placed elsewhere in this book on the importance of carefully examining and
graphing data prior to performing statistical analyses. The approach to examining data in this
context is commonly known as Exploratory Data Analysis (EDA) [11]. One aspect of EDA is the
examination of residuals. Residuals can be thought of as deviations of the observed data from
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Figure 7.10 Weighted regression plot for data from Table 7.7.

the fit to the statistical model. Examination of residuals can reveal problems such as variance
heterogeneity or nonlinearity. This brief introduction to the principle of residual analysis uses
the data from the regression analysis in section 7.7.

The residuals from a regression analysis are obtained from the differences between the
observed and predicted values. Table 7.7 shows the residuals from an unweighted least squares
fit of the data of Table 7.6. Note that the fitted values are obtained from the least squares equation
y = 0.001789 + 0.019874(X).

If the linear model and the assumptions in the least squares analysis are valid, the residuals
should be approximately normally distributed, and no trends should be apparent.

Figure 7.11 shows a plot of the residuals as a function of X. The fact that the residuals show a
fan-like pattern, expanding as X increases, suggests the use of a log transformation or weighting
procedure to reduce the variance heterogeneity. In general, the intelligent interpretation of
residual plots requires knowledge and experience. In addition to the appearance of patterns
in the residual plots that indicate relationships and character of data, outliers usually become
obviously apparent [12].

Figure 7.12 shows the residual plot after a log (In) transformation of X and Y. Much of the
variance heterogeneity has been removed.

For readers who desire more information on this subject, the book Graphical Exploratory
Data Analysis [13] is recommended.

Table 7.7 Residuals from Least Squares Fit of Analytical Data (Table 7.6)

Unweighted Log transform

Actual Predicted value Residual Actual Predicted value Residual

0.105 0.101 +0.00384 −2.254 −2.298 +0.044

0.201 0.201 +0.00047 −1.604 −1.6073 +0.0033

0.495 0.499 −0.00364 −0.703 −0.695 −0.008

0.983 0.995 −0.0126 −0.017 −0.0004 −0.0166

1.964 1.989 −0.025 +0.675 +0.6863 −0.0113

0.098 0.101 −0.00316 −2.323 −2.298 −0.025

0.194 0.201 −0.00653 −1.640 −1.6073 −0.0033

0.508 0.499 +0.00936 −0.677 −0.6950 +0.018

1.009 0.995 +0.0135 +0.009 −0.0042 +0.0132

2.013 1.989 +0.00238 +0.700 0.6863 +0.0137
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Figure 7.11 Residual plot for unweighted analysis of data of Table 7.6.

Figure 7.12 Residual plot for analysis of In transformed data of Table 7.6.

7.9 NONLINEAR REGRESSION**
Linear regression applies to the solution of relationships where the function of Y is linear in the
parameters. For example, the equation

Y = A+ BX

is linear in A and B, the parameters. Similarly, the equation

Y = A+ Be−x

is also linear in the parameters. One should also appreciate that a linear equation can exist in
more than two dimensions. The equation

Y = A+ BX + CX2,
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an example of a quadratic equation, is linear in the parameters, A, B, and C. These parameters
can be estimated by using methods of multiple regression (see App. III and Ref. [1]).

An example of a relationship that is nonlinear in this context is

Y = A+ e B X.

Here the parameter B is not in a linear form.
If a linearizing transformation can be made, then this approach to estimating the param-

eters would be easiest. For example, the simple first-order kinetic relationship

Y = Ae−B X

is not linear in the parameters, A and B. However, a log transformation results in a linear
equation

ln Y = ln A− BX.

Using the least squares approach, we can estimate ln A (A is the antilog) and B, where ln
A is the intercept and B is the slope of the straight line when ln Y is plotted versus X. If statistical
tests and other statistical estimates are to be made from the regression analysis, the assumptions
of normality of Y (now ln Y) and variance homogeneity of Y at each X are necessary. If Y is
normal and the variances of Y at each X are homogeneous to start with, the ln transformation
will invalidate the assumptions. (On the other hand, if Y is lognormal with constant CV, the log
transformation will be just what is needed to validate the assumptions.)

Some relationships cannot be linearized. For example, in pharmacokinetics, the one-
compartment model with first order absorption and excretion has the following form

C = D(e−ket − e−kat)

where D, ke, and ka are constants (parameters). This equation cannot be linearized. The use of
nonlinear regression methods can be used to estimate the parameters in these situations as well
as the situations in which Y is normal with homogeneous variance prior to a transformation, as
noted above.

The solutions to nonlinear regression problems require more advanced mathematics rel-
ative to most of the material in this book. A knowledge of elementary calculus is necessary,
particularly the application of Taylor’s theorem. Also, a knowledge of matrix algebra is useful
in order to solve these kinds of problems. A simple example will be presented to demon-
strate the principles. The general matrix solutions to linear and multiple regression will also
be demonstrated.

In a stability study, the data in Table 7.8 were available for analysis. The equation repre-
senting the degradation process is

C = C0e−kt. (7.24)

Table 7.8 Data from a Stability Study

Time (t) Concentration mg/L (C)

1 hr 63

2 hr 34

3 hr 22
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Figure 7.13 Plot of stability data from Table 7.8.

The concentration values are known to be normal with the variance constant at each value
of time. Therefore, the usual least squares analysis will not be used to estimate the parameters
C0 and k after the simple linearizing transformation:

ln C = ln C0 − kt.

The estimate of the parameters using nonlinear regression as demonstrated here uses
the first terms of Taylor’s expansion, which approximates the function and results in a linear
equation. It is important to obtain good initial estimates of the parameters, which may be
obtained graphically. In the present example, a plot of ln C versus time (Fig. 7.13) results in
initial estimates of 104 for C0 and +0.53 for k. The process then estimates a change in C0 and
a change in k that will improve the equation based on the comparison of the fitted data to
the original data. Typical of least squares procedures, the fit is measured by the sum of the
squares of the deviations of the observed values from the fitted values. The best fit results from
an iterative procedure. The new estimates result in a better fit to the data. The procedure is
repeated using the new estimates, which results in a better fit than that observed in the previous
iteration. When the fit, as measured by the sum of the squares of deviations, is negligibly
improved, the procedure is stopped. Computer programs are available to carry out these tedious
calculations.

The Taylor expansion requires taking partial derivatives of the function with respect to C0
and k. For the equation, C = C0e−kt, the resulting expression is

dC = dC ′
0(e−k ′t) − dk ′(C ′

0)(te−k ′t). (7.25)

In Eq. (7.25), dC is the change in C resulting from small changes in C0 and k evaluated
at the point, C ′

0 and k ′. dC ′
0 is the change in the estimate of C0, and dk ′ is the change in the

estimate of k. (e−k ′t) and C ′
0(te−k ′t) are the partial derivatives of Eq. (7.24) with respect to C0 and

k, respectively.
Equation (7.25) is linear in dC ′

0 and dk ′. The coefficients of dC ′
0 and dk ′ are (e−k ′t) and

−(C ′
0)(te−k ′t), respectively. In the computations below, the coefficients are referred to as X1

and X2, respectively, for convenience. Because of the linearity, we can obtain the least squares
estimates of dC ′

0 and dk ′ by the usual regression procedures.
The computations for two iterations are shown below. The solution to the least squares

equation is usually accomplished using matrix manipulations. The solution for the coefficients
can be proven to have the following form:

B = (X′ X)−1(X′Y).
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Table 7.9 Results of First Iteration

Time (t) C C ′ dC X1 X2

1 63 61.2 1.79 0.5886 −61.2149

2 34 36.0 −2.03 0.3465 −72.0628

3 22 21.2 0.79 0.2039 −63.6248∑
dC′2 = 7.94

The matrix B will contain the estimates of the coefficients. With two coefficients, this will
be a 2 × 1 (2 rows and 1 column) matrix.

In Table 7.9, the values of X1 and X2 are (e−k ′t) and (C ′
0)(te−k ′t), respectively, using the

initial estimates of C ′
0 = 104 and k ′ = + 0.53 (Fig. 7.13). Note that the fit is measured by the∑

dC ′2 = 7.94.

The solution of (X′ X)−1 (X′Y) gives the estimates of the parameters, dC ′
0 and k ′

∣∣X′ X
∣∣−1 ∣∣X′ Y

∣∣∣∣∣∣ 11.5236 0.06563
0.06563 0.00045079

∣∣∣∣
∣∣∣∣ 0.5296
−16.9611

∣∣∣∣ =
∣∣∣∣ 4.99
0.027

∣∣∣∣
The new estimates of C0 and k are

C ′
0 = 104 + 4.99 = 108.99

k ′ = 0.53 + 0.027 = + 0.557.

With these estimates, new values of C ′ are calculated in Table 7.10.
Note that the

∑
dC ′2 is 5.85, which is reduced from 7.94, from the initial iteration. The

solution of (X′ X)−1 (X′Y) is

∣∣∣∣ 12.587 + 0.06964
+0.06964 0.0004635

∣∣∣∣
∣∣∣∣ 0.0351
−0.909

∣∣∣∣ =
∣∣∣∣ 0.378
0.002

∣∣∣∣
Therefore, the new estimates of C0 and k are

C ′
0 = 108.99 + 0.38 = 109.37
k = 0.557 + 0.002 = 0.559.

The reader can verify that the new value of dC ′2 is now 5.74. The process is repeated until
dC ′2 becomes stable. The final solution is C0 = 109.22, k 0.558.

Another way of expressing the decomposition is

C = e ln C0−kt

Table 7.10 Results of Second Iteration

Time (t) C C ′ dC ′ X1 X2

1 63 62.4 0.6 0.5729 −62.4431

2 34 35.8 −1.8 0.3282 −71.5505

3 22 20.5 1.5 0.18806 −61.4896∑
dC′2 = 5.85



170 CHAPTER 7

or

ln C = ln C0 − kt.

The ambitious reader may wish to try a few iterations using this approach. Note that the
partial derivatives of C with respect to C0 and k are (1/C0) (e ln C0−kt)and −t(e ln C0−kt), respectively.

7.10 CORRELATION
Correlation methods are used to measure the “association” of two or more variables. Here,
we will be concerned with two observations for each sampling unit. We are interested in
determining if the two values are related, in the sense that one variable may be predicted from a
knowledge of the other. The better the prediction, the better the correlation. For example, if we
could predict the dissolution of a tablet based on tablet hardness, we say that dissolution and
hardness are correlated. Correlation analysis assumes a linear or straight-line relationship between
the two variables.

Correlation is usually applied to the relationship of continuous variables, and is best
visualized as a scatter plot or correlation diagram. Figure 7.14(A) shows a scatter plot for two
variables, tablet weight and tablet potency. Tablets were individually weighed and then assayed.
Each point in Figure 7.14(A) represents a single tablet (X = weight, Y = potency). Inspection
of this diagram suggests that weight and potency are positively correlated, as is indicated by
the positive slope, or trend. Low-weight tablets are associated with low potencies, and vice
versa. This positive relationship would probably be expected on intuitive grounds. If the tablet
granulation is homogeneous, a larger weight of material in a tablet would contain larger amounts
of drug. Figure 7.14(B) shows the correlation of tablet weights and dissolution rate. Smaller tablet
weights are related to higher dissolution rates, a negative correlation (negative trend).

Inspection of Figure 7.14(A) and (B) reveals what appears to be an obvious relationship.
Given a tablet weight, we can make a good “ballpark” estimate of the dissolution rate and

Figure 7.14 Examples of various correlation diagrams or scatter plots. The correlation coefficient, r , is defined

in section 7.10.1.
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potency. However, the relationship between variables is not always as apparent as in these
examples. The relationship may be partially obscured by variability, or the variables may not be
related at all. The relationship between a patient’s blood pressure reduction after treatment with
an antihypertensive agent and serum potassium levels is not as obvious [Fig. 7.14(C)]. There
seems to be a trend toward higher blood pressure reductions associated with higher potassium
levels—or is this just an illusion? The data plotted in Figure 7.14(D), illustrating the correlation
of blood pressure reduction and age, show little or no correlation.

The various scatter diagrams illustrated in Figure 7.14 should give the reader an intuitive
feeling for the concept of correlation. There are many experimental situations where a researcher
would be interested in relationships among two or more variables. Similar to applications of
regression analysis, correlation relationships may allow for prediction and interpretation of
experimental mechanisms. Unfortunately, the concept of correlation is often misused, and more
is made of it than is deserved. For example, the presence of a strong correlation between
two variables does not necessarily imply a causal relationship. Consider data that show a
positive relationship between cancer rate and consumption of fluoridated water. Regardless of
the possible validity of such a relationship, such an observed correlation does not necessarily
imply a causal effect. One would have to investigate further other factors in the environment
occurring concurrently with the implementation of fluoridation, which may be responsible
for the cancer rate increase. Have other industries appeared and grown during this period,
exposing the population to potential carcinogens? Have the population characteristics (e.g.,
racial, age, sex, economic factors) changed during this period? Such questions may be resolved
by examining the cancer rates in control areas where fluoridation was not enforced.

The correlation coefficient is a measure of the “degree” of correlation, which is often
erroneously interpreted as a measure of “linearity.” That is, a strong correlation is sometimes
interpreted as meaning that the relationship between X and Y is a straight line. As we shall see
further in this discussion, this interpretation of correlation is not necessarily correct.

7.10.1 Correlation Coefficient
The correlation coefficient is a quantitative measure of the relationship or correlation between
two variables.

Correlation coefficient = r =
∑

(X − X)(y − y)√∑
(X − X)2

∑
(y − y)2

. (7.26)

A shortcut computing formula is

r = N
∑

Xy −∑
X
∑

y√[
N
∑

X2 − (
∑

X)2
] [

N
∑

y2 − (
∑

y)2
] , (7.27)

where N is the number of X, y pairs.
The correlation coefficient, r, may be better understood by its relationship to S2

Y,x , the
variance calculated from regression line fitting procedures. r2 represents the relative reduction
in the sum of squares of the variable y resulting from the fitting of the X, y line. For example,
the sum of squares

[∑
(y − y)2

]
for the y values 0, 1, and 5 is equal to 14 [see Eq. (1.4)].

∑
(y − y)2 = 02 + 12 + 52 − (0 + 1 + 5)2

3
= 14.

If these same y values were associated with X values, the sum of squares of y from the
regression of y and X will be equal to or less than

∑
(y − y)2, or 14 in this example. Suppose that

X and y values are as follows (Fig. 7.15):
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Figure 7.15 Reduction in sum of squares due to

regression.

X y Xy

0 0 0
∑

(X − X)2 = 2

1 1 1

2 5 10
∑

(y − y)2 = 14

Sum 3 6 11

According to Eq. (7.9), the sum of squares due to deviations of the y values from the
regression line is

∑
(y − y)2 − b

2 ∑
(X − X)2, (7.28)

where b is the slope of the regression line (y on X). The term b2 ∑ (X − X)2 is the reduction in the
sum of squares due to the straight-line regression fit. Applying Eq. (7.28), the sum of squares is

14 − (2.5)2(2) = 14 − 12.5 = 1.5 (the slope, b, is 2.5).

r2 is the relative reduction of the sum of squares

14 − 1.5
14

= 0.893 r =
√

0.893 = 0.945.

The usual calculation of r, according to Eq. (7.27), is as follows:

3(11) − (3)(6)√
[3(5) − (3)2][3(26) − (36)]

= 15√
6(42)

= 0.945.

Thus, according to this notion, r can be interpreted as the relative degree of scatter about
the regression line. If X and y values lie exactly on a straight line (a perfect fit), S2

Y,x is 0, and r is
equal to ± 1; +1 for a line of positive slope and −1 for a line of negative slope. For a correlation
coefficient equal to 0.5, r2 = 0.25. The sum of squares for y is reduced 25%. A correlation
coefficient of 0 means that the X, y pairs are not correlated [Fig. 7.14(D)].

Although there are no assumptions necessary to calculate the correlation coefficient, sta-
tistical analysis of r is based on the notion of a bivariate normal distribution of X and y. We will
not delve into the details of this complex probability distribution here. However, there are two
interesting aspects of this distribution that deserve some attention with regard to correlation
analysis.

1. In typical correlation problems, both X and y are variable. This is in contrast to the linear
regression case, where X is considered fixed, chosen, a priori, by the investigator.
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2. In a bivariate normal distribution, X and y are linearly related. The regression of both X on y
and y on X is a straight line.¶ Thus, when statistically testing correlation coefficients, we are
not testing for linearity. As described below, the statistical test of a correlation coefficient is
a test of correlation or independence. According to Snedecor and Cochran, the correlation
coefficient “estimates the degree of closeness of a linear relationship between two variables,
Y and X, and the meaning of this concept is not easy to grasp” [11].

7.10.2 Test of Zero Correlation
The correlation coefficient is a rough measure of the degree of association of two variables. The
degree of association may be measured by how well one variable can be predicted from another;
the closer the correlation coefficient is to + 1 or − 1, the better the correlation, the better the
predictive power of the relationship. A question of particular importance from a statistical point
of view is whether or not an observed correlation coefficient is “real” or due to chance. If two
variables from a bivariate normal distribution are uncorrelated (independent), the correlation
coefficient is 0. Even in these cases, in actual experiments, random variation will result in a
correlation coefficient different from zero. Thus, it is of interest to test an observed correlation
coefficient, r, versus a hypothetical value of 0. This test is based on an assumption that y is a
normal variable [11]. The test is a t test with (N − 2) d.f., as follows:

H0 : � = 0 Ha : � 
= 0,

where � is the true correlation coefficient, estimated by r.

tN−2 =
∣∣r√

N − 2
∣∣

√
1 − r2

. (7.29)

The value of t is referred to a t distribution with (N − 2) d.f., where N is the sample size
(i.e., the number of pairs). Interestingly, this test is identical to the test of the slope of the least
squares fit, Y = a + bX [Eq. (7.13)]. In this context, one can think of the test of the correlation
coefficient as a test of the significance of the slope versus 0.

To illustrate the application of Eq. (7.29), Table 7.11 shows data of diastolic blood pressure
and cholesterol levels of 10 randomly selected men. The data are plotted in Figure 7.16. r is
calculated from Eq. (7.27)

r = N
∑

Xy −∑
X
∑

y√[
N
∑

X2 − (
∑

X)2
] [

N
∑

y2 − (
∑

y)2
]

= 10(260,653) − (3111)(825)√
[10(987,893) − 31112][10(69,279) − 8252]

= 0.809.

(7.30)

r is tested for significance using Eq. (7.29).

t8 =

∣∣∣0.809
√

8
∣∣∣√

1 − (0.809)2
= 3.89.

A value of t equal to 2.31 is needed for significance at the 5% level (see Table IV.4).
Therefore, the correlation between diastolic blood pressure and cholesterol is significant. The
correlation is apparent from inspection of Figure 7.16.

¶ The regression of y on X means that X is assumed to be the fixed variable when calculating the line. This line
is different from that calculated when Y is considered the fixed variable (unless the correlation coefficient is 1,
when both lines are identical). The slope of the line is r Sy/Sx for the regression of y on X and r Sx/Sy for x on Y.
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Table 7.11 Diastolic Blood Pressure and Serum Cholesterol of 10 Persons

Diastolic blood
Person pressure (DBP), y Cholesterol (C), X Xy

1 80 307 24,560

2 75 259 19,425

3 90 341 30,690

4 74 317 23,458

5 75 274 20,550

6 110 416 45,760

7 70 267 18,690

8 85 320 27,200

9 88 274 24,112

10 78 336 26,208∑
y = 825

∑
X = 3111

∑
Xy = 260,653∑

y2 = 69,279
∑

X 2 = 987,893

Significance tests for the correlation coefficient versus values other than 0 are not very
common. However, for these tests, the t test described above [Eq. (7.29)] should not be used. An
approximate test is available to test for correlation coefficients other than 0 (e.g., H0: � = 0.5).
Since applications of this test occur infrequently in pharmaceutical experiments, the procedure
will not be presented here. The statistical test is an approximation to the normal distribution, and
the approximation can also be used to place confidence intervals on the correlation coefficient.
A description of these applications is presented in Ref. [11].

7.10.3 Miscellaneous Comments
Before leaving the topic of correlation, the reader should once more be warned about the
potential misuses of interpretations of correlation and the correlation coefficient. In particular,
the association of high correlation coefficients with a “cause and effect” and “linearity” is not
necessarily valid. Strong correlation may imply a direct causal relationship, but the nature of the
measurements should be well understood before firm statements can be made about cause and
effect. One should be keenly aware of the common occurrence of spurious correlations due to
indirect causes or remote mechanisms.

The correlation coefficient does not test the linearity of two variables. If anything, it is
more related to the slope of the line relating the variables. Linearity is assumed for the routine
statistical test of the correlation coefficient. As has been noted above, the correlation coefficient
measures the degree of correlation, a measure of the variability of a predictive relationship.

Figure 7.16 Plot of data from Table 7.11.
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Table 7.12 Two Data Sets Illustrating Some Problems of

Interpreting Correlation Coefficients

Set A Set B

X y X y

−2 0 0 0

−1 3 2 4

0 4 4 16

+1 3 6 36

+2 0

A proper test for linearity (i.e., do the data represent a straight-line relationship between X
and Y?) is described in Appendix II and requires replicate measurements in the regression
model. Usually, correlation problems deal with cases where both variables, X and y, are variable
in contrast to the regression model where X is considered fixed. In correlation problems, the
question of linearity is usually not of primary interest. We are more interested in the degree of
association of the variables. Two examples will show that a high correlation coefficient does not
necessarily imply “linearity” and that a small correlation coefficient does not necessarily imply
lack of correlation (if the relationship is nonlinear).

Table 7.12 shows two sets of data that are plotted in Figure 7.17. Both data sets A and B
show perfect (but nonlinear) relationships between X and y. Set A is defined by Y = 4 − X2. Set B
is defined by Y = X2. Yet the correlation coefficient for set A is 0, an implication of no correlation,
and set B has a correlation coefficient of 0.96, very strong correlation (but not linearity!). These
examples should emphasize the care needed in the interpretation of the correlation coefficient,
particularly in nonlinear systems.

Another example of data for which the correlation coefficient can be misleading is shown in
Table 7.13 and Figure 7.18. In this example, drug stability is plotted versus pH. Five experiments
were performed at low pH and one at high pH. The correlation coefficient is 0.994, a highly
significant result (p < 0.01). Can this be interpreted that the data in Figure 7.18 are a good
fit to a straight line? Without some other source of information, it would take a great deal of
imagination to assume that the relationship between pH and t1/2 is linear over the range of pH
equal to 2.0 to 5.5. Even if the relationship were linear, had data been available for points in
between pH 2.0 and 5.5, the fit may not be as good as that implied by the large value of r in
this example. This situation can occur when one value is far from the cluster of the main body
of data. One should be cautious in “over-interpreting” the correlation coefficient in these cases.
When relationships between variables are to be quantified for predictive or theoretical reasons,
regression procedures, if applicable, are recommended. Correlation, per se, is not as versatile or
informative as regression analysis for describing the relationship between variables.

7.11 COMPARISON OF VARIANCES IN RELATED SAMPLES
In section 5.3, a test was presented to compare variances from two independent samples. If the
samples are related, the simple F test for two independent samples is not valid [11]. Related, or

Figure 7.17 Plot of data in Table 7.12 showing problems with interpretation of the correlation coefficient.
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Table 7.13 Data to Illustrate a Problem that Can Result

in Misinterpretation of the Correlation Coefficient

pH Stability, t1/2 (wk)

2.0 48

2.1 50

1.9 50

2.0 46

2.1 47

5.5 12

Figure 7.18 Plot of data from Table 7.10.

paired-sample tests arise, for example, in situations where the same subject tests two treatments,
such as in clinical or bioavailability studies. To test for the equality of variances in related
samples, we must first calculate the correlation coefficient and the F ratio of the variances. The
test statistic is calculated as follows:

rds = F − 1√
(F + 1)2 − 4r2 F

, (7.31)

where F is the ratio of the variances in the two samples and r is the correlation coefficient.
The ratio in Eq. (7.30), rds, can be tested for significance in the same manner as the test for

the ordinary correlation coefficient, with (N − 2) d.f., where N is the number of pairs [Eq. (7.29)].
As is the case for tests of the correlation coefficient, we assume a bivariate normal distribution
for the related data. The following example demonstrates the calculations.

In a bioavailability study, 10 subjects were given each of two formulations of a drug
substance on two occasions, with the results for AUC (area under the blood level versus time
curve) given in Table 7.14.

The correlation coefficient is calculated according to Eq. (7.27).

r = (64,421)(10) − (781)(815)√
[(62,821)(10) − (781)2][(67,087)(10) − (815)2]

= 0.699.

The ratio of the variances (Table 7.14), F, is

202.8
73.8

= 2.75.

[Note: The ratio of the variances may also be calculated as 73.8/202.8 = 0.36, with the
same conclusions based on Eq. (7.31).]
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Table 7.14 AUC Results of the Bioavailability Study (A vs. B)

Formulation

Subject A B

1 88 88

2 64 73

3 69 86

4 94 89

5 77 80

6 85 71

7 60 70

8 105 96

9 68 84

10 73 78

Mean 78.1 81.5

S2 202.8 73.8

The test statistic, rds, is calculated from Eq. (7.31).

rds = 2.75 − 1√
(2.75 + 1)2 − 4(0.699)2(2.75)

= 0.593,

rds is tested for significance using Eq. (7.29).

t8 =

∣∣∣0.593
√

8
∣∣∣

√
1 − 0.5932

= 2.08.

Referring to the t table (Table IV.4, 8 d.f.), a value of 2.31 is needed for significance at the
5% level. Therefore, we cannot reject the null hypothesis of equal variances in this example.
Formulation A appears to be more variable, but more data would be needed to substantiate
such a claim.

A discussion of correlation of multiple outcomes and adjustment of the significance level
is given in section 8.2.2.

KEY TERMS
Best-fitting line Nonlinear regression
Bivariate normal distribution Nonlinearity
Confidence band for line One-sided confidence interval
Confidence interval for X and Y Prediction interval
Correlation Reduction of sum of squares
Correlation coefficient Regression
Correlation diagram Regression analysis
Dependent variable Residuals
Fixed value (X) Scatter plot
Independence Simple linear regression
Independent variable Slope
Intercept S2

Y,x
Inverse prediction Trend
Lack of fit Variance of correlated samples
Linear regression Weighted regression
Line through the origin
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EXERCISES
1. A drug seems to decompose in a manner such that appearance of degradation products

is linear with time (i.e., Cd = kt).

t Cd

1 3

2 9

3 12

4 17

5 19

(a) Calculate the slope (k) and intercept from the least squares line.
(b) Test the significance of the slope (test vs. 0) at the 5% level.
(c) Test the slope versus 5 (H0: B = 5) at the 5% level.
(d) Put 95% confidence limits on Cd at t = 3 and t = 5.
(e) Predict the value of Cd at t = 20. Place a 95% prediction interval on Cd at t = 20.
(f) If it is known that Cd = 0 at t = 0, calculate the slope.

2. A Beer’s law plot is constructed by plotting ultraviolet absorbance versus concentration,
with the following results:

Concentration, X Absorbance, y Xy

1 0.10 0.10

2 0.36 0.72

3 0.57 1.71

5 1.09 5.45

10 2.05 20.50

(a) Calculate the slope and intercept.
(b) Test to see if the intercept is different from 0 (5% level). How would you interpret

a significant intercept with regard to the actual physical nature of the analytical
method?

∗∗(c) An unknown has an absorbance of 1.65. What is the concentration? Put confidence
limits on the concentration (95%).

3. Five tablets were weighed and then assayed with the following results:

Weight (mg) Potency (mg)

205 103

200 100

202 101

198 98

197 98

(a) Plot potency versus weight (weight = X). Calculate the least squares line.
(b) Predict the potency for a 200-mg tablet.
(c) Put 95% confidence limits on the potency for a 200-mg tablet.

∗∗This is a more advanced topic.
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4. Tablets were weighed and assayed with the following results:

Weight Assay Weight Assay

200 10.0 198 9.9

205 10.1 200 10.0

203 10.0 190 9.6

201 10.1 205 10.2

195 9.9 207 10.2

203 10.1 210 10.3

(a) Calculate the correlation coefficient.
(b) Test the correlation coefficient versus 0 (5% level).
(c) Plot the data in the table (scatter plot).

5. Tablet dissolution was measured in vitro for 10 generic formulations. These products
were also tested in vivo. Results of these studies showed the following time to 80%
dissolution and time to peak (in vivo).

Formulation Time to 80% dissolution (min) Tp(hr)

1 17 0.8

2 25 1.0

3 15 1.2

4 30 1.5

5 60 1.4

6 24 1.0

7 10 0.8

8 20 0.7

9 45 2.5

10 28 1.1

Calculate r and test for significance (versus 0) (5% level). Plot the data.

6. Shah et al. [14] measured the percent of product dissolved in vitro and the time to
peak (in vivo) of nine phenytoin sodium products, with approximately the following
results:

Product Time to peak (hr) Percentage dissolved in 30 min

1 6 20

2 4 60

3 2.5 100

4 4.5 80

5 5.1 35

6 5.7 35

7 3.5 80

8 5.7 38

9 3.8 85

Plot the data. Calculate the correlation coefficient and test to see if it is significantly
different from 0 (5% level). (Why is the correlation coefficient negative?)

7. In a study to compare the effects of two pain-relieving drugs (A and B), 10 patients took
each drug in a paired design with the following results (drug effectiveness based on a
rating scale).
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Patient Drug A Drug B

1 8 6

2 5 4

3 5 6

4 2 5

5 4 5

6 7 4

7 9 6

8 3 7

9 5 5

10 1 4

Are the drug effects equally variable?

8. Compute the intercept and slope of the least squares line for the data of Table 7.6 after
a In transformation of both X and Y. Calculate the residuals and compare to the data in
Table 7.7.

9. In a drug stability study, the following data were obtained:

Time (months) Concentration (mg)

0 2.56

1 2.55

3 2.50

9 2.44

12 2.40

18 2.31

24 2.25

36 2.13

(a) Fit a least squares line to the data.
(b) Predict the time to decompose to 90% of label claim (2.25 mg).
(c) Based on a two-sided 95% confidence interval, what expiration date should be

applied to this formulation?
(d) Based on a one-sided 95% confidence interval, what expiration date should be applied

to this formulation?
††10. Fit the following data to the exponential y = eax. Use nonlinear least squares.

x y

1 1.62

2 2.93

3 4.21

4 7.86

REFERENCES
1. Draper NR, Smith H. Applied Regression Analysis, 2nd ed. New York: Wiley, 1981.
2. Youden WJ. Statistical Methods for Chemists. New York: Wiley, 1964.
3. U.S. Food and Drug Administration. Current Good Manufacturing Practices (CGMP) 21 CFR.

Washington, DC: Commissioner of the Food and Drug Administration, 2006:210–229.

††This is an optional, more difficult problem.



LINEAR REGRESSION AND CORRELATION 181

4. Davies OL, Hudson HE. Stability of drugs: accelerated storage tests. In: Buncher CR, Tsay J-Y, eds.
Statistics in the Pharmaceutical Industry. New York: Marcel Dekker, 1994:445–479.

5. Tootill JPR. A critical appraisal of drug stability testing methods. J Pharm Pharmacol 1961; 13(suppl):
75T–86T.

6. Davis J. The Dating Game. Washington, DC: Food and Drug Administration, 1978.
7. Norwood TE. Statistical analysis of pharmaceutical stability data. Drug Dev Ind Pharm 1986; 12:553–

560.
8. International Conference on Harmonization Bracketing and matrixing designs for stability testing of

drug substances and drug products (FDA Draft Guidance) Step 2, Nov 9, 2000.
9. Nordbrock ET. Stability matrix designs. In: Chow S-C, ed. Encyclopedia of Pharmaceutical Statistics.

New York: Marcel Dekker, 2000:487–492.
10. Murphy JR. Bracketing Design. In: Chow S-C, ed. Encyclopedia of Pharmaceutical Statistics.

New York: Marcel Dekker, 2000:77.
11. Snedecor GW, Cochran WG. Statistical Methods, 8th ed. Ames, IA: Iowa State University Press, 1989.
12. Weisberg S. Applied Linear Regression. New York: Wiley, 1980.
13. duToit SHC, Steyn AGW, Stumpf RH. Graphical Exploratory Data Analysis. New York: Springer, 1986.
14. Shah VP, Prasad VK, Alston T, et al. In vitro in vivo correlation for 100 mg phenytoin sodium capsules.

J Pharm Sci 1983; 72:306.



8 Analysis of Variance

Analysis of variance, also known as ANOVA, is perhaps the most powerful statistical tool.
ANOVA is a general method of analyzing data from designed experiments, whose objective is
to compare two or more group means. The t test is a special case of ANOVA in which only two
means are compared. By designed experiments, we mean experiments with a particular structure.
Well-designed experiments are usually optimal with respect to meeting study objectives. The
statistical analysis depends on the design, and the discussion of ANOVA therefore includes
common statistical designs used in pharmaceutical research. ANOVA designs can be more or
less complex. The designs can be very simple, as in the case of the t-test procedures presented
in chapter 5. Other designs can be quite complex, sometimes depending on computers for their
solution and analysis. As a rule of thumb, one should use the simplest design that will achieve
the experimental objectives. This is particularly applicable to experiments otherwise difficult to
implement, such as is the case in clinical trials.

8.1 ONE-WAY ANOVA
An elementary approach to ANOVA may be taken using the two independent groups t test as
an example. This is an example of one-way ANOVA, also known as a “completely randomized”
design. (Certain simple “parallel-groups” designs in clinical trials correspond to the one-way
ANOVA design.) In the t test, the two treatments are assigned at random to different independent
experimental units. In a clinical study, the t test is appropriate when two treatments are randomly
assigned to different patients. This results in two groups, each group representing one of the
two treatments. One-way ANOVA is used when we wish to test the equality of treatment means
in experiments where two or more treatments are randomly assigned to different, independent
experimental units. The typical null hypothesis is H0: �1 = �2 = �3, where �1 refers to treatment
1, and so on.

Suppose that 15 tablets are available for the comparison of three assay methods, 5 tablets
for each assay. The one-way ANOVA design would result from a random assignment of the
tablets to the three groups. In this example, five tablets are assigned to each group. Although
this allocation (five tablets per group) is optimal with regard to the precision of the comparison
of the three assay methods, it is not a necessary condition for this design. The number of
tablets analyzed by each analytical procedure need not be equal for the purposes of comparing
the mean results. However, one can say, in general, that symmetry is a desirable feature in the
design of experiments. This will become more apparent as we discuss various designs. In the
one-way ANOVA, symmetry can be defined as an equal number of experimental units in each
treatment group.

We will pursue the example above to illustrate the ANOVA procedure. Five replicate
tablets are analyzed in each of the three assay method groups, one assay per tablet. Thus we
assay the 15 tablets, five tablets by each method, as shown in Table 8.1. If only two assay methods
were to be compared, we could use a t test to compare the means statistically. If more than two
assay methods are to be compared, the correct statistical procedure to compare the means is the
one-way ANOVA.

ANOVA is a technique of separating the total variability in a set of data into component
parts, represented by a statistical model. In the simple case of the one-way ANOVA, the model
is represented as

Yi j = � + Gi + εi j , (8.1)
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Table 8.1 Results of Assays Comparing Three

Analytical Methods

Method A Method B Method C

102 99 103

101 100 100

101 99 99

100 101 104

102 98 102

X 101.2 99.4 101.6

s.d. 0.84 1.14 2.07

where Yi j is the jth response in treatment group i (e.g., i = 3, j = 2, second tablet in third group),
Gi the deviation of the ith treatment (group) mean from the overall mean, �; εi j the random
error in the experiment (measurement error, biological variability, etc.) assumed to be normal
with mean 0 and variance � 2.

The model says that the response is a function of the true treatment mean (� + Gi ) and
a random error that is normally distributed, with mean zero and variance � 2. In the case
of a clinical study, Gi + � is the true average of treatment i. If a patient is treated with an
antihypertensive drug whose true mean effect is a 10-mm Hg reduction in blood pressure, then
Yi j = 10 + εi j , where Yi j is the jth observation among patients taking the drug i. (Note that if
treatments are identical, Gi is the same for all treatments.) The error, εi j , is a normally distributed
variable, identically distributed for all observations. It is composed of many factors, including
interindividual variation and measurement error. Thus the observed experimental values will
be different for different people, a consequence of the nature of the assigned treatment and the
random error, εi j (e.g., biological variation). Section 8.5 expands the concept of statistical models.

In addition to the assumption that the error is normal with mean 0 and variance
� 2, the errors must be independent. This is a very important assumption in the ANOVA
model. The fact that the error has mean 0 means that some people will show positive devi-
ations from the treatment mean, and others will show negative deviations; but on the average,
the deviation is zero.

As in the t test, statistical analysis and interpretation of the ANOVA is based on the
following assumptions:

1. The errors are normal with constant variance.
2. The errors (or observations) are independent.

As will be discussed below, ANOVA separates the variability of the data into parts,
comparing that due to treatments to that due to error.

8.1.1 Computations and Procedure for One-Way ANOVA
ANOVA for a one-way design separates the variance into two parts, that due to treatment
differences and that due to error. It can be proven that the total sum of squares (the squared
deviations of each value from the overall mean)

∑
(Yi j − Y)2

is equal to

∑
(Yi j − Yi )2 +

∑
Ni (Yi − Y)2, (8.2)

where Y is the overall mean and Yi is the mean of the ith group. Ni is the number of observations
in treatment group i. The first term in expression (8.2) is called the within sum of squares, and
the second term is called the between sum of squares.



184 CHAPTER 8

Table 8.2 Sample Data to Illustrate Eq. (8.2)

Group I (Y1 j) Group II (Y2 j) Group III (Y3 j)

0 2 6

2 4 10

Yt 1 3 8

Y = (1 + 3 + 8)/3 = (0 + 2 + 2 + 4 + 6 + 10)/6 = 4

A simple example to demonstrate the equality in Eq. (8.2) is shown below, using the data
of Table 8.2.

∑
(Yi j − Y)2 =

∑
Y2 − (

∑
Y)2

N
= 160 − (24)2

6
= 64

∑
(Yi j − Yi )2 = (0 − 1)2 + (2 − 1)2 + (2 − 3)2 + (4 − 3)2 + (6 − 8)2

= (10 − 8)2 = 2 + 2 + 8 = 12

∑
Ni (Yi − Y)2 = 2(1 − 4)2 + 2(3 − 4)2 + 2(8 − 4)2 = 52.

Thus, according to Eq. (8.2), 64 = 12 + 52.
The calculations for the analysis make use of simple arithmetic with shortcut formulas

for the computations similar to that used in the t-test procedures. Computer programs are
available for the analysis of all kinds of ANOVA designs from the most simple to the most
complex. In the latter cases, the calculations can be very extensive and tedious, and use of
computers may be almost mandatory. For the one-way design, the calculations pose no difficulty.
In many cases, use of a pocket calculator will result in a quicker answer than can be obtained
using a less accessible computer. A description of the calculations, with examples, is presented
below.

The computational process consists first of obtaining the sum of squares (SS) for all of
the data.

Total sum of squares (SS) =
∑

(Yi j − Y)2. (8.3)

The total sum of squares is divided into two parts: (a) the SS due to treatment differences
(between-treatment sum of squares), and (b) the error term derived from the within-treatment sum
of squares. The within-treatment sum of squares (within SS) divided by the appropriate degrees
of freedom is the pooled variance, the same as that obtained in the t test for the comparison of
two treatment groups. The ratio of the between-treatment mean square to the within-treatment
mean square is a measure of treatment differences (see below).

To illustrate the computations, we will use the data from Table 8.1, a comparison of
three analytical methods with five replicates per method. Remember that the objective of this
experiment is to compare the average results of the three methods. We might think of method A
as the standard, accepted method, and methods B and C as modifications of the method, meant
to replace method A. As in the other tests of hypotheses described in chapter 5, we first state
the null and alternative hypotheses as well as the significance level, prior to the experiment. For
example, in the present case,∗

H0: �A = �B = �C Ha: �i 
= � j for any two means∗

∗ Alternatives to H0 may also include more complicated comparisons than �i 
= � j ; see example, section 8.2.1.
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1. First, calculate the total sum of squares (total SS or TSS). Calculate
∑

(Yi j − Y)2 [Eq. (8.3)]
using all of the data, ignoring the treatment grouping. This is most easily calculated using
the shortcut formula

∑
Y2 − (

∑
Y)2

N
, (8.4)

where (
∑

Y)2 is the grand total of all of the observations squared, divided by the total
number of observations N, and is known as the correction term, CT. As mentioned in chapter
1, the correction term is commonly used in statistical calculations and is important in the
calculation of the SS in the ANOVA.

TSS =
∑

Y2 − (
∑

Y)2

N

= (1022 + 1012 + · · · + 1032 + · · · + 1022) − (1511)2

15
= 152,247 − 152,208.07 = 38.93.

2. The between-treatment sum of squares (between SS or BSS) is calculated as follows:

BSS =
∑ Ti

2

Ni
− CT, (8.5)

where Ti is the sum of observations in treatment group i and Ni is the number of observations
in treatment group i. Ni need not be the same for each group. In our example, the BSS is
equal to

(
5062

5
+ 4972

5
+ 5082

5

)
− 152,208.07 = 13.73.

As previously noted, the treatment SS is a measure of treatment differences. A large
SS means that the treatment differences are large. If the treatment means are identical, the
treatment SS will be exactly equal to zero (0).

3. The within-treatment sum of squares (WSS) is equal to the difference between the TSS and BSS,
that is, TSS = BSS + WSS. The WSS can also be calculated, as in the t test, by calculating∑

(Yi j − Yi )2 within each group, and pooling the results.

WSS = TSS − BSS
= 38.93 − 13.73 (8.6)
= 25.20.

Having performed the calculations above, the SS for each “source” is set out in an “analysis
of variance table,” as shown in Table 8.3. The ANOVA table includes the source, degrees of freedom,
SS, mean square (MS), and the probability based on the statistical test (F ratio).

Table 8.3 Analysis of Variance for the Data Shown in Table 8.1:

Comparison of Three Analytical Methods

Source d.f. SS Mean square F

Between methods 2 13.73 6.87 F = 3.27a

Within methods 12 25.20 2.10

Total 14 38.93

a0.05 < p < 0.10.
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The degrees of freedom, noted in Table 8.3, are calculated as N − 1 for the total (N is the
total number of observations); number of treatments minus one for the treatments; and for the within
error, subtract d.f. for treatments from the total d.f. In our example,

Total d.f. = 15 − 1 = 14
Between-treatment d.f. = 3 − 1 = 2
Within-treatment d.f. = 14 − 2 = 12

Note that for the within d.f., we have 4 d.f. from each of the three groups. Thus there are
12 d.f. for the within error term. The mean squares are equal to the SS divided by the d.f.

Before discussing the statistical test, the reader is reminded of the assumptions underlying
the ANOVA model: independence of errors, equality of variance, and normally distributed errors.

8.1.1.1 Testing the Hypothesis of Equal Treatment Means
The mean squares are variance estimates. One can demonstrate that the variance estimated by the
treatment mean square is a sum of the within variance plus a term that is dependent on treatment
differences. If the treatments are identical, the term due to treatment differences is zero, and the
between mean square (BMS) will be approximately equal to the within mean square (WMS) on
the average. In any given experiment, the presence of random variation will result in nonequality
of the BMS and WMS terms, even though the treatments may be identical. If the null hypothesis
of equal treatment means is true, the distribution of the BMS/WMS ratio is described by the
F distribution. Note that under the null hypothesis, both WMS and BMS are estimates of � 2, the
within-group variance.

The F distribution is defined by two parameters, d.f. in the numerator and denominator
of the F ratio

F = BMS (2 d.f.)
WMS (12 d.f.)

= 6.87
2.10

= 3.27.

In our example, we have an F with 2 d.f. in the numerator and 12 d.f. in the denominator.
A test of significance is made by comparing the observed F ratio to a table of the F distribution
with appropriate d.f. at the specified level of significance. The F distribution is an asymmetric
distribution with a long tail at large values of F, as shown in Figure 8.1. (See also sects. 3.5
and 5.3.)

To tabulate all the probability points of all F distributions would not be possible. Tables
of F, similar to the t table, usually tabulate points at commonly used � levels. The cutoff points
(� = 0.01, 0.05, 0.10) for F with n1 and n2 d.f. (numerator and denominator) are given in Table
IV.6, the probabilities in this table (1%, 5% and 10%) are in the upper tail, usually reserved
for one-sided tests. This table is used to determine statistical “significance” for the ANOVA.
Although the alternative hypothesis in ANOVA (Ha: at least two treatment means not equal)
is two sided, the ANOVA F test (BMS/WMS) uses the upper tail of the F distribution because,

Figure 8.1 Some F distributions.
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theoretically, the BMS cannot be smaller than the WMS.† (Thus, the F ratio will be less than 1
only due to chance variability.) The BMS is composed of the WMS plus a possible “treatment”
term. Only large values of the F ratio are considered to be significant. In our example, Table
8.3 shows the F ratio to be equal to 3.27. Referring to Table IV.6, the value of F needed for
significance at the 5% level is 3.89 (2 d.f. in the numerator and 12 d.f. in the denominator).
Therefore, we cannot reject the hypothesis that all means are equal: method A = method B =
method C (�A = �B = �C ).

8.1.2 Summary of Procedure for One-Way ANOVA
1. Choose experimental design and state the null hypothesis.
2. Define the � level.
3. Choose samples, perform the experiment, and obtain data.
4. Calculate the TSS and BSS.
5. Calculate the within SS as the difference between the TSS and the BSS.
6. Construct an ANOVA table with mean squares.
7. Calculate the F statistic (BMS/WMS).
8. Refer the F ratio statistic to Table IV.6 (n1 and n2 d.f., where n1 is the d.f. for the BMS and n2

is the d.f. for the WMS).
9. If the calculated F is equal to or greater than the table value for F at the specified � level of

significance, at least two of the treatments can be said to differ.

8.1.3 A Common But Incorrect Analysis of the Comparison of Means
from More Than Two Groups

In the example in section 8.1.1, if more than two assay methods are to be compared, the correct
statistical procedure is a one-way ANOVA. A common error made by those persons not familiar
with ANOVA is to perform three separate t tests on such data: comparing method A to method
B, method A to method C, and method B to method C. This would require three analyses
and “decisions,” which can result in apparent contradictions. For example, decision statements
based on three separate analyses could read

Method A gives higher results than method B(p < 0.05).
Method A is not significantly different from method C(p > 0.05).
Method B is not significantly different from method C(p > 0.05).

These are the conclusions one would arrive at if separate t tests were performed on the
data in Table 8.1 (see Exercise Problem 1). One may correctly question: If A is larger than B, and
C is slightly larger than A, how can C not be larger than B? The reasons for such apparent
contradictions are (a) the use of different variances for the different comparisons, and (b)
performing three tests of significance on the same set of data. ANOVA obviates such ambiguities
by using a common variance for the single test of significance (the F test).‡ The question of
multiple comparisons (i.e., multiple tests of significance) is addressed in the following section.

8.2 PLANNED VERSUS A POSTERIORI (UNPLANNED) COMPARISONS IN ANOVA
Often, in an experiment involving more than two treatments, more specific hypotheses than the
global hypotheses, �1 = �2 = �3 = . . . , are proposed in advance of the experiment. These are
known as a priori or planned comparisons. For example, in our example of the three analytical
methods, if method A is the standard method, we may have been interested in a comparison
of each of the two new methods, B and C, with A (i.e., H0: �A = �C and �A = �B). We may
proceed to make these comparisons at the conclusion of the experiment using the usual t-test

† This may be clearer if one thinks of the null and alternative hypotheses in ANOVA as Ha: �B
2 = �w

2; Ha:
�B

2 > �w
2.

‡ We have assumed in the previous discussion that the variances in the different treatment groups are the same. If
the numbers of observations in each group are equal, the ANOVA will be close to correct in the case of moderate
variance heterogeneity. If in doubt, a test to compare variances may be performed (see sect. 5.3).
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procedure with the following proviso: The estimate of the variance is obtained from the ANOVA,
the pooled within mean square term. This estimate comes from all the groups, not only the two
groups being compared. ANOVA procedures, like the t test, assume that the variances are equal
in the groups being tested.‡ Therefore, the within mean square is the best estimate of the common
variance. In addition, the increased d.f. resulting from this estimate results in increased precision
and power (chap. 7) of the comparisons. A smaller value of t is needed to show “significance”
compared to the t test, which uses only the data from a specific comparison, in general. Tests of
only those comparisons planned a priori should be made using this procedure. This means that
the � level (e.g., 5%) applies to each comparison.

Indiscriminate comparisons made after the data have been collected, such as looking for
the largest differences as suggested by the data, will always result in more significant differences
than those suggested by the stated level of significance. We shall see in section 8.2.1 that a
posteriori tests (i.e., unplanned tests made after data have been collected) can be made. However,
a “penalty” is imposed that makes it more difficult to find “significant” differences. This keeps
the “experiment-wise” � level at the stated value (e.g., 5%). (For a further explanation, see sect.
8.2.1.) The statistical tests for the two planned comparisons as described above are performed
as follows (a two independent groups t test with WMS equal to error, the pooled variance)

Method B versus method A :
|99.4 − 101.2|√
2.1(1/5 + 1/5)

= 1.96.

Method C versus method A :
|101.6 − 101.2|√

2.1(1/5 + 1/5)
= 0.44.

Since the t value needed for significance at the 5% level (d.f. = 12) is 2.18 (Table IV.4),
neither of the comparisons noted previously is significant. However, when reporting such
results, a researcher should be sure to include the actual averages. A confidence interval for the
difference may also be appropriate. The confidence interval is calculated as described previ-
ously [Eq. (5.2)]; but remember to use the WMS for the variance estimate (12 d.f.). Also, the fact
that methods A and B are not significantly different does not mean that they are the same. If one
were looking to replace method A, other things being equal, method C would be the most likely
choice.

If the comparison of methods B and C had been planned in advance, the t test would show
a significant difference at the 5% level (see Exercise Problem 3). However, it would be unfair to
decide to make such a comparison using the t-test procedure described above only after having
seen the results. Now, it should be more clear why the ANOVA results in different conclusions
from that resulting from the comparison of all pairs of treatments using separate t tests.

1. The variance is pooled from all of the treatments. Thus, it is the pooled variance from all treatments
that is used as the error estimate. When performing separate t tests, the variance estimate
differs depending on which pair of treatments is being compared. The pooled variance for
the ordinary t test uses only the data from the specific two groups that are being compared.
The estimates of the variance for each separate t test differ due to chance variability. That
is, although an assumption in ANOVA procedures is that the variance is the same in all
treatment groups, the observed sample variances will be different in different treatment
groups because of the variable nature of the observations. This is what we have observed
in our example. By chance, the variability for methods A and B was smaller than that for
method C. Therefore, when performing individual t tests, a smaller difference of means is
necessary to obtain significance when comparing methods A and B than that needed for the
comparison of methods A and C, or methods B and C. Also, the d.f. for the t tests are 8 for
the separate tests, compared to 12 when the pooled variance from the ANOVA is used. In

‡ We have assumed in the previous discussion that the variances in the different treatment groups are the same. If
the numbers of observations in each group are equal, the ANOVA will be close to correct in the case of moderate
variance heterogeneity. If in doubt, a test to compare variances may be performed (see sect. 5.3).
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conclusion, we obtain different results because we used different variance estimates for the
different tests, which can result in ambiguous and conflicting conclusions.

2. The F test in the ANOVA takes into account the number of treatments being compared. An
� level of 5% means that if all treatments are identical, 1 in 20 experiments (on the average)
will show a significant F ratio. That is, the risk of erroneously observing a significant F is 1
in 20. If separate t tests are performed, each at the 5% level, for each pair of treatments (three
in our example), the chances of finding at least one pair of treatments different in a given
experiment will be greater than 5%, when the treatments are, in fact, identical. We should
differentiate between the two situations (a) where we plan, a priori, specific comparisons of
interest, and (b) where we make tests a posteriori suggested by the data. In case (a), each test
is done at the � level, and each test has an � percent chance of being rejected if treatments
are the same. In case (b), having seen the data we are apt to choose only those differences
that are large. In this case, experiments will reveal differences where none truly exist much
more than � percent of the time.

Multiple testing of data from the same experiment results in a higher significance level
than the stated � level on an experiment-wise basis. This concept may be made more clear if we
consider an experiment in which five assay methods are compared. If we perform a significance
(t) test comparing each pair of treatments, there will be 10 tests, (n)(n − 1)/2, where n is the
number of treatments: 5(4)/2 = 10 in this example. To construct and calculate 10 t tests is a
rather tedious procedure. If treatments are identical and each t test is performed at the 5% level,
the probability of finding at least one significant difference in an experiment will be much more
than 5%. Thus the probability is very high that at the completion of such an experiment, this
testing will lead to the conclusion that at least two methods are different. If we perform 10
separate t tests, the � level, on an experiment-wise basis, would be approximately 40%; that is,
40% of experiments analyzed in this way would show at least one significant difference, when
none truly exists [1].

The Bonferroni method is often used to control the alpha level for multiple comparisons.
For an overall level of alpha, the level is set at �/k for each test, where k is the number of
comparisons planned. For the data of Table 8.1, for a test of two planned comparisons at an
overall level of 0.05, each would be performed at the 0.05/2 = 0.025 level. If the tests consisted
of comparisons of the means (A vs. C) and (A vs. B), t tests could be performed. A more detailed
t table than IV.4 would be needed to identify the critical value of t for a two-sided test at the
0.025 level with 12 d.f. This value lies between the tabled values for the 0.05 and 0.01 level and
is equal to 2.56. The difference needed for significance at the 0.025 level is

2.56 ×
√

2.1 × 2
5

= 2.35.

Since the absolute differences for the two comparisons (A vs. C) and (A vs. B) are 0.4 and
1.8, respectively, neither difference is statistically significant.

In the case of preplanned comparisons, significance may be found even if the F test in
the ANOVA is not significant. This procedure is considered acceptable by many statisticians.
Comparisons made after seeing the data that were not preplanned fall into the category of
a posteriori multiple comparisons. Many such procedures have been recommended and are
commonly used. Several frequently used methods are presented in the following section.

8.2.1 Multiple Comparisons in ANOVA
The discussion above presented compelling reasons to avoid the practice of using many sepa-
rate t tests when analyzing data where more than two treatments are compared. On the other
hand, for the null hypothesis of no treatment differences, a significant F in the ANOVA does
not immediately reveal which of the multiple treatments tested differ. Sometimes, with a small
number of treatments, inspection of the treatment means is sufficient to show obvious differ-
ences. Often, differences are not obvious. Table 8.4 shows the average results and ANOVA table
for four drugs with regard to their effect on the reduction of pain, where the data are derived
from subjective pain scores (see also Fig. 8.2). The null hypothesis is H0: �A = �B = �C = �D.

The alternative hypothesis here is that at least two treatment means differ. The � level is set at



190 CHAPTER 8

Table 8.4 Average Results and ANOVA for Four Analgesic Drugs

Reduction in pain with drugs

A B C D

X 4.5 5.7 7.1 6.3

S2 3.0 4.0 4.5 3.8

S 1.73 2.0 2.12 1.95

N 10 10 10 10

ANOVA

Source d.f. SS Mean square F

Between drugs 3 36 12 F 3,36 = 3.14a

Within drugs 36 137.7 3.83

Total 39 173.7

ap < 0.05.

5%. Ten patients were assigned to each of the four treatment groups. The F test with 3 and 36 d.f.
is significant at the 5% level. An important question that we wish to address here is: Which treat-
ments are different? Are all treatments different from one another, or are some treatments not
significantly different? This problem may be solved using “multiple comparison” procedures.
The many proposals that address this question result in similar but not identical solutions. Each
method has its merits and deficiencies. We will present some approaches commonly used for
performing a posteriori comparisons. Using these methods, we can test differences specified by
the alternative hypothesis, as well as differences suggested by the final experimental data. These
methods will be discussed with regard to comparing individual treatment means. Some of these
methods can be used to compare any linear combination of the treatment means, such as the
mean of drug A versus the average of the means for drugs B, C, and D [A vs. (B + C + D)/3].

For a further discussion of this problem, see the Scheffé method below.

8.2.1.1 Least Significant Difference
The method of “least significant difference” (LSD) proposed by R. A. Fisher, is the simplest
approach to a posteriori comparisons. This test is a simple t test comparing all possible pairs of
treatment means. (Note that this approach is not based on preplanned comparisons, discussed
in the previous section.) However, the LSD method results in more significant differences than
would be expected according to the � level. Because of this, many statisticians do not recommend

Figure 8.2 Result of pain reduction (± standard deviation) for four drugs with 10 patients per treatment group.
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its use. The LSD test differs from the indiscriminate use of multiple t tests in that one proceeds
(a) only if the F test in the ANOVA is significant, and (b) the pooled (within mean square) variance is
used as the variance estimate in the t-test procedure. The LSD approach is illustrated using the
data from Table 8.4.

Since t = X1 − X2√
S2(1/N1 + 1/N2)

,

LSD = t

√
S2

(
1

N1
+ 1

N2

)
. (8.7)

If the sample sizes are equal in each group (N1 = N2 = N),

LSD = t

√
2s 2

N
, (8.8)

where S2 is the within mean square variance and t is the tabulated value of t at the � level, with
appropriate degrees of freedom (d.f. = the number of degrees of freedom from the WMS of the
ANOVA table). Any difference of two means that is equal to or exceeds the LSD is significant at
the � level. From Table IV.4, the value of t at the 5% level with 36 d.f. is 2.03. The variance (from
the ANOVA in Table 8.4) is 3.83. Therefore, the LSD is

LSD = 2.03

√
2(3.83)

10
= 1.78.

The average pain reductions for drugs C and D are significantly greater than that for drug
A (C − A = 2.6; D − A = 1.8).

Note that in the example shown in Table 8.1 (ANOVA table in Table 8.3), the F test is
not significant. Therefore, one would not use the LSD procedure to compare the methods, after
seeing the experimental results. If a comparison had been planned a priori, the LSD test could
be correctly applied to the comparison.

8.2.1.2 Tukey’s Multiple Range Test
Tukey’s multiple range test is a commonly used multiple comparison test based on keeping the
error rate at � (e.g., 5%) from an “experiment-wise” viewpoint. By “experiment-wise” we mean
that if no treatment differences exist, the probability of finding at least one significant difference
for a posteriori tests in a given experiment is � (e.g., 5%). This test is more conservative than
the LSD test. This means that a larger difference between treatments is needed for significance
in the Tukey test than in the LSD test. On the other hand, although the experiment-wise error is
underestimated using the LSD test, the LSD test is apt to find real differences more often than
will the Tukey multiple range test. (The LSD test has greater power.) Note that a trade-off exists.
The easier it is to obtain significance, the greater the chance of mistakenly calling treatments
different (� error), but the less chance of missing real differences (	 error). The balance between
these risks depends on the costs of errors in each individual situation. (See chap. 6 for a further
discussion of these risks.)

In the multiple range test, treatments can be compared without the need for a prior
significant F test. However, the ANOVA should always be carried out. The error term for
the treatment comparisons comes from the ANOVA, the within mean square in the one-way
ANOVA. Similar to the LSD procedure, a least significant difference can be calculated. Any
difference of treatment means exceeding

Q

√
S2

N
(8.9)
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is significant. S2 is the “error” variance from the ANOVA (within mean square for the one-way
ANOVA) and N is the sample size. This test is based on equal sample sizes in each group. If the
sample sizes are not equal in the two groups to be compared, an approximate method may be
used with N replaced by 2N1 N2/(N1 + N2), where N1 and N2 are the sample sizes of the two
groups. Q is the value of the “studentized range” found in Table IV.7A, a short table of Q at
the 5% level. More extensive tables of Q may be found in Ref. [2] (Table A-18a). The value of Q
depends on the number of means being tested (the number of treatments in the ANOVA design)
and the d.f. for error (again, the within mean square d.f. in the one-way ANOVA). In the example
of Table 8.4, the number of treatments is 4, and the d.f. for error are 36. From Table IV.7, the
value of Q is approximately 3.81. Any difference of means greater than

3.81

√
3.83
10

= 2.36

is significant at the 5% level. Therefore, this test finds only drugs A and C to be significantly
different.

This test is more conservative than the LSD test. However, one must understand that the
multiple range test tries to keep the error rate at � on an experiment-wise basis. In the LSD test,
the error rate is greater than � for each experiment.

8.2.1.3 Scheffé Method
The Tukey method should be used if we are only interested in the comparison of treatment
means after having seen the data. However, for more complicated comparisons (also known
as contrasts) for a large number of treatments, the Scheffé method will often result in shorter
intervals needed for significance. As in the Tukey method, the Scheffé method is meant to keep
the � error rate at 5%, for example, on an experiment-wise basis. For the comparison of two
means, the following statistic is computed:

√
S2(k − 1)F

(
1

N1
+ 1

N2

)
, (8.10)

where S2 is the appropriate variance estimate (WMS for the one-way ANOVA), k is the number
of treatments in the ANOVA design, and N1 and N2 are the sample sizes of the two groups
being compared. F is the table value of F (at the appropriate level) with d.f. of (k − 1) in the
numerator, and d.f. in the denominator equal to that of the error term in the ANOVA. Any
difference of means equal to or greater than the value computed from expression (8.10) is
significant at the � level. Applying this method to the data of Table 8.4 results in the following
[S2 = 3.83, k = 4, F (3,36 d.f.) = 2.86, N1 = N2 = 10] :

√
3.83(3)(2.86)(1/10 + 1/10) = 2.56.

Using this method, treatments A and C are significantly different. This conclusion is the
same as that obtained using the Tukey method. However, treatments A and C barely make the
5% level; the difference needed for significance in the Scheffé method is greater than that needed
for the Tukey method for this simple comparison of means. However, one should appreciate
that the Scheffé method can be applied to more complicated contrasts with suitable modification
of Eq. (8.10).

Suppose that drug A is a control or standard drug, and drugs B and C are homologous
experimental drugs. Conceivably, one may be interested in comparing the results of the average
of drugs B and C to drug A. From Table 8.4, the average of the means of drugs B and C is

5.7 + 7.1
2

= 6.4.
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For tests of significance of comparisons (contrasts) for the general case, Eq. (8.10) may be
written as√

(k − 1)F V(contrast), (8.11)

where (k − 1) and (F) are the same as in Eq. (8.10), and V(contrast) is the variance estimate of
the contrast. Here the contrast is

XB + XC

2
− XA.

The variance of this contrast is (see also App. I)

S2/NB + S2/NC

4
+ S2

NA
= S2

(
1

20
+ 1

10

)
= 3S2

20
.

(Note that NA = NB = NC = 10 in this example.) From Eq. (8.11), a difference of (XB + XC )/2 −
XA exceeding√

3(2.86)(3.83)
3

20
= 2.22

will be significant at the 5% level. The observed difference is

6.4 − 4.5 = 1.9.

Since the observed difference does not exceed 2.22, the difference between the average
results of drugs B and C versus drug A is not significant (p > 0.05). For a further discussion of
this more advanced topic, the reader is referred to Ref. [3].

8.2.1.4 Newman–Keuls Test
The Newman–Keuls test uses the multiple range factor Q (see Tukey’s Multiple Range Test)
in a sequential fashion. In this test, the means to be compared are first arranged in order of
magnitude. For the data of Table 8.4, the means are 4.5, 5.7, 6.3, and 7.1 for treatments A, B, D,
and C, respectively.

To apply the test, compute the difference needed for significance for the comparison of 2,
3, . . . , n means (where n is the total number of treatment means). In this example, the experiment
consists of 4 treatments. Therefore, we will obtain differences needed for significance for 2, 3,
and 4 means.

Initially, consider the first two means using the Q test

Q
√

S2/N. (8.12)

From Table IV.7, with 2 treatments and 36 d.f. for error, Q = approximately 2.87. From
Eq. (8.12),

Q
√

S2/N = 2.87
√

3.83/10 = 1.78.

For 3 means, find Q from Table IV.7 for k = 3

3.45
√

3.83/10 = 2.14.

For 4 means, find Q from Table IV.7 for k = 4

3.81
√

3.83/10 = 2.36.
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Note that the last value, 2.36, is the same value as that obtained for the Tukey test.
Thus, the differences needed for 2, 3, and 4 means to be considered significantly different

are 1.78, 2.14, and 2.36. This can be represented as follows

Number of treatments 2 3 4
Critical difference 1.78 2.14 2.36
The four ordered means are

A B D C
4.5 5.7 6.3 7.1

The above notation is standard. Any two means connected by the same underscored line
are not significantly different. Two means not connected by the underscored line are significantly
different. Examination of the two underscored lines in this example shows that the only two
means not connected are 4.5 and 7.1, corresponding to treatments A and C, respectively.

The determination of significant and nonsignificant differences follows. The difference
between treatments A and C, covering 4 means, is equal to 2.6, which exceeds 2.36, resulting in
a significant difference. The difference between treatments A and D is 1.8, which is less than the
critical value of 2.14 for 3 means. This is described by the first underscore. (Note that we need
not compare A and B or B and D since these will not be considered different based on the first
underscore.) Treatments B, D, and C are considered to be not significantly different because the
difference between B and C, encompassing 3 treatment means, is 1.4, which is less than 2.14.
Therefore, a second underscore includes treatments B, D, and C.

8.2.1.5 Dunnett’s Test
Sometimes experiments are designed to compare several treatments against a control but not
among each other. For the data of Table 8.4, treatment A may have been a placebo treatment,
whereas treatments B, C, and D are three different active treatments. The comparisons of interest
are A versus B, A versus C, and A versus D. Dunnett [4,5] devised a multiple comparison
procedure for treatments versus a control. The critical difference,D′, for a two-sided test for any
of the comparisons versus control is defined as

D′ = t′
√

S2

(
1

N1
+ 1

N2

)
,

where t′ is obtained from Table IV.7B.
In the present example, p, the number of treatments to be compared to the control, is equal

to 3, and d.f. = 36. For a two-sided test at the 0.05 level, the value of t′ is 2.48 from Table IV.7B.
Therefore the critical difference is

2.48

√
3.83

(
1

10
+ 1

10

)
= 2.17.

Again, the only treatment with a difference from treatment A greater than 2.17 is treatment
C. Therefore, only treatment C can be shown to be significantly different from treatment A, the
control.

Those readers interested in further pursuing the topic of multiple comparisons are referred
to Ref. [4].

8.2.2 Multiple Correlated Outcomes§

Many clinical studies have a multitude of endpoints that are evaluated to determine efficacy.
Studies of antiarthritic drugs, antidepressants, and heart disease, for example, may consist of a
measure of multiple outcomes. In a comparative study, if each measured outcome is evaluated

§ A more advanced topic.
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independently, the probability of finding a significant effect when the drugs are not different, for
at least one outcome, is greater than the alpha level for the study. In addition, these outcomes
are usually correlated. For example, relief of gastrointestinal distress and bloating may be
highly correlated when evaluating treatment of gastrointestinal symptoms. If all the measures
are independent, Bonferroni’s inequality may be used to determine the significance level. For
example, for five independent measures and a level of 0.01 for each measure, separate analyses
of each measure will yield an overall alpha level of approximately 5% for the experiment as
a whole (see sect. 8.2). However, if the measures are correlated, the Bonferroni adjustment is
too conservative, making it more difficult to obtain significance. The other extreme is when all
the outcome variables are perfectly correlated. In this case, one alpha level (e.g., 5%) will apply
to all the variables. (One need test for only one of the variables; all other variables will share
the same conclusion.) Dubey [6] has presented an approach to adjusting the alpha (�) level for
multiple correlated outcomes. If we calculate the Bonferroni adjustment as 1 − (1 − � )k where
k is the number of outcomes and � is the level for testing each outcome, then the adjusted level
for each outcome will lie between � (perfect correlation) and approximately �/k (no correlation).
The problem can be formulated as

� = overall level of significance = 1 − (1 − � )m, (8.13)

where m lies between 1 and k, k being the number of outcome variables. If there is perfect
correlation among all of the variables, m = 1, the level for each variable, � is equal to �. For zero
correlation, m = k, resulting in the Bonferroni adjustment. Dubey defines

m = k 1−Ri , (8.14)

where Ri is an “average” correlation.

Ri =
∑
i 
= j

Ri j

k − 1
. (8.15)

This calculation will be clarified in the example following this paragraph.
To obtain the alpha level for testing each outcome, � , use Eq. (8.16) that is derived from

Eq. (8.13) by solving for � .

� = 1 − (1 − �)1/m (8.16)

The following example shows the calculation.
Suppose five variables are defined for the outcome of a study comparing an active and

placebo for the treatment of heart disease: (1) trouble breathing, (2) pains in chest, (3) numbing/
tingling, (4) rapid pulse, and (5) indigestion. The overall level for significance is set at 0.05. First,
form the correlation matrix for the five variables. Table 8.5 is an example of such a matrix.

This matrix is interpreted for example, as the correlation between numbing/tingling and
rapid pulse being 0.41 (variables 3 and 4), etc.

Table 8.5 Correlation Matrix for five Variables Measuring

Heart “Disease”

Variable

1 2 3 4 5

1 1.00 0.74 0.68 0.33 0.40

2 0.74 1.00 0.25 0.66 0.85

3 0.68 0.25 1.00 0.41 0.33

4 0.33 0.66 0.41 1.00 0.42

5 0.40 0.85 0.33 0.42 1.00
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Calculate the “average” correlation, ri from Eq. (8.15).

r1 = {0.74 + 0.68 + 0.33 + 0.40)
4

= 0.538

r2 = {0.74 + 0.25 + 0.66 + 0.85)
4

= 0.625

r3 = {0.68 + 0.25 + 0.41 + 0.33)
4

= 0.425

r4 = {0.33 + 0.66 + 0.41 + 0.42)
4

= 0.455

r5 = {0.40 + 0.85 + 0.33 + 0.42)
4

= 0.500

The average correlation is

0.538 + 0.625 + 0.425 + 0.455 + 0.500
5

= 0.509.

From Eq. (8.14),

m = k 1−0.509 = 50.491 = 2.203.

From Eq. (8.16), the level for each variable is adjusted to � = 1 − (1 − �)1/m = 1 − (1 −
0.05)1/2.203 = 0.023.

Therefore, testing of the individual outcome variables should be performed at the
0.023 level.

Equation (8.13) can also be used to estimate the sample size of a study with multiple
endpoints. Comelli [7] gives an example of a study with eight endpoints, and an estimated
average correlation of 0.7. First, solve for � , where alpha = 0.05 and Ri is 0.7.

� = 1 − (1 − �)1/m = 0.05, where m = 8(1−0.7).

� is equal to 0.027. The sample size can then be computed by standard methods (see chap.
6). For the sample size calculation, use an alpha of 0.027 with desired power, and with the
endpoint that is likely to show the smallest standardized treatment difference. For example,
in a parallel design, suppose we wish to have a power of 0.8, and the endpoint with the
smallest standardized difference is 0.5/1 (difference/standard deviation). Using Eq. (6.6), N =
2(1/0.5)2(2.21 + 0.84)2 + 2 = 77 per group.

8.3 ANOTHER EXAMPLE OF ONE-WAY ANOVA: UNEQUAL SAMPLE SIZES
AND THE FIXED AND RANDOM MODELS

Before leaving the topic of one-way ANOVA, we will describe an example in which the sample
sizes of the treatment groups are not equal. We will also introduce the notion of “fixed” and
“random” models in ANOVA.

Table 8.6 shows the results of an experiment comparing tablet dissolution as performed
by five laboratories. Each laboratory determined the dissolution of tablets from the same batch
of a standard product. Because of a misunderstanding, one laboratory (D) tested 12 tablets,
whereas the other four laboratories tested six tablets. The null hypothesis is

H0: �A = �B = �C = �D = �E ,

and

Ha: �i 
= � j for at least two means.
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Table 8.6 Percent Dissolution After 15 Minutes for Tablets

from a Single Batch Tested in Five Laboratories

Laboratory

A B C D E

68 55 78 75 65

78 62 63 60 60

63 67 78 66 66

56 60 65 69 75

61 67 70 58 75

69 73 74 64 70

71

71

65

77

60

— — — 63 —

Total 395 384 428 799 411

X 65.8 64.0 71.3 66.6 68.5

s.d. 7.6 6.3 6.4 6.1 6.0

The ANOVA calculations are performed in an identical manner to that shown in the
previous example (sect. 8.1.1). The ANOVA table is shown in Table 8.7. The F test for laboratories
(4, 31 d.f.) is 1.15, which is not significant at the 5% level (Table IV.6). Therefore, the null
hypothesis that the laboratories obtain the same average result for dissolution cannot be rejected.

∑
X = 2417

∑
X2 = 163,747 N = 36

TSS =
∑

X2 − (
∑

X)2

N
= 1472.306.

Between Lab SS = (395)2

6
+ (384)2

6
+ (428)2

6
+ (799)2

12
+ (411)2

6
− (2417)2

36
= 189.726.

Within lab SS = TSS − BSS = 1472.306 − 189.726 = 1282.58.

One should always question the validity of ANOVA assumptions. In particular, the
assumption of independence may be suspect in this example.

Are tablets tested in sets of six, or is each tablet tested separately? If tablets are tested
one at a time in separate runs, the results are probably independent. However, if six tablets
are tested at one time, it is possible that the dissolution times may be related due to particular
conditions that exist during the experiment. For example, variable temperature setting and
mixing speed would affect all six tablets in the same (or similar) way. A knowledge of the
particular experimental system and apparatus, and/or experimental investigation, is needed

Table 8.7 Analysis of Variance Table for the Data in Table 8.6 for

Tablet Dissolution

Source d.f. SS Mean square F

Between labs 4 189.726 47.43 F4,31 = 1.15

Within labs 31 1282.58 41.37

Total 35 1472.306
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to assess the possible dependence in such experiments. The assumption of equality of variance
seems to be no problem in this experiment (see the standard deviations in Table 8.6).

8.3.1 Fixed and Random Models
In this example, the interpretation (and possible further analysis) of the experimental results
depends on the nature of the laboratories participating in the experiment. The laboratories can
be considered to be

1. the only laboratories of interest with respect to dissolution testing; for example, perhaps the
laboratories include only those that have had trouble performing the procedure;

2. a random sampling of five laboratories, selected to determine the reproducibility (variability)
of the method when performed at different locations.

The former situation is known as a fixed model. Inferences based on the results apply only to
those laboratories included in the experiment. The latter situation is known as a random model.
The random selection of laboratories suggests that the five laboratories are a sample chosen
among many possible laboratories. Thus, inferences based on these results can be applied to all
laboratories in the population of laboratories being sampled.

One way of differentiating a fixed and random model is to consider which treatment
groups (laboratories) would be included if the experiment were to be run again. If the same
groups would always be chosen in these perhaps hypothetical subsequent experiments, then
the groups are fixed. If the new experiment includes different groups, the groups are random.

The statistical test of the hypothesis of equal means among the five laboratories is the same
for both situations, fixed and random. However, in the random case, one may also be interested
in estimating the variance. The estimates of the within-laboratory and between-laboratory variance
are important in defining the reproducibility of the method. This concept is discussed further
in section 12.4.1.

8.4 TWO-WAY ANOVA (RANDOMIZED BLOCKS)
As the one-way ANOVA is an extension of the two independent groups t test when an exper-
iment contains more than two treatments, two-way ANOVA is an extension of the paired t test
to more than two treatments. The two-way design, which we will consider here, is known as a
randomized block design (the nomenclature in statistical designs is often a carryover based on
the original application of statistical designs in agricultural experiments). In this design, treat-
ments are assigned at random to each experimental unit or “block.” (In clinical trials, where a
patient represents a block, each patient receives each of the two or more treatments to be tested
in random order.)

The randomized block design is advantageous when the levels of response of the different
experimental units are very different. The statistical analysis separates these differences from
the experimental error, resulting in a more precise (sensitive) experiment. For example, in the
paired t test, taking differences of the two treatments should result in increased precision if
the experimental units receiving the treatments are very different from each other, but they
differentiate the treatments similarly. In Figure 8.3, the three patients are very different in their
levels of response (blood pressure). However, each patient shows a similar difference between
drugs A and B (A > B). In a two independent groups design (parallel groups), the experimental
error is estimated from differences among experimental units within treatments. This is usually
larger than the experimental error in a corresponding two-way design.

Another example of a two-way (randomized block) design is the comparison of analytical
methods using product from different batches. The design is depicted in Table 8.8. If the batches
have a variable potency, a rational approach is to run each assay method on material from each
batch. The statistical analysis will separate the variation due to different batches from the other
random error. The experimental error is free of batch differences, and will be smaller than that
obtained from a one-way design using the same experimental material (product from different
batches). In the latter case, material would be assigned to each analytical method at random.

A popular type of two-way design that deserves mention is that which includes pretreat-
ment or baseline readings. This design, a repeated measures design, often consists of pretreatment
readings followed by treatment and post-treatment readings observed over time. Repeated
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Figure 8.3 Increased precision in two-way designs.

measure designs are discussed further in chapter 11. In these designs, order (order is time in
these examples) cannot be randomized. One should be careful to avoid bias in situations where
a concomitant control is not part of these experiments. For example, suppose that it is of interest
to determine if a drug causes a change in a clinical effect. One possible approach is to observe
pretreatment (baseline) and post-treatment measurements, and to perform a statistical test (a
paired t test) on the “change from baseline.” Such an experiment lacks an adequate control
group and interpretation of the results may be difficult. For example, any observed change or
lack of change could be dependent on the time of observation, when different environmental
conditions exist, in addition to any possible drug effect. A better experiment would include a
parallel group taking a control product: a placebo or an active drug (positive control). The differ-
ence between change from baseline in the placebo group and test drug would be an unbiased
estimate of the drug effect.

8.4.1 A Comparison of Dissolution of Various Tablet Formulations: Random and Fixed
Models in Two-Way ANOVA

Eight laboratories were requested to participate in an experiment whose objective was to com-
pare the dissolution rates of two generic products and a standard drug product. The purpose
of the experiment was to determine (a) if the products had different rates of dissolution, and (b)
to estimate the laboratory variability (differences) and/or test for significant differences among
laboratories. If the laboratory differences are large, the residual or error SS will be substantially
reduced compared to the corresponding error in the one-way design. If interaction is absent, we
will be using the “within-laboratory” variability to test for differences among the products (see
sect. 8.4.1.2). The laboratory SS and the product SS in the ANOVA are computed in a manner
similar to the calculations in the one-way design. The residual SS is calculated as the total sum
of squares (TSS) minus the laboratory and product SS. (The laboratory and product SS are also
denoted as the row and column SS, respectively.) The error or residual SS, that part of the total

Table 8.8 Two-Way Layout for Analytical Procedures Applied to Different Batches of Material

Analytical method

Batch A B C . . .

1 ←−−−−−−−−−−−− −−−−−−−−−−−−−−−−−→
2 ←−−−−−−−−−−−− −−−−−−−−−−−−−−−−−→
3 ←−−−−−−−−−−−− −−−−−−−−−−−−−−−−−→
.

.

.
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Table 8.9 Tablet Dissolution After 30 Minutes for Three Products

(Percent Dissolution)

Generic

Laboratory A B Standard Row total

1 89 83 94 266

2 93 75 78 246

3 87 75 89 251

4 80 76 85 241

5 80 77 84 241

6 87 73 84 244

7 82 80 75 237

8 68 77 75 220

Column total 666 616 664 1946

X 83.25 77.0 83.0∑
X 2 = 158,786

sum of squares remaining after subtracting out that due to rows and columns, is also often
denoted as the interaction (C × R) SS.

The hypothesis of interest is

H0: �A = �B = �C .

That is, the average dissolution rates of the three products are equal. The level of signifi-
cance is set at 5%. The experimental results are shown in Table 8.9.

The analysis proceeds as follows: Total sum of squares (TSS)

Total sum of squares (TSS) =
∑

X2 − CT = 892 + 932 + · · · + 752 + 752 − (1946)2

24
= 158,786 − 157,788.2 = 997.8.

Column sum of squares (CSS) or product SS

CSS =
∑

C j
2

R
− CT = (6662 + 6162 + 6642)

8
− 157,788.2

= 200.3 (C j is the total of column j, R is the number of rows).

Row sum of squares (RSS) or laboratory SS

RSS =
∑

Ri
2

C
− CT = (2662 + 2462 + · · · + 2202)

3
− 157,788.2

= 391.8 (Ri is the total of row i, C is the number of columns).

Residual (C × R) sum of squares (ESS) = TSS − CSS − RSS

= 997.8 − 200.3 − 391.8 = 405.7.

The ANOVA table is shown in Table 8.10. The d.f. are calculated as follows:

Total = Nt − 1 Nt = total number of observations
Column = C − 1 C = number of columns
Row = R − 1 R = number of rows
Residual (C × R) = (C − 1) (R − 1)
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Table 8.10 Analysis of Variance Table for the Data (Dissolution) from Table 8.8

Source d.f. SS Mean square Fa

Drug products 2 200.3 100.2 F 2,14 = 3.5

Laboratories 7 391.8 56.0 F 7,14 = 1.9

Residual (C × R) 14 405.7 29.0

Total 23 997.8

aSee the text for a discussion of proper F tests.

8.4.1.1 Tests of Significance
To test for differences among products (H0: �A = �B = �C ), an F ratio is formed

drug product mean square
residual mean square

= 100.2
29

= 3.5.

The F distribution has 2 and 14 d.f. According to Table IV.6, an F of 3.74 is needed for
significance at the 5% level. Therefore, the products are not significantly different at the 5%
level. However, had the a priori comparisons of each generic product versus the standard been
planned, one could perform a t test for each of the two comparisons (using 29.0 as the error
from the ANOVA), generic A versus standard and generic B versus standard. Generic A is clearly
not different from the standard. The t test for generic B versus the standard is

t =
∣∣XB − XS

∣∣√
29(1/8 + 1/8)

= 6
2.69

= 2.23.

This is significant at the 5% level (see Table IV.4; t with 14 d.f. = 2.14). Also, one could
apply one of the multiple comparisons tests, such as the Tukey test described in section 8.2.1.
According to Eq. (8.9), any difference exceeding Q

√
S2(1/N) will be significant. From Table IV.7,

Q for 3 treatments and 14 d.f. for error is 3.70 at the 5% level. Therefore, the difference needed
for significance for any pair of treatments for a posteriori tests is

3.70

√
29

1
8

= 7.04.

Since none of the means differ by more than 7.04, individual comparisons decided upon
after seeing the data would show no significance in this experiment.

The test for laboratory differences is (laboratory mean square)/(residual mean square),
which is an F test with 7 and 14 d.f. According to Table IV.6, this ratio is not significant at the 5%
level (a value of 2.77 is needed for significance). As discussed further below, if drug products are
a fixed effect, this test is valid only if interaction (drug product × laboratories) is absent. Under
these conditions, the laboratories are not sufficiently different to show a significant F value at
the 5% level.

8.4.1.2 Fixed and Random Effects in the Two-Way Model §

The proper test of significance in the two-way design depends on the model and the pres-
ence of interaction. The notion of interaction will be discussed further in the presentation of
factorial designs (chap. 9). In the previous example, the presence of interaction means that the
three products are ranked differently with regard to dissolution rate by at least some of the eight
laboratories. For example, laboratory 2 shows that generic A dissolves fastest among the three
products, with generic B and the standard being similar. On the other hand, laboratory 8 shows
that generic A is the slowest-dissolving product. Interaction is conveniently shown graphically
as in Figure 8.4. “Parallel curves” indicate no interaction.

§ A more advanced topic.
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Figure 8.4 Average results of dissolution for eight laboratories. — · standard; — generic A; – – – generic B.

Of course, in the presence of error (variability), it is not obvious if the apparent lack of
parallelism is real or is due to the inherent variability of the system. An experiment in which a
lab makes a single observation on each product, such as is the case in the present experiment,
usually contains insufficient information to make decisions concerning the presence or absence
of interaction. To test for interaction, an additional error term is needed to test for the significance
of the C × R residual term. In this case, the experiment should be designed to have replicates
(at least duplicate determinations). In the absence of replication, it is best (usually) to assume
that interaction is present. This is a conservative point of view. A knowledge of the presence
or absence of interaction is important in order that one may choose the proper error term for
statistical testing (the term in the denominator of the F test) as described below.

The concept of fixed and random effects was introduced under the topic of one-way
ANOVA. A “fixed” category includes all the treatments of interest. In the present example, it is
apparent that the columns, drug products, are fixed. We are only interested in comparing the
two generic products with the standard. Otherwise, we would have included other products of
interest in the experiment. On the other hand, the nature of the rows, laboratories, is not obvious.
Depending on the context, laboratories may be either random or fixed. If the laboratories were
selected as a random sample among many laboratories that perform such dissolution tests, then
“laboratories” is a random factor. In the present situation, the laboratories are chosen as a means
of replication in order to compare the dissolution of the three products. Then, inferences based on
the result of the experiment are applied to the population of laboratories from which this sample
of eight was drawn. We might also be interested in estimating the variance among laboratories
in order to have some estimate of the difference to be expected when two or more laboratories
perform the same test (see sect. 12.4.1). If the laboratories chosen were the only laboratories of
interest, and inferences based on the experimental results apply only to these eight laboratories,
then laboratories are considered to be fixed. Table 8.11 shows when the F tests in the two-way
ANOVA are valid depending on the model and the presence of interaction.

Table 8.11 Tests in the Two-Way Analysis of Variance (One Observation Per Cell)

Columns Rows Interaction Error term for the F testa

Fixed Random None Residual (C × R) or within

Random Random None Residual (C × R) or within

Random Random None Residual (C × R) or within

Fixed Fixed Present Within

Fixed Random Present Residual (C × R) for fixed effect; use within for random effect

Random Random Present Residual (CR)

aResidual is the usual residual mean square and includes (C × R), column × row interaction. Within is the within mean square

calculated from replicate determinations and will be called “error” in future discussions.
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In the usual situation, columns are fixed (e.g., drug treatments, formulations) and rows
are random (patients, batches, laboratories). In these cases, in the absence of replication, the
proper test for columns is (column mean square)/(residual mean square).

Usually, the test for rows is not pertinent if rows are “random.” For example, in a clin-
ical study, in which two or more treatments are to be compared, the rows are “patients.”
The statistical test of interest in such situations is a comparison of the treatments; one does
not usually test for patient differences. However, in many laboratory experiments, both col-
umn and row effects are of interest. In these cases, if significance testing is to be performed
for both row and column effects (where either or both are fixed), it is a good idea to include
proper replication (Table 8.11). Duplicate assays on the same sample such as may be performed
in a dissolution experiment are not adequate to estimate the relevant variability. Replica-
tion in this example would consist of repeat runs, using different tablets for each run. An
example of a two-way analysis in which replication is included is described in the following
section.

8.4.2 Two-Way ANOVA with Replication
Before discussing an example of the analysis of two-way designs with replications, two points
should be addressed regarding the implementation of such experiments.

1. It is best to have equal number of replications for each cell of the two-way design. In the
dissolution example, this means that each lab replicates each formulation an equal number of
times. If the number of replicates is very different for each cell, the analysis and interpretation
of the experimental results can be very complicated and difficult.

2. The experimenter should be sure that the experiment is properly replicated. As noted above,
merely replicating assays on the same tablet is not proper replication in the dissolution
example. Replication is an independently run sample in most cases. Each particular experi-
ment has its own problems and definitions regarding replication. If there is any doubt about
what constitutes a proper replicate, a statistician should be consulted.

As an example of a replicated, two-way experiment, we will consider the dissolution data
of Table 8.9. Suppose that the data presented in Table 8.9 are the average of two determinations
(either two tablets or two averages of six tablets each—a total of 12 tablets). The actual duplicate
determinations are shown in Table 8.12. We will consider “products” fixed and “laboratories”
random.

The analysis of these data results in one new term in the ANOVA, that due to the within-cell
SS. The within-cell SS represents the variability or error due to replicate determinations, and is
the pooled SS from within the cells. In the example shown previously, the SS is calculated for

Table 8.12 Replicate Tablet Dissolution Data for Eight

Laboratories Testing Three Products (Percent Distribution)

Generic

Laboratory A B Standard Row total

1 87, 91 81, 85 93, 95 532

2 90, 96 74, 76 74, 82 492

3 84, 90 72, 78 84, 94 502

4 75, 85 73, 79 81, 89 482

5 77, 83 76, 78 80, 88 482

6 85, 89 70, 76 80, 88 488

7 79, 85 74, 86 71, 79 474

8 65, 71 73, 81 70, 80 440

Total 1332 1232 1328 3892

Average 83.25 77.0 83.0
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each cell,
∑

(X − X)2. For example, for the first cell (generic A in laboratory 1),
∑

(X − X)2 =
(87 − 89)2 + (91 − 89)2 = (87 − 91)2/2 = 8. The SS is equal to 8. The within SS is the total
of the SS for the 24 (8 × 3) cells. The residual or interaction SS is calculated as the difference
between the TSS and the sum of the column SS, row SS, and within-cell SS. The calculations for
Table 8.12 are shown below.

Total sum of squares =
∑

X2 − CT

= 872 + 912 + 902 + · · · + 712 + 792 + 702 + 802 − 38922

48
= 318,160 − 315,576.3 = 2583.7.

Product SS =
∑

C j
2

Rr
− CT

= 13322 + 12322 + 13282

16
− 38922

48
= 315,977 − 315,576.3

= 400.7

where Cj is the sum of observations in column j, R the number of rows, and r the number of
replicates per cell.

Laboratory SS =
∑

Ri
2

Cr
− CT

= 5322 + 4922 + · · · + 4402

6
− 38922

48
= 316,360 − 315,576.3

= 783.7

where Ri is the sum of observations in row i, C the number of columns, and r the number of
replicates per cell.

Within-cell SS∗∗

∑
(X − X)2, where the sum extends over all cells

= (87 − 91)2

2
+ (90 − 96)2

2
+ (84 − 90)2

2
+ · · · + (70 − 80)2

2= 588.

C × R SS = TSS − PSS − LSS − WSS
= 2583.7 − 400.7 − 783.7 − 588
= 811.3.

The ANOVA table is shown in Table 8.13. Note that the F test for drug products is identical
to the previous test, where the averages of duplicate determinations were analyzed. However,
the laboratory mean square is compared to the within mean square to test for laboratory differ-
ences. This test is correct if laboratories are considered either to be fixed (all FDA laboratories,
for example), or random, when drug products are fixed (Table 8.13). For significance F 7,24 must
exceed 2.43 at the 5% level (Table IV.6). The significant result for laboratories suggests that
at least some of the laboratories may be considered to give different levels of response. For
example, compare the results for laboratory 1 versus laboratory 8.

∗∗ For duplicate determinations,
∑

(X − X) = (X1 − X2)2/2.
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Table 8.13 ANOVA Table for the Replicated Dissolution Data Shown in Table 8.12

Source d.f. SS Mean square Fa

Drug products 2 400.7 200.4 F 2,14 = 3.5

Laboratories 7 783.7 112 F 7,24 = 4.6∗
C × R (residual) 14 811.3 58.0 F 14,24 = 2.37∗
Within cells (error) 24b 588 24.5

a Assume drug products are fixed, laboratories random.
b d.f. for within cells is the pooled d.f., one d.f. for each of 24 cells; in general, d.f. = R × C (n − 1), where n is the number of

replicates.
∗p < 0.05.

Another statistical test, not previously discussed, is available in this analysis. The F test
(C × R mean square/within mean square) is a test of interaction. In the absence of interaction
(laboratory × drug product), the C × R mean square would equal the within mean square on
the average. A value of the ratio sufficiently larger than 1 is an indication of interaction. In the
present example, the F ratio is 2.37, 58.0/24.5. This is significant at the 5% level (see Table IV.6;
F 14,24 = 2.13 at the 5% level). The presence of a laboratory × drug product interaction in this
experiment suggests that laboratories are not similar in their ability to distinguish the three
products (Fig. 8.4).

8.4.3 Another Worked Example of Two-Way ANOVA§

Before leaving the subject of the basic ANOVA designs, we will present one further example
of a two-way experiment. The design is a form of a factorial experiment, discussed further in
chapter 9. In this experiment, three drug treatments are compared at three clinical sites. The
treatments consist of two dosages of an experimental drug (low and high dose) and a control
drug. Eight patients were observed for each treatment at each site. The data represent increased
performance in an exercise test in asthmatic patients. The results are shown in Table 8.14.
In order to follow the computations, the following table of totals (and definitions) should be
useful.

CT = (371.5)2

72
= 1916.84

R = number of rows = 3
C = number of columns = 3
r = number of replicates = 8
Ri = total of row i (row 1 = 108.9, row 2 = 140.7, row 3 = 121.9)
Cj = total of column j (column 1 = 69.7, column 2 = 156.1, column 3 = 145.7)

Table 8.14 Increase in Exercise Time for Three Treatments (Antiasthmatic) at Three Clinical Sites

(Eight Patients Per Cell)

Treatment Cell means (standard deviation)

Site A (low dose) B (high dose) C (control) A B C

I 4.0, 2.3, 2.1, 3.0 3.6, 2.6, 5.5, 6.0 5.1, 6.6, 5.1, 6.3 3.475 (2.16) 3.675 (2.06) 6.463 (1.61)

1.6, 6.4, 1.4, 7.0 2.5, 6.0, 0.1, 3.1 5.9, 6.2, 6.3, 10.2

II 2.4, 5.4, 3.7, 4.0 6.6, 6.4, 6.8, 8.3 5.6, 6.4, 8.2, 6.5 3.125 (1.68) 7.975 (1.86) 6.488 (1.52)

3.3, 0.8, 4.6, 0.8 6.9, 9.0, 12.0,7.8 4.2, 5.6, 6.4, 9.0

III 1.0, 1.3, 0.0, 5.1 6.0, 8.1, 10.2, 6.6 5.8, 4.1, 6.3, 7.4 2.113 (1.88) 7.863 (1.52) 5.263 (1.73)

0.2, 2.4, 4.5, 2.4 7.3, 8.0, 6.8, 9.9 4.5, 2.0, 6.8, 5.2

§ A more advanced topic.
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The cell totals are shown below

A B C Total

Site I 27.8 29.4 51.7 108.9

Site II 25 63.8 51.9 140.7

Site III 16.9 62.9 42.1 121.9

Total 69.7 156.1 145.7 371.5

The computations for the statistical analysis proceed as described in the previous example.
The within-cell mean square is the pooled variance over the nine cells with 63 d.f. (7 d.f. from each
cell). In this example (equal number of observations in each cell), the within-cell mean square is
the average of the nine variances calculated from within-cell replication (eight values per cell).
The computations are detailed below.

Total sum of squares =
∑

X2 − CT

= 4.02 + 2.32 + 2.12 + · · · + 6.82 + 5.22 − (371.5)2

72
= 2416.77 − 1916.84 = 499.93.

CSS (treatment SS) =
∑

C j
2

Rr
− CT = 69.72 + 156.12 + 145.72

3 × 8
− 1916.84 = 185.40.

RSS (site SS) =
∑

Ri
2

Cr
− CT = 108.92 + 140.72 + 121.92

3 × 8
− 1916.84 = 21.30.

Within-cell mean square = pooled sum of squares from the nine cells

=
∑

X2 −
∑

(cell total)2

r
= 2416.7

−27.82 + 29.42 + 51.72 + · · · + 42.12

8
= 2416.77 − 2214.2 = 202.57.

C × R SS (treatment × site interaction SS)

= total SS − treatment SS − site SS − within SS
= 499.93 − 185.40 − 21.30 − 202.57
= 90.66.

Note the shortcut calculation for within SS using the squares of the cell totals. Also note
that the C × R SS is a measure of interaction of sites and treatments. Before interpreting the
results of the experiment from a statistical point of view, both the ANOVA table (Table 8.15)
and a plot of the average results should be constructed (Fig. 8.5). The figure helps as a means of
interpretation of the ANOVA as well as a means of presenting the experimental results to the
“client” (e.g., management).

8.4.3.1 Conclusions of the Experiment Comparing Three Treatments at Three Sites:
Interpretation of the ANOVA Table

The comparisons of most interest come from the treatment and treatment × site terms. The
treatment mean square measures differences among the three treatments. The treatment × site
mean square is a measure of how the three sites differentiate the three treatments. As is usually
the case, interactions are most easily visualized by means of a plot (Fig. 8.5). The lack of “paral-
lelism” is most easily seen as a difference between site I and the other two sites. Site I shows that
treatment C has the greatest increase in exercise time, whereas the other two sites find treatment
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Table 8.15 Analysis of Variance Table for the Data of Table 8.14 (Treatments and Sites Fixed)

Source d.f. SS Mean square F

Treatments 2 185.4 92.7 F 2.63 = 28.8a

Sites 2 21.3 10.7 F 2.63 = 3.31b

Treatment × site 4 90.66 22.7 F 4.63 = 7.05a

Within 63 202.57 3.215

Total 71 499.93

ap < 0.01.
bp < 0.05.

B most efficacious. Of course, the apparent differences, as noted in Figure 8.5, may be due to
experimental variability. However, the treatment × site interaction term (Table 8.15) is highly
significant (F4,63 = 7.05). Therefore, this interaction can be considered to be real. The presence
of interaction has important consequences on the interpretation of the results. The lack of
consistency makes it difficult to decide if treatment B or treatment C is the better drug. Certainly,
the decision would have been easier had all sites found the same drug best. The final statistical
decision depends on whether one considers sites fixed or random. In this example treatments
are fixed.

Case 1: Sites fixed. If both treatments and sites are fixed, the proper error term for treatments
and sites is the within mean square. As shown in Table 8.15, both treatments and sites (as well
as interaction) are significant. Inspection of the data suggests that treatments B and C are not
significantly different, but that both of these treatments are significantly greater than treatment
A (see Exercise Problem 11 for an a posteriori test). Although not of primary interest in such
studies, the significant difference among sites may be attributed to the difference between site II
and site I, site II showing greater average exercise times (due to higher results for treatment B).
However, this difference is of less importance than the interaction of sites and treatments that
exists in this study. Thus, although treatments B and C do not differ, on the average, in the fixed
site case, site I is different from the other sites in the comparison of treatments B and C. One may
wish to investigate further to determine the cause of such differences (e.g., different kinds of
patients, different exercise equipment, etc.). If the difference between the results for treatments
B and C were dependent on the type of patient treated, this would be an important parameter
in drug therapy. In most multiclinic drug trials, clinical sites are selected at random, although
it is impractical, if not impossible, to choose clinical sites in a truly random fashion (see also
sect. 11.5). Nevertheless, the interpretation of the data is different if sites are considered to be a
random effect.

Case 2: Sites random. If sites are random, and interaction exists, the correct error term for
treatments is the treatment × site (interaction) mean square. In this case, the F test (F 2,4 = 4.09)
shows a lack of significance at the 5% level. The apparently “obvious” difference between
treatment A and treatments B and C is not sufficiently large to result in significance because of
the paucity of d.f. (4 d.f.). The disparity of the interpretation here compared to the fixed sites

Figure 8.5 Plot of average results from data of

Table 8.14. – – site II; — site I; — — site III.
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Table 8.16 Tests for Treatment Differences in Two-Way ANOVA with Replicate Observations (Treatments Fixed)

Rows Interaction Proper error term

Fixed Present Within mean square

Fixed Absent Within mean square or C × R mean square

Random Present C × R (interaction) mean square

Random Absent Within mean square (conservative test: use C × R mean square: pool

C × R and within mean square—see the text)

case is due to the large interaction. The data suggest that differences among treatments are
dependent on the site at which the drugs are tested. If the three sites are random selection from
among many possible sites, this very small sample of sites does not give a reliable estimate of
the population averages.

Table 8.16 abstracted from Table 8.11, shows the proper error terms for testing treatment
differences, depending on whether sites (rows) are random or fixed. The testing also depends
on whether or not there is interaction in the model. Ordinarily, it is not possible to predict the
presence (or absence) of interaction in advance of the study. The conservative approach for
statistical tests is to assume interaction exists. In this example, if sites are random, the C × R
(interaction) mean square is the proper error term for treatments. Often, however, the interaction
mean square has few d.f. This can considerably reduce the power of the test, as is the case in this
example. In these situations, if the interaction mean square is not significant, the interaction and
within mean squares may be pooled. This gives a pooled error term with more d.f. than either
term alone. This is a controversial procedure, but can be considered acceptable if interaction is
clearly not present.

8.4.4 Missing Data
Missing data can result from overt errors in measurements, patients not showing up for sched-
uled visits in a clinical trial, loss of samples, etc. In general, the problems of dealing with missing
data are complex. Missing data can be considered to be caused by missing observations from
a statistically valid, symmetric design. A common manifestation is when a “cell” is empty, that
is, contains no values. A cell may be defined as the intersection of factor levels in a factorial or
related design. For example, in a two-way crossover design, if a subject misses a visit, we have
an empty cell. In a one-way design, missing values do not cause computational problems in
general, because the analysis is valid when sample sizes in the independent groups are not equal.

For a two-way design with one missing value, the missing value may be estimated using
the following formula:

Yi j = rYi + cYj − y
(r − l)(c − l)

, (8.17)

where r is the number of rows, c the number of columns, Yi j the observation in ith row and
jth column, Yi is the total of ith row, Yj the total of jth column, and y the grand total of all
observations.

For example, Table 8.17 shows data with a missing value in the second column and third
row. From Eq. (8.17),Y32 = (3 × 10 + 3 × 9 − 44)/[(3 − l)(3 − 1)] = 3.25.

An ANOVA is performed including the estimated observation (3.25), but the d.f. for error
are reduced by 1 due to the missing observation. (See Exercise Problem 12.)

For more than one missing value and for further discussion, see Snedecor and Cochran [8].
For more complicated designs, computer software programs may be used to analyze data with
missing values. One should be aware that in certain circumstances depending on the nature of
the missing values and the design, a unique analysis may not be forthcoming. In some cases,
some of the observed data may have to be removed in order to arrive at a viable analysis.

Another problem with missing data occurs in clinical studies with observations made over
time where patients drop out prior to the anticipated completion of treatments (censored data).
A common approach when analyzing such data where some patients start but do not complete
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Table 8.17 Illustration of Estimation of a Single Missing Data Point

Columns

1 2 3 Total

Rows

1 3 5 6 14

2 7 4 9 20

3 4 — 6 10

Total 14 9 21 44

the study for various reasons, is to carry the last value forward. For example, in analgesic studies
measuring pain, patients may give pain ratings over time. If pain is not relieved, patients may
take a “rescue” medication and not complete the study as planned. The last pain rating on study
medication would then be continued forward for the missed observation periods. For example,
such a study might require pain ratings (1–5, where 5 is the worst pain and 1 is the least) every
half-hour for six hours. Consider a patient who gives ratings of 5, 4, and 4 for hours 0 (baseline),
half, and one hour, respectively. He then decides to take the rescue medication. The patient would
be assigned a rating of 4 for all periods after one hour (1.5–6 hours, inclusive). Statistical methods
are then used as usual. Other variations on the Last Value Carried forward (LVCF) concept is
to carry forward either the best or worst reading prior to dropout as defined and justified in
the study protocol. (See also sect. 11.2.7.) Other methods include the average of all observations
for a given patient as the final result. These are still controversial and should be discussed with
FDA prior to implementation. One problem with this approach occurs in disease states that are
self-limiting. For example, in studies of single doses of analgesics in acute pain, if the study
extends for a long enough period of time, pain will eventually be gone. To include patients who
have dropped out prior to these extended time periods could bias the results at these latter times.

8.5 STATISTICAL MODELS§

Statistical analyses for estimating parameters and performing statistical tests are usually pre-
sented as linear models as introduced in section 8.1. (See also Apps. II and III.) The parameters
to be included in the model are linearly related to the dependent variable in the form of

Y = B0 X0 + B1 X1 + B2 X2 + · · · + ε, (8.18)

where the Bs are the parameters to be estimated and the various Xi , represent the independent
variables. Epsilon, ε, represents the random error associated with the experiment, and is usually
assumed to be normal with mean 0 and variance, � 2. This suggests that the estimate of Y is
unbiased, with a variance, � 2. For a simple model, where we wish to fit a straight line, the model
would appear as

Y = B0 X0 + B1 X1,

where X0 = 1 and X1 (the independent variable) has a coefficient B1.
In this example, we observe data pairs, Xi , Yi , from which we estimate B0 (intercept) and

B1 (slope). Again, this particular model represents the model of a straight line.
Although simple methods for analyzing such data have been presented in chapter 7,

the data could also be analyzed using ANOVA based on the model. This analysis would first
compute the TSS, which is the SS from a model with only a mean (Y = � + ε), with Nt − 1 d.f.
This is the SS obtained as if all the data were in a single group. The Nt − 1 d.f. are based on the
fact that, in the computation of SS, we are subtracting the mean from each observation before
squaring. Having computed the SS from this simple model, a new SS would then be computed

§ A more advanced topic.
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from a model that looks like a straight line. Each observation is subtracted from the least squares
line and squared (the residuals are subtracted from a model with two parameters, slope and
intercept). The difference between the SS with one parameter (the mean) and the SS with two
parameters (slope and intercept) has 1 d.f. and represents the SS due to the slope. The inclusion
of a slope in the model reduces the SS. In general, as we include more parameters in the model,
the SS is reduced. Eventually, if we have as many observations as terms in the model, we will
have 0 residual SS, a perfect fit.

Typically, we include terms in the model that have meaning in terms of the experimental
design. For example, for a one-way ANOVA (see sect. 8.1), we have separated the experimental
material into k groups and assigned Nt subjects randomly to the k groups. The model consists of
groups and a residual error, which represents the variability of observations within the groups

Yik = � + Gk + εik .

� represents the overall mean of the data, Gk represents the deviation from � due to the kth
group (i.e. kth group effect) (treatment), and εik is the common variance (residual error). Note
that the Xs are not written in the model statement, and are assumed to be equal to 1. A more
detailed description of the model including three groups might look like this (see sect. 8.1)

Yi1 = � + G1 + εi1, Yi2 = � + G2 + εi2, Yi3 = � + G3 + εi3

We then estimate �, G1, G2, and G3 from the model, and the residual is the error SS. Note
that as before, ignoring groups, the total d.f. = Nt − 1. The fit of the model without groups,
compared to the fit with groups (Nk−1 d.f. for each group) has 2 d.f. [(Nt − 1) − (Nt − 3)])( that
represent the SS for differences between groups. If groups have identical means, the residual
SS will be approximately the same for the full model (three separate groups) and the reduced
model (one group).

A somewhat more complex design is a two-way design, such as a randomized block
design, where, for example, in a clinical study, each patient may be subjected to several treat-
ments. This model includes both patient and group effects. The residual error is a combination
of both group × patient interaction (GP) and within-individual variability. To separate these
two sources of variability, patients would have to be replicated in each group (treatment). If
such replication exists (see sect. 8.4.2), the model would appear as follows with g groups (i = 1
to g), and p patients (j = 1 to p) per group, each patient being replicated k times in each group

Yi jk = � + Gi + Pj + GPi j + εi jk .

Models may become complicated, but the procedure for their construction and analysis
follows the simple approaches shown above. For experiments that are balanced (no missing
data), the calculations are simple and give unambiguous results. For unbalanced experiments,
the computations are more complex, and the interpretation is more difficult, sometimes impos-
sible. Computer programs can analyze unbalanced data, but care must be taken to understand
the data structure in order to make the proper interpretation (see also sect. 8.4.4).

8.6 ANALYSIS OF COVARIANCE§

The analysis of covariance (ANCOVA) combines ANOVA with regression. It is a way to increase
precision and/or adjust for bias when comparing two treatments. ANCOVA uses observations
(concomitant variables) that are taken independently of the test (outcome) variable. These
concomitant observations are used to “adjust” the values of the test variable. This usually results
in a statistical test that is more precise than the corresponding nonadjusted analysis. We look for
covariates that are highly correlated with the experimental outcome, the greater the better (10).
For example, the initial weight of a patient in a weight reduction study may be correlated with
the weight reduction observed at the end of the study. Also, note that one may choose more
than one covariate. One simple example is the use of baseline measurements when comparing

§ A more advanced topic.
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Table 8.18 Analytical Results for Eight Batches of Product Comparing Two Manufacturing Methods

Method I Method II

Raw material Final product Raw material Final product

98.4 98.0 98.7 97.6

98.6 97.8 99.0 95.4

98.6 98.5 99.3 96.1

99.2 97.4 98.4 96.1

Average 98.70 97.925 98.85 96.30

the effect of two or more treatments. A common approach in such experiments is to examine
the change from baseline (experimental observation–baseline) as discussed in sections 8.4 and
11.3.2. The analysis can also be approached using ANCOVA, where the baseline measurement is
the covariate. The correction for baseline will then adjust the experimental observation based on
the relationship of the two variables, baseline and outcome. Another example is the comparison
of treatments where a patient characteristic, for example, weight, may be related to the clinical
outcome; weight is the covariate. In these examples, assignment to treatment could have been
stratified based on the covariate variable, for example, weight. ANCOVA substitutes for the
lack of stratification by adjusting the results for the covariate, for example, weight. Refer to the
chapter on regression (chap. 7) and to the section on one-way ANOVA (sect. 8.1) if necessary to
follow this discussion. Ref. [9] is useful reading for more advanced approaches and discussion
of ANCOVA.

In order to facilitate the presentation, Table 8.18 shows the results of an experiment
comparing two manufacturing methods for finished drug product. In this example, the analysis
of the raw material used in the product was also available.

If the two methods are to be compared using the four final (product) assays for each
method, we would use a one-way ANOVA (independent sample t test in this example). The
ANOVA comparing the two methods would be as shown in Table 8.19 and Table 8.21, columns
1 and 2.

The two methods yield different results at the 0.05 level (p = 0.02), with averages of 97.925
and 96.3, respectively. The question that one may ask is, “Are the raw material assays different
for the products used in the test, accounting for the difference?’’ We can perform an ANOVA
on the initial values to test this hypothesis. See Table 8.20 and Table 8.21, columns 1 and 3.

The average raw material assays for the lots used for the two methods are not significantly
different (98.7 and 98.85). Thus, we may assume that the final assay results are not biased by
possible differences in raw material. (Note that if the averages of the raw materials were different
for the two methods, then one would want to take this into consideration when comparing the
methods based on the final assay.) However, it is still possible that use of the initial values may
reduce the variability of the comparison of methods due to the relationship between the raw
material assay and the final. To account for this relationship, we can compute a linear fit of

Table 8.19 ANOVA Comparing Methods Based on Final Assay

Source d.f. Sum of squares Mean square F value Pr > F

Between methods 1 5.28125 5.28125 9.88 0.0200

Within methods 6 3.20750 0.53458

Total 7 8.48875

Table 8.20 ANOVA Comparing Raw Material Assays

Source d.f. Sum of squares Mean square F value Pr > F

Between methods 1 0.0450 0.0450 0.33 0.5847

Within methods 6 0.8100 0.1350

Total 7 0.8550
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Table 8.21 Detailed Computations for ANCOVA for Data of Table 8.18

(1) (2) (3) (4) (5) (6) (7) (8)

Y Final X Raw Final ×
Source d.f. assay material raw Slope Reg. SS d.f. Res. SS

a. Within method A 3 0.6275 0.36 −0.33 −0.917 0.303 2 0.325

b. Within method B 3 2.58 0.45 −0.33 −0.733 0.242 2 2.338

c. Separate regressions — — — — — 0.545 4 2.663

d. Within methods 6 3.2075 0.81 −0.66 −0.815 0.538 5 2.670

e. Between methods 1 5.28125 0.045 −0.4875 — — — —

f. Total 7 8.48875 0.855 −1.1475 −1.343 1.541 6 6.948

Columns 1 and 2 are the simple ANOVA for the final assay.

Columns 1 and 3 are the simple ANOVA for the raw material assay.

Column 4 is the cross product SS = ∑
[(X − X)(Y − Y)].

Column 5 is computed as column 4/column 3 (final assay is the Y variable; raw material assay is the X variable).

Column 6 is column 3 × column 5 squared.

Column 7 is d.f. for residual (column 8).

Column 8 is column 2 − column 6.

the final assay result versus the raw material assay, and use the residual error from the fit as
an estimate of the variance. The variance estimate should be smaller than that obtained when
the relationship is ignored. The fitted lines for each method are assumed to be parallel, that is,
the relationship between the covariate and the outcome variable (finished product assay) is the
same for each method. With this assumption, the difference between methods, adjusted for the
covariate, is the difference between the parallel lines at any value of the covariate, in particular
the difference of the intercepts of the parallel lines. These concepts are illustrated in Figure 8.6.

Assumptions for covariance analysis include the following:

1. The covariate is not dependent on the experimental observation. That is, the covariate is not
affected by the treatment (method). For example, an individual’s weight measured prior
to and during treatment by a cholesterol-reducing agent is not affected by his cholesterol
reading(s).

2. The covariate is a fixed variable or the covariate and outcome variable have a bivariate
normal distribution. The covariate is specified and measured before randomization to treat-
ments.

3. Slopes for regression lines within each treatment group are equal, that is, the lines are
parallel. If not, the analysis is still correct, but if interaction is suspected, we end up with
an average effect. Interaction suggests that the comparison of treatments depends on the
covariate level.

Covariance analysis is usually performed with the aid of a statistical software program as
shown in Table 8.22. However, to interpret the output, it is useful to understand the nature of the

Figure 8.6 Illustration of adjusted difference of means in ANCOVA.
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Table 8.22 ANCOVA Software Analysis of Data from Table 8.18

Source d.f. Sum of squares Mean square F ratio Prob > F

X (Cov) 1 0.5377778 0.5377778 1.01 0.3616

A (Method) 1 4.278962 4.278962 8.01 0.0366

Error 5 2.669722 0.5339444

Total (Adj) 7 8.488751

Method Means

I 97.86389

II 96.36112

calculations. Table 8.21 is a complete table of the analysis for the example of the two analytical
methods (Table 8.18). The following discussion refers to entries in Table 8.21.

The software (Table 8.22) computes the means, adjusted for the covariate, but does not
perform a test for parallelism of the regression lines. A SAS program that includes Covariate ×
Method interaction in the model is a test for parallelism. To test for parallelism of the method
versus covariate fitted lines, an analysis is performed to determine if the residual SS are signifi-
cantly increased when all points are fitted to individual (two or more) parallel lines as compared
to a fit to separate lines. (Note the similarity to stability analysis for pooling lots, sect. 8.7.) An
F test comparing the variances is performed to determine significance

Fd.f.1,d.f.2 = (Residual SS parallel lines − residual SS separate lines)/(groups − 1)
(Residual SS separate lines)/d.f.

. (8.19)

The residual SS from the parallel lines is obtained from a least squares fit (final product
assay vs. raw material assay). These residual SS are calculated from line d in Table 8.21

∑
(y − y)2 − b 2

∑
(X − X)2 (see sect. 7.4).

This is equal to (3.2075 − 0.8152 × 0.81) = 2.67.

The residual SS when each method is fit separately is in line c, column (8) in Table 8.21.
The analysis is in a form of the Gauss–Markov Theorem that describes an F test comparing two
linear models, where one model has additional parameters. In this example, we fit a model with
separate intercepts and slopes, a total of four parameters for the two methods, and compare the
residual SS to a fit with common slope and separate intercepts, three parameters. The increase
in the mean square residual due to the fit with less parameters is tested for significance using
the F distribution as shown in Eq. (8.19). This is the same approach as that used to determine
the pooling of stability lots as discussed in section 8.7.

F1,4 = (Residual SS parallel lines − residual SS separate lines)/(2 − 1)
(Residual SS separate lines)/(8 − 4)

. (8.20)

In this example, the F test with 1 and 4 d.f. is

(2.67 − 2.663)/l
2.663/4

= 0.01,

which is not significant at p < 0.05 (p > 0.9). The lines can be considered to be parallel.
This computation may be explained from a different viewpoint. For a common slope, the

residual SS is computed as
∑

(y − y)2 − b 2 ∑(X − X)2. Here
∑

(y − y)2 and
∑

(X − X)2 are the
sums of the sums of squares for each line, and b is the common slope (−0.815). From Table 8.21,
line d, columns 2 to 4, the SS for the common line is

0.6275 + 2.58 − (−0.8148)2(0.36 + 0.45) = 2.670.
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For the separate lines (column 8 in Table 8.21), the sums of the SS is

SS = 0.325 + 2.338 = 2.663.

Another test of interest is the significance of the slope (vs. 0). If the test for the slope is not
significant, the concomitant variable (raw material assay) is not very useful in differentiating
the methods. The test for the slope is: within regression mean square/within residual mean
square.

The residual mean square is that resulting from the fit of parallel lines (common slope).
In this example, from line d in Table 8.21, F1,5 = 0.538/(2.67/5) = 1.01(p = 0.36). The

common slope is −0.815 (line d, column 5) that is not significantly different from 0. Thus, we
could conclude that use of the raw material assay as an aid in differentiating the methods is
not useful. Nevertheless, the methods are significantly different both when we ignore the raw
material assay (p = 0.02; Table 8.19) and when we use the covariance analysis (see below).

The test for difference of means adjusted for the covariate is a test for difference of
intercepts of the parallel lines.

F1,5 = (Residual SS total − residual SS within)/(groups − 1)
(Residual SS parallel lines)/(d.f.)

.

In this example, F1,5 = (6.948 − 2.670)/(2.670/5) = 8.01 (p < 0.05) (see column 8,
Table 8.21). This is a comparison of the fit with a common intercept (TSS) to the fit with separate
intercepts (within SS) for the parallel lines.

The adjusted difference between methods can be calculated as the difference between
intercepts or, equivalently, the distance between the parallel lines (Fig. 8.6). The adjusted means
are calculated as follows [8].

The common slope is b. The intercept is Y − b X (see Eq. 7.3, chap. 7). The difference of the
intercepts is

(Ya − b Xa ) − (Yb − b Xb) = Ya − Yb − b(Xa − Xb)
= 97.925 − 96.3 − ( − 0.815)(98.7 − 98.85)
= 1.503.

The difference between means adjusted for the raw material assay is 1.503.

8.6.1 Comparison of ANCOVA with Other Analyses
Two other common analyses use differences from baseline and ratios of the observed result
to the baseline value when a concomitant variable, such as a baseline value, is available. For
example, in clinical studies, baseline values are often measured in order to assess a treatment
effect relative to the baseline value. Thus, once more, in addition to ANCOVA, two other ways
of analyzing such data are analysis of differences from baseline or the ratio of the observed value
and baseline value. The use of changes from baseline is a common approach that is statistically
acceptable. If the covariance assumptions are correct, covariance should improve upon the
difference analysis, that is, it should be more powerful in detecting treatment differences. The
difference analysis and ANCOVA will be similar if the ANCOVA model approximates Y =
a + X, that is, the slope of the X versus Y relationship is one (1). The use of ratios does disturb
the normality assumption, but if the variance of the covariate is small, this analysis should be
more or less correct. This model suggests that Y/X = a, where a is a constant. This is equivalent
to Y = aX, a straight line that goes through the origin. [If the Y values, the experimentally
observed results, are far from 0, and/or the X values are clustered close together, the statistical
conclusions for ratios (observed/baseline) should be close to that from the ANCOVA.] See
Exercise Problem 13 for further clarification.

A nonparametric ANCOVA is described in section 15.7.
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8.7 ANOVA FOR POOLING REGRESSION LINES AS RELATED TO STABILITY DATA§

As discussed in chapter 7, an important application of regression and ANOVA is in the analysis
of drug stability for purposes of establishing a shelf life. Accelerated stability studies are often
used to establish a preliminary shelf life (usually 24 months), which is then verified by long-
term studies under label conditions (e.g., room temperature). If more than one lot is to be
used to establish a shelf life, then data from all lots should be used in the analysis. Typically,
3 production lots are put on stability at room temperature in order to establish an expiration
date. The statistical analysis recommended by the FDA [10] consists of preliminary tests for
pooling of data from the different lots. If both slopes and intercepts are considered similar for
the multiple lots based on a statistical test, then data from all lots can be pooled. If not, the data
may be analyzed as separate lots, or if slopes are not significantly different, a common slope
with separate intercepts may be used to analyze the data. Pooling of all of the data gives the
most powerful test (the longest shelf life) because of the increased d.f. and multiple data points.
If lots are fitted separately, suggesting lot heterogeneity, expiration dating is based on the lot that
gives the shortest shelf life. Separate fittings also result in poor precision because an individual
lot will have fewer d.f. and less data points than that resulting from a pooled analysis. Degrees
of freedom when fitting regression lines are N − 2, so that a stability study with 7 time points
will have only 5 d.f. (0, 3, 6, 9, 12, 18, and 24 months). Fitting the data with a common slope will
have intermediate precision compared to separate fits and a single combined fit.

The computations are complex and cannot be described in detail here, but the general
principles will be discussed. The fitting is of the form of regression and covariance (see also
sect. 8.6). The following model (Model 1) fits separate lines for each lot.

Potency (Y) =
∑

ai +
∑

bi X Model (1).

For three lots, the model contains six parameters, three intercepts, and three slopes. The
residual error SS is computed with N − 6 d.f. for 3 lots, where N is the total number of data
pairs. Thus, each of the three lines is fit separately, each with its own slope and intercept. Least
squares theory, with the normality assumption (the dependent variable is distributed normally
with the same variance at each value, X), can be applied to construct a test for equality of slopes.
This is done by fitting the data with a reduced number of parameters, where there is a common
slope for the lots tested. The fit is made to a model of the form

Potency (Y) =
∑

ai + b X Model (2).

For 3 lots, this fit has N − 4 d.f., where N is the total number of data pairs (X, Y) with the
3 intercepts and single slope accounting for the 4 d.f. Statistical theory shows that the following
ratio, Eq. (8.21), has an F distribution

[Residual SS from model (2) − Residual SS from model (1)]/[P ′ − P]
Residual SS from model (1)/[N − P ′]

. (8.21)

If P ′ is the number of parameters to be fitted in Model (1), 6 for 3 lots, and P ′ is the
number of parameters in Model (2), 4 for 3 lots, then the d.f. of this F statistic are [P ′ − P] d.f.
in the numerator (2 for 3 lots), and N − P ′ d.f. in the denominator (N − 6 for 3 lots). If the F
statistic shows significance, then the data cannot be pooled with a common slope, and separate
fits for each line are used for predicting shelf life. A significant F (p < 0.25) suggests that a fit
to individual lines is significantly better than a fit with a common slope, based on the increase
in the sums of squares when the model with less parameters is fit. If slopes are not poolable, a
95% lower, if appropriate, one-sided (or 90% two-sided) confidence band about the fitted line
for each lot is computed, and the expiration dates are determined for each batch separately.

If the F statistic is not significant, then a model with a common slope, but different
intercepts, may be fit.

§ A more advanced topic.
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The most advantageous condition for estimating shelf life is when data from all lots can be
combined. Before combining the data into a single line, a statistical test to determine if the lots
are poolable is performed. In order to pool all of the data, a two-stage test is proposed by the
FDA. First, the test for a common slope is performed as described in the preceding paragraph.
If the test for a common slope is not significant (p > 0.25), a test is performed for a common
intercept. This is accomplished by computing the residual SS for a fit to a single line (Model 3)
minus the residual sums of squares for the reduced model with a common slope, Model 2,
adjusted for d.f., and divided by the residual SS from the fit to the full model (separate slopes
and intercepts), Model (1).

Potency (Y) = a + b X Model (3).

The F test for a common intercept is

Residual SS from model (3) − residual SS from model (2)/[P ′ − P]
Residual SS from model (1)/[N − P ′]

. (8.22)

For 3 lots, the F statistic has 2 d.f. in the numerator (2 parameter fit for a single line vs. a
4 parameter fit, 3 intercepts, and 1 slope for a fit with a common slope), and N − 6 d.f. in the
denominator. Again, a significant F suggests that a fit using a common slope and intercept is
not appropriate.

The FDA has developed a SAS program to analyze stability data using the above rules to
determine the degree of pooling, that is, separate lines for each lot, a common slope for all lots,
or a single fit with a common slope and intercept. A condensed version of the output of this
program is described below.

The raw data is for three lots (A, B, and C), each with three assays at 0, 6, and 12 months.

Lot

Time (mo) A B C

0 100 102 98

6 99 98 97

12 96 97 95

The output testing for pooling is derived from an ANCOVA with time as the covariate
(Table 8.23). The ANOVA shows a common slope, indicated by line C with p > 0.25 (p = 0.58566).
The test for a common intercept is significant, p < 0.25. Therefore, lines are fitted with a common
slope but with separate intercepts.

Table 8.23 Modified and Annotated SAS Output from FDA Stability Program

Source SS d.f. Mean square F p

A (pooled line) 9.67 4 2.42 3.10714 0.18935

B (intercept) 8.67 2 4.33 5.57143 0.09770

C (slope) 1.00 2 0.50 0.64286 0.58566

D (error) 2.33 3 0.78

Key to sources of variation:

A = separate intercept, separate slope | common intercept, common slope. This is the residual SS from fit to a single line minus

the residual SS from fits to separate lines. This is the SS attributed to model 3.

B = separate intercept, common slope | common intercept, common slope. This is the residual SS from a fit to a single line minus

the residual SS from a fit with common slope and separate intercepts (A − C).

C = separate intercept, separate slope | separate intercept, common slope. This is the residual SS from a fit to a line with a

common slope and separate intercepts line minus the residual SS from fits to separate lines. This is the SS attributed to model 2.

D = Residual. This is the residual SS from fits to separate lines (9 − 6 = 3 d.f.). This is the SS attribute to model 1.
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The shelf life estimates vary from 20 to 25 months. The shortest time, 20 months, is used
as the shelf life.

Stability analysis

Fitted line Batch 1

Y = 100.33 − 0.333X

Fitted line Batch 2

Y = 101.00 − 0.333X

Fitted line Batch 3

Y = 98.67 − 0.333X

Stability Analysis: 95% one-sided lower confidence limits (separate intercepts and common
slope)

Estimated dating
Batch period (mo/wk)

1 24

2 25

3 20

The data for each batch should be visually inspected to ensure that the average results
based on these calculations have not hidden noncompliant or potentially noncompliant batches.
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The FDA recommends using a significance level of 25% rather than the usual 5% level.
The reason for this is the use of multilevel preliminary testing before coming to a decision. The
use of a 25% level is somewhat arbitrary, and does not seem to have a clear theoretical rationale.
This higher level of significance means that the criterion for pooling lots is more difficult to
attain, thereby making it more difficult to establish the longer shelf life that results from pooling
data from multiple lots. This may be considered to be a conservative rule from the point of view
that shelf lives will not be overestimated. However, the analysis is open to interpretation, and
it is the author’s opinion that the 25% level of significance is too high.

Another problem with the FDA approach is that power is not considered in the evaluation.
For example, if the model and assay precision is very good, lots that look similar with regard
to degradation may not be poolable, whereas with very poor precision, lots that appear not to
be similar may be judged poolable. Unfortunately, this problem is not easily solved. Finally, it
is not clear why the FDA has not included a test for pooling based on a common intercept and
separate slopes.

Nevertheless, the FDA approach has much to recommend it, as the problem is quite
complex.

KEY TERMS
Alpha level Model
ANCOVA Multiple comparisons
ANOVA Newman–Keuls’ test
ANOVA table One-way analysis of variance
A posteriori comparisons Parallel groups
A priori comparisons Parallelism
Assumptions Placebo
Between-treatment sum of squares or

mean square (BSS or BMS)
Pooled variance
Pooled regressions

Block Positive control
Bonferroni test Power
Completely randomized design Precision
Components of variance Randomized block design
Contrasts Random model
Control Repeated measures design
Correction term Replicates
Degrees of freedom Residual
Designed experiments Scheffé method for multiple comparisons
Dunnett’s test Shortcut computing formulas
Error Source
Error sum of squares or mean square

(ESS or EMS)
Stability
Sum of squares

Experimental error Symmetry
Experimental units Total sum of squares (TSS)
F distribution Treatments
Fixed model Treatment sum of squares or mean square
Independence T tests
Interaction Tukey’s multiple range test
LSD procedure for multiple

comparisons mean square
Two-way analysis of variance
Within sum of squares or mean square

(WSS or WMS)Missing data

EXERCISES
1. Perform three separate t tests to compare method A to method B, method A to method

C, and method B to method C in Table 8.1. Compare the results to that obtained from the
ANOVA (Table 8.3).
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2. Treatments A, B, and C are applied to six experiment subjects with the following results:

A B C

1 3 4

5 2 1

Perform an ANOVA and interpret the between-treatment mean square.

3. Repeat the t tests from Exercise Problem 1, but use the “pooled” error term for the tests.
Explain why the results are different from those calculated in Problem 1. When is it appro-
priate to perform separate t tests?

4. It is suspected that four analysts in a laboratory are not performing accurately. A known
sample is given to each analyst and replicate assays performed by each with the following
results:

Analyst

I II III IV

10 9 8 9

11 10 9 9

10 11 8 8

(a) State the null and alternative hypotheses.
(b) Is this a fixed or a random model?
(c) Perform an ANOVA. Use the LSD procedure to show which analysts differ if the

“analyst” mean square is significant at the 5% level.
(d) Use Tukey’s and Scheffé’s multiple comparison procedures to test for treatment (ana-

lyst) differences. Compare the results to those in part (c).

5. Physicians from seven clinics in the United States were each asked to test a new drug
on three patients. These physicians are considered to be among those who are expert in
the disease being tested. The seventh physician tested the drug on only two patients. The
physicians had a meeting prior to the experiment to standardize the procedure so that all
measurements were uniform in the seven sites.
The results were as follows:

Clinic

1 2 3 4 5 6 7

9 11 6 10 5 7 12

8 9 9 10 3 7 10

7 13 9 7 4 7 —

(a) Perform an ANOVA.
(b) Are the results at the different clinics significantly different at the 5% level?
(c) If the answer to part (b) is yes, which clinics are different? Which multiple comparison

test did you use?
§6. Are the following examples random or fixed? Explain.

(a) Blood pressure readings of rats are taken after the administration of four different
drugs.
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(b) A manufacturing plant contains five tablet machines. The same product is made on
all machines, and a random sample of 100 tablets is chosen from each machine and
weighed individually. The problem is to see if the machines differ with respect to the
weight of tablets produced.

(c) Five formulations of the same product are compared. After six months, each formula
is assayed in triplicate to compare stability.

(d) Same as part (b) except that the plant has 20 machines. Five machines are selected at
random for the comparison.

(e) Ten bottles of 100 tablets are selected at random in clusters 10 times during the pack-
aging of tablets (a total of 10,000 tablets). The number of defects in each bottle are
counted. Thus we have 10 groups, each with 10 readings. We want to compare the
average number of defects in each cluster.

7. Dissolution is compared for three experimental batches with the following results (each
point is the time in minutes for 50% dissolution for a single tablet).
Batch 1: 15, 18, 19, 21, 23, 26
Batch 2: 17, 18, 24, 20
Batch 3: 13, 10, 16, 11, 9
(a) Is there a significant difference among batches?
(b) Which batch is different?
(c) Is this a fixed or a random model?

8. In a clinical trial, the following data were obtained comparing placebo and two drugs:

Placebo Drug 1 Drug 2

Patient Predrug Postdrug Predrug Postdrug Predrug Postdrug

1 180 176 170 161 172 165

2 140 142 143 140 140 141

3 175 174 180 176 182 175

4 120 128 115 120 122 122

5 165 165 176 170 171 166

6 190 183 200 195 192 185

(a) Test for treatment differences, using only postdrug values.
(b) Test for treatment differences by testing the change from baseline (predrug).
(c) For Problem 8(b), perform a posteriori multiple comparison tests (1) comparing all

pairs of treatments using Tukey’s multiple range rest and the Newman–Keuls’ test and
(2) comparing drug 1 and drug 2 to control using Dunnett’s test.

9. Tablets were made on six different tablet presses during the course of a run (batch). Five
tablets were assayed during the five-hour run, one tablet during each hour. The results are
as follows:

Press

Hour 1 2 3 4 5 6

1 47 49 46 49 47 50

2 48 48 48 47 50 50

3 52 50 51 53 51 52

4 50 47 50 48 51 50

5 49 46 50 49 47 49

(a) Are presses and hours fixed or random?
(b) Do the presses give different results (5% level)?
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(c) Are the assay results different at the different hours (5% level)?
(d) What assumptions are made about the presence of interaction?
(e) If the assay results are significantly different at different hours, which hour(s) is different

from the others?
§10. Duplicate tablets were assayed at hours 1, 3, and 5 for the data in Problem 9, using only

presses 2, 4, and 6, with the following results:

Press

Hour 2 4 6

1 49, 52 49, 50 50, 53

3 50, 48 53, 51 52, 55

5 46, 47 49, 52 49, 53

If presses and hours are fixed, test for the significance of presses and hours at the 5%
level. Is there significant interaction? Explain in words what is meant by interaction in this
example.

11. Use Tukey’s multiple range test to compare all three treatments (a posteriori test) for the
data of Tables 8.13 and 8.14.

12. Compute the ANOVA for data of Table 8.17. Are treatments (columns) significantly differ-
ent?

13. Perform an analysis of variance (one-way) comparing methods for the ratios (final
assay/raw material assay) for data of Table 8.18. Compare probability level for methods to
ANCOVA results.
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9 Factorial Designs

Factorial designs are used in experiments where the effects of different factors, or conditions, on
experimental results are to be elucidated. Some practical examples where factorial designs are
optimal are experiments to determine the effect of pressure and lubricant on the hardness of a
tablet formulation, to determine the effect of disintegrant and lubricant concentration on tablet
dissolution, or to determine the efficacy of a combination of two active ingredients in an over-
the-counter cough preparation. Factorial designs are the designs of choice for simultaneous
determination of the effects of several factors and their interactions. This chapter introduces
some elementary concepts of the design and analysis of factorial designs.

9.1 DEFINITIONS (VOCABULARY)

9.1.1 Factor
A factor is an assigned variable such as concentration, temperature, lubricating agent, drug treat-
ment, or diet. The choice of factors to be included in an experiment depends on experimental
objectives and is predetermined by the experimenter. A factor can be qualitative or quantitative.
A quantitative factor has a numerical value assigned to it. For example, the factor “concentration”
may be given the values 1%, 2%, and 3%. Some examples of qualitative factors are treatment, diets,
batches of material, laboratories, analysts, and tablet diluent. Qualitative factors are assigned
names rather than numbers. Although factorial designs may have one or many factors, only
experiments with two factors will be considered in this chapter. Single-factor designs fit the
category of one-way ANOVA designs. For example, an experiment designed to compare three
drug substances using different patients in each drug group is a one-way design with the
single-factor “drugs.”

9.1.2 Levels
The levels of a factor are the values or designations assigned to the factor. Examples of levels are
30◦ and 50◦ for the factor ‘temperature,” 0.1 molar and 0.3 molar for the factor “concentration,”
and “drug” and “placebo” for the factor “drug treatment.”

The runs or trials that comprise factorial experiments consist of all combinations of all
levels of all factors. As an example, a two-factor experiment would be appropriate for the
investigation of the effects of drug concentration and lubricant concentration on dissolution
time of a tablet. If both factors were at two levels (two concentrations for each factor), four runs
(dissolution determinations for four formulations) would be required, as follows:

Symbol Formulation

(1) Low drug and low lubricant concentration

a Low drug and high lubricant concentration

b High drug and low lubricant concentration

ab High drug and high lubricant concentration

“Low” and “high” refer to the low and high concentrations preselected for the drug and
lubricant. (Of course, the actual values selected for the low and high concentrations of drug will
probably be different from those chosen for the lubricant.) The notation (symbol) for the various
combinations of the factors, (1), a, b, ab, is standard. When both factors are at their low levels,
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we denote the combination as (1). When factor A is at its high level and factor B is at its low
level, the combination is called a. b means that only factor B is at the high level, and ab means
that both factors A and B are at their high levels.

drug
drug

drug
drug

lubricant lubricant
lubricant lubricant

abba(1)

9.1.3 Effects
The effect of a factor is the change in response caused by varying the level(s) of the factor. The
main effect is the effect of a factor averaged over all levels of the other factors. In the previous example,
a two-factor experiment with two levels each of drug and lubricant, the main effect due to drug
would be the difference between the average response when drug is at the high level (runs b and
ab) and the average response when drug is at the low level [runs (1) and a]. For this example the
main effect can be characterized as a linear response, since the effect is the difference between
the two points shown in Figure 9.1.

drug
drug drug

aabb

+ − −main effect

of drug
2

(1)

More than two points would be needed to define more clearly the nature of the response
as a function of the factor drug concentration. For example, if the response plotted against the
levels of a quantitative factor is not linear, the definition of the main effect is less clear. Figure 9.2
shows an example of a curved (quadratic) response based on experimental results with a
factor at three levels. In many cases, an important objective of a factorial experiment is to
characterize the effect of changing levels of a factor or combinations of factors on the response
variable.

Figure 9.1 Linear effect of drug. a = lubricant, b = drug.
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Figure 9.2 Nonlinear (quadratic) effect.

9.1.4 Interaction
Interaction may be thought of as a lack of “additivity of factor effects.” For example, in a two-
factor experiment, if factor A has an effect equal to 5 and factor B has an effect of 10, additivity
would be evident if an effect of 15 (5 + 10) were observed when both A and B are at their high
levels (in a two-level experiment). (It is well worth the extra effort to examine and understand
this concept as illustrated in Fig. 9.3.)

If the effect is greater than 15 when both factors are at their high levels, the result is
synergistic (in biological notation) with respect to the two factors. If the effect is less than
15 when A and B are at their high levels, an antagonistic effect is said to exist. In statistical
terminology, the lack of additivity is known as interaction. In the example above (two factors
each at two levels), interaction can be described as the difference between the effects of drug
concentration at the two lubricant levels. Equivalently, interaction is also the difference between
the effects of lubricant at the two drug levels. More specifically, this means that the drug effect
measured when the lubricant is at the low level [a − (1)] is different from the drug effect measured
when the lubricant is at the high level (ab − b). If the drug effects are the same in the presence
of both high and low levels of lubricant, the system is additive, and no interaction exists.
Interaction is conveniently shown graphically as depicted in Figure 9.4. If the lines representing
the effect of drug concentration at each level of lubricant are “parallel,” there is no interaction.
Lack of parallelism, as shown in Figure 9.4(B), suggests interaction. Examination of the lines in
Figure 9.4(B) reveals that the effect of drug concentration on dissolution is dependent on the
concentration of lubricant. The effects of drug and lubricant are not additive.

Figure 9.3 Additivity of effects: lack of interaction.



FACTORIAL DESIGNS 225

Figure 9.4 Illustration of interaction.

Factorial designs have many advantages [1]:

1. In the absence of interaction, factorial designs have maximum efficiency in estimating main
effects.

2. If interactions exist, factorial designs are necessary to reveal and identify the interactions.
3. Since factor effects are measured over varying levels of other factors, conclusions apply to a

wide range of conditions.
4. Maximum use is made of the data since all main effects and interactions are calculated from

all of the data (as will be demonstrated below).
5. Factorial designs are orthogonal; all estimated effects and interactions are independent of

effects of other factors. Independence, in this context, means that when we estimate a main
effect, for example, the result we obtain is due only to the main effect of interest, and
is not influenced by other factors in the experiment. In nonorthogonal designs (as is the
case in many multiple-regression-type “fits”—see App. III), effects are not independent.
Confounding is a result of lack of independence. When an effect is confounded, one cannot
assess how much of the observed effect is due to the factor under consideration. The effect
is influenced by other factors in a manner that often cannot be easily unraveled, if at all.
Suppose, for example, that two drugs are to be compared, with patients from a New York
clinic taking drug A and patients from a Los Angeles clinic taking drug B. Clearly, the
difference observed between the two drugs is confounded with the different locations. The
two locations reflect differences in patients, methods of treatment, and disease state, which
can affect the observed difference in therapeutic effects of the two drugs. A simple factorial
design where both drugs are tested in both locations will result in an “unconfounded,” clear
estimate of the drug effect if designed correctly, for example, equal or proportional number
of patients in each treatment group at each treatment site.

9.2 TWO SIMPLE HYPOTHETICAL EXPERIMENTS TO ILLUSTRATE THE ADVANTAGES
OF FACTORIAL DESIGNS

The following hypothetical experiment illustrates the advantage of the factorial approach to
experimentation when the effects of multiple factors are to be assessed. The problem is to
determine the effects of a special diet and a drug on serum cholesterol levels. To this end, an
experiment was conducted in which cholesterol changes were measured in three groups of
patients. Group A received the drug, group B received the diet, and group C received both the
diet and drug. The results are shown below. The experimenter concluded that there was no
interaction between drug and diet (i.e., their effects are additive).

Drug alone: decrease of 10 mg%
Diet alone: decrease of 20 mg%
Diet + drug: decrease of 30 mg%
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Figure 9.5 Synergism in cholesterol lowering as a

result of drug and diet.

However, suppose that patients given neither drug nor diet would have shown a decrease
of serum cholesterol of 10 mg% had they been included in the experiment. (Such a result
could occur because of “psychological effects” or seasonal changes, for example.) Under these
circumstances, we would conclude that drug alone has no effect, that diet results in a cholesterol
lowering of 10 mg%, and that the combination of drug and diet is synergistic. The combination
of drug and diet results in a decrease of cholesterol equal to 20 mg%. This concept is shown in
Figure 9.5.

Thus, without a fourth group, the control group (low level of diet and drug), we have no
way of assessing the presence of interaction. This example illustrates how estimates of effects
can be incorrect when pieces of the design are missing. Inclusion of a control group would have
completed the factorial design, two factors at two levels. Drug and diet are the factors, each at
two levels, either present or absent. The complete factorial design consists of the following four
groups:

(1) Group on normal diet without drug (drug and special diet at low level).
a Group on drug only (high level of drug, low level of diet).
b Group on diet only (high level of diet, low level of drug).
ab Group on diet and drug (high level of drug and high level of diet).

The effects and interaction can be clearly calculated based on the results of these four
groups (Fig. 9.5).

Incomplete factorial designs such as those described above are known as the one-at-a-
time approach to experimentation. Such an approach is usually very inefficient. By performing
the entire factorial, we usually have to do less work, and we get more information. This is a
consequence of an important attribute of factorial designs: effects are measured with maximum
precision. To demonstrate this property of factorial designs, consider the following hypothetical
example. The objective of this experiment is to weigh two objects on an insensitive balance.
Because of the lack of reproducibility, we will weigh the items in duplicate. The balance is
in such poor condition that the zero point (balance reading with no weights) is in doubt. A
typical one-at-a-time experiment is to weigh each object separately (in duplicate) in addition
to a duplicate reading with no weights on the balance. The weight of item A is taken as the
average of the readings with A on the balance minus the average of the readings with the pans
empty. Under the assumption that the variance is the same for all weighings, regardless of the
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amount of material being weighed, the variance of the weight of A is the sum of the variances
of the average weight of A and the average weight with the pans empty (see App. I)

�2

2
+ �2

2
= �. (9.1)

Note that the variance of the difference of the average of two weighings is the sum of the
variances of each weighing. (The variance of the average of two weighings is �2/2.)

Similarly, the variance of the weight of B is �2 = �2/2 + �2/2. Thus, based on six readings
(two weighings each with the balance empty, with A and B on the balance), we have estimated
the weights of A and B with variance equal to �2, where �2 is the variance of a single weighing.

In a factorial design, an extra reading(s) would be made, a reading with both A and B on
the balance. In the following example, using a full factorial design, we can estimate the weight
of A with the same precision as above using only 4 weighings (instead of 6). In this case the
weighings are made without replication. That is, four weighings are made as follows:

(1) Reading with balance empty 0.5 kg
a Reading with item A on balance 38.6 kg
b Reading with item B on balance 42.1 kg
ab Reading with both items A and B on balance 80.5 kg

With a full factorial design, as illustrated above, the weight of A is estimated as (the main
effect of A)

a − (1) + ab − b
2

. (9.2)

Expression (9.2) says that the estimate of the weight of A is the average of the weight of
A alone minus the reading of the empty balance [a − (1)] and the weight of both items A and
B minus the weight of B. According to the weights recorded above, the weight of A would be
estimated as

38.6 − 0.5 + 80.5 − 42.1
2

= 38.25 kg.

Similarly, the weight of B is estimated as

42.1 − 0.5 + 80.5 − 38.6
2

= 41.75 kg.

Note how we use all the data to estimate the weights of A and B; the weight of B alone is
used to help estimate the weight of A, and vice versa!

Interaction is measured as the average difference of the weights of A in the presence and
absence of B as follows:

(ab − b) − [a − (1)]
2

. (9.3)

We can assume that there is no interaction, a very reasonable assumption in the present
example. (The weights of the combined items should be the sum of the individual weights.) The
estimate of interaction in this example is

(80.5 − 42.1) − (38.6 − 0.5)
2

= 0.3.

The estimate of interaction is not zero because of the presence of random errors made on
this insensitive balance.
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Table 9.1 Eight Experiments for a 23 Factorial Designa

Combination A B C

(1) − − −
a + − −
b − + −
ab + + −
c − − +
ac + − +
bc − + +
abc + + +
a−, factor at low level; +, factor at high level.

In this example, we have made four weighings. The variance of the main effects (i.e.,
the average weights of A and B) is �2, exactly the same variance as was obtained using six
weightings in the one-at-a-time experiment!∗ We obtain the same precision with two-thirds of
the work: four readings instead of six. In addition to the advantage of greater precision,
if interaction were present, we would have had the opportunity to estimate the interaction
effect in the full factorial design. It is not possible to estimate the interaction in the one-at-a-time
experiment.

9.3 PERFORMING FACTORIAL EXPERIMENTS: RECOMMENDATIONS AND NOTATION
The simplest factorial experiment, as illustrated above, consists of four trials, two factors each at
two levels. If three factors, A, B, and C, each at two levels, are to be investigated, eight trials are
necessary for a full factorial design, as shown in Table 9.1. This is also called a 23 experiment,
three factors each at two levels.

As shown in Table 9.1, in experiments with factors at two levels, the low and high levels
of factors in a particular run are denoted by the absence or presence of the letter, respectively.
For example, if all factors are at their low levels, the run is denoted as (1). If factor A is at its
high level, and B and C are at their low levels, we use the notation a. If factors A and B are at
their high levels, and C is at its low level, we use the notation ab, and so on.

Before implementing a factorial experiment, the researcher should carefully consider the
experimental objectives vis-à-vis the appropriateness of the design. The results of a factorial
experiment may be used (a) to help interpret the mechanism of an experimental system; (b) to
recommend or implement a practical procedure or set of conditions in an industrial manufac-
turing situation; or (c) as guidance for further experimentation. In most situations where one is
interested in the effect of various factors or conditions on some experimental outcome, factorial
designs will be optimal.

The choice of factors to be included in the experimental design should be considered
carefully. Those factors not relevant to the experiment, but which could influence the results,
should be carefully controlled or kept constant. For example, if the use of different technicians,
different pieces of equipment, or different excipients can affect experimental outcomes, but are
not variables of interest, they should not be allowed to vary randomly, if possible. Consider an
example of the comparison of two analytical methods. We may wish to have a single analyst

∗ The main effect of A, for example, is [a − (1) + ab − b]/2. The variance of the main effect is (�2
a + �2

(1) + �2
ab + �2

b )/

4 = �2. �2 is the same for all weighings (App. I).
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perform both methods on the same spectrophotometer to reduce the variability that would be
present if different analysts used different instruments. However, there will be circumstances
where the effects due to different analysts and different spectrophotometers are of interest.
In these cases, different analysts and instruments may be designed into the experiment as
additional factors.

On the other hand, we may be interested in the effect of a particular factor, but because
of time limitations, cost, or other problems, the factor is held constant, retaining the option of
further investigation of the factor at some future time. In the example above, one may wish to
look into possible differences among analysts with regard to the comparison of the two methods
(an analyst × method interaction). However, time and cost limitations may restrict the extent of
the experiment. One analyst may be used for the experiment, but testing may continue at some
other time using more analysts to confirm the results.

The more extraneous variables that can be controlled, the smaller will be the residual
variation. The residual variation is the random error remaining after the ANOVA removes the
variability due to factors and their interactions. If factors known to influence the experimental
results, but of no interest in the experiment, are allowed to vary “willy-nilly,” the effects caused
by the random variation of these factors will become part of the residual error. Suppose the
temperature influences the analytical results in the example above. If the temperature is not
controlled, the experimental error will be greater than if the experiment is carried out under
constant-temperature conditions. The smaller the residual error, the more sensitive the experi-
ment will be in detecting effects or changes in response due to the factors under investigation.

The choice of levels is usually well defined if factors are qualitative. For example, in an
experiment where a product supplied by several manufacturers is under investigation, the levels
of the factor “product” could be denoted by the name of the manufacturer: company X, company
Y, and so on. If factors are quantitative, we can choose two or more levels, the choice being
dependent on the size of the experiment (the number of trials and the amount of replication)
and the nature of the anticipated response. If a response is known to be a linear function of
a factor, two levels would be sufficient to define the response. If the response is “curved” (a
quadratic response, for example†), at least three levels of the quantitative factor would be needed
to characterize the response. Two levels are often used for the sake of economy, but a third level
or more can be used to meet experimental objectives as noted above. A rule of thumb used for
the choice of levels in two-level experiments is to divide extreme ranges of a factor into four
equal parts and take the one-fourth (1/4) and three-fourths (3/4) values as the choice of levels
[1]. For example, if the minimum and maximum concentrations for a factor are 1% and 5%,
respectively, the choice of levels would be 2% and 4% according to this empirical rule.

The trials comprising the factorial experiment should be done in random order if at all
possible. This helps ensure that the results will be unbiased (as is true for many statistical
procedures). The fact that all effects are averaged over all runs in the analysis of factorial
experiments is also a protection against bias.

9.4 A WORKED EXAMPLE OF A FACTORIAL EXPERIMENT
The data in Table 9.2 were obtained from an experiment with three factors each at two levels.
There is no replication in this experiment. Replication would consist of repeating each of the
eight runs one or more times. The results in Table 9.2 are presented in standard order. Recording
the results in this order is useful when analyzing the data by hand (see below) or for input
into computers where software packages require data to be entered in a specified or standard
order. The standard order for a 22 experiment consists of the first four factor combinations in
Table 9.2. For experiments with more than three factors, see Davies for tables and an explanation
of the ordering [1].

The experiment that we will analyze is designed to investigate the effects of three com-
ponents (factors)—stearate, drug, and starch—on the thickness of a tablet formulation. In this
example, two levels were chosen for each factor. Because of budgetary constraints, use of more
than two levels would result in too large an experiment. For example, if one of the three

† A quadratic response is of the form Y = A + BX + CX2, where Y is the response and X is the factor level.
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Table 9.2 Results of 23 Factorial Experiment: Effect of Stearate, Drug, and Starch Concentration on

Tablet Thicknessa

Response (thickness)
Factor combination Stearate Drug Starch (cm × 103)

(1) − − − 475

a + − − 487

b − + − 421

ab + + − 426

c − − + 525

ac + − + 546

bc − + + 472

abc + + + 522

a−, factor at low level; +, factor at high level.

factors were to be studied at three levels, 12 formulations would have to be tested for a 2 ×
2 × 3 factorial design. Because only two levels are being investigated, nonlinear responses
cannot be elucidated. However, the pharmaceutical scientist felt that the information from this
two-level experiment would be sufficient to identify effects that would be helpful in designing
and formulating the final product. The levels of the factors in this experiment were as follows:

Factor Low level (mg) High level (mg)

A: Stearate 0.5 1.5

B: Drug 60.0 120.0

C: Starch 30.0 50.0

The computation of the main effects and interactions as well as the ANOVA may be done
by hand in simple designs such as this one. Readily available computer programs are usually
used for more complex analyses. (For n factors, an n-way analysis of variance is appropriate. In
typical factorial designs, the factors are usually considered to be fixed.)

For two-level experiments, the effects can be calculated by applying the signs (+ or −)
arithmetically for each of the eight responses as shown in Table 9.3. This table is constructed by
placing a + or − in columns A, B, and C depending on whether or not the appropriate factor
is at the high or low level in the particular run. If the letter appears in the factor combination,
a + appears in the column corresponding to that letter. For example, for the product combination
ab, a + appears in columns A and B, and a − appears in column C. Thus for column A, runs
a, ab, ac, and abc have a + because in these runs, A is at the high level. Similarly, for runs (1),
b, c, and bc, a − appears in column A since these runs have A at the low level.

Table 9.3 Signs to Calculate Effects in a 23 Factorial Experimenta

Level of factor in
experiment Interactionb

Factor combination A B C AB AC BC ABC

(1) − − − + + + −
a + − − − − + +
b − + − − + − +
ab + + − + − − −
c − − + + − − +
ac + − + − + − −
bc − + + − − + −
abc + + + + + + +
a−, factor at low level; +, factor at high level.
bMultiply signs of factors to obtain signs for interaction terms in combination [e.g., AB at (1) = (−) × (−) = (+)].
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Columns denoted by AB, AC, BC, and ABC in Table 9.3 represent the indicated interactions
(i.e., AB is the interaction of factors A and B, etc.). The signs in these columns are obtained by
multiplying the signs of the individual components. For example, to obtain the signs in column
AB we refer to the signs in column A and column B. For run (1), the + sign in column AB is
obtained by multiplying the − sign in column A times the − sign in column B. For run a, the −
sign in column AB is obtained by multiplying the sign in column A (+) times the sign in column
B (−). Similarly, for column ABC, we multiply the signs in columns A, B, and C to obtain the
appropriate sign. Thus run ab has a − sign in column ABC as a result of multiplying the three
signs in columns A, B, and C: (+) × (+) × (−).

The average effects can be calculated using these signs as follows. To obtain the average
effect, multiply the response times the sign for each of the eight runs in a column, and divide
the result by 2n−1, where n is the number of factors (for three factors, 2n−1 is equal to 4). This
will be illustrated for the calculation of the main effect of A (stearate). The main effect for factor
A is

[−(1) + a − b + ab − c + ac − bc + abc]
4

. (9.4)

Note that the main effect of A is the average of all results at the high level of A minus the
average of all results at the low level of A. This is more easily seen if formula (9.4) is rewritten
as follows:

Main effect of A = a + ab + ac + abc
4

− (1) + b + c + bc
4

. (9.5)

“Plugging in” the results of the experiment for each of the eight runs in Eq. (9.5), we obtain

[487 + 426 + 546 + 522 − (475 + 421 + 525 + 472)] × 10−3

4
= 0.022 cm.

The main effect of A is interpreted to mean that the net effect of increasing the stearate
concentration from the low to the high level (averaged over all other factor levels) is to increase
the tablet thickness by 0.022 cm. This result is illustrated in Figure 9.6.

The interaction effects are estimated in a manner similar to the estimation of the main
effects. The signs in the column representing the interaction (e.g., AC) are applied to the eight
responses, and as before the total divided by 2n−1, where n is the number of factors. The
interaction AC, for example, is defined as one-half the difference between the effect of A when

Figure 9.6 Main effect of the factor “stearate.”
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Figure 9.7 Starch × stearate interaction.

C is at the high level and the effect of A when C is at the low level (Fig. 9.7). Applying the signs
as noted above, the AC interaction is estimated as

AC interaction = 1
4
{(abc + ac − bc − c) − [ab + a − b − (1)]}. (9.6)

The interaction is shown in Figure 9.7. With starch (factor C) at the high level, 50 mg,
increasing the stearate concentration from the low to the high level (from 0.5 mg to 1.5 mg)
results in an increased thickness of 0.0355 cm.‡ At the low level of starch, 30 mg, increasing
stearate concentration from 0.5 mg to 1.5 mg results in an increased thickness of 0.0085 cm.
Thus stearate has a greater effect at the higher starch concentration, a possible starch × stearate
interaction.

Lack of interaction would be evidenced by the same effect of stearate at both low and
high starch concentrations. In a real experiment, the effect of stearate would not be identical
at both levels of starch concentration in the absence of interaction because of the presence of
experimental error. The statistical tests described below show how to determine the significance
of observed nonzero effects.

The description of interaction is “symmetrical.” The AC interaction can be described in
two equivalent ways: (a) the effect of stearate is greater at high starch concentrations, or (b) the
effect of starch concentration is greater at the high stearate concentration (1.5 mg) compared to
its effect at low stearate concentration (0.5 mg). The effect of starch at low stearate concentration
is 0.051. The effect of starch at high stearate concentration is 0.078. (Also see Fig. 9.7.)

The details of the analysis in this section is meant to give an insight into the interpretation
of data resulting from a factorial experiment. In the usual circumstances, the analysis would be
performed using a suitable computer program. To intelligently interpret the output from the
program, it is essential that one understands the underlying principles and analysis.

9.4.1 Data Analysis

9.4.1.1 Method of Yates
Computers are usually used to analyze factorial experiments. However, hand analysis of simple
experiments can give insight into the properties of this important class of experimental designs.
A method devised by Yates for systematically analyzing data from 2n factorial experiments
(n factors each at two levels) is of historical interest and is demonstrated in Table 9.4. The data
are first tabulated in standard order (see Ref. [1] for experiments with more than two levels).

‡ (l/2)(abc + ac − bc − c).
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Table 9.4 Yates Analysis of the Factorial Tableting Experiment for Analysis of Variance

Thickness Effect Mean square
Combination (× 103) (1) (2) (3) (× 103)(3)/4 (× 106)(3)2/8

(1) 475 962 1809 3874 — —

a 487 847 2065 88 22.0 968

b 421 1071 17 −192 −48.0 4608

ab 426 994 71 22 5.5 60.5

c 525 12 −115 256 64.0 8192

ac 546 5 −77 54 13.5 364.5

bc 472 21 −7 38 9.5 180.5

abc 522 50 29 36 9.0 162

The data are first added in pairs, followed by taking differences in pairs as shown in column (1)
in Table 9.4.

475 + 487 = 962
421 + 426 = 847
525 + 546 = 1071
472 + 522 = 994
487 − 475 = 12
426 − 421 = 5
546 − 525 = 21
522 − 472 = 50

This addition and subtraction process is repeated sequentially on the n columns. (Remem-
ber that n is the number of factors, three columns for three factors.) Thus the process is repeated
in column (2), operating on the results in column (1) of Table 9.4. Note, for example, that 1809 in
column (2) is 962 + 847 from column (1). Finally, the process is repeated, operating on column
(2) to form column (3). Column (3) is divided by 2n−1 (2n−1 = 4 for three factors) to obtain the
average effect. The mean squares for the ANOVA (described below) are obtained by dividing
the square of column (n) by 2n. For example, the mean square attributable to factor A is

Mean square for A = (88)2

8
= 968.

The mean squares are presented in an ANOVA table, as discussed below.

9.4.1.2 Analysis of Variance
The results of a factorial experiment are typically presented in an ANOVA table, as shown in
Table 9.5. In a 2n factorial, each effect and interaction has 1 degree of freedom. The error mean
square for statistical tests and estimation can be estimated in several ways for a factorial experi-
ment. Running the experiment with replicates is best. Duplicates are usually sufficient. However,

Table 9.5 Analysis of Variance for the Factorial Tableting Experiment

Factor Source d.f. Mean square (× 106) Fa

A Stearate 1 968 7.2b

B Drug 1 4608 34.3c

C Starch 1 8192 61.0c

AB Stearate × drug 1 60.5

AC Stearate × starch 1 364.5 2.7

BC Drug × starch 1 180.5

ABC Stearate × drug × starch 1 162

aError mean square based on AB, BC, and ABC interactions, 3 d.f.
bp < 0.1.
cp < 0.01.
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replication may result in an inordinately large number of runs. Remember that replicates do not
usually consist of replicate analyses or observations on the same run. A true replicate usually
is obtained by repeating the run, from “scratch.” For example, in the 23 experiment described
above, determining the thickness of several tablets from a single run [e.g., the run denoted by
a (A at the high level)] would probably not be sufficient to estimate the experimental error in
this system. The proper replicate would be obtained by preparing a new mix with the same
ingredients, retableting, and measuring the thickness of tablets in this new batch.§ In the absence
of replication, experimental error may be estimated from prior experience in systems similar to
that used in the factorial experiment. To obtain the error estimate from the experiment itself is
always most desirable. Environmental conditions in prior experiments are apt to be different
from those in the current experiment. In a large experiment, the experimental error can be
estimated without replication by pooling the mean squares from higher order interactions (e.g.,
three-way and higher order interactions) as well as other interactions known to be absent, a
priori. For example, in the tableting experiment, we might average the mean squares corre-
sponding to the two-way interactions, AB and BC, and the three-way ABC interaction, if these
interactions were known to be zero from prior considerations. The error estimated from the
average of the AB, BC, and ABC interactions is

(60.5 + 180.5 + 162) × 10−6

3
= 134.2 × 10−6.

with 3 degrees of freedom (assuming that these interactions do not exist).

9.4.1.3 Interpretation
In the absence of interaction, the main effect of a factor describes the change in response when
going from one level of a factor to another. If a large interaction exists, the main effects corre-
sponding to the interaction do not have much meaning as such. Specifically, an AC interaction
suggests that the effect of A depends on the level of C and a description of the results should
specify the change due to A at each level of C. Based on the mean squares in Table 9.5, the effects
that are of interest are A, B, C, and AC. Although not statistically significant, stearate and starch
interact to a small extent, and examination of the data is necessary to describe this effect (Fig. 9.7).
Since B does not interact with A or C, it is sufficient to calculate the effect of drug (B), averaged
over all levels of A and C, to explain its effect. The effect of drug is to decrease the thickness by
0.048 mm when the drug concentration is raised from 60 to 120 mg [Table 9.4, column (3)/4].

9.5 FRACTIONAL FACTORIAL DESIGNS
In an experiment with a large number of factors and/or a large number of levels for the factors,
the number of experiments needed to complete a factorial design may be inordinately large. For
example, a factorial design with five factors each at two levels requires 32 experiments; a three-
factor experiment each at three levels requires 27 experiments. If the cost and time considerations
make the implementation of a full factorial design impractical, fractional factorial experiments
can be used in which a fraction (e.g., 1/2, 1/4, etc.) of the original number of experiments can
be run. Of course, something must be sacrificed for the reduced work. If the experiments are
judiciously chosen, it may be possible to design an experiment so that effects that we believe
are negligible are confounded with important effects. (The word “confounded” has been noted
before in this chapter.) In fractional factorial designs, the negligible and important effects are
indistinguishable, and thus confounded. This will become clearer in the first example.

To illustrate some of the principles of fractional factorial designs, we will discuss and
present an example of a fractional design based on a factorial design where each of three factors
is at two levels, a 23 design. Table 9.3 shows the eight experiments required for the full design.
With the full factorial design, we can estimate seven effects from the eight experiments, the three
main effects (A, B, and C), and the four interactions (AB, AC, BC, and ABC). In a 1/2 replicate
fractional design, we perform four experiments, but we can only estimate three effects. With

§ If the tableting procedure in the different runs were identical in all respects (with the exception of tablet
ingredients), replicates within each run would be a proper estimate of error.
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Table 9.6 22 Factorial Design

Experiment A level B level AB

(1) − − +
a + − −
b − + −
ab + + +

three factors, a 1/2 replicate can be used to estimate the main effects, A, B, and C. The following
procedure is used to choose the four experiments.

Table 9.6 shows the four experiments that define a 22 factorial design using the notation
described in section 9.3.

To construct the 1/2 replicate with three factors, we equate one of the effects to the third
factor. In the 22 factorial the interaction, AB is equated to the third factor, C. Table 9.7 describes
the 1/2 replicate design for three factors. The four experiments consist of (1) c at the high level
(a, b at the low level); (2) a at the high level (b, c at the low level); (3) b at the high level (a, c at
the low level); and (4) a, b, c all at the high level.

From Table 9.7, we can define the confounded effects, also known as aliases. An effect is
defined by the signs in the columns of Table 9.7. For example, the effect of A is

(a + abc) − (c + b).

Note that the effect of A is exactly equal to BC. Therefore, BC and A are confounded (they
are aliases). Also note that C = AB (by definition) and B = AC. Thus, in this design the main
effects are confounded with the two factor interactions. This means that the main effects cannot
be clearly interpreted if interactions are not absent or negligible. If interactions are negligible,
this design will give fair estimates of the main effects. If interactions are significant, this design
is not recommended.

Example 1. Davies [1] gives an excellent example of weighing three objects on a balance with
a zero error in a 1/2 replicate of a 23 design. This illustration is used because interactions are
zero when weighing two or more objects together (i.e., the weight of two or more objects is the
sum of the individual weights). The three objects are denoted as A, B, and C; the high level is
the presence of the object to be weighed, and the low level is the absence of the object. From
Table 9.7, we would perform four weighinings: A alone, B alone, C alone, and A, B, and C
together (call this ABC).

1. The weight of A is the (weight of A + the weight of ABC − the weight of B − weight of C)/2.
2. The weight of B is the (weight of B + the weight of ABC − the weight of A − weight of C)/2.
3. The weight of C is the (weight of C + the weight of ABC − the weight of A − weight of B)/2.

As noted by Davies, this illustration is not meant as a recommendation of how to weigh
objects, but rather to show how the design works in the absence of interaction. (See Exercise
Problem 5 as another way to weigh these objects using a 1/2 replicate fractional factorial design.)

Example 2. A 1/2 replicate of a 24 experiment: Chariot et al. [2] reported the results of a factorial
experiment studying the effect of processing variables on extrusion–spheronization of wet
powder masses. They identified five factors each at two levels, the full factorial requiring 32
experiments. Initially, they performed a 1/4 replicate, requiring eight experiments. One of the
factors, extrusion speed, was not significant. To simplify this discussion, we will ignore this

Table 9.7 One-Half Replicate of 23 Factorial Design

Experiment A level B level C = AB AC BC

c − − + − −
a + − − − +
b − + − + −
abc + + + + +
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Table 9.8 One-Half Replicate of 24 Factorial Design (Extrusion–Spheronization of Wet Powder Masses)

Parameter

Experiment A (min) B (rpm) C (kg) D (mm) ABa = CD AC = BD AD = BC Response

(1) − − − − + + + 75.5

ab + + − − + − − 55.5

ac + − + − − + − 92.8

ad + − − + − − + 45.4

bc − + + − − − + 46.5

bd − + − + − + − 19.7

cd − − + + + − − 11.1

abcd + + + + + + + 55.0

aIllustrates confounding.

factor for our example. The design and results are shown in Table 9.8. A = spheronization time,
B = spheronization speed, C = spheronization load, and D = extrusion screen.

Note the confounding pattern shown in Table 9.8. The reader can verify these confounded
effects (see Exercise Problem 6 at the end of this chapter). Table 9.8 was constructed by first
setting up the standard 23 factorial (Table 9.3) and substituting D for the ABC interaction. For
the estimated effects to have meaning, the confounded effects should be small. For example, if
BC and AD were both significant, the interpretation of BC and/or AD would be fuzzy.

To estimate the effects, we add the responses multiplied by the signs in the appropriate
column and divide by 4. For example, the effect of AB is

[75.5 + 55.5 − 92.8 − 45.4 − 46.5 − 19.7 + 11.14 + 55.0]
4

= −1.825.

Estimates of the other effects are (see Exercise Problem 7)

A = + 23.98
B = −12.03
C = + 2.33
D = − 34.78
AB = −1.83
AC = + 21.13
AD = + 10.83

We cannot perform tests for the significance of these parameters without an estimate of
the error (variance). The variance can be estimated from duplicate experiments, nonexistent
interactions, or experiments from previous studies, for example. Based on the estimate above,
factor A, D, and AC are the largest effects. To help clarify the possible confounding effects, eight
more experiments can be performed. For example, the large effect observed for the interaction
AC, spheronization time × spheronization load could be exaggerated due to the presence of
a BD interaction. Without other insights, it is not possible to separate these two interactions
(they are aliases in this design). Therefore, this design would not be desirable if the nature of
these interactions is unknown. Data for the eight further experiments that complete the factorial
design are given in Exercise Problem 8.

The conclusions given by Chariot et al. are as follows:

1. Spheronization time (factor A) has a positive effect on the production of spheres.
2. There is a strong interaction between factors A and C (spheronization time × spheronization

load). Note that the BD interaction is considered to be small.
3. Spheronization speed (factor B) has a negative effect on yield.
4. The interaction between spheronization speed and spheronization load (BC) appears signif-

icant. The AD interaction is considered to be small.
5. The interaction between spheronization speed and spheronization time (AB) appears to be

insignificant. The CD interaction is considered to be small.
6. Extrusion screen (D) has a very strong negative effect.
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Table 9.9 Some Fractional Designs for Up to five Factors

Fraction of Defining
Observations Factors full factorial contrast Confounding Design

4 3 1/2 −ABC Main effects confused

with two-way

interactions

(1), ab, ac, bc

8 4 1/2 ABCD Main effects and three

two-way interactions

are not confused

(1), ab, ac, bc, ad, bd,

cd, abcd

8 5 1/4 −BCE

−ADE

Main effects confused

with two-way

interactions (see

references note

below)

(1), ad, bc, abcd, abe,

bde, ace, cde

16 5 1/2 ABCDE Main effects and

two-factor

interactions are not

confused

(1), ab, ac, bc, ad, bd,

cd, abcd, ae, be, ce,

abce, de, abde,

acde, bcde

See Refs. [1,3] for more detailed discussion and other designs.

Table 9.9 presents some fractional designs with up to eight observations. To find the
aliases (confounded effects), multiply the defining contrast in the table by the effect under
consideration. Any letter that appears twice is considered to be equal to 1. The result is the
confounded effect. For example, if the defining contrast is − ABC and we are interested in the
alias of A, we multiply − ABC by A = − A2BC = − BC. Therefore, A is confounded with − BC.
Similarly, B is confounded with − AC and C is confounded with − AB.

9.6 SOME GENERAL COMMENTS
As noted previously, experiments need not be limited to factors at two levels, although the use
of two levels is often necessary to keep the experiment at a manageable size. Where factors
are quantitative, experiments at more than two levels may be desirable when curvature of the
response is anticipated. As the number of levels increase, the size of the experiment increases
rapidly and fractional designs are recommended.

The theory of factorial designs is quite fascinating from a mathematical viewpoint. Par-
ticularly, the algebra and arithmetic lead to very elegant concepts. For those readers interested
in pursuing this topic further, the book The Design and Analysis of Industrial Experiments, edited
by Davies, is indispensable [1]. This topic is also discussed in some detail in Ref. [4]. Appli-
cations of factorial designs in pharmaceutical systems have appeared in the recent pharma-
ceutical literature. Plaizier-Vercammen and De Neve investigated the interaction of povidone
with low-molecular-weight organic molecules using a factorial design [5]. Bolton has shown
the application of factorial designs to drug stability studies [6]. Ahmed and Bolton optimized a
chromatographic assay procedure based on a factorial experiment [7].

KEY TERMS

Additivity Half replicate
Aliases Interaction
Confounding Level
Main effect Residual variation
One-at-a-time experiment Runs
Replication Standard order
Effects 2n factorials
Factor Yates analysis
Fractional factorial designs
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EXERCISES
1. A 22 factorial design was used to investigate the effects of stearate concentration and mixing

time on the hardness of a tablet formulation. The results below are the averages of the
hardness of 10 tablets. The variance of an average of 10 determinations was estimated from
replicate determinations as 0.3 (d.f. = 36). This is the error term for performing statistical
tests of significance.

Stearate

Mixing time (min) 0.5% 1%

15 9.6 (1) 7.5 (a)

30 7.4 (b) 7.0 (ab)

(a) Calculate the ANOVA and present the ANOVA table.
(b) Test the main effects and interaction for significance.
(c) Graph the data showing the possible AB interaction.

2. Show how to calculate the effect of increasing stearate concentration at low starch level for
the data in Table 9.2. The answer is an increased thickness of 0.085 cm. Also, compute the
drug × starch interaction.

3. The end point of a titration procedure is known to be affected by (1) temperature, (2) pH,
and (3) concentration of indicator. A factorial experiment was conducted to estimate the
effects of the factors. Before the experiment was conducted, all interactions were thought to
be negligible except for a pH × indicator concentration interaction. The other interactions
are to be pooled to form the error term for statistical tests. Use the Yates method to calculate
the ANOVA based on the following assay results:

Factor combination Recovery (%) Factor combination Recovery (%)

(1) 100.7 c 99.9

a 100.1 ac 99.6

b 102.0 bc 98.5

ab 101.0 abc 98.1

(a) Which factors are significant?
(b) Plot the data to show main effects and interactions that are significant.
(c) Describe, in words, the BC interaction.

4. A clinical study was performed to assess the effects of a combination of ingredients to
support the claim that the combination product showed a synergistic effect compared to the
effects of the two individual components. The study was designed as a factorial with each
component at two levels.
Ingredient A: low level, 0; high level, 5 mg
Ingredient B: low level, 0; high level, 50 mg
Following is the analysis of variance table:

Source d.f. MS F

Ingredient A 1 150 12.5

Ingredient B 1 486 40.5

A × B 1 6 0.5

Error 20 12
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The experiment consisted of observing six patients in each cell of the 22 experiment. One
group took placebo with an average result of 21. A second group took ingredient A at
a 5-mg dose with an average result of 25. The third group had ingredient B at a 50-mg
dose with an average result of 29, and the fourth group took a combination of 5 mg of
A and 50 mg of B with a result of 35. In view of the results and the ANOVA, discuss
arguments for or against the claim of synergism.

5. The three objects in the weighing experiment described in section 9.5, Example 1, may
also be weighed using the other four combinations from the 23 design not included in the
example. Describe how you would weigh the three objects using these new four weighings.
[Note that these combinations comprise a 1/2 replicate of a fractional factorial with a different
confounding pattern from that described in section 9.5. (Hint: See Table 9.9.)

6. Verify that the effects (AB = CD, AC = BD, and AD = BC) shown in Table 9.8 are confounded.

7. Compute the effects for the data in section 9.5, example 2 (Table 9.8).

8. ¶In example 2 in section 9.5 (Table 9.8), eight more experiments were performed with the
following results:

Experiment Response

a 78.7

b 56.9

c 46.7

ab 21.2

abc 67.0

abd 29.0

acd 34.9

bcd 1.2

Using the entire 16 experiments (the 8 given here plus the 8 in Table 9.7), analyze the data as
a full 24 factorial design. Pool the three-factor and four-factor interactions (5 d.f.) to obtain an
estimate of error. Test the other effects for significance at the 5% level. Explain and describe
any significant interactions.
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¶ A more advanced topic.



10 Transformations and Outliers

Critical examination of the data is an important step in statistical analyses. Often, we observe
either what seem to be unusual observations (outliers) or observations that appear to violate the
assumptions of the analysis. When such problems occur, several courses of action are available
depending on the nature of the problem and statistical judgment. Most of the analyses described
in previous chapters are appropriate for groups in which data are normally distributed with
equal variance. As a result of the Central Limit theorem, these analyses perform well for data
that are not normal provided the deviation from normality is not large and/or the data sets are
not very small. (If necessary and appropriate, nonparametric analyses, chap. 15, can be used
in these instances.) However, lack of equality of variance (heteroscedascity) in t tests, analysis
of variance and regression, for example, is more problematic. The Fisher–Behrens test is an
example of a modified analysis that is used in the comparison of means from two independent
groups with unequal variances in the two groups (chap. 5). Often, variance heterogeneity
and/or lack of normality can be corrected by a data transformation, such as the logarithmic
or square-root transformation. Bioequivalence parameters such as AUC and CMAX currently
require a log transformation prior to statistical analysis. Transformations of data may also be
appropriate to help linearize data. For example, a plot of log potency versus time is linear for
stability data showing first-order kinetics.

Variance heterogeneity may also be corrected using an analysis in which each observation
is weighted appropriately, that is, a weighted analysis. In regression analysis of kinetic data,
if the variances at each time point differ, depending on the magnitude of drug concentration,
for example, a weighted regression would be appropriate. For an example of the analysis of a
regression problem requiring a weighted analysis for its solution, see chapter 7.

Data resulting from gross errors in observations or overt mistakes such as recording errors
should clearly be omitted from the statistical treatment. However, upon examining experimental
data, we often find unusual values that are not easily explained. The prudent experimenter will
make every effort to find a cause for such aberrant data and modify the data or analysis
appropriately. If no cause is found, one should use scientific judgment with regard to the
disposition of these results. In such cases, a statistical test may be used to detect an outlying
value. An outlier may be defined as an observation that is extreme and appears not to belong
to the bulk of data. Many tests to identify outliers have been proposed and several of these are
presented in this chapter.

10.1 TRANSFORMATIONS
A transformation applied to a variable changes each value of the variable as described by the
transformation. In a logarithmic (log) transformation, each data point is changed to its logarithm
prior to the statistical analysis. Thus the value 10 is transformed to 1 (i.e., log 10 = 1). The log
transformation may be in terms of logs to the base 10 or logs to the base e (e = 2.718 . . .), known
as natural logs (In). For example, using natural logs, 10 would be transformed to 2.303 (ln 10 =
2.303). The square-root transformation would change the number 9 to 3.

Parametric analyses such as the t test and analysis of variance are the methods of choice in
most situations where experimental data are continuous. For these methods to be valid, data are
assumed to have a normal distribution with constant variance within treatment groups. Under
appropriate circumstances, a transformation can change a data distribution that is not normal
into a distribution that is approximately normal and/or can transform data with heterogeneous
variance into a distribution with approximately homogeneous variance.
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Table 10.1 Some Transformations Used to Linearize

Relationships Between Two Variables, X and Y

Function Transformation Linear form

Y = Ae−BX Logarithm of Y ln Y = A − BX

Y = 1/(A + BX) Reciprocal of Y 1/Y = A + BX

Y = X/(AX + B) Reciprocal of Y 1/Y = A + B(1/X)a

aA plot of 1/Y versus 1/X is linear.

Thus, data transformations can be used in cases where (1) the variance in regression and
analysis of variance is not constant and/or (2) data are clearly not normally distributed (highly
skewed to the left or right).

Another application of transformations is to linearize relationships such as may occur
when fitting a least squares line (not all relationships can be linearized). Table 10.1 shows some
examples of such linearizing transformations. When making linearizing transformations, if
statistical tests are to be made on the transformed data, one should take care that the normality
and variance homogeneity assumptions are not invalidated by the transformation.

10.1.1 The Logarithmic Transformation
Probably the most common transformation used in scientific research is the log transformation.
Either logs to the base 10 (log10) or the base e, loge(ln) can be used. Data skewed to the right as
shown in Figure 10.1 can often be shown to have an approximately log-normal distribution. A
log-normal distribution is a distribution that would be normal following a log transformation,
as illustrated in Figure 10.2. When statistically analyzing data with a distribution similar to
that shown in Figure 10.1, a log transformation should be considered. One should understand
that a reasonably large data set or prior knowledge is needed in order to know the form of the
distribution. Table 10.2 shows examples of two data sets, listed in ascending order of magnitude.
Data set A would be too small to conclude that the underlying distribution is not normal in the
absence of prior information. Data set B, an approximately log-normal distribution, is strongly
suggestive of non-normality. (See Exercise Problem 1.) One should understand that real data
does not conform exactly to a normal or log-normal distribution. This does not mean that
applying theoretical probabilities to data that approximate these distributions is not meaningful.
If the distributions are reasonably close to a theoretical distribution, the statistical decisions will
have alpha levels close to those chosen for the tests.

Two problems may arise as a consequence of using the log transformation.

1. Many people have trouble interpreting data reported in logarithmic form. Therefore,
when reporting experimental results, such as means for example, a back transformation
(the antilog) may be needed. For example, if the mean of the logarithms of a data set is 1.00,
the antilog, 10, might be more meaningful in a formal report of the experimental results. The
mean of a set of untransformed numbers is not, in general, equal to the antilog of the mean
of the logs of these numbers. If the data are relatively nonvariable, the means calculated
by these two methods will be close. The mean of the logs and the log of the mean will be
identical only if each observation is the same, a highly unlikely circumstance. Table 10.3

Figure 10.1 Log-normal distribution.
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Figure 10.2 Transformation of a log-normal distribution to a normal distribution via the log transformation.

illustrates this concept. Note that the antilog of the mean of a set of log-transformed vari-
ables is the geometric mean (see chap. 1). This lack of “equivalence” can raise questions
when someone reviewing the data is unaware of this divergence, “the nature of the beast,”
so to speak.

2. The second problem to be considered when making log transformations is that the log
transformation that “normalizes” log-normal data also changes the variance. If the variance
is not very large, the variance of the ln transformed values will have a variance approximately
equal to S2/X

2
. That is, the standard deviation of the data after the transformation will be

approximately equal to the coefficient of variation (CV), S/X. For example, consider the
following data:

X ln X

105 4.654

102 4.625

100 4.605

110 4.700

112 4.718

Mean 105.8 4.6606

s.d. 5.12 0.0483

Table 10.2 Two Data Sets That May Be Considered Lognormal

Data set A: 2, 17, 23, 33, 43, 55, 125, 135

Data set B: 10, 13, 40, 44, 55, 63, 115, 145, 199, 218, 231,

370, 501, 790, 795, 980, 1260, 1312, 1500, 4520

Table 10.3 Illustration of Why the Antilog of the Mean of the Logs Is Not Equal to the Mean of the

Untransformed Values

Case I Case II

Original data Log transform Original data Log transform

5 0.699 4 0.603

5 0.699 6 0.778

5 0.699 8 0.903

5 0.699 10 1.000

Mean 5 0.699 Mean 7 0.821

Antilog (0.699) = 5 Antilog (0.821) = 6.62
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Table 10.4 Results of an Assay at Three Different Levels of Drug

At 40 mg At 60 mg At 80 mg

Assay Log assay Assay Log assay Assay Log assay

37 1.568 63 1.799 82 1.914

43 1.633 77 1.886 68 1.833

42 1.623 56 1.748 75 1.875

40 1.602 64 1.806 97 1.987

30 1.477 66 1.820 71 1.851

35 1.544 58 1.763 86 1.934

38 1.580 67 1.826 71 1.851

40 1.602 52 1.716 81 1.908

39 1.591 55 1.740 91 1.959

36 1.556 58 1.763 72 1.857

Average 38 1.578 61.6 1.787 79.4 1.897

s.d. 3.77 0.045 7.35 0.050 9.67 0.052

CV 0.10 0.12 0.12

The CV of the original data is 5.12/105.8 = 0.0484. The standard deviation of the ln
transformed values is 0.0483, very close to the CV of the untransformed data. This property of
the transformed variance can be advantageous when working with data groups that are both
lognormal and have a constant coefficient of variation. If the standard deviation within treatment
groups, for example, is not homogeneous but is proportional to the magnitude of the mea-
surement, the CV will be constant. In analytical procedures, one often observes that the s.d.
is proportional to the quantity of material being assayed. In these circumstances, the log (to
the base e) transformation will result in data with homogeneous s.d. equal to CV. (The s.d. of
the transformed data is approximately equal to CV∗). This concept is illustrated in Example 1
that follows. Fortunately, in many situations, data that are approximately lognormal also have
a constant CV. In these cases, the log transformation results in normal data with approximately
homogeneous variance. The transformed data can be analyzed using techniques that depend
on normality and homogeneous variance for their validity (e.g., ANOVA).

Example 1. Experimental data were collected at three different levels of drug to show that an
assay procedure is linear over a range of drug concentrations. “Linear” means that a plot of
the assay results, or a suitable transformation of the results, versus the known concentration of
drug is a straight line. In particular, we wish to plot the results such that a linear relationship is
obtained, and calculate the least squares regression line to relate the assay results to the known
amount of drug. The results of the experiment are shown in Table 10.4. In this example, the assay
results are unusually variable. This large variability is intentionally presented in this example
to illustrate the properties of the log transformation. The skewed nature of the data in Table 10.4
suggests a log-normal distribution, although there are not sufficient data to verify the exact
nature of the distribution. Also in this example, the s.d. increases with drug concentration. The
s.d. is approximately proportional to the mean assay, an approximately constant CV (10–12%).
Note that the log transformation results in variance homogeneity and a more symmetric data
distribution (Table 10.4). Thus, there is a strong indication for a log transformation.

∗ The log transformation (log to the base 10) of data with constant CV results in data with s.d. approximately
equal to CV/2.303.
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Figure 10.3 Plots of raw data means and log-transformed means for data of Table 10.4. (A) Means of untrans-

formed data, (B) log transformation.

The properties of this relatively variable analytical method can be evaluated by plotting
the known amount of drug versus the amount recovered in the assay procedure. Ideally, the
relationship should be linear over the range of drug concentration being assayed. A plot of
known drug concentration versus assay results is close to linear [Fig. 10.3(A)]. A plot of log drug
concentration versus log assay is also approximately linear, as shown in Figure 10.3(B). From a
statistical viewpoint, the log plot has better properties because the data are more “normal” and
the variance is approximately constant in the three drug concentration groups as noted above.
The line in Figure 10.3(B) is the least squares line. The details of the calculation are not shown
here (see Exercise Problem 2 and chap. 7 for further details of the statistical line fitting).

When performing the usual statistical tests in regression problems, the assumptions
include the following:

1. The data at each X should be normal (i.e., the amount of drug recovered at a given amount
added should be normally distributed).

2. The assays should have the same variance at each concentration.

The log transformation of the assay results (Y) helps to satisfy these assumptions. In
addition, in this example, the linear fit is improved as a result of the log transformation.

Example 2. In the pharmaceutical sciences, the logarithmic transformation has applications
in kinetic studies, when ascertaining stability and pharmacokinetic parameters. First-order
processes are usually expressed in logarithmic form (see also sect. 2.5)

ln C = ln C0 − kt. (10.1)

Least squares procedures are typically used to fit concentration versus time data in order
to estimate the rate constant, k. A plot of concentration (C) versus time (t) is not linear for
first-order reactions [Fig. 10.4(A)]. A plot of the log-transformed concentrations (the Y variable)
versus time is linear for a first-order process [Eq. (10.1)]. The plot of log C versus time is shown
in Figure 10.4(B), a semilog plot.

Thus, we may use linear regression procedures to fit a straight line to log C versus
time data for first-order reactions. One should recognize, as before, that if statistical tests are
performed to test the significance of the rate constant, for example, or when placing confidence
limits on the rate constant, the implicit assumption is that log concentration is normal with
constant variance at each value of X (time). These assumptions will hold, when linearizing
such concentration versus time relationships if the untransformed values of “concentration” are
lognormal with constant CV. In cases in which the assumptions necessary for statistical inference
are invalidated by the transformation, one may question the validity of predictions based on
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Figure 10.4 First-order plots. (A) Usual plot, (B) semilog plot.

least squares line fitting for first-order processes. For example, if the original, untransformed
concentration values are normal with constant variance, the log transformation will distort the
distribution and upset the constant variance condition. However, if the variance is small, and
the concentrations measured are in a narrow range (as might occur in a short-term stability
study to 10% decomposition), the log transformation will result in data that are close to normal
with homogeneous variance. Predictions for stability during the short term based on the least
squares fit will be approximately correct under these conditions.

Some properties of the log-normal distribution relevant to particle size analysis are also
presented in section 3.6.1.

10.1.1.1 Analysis of Residuals
We have discussed the importance of carefully looking at and graphing data before performing
transformations or statistical tests. The approach to examining data in this context is com-
monly known as exploratory data analysis, EDA, introduced in chapter 7. A significant aspect
of EDA is the examination of residuals. Residuals are deviations of the observed data from
the fit to the statistical model, the least squares line in this example. Figure 10.5 shows the
residuals for the least squares fit of the data in Table 10.4, using the untransformed and trans-
formed data analysis. Note that the residual plot versus dose shows the dependency of the
variance on dose. The log response versus log dose shows a more uniform distribution of
residuals.

Example 3. The log transformation may be used for data presented in the form of ratios. Ratios
are sometimes used to express the comparative absorption of drug from two formulations based
on the area under the plasma level versus time curve from a bioavailability study. Another way
of comparing the absorptions from the two formulations is to test statistically the difference
in absorption (AUC1 − AUC2), as illustrated in section 5.2.3. However, reporting results of
relative absorption using a ratio, rather than a difference, has great appeal. The ratio can be
interpreted in a pragmatic sense. Stating that formulation A is absorbed twice as much as
formulation B has more meaning than stating that formulation A has an AUC 525 �g · hr/mL
more than formulation B. (Note: The FDA Guidance for analysis of bioequivalence studies does
not recommend this procedure.) A statistical problem that is evident when performing statistical
tests on ratios is that the ratios of random variables will probably not be normally distributed.
In particular, if both A and B are normally distributed, the ratio A/B does not have a normal
distribution. On the other hand, the test of the differences of AUC has statistical appeal because
the difference of two normally distributed variables is also normally distributed. The practical
appeal of the ratio and the statistical appeal of differences suggest the use of a log transformation,
when ratios seem most appropriate for data analysis.

The differences of logs is analogous to ratios; the difference of the logs is the log of the
ratio: log A − log B = log(A/B). The antilog of the average difference of the logs will be close
to the average of the ratios if the variability is not too large. The differences of the logs will
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Figure 10.5 Residual plots from least squares line fitting of data from Table 10.4.

also tend to be normally distributed. But the normality assumption should not be a problem in
these analyses because we are testing mean differences (again, the central limit theorem). After
application of the log transformation, the data may be analyzed by the usual t-test (or ANOVA)
techniques that assess treatment differences.

Table 10.5 shows AUC data for 10 subjects who participated in a bioavailability study. The
analysis (a paired t test in this example) is performed on both the difference of the logarithms
and the ratios. The t test for the ratios is a one-sample, two-sided test comparing the average
ratio to 1 (H0: R = 1) as shown in section 5.2.1.

t test for ratios:

H0 : R = 1

t = |1.025 − 1|
0.378/

√
10

= 0.209.

95% confidence interval:

1.025 ± 2.26(0.378)√
10

= 1.025 ± 0.27.
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Table 10.5 Results of the Bioavailability Study: Areas Under the Plasma Level Versus Time Curve

Product A Product B

Subject AUC Log AUC AUC Log AUC Ratio AUCs: A/B Log A − Log B

1 533 2.727 651 2.814 0.819 −0.087

2 461 2.664 547 2.738 0.843 −0.074

3 470 2.672 535 2.728 0.879 −0.056

4 624 2.795 326 2.513 1.914 0.282

5 490 2.690 386 2.587 1.269 0.104

6 476 2.678 640 2.806 0.744 −0.129

7 465 2.667 582 2.765 0.799 −0.097

8 365 2.562 420 2.623 0.869 −0.061

9 412 2.615 545 2.736 0.756 −0.121

10 380 2.580 280 2.447 1.357 0.133

Average 1.025 −0.01077

s.d. 0.378 0.136

t test for difference of logs:

H0 : log A− log B = 0

t = |−0.01077|
0.136/

√
10

= 0.250.

95% confidence interval:

−0.01077 ± 2.26(0.136)√
10

= −0.01077 ± 0.0972.

The confidence interval for the logs is −0.10797 to 0.08643. The antilogs of these values
are 0.78 to 1.22. The confidence interval for the ratio is 0.75 to 1.30. Thus, the conclusions using
both methods (ratio and difference of logs) are similar. Had the variability been smaller, the two
methods would have been in better agreement.

t test Confidence interval

Ratio Difference of logs Ratio Difference of logs

0.209 0.250 0.75–1.30 0.78–1.22

Another interesting result that recommends the analysis of differences of logs rather than
the use of ratios is a consequence of the symmetry that is apparent with the former analysis.
With the log transformation, the conclusion regarding the equivalence of the products will be
the same whether we consider the difference as (log A − log B) or (log B − log A). However,
when analyzing ratios, the analysis of A/B will be different from the analysis of B/A. The product
in the numerator has the advantage (see Exercise Problem 3). In the example in Table 10.5 the
average ratio of B/A is 1.066. B appears slightly better than A. When the ratios are calculated as
A/B, A appears somewhat better than B. The log transformation for bioavailability parameters,
as has been recommended by others [1], is now routinely applied to analysis of bioequivalence
data. This analysis is presented in detail in chapter 11.

For data containing zeros, very small numbers (close to zero) or negative numbers, using
ratios or logarithms is either not possible or not recommended. Clearly, if we have a ratio
with a zero in the denominator or a mixture of positive and negative ratios, the analysis
and interpretation is difficult or impossible. Logarithms of negative numbers and zero are
undefined. Therefore, unless special adjustments are made, such data are not candidates for a
log transformation.
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10.1.2 The Arcsin Transformation for Proportions
Another commonly used transformation is the arcsin transformation for proportions. The arcsin
is the inverse sine function, also denoted as sin−1. Thus, if sin 45◦ = 0.7, arcsin 0.7 = 45◦. Many
calculators have a sine and inverse sine function available.

The problem that arises when analyzing proportions, where the data consist of propor-
tions of widely different magnitudes, is the lack of homogeneity of variance. The variance
homogeneity problem is a result of the definition of the variance for proportions, pq/N. If the
proportions under consideration vary from one observation to another, the variance will also
vary. If the proportions to be analyzed are approximately normally distributed (Np and Nq ≥
5; see chap. 5), the arcsin transformation will equalize the variances. The arcsin values can then
be analyzed using standard parametric techniques such as ANOVA. When using the arcsin
transformation, each proportion should be based on the same number of observations, N. If the
number of observations is similar for each proportion, the analysis using arcsines will be close to
correct. However, if the numbers of observations are very different for the different proportions,
the use of the transformation is not appropriate. Also, for very small or very large proportions
(less than 0.03 or greater than 0.97), a more accurate transformation is given by Mosteller and
Youtz [2]. The following example should clarify the concept and calculations when applying
the arcsin transformation.

Example 4. In preparation for a toxicological study for a new drug entity, an estimate of the
incidence of a particular adverse reaction in untreated mice was desired. Data were available
from previous studies, as shown in Table 10.6. The arcsin transformation is applied to the
proportions as follows:

Arcsin transformation = arcsin
√

p. (10.2)

For example, in Table 10.6, the arcsin transformation of 10% (0.10) is arcsin
√

0.10, which
is equal to 18.43◦.

The objective of this exercise is to estimate the incidence of the adverse reaction in normal,
untreated animals. To this end, we will obtain the average proportion and construct a confi-
dence interval using the arcsin-transformed data. The average arcsin is 26.197◦. The average
proportions are not reported in terms of arcsines. As in the case of the log transformation, one
should back transform the average transformed value to the original terms. In this example,
we obtain the back transform as sin(arcsin)2, or sin(26.197)2 = 0.195. This is very close to the
average of the untransformed proportions, 20%. The variance of a transformed proportion can be
shown to be equal to 820.7/N, where N is the number of observations for each proportion [3].
Thus, in this example, the variance is 820.7/50 = 16.414.

A confidence interval for the average proportion is obtained by finding the confidence
interval for the average arcsin and back transforming to proportions. Ninety-five percent con-
fidence interval: X ± 1.96

√
�2/N [Eq. (5.1)]

26.197 ± 1.96

√
16.414

6
= 26.197 ± 3.242.

Table 10.6 Incidence of an Adverse Reaction in Untreated Mice from Six Studies

Proportion of mice showing adverse reaction Arcsin P

5/50 = 0.10 18.43

12/50 = 0.24 29.33

8/50 = 0.16 23.58

15/50 = 0.30 33.21

13/50 = 0.26 30.66

7/50 = 0.14 21.97

Average 0.20 26.197◦
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Table 10.7 Summary of Some Common Transformations

Transformation When used

Logarithm (log X) s.d. ∝ X

Arcsin (sin−1)
√

X Proportions

Square root (
√

X or
√

X + √
X + 1 (s.d.)2 ∝ X

Reciprocal (1/X) s.d. ∝ X
2

The 95% confidence interval for the average arcsin is 22.955◦ to 29.439◦. This interval
corresponds to an interval for the proportion of 15.2% to 24.2% (0.152–0.242).†

10.1.3 Other Transformations
Two other transformations that are used to correct deviations from assumptions for statistical
testing are the square-root and reciprocal transformations. As their names imply, these transforma-
tions change the data as follows:

Square-root transformation: X → √
X

Reciprocal transformation: X → 1/X

The square-root transformation is useful in cases where the variance is proportional to the
mean. The situation occurs often where the data consist of counts, such as may occur in blood and
urine analyses or microbiological data. If some values are 0 or very small, the transformation,√

X + √
X + 1, has been recommended [4]. Different Poisson variables, whose variances equal

their means, will have approximately equal variance after the square-root transformation (see
Exercise Problem 6).

The reciprocal transformation may be used when the s.d. is proportional to the square
of the mean [5]. The transformation is also useful where time to a given response is being
measured. For some objects (persons) the time to the response may be very long and a skewed
distribution results. The reciprocal transformation helps make the data more symmetrical.

Table 10.7 summarizes the common transformations discussed in this section.

10.2 OUTLIERS
Outliers, in statistics, refer to relatively small or large values that are considered to be different
from, and not belong to, the main body of data. The problem of what to do with outliers is a
constant dilemma facing research scientists. If the cause of an outlier is known, resulting from
an obvious error, for example, the value can be omitted from the analysis and tabulation of the
data. However, it is good practice to include the reason(s) for the omission of the aberrant value
in the text of the report of the experimental results. For example, a container of urine, assayed
for drug content in a pharmacokinetic study, results in too low a drug content because part of
the urine was lost due to accidental spillage.

This is just cause to discard the data from that sample. In most cases, extreme values are
observed without obvious causes, and we are confronted with the problem of how to handle the
apparent outliers. Do the outlying data really represent the experimental process that is being
investigated? Can we expect such extreme values to occur routinely in such experiments? Or
was the outlier due to an error of observation? Perhaps the observation came from a population
different from the one being studied. In general, aberrant observations should not be arbitrarily
discarded only because they look too large or too small, perhaps only for the reason of making
the experimental data look “better.” In fact, the presence of such observations has sometimes
been a clue to an important process inherent in the experimental system. Therefore, the question
of what to do with outliers is not an easy one to answer. The error of either incorrectly including
or excluding outlying observations will distort the validity of interpretation and conclusions of
the experiment.

† sin(22.955◦)2 = 0.152 and sin(29.439◦)2 = 0.242.
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Several statistical criteria for handling outlying observations will be presented here. These
methods may be used if no obvious cause for the outlier can be found. If, for any reason, one
or more outlying data are rejected, one has the option of (a) repeating the appropriate portion
of the experiment to obtain a replacement value(s), (b) estimating the now “missing” value by
statistical methods, or (c) analyzing the data without the discarded value(s). From a statistical
point of view, the practice of looking at a set of data or replicates, and rejecting the value(s)
that is most extreme (and possibly, rerunning the rejected point) is to be discouraged. Biases
in the results are almost sure to occur. Certainly, the variance will be underestimated, since we
are throwing out the extreme values, willy-nilly. For example, when performing assays, some
persons recommend doing the assay in triplicate and selecting the two best results (those two
closest together). In other cases, two assays are performed and if they “disagree,” a third assay
is performed to make a decision as to which of the original two assays should be discarded.
Arbitrary rules such as these often result in incorrect decisions about the validity of results [6].
Experimental scientists usually have a very good intuitive “feel” for their data, and this should
be taken into account before coming to a final decision regarding the disposition of outlying
values. Every effort should be made to identify a cause for the outlying observation. However,
in the absence of other information, the statistical criteria discussed below may be used to help
make an objective decision. When in doubt, a useful approach is to analyze the data with and
without the suspected value(s). If conclusions and decisions are the same with and without
the extreme value(s), including the possible outlying observations would seem to be the most
prudent action.

Statistical tests for the presence of outliers are usually based on an assumption that the
data have a normal distribution. Thus, applying these tests to data that are known to be highly
skewed, for example, would result too often in the rejection of legitimate data. If the national
average income were to be estimated by an interview of 100 randomly selected persons, and 99
were found to have incomes of less than $100,000 while one person had an income of $1,000,000,
it would be clearly incorrect to omit the latter figure, attributing it to a recording error or
interviewer unreliability. The tests described below are based on statistics calculated from the
observed data, which are then referred to tables to determine the level of significance. The signif-
icance level here has the same interpretation as that described for statistical tests of hypotheses
(chap. 5). At the 5% level, an outlying observation may be incorrectly rejected 1 time in 20.

10.2.1 Dixon’s Test for Extreme Values
The data in Table 10.8 represent cholesterol values (ordered according to magnitude) for a
group of healthy, normal persons. This example is presented particularly, because the problem
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Table 10.8 Ordered Values of Serum Cholesterol from 15 Normal Subjects

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cholesterol 165 188 194 197 200 202 205 210 214 215 227 231 239 249 297

that it represents has two facets. First, the possibility exists that the very low and very high
values (165, 297) are the result of a recording or analytical error. Second, one may question
the existence of such extreme values among normal healthy persons. Without the presence of an
obvious error, one would probably be remiss if these two values (165, 297) were omitted from a
report of “normal” cholesterol values in these normal subjects. However, with the knowledge
that plasma cholesterol levels are approximately normally distributed, a statistical test can be
applied to determine if the extreme values should be rejected.

Dixon has proposed a test for outlying values that can easily be calculated [7]. The set of
observations are first ordered according to magnitude. A calculation is then performed of the
ratio of the difference of the extreme value from one of its nearest neighboring values to the
range of observations as defined below.

The formula for the ratio, r, depends on the sample size, as shown in Table IV.8. The
calculated ratio is compared to appropriate tabulated values in Table IV.8. If the ratio is equal
to or greater than the tabulated value, the observation is considered to be an outlier at the 5%
level of significance.

The ordered observations are denoted as X1, X2, X3, . . . , XN, for N observations, where
X1 is an extreme value and XN is the opposite extreme. When N = 3 to 7, for example, the ratio
r = (X2 − X1)/(XN − X1) is calculated. For the five (5) values 1.5, 2.1, 2.2, 2.3, and 3.1, where 3.1
is the suspected outlier,

r = 3.1 − 2.3
3.1 − 1.5

= 0.5.

The ratio must be equal to or exceed 0.642 to be significant at the 5% level for N = 5 (Table
IV.8). Therefore, 3.1 is not considered to be an outlier (0.5 < 0.642).

The cholesterol values in Table 10.8 contain two possible outliers, 165 and 297. According
to Table IV.8, for a sample size of 15 (N = 15), the test ratio is

r = X3 − X1

XN−2 − X1
, (10.3)

where X3 is the third ordered value, X1 is the smallest value, and XN−2 is the third largest value
(two removed from the largest value).

r = 194 − 165
239 − 165

= 29
74

= 0.39.

The tabulated value for N = 15 (Table IV.8) is 0.525. Therefore, the value 165 cannot be
rejected as an outlier.

The test for the largest value is similar, reversing the order (highest to lowest) to conform
to Eq. (10.3). X1 is 297, X3 is 239, and XN−2 is 194.

r = 239 − 297
194 − 297

= −58
−103

= 0.56.

Since 0.56 is greater than the tabulated value of 0.525, 297 can be considered to be an
outlier, and rejected.

Consider an example of the results of an assay performed in triplicate.

94.5, 100.0, 100.4
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Is the low value, 94.5, an outlier? As discussed earlier, triplicate assays have an intuitive
appeal. If one observation is far from the others, it is often discarded, considered to be the result
of some overt, but not obvious error. Applying Dixon’s criterion (N = 3),

r = 100 − 94.5
100.4 − 94.5

= 0.932.

Surprisingly, the test does not find the “outlying” value small enough to reject the value
at the 5% level. The ratio must be at least equal to 0.941 in order to reject the possible outlier
for a sample of size 3. In the absence of other information, 94.5 is not obviously an outlier. The
moral here is that what seems obvious is not always so. When one value of three appears to be
“different” from the others, think twice before throwing it away.

After omitting a value as an outlier, the remaining data may be tested again for outliers,
using the same procedure as described above with a sample size of N − 1.

10.2.2 The T Procedure
Another highly recommended test for outliers, the T method (Grubb’s test), is also calculated as
a ratio, designated Tn, as follows:

Tn = Xn − X
S

, (10.4)

where Xn is either the smallest or largest value, X is the mean, and S is the s.d. If the extreme
value is not anticipated to be high or low, prior to seeing the data, a test for the outlying value
is based on the tabulation in Table IV.9. If the calculated value of Tn is equal to or exceeds the
tabulated value, the outlier is rejected as an extreme value (p ≤ 0.05). A more detailed table is
given in Ref. [8].

For the cholesterol data in Table 10.7, Tn is calculated as follows:

Tn = 297 − 215.5
30.9

= 2.64,

where 297 is the suspected outlier, 215.5 is the average of the 15 cholesterol values, and 30.9 is
the s.d. of the 15 values. According to Table IV.9, Tn is significant at the 5% level, agreeing with
the conclusions of the Dixon test. The Dixon test and the Tn test may not exactly agree with
regard to acceptance or rejection of the outlier, particularly in cases where the extreme value
results in tests that are close to the 5% level. To maintain a degree of integrity in situations where
more than one test is available, one should decide which test to use prior to seeing the data.
On the other hand, for any statistical test, if alternative acceptable procedures are available, any
difference in conclusions resulting from the use of the different procedures is usually of a small
degree. If one test results in significance (p < 0.05) and the other just misses significance (e.g.,
p = 0.06), one can certainly consider the latter result close to being statistically significant at the
very least.

10.2.3 Winsorizing
An interesting approach to the analysis of data to protect against distortion caused by extreme
values is the process of Winsorization [7]. In this method, the extreme values, both low and high,
are changed to the values of their closest neighbors. This procedure provides some protection
against the presence of outlying values and, at the same time, very little information is lost. For
the cholesterol data (Table 10.7), the extreme values are 165 and 297. These values are changed
to that of their nearest neighbors, 188 and 249, respectively. This manipulation results in a data
set with a mean of 213.9, compared to a mean of 215.5 for the untransformed data.

Winsorized estimates can be useful when missing values are known to be extreme values.
For example, suppose that the two highest values of the cholesterol data from Table 10.7 were
lost. Also, suppose that we know that these two missing values would have been the highest
values in the data set, had we had the opportunity to observe them. Perhaps, in this example, the
subjects whose values were missing had extremely high measurements in previous analyses;
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or perhaps, a very rough assay was available from the spilled sample scraped off of the floor
showing high levels of cholesterol. A reasonable estimate of the mean would be obtained by
substituting 239 (the largest value after omitting 249 and 297) for the two missing values.
Similarly, we could replace 165 and 188 by the third lowest value, 194. The new mean is now
equal to 213.3, compared to a mean of 215.5 for the original data.

10.2.4 Overall View and Examples of Handling Outliers
The ultimate difficulty in dealing with outliers is expressed by Barnett and Lewis in the preface of
their book on outliers [9]. “Even before the formal development of statistical methods, argument
raged over whether, and on what basis, we should discard observations from a set of data on
the grounds that they are ‘unrepresentative,’ ‘spurious’ or ‘mavericks’ or ‘rogues.’ The early
emphasis stressed the contamination of the data by unanticipated and unwelcome errors or
mistakes affecting some of the observations. Attitudes varied from one extreme to another:
from the view that we should never sully the sanctity of the data by daring to adjudge its
propriety, to an ultimate pragmatism expressing ‘if in doubt, throw it out.’” They also quote
Ferguson, “The experimenter is tempted to throw away the apparently erroneous values (the
outliers) and not because he is certain that the values are spurious. On the contrary, he will
undoubtedly admit that even if the population has a normal distribution, there is a positive
although extremely small probability that such values will occur in an experiment. It is rather
because he feels that other explanations are more plausible, and that the loss in accuracy of the
experiment caused by throwing away a couple of good values is small compared to the loss
caused by keeping even one bad value.” Finally, in perspective, Barnett and Lewis state, “But,
when all is said and done, the major problem in outlier study remains the one that faced the
earliest workers in the subject—what is an outlier and how should we deal with it? We have
taken the view that the stimulus lies in the subjective concept of surprise engendered by one,
or a few, observations in a set of data. . . .”

Although most treatises on the use of statistics caution readers on the indiscriminate
discarding of outlying results, and recommend that outlier tests be used with care, this does
not mean that outlier tests and elimination of outlying results should never be applied to
experimental data. The reason for omitting outliers from a data analysis is to improve the
validity of statistical procedures and inferences. Certainly, if applied correctly for these reasons,
outlier tests are to be commended. The dilemma is in the decision as to when such tests are
appropriate. Most recommended outlier tests are very sensitive to the data distribution, and
many tests assume an underlying normal distribution. Nonparametric outlier tests make less
assumptions about the data distribution, but may be less discriminating.

Notwithstanding cautions about indiscriminately throwing out outliers, including outliers
that are indeed due to causes that do not represent the process being studied, including outliers
in the data analysis can severely bias the conclusions. When no obvious reason is apparent to
explain an outlying value that has been identified by an appropriate statistical test, the question
of whether or not to include the data is not easily answered. In the end, judgment is a very
important ingredient in such decisions, since knowledge of the data distribution is usually
limited. Part of “good judgment” is a thorough knowledge of the process being studied, in
addition to the statistical consequences. If conclusions about the experimental outcome do not
change with and without the outlier, both results can be presented. However, if conclusions are
changed, then omission of the outlier should be justified based on the properties of the data.

Some examples should illustrate possible approaches to this situation.

Example 1. Analysis of a portion of a powdered mix comprised of 20 ground-up tablets (a
composite) was done in triplicate with results of 75.1%, 96.9%, and 96.3%. The expected result
was approximately 100%. The three assays represented three separate portions of the grind. A
statistical test (see Table IV.8) suggested that the value of 75.1% is an outlier (p < 0.05), but there
was no obvious reason for this low assay. Hypothetically, this result could have been caused
by an erroneous assay, or more remotely, by the presence of one or more low potency tablets
that were not well mixed with the other tablets in the grind. Certainly, the former is a more
probable cause, but there is no way of proving this because the outlying sample is no longer
available. It would seem foolhardy to reject the batch average of three results, 89.4%, without
further investigation. There are two reasonable approaches to determining if, in fact, the 75.1%
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value was a real result or an anomaly. One approach is to throw out the value of 75.1 based
on the knowledge that the tablets were indeed ground thoroughly and uniformly and that the
drug content should be close to 100%. Such a decision could have more credence if other tests
on the product (e.g., content uniformity) supported the fact that 75.1 was an outlier. A second,
more conservative approach would be to reassay the remaining portion of the mix to ensure
that the 75.1 value could not be reproduced. How many more assays would be necessary to
verify the anomaly? This question does not seem to have a definitive answer. This is a situation
where scientific judgment is needed. For example, if three more assays were performed on the
mix, and all assays were within limits, the average assay would be best represented by the five
“good” assays (two from the first analysis and three from the second analysis). Scientifically,
in this scenario, it would appear that including the outlier in the average would be an unfair
representation of the drug content of this material. Of course, if an outlying result were found
again during the reanalysis, the batch (or the 20 tablet grind) is suspect, and the need for a
thorough investigation of the problem would be indicated.

Example 2. Consider the example above as having occurred during a content uniformity test,
where one of 10 tablets gave an outlying result. For example, suppose 9 of 10 tablets were
between 95% and 105%, and a single tablet gave a result of 71%. This would result in failure of
the content uniformity test as defined in the USP. (No single tablet should be outside 75–125% of
label claim.) The problem here (if no obvious cause can be identified) is that the tablet has been
destroyed in the analytical process and we have no way of knowing if the result is indeed due
to the tablet or some unidentified gross analytical error. This presents a more difficult problem
than the previous one because we cannot assay the same homogenate from which the outlying
observation originated. Other assays during the processing of this batch and the batch history
would be useful in determining possible causes. If no similar problem had been observed in the
history of the product, one might assume an analytical misfortune. As suggested in the previous
example, if similar results had occurred in other batches of the product, a suggestion of the real
possibility of the presence of outlying tablets in the production of this product is indicated. In
any case, it would be prudent to perform extensive content uniformity testing, if no cause can
be identified. Again, one may ask what is “extensive” testing? We want to feel “sure” that the
outlier is an anomaly, not typical of tablets in the batch. Although it is difficult to assign the
size of retesting on a scientific basis, one might use statistical procedures to justify the choice
of a sample size. For example, using the concept of tolerance limits (sect. 5.6), we may want
to be 99% certain that 99% of the tablets are between 85% and 115%, the usual limits for CU
acceptance. In order to achieve this level of “certainty,” we have to estimate the mean content
(%) and the CV. (See App. V.)

Example 3. The results of a content uniformity test show 9 of 10 results between 91% and 105%
of label, with one assay at 71%. This fails the USP content uniformity test, which allows a single
assay between 75% and 125%, but none outside these limits. The batch records of the product in
question and past history showed no persistent results of this kind. The “outlier” could not be
attributed to an analytical error, but there was no way of detecting an error in sample handling
or some other transient error that may have caused the anomaly. Thus, the 71% result could
not be assigned a known cause with any certainty. Based on this evidence, rejecting the batch
outright would seem to be rather a harsh decision. Rather, it would be prudent to perform
further testing before coming to the ominous decision of rejection. One possible approach, as
discussed in the previous paragraph, is to perform sufficient additional assays to ensure (with
a high degree of probability) that the great majority of tablets are within 85% to 115% limits, a
definition based on the USP content uniformity monograph. Using the tolerance limit concept
(sect. 5.6), we could assay N new samples and create a tolerance interval that should lie within
85% to 115%. Suppose we estimate the CV as 3.5%, based on the nine good CU assays, other data
accumulated during the batch production, and historical data from previous assays. Also, the
average result is estimated as 98% based on all production data available. The value of t′ for the
tolerance interval for 99% probability that includes 99% of the tablets between 85% and 115%
is 3.71. From Table IV.19, tolerance intervals, a sample of 35 tablets would give this confidence,
provided that the mean and s.d. are as estimated, 98% and 3.5%, respectively. To protect against
more variability and deviation from label, a larger sample would be more conservative. For
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Table 10.9 SAS Output for Residuals for Data of Ryde et al. [13]

Obs Subject Seq Period Product CO AUC YHAT Resid ERESID

1 1 1 1 1 0 106.3 93.518 12.7819 15.1863

2 1 1 2 2 1 36.4 75.638 −39.2375 15.1863

3 1 1 3 2 2 94.7 63.137 31.5625 15.1863

4 1 1 4 1 2 58.9 64.007 −5.1069 15.1863

5 2 1 1 1 0 149.2 139.518 9.6819 15.1863

6 2 1 2 2 1 107.1 121.638 −14.5375 15.1863

7 2 1 3 2 2 104.6 109.137 −4.5375 15.1863

8 2 1 4 1 2 119.4 110.007 9.3931 15.1863

9 3 1 1 1 0 134.8 155.543 −20.7431 15.1863

10 3 1 2 2 1 155.1 137.663 17.4375 15.1863

11 3 1 3 2 2 132.5 125.162 7.3375 15.1863

12 3 1 4 1 2 122.0 126.032 −4.0319 15.1863

13 4 1 1 1 0 108.1 82.193 25.9069 15.1863

14 4 1 2 2 1 84.9 64.312 20.5875 15.1863

15 4 1 3 2 2 33.2 51.812 −18.6125 15.1863

16 4 1 4 1 2 24.8 52.682 −27.8819 15.1863

17 6 2 1 2 0 85.0 88.081 −3.0806 15.3358

18 6 2 2 1 2 92.8 92.5250 0.2750 15.3358

19 6 2 3 1 1 81.9 80.0250 1.8750 15.3358

20 6 2 4 2 1 59.5 58.5694 0.9306 15.3358

21 7 2 1 2 0 64.1 83.9056 −19.8056 15.3358

22 7 2 2 1 2 112.8 88.3500 24.4500 15.3358

23 7 2 3 1 1 70.4 75.8500 −5.4500 15.3358

24 7 2 4 2 1 55.2 54.3944 0.8056 15.3358

25 8 2 1 2 0 15.3 29.5806 −14.2806 15.3358

26 8 2 2 1 2 30.1 34.0250 −3.9250 15.3358

27 8 2 3 1 1 22.3 21.5250 0.7750 15.3358

28 8 2 4 2 1 17.5 0.0694 17.4306 15.3358

29 9 2 1 2 0 77.4 74.9806 2.4194 15.3358

30 9 2 2 1 2 67.6 79.4250 −11.8250 15.3358

31 9 2 3 1 1 72.9 66.9250 5.9750 15.3358

32 9 2 4 2 1 48.9 45.4694 3.4306 15.3358

33 10 2 1 2 0 102.0 94.8806 7.1194 15.3358

34 10 2 2 1 2 106.1 99.3250 6.7750 15.3358

35 10 2 3 1 1 67.9 86.8250 −18.9250 15.3358

36 10 2 4 2 1 70.4 65.3694 5.0306 15.3358

example, suppose we decide to test 50 tablets, and the average is 97.5% with a s.d. of 3.7%. No
tablet was outside 85% to 115%. The 99% tolerance interval is

97.5 ± 3.385 × 3.7 = 85.0 to 110.0.

The lower limit just makes 85%. We can be 99% certain, however, that 99% of the tablets
are between 85% and 110%. This analysis is evidence that the tablets are uniform. Note, that
had we tested fewer tablets, say 45, the interval would have included values less than 85%.
However, in this case, where the lower interval would be 84.8% (given the same mean and
s.d.), it would appear that the batch can be considered satisfactory. For example, if we were
interested in determining the probability of tablets having a drug content between 80% and
120%, application of the tolerance interval calculation results in a t′ of (97.5 − 80)/3.7 = 4.73.
Table IV.19 shows that this means that with a probability greater than 99%, 99.9% of the tablets
are between 80% and 120%.

One should understand that the extra testing gives us confidence about the acceptability
of the batch. We will never know if the original 71% result was real or caused by an error in the
analytical process. However, if the 71% result was real, the additional testing gives us assurance
that results as extreme as 71% are very unlikely to be detected in this batch. A publication [10]
discussing the nature and possible handling of outliers is in Appendix V.
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10.2.4.1 Lund’s Method
The FDA has suggested the use of tables prepared by Lund [11] (Table IV.20) to identify outliers.
This table compares the extreme residual to the standard error of the residuals (studentized
residual), and gives critical values for the studentized residual at the 5% level of significance
as a function of the number of observations and parameter d.f. in the model. For analysis of
variance designs, these calculations may be complicated and use of a computer program is
almost necessary. SAS [12] code is shown below to produce an output of the residuals and their
standard errors, which should clarify the procedure and interpretation.

SAS Program to Generate Residuals and Standard Errors from a Two-Period Crossover Design for
a Bioequivalence Study

Proc GLM;
Class subject product seq period;
model lcmax = seq subject(seq) product period;
Ismeans product/stderr;
estimate “test-ref” product −1 1;
output out = new p = yhat r = resid stdr = eresid;
proc print;
run;

The SAS output for the data of Ryde et al. [13] (without interaction and carryover) is
shown in Table 10.9.

The largest residual is −39.2375 for Subject 1 in Period 2. The ratio of the residual to its
standard error is −39.2375/15.1863 =−2.584. This model has 12 parameters and 36 observations.
At the 5% level, from Table IV.20, the critical value is estimated at approximately 2.95. Therefore
there are no “outliers” evident in this data at the 5% level.

KEY TERMS
Arcsin transformation Parametric analyses
Back transformation Ratios
Coefficient of variation Reciprocal transformation
Dixon’s test for outliers Residuals
Exploratory data analysis Skewed data
Fisher–Behrens test Square-root transformation
Geometric mean Studentized residual
Log transformation T procedure
Nonparametric analyses Tolerance interval
Ordered observations Winsorizing
Outliers

EXERCISES
1. Convert the data in Table 10.2, data set B, to logs and construct a histogram of the transformed

data.

2. Fit the least squares line for the averages of log assay versus log drug concentration for the
average data in Table 10.4.

Log X Log Y

1.602 1.578

1.778 1.787

1.903 1.897

If an unknown sample has a reading of 47, what is the estimate of the drug concentration?
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3. Perform a t test for the data of Table 10.5 using the ratio B/A (H0: R = 1), and log B − log
A (H0: log B − log A = 0). Compare the values of t in these analyses to the similar analyses
shown in the text for A/B and log A − log B.

4. Ten tablets were assayed with the following results: 51, 54, 46, 49, 53, 50, 49, 62, 47, 53. Is the
value 62 an outlier? When averaging the tablets to estimate the batch average, would you
exclude this value from the calculation? (Use both the Dixon method and the T method to
test the value of 62 as an outlier.)

5. Consider 62 to be an outlier in Problem 4 and calculate the Winzorized average. Compare
this to the average with 62 included.

6. A tablet product was manufactured using two different processes, and packaged in bottles
of 1000 tablets. Five bottles were sampled from each batch (process) with the following
results:

Number of defective tablets per bottle

Process 1 bottle Process 2 Bottle

1 2 3 4 5 1 2 3 4 5

No. of defects 0 6 1 3 4 0 1 1 0 1

Perform a t test to compare the average results for each process. Transform the data and
repeat the t test. What transformation did you use? Explain why you used the transformation.
[Hint: See transformations for Poisson variables.]
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11 Experimental Design in Clinical Trials

The design and analysis of clinical trials is fertile soil for statistical applications. The use of sound
statistical principles in this area is particularly important because of close FDA involvement,
in addition to crucial public health issues that are consequences of actions based on the out-
comes of clinical experiments. Principles and procedures of experimental design, particularly
as applied to clinical studies, are presented. Relatively few different experimental designs are
predominantly used in controlled clinical studies. In this chapter, we discuss several of these
important designs and their applications.

11.1 INTRODUCTION
Both pharmaceutical manufacturers and FDA personnel have had considerable input in con-
structing guidelines and recommendations for good clinical protocol design and data analysis.
In particular, the FDA has published a series of guidelines for the clinical evaluation of a variety
of classes of drugs. Those persons involved in clinical studies have been exposed to the constant
reminder of the importance of design in these studies. Clinical studies must be carefully devised
and documented to meet the clinical objectives. Clinical studies are very expensive indeed, and
before embarking, an all-out effort should be made to ensure that the study is on a sound
footing. Clinical studies designed to “prove” or demonstrate efficacy and/or safety for FDA
approval should be controlled studies, as far as is possible. A controlled study is one in which
an adequate control group is present (placebo or active control), and in which measures are
taken to avoid bias. The following excerpts from General Considerations for the Clinical Evaluation
of Drugs show the FDA’s concern for good experimental design and statistical procedures in
clinical trials [1]:

1. Statistical expertise is helpful in the planning, design, execution, and analysis of clinical
investigations and clinical pharmacology in order to ensure the validity of estimates of
safety and efficacy obtained from these studies.

2. It is the objective of clinical studies to draw inferences about drug responses in well-defined
target populations. Therefore, study protocols should specify the target population, how
patients or volunteers are to be selected, their assignment to the treatment regimens, specific
conditions under which the trial is to be conducted, and the procedures used to obtain
estimates of the important clinical parameters.

3. Good planning usually results in questions being asked that permit direct inferences. Since
studies are frequently designed to answer more than one question, it is useful in the planning
phase to consider listing of the questions to be answered in order of priority.

The following are general principles that should be considered in the conduct of clinical
trials:

1. Clearly state the objective(s).
2. Document the procedure used for randomization.
3. Include a suitable number of patients (subjects) according to statistical principles (see

chap. 6).
4. Include concurrently studied comparison (control) groups.
5. Use appropriate blinding techniques to avoid patient and physician bias.
6. Use objective measurements when possible.
7. Define the response variable.
8. Describe and document the statistical methods used for data analysis.
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11.2 SOME PRINCIPLES OF EXPERIMENTAL DESIGN AND ANALYSIS
Although many kinds of ingenious and complex statistical designs have been used in clinical
studies, many experts feel that simplicity is the key in clinical study design. The implementation
of clinical studies is extremely difficult. No matter how well designed or how well intentioned,
clinical studies are particularly susceptible to Murphy’s law: “If something can go wrong, it
will!” Careful attention to protocol procedures and symmetry in design (e.g., equal number of
patients per treatment group) often is negated as the study proceeds, due to patient dropouts,
missed visits, carelessness, misunderstood directions, and so on. If severe, these deviations can
result in extremely difficult analyses and interpretations. Although the experienced researcher
anticipates the problems of human research, such problems can be minimized by careful plan-
ning.

We will discuss a few examples of designs commonly used in clinical studies. The basic
principles of good design should always be kept in mind when considering the experimental
pathway to the study objectives. In Planning of Experiments, Cox discusses the requirements for
a good experiment [2]. When designing clinical studies, the following factors are important:

1. absence of bias;
2. absence of systematic error (use of controls);
3. adequate precision;
4. choice of patients;
5. simplicity and symmetry.

11.2.1 Absence of Bias
As far as possible, known sources of bias should be eliminated by blinding techniques. If a
double-blind procedure is not possible, careful thought should be given to alternatives that will
suppress, or at least account for possible bias. For example, if the physician can distinguish
two comparative drugs, as in an open study, perhaps the evaluation of the response and the
administration of the drug can be done by other members of the investigative team (e.g., a
nurse) who are not aware of the nature of the drug being administered.

In a double-blind study, both the observer and patient (or subject) are unaware of the
treatment being given during the course of the study. Human beings, the most complex of
machines, can respond to drugs (or any stimulus, for that matter) in amazing ways as a result
of their psychology. This is characterized in drug trials by the well-known “placebo effect.”
Also, a well-known fact is that the observer (nurse, doctor, etc.) can influence the outcome of
an experiment if the nature of the different treatments is known. The subjects of the experiment
can be influenced by words and/or actions, and unconscious bias may be manifested in the
recording and interpretation of the experimental observations. For example, in analgesic studies,
as much as 30% to 40% of patients may respond to a placebo treatment.

The double-blind method is accomplished by manufacturing alternative treatment dosage
forms to be as alike as possible in terms of shape, size, color, odor, and taste. Even in the case
of dosage forms that are quite disparate, ingenuity can always provide for double blinding. For
example, in a study where an injectable dosage form is to be compared to an oral dosage form,
the double-dummy technique may be used. Each subject is administered both an oral dose and an
injection. In one group, the subject receives an active oral dose and a placebo injection, whereas
in the other group, each subject receives a placebo oral dose and an active injection. There are
occasions where blinding is so difficult to achieve or is so inconvenient to the patient that studies
are best left “unblinded.” In these cases, every effort should be made to reduce possible biases.
For example, in some cases, it may be convenient for one person to administer the study drug,
and a second person, unaware of the treatment given, to make and record the observation.

Examples of problems that occur when trials are not blinded are given by Rodda et al.
[3]. In a study designed to compare an angiotensin converting enzyme (ACE) inhibitor with
a beta-blocker, unblinded investigators tended to assign patients who had been previously
unresponsive to beta-blockers to the ACE group. This allocation results in a treatment bias. The
ACE group may contain the more seriously ill patients.

An important feature of clinical study design is randomization of patients to treatments.
This topic has been discussed in chapter 4, but bears repetition. The randomization procedure
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as applied to various designs will be presented in the following discussion. Randomization is an
integral and essential part of the implementation and design of clinical studies. Randomization
will help to reduce potential bias in clinical experiments, and is the basis for valid calculations
of probabilities for statistical testing.

11.2.2 Absence of Systematic Errors
Cox gives some excellent examples in which the presence of a systematic error leads to erroneous
conclusions [2]. In the case of clinical trials, a systematic error would be present if one drug
was studied by one investigator and the second drug was studied by a second investigator.
Any observed differences between drugs could include “systematic” differences between the
investigators. This ill-designed experiment can be likened to Cox’s example of feeding two
different rations to a group of animals, where each group of animals is kept together in separate
pens. Differences in pens could confuse the ration differences. One or more pens may include
animals with different characteristics that, by chance, may affect the experimental outcome.
In the examples above, the experimental units (patients, animals, etc.) are not independent.
Although the problems of interpretation resulting from the designs in the examples above may
seem obvious, sometimes the shortcomings of experimental procedures are not obvious. We
have discussed the deficiencies of a design in which a baseline measurement is compared to a
post-treatment measurement in the absence of a control group. Any change in response from
baseline to treatment could be due to changes in conditions during the intervening time period.
To a great extent, systematic errors in clinical experiments can be avoided by the inclusion of
an appropriate control group and random assignment of patients to the treatment groups.

11.2.3 Adequate Precision
Increased precision in a comparative experiment means less variable treatment effects and more
efficient estimate of treatment differences. Precision can always be improved by increasing the
number of patients in the study. Because of the expense and ethical questions raised by using
large numbers of patients in drug trials, the sample size should be based on medical and
statistical considerations that will achieve the experimental objectives described in chapter 6.

Often, an appropriate choice of experimental design can increase the precision. Use of
baseline measurements or use of a crossover design rather than a parallel design, for example,
will usually increase the precision of treatment comparisons. However, in statistics as in life,
we do not get something for nothing. Experimental designs have their shortcomings as well
as advantages. Properties of a particular design should be carefully considered before the final
choice is made. For example, the presence of carryover effects will negate the advantage of a
crossover design as presented in section 11.4.

Blocking is another way of increasing precision. This is the basis of the increased precision
accomplished by use of the two-way design discussed in section 8.4. In these designs, the
patients in a block have similar (and relevant) characteristics. For example, if age and sex
are variables that affect the therapeutic response of two comparative drugs, patients may be
“blocked” on these variables. Thus if a male of age 55 years is assigned to drug A, another
male of age approximately 55 years will be assigned Treatment B. In practice, patients of similar
characteristics are grouped together in a block and randomly assigned to treatments.

11.2.4 Choice of Patients
In most clinical studies, the choice of patients covers a wide range of possibilities (e.g., age,
sex, severity of disease, concomitant diseases, etc.). In general, inferences made regarding drug
effectiveness are directly related to the restrictions (or lack of restrictions) placed on patient
eligibility as described in the study protocol. This is an important consideration in experimental
design, and great care should be taken to describe that patients may be qualified or disqualified
from entering the study.

11.2.5 Simplicity and Symmetry
Again we emphasize the importance of simplicity. More complex designs have more restrictions,
and a resultant lack of flexibility. The gain resulting from a more complex design should be
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weighed against the expense and problems of implementation often associated with more
sophisticated, complex designs.

Symmetry is an important design consideration. Often, the symmetry is obvious: In most
(but not all) cases, experimental designs should be designed to have equal number of patients
per treatment group, equal number of visits per patient, balanced order of administration, and
an equal number of replicates per patient. Some designs, such as balanced incomplete block
and partially balanced incomplete block designs, have a less obvious symmetry.

11.2.6 Randomization
Principles of randomization have been described in chapter 4. Randomization is particularly
important when assigning patients to treatments in clinical trials, ensuring that the requirements
of good experimental design are fulfilled and the pitfalls avoided [4]. Among other qualities,
proper randomization avoids unknown biases, tends to balance patient characteristics, and is
the basis for the theory that allows calculation of probabilities. Randomization ensures a balance
in the long run. In any given experiment, two groups may not have similar characteristics due
to chance. Therefore, it is important to carefully examine properties of the groups to assess if
group differences could affect the experimental outcome. Use of covariance analysis can help
overcome differences between groups as discussed in section 8.6.

In section 4.2, the advantages of randomization of patients in blocks is discussed. Table
11.1 is a short table of random permutations that gives random schemes for block sizes of
4, 5, 6, 8, and 10. This kind of randomization is also known as restricted randomization and
allows for an approximate balance of treatment groups throughout the trial. As an example of
the application of Table 11.1, consider a study comparing an active drug with placebo using
a parallel design, with 24 patients per group (a total of 48 patients). In this case, a decision is
made to group patients in blocks of 8, that is, for each group of eight consecutive patients, four
will be on drug and four on placebo. In Table 11.1, we start in a random column in the section
labeled “Blocks of 8,” and select six sequential columns. Because this is a short table, we would
continue into the first column if we had to proceed past the last column. (Note that this table
is meant to illustrate the procedure and should not be used repeatedly in real examples or for
sample sizes exceeding the total number of random assignments in the table. For example, there
are 160 random assignments for blocks of size 8; therefore for a study consisting of more than
160 patients, this table would not be of sufficient size.) If the third column is selected to begin
the random assignment, and we assign Treatment A to an odd number and Treatment B to an
even number, the first eight patients will be assigned treatment as follows:

B B A B B A A A.

11.2.7 Intent to Treat
In most clinical studies, there is a group of patients who have been administered drug who
may not be included in the efficacy data analysis because of various reasons, such as pro-
tocol violations. This would include patients, for example, who (a) leave the study early for
nondrug-related reasons, (b) take other medications that are excluded in the protocol, or (c)
are noncompliant with regard to the scheduled dosing regimen, and so on. Certainly, these
patients should be included in summaries of safety data, such as adverse reactions and clin-
ical laboratory determinations. Under FDA guidelines, an analysis of efficacy data should be
performed with these patients included as an “intent to treat” (ITT) analysis [5]. Thus, both an
efficacy analysis including only those patients who followed the protocol, and an ITT analysis,
which includes all patients randomized to treatments (with the possible exception of inclusion
of ineligible patients, mistakenly included) are performed. In fact, the ITT analysis may take
precedence over the analysis that excludes protocol violators. The protocol violators, or those
patients who are not to be included in the primary analysis, should be identified, with reasons
for exclusion, prior to breaking the treatment randomization code. The ITT analysis should
probably not result in different conclusions from the primary analysis, particularly if the proto-
col violators and other “excluded” patients occur at random. In most circumstances, a different
conclusion may occur for the two analyses only when the significance level is close to 0.05.
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Table 11.1 Randomization in Blocks

BLOCKS OF 4

1 3 3 2 4 4 1 l 1 2 1 3 3 1 2 4 2 3 1 4

2 2 4 3 3 2 2 2 2 3 4 2 2 4 4 2 4 2 4 3

3 1 1 4 2 1 3 3 3 1 2 1 1 2 3 1 1 4 3 2

4 4 2 1 1 3 4 4 4 4 3 4 4 3 1 3 3 1 2 1

BLOCKS OF 5

4 4 1 3 5 5 4 2 5 5 3 5 4 3 2 2 3 2 5 4

2 5 3 5 2 3 5 5 1 1 2 2 2 4 3 5 4 3 1 2

3 3 5 4 1 2 1 3 4 3 5 4 1 5 4 3 2 4 4 3

1 2 4 2 3 1 3 4 2 4 4 3 5 2 5 1 1 1 2 1

5 1 2 1 4 4 2 1 3 2 1 1 3 1 1 4 5 5 3 5

BLOCKS OF 6

1 5 2 5 3 2 5 1 5 1 1 2 5 2 6 4 3 4 2 2

2 6 5 3 2 1 2 6 6 3 4 4 1 1 3 5 6 2 6 5

5 9 4 4 1 3 3 5 4 4 2 6 6 6 1 3 2 5 3 1

6 1 1 2 5 5 4 2 3 6 5 1 2 3 2 1 4 6 4 3

3 4 6 1 6 6 1 3 2 5 3 3 3 4 4 6 5 3 1 6

4 3 3 6 4 4 6 4 1 2 6 5 4 5 5 2 1 1 5 4

BLOCKS OF 8

7 4 2 4 1 2 1 5 3 4 4 8 5 3 5 2 2 5 1 6

8 2 4 5 8 5 5 2 4 5 6 6 4 5 4 7 8 3 7 7

4 3 1 6 3 6 3 4 5 2 7 5 1 1 3 6 6 6 8 5

1 5 6 3 2 7 8 8 2 1 3 1 3 8 6 3 3 8 5 1

2 8 8 1 7 8’ 4 3 8 7 5 7 7 6 1 4 4 2 3 3

3 1 5 8 6 1 2 7 7 6 2 3 2 2 2 5 5 1 6 2

6 7 3 7 5 4 7 1 6 8 8 2 8 4 7 8 7 4 2 4

5 6 7 2 4 3 6 6 1 3 1 4 6 7 8 1 1 7 4 8

BLOCKS OF 10

1 9 4 1 3 4 1 4 6 8 9 9 10 9 5 5 6 6 4 3

4 6 5 8 2 7 4 5 3 9 7 6 6 1 1 4 3 2 9 2

5 2 3 4 7 8 5 9 9 2 10 8 10 7 4 3 9 7 10 9

9 8 6 10 8 9 8 10 5 7 2 4 4 4 10 10 4 1 2 7

2 10 8 9 1 6 6 8 4 10 5 2 9 2 6 1 1 9 7 5

10 3 9 5 6 2 9 1 8 1 1 3 5 8 8 8 7 3 3 10

8 4 7 7 9 3 10 7 1 4 3 7 3 3 2 9 2 5 1 8

3 5 2 2 5 1 7 6 7 5 8 1 7 5 3 6 5 8 5 1

6 7 10 3 10 5 3 3 2 6 4 10 8 6 9 2 8 4 6 6

7 1 1 6 4 10 2 2 10 3 6 5 2 10 7 7 10 10 8 4

If the conclusions differ for the two analyses, ITT results are sometimes considered to be more
definitive. Certainly, an explanation should be given when conclusions are different for the two
analyses. One should recognize that the issue of using an ITT analysis vis-à-vis an analysis
including only “compliant” patients remains controversial.

11.3 PARALLEL DESIGN
In a parallel design, two or more drugs are studied, drugs being randomly assigned to different
patients. Each patient is assigned a single drug. In the example presented here, a study was
proposed to compare the response of patients to a new formulation of an antianginal agent and
a placebo with regard to exercise time on a stationary bicycle at fixed impedance. An alternative
approach would be to use an existing product rather than placebo as the comparative product.
However, the decision to use placebo was based on the experimental objective: to demonstrate
that the new formulation produces a measurable and significant increase in exercise time. A
difference in exercise time between the drug and placebo is such a measure. A comparison of
the new formulation with a positive control (an active drug) would not achieve the objective
directly.

In this study, a difference in exercise time between drug and placebo of 60 seconds was
considered to be of clinical significance. The standard deviation was estimated to be 65 based
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on change from baseline data observed in previous studies. The sample size for this study, for
an alpha level of 0.05 and power of 0.90 (beta = 0.10), was estimated as 20 patients per group
(see Exercise Problem 7). Therefore 40 patients were entered into the study, 20 each randomly
assigned to placebo and active treatment. A randomization that obviates a long consecutive run
of patients assigned to one of the treatments was used as described in section 11.2.6. Patients were
randomly assigned to each treatment in groups of 10, with 5 patients to be randomly assigned
to each treatment. This randomization was applied to each of the 4 subsets of 10 patients (40
patients total). From Table 11.1 starting in the fourth column, patients are randomized into
the two groups as follows, placebo if an odd number appears and new formulation if an even
number appears:

Placebo New formulation

Subset 1 1, 5, 6, 7, 9 2, 3, 4, 8, 10

Subset 2 11, 13, 15, 17, 18 12, 14, 16, 19, 20

Subset 3 22, 24, 27, 28, 29 21, 23, 25, 26, 30

Subset 4 31, 33, 36, 38, 39 32, 34, 35, 37, 40

The first subset is assigned as follows. The first number is 1; patient 1 is assigned to placebo.
The second number (reading down) is 8; patient 2 is assigned to the new formulation (NF). The
next two numbers (4, 10) are even. Patients 3 and 4 are assigned to NF. The next number is odd
(9); patient 5 is assigned to Placebo. The next two numbers are odd and Patients 6 and 7 are
assigned to Placebo. Patients 8, 9, and 10 are assigned to NF, placebo, and NF, respectively, to
complete the first group of 10 patients. Entering column five, patient 11 is assigned to placebo,
and so on.

An alternative randomization is to number patients consecutively from 1 to 40 as they
enter the study. Using a table of random numbers, patients are assigned to placebo if an odd
number appears, and assigned to the test product (NF) if an even number appears. Starting in
the eleventh column of Table IV.1, the randomization scheme is as follows:

Placebo New formulation

1, 6, 7, 8 2, 3, 4, 5

12, 13, 14 9, 10, 11

15, 18, 20 16, 17, 19

21, 22, 26 23, 24, 25

27, 28 29, 30, 31

32, 34, 35 33, 38, 39

36, 37 40

For example, the first number in column 11 is 7; patient number 1 is assigned to placebo.
The next number in column 11 is 8; the second patient is assigned to the NF; and so on. A
problem with this approach is that by chance we may observe a long string of consecutive of
odd or even numbers, which would negate the purpose of the randomization as noted above.

Patients were first given a predrug exercise test to determine baseline values. The test
statistic is the time of exercise to fatigue or an anginal episode. Tablets were prepared so that
the placebo and active drug products were identical in appearance. Double-blind conditions
prevailed. One hour after administration of the drug, the exercise test was repeated. The results
of the experiment are shown in Table 11.2.

The key points in this design are as follows:

1. There are two independent groups (placebo and active, in this example). An equal number
of patients are randomly assigned to each group.

2. A baseline measurement and a single post-treatment measurement are available.
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This design corresponds to a one-way analysis of variance, or in the case of two treatments,
a two independent groups t test. Since, in general, more than two treatments may be included
in the experiment, the analysis will be illustrated using ANOVA.

When possible, pretreatment (baseline) measurements should be made in clinical studies.
The baseline values can be used to help increase the precision of the measurements. For example,
if the treatment groups are compared using differences from baseline, rather than the post-
treatment exercise time, the variability of the measurements will usually be reduced. Using
differences, we will probably have a better chance of detecting treatment differences, if they
exist (increased power) [6]. “Subtracting out’’ the baseline helps to reduce the between-patient
variability that is responsible for the variance (the “within mean square”) in the statistical test.
A more complex, but more efficient analysis is analysis of covariance. Analysis of covariance [6]
takes baseline readings into account, and for an unambiguous conclusion, assumes that the
slope of the response versus baseline is the same for all treatment groups. See “Analysis of
Covariance” (sect. 8.6) for a more detailed discussion. Also, the interpretation may be more
difficult than the simple “difference from baseline” approach.

To illustrate the results of the analysis with and without baseline readings, the data
in Table 11.2 will be analyzed in two ways: (a) using only the post-treatment response,

Table 11.2 Results of the Exercise Test Comparing Placebo to Active Drug: Time (Seconds) to Fatigue or

Angina

Placebo Active drug (new formulation)

Exercise time Exercise time

Patient Pre Post Post–Pre Patient Pre Post Post–Pre

1 377 345 −32 2 232 372 140

6 272 310 38 3 133 120 −13

7 348 347 −1 4 206 294 88

8 348 300 −48 5 140 258 118

12 133 150 17 9 240 340 100

13 102 129 27 10 246 393 147

14 156 110 −46 11 226 315 89

15 205 251 46 16 123 180 57

18 296 262 −34 17 166 334 168

20 328 297 −31 19 264 381 117

21 315 278 −37 23 241 376 135

22 133 124 −9 24 74 264 190

26 223 289 66 25 400 541 141

27 256 303 47 29 320 410 90

28 493 487 −6 30 216 301 85

32 336 309 −27 31 153 143 −10

34 299 281 −18 33 193 348 155

35 140 186 46 38 330 440 110

36 161 125 −36 39 258 365 107

37 259 236 −23 40 353 483 130

Mean 259 256 −3.05 Mean 226 333 107.2

s.d. 102 95 36.3 s.d. 83 106 51.5
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post-treatment exercise time, and (b) comparing the difference from baseline for the two treat-
ments. The reader is reminded of the assumptions underlying the t test and ANOVA: the
variables should be independent, normally distributed with homogeneous variance. These
assumptions are necessary for both post-treatment and difference analyses. Possible problems
with lack of normality will be less severe in the difference analysis. The difference of inde-
pendent non-normal variables will tend to be closer to normal than are the original individual
data.

Before proceeding with the formal analysis, it is prudent to test the equivalence of the
baseline averages for the two treatment groups. This test, if not significant, gives some assurance
that the two groups are “comparable.” We will use a two independent groups t test to compare
baseline values (see sect. 5.2.2).

t = X1 − X2

Sp
√

1/N1 + 1/N2

= 259 − 226

Sp
√

1/20 + 1/20
= 33

93
√

1/10
= 1.12.

Note that the pooled standard deviation (93) is the pooled value from the baseline readings,√
(1022 + 832)/2. From Table IV.4, a t value of approximately 2.03 is needed for significance (38

d.f.) at the 5% level. Therefore, the baseline averages are not significantly different for the two
treatment groups. If the baseline values are significantly different, one would want to investigate
further the effects of baseline on response in order to decide on the best procedure for analysis
of the data (e.g., covariance analysis, ratio of response to baseline, etc.).

11.3.1 ANOVA Using Only Post-Treatment Results
The average results for exercise time after treatment are 256 seconds for placebo and 333 seconds
for the NF of active drug, a difference of 77 seconds (Table 11.2). Although the averages can be
compared using a t test as in the case of baseline readings (above), the equivalent ANOVA is
given in Table 11.3. The reader is directed to Exercise Problem 1 for the detailed calculations.
According to Table IV.6A1, between groups (active and placebo) is significant at the 5% level.

11.3.2 ANOVA of Differences from the Baseline
When the baseline values are taken into consideration, the active drug shows an increase in
exercise time over placebo of 110.25 seconds [107.2 − (−3.05)]. The ANOVA is shown in Table
11.4. The data analyzed here are the (post–pre) values given in Table 11.2. The F test for treatment
differences is 61.3! There is no doubt about the difference between the active drug and placebo.
The larger F value is due to the considerable reduction in variance as a result of including
the baseline values in the analysis. The within-groups error term represents within- patient
variation in this analysis. In the previous analysis for post-treatment results only, the within-
groups error term represents the between-patient variation, which is considerably larger than the
within-patient error. Although both tests are significant (p < 0.05) in this example, one can easily
see that situations may arise in which treatments may not be statistically different based on a
significance test if between-patient variance is used as the error term, but would be significant
based on the smaller within-patient variance. Thus, designs that use the smaller within-patient
variance as the error term for treatments are to be preferred, other things being equal.

Table 11.3 ANOVA Table for Post-Treatment Readings for the

Data of Table 11.2

Source d.f. SS MS F

Between groups 1 59,213 59,213 F1,38 = 5.86∗
Within groups 38 383,787 10,099.7

Total 39 443,000

∗p < 0.05.
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Table 11.4 Analysis of Variance for Differences from Baseline

(Table 11.1)

Source d.f. SS MS F

Between groups 1 121,551 120,551 F1,38 = 61.3∗
Within groups 38 75,396 1984

Total 39 196,947

∗p < 0.01.

11.4 CROSSOVER DESIGNS AND BIOAVAILABILITY/BIOEQUIVALENCE STUDIES
In a typical crossover design, each subject takes each of the treatments under investigation on
different occasions. Comparative bioavailability∗ or bioequivalence studies, in which two or
more formulations of the same drug are compared, are usually designed as crossover studies.
Perhaps the greatest appeal of the crossover design is that each patient acts as his or her own
control. This feature allows for the direct comparison of treatments, and is particularly efficient
in the presence of large interindividual variation. However, caution should be used when
considering this design in studies where carryover effects or other interactions are anticipated.
Under these circumstances, a parallel design may be more appropriate.

11.4.1 Description of Crossover Designs: Advantages and Disadvantages
The crossover (or changeover) design is a very popular, and often desirable, design in clinical
experiments. In these designs, typically, two treatments are compared, with each patient or
subject taking each treatment in turn. The treatments are typically taken on two occasions, often
called visits, periods, or legs. The order of treatment is randomized; that is, either A is followed
by B or B is followed by A, where A and B are the two treatments. Certain situations exist where
the treatments are not separated by time, for example, in two visits or periods. For example,
comparing the effect of topical products, locations of applications on the body may serve as the
visits or periods. Product may be applied to each of two arms, left and right. Individuals will be
separated into two groups, (1) those with Product A applied on the left arm and Product B on the
right arm, and (2) those with Product B applied on the left arm and Product A on the right arm.

A————————-→B B————————-→A
First week Second week or First week Second week

This design may also be used for the comparison of more than two treatments. The present
discussion will be limited to the comparison of two treatments, the most common situation
in clinical studies. (The design and analysis of three or more treatment crossovers follows.)
Crossover designs have great appeal when the experimental objective is the comparison of
the performance, or effects, of two drugs or product formulations. Since each patient takes
each product, the comparison of the products is based on within-patient variation. The within-
or intrasubject variability will be smaller than the between- or intersubject variability used
for the comparison of treatments in the one-way or parallel-groups design. Thus, crossover
experiments usually result in greater precision than the parallel-groups design, where different
patients comprise the two groups. Given an equal number of observations, the crossover design
is more powerful than a parallel design in detecting product differences.

The crossover design is a type of Latin square. In a Latin square, the number of treatments
equals the number of patients. In addition, another factor, such as order of treatment, is included
in the experiment in a balanced way. The net result is an N × N array (where N is the number
of treatments or patients) of N letters such that a given letter appears only once in a given row
or column. This is most easily shown pictorially. A Latin square for four subjects taking four
drugs is shown in Table 11.5. For randomizations of treatments in Latin squares, see Ref. [6].

∗ A bioavailability study, in our context, is defined as a comparative study of a drug formulation compared to an
optimally absorbed (intravenous or oral solution) formulation.
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Table 11.5 4 × 4 Latin Square: Four Subjects Take Four Drugs

Order in which drugsa are taken

Subject First Second Third Fourth

1 A B C D

2 B C D A

3 C D A B

4 D A B C

aDrugs are designated as A, B, C, D.

For the comparison of two formulations, a 2 × 2 Latin square (N = 2) consists of two
patients each taking two formulations (A and B) on two different occasions in two ‘‘orders” as
follows:

Occasion period

Patient First Second

1 A B

2 B A

The balancing of order (A − B or B − A) takes care of time trends or other “period” effects,
if present. (A period effect is a difference in response due to the occasion on which the treatment
is given, independent of the effect due to the treatment.)

The 2 × 2 Latin square shown above is familiar to all who have been involved in bioavail-
ability/bioequivalence studies. In these studies, the 2 × 2 Latin square is repeated several times
to include a sufficient number of patients (see also Table 11.6). Thus, the crossover design can
be thought of as a repetition of the 2 × 2 Latin square.

The crossover design has an advantage, previously noted, of increased precision relative
to a parallel-groups design. Also, the crossover is usually more economical: one-half the num-
ber of patients or subjects have to be recruited to obtain the same number of observations as
in a parallel design. (Note that each patient takes two drugs in the crossover.) Often, a signif-
icant part of the expense in terms of both time and money is spent recruiting and processing
patients or volunteers. The advantage of the crossover design in terms of cost depends on
the economics of patient recruiting, cost of experimental observations, as well as the relative
within-patient/between-patient variation. The smaller the within-patient variation relative to
the between-patient variation, the more efficient will be the crossover design. Hence, if a repeat
observation on the same patient is very variable (nonreproducible), the crossover may not be
very much better than a parallel design, cost factors being equal. This problem is presented and
quantitatively analyzed in detail by Brown [7].

There are also some problems associated with crossover designs. A crossover study may
take longer to complete than a parallel study because of the extra testing period. It should be
noted, however, that if recruitment of patients is difficult, the crossover design may actually save
time, because fewer patients are needed to obtain equal power compared to the parallel design.
Another disadvantage of the crossover design is that missing data pose a more serious problem
than in the parallel design. Since each subject must supply data on two occasions (compared to
a single occasion in the parallel design), the chances of observations being lost to the analysis
are greater in the crossover study. If an observation is lost in one of the legs of a two-period
crossover, the data for that person carry very little information. When data are missing in the
crossover design, the statistical analysis is more difficult and the design loses some efficiency.
Finally, the administration of crossover designs in terms of management and patient compliance
is somewhat more difficult than that of parallel studies.
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Figure 11.1 Carryover in a bioequivalence study.

Perhaps the most serious problem with the use of crossover designs is one common to all
Latin square designs, the possibility of interactions. The most common interaction that may be
present in crossover design is a differential carryover or residual effect. This effect occurs when
the response on the second period (leg) is dependent on the response in the first period, and this
dependency differs depending on which of the two treatments is given during the first period.
Carryover is illustrated in Figure 11.1(A), where the short interval between administration of
dosage forms X and Y is not sufficient to rid the body of drug when formulation X is given first.
This results in an apparent larger blood level for formulation Y when it is given subsequent to
formulation X. In the presence of differential carryover, the data cannot be properly analyzed
except by the use of more complex designs (see replicate crossover designs in sect. 11.4.7). These
special designs are not easily accommodated to clinical studies [8].

Figure 11.1(B) illustrates an example where a sufficiently long washout period ensures
that carryover of blood concentration of drug is absent. The results depicted in Figure 11.1(A)
show a carryover effect that could easily have been avoided if the study had been carefully
planned. This example only illustrates the problem; often, carryover effects are not as obvious.
These effects can be caused by such uncontrolled factors as psychological or physiological states
of the patients, or by external factors such as the weather, clinical setting, assay techniques, and
so on.

Grizzle has published an analysis to detect carryover (residual) effects [9]. When differ-
ential carryover effects are present, the usual interpretation and statistical analysis of crossover
studies are invalid. Only the first period results can be used, resulting in a smaller, less sen-
sitive experiment. An example of Grizzle’s analysis is shown in this chapter in the discussion
of bioavailability studies (sect. 11.4.2). Brown concludes that most of the time, in these cases,
the parallel design is probably more efficient [7]. Therefore, if differential carryover effects are
suspected prior to implementation of the study, an alternative to the crossover design should
be considered (see below).
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Because of the “built-in” individual-by-individual comparisons of products provided by
the crossover design, the use of such designs in comparative clinical studies often seems very
attractive. However, in many situations, where patients are being treated for a disease state, the
design is either inappropriate or difficult to implement. In acute diseases, patients may be cured
or improved so much after the first treatment that a “different” condition or state of illness is
being treated during the second leg of the crossover. Also, psychological carryover has been
observed, particularly in cases of testing psychotropic drugs.

The longer study time necessary to test two drugs in the crossover design can be critical
if the testing period of each leg is of long duration. Including a possible washout period to
avoid possible carryover effects, the crossover study will take at least twice as long as a parallel
study to complete. In a study of long duration, there will be more difficulty in recruiting and
maintaining patients in the study. One of the most frustrating (albeit challenging) facets of data
analysis is data with “holes,” missing data. Long-term crossover studies will inevitably have
such problems.

11.4.2 Bioavailability/Bioequivalence Studies†

The assessment of “bioequivalence” (BE) refers to a procedure that compares the bioavailability
of a drug from different formulations. Bioavailability is defined as the rate and extent to which
the active ingredient or active moiety is absorbed from a drug product and becomes available at
the site of action. For drug products that are not intended to be absorbed into the bloodstream,
bioavailability may be assessed by measurements intended to reflect the rate and extent to which
the active ingredient or active moiety becomes available at the site of action. In this chapter, we
will not present methods for drugs that are not absorbed into the bloodstream (or absorbed so
little as to be unmeasurable), but may act locally. Products containing such drugs are usually
assessed using a clinical endpoint, using parallel designs discussed elsewhere in this chapter.
Statistical methodology, in general, will be approached in a manner consistent with methods
presented for drugs that are absorbed.

Thus, we are concerned with measures of the release of drug from a formulation and its
availability to the body. BE can be simply defined by the relative bioavailability of two or more
formulations of the same drug entity. According to 21 CFR 320.1, BE is defined as “the absence of
a significant difference in the rate and extent to which the active ingredient or active moiety . . .

becomes available at the site of drug action when administered . . . in an appropriately designed
study.”

BE is an important part of an NDA in which formulation changes have been made during
and after pivotal clinical trials. BE studies, as part of Abbreviated New Drug Application
(ANDA) submissions, in which a generic product is compared to a marketed, reference product,
are critical parts of the submission. BE studies may also be necessary when formulations for
approved marketed products are modified.

In general, most BE studies depend on accumulation of pharmacokinetic (PK) data that
provide concentrations of drug in the bloodstream at specified time points following administra-
tion of the drug. These studies are typically performed, using oral dosage forms, on volunteers
who are incarcerated (housed) during the study to ensure compliance with regard to dosing
schedule as well as other protocol requirements. This does not mean that BE studies are limited
to oral dosage forms. Any drug formulation that results in measurable blood concentrations
after administration can be treated and analyzed in a manner similar to drugs taken orally.
For drugs that act locally and are not appreciably absorbed, either a surrogate endpoint may
be utilized in place of blood concentrations of drug (e.g., a pharmacodynamic response) or a
clinical study using a therapeutic outcome may be necessary. Also, in some cases where assay
methodology in blood is limited, or for other relevant reasons, measurements of drug in the
urine over time may be used to assess equivalence.

To measure rate and extent of absorption for oral products, PK measures are used. In
particular, model independent measures used are (a) area under the blood concentration versus

† Additional discussion of designs and analyses are given in Appendix X.
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time curve (AUC) and the maximum concentration (Cmax), which are measures of the amount
of drug absorbed and the rate of absorption, respectively.

The time at which the maximum concentration occurs (tmax) is a more direct measure as
an indicator of absorption rate, but is a very variable estimate.

Bioavailability/bioequivalence studies are particularly amenable to crossover designs.
Virtually all such studies make use of this design. Most BE studies involve single doses of drugs
given to normal volunteers, and are of short duration. Thus the disadvantages of the crossover
design in long term, chronic dosing studies are not apparent in bioavailability studies. With
an appropriate washout period between doses, the crossover is ideally suited for comparative
bioavailability studies.

Statistical applications are essential for the evaluation of BE studies. Study designs are
typically two-treatment, two-period (tttp) crossover studies with single or multiple (steady
state) dosing, fasting or fed. Designs with more than two periods are now becoming more
common, and are recommended in certain cases by the FDA. For long half-life drugs, where
time is crucial, parallel designs may be desirable, but these studies use more subjects than would
be used in the crossover design, and the implementation of parallel studies may be difficult and
expensive. The final evaluation is based on parameter averages derived from the blood level
curves, AUC, Cmax, and tmax. Statistical analyses that have been recommended are varied, and
the analyses presented here are typical of those recommended by regulatory agencies.

This section discusses some designs, their properties, and statistical evaluations.
Although crossover designs have clear advantages over corresponding parallel designs,

their use is restricted, in general, as previously noted, because of potential differential carryover
effects and confounded interactions. However, for BE studies, the advantages of these designs
far outweigh the disadvantages. Because these studies are typically performed in healthy vol-
unteers and are of short duration, the potential for carryover and interactions is minimal.
In particular, the likelihood of differential carryover seems to be remote. Carryover may be
observed if administration of a drug affects the blood levels of subsequent doses. Although
possible, a carryover effect would be very unusual, particularly in single-dose studies with
an adequate washout period. A washout period of at least seven half-lives is recommended.
Even more unlikely, would be a differential carryover, which suggests that the carryover from
one product is different from the carryover from the second product. A differential carryover
effect can invalidate the second period results in a two-period crossover (see below). Because
BE studies compare the same drug in different formulations, if a carryover exists at all, the
carryover of two different formulations would not be expected to differ. This is not to say
that differential carryover is impossible in these studies, but to this author’s knowledge, dif-
ferential carryover has not been verified in results of published BE studies, single or multiple
dose. In the typical tttp design, differential carryover is confounded with other effects, and a
test for carryover is not definitive. Thus, if such an effect is suspected, proof would require
a more restrictive or higher order design, that is, a design with more than two periods. This
problem will be discussed further as we describe the analysis and inferences resulting from
these designs.

The features of the tttp design are as follows:

1. N subjects recruited for the study are separated into two groups, or two treatment sequences.
N1 subjects take the treatments in the order AB, and N2 in the order BA, where N1 + N2 =
N. For example, 24 (N) subjects are recruited and 12 (N1) take the Generic followed by the
Brand product, and 12 (N2) take the Brand followed by the Generic. Note that the product
may be taken as a single dose, in multiple doses, fasted or fed.

2. After administration of the product in the first period, blood levels of drug are determined
at suitable intervals.

3. A washout period follows, which is of sufficient duration to ensure the “total” elimination
of the drug given during the first period. An interval of at least nine drugs half-lives should
be sufficient to ensure virtually total elimination of the drug. Often, a minimum of seven
half-lives is recommended.

4. The alternate product is administered in the second period and blood levels determined as
during Period 1.
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Crossover designs are planned so that each treatment is given an equal number of times
in each period. This is most efficient and yields unbiased estimates of treatment differences if a
period effect is present.

The blood is analyzed for each subject with both first and second periods analyzed con-
currently (the same day). To detect possible analytical errors, the samples are usually analyzed
chronologically (starting from the time 0 sample to the final sample), but with the identity of
the product assayed unknown (sample blinding).

After the blood assays are complete, the blood level versus time curves are analyzed for
the derived parameters, AUCt (also noted as AUC0−t), AUC0−∞, Cmax, and tmax (tp), for each
analyte. AUCt is the area to the last quantifiable concentration, and AUCinf is AUCt augmented
by an estimate of the area from time t to infinity (Ct/Ke). This is shown and explained in Figure
11.2. A detailed analysis follows.

The analysis of the data consists of first determining the maximum blood drug concen-
tration (Cmax) and the area under the blood level versus time curve (AUC) for each subject, for
each product. Often, more than one analyte is observed, for example, metabolites or multiple
ingredients, all of which may need to be separately analyzed.

AUC is determined using the trapezoidal rule. The area between adjacent time points
may be estimated as a trapezoid (Fig. 11.3). The area of each trapezoid, up to and including the
final time point, where a measurable concentration is observed, is computed, and the sum of
these areas is the AUC, designated as AUCt. The area of a trapezoid is 1/2 (base) (sum of two
sides). For example, in Figure 11.3, the area of the trapezoid shown in the blood level versus
time curve is 4. In this figure, Cmax is 5 ng/mL and tmax, the time at which Cmax occurs, is
two hours. Having performed this calculation for each subject and product, the AUC and Cmax
values are transformed to their respective logarithms. Either natural logs (ln) or logs to the base
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Figure 11.2 Derived parameters from bioequivalence study.
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Figure 11.3 Illustration of trapezoidal rule.

10 (log) may be used. Typically, one uses the natural log, or ln. The details of the analysis are
described later in this chapter. The analysis of AUC and Cmax was not always performed on the
logs of these values. Originally, the actual, observed (nontransformed) values of these derived
parameters were used in the analysis. (This history will be discussed in more detail below.)
However, examination of the theoretical derivations and mathematical expression of AUC and
Cmax, as well as the statistical properties, has led to the use of the logarithmic transformation. In
particular, data appear to show that these values follow a log-normal distribution more closely
than they do a normal distribution. The form of expression for AUC suggests a multiplicative
model

AUC =FD/VKe,

where F is fraction of drug absorbed, D is dose, V is volume of distribution, and Ke is elimination
rate constant.

The distribution of AUC is complex because of the nonlinearity; it is a ratio. Ln(AUC) is
equal to ln(F) + ln(D) − ln(V) − ln(Ke). This is linear, and the statistical properties are more
manageable. A similar argument can be made for Cmax.

The present FDA requirement for equivalence is based on product ratios using a symmetric
90% confidence interval for the difference of the average parameters, after a log transformation.
Earlier, according to FDA guidelines, the AUC and Cmax were analyzed using the untransformed
values of these derived parameters. Note that when using a clinical or pharmacodynamic end-
point (such as may be used in a parallel study when drug is not absorbed), the nontransformed
data may be more appropriate and the “old” way of forming the confidence interval may
still be used. This analysis is described below. However, at the present time, FDA is leaning
toward an analysis based on Fieller’s Theorem (Locke’s Method). (These analyses, along with a
log-transformed analysis, are described in the example following this discussion.)

11.4.2.1 Statistical Analysis
It is convenient to follow the statistical analysis and estimation of various effects by looking at
the two sequences in the context of the model for this design:

Let
� = overall mean
Gi = Effect of sequence group i (i = 1, 2)
Sik = Effect of subject k in sequence i (k = 1, 2, 3 . . . N)
Pj = Effect of period j (j = 1, 2)
Tt(ij) = treatment effect t (t = 1,2) in sequence i and period j
Yijk = � + Gi + Sik + Pj + Tt(ij) + eijk
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Table 11.6 Design for Two-Way Crossover Study

Period I Period II

Sequence I A B

Sequence II B A

The sequence × period interaction is the treatment effect (sequence × period is the com-
parison Period I–Period II for the two sequences; see Table 11.6).

e.g.,

[
(A− B)seq I − (B − A)seq II

]
2

= A− B.

Suppose that carryover is present, but carryover is the same for both products. We can
show that this would not bias the treatment comparisons. For the sake of simplicity, suppose
that there is no period effect (P1 = P2). Also suppose that the direct treatment effects are A = 3
and B = 2. Both products have a carryover that adds 2 to the treatment (product) in the second
period. (This would result in an additional value of 2 for the period effect.) Finally, assume that
the effects for the sequences are equal; Sequence I = Sequence II. This means that the average
results for subjects in Sequence I are the same as that for Sequence II. Based on this model,
Product B in Period II would have a value of 2 + 2 for carryover = 4. Product A in Period II has
a value of 3 + 2 = 5. Thus, the average difference between A and B is 1, as expected (A = 3 and
B = 2). Table 11.7 shows these simulated data.

This same reasoning would show that equal carryover effects do not bias treatment com-
parisons in the presence of a period effect. (See Exercise Problem 11 at the end of this chapter.)

Differential carryover, where the two products have different carryover effects, is con-
founded with a sequence effect. This means that if the sequence groups have significantly
different average results, one cannot distinguish this effect from a differential carryover effect in
the absence of more definitive information. For example, one can show that if there is a sequence
effect and no differential carryover, a differential carryover in the absence of a sequence effect
could give the same result.

To help explain the confounding, assume that the difference between treatments is 0
(treatments are identical) and that Sequence I averages 2 units more than Sequence II (e.g.,
Sequence I = Sequence II + 2). Since subjects are assigned to the sequence groups at random,
the differences should not be significant except by chance. With no carryover or period effects,
the average results could be something like that shown in Table 11.8.

If Sequence I is the order A followed by B (AB) and Sequence II is the order BA, the
treatment differences, A − B, would be 6 − 6 = 0 in Sequence I, and 4 − 4 = 0 in Sequence II.
Treatment A is the same as Treatment B in Sequence I, and in Sequence II. However, this same
result could occur as a result of differential carryover in the presence of treatment differences.

Table 11.9 shows the same results as Table 11.8 in a different format.
The data from Table 11.9 can be explained by assuming that A is 2 units higher than B (see

Period I results), a carryover of +2 units when B follows A, and a carryover of −2 units when A
follows B. The two explanations, a sequence effect or a differential carryover, cannot be separated
in this two-way crossover design. The sequence effect is G1 − G2. The differential carryover
is
{
[TA(2) − TA(1)] − [TB(2) − TB(1)]

}
/2 = {

[TA(2) + TB(1)] − [TB(2) + TA(1)]
}
/2, which is exactly

the sequence effect (average results in Sequence II − average results in Sequence I). The subscript
B(l) refers to average result for Product B in Period I.

Table 11.7 Simulated Data Illustrating Equal Carryover

Period I Period II

Sequence I A = 3 B = 4

Sequence II B = 2 A = 5
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Table 11.8 Example of Sequence Effect

Treatment A Treatment B Average

Sequence I 6 6 6

Sequence II 4 4 4

Average 5 5

In practice, an ANOVA is performed, which results in significance tests for the sequence
effect and an estimate of error for computing confidence intervals (see later in sect. 11.4.3).

The results of a typical single-dose BE study are shown in Table 11.10. These data were
obtained from drug plasma level versus time determinations similar to those illustrated in Figure
11.1(B). Area under the plasma level versus time curve (AUC, a measure of absorption), time to
peak plasma concentration (tp), and the maximum concentration (Cmax) are the parameters that
are usually of most interest in the comparison of the bioavailability of different formulations of
the same drug moiety.

The typical ANOVA for crossover studies will be applied to the AUC data to illustrate the
procedure used to analyze the experimental results. In these analyses, the residual error term
is used in statistical computations, for example, to construct confidence intervals. An ANOVA
is computed for each parameter based on the model. The ANOVA table is not meant for the
performance of statistical hypothesis tests, except perhaps to test the sequence effect, which
uses the between subject within sequences mean square as the error term. Rather, the analysis
removes some effects from the total variance to obtain a more “efficient” or pure estimate of
the error term. It is the error term, or estimate of the within-subject variability (assumed to be
equal for both products in this analysis), that is used to assess the equivalence of the parameter
being analyzed. A critical assumption for the correct interpretation of the analysis is the absence
of differential carryover effects, as discussed previously. Otherwise, the usual assumptions for
ANOVA should hold. FDA statisticians encourage a careful statistical analysis of crossover
designs. In particular, the use of a simple t test that ignores the possible presence of period
and/or carryover effects is not acceptable.‡ If period effects are present, and not accounted
for in the statistical analysis, the analysis will be less sensitive. The error mean square in the
ANOVA will be inflated due to inclusion of the period variance, and the width of the confidence
interval will be increased. If differential carryover effects are present, the estimate of treatment
differences will be biased (see sects. 11.4.1 and 11.4.2).

The usual ANOVA separates the total sum of squares into four components: subjects,
periods, treatments, and error (residual). In the absence of differential carryover effects, the
statistical test of interest is for treatment differences. The subject and period sum of squares are
separated from the error term which then represents “intrasubject” variation. The subjects sum
of squares (SS) can be separated into sequence SS and subject within sequence SS to test for the
sequence effect. The sequence effect is confounded with carryover, and this test is described
following the analysis without sequence effect.

Some history may be of interest with regard to the analysis recommended in the most
recent FDA guidance [10]. In the early evolution of BE analysis, a hypothesis test was used at the
5% level of significance. The raw data were used in the analysis; that is, a logarithmic transfor-
mation was not recommended. The null hypothesis was simply that the products were equal,
as opposed to the alternate hypothesis that the products were different. This had the obvious
problem with regard to the power of the test. Products that showed nearly the same average

Table 11.9 Example of Differential Carryover Effect

Period I Period II Average

Sequence I A = 6 B = 6 6

Sequence II B = 4 A = 4 4

‡ In bioavailability studies, carryover effects are usually due to an inadequate washout period.
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Table 11.10 Data for the Bioequivalence Study Comparing Drugs A and B

AUC Peak concentration Time to peak

Subject Order A B A B A B

1 AB 290 210 30 18 8 8

2 BA 201 163 22 19 10 4

3 AB 187 116 18 11 6 6

4 AB 168 77 20 14 10 3

5 BA 200 220 18 21 3 3

6 BA 151 133 25 16 4 6

7 AB 294 140 27 14 4 10

8 BA 97 190 16 23 6 6

9 BA 228 168 20 14 6 6

10 AB 250 161 28 19 6 4

11 AB 293 240 28 18 6 12

12 BA 154 188 16 20 8 8

Mean 209.4 167.2 22.3 17.3 6.4 6.3

Sum 2513 2006 268 207 77 76

results, but with very small variance, could show a significant difference, which may not be of
clinical significance, and be rejected. Alternatively, products that showed large differences with
large variance could show a nonsignificant difference, and be deemed equivalent. Similarly,
products could be shown to be equivalent if a small sample size was used resulting in an unde-
tected difference that could be clinically significant. Because of these problems, an additional
caveat was added to the requirements. If the products showed a difference of less than 20%,
was not statistically significant (p > 0.05), and the power of the study to detect a difference of
20% exceeded 80%, the products would be considered to be equivalent. This helped to avoid
undersized studies and prevent products with observed large differences from passing the BE
study. The following examples illustrate this problem.

Example 1. In a BE two-period, crossover study, with eight subjects, the test product showed
an average AUC of 100, and the reference product showed an average AUC of 85. The observed
difference between the products is (100–85)/85, or 17.6%.

The error term from the ANOVA (see below for description of the analysis) is 900, s.d. =
30. The test of significance (a t test with 6 d.f.) is

|100 − 85|[
900

(
1
8

+ 1
8

)]1/2 = 1.00.

This is not statistically significant at the 5% level (a t value of 2.45 for 6 d.f. is needed for
significance). Therefore, the products may be deemed equivalent.

However, this test is underpowered based on the need for 80% power to show a 20%
difference. A 20% difference from the reference is 0.2 × 85 = 17. The approximate power is
(Eq. 6.11)

Z = [17/42.43] [6]1/2 − 1.96 = −0.98.

Referring to a Table of the Cumulative Standard Normal Distribution, the approximate
power is 16%. Although the test of significance did not reject the null hypothesis, the power
of the test to detect a 20% difference is weak. Therefore, this product would not pass the BE
requirements.

Example 2. In a BE two-period, crossover study, with 36 subjects, the test product showed
an average AUC of 100, and the reference product showed an average AUC of 95. The products
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differ by approximately only 5%. The error term from the ANOVA is 100, s.d. = 10. The test of
significance (a t test with 34 d.f.) is

|100 − 95|[
100

(
1

36
+ 1

36

)]1/2 = 2.12.

This is statistically significant at the 5% level (a t value of 2.03 for 34 d.f. is needed for
significance). Therefore, the products may be deemed nonequivalent.

This test passes the criterion based on the need for 80% power to show a 20% difference.
A 20% difference from the reference is 0.2 × 95 = 19. The approximate power is (see chap. 6)

Z = [19/14.14] [34]1/2 − 1.96 = 5.88.

The approximate power is almost 100%. Although the power of the test to detect a 20%
difference is extremely high, the test of significance rejected the null hypothesis that the products
were equal. Therefore, this Product would fail the BE requirements. In some cases, a Medical
review would rule such a small difference as clinically non-significant and the product would
be approved.

Other requirements at that time included the 75/75 rule [11]. This rule stated that 75% of
the subjects in the study should have ratios of test/reference between 75% and 125%. This was
an attempt to include a variability criterion in the assessment of study results. Unfortunately,
this criterion has little statistical basis, and would almost always fail with highly variable drugs.
In fact, if a highly variable drug (CV greater than 30–40%) is tested against itself, it would most
likely fail this test. Eventually, this requirement was correctly phased out.

Soon after this phase in the evolution of BE regulations, the hypothesis test approach
was replaced by the two one-sided t test or, equivalently, the 90% confidence interval approach
[12]. This approach resolved the problems of hypothesis testing, and assumed that products
that are within 20% of each other with regard to the major parameters, AUC and Cmax, are
therapeutically equivalent. For several years, this method was used without a logarithmic
transformation. However, if the study data conformed better to a log-normal distribution than
a normal distribution, a log transformation was allowed. An appropriate statistical test was
applied to test the conformity of the data to these distributions.

The AUC data from Table 11.10 are analyzed below. To ease the explanation, the computa-
tions for the untransformed data are detailed. The log-transformed data are analyzed identically,
and these results follow the untransformed data analysis. The sums of squares for treatments
and subjects are computed exactly the same way as in the two-way ANOVA (see sect. 8.4). The
new calculations are for the “period” (1 d.f.) and “sequence” (1 d.f.) sums of squares. We first
show the analysis for periods. The analysis for sequence is shown when discussing the test for
differential carryover. Two new columns are prepared for the “period” calculation. One column
contains the data from the first period, and the second column contains data from the second
period. For example, for the AUC data in Table 11.10, the data for the first period are obtained by
noting the order of administration. Subject 1 took Product A during the first period (290); subject
2 took B during the first period (163); and so on. Therefore, the first period observations are

290, 163, 187, 168, 220, 133, 294, 190, 168, 250, 293, and 188 (sum = 2544).
The second period observations are
210, 201, 116, 77, 200, 151, 140, 97, 228, 161, 240, 154 (sum = 1975).
The “period” SS may be calculated as follows:

(
∑

P1)2 + (
∑

P2)2

N
− CT, (11.2)

where
∑

P1 and
∑

P2 are the sums of observations in the first and second periods, respectively,
N is the number of subjects, and CT is the correction term. The following ANOVA and Table
11.10 will help clarify the calculations.
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Calculations for ANOVA∑
Xt is the sum of all observations = 4519∑
XA is the sum of observations for Product A = 2513∑
XB is the sum of observations for Product B = 2006∑
P1 is the sum of observations for Period 1 = 2544∑
P2 is the sum of observations for Period 2 = 1975∑
X2

t is the sum of the squared observations = 929,321

CT is the correction term (
∑

Xt )
2

Nt
= (4519)2

24 = 850, 890.04.

Total SS = ∑
X2

t − CT = 78, 430.96∑
Si is the sum of the observations for subject i (e.g., 500 for first subject)

Subject SS

=
∑

(
∑

Si )
2

2
− CT = 5002 + 3642 + . . . + 3422

2
− CT = 43,560.46

Period sum of squares = 25442 + 19752

12
− CT = 13,490.0

Treatment sum of squares = 25132 + 20062

12
− CT = 10,710.4

Error SS = total SS − subject SS − period SS − treatment SS
= 78,430.96 − 43,560.46 − 13,490 − 10,710.38
= 10,670.1.

Note that the d.f. for error are equal to 10. The usual two-way ANOVA would have 11
d.f. for error (subjects − 1) × (treatments − 1). In this design, the error SS is diminished by the
period SS, which has 1 d.f.

Again, the ANOVA is typically performed using appropriate computer programs. A Gen-
eral Linear Models (GLM) program is suitable with factors, sequence, subjects within sequence,
treatment, and period.

11.4.2.2 Test for Carryover Effects
Dr. James Grizzle published a classic paper on analysis of crossover designs and presented a
method for testing carryover effects (sequence effects in his notation) [9]. Some controversy exists
regarding the usual analysis of crossover designs, particularly with regard to the assumptions
underlying this analysis. Before using the Grizzle analysis, the reader should examine the
original paper by Grizzle as well as the discussion by Brown, in which some of the problems of
crossover designs are summarized [7].

One of the key assumptions necessary for a valid analysis and interpretation of crossover
designs is the absence of differential carryover effects as has been previously noted. Data
from Table 11.10 were previously analyzed using the typical crossover analysis, assuming
that differential carryover was absent. Table 11.10 is reproduced as Table 11.11 (AUC only) to
illustrate the computations needed for the Grizzle analysis.

The test for carryover, or sequence, effects is performed as follows:

1. Compute the SS due to carryover (or sequence) effects by comparing the results for group
I to group II. (Note that these two groups, groups I and II, which differ in the order of
treatment are designated as treatment “sequence” by Grizzle.) It can be demonstrated that
in the absence of sequence effects, the average result for group I (A first, B second) is expected
to be equal to the average result for group II (B first, A second). The SS is calculated as(∑

group I
)2

N1
+
(∑

group II
)2

N2
− CT.
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Table 11.11 Data for AUC for the Bioequivalence Study Comparing Drugs A and B

Group I Group II
(Treatment A first, B second) (Treatment B first, A second)

Subject A B Total Subject A B Total

1 290 210 500 2 201 163 364

3 187 116 303 5 200 220 420

4 168 77 245 6 151 133 284

7 294 140 434 8 97 190 287

10 250 161 411 9 228 168 396

11 293 240 533 12 154 188 342

Total 1482 944 2426 Total 1031 1062 2093

In our example the sequence SS is (1 d.f.)

(2426)2

12
+ (2093)2

12
− (2426 + 2093)2

24
= 4620.375.

2. The proper error term to test the sequence effect is the within-group (sequence) mean square,
represented by the SS between subjects within groups (sequence). This SS is calculated as
follows:

1
2

∑
(subject total)2 − (CT)I − (CT)II,

where CTI and CTII are the correction terms for groups I and II, respectively. In our example,
the within-group SS is

1
2 (5002 + 3032 + 2452 + . . . + 3642 + 4202

+ . . . 3422) − (2426)2

12
− (2093)2

12
= 38,940.08.

This within-group (or subject within-sequence) SS has 10 d.f., 5 from each group. The
mean square is 38,940/10 = 3894.

3. Test the sequence effect by comparing the sequence mean square to the within-group mean
square (F test).

F1,10 = 4620.375
3894

= 1.19

Referring to Table IV.6, the effect is not significant at the 5% level. (Note that in practice,
this test is performed at the 10% level.) If the sequence (carryover) effect is not significant, one
would proceed with the usual analysis and interpretation as shown in Table 11.12.

Table 11.12 Analysis of Variance Table for the Crossover Bioequivalence Study (AUC) Without Sequence

Effect

Source d.f. SS MS P

Subjects 11 43,560.5 3960.0

Period 1 13,490.0 13,490.0

Treatment 1 10,710.4 10,710.4 F1,10 = 12.6∗
Error 10 10,670.1 1067.0

Total 23 78,430.96 F1,10 = 10.0∗

∗p < 0.05.
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If the sequence (carryover) effect is significant, the usual analysis is not valid. The rec-
ommended analysis uses only the first period results, deleting the data contaminated by the
carryover, the second period results. Grizzle recommends that the preliminary test for carryover
be done at the 10% level (see also the discussion by Brown [7]). For the sake of this discussion,
we will compute the analysis as if the data revealed a significant sequence effect in order to
show the calculations. Using only the first-period data, the analysis is appropriate for a one-way
ANOVA design (sect. 8.1). We have two “parallel” groups, one on Product A and the other on
Product B. The data for the first period are as follows:

Subject A Subject B

1 290 2 163

3 187 5 220

4 168 6 133

7 294 8 190

10 250 9 168

11 293 12 188

Mean 247 177

S2 3204.8 870.4

The ANOVA table is as follows:§

d.f. SS MS F

Between treatments 1 14,700 14,700 7.21

Within treatments 10 20,376 2037.6

Referring to Table IV.6, an F value of 4.96 is needed for significance at the 5% level (1 and
10 d.f.). Therefore, in this example, the analysis leads to the conclusion of significant treatment
differences.

The discussion and analysis above should make it clear that sequence or carryover effects
are undesirable in crossover experiments. Although an alternative analysis is available, one-half
of the data are lost (second period) and the error term for the comparison of treatments is usually
larger than that which would have been available in the absence of carryover (within-subject
versus between-subject variation). One should thoroughly understand the nature of treatments
in a crossover experiment in order to avoid differential carryover effects if at all possible. (Note:
Although at one time the presence of a sequence effect could cause rejection of a BE submission
by FDA, at the present time if there are no circumstances that could cause carryover, the FDA
review would take this into consideration as a spurious event.)

Since the test for carryover was set at 5% a priori, we will proceed with the interpretation,
assuming that carryover effects are absent. (Again, note that this test is usually set at the
10% level in practice). Both period and treatment effects are significant (F1,10 = 12.6 and 10.0,
respectively). The AUC values tend to be higher during the first period (on the average). This
period (or order) effect does not interfere with the conclusion that Product A has a higher average
AUC than that of Product B. The balanced order of administration of the two products in this
design compensates equally for both products for systematic differences due to the period or
order. Also, the ANOVA subtracts out the SS due to the period effect from the error term, which
is used to test treatment differences.

If the design is not symmetrical, because of missing data, dropouts, or poor planning,
a statistician should be consulted for the data analysis and interpretation. In an asymmetrical
design, the number of observations in the two periods is different for the two treatment groups.
This will always occur if there is an odd number of subjects. For example, the following scheme
shows an asymmetrical design for seven subjects taking two drug products, A and B. In such
situations, computer software programs can be used, which adjust the analysis and mean results
for the lack of symmetry [13].

§ This analysis is identical to a two-sample independent groups t test.
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Subject Period 1 Period 2

1 A B

2 B A

3 A B

4 B A

5 A B

6 B A

7 A B

The complete ANOVA is shown in Table 11.13.
The statistical analysis in the example above was performed on AUC, which is a measure

of relative absorption. The FDA recommends that plasma or urine concentrations be determined
out to at least three half-lives, so that practically all the area under the curve will be included
when calculating this parameter (by the trapezoidal rule, for example). Other measures of the
rate and extent of absorption are time to peak and peak concentration. Often, more than one
analyte is observed, for example, metabolites or multiple ingredients.

Much has been written and discussed about the expression and interpretation of bioe-
quivalency/bioavailability data as a measure of rate and extent of absorption. When are the
parameters AUC, tp, and Cmax important, and what part do they play in bioequivalency? The
FDA has stated that products may be considered equivalent in the presence of different rates
of absorption, particularly if these differences are designed into the product [14]. For example,
for a drug that is used in chronic dosing, the extent of absorption is probably a much more
important parameter than the rate of absorption. It is not the purpose of this presentation to
discuss the merits of these parameters in evaluating equivalence, but only to alert the reader to
the fact that BE interpretation need not be fixed and rigid.

The ANOVA for log AUC (AUC values are transformed to their natural logs) is shown
in Table 11.14. Exercise Problem 9 at the end of this chapter requests the reader to construct
this table. The procedure is identical to that shown for the untransformed data. Analysis of the
log-transformed parameters is currently required by the FDA. The critical parameters are AUC and
Cmax.

11.4.3 Confidence Intervals in BE Studies
The scientific community is virtually unanimous in its opposition to the use of hypothesis
testing for the evaluation of BE. Hypothesis tests are inappropriate in that products that are
very close, but with small variance, may be deemed different, whereas products that are widely
different, but with large variance, may be considered equivalent (not significantly different).
(See previous discussion in sect. 11.4.2). The use of a confidence interval, the present criterion for
equivalence, is more meaningful and has better statistical properties. (See chap. 5 for a discussion
of confidence intervals.) Given the lower and upper limit of the ratio of the parameters, the user
or prescriber of a drug can make an educated decision regarding the equivalence of alternative
products. The confidence limits must lie between 0.8 and 1.25 based on the difference of the
back-transformed averages of the log-transformed AUC and Cmax results. This computation
for AUC is shown below. For historical purposes and purposes of comparison, the confidence
interval is computed using the nontransformed data (the old method) and the log-transformed

Table 11.13 ANOVA for Untransformed Data from Table 11.10 for AUC

Variable (source) d.f. SS MS F ratio Prob > F

Sequence 1 4620.4 4620.4 1.19 0.3016

Subject (sequence) 10 38,940.1 3894.0 3.65 0.0265

Period 1 13,490.0 13,490.0 12.64 0.0052

Treat 1 10,710.4 10,710.4 10.04 0.0100

Residual 10 10,670.1 1067.0

Total 23 78,430.96
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Table 11.14 ANOVA for Log-Transformed Data from Table 11.10 for AUC

Variable (source) d.f. SS MS F ratio Prob > F

Sequence 1 0.0613 0.0613 0.46 0.5128

Subject (sequence) 10 1.332 0.1332 2.96 0.0507

Period 1 0.4502 0.4502 10.02 0.0101

Treat 1 0.2897 0.2897 6.44 0.0294

Residual 10 0.44955 0.04496

Total 23 2.58307

data (the current method). Note that a ratio based on the untransformed data may be used in
certain special circumstances where a log transformation may be deemed inappropriate, such
as data derived from a clinical study, where the data consist of a pharmacodynamic response
or some similar outcome. (See also, the currently recommended analysis using Locke’s Method
based on Fieller’s Theorem below.)

11.4.3.1 Locke’s Method of Analysis (Confidence Interval for the Ratio of Two Normally Distributed
Variables)

The confidence interval for the ratio of two variables is described in “Guidance for Industry,
Center for Drug Evaluation and Research, Appendix V, Feb 1997 [15].” The computations assume
normality of the variables. The example uses data supplied in the FDA document referenced
above.

If two variables are both normally distributed, it is not statistically valid to place a confi-
dence interval on ratios. Ratios of normally distributed variables are not normal. For example,
the data in the FDA document are as follows:

Subject Test Reference Ratio

2 −48.52 −22.2 2.19

3 −38.99 −18.65 2.09

4 −7.62 −22.42 0.34

7 0.98 −10.96 −0.09

9 −32.05 −37.4 0.86

11 −26.18 −26.73 0.98

12 −11.62 −12.56 0.93

The average ratio is 1.04 with a s.d. of 0.84 (the reader may verify these calculations). The
90% confidence interval is 1.04 ± 1.94 × 0.84 ×√

1/7 = approximately 0.42 to 1.66.
This is not correct. The correct calculations are as follows:
Calculate the mean and variance of the test and reference products

Mean of test = AVt = −23.43
Mean of reference = AVr = −21.56
Variance test = �2

T = 323.13
Variance reference = �2

R = 80.10.

Since the two variables are related or correlated (crossover design), calculate the covariance
= = �TR = ∑

(t − AVt)(r − AVr)(N − 1) , where N = sample size = 7 and covariance = 78.83.
A variable is defined as “G,” where G must be greater than zero in order for the calculations

to be valid.

G = (t2�2
R)

(N × AV2
r )

,

where N = sample size = 7
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= (1.9432 × 80.10)
(7 × 21.562)

G = 0.093.

Then, apply the following formulas to calculate the confidence interval. (Note the simi-
larity of these equations to the inverse equation to calculate the confidence interval for X, given
Y in regression. This is a similar application of the calculation of a confidence interval for the
ratio of two normal variables.)

K = {AV2
t /AV2

r } + {�T
2 /�2

R)(1 − G) + {�TR/�2
R}[G(�TR/�2

R) − 2(AVt/AVr)]

= {−23.43/ − 21.56}2 + {323.13/80.1)(1 − 0.093)+
{78.83/80.1}[0.093(78.3/80.1) − 2(−23.43/ − 21.56)]
K = 2.791.

Finally, calculate the 90% confidence interval (t = 1.943) as follows:

[(AVt/AVr) − G(�TR/�2
R)] ± [(t/AVr)

√
�2

R K/N]/(1 − G).

= [(−23.43/21.56)−0.0929(78.83/80.1)] ± [(1.943/21.56) sqrt (80.1 × 2.791/7)]/(1−0.0929).

The 90% confidence interval is approximately 54% to 166%.

11.4.3.2 Nontransformed Data
The following discussion refers to the approach to the analysis of confidence intervals for BE prior to the
present use of the logarithmic transformation. See also, above, the preferred method using Fieller’s (Locke)
Theorem.

90% confidence interval for AUC difference for data in Table 11.10

= �̄ ± t

√
EMS

(
1

N1
+ 1

N2

)

42.25 ± 1.81

√
1067

6
= 42.25 ± 24.14 = 18.11 to 66.39,

where 42.25 is the average difference of the AUCs, 1.81 the t value with 10 d.f., 1067 the variance
estimate (Table 11.12), and 1/6 = 1/N1 + 1/N2. The confidence interval can be expressed as an
approximate percentage relative bioavailability by dividing the lower and upper limits for the
AUC difference by the average AUC for Product B, the reference product as follows:

Average AUC for drug Product B = 167.2
Approximate 90% confidence interval for A/B
= (167.2 + 18.11)/167.2 to (167.2 + 66.39)/167.2
= 1.108 to 1.397.
Product A is between 11% and 40% more bioavailable than Product B. The ratio formed

for the nontransformed data, as shown in the example above, has random variables in both the
numerator and denominator. The denominator (the average value of the reference) is considered
fixed in this calculation, when, indeed, it is a variable measurement. Also, the decision rule is
not symmetrical with regard to the average results for the test and reference. That is, if the
reference is 20% greater than the test, the ratio test/reference is not 0.8 but is 1/1.2 = 0.83.
Conversely, if the test is 20% greater than the reference, the ratio will be 1.2. Nevertheless, at one
time this approximate calculation was considered satisfactory for the purposes of assessing BE.
Note that the usual concept of power does not play a part in the approval process. It behooves
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the sponsor of the BE study to recruit sufficient number of subjects to help ensure approval
based on this criterion. If the products are truly equivalent (the ratio of test/reference is truly
between 0.8 and 1.2), the more subjects recruited, the greater the probability of passing the test.
Note again that in this scenario the more subjects, the better the chance of passing. In practice,
one chooses a sample size sufficiently large to make the probability of passing reasonably
high. This probability may be defined as power in the context of proving equivalence. Sample
size determination for various assumed differences between the test and reference products
for various values of power (probability of passing the confidence interval criterion) has been
published by Diletti et al. [20] (see Table 6.5).

The conclusions based on the confidence interval approach are identical to two one-sided
t tests each performed at the 5% level [12,17]. The null hypotheses are

H0 :
A
B

< 0.8 and H0 :
A
B

> 1.25.

Note that with the log transformation, the upper limit is set at 1.25 instead of 1.2. This
results from the properties of logarithms, where log (0.8) = −log (1/0.8). If both tests are
rejected, the products are considered to have a ratio of AUC and/or Cmax between 0.8 and 1.25
and are taken to be equivalent. If either hypothesis (or both) is not rejected, the products are not
considered to be equivalent.

The test product (A in Table 11.10) would not pass the FDA equivalency test because
the upper confidence limit exceeds 1.25. For the two one-sided t tests, we test the observed
difference versus the hypothetical difference needed to reach 80% and 125% of the standard
product.

If the test product had an average AUC of 175 and the error were 1067, the product would
pass the FDA criterion using the “old” method. The 90% confidence limits would be

175 − 167.2 ± 1.81

√
1067

6
= −16.34 to 31.94.

The 90% confidence limits for the ratio of the AUC of test product/standard product are
calculated as

(167.2 − 16.34)
167.2

= 0.902

(167.2 + 31.94)
167.2

= 1.191.

The limits are within 0.8 and 1.25.
The two one-sided t tests are

H0 :
A
B

< 0.8 t = 175 − 167.2 − [−33.4]√
1067/6

= 3.09

H0 :
A
B

> 1.25 t = 175 − 167.2 − [41.8]√
1067/6

= 2.55,

where −33.4 represents 20% and 41.8 represents 25% of the reference.¶ Since both t values exceed
1.81, the table t for a one-sided test at the 5% level, the products are deemed to be equivalent.

¶ The former FDA criterion for the confidence interval was 0.8 to 1.20 based on nontransformed data. Therefore
this presentation is hypothetical.
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Westlake has discussed the application of a confidence interval that is symmetric about
the ratio 1.0, the value that defines equivalent products. The construction of such an interval is
described in section 5.1.

11.4.3.3 Log-Transformed Data (Current Procedure)
The log transform appears to be more natural when our interest is in the ratio of the product
outcomes. The antilog of the difference of the average results gives the ratio directly [18].

Note that the difference of the logarithms is equivalent to the logarithm of the ratio [i.e., log
A − log B = log (A/B)]. The antilog of the average difference of the logarithms is an estimate of
the ratio of AUCs.

The ANOVA for the ln-transformed data is shown in Table 11.14.
The averages ln values for the test and standard products are

A = 5.29751
B = 5.07778

A− B = 5.29751 − 5.0778 = 0.21973.

The anti-ln of this difference, corresponding to the geometric mean of the individual ratios,
is 1.246. This compares to the ratio of A/B for the untransformed values of 1.252.

0.21973 ± 1.81
√

0.045/6 = 0.06298 to 0.37648.

The anti-ln of these limits are 1.065 to 1.457. The 90% confidence limits for the untrans-
formed data are 1.108 to 1.397.

It is not surprising that both analyses give similar results and conclusions. However,
in situations where the confidence interval is close to the lower and/or upper limits, the two
analyses may result in different conclusions. A nonparametric approach has been recommended
(but is not currently accepted by the FDA) if the data distribution is far from normal (see chap.
15). As discussed earlier, at one time, the FDA suggested an alternative criterion for proof of
BE: at least 75% of the subjects should show the availability for a test product compared to the
reference or standard formulation to be between 75% and 125%. This is called the 75/75 rule.
If 75% of the population truly shows at least 75% relative absorption of the test formulation
compared to the standard, a sample of subjects in a clinical study will have a 50% chance of
failing the test based on the FDA criterion. This criterion has little statistical basis and has
fallen into disrepute. The concept of individual BE (sect. 11.4.6) is concerned with assessing the
equivalence of products on an individual basis based on a more statistically based criterion.

11.4.4 Sample Size and Highly Variable Drug Products
Phillips [19] published sample sizes as a function of power, product differences, and variability.
Diletti et al. [20] have published similar tables where the log transformation is used for the
statistical analysis. These tables are more relevant to current practices. Table 6.4 shows sample
sizes for the multiplicative (log-transformed) analysis, reproduced from the publication by
Diletti. This table as well as more details on sample size estimation is given in section 6.5.
(See also Excel program on the accompanying disk to calculate sample size under various
assumptions.)

When the variation is large because of inherent biologic variability in the absorption
and/or disposition of the drug (or due to the nature of the formulation), large sample sizes may
be needed to meet the confidence interval criterion. Generally, using results of previous studies,
one can estimate the within-subject variability from the residual error term in the ANOVA.
This can be assumed to be the average of the within-subject variances of the two products.
These variances cannot be separated in a two-period crossover design, nor can the variability
be separately attributed to the drug itself or to the formulation effects. Thus, the variability
estimate is some combination of both the drug and the formulation variances. A drug product
is considered to be highly variable if the error variance shows a coefficient of variation (CV) of
30% or greater. There are many drug products that show such variability. CV’s of 100% or more
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have been observed on occasion. To show equivalence for highly variable drug products, using
the FDA criterion of a 90% confidence interval of parameter ratios of 0.8 to 1.25 requires a very
large sample size.

For example, from Table 6.5, if the CV is 30% and the products differ by only 5%, a sample
size of 40 is needed to have 80% power to show the products are equivalent. The FDA has been
considering the problems of designing studies and interpreting results for variable drugs and/or
drug products. This problem has been debated for some time, and a few recommendations
have been proposed to deal with this problem. Although there is no single solution, possible
alternatives include widening of the confidence interval criterion from 0.8 to 1.25 to 0.75 to
1.33 [21] and use of replicated or sequential designs. The European Agency for the Evaluation
of Medicinal Products also makes provision for a wider interval provided it is prospectively
defined and can be justified accordingly [22]. Another recommendation by Endrenyi [23] is to
scale the ratio using the reference CV as the scaling factor. At the time of this writing, the FDA
has published a guidance that includes a scaled analysis. This approach may be recommended
for BE studies of highly variable products. This scaled analysis is described below. Individual
BE in a replicate design to assess BE is also supposed to result in smaller sample sizes for highly
variable drug products as compared to the corresponding two-period design. This solution
to the problem is yet to be fully confirmed. Currently, products with large CVs require large
studies, with an accompanying increased expense. Because these highly variable drugs have
been established as safe and effective and have a history of efficacy and safety in the marketplace,
increasing the confidence interval would be congruent with the drug’s variability in practice.
Scaled BE may provide an economical way of evaluating these drug products.

Note that for the determination of BE based on the final study results, power (computed
a posteriori) plays no role in the determination of equivalence. However, to estimate the sam-
ple size needed before initiating the study, power is an important consideration. The greater
the power one wishes to impose, where power is the probability of passing the 0.8 to 1.25
confidence interval, the more subjects will be needed. Usually, a power of 0.8 is used to esti-
mate sample size. However, if cost is not important (or not excessive), a greater power (0.9, for
example) can be used to gain more assurance of passing the study, assuming that the products
are truly bioequivalent.

Equation (11.3) can be used to approximate the sample size needed for a specified power.

N = 2(t�, 2N−2 + t	, 2N−2 )2
[

CV
(V − �)

]2

, (11.3)

where N is the total number of subjects required to be in the study; t the appropriate
value from the t distribution (approximately 1.7); � the significance level (usually 0.1); 1 − 	
the power, usually 0.8; CV the coefficient of variation; V the BE limit (ln 1.25 = 0.223); and � the
difference between the products (for 5% difference, delta equals [ln(1.05) = 0.0488]).

If we assume a 5% difference between the products being compared, the number of
subjects needed for a CV of 30% and power of 0.8 is: N = 2 (1.7 + 0.86)2 [0.3/(0.223 −.0488)]2 =
approximately 39 subjects, which is close to the 40 subjects from Table 6.5.

If the CV is 50%, we need approximately 108 subjects!

N = 2(1.7 + 0.86)2
(

0.5
0.223 − 0.0488

)2

= approximately 108 subjects.

It can be seen that with a large CV, studies become inordinately large.
BE studies are usually performed at a single site, where all subjects are recruited and

studied as a single group. On occasion, more than one group is required to complete a study.
For example, if a large number of subjects are to be recruited, the study site may not be large
enough to accommodate the subjects. In these situations, the study subjects may be divided into
two cohorts. Each cohort is used to assess the comparative products individually, as might be
done in two separate studies. Typically, the two cohorts are of approximately equal size. The
final assessment is based on a combination of both groups. The totality of data is analyzed with
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a new term in the ANOVA, a Treatment-by-Group interaction term.∗∗ This is a measure (on a
log scale) of how the ratios of test to reference differ in the groups. For example, if the ratios are
very much the same in each group, the interaction would be small or negligible. If interaction is
large, as tested in the ANOVA, then the groups statistically should not be combined. However,
if at least one of the groups individually passes the confidence interval criteria, then the test
product might be acceptable. If interaction is not statistically significant (p > 0.10), then the
confidence interval based on the pooled analysis, after dropping the interaction term, will
determine acceptability. It is an advantage to pool the data, as the larger number of subjects
increases power and there is a greater probability of passing the BE confidence interval, if the
products are truly bioequivalent.

An interesting question arises if more than two groups are included in a BE study. As
before, if there is no interaction, the data should be pooled. If interaction is evident, it is implied
that at least one group is different from the others. Usually, it will be obvious which group is
divergent from a visual inspection of the treatment differences in each group. The remaining
groups may then be tested for interaction. Again, as before, if there is no interaction, the data
should be pooled. If there is interaction, the aberrant group may be omitted, and the remaining
groups tested, and so on. In rare cases, it may not be obvious which group or groups are
responsible for the interaction. In that case, more statistical treatment may be necessary, and a
statistician should be consulted. In any event, if any single group or pooled groups (with no
interaction) passes the BE criteria, the test should pass. If a pooled study passes in the presence
of interaction, but no single study passes, one may still argue that the product should pass, if
there is no apparent reason for the interaction. For example, if the groups are studied at the
same location under the identical protocol, and there is overlap in time among the treatments
given to the different groups, as occurs often, there may be no obvious reason for a significant
interaction. Perhaps, the result was merely due to chance. One may then present an argument
for accepting the pooled results.

The following statistical models have been recommended for analysis of data in groups:

Model 1: GRP SEQ GRP∗SEQ SUBJ(GRP∗SEQ) PER(GRP) TRT GRP∗TRT.
If the GRP∗TRT term is not significant (p > 0.10), then reanalyze the data using Model 2.
Model 2: GRP SEQ GRP∗SEQ SUBJ(GRP∗SEQ) PER(GRP) TRT,

where GRP is the group, SEQ the sequence, GRP∗SEQ the group-by-sequence, SUBJ(GRP∗SEQ)
the subject nested within group-by-sequence, PER(GRP) the period nested within group, TRT
the treatment, and GRP∗TRT the group-by-treatment interaction.

11.4.5 Outliers in BE Studies
An outlier is an observation far removed from the bulk of the observations.

The problems of dealing with outlying observations is discussed in some detail in section
10.2. These same problems exist in the analysis and interpretation of BE studies. Several kinds
of outliers occur in BE studies. Analytical outliers may occur because of analytical errors, and
these can usually be rectified by reanalyzing the retained blood samples. Another kind of outlier
is a value that does not appear to fit the PK profile. If repeat analyses verify these values, one
has little choice but to retain these values in the analysis. If such values appear rarely, they
will usually not affect the overall conclusions since the individual results are a small part of the
overall average results, such as in the calculation of AUC. An exception may occur if the aberrant
value occurs at the time of the estimated Cmax, where the outlier could be more influential. The
biggest problem with outliers is when the outlier arises from a derived parameter (AUC or Cmax)
for an individual subject. The current FDA position is to disallow the exclusion of an outlier
from the analysis solely on a statistical basis. However, if a clinical reason can be determined as
a potential cause for the outlier and when the outlier appears to be due to the reference product,
an outlier may be omitted from the analysis at the discretion of the FDA. The FDA also suggests

∗∗ Currently, FDA requires this only when groups are not from the same population or are dosed widely separated
in time.
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that the outlier be retested in a sample of 6 to 10 subjects from the original study to support the
anomalous nature of the suspected outlier. Part of the reasoning for not excluding outliers is that
one or two individual outliers suggest the possibility of a subpopulation that shows a difference
between the products. Although theoretically possible, this author’s opinion is that this is a
highly unlikely event without definitive documentation. Also, using this reasoning, an outlying
observation due to the reference product would suggest that the reference did not act uniformly
among patients, suggesting a deficiency in the reference product. Another possible occasion for
discarding an individual subject’s result is the case where very little or no drug is absorbed.
Explanations for this effect could be product-related or subject-related, but the true cause is
unlikely to be known. Zero blood levels, in the absence of corroborating evidence for product
failure, are most likely due to a failure of the subject. These problems remain controversial and
should be dealt with on a case-by-case basis.

A more creative approach is possible in the case of replicate designs (see below). In
these situations, the estimates of within-subject variability can be used to identify outliers. For
example, if the within-subject variance for a given treatment is 0.61, but reduces to 0.04 when
omitting the subject with the suspected outlier value, an F test can be performed comparing
variances for the suspect data and the remaining data. The F ratio, in this example, is

F = 0.61
0.04

= 15.3.

The d.f. for the numerator are those for the variance estimate obtained using the results
from all subjects and those for the denominator are those for the variance estimate obtained
from the results omitting the suspected outlier. In the above example, if the numerator and
denominator d.f. were 30 and 28, respectively, then an F value of 15.3 is highly significant (p <

0.01). An alternative analysis could be an ANOVA with and without the suspected outlier. An
F test with 1 d.f. in the numerator and appropriate d.f. in the denominator would be:

[SS (all data) − SS (without outlier data)]/residual SS (all data)<
Another approach that has been used is to compare results for periods 1 and 2 versus

periods 3 and 4 in a four-period fully replicated design.
Of course, if there is an obvious cause for the outlier, a statistical justification is not

necessary. However, further evidence, even if only suspicious, is helpful.
If an outlier is detected, as noted above, the most conservative approach is to find a reason

for the outlying observation, such as a transcription error, or an analytical error, or a subject that
violated the protocol, and so on. In these cases, the data may be reanalyzed with the corrected
data, or without the outlying data if due to analytical or protocol violation, for example.

If an obvious reason for the outlier is not forthcoming, one may wish to perform a new
small study, replicating the original study, including the outlying subject along with a number
of other subjects (at least five or six) from the original study. The results from the new study
can be examined to determine if the data for the outlier from the original study are anomalous.
It should be noted that the data from the small study are not used as a replacement for any
of the original data, but serve only to confirm, or refute, that the suspected outlier subject is
reproducibly an outlier. The procedure here is not fixed, but should be reasonable, and make
sense. One can compare the test to reference ratios for the outlying subject in the two studies,
and demonstrate that the data from the new study show that the outlying subject is congruent
with the other subjects in the new study, for example.

11.4.6 Replicate Designs for BE Studies∗∗
Replicate crossover designs may be defined as designs with more than two periods where
products are given on more than one occasion. In the present context such replicate studies are
studies in which individuals are administered one or both products on more than one occasion.
FDA gives sponsors the option of using replicate design studies. Replicate studies can isolate

∗∗A more advanced topic.
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the within-subject variance of each product separately, as well as potential product-by-subject
interactions.

The FDA recommends that submissions of studies with replicate designs be analyzed for
average BE. The following (Table 11.15) is an example of the analysis of a two-treatment–four
period replicate design to assess average BE. The design has each of two products, balanced in
two sequences, ABAB and BABA, over four periods. Table 11.16 shows the results for Cmax for
a replicate study. Eighteen subjects were recruited for the study and 17 completed the study.
An analysis using the usual approach for the two-treatment, two-period design, as discussed
above, is not recommended. The FDA recommends use of a mixed model approach as in SAS
PROC MIXED [9]. The recommended code is

PROC MIXED;

CLASSES SEQ SUBJ PER TRT;

MODEL LNCMAX = SEQ PER TRT/DDFM = SATTERTH;

RANDOM TRT/TYPE = FAO (2) SUB = SUBj G;

REPEATED/GRP = TRT SUB = SUBJ;

LSMEANS TRT;

ESTIMATE “T VS. R” TRT 1 − 1/CL ALPHA = 0.1;

RUN;

We will concentrate on the comparison of two products in three- or four-period designs.
The FDA recommends using only two sequence designs because the interaction variability
estimate, subject × formulation, will be otherwise confounded (see Ref. 24 for a comparison of
the 2 and 4 sequence designs). The subject × formulation interaction is crucial because if this
effect is substantial, the implication is that subjects do not differentiate formulations equally,
that is, some subjects may give higher results for one formulation, and other subjects respond
higher on the other formulation. Two sequence designs for three- and four-period studies are
shown below. Although there are other designs available, these seem to have particularly good
properties [16,24].

Three-period design

Sequence Period

1 2 3

1 A B B

2 B A A

Four-period design

Sequence Period

1 2 3 4

1 A B B A

2 B A A B

With replicate designs, carryover effects, within-subject variances and subject × formula-
tion interactions can be estimated, unconfounded with other effects. Nevertheless, an unambigu-
ous acceptable analysis is still not clear. Do we include all the effects in the model simultaneously
or do we perform preliminary tests for inclusion in the model? What is the proper error term to
construct a confidence interval on the average BE parameter (e.g., AUC)? Some estimates may
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not be available if all terms are included in the model. Therefore, preliminary testing may be
necessary. These questions are not easy to answer and, despite their advantages, make the use
of replicate designs problematic at the time of this writing.

The following is one way of proceeding with the analysis: Test for differential carryover.
This term may be included in the model (along with the usual parameters) using a dummy
variable, that is, 0 if treatment in Period 1, if Treatment B follows Treatment A, and 2 if Treatment
A follows Treatment B. If differential carryover is not significant, remove it from the model.
Include a term for subject × formulation interaction, and if this effect is large, the products may
be considered bioinequivalent (see sect. 11.4.6.1). Another problem that arises here is concerned
with what error term should be used to construct the confidence interval for the average
difference between formulations. The choices are among the within-subject variance (residual),
the interaction term, or the residual with no interaction term in the model (pooled residual and
interaction). The latter could be defended if the interaction term is small or not significant.

The analysis of studies with replicate designs would be very difficult without access to a
computer program. Using SAS GLM, the following program can be used. (See below for FDA
recommended approach.)

proc glm;
class sequence subject product period co;
model auc = period subject (sequence) product co;
lsmeans product/stderr;
estimate ‘test-ref’product −11;

∗co is carryover∗
Using the data from Chow and Liu [16], a four-period design with nine subjects completing

the study, the SAS output is as follows:

Dependent variable: AUC

Source d.f. Sum of squares Mean square F value Pr > F

Model 13 40895.72505 3145.82500 8.25 0.0001

Error 22 8391.03801 381.41082

Corrected total 35 49286.76306

Dependent variable: AUC

Source d.f. Type I SS Mean square F value Pr > F

SEQ 1 9242.13356 9242.13356 24.23 0.0001

SUBJECT (SEQ) 7 25838.61700 3691.23100 9.68 0.0001

PRODUCT 1 1161.67361 1161.67361 3.05 0.0949

PERIOD 3 4650.60194 1550.20065 4.06 0.0193

CO 1 2.69894 2.69894 0.01 0.9337

Source d.f. Type III SS Mean square F value Pr > F

SEQ 1 8311.37782 8311.37782 21.79 0.0001

SUBJECT (SEQ) 7 25838.61700 3691.23100 9.68 0.0001

PRODUCT 1 975.69000 975.69000 2.56 0.1240

PERIOD 2 2304.85554 1152.42777 3.02 0.0693

CO 1 2.69894 2.69894 0.01 0.9337

Parameter Estimate T for HO: Pr > |T| Std error of

parameter

estimate

test-ref −10.98825000 −1.60 0.1240 6.87019569

Because carryover is not significant (p > 0.9), we can remove this term from the model and
analyze the data with a subject × formulation (within sequence) term included in the model.
The SAS output is as follows:
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General linear models procedure

Dependent variable: AUC

Source d.f. Sum of squares Mean squares F value Pr > F

Model 19 42490.87861 2236.36203 5.27 0.0008

Error 16 6795.88444 424.74278

Corrected total 35 49286.76306

Source d.f. Type I SS Mean square F value Pr > F

SEQ 1 9242.13356 9242.13356 21.76 0.0003

SUBJECT (SEQ) 7 25838.61700 3691.23100 8.69 0.0002

PRODUCT 1 1161.67361 1161.67361 2.74 0.1177

PERIOD 3 4650.60194 1550.20065 3.65 0.0354

SUBJECT ∗ PRODUCT(SEQ) (SEQ) 7 1597.85250 228.26464 0.54 0.7940

Source d.f. Type III SS Mean square F value Pr > F

SEQ 1 9242.13356 9242.13356 21.76 0.0003

SUBJECT (SEQ) 7 25838.61700 3691.23100 8.69 0.0002

PRODUCT 1 1107.56806 1107.56806 2.61 0.1259

PERIOD 2 4622.20056 2311.10028 5.44 0.0157

SUBJECT ∗ PRODUCT (SEQ) 7 1597.85250 228.26464 0.54 0.7940

The subject × product interaction is not significant (p > 0.7). Again the question of which
error term to use for the confidence interval is unresolved. The choices are (a) interaction = 228,
within-subject variance = 425, or pooled residual = 365. The d.f. will also differ depending on
the choice. The simplest approach seems to be to use the pooled variance if the interaction term
is not significant (the level must be defined). If interaction is significant, use the interaction term
as the error. In the example given above, the analysis without interaction and carryover may be
appropriate (also see sect. 11.4.6.1). The following analysis has an error term equal to 365.

Dependent variable: AUC
Source d.f. Sum of squares Mean square F value Pr > F

Model 12 40893.02611 3407.75218 9.34 0.0001

Error 23 8393.73694 364.94508

Corrected total 35 49286.76306

Source d.f. Type III SS Mean square F value Pr > F

SEQ 1 9242.13356 9242.13356 25.32 0.0001

SUBJECT (SEQ) 7 25838.61700 3691.23100 10.11 0.0001

PRODUCT 1 1107.56806 1107.56806 3.03 0.0949

PERIOD 3 4650.60194 1550.20065 4.25 0.0158

PRODUCT AUC LSMEAN Std err LSMEAN Pr > |T| HO :

LSMEAN = 0

1 87.7087500 4.5308014 0.0001

2 76.5462500 4.5308014 0.0001

Parameter Estimate T for HO:

Parameter = 0

Pr > |T| Std error of

estimate

test-ref −11.16250000 −1.74 0.0949 6.40752074

The complete analysis of replicate designs can be very complex and ambiguous, and is
beyond the scope of this book. An example of the analysis as recommended by the FDA is shown
later in this section. For an in-depth discussion of the analysis of replicate designs including
estimation of sources of variability (see Refs. [16,24,25]).

The four-period design will be further discussed in the discussion of individual bioequiv-
alence (IB), for which it is recommended. In a relatively recent guidance, the FDA [10] gives
sponsors the option of using replicate design studies for all BE studies. However, at the time of
this writing, the agency has ceased to recommend use of replicate studies although they may
be useful in some circumstances. The purpose of these studies was to provide more informa-
tion about the drug products than can be obtained from the typical, nonreplicated, two-period
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design. The FDA was interested in obtaining information from these studies to aid them in eval-
uation of the need for IB. In particular, replicate studies provide information on within-subject
variance of each product separately, as well as potential product × subject interactions. As noted
previously, the use of these designs and assessment of IB have been controversial, and its future
in its present form is in doubt.

The FDA recommends that submissions of studies with replicate designs be analyzed for
average BE [10]. Any analysis of IB will be the responsibility of the FDA, but will be only for
internal use, not for evaluating BE for regulatory purposes.

The following is another example of the analysis of a two-treatment–four-period replicate
design to assess average BE, as recommended by the FDA. This design has each of two products,

Table 11.15 Results of a Four-Period, Two-Sequence, Two-Treatment, Replicate Design (Cmax)

Subject Product Sequence Period Cmax Ln(Cmax)

1 Test 1 1 14 2.639

2 Test 1 1 16.7 2.815

3 Test 1 1 12.95 2.561

4 Test 2 2 13.9 2.632

5 Test 1 1 15.6 2.747

6 Test 2 2 12.65 2.538

7 Test 2 2 13.45 2.599

8 Test 2 2 13.85 2.628

9 Test 1 1 13.05 2.569

10 Test 2 2 17.55 2.865

11 Test 1 1 13.25 2.584

12 Test 2 2 19.8 2.986

13 Test 1 1 10.45 2.347

14 Test 2 2 19.55 2.973

15 Test 2 2 22.1 3.096

16 Test 1 1 22.1 3.096

17 Test 2 2 14.15 2.650

1 Test 1 3 14.35 2.664

2 Test 1 3 22.8 3.127

3 Test 1 3 13.25 2.584

4 Test 2 4 14.55 2.678

5 Test 1 3 13.7 2.617

6 Test 2 4 13.9 2.632

7 Test 2 4 13.75 2.621

8 Test 2 4 13.25 2.584

9 Test 1 3 13.95 2.635

10 Test 2 4 15.15 2.718

11 Test 1 3 13.15 2.576

12 Test 2 4 21 3.045

13 Test 1 3 8.75 2.169

14 Test 2 4 17.35 2.854

15 Test 2 4 18.25 2.904

16 Test 1 3 19.05 2.947

17 Test 2 4 15.1 2.715

1 Reference 1 2 13.5 2.603

2 Reference 1 2 15.45 2.738

3 Reference 1 2 11.85 2.472

4 Reference 2 1 13.3 2.588

5 Reference 1 2 13.55 2.606

6 Reference 2 1 14.15 2.650

7 Reference 2 1 10.45 2.347

8 Reference 2 1 11.5 2.442

9 Reference 1 2 13.5 2.603

10 Reference 2 1 15.25 2.725

(Continued)
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Table 11.15 Results of a Four-Period, Two-Sequence, Two-Treatment, Replicate Design (Cmax) Continued

11 Reference 1 2 11.75 2.464

12 Reference 2 1 23.2 3.144

13 Reference 1 2 7.95 2.073

14 Reference 2 1 17.45 2.859

15 Reference 2 1 15.5 2.741

16 Reference 1 2 20.2 3.006

17 Reference 2 1 12.95 2.561

1 Reference 1 4 13.5 2.603

2 Reference 1 4 15.45 2.738

3 Reference 1 4 11.85 2.472

4 Reference 2 3 13.3 2.588

5 Reference 1 4 13.55 2.606

6 Reference 2 3 14.15 2.650

7 Reference 2 3 10.45 2.347

8 Reference 2 3 11.5 2.442

9 Reference 1 4 13.5 2.603

10 Reference 2 3 15.25 2.725

11 Reference 1 4 11.75 2.464

12 Reference 2 3 23.2 3.144

13 Reference 1 4 7.95 2.073

14 Reference 2 3 17.45 2.859

15 Reference 2 3 15.5 2.741

16 Reference 1 4 20.2 3.006

17 Reference 2 3 12.95 2.561

balanced in two sequences, ABAB and BABA, over four periods. Table 11.15 shows the results
for Cmax for a replicate study. Eighteen subjects were recruited for the study and 17 completed
the study. An analysis using the usual approach for the tttp design, as discussed above, is not
recommended. The FDA [10] recommends use of a mixed model approach as in SAS PROC
MIXED [13]. The recommended code is

PROC MIXED;
CLASSES SEQ SUBJ PER TRT;
MODEL LNCMAX = SEQ PER TRT/DDFM = SATTERTH;
RANDOM TRT/TYPE = FAO (2) SUB = SUBj G;
REPEATED/GRP = TRT SUB = SUBJ;
LSMEANS TRT;
ESTIMATE “T VS. R” TRT 1 − 1/CL ALPHA = 0.1;
RUN;

The abbreviated output is shown in Tables 11.16 and 11.17. Table 11.16 shows an analysis
of the first two periods for ln (Cmax) and untransformed Cmax. Table 11.17 shows the output
for the analysis of average BE using all four periods. Note that the confidence interval using
the complete design (0.0592–0.1360) is not much different from that observed from the analysis
of the first two periods (see Exercise at the end of the chapter), 0.0438, 0.1564. This should be
expected because of the small variability exhibited by this product.

11.4.6.1 Individual Bioequivalence††
Another issue that has been introduced as a relevant measure of equivalence is “individual”
bioequivalence (IB). This is in contrast to the present measure of “average” BE. Note that

†† FDA has never accepted, nor currently endorses, this method, despite its having devoted resources to its
development over a period >5 years. It is presented here due to its elegant statistical derivation from basic
principles of drug interchangeability and its place in the history of bioequivalence testing in the U.S.
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the evaluation of data from the tttp design results in a measure of average BE. Average BE
addresses the comparison of average results derived from the tttp BE study, and does not
consider differences of within-subject variance and interactions in the evaluation.

The IB approach is an attempt to evaluate the effect of changing products (brand to generic,
for example) for an individual patient, considering the potential for a change of therapeutic effect

Table 11.16 ANOVA for Data from First Two Periods of Table 11.15

(A) LN TRANSFORMATION
Dependent variable: LNCMAX

Pr F valueMean squareSum of squaresd.f.Source F

0.000110.340.092106131.6579104018Model

0.008906210.1335931215Error

1.7915035233Corrected Total
LNCMAX meanRoot MSECVR square

2.674836980.094372713.5281670.925430

Pr F valueMean squareType I SSd.f.Source F

0.006110.150.090424110.090424111SEQ
0.00011.090.098813471.4822020315SUBJ(SEQ)

0.83590.040.000395710.000395711PER
0.00759.530.084888550.084888551TRT

Least squares means

LNCMAXTRT
LSMEAN

2.62174427Reference
2.72185203Test

T for HO: Std error ofPr |T|
ParameterEstimateParameter Estimate0

0.032425720.00753.090.10010777T VS.R

(B) Dependent variable: CMAX
Pr F valueMean squareSum of squaresd.fSource F

0.00019.0721.18131269381.2636284718Model

2.3344247735.0163715315Error

416.2800000033Corrected total
CMAX meanRoot MSECVR square
14.900000001.5278824510.254240.915883

F valueMean squareType | SSd.f.Source Pr F

0.01297.9718.5940451418.594045141SEQ
0.00019.8923.08139699346.2209548615SUBJ(SEQ)
0.74930.110.247352940.247352941PER
0.01886.9416.2012755316.201275531TRT

Least squares means

CMAXTRT
LSMEAN

14.1649306Reference
15.5479167Test

Dependent variable: CMAX

T for HO: Std Error ofPr |T|
ParameterEstimateParameter Estimate0

0.524968390.01882.631.38298611T VS. R
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Table 11.17 Analysis of Data from Table 11.15 for Average Bioequivalence

ANALYSIS FOR LN-TRANSFORMED CMAX
The MIXED procedure
Class level information
Concentrations valuesClass
2 1 2SEQ
17 1 2 3 4 5 6 7 8 9 10 11 12 13SUBJ
14 15 16 17
4 1 2 3 4PER
2 12TRT

Covariance parameter estimates (REML)
EstimateGroupSubjectCov Parm

0.20078553SUBJFA(1,1)
0.22257742SUBJFA(2,1)

SUBJFA(2,2) 0.00000000
0.00702204TRT 1SUBJDIAG
0.00982420TRT 2SUBJDIAG

Tests of Fixed Effects
Pr Type III FDDFNDFSource F
0.32941.0213.91SEQ
0.82770.3048.23PER
0.000118.1251.11TRT

ESTIMATE statement results
Parameter T VS. R
Alpha td.f.Std errorEstimate0.1 Pr |t|

0.00014.2651.10.022917890.09755781

0.1360Upper0.0592Lower
Least squares means

t Pr d.f.Std ErrorLSMEANTRTEffect |t|
0.000153.37150.050862002.714659721TRT
0.000146.1615.30.056694162.617101912TRT

or increased toxicity when switching products [38]. This is a very difficult subject from both a
conceptual and statistical point of view. Statistical methods and meaningful differences must
be established to show differences in variability between products before this criterion can be
implemented. Whether or not a practical approach can be developed, and whether or not such
approaches will have meaning in the context of BE remains to be seen. Some of the statisti-
calproblems to be contemplated when implementing this concept include recommendations of
specific replicated crossover designs to measure both within- and between-variance components
as well as subject × product interactions, and definitions of limits that have clinical meaning.
The issue is related to variability. Assuming that the average bioavailability is the same for both
products as measured in a typical BE study, the question of IB appears to be an evaluation of
formulation differences. Since the therapeutic agents are the same in the products to be com-
pared, it is formulation differences that could result in excessive variability or differences in
bioavailability that are under scrutiny. Some of the dilemmas are related to the inherent biologic
variability of a drug substance. If a drug is very variable, we would expect large variability in
studies of interchangeability of products. In particular, taking the same product on multiple
occasions would show a lack of “reproducibility.” The question that needs to be addressed is
whether the new (generic) product would cause efficacy failure or toxicity when exchanged with
the reference or brand product due to excessive variability. The onus is on the generic product.
Product failure could be due to a change in the rate and extent of drug absorption as well as
an increase in inter- and intrapatient variability. The FDA has spent some energy in addressing
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the problem of how to define and evaluate any changes incurred by the generic product. This
is a difficult problem, not only in identifying the parameters to measure the variability, but also
to define the degree of variability that would be considered excessive. For example, drugs that
are very variable may be allowed more leniency in the criteria for “interchangeability” than less
variable, narrow-therapeutic-range drugs.

The FDA has proposed an expression to define IB

 = [�2 + �2
1 + (�2

T − �2
R)]

�2
R

(11.4)

where � is the difference between means of test and reference, �2
1 the subject × treatment

interaction variance, �2
T the within-subject test variance, and �2

R the within-subject reference
variance.

Equation 11.4 makes sense in that the comparison between test and reference products
is scaled by the within-reference variance, thereby not penalizing very variable drug products
when testing for BE. In addition, the expression contains a term for testing the mean difference,
the interaction, and the difference between the within-subject variances. If the test product has
a smaller within-subject variance than the reference, this favors the test product.

Before IB was to be considered a requirement from a regulatory point of view, data were
accumulated from replicate crossover studies (three or more periods) to compile a database to
assess the magnitude and kinds of intrasubject and formulation × subject variability that exist
in various drug and product classes. The design and submission of such studies were more or
less voluntary, and were analyzed for average BE. However, this gave the regulatory agency the
opportunity to evaluate the data according to IB, and to evaluate the need for this new kind of
criterion for equivalence. At the time of this writing, the FDA has rejected further development
of this approach. The details of the design and analysis of these studies are presented below.

In summary, IB is an assessment that accounts for product differences in the variability of
the PK parameters, as well as differences in their averages. IB evaluation is based on the statistical
evaluation of the metric [Eq. (11.4)], which represents a “distance” between the products. In
average BE, this distance can be considered the square of the difference in average results. In IB,
in addition to the difference in averages, the difference between the within-subject variances for
the two products, and the formulation × subject interaction (FS) are evaluated. In this section,
we will not discuss the evaluation of population BE. The interested reader may refer to the FDA
guidance [10].

The evaluation of IB is based on a 95% upper confidence limit on the metric, where the
upper limit for approval, theta (  ), is defined as 2.4948. Note that we only look at the upper limit
because the test is one-sided; that is, we are only interested in evaluating the upper value of the
confidence limit, upon which a decision of passing or failing depends. A large value of the metric
results in a decision of inequivalence. Referring to Eq. (11.4), a decision of inequivalence results
when the numerator is large and the denominator is small in value. Large differences in the
average results, combined with a large subject × formulation interaction, a large within-subject
variance for the test product and a small within-subject variance for the reference product, will
increase the value of theta (and vice versa).

Using the within-subject variance of the reference product in the denominator as a scaling
device allows for a less stringent decision for BE in cases of large reference variances. That is,
if the reference and test products appear to be very different based on average results, they
still may be deemed equivalent if the reference within-subject variance is large. This can be a
problem in interpretation of BE, because if the within-subject variance of the test product is
sufficiently smaller than the reference, an unreasonably large difference between their averages
could still result in BE [see Eq. (11.4)]. This could be described as a compensation feature or
trade-off; that is, a small within-subject variance for the test product can compensate for a large
difference in averages. To ensure that such apparently unreasonable conclusions will not be
decisive, the FDA guidance has a proviso that the observed T/R ratio must be not more than
1.25 or less than 0.8.
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11.4.6.2 Constant Scaling
The FDA guidance [10] also allows for a constant scaling factor in the denominator of Eq. (11.4).
If the variance of the reference is very small, the IB metric may appear very large, even though
the products are reasonably close. If the within-subject variance for the reference product is less
than 0.04, a value of 0.04 may be used in the denominator, rather than the observed variance.
This prevents an artificial inflation of the metric for cases of a small within-subject reference
variance. This case will not be discussed further, but is a simple extension of the following
discussion. The reader may refer to the FDA guidance for further discussion of this topic [10].

11.4.6.3 Statistical Analysis for IB
For average BE, the distribution of the difference in average results (log transformed) is known
based on the assumption of a log-normal distribution of the parameters. One of the problems
with the definition of BE based on the metric, Eq. (11.4), is that the distribution of the metric is
complex, and cannot be easily evaluated. At an earlier evolution in the analysis of the metric, a
bootstrap technique, a kind of simulation, was applied to the data to estimate its distribution.
The nature of the distribution is needed to construct a confidence interval so that a decision rule
of acceptance or rejection can be determined. This bootstrap approach was time consuming,
and not exactly reproducible. An approximate “parametric” approach was recommended [26],
which results in a hypothesis test that determines the acceptance rule. We refer to this approach
as the ‘‘Hyslop” evaluation. This will be presented in more detail below.

To illustrate the use of the Hyslop approach, the data of Table 11.18 will be used. This data
set has been studied by several authors during the development of methods to evaluate IB [27].

The details of the derivation and assumptions can be found in the FDA guidance [28] and
the paper by Hyslop et al. [26].

The following describes the calculations involved and the definitions of some terms that
are used in the calculations. The various estimates are obtained from the data of Table 11.18,
using SAS [13], with the following code:

proc mixed data = Drug;

class seq subj per trt;

model ln Cmax = seq per trt;

random int subject/subject = trt;

repeated/grp = trt sub = subj;

estimate “t vs.r” trt 1 − 1/cl alpha = 0.1;

run;

Table 11.19 shows the estimates of the variance components and average results for each
product from the data of Table 11.18.

Basically, the Hyslop procedure obtains an approximate upper confidence interval on
the sum of independent terms (variables) in the IB metric equation [Eq. (11.4)]. However, the
statistical approach is expressed as a test of a hypothesis. If the upper limit of the CI is less than
0, the products are deemed equivalent, and vice versa. The following discussion relates to the
scaled metric, where the observed reference within-subject variance is used in the denominator.
An analogous approach is used for the case where the reference variance is small and the
denominator is fixed at 0.04 (see Ref. [28]).

The IB criterion is expressed as

 = [�2 + �2
d + (�2

T − �2
R)]

�2
R

. (11.5)
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Table 11.18 Data from a Two-Treatment, Two-Sequence,

Four-Period Replicated Design [20]

Subject Sequence Period Product Ln Cmax

1 1 1 1 5.105339

1 1 3 1 5.090062

2 1 1 1 5.594340

2 1 3 1 5.459160

3 2 2 1 4.991792

3 2 4 1 4.693181

4 1 1 1 4.553877

4 1 3 1 4.682131

5 2 2 1 5.168778

5 2 4 1 5.213304

6 2 2 1 5.081404

6 2 4 1 5.333202

7 2 2 1 5.128715

7 2 4 1 5.488524

8 1 1 1 4.131961

8 1 3 1 4.849684

1 1 2 2 4.922168

1 1 4 2 4.708629

2 1 2 2 5.116196

2 1 4 2 5.344246

3 2 1 2 5.216565

3 2 3 2 4.513055

4 1 2 2 4.680278

4 1 4 2 5.155601

5 2 1 2 5.156178

5 2 3 2 4.987025

6 2 1 2 5.271460

6 2 3 2 5.035003

7 2 1 2 5.019265

7 2 3 2 5.246498

8 1 2 2 5.249127

8 1 4 2 5.245971

It can be shown that

�2
1 = �2

d + 0.5(�2
T + �2

R), (11.6)

where �2
d is the pure estimate of the subject × formulation interaction component. We can

express this in the form of hypothesis test, where the IB metric is linearized as follows:
Substituting Eq. (11.6) into Eq. (11.5), and linearizing

Let � = (�)2 + �2
1 + 0.5 �2

T − �2
R(−1.5 − ). (11.7)

Table 11.19 Parameter Estimates from Analysis of Data of Table 4 with Some

Definitions

�′
T = mean of test; estimate = 5.0353

�′
R = mean of reference; estimate = 5.0542

� = difference between observed mean of test and reference = −0.0189

�′
t
2 = interaction variance; estimate = MI = 0.1325

�′
T

2 = within-subject variance for the test product; estimate = MT = 0.0568

�′
R

2 = within-subject variance for the reference product; estimate = MR = 0.0584

n = degrees of freedom

s = number of sequences
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Table 11.20 Computations for Evaluation of Individual Bioequivalence

Hq = (1 − alpha) level upper
Confidence limit Eq = point estimate Uq = (Hq − Eq)2

HD =
[
|�| + t(1 − �, n − s)(1/s2

∑
n−1

i MI)
1/2
]2

ED = �2 UD

HI = [(n − s) · MI]/� 2(�, n − s) EI = MI UI
HT = [0.5 · (n − s) · MT]/� 2(�, n − s) ET = 0.5·MT UT
HR = [−(1.5 + 1) · (n − s) · MR]/� 2(1 − �, n − s) a ER = −(1.5 + 1)·MR UR

aNote that we use the 1 − � percentile here because of the negative nature of this expression. n =∑
nj ; s = number of sequences; ni = the number of subjects in sequence i .

We then form a hypothesis test with the hypotheses

H0: � > 0 Ha: � > 0.

Howe’s Method (Hyslop) effectively forms a CI for � by first finding an upper or lower
limit for each component in �. Then, a simple computation allows us to accept or reject the null
hypothesis at the 5% level (one-sided test). This is equivalent to seeing if an upper CI is less
than the FDA-specified criterion, . Using Hyslop’s Method, if the upper confidence limit is less
than , the test will show a value less than 0, and the products are considered to be equivalent.

The computation for the method is detailed below.
We substitute the observed values for the theoretical values in Eq. (11.7). The observed

values are shown in Table 11.19.
The next step is to compute the upper 95% confidence limits for the components in Eq.

(11.7). Note that � is normal with mean, true delta, and variance 2�2
d/N. The variances are

distributed as (�2) · � 2
(n)/n (where n = d.f.). For example, MT ∼ �T(n)2 � 2

(n)/n .
The equations for calculations are given in Table 11.20 [26].

H =
∑

(Ei) +
∑

(Ui)
0.5 = −0.0720 + 0.3885 = 0.3165.

Table 11.21 shows the results of these calculations.
Examples of calculations

HD = [|−0.0189| + 1.94 · ((1/4) · 0.1325/2)1/2]2 = 0.07213

HI = ((6) · 0.1325)/1.635 = 0.4862

HT = (0.5 · (6) · 0.0568)/1.635 = 0.1042

HR = (−(1.5 + 2.4948) · (6) · 0.0584)/12.59 = −0.1112

Table 11.21 Results of Calculations for Data of Table 11.20

Hi = confidence limit Ei = point estimate Ui = (H − E)2

Hd = 0.07213 Ed = 0.00357 0.0052

Hi = 0.4862 Ei = 0.1325 0.1251

Ht = 0.1042 Et = 0.0284 0.0057

Hr = −0.1112 Er = −0.2333 0.0149

SUM −0.0720 0.1509
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If the upper CI exceeds zero, the hypothesis is rejected, and the products are bioinequiv-
alent. This takes the form of a one-sided test of hypothesis at the 5% level.

Since this value (0.3165) exceeds 0, the products are considered to be inequivalent.
An alternative method to construct a decision criterion for IB based on the metric is given

in Appendix IX.

11.4.6.4 The Future
At the present time, the design and analysis of BE studies use tttp designs with a log trans-
formation of the estimated parameters. The 90% CI of the back-transformed difference of the
average results for the comparative products must lie between 0.8 and 1.25 for the products to
be deemed equivalent. Four-period replicate designs have been recommended on occasion for
controlled-release products and, in some cases, very variable products. However, FDA recom-
mends that these designs be analyzed for average BE. The results of these studies were analyzed
for IB by the FDA to assess the need for IB; that is, is there a problem with formulation × subject
interactions and differences between within-subject variance for the two products? The result
of this venture showed that replicate designs were not needed, that is, the data does not show
significant interaction or within-subject variance differences. IB may be reserved for occasions
where these designs will be advantageous in terms of cost and time. In fact, recent communica-
tion with FDA suggests that IB requirements are not likely to continue in the present form. Some
form of IB analysis may be optimal for very variable drugs, requiring less subjects than would be
required using a tttp design for average BE. On the other hand, in the future if IB analysis shows
the existence of problems with interaction and within-subject variances, it is possible that the
four-period replicate design and IB analysis will be considered for at least some subset of drugs
or drug products that exhibit problems. For very variable drug products, a scaled analysis has
been proposed that would reduce the sample size relative to the usual crossover analysis (see
below, sect. 11.4.9). Also, FDA is investigating the use of sequential designs, or add-on designs
in the implementation of BE studies.

See Appendix X for a discussion of designs used in BE studies.

11.4.7 Sample Size for Test for Equivalence for a Dichotomous (Pass–Fail) Outcome
Tests for BE are usually based on an analysis of drug in body fluids (e.g., plasma). However, for
drugs that are not absorbed, such as topicals and certain local acting gastrointestinal products
(e.g., sucralfate), a clinical study is necessary. Often the outcome is based on a binomial outcome
such as cured/not cured. See section 5.2.6 for confidence intervals for a proportion. A continuity
correction is recommended. Makuch and Simon [29] have published a method for determining
sample size for these studies, as well as other kinds of clinical studies where the objective is to
determine equivalence. This reference is concerned particularly with cancer treatments where
a less intensive treatment is considered to replace a more toxic treatment if the two treatments
can be shown to be therapeutically equivalent. As for the case of BE studies with a continuous
outcome, one needs to specify both alpha and beta errors in addition to a difference between
the treatments that is considered important to estimate the required sample size.

In this approach, we assume a parallel-groups design (two independent groups), typical
of these studies. To estimate the number of subjects required in the two groups, we will assume
an equal number to be assigned to each group. An estimate of (1) the value of the proportion of
subjects who will be “cured” or have a positive outcome for each treatment (P1 and P2), and (2)
the difference between the treatments that are not clinically meaningful is needed. Makuch and
Simon have shown that the number of subjects per group can be calculated from Eq. (11.4):

N = [P1(1 − P1) + P2(1 − P2)] ×
{

[Z� + Z	]
[� − [P1 − P2]

}2

, (11.8)

where delta (�) is the maximum difference between treatments considered to be of no clinical
significance.
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If we assume that the products are not different a priori, P1 = P2 = P, Eq. (11.4) reduces to

N = 2P(1 − P)

{[
Z� + Z	

]
�

}2

. (11.9)

In a practical example, a clinical study is designed to compare the efficacy of a generic
sucralfate to the brand product. The outcome is the healing of gastrointestinal ulcers. How
many subjects should be entered in a parallel study with a dichotomous endpoint (healed/ not
healed) if the expected proportion healed is 0.80 and the CI of the difference of the proportions
should not exceed ±0.2? We wish to construct a two-sided 90% CI with a beta of 0.2 (power =
0.8). This means that with the required number of patients, we will be able to determine, with
90% confidence, if the healing rates of the products are within ±0.2. If indeed the products are
equivalent, with a beta of 0.2, there is 80% probability that the CI for the difference between the
products will fall within ±20%.

The values of Z for beta can be obtained from Table 6.2.
Note that if the products are not considered to be different with regard to proportion or

probability of success, the values for beta will be based on a two-sided criterion. For example,
for 80% power, use 1.28 (not 0.84). From Eq. (11.5),

N = 2(0.8)(1 − 0.8)
{

[1.65 + 1.28]
0.2

}2

= 69.

Sixty-nine subjects per group are required to satisfy the statistical requirements for the
study.

If the criterion is made more similar to the typical BE criterion, we might consider the
difference (delta) to be 20% of 0.8 or 16%, rather than the absolute 20%. If delta is 16%, the
number of subjects per group will be approximately 108. (See Exercise Problem 12 at the end
of this chapter.) The BE subject number calculator on the CD included with this book provides
for the calculation of these subject numbers with the inclusion of a continuity correction often
requested by FDA.

11.4.8 SCALED CRITERION FOR BE
The scaled criterion is currently endorsed by FDA for highly variable drug products [30]. A
within-subject CV of 30% or greater is considered “highly variable.” The recommended design
is a three-period crossover with three sequences, TRR, RTR and RRT, where R is the reference and
T is the test product. Thus, only the reference is replicated, and the within-subject variance can be
estimated for the reference product. Although a minimum sample size of 24 is recommended,
the appropriate sample size is determined by the sponsor. After a log transformation, the
parameters (AUC and Cmax) are calculated in addition to the within-subject variance of the
reference product.

The statistical null hypothesis is

Ho : (XT − XR)2/S2
R > 

The alternative hypothesis is

H1 : (XT − XR)2/S2
R ≤ ,

where  is the scaled average BE limit, XT − XR is the difference between the average parameter
(AUC or Cmax) after a log transformation, and SR

2 is the calculated within-subject variance for
the reference product.

 is defined as (ln �)2/�2
wo, where � = 1.25 and �wo = 0.25.

Therefore,  = 0.7967.
BE is accepted if the null hypothesis is rejected and the ratio of test to reference is between 0.8

and 1.25. Both criteria must be satisfied to declare BE.



EXPERIMENTAL DESIGN IN CLINICAL TRIALS 301

A 95% upper bound for (XT − XR)2/SR
2 from the BE study must be ≤  in addition to

the restriction of the ratio of test to reference parameters (0.8–1.25). As of this writing, a method
for computing the upper bound is not forthcoming. Use of the “Hyslop” Method for individual
BE, previously discussed and modified for this application, has been proposed.

11.4.9 NONINFERIORITY TRIALS
Noninferiority trials are related to BE studies in that in both cases we are not testing for
differences. For noninferiority trials, we are testing that a test product is not worse than a
reference product based on results of a clinical study. Again, we must define a value such that
if the lower confidence bound (usually 95%) of the test treatment compared to the reference
exceeds that value, the test treatment will be considered noninferior. This value should be
defined in the protocol prior to seeing the study results, and is a value such that any value lower
than the specified value would result in a conclusion of inferiority.

For example, comparing Test Drug X to Reference Drug Y, it was determined that a
difference in average response of 2 units would be acceptable for purposes of noninferiority.
That is, if study results showed that Drug X was no more than 2 units less than Drug Y, Drug
X would be considered to be noninferior to Drug Y. The study showed that Drug X was 1 unit
less than Drug Y. The 95% lower bound of this difference was 2.1, that is, based on the lower
bound, Drug X, could be as much as 2.1 units less than Drug Y. Therefore, Drug X failed the
noninferiority test. The lower confidence bound showed more than a 2 unit difference, and we
can not conclude that Drug X is noninferior to Drug Y.

11.5 REPEATED MEASURES (SPLIT-PLOT) DESIGNS
Many clinical studies take the form of a baseline measurement followed by observations at
more than one point in time. For example, a new antihypertensive drug is to be compared to a
standard, marketed drug with respect to diastolic blood pressure reduction. In this case, after
a baseline blood pressure is established, the patients are examined every other week for eight
weeks, a total of four observations (visits) after treatment is initiated.

11.5.1 Experimental Design
Although this antihypertensive drug study was designed as a multiclinic study, the data pre-
sented here represent a single clinic. Twenty patients were randomly assigned to the two
treatment groups, 10 to each group (see sect. 11.2.6 for the randomization procedure). Prior to
drug treatment, each patient was treated with placebo, and blood pressure determined on three
occasions. The average of these three measurements was the baseline reading.

The baseline data were examined to ensure that the three baseline readings did not show a
time trend. For example, a placebo effect could have resulted in decreased blood pressure with
time during this preliminary phase.

Treatment was initiated after the baseline blood pressure was established. Diastolic blood
pressure was measured every two weeks for eight weeks following initiation of treatment. (The
dose was one tablet each day for the standard and new drug.) Two patients dropped out in the
“standard drug” group, and one patient was lost to the “new drug” group, resulting in eight
and nine patients in each treatment group. The results of the study are shown in Table 11.22 and
Figure 11.4.

The design described above is commonly known in the pharmaceutical industry as a
repeated measures or split-plot design. (This design is also denoted as an incomplete three-way or
a partially hierarchical design.) This design is common in clinical or preclinical studies, where
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Figure 11.4 Plot of mean results from antihypertensive drug study. •—standard drug; O—new drug.

two or more products are to be compared with multiple observations over time. The design can
be considered as an extension of the one-way or parallel-groups design. In the present design
(repeated measures), data are obtained at more than one time point. The result is two or more
two-way designs, as can be seen in Table 11.22, where we have two two-way designs. The
two-way designs are related in that observations are made at the same time periods. The chief
features of the repeated measures design as presented here are as follows:

1. Different patients are randomly assigned to the different treatment groups, that is, a patient
is assigned to only one treatment group.

2. The number of patients in each group need not be equal. Equal numbers of patients per
group, however, result in optimum precision when comparing treatment means. Usually,
these studies are designed to have the same number of patients in each group, but dropouts
usually occur during the course of the study.

3. Two or more treatment groups may be included in the study.
4. Each patient provides more than one measurement over time.
5. The observation times (visits) are the same for all patients.
6. Baseline measurements are usually available.
7. The usual precautions regarding blinding and randomization are followed.

Although the analysis tolerates lack of symmetry with regard to the number of patients
per group (see feature 2), the statistical analysis can be difficult if patients included in the study

Table 11.22 Results of a Comparison of Two Antihypertensive Drugs

Standard drug New drug

Week Week

Patient Baseline 2 4 6 8 Patient Baseline 2 4 6 8

1 102 106 97 86 93 3 98 96 97 82 91

2 105 103 102 99 101 4 106 100 98 96 93

5 99 95 96 88 88 6 102 99 95 93 93

9 105 102 102 98 98 8 102 94 97 98 85

13 108 108 101 91 102 10 98 93 84 87 83

15 104 101 97 99 97 11 108 110 95 92 88

17 106 103 100 97 101 12 103 96 99 88 86

18 100 97 96 99 93 14 101 96 96 93 89

16 107 107 96 93 97

Mean 103.6 101.9 98.9 94.6 96.6 Mean 102.8 99.0 95.2 91.3 89.4
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have missing data for one or more visits. In these cases, a statistician should be consulted
regarding data analysis [31].

The usual assumptions of normality, independence, and homogeneity of variance for each
observation hold for the split-plot analysis. In addition, there is another important assumption
with regard to the analysis and interpretation of the data in these designs. The assumption is
that the data at the various time periods (visits) are not correlated, or that the correlation is of a
special form [32]. Although this is an important assumption, often ignored in practice, moderate
departures from the assumption can be tolerated. Correlation of data during successive time
periods often occurs such that data from periods close together are highly correlated compared
to the correlation of data far apart in time. For example, if a person has a high blood pressure
reading at the first visit of a clinical study, we might expect a similar reading at the subsequent
visit if the visits are close in time. The reading at the end of the study is apt to be less related
to the initial reading. The present analysis assumes that the correlation of the data is the same
for all pairs of time periods, and that the pattern of the correlation is the same in the different
groups (e.g., drug groups) [32]. If these assumptions are substantially violated, the conclusions
based on the usual statistical analysis will not be valid. The following discussion assumes that
this problem has been considered and is negligible [31].

11.5.2 ANOVA
The data of Table 11.22 will be subjected to the typical repeated measures (split-plot) ANOVA.
As in the previous examples in this chapter, the data will be analyzed, corrected for baseline,
by subtracting the baseline measurement from each observation. The measurements will then
represent changes from baseline. The more complicated analysis of covariance is an alternative
method of treating such data [31, 32]. More expert statistical help will usually be needed when
applying this technique, and the use of a computer is almost mandatory. Subtracting out the
baseline reading is easy to interpret and, generally, results in conclusions very similar to that
obtained by covariance analysis. Table 11.23 shows the “changes from baseline” data derived
from Table 11.22. For example, the first entry in this table, two weeks for the standard drug, is
106 − 102 = 4.

When computing the ANOVA by hand (use a calculator), the simplest approach is to first
compute the two-way ANOVA for each treatment group, “standard drug” and “new drug.”
The calculations are described in section 8.4. The results of the ANOVA are shown in Table
11.24. Only the sums of squares need to be calculated for this preliminary computation.

The final analysis combines the separate two-way ANOVAs and has two new terms,
“weeks × drugs” interaction and “drugs,” the variance represented by the difference between
the drugs. The calculations are described below, and the final ANOVA table is shown in Table
11.25.

Table 11.23 Changes from Baseline of Diastolic Pressure for the Comparison of Two Antihypertensive Drugs

Standard drug New drug

Week Week

Patient 2 4 6 8 Patient 2 4 6 8

1 4 −5 −16 −9 3 −2 −1 −16 −7

2 −2 −3 −6 −4 4 −6 −8 −10 −13

5 −4 −3 −11 −11 6 −3 −7 −9 −9

9 −3 −3 −7 −7 8 −8 −5 −4 −17

13 0 −7 −17 −6 10 −5 −14 −11 −15

15 −3 −7 −5 −7 11 2 −13 −16 −20

17 −3 −6 −9 −5 12 −7 −4 −15 −17

18 −3 −4 −1 −7 14 −5 −5 −8 −12

16 0 −11 −14 −10

Mean −1.75 −4.75 −9 −7 Mean −3.8 −7.6 −11.4 −13.3

Sum −14 −38 −72 −56 Sum −34 −68 −103 −120
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Table 11.24 ANOVA for Changes from Baseline for Standard

Drug and New Drug

Standard drug New drug

Source d.f. Sum of squares d.f. Sum of squares

Patients 7 57.5 8 114.22

Weeks 3 232.5 3 486.97

Error 21 255.5 24 407.78

Total 31 545.5 35 1008.97

Patients’ SS: Pool the SS from the separate ANOVAs (57.5 + 114.22 = 171.72 with 7 + 8 =
15 d.f.).

Weeks’ SS: This term is calculated by combining all the data, resulting in four columns
(weeks), with 17 observations per column, 8 from the standard drug and 9 from the new drug.
The calculation is

∑
C2

R1 + R2
− CT,

where C is the column sums of combined data and R1 + R2 is the sum of the number of rows,

= (−48)2 + (−106)2 + (−175)2 + (−176)2

17
− (−505)2

68

= 4420.1 − 3750.4 = 669.7.

Drug SS:

Drug SS = (CTSP) + (CTNP) − (CTT),
where CTsp is the correction term for the standard drug, CTNP the correction term for the new
product, and CTT the correction term for the combined data.

Drug SS = (−180)2

32
+ (−325)2

36
− (−505)2

68

= 196.2.

Table 11.25 Repeated Measures (Split-Plot) ANOVA for the Antihypertensive

Drug Study

Source d.f.a SS MS

Patients 15 171.7 11.45

Weeks 3 669.7 223.23

Drugs 1 196.2 196.2 F1,15 = 196.2

11.45
= 17.1∗

Weeks × drugs 3 49.8 16.6

Error (within treatments) 45 663.3 14.74 F1,15 = 16.6

14.74
= 1.1

67 1750.6

aDegrees of freedom for “patients” and “error” are the d.f. pooled from the two-way ANOVAs.

For “weeks” and “drugs,” the d.f. are (weeks − 1) and (drugs − 1), respectively. For “weeks ×
drugs,” d.f. are (weeks − 1) × (drugs − 1).
∗p < 0.01.
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Figure 11.5 Plot from the data of Table 11.23 showing lack of significant interaction of weeks and drugs in

experiment comparing standard and new antihypertensive drugs. •—standard drug; o—new drug.

Weeks × drugs SS: This interaction term (see below for interpretation) is calculated as the
pooled SS from the “week” terms in the separate two-way ANOVAs above, minus the week
term for the final combined analysis, 669.7.

Weeks × drug SS = 232.5 + 486.97 − 669.7 = 49.8.

Error SS: The error SS is the pooled error from the two-way ANOVAs, 255.5 + 407.8 =
663.3.

11.5.2.1 Interpretation and Discussion
The terms of most interest are the “drugs” and “weeks × drugs” components of the ANOVA.
“Drugs” measures the difference between the overall averages of the two treatment groups.
The average reduction of blood pressure was (180/32) = 5.625 mm Hg for standard drug,
and (325/36) = 9.027 mm Hg for the new drug. The F test for “drug” differences is (drug
MS)/(patients MS) equal to 17.1 (1 and 15 d.f.; see Table 11.25). This difference is highly signifi-
cant (p < 0.01). The significant result indicates that on the average, the new drug is superior to
the standard drug with regard to lowering diastolic blood pressure.

The significant difference between the standard and new drugs is particularly meaningful
if the difference is constant over time. Otherwise, the difference is more difficult to interpret.
“Weeks × drugs” is a measure of interaction (see also chap. 9). This test compares the parallelism
of the two “change from baseline” curves as shown in Figure 11.5. The F test for “weeks × drugs”
uses a different error term than the test for “drugs.” The F test with 3 and 45 d.f. is 16.6/14.74
= 1.1, as shown in Table 11.25. This nonsignificant result suggests that the pattern of response
is not very different for the two drugs. A reasonable conclusion based on this analysis is that
the new drug is effective (superior to the standard drug), and that its advantage beyond the
standard drug is approximately maintained during the course of the experiment.

A significant nonparallelism of the two “curves” in Figure 11.5 would be evidence for a
“weeks × drugs” interaction. For example, if the new drug showed a lower change in blood
pressure than the standard drug at two weeks, and a higher change in blood pressure at eight
weeks (the curves cross one another), interaction of weeks and drugs would more likely be
significant. Interaction, in this example, would suggest that drug differences are dependent on
the time of observation.

If interaction is present or the assumptions underlying the analysis are violated (partic-
ularly concerning the form of the covariance matrix) [31], a follow-up or an alternative is to
perform p one-way ANOVAs at each of the p points in time. In the previous example, analyses



306 CHAPTER 11

Clinical site

R
es

po
ns

e

1 2 3 1 2 3

Drug II

Drug II

Drug I

(A) (B)

Drug I

Figure 11.6 Two kinds of interaction: (A) one drug always better than another, but the difference changes for

different clinical sites; (B) one drug better than another at sites 1 and 2 and worse at site 3.

would be performed at each of the four post-treatment weeks. A conclusion is then made on
the results of these individual analyses (see Exercise Problem 8).

11.6 MULTICLINIC STUDIES
Most clinical studies carried out during late phase 2 or phase 3 periods of drug testing involve
multiclinic studies. In these investigations, a common protocol is implemented at more than
one study site. This procedure, recommended by the FDA, serves several purposes. It may not
be possible to recruit sufficient patients in a study carried out by a single investigator. Thus
multiclinic studies are used to “beef up” the sample size. Another very important consideration
is that multiclinic studies, if performed at various geographic locations with patients represent-
ing a wide variety of attributes, such as age, race, socioeconomic status, and so on, yield data
that can be considered representative under a wide variety of conditions. Multiclinic studies,
in this way, guard against the possibility of a result peculiar to a particular single clinical site.
For example, a study carried out at a single Veterans’ Administration hospital would probably
involve older males of a particular economic class. Also, a single investigator may implement
the study in a unique way that may not be typical, and the results would be peculiar to his or her
methods. Thus, if a drug is tested at many locations and the results show a similar measure of
efficacy at all locations, one has some assurance of the general applicability of the drug therapy.
In general, one should attempt to have more or less equal numbers of patients at each site, and
to avoid having too few patients at sites.

However, there are instances where a drug has been found to be efficacious in the hands of
some investigators and not for others. When this occurs, the drug effect is in some doubt unless
one can discover the cause of such results. This problem is statistically apparent in the form
of a treatment × site interaction. The comparative treatments (drug and placebo, for example)
are not differentiated equally at different sites. A treatment × site interaction may be consid-
ered very serious when one treatment is favored at some clinical sites and the other favored
at different sites. Less serious is the case of interaction where all clinics favor the same treat-
ment, but some favor it more than others. These two examples of interaction are illustrated in
Figure 11.6.

When interaction occurs, the design, patient population, clinical methods, protocol, and
other possible problems should be carefully investigated and dissected, to help find the
cause. The cause will not always be readily apparent, if at all. See section 8.4.3 for a fur-
ther example and discussion of interactions in clinical studies. An important feature of multi-
clinic studies, as noted above, is that the same protocol and design should be followed at all
sites.

Since one can anticipate missing values due to dropouts, missed visits, recording errors,
and so on, an important consideration is that the design should not be so complicated that
missing data will cause problems with the statistical interpretation or that the clinicians will
have difficulty following the protocol. A simple design that will achieve the objective is to
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be preferred. Since parallel-groups designs are the most simple in concept, these should be
preferred to some more esoteric design. Nevertheless, there are occasions where a more complex
design would be appropriate providing that the study is closely monitored and the clinical
investigators thoroughly educated.

11.7 INTERIM ANALYSES
Under certain conditions, it is convenient (and sometimes prudent) to look at data resulting
from a study prior to its completion in order to make a decision to change the protocol procedure
or requirements, or to abort the study early or to increase the sample size, for example. This
is particularly compelling for a clinical study involving a disease that is life-threatening, is
expensive, and/or is expected to take a long time to complete. A study may be stopped, for
example, if the test treatment can be shown to be superior early on in the study. However, if
the data are analyzed prior to study completion, a penalty is imposed in the form of a lower
significance level to compensate for the multiple looks at the data (i.e., to maintain the overall
significance level at alpha). The more occasions that one looks at and analyzes the data for
significance, the greater the penalty, that is, the more difficult it will be to obtain significance
at each analysis. The penalty takes the form of an adjustment of the alpha level to compensate
for the multiple looks at the data. The usual aim is to keep the alpha level at a nominal level,
for example 5%, considering the multiple analyses; this fixes the probability of declaring the
treatments different when they are truly the same at, at most, 5%, taking into account the fact
that at each look we have a chance of incorrectly declaring a significant difference. For example,
if the significance level is 0.05 for a single look, two looks will have an overall significance level
of approximately 0.08.

In addition to the advantage (time and money) of stopping a study early when efficacy
is clearly demonstrated, there may be other reasons to shorten the duration of a study, such as
stopping because of a drug failure, modifying the number of patients to be included, modifying
the dose, and so on. If interim analyses are made for these purposes in phase 3 pivotal studies, an
adjusted p level will probably be needed for regulatory purposes. Davis and Huang discuss this
in more detail [33]. In any event, the approach to interim analyses should be clearly described
in the study protocol, a priori; or, if planned after the study has started, the plan of the interim
analysis should be communicated to the regulatory authorities (e.g., FDA). Even if interim looks
do not affect the study procedure or outcome, such procedures should be clearly documented
either in the study protocol or as an amendment to the protocol. One of the popular approaches
to interim analyses was devised by O’Brien and Fleming [34], an analysis known as a group
sequential method. The statistical analyses are performed after a group of observations have
been accumulated rather than after each individual observation. The analyses should be clearly
documented and should be performed by persons who cannot influence the continuation and
conduct of the study.

The procedure and performance of these analyses must be described in great detail in
the study protocol, including the penalties in the form of reduced “significance” levels. A very
important feature of interim analyses is the procedure of breaking the randomization code.
One should clearly specify who has access to the code and how the blinding of the study is
maintained. It is crucial that the persons involved in conducting the study, clinical personnel
and monitors alike, not be biased as a result of the analysis. This is of great concern to the
FDA. Interim analyses should not be done willy-nilly, but should be planned and discussed
with regulatory authorities. Associated penalties should be fixed in the protocol. As noted pre-
viously, this does not mean that interim analyses cannot and should not be performed as an
afterthought if circumstances dictate their use during the course of the study. A Pharmaceutical
Manufacturer’s Association (PMA) committee [35] suggested the following to minimize poten-
tial bias resulting from an interim analysis. (1) “A Data Monitoring Committee (DMC) should
be established to review interim results.” The persons on this committee should not be involved
in decisions regarding the progress of the study. (2) If the interim analysis is meant to terminate
a study, the details should be presented in the protocol, a priori. (3) The results of the interim
analysis should be confidential, known only to the DMC.

Sankoh [25] discusses situations where interim analyses have been used incorrectly from
a regulatory point of view. In particular, he is concerned with unplanned interim analyses.
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Table 11.26 Significance Levels for Two-Sided Group

Sequential Studies with an Overall Significance Level of 0.05

(According to O’Brien/Fleming)

Number of analysis (stages) Analysis Significance level

2 First 0.005

Final 0.048

3 First 0.0005

Second 0.014

Final 0.045

4 First 0.0005

Second 0.004

Third 0.019

Final 0.043

5 First 0.00001

Second 0.001

Third 0.008

Fourth 0.023

Final 0.041

These include (a) the lack of reporting these analyses and the consequent lack of adjust-
ment of the significance level, (b) inappropriate adjustment of the level and inappropriate
stopping rules, (c) interim analyses inappropriately labeled “administrative analyses,” where
actual data analyses have been carried out and results disseminated, (d) lack of documenta-
tion for the unplanned interim analysis, (e) and the importance of blinding and other protocol
requirements.

An interim analysis may also be planned to adjust sample size. In this case, a full analysis
should not be done. The analysis should be performed when the study is not more than half
done, and only the variability should be estimated (not the treatment differences). Under these
conditions, no penalty need be assessed. However, if the analysis is done near the end of the
trial or if the treatment differences are computed, a penalty is required [25].

Table 11.26 shows the probability levels needed for significance for k looks (k analyses) at
the data according to O’Brien and Fleming [34], where the data are analyzed at equal intervals
during patient enrollment. For example, if the data are to be analyzed three times (k = 3, where
k is the number of analyses or stages, including the final analysis), the analysis should be done
after 1/3, 2/3 and all of the patients have been completed [36]. There are other schemes for group
sequential interim analyses, including those that do not require analyses at equal intervals of
patient completion [37].

For example, a study with 150 patients in each of two groups is considered for two
interim analyses. This corresponds to three stages, two interim and one final analysis. The first
analysis is performed after 100 patients are completed (50 per group) at the 0.0005 level. To show
statistically significant differences, the product differences must be very large or obvious at this
low level. If not significant, analyze the data after 200 patients are completed. A significance
level of 0.014 must be reached to terminate the study. If this analysis does not show significance,
complete the study. The final analysis must meet the 0.045 level for the products to be considered
significantly different.

One can conjure up reasons as to why stopping a study early based on interim analysis
is undesirable (less information on adverse effects or less information for subgroup analyses,
for example). One possible solution to this particular problem in the case where the princi-
ple objective is to establish efficacy, is to use the results of the interim analysis for regulatory
submission, if the study data meet the interim analysis p level, but to continue the study
after the interim analysis, and then analyze the results for purposes of obtaining further infor-
mation on adverse effects, and so on. However, in this procedure, one may face a dilemma
if the study fails to show significance with regard to efficacy after including the remaining
patients.
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KEY TERMS

Analysis of covariance Interaction
AUC (area under curve) Interim analyses
Balance Latin square
Baseline measurements Locke’s Method
Between-patient variation (error) Log transformation
Bias Multiclinic
Bioavailability Objective measurements
Bioequivalence Parallel design
Blinding Period (visit)
Carryover Placebo effect
Changeover design Positive control
Cmax Randomization
Controlled study Repeated measures
Crossover design Replicate designs
Differential carryover Scaled bioequivalence analysis
Double blind Sequences
Double dummy Split plot
75–75 rule Symmetry
Experimental design Systematic error
Grizzle analysis tp
Incomplete three-way ANOVA Washout period
Individual bioequivalence Within-patient variation (error)
Intent to treat 80% power to detect 20% difference

EXERCISES
1. (a) Perform the calculations for the ANOVA table (Table 11.3) from the data in Table 11.2.

(b) Perform a t test comparing the differences from baseline for the two groups in Table
11.2. Compare the t value to the F value in Table 11.3.

2. Using the data in Table 11.10, test to see if the values of tp are different for formulations A
and B (5% level).

3. (a) Using the data in Table 11.10, compare the values of Cmax for the two formulations (5%
level). Calculate a confidence interval for the difference in Cmax.

(∗∗b) Analyze the data for Cmax using the Grizzle Method. Is a differential carryover effect
present?

4. Analyze the AUC data in Table 11.10 using ratios of AUC (A/B). Find the average ratio and
test the average for significance. (Note that H0 is AUCA/AUCB = 1.0.) Assume no period
effect.

5. Analyze the AUC data in Table 11.10 using logarithms of AUC. Compare the antilog
of the average difference of the logs to the average ratio determined in Problem 4. Put
a 95% confidence interval on the average difference of the logs. Take the antilogs of
the lower and upper limit and express the interval as a ratio of the AUCs for the two
formulations.

6. ** In a pilot study, two acne preparations were compared by measuring subjective improve-
ment from baseline (10-point scale). Six patients were given a placebo cream and six different
patients were given a cream with an active ingredient. Observations were made once a week
for four weeks. Following are the results of this experiment:

∗∗This is an optional, more difficult problem.
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Placebo Active

Week Week

Patient 1 2 3 4 Patient 1 2 3 4

1 2 2 4 3 1 2 2 3 3

2 3 2 3 3 2 4 4 5 4

3 1 4 3 2 3 1 3 4 5

4 3 2 1 0 4 3 4 4 7

5 2 1 3 2 5 2 2 3 6

6 4 4 5 3 6 3 4 6 5

A score of 10 is complete improvement. A score of 0 is no improvement (negative scores
mean a worsening of the condition). Perform an ANOVA (split plot). Plot the data as in
Figure 11.4. Are the two treatments different? If so, how are they different?

7. For the exercise study described in section 11.3, the difference considered to be significant
is 60 minutes with an estimated standard deviation of 55 minutes. Compute the sample
size if the Type I (alpha) and Type II (beta) error rates are set at 0.05 and 0.10, respectively.

8. From the data in Table 11.23, test for a difference (� = 0.05) between the two drugs at
week 4.

9. Perform the ANOVA on the ln transformed bioavailability data (sect. 11.4.2, Table 11.10).

10. A clinical study is designed to compare three treatments in a parallel design. Thirty patients
are entered into the study, 10 in each treatment group. The randomization is to be performed
in groups of six. Show how you would randomize the 30 patients.

11. In the example in Table 11.7, suppose that a period effect of 3 existed in this study. This
means that the observations in Period 2 are augmented by 3 units. Show that the difference
between treatments is not biased, that is, the difference between A and B is 1.

12. Exercise: Compute the sample size for the example in section 11.4.8, assuming that a
difference of 0.16 (16%) is a meaningful difference.

13. Compute the confidence interval using Locke’s Method as described in section 11.4.3.
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12 Quality Control

The science of quality control is largely statistical in nature, and entire books have been devoted
to the application of statistical techniques to quality control. Statistical quality control is a key
factor in process validation and the manufacture of pharmaceutical products. In this chap-
ter, we discuss some common applications of statistics to quality control. These applications
include Shewhart control charts, sampling plans for attributes, operating characteristic curves,
and some applications to assay development, including components of variance analysis. The
applications to quality control make use of standard statistical techniques, many of which have
been discussed in previous portions of this book.

12.1 INTRODUCTION
Starting from raw materials to the final packaged container, quality control departments have
the responsibility of assuring the integrity of a drug product with regard to safety, potency,
and biological availability. If each and every item produced could be tested (100% testing),
there would be little need for statistical input in quality control. Those individual dosage units
that are found to be unsatisfactory could be discarded, and only the good items would be
released for distribution. Unfortunately, conditions exist that make 100% sampling difficult, if
not impossible. For example, if every dosage unit could be tested, the expense would probably
be prohibitive both to manufacturer and consumer. Also, it is well known that attempts to test
individually every item from a large batch (several million tablets, for example), result in tester
fatigue, which can cause misclassifications of items and other errors. If testing is destructive, such
as would be the case for assay of individual tablets, 100% testing is, obviously, not a practical
procedure. However, 100% testing is not necessary to determine product quality precisely.
Quality can be accurately and precisely estimated by testing only part of the total material (a
sample). In general, quality control procedures require relatively small samples for inspection
or analysis. Data obtained from this sampling can then be treated statistically to estimate
population parameters such as potency, tablet hardness, dissolution, weight, impurities, content
uniformity (variability), as well as to ensure the quality of attributes such as color, appearance,
and so on.

In various parts of this book, we discuss data from testing finished products of solid dosage
forms. The details of some of these tests are explained at the end of this chapter, section 12.7.

Statistical techniques are also used to monitor processes. In particular, control charts
are commonly used to ensure that the average potency and variability resulting from a phar-
maceutical process are stable. Control charts can be applied during in-process manufacturing
operations, for finished product characteristics, and in research and development for repetitive pro-
cedures. Control charts are one of the most important statistical applications to quality control.

12.2 CONTROL CHARTS
Probably the best-known application of statistics to quality control that has withstood the test
of time is the Shewhart control chart. Important attributes of the control chart are its simplicity
and the visual impression that it imparts. The control chart allows for judgments based on an
easily comprehended graph. The basic principles underlying the use of the control chart are
described below.

12.2.1 Statistical Control
A process under statistical control is one in which the process is susceptible to variability
due only to inherent, but unknown and uncontrolled chance causes. According to Grant [1]:
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“Measured quality of manufactured product is always subject to a certain amount of variation
as a result of chance. Some stable system of chance causes is inherent in any particular scheme
of production and inspection. Variation within this stable pattern is inevitable. The reasons for
variation outside this stable pattern may be discovered and corrected.”

Using tablet manufacture as an example, where tablet weights are being monitored, it is
not reasonable to expect that each tablet should have an identical weight, precisely equal to
some target value. A tablet machine is simply not capable of producing identical tablets. The
variability is due, in part, to (a) the variation of compression force, (b) variation in filling the
die, and (c) variation in granulation characteristics. In addition, the balance used to weigh
the tablets cannot be expected to give exactly reproducible weighings, even if the tablets could
be identically manufactured. Thus, the weight of any single tablet will be subject to the vagaries
of chance from the foregoing uncontrollable sources of error, in addition to other identifiable
sources that we have not mentioned.

12.2.2 Constructing Control Charts
The process of constructing a control chart depends, to a great extent, on the process character-
istics and the objectives that one wishes to achieve. A control chart for tablet weights can serve
as a typical example. In this example, we are interested in ensuring that tablet weights remain
close to a target value, under “statistical control.” To achieve this objective, we will periodically
sample a group of tablets, measuring the mean weight and variability. The mean weight and
variability of each sample (subgroup) are plotted sequentially as a function of time. The control
chart is a graph that has time or order of submission of sequential lots on the X axis and the
average test result on the Y axis. The process average together with upper and lower limits are
specified as shown in Figure 12.1. The preservation of order with respect to the observations is
an important feature of the control chart. Among other things, we are interested in attaining a
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Figure 12.1 Quality control X and range charts.
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state of statistical control and detecting trends or changes in the process average and variability.
One can visualize such trends (mean and range) easily with the use of the control chart. The
“consistency” of the data as reflected by the deviations from the average value is not only easily
seen, but the chart provides a record of batch performance. This record is useful for regulatory
purposes as well as for an in-house source of data.

As will be described subsequently, variability can be calculated on the basis of the standard
deviation or the range. The range is easier to calculate than the standard deviation. Remember:
The range is the difference between the lowest and highest value. If the sample size is not large
(<10), the range is an efficient estimator of the standard deviation. Figure 12.1 shows an example
of an “X” (X bar or average) and “range” chart for tablet weights determined from consecutive
tablet production batches.

12.2.2.1 Rational Subgroups
The question of how many tablets to choose at each sampling time (rational subgroups) and how
often to sample is largely dependent on the nature of the process and the level of precision
required. The larger the sample and the more frequent the sampling, the greater the precision,
but also the greater will be the cost. If tablet samples are taken and weights averaged over rela-
tively long periods of time, significant fluctuations that may have been observed with samples
taken at shorter time intervals could be obscured. The subgroups should be as homogeneous as
possible relative to the overall process. Subgroups are usually (but not always) taken as units
manufactured close in time. For example, in the case of tablet production, consecutively manu-
factured tablets may be chosen for a subgroup. If possible, the subgroup sample size should be
constant. Otherwise, the construction and interpretation of the control chart is more difficult.
Four to five items per subgroup is usually an adequate sample size. Procedures for selecting
samples should be specified under SOPs (standard operating procedures) in the quality control
manual. In our example, 10 consecutive tablets are individually weighted at approximately one-
hour intervals. Here the subgroup sample size is larger than the “usual” four or five, principally
because of the simple and inexpensive measurement (weighing tablets). The average weight
and range are calculated for each of the subgroup samples. One should understand that under
ordinary circumstances the variation between individual items (tablets in this example) within
a subgroup is due only to chance causes, as noted above. In the example, the 10 consecutive
tablets are made almost at the same time. The granulation characteristics and tablet press effects
are similar for these 10 tablets. Therefore, the variability observed can be attributed to causes
that are not under our control (i.e., the inherent variability of the process).

12.2.2.2 Establishing Control Chart Limits
The principal use of the control chart is as a means of monitoring the manufacturing process. As
long as the mean and range of the 10 tablet samples do not vary “too much” from subgroup to
subgroup, the product is considered to be in control. To be “in control” means that the observed
variation is due only to the random, uncontrolled variation inherent in the process, as discussed
previously. We will define upper and lower limits for the mean and range of the subgroups.
Values falling outside these limits are cause for alarm. The construction of these limits is based
on normal distribution theory. We know, from chapter 3, that individual values from a normal
distribution will be within 1.96 standard deviations of the mean 95% of the time, and within
3.0 (or 3.09) standard deviations of the mean 99.73% (or 99.8%) of the time (see Table IV.2).
Therefore, the probability of observing a value outside these limits is small; only 1 in 20 in the
former case and 2.7 in 1000 in the latter case. Two limits are often used in the construction of X
(mean) charts as “warning” and “action” limits, respectively (Fig. 12.1). The warning limits are
narrower than the action limits and do not require immediate action. If a process is subject only
to random, chance variation, a value far from the mean is unlikely. In particular, a value more
than 3.0 standard deviations from the mean is highly unlikely (2.7/1000), and can be considered
to be probably due to some systematic, assignable cause. Such a “divergent” observation should
signal the quality control unit to modify the process and/ or initiate an investigation into its
cause. Of course, the “aberrant” value may be due only to chance. If so, subsequent means
should fall close to the process average as expected. In some circumstances, one may wisely
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Table 12.1 Tablet Weights and Ranges from a Tablet

Manufacturing Processa

Date Time Mean, X Range

3/1 11 a.m. 302.4 16

12 p.m. 298.4 13

1 p.m. 300.2 10

2 p.m. 299.0 9

3/5 11 a.m. 300.4 13

12 p.m. 302.4 5

1 p.m. 300.3 12

2 p.m. 299.0 17

3/9 11 a.m. 300.8 18

12 p.m. 301.5 6

1 p.m. 301.6 7

2 p.m. 301.3 8

3/11 11 a.m. 301.7 12

12 p.m. 303.0 9

1 p.m. 300.5 9

2 p.m. 299.3 11

3/16 11 a.m. 300.0 13

12 p.m. 299.1 8

1 p.m. 300.1 8

2 p.m. 303.5 10

3/22 11 a.m. 297.2 14

12 p.m. 296.2 9

1 p.m. 297.4 11

2 p.m. 296.0 12

aData are the average and range of 10 tablets.

make an observation on a new subgroup before the scheduled time, in order to verify the initial
result. If two successive averages are outside the acceptable limits, chances are extremely high
that a problem exists. An investigation to detect the cause and make a correction may then be
initiated.

The procedure for constructing control charts will be illustrated using data on tablet
weights as shown in Table 12.1 and Figure 12.2. Note that the X chart consists of an “average”
or “standard” line along with upper and lower lines that represent the action lines. The average
line may be determined from the history of the product, with regular updating, or may be
determined from the product specifications. In this example, the average line is defined by
the quality control specifications (standards) for this product, a target value of 300 mg. The
action lines are constructed to represent ±3 standard deviations from the target value. This is
also known as “3� limits.” Observations that lie outside these limits are a cause for action.
Adjustments or other corrective action should not be implemented if the averages are within
the action limits. Tampering with equipment and/or changing other established procedures
while the process remains within limits should be avoided. Such interference will often result
in increased variation.

In order to establish the upper and lower limits for the mean (X), we need an estimate of
the standard deviation, if it is not previously known. The standard deviation can be obtained
from the replicates (10 tablets) of the subgroup samples that generate the means for the control
chart. By pooling the variability from many subgroups (N = 10), a very good estimate of the
true standard deviation, �, can be obtained (see App. I). Note that an estimate of the standard
deviation or range is needed before limits for the X chart can be established. If a “range” chart is
used in conjunction with the X chart, the upper and lower limits for the X chart can be obtained
from the range according to Table IV.10 (column A). These factors are derived from theoretical
calculations relating the range and standard deviation. For example, in the long run, the range
can be shown to be equal to 3.078 times the standard deviation for samples of size 10. If we wish
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Figure 12.2 Control chart for tablet averages and range data from Table 12.1.

to establish 3� limits about the mean of samples of size 10 (s.d. = �/
√

10) using the range, the
following relationship leads to the value 0.31 in Table IV.10 (see column A):

X ± 3�√
10

= X ± 3(R)

(3.078)
√

10
= X ± 0.31R,

where R/3.078 is the average range divided by 3.078, which on the average is equal to �. Thus,
if the average range is 12 for samples of size 10, the upper and lower control chart limits for X
are

X ± 0.31R = X ± 0.31(12) = X ± 3.72. (12.1)

Note that the average range is simply the usual average of the range values, obtained in a
manner similar to that for calculating the process average. Ranges obtained during the control
charting process are averaged and updated as appropriate.
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Table IV.10 also has factors for upper and lower limits for a range chart. The values in
columns DL and DU are multiplied times the average range to obtain the lower and upper limits
for the range. Usually, a range that exceeds the upper limit is a cause for action. A small value
of the range shows good precision and may be disregarded in many situations. In the present
example, the average range is set equal to 12 based on previous experience. For samples of size 10,
DL and DU are 0.22 and 1.78, respectively. Therefore, the lower and upper limits for the range are

Lower limit: 0.22 × 12 = 2.6

Upper limit: 1.78 × 12 = 21.3. (12.2)

These limits are shown in the control chart for the range in Figure 12.2. See Figure 12.1
for another example of a range chart. Ordinarily, the sample size should be kept constant. If
sample size varies from time to time, the limits for the control chart will change according to
the sample size. If the sample sizes do not vary greatly, one solution to this problem is use an
average sample size [2].

Having established the mean and the average range, the process is considered to be under
control as long as the average and range of the subgroup samples fall within the lower and upper
limits. If either the mean or range of a sample falls outside the limits, a possible “assignable”
cause is suspected. The reason for the deviation should be investigated and identified, if possible.
One should appreciate that a process can change in such a way that (a) only the average is
affected, (b) only the variability is affected, or (c) both the average and variability are affected.
These possibilities are illustrated in Figure 12.3.

In the example of tablet weights, one might consider the following as possible causes for
the results shown in Figure 12.3. A change in average weight may be caused by a misadjustment
of the tablet press. Increased variability may be due to some malfunction of one or more
punches. Since 10 consecutive tablets are taken for measurement, if one punch gives very low
weight tablets, for example, a large variability would result. A combination of lower weight and
increased variability probably would be quickly detected if half of the punches were sticking in
a random manner. Under these circumstances, the average (X) would be substantially reduced
and the range would be substantially increased relative to the values expected under statistical
control.

The control charts shown in Figure 12.2 are typical. For the X chart, the mean was taken
as 300 mg based on the target value as set out in the quality control standards. The upper and
lower action limits were calculated on the basis of an average range of 12 and factor A in Table
IV.10. The lower and upper action limits are 300 ± 3.72 mg or approximately 296.3 to 303.7 mg,

Figure 12.3 Representation of possible process changes as may be detected in a control chart procedure.
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respectively. The process is out of control during the production of the batch produced on 3/22.
This will be discussed further below. The range control chart shows that the process is in control
with respect to this variable.

When the standard deviation rather than the range is computed for purposes of constructing
control charts, the factors for calculating the limits for the X chart are different. The variability
is monitored via a chart of the standard deviation of the subgroup rather than the range. Factors
for setting limits for both X charts and “sigma” (standard deviation) charts may be found in
Ref. [1].

If an outlying observation (X, R) is eliminated because an assignable cause has been found,
that observation should be eliminated from future updating of the X and R charts.

12.2.3 Between-Batch Variation as a Measure of Variability (Moving Averages)
The discussion of control charts above dealt with a system that is represented by a regular
schedule of production batches. The action limits for X were computed using the “within”-
batch variation as measured by the variability between items in a “rational subgroup.” The
subgroup consists of a group of tablets manufactured under very similar conditions. For the
manufacture of unit dosage forms with inherent heterogeneity, such as tablets, attempts to
construct control charts that include different batches, based on within-subgroup variation,
may lead to apparently excessive product failure and frustration. Sometimes, this unfortunate
situation may result in the discontinuation of the use of control charts as an impractical statistical
device. However, the nature of the manufacture of a heterogeneous mixture, such as the bulk
granulations used for manufacturing tablets, lends itself to new sources of uncontrolled error.
This error resides in the variability due to the different (uncontrolled) conditions under which
different tablet batches are manufactured. One would be hard put to describe exactly why
batch-to-batch differences should exist, or to identify the sources of these differences. Perhaps
the dies and punches of the tablet press are subject to wear and erosion. Perhaps a new employee
involved in the manufacturing process performs the job in a slightly different manner from his
or her predecessor. Whatever the reason, such interbatch variation may exist.∗ In these cases,
the within-subgroup variation underestimates the variation, and many readings will appear
out of control. This is exemplified by the last batch in Table 12.1 and Figure 12.2.

Thus, when significant interbatch variation exists, the usual control chart will lead to many
batches being out of control. If the cause of this variation cannot be identified or controlled, and
the product consistently passes the official quality control specifications, other methods than
the usual control chart may be used to monitor the process.

Use of the “Control Chart for Individuals” [1,2] seems to be one reasonable approach to
monitoring such processes. The limits for the X chart are based on a moving range using two
consecutive samples (Table 12.2). For example, the first value for the two-batch moving range is
the range of batches 1 and 2 = 1.1(399.5 − 398.4). The second moving range is 399.5 − 398.8 =
0.7, and so on. The average moving range is 1.507. The average tablet weight of the 30 batches
is 400.01. The average range is based on samples of 2. To estimate the standard deviation from
the average range of samples of size 2, it can be shown that we should divide the average
range by 1.128 (Table IV.10). The 3 sigma limits are X ± 3(R/1.128) = 400.01 ± 3(1.507/1.128) =
400.01 ± 4.01. The range chart has an upper limit of 3.27(1.507) = 4.93. These charts are shown
in Figure 12.4. Batch 13 is out of limits based on both the average and range charts.

The moving average method is another approach to construct control charts that can be
useful in the presence of interbatch variation. In this method, we use only a single mean value
for each batch, ignoring the individual values within the subgroup, if they are available. Thus,
the data consist of a series of means over many batches as shown in Table 12.2. A three-batch
moving average consists of averaging the present batch with the two immediately preceding
batches. For example, starting with batch 3, the first value for the moving average chart is

398.4 + 399.5 + 398.8
3

= 398.9.

∗ Process validation investigates and identifies such variation.
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Table 12.2 Average Weight of 50 Tablets from 30 Batches of a Tablet Product:

Example of the Moving Average

Two-batch Three-batch Three-batch
Batch moving moving moving

Batch average (mg) range average range

1 398.4 — — —

2 399.5 1.1 — —

3 398.8 0.7 398.9 1.1

4 397.4 1.4 398.6 2.1

5 402.7 5.3 399.6 5.3

6 400.5 2.2 400.2 5.3

7 401.0 0.5 401.4 2.2

8 398.5 2.5 400.0 2.5

9 399.5 1.0 399.7 2.5

10 400.1 0.6 399.4 1.6

11 399.0 1.1 399.5 1.1

12 401.7 2.7 400.3 2.7

13 395.4 6.3 398.7 6.3

14 400.7 5.3 399.3 6.3

15 401.6 0.9 399.2 6.2

16 401.4 0.2 401.2 0.9

17 401.5 0.1 401.5 0.2

18 400.4 1.1 401.1 1.1

19 401.0 0.6 401.0 1.1

20 402.1 1.1 401.2 1.7

21 400.9 1.2 401.3 1.2

22 400.8 0.1 401.3 1.3

23 401.5 0.7 401.1 0.7

24 398.6 2.9 400.3 2.9

25 398.4 0.2 399.5 3.1

26 398.8 0.4 398.6 0.4

27 399.9 1.1 399.0 1.5

28 400.9 1.0 399.9 2.1

29 399.9 1.0 400.2 1.0

30 399.5 0.4 400.1 1.4

The second value is (399.5 + 398.8 + 397.4)/3 = 398.6. The calculation is similar to that
used for the two-batch moving range in the example of the Control Chart for Individuals. The
moving average values are plotted as in the ordinary control chart. Limits for the control chart
are established from the moving range, which is calculated in a similar manner. The range
of the present and the two immediately preceding batches is calculated for each batch. The
average of these ranges is R, the limits for the control chart are computed from Table IV.10. The
computations of the moving average and range for samples of size 3 are shown in Table 12.2,
and the data charted in Figure 12.5. The average weight was set at the targeted weight of 400
mg. The average moving range (from Table 12.2) is 2.35. The limits for the moving average chart
are determined using the average range and the factor from Table IV.10 for samples of size 3.

400 ± 1.02(2.35) = 400 ± 2.4.

All of the moving average values fall within the limits based on the average moving
range. In this analysis, the suspect batch number 13 is “smoothed” out when averaged with its
neighboring batches. The upper limit for the range chart is 2.57(2.35) = 6.04, which would be a
cause to investigate the conditions under which batch number 13 was produced (Table 12.2). For
further details of the construction and interpretation of moving average charts, see Refs. [1,3].

Another approach to the problem of between-batch variation is the difference chart. A
good standard lot is set aside as the control. Each production lot is compared to the standard lot
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Figure 12.4 Control charts for individuals from Table 12.2.

by taking samples of each. Both the control and production lots are measured and the difference
of the means is plotted. The limits are computed as

0 ± 3√
n

√
S2

c + S2
p,

where S2
c and S2

p are the estimates of the variances of the control and production lots, respectively.
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Figure 12.5 Moving average plot for tablet weight means from Table 12.2.
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12.2.4 Quality Control Charts in Research and Development
Control charts may be advantageously conceived and used during assay development and
validation, in preliminary research or formulation studies, and in routine pharmacological-
screening procedures. During the development of assay methodology and validation, for exam-
ple, by keeping records of assay results, an initial estimate of the assay standard deviation is
available. The initial estimate can then be updated as data accumulate.

The following example shows the usefulness of control charts for control measurements in
a drug-screening procedure. This test for screening potential anti-inflammatory drugs measures
improvement of inflammation (guinea pig paw volume) by test compounds compared to a
control treatment. A control chart was established to monitor the performance of the control
drug (a) to establish the mean and variability of the control, and (b) to ensure that the results
of the control for a given experiment are within reasonable limits (a validation of the assay
procedure). The average paw volume difference (paw volume before treatment–paw volume
after treatment) and the average range for a series of experiments are shown in Table 12.3. The
control chart is shown in Figure 12.6.

As in the control charts for quality control, the mean and average range of the “process”
were calculated from previous experiments. In this example, the screen had been run 20 times
previous to the data of Table 12.3. These initial data showed a mean paw volume difference of
40 and a mean range (R) of 9, which were used to construct the control charts shown in Figure
12.6. The subgroups consist of four animals each. Using Table IV.10, the action limits for the X
and range charts were calculated as follows:

X ± 0.73R = 40 ± 0.73(9) = 33.4 to 46.6 (X chart)

R(2.28) = 9(2.28) = 20.5 the upper limit for the range.

Note that the lower limit for the range of subgroups consisting of four units is zero. Six
of the 20 means are out of limits. Efforts to find a cause for the larger intertest variation failed.
The procedures were standardized and followed carefully, and the animals appeared to be
homogeneous. Because different shipments of animals were needed to proceed with these tests

Table 12.3 Average Paw Volume Difference and

Range for a Screening Procedure (Four Guinea

Pigs Per Test Group)

Test number Mean Range

1 38 4

2 43 3

3 34 3

4 48 6

5 38 24

6 45 4

7 49 5

8 32 9

9 48 5

10 34 8

11 28 12

12 41 10

13 40 22

14 34 5

15 37 4

16 43 14

17 37 6

18 45 8

19 32 7

20 42 13
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Figure 12.6 Control chart for means and range for control group in a pharmacological-screening procedure.

over time, the researchers felt that there was no way to “tighten up” the procedure. Therefore,
as in the tablet weight example discussed in the preceding section, a new control chart was
prepared based on the variability between test means. A moving average was recommended
using four successive averages. Based on historical data, X was calculated as 39.7 with an average
moving range of 12.5. The limits for the moving average graph are

39.7 ± 0.73(12.5) = 30.6 to 48.8.

The factor 0.73 is obtained from Table IV.10 for subgroup samples of size 4.

12.2.5 Control Charts for Proportions
Table 12.4 shows quality control data for the inspection of tablets where the measurement is an
attribute, a binomial variable. Three hundred tablets are inspected each hour to detect various
problems, such as specks, chips, color uniformity, logo, and so on. For this example, the defect

Table 12.4 Proportion of Chipped Tablets of 300 Inspected

During Tablet Manufacture

Time

Batch 10 a.m. 11 a.m. 12 p.m. 1 p.m.

1 0.060 0.053 0.087 0.055

2 0.073 0.047 0.060 0.047

3 0.040 0.067 0.033 0.053

4 0.033 0.040 0.030 0.027

5 0.040 0.013 0.023 0.040

6 0.025 0.000 0.027 0.013
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under consideration is a chipped tablet. According to quality control specifications, this type
of defect is considered of minor importance and an average of 5% chipped tablets is tolerable.
This problem of chipped tablets was of recent origin, and the control chart was implemented
as an aid to the manufacturing and research and development departments, who were looking
into the cause of this defect. In fact, the 5% average had been written into the specifications as
a result of the persistent appearance of the chipped tablets in recent batches. The data in Table
12.4 represent the first six batches where this attribute was monitored.

For the control chart, 5% defects was set as the average value. The action limits can be
calculated from the standard deviation of a binomial. In this example, where 300 tablets were
inspected, N = 300, p = 0.05, and q = 0.95 [� = √

pq/N, Eq. (3.11)].

� =
√

(0.05)(0.95)
300

= 0.0126.

The limits are 0.05 ± 3� = 0.05 ± 3(0.0126) = 0.012 to 0.088. Proportions below the lower
limit indicate an improvement in the process in this example. Note that we can use the normal
approximation to the binomial when calculating the 3� limits, because both NP and Nq are
greater than 5 (see sect. 3.4.3). The control chart is shown in Figure 12.7.

The chart clearly shows a trend with time toward less chipping. The problem seems to be
lessening. Although no specific cause was found for this problem, increased awareness of the
problem among manufacturing personnel may have resulted in more care during the tableting
process.

12.2.6 Runs in Control Charts
The most important feature of the control chart is the monitoring of a process based on the
average and control limits. In addition, control charts are useful as an aid in detecting trends
that could be indicative of a lack of control. This is most easily seen as a long consecutive series
of values that are within the control limits but (a) stay above (or below) the average or (b) show a
steady increase (or decline). Statistically, such occurrences are described as “runs.” For example,
a run of 7 successive values that lie above the average constitutes a run of size 7. Such an event
is probably not random because if the observed values are from a symmetric distribution and
represent random variation about a common mean, the probability of 7 successive values being
above the mean is (1/2)7 = 1/128. In fact, the occurrence of such an event is considered to be
suggestive of a trend and the process should be carefully watched or investigated.

In general, when looking for runs in a long series of data, the problem is that significant
runs will be observed by chance when the process is under control. Nevertheless, with this
understanding, it is useful to examine data to be forewarned of the possibility of trends and
potential problems. The test for the number of runs above and below the median of a consecutive
series of data is described in section 15.7. For the consecutive values 9.54, 9.63, 9.42, 9.86, 9.40,
9.31, 9.79, 9.56, 9.2, 9.8, and 10.1, the median is 9.56. The number of runs above and below the
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median is 8. According to Table IV.14, this is not an improbable event at the 5% level. If the
consecutive values observed were 9.63, 9.86, 9.79, 9.8, 10.1, 9.56, 9.54, 9.42, 9.40, 9.31, and 9.2,
the median is till 9.56, but the number of runs is 2. This shows a significant lack of randomness
(p < 0.05). Also see Exercise Problem 12.

Duncan [2] describes a runs test that looks at the longest run occurring above or below the
median. The longest run is compared to the values in Table IV.15. If the longest run is equal to
or greater than the table value, the data are considered to be nonrandom. For the data of Table
12.1, starting with the data on the date 3/5 (ignore the data on 3/1 for this example), the median
is 300.35. The longest run is 7. There are seven consecutive values above the median starting at
11 a.m. on 3/9. For N = 20, the table value in Table IV.15 is 7, and the data are considered to be
significantly nonrandom (p < 0.05). Note that this test allows a decision of lack of control at the
5% level if a run of 7 is observed in a sequence of 20 observations.

For other examples of the application of the runs test, see Ref. [2]. Also see section 15.7
and Exercise Problem 11 in chapter 15.

In addition to the aforementioned criteria, that is, a point outside the control limits, a
significant number of runs, or a single run of sufficient length, other rules of thumb have been
suggested to detect lack of control. For example, a run of 2 or 3 outside the 2� limits but within
the 3� limits, and runs of 4 or 5 between l� and 2� limits can be considered cause for concern.

Cumulative sum control charts (cusum charts) are more sensitive to process changes.
However, the implementation, construction, and theory of cusum charts are more complex than
the usual Shewhart control chart. Ref. [4] gives a detailed explanation of the use of these control
charts.

For more examples of the use of control charts, see chapter 13.

12.3 ACCEPTANCE SAMPLING AND OPERATING CHARACTERISTIC CURVES
Finished products or raw materials (including packaging components) that appear as separate
units are inspected or analyzed before release for manufacturing purposes or commercial sale.
The sampling and analytical procedures are specified in official standards or compendia (e.g., the
USP), or in in-house quality control standards. The quality control procedure known as acceptance
sampling specifies that a number of items be selected according to a scheduled sampling plan,
and be inspected for attributes or quantitatively analyzed. The chief purpose of acceptance
sampling is to make a decision regarding the acceptability of the material. Therefore, based on
the inspection, a decision is made, such as “the material or lot is either accepted or rejected.”
Sampling plans for variables (quantitative measurements such as chemical analyses for potency)
and attributes (qualitative inspection) are presented in detail in the U.S. government documents
MIL-STD-414 and MIL-STD-105E, respectively [3,5].

A single sampling plan for attributes is one in which N items are selected at random from the
population of such items. Each item is classified as defective or not defective with respect to the
presence or absence of the attribute(s). If the sample size is small relative to the population size,
this is a binomial process, and the properties of sampling plans for attributes can be derived
using the binomial distribution. For example, consider the inspection of finished bottles of
tablets for the presence of an intact seal. This is a binomial event; the seal is either intact or
it is not intact. The sampling plan states the number of units to be inspected and the number
of defects which, if found in the sample, leads to rejection of the lot. A typical plan may call
for inspection of 100 items; if two or more are defective, reject the lot (batch). If one or less
are defective, accept the lot. (The acceptance number is equal to one.) Theoretically, “100%
inspection” will separate the good and defective items (seals in our example). In the absence of
100% inspection, there is no guarantee that the lot will have 0% (or any specified percentage)
defects. Thus, underlying any sampling plan are two kinds of risks:

1. The producer’s or manufacturer’s risk. This is the risk or probability of rejecting (not releasing)
the product, although it is really good. By “good” we mean that had we inspected every
item, the batch would meet the criteria for release or acceptance. This risk reflects an unusu-
ally high number of defects appearing in the sample taken for inspection, by chance. The
producer’s risk can be likened to the � error, that is, rejecting the batch, even though it is
good.
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Figure 12.8 Operating characteristic curve for sampling plan N: sample 500 items—accept if 10 or less defective.

2. The consumer’s risk. This is the probability that the product is considered acceptable
(released), although, in truth, it would not be acceptable were it 100% inspected. The con-
sumer’s risk can be likened to the 	 error, that is, the batch is accepted even though it has a
more than the acceptable number of defects.

There are any number of possible plans that, in addition to economic considerations,
depend on

1. the number of items sampled;
2. the producer’s risk;
3. the consumer’s risk.

MIL-STD-105E is an excellent compilation of such plans [3]. Each plan gives the number
of items to be inspected, and the number of defects in the sample needed to cause rejection
of the lot. Each plan is accompanied by an operating characteristic (OC) curve. The OC curve
shows the probability of accepting a lot based on the sampling plan specifications, given the
true proportion of defects in the lot. A typical OC curve is shown in Figure 12.8.

The OC curve is a form of power curve (see sect. 6.5). The OC curve in Figure 12.8 is
derived from a sampling plan (plan N from MIL-STD-105E) in which 500 items (bottles) are
inspected from a lot that contains 30,000 items. If 11 or more items inspected are found to
be defective, the lot is rejected. Inspection of Figure 12.8 shows that if the batch truly has 1%
defect, the probability of accepting the lot is close to 99% when plan N is implemented. This
plan is said to have an acceptable quality level (AQL) of 1%. An AQL of 1% means that the
consumer will accept most of the product manufactured by the supplier if the level of defects
is not greater than 1%, the specified AQL (i.e., 1%). In this example, with the AQL equal to
approximately 1%, about 99% of the batches will pass this plan if the percent defects is 1%
or less.

The plan actually chosen for a particular product and a particular attribute depends on
the lot size and the nature of the attribute. If the presence (or absence) of an attribute (such
as the integrity of a seal) is critical, then a stringent plan (a low AQL) should be adopted. If
a defect is considered of minor importance, inspection for the presence of a defect can make
use of a less stringent plan. MIL-STD-105E describes various plans for different lot (population)
sizes, which range from less stringent for minor defects to more stringent for critical defects.
These are known as levels of inspection, level I, II, or III. This document also includes criteria for
contingencies for switching to more or less tight plans depending on results of prior inspection.
A history of poor quality will result in a more stringent sampling plan and vice versa. If 2 of
2, 3, 4 or 5 consecutive lots are rejected, the normal plan is switched to the tightened plan.
If five consecutive lots are accepted under the tightened plan, the normal plan is reinstated.
If quality remains very good, reduced plans may be administered as described in MIL-STD-
105E. The characteristics of the plan are defined by the AQL and the OC curve. For example,
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Figure 12.9 Operating characteristic curve for plan

N: AQL = 0.025%.

for lot sizes of 10,001 to 35,000, the following are two of the possible plans recommended by
MIL-STD-105E:

Reject numbera if AQL =

Plan Sample size 0.4% 1%

K 125 2 4

N 500 6 11

aReject the lot if the number of defects (or more) are observed.

Plan N is a more “discriminating” plan than plan K. The larger sample size results in a
greater probability of rejecting lots with more than AQL percentage of defects. For plan N, if
there are 2% defects in the lot, the lot will be accepted approximately 57% of the time. For plan
K, with 2% defects in the lot, the lot will be accepted 75% of the time. (See MIL-STD-105E [3] for
OC curves. The OC curve for an AQL of 1% for plan N is shown in Fig. 12.8.)

In the present example, a defective seal is considered a critical defect and plan N will be
implemented with an AQL of 0.025%. This means that lots with 0.025% (25 defects per 100,000
bottles) are considered acceptable. According to MIL-STD-105E, if one or more defects are found
in a sample of 500 bottles, the lot is rejected.† This means that the lot is passed only if all 500
bottles are good. The OC curve for this plan is shown in Figure 12.9.

The calculations of the probabilities needed to construct the OC curve are not very difficult.
These calculations have been presented in the discussion of the binomial distribution in chapter
3. As an illustration, we will calculate the probability of rejecting a lot using plan N with an AQL
of 0.025%. As noted above, the lot will be rejected if one or more defects are observed in a sample
of 500 items. Thus, the probability of accepting a lot with 0.025% defects is the probability of
observing zero defects in a sample of 500. This probability can be calculated from Eq. (3.9)(

N
X

)
P Xq N−X =

(
500
0

)
P0q 500 = (0.00025)0(0.99975)500 = 0.88,

where 500 is the sample size, P the probability of a defect (0.00025), and q the probability of
observing a bottle with an intact seal (0.99975). Thus, using this plan, lots with 0.025% defects
will be passed 88% of the time. A lot with 0.4% (4 defects per 1000 items) will be accepted with a
probability of(

500
0

)
(0.004)0(0.996)500 = 0.13 (i.e., 13%).

† If the result of inspection calls for rejection, 100% inspection is a feasible alternative to rejection.
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Copies of sampling plans K and N from MIL-STD-105E are shown in Tables 12.5 and 12.6.
In addition to the sampling plans discussed above, MIL-STD-105E also presents multiple-

sampling plans. These plans use less inspection than single sampling plans, on the average. After
the first sampling, one of three decisions may be made:

1. Reject the lot
2. Accept the lot
3. Take another sample

In a double-sampling plan, if a second sample is necessary, the final decision of acceptance
or rejection is based on the outcome of the second sample inspection.

The theory underlying acceptance sampling for variables is considerably more complex
than that for sampling for attributes. In these schemes, actual measurements are taken, such as
assay results, dimensions of tablets, weights of tablets, measurement of containers, and so on.
Measurements are usually more time consuming and more expensive than the observation of a
binomial attribute. However, quantitative measurements are usually considerably less variable.
Thus, there is a trade-off between expense and inconvenience, and precision. Many times, there
is no choice. Official procedures may specify the type of measurement. Readers interested in
plans for variable measurements are referred to MIL-STD-414 [5] and the book, “Quality Control
and Industrial Statistics” [2] for details.

12.4 STATISTICAL PROCEDURES IN ASSAY DEVELOPMENT
Statistics can play an important role in assisting the analytical chemist in the development
of assay procedures. A subcommittee of PMA (Pharmaceutical Manufacturers Association)
statisticians developed a comprehensive scheme for documenting and verifying the equivalence
of alternative assay procedures to a standard [6]. The procedure is called the Greenbriar procedure
(named after the location where the scheme was developed). This approach includes a statistical
design that identifies sources of variation such as that due to different days and different
analysts. The design also includes a range of concentration of drug. The Greenbriar document
emphasizes the importance of a thoughtful experimental design in assay development, a design
that will yield data to answer questions raised in the study objectives. The procedure is too
detailed to present here. However, for those who are interested, it would be a good exercise to
review this document, a good learning experience in statistical application.

For those readers interested in pursuing statistical applications in assay and analytical
development, two books, Statistical Methods for Chemists by Youden [7] and The Statistical Analysis
of Experimental Data, by Mandel [8], are recommended. Both of these statisticians had long
tenures with the National Bureau of Standards.

In this book, we have presented some applications of regression analysis in analytical
methodology (see chaps. 7 and 13). Here, we will discuss the application of sample designs to
identify and quantify factors that contribute to assay variability (components of variance).

12.4.1 Components of Variance‡

During the discussion of the one-way ANOVA design (sect. 8.1), we noted that the “between-
treatment mean square” is a variance estimate that is composed of two different (and independent)
variances: (a) that due to variability among units within a treatment group, and (b) that due
to variability due to differences between treatment groups. If treatments are, indeed, identical,
the ANOVA calculations are such that observed differences between treatment means will
probably be accounted for by the within-treatment variation. In the ANOVA table, the ratio of
the between-treatment mean square to the within-treatment mean square (F = BMS/WMS) will
be approximately equal to 1 on the average when treatments are identical.

‡ A more advanced topic [16].



328 CHAPTER 12
Ta

b
le

12
.5

S
a
m

p
le

S
iz

e
C

o
d
e

L
e
tt
e
r:

K
(C

h
a
rt

S
h
o
w

s
O

p
e
ra

ti
n
g

C
h
a
ra

c
te

ri
s
ti
c

C
u
rv

e
s

fo
r

S
in

g
le

S
a
m

p
lin

g
P

la
n
s
)a

99
.0

P
E

R
C

E
N

T
 O

F
 L

O
T

S
E

X
P

E
C

T
E

D
 T

O
 B

E
A

C
C

E
P

T
E

D
 (

P
a)

 

P
E

R
C

E
N

T
 O

F
 L

O
T

S
E

X
P

E
C

T
E

D
 T

O
 B

E
A

C
C

E
P

T
E

D
 (

P
a)

 

0
5

10
15

20
25

3.
0

2.
0

1.
00.

10
0.

40
0.

65
1.

0
1.

5
2.

5
4.

0
6.

5
10

4.
0

5.
0

6.
0

7.
0

10203040506070809010
0

P
a 95

.0
90

.0
75

.0
50

.0
25

.0
10

.0 5.
0

1.
0

0.
00

81

0.
10

0.
40

0.
65

1.
0

1.
5

2.
5

4.
0

6.
5

10
X

X
X

0.
04

10
0.

08
40

0.
23

0
0.

55
4

1.
11

1.
84

2.
40

3.
68

0.
15

0.
65

1.
0

1.
5

2.
5

A
cc

ep
ta

bl
e 

qu
al

it
y 

le
ve

ls
 (

ti
gh

te
nd

 in
sp

ec
ti

on
)

A
cc

ep
ta

bl
e 

qu
al

it
y 

le
ve

ls
 (

no
rm

al
 in

sp
ec

ti
on

)

Ta
bu

la
te

d 
va

lu
es

 f
or

 o
pe

ra
ti

ng
 c

ha
ra

ct
er

is
ti

c 
cu

rv
es

 f
or

 s
in

gl
e 

sa
m

pl
in

g 
pl

an
s 

4.
0

6.
5

10

0.
11

9
0.

28
4

0.
42

6
0.

76
9

1.
34

2.
15

3.
11

3.
80

5.
31

0.
34

9
0.

65
4

0.
88

2
0.

38
2

2.
14

3.
14

4.
26

5.
04

6.
73

0.
65

8
1.

09
1.

40
2.

03
2.

94
4.

09
5.

35
6.

20
8.

04

10
.1

11
.9

13
.0

14
.9

17
.3

20
.0

22
.5

24
.2

27
.5

8.
28

9.
95

10
.9

12
.7

14
.9

17
.4

19
.8

21
.4

24
.5

5.
98

7.
40

8.
24

9.
79

11
.7

13
.9

16
.1

17
.5

20
.4

4.
88

6.
15

6.
92

8.
34

10
.1

12
.2

14
.2

15
.6

18
.3

3.
82

4.
94

5.
62

6.
90

8.
53

10
.4

12
.3

13
.6

16
.1

2.
81

3.
76

4.
35

5.
47

6.
94

8.
64

10
.4

11
.5

18
.3

2.
33

3.
19

3.
73

4.
77

6.
14

7.
75

9.
42

10
.5

12
.8

1.
43

2.
09

2.
52

3.
38

4.
54

5.
94

7.
42

8.
41

10
.5

010203040506070809010
0



QUALITY CONTROL 329



330 CHAPTER 12

Ta
b

le
12

.6
S

a
m

p
le

S
iz

e
C

o
d
e

L
e
tt
e
r:

N
(C

h
a
rt

N
S

h
o
w

s
O

p
e
ra

ti
n
g

C
h
a
ra

c
te

ri
s
ti
c

C
u
rv

e
s

fo
r

S
in

g
le

S
a
m

p
lin

g
P

la
n
s
)a

P
E

R
C

E
N

T
 O

F
 L

O
T

S
E

X
P

E
C

T
E

D
 T

O
 B

E
A

C
C

E
P

T
E

D
 (

P
a)

10
0

(C
ur

ve
s 

fo
r 

do
ub

le
 a

nd
 m

ul
ti

pl
e 

sa
m

pl
in

g 
ar

e 
m

at
ch

ed
 a

s 
cl

os
el

y 
as

 p
ra

ct
ic

ab
le

)

0.
02

5
0.

10
0.

15
0.

25

Ta
bu

la
te

d 
va

lu
es

 f
or

 o
pe

ra
ti

on
 c

ha
ra

ct
er

is
ti

c 
cu

rv
es

 f
or

 s
in

gl
e 

sa
m

pl
in

g 
pl

an
s

1.
0

1.
5

0.
5

0.
02

5
0.

10

0.
04

0
0.

15
0.

25
0.

40
0.

65

A
cc

ep
ta

bl
e 

qu
al

it
y 

le
ve

ls
 (

ti
gh

te
ne

d 
in

sp
ec

ti
on

)

A
cc

ep
ta

bl
e 

qu
al

it
y 

le
ve

ls
 (

no
rm

al
 in

sp
ec

ti
on

)

1.
0

1.
5

2.
5

0.
15

0.
25

0.
40

0.
65

1.
0

1.
5

2.
5

X
X

X

99
.0

95
.0

90
.0

75
.0

50
.0

25
.0

10
.0 5.
0

1.
0

0.
00

20
0.

01
03

0.
01

20
0.

05
76

0.
13

9
0.

27
7

0.
46

1
0.

59
9

0.
92

1

2.
51

2.
98

3.
25

3.
74

4.
33

4.
99

5.
64

6.
05

6.
87

2.
07

2.
49

2.
73

3.
18

3.
73

4.
35

4.
95

5.
34

6.
12

1.
50

1.
85

2.
06

2.
45

2.
93

3.
48

4.
03

4.
38

5.
09

1.
22

1.
54

1.
73

2.
08

2.
53

3.
04

3.
56

3.
89

4.
56

0.
95

4
1.

23
1.

40
1.

72
2.

13
2.

60
3.

08
3.

39
4.

03

0.
70

1
0.

93
9

1.
09

1.
37

1.
73

2.
16

2.
60

2.
89

3.
48

0.
58

1
0.

79
6

0.
93

1
1.

19
1.

53
1.

94
2.

35
2.

63
3.

20

0.
35

7
0.

52
3

0.
63

0
0.

84
4

1.
13

1.
48

1.
86

2.
10

2.
62

0.
16

5
0.

27
3

0.
34

9
0.

50
7

0.
73

4
1.

02
1.

34
1.

55
2.

01

0.
08

7
0.

16
4

0.
22

0
0.

34
5

0.
53

5
0.

78
4

1.
06

1.
26

1.
68

0.
03

0
0.

07
1

0.
10

6
0.

19
2

0.
33

6
0.

53
9

0.
77

8
0.

94
9

1.
32

8

P
a

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

0.
65

1.
0

1.
5

2.
5

0.
40

90 80 70 60 50 40 30 20 10 0



QUALITY CONTROL 331



332 CHAPTER 12

Table 12.7 Design to Analyze Components of Variance for the Tablet Assay

Tablets (treatment groups)

1 2 3 4 5 6 7 8 9 10

Assay 48 49 49 55 48 54 45 47 53 50

Results 51 50 52 55 47 52 49 49 50 51

Mean 49.5 49.5 50.5 55 47.5 53 47 48 51.5 50.5

Grand average = 50.2

In certain situations (particularly when treatments are a random effect), one may be
less interested in a statistical test of treatment differences, but more interested in separately
estimating the variability due to different treatment groups and the variability within treatment
groups. We will consider an example of a quality control procedure for the assay of finished
tablets. Here, we wish to characterize the assay procedure by estimating the sources of variation
that make up the variability of the analytical results performed on different, distinct tablets. This
variability is composed of two parts: (a) that due to analytical error, and (b) that due to tablet
heterogeneity. A oneway ANOVA design such as that shown in Table 12.7 will yield data to
answer this objective. In the example shown in the table, 10 tablets are each analyzed in duplicate.
Duplicate determinations were obtained by grinding each tablet separately, and then weighing
two portions of the ground mixture for assay. The manner in which replicates (duplicates, in this
example) are obtained is important, not only in the present situation, but also in most examples
of statistical designs. Here we can readily appreciate that analytical error, the variability due
to the analytical procedure only, is represented by differences in the analytical results of the
two “identical” portions of a homogeneously ground tablet. This variability is represented by
the “within” error in the ANOVA table shown in Table 12.8. The “within”-mean square is the
pooled variance within treatment groups, where a group, in this example, is a single tablet.

The between-tablet mean square is an estimate of both assay (analytical error) and the
variability of drug content in different tablets (tablet heterogeneity) as noted above. If tablets were
identical, individual tablet assays would not be the same because of analytical error. In reality,
in addition to analytical error, the drug assay is variable due to the inherent heterogeneity of
such dosage forms. Variability between tablet assays is larger than that which can be accounted
for by analytical error alone. This is the basis for the F test in the ANOVA [(between-mean
square)/(within-mean square)]. Large differences in the drug content of different tablets result
in a large value of the between-tablet mean square. This concept is illustrated in Figure 12.10,
which shows an example of the distribution of actual drug content in a theoretical batch of
tablets. The distribution of tablet assays is more spread out than the drug content distribution,
because the variation based on the assay results of the different tablets include components due
to actual drug content variation plus assay error.

Based on the theoretical model for the one-way ANOVA, section 8.1 (random model),
it can be shown that the between-mean square is a combination of the assay error and tablet
variability as follows:

BMS = n�2
T + �2

w, (12.3)

where n is the number of replicates in the design (based on equal replication in each group,
two assays per tablet in our example), �2

T the variance due to tablet drug content heterogeneity,

Table 12.8 Analysis of Variance for the Tablet Assay Data from Table 12.7

Source d.f. SS MS

Between tablets 9 112.2 12.47

Within tablets 10 27.0 2.70

Total 19 139.2
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Figure 12.10 Distribution of actual drug content compared to distribution of analytical results of tablets (these

are theoretical, hypothetical distributions).

and �2
W is the within-treatment (assay) variance. In our example, n = 2, and the between-mean

square is an estimate of 2�2
T + �2

W. The within-tablet mean square is an estimate of �2
W, equal to

2.70 (Table 12.8). The estimate of �2
T from Eq. (12.3) is (BMS − �2

W)/n

Estimate of �2
T = between MS − 2.70

2
= 12.47 − 2.70

2
= 4.9.

In this manner we have estimated the two components of the between-treatment mean
square term

�2
W = 2.7 and �2

T = 4.9.

The purpose of the experiment above, in addition to estimating the components of vari-
ance, would often include an estimation of the overall average of drug content based on the 20
assays (Table 12.7). The average assay result is 50.2 mg. The estimates of the variance compo-
nents can be used to estimate the variance of an average assay result, consisting of m tablets
with n assay replicates per tablet. We use the fact that the variance of an average is equal to the
variance divided by N, where N is equal to mn, the total number of observations. According to
Eq. (12.3), the variance of the average result can be shown to be equal to

n�2
T + �2

W

mn
. (12.4)

The variance estimate of the average assay result (50.2) for the data in Table 12.7,
where m = 10 and n = 2, is

2(4.9) + 2.7
10(2)

= 0.62.

Note that this result is exactly equal to the between-mean square divided by 20.
According to Eq. (12.4), the variance of single assays performed on two separate tablets,

for example, is equal to (m = 2, n = 1)

4.9 + 2.7
2

= 3.8.
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Note that the variance of a single assay of a single tablet is �2
T + �2

W. Similarly, the variance
of the average of two assays performed on a single tablet (m = 1, n = 2) is (2�2

T + �2
W)/2

(see Exercise Problem 11). The former method, where two tablets were each assayed once, has
greater precision than duplicate assays on a single tablet. Given the same number of assays,
the procedure that uses more tablets will always have better precision. The “best” combination
of the number of tablets and replicate assays will depend on the particular circumstances, and
includes time and cost factors. In some situations, it may be expensive or difficult to obtain
the experimental material (e.g., obtaining patients in a clinical trial). Sometimes, the actual
observation may be easily obtained, but the procedure to prepare the material for observation
may be costly or time consuming. In the case of tablet assays, it is conceivable that the grinding
of the tablets, dissolving, filtration, and other preliminary treatment of the sample for assay
might be more expensive than the assay itself (perhaps automated). In such a case, replicate
assays on ground material may be less costly than assaying separate tablets, where each tablet
must be crushed and ground, dissolved, and filtered prior to assay. However, such situations
are exceptions. Usually, in terms of precision, it is cost effective to average results obtained from
different tablets.

The final choice of how many tablets to use and the total number of assays will probably
be a compromise depending on the precision desired and cost constraints. The same precision
can be obtained by assaying different combinations of numbers of tablets (m) with different
numbers of replicate determinations (n) on each tablet. Time-cost considerations can help make
the choice. Suppose that we have decided that a sufficient number of assays should be performed
so that the variance of the average result is equal to approximately 1.5. In our example, where
the variance estimates are S2

T = 4.9 and S2
W = 2.7, the average of five single-tablet assays would

satisfy this requirement

S2
T = 4.9 + 2.7

5
= 1.52.

As noted above, the variance of a single-tablet assay is S2
T + S2

W. An alternative scheme
resulting in a similar variance of the mean result is to assay four tablets, each in duplicate

(m = 4, n = 2).

S2
X = 2(4.9) + 2.7

8
= 1.56.

The latter alternative requires eight assays compared to five assays in the former scheme.
However, the latter method uses only four tablets compared to the five tablets in the former
procedure. The cost of a tablet would probably not be a major factor with regard to the choice of
the alternative procedures. In some cases, the cost of the item being analyzed could be of major
importance. In general, for tablet assays, in the presence of a large assay variation, if the analytical
procedure is automated and the preparation of the tablet for assay is complex and costly, the
procedure that uses less tablets with more replicate assays per tablet could be the best choice.

12.4.1.1 Nested Designs
Designs for the estimation of variance components often fall into a class called nested or com-
pletely hierarchical designs. The example presented above can be extended if we were also
interested in ascertaining the variance due to differences in average drug content between dif-
ferent batches of tablets. We are now concerned with estimating (a) between-batch variability, (b)
between-tablet (within batches) variability, and (c) assay variability. Between-batch variability
exists because, despite the fact that the target potency is the same for all batches, the actual
mean potency varies due to changing conditions during the manufacture of different batches.
This concept has been discussed under the topic of control charts.

A design used to estimate the variance components, including batch variation, is shown
in Table 12.9 and Figure 12.11. In this example, four batches are included in the experiment, with
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Table 12.9 Nested Design for Determination of Variance Components

Batch A B C D

Tablet 1 2 3 1 2 3 1 2 3 1 2 3

50.6 49.1 51.1 50.1 51.0 50.2 51.4 52.1 51.1 49.0 47.2 48.9

50.5 48.9 51.1 49.0 50.9 50.0 51.7 52.0 51.9 49.0 47.6 48.5

50.8 48.5 51.4 49.4 51.6 49.8 51.8 51.4 51.6 48.5 47.6 49.2

ANOVA

Source d.f. SS MS Expected MSa

Between batches 3 48.6875 16.229 �2
W + 3�2

T + 9�2
B

Between tablets (within

batches)

8 17.52 2.190 �2
W + 3�2

T

Between assays (within

tablets)

24 2.50 0.104 �2
W

aCoefficient for �2
T = replicate assays; coefficient for �2

B = replicate assays times the number of tablets per batch.

three tablets selected from each batch (tablets nested in batches), and three replicate assays of
each tablet (replicate assays nested in tablets). This design allows the estimate of variability due
to batch differences, tablet differences, and analytical error. The calculations for the ANOVA
will not be detailed (see Ref. [9]) but the arithmetic is straightforward and is analogous to the
analysis in the previous example.

The mean squares (MS) calculated from the ANOVA estimate the true variances indicated in
the column “expected MS.” The coefficients of the variances from the expected mean squares
and the estimates of the three “sources” of variation can be used to estimate the components of
variance. The variance components, �2

B , �2
T , and �2

W may be estimated as follows from the mean
square and expected mean square columns in Table 12.9.

S2
W = 0.104

S2
W + 3S2

T = 2.190 S2
T = 0.695

S2
W + 3S2

T + 9S2
B = 16.229 S2

B = 1.56

An estimate of the variance of single-tablet assays randomly performed within a single
batch is S2

W + S2
T = 0.799. If tablets are randomly selected from different batches, the variance

estimate of single-tablet assays is S2
W + S2

T + S2
B = 2.36.

Nested designs should be symmetrical to be easily analyzed and interpreted. The symme-
try is reflected by the equal number of tablets from each batch, and the equal number of replicates
per tablet. Missing or lost data result in difficulties in estimating the variance components [10].

Figure 12.11 A nested or completely hierarchical design to estimate variance components (three of four batches

are shown).
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12.5 ESTABLISHING IN-HOUSE LIMITS
An important consideration in establishing standards is to evaluate limits for release of products.
The two important kinds of release limits are “official” limits, such as stated in the USP or in
regulatory submissions, and “in-house” limits that are narrower than the “official” limits. The
purpose of in-house limits is to obtain a greater degree of assurance that the true attributes
of the product are within official limits when the product is released. Thus, in-house limits
decrease the consumer risk. If a product shows measurable decomposition during its shelf life,
the in-house release specifications must be more narrow than the official limits to compensate
for the product instability.

In the absence of instability, in-house limits should be sufficiently within the official limits
to ensure the integrity of the product considering the variability of the measurement (assay). For
the case of a homogeneous sample (e.g., solutions or a composite sample of a solid dosage form),
the variability of the assay may be accounted for by analytical error. An important consideration
is to use a proper estimate of the analytical variability. A distinction should be made between
within-day variability and between-day variability. For this application, the variability of the
analytical method should be estimated as between-day variability. The reason for this is that
the variability of an assay on any given day will be dependent on assay conditions on that day,
and is apt to be larger than the within-day variability (differences among replicate assays on the
same day). For solid dosage forms, the variability of the final assay is a combination of analytical
error and tablet heterogeneity (that is, in the absence of analytical error, two separate samples
will differ in drug content due to the fact that perfect mixing is not possible in a powder mix).
In this case, the estimate of assay variability should not ignore these components of variance.
(See discussion of components of variance.)

The examples below show the calculation for a lower limit for in-house release specifica-
tions, but the same reasoning will apply for an upper in-house release specification.

LRL = Lower official limit + t × S
LRL = Lower release specification (12.5)

For a 95% one-sided confidence interval, t is determined from a t table with d.f. based
on the estimate of the assay standard deviation, S. The standard deviation is obtained from
between-day replicates during assay development or from a standard product assayed on
different days. For tablets, the proper standard deviation should include tablet heterogeneity,
that is, replicate assays on different composites. A standard deviation estimated from replicates
done on the same day (sometimes estimated from control charts) is not the correct standard
deviation.

If, according to SOPs, the assay for release is done in duplicate, one might be tempted to
divide the last term in Eq. (12.5) by

√
2. This is not strictly correct because the duplicates refer to

within-day variability. If the duplicates were done on two separate days (an unlikely procedure)
and on separate composites, then the division by

√
2 would be more correct. If replicates are

used for the final assay, one could estimate the correct error if an estimate of the within- and
between-day components of variance (based on assay of different composites) is available.

S2
total = S2

between + S2
within

n
,

where n = number of replicates (separate sets of composites). In this case, the number of d.f. can
be estimated using Saterthwaite’s (see below) approximation. An alternative way of estimating
the s.d., if product heterogeneity is not a factor, is to perform replicate determinations on a
standard product over time and compute the s.d. of the average results. Some examples should
clarify the procedure.

Example 1. Single assays on a portion of a cough syrup are performed as one of the tests for the
release of the product. The assay has a s.d. of 2.1 based on the results of the assay performed on
a single stable batch on 15 different occasions (days). From Table IV.4, the value of t with 14 d.f.
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for a one-sided 95% confidence interval is 1.76. If the official limits are 90% to 110%, in-house
limits of

90% + 1.76 × 2.1 = 93.7
110% − 1.76 × 2.1 = 106.3

mean that if the assay falls within 93.7% and 106.3%, the probability that the true batch mean is
out of official specifications (90%–110%) is less than 5%.

Example 2. Single assays on a composite of 20 tablets are performed as one of the tests for the
release of a product. During development of the product and the assay, an experimental batch
of tablets was assayed on 20 different days (a different composite each day). This assay was
identical to the composite assay, a 20 tablet composite. The drug in the dosage form is very
stable. The s.d. (19 d.f.) is 2.1. From Table IV.4, the value of t with 19 d.f. for a one-sided 95%
confidence interval is 1.73. If the official limits are 90% to 110%, the in-house limits are

90% + 1.73 × 2.1 and 110% − 1.73 × 2.1
93.63% to 106.37%.

Example 3. Consider the situation in Example 2 where the assay is performed in duplicate and
the average result is reported as a basis for releasing the batch. The duplicate determination is
performed on two portions of the same 20 tablet composite on the same day. The variability of
the result is a combination of tablet content heterogeneity, and within- and between-day assay
variability. Since the same composite is assayed twice, the variance is

[S2
tablet heterogeneity]

20
+ S2

(assay) between +
[S2

(assay) within]

2
. (12.6)

If one considers the first term to be small relative to the last two terms, the s.d. can be
computed with estimates of the within- and between-day variance components. These estimates
could be obtained from historical data, including data garnered during the assay development.
The important point to remember is that the computation is not straightforward because of the
need to estimate variance components and the d.f. based on these estimates. Assuming that the
between-day variance component of the assay is 0, we could calculate the limits as follows.

Assume that the first two terms in Eq. (12.6) are small and that the assay variability has
been estimated based on 15 assays with s.d. = 2.1. The average of duplicate assays on the same
composite would have in-house limits of

90% + 1.76 × 2.1/
√

2 and 110% − 1.76 × 2.1
√

2
92.6 to 107.4%.

If the tablet variability, [S2
tablet heterogeneity]/20, is large compared to assay variability (prob-

ably a rare occurrence), performing duplicate assays on the same composite will not yield
much useful information. In this case, to get more precision, one can assay separate 20 tablet
composites (see Exercise Problem 13 at the end of this chapter).

Allen et al. [4] discuss the setting of in-house limits when a product is susceptible to
degradation. This situation is complicated by the fact that the in-house limits must now take
into consideration an estimate of the rate of degradation with its variability, as well as the
variability due to the assay. Obviously, the in-house release limits should be within the official
limits. In particular, for the typical case where the slope of the degradation plot is negative, we
are concerned with the lower limit. If the official lower limit is 90%, the in-house release limit
should be greater than 90% by an amount equal to the estimated amount of drug degraded
during the shelf life plus another increment due to assay variability. The following notation
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is somewhat different from Allen et al., but the equations are otherwise identical. The lower
release limit (LRL) can be calculated as shown in Eq. (12.7).

LRL = OL − DEGRAD + t ×
(

S2
d + S2

a

n

)1/2

(12.7)

where OL is the official lower limit; DEGRAD the predicted amount of degradation during
shelf life = average slope of stability regression lines × shelf life; S2

d the variance of total
degradation = shelf life2 × S2

slope.

Note: Variance of slope = S2
y.x/

∑
(X − X)2

Var (k × variable) = k2 × S2 (variable) where k is a constant
S2

a = variance of assay
Note: S2

a is added because the assay performed at release is variable.

Another problem in computing the LRL is computation of d.f. for the one-sided 95%
t distribution. The problem results from the fact that d.f. are associated with two variance
estimates. When combining independent variance estimates, Satterthwaite approximation can
be used to estimate the d.f. associated with the combined variance estimate [Eq. (12.8)].

For the linear combination, L, where

L = a1S2
1 + a2S2

2 + . . .

the d.f. for L are approximately

d.f. = (a1S2
1 + a2S2

2 + . . .)2

(a1S2
1 )2/v1 + (a2S2

2 )2/v2 + . . .
(12.8)

where vi is d.f. for variance i.
The following example (from Allen) illustrates the calculation for the release limits.

OL = 90%
Average slope = −0.20%/month
shelf life = 24 months
DEGRAD = −0.20 × 24 = −4.8%
Sa = 1.1%
Standard error of the slope = 0.03%
Sd = 0.03 × 24 = 0.72%
d.f. = 58
t = 1.67
n = 2 (duplicate assays)

If more than one lot is used for the computation, the lots should not be pooled without
a preliminary test. Otherwise, an average slope may be used. In the case of multiple lots,
the computations are not as straightforward as illustrated, and statistical assistance may be
necessary.

Note the precautions on the variance of duplicate assays as discussed above.

LRL = 90 + 4.8 + 1.67 ×
(

0.722 + 1.12

2

)1/2

= 96.6%.

The lower release specification is set at 96.6%.
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12.6 SOME STATISTICAL ASPECTS OF QUALITY AND THE “BARR DECISION”
The science of quality control is largely based on statistical principles, in part because we take
small samples and make inferences about the large population (e.g., a batch). Following is a
discussion of a few topics that illustrate some statistical ways of looking at data.

What is a good sample size? The FDA often seeks information on the rationale for sample
sizes in SOPs. Are we taking enough samples? How many samples should we use for analysis?
Actually, this is not an easy question to answer in many cases and that is why the question is
asked so often. To answer this question from a statistical point of view, one has to answer a
few questions, not all of them easy (chap. 6). For example, we need an estimate of the s.d. and
definitions of alpha and beta levels for a given meaningful difference, if the data suggest some
comparison.

Often the sample size is fixed based on other considerations such as official specifications.
Cost is a major consideration. As an example, consider the composite assay for tablets as one
of the QC release criteria. Twenty tablets are assayed to represent a million or more tablets in
many cases.

Is this sample large enough? The sample size needed to make such an estimate depends
on the precision (s.d.) of the data and the desired precision of the estimate in which we are
interested, the mean of the 20 tablets in this case. For the composite assay test, we are required
to assay at least 20 tablets. Suppose that tablet variability (RSD) as determined from CU tests is
about 3% and the analytical error (RSD) is 1%. Based on this information, we can estimate the
variability of the composite assay. The content uniformity variation is due to tablet heterogeneity,
which includes weight variation and potency variation, in addition to analytical error.

S2
content uniformity = S2

weight + S2
potency + S2

analytical.

The tablet heterogeneity variance is the content uniformity variance minus the analytical
variance.

S2
potency + S2

weight = S2
content uniformity − S2

analytical = (3)2 − (1)2 = 8.

We could even estimate the potency variation separately from weight variation if an
estimate of weight variation is available (from QC tests for example).

The variability of the average of 20 tablets (without analytical error) is

S2
composite = 8

20
= 0.4.

If we assay a mixture of 20 tablets, the variance including analytical error is

S2 = 0.4 + 1 = 1.4
S = 1.18.

Do you think that the average of a randomly selected sample of 20 tablets gives an accurate
representation of the batch? We might answer this question by looking at a confidence interval
for the average content based on these data. Assume that the analytical error is well established
and, for this calculation, 9 d.f. (based on CU data) are reasonable for the t value needed for the
calculation of the confidence interval. If the observed composite assay is 99.3%, a 95% confidence
interval for the true average is

99.3% ± 2.262 × 1.18 = 96.6 to 102.0.

If this is not satisfactory (too wide), we could reduce the interval width by performing
replicate assays of the composite or, perhaps, by using more tablets in the composite. For
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example, duplicate assays from a single composite may be calculated as follows:

S2 = 0.4 + 1
2

= 0.9

S = 0.95.

Note that the assay variance is reduced by half, but the variance due to tablet heterogeneity
is not changed because we are using the same composite. The confidence interval for the
duplicates is

99.3 ± 2.262 × 0.95 = 97.2% to 101.4%.

Using more than 20 tablets would decrease the CI slightly. If we used 40 tablets with a
single assay, the variance would be

S2 = 8
40

+ 1 = 1.2

and the CI would be 96.8 to 101.8.
When combining independent variance estimates, Satterthwaite approximation can be

used to estimate the d.f. associated with the combined variance estimate. The formula [Eq.
(12.8)] is presented in section 12.5

d.f. = (a1S2
1 + a2S2

2 + . . .)2

(a1S2
1 )2/v1 + (a2S2

2 )2/v2 + . . .
, (12.8)

where vi is d.f. for variance i.
For example, suppose the estimates of variance have the d.f. as follows:

S2
analytical = 2 with 15 d.f.

S2
weight = 9 with 9 d.f.

S2
potency = 1 with 6 d.f.

The d.f. for an estimate of content uniformity are based on the following linear combination:

1 × S2
analytical + 1 × S2

weight + 1 × S2
potency.

From Eq. (12.8),

d.f. = (9 + 2 + 1)2

(4/15 + 81/9 + 1/6)
= 15.3.

Estimating the d.f. using this approximation is less good for the differences of variances
as compared to the sum of variances.

Example. Limits based on analytical variation are to be set for release of a product. The
lower limit is 90%. In-house limits are to be sufficiently above 90% so the probability of an assay
being below 90% is less than 0.05. Calculate the release limits where a single assay is done on
a composite of 20 tablets. The assay RSD is 3% based on 25 d.f. Tablet heterogeneity (RSD) is
estimated as 1% based on 9 d.f.
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The estimated variance of the composite assay is (a1 = 1/20, s2
1 = 1, a2 = 1, S2

2 = 3)

1
20

+ 32 = 9.05%

d.f. ≈ (32 + 12/20)2/[32 × (1/25) + (1/20)2 × (1/9)] = 25.3

Assuming 26 d.f., t = 1.71
The lower limit is 90 + 1.71 × √

9.05 = 95.1.

Therefore, the lower in-house limit is 95.1%.
Blend Samples. What are some properties of three dose weight samples for blend testing?

This has been interpreted in different ways, such as (a) take three sample weights and assay
the whole sample. (b) Take three sample weights and assay a single dose weight without
mixing the sample. (Tread lightly when transferring the sample to the laboratory.) (c) Take three
sample weights, mix thoroughly and assay a single sample. Based on the Barr decision [11],
the latter (c) appears to be preferable. Some firms have been requested to sample the blend
(3 dose weights) and to impose limits of 90% to 110% for each sample. One might ask if this
standard is too restrictive, too liberal, or just right? To help evaluate this procedure, consider the
case of a firm that assays three samples, each of single dosage weights. How might the above
criterion for acceptance compare to that for 10 dosage units in which all must be between 85%
and 115%?

Some approximate calculations to see if the 90% to 110% limits are fair for the blend
samples can shed some light on the nature of the specifications. Suppose that the assay is right
on, at 100%. Suppose, also, that 99.9% of the tablets in the batch are between the 85% to 115%
CU limits. The probability of 10 of 10 tablets passing if each has a probability of 0.999 of passing
is (binomial theorem)

0.99910 = 0.99.

If the tablets are distributed normally, the s.d. is about 4.6. This is based on the fact that a
normal distribution with a mean of 100 and a s.d. of 4.6 will have 99.9% of the values between 85
and 115. This same distribution will have 97% of the tablets between 90 and 110. The probability
of 3 of three units being between 90 and 110 is

0.973 = 0.91,

which is less than the probability of passing for the final tablet content uniformity test.
The FDA has recommended that the limits for the blend samples be 90% to 110%. Since

the probability of passing the final tablet CU test is 0.99 under these circumstances, the chances
of failing the blend uniformity test may not seem fair, unless you believe that the blend should
be considerably more uniform than the final tablets.

What limits would be fair to make this acceptance criterion (3/3 must pass) equivalent to
the USP test given the above estimates. Let the probability of passing the blend test = 0.99 to
make the test equivalent to that for the finished tablets.

P3 = 0.99,

where p is the probability of a single blend sample passing.

p = 0.9967

That is, to make the probability of passing (3/3) the same as the final CU test, we would
assume that 99.67% of the samples should be within limits. Assuming a normal distribution
with a RSD of 4.6%, this corresponds to acceptance limits of about 87.5 to 112.5. This would
seem fair. However, what are the consequences if the 3-dosage unit weight is composited? In
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this case, we are assaying the average of 3 tablet weights. These assays should be less variable
with a s.d. less than 4.6, the s.d. of single unit weights. Although the variability of the average
of 3 dosage weights will be smaller than a single dosage weight, the exact s.d. cannot be defined
because the nature of tablet heterogeneity cannot be defined. For the sake of this example, let
us assume that the s.d. is 2.66 (4.6/

√
3). Would 90% to 110% be fair limits for each of three

blend samples, each consisting of 3 dosage weights? We can compute the probability of a single
sample (3 tablet weights) passing using normal distribution theory.

Z = 10/2.66 = 3.76

probability (90 < assay < 110) = 0.99983.
The probability of three samples passing is

0.999833 = 0.999.

Although this test would be easier to pass than the final tablet content uniformity test, it is
based on an assumption of the value of the s.d. for the three unit weight samples, an unknown!

12.7 IMPORTANT QC TESTS FOR FINISHED SOLID DOSAGE FORMS
(TABLETS AND CAPSULES)

Important finished solid dosage form tests include

1. content uniformity;
2. assay;
3. dissolution.

In this section, a description of these tests is presented. Included also is the f 2 test for
comparing dissolution profiles of two different products with the same active ingredient (as is
often done when comparing the dissolution of generic and brand products).

12.7.1 Content Uniformity
The content uniformity is a test to assess and control the variability of solid dosage forms.
Although the sampling of the batch for these tests is not specified, good statistical practice
recommends some kind of random or representative sampling [12]. This test consists of two
stages. For tablets, 30 units are set aside to be tested. In the first stage, individually assay 10
tablets. If all tablets assay between 85% and 115% of label claim and the RSD is less than or
equal to 6, the test passes. If the test does not pass, and no tablet is outside 75% or 125%, assay
the remaining individual 20 tablets (Stage 2). The test passes if, of the 30 tablets, not more than
one tablet is outside 85% to 115% of label claim, no tablet is outside 75% to 125%, and the RSD
is less than or equal to 7.8%.

For capsules, the first stage is the same as for tablets, except that one capsule may lie
outside of 85% to 115%, but none outside 75% to 125%. The second stage assays 20 more
capsules and of the total of 30 capsules, no more than three capsules can be outside 85% to
115%, none outside 75% to 125% and the RSD not more than 7.8%.

12.7.2 Assay
The potency of the final product is based on the average of (at least) 20 dosage units. Twenty
random or representative units are ground into a “homogeneous” mix using a suitable method.
A sample(s) of this mix is assayed. This assay must be within the limits specified in the USP
or a specified regulatory document. Typically, but not always, the assay must be within 90% to
110% of label claim.

12.7.3 Dissolution
The FDA guidance for “Dissolution Testing of Immediate Release Oral Dosage Forms” suc-
cinctly describes methods for testing and evaluating dissolution data [13]. Dissolution testing
evaluates the dissolution behavior of the drug from a dosage form as a function of time. Thus,
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Table 12.10 USP Dissolution Test Acceptance Criteria

Stage Number tested Criteria

Stage 1 (S1) 6 Each unit not less than Q + 5%

Stage 2 (S2) 6 Average of 12 units (S1 + S2) equal to or greater than

and no unit less than Q − 15%

Stage 3 (S3) 12 Average of 24 units (S1 + S2 + S3) equal to or greater

than Q; and not more than 2 units are less than Q −
15%, and no unit is less than Q − 25%

Q is the dissolution specification in percent dissolved.

the typical dissolution-vs.-time curve shows the cumulative dissolution of drug over time.
Provided a sufficient quantity of solvent is available, 100% of the drug should be dissolved,
given enough time. The procedure for dissolution testing is described in the USP. Briefly, the
procedure requires that individual units of the product (for solid dosage forms) be placed in a
dissolution apparatus that typically accommodates six separate units. The volume and nature
of the dissolution medium is specified (e.g., 900 mL of 0.1 N HCl), and the containers, rotating
basket or paddle (USP), are then agitated at a prescribed rate in a water bath at 37◦C. Portions
of the solution are removed at specified times and analyzed for dissolved drug. Usually, dis-
solution specifications for immediate-release drugs are determined as a single point in time.
Table 12.10 shows the USP Dissolution Test Acceptance Criteria [14], which may be superseded
by specifications in individual drug monographs. For controlled-release products and during
development, dissolution at multiple time points, resulting in a dissolution profile (Fig. 12.12) is
necessary.

The principal purposes of dissolution testing are threefold: (1) for quality control, dis-
solution testing is one of several tests to ensure the uniformity of product from batch to
batch. (2) Dissolution is used to help predict bioavailability for formulation development. For
the latter purpose, it is well known that dissolution characteristics may predict the rate and
extent of absorption of drugs in some cases, particularly if dissolution is the rate-determining
step for drug absorption. Thus, although not always reliable, dissolution is probably the
best predictor of bioavailability presently available. (3) Finally, dissolution may be used as
a measure of change when formulation or manufacturing changes are made to an existing
formulation.

Figure 12.12 Dissolution profile comparing test to reference products.
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Table 12.11 Comparison of Test and Reference Dissolution Profiles

% Dissolution

Time (min) Test Reference Difference (Ri – Ti )

5 15 21 6

15 38 43 5

30 61 70 9

45 82 86 4

60 94 99 5

The so-called f 2 method can be used to compare two dissolution profiles. The formula for
the computation of f 2 is as follows:

f2 = 50 log

{[
1 +

(
1
N

)∑
(Ri − Ti )2

]−0.5

× 100

}
,

where N is the number of time points; Ri and Ti are the dissolution of reference and test products
at time i.

Consider the following example (Table 12.11 and Fig. 12.12).

f2 = 50 log

{[
1 + 1

N

∑
(Ri − Ti )2

]−0.5

× 100

}

= 50 log

{[
1 + 1

5
× (36 + 25 + 81 + 16 + 25)

]−0.5

× 100

}

= 50 log

{[
1 + 1

5
× 183

]−0.5

× 100

}
= 60.6

f 2 must be greater than 50 to show similarity.
f 2 should not be absolute. There are situations where the use of this test does not give

results that give reasonable conclusions. For example, with rapidly dissolving drugs, large
differences at early time points could result in an f 2 value less than 50 when the dissolution
profiles seem to be similar. Also, the method should be used and interpreted with care when
few data points are available.

Consider another example (Table 12.12 and Fig. 12.13).

f2 = 50 log

{[
1 +

(
1
4

)
(576 + 36 + 9 + 1)

]−0.5

× 100

}
= 45.

These products differ only at the very early, and probably variable, time point. Yet, they
are not considered similar using this test. As noted, an interpretation of these kinds of data
should be made with caution.

Table 12.12 A Second Comparison of Test and

Reference Dissolution Profiles

% Dissolution

Time (min) Test Reference

5 51 75

10 89 95

15 93 96

30 97 98
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Figure 12.13 Dissolution profile comparing test to refer-

ence products for fast dissolving products.

12.8 OUT OF SPECIFICATION (OOS) RESULTS
A discussion of OOS results (failing assay) is presented in Appendices V and VI. These articles
were prompted by the Barr decision and FDA’s interpretation of Judge Wolin’s decision [11].
Since these articles were published, the FDA has published a guidance for “Investigating Out
of Specification (OOS) Test Results for Pharmaceutical Production,” which addresses these
problems and more clearly defines procedures to be followed if an OOS result is observed [15].

The following is a synopsis of the document and comments on topics relevant to this book.
All OOS results should be investigated, whether or not the batch is rejected. It is important to find
causes that would help maintain the integrity of the product in future batches. The laboratory
data should first be inspected for accuracy before any test solutions are discarded. If no errors
are apparent, a “complete failure investigation should follow.” If an obvious error occurs, the
analysis should be aborted, and immediately documented. The thrust of the investigation is to
distinguish between a laboratory error and problems with the manufacture of the product. Of
course, the optimal procedure would be to have the opportunity to retest the suspect sample if it
is still available. In any event, if a laboratory error is verified, the OOS result will be invalidated.

In the laboratory phase of the investigation, various testing procedures are defined. Retest-
ing is a first option if there is not an obvious laboratory error. This is a test of the same sample
that yielded the OOS result. For example, for a solution, an aliquot of that same solution may be
tested. For a powdered composite, a new weighing from the same composite may be tested. The
analysis should be performed by a person other than the one who obtained the OOS result. This
retesting could confirm a mishandling of the sample or an instrumental error, for example. The
SOPs should define how many assays are necessary to confirm a retesting result. The number
of retests should be based on sound scientific and statistical procedures. (See Appendix for
an example of a basis for retesting.) However, an OOS result that cannot be documented as a
laboratory error, in itself, may not be sufficient to reject the batch. All analytical and other QC
results should “be reported and considered in batch release decisions.”

Resampling is sampling not from the original sample, but from another portion of the
batch. This may be necessary when the original sample is not available or was not prepared
properly, for example. These results may further indicate manufacturing problems, or may help
verify the OOS result as an anomoly.

The document also discusses averaging (see also App. VII). Averaging is useful when
measuring several values from a homogeneous mixture. If the individual results are meant to
measure variability, it is clear that averaging without showing individual values is not tolerable.
In any event when reporting averages, the individual values should be documented. All of
these procedures should be clearly spelled out in the appropriate SOPs. It is of interest that the
document discusses the case where three assays yield values of 89, 89, and 92, with a lower limit
of 90. Clearly, this should raise some questions, although the FDA document states that this by
itself does not necessarily mean that the batch will be failed.

Finally, the FDA does allow the use of outlier tests as long as the procedure is clearly
documented in the SOPs. As a final comment, common sense and good scientific judgment are
required to make sensible decisions in this controversial area.
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KEY TERMS
Acceptance sampling Consumer’s risk
Action limits Control chart
AQL Control chart for differences
Batch variation Control chart for individuals
Between- and within-batch variation Expected mean square
Chance variation f 2
Components of variance Moving average chart
Nested designs Runs
Operating characteristic (OC) Sampling for attributes
OOS (out of specification) Sampling for variables
Power curve Sampling plan
Producer’s (manufacturer’s) risk Statistical control
Proportion (p) charts Upper and lower limits
Range chart Warning limits
Rational subgroups X charts
Release limits 100% inspection
Resampling

EXERCISES
1. Duplicate assays are performed on a finished product as part of the quality control pro-

cedure. The average of assays over many batches is 9.95 and the average range of the
duplicates is 0.10 mg. Calculate upper and lower limits for the X chart and the range chart.

2. Past experience has shown the percentage of defective tablets to be 2%. What are the lower
and upper 3� limits for samples of size 1000?

3. A raw material assay shows an average percentage of 47.6% active with an average range
of 1.2 based on triplicate assay. Construct a control chart for the mean and range.

4. What is the probability of rejecting a batch of product that truly has 1.0% rejects (defects)
if the sampling plan calls for sampling 100 items and rejecting the batch if two or more
defects are found?

5. The initial data for the assay of tablets in production runs are as follows (10 tablets per
batch):

Batch Mean Range

1 10.0 0.3

2 9.8 0.4

3 10.2 0.4

4 10.0 0.2

5 10.1 0.5

6 9.8 0.4

7 9.9 0.2

8 9.9 0.5

9 10.3 0.3

10 10.2 0.6

Construct an X and range chart based on this “initial” data. Comment on observations out
of limits.

6. A sampling plan for testing sterility of a batch of 100,000 ampuls is as follows. Test 100
ampuls selected at random. If there are no rejects, pass the batch. If there are one or more
rejects, reject the batch. If 50 of the 100,000 ampuls are not sterile, what is the probability
that the batch will pass?
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7. A new method was tried by four analysts in triplicate.§

1 2 3 4

115 105 131 129

120 130 152 121

112 106 141 130

Perform an analysis of variance (one-way). Estimate the components of variance (between-
analyst and within-analyst variance). What is the variance of the mean assay result if three
analysts each perform four assays (a total of 12 assays)? What is the variance if four analysts
each perform duplicate assays (a total of eight assays)? If the first analysis by an analyst
costs $5 and each subsequent assay by that analyst costs $1, which of the two alternatives
is more economical?

8. Construct an X chart for the data of Table 12.2, using the moving average procedure. Use
the moving average to obtain X and R for the graph, from the first 15 batches. Plot results
for first 15 batches only.

9. Duplicate assays were run for quality control purposes for production batches. The first 10
days of production resulted in the following data: (a) 10.1, 9.8; (2) 9.6, 10.0; (3) 10.0, 10.1; (4)
10.3, 10.3; (5) 10.2, 10.8; (6) 9.3, 9.9; (7) 10.1, 10.1; (8) 10.4, 10.6; (9) 10.9, 11.0; (10) 10.3, 10.4.
(a) Calculate the mean, average range, and average standard deviation.
(b) Construct a control chart for the mean and range and plot the data on the chart.

10. What are the lower and upper limits for the range for the example of the moving average
discussed at the end of section 12.2.3?

11. What is the variance of the average of duplicate assays performed on the same tablet where
the between-tablet variance is 4.9 and the within tablet variance is 2.7? Compare this to the
variance of the average of singles assays performed on two different tablets.

12. How did 8 runs arise from the data in the example discussed in section 12.2.5?

13. For an assay that is being used to determine in-house limits, the within- and between-day
variances are estimated as 0.3% and 0.5%, respectively. Tablet heterogeneity is 4%. The
assay is performed in duplicate on the same day from the same composite.
(a) Compute the in-house limits if the official specifications are 90% and 110% and there

are 25 d.f. for the assay.
(b) Compute in-house limits if single assays are performed on two different composites on

the same day.
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13 Validation

Although validation of analytical and manufacturing processes has always been important in
pharmaceutical quality control, recent emphasis on their documentation by the FDA has resulted
in a more careful look at the implementation of validation procedures. The FDA defines process
validation as “. . . a documented program which provides a high degree of assurance that a
specific process will consistently produce a product meeting its predetermined specification and
quality attributes” [1]. Pharmaceutical process validation consists of well-documented, written
procedures ensuring that a specific pharmaceutical technology is capable of and is attaining
what is specified in official or in-house specifications, for example, a specified precision and
accuracy of an assay procedure or the characteristics of a finished pharmaceutical product.
Validation can be categorized as either prospective or retrospective. Prospective validation should
be applied to new drug entities or formulations in anticipation of the product’s requirements
and expected performance. Berry [2,3] and Nash [4] have reviewed the physical–chemical and
pharmaceutical aspects of process validation.

Retrospective validation may be the most convenient and effective way of validating
processes for an existing product. Data concerning the key in-process and finished characteristics
of an existing product are always available from previously manufactured batches. Usually,
there is sufficient information available to demonstrate whether or not the product is being
manufactured in a manner that meets the specifications expected of it.

13.1 PROCESS VALIDATION
In order to achieve a proper validation, an in-depth knowledge of the pharmaceutical process
is essential. Since the end result of the process is variable (e.g., sterility, potency assay, tablet
hardness, dissolution characteristics), statistical input is essential to validation procedures.
For example, experimental design and data analysis are integral parts of assay and process
validation.

For new products, prospective process validation studies are recommended based on
GMP guidelines. Products already marketed may not have been validated for various reasons,
for example, products marketed before the formal introduction of validation procedures. Ret-
rospective or concurrent validation methods are used to validate processes for products that
have not been validated previously. To recommend specific procedures for validation is difficult
because of the variety of products and conditions used during their manufacture. However,
there are some common procedures, including issues of sampling, assaying, and statistical
analysis, that deserve some discussion.

13.1.1 Retrospective Validation
The GMP guidelines referring to validation [1] suggest that either retrospective or prospective
validation may be used to validate a process. Retrospective validation would be applicable for
a product that has been on the market for which adequate data are available for evaluation.
Although there is no theoretical lower limit on the number of lots needed for such an evaluation,
20 lots have been suggested as an approximate lower limit [5]. In fact, judgment is needed when
deciding what constitutes an adequate number of batches. For example, for a product that is
made infrequently, or for a product that has an impeccable history of quality, a small number of
batches (perhaps 5–10) may be sufficient. Retrospective validation consists of an evaluation of
product characteristics over time. The characteristics should consist of attributes that reflect the
consistency, accuracy, and safety of the product. For solid dosage forms, the chief characteristics
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to be evaluated are typically blend uniformity, content uniformity, final assay, dissolution, and
hardness (for tablets). The most simple and direct way of evaluating and displaying these
characteristics is via control charts (see sect. 12.2.2). Each attribute could be charted giving
a visual display of the batch history. All batches that were released to the market should be
included. However, if a rejected batch is clearly out of specifications, inclusion in the charting
calculations could bias the true nature of the process. Certainly, if not included in the control
charts, the absence of such batches should be clearly documented. Again, scientific judgment
would be needed to make decisions regarding the inclusion of such batches in the control charts.
The control chart not only allows an evaluation of the consistency of the process, but also can
be helpful in identifying problems and as an aid in setting practical in-house release limits.
Thus, retrospective validation is a useful evaluative procedure, and, representing a relatively
large number of batches over a long period of time gives detailed information on the product
performance.

13.1.2 Prospective Validation
On the other hand, prospective validation must always be performed for a new product during
initial development and production. Usually, the first three production batches are evaluated in
great detail in order to demonstrate consistency and accuracy. The important feature of prospec-
tive validation is that the attributes measured reflect the important or critical characteristics of
the process. This requires a knowledge of the process. Having identified these features, an
experimental design and sampling plan that captures the relevant measurements is needed.
Each type of dosage form or product is different and may require different considerations.

One should be careful to distinguish process validation from formulation development
and optimization. The validation process follows the formulation and processing conditions
(such as mixing) “optimization,” critical attributes having been evaluated and determined for
the manufacturing process. At this point, the question of whether or not the process results in
a consistent, reproducible product is the primary concern.

13.1.3 Sampling in Process Validation
Sampling is an important consideration during process validation. The answers to where, when,
and how to take samples, as well as sample size and how many samples to be taken, are often
not obvious. Judgment is important and no firm rules can be given. For example, during the
validation procedure for solid dose forms, samples are taken (1) during the blend stage, (2)
when core tablets are produced if applicable, and (3) from the finished tablets. We speak of
random samples during these procedures, but, in fact, it is not possible, or practical, to take
samples randomly during production. Rather, we try to take samples that are representative
of the material being tested. For example, during the blend testing, we sample from the mixer
or drums, ensuring that the samples are taken from locations that are representative. Samples
taken from a blender or mixer, for purposes of validation, should include areas where good
mixing may be suspect because of the geometry of the blender. The number and size of samples
to be taken depend on the purpose of the study. For purposes of testing drug content or potency,
one or more well selected large size, composited samples may suffice. For purposes of testing
uniformity during a validation study, many smaller size samples are necessary. A sample size
equal to no more than three dosage units has been suggested in a recent court decision [5],
but sample sizes as small as one dosage unit are now becoming routine. Where electrostatic
effects may cause the assay of small samples to be biased, single dose weights washed out of
the thief, or larger sample sizes may give more reliable results. Although there are no rules for
the number of samples to be taken, certainly 10 suitably selected samples should be sufficient
when performing time-mix studies to determine the optimal mixing time. Having validated
the process, for routine blend testing, assay of three to six samples, selected representatively,
should be sufficient. The number of samples, if any, to be taken during production depends on
the product and the process. For many products, blend testing may be eliminated for production
lots after the process has been validated. A product that has a history of performing well will
need less extensive sampling than one that has shown a propensity for problems during its
history.



VALIDATION 351

During routine production, if blend assays are indicated, samples are typically taken
from drums rather than the mixer, as a matter of convenience. Also, sampling from the drums
represents a further step in the process, so that if the blend is satisfactory at this stage, one has
more confidence in the integrity of the batch than if samples are taken only from the blender.
When drums are tested for blend uniformity and drug content during validation, each drum
may be sampled. In addition, some or all of the drums may be sampled more than once; top,
middle, and bottom, for example. Some companies sample the first and last drums extensively,
from top, middle, and bottom, and the intervening drums only once. Again, as with sampling
from the mixer, the size of the sample requires judgment, based on the nature of the product
and the objective of the test.

The assays obtained from the drums can be analyzed for drug potency and uniformity.
These assays should show a relatively small RSD, so that one has confidence that the RSD of
the final product will be within limits, based on content uniformity assays. Although we cannot
ensure that every portion of the mix is identical since the product is by nature not uniform, we
would hope that the uniformity is good based on RSD requirements for the finished product
(less than 6%). For example, if the RSD at an intermediate stage (such as a blend) were greater
than 5%, some doubt would exist about the adequate uniformity of the mix.

In addition to blend testing for purposes of process validation or routine QC sampling,
sampling for intermediate product testing (e.g., tablet cores) and final product testing is impor-
tant. Some sampling procedures have been reviewed in chapter 4. Product is usually sampled
by selecting units throughout the run from the production lines, by QC personnel. The sample
is then submitted for assay as a composite of, for example, tablets over the entire run. This is a
form of stratified sampling, tablets being selected every hour during the run, for example. Since
final product analysis is usually specified in official documents (content uniformity, dissolution,
and a potency composite assay), the number of samples to be analyzed is prespecified. The sam-
ples to be analyzed are taken, at random, from the units supplied by the QC department. For
validation, additional assays are usually performed to ensure uniformity and compliance. For
example, content uniformity and dissolution tests may be performed on dosage units selected
from the beginning, middle, and end of the run. Coated products may be tested from different
coating pans. For all of these tests, in validation studies, analysis of both average drug potency
and uniformity is important. Statistical tests are less useful than statistical estimation in the
form of confidence intervals or point estimates. For example, in a validation study, if content
uniformity tests are run for tablets at the beginning, middle, and end of the run, we would
look at the results from each of the three content uniformity tests to ensure that the RSD was
similar and comfortably within the official limits without subjecting the data to a rigorous
statistical test.

There are no specific rules. The GMPs and validation guidelines are only recommen-
dations. If a standard procedure is implemented within a company, the procedure should be
examined with regard to each product, to ensure that a particular product is not unique in some
way that would require a variation in the testing procedure. Careful testing, based on good
judgment and science, benefits both the consumer and the manufacturer.

Statistical analysis of the data is useful. However, statistical methods should be used to
aid in an understanding of the data only. Hypothesis testing may not be useful, in part because
of power considerations. Scientific judgment should prevail.

Several examples will be given with solutions to illustrate the “validation” train of thought.
There is no unique statistical approach to any single problem in most practical situations. In
validation procedures, in particular, there will be more than one way of attacking a problem.
What is most needed is a clear idea of the problem and some common sense. In all of the
following examples, statistical methods will be used that have been discussed elsewhere in this
book.

Example 1: Retrospective validation. Quality control data are available for an ointment that
has been manufactured during a period of approximately one year. The in-process (bulk) product
is assayed in triplicate for each batch (top, middle, and bottom of the mixing tank). The finished
product consists of either a 2-oz container or a 4-oz container, or both. A single assay is performed
on each size of the finished product. The assay results for the eight batches manufactured are
shown in Table 13.1.
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Table 13.1 Results of Bulk and Finished Tablet Assays of Eight Batches

In-process bulk material (%) Finished product (%)

Batch Top Middle Bottom Average 2 oz 4 oz Average

1 105 106 106 105.7 104 101 102.5

2 105 107 103 105.0 108 107 107.5

3 102 109 105 105.3 — 107 107.0

4 105 104 104 104.3 105 107 106.0

5 106 104 107 105.7 107 102 104.5

6 110 108 107 108.3 108 107 107.5

7 103 105 105 104.3 102 104 103

8 108 112 114 111.3 113 — 113

Avg. 105.5 106.9 106.4 106.24 106.7 105 106.38

s.d. 2.56 2.75 3.38 2.40 — — 3.31

The following questions must be answered to pursue the process validation of this
product:

1. Are the assays within limits as stated in the in-house specifications?
2. Do the average results differ for the top, middle, and bottom of the bulk? This can be

considered as a measure of drug homogeneity. If the results are (statistically or practically)
different in different parts of the bulk container, mixing heterogeneity is indicated.

3. Are the average drug concentration and homogeneity in the bulk mix different from the
average concentration and homogeneity of the finished product?

4. Are batches in control based on the charting of averages using control charts?

Answers:

Question 1. The in-house specifications call for an average assay between 100% and 120%. All
batches pass based on the average results of both the bulk and finished products. Batch 8 has a
relatively high assay, but still falls within the specifications.

Question 2. A two-way analysis of variance (chap. 8) is used to test for equality of means
from the top, middle, and bottom of the bulk container. The average results are shown in
Table 13.1, and the ANOVA table is shown in Table 13.2. The F test shows lack of significance at
the 5% level, and the product can be considered to be homogeneous. The assays of top, middle,
and bottom are treated as replicate assays for purposes of determining within-batch variability.
(Some statisticians may not recommend a two-step procedure where a preliminary statistical
test is used to set the conditions for a subsequent test. However, in this case for purposes of
validation in the absence of true replicates, there is little choice.) Note that if the average results
of top, middle, and bottom showed significant differences (from both a practical and statistical
point of view), a mixing problem would be indicated. This would trigger a study to optimize
the mixing procedure and/or equipment to produce a relatively homogeneous product. We
understand that a heterogeneous system, as exemplified by an ointment, can never be perfectly
homogeneous. The aim is to produce a product that has close to the same concentration of
material in each part. From Table 13.2, the within-batch variation is obtained by pooling the
between position (top, middle, bottom) sum of squares and the error sum of squares. The
within-batch error (variance) estimate is 64.67/16 = 4.04 with 16 d.f. The standard deviation

Table 13.2 ANOVA for Top, Middle, and Bottom of Bulk

Source d.f. SS MS F

Batches 7 121.8 17.4 —

Top–middle–bottom 2 7.75 3.88 0.95

Error 14 56.92 4.07 —

Total 23 186.5
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Table 13.3 Paired t Test for Comparison of 2- and 4-oz

Containers (Omit Batches 3 and 8)

Average of 2 oz = 105.67

Average of 4 oz = 104.67

t = 1/(2.76
√

1/6) = 0.89

is the square root of the variance, 2.01. This would be the same error that would have been
obtained had we considered this a one-way ANOVA with eight batches and disregarded the
“top–middle–bottom” factor. Again, statistical analysis of the data is useful. However, statistics
should be used to help understand the data only. Hypothesis testing may not be useful because
of power considerations, and scientific judgment should always prevail.

Question 3. The comparison of the variability in the bulk and finished product would
be a test of change in homogeneity due to handling from the bulk to the finished product.
Although this may not be expected in a viscous, semisolid product such as an ointment, a
test to confirm the homogeneity of the finished product should be carried out if possible. In
powdered mixes such as may occur in the bulk material for tablets, a disruption of homogeneity
during the transformation of bulk material into the final tablet is not an unlikely occurrence. For
example, movement of the material in the containers during transport, or vibrations resulting
in the settling and sifting of particles in the storage containers prior to tableting, may result in
preferential settling of the materials comprising the tablet mix.

In order to compare the within-batch variability of the bulk and finished product, a within-
batch error estimate for the finished product is needed. We can use a similar approach to that
used for the bulk. Compare the average results for the two different containers (when both
sizes are manufactured) and if there is no significant difference, consider the results for the two
finished containers as duplicates. The analysis comparing the average results for the 2- and
4-oz containers for the six batches where both were manufactured is shown in Table 13.3. The
paired t test shows no significant difference (p > 0.05). The within-batch variation is obtained
by pooling the error from each of the six pairs, considering each pair a duplicate determination.

Within − mean square = (104 − 101)2 + (108 − 107)2 + . . . + (102 − 104)2

2 × 6
= 3.67.

This estimate of the within-batch variation is very close to that observed for the bulk
material (3.67 vs. 4.04). If a doubt concerning variability exists, a formal statistical test may be
performed to compare the within-batch variance of the bulk and finished products for the six
batches (F test; sect. 5.3) where estimates of the variability of both the bulk and finished product
are available. (We can assume that all variance estimates are independent for purposes of this
example.) The results show no evidence of a discrepancy in homogeneity between the bulk and
finished product. Although this approach may seem complex and circuitous, in retrospective,
undesigned experiments, one often must make do with what is available, making reasonable
and rational use of the available data.

The average results of the bulk and finished product can be compared using a paired
t test. For this test, we first compute the average result of the bulk and finished material for each
batch. The average results are shown in Table 13.1. The t test (Table 13.4) shows no significant
difference between the average results of the bulk and finished material.

If either or both of the tests comparing bulk and finished product (average result or
variance) show a significant difference, the data should be carefully examined for outliers or

Table 13.4 Paired t Test Comparing the Average of the Bulk

and Finished Product

Average of bulk = 106.24

Average of finished = 106.38

t = 0.14/1/(2.03
√

1/8) = 0.20
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Table 13.5 Computations for the Moving Average

Control Chart Shown in Figure 13.2

Moving average (N = 3) Moving range

105.33 0.7

104.87 1

105.1 1.4

106.1 4

106.1 4

107.97 7

Av. 105.91 3.02

obviously erroneous data, or research should be initiated to find the cause. In the present
example, where data for only eight batches are available, if the cause is not apparent, further
data may be collected as subsequent batches are manufactured to ensure that conclusions based
on the eight batches remain valid.

Question 4. A control chart can be constructed to monitor the process based on the data
available. This chart is preliminary (only eight batches) and should be updated as new data
become available. In fact, after a few more batches are produced, the estimates and compar-
isons described above should also be repeated to ensure that bulk and finished product assays
are behaving normally. The usual Shewhart control chart for averages uses the within-batch
variation as the estimate of the variance (see chap. 12). Sometimes in the case of naturally het-
erogeneous products, such as ointments, tablets, and so on, a source of variation between batches
is part of the process that is difficult to eliminate. In these cases, we may wish to use between-
batch variation as an estimate of error for construction of the control chart. As long as this
approach results in limits that are reasonable in view of official and/or in-house specifications,
we may feel secure. However, to be prudent, one would want to find reasons why batches cannot
be more closely reproduced. The within-batch variation for the bulk material was estimated as
(s.d.) 2.01. A control chart with 3 sigma limits could be set up as X̄ ± 3 × 2.01/

√
3 = 106.2 ± 3.5

based on the average of the top, middle, and bottom assays. Because of the presence of between-
lot variability, a moving average control chart may be appropriate for this data. This chart is
constructed from the averages of the three bulk assays for the eight batches (Table 13.1) using
a control chart with a moving average of size 3. Table 13.5 shows the calculations for this
chart.

For samples of size 3, from Table IV.10, the control chart limits are 105.91 ± 1.02(3.02)
= 105.91 ± 3.08. Figures 13.1 and 13.2 show the control charts based on within-batch vari-
ation and that based on the moving average. Note that the moving average chart show no
out-of-control values and would include batch number 8 within the average control chart
limits. The control chart based on within-batch variation finds batch number 8 out of limits.

Figure 13.1 Control chart for Table 13.1 data using within-batch variation to construct limits.
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Figure 13.2 Moving average control chart for data of Table 13.1.

Within-batch variation appears to underestimate the inherent variation that includes between-
batch variability. Until other sources of variability can be discovered, the moving average chart,
which includes between-batch variation, appears to accomplish the objective, that is, to set up
a control chart that allows monitoring of the average result of the manufacturing process.

A control chart for the moving range can be constructed using the factor for samples of
size 3 in Table IV.10. The upper limit is 2.57 × 3.02 = 7.76.

Another control chart of interest is a “range chart” that monitors within-batch variability. If
top, middle, and bottom assays are considered to be replicates, we can chart the range of assays
within each batch, a monitoring of product homogeneity. The construction of range charts is
discussed in chapter 12. Figure 13.3 shows the range chart for the bulk data from Table 13.1 (see
also Exercise Problem 1).

A control chart for the finished product is less easily conceived. Different batches may
have a different number of assays depending on whether one container or two different size
containers are manufactured. There are several alternatives here including the possibility of
using (1) separate control charts for the two different sizes, (2) a control chart based on an
average result, or (3) a chart with varying limits that depend on the sample size. Note that only
a single assay was performed for each finished container. If separate control charts are used for
each product, one may wish to consider assays from duplicate containers for each size container
so that a range chart to monitor within-batch variability can be constructed. In the present case,
limits for the average control chart for the finished product would be wider than that for the bulk
average chart since each value is derived from a single (or duplicate) reading rather than the
three readings from the bulk. (Note that if within variation is appropriate for construction of the
control chart, as may occur with other products, one might use the pooled within variation from
both the finished and bulk assays as an estimate of the variance to construct limits.) Exercise
Problem 2 asks for the construction of a control chart for finished containers.

Figure 13.3 Range chart for Table 13.1 data.
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Figure 13.4 Moving average chart for a 4-oz container from Table 13.1 data.

A preliminary control chart using a moving average of size 2 is shown for the 4-oz container
in Figure 13.4.

Should any values fall outside the control chart limits, appropriate action should be taken.
Refer to the discussion on control charts in chapter 12.

Example 2: An example of a prospective validation study. In this example, a new manufacturing
process is just underway for a tablet formulation of either (1) a new drug entity or (2) reformu-
lation of an existing product. Since it would be difficult to generate data from many batches in
a reasonable period of time, a recommended procedure is to carefully collect and analyze data
from at least three consecutive batches. Of course, this procedure does not negate the necessity
of keeping careful in-process and finished-product quality control records to ensure that the
quality of the product is maintained.

Prior to the design of the validation procedure, a review of the critical steps in the man-
ufacturing process is necessary. The critical steps will vary from product to product. For the
manufacture of tablets, critical steps would include (1) homogeneity and potency after mixing
and/or other processes in the preparation of bulk powder prior to tableting, (2) maintenance of
homogeneity after storage of the bulk material prior to tableting, (3) the effect of the tableting
process on potency as well as other important tablet characteristics such as content uniformity,
hardness, friability, disintegration, and dissolution.

In this example, we consider a product in which potency and homogeneity are to be
examined as indicators of the validation of the manufacturing process. To this end, both the
bulk material and final product are to be tested. We will assume that the critical steps have been
identified as (1) the mixing or blending step prior to compression and (2) the manufacture of the
finished tablet. Therefore, the product will be sampled both prior to compression in the mixing
equipment and after compression, the final manufactured tablet. Three mixing times will be
investigated to determine the effect of mixing time on the homogeneity of the mix.

If many variables are considered to be critical, the number of experiments needed to test
the effects of these variables may not be feasible from an economic point of view. In these cases,
one can restrict the range of many of the variables based on a “knowledge” of their effects from
experience. Other options include the use of fractional factorial designs or other experimental
screening designs [6].

The question of how many samples to take, as well as where and how to sample is not
answered easily. The answer will depend on the nature of the product, the manufacturing
procedure, as well as a certain amount of good judgment and common sense. We are interested
in taking sufficient samples to answer the questions posed by the validation process.

1. Does the process produce tablets that are uniform?
2. Does the process produce tablets that have the correct potency?
3. Does the variability of the final tablet correspond to the variation in the precompression

powdered mix?
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Table 13.6 Analysis of Bulk Mix in Blender and Final Tablets

Location 1 2 3 4 5 6

5 minutes mixing time

101 104 101 104 101 109

93 110 104 100 105 103

102 106 96 94 99 105

Average 98.7 106.7 100.3 99.3 101.7 105.7

s.d. 4.93 3.06 4.04 5.03 3.06 3.06

10 minutes mixing time

101 105 100 104 99 103

103 102 99 100 103 104

103 104 103 101 102 103

Average 102.3 103.7 100.7 101.7 101.3 103.3

s.d. 1.15 1.53 2.08 2.08 2.08 0.58

20 minutes mixing time

102 100 101 99 101 103

101 102 104 100 101 98

104 103 100 102 105 102

Average 102.3 101.7 101.7 100.3 102.3 101.0

s.d. 1.53 1.53 2.08 1.53 2.31 2.65

Final tablets

Beginning Middle End

102 99 102

98 100 103

103 105 100

100 101 100

103 97 104

103 102 102

101 98 100

100 103 97

99 102 105

104 100 101

Average 101.3 100.7 101.4

s.d. 2.00 2.41 2.32

Usually, samples are taken directly from the mixing equipment to test for uniformity.
Samples may be taken from different parts of the mixer depending on its geometry and potential
trouble spots. For example, some mixers, such as the ribbon mixer, are known to have “dead”
spots where mixing may not be optimal. Such “dead” spots should be included in the samples
to be analyzed. The finished tablets can be sampled at random from the final production batch,
or sampled as production proceeds. In the present example, 10 samples (tablets) will be taken
at each of the beginning, middle, and end of the tableting process.

Data for the validation of this manufacturing process are shown in Table 13.6. Tripli-
cate assay determinations were made at six different locations in the mixer after 5, 10, and
20 minutes of mixing. In this example, six locations were chosen to represent different parts
of the mixture. In other examples, samples may be chosen by a suitable random process. For
example, the mixer may be divided into three-dimensional sectors, and samples taken from
a suitable number of sectors at random. In the present case, each sample assayed from the
bulk mix was approximately the same weight as the finished tablet. During tablet compression,
10 tablets were chosen at three different times in the tablet production run and drug content
measured on individual tablets. This procedure was repeated for three successive batches to
ensure that the process continued to show good reproducibility. We will discuss the analysis of
the results of a single batch.
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Table 13.7 ANOVA for Table 13.6

Description Source d.f. MS F

5-minute mix Between 5 33.79 2.16

Within 12 15.67 —

10-minute mix Between 5 4.10 1.45

Within 12 2.83 —

20-minute mix Between 5 1.82 0.46

Within 12 3.94 —

Tablets Between 2 1.43 0.28

Within 27 5.06 —

Analysis of variance can be used to estimate the variability and to test for homogeneity
of sample averages from different parts of the blender or from different parts of the production
run (Table 13.7).

For the bulk mix, none of the F ratios for between sampling locations mean squares
are significant. This suggests that drug is dispersed uniformly to all locations after 5, 10, and
20 minutes of mixing. However, the within-MS is significantly larger in the 5-minute mix
compared to the 10- and 20-minute mixes. A test of the equality of variances can be performed
using Bartlett’s test or a simple F test, whichever is appropriate (see Exercise Problem 3). The
data suggest a minimum mixing time of 10 minutes. The homogeneity of the finished tablets is
not significantly different from the bulk mixes at 10 and 20 minutes as evidenced by the within-
MS error term. The tablet variance is somewhat greater than that in the mix (5.06 compared to
2.83 and 3.94 in the 10- and 20-minute bulk mixes). This may be expected, a result of moving
and handling of the mix subsequent to the mixing and prior to the tableting operation.

The average results and homogeneity of the final tablets appear to be adequate. Never-
theless, it would be prudent to continue to monitor the average results and the within variation
of both the bulk mix and finished tablet during production batches using appropriate control
charts. Again, a moving average chart, where between-batch rather than within-batch variance
is the measure of variability, may be necessary in order to keep results for the average chart
within limits.

13.2 ASSAY VALIDATION
Validation is an important ingredient in the development and application of analytical method-
ology for assaying potency of dosage forms or drug in body fluids. Assay validation must
demonstrate that the analytical procedure is able to accurately and precisely predict the con-
centration of unknown samples. This consists of a “documented program which provides a
high degree of assurance that the analytical method will consistently result in a recovery and
precision within predetermined specifications and limits.” To accomplish this, several proce-
dures are usually required. A calibration “curve” is characterized by determining the analytical
response (optical density, area, etc.) over a suitable range of known concentrations of drug.
Unknown samples are then related to the calibration curve to estimate their concentrations.
During the validation procedure, calibration curves may be run in duplicate for several days
to determine between- and within-day variation. In most cases, the calibration curve is linear
with an intercept close to 0. The proof of the validity of the calibration curve is that known sam-
ples, prepared independently of the calibration samples, and in the same form as the unknown
samples (tablets, plasma, etc.), show consistently good recovery based on the calibration curve.
By “good,” we mean that the known samples show both accurate and precise recovery. These
known samples are called quality control (QC) samples and are used in both the assay vali-
dation and in real studies where truly unknown samples are to be assayed. Typically, the QC
samples are prepared in three concentrations that cover the range of concentrations expected
in the unknown samples, and are run in duplicate. The QC samples are markers and as long as
they show good recovery, the assay is considered to be performing well, as intended.

In general, specific statistical procedures are not recommended by the FDA. This is not
necessarily negative as judgment is needed for the many different scenarios that are possible
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when developing new assays. For example, linearity “should be evaluated by visual inspec-
tion.” If linearity is accepted, then standard statistical techniques can be applied, such as fitting
a regression line by least squares (see sect. 7.5). Transformations to achieve linearity are encour-
aged. “The correlation coefficient, y-intercept, slope of the regression line and residual sum of
squares should be submitted.” An analysis of residuals is also recommended.

Some definitions used in assay methodology and validation follow:

Accuracy: Closeness of an analytical procedure result to the true value.
Precision: Closeness of a series of measurements from the same homogeneous sample.
Repeatability: Closeness of results under the same conditions over a short period of time (intra-

assay precision).
Interlaboratory (collaborative studies): Studies comparing results from different laboratories.

This is not recommended for approval of marketing. This is used more for defining
standardization of official assays.

Detection limit: Lowest level that can be detected but not necessarily quantified. The signal-
to-noise ratio is used when there is baseline noise. Compare low concentration samples
with a blank. “Establish the minimum concentration at which the analyte can be reliably
detected.” A signal-to-noise ratio of 2/1 or 3/1 is considered acceptable. The detection
limit may be expressed as

DL = 3.3 sigma
S

,

where sigma is the s.d. of response and S is the slope of calibration curve.
Quantitation limit (QL): The QL is determined with “known concentrations of analyte, and by

establishing the minimum level at which the analyte can be quantified with acceptable
accuracy and precision.”

A typical calculation of QL is

QL = 10 sigma
Slope

.

Good experimental design should be carefully followed in the validation procedure.
Careful attention should be paid to the use of proper replicates and statistical analyses. In
the following example, the calibration curve consists of five concentrations and is run on three
days. Separate solutions are freshly prepared each day for construction of the calibration curve.
A large volume of a set of QC samples at three concentrations is prepared from the start to be
used throughout the validation and subsequent analyses. A complete validation procedure can
be rather complicated in order to cover the many contingencies that may occur to invalidate the
assay procedure. In this example, only some of the many possible problems that arise will be
presented. The chief purpose of this example is to demonstrate some of the statistical thinking
needed when developing and implementing assay validation procedures.

The results of the calibration curves run in duplicate on three days are shown in Table 13.8
and Figure 13.5.

As is typical of analytical data, the variance increases with concentration. For the fitting
and analysis of regression lines, a weighted analysis may be used with each value weighted
by 1/X2, where X is the concentration. For analysis of variance, either a weighted analysis
or a log transformation of the data can be used to get rid of the variance heterogeneity
(heteroscedasticity). Analyses will be run to characterize the reproducibility and linearity of
these data. The calibration lines are at the heart of the analytical procedure as these are used to
estimate the unknown samples during biological (e.g., clinical) studies or for QC.

ANOVA: Table 13.9 shows the analysis of variance for the data of Table 13.8 after a log
(ln) transformation. The analysis is a three-way ANOVA with factors days (random), replicates
(fixed), and concentration (fixed). The two replicates from Table 13.8 are obtained by running
all concentrations at the beginning of the day’s assays and repeating the procedure at the end
of the day. Although the ANOVA for three factors has not been explained in any detail in this
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Table 13.8 Calibration Curve Data for Validation (Peak Area)

Day Concentration Replicate 1 Replicate 2 Average

1 0.05 0.003 0.004 0.0035

0.20 0.016 0.018 0.017

1.00 0.088 0.094 0.092

10.0 0.920 0.901 0.9105

20.0 1.859 1.827 1.843

2 0.05 0.006 0.004 0.005

0.20 0.024 0.020 0.022

1.00 0.108 0.116 0.112

10.0 1.009 1.055 1.032

20.0 2.146 2.098 2.122

3 0.05 0.005 0.008 0.0065

0.20 0.019 0.023 0.021

1.00 0.099 0.105 0.102

10.0 1.000 0.978 0.989

20.0 1.998 2.038 2.018

book, the interpretation of the ANOVA table follows the same principles presented in chapters
8 and 9, “Analysis of Variance” and “Factorial Designs,” respectively.

The terms of interest in Table 13.9 are replicates and replicate × concentration (BC) inter-
action. If the assay is performing as expected, neither of these terms should be significant. A
significant replicate term indicates that the first replicate is giving consistently higher (or lower)
results than the second. This suggests some kind of time trend in the analysis and should be
corrected or accounted for in an appropriate manner. A replicate × concentration interaction
suggests erroneous data or poor procedure. This interaction may be a result of significant dif-
ferences between replicates in one direction at some concentrations and opposite differences at
other concentrations. For example, if the areas were 1.0 and 1.2 for replicates 1 and 2, respectively,
at a concentration of 10.0, and 2.3 and 2.1 at a concentration of 20.0, a significant interaction may
be detected. Under ordinary conditions, this interaction is unlikely to occur.

A least squares fit should be made to the calibration data to check for linearity and outliers.
A weighted regression is recommended as noted above (see also sect. 7.7). This analysis is
performed if the ANOVA (Table 13.9) shows no problems. A single analysis may be performed

Figure 13.5 Calibration curves from Table 13.8 (weighted least squares fits).
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Table 13.9 Analysis of Variance for Calibration Data (Log Transformation)

Source d.f. SS MS F

Days (A) 2 0.3150 0.1575 —

Replicates (B) 1 0.01436 0.01436 0.36

Concentrations (C) 4 155.78 38.945 1528∗
AB 2 0.0803 0.04016 —
AC 8 0.2038 0.0255 —
BC 4 0.0155 0.0387 0.18

ABC 8 0.1742058 0.02178 —
Total 29 156.5834

∗p < 0.01.

for all three (days) calibration curves, but experience suggests that calibration curves may often
vary from day to day. (This is the reason for the use of QC samples, to check the adequacy
of each calibration curve.) In the present case, regression analysis is performed separately for
each day’s data. Table 13.10 shows the analysis of variance for the weighted least squares fit
for the calibration data on day 1 (weight = 1/X2). Each concentration is run in duplicate. The
computations for the analysis are lengthy and are not given here. Rather, the interpretation of
the ANOVA table (Table 13.10) is more important.

The important feature of the ANOVA is the test of deviations from regression (deviations).
This is an F test (deviation-MS/within-MS) with 3 and 5 d.f. The test shows lack of significance
(Table 13.10) indicating that the calibration curve can be taken as linear. This is the usual,
expected conclusion for analytical procedures. If the F test is significant, the regression plot
(Fig. 13.5) should be examined for outliers or other indications that result in nonlinearity (e.g.,
residual plots, chap. 7). Sometimes, even with a significant F test, examination of the plot will
reveal no obvious indication of nonlinearity. This may be due to a very small within-MS error
term, for example, and in these cases, the regression may be taken as linear if the other days’
regressions show linearity. If curvature is apparent as indicated by inspection of the plot and a
significant F test, the data should be fit to a quadratic model, or an appropriate transformation
applied to linearize the concentration–response relationship. The test for linearity is discussed
further in Appendix II.

A control chart may also be constructed for the slope and intercept of each day’s calibration
curve, starting with the validation data. This will be useful for detecting trends or outlying data.

A critical step in the assay validation procedure is the analysis of the performance of the QC
samples. These samples provide a constant standard from day to day to challenge the validity of
the calibration curve. In the simplest case, large volumes of QC samples at three concentrations
are prepared to be used both in the validation and in the real studies. The concentrations cover
the greater part of the concentration range expected for the unknown samples. The QC samples
are run in duplicate (a total of six samples) throughout each day’s assays. Usually, the samples
will be run at evenly spaced intervals throughout the day with the three concentrations (low,
medium, and high) run during the first part of the day and then run again during the latter part
of the day. Each set of three should be run in random order. For example, the six QC samples
may be interspersed with the unknowns in the following random order:

Medium . . . Low . . . High . . . Low . . . High . . . Medium

Table 13.10 ANOVA for Regression Analysis for Calibration Data from Day 1

Source d.f. SS MS F

Slope 1 0.056889 0.056889 1653.0

Error 8 0.000275 0.0000344 —

Deviations from regression 3 0.000004 0.0000013 0.02

Within (duplicates) 5 0.000271 0.0000542 —

Total 9 0.057164

Slope (weighted regression) = 0.09153

Intercept = −0.00109
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Table 13.11 Data for Quality Control Samples (% Recovery)

Day Concentration Replicate 1 Replicate 2 Average

1 0.50 106.5 103.9 105.2

1.50 97.8 102.4 100.1

15.0 101.6 97.2 99.4

2 0.50 99.4 107.6 103.5

1.50 104.0 105.4 104.7

15.0 96.9 100.7 98.8

3 0.50 97.4 100.2 98.8

1.50 100.6 99.2 99.9

15.0 104.2 101.8 103.0

Table 13.11 shows the results for the QC samples, in terms of percent accuracy, during
the validation procedure. Percent accuracy is used to help equalize the variances for purposes
of the statistical analysis. The first step is to perform an ANOVA for the QC results using
all of the data. In this example, the factors in the ANOVA are days (3 days), concentrations
(3 concentrations), and replicates (2, beginning of run vs. end of run). The ANOVA table is
shown in Table 13.12.

Table 13.12 should not indicate problems if the assay is working as expected. No effect
should be significant. A significant replicates effect indicates a trend from the first set of QC
samples (beginning of run) to the second set. A significant replicate × concentration interaction
is also cause for concern, and the data should be examined for errors, outliers, or other causes.
Table 13.12 shows no obvious evidence of assay problems.

To test that the assay is giving close to 100% accuracy, a t test is performed comparing the
overall average of all the QC samples versus 100%. This is a two-sided test

t =
∣∣Overall average − 100

∣∣√
Days MS/3

, (13.1)

where 3 = number of days. This is a weak test with only 2 d.f. If no significant effects are obvious
in the ANOVA, one may perform the t test on all the data disregarding days and replicates (N
= 18), and the t test would be

t =
∣∣Overall average − 100

∣∣√
S2/18

. (13.2)

Table 13.12 Analysis of Variance for Quality Control Samples

Source d.f. SS MS F

Days (A) 2 9.418 4.709 —

Replicates (B) 1 5.556 5.556 0.44

Concentrations (C) 2 13.285 6.642 0.31

AB 2 25.498 12.749 —

AC 4 84.675 21.169 —

BC 2 11.231 5.616 0.73

ABC 4 30.956 7.739 —

Total 17 180.618
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The interpretation of this test should be made with caution because of the assumption of
the absence of day, replicate, concentration, and interaction effects. For the data of Table 13.11,
the t tests [Eqs. (13.1) and (13.2)] are

t = |101.489 − 100|√
4.709/3

= 1.188 (13.3)

t = |101.489 − 100|√
(180.618/17)/18

= 1.938. (13.4)

We can conclude that the assay is showing close to 100% accuracy. Should the t test show
significance, at least one of the three QC concentrations is showing low or high assay accuracy.
The data should be examined for errors or outliers, and if necessary, each concentration analyzed
separately. The t tests would proceed as above but the data for a single concentration would be
used. For the low concentration in Table 13.11, the t test (ignoring the day and replicate effects),
would be

t = |102.5 − 100|
4.12

√
1/6

= 1.486.

To monitor the assay performance, control charts for QC samples may be constructed
starting with the results from the validation data. Control charts may be used for each QC
concentration separately or, if warranted, all QC concentrations during a day’s run can be
considered replicates. In the example to follow, we examine the control chart for each QC
concentration separately and use the medium concentration as an example. Probably, the best
approach is to use a control chart for individuals or a moving average chart (see chap. 12). The
validation data cover only three days. Following the validation, data were available for six more
days using unknown samples from a clinical study. The data for the medium QC sample from
the three validation days and the six clinical study days are shown in Table 13.13.

The average moving range is 2.62 based on samples of size 2. The overall average (of
the “average” column in Table 13.13) is 101.17. The 3 sigma limits are 101.17 ± 3(2.62/1.128) =
101.17 ± 6.97. The control chart is shown in Figure 13.6. All the results fall within the control
chart limits. Another control chart can be constructed for the range for the duplicate assays
performed each day. The average range is 2.38. The upper limit for the range chart is 7.78 (see
Exercise Problem 4). As for all control charts, the average and limits should be updated as more
data become available.

The control chart for the individual daily averages of the QC samples and the control
charts for the slope and intercept, if desired, are used to monitor the process for the analysis of
the unknown samples submitted during the clinical studies or for QC. If QC samples fall out of

Table 13.13 Data for Medium QC Sample (Concentration = 1.50)

for Control Chart

Day Replicate 1 Replicate 2 Average Moving range

1 97.8 102.4 100.1 —

2 104.0 105.4 104.7 4.6

3 100.6 99.2 99.9 4.8

4 99.3 97.8 98.55 1.35

5 103.8 101.4 102.6 4.05

6 103.4 103.0 103.2 0.60

7 99.6 102.4 101.0 2.2

8 99.4 103.8 101.6 0.6

9 100.1 97.6 98.85 2.75
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Figure 13.6 Moving average chart for Table 13.13 data.

limits and no obvious errors can be found, the analyses of the samples during that run may be
suspect.

A detailed description of analytical validation for blood assays in bioavailability studies
has been published by Lang and Bolton [7,8].

For further discussion of assay validation, see Ref. [9].

13.3 CONCLUDING REMARKS
In this chapter, some examples of statistical analysis and design of validation studies have been
presented. As we have noted, statistical input is a necessary part of the design and analysis
of validation procedures. The statistical procedures that may be used to analyze such data are
not limited to the examples given here, but are dependent on the design of the procedures and
the characteristics of the data resulting from these experiments. The design of the experiments
needed to validate processes will be dependent on the complexity of the process and the
identification of critical steps in the process. This is a most important part of validation and
the research scientist should be very familiar with the nature of the process, for example, a
manufacturing process or assay procedure [1,2,4]. The steps in the validation and statistical
analysis are best implemented with the cooperation of a scientist familiar with the physical and
chemical processes and a statistician. This is one of the many areas where such a joint venture
can greatly facilitate project completion.

KEY TERMS
Assay validation Process validation
Average control chart Prospective validation
Calibration curve Quality control samples
Control chart Range control chart
Critical steps Refractive validation
Moving average control chart Weighted analysis
Moving range control chart

EXERCISES
1. Construct the range chart using within-batch variation for the bulk material in Table 13.1.

Assume that the 3 readings within each batch are true replicates.
2. Construct a moving average chart (n = 3) for the 2-oz finished container in Example 2,

Table 13.1.
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3. Compare the variances during the mixing stage in Example 2 using Bartlett’s test. (The
variances are estimated from the within-MS terms in the ANOVAs in Table 13.7.)

4. Construct a range chart for the data of Table 13.12. Use the range of the daily duplicates to
construct this chart.

5. Construct a control chart for individuals based on the data for three days for the low QC
concentration from Table 13.11.
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14 Computer-Intensive Methods

The widespread availability of powerful computers has revolutionized society. The field of
statistics is no exception. Twenty years ago, the typical statistician had a collection of tables
and charts, without which he or she would have been lost. Today one can perform complex
statistical analyses without ever referring to a printed table, relying instead on the statistical
functions available in many standard software packages. The ubiquitous availability of personal
computing power and sophisticated programming packages permit us to approach statistics
today in a less mathematical, more intuitive manner than is possible with the traditional formula-
based approach.

The study of statistics by those lacking a strong mathematical background can be a daunt-
ing task. The traditional approach usually begins with the introduction of basic probability
theory followed by a presentation of standard statistical distributions. To this point, nothing
beyond algebra is required. Unfortunately, the progression to real-life problems and the devel-
opment of inferential methods often involve the derivation of formulas. In many cases, this is
accomplished through application of the calculus. The resulting formulas are generally neither
intuitive nor simple to comprehend. Too often, the study of statistics is relegated to a process
of memorization of these formulas that are then used in cookbook fashion. While the formula-
based method of problem solving has an important place in statistics, it is often intimidating
to the nonstatistician. For the statistician, this standard approach can become so automatic that
the art of data analysis is lost and important characteristics of the data may go unrecognized.
Using computer-intensive methods, we approach the solution of statistical problems through a
logical application of basic principles applied to a computer-based experiment.

Computer simulations can let us explore the behavior of probability-based processes with-
out becoming overly concerned about the underlying mathematics. When a real-life process can
be formulated to follow, or to approximately follow, a known statistical distribution, its charac-
teristics can be explored using Monte Carlo simulation. The Bootstrap Method [1] is a form of
computer simulation that is applied to a specific set of data (a sample) without assuming any
specific underlying statistical distribution. Bootstrap methods complement standard nonpara-
metric statistical analyses. These are used when we do not know, or do not want to assume,
what underlying statistical distribution is operative.

14.1 MONTE CARLO SIMULATION
Monte Carlo simulation enables exploration of complex, probability-based processes, many of
which would be difficult to understand by even the most astute statistician using standard
formula-based methods. In simulation, the computer performs a large number of experiments,
such as the random drawing of balls from an urn, the tossing of a fair or biased coin, or the
drawing of random samples from a Normal distribution. Solving a problem using computer
simulation involves reducing it to a simple probability-based model, designing a sampling
experiment based on the model, and then conducting the experiment, via the computer, a large
number of times. The cumulative frequency distribution of the experimental outcomes is viewed
as the cumulative probability distribution for the outcomes.

A simple example of how Monte Carlo simulation can be used instead of, or to comple-
ment, formula-based methods can be demonstrated using the antibiotic example of chapter 3.
In this example, the cure rate for an antibiotic treatment is stated to be 0.75. The question posed
is, what is the probability that three of four treated patients will have a cure? The analysis
tool add-in of Microsoft Excel provides a convenient way to simulate an answer to this ques-
tion. To activate this Excel option, if it is not already available in your installation, choose the
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Tools option from the Main Menu and then select Add-ins. From the choices in the drop-down
Add-ins menu, select (click on) both the Analysis ToolPak and the Analysis ToolPak-VBA. Both
choices should show a check mark in their respective boxes.

To answer our antibiotic question, open a new Excel worksheet.

Execute the following commands to simulate 30,000 flips of a biased coin, expected to
land on heads 75% of the time and on tails 25% of the time:

From the Main Menu bar, choose Tools.
From the options listed under Tools, choose Data Analysis.
From the Data Analysis options, choose the Random Number Generator.

In the drop-down Dialog Box, enter the following:

For Number of Variables, enter 6.
For Number of Random Numbers, enter 30000.
For Distribution, select Binomial from the choices in the pop-up menu.
Enter 0.75 for the p value and 4 for the Number of Trials.
Enter 12345 for the Random Seed. (Any random number can be used for the seed.)
Click on Output Range and enter A1 in the area to the right of this option.
Click OK to start the simulation.

The commands instructed Excel to generate entries in the cells of the first six columns of
the first 30,000 rows of the worksheet. The entry in each of these 180,000 cells represents the
simulated number of successes (heads) observed in four independent Bernoulli trials (four flips
of a biased coin). The possible outcome of each trial (flip) is either a 0 (tail) or a 1 (head), with the
probability of getting a 1 (success) being 0.75 and the probability of getting a 0 (failure) being
0.25. (The coin is biased toward heads.) We might also have flipped a balanced tetrahedron with
three sides labeled success and one labeled failure. The possible cell values are 0, 1, 2, 3, or 4
(number of heads in four flips of the coin). The following shows partial results of one simulation
and the set of commands used to obtain these results.
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Commands in Simulation
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box
Number of Variables Enter 6 Generate 6 variables
Number of Random Numbers Enter 30,000 Generate 6 variables

30,000 times
Distribution Select Binomial Simulate flips of a coin
p Value Enter 0.75 Coin comes up heads 3

out of 4 flips
Number of Trials Enter 4 Each variable is # heads

in 4 flips
Random Seed Enter 12345 Can enter desired value

here
Output Range Enter A1 Simulated values in cells

A1 − F30000
OK Click on this to perform

the random numbers
generation

We need to determine the proportion of the 180,000 cells that have a simulated value of
exactly 3 (three heads from four flips of the coin). The final set of commands to obtain a solution
to our question is

Final Commands in Simulation
Into: Enter: Result:
Cell H1 = IF(A1 = 3,1,0) Places a 1 if Al is a 3, 0

otherwise
Cells I1 through M1 Copy the formula from H1 Determines if 3 heads are in

cells B1:F1
Cells H2 through

M30000
Copy formulas from row 1 to

rows 2 through 30,000
Determines where 3 heads

occur in remaining cells
Cell G1 = AVERAGE(H1: M30000) Proportion (probability) of 3

heads in 4 flips

The probability, 0.4235, observed in the simulation, compares favorably to the exact value,
0.4219, calculated using the formula for the binomial expansion. We can increase the accuracy
of the simulation estimate by including more columns in the simulation or repeating it a
number of times and using the average result of all the simulations. Performing the simulation,
with the same seed, 12345, but using 10 columns (variables) instead of 6 gave a probability
of 0.4222.

The Central Limit Theorem, used extensively in statistics, indicates that the shape of
the distribution of sample means tends toward normality as the sample size increases. This
occurs regardless of the underlying statistical distribution from which the sample is drawn.
This important concept is not particularly intuitive. Computer simulation is a simple way to
demonstrate the impact that the Central Limit Theorem has on the sampling process.
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We use Excel to simulate samples drawn from the Uniform distribution, whose shape
is markedly different from that of the Normal distribution. In the Uniform distribution, every
value has an equal probability of occurrence. A histogram of independent, single samples
(sample size of 1) is expected to be represented by a series of bars of equal height (frequency).
As a result of the Central Limit Theorem, a histogram of the sample means, where the sample
consists of a sufficient number of values drawn from the Uniform distribution, should have a
pattern approximating the familiar bell-shaped curve of the Normal distribution. We can show
this by performing a Monte Carlo simulation. We simulate the sampling of six values randomly
and independently drawn from the Uniform distribution with range 0 to 1. We then determine
the mean of the six values in the sample. The sampling is then repeated a large number of times.
Histograms are constructed for both the first value from each set of six independent values and
for the mean of the six independent values in each sample. The histogram of the single values
shows how distinctly different the shape of the Uniform distribution is from that of the Normal
distribution. The histogram of the sample mean demonstrates the power of the Central Limit
Theorem, even when dealing with a relatively small number of values, only six, sampled from
a distribution whose shape is extremely non-normal.

Open an Excel Worksheet and enter the labels shown in row 1
Commands in the Simulation
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 6 Generate 6 variables in each
trial

Number of Random 1000 Generate 1000 trials
Numbers
Distribution Uniform Simulate the Uniform

distribution
Between 0 and 1 Distribution range
Random Seed 12345 Can enter a different seed

value if desired
Output Range A2 Simulated values placed in

cells A2–F1001
OK Click to perform simulation

Cell G2 = Average(A2:F2) Calculate mean of simulated
values, trial 1

Cells G3:G100l Copy G2 formula Calculate mean for remaining
trials

Cells H2:Hl2 0,0.1,0.2,. . ., 0.9,1.0 Bins for histogram bars
Cells 12:114 0.20,0.25,. . ., 0.75,0.80 Bins for histogram
Main Menu Tools → Data Analysis → Histogram
Dialog Box

Input Range A2:A1001 Use variable 1 values
Bin Range H2:H12 Bin range
New Worksheet Ply Check this option
Chart Output Check this option
OK Click to create histogram

In New Worksheet Click on Histogram Chart
Main Menu Chart → Location
As new sheet Click this option and enter

“Graph 1”
Double Click on one of the histogram bars
Options Tab Click to open
Gap Width 10
Sheet 1 Click on this to return to

simulation results
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Main Menu Tools → Data Analysis → Histogram
Dialog Box

Input Range G2:G1001 Use mean of the 6 values in
each trial

Bin Range I2:I14 Bin range
New Worksheet Ply Check this option
Chart Output Check this option
OK Click to create histogram

In New Worksheet Ply Click on Histogram Chart
Main Menu Chart → Location
As new sheet Click this option and enter

“Graph Mean”
Double Click on a Bar
Options Tab Click to open
Gap Width 10

IHGFEDCBA

Bins MeanBins1MeanVar 6Var 5Var 4Var 3Var 2Var 11

2 0.200.00.530.710.180.680.790.580.23

3 0.250.10.590.450.460.710.890.170.84

4 0.300.20.500.310.670.430.290.660.62

5 0.350.30.380.470.340.250.310.120.80

6 0.400.40.340.840.040.110.650.320.08

7 0.450.50.480.690.140.970.400.060.65

8 0.500.60.510.420.460.870.480.640.20

9 0.550.70.500.230.050.890.380.780.68

10 0.600.80.510.230.570.860.750.550.09

11 0.650.90.310.050.110.810.110.220.56

12 0.701.00.330.280.020.720.810.140.03

13 0.750.590.670.460.540.760.240.85

14 0.800.560.440.570.450.860.800.26

One of the most useful applications of computer simulation is in dealing with a complex
probability problem. This can be demonstrated by an example based on FDA’s guidance for
industry entitled “Bioanalytical Method Validation,” May 2001, copies of which are available
at http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/
ucm064964.htm. The prescribed procedure for monitoring the accuracy and precision of a
validated bioanalytical method, in routine use, involves the measurement of quality control
(QC) samples, processed in duplicate, at each of three different concentrations. The QC samples
are prepared in the same matrix (serum, plasma, blood, urine, etc.) as the samples with
unknown concentrations to be analyzed. The three concentration levels of the QC samples
cover the working range of the bioanalytical method, one in the lower region, a second at
midrange, and the third in the upper region of the standard curve. QC samples are to be
analyzed with each batch run of unknown samples. The run is acceptable if at least four of the
six QC sample values are within 20% of their nominal concentrations. Two of the six samples
may be outside the ± 20% acceptance region, but not two at the same concentration level.

Assume that we have QC levels at 10, 250, and 750 ng/mL. Our assay method has a 15%
CV (% relative standard deviation) over its entire working range. What proportion of batch
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runs do we expect to reject when the assay is running as validated? Also assume that we have
accurately prepared our QC samples and that any deviations in their assayed values are random
errors that follow a Normal distribution (i.e., the mean deviation = 0%, standard deviation =
CV% of the assay).

Histogram of simulated values (sample of size 1) from the Uniform distribution.

The traditional formula-based calculations rely on the known properties of the Normal
and Binomial distributions. The probability that a single QC value will be within the acceptance
region is equal to the proportion of the Standard Normal distribution, which lies between −Z
and +Z, where Z = 20%/CV%. With a CV% equal to 15%, the probability that any single QC
value will be acceptable is the proportion of the Standard Normal distribution that lies between
Z values of −1.33 and +1.33, or p = 0.8176. [Z = (X − �)/� = (20 − 0)/15 = 1.33; see chap. 3]. The
probability that a single QC value will fail to be accepted is 1 − P or q = 0.1824. The batch run is
acceptable if all six QC values pass the criteria, five of six pass, or four of six pass. According to
the binomial expansion, this probability is p6q 0 + 6p5q 1 + 15p4q 2 (see chap. 3). However, three
of the 15 ways that four QC values pass involve two failures at the same concentration level.
This is not permitted by the FDA acceptance criteria. Therefore, this reduces the 15 possible
ways of 4 QC values passing to 12 ways. The probability of run acceptance, based on the QC
results, is p6 + 6p5q 1 + 12p4q 2, or 0.88. We expect that 12% of our runs (1 − 0.88 = 0.12) will
fail due to random error alone.

Histogram of the sample mean (n = 6) simulated from the Uniform distribution.
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The simulation to evaluate this same question is easily accomplished using Excel. Open
an Excel Worksheet and place the labels in the cells as shown in row 1.

GFEDCBA

Prob. PassQC3QC3QC2QC2QC1QC11

2

3

4

5

Commands in Simulation
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of
Variables

6 Generate 6 QC values for each run
(row)

Number of
Random

5000 Generate the values for 5000 runs

Numbers
Distribution Normal Sample is from the Normal Dist.
Mean 0 True QC deviation is 0% (100%

accurate)
Standard Deviation 15 CV for QC deviation is 15%
Random Seed Enter 12345 Can enter a different seed if

desired
Output Range Enter A2 Variable values in cells A2 −

F5001
Click OK

Cell H2 = IF(ABS(A2) < 20,1,0) If QCl deviation is < 20%, it
passes (1)

Cells I2, H3:I500l Copy H2 formula Evaluates remaining QCl values
Cell J2 = IF((H2 + I2) >0,l,0) QCl passes (1) if either replicate

passes
Cells J3:J5001 Copy J2 formula Evaluates runs 2–5000 for QCl

passing
Cell K2 = IF(ABS(C2)<20,l,0) If QC2 deviation is <20%, it

passes (1)
Cells L2, K3:L5001 Copy K2 formula Evaluates remaining QC2 values
Cell M2 = IF((K2 + L2)>0,l,0) QC2 passes (1) if either replicate

passes
Cells M3:M5001 Copy M2 formula Evaluates runs 2–5000 for QC2

passing
Cell N2 = IF(ABS(E2)<20,1,0) If QC3 deviation is <20%, it

passes (1)
Cells O2, N3:O5001 Copy N2 formula Evaluates remaining QC3 values
Cell P2 = IF((N2 + O2)>0,1,0) QC3 passes (1) if either replicate

passes
Cells P3:P5001 Copy P2 formula Evaluatea runs 2–5000 for QC3

passing
Cell Q2 = J2∗M2∗P2 Flag is 1 if each QC level passes
Cells Q3:Q5001 Copy Q2 formula Evaluates runs 2–5000 for passing

each level
Cell R2 = IF((H2 + I2 + K2 + L2 +

N2 + O2) >3,1,0
Flag is 1 if ≥4 QC passing
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Cells R3:R5001 Copy R2 formula Evaluates runs 2–5000 for ≥4 passing
Cell S2 = Q2∗R2 Flag value is 1 if all QC criteria are met
Cells S3:S5001 Copy S2 formula Evaluates runs 2—5000 for meeting

criteria
Cell G1 = Average(S2:S5001) Probability of run passing (here, 0.8754)

GFEDCBA

Prob. PassQC3QC3QC2QC2QC1QC11

2 6.8211.953.2211.01 0.87548.4913.85

3 14.83 8.4918.1814.60 1.64 1.82

4 6.324.74 8.26 6.612.66 7.36

5 12.40 17.59 7.36 9.93 6.22 1.26

6 21.03 5.917.02 18.44 15.1926.17

7 5.74 22.78 28.123.95 7.4516.39

8 5.2512.51 16.610.90 1.51 2.88

9 11.537.18 18.024.59 25.29 11.08

10 2.6616.379.951.8420.20 11.17

In this simulation of 5000 runs, 87.5% passed (probability = 0.8754) and 12.5% failed.
These results are in close agreement with the theoretical values of 88% passing and 12% failing.

In the QC example, it would have been easier to apply the normal and binomial formulas
rather than conducting the Excel simulation to answer our question. Had we wanted to inves-
tigate a more complex and perhaps more realistic situation, a simulation approach might be
far simpler, and considerably more intuitive, than the formula-based approach. As an example,
consider the situation where the standard deviation is 18% at the lowest concentration QC, 15%
at the next higher concentration, and only 12% at the highest concentration. In addition, if the
highest QC value exceeds the highest standard curve concentration, it cannot be reported so
it is considered a failing value. It would be difficult to deal with this using the formula-based
approach, but only marginally more difficult than our previous example if solved by simulation.
The more complicated (realistic) our scenario, the more likely it is that computer simulation will
prove to be the easier methodology to implement.

SRQPONMLKJIH

RunPass4No 2Pass3P3_2P3_1Pass2P2_2P2_1Pass1P1_2P1_11

2 111111111111

3 111111111111

4 111111111111

5 111111111111

6 111110111110

7 111111101101

8 111111111111

9 111110111111

10 111111111110

Monte Carlo simulation also offers an intuitive approach to hypothesis testing. In Table
5.9 of Chapter 5, the percent dissolutions after 15 minutes for two different tablet formulations,
A and B, are listed. The distributions of the mean values for the two samples (10 values for
each formulation) are assumed to follow Normal distributions. Is the average dissolution of
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formulation A at 15 minutes different from that of formulation B? The formula-based approach
relies on the application of the t test for the difference between two independent means as
described in section 5.2.2. The calculated t statistic, 1.99, indicates that the probability of seeing
a difference as large as that observed for these two formulations, if the two formulations are
actually equivalent, is 0.062. The simulation approach requires applying only our knowledge
that the variance of the sample mean is equal to the variance of the individual values divided
by n, the size of the sample. The square root of this variance is the standard error of the mean.
According to the Central Limit Theorem, the sample mean will tend to be normally distributed
about its true mean value with a variability equal to the standard error.

Our question is formulated for a simulation solution by the following null hypothesis and
its alternative:

H0: The difference actually observed between the A and B means, 5.7, occurs by chance at least
5% of the time from two independent samples, each of size 10, taken from the same Normal
distribution with mean and standard deviation equivalent to those in the combined (A +
B) sample.

Ha: The difference observed between the sample means, 5.7, occurs less than 5% of the time
by chance, indicating that it is unlikely that the two formulations represent the same
population (i.e., their means are not equal).

The following is a simulation to evaluate our hypotheses:

HGFEDCBA

Prob. (Diff GE 5.7)GE 5.7Abs(Diff)Sim BSim APercentForm1

A2 0.06502.174.772.768

A3 00.775.276.084

A4 03.275.572.281

A5 04.372.176.485

A6 01.475.576.975

A7 00.074.074.069

A8 00.275.274.980

A9 00.873.973.176

A10 02.073.275.279

A11 04.471.776.174

B12 00.472.873.274

B13 00.774.173.371

B14 02.073.271.279

B15 03.571.675.163

B16 16.076.570.480

B17 04.170.975.161

B18 04.778.373.769

B19 03.575.371.972

B20 02.675.072.480

B21 02.576.774.165

22 00.273.874.0

Mean23 00.675.975.374.25

Variance24 03.376.973.647.46053

Stderr 1025 02.172.670.62.178544
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Commands in Simulation
Cells B2–B21 Enter the 15-minute dissolution values from Table 5.9
Cell B23 = AVERAGE(B2:B21) Mean of combined A and B

values
Cell B24 = VAR(B2:B21) Variance of combined values
Cell B25 = SQRT(B24/10) Standard error of mean for

n = 10 values
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 2 Generate simulated means
for two samples

Number of Random 30,000 Perform 30,000 simulations
Numbers
Distribution Normal The means are Normally

distributed.
Mean 74.25 Actual mean from combined

A + B sample
Standard Deviation 2.178544 Standard error of a mean for

a sample (n = 10)
Random Seed Enter 12345 Can enter a different seed if

desired
Output Range Enter D2 Simulated means in cells

D2–E30001
Click OK

Cell F2 = ABS(D2–E2) Absolute value of difference
between the two
simulated means

Cells F3-F30001 Copy formula from F2
Cell G2 = IF(F2 < 5.7, 0, 1) If simulated means differ as

much as what we saw for
the actual sample then
value is 1, otherwise it
is 0

Cells G3-G30001 Copy formula from G2
Cell H2 = AVERAGE(G2: G30001) Proportion of times that

results are as extreme as
what we saw with actual
sample (probability)

Our estimated probability for the difference between the formulation A and B means is
0.065, which is very similar to the result obtained with the t test, p = 0.062. We can further refine
our estimate by repeating the simulation multiple times (using different seed values each time)
and using the average probability. The results from a second simulation using a seed value 5555
gave a probability estimate of 0.062. The estimated probability obtained from averaging those
from the two simulation estimates p = 0.0635.

The next example again uses the data in Table 5.9. Having observed a difference of 5.7
between the mean 15-minute dissolution values of formulations A and B, what is the 95%
confidence interval for the true mean difference between the formulations? Using Monte Carlo
simulation, the answer can be obtained in a very intuitive way. Assume that the means from
the two samples are normally distributed, a reasonable assumption given the Central Limit
theorem. The variance of the difference between two sample means is the sum of the two
samples’ variances divided by the number of observations (n) in the samples. It is assumed
that there is a common variance (VAR) for the two formulations. The variance for the difference
between the sample means is (VAR/na + VAR/nb), where na and nb are the number of values
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in the A and B samples, respectfully. As both samples consist of 10 values, the variance for the
difference between means is equal to (2 × VAR/10). The standard error for the difference is
equal to the square root of this value.

Applying the Central Limit Theorem, we can assume that the difference between the
two means will be approximately normally distributed with � = 5.7 (our observed mean
difference) and standard deviation equal to our estimated standard error. Simulating 30,000
mean differences, we can easily estimate the lower and upper 95% confidence limits. The 95%
confidence limits encompass values between the 2.5th and 97.5th percentiles of the distribution
describing the mean difference between the two samples (see chap. 5). These limits, for our
Monte Carlo simulation of 3000 mean differences, are simply the 750th sorted value (2.5th
percentile) and the 29,250th sorted value (97.5th percentile). The confidence interval obtained
from the simulation, −0.34% to 11.79%, is comparable to that calculated using the t-distribution
method, −0.32% to 11.72% (see chap. 5 for a description of how to apply the t-distribution
method).

GFEDCBA

95% Cl Hi95% Cl LoPositionSortedSim DiffPercentForm1

A2 2.1468 23.68 11.790.34

A3 84 1.95 23.68 2.5%

A4 4.8381 7516.65

A5 3.7985 6.14

A6 7.3575 5.83 97.5%

A7 3.4869 292515.83

A8 5.4480 5.60

A9 7.7676 5.15

A10 2.1479 5.15

A11 4.9774 5.04

B12 6.5574 4.95

B13 5.8371 4.78

B14 7.8479 4.64

B15 2.1063 4.64

B16 4.5580 4.51

B17 5.0461 4.41

B18 3.1569 4.31

B19 7.0772 4.26

B20 0.0780 4.18

B21 4.5765 4.03

22 5.96 3.96

Mean A23 11.2977.1 3.93

Mean B24 1.7471.4 3.90

Difference25 10.805.7 3.79

Variance26 5.6447.46053 3.59

Stderr Diff27 5.703.080926 3.59
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Commands in Simulation
Cells B2–B21 Enter the formulation A and B dissolution values from

Table 5.9
Cell B23 = AVERAGE(B2:B11) Mean of formulation A

values
Cell B24 = AVERAGE(B12:B21) Mean of formulation B

values
Cell B25 = B23–B24 Difference between A and B

means
Cell B26 = VAR(B2:B21) Variance of combined A and

B values
Cell B27 = SQRT(2∗B26/10) Standard error for difference

between means
Main Menu Tools → Data Analysis →

Random Number
Generator

Dialog Box
Number of Variables 1 Generate a simulated

difference between means
Number of Random

30,000
Generate 30,000 mean

differences
Numbers
Distribution Normal Value is from the Normal

dist.
Mean 5.7 Observed difference

between A and B means
Standard Deviation 3.080926 Standard error of the

difference
Random Seed Enter 12345 Can enter a different seed if

desired
Output Range Enter C2 Simulated differences in

cells C2–C30001
Click OK

Select column C by clicking at the top of the column and then from Main Menu choose Edit →
Copy

Click at the top of column D and from Main Menu choose Edit → Paste
Cell D1 Change label to Sorted
Click on column D to select it
Main Menu Data → Sort

Choose to sort only the selection in ascending order.
Cell E4 = 1 + 0.25∗30,000 Column D cell with 2.5th

percentile value
Cell E7 = 1 + 0.975∗30,000 Column D cell with 97.5th

percentile value
Cell F2 = D751 Lower 95% confidence limit

value
Cell G2 = D29251 Upper 95% confidence limit

value

The next example comes from section 5.2.6. In two groups of patients, the incidences of
headaches are evaluated to obtain a 95% confidence interval on the true difference in headache
rates between the groups. In Group 1, there were 46 patients with headaches among the 196
patients, for a rate (proportion) of 0.2347. In the second group, 35 of the 212 patients experienced
headaches, for a rate of 0.1651. The following Excel worksheet shows how to obtain the 95%
confidence interval on the difference between the incidence proportions in the two groups by
simulation.
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We start by generating random values of the number of headaches in the two groups
based on the binomial distribution. For Group 1, N = 196 and p = 0.2347. For Group 2, N = 212
and p = 0.1651. For each generated number of headaches for the two groups (simulated trial),
we calculate the proportion of headaches “observed” in the groups and then find the difference
between these proportions (Groups 1–Group 2). Thus, we generate 30,000 trials (see below).
From the distribution of the Group l-to-2 differences in theses trials, we find the 2.5th and 97.5th
percentiles as in the previous example. This is the 95% confidence interval.

JIHGFEDCBA

95% ClPositionSortedDiffp2p1Sim S2Sim S1S2S11

35462 0.0460.1930.2404147 0.079 Low2.5%

3 0.0720.1890.2604051 7510.073 0.009

N2N14 0.0270.1420.1683033 0.072

2121965 0.0720.1270.1992739 0.072 Hi97.5%

6 0.0760.1790.2553850 0.147292510.070

P2P17 0.0630.1420.2043040 0.070

0.16510.23478 0.0230.2220.2454748 0.069

9 0.1250.1560.2813355 0.064

10 0.0720.1890.2604051 0.063

Commands in Simulation
Cells A2 and B2 Enter the number of patients in Group 1 and 2, respectively,

who experienced headaches
Cells A5 and B5 Enter the total number of patients in Groups 1 and 2,

respectively
Cell A8 = A2/A5 Group 1 observed proportion of

headaches
Cell B8 = B2/B5 Group 2 observed proportion of

headaches
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 1 Simulate Group 1 headache number
Number of Random 30,000 Generate 30,000 simulated trials
Numbers Distribution Binomial Simulated number is from binomial

distribution
p Value 0.234694 Group 1 observed proportion of

headaches
Total Number of Trials 196 Number of patients in Group 1
Random Seed Enter 12345 Enter a different seed if desired
Output Range Enter C2 Simulated headache numbers in

C2−C30001
Click OK

Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 1 Simulate Group 2 headache number
Number of Random 30,000 Generate 30,000 simulated trials
Numbers Distribution Binomial Simulated number is from binomial

distribution
p Value 0.165094 Group 2 observed proportion of

headaches
Total Number of Trials 212 Number of patients in Group 2
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Random Seed Enter 12345 Enter a different seed if desired
Output Range Enter D2 Simulated headache numbers in

D2–D30001
Click OK
Cell E2 = C2/196 Proportion of Group 1 simulated

headaches in trial 1
Cell F2 = D2/212 Proportion of Group 2 simulated

headaches in trial 1
Cell G2 = E2–F2 Difference between group headache

rates for 1st trial
Cells E3:G30001 Copy E2:G2 Calculates proportions and

differences for other trials
Cells H2:H30001 Copy column G values, using the Paste Special, Values

method
Click at top of column H to choose it (column is highlighted)

Main Menu Tools → Data → Sort
Click option to continue without expanding current selection
Click OK to sort the column with a header, in ascending order

Cell I3 = 1 + 0.025∗30,000 Row with the 2.5th percentile
difference

Cell I6 = 1 + 0.975∗30,000 Row with the 97.5th percentile
difference

Cell J3 = H751 95% CI low limit = 2.5th percentile
value

Cell J6 = H29251 95% CI hi limit = 97.5th percentile
value

The 95% confidence interval limits based on the simulations, −0.009 to 0.147, are in close
agreement with the limits of −0.008 to 0.148 calculated using normal approximation methods
and with the limits −0.012 to 0.152 obtained using the more conservative continuity-corrected,
normal approximation. Running the simulation a number of times, using different seed values
each time, and then averaging the results should provide values closer to the exact limits.

One area where Monte Carlo methods are extremely useful is in determining the sizes
of samples needed to obtain a desired power for a given statistical evaluation. A number of
formulas are presented in chapter 6 that can be used for these calculations. In many situations,
while the formulas are easily applied, their derivations are not so easily understood. Simulation
provides an extremely intuitive approach in this area. As discussed in chapter 6, to determine
the sample size needed for a given study we need to state the alpha level (e.g., 0.05), the beta
level (e.g., 0.2 = power of 0.8), and a difference between treatments of a specified magnitude
(usually a difference of practical significance). To determine the probability of obtaining a given
outcome from a particular statistical test (e.g., the probability of getting a P value ≤ 0.05 in an
independent group t test) we simply simulate a large number of random samples, calculate
the statistic for each simulation, and then determine the proportion of times the statistic had
the desired outcome. The more complicated the problem, the more intuitive and useful is the
simulation method.

For sample size determination, we usually calculate the proportion of times we get a
significant difference under the null hypothesis, which causes us to reject it in favor of the
alternative hypothesis where the meaningful difference is specified. The following example
uses both this approach and a modification needed when we want to test for noninferiority (or
equivalence) rather than testing for a difference.

In this example, we want to conduct a clinical trial on a new drug developed to treat
a certain disease. Preliminary animal studies indicate that the new drug will be at least as
effective as the current treatment for the disease and is likely to have fewer serious side effects.
The FDA has indicated that it wants to see a placebo-controlled, noninferiority trial. This trial



380 CHAPTER 14

will compare the new Drug, A, the current treatment B, and placebo, in the treatment of subjects
with the disease. The primary efficacy measure will be the proportion of subjects who show
improvement. We intend to show that the new drug is at least as effective as (noninferior
to) the current Drug B. To demonstrate noninferiority we must construct a 95% confidence
interval for the difference between the Drug A and Drug B proportions and then show that
this difference is no worse than 20% (i.e., Drug A is no more inferior to Drug B than 20%). In
addition to showing noninferiority, we must simultaneously demonstrate that the clinical trial
had adequate sensitivity to detect true differences in efficacy had they existed. This is established
by showing that both Drugs A and B have superior efficacy to that of the placebo.

From prior experience, we know that 25% of patients left untreated will improve sponta-
neously (placebo success proportion is expected to be 0.25) and improvement is seen in 45% of
those treated with Drug B (success rate for B is expected to be 0.45). We believe that the new drug
will be successful in treating at least 50% of the patients (cure rate for Drug A is conservatively
set at 0.50).

The statistical evaluation comparing Drug A to Drug B involves the construction of the
95%, continuity-corrected, confidence interval on the difference between their success propor-
tions. If the lower limit of this confidence interval is greater than −0.20, then noninferiority of A
to B will be established. Note that while our interest is only with the lower confidence interval
limit (i.e., it is one-sided), the FDA usually requires the use of the more conservative, two-sided,
confidence interval (critical Z value of 1.96 is used instead of 1.645). Had our intention been to
show therapeutic equivalence of Drug A to Drug B, rather than noninferiority, then we would
need to show that the entire confidence interval falls within the equivalence interval −0.20 to
+0.20. For the trial to be successful, we must also show that the two-sided, continuity-corrected,
Z tests on the differences between the success proportions for Drug A compared to placebo
and for Drug B compared to placebo show statistical superiority for the active treatments (i.e.,
differences > 0 and p < 0.05). The following equations will be used (see chap. 5):

95% CI = (pa − pb) ±
[

1.96 ∗
(

pa ∗ qa

na
+ pb ∗ qb

nb

)1/2

+ 0.5 ∗
(

1
na

+ 1
nb

)]

Z test 1 =
[(

pa − pp
)− 0.5 ∗ ((1/na ) + (1/np)

)]
[
(p0 ∗ q0)

(
(1/na ) + (1/np)

)]1/2

Z test 2 =
[(

pb − pp
)− 0.5 ∗ ((1/nb) + (1/np)

)]
[
(p0 ∗ q0)

(
(1/nb) + (1/np)

)]1/2

where pa is the observed success rate for Drug A, qa = 1 − pa failure rate for Drug A, pb the
observed success rate for Drug B, qb = 1 − pb failure rate for Drug B, pp the observed success
rate for placebo, and qp = 1 − pp failure rate for placebo; ny the number of patients receiving
treatment Y; Y = A, B, or placebo, p0 = (ny ∗ py + np ∗ pp)/(ny + np), pooled success rate; Y =
A for Z Test 1, B for Test 2; q0 = 1 − p0 pooled failure rate for Z test.

We will determine our sample size by trial and error. First we specify a given sample
size. We assume that the two active products’ success rates actually differ by 5% (0.50 vs. 0.45)
and that the placebo success rate is that known to occur in untreated patients (0.25). We then
randomly generate (simulate) success/failure results for treating patients with Drug A, Drug
B, and placebo. From these results, we calculate the proportions of patients with success in
each treatment group and calculate the above statistics. Our probability of trial success (power)
is the proportion of times that our simulated samples meet the criteria for noninferiority and
superiority.

Our initial evaluation uses a 2:2:1 randomization (A:B:placebo) in about 350 patients (a
number consistent with our initial budget allocation). We propose to use 340 patients, 136 in
each active treatment group and half that number, 68, in the placebo group. We want to estimate
the probability that our trial will show both noninferiority of Drug A compared to Drug B,
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and superiority of both A and B over placebo. We determine this easily using Monte Carlo
simulation.

As shown in the following Excel worksheet, we simulate the results for 30,000 trials each
involving the treatment of 136 patients for Drugs A and B, and 68 patients for placebo. The
number of successfully treated patients for Drug A is placed in column A, for Drug B in column
B, and for placebo in column C. Columns D, E, and F contain the

KJIHGFEDCBA

p02p01pppbpanpnbnaPlaceboDrug BDrug A1

2 0.3480.3730.1470.4490.48568136136106166

3 0.3430.3820.1910.4190.47868136136135765

4 0.3730.3920.2500.4340.46368136136175963

5 0.3920.4120.2650.4560.48568136136186266

6 0.3480.3920.2060.4190.48568136136145766

7 0.3730.3870.2350.4410.46368136136166063

8 0.3770.3970.2060.4630.49368136136146367

9 0.4120.4170.2650.4850.49368136136186667

10 0.3970.4560.2940.4490.53768136136206173

11 0.4360.4510.2790.5150.53768136136197073

12 0.3970.5000.2940.4490.60368136136206182

total number of treated patients (136, 136, and 68) for Drug A, Drug B, and placebo, respectively.
The calculated success proportions for Drug A, Drug B, and placebo are placed in columns G, H,
and I, respectively. The pooled success proportions for the Drug A and placebo comparisons and
for the Drug B and placebo comparisons, under the null hypothesis of no difference between
treatment success proportions, are placed in columns J and K, respectively. A portion of the
worksheet with these results is shown above along with the following commands used to
obtain them.

Commands in Simulation
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 1 Simulate number of successes for
Drug A

Number of Random 30,000 Generate 30,000 simulated trials
Numbers Distribution Binomial Numbers come from binomial

distribution
p Value 0.50 Expected Drug A success proportion
Total Number of Trials 136 Number of patients in treatment

group
Random Seed Enter 1234 Enter a different seed if desired
Output Range Enter A2 Drug A number of successes in

A2–A30001
Click OK

Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 1 Simulate number of successes for
Drug B

Number of Random 30,000 Generate 30,000 simulated trials
Numbers Distribution Binomial Numbers come from binomial

distribution
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p Value 0.45 Expected Drug B success proportion
Total Number of Trials 136 Number of patients in treatment

group
Random Seed Enter 2341 Enter a different seed if desired
Output Range Enter B2 Drug B number of successes in

B2−B30001
Click OK
Main Menu Tools→ Data Analysis → Random Number Generator
Dialog Box

Number of Variables 1 Simulate number of successes for
placebo

Number of Random 30,000 Generate 30,000 simulated trials
Numbers Distribution Binomial Numbers come from binomial

distribution
p Value 0.25 Expected placebo success proportion
Total Number of Trials 68 Number of patients in treatment

group
Random Seed Enter 3412 Enter a different seed if desired
Output Range Enter C2 Placebo number of successes in

C2–C30001
Click OK

Cells D2, E2, F2 Enter number of patients in treatment groups A, B and
placebo

Cell G2 = A2/D2 Proportion of successes for Drug A
Cell H2 = B2/E2 Proportion of successes for Drug B
Cell I2 = C2/F2 Proportion of successes for placebo
Cell J2 = (A2 + C2)/

(D2 + F2)
Pooled proportion for A and placebo

Cell K2 = (B2 + C2)/
(E2 + F2)

Pooled proportion for B and placebo

Cells D3: K30001 Copy formulas from cells D2 through K2

Next we calculate the continuity correction, 0.5 × (1/na+1/nb), for the noninferiority
calculation and place it in column L. We do the same for the superiority comparisons of Drug
A to placebo and Drug B to placebo, and place these values in columns M and N. The 90%
confidence interval lower limit for each trial (row) is calculated and placed in column O. The Z
test value for the comparison of Drug A to placebo is calculated and placed in column P and that
for Drug B to placebo is placed in column Q. Flags in columns R, S, and T are set to 1 if we pass
the noninferiority test, the A-to-placebo superiority test, and the B-to-placebo superiority test,
respectively. If all three tests are passed, then a 1 is placed in column U indicating that the trial
was successful. A failed test is designated by a flag value of 0 placed in its respective column.

UTSRQPONML

Flag AllFlag3Flag2Flag1Z test2Z test195%CI LOCC2CC1CCAB1

2 0.0110.0110.007 11114.1054.5570.089

3 0.0110.0110.007 11113.0763.8200.067

4 0.0110.0110.007 11112.4062.7890.096

5 0.0110.0110.007 11112.4842.8670.097

6 0.0110.0110.007 11112.8583.7010.059

7 0.0110.0110.007 11112.7142.9980.104

8 0.0110.0110.007 11113.4213.7940.097
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9 0.0110.0110.007 11112.8672.9620.119

10 0.0110.0110.007 11111.9733.1310.037

11 0.0110.0110.007 11113.0453.3330.104

12 11111.9734.0100.0300.0110.0110.007

13 0.0110.0110.007 11113.3283.8880.082

14 0.0110.0110.007 11112.1613.3970.029

15 0.0110.0110.007 11113.9603.4910.163

16 0.0110.0110.007 11112.5983.1690.082

17 0.0110.0110.007 00110.6642.1390.015

18 0.0110.0110.007 11113.9603.6780.148

Commands in Simulation (Continued)
Cell L2 = 0.5∗(1/D2 + 1/E2) Continuity correction (A vs. B)
Cell M2 = 0.5∗(1/D2 + 1/F2) Continuity correction (A vs.

placebo)
Cell N2 = 0.5∗(l/E2 + 1/F2) Continuity correction (B vs.

placebo)
Cell O2 = (G2–H2) –

((1.96∗SQRT(G2∗(1–G2)/D2 +
H2∗(1–H2)/E2) + L2))

Cell P2 = (G2–I2 –
M2)/SQRT(J2∗(1–J2)∗(1/D2 +
1/F2))

Cell Q2 = (H2–I2 –
N2)/SQRT(K2∗(1–K2)∗(1/E2 +
1/F2))

Cell R2 = IF(O2>–0.2,1,0) Flag = 1 if 95% CI is above –0.20
Cell S2 = IF(P2>1.96,1,0) Flag = 1 if A versus placebo

Z test is significant
Cell T2 = IF(Q2> 1.96,1,0) Flag = 1 if B versus placebo Z test

is significant
Cell U2 = R2∗S2∗T2 Flag = 1 if all three tests pass
Cells

L3:U30001
Copy formulas from cells L2

through U2

Our probability (power) of showing noninferiority, superiority, or passing all three
required tests is simply the average of the 0/1 entries in the corresponding flag column, the
proportion of simulated trials in which we observed a successful (1) outcome.

YXWV

p (trial)p (superB)p (superA)p (noninf)1

2 0.73530.76680.92060.9830

Final Commands in Simulation
Cell V2 = Average(R2:R30001) Proportion where A was noninferior to B
Cell W2 = Average(S2:S30001) Proportion where A was superior to placebo
Cell X2 = Average(T2:T30001) Proportion where B was superior to placebo
Cell Y2 = Average(U2:U30001) Proportion where A was noninferior to B and both A

and B were each superior to placebo (overall
probability of success)
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The probability of showing noninferiority, 0.983, and the probability of showing the supe-
riority of Drug A over placebo, 0.921, are both high with assumed proportions of 0.5 and
0.25 for Drug A and placebo, respectively. The probabilities of showing superiority of Drug B
(assumed proportion 0.45) over placebo, 0.767, and for the overall success of the trial, 0.735, are
unacceptably low.

We would like to know if there is a way to increase the probability of overall success
without increasing our costs (i.e., patient numbers). We decide to explore the question by
looking to a different randomization scheme. Perhaps a 1:1:1 randomization would increase
the probability of trial success. We will evaluate using an equivalent number of patients in each
treatment group to see if this improves our expected outcome. By setting our sample sizes to 110
patients in each treatment (330 total) and performing the simulation and calculations again, we
find that the probability of showing noninferiority decreases slightly to 0.947, the probability
of showing superiority of Drug A over placebo increases slightly to 0.963, and the probability
of showing Drug B to be superior to placebo significantly increases to 0.849. The overall effect
is that the probability of a successful trial is now increased to 0.789. By adding a few more
patients to each treatment group and using the 1:1:1 randomization scheme, we can bring the
overall probability of trial success to 0.80, a typical level of power used in designing a clinical
trial. This is accomplished by using essentially the same number of subjects that would provide
only a 0.74 probability of trial success with the 2:2:1 randomization scheme. Using computer
simulations, these types of what-if evaluations are easy to conduct and to understand.

Another important application of Monte Carlo simulation is estimating the properties of
a certain statistic when there is no known formula for doing so. For example, we might want
to determine the probability distribution for the difference between two sample medians when
the samples are drawn from similar, or dissimilar, statistical distributions. When there are no
standard formulas to evaluate the distributional properties of a complex or unusual statistic,
computer simulation is often the only tool available.

14.2 BOOTSTRAPPING
Bootstrapping (sometimes called resampling) encompasses a group of computer simulation
methods in which samples are repeatedly drawn not from some hypothesized statistical dis-
tribution, but from the set of values that come from an actual sample obtained from some
real population. These methods typically assume only that the sample was randomly selected
from the population, thereby ensuring that it is likely to be representative of the population
from which it was drawn. The theory behind Bootstrap methods proposes that the probabilistic
information contained in the sample is reflective of corresponding information contained in the
actual population. This same assumption is also required for most standard inferential methods.
The primary difference between bootstrapping and standard inferential methods is how we use
this information contained in the sample.

Standard inferential methods rely on our knowledge of the distribution of a statistic
or parameter (e.g., mean, standard deviation, etc.) that we calculate from a sample collected
from a population with some assumed statistical distribution. As an example, it is known that
the average value calculated from a sample whose underlying population is assumed to be
normally distributed with mean � and variance �2 will follow a Normal distribution with
mean � and variance �2/n, regardless of the size of the sample, n. When neither � nor � is
known, we estimate these parameters from the sample average and its standard deviation. A
95% confidence interval on � is calculated using the standard equation: average ±t�/2,n−1 × SE,

where SE is the sample standard deviation divided by the square root of n. The value t�/2, n−1 is
obtained from student’s t distribution. In the standard method, using statistics calculated from
the sample (e.g., mean and standard deviation) we infer back to the values of the unknown
parameters (e.g., � and � ) of the underlying population.

In bootstrapping, we make no assumptions about the statistical distribution of the pop-
ulation from which the sample was collected or about the distributional properties of the
sample itself. Instead, we treat the sample as if it was the population and repetitively take
samples (resamples) from it using computer simulation. The distribution of statistics cal-
culated from these computer-generated samples theoretically mimics the distribution in the



COMPUTER-INTENSIVE METHODS 385

population. Using the frequency distribution of the statistic in the computer-generated sam-
ples, we make inferences about the corresponding distribution in the underlying population.
One of the simplest bootstrapping methods will be used to provide a brief introduction to these
powerful, computer-intensive simulation methods. The method is known as the percentile
method and is one of the most intuitive ones available.

Table 5.1 shows the assay results for 10 randomly selected tablets. The average value for
these results is 103.0 mg and the standard deviation is 2.218. If we assume that the sample comes
from a population that is normally distributed, or that based on the Central Limit Theorem the
sample average is normally distributed, then we can calculate a 95% confidence interval on �.
This interval is determined to be 101.4 to 104.6, as shown in chapter 5. If we do not want to
make distributional assumptions about the underlying population or about the sample, then
a Bootstrap method can be used to obtain a confidence interval on � (the population average
value) as shown below.

MLKJIHGFEDCBA

1 10987654321Number:StdevMean

2 106.3104.5 100.7104.9 103.899.8102.6101.8Sample:2.218103.0 100.6 105.0

In row 1, columns D to M, we enter the numbers 1 to 10 to identify each observed assay
value in the sample. The observed sample values are entered into row 2, immediately below their
corresponding identification numbers. The mean (cell A2) and standard deviation (cell B2) of
the values are calculated using the Excel formulas = AVERAGE(D2:M2) and = STDEV(D2:M2).
We now go to column Y, reserving columns N to W for use later. We next generate 10 random
numbers from the Uniform distribution for each of our 3001 simulated trials (rows) and place
these numbers in columns Y to AH. The numbers will be rounded to integer values, and placed
into columns N to W, to be used in obtaining our Bootstrap sample for each simulated trial.

AHAGAFAEADACABAAZY

1

2

3 7.438.992.498.557.432.607.088.096.263.08

4 2.088.163.817.034.873.626.976.625.075.11

5 8.601.361.996.883.881.725.204.053.293.81

Commands in Simulation
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 10 Simulate 10 values for each trial
Number of Random
Numbers

3001 Perform the simulation for 3001
trials

Distribution Uniform Values come from the Uniform
distribution

Parameters Between 1,10 Generate equally probable values
between 1 and 10

Random Seed 12345 Enter a different seed if desired
Output Range Y3:AH3003 Place values in cells Y3 through

AH3003
Click OK
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To convert the simulated Uniform distribution values into integer, index numbers, enter
the following equation into cell N3: = ROUND(Y3,0). Next, copy this formula to all cells within
the range N3: W3003.

WVUTSRQPON

1 R10R9R8R7R6R5R4R3R2R1

2

3 7929737863

4 2847547755

5 9127425434

Using one of Excel’s table lookup functions (HLOOKUP), we select values (resample)
from the original sample whose assigned numbers in row 1 of columns D to M match the
corresponding index values found in cells N3–W3003. In this way, each of the 3001 rows,
representing a trial, contains a computer-generated sample of size 10 drawn from the original
sample. As each original value can appear more than once in the Bootstrap sample, the method
involves sampling with replacement. For each of the 3001 Bootstrap samples (rows 3–3003), we
calculate the mean and standard deviation for its 10 values in columns D to M. These are the
Bootstrap sample means and standard deviations whose frequency distributions will be used
to make inferences to the characteristics of the underlying population from which our original
sample was obtained.

MLKJIHGFEDCBA

1 10987654321NumberStdevMean

2 105.0100.6106.3100.7104.5103.8104.999.8102.6101.8Sample2.2181103.0

3 100.7100.6102.6100.6100.799.8100.7106.3104.599.82.17101.6

4 102.6106.3104.9100.7103.8104.9100.7100.7103.8103.81.99103.2

5 100.6101.8102.6100.7104.9102.6103.8104.999.8104.91.93102.7

Commands in Simulation
Cell D3 = HLOOKUP

(N3,$D$1:$M$2,2)
From the sample values in row

2, section D1 to M2, select
the value whose number in
row 1 matches the random
index number in N3

Cells E3:M3 Copy formula from cell D3 Generate first bootstrap sample
Cells D4:M3003 Copy formulas from cells

D3:M3
Generate the remaining 3000

samples
Cells A3:A3003 Copy formula from cell A2 Calculate the Bootstrap

samples’ means
Cells B3:B3003 Copy formula from cell B2 Calculate the samples’

standard deviations

Now we will estimate a 95% confidence interval on � and test the hypothesis that � is less
than 102. These results will be compared to those obtained by standard formulas that assume
that the sample is normally distributed. The procedure that we use in the percentile method is
similar to that shown in previous examples, but here we apply them to the Bootstrap samples
rather than samples simulated from some underlying assumed statistical distribution.
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We start by opening a new worksheet and transferring the mean (sample average) values
from our existing column A to column A in the new worksheet. Wanting to transfer only the val-
ues and not the formulas, we use the Edit → Copy → Edit → Paste Special → Values sequence in
Excel. We delete the first entry in the new column A, as this is the mean for the original sample,
not for a Bootstrap sample. All remaining values in the column shift upwards. The Bootstrap esti-
mate of � is the average of the Bootstrap sample means. The 95% confidence interval lower limit
is the 2.5th percentile sorted mean and the upper limit is the 97.5th percentile sorted mean. The
probability that � < 102 is simply the frequency that we have a Bootstrap mean value that is less
than 102. The analyses and the commands to conduct the analyses are shown in the following.

DCBA

Mean1 102

2 1100.78 Bootstrap

3 103.0Mean1100.78

4 762.5% observation1100.85

5 292797.5% observation1101.00

6 101.795% Cl Lower1101.00

7 104.295% Cl Upper1101.03

8 Prob(mu1101.10 0.076102)

9 1101.10

10 1101.14

11 1101.14 Normality Assumed

12 101.495% Cl Lower1101.19

13 104.695% Cl Upper1101.29

14 Z 1101.29 102 1.426

15 Prob(μ1101.29 0.077102)

Commands in Simulation
New Column A Data → Sort Sort the Bootstrap means in

ascending order
Cell B2 = IF(A2 < 102,1,0) 1 if bootstrap mean is < 102, 0

otherwise
Cells B3:B3002 Copy formula from B2
Cell D3 = AVERAGE(A2:A3002) Bootstrap estimate of �
Cell D4 = 1 + 0.025∗3001 Row number for 2.5th percentile

mean value
Cell D5 = 1 + 0.975∗3001 Row number for 97.5th percentile

value
Cell D6 = A76 2.5th percentile value is Bootstrap

CI lower limit
Cell D7 = A2927 97.5th percentile value is

Bootstrap CI upper limit
Cell D8 = AVERAGE(B2:B3002) Proportion of the means that are

< 102
Cells D12 and D13 95% confidence limits Obtain from text assuming

Normal distribution
Cell D14 = (102 − 103)/(2.2181/SQRT(10)) Z value for standard test of � <

102
Cell D15 = Normsdist(D14) Probability from Standard

Normal distribution
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A similar evaluation for standard deviation can be conducted from the Bootstrap sample
values. Copy the standard deviation values from column B of our original worksheet into
column A of a new worksheet. Delete the standard deviation value for the original sample,
leaving only those for the Bootstrap samples. As with the analysis of the means, we sort the
column of values. The average of the Bootstrap values is our estimate of �. The 2.5th and 97.5th
percentile values are our lower and upper 95% confidence interval limits.

For the standard method, we rely on the Chi-square distribution (see chap. 5) as the
assumed statistical distribution of the variance. The square root of the variance, the standard
deviation of the original sample values, is the estimate of �. By using the 2.5th percentile and
97.5th percentile critical Chi-square values, we can construct a 95% confidence interval on �
using standard formulas.

The average standard deviation value of our Bootstrap samples is 2.122. The 2.5th per-
centile and the 97.5th percentile standard deviations are the 76th and 2927th sorted values. The
Bootstrap 95% confidence interval limits are 1.4 and 2.7.

The 95% confidence interval limits based on the Chi-square distribution are derived from
the distribution’s critical values of 2.70 (0.025 probability level, 9 d.f.) and 19.02 (0.975 probability
level, 9 d.f.). The lower limit, 1.5, is calculated as SQRT((2.2182 × 9)/19.02) and the upper limit,
4.0, is calculated as SQRT((2.2182 × 9)/2.70).

It is notable that while the lower limits from both the Bootstrap method and the formula-
based method are quite similar, those for the upper limit are not. This may be due to the small
size of the original sample, resulting in a biased bootstrap estimate of variability. If this was the
case, then taking a second sample and combining it with the original sample, then repeating
the Bootstrap process, might improve the estimate. It is also possible that the actual underlying
statistical distribution for the sample variance is not that of the assumed Chi-square distribution.
In this case, the Bootstrap confidence interval may be closer to reality than that obtained by the
standard formulas. Only additional actual sampling would help us evaluate the cause of the
discrepancy between the two estimates.

Both Monte Carlo simulation and bootstrapping methods are powerful tools for solving
problems. Monte Carlo simulation, carrying out repeated computer-simulated experiments
based on simple statistical principles, is a process that has an intuitive appeal to many scientists.

DCA

Stdev1

2 0.703 Bootstrap

3 0.811

4 2.122stdev0.891

5 762.5% obs0.982

6 292797.5% obs1.001

7 1.495% Cl Low1.001

8 2.795% Cl Hi1.020

9 1.020

10 1.105

11 1.116 Chi-Sq on sample

12 1.116

13 1.128 95% Cl Low 1.5

14 1.132 95% Cl Hi 4.0

15 1.132

16 1.160

17 1.171
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While less intuitive in its theoretical underpinnings, Bootstrapping provides a simple non-
parametric method for solving problems when we are unable to make assumptions about the
underlying statistical properties that govern the process of interest.

While the examples presented have relied upon the computing power of Microsoft Excel,
there are other packages that may provide more accessible simulation and bootstrapping capa-
bilities. The author is familiar with two such packages provided by the company Resampling
Stats, Inc. (www.resample.com). One is marketed as an Excel Add-in [2] that enhances the built-in
simulation capabilities in Excel and provides a considerably easier way to perform bootstrap-
ping in Excel. The second, Resampling Stats [3,4] is a self-contained simulation and boot-
strapping package with extremely intuitive commands and easy to use programming wizard
interface. The reader who wishes to further pursue simulation methods would be well advised
to consider one of these computer packages.
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15 Nonparametric Methods

Nonparametric statistics, also known as distribution-free statistics, may be applicable when
the nature of the distributions are unknown, and we are not willing to accept the assumptions
necessary for the application of the usual statistical procedures. For most of the statistical tests
described in this book, we have assumed that data are normally distributed. This assumption,
although never exactly realized, is bolstered by the central limit theorem (sect. 3.4.2) when
we are testing hypotheses concerning the means of distributions. However, occasions arise in
which data are clearly too far from normal to accept the assumption of normality. The data may
deviate so much from that expected for a normal distribution that to assume normality, even
when dealing with means, would be incorrect. In these situations, a data transformation may be
used, chapter 10, or nonparametric methods may be applied for statistical tests. As we shall see,
many of the nonparametric tests are easy to compute, and can be used for a quick preliminary
approximation of the level of significance when parametric tests may be more appropriate.
Although some people believe that any kind of data, no matter what the distribution, can be
correctly analyzed using nonparametric methods, a kind of panacea, this is not true. Many if not
most nonparametric methods require that the distributions be continuous and symmetrical, and
that data be independent, for example. These are among the assumptions underlying parametric
analyses, as exemplified by the normal t, and F tests.

15.1 DATA CHARACTERISTICS AND AN INTRODUCTION TO
NONPARAMETRIC PROCEDURES

Before proceeding, a review of the different kinds of data that are usually encountered in
scientific experiments will be useful for the understanding of the applications of nonparametric
methods.

1. Perhaps the most elementary kinds of data are categorical or attribute measurements. These
are also known as nominal observations (i.e., the observation is given a name). Thus, a person
is observed to be a “male” or a “female” or “black,” “white,” or “yellow.” Some other
examples are given in Table 15.1. The assignment of a number to such nominal data may be
useful to differentiate the categories, perhaps for computer usage. However, actual values,
a number assigned to these categories where the numbers have meaning in terms of rank,
would not make sense. For example, we could assign the number 1 to a male and 2 to a
female, but this does not imply that a female is larger (or, for that matter, smaller) than a male.
Data that comprise two classes and consist of such attribute measurements may be analyzed
using the binomial distribution. As discussed in chapter 5, Chi-square tests may be used to
test the significance of differences of the proportion of attributes in comparative groups if the
sample size and incidences are sufficiently large. These kinds of data are usually presented in
the form of contingency tables, such as the 2 × 2 table for proportions discussed in chapter 5.

2. The next, perhaps more “sophisticated” level of measurement involves data that can be
ranked in order of magnitude. That is, we can say that one measurement is equal to, less than,
or greater than another. These kinds of ordered data are known as ordinal measurements.
Continuous variables are ordinal measurements according to this definition, but here, we
usually think of ordinal data as arising from some arbitrary scale, as constructed for rating
scales. For example, patients receiving antidepressant medication, may be rated according
to attributes such as “sociability.” A high score will be assigned to a patient performing well
on this criterion. If the patient shows characteristics of “withdrawal,” a low score will result.
Intermediary scores reflect various degrees of response. These are ordinal measurements. A
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Table 15.1 Examples of Nominal Data

Products categorized as acceptable and unacceptable in quality control

Side effects in a clinical study

Males and females in a clinical study

Various descriptions of “feel” of an ointment preparation, or taste of a product

(tart, biting, sharp, etc.)

Concomitant diseases or medicaments in a clinical study

patient with a score of zero after one week of medication, and a score of 3 after two weeks of
medication can be said to have improved during the period between one and two weeks of
treatment. A score of 3 is better than a score of zero. Some examples of this kind of data are
shown in Table 15.2. Many nonparametric tests are based on ranking data. Certainly, data
derived from a continuous distribution, such as the normal distribution, can be ranked in
order of magnitude. (Ordinal data, by definition, can be ranked.) The nonparametric tests
that will be discussed here, which use ranks for the analysis, require that the data have
a continuous distribution. One might question the validity of nonparametric tests using
data derived from an arbitrary ordinal rating scale such as that described above. If we
understand (or assume) that the rating scale has an underlying continuity, the discreteness
and arbitrary nature of the scale can be considered acceptable for nonparametric tests. The
condition of the “depressed” patient is a continuum. The condition can vary from one
extreme to another with infinitely small gradations, in theory. It is not possible practically to
measure the subjective condition with its infinite subtleties, and therefore we substitute an
ordered scale that approximates the condition of the patient. Controversy exists regarding
the analysis of this kind of data. Some people believe that data derived from rating scales,
as described above, should not be analyzed by parametric methods such as the t test. One
reason for this position is that the intervals in these rating scales are not equal in terms of
the degree of response; that is, the scores do not represent an equi-interval scale. In fact,
the scale points do not precisely correspond to the description of the condition. The points
are usually arbitrarily defined. Thus, there is not an exact correspondence of the numbers
on the rating scale to the patients’ conditions, as defined by an arbitrary description based
on an assumed underlying continuous distribution (Fig. 15.1). For example, if a score of
3 represents “marked improvement” in sociability, 2 represents “moderate improvement,”
and 1 represents “no improvement,” one usually cannot say that the difference between
scores of 3 and 2 is equal in magnitude to the difference of 2 and 1. Yet the data analysis
of such scores usually treats a difference between 3 and 2 as equivalent to a difference
between 2 and 1. Perhaps, if the psychological aspects of depression were known to a
sufficient extent, and the observer could discern subtle differences, the scoring system could
be shown to be better represented by 3, 2.5, and 0.8 for the conditions corresponding to
“marked improvement,” “moderate improvement,” and “no improvement,” respectively.

Although we can and do analyze data from a rating scale using nonparametric methods
(as presented below), the typical parametric methods (ANOVA, t tests) are also commonly
applied to such data. The use of parametric methods to analyze rating scale data is considered
to be acceptable by many statisticians, including members of the FDA. Snedecor and Cochran
discuss the analysis of this kind of data using a modified t test [1].

3. When comparing ages using a “ranking” scale, one person may be said to be older than
another without regard to the magnitude of the difference in age. One can also specify the
numerical differences with such data (e.g., one person is two years older than another). This

Table 15.2 Examples of Ordinal Data

Rating scales for sensory attributes (degree of liking)

Degree of effectiveness of therapeutic agent (pain relief, joint swelling, etc.)

Dichotomization of a continuous variable (underweight and overweight)

Number of anginal attacks in one week

Number of ulcers in skin-diseased patient
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2.5 or 3? 2 or 1.5?

1

Never

socializes

Socializes

occasionally

Socializes

normally

23 ? ?

Figure 15.1 Problems with correspondence of a number and a subjective condition.

is an example of numerical data, often encountered in scientific experiments, where the
distances between the values representing experimental outcomes have physical meaning.
These data have a precise, better-defined meaning than data that are only ranked. Such data
are often categorized as interval or ratio scaled data, depending on whether or not a true
“zero point” exists. Age, weight, and concentration are examples of ratio scales. A person
who weights 200 pounds is twice as heavy as one who weighs 100 pounds. Temperature
does not have a true zero point (according to the concept above) and is an example of
an interval scale. A temperature designated as “zero” is an arbitrary position on the scale
and does not represent the lack of temperature. We cannot say that 40◦C is twice as hot as
20◦C. Ratio and interval-type data are the kinds of numbers that usually are subjected to
the typical parametric tests. If these data are not normally distributed, they may be appro-
priately analyzed using nonparametric methods. One should understand that, in general,
nonparametric tests can be applied to most of the data that we usually encounter, including
that from continuous data distributions. Hence, data that are normally distributed may also
be analyzed using these methods. A disadvantage of using nonparametric methods rather
than the usual analyses for normally distributed data is that nonparametric methods are
less sensitive (i.e., they are less powerful). Nevertheless, some nonparametric methods are
surprisingly sensitive and are able to differentiate treatments that are normally distributed
with efficiency almost equal to that of the parametric tests.

Nonparametric tests are most effectively used for data that consist of only classified
(nominal) variables or ranked variables that are considered to have an underlying continuous
distribution. Data derived from continuous distributions are particularly amenable to nonpara-
metric methods when the distributions deviate greatly from normality. The reader should be
aware that many nonparametric tests assume a symmetric distribution and equality of variance
in the comparative groups. A marked disadvantage of the simpler nonparametric techniques
is the lack of flexibility of the design and analysis. Elementary designs may be readily ana-
lyzed using nonparametric methods, but more complex designs in which interactions and other
ANOVA components are present cannot be simply analyzed with these techniques, particularly
when sample sizes are small.

Most of the nonparametric methods for data that are not categorical use ranking pro-
cedures. The observations in the various treatment groups are ranked according to specific
procedures, and the ranks that replace the raw data are then analyzed. These analyses use



NONPARAMETRIC METHODS 393

simpler statistical computations than the corresponding parametric analyses. The transforma-
tion to ranks results in simple whole or fractional numbers of relatively small magnitude.

15.2 SIGN TEST
The sign test is probably the simplest of the nonparametric tests. The sign test is a test of
the equality of the medians of two comparative groups. This test is used for paired data with
an underlying continuous distribution, and can be applied to ranked or higher level data
such as continuous interval and ratio-type data. The pairs are matched, and differences of the
measurements for each pair tabulated. The differences are then categorized only with regard
to the sign of the difference. That is, we count the number of times one treatment has a higher
value than the other. Ties are not counted for this test. Ties give no information regarding which
treatment has the higher median value. Theoretically, with continuous variables, there should
be no ties.∗ However, with limited measuring instruments or the use of a crude rating scale, ties
do occur.

As noted above, the sign test is a test of equal medians. If the test shows “significance,” we
can say that two comparative populations have different medians at the � level of significance.
Under the null hypothesis that the medians of the two comparative distributions are the same,
the probability of observing a value for Treatment A being larger or smaller than an observation
for Treatment B is one-half ; that is, the probability that an observation for Treatment A will be
greater than a paired observation for Treatment B is one-half. Having recorded the differences,
we compute the proportion of observations where the difference of treatment pairs is positive
(or negative), disregarding ties (i.e., zero differences).

If positive and negative signs are observed to occur with approximately equal frequency,
we can conclude that the treatments have a similar median. If either positive (+) or negative
(−) signs predominate, there is evidence that one treatment has a higher median than the other.
The statistical test is based on the binomial distribution. When applying two treatments to the
same person, there are two possible outcomes: either Treatment A is favored or Treatment B is
favored. Under the null hypothesis, the probability of A being favored is one-half; H0 : p = 0.5.

We compare the observed proportion to one-half (0.5). With N small and p = 0.5, the probabilities
of various experimental outcomes can be calculated using computer software, or from the
expansion of the binomial [Eq. (3.9)], or from tables of the binomial distribution (Table IV.3).
For sample sizes of 6 to 20, inclusive, the number of positive or negative signs needed for
significance at the 5% level for the sign test is given in Table IV.12. For sample sizes greater than
20, the normal approximation to the binomial, with a continuity correction, will suffice (see sect.
5.2.4). The normal approximation test is

Z = |p − 0.5| − 1/(2N)

0.5/
√

N
, (15.1)

where p is the observed proportion and N is the sample size. If Z is greater than 1.96, the
treatments differ at the 5% level (two-sided test). The calculation can be simplified as follows:

Z =
∣∣number of + ’s − number of − ’s

∣∣− 1√
number of + ’s + number of − ’s

. (15.2)

Remember that ties are discarded and that N, the sample size, does not include ties.

Example 1. Because of its simplicity, the sign test may be used for a fast look at data from
comparative experiments before applying a more sensitive parametric test such as the t test
(if appropriate). This was the case for the data in Table 15.3, which were obtained to compare
the “time to peak” plasma level for two oral formulations of the same drug. These data would
usually be analyzed using a more sensitive nonparametric test (see sect. 15.3) or a t test for paired
data (or ANOVA for a crossover design). Values were obtained by administering both drugs

∗ With continuous measurements, the probability of two values being identical is zero.
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Table 15.3 Paired Data Obtained from the Bioavailability

Experiment: Time to Peak Plasma Concentration

Time to peak (hr) Difference

Subject A B B − A

1 2.5 3.5 + 1

2 3.0 4.0 + 1

3 1.25 2.5 + 1.25

4 1.75 2.0 + 0.25

5 3.5 3.5 0

6 2.5 4.0 + 1.5

7 1.75 1.5 −0.25

8 2.25 2.5 + 0.25

9 3.5 3.0 −0.5

10 2.5 3.0 + 0.5

11 2.0 3.5 + 1.5

12 3.5 4.0 + 0.5

to each of 12 persons on two different occasions. Although these data would ordinarily result
from a crossover design, and ANOVA techniques might be more appropriate, for the present
purposes, we will consider an example where treatments have been assigned in random order.
We will, therefore, not analyze “order’’ effects, and we will assume that no carryover effects are
present.

From Table 15.3, tabulation of the differences (B − A) results in nine positive signs and
two negative signs. One subject showed no difference between Treatments A and B. Referring
to Table IV.12, 10 of 11 positive (or negative) signs are needed to obtain significance at the 5%
level. Thus, according to the sign test, the difference just misses significance, although product
B appears to take a longer time to peak than does product A.

If the differences can be assumed to have a normal distribution, the paired t test would be
a more sensitive test than the sign test. For any given, specific example, one could not predict
that the t test would result in a “more significant” difference; but on the average, the t test will be
more discriminating. In this example, the t test results in a highly significant difference between
the two formulations (t = 3.02; see Exercise Problem 1).

15.3 WILCOXON SIGNED RANK TEST
For the comparison of two treatments in a paired design, a more sensitive nonparametric test
than the sign test is the Wilcoxon signed rank test. In the Wilcoxon test, the magnitude of the
difference between the paired results is taken into consideration in addition to the sign. This
feature results in a more powerful test, the sign test still retains its advantage for a very quick
assessment of the experimental results.

The Wilcoxon test is based on the assumption that the distributions of the comparative
treatments are symmetrical. Therefore, we are testing the equality of the means or the medians;
the mean and median are equal in a symmetrical distribution.

The initial calculations are the same as in the sign test. We first take differences between
the treatment pairs as in Table 15.3. Again, when the values for a treatment pair are equal (a
difference of zero), a tie, these data are discarded for purposes of the test. As in the sign test,
a zero difference does not contribute information regarding the differentiation of treatments
in the Wilcoxon signed rank test. The differences of the untied pairs are then ranked in order
of magnitude, disregarding sign. For the data in Table 15.3, the comparison of the time to peak
plasma concentration for two formulations, A and B, the ranking of the absolute values of the
differences is shown in Table 15.4. Differences of equal magnitude (disregarding sign) are given
the average rank. The three subjects, 4, 7, and 8, all showed a difference (absolute value) equal to
0.25. Each of the differences are given a rank of 2, since these are the three smallest differences
observed; 2 is the average of ranks 1, 2, and 3.
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Table 15.4 Data from Table 15.3: Ranking Differences Without Regard to Sign

for the Wilcoxon Signed Rank Test

Subject Value Rank Assigned rank
Assigned rank

with sign

7 −0.25 1 2 −2

4 0.25 2 2 2

8 0.25 3 2 2

9 −0.5 4 5 −5

10 0.5 5 5 5

12 0.5 6 5 5

1 1.0 7 7.5 7.5

2 1.0 8 7.5 7.5

3 1.25 9 9 9

6 1.5 10 10.5 10.5

11 1.5 11 10.5 10.5

Ranks with positive signs Ranks with negative signs

2 2

2 5

5 Sum = 7

5

7.5

7.5

9

10.5

10.5

Sum = 59

After ranking (disregarding sign) is completed, the signs corresponding to the signs of
the original differences are reassigned to the ranks. For example, for subject 7 (originally given
a rank of 2), the rank is changed to −2, because the difference for this subject was negative. The
ranks with like signs are summed as shown following Table 15.4. The sum of the positive ranks
is 59, and the sum of the negative ranks is 7. These are known as the rank sums. Table IV.13
gives the values of the smaller of the two rank sums needed for significance at the 5% level for
various sample sizes, N (N is the sample size, the number of pairs, less the number of ties).
The smaller rank sum must be equal to or less than that designated in Table IV.13 for the two
means to be significantly different at the 5% level. In our example, Table IV.13 shows that the
means are significantly different. The table shows that a rank sum of 10 or less for the smaller
rank sum is significant at the 5% level for N = 11. In our example, the smaller rank sum is 7.
Therefore the difference is significant at the 0.05 level (p ∼ 0.02) [2]. This test gives very similar
conclusions to that obtained by the t test. The Wilcoxon signed rank test is 95% as efficient as
a t test for the comparison of normal populations. This means that a sample size of 100 that is
analyzed using the Wilcoxon test would have equal sensitivity to a sample size of 95 using the
t test. Considering the less restrictive assumptions of the Wilcoxon test compared to the t test,
there is much to recommend it.

For sample sizes larger than those shown in Table IV.13, a normal approximation is
available to compare two population means using the Wilcoxon signed rank test

Z =
∣∣R − N(N + 1)/4

∣∣√
[N(N + 1/2)(N + 1)]/12

, (15.3)

where R is the sum of ranks (either the larger or smaller rank sum can be used) and N is the
sample size (disregarding ties). This formula works well also for smaller sample sizes. In our
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example, N = 11 and R = 59.

Z =
∣∣59 − 11(12)/4

∣∣√
[11(11.5)(12)]/12

= 2.31.

From Table IV.2, p = 0.02, which is very close to the exact probability, if the data are
normally distributed.

15.3.1 Nonparametric Confidence Intervals for Crossover Studies and Bioequivalence
If the assumptions of ANOVA (and t test) are violated, particularly the assumption of normality,
a confidence interval can be formed based on a nonparametric approach. The method is based on
ordering or ranking the outcomes and is relevant to bioequivalence studies, being introduced in
this context. For the analysis of bioequivalence, a controversy concerning the nature of the data
distribution recently polarized regulatory agencies. For many years, bioequivalence parameters
were analyzed as the raw, untransformed values. For a two-period crossover design, this would
be analogous to analyzing the differences of the treatments for each individual in the absence of
period and carryover effects. Recently, agreement appears to have been reached, in the spirit of
international harmonization, that a log transformation of AUC and Cmax values is appropriate
prior to the statistical analysis. This is analogous (but not the same) to an analysis of the ratio
of the estimated parameters. However, one can use a nonparametric test in which the error
structure and distribution assumptions are less rigid. A nonparametric confidence interval for
ratios (or differences of logs) is given in Hollander and Wolfe [3] and is expounded in a paper
by Steinijens and Diletti [4]. In this method, as opposed to parametric techniques, period and
sequence (carryover) effects are assumed to be absent, and no adjustment is made for these
effects.

The example in Steinijens and Diletti uses logs that would be appropriate in light of current
practice. The method is described for N subjects in a two-period crossover design (or paired
designs). First, compute the difference for each subject (e.g., test–reference). For the case of a log
transformation for AUC, compute the difference of the product responses,

log AUCt − log AUCr = log
(

AUCt

AUCr

)
= R

for each subject. (One may also calculate the ratios AUCt/AUCr because of the one–one rela-
tionship of ranks to the differences of logs. Compute R′, the average (geometric mean for ratios)
of all possible pairs of the N individual ratios (R), where N is the number of subjects. There
are N(N + 1)/2 such pairs, including the ratio, R, for the same subject. (This will be clarified
in the example below.) The values of R′ are then ranked in order from low to high. The lower
and upper nonparametric 90% and 95% confidence limits are given in Table 15.5. “C” is defined
as the value of the R′ that has the rank given in the table. For example, if “C” for the lower
limit in Table 15.5 is 11, this means that the 11th ranked R′ is given as the lower limit of the
confidence interval. The details of the theory and the computations of C are given in Refs. [3,4,5].
In practice, it is not necessary to compute the logs because we are really interested in the ratios
of test to reference. If we compute the ratios and use the geometric mean of the N(N + 1)/2
pairs for the ranks, we will obtain the confidence interval for the ratio of test/reference directly.
Again, this is a result of the monotonic relationship between the ratio and difference of the
logs. The following example clarifies the procedure. In this example, both the parametric and
nonparametric confidence intervals are calculated for purposes of comparison.

Example 2. Data for 12 subjects comparing two products for Cmax is shown in Table 15.6. The
ratio of the Cmax for the products (B/A) is also calculated for each subject. In Table 15.7, the
geometric mean of each pair of ratios (B/A) is shown in rank order. There are N(N + 1)/2 such
combinations (pairs) including each ratio with itself. The geometric mean is simply the square
root of the product of 2 ratios. Thus, the ratio for subject 1 combined with itself is 102/135 =
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Table 15.5 Nonparametric Confidence Intervals Based on Wilcoxon’s Signed

Rank Test

Rank for lower limit Rank for upper limit

Subjects
(N) 95% 90% 95% 90%

6 1 3 21 19

7 3 4 26 25

8 4 6 33 31

9 6 9 40 37

10 9 11 47 45

11 11 14 56 53

12 14 18 65 61

13 18 22 74 70

14 22 26 84 80

15 26 31 95 90

16 30 36 107 101

17 35 42 119 112

18 41 48 131 124

19 47 54 144 137

20 53 61 158 150

21 59 68 173 164

22 66 76 188 178

23 74 84 203 193

24 82 93 219 208

0.756, and the geometric mean is the square root of 0.756 × 0.756 = 0.756. For subject 1 combined
with subject 2, the geometric mean is the square root of 0.756 × 0.821 = 0.788, and so on.

For 12 subjects, the lower and upper cut-off points for a 95% confidence interval are the
values ranked 14 and 65 (Table 15.5). For the data in this example, these values correspond
to the ratios 0.800 and 1.247, respectively. The 90% confidence interval refers to the 18th and
61st rankings in Table 15.7, corresponding to an interval of 0.804 to 1.065. The 90% confidence
interval would just pass the lower limits of the FDA requirements of 0.8 for the ratio.

Using a parametric analysis of variance (two-way ANOVA, assuming no period or
sequence effects), with a log transformation (see Exercise Problem 15), the 90% interval is
0.79 to 1.26. The wider interval observed using the parametric approach is due to the “outlying”
ratio for subject 3.

Table 15.6 Results for Cmax from Bioequivalence Study

Product Ratio

Subject A B B/A

1 135 102 0.7555556

2 179 147 0.8212290

3 101 385 3.8118813

4 109 106 0.9724771

5 138 189 1.3695653

6 135 105 0.7777778

7 158 130 0.8227848

8 156 125 0.8012821

9 174 144 0.8275862

10 147 133 0.9047619

11 145 114 0.7862069

12 147 167 1.1360544
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Table 15.7 Ranks for Determining Confidence Interval for Bioequivalence Study

Rank Subjects A, B R ′ geometric mean Rank Subjects A, B R ′ geometric mean

1 1, 1 0.75556 40 2, 4 0.89366

2 1, 6 0.76659 41 4, 7 0.89451

3 1, 11 0.77073 42 4, 9 0.89711

4 6, 6 0.77778 43 10, 10 0.90476

5 1, 8 0.77808 44 1, 12 0.92647

6 6, 11 0.78198 45 4, 10 0.93801

7 11, 11 0.78621 46 6, 12 0.94000

8 1, 2 0.78771 47 11, 12 0.94508

9 1, 7 0.78845 48 8, 12 0.95410

10 6, 8 0.78944 49 2, 12 0.96590

11 1, 9 0.79075 50 7, 12 0.96681

12 8, 11 0.79371 51 9, 12 0.96963

13 2, 6 0.79921 52 4, 4 0.97248

14 6, 7 0.79996 53 10, 12 1.01383

15 8, 8 0.80128 54 1, 5 1.01724

16 6, 9 0.80230 55 5, 6 1.03209

17 2, 11 0.80353 56 5, 11 1.03767

18 7, 11 0.80429 57 5, 8 1.04757

19 9, 11 0.80663 58 4, 12 1.05109

20 2, 8 0.81119 59 2, 5 1.06053

21 7, 8 0.81196 60 5, 7 1.06154

22 8, 9 0.81433 61 5, 9 1.06463

23 2, 2 0.82123 62 5, 10 1.11316

24 2, 7 0.82201 63 12, 12 1.13605

25 7, 7 0.82278 64 4, 5 1.15407

26 2, 9 0.82440 65 5, 12 1.24736

27 7, 9 0.82518 66 5, 5 1.36957

28 1, 10 0.82680 67 1, 3 1.69708

29 9, 9 0.82759 68 3, 6 1.72186

30 6, 10 0.83887 69 3, 11 1.73116

31 10, 11 0.84340 70 3, 8 1.74768

32 8, 10 0.85145 71 2, 3 1.76930

33 1, 4 0.85718 72 3, 7 1.77098

34 2, 10 0.86198 73 3, 9 1.77614

35 7, 10 0.86280 74 3, 10 1.85711

36 9, 10 0.86531 75 3, 4 1.92535

37 4, 6 0.86970 76 3, 12 2.08099

38 4, 11 0.87440 77 3, 5 2.28487

39 4, 8 0.88274 78 3, 3 3.81188

15.4 WILCOXON RANK SUM TEST (TEST FOR DIFFERENCES BETWEEN TWO
INDEPENDENT GROUPS)

The sign test and Wilcoxon signed rank test are nonparametric tests for the comparison of paired
samples. These data result from designs where each treatment is assigned to the same person
or object (or at least subjects that are very much alike). If two treatments are to be compared
where the observations have been obtained from two independent groups, the nonparametric
Wilcoxon rank sum test (also known as the Mann–Whitney U test) is an alternative to the two
independent sample t test. The Wilcoxon rank sum test is applicable if the data are at least
ordinal (i.e., the observations can be ordered). This nonparametric procedure tests the equality
of the distributions of the two treatments. Thus, this procedure tests for both the location and
spread of the distributions.

The calculations for the Wilcoxon rank sum test are similar to those for the signed rank test
discussed above. First, the observations from both groups are pooled and ranked, regardless of
group designation. Identical observations are given a rank equal to the average of the ranks. In
this procedure, the signs of the observations are taken into account for ranking. For example, a
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Table 15.8 Results of a Dissolution Test Using the Original

Dissolution Apparatus and a Modification: Amount Dissolved in

30 Minutes

Original apparatus Modified apparatus

Amount dissolved Rank Amount dissolved Rank

53 3 58 11

61 14 55 5.5

57 9 67 21

50 1 62 15.5

63 17 55 5.5

62 15.5 64 18.5

54 4 66 20

52 2 59 12.5

59 12.5 68 22

57 9 57 9

64 18.5 69 23

56 7

Sum of ranks 105.5 [170.5]

value of −1 has a lower rank than 0.5, which has a lower rank than 1. After ranking the pooled
data, the observations are returned to their respective treatment groups. The observations are
then replaced by their corresponding ranks. The sum of the ranks of the smaller sample is the basis
for the statistical test. If the sample sizes are equal in the two treatment groups, the sum of the
ranks in either group can be used as the statistic for the Wilcoxon rank sum test.

Table 15.8 shows tablet dissolution results observed in the original dissolution appa-
ratus and a modification of the apparatus. The objective of this experiment was to com-
pare the performance of the two pieces of apparatus. Twelve individual tablets were used
for each ‘‘treatment” (apparatus). The amount of drug dissolved in 30 minutes was deter-
mined for each tablet. One tablet assay, determined in the original apparatus, is not included
in the results (Table 15.5) because of an overt error during the assay procedure for this
tablet.

Note how the ranks are obtained. The original apparatus has the four smallest values, 50,
52, 53, and 54, which are ranked 1, 2, 3, and 4, respectively. The next two highest values are
from the modified apparatus, both equal to 55. These values are both given the average rank of
5 and 6, equal to 5.5. The next value, 56, from the modified apparatus is given a rank of 7. The
next highest value is 57, which occurs twice in the original and once in the modified apparatus.
These are each given a rank of 9, the average of the three ranks which these values occupy, 8, 9,
and 10, and so on.

For moderate-sized samples, the statistical test for equality of the distribution means may
be approximated using the normal distribution. This approximation works well if the smaller
sample is equal to or greater than 10. For samples less than size 10, refer to Table IV.16 for exact
significance levels [2]. The normal approximation is

Z =
∣∣T − N1(N1 + N2 + 1)/2

∣∣√
N1 N2(N1 + N2 + 1)/12

, (15.4)

where N1, is the smaller sample size, N2 is the larger sample size, and T is the sum of ranks for
the smaller sample size. If Z is greater than or equal to 1.96, the two treatments can be said to
be significantly different at the 5% level (two-sided test). In our example

Z =
∣∣105.5 − 11(11 + 12 + 1)/2

∣∣√
(11)(12)(11 + 12 + 1)/12

= 26.5
16.25

= 1.63.
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A value of Z equal to 1.63 is not large enough to show significance in a two-sided test at
the 5% level (p = 0.11; Table IV.2). Therefore, these data do not provide sufficient evidence to
show that the two different pieces of apparatus give different dissolution results.

One should appreciate, as noted previously, that in ranking tests, ties result only because
of measurement limitations, because the distributions are assumed to be continuous. Too many
ties result in erroneous probabilities with regard to the test of significance. The error is on the
“conservative” side. For data with many ties (more than 10% of the data result in ties, as is the
case in our example) statistical tests will tend to give results that overestimate � (i.e., the � error
is larger than it should be). Hence, we tend to miss significant differences more often than we
should when too many ties appear in the data. A correction for ties is available, but in most
applications the difference between the corrected and uncorrected Z value is negligible.

It would also be of interest to compare the two pieces of equipment using the two inde-
pendent sample t test in order to see how the conclusions might differ. Of course, in general,
one cannot determine what would be expected to occur from a single example. The t test is
more efficient than the nonparametric rank sum test if the assumptions for the t test are valid
(see sect. 5.2.4). Similar to the signed rank test, the Wilcoxon rank sum test is very efficient,
approximately 95% compared to the corresponding t test. A two independent groups t test for
the data of Table 15.8 results in a t value of 1.84 with 21 d.f. (p < 0.10)

t = 61.3 − 57.45

5.05
√

1/12 + 1/11
= 1.84.

The probability level is somewhat less for the t test compared to the Wilcoxon rank sum
test in this example. However, the conclusions are similar for the two statistical procedures.

The tests described above may replace the paired t test (use the sign test or signed rank
test) or the two independent groups t test (use the rank sum test) when the assumptions required
for the validity of the t tests are questionable. For the comparison of more than two groups,
nonparametric tests, analogous to the analysis of variance parametric methods, are available.
However, simple nonparametric tests are not available for the analysis of more advanced designs
or for tests of interaction. The tests to be described below can be used to test for treatment effects
for a simple one-way or two-way analysis of variance. These tests are widely used, and are
recommended when ANOVA assumptions regarding normality are suspect and/or cannot be
easily tested. The nonparametric tests are useful in experiments where the data consist of values
derived from a rating scale with an underlying continuous distribution.

15.4.1 Nonparametric Analysis of Two-Way Crossover (Bioequivalence Designs)
Some people have advocated the use of nonparametric analyses for crossover designs or for
pharmacokinetic parameters from bioequivalence studies. As presented earlier (sect. 15.3.1), the
reason for this is the less restrictive assumptions of the nonparametric analysis. In particular,
this would, apparently, resolve the problem of violations of certain assumptions inherent in
ANOVA, for example, linearity, normality, and variance assumptions, although the theory is
quite complex. One problem with nonparametric techniques for the analysis of these data is that
we cannot account simultaneously for effects due to periods or carryover in the nonparametric
model. Cornell [6] has presented a lucid discussion of methods to analyze these data taken
from Koch [7]. One can demonstrate that specific sums and differences of observations in the
two-way crossover design are equivalent to effects of interest, that is, treatment, period, and
carryover effects (see discussion of parametric analysis in sect. 11.4.2). Applying a model that
includes treatment, period, carryover, and random effects, the principles of the analysis are as
follows:

1. Total the data for each subject over both periods and compare the totals for group (Sequence) I
(subjects taking test followed by reference) to the totals for Group II (subjects taking reference
followed by test). This comparison is a test for unequal carryover effects (Note that this is
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the same procedure as in the parametric analysis, where the sequence effect is confounded
with a carryover).

2. Take differences of Period 1 and Period 2 for each subject. Compare the differences for Group
1 to Group 2. This is a test of treatment differences.

3. Take differences of Treatment 1 and Treatment 2 for each subject. Compare the differences
for Group 1 to Group 2. This is a test of period differences.

To see how this works, consider the estimate of treatment effects (item 2 above). In Group
1, Treatment 2 follows Treatment 1; in Group 2, Treatment 1 follows Treatment 2. The expected
value for each subject is

In Group 1, Period 1 : � + P1 + T1

In Group 1, Period 2 : � + P2 + T2 + C1

In Group 2, Period 1 : � + P1 + T2

In Group 2, Period 2 : � + P2 + T1 + C2

where Pi , Ti , and Ci refer to the effects due to period i, treatment i, and carryover due to
treatment i, respectively.

The expected values of the differences between Period 1 and 2 for the two groups are

Group 1 : P1 + T1 − P2 − T2 − C1

Group 2 : P1 + T2 − P2 − T1 − C2

If carryover has been shown to be nonsignificant, C1 = C2 (see next paragraph),
the difference between the expected values for Groups 1 and 2 is equal to 2(T1 − T2), or
twice the treatment effect. The same approach can be used to demonstrate the results
of the calculations for sequence and period effects, items 1 and 3 above (see Exercise
Problem 16).

The nonparametric statistical tests may be applied sequentially. If the sequence effect
is significant, we may have to use only the Period I data as is the case for the parametric
analysis, as has been noted in chapter 11. For bioequivalence studies, real carryover effects are
very rare because of the nature of the design (short period of dosing and washout period).
Therefore, significant carryover effects may be dismissed if there is no rational or reasonable
explanation for their existence. (The FDA has accepted carryover effects as spurious for single
dose studies, in some cases, if the sponsor can demonstrate no obvious cause. However, in
the nonparametric test, no adjustment is made for the treatment differences in the presence of
period or carryover effects. Therefore, one should be cautious when applying these tests in the
presence of a significant “carryover.”) We can then apply the usual nonparametric tests. The
data in Table 15.9, taken from Wallenstein and Fisher [8] as also presented by Cornell, are used
to illustrate the procedure.

To test for significance, the Wilcoxon rank sum test is applied to the ranks of each of
the differences (Period 1–Period 2 and Treatment 1–Treatment 2) in Table 15.9. Eight subjects
are in Sequence I, Treatment 1 followed by Treatment 2. Nine subjects are in Sequence II. The
comparison of treatment totals for Sequences I and II is a test for a sequence or carryover effect.
The sequence effect is not significant [see Exercise Problem 17 and Eq. (15.4)]. The treatment
effect can be tested by comparing the Period I to Period 2 differences for the two sequences
[(Treatment 1–Treatment 2)1 − (Treatment 2–Treatment 1)2]. The sum of ranks for Period 1 to
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Table 15.9 AUC (log) Data for Crossover Study [11] to Illustrate Nonparametric Analysis

Sequence
(Group I) Pd. 1 Pd. 2 Total Rank Pd. 1–Pd. 2 Rank Tr1–Tr2 Rank

Tr1–Tr2 2.60 2.16 4.76 16 0.44 1.5 0.44 1.5

2.81 2.53 5.34 5 0.28 4 0.28 4

3.02 2.69 5.71 1 0.33 3 0.33 3

2.59 2.50 5.09 9 0.09 9 0.09 12

2.70 2.45 5.15 8 0.25 5 0.25 5

2.01 2.49 4.50 17 −0.48 17 −0.48 17

2.71 2.27 4.98 10 0.44 1.5 0.44 1.5

2.67 2.55 5.22 7 0.12 8 0.12 10

Total 73 49 54

Sequence

(Group II)

Tr2–Tr1 2.57 2.38 4.95 11 0.19 6 −0.19 16

2.36 2.50 4.86 13.5 −0.14 13 0.14 13

2.73 2.75 5.48 2 −0.02 11 0.02 9

2.38 2.55 4.93 12 −0.17 14 0.17 8

2.64 2.75 5.39 3 −0.11 12 0.11 11

2.52 2.71 5.23 6 −0.19 15 0.19 7

2.46 2.32 4.78 15 0.14 7 −0.14 15

2.57 2.79 5.36 4 −0.22 16 0.22 6

2.46 2.40 4.89 13.5 0.06 10 −0.06 14

Total 80 104 99

Period 2 for Sequence I is 49. Applying Eq. (15.4),

Z = |49 − 8(8 + 9 + 1)/2|√
8 × 9(8 + 9 + 1)/12

= 2.21(p < 0.05).

The test for period effects is based on the comparison of the ranks in the two sequences
in the last column of Table 15.9 (see Exercise Problem 17). Of course, the current test for bioe-
quivalence is not based on statistical significance. Nevertheless, the nonparametric approach to
this problem is instructive. See section 15.3.1 for an illustration of a nonparametric confidence
interval to bioequivalence data.

15.5 KRUSKAL–WALLIS TEST (ONE-WAY ANOVA)
The Kruskal–Wallis test is an extension of the rank sum test to more than two treatments, and is
basically a test of the location of the distributions, assuming variance symmetry, that is, equality
of variances in the different groups. Significant differences can be interpreted as meaning that
the averages of at least two of the comparative treatments are different. The computations and
analysis will be illustrated using an experiment in which data were obtained from a preclinical
experiment in which rats, injected with two doses of an experimental compound and a control
(a known sedative), were observed for sedation. The time for the animals to fall asleep after
injection was recorded. If an animal did not fall asleep within 10 minutes of the drug injection,
the time to sleep was arbitrarily assigned a value of 15 minutes. The experimental results are
shown in Table 15.10. One data point was lost from the control group because of an illegible
recording, obliterated in the laboratory notebook.

The analysis for treatment differences is not dependent on equal numbers of observations
per group, although, as in most experiments, equal sample sizes are most desirable (optional).
The analysis consists of first combining all of the data, as in the Wilcoxon rank sum test. To
obtain the ranks, one lists all observations in order of magnitude, identifying each value by its
group designation. The observations are then reclassified into their original groups, similar to
the Wilcoxon rank sum test procedure. The ranks corresponding to each observation are retained
and summed for each group as shown in Table 15.10. Note that ties are given the average rank
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Table 15.10 “Time to Sleep” for a Control and Two Doses of an

Experimental Compound (minutes)

Control Rank Low dose Rank High dose Rank

8 22 10 26 3 10

1 3.5 5 13 4 12

9 24.5 8 22 8 22

6 15 1 3.5

9 24.5 7 18.5 1 3.5

6 15 7 18.5 3 10

3 10 15 28 1 3.5

15 28 1 3.5 6 15

1 3.5 15 28 2 7.5

7 18.5 7 18.5 2 7.5

Sum of ranks 149.5 191.0 94.5

as in the previously described rank sum test. In addition to the usual analysis, we will present
a procedure that corrects the analysis for tied observations [3].

The test statistic for the Kruskal–Wallis test, as described below, is approximately dis-
tributed as Chi-square with k − 1 d.f., where k is the number of treatments (groups) in the
experiment. For small sample sizes, tables to determine the treatment rank sums needed for sig-
nificance are available [3]. The Chi-square approximation is good if the number of observations
in each group is greater than five. The computation of the Chi-square statistic is as follows:

� 2
k−1 = 12

N(N + 1)

(∑ R2
i

ni

)
− 3(N + 1), (15.5)

where N is the total number of observations in all groups combined, Ri the sums of ranks in ith
group, ni the number of observations in ith group, and k the number of groups.

In our example,N = 29,R1 = 149.5,R2= 191,R3 = 94 .5, n1= 9, n2= 10, n3= 10, and k= 3.

Applying Eq. (15.5), we have

� 2
2 = 12

(29)(30)

(
149.52

9
+ 1912

10
+ 94.52

10

)
− 3(29 + 1) = 6.89.

The value of Chi-square with 2 d.f. must be equal to or greater than 5.99 to be significant
at the 5% level (Table IV.5). Therefore, the average “time to sleep” differs for at least two of the
three treatment groups (control, high dose, and low dose) at the 5% level of significance.

As in the parametric tests, if statistically significant differences among treatments are
found, one usually would want to know which treatments are different. For individual (pair-
wise) comparisons, Table IV.17 tabulates the differences between rank sums needed for signifi-
cance at the 5% level, given the number of treatments in the design and the sample size [2]. To
perform the pairwise treatment comparisons, the number of observations per treatment must be
the same. For example, in the case of three treatments, each with a sample size of 10, a difference
between the rank sums of two of the treatments (groups) must exceed 92 in order for the two
treatments to be considered different at the 5% level. In our example, had the control group
had 10 observations instead of 9, we could apply the pairwise test. However, if an additional
observation had been included in the control group, the greatest difference between the rank
sums of the control group and one of the doses of the experimental drug in this experiment
could not exceed 92.† The observed difference between the high and low doses is (191 − 94.5) =
96.5, which exceeds 92. Thus, the pairwise comparison criterion shows a significant difference

† The largest difference between the control and one of the experimental drug doses would occur if the tenth
value in the control group were the highest observation. The rank sum of the control group would be increased
by 30, resulting in a rank sum of 179.5 (Table 15.10). The difference between the rank sums of the control and
high-dose groups would be 179.5 − 94.5 = 85, which is not significant at the 5% level.
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between the high and low doses of the experimental drug (p < 0.05), agreeing with the signif-
icant Chi-square test. For more details concerning multiple comparisons in the Kruskal–Wallis
test, see Refs. [2,3].

As in the ranking procedures previously described, tied values are given the aver-
age rank. A correction for ties can be used that increases the value of Chi-square.
Therefore, if the null hypothesis is rejected (significant treatment differences), the cor-
rection only increases the degree of significance. If Chi-square just misses significance,
the correction may result in statistically significant differences. The correction is as
follows:

Correction = � 2

1 −∑
(t3

i − ti )/(N3 − N)
,

where ti is the number of tied observations in group i and N is the total number of observations.
The calculations are illustrated below. There are eight groups of ties in the data shown in Table
15.10. For example, there are six values equal to 1. For this group of ties, t3 − t is equal to
63 − 6 = 210. Another group of ties are the two values equal to 2. There are two values of 2 in
the data, and for this group, t = 2 and t3 − t = 6. The other ties occurred for values of 3, 6, 7, 8,
9, and 15. The reader can verify that the sum of T (where T = �(t3

i − ti )) is 378. The correction
for Chi-square is

6.89
1 − 378/(293 − 29)

= 6.89
0.984

= 7.00.

(Note that N = 29 in this example.) The correction for ties is usually very small. Of course,
in this example, the correction does not change the conclusion of significant differences among
treatment means.

15.6 FRIEDMAN TEST (TWO-WAY ANALYSIS OF VARIANCE)
The Friedman test is a nonparametric test applied to data that is, at least, ranked and that is in
the form of a two-way ANOVA design (randomized blocks). This test, which may be applied to
ranked or interval/ratio-type data, is used when more than two treatment groups are included
in the experiment. For two groups in a paired (two-way) design, the rank sum test may be
used. In the Friedman test, the treatments are ranked within each block (e.g., animal or person),
disregarding differences between blocks. The procedure will be illustrated using the data from
Table 15.11. These data describe the results of a validation experiment to test the performance
of four tablet presses, with regard to tablet hardness. The average hardness of 10 tablets was
computed for five different tablet products manufactured on four presses. The tablets are a
random selection of five typical tablet products. The presses were identically set for the same
pressure for each tablet formulation.

The parenthetical values in Table 15.11 are the ranks of the average hardness for each
formulation over the four presses. For formulation 1, the lowest value, 6.9, is assigned a rank
of 1, and the highest value, 7.5, is assigned a rank of 4. Although no ties occurred in this
example, if ties were observed, the average rank would be assigned to the tied observations
as discussed in the preceding sections. If one of the presses consistently had the highest (or
lowest) rank, one would conclude that the press (treatment) produced harder (or less hard)
tablets than the other presses. In our example, tablet press C had the highest hardness value for
all formulations with the exception of formulation 1, where it had the next-to-largest value. The
test of significance is an objective assessment of whether or not the data of Table 15.11 provide
sufficient evidence to say that tablet press C is, indeed, producing harder tablets than the other
presses.
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Table 15.11 Average Hardness of 10 Tablets for Five

Different Tablet Formulations Prepared on Four Pressesa

Tablet press

Tablet formulation A B C D

1 7.5 (4) 6.9 (1) 7.3 (3) 7.0 (2)

2 8.2 (3) 8.0 (2) 8.5 (4) 7.9 (1)

3 7.3 (1) 7.9 (3) 8.0 (4) 7.6 (2)

4 6.6 (3) 6.5 (2) 7.1 (4) 6.4 (1)

5 7.5 (3) 6.8 (2) 7.6 (4) 6.7 (1)

Ri 14 10 19 7

aParenthetical values are the within-tablet press ranks.

If the sample sizes are sufficiently large, a Chi-square distribution can be used to approx-
imate the test of significance. The Chi-square test is

� 2
c−1 = 12

rc(c + 1)

(∑
R2

i

)
− 3r (c + 1), (15.6)

where � 2
c−1 is the � 2 statistic with c − 1 d.f., r the number of rows (blocks), c the number of

columns (treatments), and Ri the sums of ranks in the ith group (column).
In our example, the Chi-square statistic has 3 d.f.

� 2
3 = 12

(5)(4)(4 + 1)
(142 + 102 + 192 + 72) − 3(5)(5) = 9.72.

A Chi-square value of 7.81 or larger is needed for significance at the 5% level (Table IV.5).
We can conclude that at least two of the tablet presses differ with regard to tablet hardness.
Examination of Table 15.11 shows that tablet press C produces harder tablets than those pro-
duced by the other presses. Table IV.18 shows that a difference of 11 is needed for significance
(p < 0.05) for individual comparisons between pairs of means for 4 treatments (k = 4) and 5 rows
(n = 5). Therefore, press C produces significantly harder tablets than press D with a sum of ranks
of 19 and 7, respectively.

For small samples, exact probabilities for the Friedman test are given in Nonparamet-
ric Statistical Methods [3]. This test also describes a test that corrects Chi-square for tied
observations.

15.6.1 Modified Friedman Test
Conover [9,10] recommends a statistic that has an approximate F distribution with (c − 1),
(c − 1)(r − 1) d.f. (where r is the number of rows and c is the number of columns in the RXC
matrix of data). This method of analysis has been shown to be superior to the Chi-square
distribution for the Friedman nonparametric analysis (sect. 15.6) of a two-way ANOVA model.
The statistic T2 is calculated as follows:

Compute A2 = ∑
(xi j )2, where the xi j are the individual ranks.

A2 is equal to cr(c + 1) (2c + l)/6 if there are no ties (ties are given the value of the average rank).
c = number of columns and r = number of rows

Compute B2 = (1/r )
∑

(Ci )
2

where Ci is the sum of observations in column i. Then

T2 = [(r − 1){B2 − rc(c + 1)2/4}]
A2 − B2

Refer T2 to an F table with c − 1 and (r − 1)(c − 1) d.f.
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Example 3. The computations for this analysis are shown below for the data from Table 15.11

A2 = cr (c + 1)(2c + 1)
6

= 4 × 5 × (4 + 1)(2 × 4 + 1)
6

= 150

B2 =
(

1
r

)∑
(Ci )

2 =
(

1
5

)
(142 + 102 + 192 + 72) = 706

5
= 141.2

T2 = [(5 − 1)(141.2 − 4 × 5(4 + 1)2/4)]
(150 − 141.2)

= 7.364

Compare 7.364 to the tabled value of F with 3 and 12 d.f. at the 5% level (App. IV, Table
IV.6A)

F3, 12, 0.05 = 3.49.

Since the observed F (7.364) is larger than the tabled F (3.49) at the 5% level, the differences
among tablet presses are significant (p = 0.005). The usual Friedman test that uses a Chi-square
statistic shows a level of 0.02 (sect. 15.6). See Exercise Problem 18 at the end of this chapter for
the application of ANOVA to this data.

15.6.1.1 Multiple Comparisons for the Modified Friedman Test
If the null hypothesis of equal treatment means is rejected, the following formula can be used
to calculate a least significant difference between pairs of treatments:

[C j − Ci ] > t
√

[2r (A2 − B2]/[(r − 1)(c − 1)

where t is the tabled t value with (r − 1)(c −1) d.f. at the specified alpha level.
Applying this formula to the data in Table 15.11 for tablet press differences at the 5% level.

[
C j − Ci

]
> 2.18

√
[2 × 5(150 − 141.2)]/[(5 − 1)(4 − 1)] = 5.90.

Any difference in rank sums ≥5.9 is significant at the 0.05 level. Inspection of the results
shown in Table 15.11 shows that Tablet Press C gives higher results (p < 0.05) than B and D, and
A is higher than D. In this example, we see more significant differences with the modified test
compared to the Friedman test described in section 15.6.

15.6.2 Quade Test for Randomized Block Design
Conover [9] presents another test (Quade Test) that is still valid in the presence of many ties.
In addition to the usual computations as shown in the Friedman Test, a further computation is
needed. The range of values (largest minus smallest value) is calculated for each block (row).
The blocks are ranked in order from the smallest to the largest with regard to the range of values
within a block. Call these ranks Q1 . . . Qr , where r is the number of rows (blocks). Let R(Xi j )
be the rank of each observation, where ranks are within each row or block. Compute for each
observation

Si j = Qi [R(Xi j ) − (k + 1)/2],

where k is the number of treatments (columns).

Let Si = ∑
Si j for each treatment.

Calculate A = ∑
S2

i j (for all observations).
Calculate B = ∑

S2
i /r.
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For Table 15.11, the calculations for the “Quade” test are as follows:

Range of row 1 = 0.6 (7.5 − 6.9)
Range of row 2 = 0.6 (8.5 − 7.9)
Range of row 3 = 0.7 (8.0 − 7.3)
Range of row 4 = 0.7 (7.1 − 6.4)
Range of row 5 = 0.9 (7.6 − 6.7)

Qi is the rank of row i.

Q1 = 1.5

Q2 = 1.5

Q3 = 3.5

Q4 = 3.5

Q5 = 5

(Note: as usual, compute the average rank for ties.) As an example, the calculation of S11
follows:

S11= value for formulation 1 on press 1 = 1.5[4 − (4 + l)/2] = 2.25.

The values of Si j derived from the data in Table 15.11 are shown in Table 15.12.

A =
∑(

Si j
)2 = 270

B =
∑ S2

i

r
=
[
22 + (−5.5)2 + 212 + (−17.52)] 5 = 156.3

The test statistic is

T = (r − 1)B
A− B

T = 4(156.3)
270 − 156.3

= 5.499.

Refer T to an F distribution with (c − 1) and (r − l)(c − 1) d.f. at the appropriate alpha
level (App. IV, Table IV.6A).

Table 15.12 Table to Aid Computations for Quade Test (Sij) Press

A B C D Range Rank

Formulation
1 2.25 −2.25 0.75 −0.75 0.6 1.5

2 0.75 −0.75 2.25 −2.25 0.6 1.5

3 −5.25 1.75 5.25 −1.75 0.7 3.5

4 1.75 −1.75 5.25 −5.25 0.7 3.5

5 2.5 −2.5 7.5 −7.5 0.9 5

Sum 2.00 −5.50 21.00 −17.50
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Tabled F3,12 = 3.49 at the 5% level.
Therefore, at least two of the presses are significantly different (p = 0.013). Multiple

comparisons can be made if the F test shows significance. The difference between the sums of
any two treatments is significant if the absolute value of the difference exceeds

t ×
[

2r (A− B)
(r − 1)(c − 1)

]1/2

,

where t is the appropriate tabled t value at the alpha level with (r − l)(c − 1) d.f. In this example,
t0.05,12 = 2.18, and the least significant difference is

2.18
[

10(270 − 156.3)
(4)(3)

]1/2

= 21.22.

We conclude that press C gives higher results than presses B and D at the 5% level of
significance.

This analysis is identical to an analysis of variance on the ranks in Table 15.12. The least
significant difference is computed as in Fisher’s LSD, based on the analysis of the “adjusted”
ranks, as computed from Eq. (8.7) (see Exercise Problem 19).

Three different tests applied to these data give somewhat different overall conclusions.
This is caused by the fact that some of the comparisons are close to significant (C vs. A and C
vs. B). As always the test to be applied and the level of significance should be clearly defined at
the initiation of the experiment.

15.7 NONPARAMETRIC ANALYSIS OF COVARIANCE
Quade has proposed a simple and neat nonparametric analysis of covariance (ANCOVA) [11].
The procedure is described in detail using the data of Table 15.13.

Rank each of X and Y (raw material and product assays, respectively) disregarding treat-
ment. Let the lowest value have rank 1 up to the highest value, rank N, where there are a total of
N observations. Correct the rankings so the mean of the ranks = 0, by subtracting the average
rank, (N + 1)/2, from each rank Y. In this example, N = 8. The lowest value of Y (product
assay) is 95.4 and is given a rank of 1. Subtract (N + 1)/2 = 9/2 = 4.5 from 1, resulting in
Ry = 1 − 4.5 = −3.5. Similarly, the largest assay is 98.5, with an adjusted rank of 8 − 4.5 =
+3.5. The ranks of the raw material assays are calculated similarly. Use average ranks in case
of ties.

Table 15.13 Data for Quade Nonparametric Covariance Analysis (ANCOVA)

Final assay Raw material Ranks −4.5
Y X Ry Rx Predicted Residual

Method I

98.00 98.40 2.50 −3.00 1.4451220 1.0548780

97.80 98.60 1.50 −1.00 0.4817073 1.0182927

98.50 98.60 3.50 −1.00 0.4817073 3.0182927

97.40 99.20 −0.50 2.50 −1.2042683 0.7042683

Sum 5.795732

Method II

97.60 98.70 0.50 0.50 −0.2408537 0.7408537

95.40 99.00 −3.50 1.50 −0.7225610 −2.7774391

96.10 99.30 −2.00 3.50 −1.6859756 −0.3140245

96.10 98.40 −2.00 −3.00 1.4451220 −3.4451220

Sum −5.795732
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Next, perform a regression of the adjusted ranks of Y(Ry) on the adjusted ranks of Y(Rx)
for all data, to obtain the residuals. Remember, the residuals are the difference between the

observed values of Ry and the predicted values of Ry based on the calculated regression
parameters (Table 15.13).

An analysis of variance is performed on the residuals (Group I vs. Group II). Note that
there is no correction for the mean because the mean of the residuals is 0.

Quade used the following formula that has an F distribution with k − 1 and N − k d.f.,
where k is the number of groups and N is the total number of observations. In our example, we
have two groups and eight observations, resulting in an F1,6 distribution.

Fk−1,N−k = (N − k)
∑

(Zi j )2/ni

(k − 1)[
∑

i
∑

j Z2
i j −∑

(Zi j )2/ni ]

N = 8

k = 2

n1 = n2 = 4

∑ (Zi j )
2

ni
= (5.7957322 +{ − 5.795732}2)

4
= 16.795255

∑
i

∑
j

Z 2
i j = 31.98628

Fk−1,N−k = (8 − 2)(16.795255/[(2 − 1)(31.98628 − 16.795255)]

F1,6 = 6.634

p = 0.042 (this result may be compared to p = 0.037 using a parametric analysis, sect. 8.6).
An assumption for this test is that the variables be on an ordinal scale, not necessarily con-

tinuous (dichotomous variables may be used). We do not have to assume normality or linearity
of y on x. However, the distribution of X should be the same in each group, a requirement not
needed for the parametric analysis.

15.8 RUNS TEST FOR RANDOMNESS
When performing an experiment (or observing a process) where values are observed sequen-
tially, it may be of interest to determine whether the observations are randomly varying about
the central value (i.e., the median). If the process is not random, we might expect to see trends
in the data, perhaps a consecutive series of high or low values, which are unlikely to occur by
chance. The runs test is a simple method of investigating the “random” nature of such a process.
Tests for runs were introduced in section 12.2.5, the discussion of control charts. A run is a series
of uninterrupted, like observations. For example, suppose that the median weight of 20 tablets,
sequentially taken during a batch run, is 200 mg. Twenty consecutive tablets were weighted
with the following results:

The first six tablets weighed more than 200 mg.
The next five tablets weighed less than 200 mg.
The next four tablets weighed more than 200 mg.
The next (remaining) five tablets weighed less than 200 mg.



410 CHAPTER 15

If we designate tablet weights less than 200 mg by a minus (−), and tablet weights more
than 200 mg by a plus (+), the 20 weights can be described by the following sequence:

200 mg → + + + + ++ − − − − − + + ++ − − − − −

The first six values, +’s, represent a run. Each time that a series of like signs change, a new
run begins. There are four runs in these data: six pluses, five minuses, four pluses, and five minuses.
If the tablet weights follow a random process, one might suspect that the sequence of values
described above is unlikely. It appears that the pluses and minuses come in “bunches.” One
might guess that the sequence of pluses and minuses could have been due to too-frequent weight
adjustments on the tablet press. For example, the first tablets sampled were over the median
weight of 200 mg. The tablet press may then have been adjusted down, more than necessary,
resulting in too-low tablet weights (the next five tablets were underweight), and so on.

To test for randomness for sample sizes as large as 40, we can refer to Table IV.14. The
table gives the lower and upper limits for the number of runs that would be expected to occur
in a random process in a sample of size N. An observed number of runs equal to or less than
the critical lower number or greater than the critical upper number shown in Table IV.14 is an
indication that the process is not random at the 5% level. The runs test is usually a two-sided
test; either too few or too many runs lead to significance (nonrandomness). In some cases, for
example, control charts, only relatively few runs may be considered to suggest problems with
a process. In these situations, critical values for a one-sided test as shown in Table IV.14 are
appropriate. According to Table IV.14, for a sample size of 20, between 7 and 16 runs would be
expected to occur if the null hypothesis of randomness is true. We observed four runs in the
sample of 20 tablets (N = 20) in our example. Therefore, we conclude that the process is not
random (p < 0.05). The clusters of high and low values are probably due to some malfunctioning
of the tableting process.

Consider the following as a further example of an application of the runs test. A standard
is analyzed every 20th sample in an automated analytical procedure. A record of the readings
for the standard in chronological order derived from one day’s assay results are shown in
Table 15.14. The median value for the data in the table is 0.7985 (the 20th and 21st ordered
values are 0.798 and 0.799). As in the previous example, we label values greater than the median
as + and values less than the median as −. The sequence of pluses and minuses is as follows
(Samples 1 and 2 are below the median; 3 and 4 are above the median, etc.):

−−++ −+ −+ −+ − − −+ + + + + + +− − −
+ + + + +−− + + + − − − − − − −

The runs are underlined in the previous sequence. There are 15 runs. For sample sizes
of 40 or more, a normal approximation to the distribution of runs is available, under the null
hypothesis that the observed values occur in a random manner.

Z =
∣∣r − (N/2 + 1)

∣∣√
N(N − 2)/4(N − 1)

, (15.7)

where r is the number of runs and N is the sample size.
Values of Z equal to or greater than 1.96 are unlikely (p ≤ 0.05) if the observations are

random. In our example N = 40 and r = 15. Therefore,

Z =
∣∣15 − (40/2 + 1)

∣∣√
40(40 − 2)/4(40 − 1)

= 6
3.12

= 1.92.

The value of Z is not quite large enough for the data to be considered nonrandom at the
5% level. Table IV.14 shows that for a sample of size 40, an observation of between 15 and 26
runs leads to acceptance of the null hypothesis of randomness, agreeing with the conclusion of
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Table 15.14 Readings of a Standard Solution

in Chronological Order (Optical Density)

Sample Reading

1 0.795

2 0.796

3 0.804

4 0.801

5 0.792

6 0.816

7 0.791

8 0.819

9 0.796

10 0.815

11 0.782

12 0.795

13 0.798

14 0.800

15 0.800

16 0.802

17 0.799

18 0.805

19 0.820

20 0.802

21 0.796

22 0.797

23 0.795

24 0.802

25 0.800

26 0.801

27 0.802

28 0.820

29 0.788

30 0.780

31 0.813

32 0.804

33 0.801

34 0.793

35 0.790

36 0.791

37 0.784

38 0.791

39 0.788

40 0.794

the normal approximation [Eq. (15.7)]. Had 14 runs been observed, we would have concluded
that the data were not random (p < 0.05).

15.9 CONTINGENCY TABLES
Chi-square tests for contingency tables (e.g., 2 × 2 tables) are often categorized as nonparametric
tests. The analysis of 2 × 2 tables using a Chi-square test was described in section 5.2.5. The Chi-
square test can be applied to nominal or categorical data that cannot be analyzed using the
ranking techniques discussed above. These data cannot be ordered (the data are not ordinal or
on an interval/ratio scale). Nominal data are usually available in the form of counts, such as
25 males and 12 females entered into a clinical study; or the number of tablets categorized as
acceptable, chipped, cracked, and so on. For large samples, Chi-square methods can be used to
compare “statistically” the relative frequency of such events that occur in two or more groups.
Here we will briefly expand the case of the fourfold table, discussed in Chapter 5, to the analysis
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Table 15.15 Examples of R × C Tables

2 × 2 table

(Fourfold table)

2 × 3 table

Moderately

successfulUnsuccessfulTreatmentNot curedCuredTreatment Successful

401025AA
252327BB

Outcome

1 2 3 . . . CTreatment

1

2

3

.

.

R

R × C table

of R × C tables, R rows and C columns. We will then examine the case of 2 × 2 tables with small
expected frequencies, followed by different tests of hypotheses for fourfold tables.

15.9.1 R × C Tables
In the binominal case, data are dichotomized, resulting in the 2 × 2 table, for example, com-
parison of success rates of two treatments as shown in Table 15.15. When experiments consist
of more than two comparative groups and/or more than two possible outcomes, we are, in
general, confronted with an R × C table (Table 15.15).

In the experiments involving contingency tables, we are usually interested in testing group
differences with regard to proportions or the distribution of counts in the various outcome
categories. Consider the data in the 2 × 3 table in Table 15.15. Two treatments have been
compared where the outcomes are categorized as “unsuccessful,” “moderately successful,”
and “successful.” Inspection of the data indicates that Treatment A has a greater incidence of
“successful” events and less “moderately successful” events than Treatment B.

Equivalently the hypothesis in contingency tables is often stated in terms of the relation-
ship between rows and columns. “Acceptance” of the null hypothesis suggests that the rows
and columns are independent. For example, in the 2 × 3 contingency table in Table 15.15, lack
of rejection of the null hypothesis would be interpreted, in this context, as meaning that the
experimental outcomes are independent of the treatment (i.e., the treatments do not differ with
respect to the experimental outcome).

The relationship of the rows and columns in an R × C contingency table may be tested
by means of the Chi-square distribution with (R − 1) (C − 1) d.f. Note that for a 2 × 2 table,
we have 1 d.f., agreeing with the analysis of 2 × 2 tables described in chapter 5. The Chi-square
statistic is calculated as

� 2
(R−1)(C−1) =

∑ (O − E)2

E
, (15.8)

where O is the observed count and E is the expected count. The summation in Eq. (15.8) is for
all R × C cells in the contingency table.

The Chi-square test is an approximate test and should be used only when the expected
values are sufficiently large. The usually recommended minimum expected value of five for
each cell, as described in section 5.2.5, is conservative [1]. If most of the cells have an expected
value of five or more, the test should be reliable. If there is doubt about using the Chi-square test,
the exact test (multinomial) may be computed [12]. The calculations for the exact test solution
are usually very tedious.
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Table 15.16 Patients Categorized by Severity of Disease Entered into Two

Treatment Groups in a Clinical Study

Very severe Moderately severe Mildly severe Total

Treatment A 13 24 18 55

Treatment B 19 20 12 51

Total 32 44 30 106

Table 15.16 shows data from a clinical study in which patients entering the study were
categorized according to the severity of disease. Severity was divided into three classes: very
severe, moderately severe, and mildly severe. The categorization was made to ensure that the
severity of disease was similar for patients in the two treatment groups. Thus, the question
addressed by these data is “Is the severity of disease similar for patients entered into the two
treatment groups?” or “Is there a relationship between ‘treatment’ and ‘severity of disease’?” In
a sense, this test is a confirmation of the randomization procedure used to assign patients to the
two treatment groups. We would expect that, “on the average,” the severity would be similar
in Groups A and B.

The Chi-square calculation is similar to that for the fourfold (2 × 2) table (chapter 5). The
expected values for each cell are obtained by multiplying the row and column totals correspond-
ing to the cell, and dividing this result by the grand total (row total × column total/grand total).
In the example in Table 15.16, this calculation needs to be done for only two cells (note the 2
d.f.), because the remaining four expected values can be obtained by subtraction from the fixed
row and column totals. The sum of the expected values must equal the row and column totals
of the raw data. In the table the expected value for the cell with 13 patients (Treatment A, very
severe) is (32)(55)/(106) = 16.60. For the cell defined by Treatment A, moderately severe, the
expected value is (44)(55)/(106) = 22.83. The expected values are shown in Table 15.17.

The Chi-square statistic is calculated according to Eq. (15.8).

� 2
2 = (13 − 16.60)2

16.60
+ (24 − 22.83)2

22.83
+ (18 − 15.57)2

15.57

+ (19 − 15.4)2

15.40
+ (20 − 21.17)2

21.17
+ (12 − 14.43)2

14.43
= 2.54.

For significance at the 5% level, a value of 5.99 is needed for Chi-square with 2 d.f. (Table
IV.5). Since the observed Chi-square is 2.54, we conclude that there is not sufficient evidence to
show that severity and treatment are related; that is, the two treatment groups cannot be shown
to differ with regard to the distribution of severity of disease.

Another example of an R × C table is shown in Table 15.18. This differs from the previ-
ous example in that we have three treatments each with a dichotomous outcome, rather than
two treatments with three categories of outcome. The analysis tests for differences among the
three treatments. This data is derived from a clinical study in which three treatments were
randomly assigned to 60 patients. Only 54 patients successfully completed the study. Patients
were classified as success or failure, depending on their response to treatment.

The analysis proceeds exactly as in the preceding example. The value of Chi-square with 2
d.f. is 7.76. Since the table Chi-square with 2 d.f. is 5.99, the treatments are significantly different.
To test for differences suggested by the data (a posteriori tests), perform a Chi-square test for two

Table 15.17 Expected Values for the Data of Table 15.10

Very severe Moderately severe Mildly severe Total

Treatment A 16.60 22.83 15.57a 55

Treatment B 15.40a 21.17a 14.43a 51

Total 32 44 30 106

aObtained by subtraction from total; see the text (e.g., 55 − 16.60 − 22.83 = 15.57).
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Table 15.18 Number of Successes and

Failures Following Three Treatments

Treatment Successes Failures Total

A 9 6 15

B 8 11 19

C 17 3 20

Total 34 20 54

treatments (a 1 d.f. test), but use the Chi-square cut-off point for 2 d.f., 5.99, for significance. For
example, the Chi-square value for the comparison of Treatments B and C is 7.79, and Treatments
B and C are significantly different (see Exercise Problem 13).

For a further discussion of multiple comparisons and other topics in the analysis of
categorical data, the book Statistical Methods for Rates and Proportions by Fleiss [13] is highly
recommended.

15.9.2 Fisher’s Exact Test
In the Chi-square analysis of 2 × 2 contingency tables, if the expected values are too small,
the Chi-square test may not be appropriate. Dichotomous data with small expected values
are commonly encountered in pharmaceutical research, particularly in preclinical toxicology
studies. For example, in preclinical animal carcinogenic studies, when comparing control and
treatment groups with respect to some characteristic that occurs infrequently, the comparison of
the frequencies may not be amenable to a Chi-square analysis. Fisher’s exact test for 2 × 2 tables
can be used to compute the exact probabilities. This test can be used, for example, to compare
proportions for two independent groups (treatments), a binomial test, where expected values
are very small.

Fisher’s exact test makes use of the fact that the probability of a given configuration in
a fourfold table with fixed margins‡ can be computed using the hypergeometric distribution. The
probability calculation will be described with reference to the notation in Table 15.19 to help
clarify the procedure.

The probability of the values found in Table 15.19, given the four fixed margins, (A + C),
(B + D), (A + B), and (C + D), is

(A+ B)!(C + D)!(A+ C)!(B + D)!
N!A!B!C !D!

(15.9)

The numerator of Eq. (15.9) is obtained by multiplying the factorials of the marginal totals.
The denominator is the product of the factorials of the individual cells of the fourfold table,
multipled by N!, the factorial of the total number of observations.

Table 15.20 shows data typically analyzed using the Fisher’s exact test. One group of
animals was administered a placebo preparation consisting of all components of the drug
formulation with the exception of the active ingredient (placebo group). Another group of
animals (drug group) was administered the drug formulation. After a fixed period of time, the
incidence of a particular type of carcinoma was noted. The probability of the fourfold table
shown in Table 15.20 with fixed margins (12, 14, 5, and 21) is calculated using Eq. (15.9).

5!21!12!14!
26!1!4!11!10!

= 0.183.

‡ Theoretically, Fisher’s exact test is appropriate when marginal totals are fixed. In the example in Table 15.20,
this means that before the initiation of the experiment, we decided to use 12 animals on placebo and 14 animals
on drug; a total of five carcinomas will be observed in both groups. The latter result is clearly not under our
control (although in some experiments, the marginal totals can be controlled). There exists some controversy
whether data, in which two independent groups are to be compared (as in Table 15.19), where the margins are
not fixed, are appropriate for Fisher’s exact test. However, the test is commonly used to analyze such data.
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Table 15.19 Fourfold Table as an Aid to the Calculation of

Fisher’s Exact Test

Column

I II Total

Row I A C A + C

II B D B + D

Total A + B C + D A + B + C + D = N

Thus, the probability of the results shown in Table 15.14 are not very unlikely. However,
this is not the entire statistical test. In Fisher’s test, we compute the probability of the observed
configuration plus the probabilities of all less likely configurations (a cumulative probability). If
the sum of the observed configuration plus all less likely configurations is less than � (0.05, for
example), we conclude that the rows and columns (treatment and carcinoma) are not indepen-
dent; that is, the treatments differ with respect to the incidence of carcinomas. If the sum of these
probabilities exceeds � (0.05, for example), we accept the null hypothesis of independence, con-
cluding that the evidence is not sufficient to conclude that the treatments differ. In the example
(Table 15.20), the sum of probabilities obviously exceeds 0.183. (The probability of the observed
table is 0.183). Therefore, there is insufficient data to show conclusively that the incidence of
carcinoma is greater in the drug group compared to the placebo group.

To clarify this procedure further, we will work out an example in more detail based on
the data shown in Table 15.21. These data are similar to that in Table 15.20, except that no
carcinomas were observed in the placebo group and five were observed in the drug group.
Thus, the marginal totals are the same in Tables 15.20 and 15.21. The probability of Table 15.21
is calculated as before, using Eq. (15.9).

5!21!12!14!
26!0!5!12!9!

= 0.03043.

In order to assess the possible “statistical” significance of this table, we must compute
the probability of all less likely configurations as discussed above. What constitutes less likely
tables is not always obvious without some “trial and error” calculations. With experience, good,
educated guesses can be made as to what constitutes a less likely table.

If a configuration is mistakenly chosen with a higher probability than the observed table,
the calculation is discarded. Possible “less likely” tables are shown in Table 15.22 with the
probability of each table. The only table with a lower probability than the observed table
(Table 15.21) is the one with all five carcinomas appearing in the placebo group.

5!21!12!14!
26!5!0!7!14!

= 0.01204.

Table 15.20 Incidence of Carcinoma in Drug- and

Placebo-Treated Animals: Example 1

Number of animals with:

Carcinoma No carcinoma Total

Placebo 1 11 12

Drug 4 10 14

Total 5 21 26
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Table 15.21 Incidence of Carcinoma in Drug- and

Placebo-Treated Animals: Example 2

Carcinoma present Carcinoma absent Total

Placebo 0 12 12

Drug 5 9 14

Total 5 21 26

The sum of the probabilities of the observed table and all less likely (or equally likely)
tables is 0.03043 + 0.01204 = 0.0425. Therefore, Table 15.15 is “significant” at the 5% level (p <

0.05); the drug appears to result in an increased incidence of carcinomas.
Note that Fisher’s exact test requires that the probabilities of tables with fixed margins be

computed for all possible configurations. If we calculate all possible configurations, the sum of
the probabilities of the different tables would be equal to 1. Among all of these probabilities will
be the probability of the observed table, in addition to possible probabilities equal to or smaller
than that of the observed table. If the sum of these probabilities is less than or equal to 0.05, for
example, the treatments are said to be “significantly” different at the 5% level, in the context of
the present example.

The computations are often very tedious. For cases where the computations are unduly
long and tedious, the use of computer programs or tables to determine significance points in
fourfold tables are recommended [14].

15.9.3 Fourfold Tables with Related Samples
The examples of 2 × 2 contingency tables previously discussed in this chapter and chapter 5
have involved the comparison of proportions or frequencies in two or more independent groups.
A similar problem that occurs less frequently in pharmaceutical research is the comparison of
two groups where the observations are related, also known as matched pairs. For example, Table
15.23 shows the results of two versions of an allergy test, A and B, applied to 50 persons. The test
reagents were applied at the same time at different sites for each subject, and either a positive
or negative reaction was observed. In this design, the total sample size is specified in advance,
but the marginal totals are not fixed. We cannot anticipate the total positive and negative for
test B in Table 15.23, for example. In the previous example, the size of the two treatment groups
can be fixed in advance. Note that in this example each person is subjected to both treatments
(allergy tests). In the previous examples of fourfold tables, each person is subjected to a single
treatment and a dichotomous response is observed (e.g., cured or not cured).

The objective of this experiment is contained in the question: “Does the proportion of
positive reactions for test A differ from that for test B?” (i.e., H0: pa = pb, where pa and pb are the
proportion of positive reactions in tests A and B, respectively). Note that test A has 32 positive
reactions (23 + 9), and test B has 29 positive reactions (23 + 6). It can be shown that the statistical
test for the equality of positive reactions for the two tests is equivalent to the test for the equality
of the counts in the diagonal cells designated by an a in Table 15.23 (9 and 6) [13]. The counts
(or proportions) in these two cells represent the untied responses (positive A and negative B,
and negative A and positive B, 9 and 6, respectively). The counts in the other two cells do not
differentiate the two allergy tests. For example, the upper left-hand cell shows the 23 patients
who were positive on both tests.

Table 15.22 Some “Unlikely” Tables with Margins Identical to Table 15.21

Carcinoma
present

Carcinoma
absent Total

Carcinoma
present

Carcinoma
absent Total

Placebo 5 7 12 4 8 12

Drug 0 14 14 1 13 14

Total 5 21 26 5 21 26

Probability = 0.0120 Probability = 0.1054
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Table 15.23 Frequency of Positive and Negative Reactions

to Two Allergy Tests Applied to Two Sites in 50 Persons

Test B

Positive Negative Total

Test A Positive 23 9a 32

Negative 6a 12 18

Total 29 21 50

aPatients who were positive on one test and negative on the other test.

Under the null hypothesis that the probability of a positive reaction is equal for both
tests, the diagonal counts, 9 and 6, should be equal. The test of significance is a binomial test,
as in the sign test (sect. 15.2). In the latter procedures, the observed proportion is compared
to 0.5, the expected proportion if both treatment groups have an equal probability of being
positive. The statistical test in this example makes use of the normal approximation to the
binomial distribution [Eq. (15.1)].

Z =
∣∣observed proportion − 0.5

∣∣− 1/(2N)√
(0.5)(0.5)/N

. (15.1)

If Z is greater than 1.96, the difference is significant at the 5% level and we conclude that
the probability of a positive response is different for the comparative treatments. (As in other
examples where the normal approximation to the binomial is used, the sample size should be
sufficiently large, approximately 10 for this test.) The observed proportion in the example in
Table 15.23 is 9/15 = 0.60. N = 15, the number of untied pairs. Therefore,

Z = |0.60 − 0.5| − 1/30√
(0.5)(0.5)/15

= 0.52.

Since Z is not equal to or greater than 1.96, the difference is not significant at the 5% level.
The difference is not sufficiently large to conclude that the two tests differ with regard to the
frequency (proportion) of positive responses. This test is also known as McNemar’s test.

The data shown in Table 15.23 can also answer a different question that requires a different
analysis. In the previous example, we inquired if the proportion of positive reactions was
different in the two tests. Another question that is often relevant to such data is: “Are the allergy
tests independent, that is, is the probability of a positive response for test B independent of the
outcome for test A?” This question implies that if A and B are independent, there should be an
equal proportion of positive results to test A in both patients with a positive test to B and in
patients with a negative test to B. Table 15.24 shows the expected results if, in fact, tests A and
B are independent. Note that the expected proportion of positive A’s in patients who had a
positive test for B is 0.64, 18.56/29. This is the same expected proportion of positive A’s as that
for patients who had a negative test for B, 13.44/21.

Table 15.24 Expected Values from Table 15.17 if

Allergy Tests A and B Are Independent

Test B

Positive Negative Total

Test A Positive 18.56 13.44 32

Negative 10.44 7.56 18

Total 29 21 50
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Table 15.25 Fourfold Table for Treatment and Placebo

Improvement

Treatment None Some or marked Total

Active 13 28 41

Placebo 29 14 43

Total 42 42 84

The test for independence is the same Chi-square test as that used for the comparison of
proportions in two independent samples, although the question to be answered is different (see
sect. 5.2.5). We apply Eq. (15.8)

� 2
1 =

∑ (O − E)2

E
, (15.8)

where O is the observed count and E is the expected count. The expected values for the Chi-
square test are shown in Table 15.24 (see sect. 5.2.5 for calculation of expected values). Applying
Eq. (15.8) to the data of Tables 15.23 and 15.24 (including the continuity correction discussed in
sect. 5.2.5), we have

� 2
1 = (4)2

13.44
+ (4)2

18.56
+ (4)2

7.56
+ (4)2

10.44
= 5.70.

To obtain significance at the 5% level, a Chi-square value of 3.84 is needed (Table IV.5).
Clearly, the test is significant and we conclude that the results of this test warrant rejection of the
null hypothesis (i.e., the results of tests A and B are dependent). This significant result suggests
that tests A and B are related; a positive test for A is associated with a positive test for B; and a
negative test for A is associated with a negative test for B.

15.9.4 Analysis of Combined Sets of 2 × 2 Tables
Two situations may arise in which the analysis of combined fourfold tables is needed. Consider
a clinical study in which two treatments are to be compared with regard to a dichotomous
variable where the data are collected from more than one center. Rather than pooling all the
data to form one combined table, the analysis is performed with the data stratified by center.
In a second example, a study may be performed at a single center, but there may be a variable
within the center that needs further clarification with respect to interpretation of the results. The
data are then stratified by this variable. Koch and Edwards [15] give an example of a clinical
study at a single center comparing a test drug and placebo in a study of arthritis. The outcome of
the treatment is dichotomized into either no improvement or (some or marked) improvement.
The overall results are shown in Table 15.25. Table 15.26 stratifies Table 15.25 into two groups,
results for males and females. The following discussion summarizes part of their presentation
(for more detail, see Ref. [15]).

Note that males appear to be less responsive than females to both active drug and placebo.
If the distribution of males and females to treatment groups is unbalanced, the experimental
results can be biased.

The Chi-square test for significance for the data of Table 15.25 is 10.7 with a correction
factor, and 12.3 without the correction factor. The Mantel–Haenszel method [16] tests for signif-
icance, taking into account the sex-adjusted response (Table 15.26).

If treatments are equally effective, the expected value of n111 and n211 in Table 15.25 are

E(n111) = m111 = (n11+)(n1+1)
n1

E(n211) = m211 = (n21+)(n2+1)
n2

.
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Table 15.26 Table 15.25 with Two Subgroups

Improvement

Sex Treatment None Some or marked Total

Female Test drug n111 = 6 n112 = 21 n11+ = 27

Female Placebo n121 = 19 n122 = 13 n12+ = 32

Female total n1 + 1 = 25 n1+2 = 34 n1 = 59

Male Test drug n211 = 7 n212 = 7 n21+ = 14

Male Placebo n221 = 10 n222 = 1 n22+ = 11

Male total n2+1 = 17 n2+2 = 8 n2 = 25

The variances of n111 and n211 are

Var (n111) = n11+n12+n1+1n1+2

[(n2
1)(n1 − 1)]

= (27)(32)(25)(34)
(59)2(58)

= 3.63748

Var(n211) = n21+n22+n2+1n2+2

[(n2
2)(n2 − 1)]

= (14)(11)(17)(8)
(25)2(24)

= 1.39627.

The Mantel–Haenszel statistic is calculated as

[∑2
h=1 (nh1+nh2+/nh)(ph11 − ph21)

]2

∑2
h=1 vh11

, (15.9)

where h = 1, 2 and phi1 = (nhi1/nhi+) the proportion of patients in each sex and treatment
group who show no improvement.

p111 = 6/27

p211 = 7/14

p121 = 19/32

p221 = 10/11

For the data of Table 15.26, the calculation of the Mantel–Haenszel statistic (eq. 15.9) is

QMH = [{(27)(32)/59}(6/27 − 19/32) + {(14)(11)/25}(7/14 − 10/11)]2

3.63748 + 1.39627
= 12.59.

QMH is distributed approximately as Chi-square with 1 d.f. Therefore, the conclusion is that
after adjustment for sex differences, the treatments are significantly different (p < 0.05).

This analysis summarizes an elementary but common occurrence in the analysis of clinical
studies. For more detail of the application of the Mantel–Haenszel statistic, see Refs. [13,15].
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Table 15.27 Treatments with Binomial

Outcome in Randomized Blocksa

Treatment

Subject I II III Bj

1 1 1 0 2

2 0 0 0 0

3 1 0 1 2

4 1 0 1 2

5 0 1 1 2

6 1 0 1 2

7 1 0 0 1

8 1 0 0 1

9 1 0 1 2

10 1 0 0 1

Ti 8 2 5 15

a1 = success, 0 = failure.

15.9.5 Randomized Blocks with Binomial Outcome
For data with a binomial outcome that is in the form of a randomized block, the following test
to compare treatments [17] may be used:

Compute:

Q =
[
c(c − 1)

∑
(T2

i ) − (c − 1)N2
]

[
c N −∑

(B2
j )
] ,

where c is the number of treatments (columns), Ti the total for treatment i, Bj the total for block
j, and N is the grand total.

For large samples, Q has an approximate Chi-square distribution with c − 1 d.f.

Example 3. Ten subjects were treated with a topical product for a fungus infection. Subjects
were evaluated as cured (1) or not cured (0) (Table 15.27).

Q =
[
c(c − 1)

∑
(T2

i ) − (c − 1)N2
]

[
c N −∑

(B2
j )
]

Q =
[
3(2)(64 + 4 + 25) − 2(15)2

]
(3 × 15 − 27)

= 108
18

= 6.

The tabled value of Chi-square with 2 d.f. at the 5% level is 5.99. Therefore, we can
conclude that the differences are significant at the 0.05 level. (Treatment 1 is different from
Treatment 2.)

15.10 NONPARAMETRIC TOLERANCE INTERVAL
If the data set appears to be non-normal, the usual tolerance interval calculation assuming a
normal distribution may be inappropriate (see sect. 5.1). In this case, a nonparametric tolerance
interval can be constructed. The nonparametric interval can be considered conservative, and
would be wider, on average, than that usually calculated assuming normality, if the data truly
are normal. The computation quantifies the intuition [18] that most future observations would
lie within the minimum and maximum of an observed sample from the distribution. The
calculation is as follows [18]. Given a sample of size n from a distribution, we can state the
probability of the proportion of samples that are within the minimum and maximum values
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observed. Let p = the proportion of samples within the maximum and minimum. Let Q be the
probability space covered by min, max; n is the sample size.

P(Q > p) = 1 − n(p)n−1 + (n − 1)pn

P(Q > p) is the probability that the minimum and maximum values will cover a proportion p of
all values in the distribution.

An example should clarify the calculation. Suppose that we assay 50 individual tablets
randomly chosen from a batch, with a minimum of 96% and a maximum of 103%. Furthermore,
we have reason to believe that the data are not normally distributed. We wish to compute a
tolerance interval that will give a probability that p proportion of the tablets assay between 96%
and 103%. In this example, n = 50. Suppose, we wish to set the proportion of tablets within 96
to 103 to be 95%. We then calculate the probability.

P(Q > p) = 1 − 50(0.95)50−1 + (50 − 1)0.9550 = 0.72.

Therefore, we say that the probability is 0.72 (72%) that at least 95% of the tablets in the
batch are within 96% to 103%.

We might want to compare this result with the tolerance interval assuming a normal
distribution (sect. 5.1). The average is 100.2% and the standard deviation of the 50 tablets is
2.5%. Referring to Table IV.19 in the appendix, a 75% probability tolerance interval containing
95% of the tablets is

100.2 ± 2.138 × 0.025 = 100.2 ± 5.3 = 94.9 − 105.5.

That is, the probability is 75% that at least 95% of the tablets are between 94.9%
and 105.5%.

KEY TERMS

ANCOVA Multinominal distribution
Attribute Nominal data
Categorical data Normal approximation
Confidence interval Ordered data
Contingency table (R x C table) Ordinal data
Continuous data Quade test
Distributions Rating scale
Efficiency Run
Fisher’s exact test Runs test
Friedman’s test Sensitive
Hypergeometric distribution Sign test
Independence Ties
Interval or ratio scale Tolerance interval
Kruskal–Wallis test Wilcoxon rank sum test
Mantell–Haenszel test Wilcoxon signed rank test
McNemar’s test

EXERCISES
1. Perform a t test to compare treatments for the data from Table 15.3. Compare the results

of this test to the nonparametric test presented in the text.

2. The following data were observed comparing two assays using 12 batches of
material:
(a) Use the sign test to determine if the two tests are different.
(b) Compare the two tests (A and B) using the t test.
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Batch Test A Test B

1 8.1 9.0

2 9.4 9.9

3 7.2 8.0

4 6.3 6.0

5 6.6 7.9

6 9.3 9.0

7 7.6 7.9

8 8.1 8.3

9 8.6 8.2

10 8.3 8.9

11 7.0 8.3

12 7.7 8.8

3. Use the Wilcoxon signed rank test to compare the two assay methods to determine if the
methods are significantly different for the data in Exercise Problem 2. Use Table IV.13 and
the normal approximation.

4. Blood glucose uptake for corresponding halves of rat diaphragms for compounds A and
B are as follows (adapted from Ref. [2]):

Rat

1 2 3 4 5 6 7 8 9
A 9 9.5 5.7 3.9 6.7 5 8.6 3 8

B 8 9.7 5.1 3.6 7.1 5 8.4 4.2 7.1

Use a nonparametric procedure to compare the two compounds.

5. Twenty patients were randomly allocated to two treatment groups, 10 patients per group.
The following data are the change in serum chloride after treatment.

Treatment A Treatment B

4.3 6.1

6.2 0.9

4.4 0.7

8.2 0.8

0.5 1.3

2.6 3.1

4.2 1.9

4.1 3.9

5.6 2.1

3.4 0.1

Test for treatment differences using a nonparametric test and a t test.

6. Dissolution is compared for three experimental batches with the following results (each
point is the time in minutes to 50% dissolution for a single tablet):
Batch 1: 15, 18, 19, 21,23, 26
Batch 2: 17, 18, 24, 20
Batch 3: 13, 10, 16, 11,9
Is there a significant difference among batches?
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7. A bioavailability study was conducted in which three products were compared: a standard
product and two new formulations, A and B. The peak blood concentrations were as
follows:

Subject Standard A B

1 14 12 17

2 12 18 9

3 11 17 8

4 17 15 14

5 20 16 16

6 16 12 13

7 14 11 10

8 16 16 10

9 18 17 19

10 15 10 8

11 22 15 15

12 14 13 14

Use Friedman’s test to determine if there is a difference among the three treatments.

8. In a test for pain relief, two drugs are compared where the outcome is 0, 1, or 2, where 0 =
no relief, 1 = partial relief, 2 = complete relief. With drug A, 50 had a score of 0, 50 scored
1, and 75 scored 2. With drug B, 20 had a score of 0, 60 scored 1, and 60 scored 2. Use a
Chi-square test to compare drugs A and B. How would you interpret a significant effect?

9. The following fourfold table was constructed from data for inspection of 1000 tablets in
quality control.
(a) Are “specks” and “capping” independent?
(b) Are the proportion of tablets specked and capped different in this batch of tablets?

Capped

Yes No

Specked Yes 13 45

No 18 924

§10. In a preclinical study, the following incidence of tumors was observed in control and
treated animals:
Controls: 0 of 12 animals
Treated: 5 of 14 animals
Use Fisher’s exact test to determine if the incidence is significantly different in the two

groups. Compare the results to a Chi-square test with continuity correction.

11. The following assay results were observed from sequential readings from a control chart.
Using the runs test, determine if these values conform to a “random” sequence. Use a
two-sided test. What would be your conclusion if the test were one-sided? 300.1, 300.5,
300.7, 308.2, 304.4, 303.9, 302.1, 303.1, 300.9, 303.4, 305.6, 306.2, 304.1, 306.1, 306.8, 301.3,
304.3, 301.9, 304.2, 302.6

12. Confirm that the corrected � 2 is 7.0 by computing the correction for ties for the analysis
of the data in Table 15.10.

13. For the 3 × 2 table at the end of section 15.9.1 (Table 15.18), compute the � 2 value for the
entire table and for the comparison of Treatments B and C.

§§ Optional, more advanced problems.
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14. Analyze the following data, using the combined data from two centers. Use the Mantel–
Haenszel test.

Success Failure Total

Center I

Drug A 12 6 18

Drug B 9 9 18

Total 21 15 36

Center II

Drug A 14 3 17

Drug B 9 11 20

Total 23 14 37

Are the two treatments significantly different?

15. Compute the parametric two-way ANOVA and confidence intervals for the data of Table
15.6, using a log transformation.

16. In section 15.4.1, show that the comparison of Treatment 1 with Treatment 2 for Sequence
1 and Sequence 2 is equal to twice the period effect (no carryover).

17. Compute the tests for sequence and period effects for Table 15.9; use Eq. (15.4).

18. Perform a two-way analysis of variance on the data of Table 15.11. Assuming no interac-
tion, what is the probability associated with the F test (tablet press MS/error MS).

19. Perform a two-way ANOVA on ranks in Table 15.11. Show that Fisher’s LSD is the same
as the nonparametric multiple comparison.
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16 Optimization Techniques and
Screening Designs∗

The∗ optimization of pharmaceutical formulations with regard to one or more attributes has
always been a subject of importance and attention for those engaged in formulation research.
Product formulation is often considered an art, the formulator’s experience and creativity pro-
viding the “raw material” for the creation of a new product. Given the same active ingredient
and a description of the final marketed product, two different scientists will very likely concoct
different formulations. Certainly, human input is an essential ingredient of the creative pro-
cess. In addition to the art of formulation, techniques are available that can aid the scientist’s
choice of formulation components that will optimize one or more product attributes. These tech-
niques have been traditionally applied in the chemical and food industries, for example, and
in recent years have been applied successfully to pharmaceutical formulations. In this chapter,
we describe the application of factorial designs (and modified factorials) and simplex lattice
designs to formulation optimization. When the effects of factors on a pharmaceutical process or
response are unknown, the use of screening designs to estimate factor effects may be indicated.

16.1 INTRODUCTION
The pharmaceutical scientist has the responsibility to choose and combine ingredients that will
result in a formulation whose attributes conform with certain prerequisite requirements. Often,
the choice of the nature and quantities of additives (excipients) to be used in a new formulation
is based on experience, for example, similar products previously prepared by the scientist or his
or her colleagues. To break habits based on experience and tradition is difficult. Although there
is much to be said for the practical experience of many years, we often become caught in the
web of the past. The application of formulation optimization techniques is relatively new to the
practice of pharmacy. When used intelligently, with common sense, these “statistical” methods
will broaden the perspective of the formulation process.

Although several optimization procedures are available to the pharmaceutical scientist,
a few frequently used methods will be presented in this chapter. The objective is to produce a
mathematical model that describes the responses. In general, the procedure consists of preparing
a series of formulations, varying the concentrations of the formulation ingredients in some
systematic manner. These formulations are then evaluated according to one or more attributes,
such as hardness, dissolution, appearance, stability, taste, and so on. Based on the results of
these tests, a particular formulation (or series of formulations) may be predicted to be optimal.
The ‘‘proof of the pudding,” however, is actually to prepare and evaluate the predicted optimal
formulation.

If the formulation is optimized according to a single attribute, the optimization procedure
is relatively uncomplicated. To optimize on the basis of two or more attributes, dissolution and
hardness, for example, may not be possible. The formulation that is optimal for one attribute very
well may be different from the formulation needed to optimize other attributes. In these cases,
a compromise must be made, depending on the relative importance of each attribute. The final
formulation, therefore, is suitably modified to attain an acceptable performance of all relevant
attributes, if possible. We will discuss the optimization procedure based on a single attribute.
More complex situations may require more complex designs, and the advice of an experienced
statistician is recommended in these cases. Therefore, the use of the term, “optimization” may
be a misnomer. An optimal response may not be a single response, but a region of responses that

∗ This is an advanced topic.
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satisfy the requirements of the formulation. Once such a region is defined, the desired response
may be defined using a range of factors.

In general, an advanced understanding of statistics is not necessary. One should be familiar
with the following concepts as described elsewhere in this book.

16.1.1 Planning Experiments
Common sense should prevail. Design and choice of variables are discussed later in this chapter.
In most cases, we have a reasonable idea of which variables are important, and their effective
ranges. But, we may be surprised. If everything were known, we would not have to experiment.
Also, we should be careful not to neglect potentially important variables. Screening designs
may be useful if little is known of the system.

16.1.2 Variables
Variables may be considered as Independent and Dependent (X, Y). Dependent variables (Y)
are outcome variables (e.g., dissolution). Independent variables (X) are set in advance (e.g.,
lubricant level). Variables can be continuous or discrete. The number of experiments should be
kept at a reasonable level. The more variables used, the more knowledge is gained, but expense
and time should be taken into consideration.

16.1.3 Variability or Experimental Error
It is important to have an idea about variability of response (Y) and/or “predicted response.”
Replication is typically needed to estimate variability, but this adds time and cost to the study.
Estimates of variance can be obtained from replication, from ANOVA or from experience.

16.1.4 Regression
For our purposes, regression is used to predict Responses, and/or to describe relationships.
Either simple linear or multiple regression may be used to obtain optimized systems. We derive
a response equation from the data (as described in this chapter), and predict a response within
the bounds of the fixed independent variables, X. Prediction outside of the bounds of the
independent variables is unreliable. Consider the following example.

Suppose that the theoretical response relationship (Y as a function of X1 and X2, where
we have two independent variables) is Y = 5 + 6X1 + 7X2

1 + 3X2. We obtain six values of Y as
follows:

X1 X2 Y

1 1 21

2 1 48

1 2 24

2 2 57

3 1 89

1 3 45

Using multiple regression, we obtain the following equation relating Y to the independent
variables.

Y = −7 + 7.2X1 + 7X2
1 + 11.4X2

This works well within the experimental space. But predictions outside are questionable.
For example, if X1 = 4 and X2 = 4

Predicted = 179.4
Actual = 153



OPTIMIZATION TECHNIQUES AND SCREENING DESIGNS 427

16.2 OPTIMIZATION USING FACTORIAL DESIGNS
The basic principles of factorial designs have been presented in chapter 9. In factorial designs,
levels of factors are independently varied, each factor at two or more levels. The effects that
can be attributed to the factors and their interactions are assessed with maximum efficiency in
factorial designs. Also, factorial designs allow for the estimation of the effects of each factor and
interaction, unconfounded by the other experimental factors. Thus, if the effect of increasing
stearic acid by 1 mg is to decrease the dissolution by 10%, in the absence of interactions, this
effect is independent of the levels of the other factors. This is an important concept. If the
levels of factors are allowed to vary haphazardly, as in an undesigned experiment, the observed
effect due to any factor is dependent on the levels of the other varying factors. Generalities,
or predictions, based on results of an undesigned experiment will be less reliable than those
that would be obtained in a designed experiment, in particular, a factorial design. Screening
designs use less runs, and estimate the main effects of factors. The latter part of this chapter will
introduce screening designs. These designs are useful when a relatively large number of factors
may affect the response or process. From a regulatory viewpoint, the data derived from factorial
designs can be useful to predict responses when confronted with formulation or manufacturing
modifications.

The optimization procedure is facilitated by construction of an equation that describes the
experimental results as a function of the factor levels. A polynomial equation can be constructed,
in the case of a factorial design, where the coefficients in the equation are related to the effects
and interactions of the factors. For the present, we will restrict our discussion to factorial designs
with factors at only two levels, called 2n factorials, where n is the number of factors (see chap. 9).
These designs are simplest and often are adequate to achieve the experimental objectives. These
designs estimate only linear effects. That is, if there is a curved response as a function of factor
levels or combination, such effects will be missed. Sometimes, use of these smaller designs is
imperative, for the sake of economy. Increasing the number of factor levels dramatically increases
the number of formulations that are needed to complete the design. With a large number of
factors, even designs where factors are restricted to two levels may result in a very large number
of formulations to be prepared and tested. In such cases, fractional factorial designs may be used.
Some information is lost when using fractional factorial designs, but one-half, one-fourth, or less
of the formulations are needed compared to those needed to run a full factorial design. A brief
description of fractional factorial designs is presented in section 9.5. The theory and construction
of these designs are presented in detail in The Design and Analysis of Industrial Experiments, edited
by Davies [1]. Also see Ref. [2] for an example of optimization applied to an HPLC analytical
method.

As noted above, the optimization procedure is facilitated by the fitting of an empirical
polynomial equation to the experimental results. The equation constructed from a 2n factorial
experiment is of the following form:

Y = B0 + B1 X1 + B2 X2 + B3 X3 + . . . + B12 X1 X2

+B13 X1 X3 + B23 X2 X3 + . . . + B123 X1 X2 X3 + . . .
(16.1)

where Y is the measured response, Xi is the level (e.g., concentration) of the ith factor,
Bi , Bi j , Bi jk, . . .represent coefficients computed from the responses of the formulations in the
design, as will be described below. (B0 represents the intercept.)

For example, in an experiment with three factors, each at two levels, we have eight
formulations, a total of eight responses. The eight coefficients in Eq. (16.1) will be determined
from the eight responses in such a way that each of the responses will be exactly predicted by
the polynomial equation. For the present, to illustrate this concept we will look at the problem in
reverse. Suppose that we already have an equation to predict the experimental results derived
from a factorial design as follows:

Y = 5 + 2(X1) + 3(X2) + X3 − 0.6(X1 X2) − 0.4(X1 X3)
+0.7(X2 X3) + 0.12(X1 X2 X3)

(16.2)
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From Eq. (16.2), we can reconstruct the original data from the 23 experiment. Suppose that the
levels (in mg) of the three factors in the design were as follows:

Low level High level

X1 = stearate 0 2

X2 = colloidal silica 0 1

X3 = drug 0 5

Based on Eq. (16.2), the formulation with all factors at the low level will have a response
of five. All factors are equal to 0, and all terms containing X1, X2, or X3 are equal to 0. If X1
is at the high level (2 mg), and X1, and X3 are at the low level (0), the predicted response is
Y = 5 + 2(X1) = 5 + 2(2) = 9. All other terms are equal to 0. If X1 and X2 are at the high level,
and X3 is at the low level, the response is

5 + 2(X1) + 3(X2) − 0.6(X1 X2) = 5 + 2(2) + 3(1) − 0.6(2)(1) = 10.8.

The results for all eight combinations (formulations) as predicted from Eq. (16.2) are shown
in (Table 16.1).

Table 16.1 shows the results of the factorial experiment that were used to construct Eq.
(16.2). The practical, more realistic problem is to construct the polynomial equation, given the
experimental results. To solve this problem, we find the solution to eight equations with eight
unknowns [the unknowns are the eight coefficients in Eq. (16.2)]. For example, in formulation
1 (Table 16.1),

X1 = X2 = X3 = 0.

Substituting X1 = X2 = X3 = 0 into the general equation [Eq. (16.1)] results in

Y = B0(all other terms are 0).

Since the response (Y) for formulation 1 (where X1 = X2 = X3 = 0) is equal to 5,

Y = B0 = 5.

This is the simple solution for the first of the simultaneous equations.
In the second formulation, X1 = 2, X2 and X3 are equal to 0 and Eq. (16.1) reduces to

Y = B0 + B1 X1(all other terms are 0). (16.3)

Table 16.1 Results of the 23 Factorial Experiment That Led to the Construction of the Polynomial

Equation (16.2)

Factor level

Predicted
Formulation X1 X2 X3 response, Y

1 0 0 0 5

2 2 0 0 9

3 0 1 0 8

4 2 1 0 10.8

5 0 0 5 10

6 2 0 5 10

7 0 1 5 16.5

8 2 1 5 16.5
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The response, Y, for formulation 2 is 9 (Table 16.1). We can solve for B1, using Eq. (16.3)
(B0 = 5 and X1 = 2)

9 = 5 + B1(2) B1 = 2.

This procedure is continued, until we solve for all coefficients, Bi , Bi j , Bi jk, and so on.
In the example above, the solution for the coefficients for the polynomial equation is very

simple, because the low level of all factors is zero. In general, the solution would be more difficult
if the low level of all factors is not equal to zero. However, the general solution for the polynomial
coefficients is not difficult for 2n factorial designs, because of the independence (orthogonality)
inherent in factorial designs. The first step in the solution is to code the levels of the factors so that
the high level of each factor is +1, and the low level of each factor is −1. This procedure requires
a transformation of each of the three variables, X1, X2, and X3 to X′

1, X′
2, and X′

3,respectively,
as follows:

For X1, let X′
1 = X1 − 1. Note that when X1 = 2 (the high level), X′

1 = +1, and when X1 = 0
(the low level), X′

1 = −1.

F or X2, let X′
2 = 2X2 − 1.

F or X3, let X′
3 = 2X3 − 5

5
.

In general, the formula for the transformation is

X − the average of the two levels
one-half the difference of the levels

. (16.4)

After the transformation, the levels of the factors are as shown in Table 16.2 (see also
chap. 9).

Table 16.2 also contains “transformed” values for the interactions, represented by +1 or
−1. These values are obtained by multiplying the values in the appropriate columns of X1, X2,
and X3. For example, in formulation 1, X1X2 is represented by +1, the product of −1 for X1
and −1 for X2 [X1X2 = (−1)(−1) = +1]. X1X2X3 is represented by the product of (−1)(−1)(−1)
= −1, derived from the values in the columns headed by X1, X2, and X3. (See also chap. 9 to
clarify this procedure.) The “total” column contains only the value +1, and is used to calculate
the intercept, B0.

The coefficients for the polynomial equation (16.1) are calculated as �XY/8 (�XY/2n,
in general), where X is the value (+1 or −1) in the column appropriate for the coefficient
being calculated, and Y is the response. An example should make the calculation clear. For the
coefficient corresponding to X1 (B1), the calculation is performed as follows. We multiply each

Table 16.2 Transformed Levels of Factors Showing Signs to Be Used to Determine Effects and Polynomial

Coefficients

Formulation X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 Total Y

la −1 −1 −1 +1 + 1 +1 −1 +1 5

2 +1 −1 −1 −1 −1 +1 +1 +1 9

3 −1 +1 −1 −1 +1 −1 +1 +1 8

4 +1 +1 −1 +1 −1 −1 −1 +1 10.8

5 −1 −1 +1 +1 −1 −1 +1 +1 10

6 +1 −1 +1 −1 +1 −1 −1 +1 10

7 −1 +1 +1 −1 −1 +1 −1 +1 16.5

8 +1 +1 +1 +1 +1 +1 +1 +1 16.5

aNote that X1, X2, and X3 are at their low levels (0). Transformed values are −1, −1, and −1.
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value in the column headed X1 (+1 or −1) by the corresponding response, Y. The sum of these
products (�XY) divided by 8 (2n) is the coefficient, B1.

[(−1)(5) + (+1)(9) + (−1)(8) + (+1)(10.8) + (−1)(10) + (+1)(10)

+(−1)(16.5) + (+1)(16.5)] = 6.8
8

= 0.85.

The coefficient, B2, is calculated using the values (+1 or −1) in the second column, the X2
column.

[(−1)(5) + (−1)(9) + (+1)(8) + (+1)(10.8) + (−1)(10)

+(−1)(10) + (+1)(16.5) + (+1)(16.5) = 17.8
8

= 2.225.

The coefficient for X1X2X3 is B123, and is calculated using the values in the column headed
by X1X2X3 as follows:

[(−1)(5) + (+1)(9) + (+1)(8) + (−1)(10.8) + (+1)(10)

+(−1)(10) + (−1)(16.5) + (+1)(16.5)] = 1.2
8

= 0.15.

All of the coefficients are calculated in this manner. B0 is the sum of all of the observations,
Y, divided by 8 (10.725).† (Note that all of the values in the “total” column are +1; this column is
used to obtain B0 in the same manner as the other coefficients.) The final polynomial equation
for predicting the response, Y, is

Y = 10.725 + 0.85(X1) + 2.225(X2) + 2.525(X3)
−0.15(X1 X2) − 0.85(X1 X3) + 1.025(X2 X3) + 0.15(X1 X2 X3)

(16.5)

This equation looks entirely different from Eq. (16.2), which also predicts the responses in
this experiment. However, the two equations predict the same response. Equation (16.5) uses
the transformed levels of X1, X2, and X3 (+ 1 or −1), and Eq. (16.2) uses the actual, observed,
untransformed values. For example, if X1 and X2 are at their high levels, and X3 is at the low
level, we can solve for the response, Y, using Eq. (16.5) and the transformed values, +1, +1, and
−1 for X1, X2, and X3, respectively.

Y = 10.725 + 0.85(+1) + 2.225(+1) + 2.525(−1) − 0.15(+1)(+1)
−0.85(+1)(−1) + 1.025(+1)(−1) + 0.15(+1)(+1)(−1) = 10.8.

The response with X1 and X2 at the high level is 10.8, exactly equal to the value obtained
from Eq. (16.2), where X1, X2, and X3 are the actual levels, 2, 1, and 0 mg, respectively.

To reiterate, the reason for the transformation (also called coding) is to allow for calculation
of the coefficients in the polynomial equation.‡ The transformation of the high and low factor
levels to +1 and −1 also results in easy calculation of the variance of the coefficients. Using
the transformed levels, the variance of a coefficient is �2/�(X − X)2 = �2/8. With an estimate
of the variance, S2, each coefficient can be tested for significance, using a t test. These tests are
exactly equivalent to the testing of the effects of the ANOVA of a factorial design as explained in
chapter 9. If, for example, the X1X2 interaction were found to be nonsignificant in an ANOVA, the
coefficient of X1X2, −0.15 in this example, will also be nonsignificant. Usually, when constructing
the polynomial equation, only those terms that are statistically ‘‘significant” are retained. In the

† B0 = Y.
‡ The coded values also result in orthogonality (independence) of effects.
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Figure 16.1 Factor space for experiment with

factor levels shown in Table 16.1.

experiment above, an estimate of the standard deviation was available from previous similar
experiments; s.d. = 0.32 with 16 d.f. Therefore, the coefficients B12 and B123 (0.15) are not
significant.

t = |0.15|
0.32/

√
8

= 1.3(P > 0.05).

Omitting the “nonsignificant” B12 and B123 terms, the final equation is

Y = 10.725 + 0.85(X1) + 2.225(X2) + 2.525(X3)
−0.85(X1 X3) + 1.025(X2 X3). (16.6)

An advantage of the transformation described above is that the omission of the two coeffi-
cients, B12 and B123 does not affect the values of the remaining coefficients, that is, recalculation
of the polynomial equation results in the same coefficients. This result would not occur if Eq.
(16.2) were used to describe the data. Equation (16.2) used the untransformed factor levels and
would necessitate extensive computations if some terms were omitted, probably requiring use
of a computer as a computing aid. Using the transformed values ensures that the factors are
orthogonal. This means that the estimates of the coefficients are independent.

Having derived an equation (16.6) that describes the experimental system based on the
results of the experimental formulations, we consider this equation to approximately predict the
response within the experimental space. Figure 16.1 shows the space described by this design.
The prediction of the response, Y, at X1 = 1 mg, X2 = 1 mg, and X3 = 2.5 mg is 12.95 [Eq. (16.6)]
(see Exercise Problem 1). How do we know that Eq. (16.6) will be a good predictor for responses
other than those included in the factorial design? Without actually testing some “extra-design”
formulations, we have no way of knowing that the derived empirical equation will be adequate
to predict the results of yet-to-be-tested formulations. If the response is “well behaved,” the
in-between points should be able to be accurately predicted from the response equation.

Usually, it is a good idea to test at least one formulation, not included in the design, as
a checkpoint. The observed results of the checkpoint formulation can then be compared to the
predicted value to test the equation. In our example, a formulation was prepared with X1 =
1 mg, X2 = 0.5 mg, and X3 = 2.5 mg. The transformed values are equal to zero for the three
variables [see the transformation equation (16.4)]. Using Eq. (16.6), the predicted response is
10.725 (only the intercept term is not equal to 0). The factor values for the checkpoint are the
average of the low and high levels of the factors (X variables), and lie in the center of the cube
in Figure 16.1. This is called a “Center Point.” The actual observation made on this formulation
was 10.5, very close to the predicted value. Extrapolation of predicted results outside the factor
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Figure 16.2 Response surface with drug (X3) constant (low level) [Eq. (16.6)].

space, as shown in Figure 16.1, is not recommended. A two-level design can make predictions
only in a linear fashion, usually a gross approximation. If curvature is present, the response
may be misrepresented both inside and outside the confines of the design.

Once the polynomial-response equation has been established, an optimum formulation (or
a region of optimum formulations) can be found by various techniques. Sometimes, inspection of
the experimental results may be sufficient to choose the desired product. In the example above,
if large values of the response are desirable, formulations 7 and 8 may be chosen as “best” (Table
16.1). With the use of computers (programmable calculators will often do), a “grid” method may
be used to identify optimum regions, and response surfaces may be depicted (Fig. 16.2). The
response surface is a geometrical representation of the response and the factor levels, similar
to a contour map. For more than two factors, response surfaces cannot be easily represented
in two-dimensional space. However, one can take slices of the surface, with all but two factors
at fixed levels, as shown in Figure 16.2. A computer can calculate the response, based on Eq.
(16.1), at many combinations of the factor levels. The formulation(s) whose response has optimal
characteristics based on the experimenter’s specifications can then be chosen. To illustrate the
grid method, a very rough grid with predicted responses based on Eq. (16.6) is shown in
Table 16.3.

The experimental system analyzed above is a very simple example, but is a typical
approach to the optimization process. More sophisticated designs may be used, such as the
composite designs to be described below (sect. 16.3), or fractional factorial designs. The princi-
ples are the same. All of these designs have orthogonal properties to allow for clear and simple
estimation of the polynomial coefficients. For these designs, the magnitude of the coefficients is
directly related to the magnitude of the response.

The polynomial coefficients may be calculated by techniques such as described here, or
by using a multiple regression computer program (see App. III). For two-level experiments

Table 16.3 Grid Solutions for Responses (Y ) Based on Eq. (16.6)

X1
a X2 X3 Y X1 X2 X3 Y X1 X2 X3 Y

−1 −1 −1 5.3 0 −1 −1 7 +1 −1 −1 8.7

−1 −1 0 7.65 0 −1 0 8.5 +1 −1 0 9.35

−1 −1 +1 10 0 −1 +1 10 +1 −1 +1 10

−1 0 −1 6.5 0 0 −1 8.2 +1 0 −1 9.9

−1 0 0 9.875 0 0 0 10.725 +1 0 0 11.575

−1 0 +1 13.25 0 0 +1 13.25 +1 0 +1 13.25

−1 +1 −1 7.7 0 +1 −1 9.4 +1 +1 −1 11.1

−1 +1 0 12.1 0 +1 0 12.95 +1 +1 0 13.8

−1 +1 +1 16.5 0 +1 +1 16.5 +1 +1 +1 16.5

aTransformed values.
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(2n factorials), the factor levels should be transformed so that the low level is equal to −1 and
the high level equal to +1, according to Eq. (16.4). (Experiments with factors at more than
two levels should be analyzed with the help of a statistician.) The transformation considerably
reduces the complexity of the computations, and aids in the interpretation of the results. Each
coefficient may be tested for significance discarding those coefficients that are not significant,
although there are no firm rules regarding this procedure. In addition to the statistical criteria,
scientific judgment may be used in making decisions about the “significance” of the coefficients.
In order to statistically test the coefficients for significance, an estimate of the experimental error
is required. This error estimate may be obtained from previous experience, but is best estimated
by replicating runs. Replication, however, may result in a large number of experiments, which
could be very costly. Replication, accomplished by performing duplicate assays on the same
sample, for example, is usually not sufficient. The best procedure for replication consists of
preparing each formulation or experiment in duplicate (or more), and randomizing the order
of the experiments, if all formulations cannot be prepared and tested simultaneously. Methods
are available to obtain an estimate of error from an unreplicated factorial experiment (e.g.,
halfnormal plots [3,4], or from higher order interactions as discussed in chap. 9, but these
procedures will not be discussed here).

16.2.1 Replication (Sample Size)
We may only want to find optimum conditions, or we may want to know that effects are real,
and not just due to random error. In the latter case, we may want to perform statistical tests
(or confidence intervals). To determine the sample size for hypothesis tests, we may use the
approximate formula, N = 4(S2/delta2)(10), where N is the sample size for the comparative
groups (N = 4 for the 23 design), where alpha = 0.05 and beta = 0.8. Usually a sample size
between 10 and 20 should be sufficient.

Note that for two-level designs, the variance of an effect is 4S2/N, where N is the number
of runs.

EXAMPLE:
A difference in response of 2.5 units is meaningful in a 23 experiment. The s.d. is expected to be
1.5. What size sample should we use?

N = 4(2.25/6.25)(10) = approximately 16.

16.2.2 Extra (Center) Points
Often, it is useful to include an extra run as a “prediction” point, or to estimate curvature.
A center point should be equal to the average of the “run” points if there is no curvature. If
curvature is present, more runs will be needed to model the data.

The ANOVA for the following data set is shown below to illustrate the analysis of repli-
cated data.

Level

Experiment A,B P D Response

1 (1) A 1 0.1 5,6

2 P B 1 0.1 7,11

3 D A 2 0.1 4,6

4 PD B 2 0.1 8,11

5 A A 1 0.2 12,12

6 PA B 1 0.2 16,21

7 DA A 2 0.2 11,12

8 PDA B 2 0.2 24,29

9 Checkpoint B 1.5 0.15 22
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Analysis of variance table

Source term d.f. Sum of squares Mean square F ratio Prob. level

P 1 162 162 40.50 0.000380∗
D 1 5.555555 5.555555 1.39 0.277097

PD 1 10.88889 10.88889 2.72 0.142947

A 1 304.2222 304.2222 76.06 0.000052∗
AP 1 26.88889 26.88889 6.72 0.035802∗
AD 1 5.555555 5.555555 1.39 0.277097

APD 1 5.555555 5.555555 1.39 0.277097

S 7 28 4

Total 14 456.9333

∗p < 0.05.

In the absence of replication, there is no proper error term to test significance of the effects.
Sometimes we can use an estimate of error from previous experiments or pool the higher order
interaction terms. If the runs are replicated, we would have a new term in the ANOVA, residual
or error. Then, we can perform F (or t) tests to test for significance.

We could also construct an equation to predict the response (assuming a linear response
with factors at two levels). This will be discussed later.

Fractional factorial designs use a fraction of the full factorials (e.g., 1/2,
1/4 ). The gain is

that we use less runs in the experiment. The loss is that we confound some effects. We try to
confound effects that we feel are not significant (or very small) with effects that we wish to
measure. In this example, the smallest fractional design is a 1/2 replicate, using four of the eight
runs. In four runs, we can only measure three effects. The logical choice of effects to measure
are A, P, and D. We assume that all interactions are negligible. If our assumption is wrong, the
measure of the main effects will be biased.

16.2.3 Optimization of a Combination Drug Product
The following example of a 22 factorial experiment is another illustration of the technique of
“optimization” using factorial designs. In this experiment, a combination drug product was
tested to obtain the dose of each drug that would result in an optimal response. The product
contained two drugs, A(X1) and B(X2). The experiment consists of formulating combinations
containing each drug at two dose levels. The doses for A were 5 and 10 mg; B was chosen at
doses of 50 and 100 mg. These levels were carefully selected to cover a range of doses that would
include an appropriate dose to be chosen as the prime candidate for the final marketed product.
The full factorial consists of the four experiments shown in Table 16.4.

The product is a local anesthetic, and the response (Y) is the average time to anesthesia
for 12 patients per group. The high and low levels of drug A and drug B are transformed to +1
and −1 [Eq. (16.4)]. For drug A, the transformation is

Potency − 7.5
2.5

(high level is 10; low level is 5).

Table 16.4 Factorial Design for the Drug Combination Study

Potency (mg) Potency (transformed)

Formulation A (X1) B (X2) A (X1) B (X2) AB (X1X2)
Response,

Y (min)

1 5 50 −1 −1 +1 9.7

2 10 50 +1 −1 −1 7.2

3 5 100 −1 +1 −1 8.4

4 10 100 +1 +1 +1 4.1
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For drug B, the transformation is

Potency − 75
25

(high level is 100; low level is 50).

The response equation has the form

Y = B0 + B1(X1) + B2(X2) + B12(X1)(X2). (16.7)

The coefficients are computed as described earlier in this section. For example, referring
to Table 16.4, B1 is

Column A (X1) Y X1Y

−1 9.7 −9.7

+1 7.2 +7.2

−1 8.4 −8.4

+1 4.1 +4.1

−6.8/4 = −1.7

(B1 is the sum of X1Y/4 = −1.7.) The polynomial equation is calculated as

Y = 7.35 − 1.7(X1) − 1.1(X2) − 0.45(X1 X2). (16.8)

The response, Y, is the time to anesthesia. Formulation 4, which has the high levels of both
drugs, has the shortest time to anesthesia, and formulation 1 or 4 would be chosen as optimal if
either a long time or a short time to anesthesia is desired. However, an intermediate time might
be more desirable. For example, suppose that a time of 5 minutes is the most desirable time
based on considerations such as the administration of the product and the type of conditions that
are meant to be treated with the aid of the product. Table 16.5 is a rough grid of the predicted
responses based on Eq. (16.8). Based on a time to anesthesia of approximately 5 minutes, a
formulation containing 0.5 of A and 1 of B would be a candidate. Decoding the values results
in a formulation containing 8.75 mg of A and 100 mg of B.

16.3 COMPOSITE DESIGNS TO ESTIMATE CURVATURE
In general, when looking for optimality, the response equation will be more reliable if it contains
terms that reflect curvature. Physical systems are less satisfactorily described by empirical
equations containing only linear terms. Figure 16.3 shows an example of a single factor, X, at
two levels. Clearly, to interpolate the response, Y, at values of X between the low and high
levels requires an assumption of linearity. These predictions would be very much in error if the
response is curved, as shown in Figure 16.4.

In order to estimate curvature, more than two levels of the factor must be included in the
experiment. The presence of curvature would be reflected in the presence of terms with a power

Table 16.5 Predicted Values of Response to Anesthetic Combinations of Drugs A and B Based on Eq. (16.8)

Dose of drug Aa

−1 −0.5 0 +0.5 +1

Dose of drug Ba −1 9.7 9.075 8.45 7.825 6.2

0 9.05 8.2 7.35 6.5 6.65

+1 8.4 7.325 6.25 5.17 4.1

aCoded values of drug potency.
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Figure 16.3 Figure showing linear response as a

function of a single variable (factor).

greater than 1 (e.g., X2
1) in the response equation. Such equations are known as polynomials of

order 2, and have the following form for a two-factor design:

Y = B0 + B1 X1 + B11 X2
1 + B2 X2

+B22 X2
2 + B12 X1 X2 + . . .

(16.9)

Composite designs are effective designs to estimate second-order terms. These designs
have a number of desirable features. In addition to allowing an estimate of curvature, composite
designs give orthogonal estimates of the polynomial coefficients, and allow for the possibility
of proceeding with the experiment in a stepwise fashion rather than performing the entire
experiment at once. The theory underlying composite designs is beyond the scope of this book.
An excellent description of this design and optimization procedure can be found in chapter 11
of Ref. [1].

Although the following discussion is somewhat more advanced than the bulk of material
presented in this book, for those who are interested in this subject, an example of a two-factor
composite design will be presented to illustrate the technique. A two-factor composite design
is identical to a 32 factorial design, that is, two factors each at three levels, a total of nine
combinations (Table 16.6).

In general, composite designs are not full factorials of the class 3n, where n is the number
of factors. These full factorial designs require a larger number of experiments. For example, a
3n design with three factors requires 27 runs (27 formulations, for example), 33. With more than
two factors, composite designs consist of the 2n design, plus extra-design points. The extra points
include a center point and 2n extra points, appropriately chosen to maintain orthogonality of the
design [1]. The two-factor composite design is shown in Figure 16.5.

The coded values −1, 0, and +1 in Table 16.6 for the factor levels represent three equally
spaced levels of each factor. The coded values in the column headed X1X2 are obtained by multi-
plying the corresponding values in the first two columns (X1, X2) as previously described. The
values in the columns X2

1 − 2/3 and X2
2 − 2/3 are derived so that the product of corresponding

values in any two columns of Table 16.6 sum to zero, resulting in orthogonality (independence)
of effects. The special orthogonality obtained by transforming X2

i to X2
i − 2/3 allows for easy

Figure 16.4 Figure showing curved response as a func-

tion of a single variable (factor).
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Table 16.6 Orthogonal Composite Design with Two Factors (32 Design)

Coded level
Response, Predicted

Formulation X1 X2 X1X2 X2
1 − 2

3 X2
2 − 2

3 Y response

1 −1 −1 +1 +1/3 +1/3 9.7 9.3

2 −1 0 0 +1/3 −2/3 9.0 9.4

3 −1 +1 −1 +1/3 +1/3 8.4 8.4

4 0 −1 0 −2/3 +1/3 5.3 5.6

5 0 0 0 −2/3 −2/3 4.8 5.0

6 0 +1 0 −2/3 +1/3 3.8 3.3

7 +1 −1 −1 +1/3 +1/3 8.2 8.3

8 +1 0 0 +1/3 −2/3 7.5 6.9

9 +1 +1 +1 +1/3 +1/3 4.1 4.6

calculation of the coefficients and their variances. With this transformation, Eq. (16.9) is modified
to

Y = B0 + B1 X1 + B11

(
X2

1 − 2
3

)
+ B2 X2 + B22

(
X2

2 − 2
3

)
+B12 X1 X2 + . . .

(16.10)

The data in Table 16.6 consist of the four formulations from Table 16.4 plus five new runs
to complete the composite design. The doses of each drug (X1 and X2) were chosen such that
the three doses are at equally spaced intervals. Thus the third dose, in addition to the two doses
chosen for the 22 factorial, is 7.5 mg for X1(A) and 75 mg for X2(B). The experiment consists of
evaluating the nine combinations of doses, 5, 7.5, and 10 mg for X1(A) and 50, 75, and 100 mg
for X2(B). Note that the center point for the composite design is the combination 7.5 and 75 mg
of X1 and X2, respectively.

The results of the nine runs are shown in Table 16.6. The results are shown schematically
in Figure 16.6(A). The plane at the bottom of the figure shows the combinations of X1 and X2.
The vertical “sticks” are the responses at each combination of X1 and X2. We will compute
an equation of the form of Eq. (16.10) that represents a smooth curved surface based on the
experimental data. In general, the equation can be obtained through the use of a multiple
regression computer program.

The coefficients can also be calculated by “hand” (calculator) using the coded values in
Table 16.6. The sum of the products of the coded values times the responses divided by the sum
of the squared coded values in the column of interest gives the coefficient. For example, the

−1
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0

0

X

X

X

X

X

X
2

X1

X

X

X

X

+1

+1

Figure 16.5 Two-factor composite design (32

factorial).
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Figure 16.6 Results of composite design exper-

iment from Table 16.6 and response surface com-

puted from Eq. (16.11).

coefficient B11 in Eq. (16.10) is calculated as follows:

X′2
1 = X2

1 − 2/3 Y (X′2
1 )(Y)

+1/3 9.7 3.23

+1/3 9.0 3.00

+1/3 8.4 2.80

−2/3 5.3 −3.53

−2/3 4.8 −3.20

−2/3 3.8 −2.53

+1/3 8.2 2.73

+1/3 7.5 2.50

+1/3 4.1 1.37

∑
X′2

1
= 2 Sum = 6.37

The sum of squared values in the (X2
1 − 2/3) column is 2. Therefore, the coefficient, B11,

is 6.37/2 = 3.18. The intercept, B0, is the average of the nine responses, Y, equal to 6.756. The
response equation is

Y = 6.756 − 1.22(X1) + 3.18
(

X2
1 − 2

3

)
− 1.15(X2)

−0.52
(

X2
2 − 2

3

)
− 0.7(X1 X2)

(16.11)
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Note that Eq. (16.11) is not an exact fit to the experimental data, as was the case with the
polynomial fit described for factorial designs in section 16.2. Had we included three more terms
representing various interactions, the equation would exactly fit the data. Equation (16.11) is
computed with the assumption that interactions are negligible. Because of the larger number of
experiments and the estimation of only six coefficients, we have 2 d.f. for error. Although such
an error estimate is not very reliable, it does give us some information, albeit small. The response
surface described by Eq. (16.11) is shown in Figure 16.6(A). If this equation does not adequately
represent the experimental observations, more terms may be needed in the polynomial equation
[Eq. (16.9)] to improve the fit.

The contour plot (similar to contour maps) shown in Figure 16.6(B) allows the selection
of combinations of X1 and X2 to satisfy given levels of the response. If a maximum response is
desired, the X1, X2 combinations are limited to a small area of the X1 − X2 space. If a response
of approximately 5 minutes is desired, various combinations of X1 and X2 will satisfy the
requirements. The ultimate choice will probably depend on other factors, as well, such as cost,
toxicity, and so on.

Use of factorial designs in tablet formulation optimization has been presented by Schwartz
et al. [5], Fonner et al. [6], and Lindberg et al. [7]. These papers discuss designs somewhat more
complex than that presented here. However, for those interested in pursuing this topic further,
these papers and the books The Design and Analysis of Industrial Experiments [l] and Statistics for
Experimenters [4] are recommended.

16.4 THE SIMPLEX LATTICE [12]
Response surfaces and optimal regions for formulation characteristics are frequently obtained
from the application of simplex lattice designs. This class of designs is particularly appropriate in
formulation optimization procedures where the total quantity of the different ingredients under
consideration must be constant. Therefore, these are also called “Mixture Designs.’’ For example,
suppose that in a liquid formulation, the active ingredient and solvent compose 90% of the
product. The remaining 10% of the formulation consists of preservatives, coloring agents, and a
surfactant. We wish to prepare a formulation with a certain optimal attribute(s) that is dependent
on the relative concentrations of preservative, color, and surfactant. In order to determine
optimal regions, we vary the concentrations of these three ingredients in a systematic manner,
with the restriction that the total concentration of these ingredients is 10%. This approach differs
from the previous procedures (sects. 16.2 and 16.3) in that a constraint is imposed on the total
amount of the varying ingredients. In this example, the total amount of the varying components
is maintained at 10%. Given the concentration of two of the ingredients, the third ingredient is
fixed where in this example C = 10% − A − B.

Implementation of the simplex design consists of preparing various formulations con-
taining different combinations of the variable ingredients. The combinations are prepared in a
manner such that the experimental data can be used to predict the responses over the simplex
space§ in a simple and efficient manner. The combinations (formulations) in a simplex design
are chosen to cover the space of interest in a symmetrical manner. The experimental results are
used to compute a polynomial (simplex) equation that can be used to estimate the response sur-
face. As is true with all optimization and so-called response surface procedures, extrapolation
to combinations outside the range included in the experimental design is not recommended.
The equation resulting from the experiment, the simplex equation, is an empirical equation that
approximately describes the response pattern in the simplex space. There is no reason to believe
that the equation has any physical meaning, other than the fact that the complex response pat-
terns resulting from the varying formulations can often be approximated by simple polynomial
equations.

Figure 16.7 representing a two-component system (A and B) is useful to help clarify some
concepts of simplex designs. One can consider components A and B to be two solvents, which

§ The simplex space is the region enclosed by the various combinations of ingredients chosen for the experiment.
See Figure 16.8, for example.
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Figure 16.7 Two-component solvent system used to illustrate the simplex approach to optimization.

together comprise the entire solvent system of a drug product. We wish to mix A and B in the
correct proportion to optimize the solubility of the drug.

Figure 16.7 is familiar as a solubility phase diagram. This system can also be visualized as
an elementary simplex system. The constraint is that the concentrations of A and B must add
to 100%. This experiment consists of observing responses (solubility) at three points, 100% A,
100% B, and a 50–50 mixture of A and B, an elementary simplex design. According to Figure 16.7,
the solubilities of the drug at the three simplex points, 100% A, 100% B, and 50% A to 50% B,
are 10, 15, and 20 mg/mL, respectively. In the simplex approach, we construct an equation of
the form

Y = B1(A) + B2(B) + B12(A)(B), (16.12)

where Y is the response (solubility in this example), and (A) and (B) are the concentrations
(proportions) of A and B, respectively. The coefficients, B1, B2, and B12, are calculated from the
experimental observations. The response, Y, can then be predicted for all combinations of A and
B, where (A) + (B) = 1.0 (100%). (The proportion of each component is usually indicated as a
decimal rather than as a percentage.) The form of the simplex design allows for easy calculation
of the coefficients. In this example, the coefficients are simply calculated as follows:

B1 = response at (A) equal to 1.0(100%) = 10

B2 = response at (B)equal to 1.0(100%) = 15

B12 = 4(response at 0.5 − 0.5 mixture of A− B)
− 2 (sum of responses at A = 1.0 and B = 1.0)

Bl2 = 4(20) − 2(10 + 15) = 30

The response equation is

Y = 10(A) + 15(B) + 30(A)(B). (16.13)

The solution above for the three coefficients is a result of the solution of three simultaneous
equations:

With A = 1.0 and B = 0, from Eq. (16.12), B1
∗∗ = 10

With A = 0 and B = 1.0, from Eq. (16.12), B2 = 15

∗∗The response, Y, with A equal to 1.0 (100%) is 10.
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With A = 0.5 and B = 0.5, from Eq. (16.12),

20 = 0.5B1 + 0.5B2 + 0.25B12 or B12 = 4(20) − 2(B1 + B2) = 30.

We will see that in more complex simplex designs, the polynomial coefficients are, simi-
larly, easily calculated as linear combinations of experimental results.

Equation (16.13) exactly predicts the observed points: a fit of a polynomial with three
terms to three experimental points. We can always construct an equation with N coefficients
that will exactly pass through N points. For example, for the 50–50 mixture,

Y = 10(0.5) + 15(0.5) + 30(0.5)(0.5) = 20.

The response equation predicts responses at extra-design points, those formulations not
included in the experiment but that lie within the simplex space, 100% A to 100% B in this
example. For example, what solubility would be predicted in a solvent system containing 75%
A and 25% B? (Note that A + B must equal 100%.) Applying Eq. (16.13), we have

Y = 10(0.75) + 15(0.25) + 30(0.75)(0.25) = 16.875.

See also Figure 16.7. The entire response may be sketched in by predicting solubilities along the
curve, as shown in the figure.

The primary experimental objective in experiments such as that described above may
be the determination of the solvent combination that results in maximum drug solubility. The
optimum solubility can be computed by calculating the predicted solubility at many solvent
combinations so as to clearly define the response over the solvent mixture continuum. This may
seem an indirect and tedious approach, but with the ready availability of computers, this is
often the most expeditious route. The maximum solubility is predicted to occur at 41.67% A. In
this simple example, the maximum can easily be calculated by setting the first derivative of Eq.
(16.13) equal to 0 (see Exercise Problem 6).

In general, the simplex design is usually applied to formulation problems in which a mix-
ture of three or more components is to be investigated. The design is conveniently represented
by regular-sided figures, which can be visualized for three- or four-component systems. For
more than four components, a single figure cannot be conveniently constructed, but can be
theoretically conceived as an N-sided figure in (N − l)-dimensional space. For example, Figure
16.8 shows the three-component system that is represented as an equilateral triangle in two-
dimensional space. A regular simplex design for a three-component mixture system consists of
six or seven formulations.

Three formulations, one each at each vertex, A, B, and C. These formulations represent formula-
tions with the pure components, A, B, and C, respectively.

Three formulations are prepared with 50−50 mixtures of each pair of components, AB, AC,
and BC.

A seventh formulation may be prepared with one-third of each component. This lies in the center
of the design.

An example of a simplex design for four components consisting of 15 formulations is
shown in Figure 16.8. The 15 formulations consist of

Four formulations each with 100% of each of the four pure components Six formulations of
50−50 mixtures of component pairs (AB, AC, AD, BC, BD, and CD).

Four formulations consisting of one-third mixtures of combinations of three components (ABC,
ABD, ACD, BCD).

A mixture containing 25% of each of the four components (ABCD).

The simplex design is arranged so that the experimental space is well covered in a symmet-
rical fashion. In addition, the symmetrical spacing of the points allows for an easy computation
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design and four-component simplex lattice design.

of the response equation coefficients. The general equation for the response based on a simplex
design contains terms for pure components and all mixtures of components as follows:

Y = Ba (A) + Bb(B) + Bc(C) + . . . + Bab(A)(B) + Bac(A)(C)
+Bbc(B)(C) + . . . + Babc(A)(B)(C) + · · · (16.14)

where (A), (B), and (C) are the proportions of components A, B, and C, and (A) + (B) + (C) + . . .

is equal to 1.0.
The subscripted B’s (e.g., Ba) are coefficients that can be easily calculated from the

responses, Y, or using a multiple regression computer program.
After the coefficients have been calculated, the response equation [Eq. (16.14)] may be

used to predict the response of combinations of the N components in the system. With the aid of
a computer, responses may be calculated over the simplex space, and contour diagrams printed
(see also Fig. 16.6). The contour plot is a graphic description of the response surface resulting
from data derived from experimental designs such as the simplex. For the two-component
system (Fig. 16.7), the response surface is simply the solubility curve. With three components, a
three-dimensional figure would be necessary to show the response surface. A contour plot is a
means of illustrating the response on a two-dimensional surface, as is familiar to those who have
been exposed to contour maps. A computer may be programmed to produce two-dimensional
figures (commercial programs are also available) that are slices through the three-dimensional
figure for a three-component system. The slices are taken at a constant concentration of one of
the components. In computer outputs, the regions of equal response are indicated by a common
symbol, such as a letter or a figure. An example of a contour plot was shown in Figure 16.6. The
contour plot will be discussed further in the example that follows. Examination of the contour
plot(s) allows the experimenter to choose formulations that have predicted responses of some
specified magnitude.



OPTIMIZATION TECHNIQUES AND SCREENING DESIGNS 443

When constructing an empirical response equation based on a limited number of experi-
mental observations, one should understand that predicted values based on the equation may
be in error for several reasons. For example, the empirical equation (or model, as it is often
called) rarely exactly defines the experimental system. The equation is an approximation to the
system. To understand this important concept, note that the same problem would exist if we
had only two points in the experimental space. The empirical equation derived from the two
points could only relate the observations by a straight line. In-between points could only be
predicted on the basis of the straight-line relationship (Figs. 16.3 and 16.4).

If the true relationship of the X, Y variables were curved, the linear interpolation would
be in error. In the simplex design, we used a limited number of points to define a relatively large
region of response. Even if the model represented by the empirical equation is a reasonable
representation of the true surface, other sources of variation can contribute to error in the
prediction equation and predicted responses (e.g., error in measuring the response). Thus, in
these systems, we have at least two obvious sources of variability: that due to the empirical
model and that due to observational errors.

How can we protect ourselves from inadvertently proceeding with predictions when the
derived equation is indeed inaccurate? As insurance against such a possibility, it is a good idea
to run one or more extra-design points. These points are not used to estimate the coefficients in
the simplex equation [Eq. (16.14)] but will be used as checkpoints. Once the simplex equation is
derived, the result at the extra-design checkpoint(s) is predicted based on the equation, and its
agreement with the observed value assessed. If the agreement is close, we have increased faith
in the predictive power of the response equation (see sect. 16.2). If we have an estimate of error
from replication or other means, we may wish to perform a statistical test to test the adequacy
of the model (a statistician may be consulted for this calculation).

The calculation of the simplex equation coefficients is easily accomplished using the
following formulas. These formulas are an extension of those discussed previously for the two-
component system as applied to a three-component system. The general formulas for calculation
of coefficients for an N-component system may be found in Ref. [7].

B1 = Y1, the response at 100% A

B2 = Y2, the response at 100% B

B3 = Y3 the response at 100% C

B12 = 4(Y12) − 2(Y1 + Y2), where Y12 is the response at 50 − 50 AB
B13 = 4(Y13) − 2(Y1 + Y3), where Y13, is the response at 50 − 50 AC
B23 = 4(Y23) − 2(Y2 + Y3), where Y23 is the response at 50 − 50 BC

B123 = 27(Y123) − 12(Y12 + Y13 + Y23) + 3(Y1 + Y2 + Y3),
where Y123 is the response at 1/3A, 1/3B, and 1/3C

(16.15)

The discussion above has been based on an experimental situation where the components
being varied in the simplex design comprise the entire mixture (100%). In pharmaceutical
formulations, a more common situation is one in which part of the formulation must remain
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fixed (e.g., drug concentration in a tablet). The remaining components, which may be varied,
therefore do not make up 100% of the mixture. In addition, the lower limit for the varying
components is often not equal to 0. For example, some components must be present in some
minimal quantity in order that a marketable product can be manufactured. This is known as
a design with constraints. For tablets, some minimal amount of a lubricating agent may be
necessary in order to obtain an acceptable product. These modifications in the simplex design
present no problem, however, because we can restrict the treatment of the simplex to those
components that are varied, and with suitable transformations, treat the data in exactly the
same way as described above. For example, if the components to be varied make up 60%
of the total formulation ingredients, we can appropriately transform the actual percentages of
these components so that the transformed percentages total 100%. In a three-component mixture
containing 20% of each of three components, each component can be transformed to 33.3% (1/3)
for purposes of the simplex analysis. Transformations can also be made where the components
have a lower limit greater than 0% and an upper limit less than 100%, as will be explained in
the following worked example.

The example presented below is an experiment in which a simplex design was used to
obtain a formulation with optimal properties. This example should clarify the concepts and
procedures described above. This experiment was prompted by problems with tablet hardness
for a large-volume marketed product. Although the reason for the problem was not obvious,
the pharmaceutical product development scientists felt that the cause could be traced to three
components of the tablets, which we will denote as ingredients A, B, and C. Together, these
components consisted of 25% of the original formulation, or 75 mg of the total tablet weight of
300 mg. A careful evaluation of the product ingredients indicated that the three components had
to be present in an amount equal to at least 10 mg each in order for the tablet to be satisfactorily
compressed. Thus, the recommended simplex design to obtain a satisfactory tablet hardness
consisted of varying the three components with the constraint that the sum of the components
must be 75 mg, and that each component be present in an amount equal to at least 10 mg.

In order to apply the simplex equation to be derived from this experiment in a convenient
manner, the actual concentrations used should be transformed such that the minimum concen-
tration (10 mg) corresponds to 0% and the highest concentration corresponds to 100%.†† In our
example, the transformation is the same for all three components because each component is
subject to the same restrictions. The minimum quantity is 10 mg and the maximum is 55 mg.
(The other two components, each at 10 mg, make up the 20-mg difference, a total of 75 mg.) The
transformation is as follows:

Transformed proportion = Amount used − minimum
maximum − minimum

= Amount used − 10
55 − 10

.

(16.16)

Thus, a formulation prepared with a 50–50 mixture of components A and B would actually
contain 32.5 mg of A, 32.5 mg of B, and 10 mg of C. Note that from Eq. (16.16), if a component
is at a concentration of 32.5 mg, the transformed proportion is (32.5 − 10)/(55 − 10) = 0.5. A
formulation with “100%” A would actually contain 55 mg of A, 10 mg of B, and 10 mg of C.

The three-component simplex design was run with one checkpoint, as shown in Table
16.7. The hardness values represent the average hardness of 20 tablets taken at random from
the experimental batches. The simplex coefficients are computed as described previously [Eq.
(16.15)], resulting in the following equation:

Y = 6.1(A) + 7.5(B) + 5.3(C)
−0.8(A)(B) + 2.8(A)(C) + 2.0(B)(C) + 15(A)(B)(C).

(16.17)

††If there are no constraints on the upper and lower limits, the highest concentration would ordinarily be 100%
and the lowest 0%.
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Table 16.7 Results of a Three-Component Simplex System for Tablet Hardness

Formulation components Transformed proportion

Average
A B C A B C hardness, Y

55 10 10 1.0 0 0 6.1

10 55 10 0 1.0 0 7.5

10 10 55 0 0 1.0 5.3

32.5 32.5 10 0.5 0.5 0 6.6

32.5 10 32.5 0.5 0 0.5 6.4

10 32.5 32.5 0 0.5 0.5 6.9

25 25 25 0.33 0.33 0.33 7.3

32.5a 21.25 21.25 0.5 0.25 0.25 7.2

aExtra-design checkpoint.

For example, the coefficient B123 is calculated as follows:

27(7.3) − 12(6.6 + 6.4 + 6.9) + 3(6.1 + 7.5 + 5.3) = 15.

(A), (B), and (C) in Eq. (16.17) are the transformed proportions. The extra-design checkpoint
(the final formulation in Table 16.7) has a response of 7.2. The predicted value based on Eq.
(16.17) is 7.09, very close to the observed value, 7.2. This is some confirmation of the adequacy
of Eq. (16.17) as a predictor of tablet hardness. Figure 16.9 shows a contour plot of the results
of the experiment based on Eq. (16.17). Tablets with high hardness are found in the region
with relatively larger amounts of component B. If a tablet hardness of 7 or more is satisfactory,
the pharmaceutical scientist has a choice of formulations. The final composition may then be
dependent on other factors, such as cost or other tablet properties.

The following example shows data (Table 16.8) and analysis from a replicated simplex
design that gives an estimate of experimental error. The design is a basic three-component (A,
B, and C) simplex design with a center point consisting of 1/3 of each of the three components.
This example is set up for a computer analysis. Note that the interaction term coefficients are
the product of the main effect coefficients. For example for Run #7, the ABC interaction is

Figure 16.9 Contour plot of three-component simplex system (Table 16.7).
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Table 16.8 Example of a Replicated Simplex Design

Run A B C AB AC BC ABC Response

1 1 0 0 0 0 0 0 38

2 0 1 0 0 0 0 0 27

3 0 0 1 0 0 0 0 46

4 0.5 0.5 0 0.25 0 0 0 33

5 0.5 0 0.5 0 0.25 0 0 51

6 0 0.5 0.5 0 0 0.25 0 32

7 0.333 0.333 0.333 0.111 0.111 0.111 0.037 48

8 1 0 0 0 0 0 0 42

9 0 1 0 0 0 0 0 28

10 0 0 1 0 0 0 0 41

11 0.5 0.5 0 0.25 0 0 0 35

12 0.5 0 0.5 0 0.25 0 0 47

13 0 0.5 0.5 0 0 0.25 0 32

14 0.333 0.333 0.333 0.111 0.111 0.111 0.037 50

Independent Regression Standard Lower Upper

variable coefficient error 95% CL 95% CL

A 40 1.535299 36.36959 43.63041

B 27.5 1.535299 23.86959 31.13041

C 43.5 1.535299 39.86959 47.13041

AB 1 7.521398 −16.78528 18.78528

AC 29 7.521398 11.21472 46.78528

BC −14 7.521398 −31.78528 3.78528

ABC 277.1 52.90734 151.9937 402.2056

Analysis of variance section

Source d.f. Sum of squares Mean square Prob. F ratio Level

Intercept 0 0 0

Model 7 22461 3208.714 680.6364 0.000000

Error 7 33 4.714286

0.333 × 0.333 × 0.333 = 0.037. The computer analysis gives the regression coefficients for the
response equation, and an ANOVA to estimate the experimental error. The variance estimate
is 4.71.

A checkpoint was run at A = 0.25, B = 0.25, and C = 0.5 with a response of 46. The model
predicted 49.2.

In my experience, this approach gives excellent results.

16.5 SEQUENTIAL OPTIMIZATION∗∗
Sequential optimization was developed as a means to optimize a process in a stepwise fashion.
Evolutionary operation (EVOP) uses factorial type designs and usually requires a large num-
ber of experiments [8]. A relatively simple approach to sequential optimization is a stepwise
application of the simplex procedure [9,10]. The procedure consists of first generating data from
n + 1 experiments where n is the number of independent variables or factors. Based on the n + 1
responses and predetermined rules, one result is eliminated from the set and a new experiment
is performed. A decision is made as a result of the most recent experiment, generating another
new experiment, and so on, eventually terminating the design at an “optimal” response. Thus,
each new experiment leads the researcher on a path toward an optimum. The procedure and
rules are illustrated in the following example. For further details and illustrations, the reader is
encouraged to study Refs. [9–11].

∗∗A more advanced topic.



OPTIMIZATION TECHNIQUES AND SCREENING DESIGNS 447

Table 16.9 Initial Four Experiments for Simplex Experiment

Experiment Disintegrant Lubricant Fill weight Response

1 +(50)a −(0.2) −(100) 37

2 −(0) +(2.2) −(100) 58

3 −(0) −(0.2) +(400) 46

4 +(50) +(2.2) +(400) 40

aParenthetical value is the amount of ingredient in the formulation.

16.5.1 An Example of Sequential Simplex Optimization
This example is based on the presentation by Shek et al. [11] using the simplex procedure to
optimize properties of a capsule formulation. They were interested in optimizing dissolution
and compaction rates as a function of the factors (or variables) drug, disintegrant, lubricant,
and fill weight. In this synthetic example, we will look at a single response, dissolution at 30
minutes, as a function of three variables: disintegrant, lubricant, and fill weight.

We start with four experiments (we have three variables). There are no firm rules regarding
the design of these experiments, but principles of good experimental design should prevail. For
example, a 1/2 replicate of a 23 factorial design can be used for the initial four experiments. This
requires setting low (−) and high (+) levels for each factor; see Table 16.9.

Let W = vector of worst response
Let S = vector of second worst response
Let B = vector of best response
Let Rw = worst response
Let Rs = second worst response
Let Rb = best response
Let P = average vector after elimination of worst response among formulations under consid-

eration.

Note that since Formula 2 shows the worst response (the longest dissolution time) P is the
average of experiments 1, 3, and 4 and is equal to (33.3, 0.87, 300). For example, the first vector
element refers to the average disintegrant = (+ 50 − 0 + 50)/3 = 33.3.

Procedure:
Step 1. Eliminate W, the vector of the worst response from the data set and compute R [Eq.

(16.18) below], the formulation for the new experiment.

R = P + (P − W)
(33.3, 0.87, 300) + (33.3, −1.33, 200) = (66.6, −0.46, 500).

(16.18)

In this example, we need 66.6 of disintegrant, −0.46 of lubricant and a fill weight of 500.
We will interpret this result after the rules are specified and we proceed with the optimization.

If the response from experiment R, Rr, is better than the second-worst response, Rs, but
worse than the best response, retain Rr and proceed to Step 1, evaluating a new formulation
with the new set of four formulations.

If the response to Rr is better than the best response, proceed to Step 2.
If the response to Rr is worse than the second-worst response, go to Step 3.
If the response to Rr is worse than the worst response, go to Step 4.

Step 2. Compute E [Eq. (16.19) below] and evaluate Re .

E = P + 2(P − W) (16.19)

If Rr is better than the response to E, Re , retain R. If Re is better than Rr, retain E.

Step 3. Compute Cr [Eq. (16.20) below] and evaluate the response to Cr, Rcr.

Cr = P + 0.5(P − W) (16.20)
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Retain Cr. However, if Rcr is worse than Rs (the next-to-worst response), then set Rw = Rs
and W = S. (This means that the worst response is set equal to the next-to-worst response.) Set
Rcr as the next-to-worst response, that is, S = Cr and Rs = Rcr.

Step 4. Compute Cw [Eq. (16.21) below] and evaluate Rcw. Retain Cw. However, if Rcw is
worse than Rs (the next-to-worst response), then set Rcw = Rs and W = S (this means that the
worst response is set equal to the next-to-worst response). Set Rcw as the next-to-worst response,
that is, S = Cw and Rs = Rcw.

Summary of calculation of new formulations

1.
R = P + (P − W)
Rr = The response to formula R

(16.18)

2.
E = P + 2(P − W)
Re = The response to formula E

(16.19)

3.
Cr = P + 0.5(P − W)
Rcr = The response to formula Cr

(16.20)

4. Cw = P − 0.5(P − W)
Rcw = The response to formula C r

(16.21)

Although this procedure may appear confusing, if one follows the example, the process
will be clarified.

We have already calculated the vector for the first new formulation using Step 1 above:
(66.6, −0.46, 500). The response to this formulation will replace the worst formulation, W, which
is formulation 2. Unfortunately, we cannot prepare this formulation because of the negative
quantity of lubricant. We will make a rule that in such impossible situations we consider
the response to this new formulation to be worse than the remaining formulations under
consideration (formulations 1, 3, and 4).

This sends us to Step 4 according to our rules. The formulations under consideration are
1, 3, 4, and 5 in Table 16.10. According to Eq. (16.21)

Cw = (33.3, 0.87, 300) − 0.5(−33.3, 1.33, −200)
= (50, 0.20, 400).

The response, Rcw, to Cw is 44. According to Step 4 above, we retain this result. This is
shown as experiment 6 in Table 16.9. We now operate on experiments 1, 3, 4, and 6; experiment
3 is the new worst result.

We go to Step 1 and compute our new formulation R from Eq. (16.18)

R = (50, 0.87, 300) + (50, 0.67, −100) = (100, 1.54, 200).

Table 16.10 Sequential Experiments in Optimization Process

Experiment Disintegrant Lubricant Fill weight Response

1 50 0.2 100 37

2 0 2.2 100 58(W1)a

3 0 0.2 400 46(W3)

4 50 2.2 400 40

5 66.6 −0.46 500 (W2)

6 50 0.20 400 44(W4)

7 100 1.54 200 42(W6)

8 83.3 2.42 67 43(W5)

9 58.4 0.75 316 36

10 8.5 0.07 416 41(W7)

11 39 0.56 344 44(W8)

12 56.2 0.8 308 35

aW1 means that this result was eliminated after the first evaluation.
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The response R, is 42 (represented by experiment 7 in Table 16.9). This is better than the
second worst response (44 for experiment 6) and we retain Rr as directed in Step 1 above. We
recompute R for the set of experiments 1, 4, 6, and 7

R = (66.7, 1.31, 233) + (16.7, 1.11, −167) = (83.3, 2.42, 67).

The response, Rr, is 43. This is worse than the second-to-worst response, 42. Therefore we
go to Step 3

Cr = P + 0.5(P − W)

Cr = (66.7, 1.31, 233) + 0.5(−16.7,−1.11, 167)
= (58.4, 0.75, 316).

The new response (experiment 9) is 36.
According to our rules, we go to Step 2

E = P + 2(P − W)

E = (69.5, 1.05, 272) + 2(−30.5,−0.49, 72)
= (8.5, 0.07, 416).

The response to E is 41. According to Step 2, we retain R in lieu of E because R gave the
better response. We compute a new R from Step 1

R = (69.5, 1.05, 272) + (−30.5,−0.49, 72)
= (39, 0.56, 344).

The response is 44. Our new set of four experiments is numbers 1, 4, 9, and 11, with
number 11 the worst.

We go to Step 4 and compute Cw because the value of R is worse than Rw

Cw = (69.5, 1.05, 272) − 0.5(30.5, 0.49, −72)
= (54.2, 0.8, 308).

The response was 35 (see experiment 12).
The experiments may continue as described above until repeated experiments do not

show improvement. We are searching for an optimal response in the presence of variability. In
the present case, a formula containing approximately 55 of disintegrant and 0.75 of lubricant
with a fill weight of 300 mg appeared to show minimal dissolution time; the study was stopped
after experiment 12.

As with other optimization procedures presented in this chapter, studying details in the
literature references is essential to understand the procedure and calculations [8–11].

16.6 SCREENING DESIGNS
Usually, we know the factors that we wish to investigate, from our experience. However, in new,
unknown, situations, it is possible that we may consider a number of factors to investigate, to
see if any of these may affect the response or outcome. If there are only a few such variables (or
factors), we may wish to use a factorial or fractional factorial design. If there are many potential
factors of interest, screening designs are available that use less runs, but do give us insight into
effects of interest. The most popular of such designs are the Plackett–Burman designs.

Screening designs may be useful if little is known of the system. In most cases, one should
have a reasonable idea of which variables are important, and their effective ranges. But, we may
be surprised. If everything were known, experimentation would not be necessary. Also, one
should be careful not to neglect potentially important variables.
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Table 16.11 Twelve Run Plackett–Burman Design

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 + + − + + + − − − + −
2 + − + + + − − − + − +
3 − + + + − − − + − + +
4 + + + − − − + − + + −
5 + + − − − + − + + − +
6 + − − − + − + + − + +
7 − − − + − + + − + + +
8 − − + − + + − + + + −
9 − + − + + − + + + − −

10 + − + + − + + + − − −
11 − + + − + + + − − − +
12 − − − − − − − − − − −

Screening designs, in general, are fractional factorials of 2n designs that estimate main
effects, but not interactions. If results of such experiments point to specific factors, one can
follow up with more complete designs to evaluate specific interactions.

A 12-run design is shown in Table 16.11. Note that the − and + signs refer to the low and
high levels of the factor, respectively. Thus, for example, factor 1 in run 1 is at the high level. (See
chap. 9 for further explanation of terminology.) For other designs, for example, higher order
or more complex designs, a statistician should be consulted. In general, variability cannot be
estimated without replication (run the design in duplicate, for example) or partial replication.
This would increase the size and cost of the experiment. As in other design considerations, the
cost and time considerations must be weighed against the information gained from expanded
experiments. If less factors than runs are used, an estimate of variability can be provided. This
is shown in the following example.

An example of a 12-run Plackett–Burman design is shown in Table 16.12. This design
estimates the main effects of six variables. This leaves 5 d.f. for estimating the error. The estimates
based on columns 7 to 11, inclusive, are only used to compute the variability, and are not related
to the six factors in the experiment. An example of an experiment using this design could be
as follows. The effect of six variables on the dissolution of a tablet is to be investigated. The six
factors are (X1) hardness, (X2) level of disintegrant, (X3) time of mixing granulation, (X4) level
of lubricant, (X5) type of coating, and (X6) tablet press pressure. The response is the percent
dissolution in 30 minutes. Each factor is set at a low (−1) and a high (+1) level. (Note that “type
of coating” is arbitrarily set at −1 and +1.)

The analysis is most easily accomplished using a multiple regression computer program.
When designating values for the model in the computer program, it is convenient to input −1
for the low level and + 1 for the high level. Table 16.13 shows an example of relevant computer
output.

Table 16.12 Example of Twelve Run Plackett–Burman Design

Dissolution X1 X2 X3 X4 X5 X6 Error Error Error Error Error

75 1 1 −1 1 1 1 −1 −1 −1 1 −1

104 1 −1 1 1 1 −1 −1 −1 1 −1 1

57 −1 1 1 1 −1 −1 −1 1 −1 1 1

54 1 1 1 −1 −1 −1 1 −1 1 1 −1

46 1 1 −1 −1 −1 1 −1 1 1 −1 1

58 1 −1 −1 −1 1 −1 1 1 −1 1 1

3 −1 −1 −1 1 −1 1 1 −1 1 1 1

98 −1 −1 1 −1 1 1 −1 1 1 1 −1

80 −1 1 −1 1 1 −1 1 1 1 −1 −1

12 1 −1 1 1 −1 1 1 1 −1 −1 −1

100 −1 1 1 −1 1 1 1 −1 −1 −1 1

13 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
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Table 16.13 Multiple Regression Computer Output of Data in Table 16.12

Independent Regression T value Decision
variable coefficient (H0: B = 0) Prob. level (5%)

Intercept 58.33 13.3748 0.000042 Reject H0
X1 −0.167 −0.0382 0.970996 Accept H0
X2 10.33 2.3692 0.064013 Accept H0
X3 12.5 2.8660 0.035158 Reject H0
X4 −3.167 −0.7261 0.500353 Accept H0
X5 27.5 6.3052 0.001477 Reject H0
X6 −2.667 −0.6114 0.567651 Accept H0

Analysis of variance

Source d.f. Sum of squares Mean square F ratio Prob. level

Intercept 1 40833.33 40833.33

Model 6 12437.33 2072.889 9.0810 0.014

Error 5 1141.33 228.267

Total 11 13578.67 1234.424

Note that only main effects are estimated. The error term comprises the five columns that
were not assigned to factors (columns 7–11). If only five factors were investigated, columns 6
to 11 would be used to estimate error with 6 d.f. The estimate of error allows us to test the
main effects for significance. This is a conservative test because the error will be, if anything,
estimated on the high side. That is, if any interactions are present, the error estimate will be
too high. This means that we may miss some significant effects if interaction is present. In this
example, X2 just misses significance, and X3 and X5 are significant. Again, the six factors are
(X1) hardness, (X2) level of disintegrant, (X3) time of mixing granulation, (X4) level of lubricant,
(X5) type of coating, and (X6) tablet press pressure. Therefore, we might wish to consider the
level of disintegrant, time of mixing, and type of coating if we wish to modify the dissolution.
The type of coating seems to have the greatest effect.

KEY TERMS

Checkpoint Optimization
Coding Orthogonality
Composite designs Plackett–Burman
Contour plot Polynomial equation
Extra-design points Replication
Factorial designs Response equation
Fractional factorial designs Response surface
Grid Screening designs
Independence Sequential optimization
Model Simplex design
Model error Simplex space
Multiple regression Transformation

EXERCISES
1. Calculate the predicted response from Eq. (16.6) for

(a) X1 = 1 mg, X2 = 1 mg, X3 = 2.5 mg
(b) X1 = 2 mg, X2 = 1 mg, X3 = 4 mg
Note that Eq. (16.6) uses coded values; see Eq. (16.4).] For example, the coded value for
X1 = 1 mg is 0 = (1 − 1)/1.

2. Show that the transformed values of X1 = 1, X2 = 0.5, and X3 = 2.5 are all equal to zero
for the three variables in Exercise Problem 1.

3. Calculate the coefficients for the polynomial equation, (16.8). The coefficients are calcu-
lated from the data in Table 16.4.
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4. Show that decoded values of A and B equal to 0.5 and 1, respectively, are equal to 8.75
mg of A and 100 mg of B, for the data of Table 16.4 and Eq. (16.8). Calculate the expected
response of this combination of A and B using Eq. (16.8).

5. A formulation was to be prepared to optimize dissolution time. (The formulation with
the dissolution time of approximately 15 minutes is “optimal.”) Stearic acid and mixing
time were varied according to a 22 factorial design with the following results:

Stearic acid

0.25% 1%

Mixing time (min) 15 10 23

30 21 25

(a) Construct a polynomial response equation [see Eq. (16.8)].
(b) What concentration of stearic acid and mixing time would you choose for the final

product?
‡‡6. Calculate the maximum solubility based on Eq. (16.13), using procedures of calculus.

[Hint: Set the first derivative equal to 0 after substituting (1.00 − A) for B.]
7. A total of 100 mg of three components, stearic acid (A), starch (B), and DCP (C), are to be

added to a tablet formulation. Dissolution time was measured in a simplex design with
the following results:

100% A: 292.0 min

100% B: 5.6 min

100% C: 50.4 min

50% A, 50% B: 25.6 min

50% B, 50% C: 15.6 min

50% A, 50% C: 124.5 min

1/3 A, 1/3 B, and 1/3 C: 37.0 min

(a) Compute the simplex equation coefficients.
(b) Give a combination with very fast dissolution.
(c) Give a combination that has a dissolution time of 90 minutes.
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Glossary

a calculated intercept in regression
ANCOVA analysis of covariance
ANOVA analysis of variance
b calculated slope in regression
BMS between mean square
BSS between sum of squares
C. T. correction term
CI confidence interval
CV coefficient of variation; relative error; relative standard

deviation
CXR column × row interaction
df degrees of freedom
E expected number in chi-square table
F F value for F distribution
Ha alternative hypothesis
Ho null hypothesis
In natural log
LSD least significant difference
O observed number in chi-square table
p estimated proportion (binomial)
p (A) probability that event will occur
p (A|B) conditional probability of A given B
Po true or hypothesized proportion
q probability of failure in binomial
R range
r calculated correlation coefficient
r (Dixon) computation for outlier analysis
r2 square of correlation coefficient
RSD relative standard deviation
S sample standard deviation
S2 sample variance
S2y.x estimated variance from line fitting
t t value for t distribution
Tn test for outlier
� true standard deviation of distribution
w weight in weighted least squares
WSS within sum of squares
Xi ith observation
Z normal standard deviate
X2 chi square
� delta, true change or difference
N sample size
� sum of observations
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� alpha level or error for null hypothesis; error of first
kind

	 beta error (1-power)
� observed change or difference
� true mean of distribution



Appendix I

Some Properties of the Variance

I.1 POOLING VARIANCES
In many statistical procedures, an estimate of the variance is obtained by “averaging” or pooling
the variances from more than one group of observations. The pooling of variances is appropriate
in cases where samples from separate groups or different experiments provide estimates of
the same variance. Note that we do not pool or average standard deviations. As we have
previously noted, the sample variance,

∑
(X − X̄)2/(N − 1) [Eq. (1.5)], is an unbiased estimate

of the true population variance. The standard deviation, estimated from a sample, is a biased
estimate of the true population standard deviation. On the average, the sample standard deviation
underestimates the population standard deviation. Estimation and properties of the variance
are important considerations in both theoretical and applied statistics.

A common example of a procedure where variance estimates from different groups are
pooled is the two-sample independent-groups t test for comparison of means discussed in
chapter 5. In this test, the average results of two treatments∗ (e. g., active drug versus placebo;
dissolution behavior of two tablet formulations) are compared. An estimate of the variance
of the observations is needed in order to compare the two treatment groups statistically. An
important assumption underlying this test is that the variances for each group are equal. The
variance is first calculated for each treatment group separately. The variance is more precisely
estimated from samples with a larger number of observations, and the pooled variance from
both treatment groups is the best estimate of the common variance. For example, suppose that
the following variances were observed in a comparative experiment:

Placebo group: N = 25 and the variance (S2) = 10
Drug group: N = 20 and the variance (S2) = 15

Although we assume that the true variance (the population variance) is the same for each group,
different variances are observed in the two groups. If the two groups truly have equal variance,
the difference in the observed variance is a consequence of random variation, due in part to
the particular samples which were chosen, and measurement errors. The pooling procedure, in
general, uses a weighted average, where the weights are equal to the degrees of freedom [see Eq.
(1.2)].

S2 pooled = S2
p = (24)(10) + (19)(15)

24 + 19
= 12.21.

The standard deviation is 3.49 (
√

12.21). The numbers 24 and 19 are the degrees of freedom for
the two groups. If variances are to be pooled from more than two groups, the procedure is the
same. Use a weighted average of the group variances, weighting the variance in each group by
its number of degrees of freedom.

I.2 COMPONENTS OF VARIANCE
Variability of observations usually arise from more than one source. Hence, the variability of
observations can often be expressed as the sum of independent sources of error that comprise the

∗ The word “treatment” in statistics does not necessarily mean treatment in the medical sense. Treatments are
conditions or combinations of conditions whose effects on an experimental outcome are to be assessed.
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total variation. This notion is presented in more detail under the topic of components of variance in
section 12.4.1. The variance of the average of assay results for three tablets obtained by selecting
a single tablet from each of three batches and assaying each tablet is as follows: [variance due to
mean potency differences among batches (i.e., the batch averages are not identical) + variance
due to tablet differences within batches† + variance due to drug assay]/3. Note that this is the
variance of a mean of three results (a total of three tablets have been assayed from the three
batches). This accounts for the number 3 in the denominator (S2 = S2/N).

Similarly, the variability of individual cholesterol changes, derived from a group of
patients, such as shown in Table 1.1, is the sum of the components that contribute to the
overall variability: (a) biological variation as reflected in inherent differences between patients,
(b) the day-to-day variability within patients (a single person’s cholesterol varies from day to
day), and (c) the analytical error, among other sources of error.

I.3 VARIANCE OF LINEAR COMBINATIONS OF INDEPENDENT VARIABLES
The variance of linear combinations of variables, where the variables are independent, can be
shown to be

Variance(mX1 ± nX2) = m2 variance(X1) + n2 variance(X2), (I.1)

where m and n are constants. This important result can be used to derive the variance of the
mean of n independent observations, for example. Consider m observations of the variable X.
We can represent the observations as X1, X2, X3,. . ., Xm. The mean is

∑
Xi

m
= X1 + X2 + X3 + · · · + Xm

m
.

The variance of each X is �2. Therefore, the variance of the mean is

�2
1 + �2

2 + �2
3 + · · · �2

m

m2 = m(�2)
m2 = �2

m

Equation (I.1) also demonstrates that the variance of the difference of two independent observa-
tions is the sum of their variances. An example noted by Mandel [1] that illustrates this concept
is the timing of a reaction. A stopwatch is started at the initiation of the reaction and stopped at
some end point. The time depends on both the initial and final readings. If errors in the times
are independent, the variance of t2 — t1, the difference between final and initial readings, is the
sum of the variances; that is, the error of the difference of the two readings is larger than the
error of either reading alone. Consider another example where a procedure calls for 10 mL of
solution to be removed from a beaker containing 30 mL. Only 10-mL pipettes are available. The
original 30 mL of solution is prepared by pipetting three 10-mL portions into a beaker. A total
of 10 mL is then removed. The variance of the volume remaining in the solution is calculated as
follows:

Variance(P1 + P2 + P3 − P4) = �2 P1 + �2 P2 + �2 P3 + �2 P4,

where Pi (i = 1, 2, 3, 4) represents the four pipetting steps. If the variance of a pipetting step is
0.01, the total variance of the remaining solution (with an expected volume of 20 mL) is (4)(0.01)
= 0.04.

REFERENCE
1. Mandel J. The Statistical Analysis of Experimental Data, New York: Interscience, 1964.

† Variation resulting from differences in tablet potency in a randomly chosen sample of tablets which is due to the
inherent variability of tablets (a result of the heterogeneity of the tableting process) is also known as “sampling
error.”
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Comparison of Slopes and Testing of Linearity:
Determination of Relative Potency

A common problem in bioassay, or when comparing the potency of compounds such as in
drug screening programs, is the assessment of the relative potency of the comparative drugs.
The problems in this analysis consist of (a) obtaining a function of dose and response that is
linear, (b) testing the lines for each compound for parallelism (i.e., equality of slopes), and (c)
determining the relative potency. We will discuss some elementary concepts for a comparison
of two anti-inflammatory compounds, a standard drug (St) and an experimental compound
(Ex). The experiment consists of measuring the reduction in volume after treatment of initially
inflamed paws of two animals at each of three doses for each compound. The results are
shown in Table II.1 and plotted in Figure II.1. The figure shows that the plot of log dose versus
response is approximately linear. A transformation of dose and/or response is often necessary
to achieve linearity in dose-response relationships. The response is usually considered to be
a linear function of log dose (see chap. 10). Transformations to obtain linearity are desirable
because straight-line relationships are more easily analyzed and interpreted than are more
complex functions.

How does one determine if the data are represented by a linear function such as a straight
line? A known theoretical relationship between X and Y may be sufficient to answer the question.
From a statistical point of view, replicate measurements at fixed values of X are needed to test
for linearity. Replicate measurements of Y at a fixed X represent S2

y only, a variance estimate
which is independent of the functional form of X and Y. If X and Y are truly related by a
straight-line function, deviations of the observed values of Y from the fitted line should be due
only to the variability of Y. If the relationship between X and Y is not a straight line, the variance
as measured by the deviations of Y from the fitted line will be increased due to “nonlinearity”
(see Fig. 7.4b). To test for linearity, we compare the variance due to deviations of Y from the
fitted line (deviations from regression) to the variation due only to Y (the pooled error from the
Y replicates, the within mean square). The “deviations” mean square is the mean square due to
deviations of the averages of Y (at each X) from the fitted line. The statistical test is an F test
obtained from an analysis of variance. The concept of this test is illustrated in Figure II.2.

To perform the test, a one-way ANOVA is first performed on the data (Table II.2), duplicate
determinations for three doses in the present example. The ANOVA is computed for each of
both the standard and experimental drugs. For example, the calculations for the ANOVA for
the standard drug are as follows:

Total SS = ∑
Y2 −

(∑
Y2
)

N
= 1.674 − 1.4406 = 0.2334

Between-doses SS = 0.492 + 1.002 + 1.452

2
− 1.4406 = 0.2307.

The within SS is the difference between the total SS and the between SS (see sec. 8.1).
The between-doses SS is the sum of two components: (a) the SS due to the slope (regression

SS) and (b) the SS due to deviations of the mean values (at each X) of Y from the fitted line. The deviation
SS has been discussed above and is shown in Figure II.2. The easiest way to compute the
deviation SS is to divide the between-doses SS into its components as follows. The “regression”
SS has 1 degree of freedom and is defined as

Regression SS = b2
∑

(X − X)2. (II.1)
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Table II.1 Results of the Experiment Comparing Potencies of Two

Compoundsa

Dose (mg)

Compound 5 15 45

Standard (St) 0.22 0.51 0.70

0.27 0.49 0.75

Experimental (Ex) 0.29 0.55 0.76

0.26 0.54 0.83

aData are relative reduction in paw volume from baseline value.

Figure II.1 Plot of dose response data for anti-inflammatory study.

Figure II.2 ANOVA test for linearity.
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Table II.2 One-way ANOVA for Data from Standard and Experimental Drugs

Standard drug Experimental drug

Source d.f. SS MS d.f. SS MS

Between doses 2 0.2307 0.1154 2 0.27053 0.1353

Within (doses) 3 0.0027 0.0009 3 0.00295 0.00098

Total 5 0.2334 5 0.27348

This SS, a result of the slope of the line, will be zero for a line of zero slope (b = 0), and will
be large for a line with a steep positive or negative slope. For the standard drug, the regression
sum of squares is calculated as follows (remember, we are using log dose = X):

b = 0.503

b2 = ∑
(X − X)2 = 0.5032(0.9106) = 0.2304.

The deviation SS (sometimes called “lack of fit” SS) is equal to the between-doses SS minus the
regression SS. Therefore, the deviation SS = 0.2307–0.2304 = 0.0003.

The results of this calculation for both standard and experimental drugs are shown in
Table II.3.

The test for linearity is an F test (deviation MS)/(within MS). For the standard drug, for
example, the F ratio is 0.0003/0.0009 = 0.33, with 1 and 3 d.f., which is not significant (within
MS = 0.0009, Table II.2). There is no evidence for lack of linearity for both lines.

Usually, in these assays, the deviation mean squares are pooled from both products and
compared to the pooled error (within MS), testing linearity of both lines simultaneously. The
pooled deviation MS is (0.000433)/2 with 2 degrees of freedom. The pooled within MS is
0.000942 with 6 degrees of freedom. The F test for linearity is 0.000217/ 0.00094 = 0.23 (2 and
6 d.f.), which is clearly not significant. The pooling assumes that the error for both drugs is the
same, and that both drugs show a linear response versus log dose.

Another assumption in the analysis of the parallel-line assay is that the two lines are
parallel. A test of parallelism is equivalent to a test of equality of slopes. The common slope,
calculated from all the data combined, is

b =
∑

XY − (
∑

X
∑

Y) /N∑
(X − X)2

= 0.5240.

The regression SS due to the common slope is

b2
∑

(X − X)2 = (0.5240)2(1.8212) = 0.500.

The regression SS of the common slope is subtracted from the pooled regression SS for the two
drugs to obtain the SS attributed to lack of parallelism of the lines. The pooled regression SS is

Table II.3 Regression and Deviations Sum of Squares for Standard and Experimental Drugsa

Standard drug Experimental drug

Source d.f. SS d.f. SS

Regression 1 0.2304 1 0.2704

Deviations 1 0.0003 1 0.000133

Between doses 2 0.2307 2 0.270533

aDegrees of freedom for “regression” in the simple linear regression case is always equal to 1. Degrees of freedom

for “deviations” is equal to (number of doses – 2).
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0.2304 + 0.2704 = 0.5008. The SS for “parallelism” is 0.0008 (0.5008 – 0.5000). The F test has 1
and 6 d.f., using the pooled error term:

F1,6 = 0.0008
0.00094

= 0.851.

Since the F value shows lack of significance at the 5% level, we conclude that the lines
appear to be parallel within “experimental error.”

The test for parallelism for two lines can also be done by using a t test with the same results
as the F test. (For the case of two lines, the t is the square root of the F value.) For the t test, we
compare the two slopes, using the standard deviation of the difference of the two slopes in the
denominator of the t ratio. The slopes are 0.5030 and 0.5449 for the standard and experimental
drugs, respectively. The variances in both groups are assumed to be equal.

t = |b1 − b2|√
S2

[
1/
∑
1

(X − X)2 + 1
∑
2

(X − X)2

]

t = |0.5030 − 0.5449|√
0.00094

[
1/
∑
1

(X − X)2 + 1
∑
2

(X − X)2

] ,

(II.2)

where
∑

i (X − X)2 represents the sum of squares of the X’s for the respective groups. [Note that
the variance of a slope equals S2/

∑
(X − X)2.]

Having satisfied ourselves that the assumptions of the assay have been met (i.e., particu-
larly, linearity and parallelism), we can now estimate the relative potency. The relative potency
is the ratio of the comparative drugs that will give the same response. If the lines are parallel,
we can choose any response (Y) to estimate the relative potency; the answer will be the same
(Fig. II.3).

One can show that the log of the relative potency (log R) is equal to

log R = log
[

experimental
standard

]
= ae − ad

b
,

where ae and ad are the intercepts for the experimental drug and the standard drug, respectively;
b is the common slope (0.524, in our example); and (experimental/standard) is the inverse ratio
of doses that gives equal response. For the data of Table II.1,

ad = −0.1262 ae = −0.0779

log R = −0.0779 − (−0.1262)
0.5240

= 0.092.

Figure II.3 Relative potency estimation using

parallel dose–response lines; doses equivalent to

log X1 and log X2 give the same response for

products e and d, respectively.
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The relative potency is 1.24; that is, the experimental drug is 1.24 times as potent as the standard.
This means that 124 mg of the standard is needed to give the same response as 100 mg of the
experimental drug, for example.

Confidence limits can be put on the relative potency based on Fieller’s theorem (similar
to confidence limits for X at a given Y; see chap. 7). The procedure is complicated, and the
interested reader is referred to the book by Finney, Statistical Methods in Biological Assay [1], for
details of the computations.

REFERENCE
1. Finney DJ. Statistical Methods in Biological Assay. New York: Hafner, 1964.
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Multiple Regression

Multiple regression is a topic of utmost importance in statistics, analysis of variance being a
special case of the more general regression techniques. Multiple regression is an extension of
linear regression, in which we wish to relate a response, Y (dependent variable), to more than
one independent variable, Xi.

Linear regression: Y = A+ BY
Multiple regression: Y = B0 + B1 X1 + B2 X2 + ...

The independent variables, X1, X2, and so on, generally represent factors that we believe influ-
ence the response. Usually, the purpose of multiple regression analysis is to quantitate the
relationship between Y and the Xi’s by means of an equation, the multiple regression equation.
For example, tablet dissolution may be measured as a function of several variables, such as
level of disintegrant, lubricant, and drug. In this case, a multiple regression equation would be
useful to predict dissolution, at given levels of the independent variables.

Y = B0 + B1 X1 + B2 X2 + B3 X3, (III.1)

where Y is the some measure of dissolution, Xi is ith independent variable, and Bi the regression
coefficient for the ith independent variable.

Here, X1, X2, and X3 refer to the level of disintegrant, lubricant, and drug. B1, B2, and B3
are the coefficients relating the Xi to the response. These coefficients correspond to the slope (B)
in linear regression. B0 is the intercept. This equation cannot be simply depicted, graphically, as
in the linear regression case. With two independent variables (X1 and X2), the response surface
is a plane (Fig. III.1). With more than two independent variables, it is not possible to graph the
response in two dimensions.

Data suitable for multiple regression analysis can be obtained in different ways. Opti-
mal efficiency and interpretation are obtained by using data from “designed” experiments. In
designed experiments, the independent variables are carefully chosen and deliberately con-
trolled at preassigned levels. For example, in the dissolution experiment noted above, we may
be able to fix the levels of disintegrant, lubricant, and drug according to a factorial design (as
described in chap. 9). Table III.1 illustrates a 23 factorial design. These data correspond to the
eight combinations in the 23 design that can be used to construct a multiple regression equation.
The procedure for fitting data from a factorial design to a regression equation is given in section
16.2.

The form of the equation and the number of independent variables necessary to define the
response adequately depend on a knowledge of the system being investigated. In the example
above, there are three independent variables (factors), but interactions of factors may also be
needed to define the response. In multiple regression equations, interactions may be represented
by “cross-product” terms, such as (X1X2) or (X1X2X3). We usually include only those terms in
the equation that probably have a meaningful effect on the response. Suppose, in our example,
that the three factors and the lubricant X drug interaction are related to the response, dissolution.
We would include terms for X1, X2, X3, and X2X3 in the model.

Y = B0 + B1 X1 + B2 X2 + B3 X3 + B23 X2 X3.
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Figure III.1 Representation of the multiple regression

equation response, Y = B0 + B1×1 + B2X2, as a

plane.

Data for multiple regression fits are often obtained from undesigned experiments where
the levels of the independent variables are not controlled. This less desirable alternative is often
a consequence of convenience or cost considerations. Sometimes, the circumstances are such
that we have no choice; we get the data in any way that we can. For example, suppose that
tableting pressure, temperature, and humidity all affect some particular quality of a finished
tablet. Tablets may be conveniently selected for inspection during the manufacturing process, at
which time measurements of the pressure, temperature, and humidity are made. After collecting
a sufficient quantity of data, these variables may be related to tablet quality using multiple
regression techniques.

Y = B0 + B1(tablet press pressure) + B2(temperature) + B3(humidity).

In this example, we have no control of the variables; their values are a matter of “hap-
penstance.” We take the values as they come. A significant disadvantage of making conclusions
based on data of this sort is that a correlation exists among the independent variables, which
can be eliminated (or controlled) in a designed experiment. The result of this correlation is that
the effects of the variables cannot be clearly separated. What we attribute to one variable, tem-
perature for example, has a component due to humidity and pressure as well. With data derived
from a designed experiment, such as the factorial design noted above, the regression equation
can be constructed so that the effects of different factors and interactions are represented by the
coefficients (Bi) and are independent of other factors.

The computations to determine the coefficients in multiple regression analysis are very
tedious, and without the use of computers, analysis of undesigned experiments of reasonable
size are virtually impossible. Manipulations of large matrices are often performed in the solu-
tion of these problems. Regression equations for orthogonal (designed) factors are much easier
to compute. However, with easy access to computers, hand analysis should be done only as
a learning tool to gain insight into the analytical process. We will not discuss computational
methods in the general multiple regression model. However, because of the importance of mul-
tiple regression in optimization procedures discussed in chapter 16, some further introductory
concepts will be presented here.

Table III.1 Factorial Design to Be Used as the Source for a Multiple Regression Equation

Disintegrant low level Disintegrant high level

Drug Drug

Low level High level Low level High level

Lubricant Low level

High level
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The technique of fitting a linear model to data consisting of N observations of a response,
Y, and one or more independent variables, Xi, is applicable when the number of observations
is equal to or greater than the number of parameters to be estimated (the coefficients are the
parameters in multiple regression). In simple linear regression, we estimate two parameters in
the usual case, the intercept and the slope. Given two X, Y points, the line (slope and intercept)
is unambigously fixed. With more than two points, the best straight line is considered to be
the line that minimizes the sum of the squared deviations of the observed values from the
fitted least squares line. Multiple regression is just an extension of this procedure. If there are
N parameters (coefficients) in the regression model, N observations will result in an exact fit to
the model. For example, an equation with six coefficients will be exactly fit to six appropriate
experimental values (with certain mathematical restrictions). With more than N observations,
the coefficients, Bi, are calculated to minimize the squared deviations of the observations from
the least squares regression fit (the same concept as in simple linear regression).

The relationship of the independent variables and the dependent variable in the multiple
regression model must be linear in the coefficients, Bi, in order to obtain the regression equation
by the usual procedures [1]. The general form of the regression equation is given by Eq. (III.1).

Y = B0 + B1 X1 + B2 X2 + B3 X3. (III.1)

The Xi’s can be “nonlinear” functions such as X2, log X, or 10x. However, the coefficients,
Bi, cannot be in this nonlinear form. Thus

Y = B1 X1 + B2 X2 + B3 X2
1 + B4 X1 X2 is linear in Bi

Y = B0 + B1 X1 + XB2
1 is not linear in Bi .

The basic problems in multiple regression analysis are concerned with estimation of the
error and the coefficients (parameters) of the regression model. Statistical tests can then be
performed for the significance of the coefficient estimates.

When many independent variables are candidates to be entered into a regression equation,
one may wish to use only those variables that contribute “significantly” to the relationship
with the dependent variable. In designed experiments (e. g., factorial designs) the significance
of each factor can be determined using analysis of variance, or, equivalently, by testing the
regression coefficients for significance. In an undesigned experiment, where the data come from
“uncontrolled” combinations of the variables, the independent variables will inevitably be more
or less correlated. Thus, if dissolution is to be related to tablet weight, drug content, and tablet
hardness, based on production records, we are obliged to fit an equation with the available
data, and some correlation will exist between drug content and weight, for example. This
lack of independence presents special problems when deciding which variables are relevant,
contributing significantly to the regression relationship. If two of the X variables, Xi and Xj, are
highly correlated, inclusion of both in the regression equation will be redundant. Therefore, there
may be some X variables that appear to contribute to the regression but which are correlated to
other X variables. We must then make a choice regarding their inclusion in the final regression
equation. Draper and Smith note: “There is no unique statistical procedure for doing this,” and
some degree of arbitrariness must be used in making choices [1]. Two methods used to help
make such decisions are made possible through the use of computers. One method involves
regression fits using all possible combinations of the independent variables (2k regressions,
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where k is the number of independent variables). For two independent variables, X1 and X2,
the four possible regressions are

1. Y = B0
2. Y = B0 + B1X1
3. Y = B0 + B2X2
4. Y = B0 + B1X1 + B2X2

The best equation may then be selected based on the fit and the number of variables
needed for the fit. The multiple correlation coefficient, R2, is a measure of the fit. R2 is the sum
of squares due to regression divided by the sum of squares without regression. For example,
if R2 is 0.85 when three variables are used to fit the regression equation, and R2 is equal to
0.87 when six variables are used, we probably would be satisfied using the equation with three
variables, other things being equal. The inclusion of more variables in the regression equation
cannot result in a decrease of R2.

Another method of selecting variables to be included in the regression equation is the
popular stepwise procedure, which is considered a better method than the “all possible regres-
sions” approach. Independent variables (Xi) are entered into the equation, one at a time, starting
with the independent variable that is most highly correlated to the dependent variable, Y. As
each new variable is considered, its inclusion is based on a preassigned statistical test related
to its correlation with the dependent variable, as well as its correlation to those independent
variables already included in the regression equation.

Probably the biggest pitfall in multiple regression techniques lies in the interpretation
of the coefficients. Draper and Smith discuss this problem, and the answer is by no means
simple [1].

Interpretation of the meaning of the coefficients in multiple regression equations is much
more clear in a designed (orthogonal) experiment. As we have noted previously, in a factorial
experiment, the levels of the factors can be controlled, so that the effects of the factors can
be independently evaluated. Techniques to describe and optimize pharmaceutical systems by
fitting experimental data to regression models using designed experiments are discussed in
chapter 16.

An application of regression analysis to physical properties of finished tablets, with com-
pression pressure and various tablet components as independent variables can be found in
Ref. [2]. In this paper, the authors considered five independent variables for inclusion in the
regression equation. They suggested the following equation as a predictor of dissolution:

Y = 69.91 − 37.3X5 − 17.48X2 + 4.24X3, (III.2)

where Y is the dissolution, X5 the magnesium stearate level, X2 the compression pressure, and
X3 the starch disintegrant.

Magnesium stearate and compression pressure decrease dissolution (negative coefficient).
Starch increases dissolution. The authors discuss possible mechanisms for these effects.

Multiple regression equations that relate variables such as those described above are
empirical relationships. We do not encounter real systems that can be described so simply,
theoretically. The multiple regression equation is a “model” of a real system that must be
recognized as being only an approximation of reality. How good an approximation the equation
is can be evaluated only by seeing how the equation performs as a predictor of the response in
new situations, where the levels of the independent variables are changed. Also, particularly
in undesigned systems, placing physical interpretation on the signs and magnitude of the
coefficients can be hazardous. As noted previously, the coefficients can give insights into the
mechanisms of a process, but great caution is needed before making definitive judgments on
this basis. Problems similar to those discussed for prediction in linear regression apply here
as well. Error (variability) in the estimation of the coefficients, extrapolating to areas outside
the levels of the variables in the experiment, and the choice of an incorrect model all adversely
affect the reliability of the predicted value.

In addition to its use as a predictive equation, the regression equation may also be used
to help obtain combinations of ingredients that will give a desired (e. g., optimum) response.
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This process is discussed in chapters 9 and 16. For those readers who are interested in a more
advanced, in-depth discussion of regression, the excellent book by Draper and Smith, Applied
Regression Analysis, is recommended [1].

REFERENCES
1. Draper NR, Smith H. Applied Regression Analysis, 2 nd ed. New York: Wiley, 1981.
2. Bohidar NR, Restaino FA., Schwartz JB. Selecting Key Pharmaceutical Formulation Factors by Regres-

sion Analysis. Drug Dev Ind Pharm 1979; 5: 175.
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Tables

Table IV.1 Random Numbers

44 17 50 92 09 79 27 71 05 07 76 21 95 93 04

83 50 39 13 89 83 45 72 40 94 78 62 93 55 62

28 79 77 81 43 04 54 23 14 80 49 98 32 70 27

55 29 62 11 00 62 65 76 31 83 08 22 02 35 53

88 93 30 81 50 24 43 07 88 45 96 24 60 78 89

46 00 76 13 83 31 98 15 30 74 17 76 73 31 40

99 05 78 83 75 79 52 47 39 12 70 33 42 30 45

24 88 59 45 16 73 64 63 03 16 04 43 81 66 97

14 90 27 33 43 46 37 68 94 35 12 72 70 43 54

50 27 98 87 19 20 15 73 00 94 52 85 80 22 26

55 47 03 77 04 44 22 78 84 26 04 33 46 09 52

59 29 97 68 60 71 91 38 67 54 13 58 18 24 76

48 55 90 65 72 96 57 69 36 10 96 46 92 42 45

66 37 32 20 30 77 84 57 03 29 10 45 65 04 26

68 49 69 10 82 53 75 91 93 30 34 25 20 57 27

83 62 64 11 12 67 19 00 71 74 60 47 21 92 86

06 90 91 47 68 25 49 33 74 02 16 29 35 65 16

33 23 97 78 26 78 26 45 40 19 61 29 53 73 09

47 15 40 15 02 82 06 93 20 01 67 38 02 37 90

79 65 14 62 16 34 96 02 75 82 46 75 43 89 36
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Table IV.2 Cumulative Normal Distribution:

Cumulative Area Under the Normal Distribution

(Less Than or Equal to Z)

Z Area Z Area Z Area Z Area

−3.25 0.0006 −1.50 0.0668 0.25 0.5987 2.00 0.9772

−3.20 0.0007 −1.45 0.0735 0.30 0.6179 2.05 0.9798

−3.15 0.0008 −1.40 0.0808 0.35 0.6368 2.10 0.9821

−3.10 0.0010 −1.35 0.0885 0.40 0.6554 2.15 0.9842

−3.05 0.0011 −1.30 0.0968 0.45 0.6736 2.20 0.9861

−3.00 0.0013 −1.25 0.1056 0.50 0.6915 2.25 0.9878

−2.95 0.0016 −1.20 0.1151 0.55 0.7088 2.30 0.9893

−2.90 0.0019 −1.15 0.1251 0.60 0.7257 2.35 0.9906

−2.85 0.0022 −1.10 0.1357 0.65 0.7422 2.40 0.9918

−2.80 0.0026 −1.05 0.1469 0.70 0.7580 2.45 0.9929

−2.75 0.0030 −1.00 0.1587 0.75 0.7734 2.50 0.9938

−2.70 0.0035 −0.95 0.1711 0.80 0.7881 2.55 0.9946

−2.65 0.0040 −0.90 0.1841 0.85 0.8023 2.60 0.9953

−2.60 0.0047 −0.85 0.1977 0.90 0.8159 2.65 0.9960

−2.55 0.0054 −0.80 0.2119 0.95 0.8289 2.70 0.9965

−2.50 0.0062 −0.75 0.2266 1.00 0.8413 2.75 0.9970

−2.45 0.0071 −0.70 0.2420 1.05 0.8531 2.80 0.9974

−2.40 0.0082 −0.65 0.2578 1.10 0.8643 2.85 0.9978

−2.35 0.0094 −0.60 0.2743 1.15 0.8749 2.90 0.9981

−2.30 0.0107 −0.55 0.2912 1.20 0.8849 2.95 0.9984

−2.25 0.0122 −0.50 0.3085 1.25 0.8944 3.00 0.9987

−2.20 0.0139 −0.45 0.3264 1.30 0.9032 3.25 0.9994

−2.15 0.0158 −0.40 0.3446 1.35 0.9115

−2.10 0.0179 −0.35 0.3632 1.40 0.9192

−2.05 0.0202 −0.30 0.3821 1.45 0.9265

Z Area

1.282 0.90

1.645 0.95

−2.00 0.0228 −0.25 0.4013 1.50 0.9332 1.960 0.975

−1.95 0.0256 −0.20 0.4207 1.55 0.9394 2.326 0.99

−1.90 0.0287 −0.15 0.4404 1.60 0.9452 2.576 0.995

−1.85 0.0322 −0.10 0.4602 1.65 0.9505 3.090 0.999

−1.80 0.0359 −0.05 0.4801 1.70 0.9554

−1.75 0.0401 0 0.5000 1.75 0.9599

−1.70 0.0446 0.05 0.5199 1.80 0.9641

−1.65 0.0495 0.10 0.5398 1.85 0.9678

−1.60 0.0548 0.15 0.5596 1.90 0.9713

−1.55 0.0606 0.20 0.5793 1.95 0.9744
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Table IV.3 Individual Terms of the Binomial Distribution for N = 2 to 10 and P = 0.2, 0.5, and 0.7a

P = 0.2

N

X 2 3 4 5 6 7 8 9 10

0 0.64 0.512 0.410 0.328 0.262 0.210 0.168 0.134 0.107

1 0.32 0.384 0.410 0.410 0.393 0.367 0.336 0.302 0.268

2 0.04 0.096 0.154 0.205 0.246 0.275 0.294 0.302 0.302

3 0.008 0.026 0.051 0.082 0.115 0.147 0.176 0.201

4 0.002 0.006 0.015 0.029 0.046 0.066 0.088

5 ∗ 0.002 0.004 0.009 0.017 0.026

6 ∗ ∗ 0.001 0.003 0.006

7 ∗ ∗ ∗ 0.001

8 ∗ ∗ ∗
9 ∗ ∗

10 ∗
P = 0.5

N

X 2 3 4 5 6 7 8 9 10

0 0.250 0.125 0.0625 0.031 0.016 0.008 0.004 0.002 0.001

1 0.500 0.375 0.250 0.156 0.094 0.055 0.031 0.018 0.010

2 0.250 0.375 0.375 0.313 0.234 0.164 0.109 0.070 0.044

3 0.125 0.250 0.313 0.313 0.273 0.219 0.164 0.117

4 0.0625 0.156 0.234 0.273 0.273 0.246 0.205

5 0.031 0.094 0.164 0.219 0.246 0.246

6 0.016 0.055 0.109 0.164 0.205

7 0.008 0.031 0.070 0.117

8 0.004 0.018 0.044

9 0.002 0.010

10 0.001

P = 0.7

N

X 2 3 4 5 6 7 8 9 10

0 0.090 0.027 0.008 0.002 0.001 ∗ ∗ ∗ ∗
1 0.420 0.189 0.076 0.028 0.010 0.004 0.001 ∗ ∗
2 0.490 0.441 0.265 0.132 0.060 0.025 0.010 0.004 0.001

3 0.343 0.412 0.309 0.185 0.097 0.047 0.021 0.009

4 0.240 0.360 0.324 0.227 0.136 0.074 0.037

5 0.168 0.303 0.318 0.254 0.172 0.103

6 0.118 0.247 0.296 0.267 0.200

7 0.082 0.198 0.267 0.267

8 0.058 0.156 0.233

9 0.040 0.121

10 0.028

∗P < 0.0005.
aThese tables may be used for P = 0.8 and P = 0.3 as follows. Use the table with P = 0.2 to obtain terms for P = 0.8; and use

the table with P = 0.7 to obtain terms for P = 0.3. For example, for the probability of 5 (x ′ = 5) successes in 8 trials (N = 8) for

P = 0.8, look in the table for P = 0.2, N = 8, and X = N − X ′ = 8 − 5 = 3. This is equal to 0.147.
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Table IV.4 t Distributions

Two-sided: 40% 20% 10% 5% 1%
One-sided: 20% 10% 5% 2.50% 0.50%
d.f.: t0.80 t0.90 t0.95 t0.975 t0.995

1 1.376382 3.077684 6.313752 12.7062 63.65674

2 1.06066 1.885618 2.919986 4.302653 9.924843

3 0.978472 1.637744 2.353363 3.182446 5.840909

4 0.940965 1.533206 2.131847 2.776445 4.604095

5 0.919544 1.475884 2.015048 2.570582 4.032143

6 0.905703 1.439756 1.94318 2.446912 3.707428

7 0.89603 1.414924 1.894579 2.364624 3.499483

8 0.88889 1.396815 1.859548 2.306004 3.355387

9 0.883404 1.383029 1.833113 2.262157 3.249836

10 0.879058 1.372184 1.812461 2.228139 3.169273

11 0.87553 1.36343 1.795885 2.200985 3.105807

12 0.872609 1.356217 1.782288 2.178813 3.05454

13 0.870152 1.350171 1.770933 2.160369 3.012276

14 0.868055 1.34503 1.76131 2.144787 2.976843

15 0.866245 1.340606 1.75305 2.13145 2.946713

16 0.864667 1.336757 1.745884 2.119905 2.920782

17 0.863279 1.333379 1.739607 2.109816 2.898231

18 0.862049 1.330391 1.734064 2.100922 2.87844

19 0.860951 1.327728 1.729133 2.093024 2.860935

20 0.859964 1.325341 1.724718 2.085963 2.84534

21 0.859074 1.323188 1.720743 2.079614 2.83136

22 0.858266 1.321237 1.717144 2.073873 2.818756

23 0.85753 1.31946 1.713872 2.068658 2.807336

24 0.856855 1.317836 1.710882 2.063899 2.796939

25 0.856236 1.316345 1.708141 2.059539 2.787436

26 0.855665 1.314972 1.705618 2.055529 2.778715

27 0.855137 1.313703 1.703288 2.05183 2.770683

28 0.854647 1.312527 1.701131 2.048407 2.763262

29 0.854192 1.311434 1.699127 2.04523 2.756386

30 0.853767 1.310415 1.697261 2.042272 2.749996

31 0.85337 1.309464 1.695519 2.039513 2.744042

32 0.852998 1.308573 1.693889 2.036933 2.738481

33 0.852649 1.307737 1.69236 2.034515 2.733277

34 0.852321 1.306952 1.690924 2.032244 2.728394

35 0.852012 1.306212 1.689572 2.030108 2.723806

36 0.85172 1.305514 1.688298 2.028094 2.719485

37 0.851444 1.304854 1.687094 2.026192 2.715409

38 0.851183 1.30423 1.685954 2.024394 2.711558

39 0.850935 1.303639 1.684875 2.022691 2.707913

40 0.8507 1.303077 1.683851 2.021075 2.704459

41 0.850476 1.302543 1.682878 2.019541 2.701181

42 0.850263 1.302035 1.681952 2.018082 2.698066

43 0.85006 1.301552 1.681071 2.016692 2.695102

44 0.849867 1.30109 1.68023 2.015368 2.692278

45 0.849682 1.300649 1.679427 2.014103 2.689585

46 0.849505 1.300228 1.67866 2.012896 2.687013

47 0.849336 1.299825 1.677927 2.01174 2.684556

48 0.849174 1.299439 1.677224 2.010635 2.682204

49 0.849018 1.299069 1.676551 2.009575 2.679952

50 0.848869 1.298714 1.675905 2.008559 2.677793

75 0.84644 1.292941 1.665425 1.992102 2.642983

100 0.84523 1.290075 1.660234 1.983971 2.625891

500 0.842341 1.283247 1.647907 1.96472 2.585698

infinity 0.841621 1.281552 1.644855 1.959966 2.575834



TABLES 471

Table IV.5 Chi-Square Distributions

ProbabilityDegrees
of

Freedom 0.01 0.025 0.05 0.1 0.2 0.8 0.9 0.95 0.99
1 6.634897 5.023886 3.841459 2.705544 1.642375 0.064185 0.015791 0.003932 0.000157

2 9.21034 7.377759 5.991465 4.60517 3.218876 0.446287 0.210721 0.102587 0.020101

3 11.34487 9.348404 7.814728 6.251388 4.641628 1.005174 0.584374 0.351846 0.114832

4 13.2767 11.14329 9.487729 7.77944 5.988617 1.648777 1.063623 0.710723 0.297109

5 15.08627 12.8325 11.0705 9.236357 7.289276 2.342534 1.610308 1.145476 0.554298

6 16.81189 14.44938 12.59159 10.64464 8.55806 3.070088 2.204131 1.635383 0.87209

7 18.47531 16.01276 14.06714 12.01704 9.80325 3.822322 2.833107 2.16735 1.239042

8 20.09024 17.53455 15.50731 13.36157 11.03009 4.593574 3.489539 2.732637 1.646497

9 21.66599 19.02277 16.91898 14.68366 12.24215 5.380053 4.168159 3.325113 2.087901

10 23.20925 20.48318 18.30704 15.98718 13.44196 6.179079 4.865182 3.940299 2.558212

11 24.72497 21.92005 19.67514 17.27501 14.63142 6.988674 5.577785 4.574813 3.053484

12 26.21697 23.33666 21.02607 18.54935 15.81199 7.807328 6.303796 5.226029 3.570569

13 27.68825 24.7356 22.36203 19.81193 16.9848 8.633861 7.041505 5.891864 4.106915

14 29.14124 26.11895 23.68479 21.06414 18.15077 9.467328 7.789534 6.570631 4.660425

15 30.57791 27.48839 24.99579 22.30713 19.31066 10.30696 8.546756 7.260944 5.229349

16 31.99993 28.84535 26.29623 23.54183 20.46508 11.15212 9.312236 7.961646 5.812213

17 33.40866 30.19101 27.58711 24.76904 21.61456 12.00227 10.08519 8.67176 6.40776

18 34.80531 31.52638 28.8693 25.98942 22.75955 12.85695 10.86494 9.390455 7.014911

19 36.19087 32.85233 30.14353 27.20357 23.90042 13.71579 11.65091 10.11701 7.63273

20 37.56623 34.16961 31.41043 28.41198 25.03751 14.57844 12.44261 10.85081 8.260398

21 38.93217 35.47888 32.67057 29.61509 26.1711 15.44461 13.2396 11.59131 8.897198

22 40.28936 36.78071 33.92444 30.81328 27.30145 16.31404 14.04149 12.33801 9.542492

23 41.6384 38.07563 35.17246 32.0069 28.42879 17.18651 14.84796 13.09051 10.19572

24 42.97982 39.36408 36.41503 33.19624 29.55332 18.0618 15.65868 13.84843 10.85636

25 44.3141 40.64647 37.65248 34.38159 30.6752 18.93975 16.47341 14.61141 11.52398

26 45.64168 41.92317 38.88514 35.56317 31.79461 19.82019 17.29189 15.37916 12.19815

27 46.96294 43.19451 40.11327 36.74122 32.91169 20.70298 18.1139 16.1514 12.8785

28 48.27824 44.46079 41.33714 37.91592 34.02657 21.58797 18.93924 16.92788 13.56471

29 49.58788 45.72229 42.55697 39.08747 35.13936 22.47505 19.76774 17.70837 14.25645

30 50.89218 46.97924 43.77297 40.25602 36.25019 23.36412 20.59923 18.49266 14.95346

31 52.19139 48.23189 44.98534 41.42174 37.35914 24.25506 21.43356 19.28057 15.65546

32 53.48577 49.48044 46.19426 42.58475 38.46631 25.14779 22.27059 20.07191 16.36222

33 54.77554 50.72508 47.39988 43.74518 39.57179 26.04222 23.1102 20.86653 17.07351

34 56.06091 51.966 48.60237 44.90316 40.67565 26.93827 23.95225 21.66428 17.78915

35 57.34207 53.20335 49.80185 46.05879 41.77796 27.83587 24.79666 22.46502 18.50893

36 58.61921 54.43729 50.99846 47.21217 42.8788 28.73496 25.6433 23.26861 19.23268

37 59.8925 55.66797 52.19232 48.36341 43.97822 29.63547 26.49209 24.07494 19.96023

38 61.16209 56.89552 53.38354 49.51258 45.07628 30.53734 27.34295 24.8839 20.69144

39 62.42812 58.12006 54.57223 50.65977 46.17303 31.44052 28.19579 25.69539 21.42616

40 63.69074 59.34171 55.75848 51.80506 47.26854 32.34495 29.05052 26.5093 22.16426

41 64.95007 60.56057 56.94239 52.94851 48.36283 33.2506 29.90709 27.32555 22.90561

42 66.20624 61.77676 58.12404 54.0902 49.45597 34.15741 30.76542 28.14405 23.65009

43 67.45935 62.99036 59.30351 55.23019 50.54799 35.06534 31.62545 28.96472 24.3976

44 68.70951 64.20146 60.48089 56.36854 51.63892 35.97435 32.48713 29.78748 25.14803

45 187.5299 180.2291 174.101 167.2074 159.1036 130.5082 123.6489 118.1714 108.3451

46 71.2014 66.61653 62.82962 58.64054 53.8177 37.79548 34.21517 31.439 26.65724

47 72.44331 67.82065 64.00111 59.77429 54.90561 38.70752 35.08143 32.26762 27.41585

48 73.68264 69.02259 65.17077 60.90661 55.99258 39.62051 35.94913 33.09808 28.17701

49 74.91947 70.22241 66.33865 62.03754 57.07863 40.53442 36.81822 33.93031 28.94065

50 76.15389 71.4202 67.50481 63.16712 58.1638 41.44921 37.68865 34.76425 29.70668

51 77.38596 72.61599 68.66929 64.2954 59.24811 77.38596 38.56038 35.59986 30.47505

52 78.61576 73.80986 69.83216 65.42241 60.33158 78.61576 39.43339 36.43709 31.24567

53 79.84334 75.00186 70.99345 66.5482 61.41425 79.84334 40.30762 37.27589 32.01849

54 81.06877 76.19205 72.15322 67.67279 62.49613 81.06877 41.18304 38.11622 32.79345

55 82.29212 77.38047 73.31149 68.79621 63.57724 82.29212 42.05962 38.95803 33.57048

56 83.51343 78.56716 74.46832 69.91851 64.65762 83.51343 42.93734 39.80128 34.34952

57 84.73277 79.75219 75.62375 71.03971 65.73727 84.73277 43.81615 40.64593 35.13053

58 85.95018 80.93559 76.7778 72.15984 66.81621 85.95018 44.69603 41.49195 35.91346

59 87.16571 82.11741 77.93052 73.27893 67.89448 87.16571 45.57695 42.33931 36.69825

60 88.37942 83.29768 79.08194 74.39701 68.97207 88.37942 46.45889 43.18796 37.48485

80 112.3288 106.6286 101.8795 96.5782 90.40535 112.3288 64.27785 60.39148 53.54008

100 135.8067 129.5612 124.3421 118.498 111.6667 135.8067 82.35814 77.92947 70.0649

500 576.4928 563.8515 553.1268 540.9303 526.4014 576.4928 459.9261 449.1468 429.3875
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Table IV.6B Upper 1% Values of the F Distribution

Degrees of Freedom in numerator
Degrees of
freedom in
denominator 1 2 3 4 5 6 7 8 9 10 11 12 13
1 4052.181 4999.500 5403.352 5624.583 5763.650 5858.986 6125.865 6125.865 6022.473 6055.847 6083.317 6106.321 6125.865

2 98.503 99.000 99.166 99.249 99.299 99.333 99.422 99.374 99.388 99.399 99.408 99.416 99.422

3 34.116 30.817 29.457 28.710 28.237 27.911 26.983 27.489 27.345 27.229 27.133 27.052 26.983

4 21.198 18.000 16.694 15.977 15.522 15.207 14.307 14.799 14.659 14.546 14.452 14.374 14.307

5 16.258 13.274 12.060 11.392 10.967 10.672 9.825 10.289 10.158 10.051 9.963 9.888 9.825

6 13.745 10.925 9.780 9.148 8.746 8.466 7.657 8.102 7.976 7.874 7.790 7.718 7.657

7 12.246 9.547 8.451 7.847 7.460 7.191 6.410 6.840 6.719 6.620 6.538 6.469 6.410

8 11.259 11.259 7.591 7.006 6.632 6.371 5.609 6.029 5.911 5.814 5.734 5.667 5.609

9 10.561 8.022 6.992 6.422 6.057 5.802 5.055 5.467 5.351 5.257 5.178 5.111 5.055

10 10.044 7.559 6.552 5.994 5.636 5.386 4.650 5.057 4.942 4.849 4.772 4.706 4.650

11 9.646 7.206 6.217 5.668 5.316 5.069 4.342 4.744 4.632 4.539 4.462 4.397 4.342

12 9.330 6.927 5.953 5.412 5.064 4.821 4.100 4.499 4.388 4.296 4.220 4.155 4.100

13 9.074 6.701 5.739 5.205 4.862 4.620 3.905 4.302 4.191 4.100 4.025 3.960 3.905

14 8.862 6.515 5.564 5.035 4.695 4.456 3.745 4.140 4.030 3.939 3.864 3.800 3.745

15 8.683 6.359 5.417 4.893 4.556 4.318 3.612 4.004 3.895 3.805 3.730 3.666 3.612

16 8.531 6.226 5.292 4.773 4.437 4.202 3.498 3.890 3.780 3.691 3.616 3.553 3.498

17 8.400 6.112 5.185 4.669 4.336 4.102 3.401 3.791 3.682 3.593 3.519 3.455 3.401

18 8.285 6.013 5.092 4.579 4.248 4.015 3.316 3.705 3.597 3.508 3.434 3.371 3.316

19 8.185 5.926 5.010 4.500 4.171 3.939 3.242 3.631 3.523 3.434 3.360 3.297 3.242

20 8.096 5.849 4.938 4.431 4.103 3.871 3.177 3.564 3.457 3.368 3.294 3.231 3.177

21 8.017 5.780 4.874 4.369 4.042 3.812 3.119 3.506 3.398 3.310 3.236 3.173 3.119

22 7.945 5.719 4.817 4.313 3.988 3.758 3.067 3.453 3.346 3.258 3.184 3.121 3.067

23 7.881 5.664 4.765 4.264 3.939 3.710 3.020 3.406 3.299 3.211 3.137 3.074 3.020

24 7.823 5.614 4.718 4.218 3.895 3.667 2.977 3.363 3.256 3.168 3.094 3.032 2.977

25 7.770 5.568 4.675 4.177 3.855 3.627 2.939 3.324 3.217 3.129 3.056 2.993 2.939

26 7.721 5.526 4.637 4.140 3.818 3.591 2.904 3.288 3.182 3.094 3.021 2.958 2.904

27 7.677 5.488 4.601 4.106 3.785 3.558 2.871 3.256 3.149 3.062 2.988 2.926 2.871

28 7.636 5.453 4.568 4.074 3.754 3.528 2.842 3.226 3.120 3.032 2.959 2.896 2.842

29 7.598 5.420 4.538 4.045 3.725 3.499 2.814 3.198 3.092 3.005 2.931 2.868 2.814

30 7.562 5.390 4.510 4.018 3.699 3.473 2.789 3.173 3.067 2.979 2.906 2.843 2.789

31 7.530 5.362 4.484 3.993 3.675 3.449 2.765 3.149 3.043 2.955 2.882 2.820 2.765

32 7.499 5.336 4.459 3.969 3.652 3.427 2.744 3.127 3.021 2.934 2.860 2.798 2.744

33 7.471 5.312 4.437 3.948 3.630 3.406 2.723 3.106 3.000 2.913 2.840 2.777 2.723

34 7.444 5.289 4.416 3.927 3.611 3.386 2.704 3.087 2.981 2.894 2.821 2.758 2.704

35 7.419 5.268 4.396 3.908 3.592 3.368 2.686 3.069 2.963 2.876 2.803 2.740 2.686

36 7.396 5.248 4.377 3.890 3.574 3.351 2.669 3.052 2.946 2.859 2.786 2.723 2.669

37 7.373 5.229 4.360 3.873 3.558 3.334 2.653 3.036 2.930 2.843 2.770 2.707 2.653

38 7.353 5.211 4.343 3.858 3.542 3.319 2.638 3.021 2.915 2.828 2.755 2.692 2.638

39 7.333 5.194 4.327 3.843 3.528 3.305 2.624 3.006 2.901 2.814 2.741 2.678 2.624

40 7.314 5.179 4.313 3.828 3.514 3.291 2.611 2.993 2.888 2.801 2.727 2.665 2.611

50 7.171 5.057 4.199 3.720 3.408 3.186 2.508 2.890 2.785 2.698 2.625 2.562 2.508

60 7.077 4.977 4.126 3.649 3.339 3.119 2.442 2.823 2.718 2.632 2.559 2.496 2.442

80 6.963 4.881 4.036 3.563 3.255 3.036 2.361 2.742 2.637 2.551 2.478 2.415 2.361

100 6.895 4.713 3.984 3.513 3.206 2.988 2.313 2.694 2.590 2.503 2.430 2.368 2.313

200 6.763 4.713 3.881 3.414 3.110 2.893 2.220 2.601 2.497 2.411 2.338 2.275 2.220

infinity 6.635 3.912 3.782 3.319 3.017 2.802 2.130 2.511 2.408 2.321 2.248 2.185 2.130
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14 15 16 17 18 19 20 25 30 40 50 60 80 100 inf
6142.674 6157.285 6125.865 6181.435 6191.529 6200.576 6208.730 6239.825 6260.649 6286.782 6302.517 6313.030 6326.197 6334.110 6365.861

99.428 99.433 99.437 99.440 99.444 99.447 99.449 99.459 99.466 99.474 99.479 99.482 99.487 99.489 99.499

26.924 26.872 26.827 26.787 26.751 26.719 26.690 26.579 26.505 26.411 26.354 26.316 26.269 26.240 26.125

14.249 14.198 14.154 14.115 14.080 14.048 14.020 13.911 13.838 13.745 13.690 13.652 13.605 13.577 13.463

9.770 9.722 9.680 9.643 9.610 9.580 9.553 9.449 9.379 9.291 9.238 9.202 9.157 9.130 9.020

7.605 7.559 7.519 7.483 7.451 7.422 7.396 7.296 7.229 7.143 7.091 7.057 7.013 6.987 6.880

6.359 6.314 6.275 6.240 6.209 6.181 6.155 6.058 5.992 5.908 5.858 5.824 5.781 5.755 5.650

5.559 5.515 5.477 5.442 5.412 5.384 5.359 5.263 5.198 5.116 5.065 5.032 4.989 4.963 4.859

5.005 4.962 4.924 4.890 4.860 4.833 4.808 4.713 4.649 4.567 4.517 4.483 4.441 4.415 4.311

4.601 4.558 4.520 4.487 4.457 4.430 4.405 4.311 4.247 4.165 4.115 4.082 4.039 4.014 3.909

4.293 4.251 4.213 4.180 4.150 4.123 4.099 4.005 3.941 3.860 3.810 3.776 3.734 3.708 3.602

4.052 4.010 3.972 3.939 3.909 3.883 3.858 3.765 3.701 3.619 3.569 3.535 3.493 3.467 3.361

3.857 3.815 3.778 3.745 3.716 3.689 3.665 3.571 3.507 3.425 3.375 3.341 3.298 3.272 3.165

3.698 3.656 3.619 3.586 3.556 3.529 3.505 3.412 3.348 3.266 3.215 3.181 3.138 3.112 3.004

3.564 3.522 3.485 3.452 3.423 3.396 3.372 3.278 3.214 3.132 3.081 3.047 3.004 2.977 2.868

3.451 3.409 3.372 3.339 3.310 3.283 3.259 3.165 3.101 3.018 2.967 2.933 2.889 2.863 2.753

3.353 3.312 3.275 3.242 3.212 3.186 3.162 3.068 3.003 2.920 2.869 2.835 2.791 2.764 2.653

3.269 3.227 3.190 3.158 3.128 3.101 3.077 2.983 2.919 2.835 2.784 2.749 2.705 2.678 2.566

3.195 3.153 3.116 3.084 3.054 3.027 3.003 2.909 2.844 2.761 2.709 2.674 2.630 2.602 2.489

3.130 3.088 3.051 3.018 2.989 2.962 2.938 2.843 2.778 2.695 2.643 2.608 2.563 2.535 2.421

3.072 3.030 2.993 2.960 2.931 2.904 2.880 2.785 2.720 2.636 2.584 2.548 2.503 2.475 2.360

3.019 2.978 2.941 2.908 2.879 2.852 2.827 2.733 2.667 2.583 2.531 2.495 2.450 2.422 2.305

2.973 2.931 2.894 2.861 2.832 2.805 2.781 2.686 2.620 2.535 2.483 2.447 2.401 2.373 2.256

2.930 2.889 2.852 2.819 2.789 2.762 2.738 2.643 2.577 2.492 2.440 2.403 2.357 2.329 2.211

2.892 2.850 2.813 2.780 2.751 2.724 2.699 2.604 2.538 2.453 2.400 2.364 2.317 2.289 2.169

2.857 2.815 2.778 2.745 2.715 2.688 2.664 2.569 2.503 2.417 2.364 2.327 2.281 2.252 2.131

2.824 2.783 2.746 2.713 2.683 2.656 2.632 2.536 2.470 2.384 2.330 2.294 2.247 2.218 2.097

2.795 2.753 2.716 2.683 2.653 2.626 2.602 2.506 2.440 2.354 2.300 2.263 2.216 2.187 2.064

2.767 2.726 2.689 2.656 2.626 2.599 2.574 2.478 2.412 2.325 2.271 2.234 2.187 2.158 2.034

2.742 2.700 2.663 2.630 2.600 2.573 2.549 2.453 2.386 2.299 2.245 2.208 2.160 2.131 2.006

2.718 2.677 2.640 2.606 2.577 2.550 2.525 2.429 2.362 2.275 2.220 2.183 2.135 2.106 1.980

2.696 2.655 2.618 2.584 2.555 2.527 2.503 2.406 2.340 2.252 2.198 2.160 2.112 2.082 1.956

2.676 2.634 2.597 2.564 2.534 2.507 2.482 2.386 2.319 2.231 2.176 2.139 2.090 2.060 1.933

2.657 2.615 2.578 2.545 2.515 2.488 2.463 2.366 2.299 2.211 2.156 2.118 2.070 2.040 1.911

2.639 2.597 2.560 2.527 2.497 2.470 2.445 2.348 2.281 2.193 2.137 2.099 2.050 2.020 1.891

2.622 2.580 2.543 2.510 2.480 2.453 2.428 2.331 2.263 2.175 2.120 2.082 2.032 2.002 1.872

2.606 2.564 2.527 2.494 2.464 2.437 2.412 2.315 2.247 2.159 2.103 2.065 2.015 1.985 1.854

2.591 2.549 2.512 2.479 2.449 2.421 2.397 2.299 2.232 2.143 2.087 2.049 1.999 1.968 1.837

2.577 2.535 2.498 2.465 2.434 2.407 2.382 2.285 2.217 2.128 2.072 2.034 1.984 1.953 1.820

2.563 2.522 2.484 2.451 2.421 2.394 2.369 2.271 2.203 2.114 2.058 2.019 1.969 1.938 1.805

2.461 2.419 2.382 2.348 2.318 2.290 2.265 2.167 2.098 2.007 1.949 1.909 1.857 1.825 1.683

2.394 2.352 2.315 2.281 2.251 2.223 2.198 2.098 2.028 1.936 1.877 1.836 1.783 1.749 1.601

2.313 2.271 2.233 2.199 2.169 2.141 2.115 2.015 1.944 1.849 1.788 1.746 1.690 1.655 1.494

2.265 2.223 2.185 2.151 2.120 2.092 2.067 1.965 1.893 1.797 1.735 1.692 1.634 1.598 1.427

2.172 2.129 2.091 2.057 2.026 1.997 1.971 1.868 1.794 1.694 1.629 1.583 1.521 1.481 1.279

2.082 2.039 2.000 1.965 1.934 1.905 1.878 1.773 1.697 1.592 1.523 1.473 1.404 1.358 1.000
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Table IV.7A Upper 5% Points in the Studentized Range

Number of treatments, k

d.f. (error) 2 3 4 5 6 7 8 9 10 15 20

2 8.33 9.80 10.89 11.73 12.43 13.03 13.54 13.99 15.65 16.77

4 5.04 5.76 6.29 6.71 7.06 7.35 7.60 7.83 8.67 9.24

5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.72 8.21

6 3.46 4.34 4.90 5.31 5.63 5.89 6.12 6.32 6.49 7.14 7.59

8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.48 6.87

10 3.15 3.88 4.33 4.66 4.91 5.12 5.30 5.46 5.60 6.12 6.47

12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40 5.88 6.21

14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.72 6.03

16 3.00 3.65 4.05 4.34 4.56 4.74 4.90 5.03 5.15 5.59 5.90

18 2.97 3.61 4.00 4.28 4.49 4.67 4.83 4.96 5.07 5.50 5.79

20 2.95 3.58 3.96 4.24 4.45 4.62 4.77 4.90 5.01 5.43 5.71

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.32 5.59

30 2.89 3.48 3.84 4.11 4.30 4.46 4.60 4.72 4.83 5.21 5.48

40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.74 5.11 5.36

60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 5.00 5.24

120 2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.47 4.56 4.90 5.13

∞ 2.77 3.32 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.80 5.01

Table IV.7B Values of t ′ for Dunnett’s Comparison of Several Treatments and a Control (� = 0.05)

Number of treatments

d.f. 2 3 4 5 6 7

5 3.03 3.39 3.66 3.88 4.06 4.22

6 2.86 3.18 3.41 3.60 3.75 3.85

7 2.75 3.04 3.24 3.41 3.54 3.66

8 2.67 2.94 3.13 3.28 3.40 3.51

9 2.61 2.86 3.04 3.18 3.29 3.39

10 2.57 2.81 2.97 3.11 3.21 3.31

11 2.53 2.76 2.92 3.05 3.15 3.24

12 2.50 2.72 2.88 3.00 3.10 3.18

13 2.48 2.69 2.84 2.96 3.06 3.14

14 2.46 2.67 2.81 2.93 3.02 3.10

15 2.44 2.64 2.79 2.90 2.99 3.07

20 2.38 2.57 2.70 2.81 2.89 2.96

24 2.35 2.53 2.66 2.76 2.84 2.91

30 2.32 2.50 2.62 2.72 2.79 2.86

40 2.29 2.47 2.58 2.67 2.75 2.81

60 2.27 2.43 2.55 2.63 2.70 2.76

120 2.24 2.40 2.51 2.59 2.66 2.71

∞ 2.21 2.37 2.47 2.55 2.62 2.67
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Table IV.8 Dixon’s Criteria for Rejecting Outliers

Significance level

k 5% 1%

3 r10 = (X2 − X1)/(Xk − X1) if smallest value is suspected; 0.941 0.988

4 0.765 0.889

5 = (Xk − Xk−1)/(Xk − X1) if largest value is suspected 0.642 0.780

6 0.560 0.698

7 0.507 0.637

8 r11 = (X2 − X1)/(Xk−1 − X1) if smallest value is suspected; 0.554 0.683

9 0.512 0.635

10 = (Xk − Xk−1)/(Xk − X2) if largest value is suspected 0.477 0.597

11 r21 = (X3 − X1)/(Xk−1 − X1) if smallest value is suspected; 0.576 0.679

12 0.546 0.642

13 = (Xk − Xk−2)/(Xk − X2) if largest value is suspected 0.521 0.615

14 r22 = (X3 − X1)/(Xk−2 − X1) if smallest value is suspected; 0.546 0.641

15 0.525 0.616

16 = (Xk − Xk−2)/(Xk − X3) if largest value is suspected 0.507 0.595

17 0.490 0.577

18 0.475 0.561

19 0.462 0.547

20 0.450 0.535

21 0.440 0.524

22 0.430 0.514

23 0.421 0.505

24 0.413 0.497

25 0.406 0.489

Table IV.9 Critical Values of T for a Two-Sided Test at

the 5% Level of Significance (Test for Outliers)

Sample size T

3 1.155

4 1.481

5 1.715

6 1.887

7 2.020

8 2.126

9 2.215

10 2.290

11 2.355

12 2.412

13 2.462

14 2.507

15 2.549

16 2.585

17 2.620

18 2.651

19 2.681

20 2.709

25 2.822

30 2.908

35 2.979

40 3.036

50 3.128

100 3.383
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Table IV.10 Factors for Determining Upper and Lower 3� Limits for Mean (X ) and Range (R) Charts, and for

Estimating � from R

Factors for range chart

Sample size A: Factor DL for DU for � = R
d2

of subgroup, N for X chart lower limit upper limit d2

2 1.88 0 3.27 1.128

3 1.02 0 2.57 1.693

4 0.73 0 2.28 2.059

5 0.58 0 2.11 2.326

6 0.48 0 2.00 2.534

7 0.42 0.08 1.92 2.704

8 0.37 0.14 1.86 2.847

9 0.34 0.18 1.82 2.970

10 0.31 0.22 1.78 3.078

15 0.22 0.35 1.65 3.472

20 0.18 0.41 1.59 3.735

Example: If X = 100 and R (the average range) = 5, and N = 6, the upper and lower limits for the X chart are

X ± AR = 100 ± 0.48(5) = 100 ± 2.4 = (102.4, 97.6).

The upper limit for the range chart is DU R = 2.0(5) = 10. The lower limit for the range chart is DL R = 0(5) = 0. .

For samples of size 4, � = R

2.059
.

If R = 5,� = 5
2.059

= 2.43.



TABLES 479

Table IV.11 Number of Correct Guesses Needed for Significance

in the Triangle Testa

Correct guesses for significance

Panel size 5% Level 1% Level

6 5 6

7 5 6

8 6 7

9 6 7

10 7 8

11 7 8

12 8 9

13 8 9

14 9 10

15 9 10

16 9 11

17 10 11

18 10 12

19 11 12

20 11 13

21 12 13

22 12 14

23 12 14

24 13 15

aPick-up Table from 3rd ed.

Table IV.12 Number of Positive or Negative Signs Needed for

Significance for the Sign Test

Number of positive or negative
signs for significancea

Sample size 5% Level 1% Level

6 6 —

7 7 —

8 8 8

9 8 9

10 9 10

11 10 11

12 10 11

13 11 12

14 12 13

15 12 13

16 13 14

17 13 15

18 14 15

19 15 16

20 15 17

aThis is a two-sided test. Choose positive or negative signs, whichever is larger.
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Table IV.13 Values Leading to Significance for the Wilcoxon

Signed Rank Test (Two-Sided Test)

Sample size, N 5% Levela 1% Level

6 0 —

7 2 —

8 3 0

9 5 1

10 8 3

11 10 5

12 13 7

13 17 10

14 21 13

15 25 16

16 30 19

17 35 23

18 40 28

19 46 32

20 52 37

aIf the smaller rank sum is less than or equal to the table value, the comparative

groups are different at the indicated level of significance.

Table IV.14 Critical Values for Number of Runs at the 5% Level of Significance

Sample Two-sided test One-sided
size, N Lower numbera Upper number test Lower number

10 2 9 3

12 3 10 3

14 3 12 4

16 4 13 5

18 5 14 6

20 6 15 6

22 7 16 7

24 7 18 8

26 8 19 9

28 9 20 10

30 10 21 11

32 11 22 11

34 11 24 12

36 12 25 13

38 13 26 14

40 14 27 15

aIf the number of runs is less than or equal to the lower number or greater than or equal to the upper value, the sequence is

considered nonrandom at the 5% level of significance. The sample size (N) is the number of values above and below the median.

For odd-size samples where one value is the median, use the next smaller sample size for the critical values.

Table IV.15 Probability of Getting at Least One Run of Given Size

for N Samples

N 5% Level 1% Level

10 5 —

20 7 8

30 8 9

40 9 10

50 10 11
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Table IV.16 Critical Values for Wilcoxon Rank Sum Testa (� = 0.05)

Size of smaller sample (M)
Size of larger
sample M = 3 4 5 6 7 8 9

M 5,16 11,25 18,37 26,52 37,68 49,87 63,108

M + 1 6,18 12,28 19,41 28,56 39,73 51,93 66,114

M + 2 6,21 12,32 20,45 29,61 41,78 54,98 68,121

M + 3 7,23 13,35 21,49 31,65 43,83 56,104 71,127

M + 4 7,26 14,38 22,53 32,70 45,88 58,110 74,133

M + 5 8,28 15,41 24,56 34,74 46,94 61,115 77,139

M + 6 8,31 16,44 25,60 36,78 48,99 63,121 79,146

M + 7 9,33 17,47 26,64 37,83 50,104 65,127 82,152

M + 8 10,35 17,51 27,68 39,87 52,109 68,132 85,158

M + 9 10,38 18,54 29,71 41,91 54,114 70,138 88,164

M + 10 11,40 19,57 30,75 42,96 56,119 72,144 90,171

M + 15 13,53 24,72 36,94 50,118 66,144 84,172 104,202

M + 20 16,65 28,88 42,113 58,140 76,169 96,200 118,223

M + 25 18,78 32,104 48,132 66,162 86,194 108,228 132,264

aFrom Wilcoxon F, and Wilcox RA. Some Rapid Approximate Statistical Procedures. Pearl River, NY: Lederle Laboratories, 1964.

If rank sum of smaller sample is equal to or lower than smaller numbers in table or equal to or larger than larger number, groups

are significantly different at 0.05 level.

Table IV.17 Critical Difference for Significance (� = 0.05) Comparing All Possible

Pairs of Treatments for Nonparametric One-Way ANOVAa

Number of treatments
N (for each
treatment) 3 4 5 6 7

3 15 23 30 37 45

4 24 35 46 57 69

5 33 48 63 79 96

6 43 63 83 104 125

7 54 79 105 131 158

8 66 96 128 160 192

9 79 115 152 190 229

10 92 134 178 223 268

11 106 155 205 257 309

12 121 176 233 292 352

13 136 199 263 329 397

14 152 222 294 368 444

15 169 246 326 408 492

16 186 271 359 449 542

17 203 296 393 492 593

18 221 323 428 536 646

19 240 350 464 581 700

20 259 378 501 627 756

21 278 406 538 674 814

22 298 435 577 723 872

23 319 465 617 773 932

24 340 496 657 824 994

25 361 527 699 875 1056

aFrom Wilcoxon F, Wilcox RA. Some Rapid Approximate Statistical Procedures. Pearl River, NY:

Lederle Laboratories, 1964.
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Table IV.18 Critical Differences for Significance (� = 0.05) Comparing All Possible

Pairs of Treatments for Nonparametric Two-Way ANOVAa

Number of treatments
N (for each
treatment) 3 4 5 6 7

3 6 8 10 13 15

4 7 10 12 15 18

5 8 11 14 17 20

6 9 12 15 18 22

7 9 13 16 20 24

8 10 14 17 21 25

9 10 14 18 23 27

10 11 15 19 24 28

11 11 16 20 25 30

12 12 16 21 26 31

13 12 17 22 27 32

14 13 18 23 28 34

15 13 18 24 29 35

16 13 19 24 30 36

17 14 19 25 31 37

18 14 20 26 32 38

19 14 20 27 33 39

20 15 21 27 34 40

21 15 21 28 35 41

22 16 22 29 35 42

23 16 22 29 36 43

24 16 23 30 37 44

25 17 23 31 38 45

aFrom Wilcoxon F, Wilcox RA. Some Rapid Approximate Statistical Procedures. Pearl River, NY:

Lederle Laboratories, 1964.
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Table IV.19 Factors for Two-Sided Tolerance Limits for Normal Distributionsa

	 = 0.75 	 = 0.90
p p

n 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

2 4.498 6.301 7.414 9.531 11.920 11.407 15.978 18.800 24.167 30.227

3 2.501 3.538 4.187 5.431 6.844 4.132 5.847 6.919 8.974 11.309

4 2.035 2.892 3.431 4.471 5.657 2.932 4.166 4.943 6.440 8.149

5 1.825 2.599 3.088 4.033 5.117 2.454 3.494 4.152 5.423 6.879

6 1.704 2.429 2.889 3.779 4.802 2.196 3.131 3.723 4.870 6.188

7 1.624 2.318 2.757 3.611 4.593 2.034 2.902 3.452 4.521 5.750

8 1.568 2.238 2.663 3.491 4.444 1.921 2.743 3.264 4.278 5.446

9 1.525 2.178 2.593 3.400 4.330 1.839 2.626 3.125 4.098 5.220

10 1.492 2.131 2.537 3.328 4.241 1.775 2.535 3.018 3.959 5.046

11 1.465 2.093 2.493 3.271 4.169 1.724 2.463 2.933 3.849 4.906

12 1.443 2.062 2.456 3.223 4.110 1.683 2.404 2.863 3.758 4.792

13 1.425 2.036 2.424 3.183 4.059 1.648 2.355 2.805 3.682 4.697

14 1.409 2.013 2.398 3.148 4.016 1.619 2.314 2.756 3.618 4.615

15 1.395 1.994 2.375 3.118 3.979 1.594 2.278 2.713 3.562 4.545

16 1.383 1.977 2.355 3.092 3.946 1.572 2.246 2.676 3.514 4.484

17 1.372 1.962 2.337 3.069 3.917 1.552 2.219 2.643 3.471 4.430

18 1.363 1.948 2.321 3.048 3.891 1.535 2.194 2.614 3.433 4.382

19 1.355 1.936 2.307 3.030 3.867 1.520 2.172 2.588 3.399 4.339

20 1.347 1.925 2.294 3.013 3.846 1.506 2.152 2.564 3.368 4.300

21 1.340 1.915 2.282 2.998 3.827 1.493 2.135 2.543 3.340 4.264

22 1.334 1.906 2.271 2.984 3.809 1.482 2.118 2.524 3.315 4.232

23 1.328 1.898 2.261 2.971 3.793 1.471 2.103 2.506 3.292 4.203

24 1.322 1.891 2.252 2.959 3.778 1.462 2.089 2.489 3.270 4.176

25 1.317 1.883 2.244 2.948 3.764 1.453 2.077 2.474 3.251 4.151

26 1.313 1.877 2.236 2.938 3.751 1.444 2.065 2.460 3.232 4.127

27 1.309 1.871 2.229 2.929 3.740 1.437 2.054 2.447 3.215 4.106

30 1.297 1.855 2.210 2.904 3.708 1.417 2.025 2.413 3.170 4.049

35 1.283 1.834 2.185 2.871 3.667 1.390 1.988 2.368 3.112 3.974

40 1.271 1.818 2.166 2.846 3.635 1.370 1.959 2.334 3.066 3.917

45 1.262 1.805 2.150 2.826 3.609 1.354 1.935 2.306 3.030 3.871

50 1.255 1.794 2.138 2.809 3.588 1.340 1.916 2.284 3.001 3.833

55 1.249 1.785 2.127 2.795 3.571 1.329 1.901 2.265 2.976 3.801

60 1.243 1.778 2.118 2.784 3.556 1.320 1.887 2.248 2.955 3.774

65 1.239 1.771 2.110 2.773 3.543 1.312 1.875 2.235 2.937 3.751

70 1.235 1.765 2.104 2.764 3.531 1.304 1.865 2.222 2.920 3.730

75 1.231 1.760 2.098 2.757 3.521 1.298 1.856 2.211 2.906 3.712

80 1.228 1.756 2.092 2.749 3.512 1.292 1.848 2.202 2.894 3.696

85 1.225 1.752 2.087 2.743 3.504 1.287 1.841 2.193 2.882 3.682

90 1.223 1.748 2.083 2.737 3.497 1.283 1.834 2.185 2.872 3.669

95 1.220 1.745 2.079 2.732 3.490 1.278 1.828 2.178 2.863 3.657

100 1.218 1.742 2.075 2.727 3.484 1.275 1.822 2.172 2.854 3.646

110 1.214 1.736 2.069 2.719 3.473 1.268 1.813 2.160 2.839 3.626

120 1.211 1.732 2.063 2.712 3.464 1.262 1.804 2.150 2.826 3.610

130 1.208 1.728 2.059 2.705 3.456 1.257 1.797 2.141 2.814 3.595

140 1.206 1.724 2.054 2.700 3.449 1.252 1.791 2.134 2.804 3.582

150 1.204 1.721 2.051 2.695 3.443 1.248 1.785 2.127 2.795 3.571

160 1.202 1.718 2.047 2.691 3.437 1.245 1.780 2.121 2.787 3.561

170 1.200 1.716 2.044 2.687 3.432 1.242 1.775 2.116 2.780 3.552

180 1.198 1.713 2.042 2.683 3.427 1.239 1.771 2.111 2.774 3.543

190 1.197 1.711 2.039 2.680 3.423 1.236 1.767 2.106 2.768 3.536

200 1.195 1.709 2.037 2.677 3.419 1.234 1.764 2.102 2.762 3.529

250 1.190 1.702 2.028 2.665 3.404 1.224 1.750 2.085 2.740 3.501

300 1.186 1.696 2.021 2.656 3.393 1.217 1.740 2.073 2.725 3.481

400 1.181 1.688 2.012 2.644 3.378 1.207 1.726 2.057 2.703 3.453

500 1.177 1.683 2.006 2.636 3.368 1.201 1.717 2.046 2.689 3.434

600 1.175 1.680 2.002 2.631 3.360 1.196 1.710 2.038 2.678 3.421

700 1.173 1.677 1.998 2.626 3.355 1.192 1.705 2.032 2.670 3.411

800 1.171 1.675 1.996 2.623 3.350 1.189 1.701 2.027 2.663 3.402

900 1.170 1.673 1.993 2.620 3.347 1.187 1.697 2.023 2.658 3.396

1000 1.169 1.671 1.992 2.617 3.344 1.185 1.695 2.019 2.654 3.390

(Continued)
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Table IV.19 (Continued)

	 = 0.95 	 = 0.99
p p

n 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

∞ 1.150 1.645 1.960 2.576 3.291 1.150 1.645 1.960 2.576 3.291

2 22.858 32.019 37.647 48.430 60.573 114.363 160.193 188.491 242.300 303.054

3 5.922 8.380 9.916 12.861 16.208 13.378 18.930 22.401 29.055 36.616

4 3.779 5.369 6.370 8.299 10.502 6.614 9.398 11.150 14.527 18.383

5 3.002 4.275 5.079 6.634 8.415 4.643 6.612 7.855 10.260 13.015

6 2.604 3.712 4.414 5.775 7.337 3.743 5.337 6.345 8.301 10.548

7 2.361 3.369 4.007 5.248 6.676 3.233 4.613 5.488 7.187 9.142

8 2.197 3.136 3.732 4.891 6.226 2.905 4.147 4.936 6.468 8.234

9 2.078 2.967 3.532 4.631 5.899 2.677 3.822 4.550 5.966 7.600

10 1.987 2.839 3.379 4.433 5.649 2.508 3.582 4.265 5.594 7.129

11 1.916 2.737 3.259 4.277 5.452 2.378 3.397 4.045 5.308 6.766

12 1.858 2.655 3.162 4.150 5.291 2.274 3.250 3.870 5.079 6.477

13 1.810 2.587 3.081 4.044 5.158 2.190 3.130 3.727 4.893 6.240

14 1.770 2.529 3.012 3.955 5.045 2.120 3.029 3.608 4.737 6.043

15 1.735 2.480 2.954 3.878 4.949 2.060 2.945 3.507 4.605 5.876

16 1.705 2.437 2.903 3.812 4.865 2.009 2.872 3.421 4.492 5.732

17 1.679 2.400 2.858 3.754 4.791 1.965 2.808 3.345 4.393 5.607

18 1.655 2.366 2.819 3.702 4.725 1.926 2.753 3.279 4.307 5.497

19 1.635 2.337 2.784 3.656 4.667 1.891 2.703 3.221 4.230 5.399

20 1.616 2.310 2.752 3.615 4.614 1.860 2.659 3.168 4.161 5.312

21 1.599 2.286 2.723 3.577 4.567 1.833 2.620 3.121 4.100 5.234

22 1.584 2.264 2.697 3.543 4.523 1.808 2.584 3.078 4.044 5.163

23 1.570 2.244 2.673 3.512 4.484 1.785 2.551 3.040 3.993 5.098

24 1.557 2.225 2.651 3.483 4.447 1.764 2.522 3.004 3.947 5.039

25 1.545 2.208 2.631 3.457 4.413 1.745 2.494 2.972 3.904 4.985

26 1.534 2.193 2.612 3.432 4.382 1.727 2.469 2.941 3.865 4.935

27 1.523 2.178 2.595 3.409 4.353 1.711 2.446 2.914 3.828 4.888

30 1.497 2.140 2.549 3.350 4.278 1.668 2.385 2.841 3.733 4.768

35 1.462 2.090 2.490 3.272 4.179 1.613 2.306 2.748 3.611 4.611

40 1.435 2.052 2.445 3.213 4.104 1.571 2.247 2.677 3.518 3.493

45 1.414 2.021 2.408 3.165 4.042 1.539 2.200 2.621 3.444 3.399

50 1.396 1.996 2.379 3.126 3.993 1.512 2.162 2.576 3.385 4.323

55 1.382 1.976 2.354 3.094 3.951 1.490 2.130 2.538 3.335 4.260

60 1.369 1.958 2.333 3.066 3.916 1.471 2.103 2.506 3.293 4.206

65 1.359 1.943 2.315 3.042 3.886 1.455 2.080 2.478 3.257 4.160

70 1.349 1.929 2.299 3.021 3.859 1.440 2.060 2.454 3.225 4.120

75 1.341 1.917 2.285 3.002 3.835 1.428 2.042 2.433 3.197 4.084

80 1.334 1.907 2.272 2.986 3.814 1.417 2.026 2.414 3.173 4.053

85 1.327 1.897 2.261 2.971 3.795 1.407 2.012 2.397 3.150 4.024

90 1.321 1.889 2.251 2.958 3.778 1.398 1.999 2.382 3.130 3.999

95 1.315 1.881 2.241 2.945 3.763 1.390 1.987 2.368 3.112 3.976

100 1.311 1.874 2.233 2.934 3.748 1.383 1.977 2.355 3.096 3.954

110 1.302 1.861 2.218 2.915 3.723 1.369 1.958 2.333 3.066 3.917

120 1.294 1.850 2.205 2.898 3.702 1.358 1.942 2.314 3.041 3.885

130 1.288 1.941 2.194 2.883 3.683 1.349 1.928 2.298 3.019 3.857

140 1.282 1.833 2.184 2.870 3.666 1.340 1.916 2.283 3.000 3.833

150 1.277 1.825 2.175 2.859 3.652 1.332 1.905 2.270 2.983 3.811

160 1.272 1.819 2.167 2.848 3.638 1.326 1.896 2.259 2.968 3.792

170 1.268 1.813 2.160 2.839 3.527 1.320 1.887 2.248 2.955 3.774

180 1.264 1.808 2.154 2.831 3.616 1.314 1.879 2.239 2.942 3.759

190 1.261 1.803 2.148 2.823 3.606 1.309 1.872 2.230 2.931 3.744

200 1.258 1.798 2.143 2.816 3.597 1.304 1.865 2.222 2.921 3.731

250 1.245 1.780 2.121 2.788 3.561 1.286 1.839 2.191 2.880 3.678

300 1.236 1.767 2.106 2.767 3.535 1.273 1.820 2.169 2.850 3.641

400 1.223 1.749 2.084 2.739 3.499 1.255 1.794 2.138 2.809 3.589

500 1.215 1.737 2.070 2.721 3.475 1.243 1.777 2.117 2.783 3.555

600 1.209 1.729 2.060 2.707 3.458 1.234 1.764 2.102 2.763 3.530

700 1.204 1.722 2.052 2.697 3.445 1.227 1.755 2.091 2.748 3.511

800 1.201 1.717 2.046 2.688 3.434 1.222 1.747 2.082 2.736 3.495

900 1.198 1.712 2.040 2.682 3.426 1.218 1.741 2.075 2.726 3.483

1000 1.195 1.709 2.036 2.676 3.418 1.214 1.736 2.068 2.718 3.472

∞ 1.150 1.645 1.960 2.576 3.291 1.150 1.645 1.960 2.576 3.291

aFactors t ′ such that the probability is � that at least a proportion P of the distribution will be included between X ± t ′s where X

and s are estimates of the mean and the standard deviation computed from a sample size of n.
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Table IV.20 Test for Outliers (Upper Band for Critical Values for Studentized Residual)

(� = .10)

q

n 1 2 3 4 5 6 8 10 15 25

5 1.87

6 2.00 1.89

7 2.10 2.02 1.90

8 2.18 2.12 2.03 1.91

9 2.24 2.20 2.13 2.05 1.92

10 2.30 2.26 2.21 2.15 2.06 1.92

12 2.39 2.37 2.33 2.29 2.24 2.17 1.93

14 2.47 2.45 2.42 2.39 2.36 2.32 2.19 1.94

16 2.53 2.51 2.50 2.47 2.45 2.42 2.34 2.20

18 2.58 2.57 2.56 2.54 2.52 2.50 2.44 2.35

20 2.63 2.62 2.61 2.59 2.58 2.56 2.52 2.46 2.11

25 2.72 2.72 2.71 2.70 2.69 2.68 2.66 2.63 2.50

30 2.80 2.79 2.79 2.78 2.77 2.77 2.75 2.73 2.66 2.13

35 2.86 2.85 2.85 2.85 2.84 2.84 2.82 2.81 2.77 2.55

40 2.91 2.91 2.90 2.90 2.90 2.89 2.88 2.87 2.84 2.72

45 2.95 2.95 2.95 2.95 2.94 2.94 2.93 2.93 2.90 2.82

50 2.99 2.99 2.99 2.99 2.98 2.98 2.97 2.95 2.89

60 3.06 3.06 3.05 3.05 3.05 3.05 3.05 3.04 3.03 3.00

70 3.11 3.11 3.11 3.11 3.11 3.11 3.10 3.10 3.09 3.07

80 3.16 3.16 3.16 3.15 3.15 3.15 3.15 3.15 3.14 3.12

90 3.20 3.20 3.19 3.19 3.19 3.19 3.19 3.19 3.18 3.17

100 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.22 3.22 3.21

(� = .05)

q

n 1 2 3 4 5 6 8 10 15 25

5 1.92

6 2.07 1.93

7 2.19 2.08 1.94

8 2.28 2.20 2.10 1.94

9 2.35 2.29 2.21 2.10 1.95

10 2.42 2.37 2.31 2.22 2.11 1.95

12 2.52 2.49 2.45 2.39 2.33 2.24 1.96

14 2.61 2.58 2.55 2.51 2.47 2.41 2.25 1.96

16 2.68 2.66 2.63 2.60 2.57 2.53 2.43 2.26

18 2.73 2.72 2.70 2.68 2.65 2.62 2.55 2.44

20 2.78 2.77 2.76 2.74 2.72 2.70 2.64 2.57 2.15

25 2.89 2.88 2.87 2.86 2.84 2.83 2.80 2.76 2.60

30 2.96 2.96 2.95 2.94 2.93 2.93 2.90 2.88 2.79 2.17

35 3.03 3.02 3.02 3.01 3.00 3.00 2.98 2.97 2.91 2.64

40 3.08 3.08 3.07 3.07 3.06 3.06 3.05 3.03 3.00 2.84

45 3.13 3.12 3.12 3.12 3.11 3.11 3.10 3.09 3.06 2.96

(� = .05)

q

n 1 2 3 4 5 6 8 10 15 25

50 3.17 3.16 3.16 3.16 3.15 3.15 3.14 3.14 3.11 3.04

60 3.23 3.23 3.23 3.23 3.22 3.22 3.22 3.21 3.20 3.15

70 3.29 3.29 3.28 3.28 3.28 3.28 3.27 3.27 3.26 3.23

80 3.33 3.33 3.33 3.33 3.33 3.33 3.32 3.32 3.31 3.29

90 3.37 3.37 3.37 3.37 3.37 3.37 3.36 3.36 3.36 3.34

100 3.41 3.41 3.40 3.40 3.40 3.40 3.40 3.40 3.39 3.38

(Continued)
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Table IV.20 (Continued)

(� = .01)

q

n 1 2 3 4 5 6 8 10 15 25

5 1.98

6 2.17 1.98

7 2.32 2.17 1.98

8 2.44 2.32 2.18 1.98

9 2.54 2.44 2.33 2.18 1.99

10 2.62 2.55 2.45 2.33 2.18 1.99

12 2.76 2.70 2.64 2.56 2.46 2.34 1.99

14 2.86 2.82 2.78 2.72 2.65 2.57 2.35 1.99

16 2.95 2.92 2.88 2.84 2.79 2.73 2.58 2.35

18 3.02 3.00 2.97 2.94 2.90 2.85 2.75 2.59

20 3.08 3.06 3.04 3.01 2.98 2.95 2.87 2.76 2.20

25 3.21 3.19 3.18 3.16 3.14 3.12 3.07 3.01 2.78

30 3.30 3.29 3.28 3.26 3.25 3.24 3.21 3.17 3.04 2.21

35 3.37 3.36 3.35 3.34 3.34 3.33 3.30 3.28 3.19 2.81

40 3.43 3.42 3.42 3.41 3.40 3.40 3.38 3.36 3.30 3.05

45 3.48 3.47 3.47 3.46 3.46 3.45 3.44 3.43 3.38 3.23

50 3.52 3.52 3.51 3.51 3.51 3.50 3.49 3.48 3.45 3.34

60 3.60 3.59 3.59 3.59 3.58 3.58 3.57 3.56 3.54 3.48

70 3.65 3.65 3.65 3.65 3.64 3.64 3.64 3.63 3.61 3.57

80 3.70 3.70 3.70 3.70 3.69 3.69 3.69 3.68 3.67 3.64

90 3.74 3.74 3.74 3.74 3.74 3.74 3.73 3.73 3.72 3.70

100 3.78 3.78 3.78 3.77 3.77 3.77 3.77 3.77 3.76 3.74

n = number of observations

q = number of independent variables (including count for intercept if fitted)

Source: Lund, Technometrics 17(4), Nov. 1975.
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Outlier Tests and Chemical Assays

V.1 INTRODUCTION
In a recent landmark decision resulting from a trial involving the Federal Government and
Barr Laboratories, Judge Wolin made many judgments based on his constant probing and the
testimony of expert witnesses [1]. Remarkably, most of what he had to say was clear, correct, and
to the point, despite his sparse background in the subject material. Much of the Decision related
to testing drug products during their production when failing results (out of specification) were
observed. A summary of the Decision is available from the FDA [2]. A previous paper by this
author [3] presented some alternatives to retesting when a single out of specification result was
observed for which no obvious cause was apparent, a situation that is common in my experience.
This paper discusses some issues related to the elimination of an out of specification (OOS) result
with no obvious cause, based on an outlier test. The Judge, in his Decision, stated that tests for
outliers that can be used to exclude an aberrant observation are not appropriate for chemical
tests. His reasoning was that the USP includes tests for outliers, but presents these tests only in
the context of biological assays, which tend to be very variable. This, he suggests, is appropriate
because of the large variability of these kinds of procedures. Judge Wolin further suggests in
his Decision that such outlier analyses should not be used for chemical assays, because if they
were appropriate, the USP would have recommended the procedure for chemical assays. Thus,
the judgment is that, by default, outlier tests for chemical assays should not be used. All of
this raises several questions, including (a) Was it the USP’s intention to exclude outlier tests for
chemical assays? (b) Was this an oversight or was it intentional? (c) Does the USP not discuss
outlier tests for chemical assays because the issue is complex with many possible alternatives?

I do not believe that it was Judge Wolin’s intention that his Decision should result in
nonscientifically based procedures by pharmaceutical firms. I also believe that he would be
disturbed if his Decision and FDA’s interpretation of his Decision would lead to increased costs
because good judgment was cast aside in lieu of fear of a “483 citation.” For example, one
firm discarded a batch of product because a single content uniformity value failed, despite the
fact that 100 individual repeat assays all yielded results between 85% and 115%. Another firm
assayed the blend for a capsule product more than 50 times using single dose unit samples
during a validation study (because the recommended 3 dosage units were not feasible), with
one value being at 119%. All other values were between 90% and 110%. For fear of a “483,”
the company was reluctant to release the batch. They would have been equally fearful, had the
OOS value been 111%, because they interpreted the Decision to impose limits of 90% to 110%
for 3 dosage unit weight assays at the blend stage. The final product passed with all content
uniformity values between 90% and 110% and an RSD of 2%. Would this firm have been better
off performing an absolute minimum number of assays to validate the batch in order to decrease
the probability of a failing assay, or to proceed as they did to ensure a thorough validation with
increased risk of failure? Once more, I cannot believe that it was Judge Wolin’s intention to
impose such irrational hardships on the industry. Thus, part of the incentive for this paper (and
one previously published. Ref. [2]) is to propose some rational alternatives in the spirit of the
Judge’s Decision.

V.2 CAN OUTLIER TESTS BE JUSTIFIED?
In fact, the outlier problem remains perplexing, whether applied to questions of fundamental
science or problems of more direct practical application. Stories abound in the history of sci-
ence about how a single outlier, discarded, was eventually found to have contained important
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information. Similarly, anecdotes exist about outliers not discarded obscuring the truth. Thus,
scientists understand that there is no one answer to the problem, and that there are risks associ-
ated with making decisions about how to handle outlying observations. Although the question
of how to deal with apparent outliers resulting from chemical assays cannot be resolved easily,
the use of outlier tests is ubiquitous in both practical laboratory SOPs as well as the chemical
and statistical literature. Pages could be filled with references on this subject, including many
from scientists associated with the National Bureau of Standards, for example, the prominent
statisticians, Drs. Youden [4] and Mandell [5]. Dr. Youden [4] commented that the experimenter
is better equipped to detect outliers than the statistician when a small number of values (e.g., 3)
are observed. In fact, with only 3 observations, a value must appear to be extremely divergent
before it could be considered an outlier. Thus, he suggests that the experienced experimenter
probably would be less conservative than the statistician in finding an observation suspect (the
statistical test may be considered conservative in the decision to reject an outlier). Natrella [6]
discusses this problem, noting that “There have been many criteria proposed for guiding the
rejection of observations.” She also states that “no available criteria are superior to the judg-
ment of an experienced investigator . . . ." She gives several statistical procedures for identifying
outliers.

It is obvious that there is both theoretical and practical interest in this problem. Again,
scientific judgment appears dominant in approaching such problems. Judgment can be defined
to be a result of education, knowledge, experience, and common sense. All of these must
come into play, and we can be 100% sure that there will never be unanimous agreement on
controversial issues. However, because many statistical and chemical treatises discuss the outlier
problem, I do not believe that its use can be dismissed out of hand, only because the USP lacks a
specific recommendation. Other often used references and documents (OAOC, etc.), including
some that are government sponsored, recommend use of outlier tests, when appropriate, for
all kinds of data, in particular chemical assays. Virtually every well meaning, knowledgeable
scientist would probably entertain the possibility of excluding an outlying value from a set of
experimental data. One could give an example of a single assay showing zero drug content,
an extreme case, in which it would be absurd not to follow-up with further testing, even if
no cause for the “erroneous” result could be found. Similarly, if 3 assays were performed on a
relatively homogeneous blend such as a 20 tablet composite, with results of 99, 101, and 0, the
null assay would have to be considered suspect. Of course, most situations that might provoke
use of an outlier test are less extreme, and probably would need the application of judgment.
Certainly, excessive use of outlier tests would suggest some persistant problem that needs to
be resolved, unrelated to the assay. Perhaps, there exists a compromise that could satisfy both
the conservative (never apply an outlier test) and more liberal (always apply an outlier test and
discard the outlying value if present) critic?

V.3 WHY IS THERE NOT A USP TEST FOR OUTLIERS FOR CHEMICAL ASSAYS?
The answer as to why outlier tests are not specifically recommended for chemical assays in the
USP is not entirely clear, but I can conjure up a possible scenario. Because of the variability
of biological assays, to obtain a more precise estimate of drug content, replicate assays are
frequently employed. This is a good scientific approach. The average of replicate assays always
gives a better estimate of the true average drug content than a single assay. For very variable
assays, a single result may fail because of the large assay variability, not related to the true drug
content. For chemical assays, the assay variability is usually relatively small, and a single assay
may give a good estimate of the true drug content of the batch. On the other hand, chemical
assays with large variability should use replicate assays, with the average result representing
the true drug content. Thus, the USP may not want to commit to any specific assay scheduling.

The USP does not comment on the number of assays to be performed, and, in particular,
does not suggest multiple assays on a single “homogeneous” portion of material, such as
a composite mixture or solution. The number of assays to be performed would appear to
be a matter of judgment, each laboratory using its own criteria. This seems reasonable and
appropriate. Clearly, in any event, if a single assay or duplicate assays (with no previous
estimate of the standard deviation) are performed, outlier tests cannot be applied. At least three
assays are needed for an independent application of an outlier test. Thus, the USP cannot apply
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outlier tests to chemical assays unless at least three assays are performed. In my experience,
only one or two assays are routinely performed for the chemical analysis of composite material.
Therefore, for the USP to have an outlier test for chemical assays, at least three assays must be
performed. As previously noted, the USP makes no such recommendation. In fact, if a firm is
considering multiple assays on a composite, for example, and no provision is made for an outlier
test, a decision to perform a single assay would probably cause the least problems, and would
be the most prudent from an economic point of view. The more assays that are performed on
good material, the greater the chance that at least one of the assays will fail. Yet, from a scientific
viewpoint, performing multiple assays and using the average result as a measure of the batch
parameter is clearly superior to a single assay. This important point is discussed in more detail
later and is also exemplified by the multiple assays performed in a validation batch noted earlier.

V.4 SOME COMMENTS ON THE NATURE OF OUTLIERS AND OUTLIER TESTS, AND
OTHER INCONSISTENCIES IN THE DECISION THAT OUTLIER TESTS BE USED
FOR BIOLOGICAL ASSAYS BUT NOT FOR CHEMICAL ASSAYS

When performing multiple assays on a single source of material, such as a relatively homo-
geneous mix or a solution, there is a reasonable probability that one of the replicates may be
deviant due to chance or due to an outright error. Whether or not a cause for the deviant assay
is documented, the USP suggests (for biological assays) the value may be excluded if an outlier
test confirms that the observation is deviant at the 4% level (the chance that the value will
be incorrectly excluded is less than 1 in 25). The USP makes it clear that outlier tests should
be used sparingly, when unavoidable. Certainly, the situation that is “unavoidable” is open to
interpretation or judgment. It would appear to me that one situation that might fit the USP’s
definition is where inclusion of the outlier would cause the batch to fail and no cause can be
found for the outlying value following a suitable investigation. Since such general statements
need some interpretation, one would want to know the relevant batch history as well as other
measures of the batch performance as part of the justification for performing an outlier test and
discarding the outlying result. According to my experience, exclusion of biological assay results
based on the outlier test is rarely questioned. This situation should be considered carefully in
light of the potential 100% exclusion of outlier tests for chemical assays under all circumstances.

What is the nature of an outlier test? Very important in any such test is an assumption
about the underlying distribution of the population data, the distribution of analytical results
that might arise from the analysis of a sample, in our context. If we consider the assay results
to have an approximate normal distribution, then the outlier test recommended in the USP is
appropriate. We probably would be not too far wrong using this assumption for the analytical
results derived from a single homogeneous sample. The outlier test recommended in the USP
compares the ranges of values in order to assess if the extreme value is far enough removed
to be considered discordant relative to the rest of the data. The assumption is that the data are
normally distributed and if the probability that the extreme value comes from the distribution
is less than 1 in 25, then the value may be considered discordant. It is extremely important
to understand that this test is not dependent on the absolute variability of data, but rather on
the distance of the suspected outlier from the rest of the data relative to the dispersion of the
remaining data. Thus, this test will reject an outlier with the same probability no matter what
the variance of the data. The following example may clarify this concept. In a microbiological
assay, the following three values were obtained for potency based on three replicate assays: 52.3,
99.9, 101.9. The USP outlier test would be just satisfied, that is, we could exclude the outlier, 52.3.
Note that for 3 assays, the outlier must be very far (and obviously) removed from the other two
values in order to be discarded. In a chemical assay, the following three values were observed,
86.14, 97.64, 97.87. Again, the value of 86.14 is found to be an outlier. The higher precision of
the chemical assay as suggested by the two values close together allows a less distant outlier to
be detected. Note that if two of three assays are identical (which may occur if rounding results
in identical assays), the third result will always be an outlier. The important point to remember
is that the probability of incorrectly eliminating the outlier is less than 1 in 25 for both of these
examples. Thus, the risk of incorrectly eliminating an outlier is not dependent on the underlying
variability of the normal distribution associated with the assay data.
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As suggested previously, if a testing recommendation is not scientifically sound, less valid
testing situations will be used to satisfy the recommendations in lieu of more valid approaches.
The exclusion of outlier testing for chemical assays may promote less good testing procedures,
in my opinion.

V.5 WHAT IS THE PURPOSE OF PERFORMING REPLICATE ASSAYS AND WHEN IS
AVERAGING APPROPRIATE?

Although the Barr Decision suggests that averaging is not correct in some circumstances, aver-
aging is appropriate in the situation where multiple assays are used to obtain a better estimate
of the true parameter (which is the case for biological assays as well as chemical assays). The
reason for performing multiple assays is not to detect nonuniformity, but rather to obtain a
better estimate of a parameter, the true drug content. The more assays performed the better the
estimate based on the average. This would apply to any assay, but would be more important
for variable assays. For chemical assays that are usually (but not always) more precise than
biological assays, a single assay may be sufficient to get a good estimate of the drug content. An
important consideration is that the average result is what is needed in this circumstance. Still,
as noted above, a single assay among the replicates that is found to be OOS may suggest further
testing, depending on circumstances (e.g., as noted in the Decision, assays of 91, 91, and 89). It
would appear perfectly reasonable to me that if replicate chemical assays (3 or more) are to be
performed on a sample (a priori as specified in an SOP), that the same considerations be given
to outliers in this situation as is given to biological assays. (Due to its far-ranging implications,
perhaps the USP can look further into this very important question.)

The more difficult question to answer is how to apply outlier tests when retesting or
resampling is considered to be appropriate. This has been addressed briefly in a previous
publication [3], but I will pursue this further here.

V.6 IN WHAT SITUATIONS MIGHT OUTLIER TESTS BE APPLICABLE?

V.6.1 Homogeneous Sample (Solution or Composite Powder)
When performing replicate assays on the same portion of material, the average result is typically
used as representing the batch parameter. However, although not specifically recommended in
official documents, if one of the replicate values is outside of official specifications (whether an
outlier or not), a prudent manufacturer may decide to perform further analyses [3]. In particular,
in my opinion, if replicate assays (at least 3) are performed based on SOPs, an outlier test is
appropriate. Another application of outlier analysis may occur when a single assay fails and no
cause is found. In this case, I recommend further sampling as discussed in the previous paper
[3]. If the further assays indicate that the original result is an outlier, then it may be discarded
in the calculation of the average. The calculation of the number of samples to be reassayed
is also discussed in Ref. [2]. For example, consider the following hypothetical scenario. The
original assay is 75% from a composite that should have a mean of 100%. Three new samples
are assayed from the same composite with results of 98%, 99% and 100%. The lower limit for
passing is 93%. Would you accept or reject this test? (The value of 75% tests as an outlier). If the
original OOS result does not meet the outlier criterion, then scientific judgment is needed. If the
average passes including the outlier, a prudent manufacturer will examine other batch records
and batch history to aid in a decision. For example, with no evidence of batch failure, a passing
average in this example may be considered to represent the batch. The same considerations may
apply if the average does not pass when the original result is included. If the original result
was 75% and three reassays were 93%, 96% and 105%, the 75% value would not be a significant
outlier. Considerable judgment would be required here. Should the batch be rejected based only
on this evidence? Is further testing appropriate? According to the Court, a product should not
be tested into compliance, certainly a reasonable and prudent decision. On the other hand, the
hypothetical situation presented here begs for further testing, in my opinion. I would hesitate
to make any specific recommendations for this case, but further information about the product
would be needed to come to any decision. Again, to establish inflexible rules for every situation
does not seem to be a good substitute for scientific judgment. That is not to say that reasonable
guidelines are not needed and are not important. For a further discussion, see Ref. [3].
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V.6.2 Outlier Tests for Destructive Testing
A particularly difficult situation for the application of outlier tests is testing where the sam-
ple, once analyzed, is no longer available. This situation is most prevalent in the context of
Quality Control testing of content uniformity and dissolution results. Similar situations may
arise in stability testing. Another controversial area in which this problem has been extensively
discussed is in bioequivalence testing, where the outlying subject is either not available or has
changed since the original observation. Another situation that may be included here is when
a large sample of homogeneous material presented for analysis continues to fail after multiple
testing, and the possibility exists (but undocumented) that the sample does not truly represent
the batch, perhaps due to mishandling or an error in preparation. In these cases, further testing
may be indicated, and this has been discussed in Ref. [3]. Because we cannot retest the original
material, we can never be certain whether the original analysis is correct. In particular, if the
result is a failure, we will never know the truth unless an obvious cause is discovered. This
would be the case in content uniformity (CU) testing where a single value outside the range of
75% to 125% is observed. This single value would almost certainly be tested as an outlier. If not,
the batch would be suspect. Before discussing this situation, we might try to gain some insight
into the nature of the CU test. The CU test does not say that OOS values do not exist in the batch.
For example, if 0.1% (1/1000) of the tablets in a batch were outside 75% to 125%, assuming a
normal distribution, about 94% of the tablets would be between 85% and 115% and about 6%
between 75% to 85% and 115% to 125%. The chances of finding one of these OOS tablets in a
random sample of 10 is about 1 in a 100, a very small probability. Yet, 1 in every 1000 tablets
is OOS. The probability that the CU test would pass based on the first 10 tablets is >0.88. The
probability that the CU test would pass based on the second tier testing is >0.94. Therefore, the
CU test is not very discriminating in finding OOS tablets. We would have to have at least 1%
of the tablets OOS (less than 75% or greater than 125%) before the CU test would have a good
chance (about 50–50) of failing. Thus, the CU test can be considered as a screening test, but
relatively nondiscriminating in finding tablets OOS if there are less than 1% in the batch. If we
observe a tablet outside 75% to 125%, which tests as an outlier with no obvious cause, should
the batch be rejected? There is no way of knowing with certainty whether the value is real or due
to some malfunction during the assay, or if real was only a chance observation of an event that
has very small probability. I propose that in such situations, following a failure investigation,
if appropriate, that a sufficient number of tablets be assayed to give high assurance that the
proportion of OOS tablets in the batch is small. Remembering that we cannot ever know with
certainty that such tablets do not exist in the batch and that the CU test does not discriminate
against a small percentage of such tablets, this seems a prudent approach. This problem has
also been addressed in the previous publication where in most cases (small RSD and average
potency near 100%) with a sufficient number of passing reassays, we can have high confidence
that more than 99.9% of the tablets are within 85% to 115% [3]. It would seem to me that such
a probability statement is stronger and carries more information than the usual USP test with
regard to tablet uniformity. As suggested in the decision [1], resampling should be conducted
using the original sample if possible. Thus, in the case of CU testing or a composite sample
(which continually fails), the new samples should be taken from the larger sample of product
submitted for analysis by Quality Control Personnel. For example, if the CU test is conducted
on tablets taken from a bottle of 1000 tablets submitted by QC, the resampling should be from
the remaining tablets.

The approach to demonstrating the validity of data presented here is only one way of
coping with a difficult problem. However, any method that is backed by scientific reasoning
and common sense should certainly be an improvement over arbitrary approaches. In a sense,
the application of this kind of reasoning to such methods may be compared to the application
of probability and statistical reasoning substantiating or defining findings in criminal court
decisions.
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Appendix VI

Should a Single Unexplained Failing Assay be
Reason to Reject a Batch?

The problem of what to do with data that appear to be erroneous, but for which no cause is
apparent, has puzzled scientists for as long as data have been collected and evaluated. These
data can be characterized as outliers, not appearing to be of the same kind as other data collected
under the same circumstances. One might suppose that situations exist where such outliers can
be considered absurd, for example, nobody with any knowledge of the process could conceive
that such a value could exist. For example, if an automatic device for weighing individual
tablets would record a zero, we would be “certain” that the result was not due to a weightless
tablet, but rather due to some malfunction of the process. However, in the great majority of
cases, the cause for an outlying result cannot be ascertained. In the case of scientific experiments
for research purposes, the outlier appears among other experimental results, and the scientist
can freely hypothesize reasons and explanations for its presence. Thus, the scientist can make
a case for exclusion or inclusion of the outlier, and discuss reasons, implications, etc., with
impunity. The future will demonstrate the correctness of his evaluation and judgment; “Time
will tell.” In a regulatory environment, time is of the essence. We cannot wait for time to prove
a hypothesis about an outlying observation, correct or not. Usually, a decision must be made
quickly. Although there is no absolute right or wrong way to proceed, “judgment” seems to be a
key word. Under a given set of circumstances, what is to be done with the “outlier” is not easy to
answer. These problems were at the heart of a recent litigation involving the Federal Government
(FDA) and a generic company (Barr Labs, Inc.) [1] that involved testing of solid dosage forms or
products for reconstitution. Much of the government’s case against Barr related to the passing
of batches in which a single failing or outlying assay was observed. The government suggested
that if a single assay was not within specifications, in the face of all other tests performed on
the batch, the product should be rejected. This “outlying” result or test failure could occur as
a result of in-process testing or final product testing, either situation resulting in the rejection
of the batch. This was the point of much of the trial proceedings, with a willing judge looking
for the truth. In fact, there is no truth. What is to be done is a matter of judgment and common
sense, grounded in experience, knowledge, and scientific know-how. Nevertheless, it is certainly
possible that two knowledgeable and intelligent experts might disagree on what to do in any
given situation. Good judgment does not necessarily lead to a single universal truth. Thus, the
procedures recommended in this paper represent my judgment and experience.

In my opinion, a single outlying or failing result among many test results accumulated
during the manufacture of a batch of product does not necessarily mean that the batch is
unacceptable. In fact, I would think quite the contrary, that if all measures of batch quality other
than the “outlier” suggests that the batch is acceptable, indeed the batch probably represents
an acceptable product. In any event, the decision as how to proceed should consider other
measurements observed during production as well as the product history. If a product has a
history of problems, then failing results must be taken very seriously, and the onus of quality
falls heavily on the product. On the other hand, if the product has a history of good quality, the
outlier may not be due to the product, but rather due to a human or equipment malfunction.
Thus, the data should be taken in context. Data available for the batch under consideration
and past batches consist of, for example, raw material and blend assays during production,
dissolution, content uniformity, final product assay, weight variation, hardness, thickness, and
friability. Nevertheless, judgment is difficult to document, and who is to say what person has
the qualities to make the correct decision. We can only hope to make a decision that is sensible
under the circumstances, knowing that all circumstances differ.
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As stated in the “Opinion” [2], “The goal is to distinguish between an anomaly and a
reason to reject the batch.” If a single assay fails, and all other evidence indicates “quality,” the
manufacturer has the responsibility to demonstrate that the failing result does not represent the
product. If the data were observed in a scientific experiment, the researcher could hypothesize
reasons for accepting the bulk of the evidence, with possible justifications for the aberrant result,
as noted previously. No harm is done. In a manufacturing environment where GMPs dictate
procedures, explanations, no matter how rational or scientifically rigorous, are useless, if a
judgment is made by an FDA inspector that the result impugns the quality of the product. There
is no unanimity concerning the procedure of evaluating an outlier. This small paper discusses
approaches in a few commonly encountered situations in the presence of a failing result or
outlier. The discussion presupposes that a cause for the aberrant data is not apparent. Clearly,
if a cause can be identified, for example, analyst mistake, instrument malfunction, or sample preparation
error, then a reassay on the same or a new sample (as appropriate) according to the original procedure,
would be a reasonable procedure to follow.

VI.1 CASE 1
The original material from which the failing result or outlier was observed is still available
and is (relatively) homogeneous. For example, this would occur in the case of an assay of a
blend composite or the assay of a composite of 20 tablets for the final product assay. We assume
relatively good homogeneity. The same situation would apply for the assay of a solution when
some sample is still available after the assay.

VI.2 CASE 1A
A single assay is reported and fails, for example, outside the 90% to 110% release limits. No
cause can be determined. How many reassays are necessary to discredit (or verify) the original
assay and ensure the integrity of the batch? The Court’s “Opinion” [2] suggests that 7 of 8
passing results may possibly suffice. The recommendation is subjective, although not altogether
unreasonable. The number of samples to be retested may be quantified in an objective way, but
the final decision still requires “judgment.” Although the following analysis could apply to any
of the situations described above, I will use the example of a final composite assay for tablets
(a homogeneous mix of 20 tablets) to illustrate one possible approach. Thus, when failing or
aberrant data with no obvious cause are observed, a reasonable sample size for reassay could
be calculated as follows:

Estimate the true batch average and RSD from other data compiled during the batch
testing, in particular content uniformity (CU). (We assume that CU data have passed. If not, a
failure investigation is warranted.) Assay a sufficient number of new samples so that the 99%
confidence interval for the average result, calculated from the available assays on the composite
sample, is within specifications. In order to make the calculation for the number of samples to
be reassayed, we need to estimate both assay and tablet variability. We can either assume that
assay variability is considerably larger than tablet variability (use the RSD from CU); or estimate
assay and tablet content variability separately from other available data (previous lots, assay
data, etc.) in order to make a more realistic estimate. Bolton has discussed how this may be
done in a previous publication [3]. For simplicity, estimate the average tablet content and RSD
from the CU data. Note that the RSD estimated from the CU data will be an overestimate of the
RSD for the composite (S2[CU] = S2[assay] + S2[tablet uniformity]; S2[composite] = S2[assay]
+ S2[tablet uniformity/20]), so that the sample size for the reassay will be overestimated, a
maximum estimate. (We assume that assay variance is large compared to tablet variance.) The
confidence interval depends on the sample size and d.f., and we can estimate a sample size
iteratively. Use Table VI.1 for the estimate of number of samples to be reassayed from the
composite (or original sample) as a function of mean potency and RSD. Use a slightly larger
sample if in doubt. This table is based on a one-sided confidence interval. Typically, we are
concerned about an out-of-specification result that is either too low or too high. Note that the
numbers in Table VI.1 are based on the sample having the mean and RSD shown in the table.
Therefore, the a priori estimate of the sample mean and RSD should be made with care. If in
doubt, choose a sample somewhat larger than given in the table. On the other hand, if estimates
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Table VI.1 Estimate of Approximate Number of Samples to Be

Reassayed Based on Estimate of Mean and RSD for One-Sided

99% Confidence Limit (See Text)

Mean potency (%)

RSD (%) 94 96 98 100a

1 4 3 3 3

2 5 4 3 3

3 7 5 4 4

4 9 6 5 4

5 12 7 6 5

6 16 9 7 6

aFor estimates greater than 100%, use the 98% column for 102%, etc.

of RSD are made from CU data, the estimate is apt to be too large, and this would tend to make
the choice of sample size conservative.

An example should make this clear: Specifications for an active ingredient are 90% to
110%. A single assay of 89% is observed on a composite sample of 20 tablets. From CU data, the
average result is 97% with RSD = 4. From Table VI.1, N ≈ 6. If RSD is 3 in this example, N ≈ 5.

The number of reassayed samples is sensible. If the average is close to 100% and the RSD
is small, only a few samples need to be reanalyzed. If the RSD is large and the average is close
to the limits, a larger sample is necessary. Note that if the sample size, mean potency, and RSD match
the values in Table VI.1, the one-sided 99% CI will be within specifications (90–110). Finally, one may
want to know if the original “outlier” or failing result should be included in the calculation
of the average and standard deviation. I would recommend applying the USP test for outliers
(Dixon’s test) [4] to make a decision as to whether the original outlying observation should be
included (see Note 1 on Court Opinion at the end of this paper.) For example, if the original
assay is 85%, but we believe that the average potency should be 98% with RSD of 2%, we would
assay (at least) three more samples from the same composite (from Table VI.1). If the observed
reassay values are 96%, 98%, and 99%, the original assay of 85% is an outlier (Dixon test), and
only the 3 reassay values are used in the calculation. The mean is 97.7% and the RSD is 1.55%.
The 99% (one-sided) CI is 97.7–6.23 = 91.47, which is within the 90% to 100% limits, and passes.
A sample size of 4 or more would give a “comfort” zone.

Note that the Court recommendation of 7 of 8 passing results could be overly conservative
in some cases, but less than adequate in other cases. In fact, with moderate variation, 8 samples
would be a good number if the average observed potency is close to the specification limits. If
the observed potency is close to 100% with moderate variability, less samples are needed.

Also, one might be concerned that if more than one assay fails, the product may still pass
(i.e., the average is within limits and the 99% CI is within limits). This would seem to be a
most unlikely occurrence, because the inclusion of a failing result would increase the variance
considerably if the rest of the values were well within the specification limits. For example, the
six assays, 88% 89% 97% 98% 97% and 101%, have an average of 95% and a s.d. of 5.25. The
confidence limit would be below 90%.

VI.3 CASE 1B
Replicate assays are performed and the average of the assays is within limits, but one assay
fails. No cause can be found. For example, three assays of a homogeneous blend show results of
88%, 95%, and 98%. The average is within 90% to 100%, but one assay is out of limits. One could
accept the batch based on the average result (93.7%), but prudence may dictate further testing.
We would like to establish a reasonable retesting procedure. Based on the discussion above,
it would seem reasonable to assay new samples according to Table VI.1 based on an estimate
of the average and RSD. This estimate should be made based on all information available, for
example, CU results, not only the results of the assays in question. One could further determine
that the passing assays be part of the retesting if there is evidence that one of the values is in
error, for example, based on other batch data. Thus, in this case, if a sample of size 4 is called
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for, only two samples could be tested and combined with the remaining data (2 passing values).
Thus, judgment is critical. But, the rationale for retesting should be recorded and made clear.
The procedure could be part of SOPs for retesting. For example, in this example, CU data may
have shown an average of 98% and an RSD of 3%. In the current example, the value of 88%
appears to be an outlier and the retesting plan would be based on the CU data. On the other
hand, if the CU data showed an average of 94% and an RSD of 4%, one might believe that the
88% value may be a legitimate value to be included in the average. In this case, the RSD of the
three original assays may be factored into the decision of how much retesting is to be done.
Consider the following example to help clarify this decision-making process.

Two assays are performed on a composite sample (2 portions of the same composite), with
assay results of 90% and 98%. Note that, in the absence of an outright analytical error, differences
in results of such replicates can be, at first, attributed to assay variability. The variability (RSD)
of such duplicates based on retrospective data (accumulated from past lots, e.g., from control
charts) is determined to be 2%. This suggests that the difference between the two assays (8%)
is excessive and probably due to an analytical error. Also, the CU data show an average of 97%
and an RSD of 3.5%. From Table VI.1, a sample of size 5 is recommended. Include the 98%
observation, but not the 90% value, as one of the 5 samples. (Of course, there is nothing wrong
with taking a conservative approach and reassaying 6 new samples.) Note again that one is
penalized (more samples to be assayed) when a product is either very variable, not close to
100% in potency, or both.

VI.4 CASE 2
The material from which the failing result or outlier was observed is no longer available. This
could occur, for example, for single tablet assays where the test is destructive, or for assays
where stability is an issue, and a repeat assay on the same material may not be indicative of
the original assayed material. This situation may also occur if repeated testing of a sample
shows failure, but where the failure is not necessarily indicative of the quality of the product.
An example of this latter situation is repeated failures on a single composite, where the failures
could be possibly attributed to an error in preparation of the composite. The process of testing
further samples is termed “resampling” (as opposed to “retesting” in the Opinion).

VI.5 CASE 2A
Specific examples of the situation described in CASE 2 above may be considered for the cases of
dissolution and content uniformity. In these cases, the original material is not present, and mul-
tiple units have been assayed. Outliers may be observed more frequently in these cases because
of the multiplicity of assays. Clearly, the more assays performed, the greater the probability of
an analytical “error” causing an outlier, or the higher the probability of including an occasional
aberrant tablet among those items assayed. For example, one could reasonably argue that in
a large batch of tablets or capsules, there is a high probability that the batch contains one or
more unusually low and/or high potency units. The chances that such aberrant units will be
contained in the sample tested (from 6 to 30 units, for example) are very small if only a few
of these outliers exist in the batch. Thus, if an outlying value is observed without any obvious
cause, we have no way of knowing the true situation. A very conservative view would be to
throw out the batch, no matter if all other tests are within specifications (the “FDA” position
in the Barr Case). From a practical (cost) and scientific point of view, throwing out the batch
based on such an event seems severe. If we decide that further testing should be done to assess
the true nature of the batch, in terms of doing the right thing, we want to be “sure” that the
observed outlier is not representative of the batch. Of course, we can never be 100% sure. The
degree of assurance should be high and would be difficult to quantify. However, it seems fair
to say that if there were any sense that the failure could represent a public health hazard, the
desired degree of assurance should be greater.

At the present time, there is no unanimity on what is to be done. For example, in a content
uniformity test, a single failing result of 70% is observed for a tablet assay. In one instance, at
least, I know that a firm assayed 100 additional tablets (all of which were between 85% and
115%), and nevertheless, the batch was rejected. [The reason for the excessive testing was to
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Table VI.2A Minimum Number of Tablets Needed for Various Observed Values of Mean Potency and RSD for

Product to Be Acceptable (99% Tolerance Interval)

Mean potency

RSD 95% 96% 97% 98% 99% 100%

1% 6(7) 5(6) 5(6) 5(6) 5(5) 4(5)

2% 13 (25) 11(18) 9(15) 8(12) 8(11) 7(10)

3% 60 (>1000) 35 (250) 22 (90) 18 (50) 15(35) 13 (25)

4% Fails 700 (Fails) 140 (Fails) 70 (Fails) 45 (800) 30 (190)

5% Fails Fails Fails Fails 500 (Fails) 140 (Fails)

6% Fails Fails Fails Fails Fails Fails

99% assurance that 99% of tablets within 85% to 115% (99% assurance that 99.9% of tablets within 85% to 115% for potent

drugs).

meet GMP requirements, according to one defensive (my opinion) interpretation of a failure
investigation.]

The question is how much more testing should be done to give a given degree of assurance.
To come upon such a number, we need a measure of the “degree of assurance.” One reasonable
measure is to have assurance that the great majority of units (tablets) are within 85% to 115%.
For example, we may want 99% assurance that 99% of the tablets are within 85% to 115%. From
my point of view, such a conclusion would be satisfactory for most products. For very potent
products, we may want to have 99% assurance that 99.9% of the tablets are within 85% to 115%.
If we assume that the tablet drug content is normally distributed, tolerance intervals can be
calculated based on assay results. I would propose that further testing be done in cases of a
failing result caused by a single outlier (where no cause can be found), and the mean (% of label)
and RSD calculated from the reassays.

In this example (CU), all reassays should be within 85% to 115%, with the exception that
not more than 1 (3 in the case of capsules) in every 30 could be within 75% to 125%, as defined
for CU limits in the USP [5 If one or more items among the new values assay outside 75% to
125%, a full investigation is warranted and indicated. With an estimate of the mean (%) and
RSD from the assayed samples, the tolerance interval can be calculated, that is, we can say with
99% assurance that p percent of the tablets are within some upper and lower limit. Tables VI.2A
and VI.2B show some possible scenarios of extended testing in these situations. The number
of tablets (capsules) to be reassayed are given for 95% and 99% tolerance probabilities. Note
that in all these cases, there is very high assurance that practically 100% of the tablets will be
within 75% to 125% of label. This plan certainly seems reasonable. Products with a large RSD
(e.g., 5%) must be very close to 100% in order to have any chance of passing. If such products
contain potent drugs (a matter of judgment), then a product that shows 5% RSD cannot pass if
an outlier is observed (a full failure investigation is indicated.) Thus, the product must exhibit
moderate or low variability and be close to 100% in order to give assurance that the product is
acceptable. As noted previously, one must understand that the average result and RSD are not

Table VI.2B Minimum Number of Tablets Needed for Various Observed Values of Mean Potency and RSD for

Product to Be Acceptable (95% Tolerance Interval)

Mean potency

RSD 95% 96% 97% 98% 99% 100%

1% 3 (4) 3(3) 3(3) 2(3) 2(3) 2(3)

2% 8 (15) 7(11) 6(9) 6(8) 5(7) 5(6)

3% 35 (>1000) 19(140) 14(50) 11(30) 9(19) 8(15)

4% Fails 400 (Fails) 80 (Fails) 35 (>1000) 24 (400) 18(100)

5% Fails Fails Fails Fails 250 (Fails) 80 (Fails)

6% Fails Fails Fails Fails Fails Fails

95% assurance that 99% of tablets within 85% to 115% (95% assurance that 99.9% of tablets within 85% to 115% for potent

drugs).
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known until the assays are completed. (The RSD and mean potency are determined from the
assay results.) These values should be estimated in advance in order to determine the sample
size needed for reassay. These values can be estimated from the batch assays. (Use the passing
content uniformity data or past batch data for this estimate.) Clearly, the failing value, the
suspected faulty result, should not be included in sample size calculations. If unsure about the
number of samples to be reassayed, one should estimate conservatively, that is, a larger number
of reassays.

For example, a CU test showed 9 passing results (85–115%) and one value less than 75%.
The 9 passing values showed a mean of 97% with an RSD of 3%. According to Table VI.2A, 22
more tablets are assayed. If the average of these 22 tablets is close to 97% with RSD approximately
equal to 3%, we would have 99% confidence that 99% of the tablets are between 85% and 115%.
If the number of tablets to be reassayed based on Table VI.2A is less than 20, reassay at least
20 according to USP CU test specifications [4] the outlier occurred during the first stage of CU
testing. If the outlier (<75% or >125%) occurred during the second stage of testing (a total of 30
tablets have been tested), then the numbers in Table VI.2A can be used directly as is.

An important point to be emphasized once more is that the sample sizes in Tables VI.2A
and VI.2B will give the indicated tolerance interval if the observed mean and RSD are as
indicated in the table. The values of the mean and RSD are not known until the assays are
completed. Thus, the numbers in Tables VI.2A and VI.2B are based on a good guess of the
expected mean and RSD. A conservative approach would use larger sample sizes than indicated
to protect against a bad estimate or chance outcomes. How many more samples to use is strictly
a matter of judgment and cost considerations.

A similar table can be constructed for dissolution. This is generally one-sided, in that low
values result in failures. For example if the lower limit is 80% dissolution in 30 minutes, the
number of retests should result in 95% assurance that 99% of the tablets have a dissolution
above 80% in 30 minutes.

One potential cause for product failure is the observation of a large RSD in the CU test.
If a product passes based on the individual observations, but fails the RSD test, the individual
observations should be evaluated for possible outliers. If a single outler is observed as a possible
cause, reassay using the sample size given in Tables VI.2A and VI.2B. If the removal of a single
value still results in a failing RSD, a full batch investigation is warranted. For example, suppose
that 10 tablets are assayed and 9 have results between 101% and 103%, one value is at 109%,
and one value is 86%. Suppose the calculated RSD is greater than 6% (a failure). A reasonable
approach would be to reassay, assuming that the 86% value was an outlier. The remaining 9
values have an average result of 103% and RSD of 2.5%. From Table VI.2A, about 15 to 20 tablets
would be reassayed. In this example, if the tablets were evenly spread from 85% to 115%, it is
possible that elimination of a single tablet would not bring the RSD within specifications. In
this case a full investigation would be required. In my experience, this situation would be very
unlikely to occur.

VI.6 CASE 2B
Another somewhat different example would be a situation where a single assay fails (or is
borderline) and the original sample is no longer available or has been compromised. Again, no
cause for the result is obvious, and we cannot differentiate between a true failing result or an
analytical error. We need high assurance that the original value does not represent the batch.
We could follow the previous example, and estimate the resampling size from Tables VI.2A and
VI.2B. However, in these situations, often the material available may be limited. For example,
with stability samples, insufficient material may be available for reassay. Another situation
that may be considered similar is the case where a composite sample shows consistent failing
results and no cause is obvious. The result may have been caused by faulty preparation of the
composite. In both of these cases, new samples need to be prepared to verify the integrity of
the batch (or stability). In these situations, repeat assay on a new single sample (new composite
of 20 tablets or new bottle of liquid product) would not be sufficient to assure product quality.
One conceivable approach to this problem, if material is lacking, is to take sufficient samples
according to Table VI.1, so the results would give a 99% confidence interval for the true potency.
The new sample, in this example, would consist of new composites (each individual sample is
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a 20 tablet composite) or new bottles of liquid on stability (if available). Consider the following
example: A composite assay shows 80% potency after 4 assays. Evidence from CU and other
batch data suggest that there is an analytical or preparation error. Note that the composite is
an average of at least 20 random tablets, and this low observed value is almost surely not due
to lack of mixing (heterogeneous mix). The average potency appears to be about 99% with an
RSD of 2% based on other available data. Table VI.1 indicates that three new samples should be
taken. Three new composites of 20 tablets each are prepared and assayed, and a 99% confidence
interval calculated (one-sided). If the confidence limit is contained in the release specifications,
the product is considered to be acceptable. If this were a liquid product (which continues to fail
upon reassay), we would need to sample three new bottles. (If three stability samples are not
available, one might consider sampling from the field.)

VI.7 CONCLUSION
In my opinion, a single failing or outlying test result (with no documentable cause) is not
sufficient to fail a batch of product if other test results for the batch indicate no problems. In
these cases, a sufficient amount of further testing should be performed so that the product
quality can be assured with high probability. This paper proposes one way of approaching the
question of “what is the sufficient number of samples to reassay?”

Notes on the Court’s Opinion

1. The Opinion [6] suggests that the fact that the outlier test in the USP is directed toward
biological assays, and no mention is made of chemical assays, means that the test is not
applicable to chemical assays. It is unfortunate that this inference is made. Perhaps the
USP, inadvertently, is at fault, for lack of further explanation when describing the test. In
addition, the Opinion further states the reason for the omission of chemical assays with
regard to testing for outliers is due to the “innate variability of microbiological assays,” “. . .

subject to the whims of microorganisms.” In fact, the legitimacy of tests for outliers is not
dependent on inherent variability in the sense that the variability is taken into account in
the test. Thus, an assay with large variability, such as a microbiological assay, would have
to show considerable divergence due to the suspected outlier for the value to be rejected.
Because of lower variability, testing for an outlier in a chemical assay might reject a less
distant observation. Also, there are surely some chemical assays that are more variable than
some biological assays. Thus, the use of an outlier test should not be judged based on the
variability of the observation, but, rather on other criteria, for example, the nature of the
distribution of results or, perhaps, on philosophical grounds.

2. On pages 74 to 75 of the Opinion [7], the following statement appears: “Unless a firm with
certainty establishes grounds to reject the tablet falling outside the 75 to 125 range, the batch
should not be released.” There is no way to be 100% certain (certainty) in this situation (or
any situation for that matter). If the tablet is no longer available for assay and no cause
for the outlying result can be found, one can never resurrect the original scenario with any
confidence. I believe that if we replace the words, “with certainty”, with “with a high degree
of assurance”, that the methods proposed in this paper fulfill the latter definition.
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Appendix VII

When is it Appropriate to Average and its
Relationship to the Barr Decision

VII.1 BACKGROUND: ASSAY AND CONTENT UNIFORMITY TESTS
Analytical procedures to determine the drug content of pharmaceutical dosage forms are of
two kinds. One is to estimate the true average drug content of the product (e. g., mg/tablet or
mg/mL), and the other is to determine the uniformity of the product, that is, to assess the degree
to which different dosage units may differ. For true solutions, the question of uniformity is mute,
because solutions are homogeneous by definition (In certain cases, it may be desirable to check
uniformity for large volumes of solutions to ensure dissolution and adequate mixing prior to
transfer). For solid dosage forms, uniformity is determined by assaying different portions of
the powdered blend at the initial stages of the process, and individual finished tablets at the
final stage. For assessing uniformity, there are no “official” regulations for conformance for
blends. The finished product content uniformity test is defined in the USP. Release limits for
blend testing for uniformity is at the discretion of the pharmaceutical firm, and should have a
scientific as well as practical basis. The subject of blend testing was an important issue in the Barr
Trial and Judge Wolin’s Decision [1]. In particular, Judge Wolin condemned the averaging of
different samples of powdered blend when the purpose of the test was to determine uniformity.
This is obvious to the pharmaceutical scientist. Not that it is wrong to average the results (we
are always interested in the average), but we do not want to obscure the variability by mixing
heterogeneous samples and then reporting only an average, when the purpose of the test is to
assess that variability. Therefore, procedures for assessing and reporting variability are clear,
although the regulations for blend testing and interpretation of data are not “official” and need
scientific judgment. (A further dilemma here is that some pharmaceutical firms do not perform
blend testing on some products, at their discretion.)

VII.2 AVERAGING REPLICATES FROM A HOMOGENEOUS SAMPLE
The problem that I want to present here is: When is averaging appropriate and correct, and how
do we deal with the individual values that make up the average in these circumstances? This
can be simplified by limiting this question to one particular situation:

AVERAGING IS APPROPRIATE AND CORRECT WHEN MULTIPLE ASSAYS ARE
PERFORMED ON THE SAME SAMPLE, OR ON REPLICATE SAMPLES FROM THE SAME

HOMOGENOUS MIX, FOR PURPOSES OF DETERMINING THE TRUE
AVERAGE CONTENT.

I do not believe that any knowledgeable scientist would argue or contradict this. It is a
scientific, statistical fact that the average of multiple assays on the same material will give a
better estimate of the true content than single assays (the more assays, the better the estimate).
Thus, a pharmaceutical firm would better fulfill its obligation of supplying conforming material
to the public by performing multiple assays. Nevertheless, the number of assays performed for
purposes of estimating the true drug content is not fixed by law, and many companies perform
a single assay, whereas other companies may perform three or more assays. In fact, the manner
in which the replicates are performed may differ among companies. For example, a replicate
assay may be defined as coming from replicate analyses of the same final solution prepared
from a single portion of material, such as replicate HPLC injections from the same solution. The
variability among the replicate readings in this case represents instrumental variability rather
than product variability. If we are dealing with a solution or a homogenized composite of 20
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tablets, there are other sources of variability that are not accounted for in such a replicate scheme.
In particular, the variability arising from the sample preparation for analysis is neglected in the
former scheme because only one sample has been analyzed. Sample preparation variability
would include weighing variability as well as variability during the various steps of preparing
the product for the analysis. Therefore, the average of replicates using different sample prepa-
rations will give a better estimate of the true drug content than the same number of replicate
analyses on the same sample. The latter gives a good estimate of a single sample, whereas the
former better estimates the batch. Again, this is a scientific, statistical fact. We can define the
variability of such an assay measurement as the sum of independent variances

Variance (assay) = variance(I) + variance(P) + variance(O),
where I = instrumental, P = preparation and O = other sources of variation.

The variance of the average of 3 replicates where the replicates are multiple injections
from the same sample is

variance(I)
3

+ variance(O) + variance(P).

The variance of the average of 3 replicates where the replicates are multiple preparations
from the same sample is:

variance(I) + variance(O) + variance(P)
3

.

Therefore, given a choice, to obtain a more precise estimate of the average drug content of
a batch, assaying multiple preparations from the same homogeneous sample is a more desirable
procedure than assaying multiple injections from a single preparation. This would apply for
both solutions and homogeneous powders. Thus, there is little doubt as to what constitutes a
better testing procedure for estimating drug content

USE MORE INDEPENDENT SAMPLES!

Again, there are no official regulations on how many samples to use. Assaying a single sample
may be acceptable in this respect.

VII.3 HOW DO WE DEAL WITH SINGLE OOS RESULTS WHEN THE AVERAGE
CONFORMS?

What, then, is the problem? The problem is that there is confusion as to how to handle the
individual observations that make up the average in certain situations. There should be no
argument as to when it is appropriate to average. As emphasized throughout this discussion,
averaging multiple observations is appropriate when the purpose is to estimate the average drug
content. If all of the individual observations fall within release limits, there is no ambiguity. The
question is, “What do we do if one of the individual observations falls outside of the release
limits?”

Although not explicitly stated, official limits are absolute. A product either does or does
not pass. The official limits for drug content, as stated in the USP, for example, are based on
the average drug content. Clearly, some individual units may lie outside these limits as defined
in the content uniformity test. From a legal point of view, it appears that if the measure of the
average content falls within limits, the product is acceptable. Thus, an average result of 90.5
based on a single assay or duplicates of 89.5 and 91.5 is within limits. On the other hand, such
a result suggests that the true average may be below 90 with substantial probability. A prudent
manufacturer would want more assurance that the product is truly within specifications. In-
house limits such as 95 to 105 are constructed to give such assurance. These limits are usually
computed so that there is high assurance that the product truly meets official specifications
if an analytical result falls within these limits. The in-house specifications are not legal limits,
but, rather, are computed, conservative limits to ensure that the legal limits will be met. The
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construction of such limits should include all sources of variability including analytical error.
Thus, a single assay of 95.5% should be sufficient to release the product if the in-house limits are
computed correctly. In this situation, there is no question about the decision, the product passes
or does not pass. Suppose, that a company wants to improve this assessment of lot performance
by performing triplicate assays in this same situation. Because the single assay is close to the
in-house limit, repeat assays are apt to give values below 95. For example, triplicate assays
may give values of 94.5, 95.5, and 96.5, with an average of 95.5. In this case, the average result
is definitive and the single value below 95 should not invalidate the average. Otherwise, we
would be saying that a single assay of 95.5 is a better indicator of batch quality than triplicate
assays that average 95.5. Clearly, this is contradictory to scientific and statistical fact. If we act
otherwise, we would be defeating the intent and purpose of scientific QC analytical techniques.

How do we account for the fact that an average may fall within limits, but a single assay
may fall outside the limits (without obvious cause)? It is a well-known statistical fact that the
more observations we make, the greater the likelihood of seeing extreme observations because
of inherent variability in the observations. The variability has a probability distribution, say
approximately normal. Every observation has some probability of falling outside the release
limits due to extreme errors (variability) that can occur during an analysis. These extreme
observations are apt to happen from time to time, by chance. If we are unlucky enough to
see such an observation, is this irrevocable? Does this mean the batch is not good? The answer
requires scientific judgment. In the absence of a definitive mistake, examination of batch records
and product history, as well as the nature of the assay and release limits should lead to either
acceptance of the batch or further testing (according to SOPs). Further testing should help to
assess the true nature of the data, that is, to differentiate a failure from an anomalous result.

Unfortunately, Judge Wolin, in his decision (Barr Decision), excluded outlier tests from
chemical assays (this ruling is controversial and will almost certainly be modified in the near
future). But, even if a single failing value is not an outlier, is this cause for rejection, when
the average is the objective of the test? Certainly, some scientific judgment is needed here.
Otherwise, we will be throwing out much good material at the expense of the manufacturer
and taxpayer, and we will be condoning nonscientific, suboptimal testing techniques. If, in fact,
there is no give or compromise in this dilemma, companies will do an absolute minimal amount
of testing to reduce the probability of out-of-specification (OOS) results.

So the question remains as to how to handle this perplexing problem, “What do we do
about a single OOS result among replicates that are meant to be averaged?” I do not believe
that there can be a single inflexible rule. Scientific judgment and common sense are needed. I
will give a couple of examples.

Example 1. The official limits for a product are 90 to 110. In-house limits are set at 95 to 105.
The in-house limits are based on the variability of the product, that is, the manufacturer believes
that based on the variability inherent in measuring the drug content of the product (perhaps
including assay error, stability, uniformity, etc.) that the average content when the product is
released based on a 20 tablet composite should be between 95 and 105. Thus, the manufacturer
is prepared to release the product if the average composite assay is 95 to 105. Triplicate analyses
yield results of 99, 98, and 94.5, an average of 97.17, which passes. However, one assay is below
95 (note the triple jeopardy incurred by the triplicate determinations). Should this product
be released? Note that the release limits of 95 to 105 are based on inherent variability of the
product, including its measurement. On this basis, the product should pass, because it is the
average in which we are interested. If there is any doubt, I would want to look at other product
characteristics and batch history. Certainly, if there were no suggestion of a problem based on
other relevant data, release of this batch would be indicated. Another scientific contradiction
here concerns in-house limits that apparently are not subject to regulations. Firms that use in-
house limits for release, certainly a better and more conservative approach to releasing material
than using the absolute official limits, may be penalized for using a more scientific approach
to drug testing. Also, I believe that there is a qualitative difference for single OOS results
when applying “Official” and “in-house” release limits. “Official” limits are irrevocable, set by
“law” without a truly scientific basis. An average of 89.9 for a product with official limits of 90
to 110 cannot be released! In-house limits are set by individual companies based on scientific
“know-how” and have built-in allowances for variability. Thus, a single replicate falling slightly
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below the “Official” limit should probably be treated with greater concern than-the single value
outside in-house limits but within official limits as observed in this example.

Example 2. Consider the situation where the Official release limits are 95 to 105 and the three
assays are 96.5, 95.5, and 94.5. The average is 95.5 that passes. All other data are conforming. In
this case, although it still may be argued convincingly that the product passes, I would suggest
additional testing. I believe that this is appropriate even if no cause can be found for the low
result. This question was raised in the Barr trial, in which results of 89, 89, 92 were contemplated
for a product with release limits of 90 to 110 (paragraph 49, Barr Decision). Further testing was
recommended by the witness, and the judge seemed to be satisfied with this approach. The real
problem here, is not the problem of averaging, or retesting, but of “retesting into compliance.”
Clearly, the latter approach is not satisfactory, and should be addressed in SOPs. The SOP should
recommend the number of retests to be performed when there is reasonable doubt about the
quality of the batch as suggested in this example.

VII.4 DISCUSSION
Because of the lack of specific regulations concerning averaging of data, scientific judgment and
common sense should prevail. Certainly, situations exist where averages are the optimal way of
treating and reporting data. In particular, replicate measures based on a homogeneous sample
are meant to be averaged. Procedures for averaging data and retesting should be contained in
the company’s SOPs.

The question of what to do if a single OOS result is observed is addressed to some
extent in the Barr Decision. A single OOS result that cannot be attributed to the process or
to an operator error, as opposed to a laboratory error, is not labeled as a failure. According
to Inspector Mulligan of the FDA (Barr Decision, paragraph 21), an OOS result overcome by
retesting is not a failure. “The inability to identify an error’s cause with confidence affects
retesting procedures, see paragraph 38–39. . .” (Barr Decision, paragraph 28). Paragraphs 38 and
39 suggest that retesting is part of the failure investigation. “A retest is similarly acceptable
when review of the analyst’s work is inconclusive.” Thus, retesting is not disallowed when the
retests are used to isolate the cause or nature of the outlying result. The amount of retesting
should be sufficient to differentiate an anomaly and a reason to reject a batch (paragraph 39).
Thus, according to the decision, retesting may be done with discretion (based on SOPs) to help
identify a cause for OOS results.

An important consideration is that good testing procedures should not be penalized.
As noted in the examples above, a single OOS result contained in an average that passes
specifications should not be reason to reject a batch in general without further testing. Otherwise,
firms will be forced into performing single assays to reduce the risk of failure. This is based on
the fact that the penalty for an OOS result would be the same for both (a) one of several assays
OOS or (b) a single assay OOS. Biological assays are often based on the average of triplicates, in
which the average result is the basis for release, regardless of the individual values. In principal,
chemical assays should be treated in a similar manner, with scientific judgment always in mind.

REFERENCE
1. Barr Decision, Civil Action No. 92–1744, OPINION, United States District Court for the District of New

Jersey, Judge Alfred M. Wolin, February, 1993.



Appendix VIII

Excel Workbooks and SAS Programs

Excel Workbooks
Microsoft Excel provides a powerful package to solve many statistical problems. The following
Workbooks are provided as examples of how this package can be used to solve problems
presented in this book. It is hoped that the reader will be able to apply the principles illustrated
in these examples to the real-life statistical problems that he or she encounters. It is anticipated
that the reader has some familiarity with Excel and the basic mathematical functions available
in Excel. The reader should also be familiar with the basic methods to copy and paste values
and formulas from one cell or group of cells to another.

Many of the examples use Excel’s built-in statistical modules. These are available in the
Statistical Analysis ToolPak add-in. If this feature is activated in your installation of Excel, you
will see it by choosing Tools in the main menu of Excel. If you find the Data Analysis option, the
add-in is activated. If not, choose Tools and then select Add-Ins. From the choice of Add-ins,
select both the Analysis ToolPak and the Analysis ToolPak-VBA options. This will install the
package.

In the following examples, sequences of Excel commands will be presented to accomplish
the data analyses. The Main Menu bar, in the following illustration, is just below the Microsoft
Excel heading. It has the headings of File, Edit, View, Insert, Format, Tools, Data, Window and
Help.
The command sequence:

Main Menu Tools → Data Analysis → Descriptive Statistics

Refers to the steps:

1. Choose Tools from the Main Menu
2. Select Data Analysis under the Tools menu
3. Move the highlight down to Descriptive Statistics
4. Click OK

The first example is based on the Serum Cholesterol Changes for 156 Patients shown in Table 1.1.
Workbook 1.1 shows how to perform descriptive analyses of the data and how to obtain a
cumulative frequency distribution.
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Workbook 1.1 Descriptive Analyses and Cumulative Frequency Distribution (partial workbook shown)

GFEDCBA

1 PercentRankChangePointChangeChange

2 100.00%15512517

3 Mean12 99.30%2469110.6218

4 98.70%340602.216327Standard Error25

5 Median37 98.00%4391059.5

6 97.40%53810917Mode29

7 96.10%6355027.68191Standard Deviation39

8 96.10%63588766.2883Sample Variance22

9 Kurtosis0 94.80%834110.16183

10 Skewness22 94.80%8341260.28357

11 94.10%103318152Range63

12 Minimum34 93.50%11279797

13 92.90%122611355Maximum31

14 Sum64 92.20%132531657

15 90.90%142437156Count12

16 90.90%14249249

17 90.30%1623985

Commands in Analyses
Cells A1 – A157 Enter “Change”, then in A2-A157 the 156 change

values from Table 1.1.
Main Menu Tools → Data Analysis → Descriptive Statistics
Dialog Box

Input Range: Highlight or enter A1:A157
Grouped By: Click on Columns option
Labels in First Row: Click on this option
Output Range Click on Column B or enter B1
Summary Statistics Click on this option
OK Click to calculate

Main Menu Tools → Data Analysis → Rank and Percentile
Dialog Box

Input Range: Highlight or enter A1:A157
Grouped By: Click on Columns option
Labels in First Row: Click on this option
Output Range Click on Column D or enter D1
OK Click to Calculate

Notes on Analyses Interpretation:
Columns C lists the value of the sample statistic referenced in Column B
The statistic “Mode” (most frequent value) is not a unique value in this data set.
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Workbook 1.4 Entry of Tablet Potencies When Frequency Distribution Is Given (partial worksheet
shown)

IHGFEDCBA

1 999897969594939290

2 999897969492

3 99989794

4 99989794

5 99989794

6 999897

7 999897

8 9998

9 98

10 98

Column D lists the observation number, in Column A, for the Change value in Column E
Column F lists the rank (highest to lowest) for the Change value shown in Column E
Column G lists the cumulative frequency percentile for the Change value in column E

The next example creates a histogram and a cumulative frequency plot from the tablet potency
values presented in Table 1.4.
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Each Xi value is entered into a separate worksheet column, the number of replicate entries
of a value is given by its frequency, Wi, in Table 1.4. Entering a value once and then copying it
through the range of desired cells simplifies the process.

The Xi values in each column are then copied to a new worksheet to create a single column
of all 100 tablet potencies, as shown in the following partial worksheet.

A

Potency1

2 90

3 92

4 92

5 93

6 94

7 94

8 94

9 94

10 94

11 95

12 96

13 96

14 97

15 97

16 97

17 97

18 97

19 97

20 97

Descriptive analyses can now be conducted on the values in Column A of this second worksheet
(e.g. creation of histogram and cumulative % plots).

Commands in Analyses
Main Menu Bar Tools → Data Analysis → Histogram
Dialog Box

Input Range: Highlight or enter A1:A101
Labels Click on this option
Output Click on New Worksheet Ply
Cumulative Percentage Click on this option
Chart Output Click on this option
OK Click to plot histogram

Click on Histogram
Main Menu Bar Chart → Location
Dialog Box

As New Sheet: Click on this option and enter “Histogram” in box to right
Click on cumulative

percentage line: Format symbol and colors as desired
Click on y-axis Format scale, font, number as desired
Click on histogram Bars Format color, patterns, fill effects as desired

Note: If it were necessary to format the x-axis (Bin) values, this is done by changing the format
of the Bin values column in the worksheet containing these values.
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Next the tablet assay results shown in Table 5.1 are used to demonstrate construction of a
95% confidence interval for the sample mean under the assumption that the data are normally
distributed. The mean, �, and the standard deviation, �, for the population are unknown and
must be estimated from the data. As such, the t-distribution is used to obtain the confidence
interval limits.

Workbook 5.1 Confidence Interval When Mean and Sigma Are Unknown

FEDCBA

ConfidencealphaSMeannPotency1

2 0.950.052.22103.010101.8

3 102.6

4 99.8 Cl UpperCl Lowert-valuedf

5 104.59101.412.269104.9

6 103.8

7 104.5

8 100.7

9 106.3

10 100.6

11 105.0

12

13

Commands in Analysis (commands for up to 100 entries in column A):
Cells in Column A Enter tablet potency results from Table 5.1
Cell B2 = COUNT(A2:A101) Total number of potency values
Cell B5 = B2–1 Degrees of freedom (df) = n-1
Cell C2 = AVERAGE(A2:A101) Arithmetic mean of potency values
Cell D2 = STDEV(A2:A101) Sample standard deviation for values
Cell E2 Enter alpha level 0.05 for 95% CI, 0.10 for 90% CI, etc.
Cell F2 = 1-E2 Confidence Interval coverage
Cell C5 = TINV(E2,B5) Critical t-value for alpha & df
Cell D5 = C2-C5∗D2/SQRT(B2) 95% Confidence Interval lower limit
Cell E5 = C2 + C5∗D2/SQRT(B2) 95% Confidence Interval upper limit
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The following uses the percent dissolution values of Table 5.9 to demonstrate how to use Excel’s
built in statistical tools to conduct an independent sample t-test.

Workbook 5.9 Two Independent Sample t-Test

EDCBA

FORM BFORM A1 t-Test: Two-Sample Assuming Equal Variances

2 7468

3 7184 FORM BFORM A

4 71.477.1Mean7981

5 48.7111111133.43333333Variance6385

6 1010Observations8075

7 41.07222222Pooled Variance6169

8 0Hypothesized Mean Diff6980

9 18Df7276

10 1.988775482t Stat8079

11 P(T6574 0.031073458t) one-tail

12 1.734063062t Critical one-tail

13 P(T 0.062146917t) two-tail

14 2.100923666t Critical two-tail

Commands in Analyses
Columns A & B Enter Form A and Form B values from

Table 5.9
Main Menu Bar Tools → Data Analysis → t-Test:

Two-Sample Assuming Equal
Variances

Dialog Box
Variable 1 Range: Highlight or enter A1:A11
Variable 2 Range: Highlight or enter B1:B11
Hypothesized Mean Diff: Enter the null hypothesis difference

between means, 0
Labels: Click on this option
Alpha: Enter desired alpha level for t-Test, 0.05
Output Range Highlight cell C1 or enter C1.
OK Click to perform calculations.

Results appear in Columns C-E.

The next workbook performs the analysis for a paired sample t-test as shown in Table 5.11.
The comparison of the Areas under the blood-level curve calculated for six animals dosed in a
bioavailability study with both a new drug formulation (A) and the marketed formulation (B)
is easily performed using Excel’s built-in statistical program.
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Workbook 5.11 Paired Sample t-Test

GFEDCBA

ExpectedRatioFORM BFORM AAnimal1

2 10.821661361

3 10.911841682

4 10.831931603

5 10.90105944

6 11.011982005

7 10.881971746

8

9 t-Test: Paired Two Samplet-Test: Paired Two Sample for Means
for Means

10

11 ExpectedRatioFORM BFORM A

12 10.891654Mean173.83333155.33333Mean

13 00.004747Variance1278.16671332.2667Variance

14 66Observations66Observations

15 #DIV/0!Pearson0.9354224Pearson
CorrelationCorrelation

16 0Hypothesized0Hypothesized
MeanMean
DifferenceDifference

17 5df5Df

18 t Stat t Stat3.484781 3.85212

19 P(T P(T0.0087842t) 0.005988t)
one-tailone-tail

20 2.015049t Critical2.0150492t Critical
one-tailone-tail

21 P(T P(T0.0175684t) 0.011975t)
two-tailtwo-tail

22 2.570578t Critical2.5705776t Critical
two-tailtwo-tail

Commands in Analyses
Columns A, B, C & D Enter values from Table 5.11.
Column E Enter value of 1 for each entry in Column D (for analysis of ratios)
Main Menu Bar Tools Data → Analysis → t-Test: Paired Two-Sample for Means
Dialog Box

Variable 1 Range: Highlight or enter B1:B7
Variable 2 Range: Highlight or enter C1:C7
Hypothesized Diff: Enter the null hypothesis difference between means, 0
Labels: Click on this option
Alpha: Enter desired alpha level for t-test, 0.05
Output Range Click on cell or enter A9.
OK Click to perform calculations

Note: To obtain an analysis of the Form A/Form B ratios, perform the same sequence of
operations using the Ratio values (D1:D7) as Variable 1 and the Expected values (E1:E7) as
Variable 2. Choose output Range as E9.
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Section 5.2.6 discusses how to construct a 95% confidence interval on the difference
between the proportions of headaches observed in two different groups of patients. The calcu-
lation uses a normal approximation and incorporates a continuity correction.

The following Excel workbook shows how to carry out the calculations.

Workbook 5.2.6 Continuity-Corrected 95% Confidence Interval

FEDCBA

correctionZ-valuealphaGroup IIGroup I1

Headaches2 0.004911.960.054635

3

N4 196212 Z*sesedifference

P5 0.0775750.039580.0700.2350.165

Q6 0.7650.835

Cl_highCl_low7

8 0.1520.013

Commands in Analysis
Data Entry: Enter Section 5.2.6 values into cells B2, C2, B4, C4, D2
Cell B5: = B2/B4 p = #/n
Cell C5: = C2/C4
Cell B6: = 1-B5 q = 1 – p
Cell C6: = 1-C5
Cell D5: = C5-B5 difference between p values (group I-II)
Cell E2: = NORMSINV(1-D2/2) Critical Z- value for 95% confidence

interval
Cell E5: = SQRT(B5∗B6/B4 +

C5∗C6/C4)
se = (�(pq/n))1/2

Cell F2: = 0.5∗(1/B4 + 1/C4) continuity correction = 0.5 (1/nI +
1/nII)

Cell F5: = E2∗E5
Cell D8: = D5 – (F5 + F2) CI low = diff – [se∗Z + correction]
Cell E8: = D5 + (F5 + F2) CI high = diff + [se∗ Z + correction]

Excel has utilities for performing linear regression analyses and creating graphs of the results
of such analyses. The power of these utilities can be seen in this next example which uses tablet
assay results from a stability study (Table 7.5).

In this workbook, linear regression is used to model the stability of tablet potency over
time. A 95% confidence interval about the stability line is constructed and the results are
graphically illustrated using Excel’s Chart Wizard.

Commands in Analyses
Columns A & B Enter Month and Assay values from Table 7.5
Main Menu Bar Tools → Data Analysis → Regression
Dialog Box

Input Y Range: Highlight or enter B1:B19
Input X Range: Highlight or enter A1:A19
Labels: Click on this option
Output Range Click on cell C1 or enter C1. Results start in Column C.
OK Click to perform calculations

Cell D16 = AVERAGE(A2:A19) Mean value for the X values
Cell D17 = 18∗(VARP(A1:A19)) equal to �(Xi – mean)2
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Open a second worksheet in this workbook. This sheet will be used to calculate the predicted
values for the stability regression line and the 95% confidence interval band around the line.
The measured potency values from Worksheet 1 and the predicted values and their confidence
bounds from this new worksheet (Worksheet 2) will be used to create a stability trending graph.

Commands in Analyses
Column A Enter 0 & 1 into Cells A2 & A3, highlight & drag through Cell A62 to

obtain Month numbers 0 through 60.
Cells E2 and F2 Copy Slope and Intercept values from Worksheet 1
Cell E5 Enter 16, the residual df from ANOVA in Worksheet 1 equal to N-2
Cell F5 Enter or copy the SSQ Diff value from Worksheet 1
Cell F8 Enter or copy the Month Mean value from Worksheet 1
Cell E8 = TINV(0.05,E5), t-value for two-sided, 95% confidence interval
Cell E11 = SQRT(1.825), square root of residual MS from ANOVA in

Worksheet 1
Cell B2 = $F$2 + A2∗$E$2, intercept + month ∗ slope
Cells B3-B62 Copy formula from B2 into these cells to obtain predicted values
Cell C2 = $B2-$E$8∗$E$11∗SQRT(1/($E$5 + 2) +

POWER(($A2-$F$8),2)/$F$5)
Cells C3-C62 Copy formula from C2 to obtain 95% Conf. Interval lower bound
Cell D2 = $B2 + $E$8∗$E$11∗SQRT(1/($E$5 + 2) +

POWER(($A2-$F$8),2)/$F$5)
Cells D3-D62 Copy formula from D2 into these cells to obtain 95% Conf. Interval

upper bound

Create graph

Highlight cells A1:B62, click Chart Wizard icon and choose XY scatter plot.
Click Next and choose the series tab.
Click on ADD.
Click in the Name box and enter 95% CI.
For X-values, choose A1:A62.
For Y-values choose Cl:C62.
Repeat the process to add the graph of the 95% CI upper limits (D1:D62 values).
Next, repeat the process for the Month (X) and Assay (Y) values from Worksheet 1.
Click on Next and enter the title and axes labels for the graph.
Click on finish.

From the Main Toolbar Menu, choose Chart and then under that choose Location
Enter a Name so that the graph is placed as a chart separate from Worksheet 2.
The lines on the graph can now be edited by double clicking on each one.
Edit the predicted line to be solid with no symbols.
Edit the confidence interval curves to be smoothed, no-symbol, dashed.
The y and x axes can be edited (double click on each) to change the range of the Scale.
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Workbook 7.5 Linear Regression of Tablet Stability Results (Worksheet 2) (Listing of first 14 rows of
the 62-row worksheet)

FEDCBA

interceptslope95% Cl Hi95% Cl LowPredictedMonth1

2 52.950.751.80 51.80.26667

3 52.650.551.51

4 52.250.351.32 SSQDxDf

5 6301651.950.151.03

6 51.549.950.74

7 51.249.750.55 Meanxt-val

8 82.1250.949.550.26

9 50.649.249.97

10 50.349.049.78 S_yx

11 1.35150.148.749.49

12 49.848.449.110

13 49.648.148.911

14 49.447.848.612
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The following Workbook uses the spectrophotometric calibration curve results of Table 7.6.
While it employs only the basic mathematical functions of Excel, it provides a powerful method
for performing weighted linear regression analysis which can be used in situations where a
straight-line model is appropriate. In this example, the weight is the inverse of concentration
squared (1/X2), but the method can be easily adapted to other appropriate weights (some
function that is inversely proportional to the variance in y).

Commands in Analyses
Cells A2:B11 Enter the X and y values from Table 7.6
Cell C2 = 1/(A2∧2) Weight, w, is inverse of concentration squared
Cells C3:C11 Copy the formula from Cell C2
Cell D2 = C2∗A2∗B2 wXy
Cells D3:D11 Copy the formula from Cell D2
Cell E2 = C2∗A2 wX
Cells E3:E11 Copy the formula from Cell E2
Cell F2 = C2∗B2 wy
Cells F3:F11 Copy the formula from Cell F2
Cell G2 = C2∗A2∧2 wX2

Cells G3:G11 Copy the formula from Cell G2
Cell A13 = SUM(A2:A11) �X
Cells B13:G13 Copy formula from Cell A13 �y, �w, �wXy, �wX, �wy & �wX2

Cell B15 = (D13-E13∗F13/C13)/(G13 =
(E13∧2)/C13)

slope

Cell B17 = (F13/C13)-B15∗(E13/C13) intercept

Workbook 7.6 Weighted (1/X2) Linear Regression Analysis

GFEDCBA

wX^2wywXwXy1/X^2OD (y)Conc (X)1

2 10.00420.20.0210.040.1055

3 10.003920.20.01960.040.0985

4 10.002010.10.02010.010.20110

5 10.001940.10.01940.010.19410

6 10.0007920.040.01980.00160.49525

7 10.00081280.040.020320.00160.50825

8 10.00039320.020.019660.00040.98350

9 10.00040360.020.020180.00041.00950

10 10.00019640.010.019640.00011.964100

11 10.00020130.010.020130.00012.013100

Sum(Wx^2)Sum(wy)Sum(wX)Sum(wXy)Sum(w)Sum(y)Sum(X)12

13 100.01486930.740.199830.10427.57380

14

Slope (b) 15 0.01986

16

Intercept (a) 17 0.00166

The next example shows how to use Excel to perform a series of calculations iteratively across
different parameter values of a function to determine which values give the best fit to the
observed values. In this example, using the method of least-squares, the best estimates for the
parameters (slope and intercept) of the function (regression line) occur at the minimum sum of
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squares for the difference between the predicted values of the regression line and the observed
values. The regression line is defined by its slope (K) and its intercept (C0) and there are three
observed time (hour)-concentration values (mg/L): (1,63), (2,34), and (3,22). These data are
the stability results shown in Table 7.8. It is first necessary to determine a plausible range of
values for C0 and K. For C0, this could be done graphically by plotting the data and then
extrapolating the curve back to 0 time. A wide range of values should be selected around this
estimate for the first iteration. In the first worksheet, a range of 50–400 was chosen. An initial
range of estimates for K can be obtained in several ways: by using the estimate of C0 and then
solving the equation C = C0∗Exp(−K∗t) for each time (t)-concentration (C) pair in the data
set. Alternatively, the natural logarithm of each concentration can be plotted against time. The
slope of the line through the plotted points is an estimate of − K. In this example, K was found
to be close to 0.5 and a range of 0.1–0.7 was chosen for evaluation. The analysis requires the
calculation of the sum of squares (SSQ) of the deviations (DEV = observed-predicted) for each
of the three data points based on all combinations of the chosen C0 and K values. The C0 and
K values that result in the minimum SSQ represent the least-squares estimates.

Workbook 7.8 Nonlinear Fit of Stability Data by the Method of Least-Squares (first iteration)

I JHGFEDCBA

SSQDev_3Dev_2Dev_122.034.063.0KC01

2 296.3327.5361.90.1400 298.9 293.5 250755.3274.3

3 148.2163.7181.00.1200 118.0 129.7 46667.7126.2

4 74.181.990.50.1100 27.5 47.9 5759.752.1

5 17.837.040.945.20.150 6.9 589.715.0

6 162.6219.5296.30.3400 233.3 185.5 108637.2140.6

7 81.3109.8148.20.3200 85.2 75.8 16510.959.3

8 40.754.974.10.3100 11.1 20.9 906.918.7

9 719.71.76.626.020.327.437.00.350

10 89.3147.2242.60.5400 179.6 113.2 49586.767.3

11 44.673.6121.30.5200 58.3 39.6 5477.822.6

12 2.322.336.860.70.5100 2.8 **13.40.3

13 1428.710.815.632.711.218.430.30.550

14 49.098.6198.60.7400 135.6 64.6 23302.827.0

15 24.549.399.30.7200 36.3 15.3 1559.82.5

16 360.49.89.313.312.224.749.70.7100

17 2178.715.921.738.26.112.324.80.750

MIN18 13.4

Additional iterations are performed to refine the estimates to the desired level of precision.
In this example, precision to one decimal place for C0 and to three decimal places for K was
considered appropriate.

Commands in Analyses (Commands are repeated for each iteration)
Columns A and B Enter all possible combinations of the selected C0 and K values.
Cell C2 = A2∗EXP(-B2∗1) Predicted Concentration at 1 hour
Cell D2 = A2∗EXP(-B2∗2) Predicted Concentration at 2 hour
Cell E2 = A2∗EXP(-B2∗3) Predicted Concentration at 3 hour
Cell F2 = 63-C2 1 hour deviation (observed-predicted)
Cell G2 = 34-D2 2 hour deviation
Cell H2 = 22-E2 3 hour deviation
Cell I2 = SUMSQ(F2,G2,H2) Sum of squared deviations (SSQ)
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Workbook 7.8 Nonlinear Fit of Stability Data by the Method of Least-Squares (section of the
worksheet to refine the estimates)

IHGFEDCBA

SSQDev_3Dev_2Dev_122.034.063.0KC0

39.258.487.10.4130 24.1 24.4 1473.117.2

34.651.777.10.4115 14.1 17.7 670.512.6

30.144.967.00.4100 4.0 10.9 201.78.1

6.025.638.257.00.485 4.2 66.83.6

29.047.878.80.5130 15.8 13.8 491.47.0

25.742.369.80.5115 6.8 8.3 128.03.7

2.322.336.860.70.5100 2.8 13.40.3

147.63.02.711.419.031.351.60.585

21.539.271.30.6130 8.3 96.50.55.2

19.034.663.10.6115 0.1 **9.43.00.6

110.95.53.98.116.530.154.90.6100

401.17.98.416.414.125.646.60.685

15.932.164.60.7130 43.26.11.91.6

129.27.95.65.914.128.457.10.7115

360.49.89.313.312.224.749.70.7100

736.611.613.020.810.421.042.20.785

MIN 9.4

Workbook 7.8 Nonlinear Fit of Stability Data by the Method of Least-Squares (further refining of
the estimates) (C0 range examined was 100–130, K range 0.50–0.70; only section with minimum is
shown)

IHGFEDCBA

SSQDev_3Dev_2Dev_122.034.063.0KC0

1.821.236.061.20.53104 7.90.82.0

1.221.436.461.80.53105 7.40.62.4

0.621.636.762.40.53106 7.90.42.7

1.820.835.761.20.54105 7.51.21.7

1.221.036.061.80.54106 6.51.02.0

0.621.236.362.40.54107 6.60.82.3

1.320.535.661.70.55107 6.31.51.6

0.720.736.062.30.55108 5.91.32.0

0.120.936.362.90.55109 6.41.12.3

1.320.135.261.70.56108 6.81.91.2

0.720.335.662.30.56109 **5.81.71.6

0.220.535.962.80.56110 5.81.51.9

20.736.263.40.56111 0.4 6.81.32.2

0.819.935.262.20.57110 6.52.11.2

0.220.135.562.80.57111 6.01.91.5

20.335.863.30.57112 0.3 6.51.71.8



Excel Workbooks and SAS Programs 519

Workbook 7.8 Nonlinear Fit of Stability Data by the Method of Least-Squares (C0 range evaluated was
108.0–110.0 by 0.2; K was 0.550–0.570 by 0.002)

IHGFEDCBA

SSQDev_3Dev_2Dev_122.034.063.0KC0

0.820.635.862.20.552108.0 5.8381.41.8

0.720.735.962.30.552108.2 5.8041.31.9

0.620.735.962.40.552108.4 5.8071.31.9

0.520.736.062.50.552108.6 5.8501.32.0

0.720.635.862.30.554108.4 5.7721.41.8

0.620.635.962.40.554108.6 5.7561.41.9

0.520.635.962.50.554108.8 5.7791.41.9

0.720.535.762.30.556108.6 5.7661.51.7

0.620.535.862.40.556108.8 5.7321.51.8

0.520.635.962.50.556109.0 5.7351.41.9

0.420.635.962.60.556109.2 5.7771.41.9

0.620.435.762.40.558109.0 5.7331.61.7

0.520.535.862.50.558109.2 **5.7181.51.8

0.420.535.862.60.558109.4 5.7411.51.8

0.620.435.662.40.560109.2 5.7611.61.6

0.520.435.762.50.560109.4 5.7271.61.7

0.420.435.862.60.560109.6 5.7311.61.8

IHGFEDCBA

SSQDev_3Dev_2Dev_122.034.063.0KC0

0.520.535.862.50.557109.1 5.7231.51.8

0.420.535.862.60.557109.2 5.7351.51.8

0.420.635.962.60.557109.3 5.7551.41.9

0.620.535.762.40.558109.1 5.7211.51.7

0.520.535.862.50.558109.2 **5.7181.51.8

0.520.435.762.50.559109.3 5.7191.61.7

0.620.435.762.40.559109.1 5.7441.61.7

0.620.435.762.40.559109.2 5.7271.61.7

0.520.435.762.50.559109.3 5.7191.61.7

Columns C through I Copy Row 2 formulas through rows 3–17
Cell I18 = MIN(I2:I17) Minimum of SSQ values
Cell J2 = IF(I2 = I$18,”∗∗”,”“) Flags row if it contains minimum SSQ
Cell J3-J17 Copy formula from Cell

J2
Flags row with best C0 and K estimates
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Based on these results, it appears that the best estimate of C0 is near 100 and for K near 0.5. The
next iterations further refine the estimates.
Final Iteration: C0 range evaluated was 109.0–109.4 by 0.1; K was 0.556–0.560 by 0.001
The least-squares estimates, at the desired levels of precision, are C0 = 109.2 and K = 0.558.

This next example uses Excel’s built-in two-factor ANOVA, without replication, to evaluate the
tablet dissolution data given in Table 8.9.

Commands in Analyses
Columns A, B, C, D Enter dissolution values from Table 8.9.
Main Menu Tools → Data Analysis → Anova: Two-Factor without

Replication
Dialog Box

Input Range: Highlight or enter A1:D9
Labels: Click on this option
Alpha: Enter 0.05
Output Range Click on or enter A11
OK Click to perform calculations

Cell F3 = ABS(D23-D25)/SQRT(2∗D32/8) Calculate pair-wise t-test
Cell F4 = ABS(D24-D25)/SQRT(2∗D32/8)
Cell G3 = TDIST(F3,C32,2) Determine pair-wise p-value
Cell G4 = TDIST(F4,C32,2)

This next example uses Excel’s built-in two-factor ANOVA, with replication, to evaluate the
replicate tablet dissolution data given in Table 8.12.

Commands in Analyses
Columns A,B,C,D Enter dissolution values from Table 8.12.
Main Menu Tools → Data Analysis → Anova: Two-Factor with Replication
Dialog Box

Input Range: Highlight or enter A1:D17
Rows per sample: Enter 2
Alpha: Enter 0.05
New Worksheet Ply: Click on this option
OK Click to perform calculations
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Workbook 8.9 Two-Way Analysis of Variance of Tablet Dissolution Results

GFEDCBA

StandardGeneric BGeneric ALAB1

2 9483891 p-valuet-value

3 7875932 A vs Std 0.9270.09

4 8975873 B vs Std 0.0432.23

5 8576804

6 8477805

7 8473876

8 7580827

9 7577688

10

11 Anova: Two-Factor Without Replication

12

13 VarianceAverageSumCountSUMMARY

14 30.3333388.666666726631

15 938224632

16 57.3333383.666666725133

17 20.3333380.333333324134

18 12.3333380.333333324135

19 54.3333381.333333324436

20 137923737

21 22.3333373.333333322038

22

23 58.7857183.256668A

24 10776168B

25 45.14286836648STANDARD

26

27

28 ANOVA

29 F critP-valueFMSdfSSSource of
Variation

30 2.7641960.1394361.93179955.97619057391.8333Rows

31 3.738890.0602393.456861100.1666672200.3333Columns

32 28.976190514405.6667Error

33

34 23997.8333Total
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Workbook 8.12 Two-Way ANOVA of Replicated Dissolution Results (worksheet 1)

DCBA

StandardGeneric BGeneric ALab1

2 9381871

3 958591

4 7474902

5 827696

6 8472843

7 947890

8 8173754

9 897985

10 8076775

11 887883

12 8070856

13 887689

14 7174797

15 798685

16 7073658

17 808171

Workbook 8.12 Two-Way ANOVA of Replicated Dissolution Results (continued)

GFEDCBA

58

59 ANOVA

60 F critP-valueFMSdfSSSource of Variation

61 2.4226310.002314.569485111.95247783.6667Sample

62 3.4028320.0019598.176871200.33332400.6667Columns

63 2.1297950.0307792.36540357.9523814811.3333Interaction

64 24.524588Within

65

66 472583.667Total

67

68 3.738890.0602393.456861200.33332400.6667Drugs
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(New Worksheet Ply)

EDCBA

1 Anova: Two-Factor With Replication

2

3 TotalStandardGeneric BGeneric ASUMMARY

4 1

5 6222Count

6 532188166178Sum

7 88.66667948389Average

8 27.86667288Variance

xxxxxxxx)xxxxxxxxxxxxxxxxxxxxxxxx(Rows not shown)9–45

46 8

47 6222Count

48 440150154136Sum

49 73.33333757768Average

50 37.86667503218Variance

51

52 Total

53 161616Count

54 132812321332Sum

55 837783.25Average

56 59.620.6666765.26667Variance

Commands in Analyses
Cell A68 Enter “Drugs” Drugs effect is that for columns in the

ANOVA table
Cell B68 = B62 Drugs SS
Cell C68 = C62 Drugs degrees of freedom
Cell D68 = D62 Drugs MS
Cell E68 = D62/D63 F-ratio = Drugs MS/Interaction MS
Cell F68 = FINV(E68,2,14) p-value for Drugs F-ratio with 2 & 14

degrees of freedom
Cell G68 = FDIST(0.95,2,14) Critical F-distribution value with 2 & 14

degrees of freedom

Notes on Interpretation
The analysis for Drugs in row 68 is based on the assumption that Drugs is a fixed effect and
Laboratories (Rows) is a random effect. The analysis in row 62 for the Column (Drugs) effect
assumes that both Drugs and Laboratories are fixed effects. If the laboratories are a random
sample of all the available laboratories and the results are to be generalized to all laboratories,
then use the row 68 results. If the eight laboratories are the only ones of interest, then the results
in row 62 should be used.
The next workbook shows how to perform an Analysis of Covariance using the data from Table
8.18. In this example, two different manufacturing methods (I and II) were used to produce four
lots of products whose potency and raw material potency are shown.
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Workbook 8.18 Analysis of Covariance to Compare Two Methods (worksheet 1)

FEDCBA

ProductMaterialMeth2MIIMIMethod1

2 98.098.40098.4I

3 97.898.60098.6I

4 98.598.60098.6I

5 97.499.20099.2I

6 97.698.7198.70II

7 95.499.01990II

8 96.199.3199.30II

9 96.198.4198.40II

10

Mean11 98.775

IAdj Meanp-valueF-parallel12 97.8639

13 0.9250.010 II 96.3611

Diff (II-I)14 1.50278

p-value15 0.036637

Intercept IIIntercpt ISlope16

17 176.8444178.34720.81481

Commands in Analyses
Columns A, E and F Enter Method, Material and Product values from Table 8.18.
Column B Copy Method I values into rows 2–5, enter 0 elsewhere.
Column C Copy Method II values into rows 6–9, enter 0 elsewhere.
Column D Enter 0 for Method I row and 1 for Method II row.
Cell E11 = AVERAGE(E2:E9) Mean for Material values.
Main Menu Tools → Data Analysis → Regression (ANOVA for separate lines)
Dialog Box

Input Y Range: Highlight or enter F1:F9
Input X Range: Highlight or enter B1:D9
Labels: Click on this option
New Worksheet Ply: Click on this box
OK Click to perform calculations

Main Menu Tools → Data Analysis → Regression (ANOVA for parallel lines)
Dialog Box

Input Y Range: Highlight or enter F1:F9
Input X Range: Highlight or enter D1:E9
Labels: Click on this option
New Worksheet Ply: Click on this box
OK Click to perform calculations

Cell A17 Copy slope (Material coefficient) from parallel lines Worksheet
Cell B17 Copy Intercept coefficient from same Worksheet
Cell C17 = B17 + coefficient for Meth2 from parallel lines Worksheet
Cell F12 = B17 + E11∗A17
Cell F13 = C17 + E11∗A17
Cell F14 = F12-F13 Difference between adjusted Method means
Cell F15 p-value for difference from Meth2 in parallel lines Worksheet
Cell A13 = (SS resid. parallel lines – SS resid. separate lines)/(SS resid

separate/4)
Cell B13 = FDIST(A13,1,4)
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Workbook 8.18 Analysis of Covariance to Compare Two Methods (section of worksheet ply for separate
lines)

EDCBA

10 ANOVA

11 FMSSSdf

12 2.9168857181.9419166675.825753Regression

13 4Residual 2.663 0.66575

14 8.488757Total

15

16 P-valuet StatStandard ErrorCoefficients

17 0.2330939061.403645386134.2219351188.4Intercept

18 MI 1.3598917440.916666667 0.5372130.674073264

19 MII 1.2163241530.733333333 0.5790837540.602909456

20 Meth2 180.199398219.61 0.9185828250.108823893

Notes on Analyses (separate lines)

Cell C13 contains the residual SS for separate lines (2.663) to be used in the test for parallelism
(Cell A13 in Worksheet 1). The Intercept (188.4 in B17) is the intercept for the Method I line. The
slope for the Method I line is the coefficient for MI (– 0.917 in B18). The intercept for Method II
is the addition of the coefficient for Meth2 (B20) to the Method I intercept (B17), which is 188.4–
19.6 = 168.8. The slope for the Method II line is the coefficient for MII (-0.733 in B19).

(section of worksheet ply for parallel lines)

EDCBA

10 ANOVA

11 FMSSSdf

12 5.4490952.9095145.8190282Regression

13 5Residual 2.669722 0.533944

14 8.488757Total

15

16 P-valuet StatStandard ErrorCoefficients

17 0.0765912.22555980.13591178.3472Intercept

18 Meth2 1.50278 0.530852 2.83088 0.036637

19 Material 0.8119060.81481 0.3616461.00358

Notes on Analyses (parallel lines)

Cell C13 contains the residual SS for parallel lines (2.67) to be used in the test for parallelism
(Cell A13 in Worksheet 1). The coefficient for the Intercept (178.3 in B17) is the intercept for the
Method I line. The coefficient for the intercept of Meth2 is the difference between the intercepts
for Methods I and II (value −1.50 in B18) which, because the two lines are parallel, is also
the difference between the two methods. We estimate that Method II is 1.50 units lower than
Method I with the p-value for this difference (0.0366 in E18) being statistically significant at the
0.05 level. The common slope for the parallel lines for the two methods is given by the coefficient
for Material (−0.815 in B19).
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The next example is taken from Table 9.2. Here we analyze the results from a 23 factorial
experiment to determine the effect of three components upon the thickness of a tablet.

Workbook 9.2 Evaluation of Results from a 23 Factorial Experiment (worksheet 1)

HGFEDCBA

ResponseABCBCACABStarch (C)Drug (B)Stearate (A)1

2 4750000000

3 4870000001

4 4210000010

5 4260002011

6 5250000100

7 5460020101

8 4720200110

9 5224222111

Commands in Analyses
Column H Enter response values from Table 9.2.
Columns A, B, C Enter a 0 where Table 9.2 has a “ − “ and a 1 where there is a “+”
Cell D2 = 2∗A2∗B2 Design entry for Stearate-Drug interaction
Cells D3-D9 Copy formula from D2
Cell E2 = 2∗A2∗C2 Design entry for Stearate-Starch

interaction
Cells E3-E9 Copy formula from E2
Cell F2 = 2∗B2∗C2 Design entry for Drug-Starch interaction
Cells F3-F9 Copy formula from F2
Cell G2 = 4∗A2∗B2∗C2 Design entry for 3-way interaction
Cells G3-G9 Copy formula from G2
Main Menu Tools → Data Analysis → Regression (Estimate Main Effects)
Dialog Box

Input Y Range: Highlight or enter H1:H9

Workbook 9.2 Evaluation of Results from a 23 Factorial Experiment (main effects worksheet)

FEDCBA

10 ANOVA

11 Significance FFMSSSDf

12 0.00513523.918354589.333137683Regression

13 191.875767.54Residual

14 14535.57Total

15

16 Lower 95%P-valuet StatStandard ErrorCoefficients

17 438.05531.18E-0647.499849.794769465.25Intercept

18 Stearate (A) 22 0.0880252.2460979.794769 5.19469

19 Drug (B) 48 9.794769 0.0080414.90057 75.1947

20 Starch (C) 64 36.805310.0028346.53419.794769

MS21

968A22

4608B23

8192C24



Excel Workbooks and SAS Programs 527

Input X Range: Highlight or enter A1:C9
Labels: Click on this option
New Worksheet
Ply: Click on this box
OK Click to perform calculations

Rename New Worksheet “Main Effects”
Main Menu Tools → Data Analysis → Regression (Estimate 2-Factor Interactions)
Dialog Box

Input Y Range: Highlight or enter H1:H9
Input X Range: Highlight or enter A1:F9
Labels: Click on this option
New Worksheet
Ply: Click on this box
OK Click to perform calculations

Rename New Worksheet “Interaction”
Repeat Regression Analysis with Input “X” Range as A1:G9 to obtain estimate for A∗B∗C

interaction

Commands in Analyses (Main Effects Worksheet)
Cell B22 = D18∗D18∗D13
Cell B23 = D19∗D19∗D13
Cell B24 = D20∗D20∗D13

(2-factor interactions worksheet)

FEDCBA

10 ANOVA

11 Significance FFMSSSdf

12 0.74788760.622942100.9167605.56Regression

13 1621Residual 162

14 767.57Total

15

16 Lower 95%P-valuet StatStandard ErrorCoefficients

17 0.4430971.19688711.9058814.25Intercept 137.02791

18 Stearate (A) 15.5884619 0.4374111.21885 217.06928

19 Drug (B) 15.5884615 0.5122460.96225 213.06928

20 Starch (C) 15.5884623 0.3791981.47545 221.06928

21 AB 5.5 0.6507830.6111119 108.85535

22 AC 13.5 0.3743341.59 100.85535

23 BC 9.5 0.4827981.0555569 104.85535

MS24

60.5AB25

364.5AC26

180.5BC27
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Commands in Analyses (2 factor interactions worksheet)
Cell B25 = D21∗D21∗D13
Cell B26 = D22∗D22∗D13
Cell B27 = D23∗D23∗D13

(worksheet 1 continued)

GFEDCBA

p-valueFMSSSDfEstimateEffect11

A12 0.07487.2968968122

B13 0.009934.346084608148

C14 0.004461.081928192164

AB15 60.560.515.5

AC16 0.19812.7364.5364.5113.5

BC17 180.5180.519.5

ABC18 16216219

Error19 134.33334033

Commands in Analyses (ANOVA similar to Table 9.5)
Column A Enter Effect Names
Column B Values are coefficients from Main Effects & Interactions Worksheets

Coefficient for ABC is from regression including all effects (Wrksht not
shown).

Column C Enter 1 for all effects except Error. Enter 3 for Error.
Cells E12-E17 Enter values from Main Effects & 2-Factor Interaction Worksheets
Cell E18 Enter value for Residual MS from Cell D13 of 2-Factor Interaction

Worksheet
Cell D12-D18 Enter same values that are in Cells E12-E18
Cell D19 = SUM(D15,D17,D18) Error term is chosen to be sum of AB, BC & ABC

terms
Cell E19 = D19/C19 MS = SS/df
Cell F12 = E12/E$19 F = Effect MS/Error MS
Cells F13, F14, F16 Copy formula from F12
Cell G12 = FDIST(F12, 1,3) p-value for Effect from

F-distribution
Cell G13,G14,G16 Copy formula from G12

Section 11.5 presents how to perform repeated measures Analysis of Variance. The methods
used in the analysis are illustrated using the results of a comparison of two antihypertensive
drugs. One group of patients received the standard drug and a second group the new drug.
Diastolic blood pressure was recorded for each patient prior to treatment (baseline) and then at
2, 4, 6, and 8 weeks after treatment. The results, presented in Table 11.22, are analyzed in the
following workbook.

Commands in Analyses
Cells A3-F10 Enter patient numbers and diastolic blood pressures from Table 11.22
Cells A15-A22 Copy patient numbers from Cells A3:A10
Cell B15 = C3-$B3 Calculates change from baseline
Cells B16-B22 Copy formula from Cell B15
Cells C15-E22 Copy formula from B15 through B22
Cell B25 = Sum(B15:B22) Sum of changes at Week 2
Cells C25-E25 Copy formula from Cell B25
Cell F25 = Sum(B25:E25) Sum of changes for all weeks
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Worksheet 11.22 Comparison of Two Antihypertensive Drugs (worksheet 1)

FEDCBA

Standard Drug1

Wk 8Wk 6Wk 4Wk 2BaselinePatient2

3 9386971061021

4 101991021031052

5 88889695995

6 98981021021059

7 1029110110810813

8 97999710110415

9 1019710010310617

10 9399969710018

Wk 8Wk 6Wk 4Wk 2Patient14

15 41 5 16 9

16 2 2 3 6 4

17 5 4 3 11 11

18 9 3 3 7 7

19 013 7 17 6

20 15 3 7 5 7

21 17 3 6 9 5

22 18 3 4 1 7

23

24 Standard

25 Sum 14 38 72 56 180

26

Section for New Drug (not shown):

Cells H2:M2 Enter or Copy the headings in cells A2-F2
Cell K1 Enter heading “New” for New Drug
Cells H3-M11 Enter New Drug patient numbers and diastolic readings
Cell 115 = J3-$13 Calculate changes from baseline
Cells 116–123 Copy formula from Cell 115
Cells J15-L23 Copy formulas from 115 through 123
Cell 125 = Sum(I15:123) New drug sum of changes Week 2
Cells J25-L25 Copy formula from Cell 115
Cell M25 = Sum(I25:L25) New drug sum of changes all

weeks
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(section of analyses shown in Tables 11.24 and 11.25)

GFEDCBA

27 ANOVA Standard ANOVA New

28 dfSSSourcedfSSSource

29 8114.2222Rows757.5Rows

30 3486.9722Columns3232.5Columns

31 24407.7778Error21255.5Error

32

33 351008.972Total31545.5Total

34

p-valueFMSSSdfSourceCT35

36 11.45171.7215Patients3750.368

37 223.23669.693Weeks

38 0.000917.13196.16196.161Drugs

39 WK 0.34871.1316.5949.783Drug

40 14.74663.2845Error

41 1750.6367Total

Commands in Analyses
Main Menu Tools → Data Analysis → Anova: Two-Factor Without Replication
Dialog Box

Input Range: Highlight or enter B15:E22
Alpha Level Enter or accept default value of 0.05
New Worksheet
Ply:

Click on this box

OK Click to perform calculations
(Copy ANOVA values from new worksheet to main Worksheet 1)

Cells B27-G33 Copy from cells A19-C25 of new worksheet to get Source, SS & df
Main Menu Tools → Data Analysis → Anova: Two-Factor Without Replication
Dialog Box

Input Range: Highlight or enter I15:L23 (New Drug data not shown)
Alpha Level Enter or accept default value of 0.05
New Worksheet
Ply:

Click on this box

OK Click to perform calculations
(Copy ANOVA values from new worksheet to main worksheet 1)

Cells E27-G33 Copy from Cells A19-C25 of new worksheet to get Source, SS & df
Cells A35-G35 Enter Headings CT, Source, df, SS, MS, F and p-value
Cells B36-B41 Enter Source names
Cell A36 = POWER(F25 + M25,2)/68 Correction Term
Cell C36 15 (Combined row df for Standard and New Drugs)
Cell C37 3 (number of weeks – 1)
Cell C38 1 (number of drugs – 1)
Cell C39 = 3∗1 (Product of Week df and Drugs df)
Cell C41 = 4∗17–1 (#Weeks ∗#Patients – 1)
Cell C40 = 67 – 15 – 3 – 1 – 3 (error df = Total-Patients-Drugs-WeeksxDrugs)
Cell D36 = B29 + F29 (Combined Row SS for Standard and New Drugs)
Cell D37 = (SUMSQ((B25 + I25),(C25 + J25),(D25 + K25),(E25 +

L25))/17)-A36
Cell D38 = F25∗F25/32 + M25∗M25/36 – A36
Cell D39 = B30 + F30-D37
Cell D40 = B31 + F31 (Combined Error SS for Standard and New Drugs)
Cell D41 = SUM(D36:D40) (Total SS = Sum of all other SS)
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Cell E36 = D36/C36 (MS = SS/df)
Cell E37-E40 Copy formula from Cell E36
Cell F38 = E38/E36 (F = MSeffect/MSerror Drugs uses MS Patients as error

term)
Cell F39 = E39/E40 (F value for Weeks x Drugs using ANOVA error term)
Cell G38 = FDIST(F38,1,15) (p-value for F with 1 df & 15 df)
Cell G39 = FDIST(F39,3,45)

Table 12.2 shows the average weights of 50 tablets from 30 batches of a tablet product.
In the next example, Excel is used to calculate the three-batch moving average for the

weights. These results are then used to construct a control plot of the moving averages along
with their upper and lower control limits.

Workbook 12.2 Average Weight of 50 Tablets from 30 Batches of a Product

GFEDCBA

HighLowMeanRangeMove AveAverageBatch1

2 402.397397.603400.00

3 N/A398.41

4 N/A399.52

5 1.1398.9398.83

6 2.1398.6397.44

7 5.3399.6402.75

Rows 8–26 not shown

27 3.1399.5398.425

28 0.4398.6398.826

29 1.5399.0399.927

30 2.1399.9400.928

31 1.0400.2399.929

32 1.4400.1399.530

33 402.397397.603400.031

34 2.35400.0Mean

Commands in Analyses
Data Entry: Enter Batch numbers and averages from Table 12.2 into columns A and B,

adding a Batch 0 and 31 for graphing purposes.
Cell C5 = Average(B3:B5) Average of first 3 batches
Cell C6-C32 Copy formula from Cell C5
Cell D5 = MAX(B3:B5)-MIN(B3: B5) Range (Max-Min) of first 3 batches
Cell D6-D32 Copy formula from Cell D5
Cell B34 = Average(B3:B32) Average of the 30 batches
Cell D34 Copy formula from Cell B34 Average of moving ranges
Cell E33 = B34
Cell F33 = $E$33 – 1.02∗$D$34 Lower Limit using factor (1.02)

from Table IV.10
Cell G33 = $E$33 + 1.02∗$D$34 Upper Limit using factor (1.02)

from Table IV.10
Cell E2 = E33
Cell F2 = F33
Cell G2 = G33
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Click on Chart Wizard and choose to create a XY scatter plot.
Click Next and then click on Series Tab, then on Add.
Click on worksheet icon for X-values.
Choose cells A2 through A33, click icon to accept this range.
For Y-values, click worksheet icon, choose cells C2 through C33.
Click Add for Series 2. X-values are A2 through A33. Y-values F2 through F33.
Click Add for Series 3. X-values are A2 through A33. Y-values are G2 through G33.
Click Add for Series 3. X-values are A2 through A33. Y-values are E2 through E33.
Click Next and add chart title, X and Y axes labels.
Click Legend tab and remove check mark on Show Legend (by clicking it).
Click tab for Gridlines and make sure all choices are blank.
Click Next and choose the name Plot for the New Worksheet for the chart.
Click on Plot Area and choose None for fill effects.
On Main Menu click Tools, Options & Chart.
Choose to plot empty cells as Interpolated.
Click on Lower & Upper limit points and set symbol to None and line to a dashed, black, custom

line.
Click on Mean point and set symbol to None and line to a solid, black, custom line.
Click on an X-axis number and then on the Scale tab.
Set Minimum = 0, Maximum = 31, Major Unit = 1.
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In the next example, the assay results for a sample of theee tablets from four different batches
of a product, as shown in Table 12.9, are used to demonstrate how to calculate the variance
components. The experiment was a nested design in which the total variance can be divided
into its components of between batches, between tablets within batch, and between assays
within tablets.

Workbook 12.9 Determination of Variance Components in a Nested Design

GFEDCBA

1 dfSSQAssay 3Assay 2Assay1TabletBatch

2 20.04666750.850.550.61A

3 20.18666748.548.949.12

4 20.0651.451.151.13

5 20.6249.449.050.11B

6 20.28666751.650.951.02

7 20.0849.850.050.23

8 20.08666751.851.751.41C

9 20.28666751.452.052.12

10 20.32666751.651.951.13

11 20.16666748.549.049.01D

12 20.10666747.647.647.22

13 20.24666749.248.548.93

Total 14 242.5

MS 15 0.104167

16

DCBA17

18 48.8351.6349.5050.63

19 47.4751.8351.1748.83

20 48.8751.5350.0051.20

Commands in Analyses
Column A,B,C,D,E Enter values from Table 12.9 into rows 1 through 13
Cell G2 Enter 2 Assay degrees of freedom for

Tablet
Cells G3-G13 Copy G2 value
Cell F2 = G2∗VARA(C2:E2) Assay SS for Tablet
Cells F3:F13 Copy formula from F2
Cell F14 = Sum(F2:F13) Pooled within-tablet assay SS
Cells G14 Copy formula from F14 Pooled degrees of freedom for

assay
Cell F15 = F14/G14 MS = SS/df
Cell A18 = Average (C2:E2) Tablet 1, Batch A average
Cells A19:A20) Copy formula from A18 Tablets 2 & 3 averages, Batch A
Cell B18 = Average(C5:E5) Tablet 1, Batch B average
Cells B19:B20) Copy formula from B18
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Cell C18 = Average(C8:E8) Tablet 1, Batch C average
Cells C19:C20) Copy formula from C18
Cell D18 = Average(C11:E11) Tablet 1, Batch D average
Cells D19:D20) Copy formula from D18

Workbook 12.9 Determination of Variance Components in a Nested Design (continuation of worksheet)

GFEDCBA

32 ANOVA

33 F critP-valueFMSdfSSSource of Variation

34 4.066180.010717.4105785.409722316.22917Between Groups

35 0.7385.84Within Groups

36

37 1122.06917Total

CorrectCorrect38

S w39 2 MSSS0.104167

S t40 2 Between0.695278 16.2291748.6875

S b41 2 Within1.559907 2.19017.52

Commands in Analyses
Main Menu Tools → Data Analysis →Anova: Single Factor
Dialog Box

Input Range: Highlight or enter A17:D20
Labels: Click on this option
Output Range: Highlight or enter A32
OK Click to perform calculations

Cell F40 = 3∗B34 SS individual = 3 ∗ SS of means
Cell F41 Copy formula from F40
Cell G40 = F40/C34 MS Between Batches
Cell G41 Copy formula from G40 MS Between Tablets (within

batch)
Cell B39 = F15 Between-Assay (within tablet)

Variance
Cell B40 = (1/3)∗(G41-B39) Between-Tablet (within batch)

Variance
Cell B41 = (1/9)∗(G40-G41) Between-Batch Variance

In the next example, the Day 1 calibration curve results (Peak Area vs. Concentration) from
Table 13.8 are used to demonstrate how to obtain the weighted linear regression analysis shown
in Table 13.10.
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Workbook 13.10 Weighted Linear Regression Analysis

HGFEDCBA

wt(Y-Ym)**2wt*X*Ywt*Ywt*X*Xwt*XwtYX1

2 0.0009360.061.21204000.0030.05

3 0.0001120.081.61204000.0040.05

4 0.0032890.080.415250.0160.20

5 0.0045360.090.4515250.0180.20

6 0.0069670.0880.0881110.0881.00

7 0.0080050.0940.0941110.0941.00

8 0.0083810.0920.009210.10.010.92010.00

9 0.0080370.09010.0090110.10.010.90110.00

10 0.0085980.092950.004647510.050.00251.85920.00

11 0.0083030.091350.004567510.050.00251.82720.00

12

Sum13 0.0571640.85843.8594251052.3852.025

Ym 14 0.0045297

Slope15 0.09154

Intercept16 0.00109

17

Commands in Analyses
Columns A and B Enter Day 1 values from Table 13.8 (X = Conc, Y = Area)
Cell C2 = 1/(A2∧2) Weight is 1/(X∗X)
Cells C3-C11 Copy formula from C2
Cell D2 = C2∗A2 Weight∗X = 1/X
Cells D3:D11 Copy formula from D2
Cell E2 = D2∗A2 Weight∗X∗X = 1
Cells E3:E11 Copy formula from E2
Cell F2 = C2∗B2 Weight∗Y = Y/X
Cells F3:F11 Copy formula from F2
Cell G2 = D2∗B2 Weight∗X∗Y
Cells G3:G11 Copy formula from G2
Cell C13 = SUM(C2:C11) �wt
Cell D13 = SUM(D2:D11) �(wt∗X)
Cell E13 = SUM(E2:E11) �(wt∗X2)
Cell F13 = SUM(F2:F11) �(wt∗Y)
Cell G13 = SUM(G2:G11) �(wt∗X∗Y)
Cell F14 = (SUM(F2:F12))/C13 Weighted mean for Y (Ym)
Cell H2 = C2∗(B2-$F$14)∧2 wt∗(Y-Ym)2

Cells H3:H11 Copy formula from H2
Cell H13 = SUM(H2:H11) �(wt∗(Y-Ym)2)
Cell B15 = (G13-((D13∗F13)/C13))/(E13-

((D13∗D13)/C13))
Cell B16 = (F13-(B15∗D13))/C13
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(continuation of worksheet)

GFEDCBA

wt(Y-Yav)**2wt(Yav-Yp)**2Yavwt(Y-Yp)**2YpYX18

19 0.0001000.00000010.0035000.0000950.0030.0030.05

20 0.0001000.00000010.0035000.0001050.0030.0040.05

21 0.0000250.00000120.0170000.0000370.0170.0160.20

22 0.0000250.00000120.0170000.0000150.0170.0180.20

23 0.0000090.00000030.0910000.0000060.0900.0881.00

24 0.0000090.00000030.0910000.0000130.0900.0941.00

25 0.0000010.00000010.9105000.0000000.9140.92010.00

26 0.0000010.00000010.9105000.0000020.9140.90110.00

27 0.0000010.00000041.8430000.0000021.8301.85920.00

28 0.0000010.00000041.8430000.0000001.8301.82720.00

29

SUM30 0.00027110.00000430.0002754

31

Commands in Analyses
Columns A and B Copy values from rows 2–11.
Cell C19 = $B$16 + $A19∗$B$15 Predicted Y value (Yp)
Cell C20-C28 Copy formula from C19
Cell D19 = (1/(A19∗A19))∗(B19-

C19)ˆ2
wt∗(Y-Yp)2

Cells D20:D28 Copy formula from D19
Cells E19 and E20 = (B$19 + B$20)/2 Average Y value: X = 0.05 (Yav)
Cells E21 and E22 = (B$21 + B$22)/2 X = 0.20
Cells E23 and E24 = (B$23 + B$24)/2 X = 1.00
Cells E25 and E26 = (B$25 + B$26)/2 X = 10.0
Cells E27 and E28 = (B$27 + B$28)/2 X = 20.0
Cell F19 = (1/(A19∗A19))∗(E19-

C19)∧2
wt∗(Yav-Yp)2

Cells F20-F28 Copy Formula from F19
Cell G19 = (1/(A19∗A19))∗(B19-

E19)∧2
wt∗(Y-Yav)2

Cells G20-G28 Copy Formula from G19
Cell D30 = SUM(D19:D28) $SMwt∗(Y-Yp)2

Cell F30 = SUM(F19:F28) $SMwt∗(Yav-Yp)2

Cell G30 = SUM(G19:G28) $SMwt∗(Y-Yav)2
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Workbook 13.10 Creation of ANOVA Table 13.10

GFEDCBA

31

FMSSSdfSource32

Slope33 1652.70.05688910.0568891

Error34 0.00003440.0002758

Dev Reg35 0.030.00000140.0000043

Within36 0.00005420.0002715

Total37 0.0571649

38

Commands in Analyses
Cell C37 = 10–1 Number of (x,y) pairs – 1
Cell C33 Enter 1 Slope has a single degree of freedom
Cell C34 = C37-C33 Total df – Slope df
Cell C36 Enter 5 5 concentrations that have duplicate values
Cell C35 = C34-C36 Error df – Within df
Cell D37 = H13 �(wt∗(Y-Ym)2)
Cell D34 = D30 �(wt∗(Y-Yp)2)
Cell D33 = D37-D34 Total SS – Error SS
Cell D35 = F30 �(wt∗(Yav-Yp)2)
Cell D36 = G30 �(wt∗(Y-Yav)2)
Cell E33 = D33/C33 SS/df
Cells E34-E36 Copy formula from E33
Cell F33 = E33/E34
Cell F35 = E35/E36

The next set of programs are from Chapter 15, Nonparametric Methods. These programs use
only the basic mathematical and sorting functions of Excel.

The first of these examples uses the paired time to peak concentration results from a
comparative bioavailability study in 12 subjects. The analysis of the data, shown in Table 15.3,
is based on the differences between the results for two oral formulations of a drug, A and B.
The program implements the Wilcoxon Signed Rank Test shown in Table 15.4.

Commands in Analyses
Columns A, B and C Enter values from Table 15.3.
Cell D2 = C2-B2 Calculates B-A difference
Cells D3-D13 Copy D2
Cell E2 = ABS(D2) Absolute value of difference
Cells E3-E13 Copy E2
Cell F2 = E2/D2 + 1 if difference >0; – 1 if

difference <0
Cells F3-F12 Copy F2
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Workbook 15.4 Wilcoxon Signed Rank Test Analysis of Table 15.3 Data

FEDCBA

Sign(B-A)Abs(B-A)B-ABASubject1

2 1113.52.51

3 111432

4 11.251.252.51.253

5 10.250.2521.754

6 #DIV/0!003.53.55

7 11.51.542.56

8 1.51.757 0.250.25 1

9 10.250.252.52.258

10 33.59 0.50.5 1

11 10.50.532.510

12 11.51.53.5211

13 10.50.543.512

(worksheet contined)

MLKJIHG

NegativePositiveSignRankRankSortSignSortValIndex1

2 22210.251

3 0.252 21 22

4 22210.253

5 0.54 51 55

6 55510.55

7 55510.56

8 7.57.57.5117

9 7.57.57.5118

10 99911.259

11 10.510.510.511.510

12 10.510.510.511.511

N13 11 Sum 759

Z14 2.312

p-value15 0.021
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Commands in Analyses
Column G Enter the count of the non-zero differences.
Cells H2-H12 Copy nonzero values from Cells E2-E13 using Paste Special, Values

option.
Cells 12-I12 Copy corresponding values from cells F2-F13 (Paste Special, Values).
Cells H2-I12 Highlight this Range of cells and under Data choose to sort this

selection by column H.
Cell J2-J12 Enter number in column G unless the number in column H is tied

with another in column H. Use the average G number for the ties.
For example, Cells J2, J3 and J4 get the number 2 because their H
value, 0.25, is a three-way tie for index numbers 1, 2 and 3.

Cell K2 = I2∗J2 Signed Rank
Cells K3-K12 Copy formula from K2
Cell L2 = IF(K2 > 0,J2,” “) Enters rank if sign is positive
Cells L3-L12 Copy formula from L2
Cell M2 = IF(K2 < 0,J2,” “) Enters rank if sign is negative
Cells M3-M12 Copy formula from M2
Cell I13 = COUNT(12:I12) Determines N, the number of

signed ranks
Cell L13 = SUM(L2:L12) Sum of ranks with positive signs
Cell M13 = SUM(M2:M12) Sum of ranks with negative

signs
Cell L14 = ABS(L13-I13∗(I13 + 1)/4)/SQRT(I13∗(I13 + 0.5)∗(I13 + 1)/12)
Cell L15 = 2∗(1-NORMSDIST(L14))

Using the Peak Concentration (Cmax) results from a two-way, crossover Bioequivalence study,
a method for calculating a nonparametric confidence interval on the mean treatment ratio is
shown in the following example.

Commands in Analyses
Columns A, B, and C Enter values from Table 15.6 into rows 2–13.
Cell D2 = C2/B2 Calculates B/A Ratio
Cells D3-D13 Copy formula from D2
Cell D16 = 1/12 Power for Geometric Mean
Cell D15 = Product(D2:D13) Product of Ratios
Cell D17 = Power(D15,D16) Product to 1/12th power is

Geom. Mean Ratio
Cells E1-L1 Enter Column Labels.
Cells J2, J3 Enter 95% and 90%. Level of Confidence Interval

for row
Column E Start in row 2 (Subject) and enter number 1 twelve times, 2 eleven

times, 3 ten times, 4 nine times, etc., until 12 is entered into row
79. These numbers represent the first Subject for each pair.

Column F Starting in row 2, enter Subject numbers 1–12, next numbers 2–12,
next 3–12, next 4–12, etc., until 12 is entered into row 79. These
represent the second Subject for each pair.
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Workbook 15.6 Nonparametric Confidence Interval for Cmax

DCBA

B/ABASubject1

2 0.7555561021351

3 0.8212291471792

4 3.8118813851013

5 0.9724771061094

6 1.3695651891385

7 0.7777781051356

8 0.8227851301587

9 0.8012821251568

10 0.8275861441749

11 0.90476213314710

12 0.78620711414511

13 1.13605416714712

14

Product 15 1.080296

1/1216 0.083333

Mean Geometric17 1.006457

Cell G2 = POWER($D$2∗D2,0.5) Geometric mean of Subject 1 ratio
paired with itself

Cells G3-G13 Copy G2 formula Geometric mean ratio of Subject 1
with all others

Cell G14 = POWER($D$3∗D3,0.5) Geometric mean of Subject 2 ratio
paired with itself

Cells G15-G24 Copy G14 formula Geometric mean of Subject 2 with
Subjects 3–12

Cell G25 = POWER($D$4∗D4,0.5) Geometric mean of Subject3 ratio
paired with itself

Cells G26-G34 Copy G25 formula Geometric mean of Subject 3 with
Subjects 4–12

Cells G35-G79 Continue as above for remaining paired subject ratios.
Cells H2-H3 Enter index numbers 1 & 2 The number for the geometric mean (after

sorting)
Cells H4-H79 Highlight Cells H2-H3 and drag copy to obtain index numbers 3–78
Column I Highlight Cells G2-G79

Choose Copy under Edit on Main Menu toolbar.
Place cursor in Cell I2 and then choose Paste Special under Edit on

Main Menu
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(worksheet contined)

LKJIHGFE

HighLowConfidenceSortedIndexGeomean2nd Subj1st Subj1

2 1.2470.80095%0.75555610.75555611

3 1.0650.80490%0.76658620.78770821

4 0.77072931.69708231

5 0.77777840.85718241

6 0.77808351.01724351

7 0.78198160.76658661

8 0.78620770.78845471

9 0.78770880.77808381

10 0.78845490.79075191

11 0.789442100.8268101

12 0.790751110.770729111

13 0.793709120.926473121

14 0.799208130.82122922

15 0.799965141.76930132

Rows 16–74 not shown

75 1.857107740.8434041110

76 1.925349751.0138341210

77 2.080986760.7862071111

78 2.284868770.9450791211

79 3.811881781.1360541212

In Paste Special dialog box, choose to paste Values and then click OK
Next Highlight all entries in Column I
Choose Sort under Data on Main Menu.
Choose to stay with the current selection when prompted about

expanding.
Choose Sort, Ascending for the column labeled “Sorted.”
Click OK.

Use Table 15.5 to obtain the ranking numbers for the upper and lower confidence interval limits

Cell K2 = I15 Lower 95% CI limit is 14th ranked geometric mean ratio
Cell L2 = I66 Upper 95% CI limit is 65th ranked geometric mean ratio
Cell K3 = I19 Lower 90% CI limit is 18th ranked geometric mean ratio
Cell L3 = I62 Upper 90% CI limit is 61 st ranked geometric mean ratio
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Workbook 15.8 Wilcoxon Rank Sum Test for Differences Between Two Independent Groups

HGFEDCBA

M RankO RankRankSortedAppIndexDissolvedApparatus1

2 1150O153O

3 2252O261O

4 3353O357O

5 4454O450O

6 5.55.555M563O

7 5.55.555M662O

8 7756M754O

9 9957O852O

10 9957O959O

11 9957M1057O

12 111158M1164O

13 12.512.559O1258M

14 12.512.559M1355M

15 141461O1467M

16 15.515.562O1562M

17 15.515.562M1655M

18 171763O1764M

19 18.518.564O1866M

20 18.518.564M1959M

21 202066M2068M

22 212167M2157M

23 222268M2269M

24 232369M2356M

N 25 1211

Sum 26 170.5105.5

Z 27 1.631

p-value 28 0.103

The next example demonstrates how to perform the Wilcoxon Rank Sum Test for comparing
the differences between two independent groups. In this example, Excel is used to perform the
necessary calculations on the tablet dissolution results given in Table 15.8. The results from a
modified dissolution apparatus are compared with those obtained from the original apparatus
to see if they are statistically different from each other.
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Commands in Analysis
Columns A & B Enter apparatus and dissolution results from Table 15.8.
Column C Enter the index numbers 1 through 23.
Column D & E Copy values from Column A & B.

Highlight D2 through E24.
From Main Menu Toolbar, choose Data and then Sort.
Sort by column “Sorter”, in ascending order, indicating

there is a Header Row.
Cell F2 = C2 Rank for E2, a unique number in col.
Cell Fx Copy F2 formula for each row, x, for each Ex that is unique.
Cells F6 & F7 = AVERAGE(C6:C7) Rank for tied E values (2).
Cell Fx & Fy Copy F6 formula to consecutive Ex & Ey ties of size 2.
Cells F9,F10,F11 = AVERAGE(C9:C11) Rank for tied E values (3).

Commands in Analyses (continued
Cell G2 = IF(D2 = “O”, F2, ““) Enters rank for original apparatus O.
Cells G3:G24 Copy G2 formula
Cell H2 = IF(D2 = “M”, F2, ““) Enters rank for modified apparatus.
Cells H3:H24 Copy H2 formula
Cell G25 = COUNT(G2:G24) # of original apparatus values.
Cell H25 = COUNT(H2:H24) # of modified apparatus values.
Cell G26 = SUM(G2:G24) Original apparatus Rank Sum.
Cell H26 = SUM(H2:H24) Modified apparatus Rank Sum.
Cell G27 = (ABS(G26-(G25∗(G25 + H25 + 1))/2))/(SQRT(G25∗H25∗

(G25 + H25 + 1)/12))
Cell G28 = 2∗(1-NORMSDIST(G27)) 2-sided p-value for G27 Z-val

Next we analyze the time-to-sleep values (Table 15.10) from one group of rats given a low dose
(L) of an experimental drug, a second group a high dose (H), and a third a dose of a control,
sedative (C).

Commands in Analyses
Columns A & B Enter compound id & time-to-sleep values from Table 15.10
Column C Enter the index numbers 1 through 29
Cells D2-D30 Copy values from A2-A30
Cells E2-E30 Copy values from B2-B30.

Highlight D1 through E30.
From Main Menu Toolbar, choose Data and then Sort.
Sort by column "Sorter", in ascending order, indicating there is a

Header Row.
Cells F2-F30 = Cn n = 1–30; If En is a unique value (e. g. F13 =

C13)
= AVERAGE(Cx:Cy), for the Ex to Ey equal values (ties)

e.g. F2-F7 = AVERAGE(C2: C7).
Cells G2-G30 In first cell for a group of tied ranks in F, put # of tied values.
Cell E32 = COUNT(E2:E30) number of values.
Cell Hn = Gn∗(Gn∗Gn-1)/($E$32∗($E$32∗$E$32–1)) for each n, where there is

an entry in cell Gn.
This is the correction factor for the group Gn of ties.
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Workbook 15.10 Kruskal Wallis Test (One-Way Anova) for Differences Between Independent Groups (>2)

KJIHGFEDCBA

HighLowControlTie CorrTie SizeRankSortedCompndIndxTimeID1
2 3.50.00963.51C18C

3 3.53.51C21C

4 3.53.51L39C

5 3.53.51H49C

6 3.53.51H56C

7 3.53.51H63C

8 7.50.00027.52H715C

9 7.57.52H81C

10 100.0013103C97C

11 10103H1010L

12 10103H115L

13 12124H128L

14 13135L136L

15 150.0013156C147L

16 15156L157L

17 15156H1615L

18 18.50.002418.57C171L

19 18.518.57L1815L

20 18.518.57L197L

21 18.518.57L203H

22 220.0013228C214H

23 22228L228H

24 22228H231H

25 24.50.000224.59C241H

26 24.524.59C253H

27 262610L261H

28 280.00132815C276H

29 282815L282H

30 282815L292H

31
Count32 29 Sum 94.5191.0149.50.016

Correctn33 0.984

n34 10109

R*R/n35 893.03648.12483.4

36
Chi-Sq37 6.89

p-value38 0.032

Chi-Sq(c)39 7.00

p-value40 0.030
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Cells I2–I30 = IF(Dn = “C”,Fn,” “) n = 1 to 30; Rank for Control rows.
Cells J2-J30 = IF(Dn = “L”,Fn,” “) n = 1 to 30; Rank for Low Dose

rows.
Cell K2-K30 = IF(Dn = “H”,Fn,” “) n = 1 to 30; Rank for High Dose

rows.
Cell H32 = SUM(H2:H30) Sum of correction factor for ties.
Cell H33 = 1-H32 Correction for ties.
Cell I32 = SUM(I2:I30) Rank Sum for Control.
Cell J32 = SUM(J2:J30) Rank Sum for Low Dose.
Cell K32 = SUM(K2:K30) Rank Sum for High Dose.
Cell I34 = COUNT(I2:I30) Number of Control Values.
Cell J34 = COUNT(J2:J30) Number of Low Dose Values.
Cell K34 = COUNT(K2:K30) Number of High Dose Values.
Cell I35 = I32∗I32/I34 (Control Rank Sum Squared)/n.
Cell J35 = J32∗J32/J34 (Low Dose Rank Sum Squared)/n.
Cell K35 = K32∗K32/K34 (High Dose Rank Sum

Squared)/n.
Cell I37 = (12/(E32∗(E32 +

1))∗(SUM(I35:K35))-3∗(E32 + 1))
Chi-Square Statistic

Cell I38 = 2∗(1-NORMSDIST(I37)) P-value for I37 Chi-Square
Cell I39 = I37/H33 Statistic corrected for ties.
Cell I40 = 2∗(1-NORMSDIST(I39)) P-value for I39 statistic

In the next Workbook, the tablet hardness results in Table 15.11 from five tablet formulations
(1–5) produced on four different tablet presses (A-D) are examined by nonparametric, two-way
ANOVA to validate that all presses have statistically equivalent performance.

Commands in Analyses
Columns A & B Enter tablet press and hardness values from Table 15.11 in order

shown
Cell B23 Enter 5, the number of tablet formulations
Cell B24 Enter 4, the number of tablet presses
Column C Enter 5 groups of the index numbers 1–4 (one for each tablet

formulation)
Column D Enter the tablet formulation number for each value in column C
Cell E2 = 10∗B2∗D2 value is proportional to hardness
Cells E3-E21 Copy formula from Cell E2
Column F Copy Column A values
Column G Copy Column E, using the Paste Special, values, option under

Edit Highlight Columns F and G, rows 1 through 21.
From Main Menu Toolbar, choose Data and then Sort.
Sort by column “SortMod”, in ascending order, indicating there is

a Header Row.
Cells H2-H21 = IF(Fn = “A”,Cn,” “) n = 1 to 21; Enters ranks for

Press A values.
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Workbook 15.11 Friedman and Modified Friedman Tests (Two-Way Anova)

KJIHGFEDCBA

D RankC RankB RankA RankSortModPressModValTabIndexValuePress1

2 7.5A 1 169B751

3 6.9B 2 270D691

4 7.3C 3 373C731

5 7.0D 4 475A701

6 8.2A 1 1158D1642

7 8.0B 2 2160B1602

8 8.5C 3 3164A1702

9 7.9D 4 4170C1582

10 7.3A 1 1219A2193

11 7.9B 2 2228D2373

12 8.0C 3 3237B2403

13 7.6D 4 4240C2283

14 6.6A 1 1256D2644

15 6.5B 2 2260B2604

16 7.1C 3 3264A2844

17 6.4D 4 4284C2564

18 7.5A 1 1335D3755

19 6.8B 2 2340B3405

20 7.6C 3 3375A3805

21 6.7D 4 4380C3355

22

r 23 5 Sum 7191014

c 24 4 SumR*R 706

Chi-Sqr25 9.72

p-value26 0.0211

A227 150

B228 141.2 CritDiff 5.90

T229 7.364

p-value30 0.0047
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Cells I2-I21 = IF(Fn = “B”,Cn,” “) n = 1 to 21; Enters ranks for Press
B values.

Cells J2-J21 = IF(Fn = “C”,Fn,” “) n = 1 to 21; Enters ranks for Press
C values.

Cells K2-K21 = IF(Fn = “D”,Fn,” “) n = 1 to 21; Enters ranks for Press
D values.

Cell H23 = SUM(H2:H21) Rank Sum for Press A.
Cell I23 = SUM(12:I21) Rank Sum for Press B.
Cell J23 = SUM(J2:J21) Rank Sum for Press C.
Cell K23 = SUM(K2:K21) Rank Sum for Press D.
Cell H24 = SUMSQ(H23:K23) Sum of Squared Rank Sums
Cell H25 = ((12∗H24)/(B23∗B24∗(B24 +

1)))-3∗B23∗(B24 + 1)
Friedman X2

Cell H26 = CHIDIST(H25,B24–1) p-value for Friedman’s test
Cell H27 = SUMSQ(H2:K21) A2 = Sum of squares for the 29

individual ranks
Cell H28 = H24/B23 B2 = Average Squared Rank Sum
Cell H29 = ((B23 – 1)∗(H28-(B23∗B24∗(B24

+ 1)∗(B24 + 1))/4)/(H27-H28)
Modified X2

Cell H30 = FDIST(H29,
B24–1,(B23–1)∗(B24–1))

p-value for modified Friedman
test

Cell K28 = TINV(0.05,(B23–1)∗(B24–1))∗SQRT((2∗B23∗ (H27-H28))/
((B23–1)∗(B24–1)))

Minimum difference between any two Rank Sums that is significant
(p < 0.05)

The tablet harness values are used again to demonstrate how to perform the Quade Test for
randomized block designs as shown in Table 15.12.

Workbook 15.12 Quade Test on Table 15.11 Tablet Hardness Values

Commands in Analyses
Columns A, B, & C Enter press, formulation and hardness values from Table

15.11 in rows 2–21
Cell A24 Enter 4, the number of tablet presses (columns)
Cell A27 Enter 5, the number of tablet formulations (rows)
Cell D2 = MAX(B2:B5)-MIN(B2:B5) Determines range of tablet 1

hardness
Cells D6, D10, D14,

D18
= MAX(Bx:By)-MIN(Bx:By) for D6 x, y = 6, 9

for D10 x, y = 10, 13
for D14 x, y = 14, 17
for D18 x, y = 18, 21

Cells B23-B27 Enter tablet formulation numbers 1–5
Cells C23-C27 Copy ranges for each formulation from cells D2, D6, D10,

D14 & D18
Cells D23-D27 Rank the ranges using the average rank for ties (e. g., tied

ranks 3 and 4 = 3.5)
Cells E2-E21 Enter 5 groups of index numbers 1–4 (one group per tablet

formulation)
Cell F2 = 10∗B2∗D2 modifies hardness value to obtain correct

sorting within press
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Workbook 15.12 Quade Test on Table 15.11 Tablet Hardness Values

MLKJIHGFEDCBA

DCBASortModqPressModIndexQTabValuePress1

2 0.617.5A 1 691.5B75 2.25

3 16.9B 2 701.5D69 0.75

4 17.3C 3 0.75731.5C73

5 17.0D 4 2.25751.5A70

6 0.628.2A 1 1581.5D164 2.25

7 28.0B 2 1601.5B160 0.75

8 28.5C 3 0.751641.5A170

9 27.9D 4 2.251701.5C158

10 0.737.3A 1 2193.5A219 5.25

11 37.9B 2 2283.5D237 1.75

12 38.0C 3 1.752373.5B240

13 37.6D 4 5.252403.5C228

14 0.746.6A 1 2563.5D264 5.25

15 46.5B 2 2603.5B260 1.75

16 47.1C 3 1.752643.5A284

17 46.4D 4 5.252843.5C256

18 0.957.5A 1 3355D375 7.50

19 56.8B 2 3405B340 2.50

20 57.6C 3 2.503755A380

21 56.7D 4 7.503805C335

RnkRngTAB22

k23 c 1.50.61 Sum 2.00 21.005.50 17.50

424 1.50.62

25 3.50.73 A 270 CritDiff

r26 3.50.74 B 21.2156.3

27 50.955 T 5.499

p-value28 0.0131

29

Cells F3-F21 Copy F2 formula
Cells G2-G21 Copy cells A2-A21 press values
Cells H2-H21 Copy the D23-D27 tablet ranks for formulations in column C
Cells 12–I21 Copy F2-F21 values using the Paste Special option under Edit.

Highlight rows 2–21 of Columns G, H and I.
From Main Menu Toolbar, choose Data and then Sort.
Sort G2:I21 selection by column ``SortMod’’, in ascending order.
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Cells J2-J21 = IF($Gn = “A”,$Hn∗($En-($A$24 +
1)/2),”“)

n = 2 to 21; Sij for Press A.

Cells K2-K21 = IF($Gn = “B”,$Hn∗($En-($A$24 +
1)/2),” “)

n = 2 to 21; Sij for Press B.

Cells L2-L21 = IF($Gn = “C”,$Hn∗($En-($A$24 +
1)/2),” “)

n = 2 to 21; Sij for Press C.

Cells M2-M21 = IF($Gn = “D”,$Hn∗($En-($A$24 +
1)/2),”“)

n = 2 to 21; Sij for Press D.

Cell J23 = SUM(J2:J21) Rank Sum for Press A.
Cell K23 = SUM(K2:K21) Rank Sum for Press B.
Cell L23 = SUM(L2:L21) Rank Sum for Press C.
Cell M23 = SUM(M2:M21) Rank Sum for Press D.
Cell J25 = SUMSQ(J2:M21) A = �Sij2

Cell J26 = (SUMSQ(J23:M23))/A27 B = �(�Sij)2/r)
Cell J27 = ((A27–1)∗J26)/(J25-J26) Quade test statistic T = (r-1)B/

(A-B)
Cell J28 = FDIST(J27,A24–1,(A27–1) ∗(A24–1)) p-value from F3,12 distribution
Cell I26 = TINV(0.05,(A27–1)∗(A24–1))∗SQRT((2∗A27∗(J25-J26))/((A27–1)∗

(A24–1)))
Difference between any two Rank Sums which is significant at p = 0.05.

In the next Workbook, a product made from four lots of raw material each with a different
potency (X) is assayed for its potency (Y) after being manufactured using two different methods
(I and II). The results, shown in Table 15.13, are used to demonstrate the Quade Nonparametic
Covariance Analysis.

Commands in Analysis
Columns A, C & D Enter method, Assay (Y) and Material (X) values into rows 2–9
Column B Enter observation numbers 1–8 into rows 2–9
Cells A12-A19 Enter Index numbers 1–8 which will be used as a guide when

ranking values
Cells B12-B19 Copy B2-B9 Observation numbers
Cells C12-C19 Copy D2-D9 X values
Cells F12-F19 Copy B2-B9 Observation numbers
Cells G12-G19 Copy C2-C9 Y values
Cell B21 = (A19 + 1)/2 Mean rank, 4.5, for 8

observations
Cells B12-C19 Highlight this section and sort in ascending order (indicate a header

row)
Cells F12-G19 Highlight this section and sort in ascending order (indicate a header

row)
Cells D12-D19 Rank sorted cells C12-C19, using the average for tied ranks
Cells H12-H19 Rank sorted cells G12-G19 using the average for tied ranks
Cell E12 = D12-$B$21 Center X rank by subtracting

the mean rank
Cells E13-E19 Copy formula from Cell E12 Center remaining X ranks
Cells I12-I19 Copy formula from Cell E12 Center Y ranks by subtracting

the mean rank
Cells E2:E9 Enter centered Y rank, matching sorted Obs number with Obs

number in Col B
Cells F2:F9 Enter centered X rank, matching sorted Obs number with Obs

number in Col B
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Workbook 15.13 Quade Nonparametric Covariance Analysis (ANCOVA)
(main worksheet ply)

IHGFEDCBA

Adj RxAdj RyXYObsMethod1

2 2.598.498.01I 3

3 1.598.697.82I 1

4 3.598.698.53I 1

5 99.297.44I 2.50.5

6 0.50.598.797.65II

7 99.095.46II 1.53.5

8 99.396.17II 3.52

9 98.496.18II 2 3

10

Adj RyRank YSort YSort ObsAdj RxRank XSort XSort ObsIndex11

112 1.598.41 195.463 3.5

213 1.598.48 2.596.173 2

314 3.598.62 2.596.181 2

415 3.598.63 497.441 0.5

516 0.5597.650.5598.75

617 1.5697.821.5699.06

718 2.5798.012.5799.24

819 3.5898.533.5899.37

23

(N20 1)/2

21 4.5

Commands in Analysis (continued)
Main Menu Tools → Data Analysis → Regression
Dialog Box

Input Y Range: Highlight or enter E1:E9
Input X Range: Highlight or enter F1:F9
Labels: Click on this option
New Worksheet Ply: Enter “Regression”
Residuals Click on this option
OK Click to perform calculations
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(regression worksheet ply)

CBA

20

21

22 RESIDUAL OUTPUT

23

24 ResidualsPredicted Rank YObservation

25 1.0548781.4451221

26 1.0182930.4817072

27 3.0182930.4817073

28 4 0.7042681.20427

29 5 0.7408540.24085

30 6 0.72256 2.77744

31 7 1.68598 0.31402

32 1.4451228 3.44512

33

Commands in Analyses (continued)
Main Worksheet Ply:
Cells G2:G9 Copy Predicted values from Cells B25-B32 of

Regression Worksheet Ply
Cells H2:H9 Copy Residual values from Cells C25-C32 of

Regression Worksheet Ply

(main worksheet ply)

JIHG

Method IIMethod IResidualPredicted1

2 0.74091.05491.05491.4451

3 1.01831.01830.4817 2.7774

4 3.01833.01830.4817 0.3140

5 0.70430.70431.2043 3.4451

6 0.74090.2409

7 0.7226 2.7774

8 1.6860 0.3140

9 1.4451 3.4451

10



552 APPENDIX VIII

Commands in Analyses (continued)
Cells I2–I5 Copy Residual values for Method I from Cells H2-H5
Cells J2-J5 Copy Residual values for Method II from Cells H6-H9
Main Menu Tools → Data Analysis → Anova: Single Factor
Dialog Box

Input Range: Highlight or enter $I$1:$J$5
Labels: Click on this option
New Worksheet Ply: Enter word “ANOVA”
OK Click to perform calculations

(ANOVA worksheet ply)

GFEDCBA

1 Anova: Single
Factor

2

3 SUMMARY

4 VarianceAverageSumCountGroups

5 1.1193821.4489335.7957324Method I

6 4Method II 5.79573 3.9442941.44893

7

8

9 ANOVA

10 F critP-valueFMSdfSSSource of Variation

11 5.9873740.0420186.63362116.79525116.79525301Between Groups

12 2.531838615.19102748Within Groups

13

14 731.98628049Total

15

Note: The ANOVA Worksheet contains the results of the Analysis of Covariance.

The next Workbook shows how to perform an evaluation for comparability of baseline disease
severity (mild, moderate, or very severe) for patients randomized to one of two treatment
groups (A or B) in a clinical trial. The data are taken from Table 15.16 and the analysis follows
that shown in Table 15.17.
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Workbook 15.16 Chi-Square Evaluation of a 2×3 Contingency Table

Commands in Analysis
Cells C4-E5 Enter the patient counts from Table 15.16
Cell A8 Enter the number of rows in Table
Cell A11 Enter the number of columns in Table
Cell C6 = SUM(C4:C5)
Cells D6-E6 Copy formula from Cell C6
Cell F4 = SUM(C4:E4)
Cells F5-F6 Copy formula from Cell F4
Cell C12 = (C$6∗$F4)/$F$6
Cells C13 & D12-E13 Copy formula from Cell C12
Cells C14-E14 Copy formula from Cells C6-E6
Cells F12-F14 Copy formula from Cells F4-F6
Cell C20 = (C4-C12)∗(C4-C12)/C12
Cells C21 & D20-E21 Copy formula from Cell C19
Cell D22 = SUM(C20:E21)
Cell D23 = CHIDIST(D22,(A8–1)∗(A10–1))

(patients categorized by disease severity and treatment)

FEDCBA

Observed1

2

Severity:3 TotalMildModerateVery

Treatment:4 55182413A

5 51122019B

6 106304432Total

Rows:7

8 2

ExpectedCols:9

10 3

Severity:11 TotalMildModerateVery

Treatment:12 5515.5722.8316.60A

13 5114.4321.1715.40B

14 106304432Total

15

16

(0-E) /E17 2

18

Severity:19 MildModerateVery

Treatment:20 0.3810.0600.782A

21 0.4100.0650.844B

X22 2 2.541

P 23 0.281
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The final Excel Workbook uses the results shown in Table 15.21 on the Incidence of
Carcinoma in Drug- and Placebo-Treated Animals to demonstrate the method of calculating
exact confidence intervals for a 2 × 2 contingency table.

Workbook 15.21 Fisher’s Exact Test for Carcinoma Results in Drug- and Placebo-Treated Animals

GFEDCBA

p-valuesA values1

Carcinomas2 0.030430

AbsentPresent3 1

Placebo4 212120

Drug5 31495

6 426215

7 0.0120450.03043p-value

8

p-valueFisher’sCarcinomas9

0.04247AbsentPresent10

Placebo11 1275

Drug12 14140

13 26215

14 0.01204p-value

15

Commands in Analyses
Cells C6,D6,E4,E5 Enter marginal totals from (A + B), (C + D), (A +

Table 15.21 C), (B + D)
Cell E6 = SUM(E4:E5) N = A + B + C + D
Cell C4 Enter Placebo-Present count A
Cell C5 = C6-C4 B = (A + B)-A
Cell D4 = E4-C4 C = (A + C)-A
Cell D5 = E6-D4-C5-C4 D = Total-B-C-A
Cell D7 = (FACT(C6)∗FACT(D6)∗FACT(E4)∗FACT(E5))/

(FACT(E6)∗FACT(C4)∗FACT(C5)∗FACT(D4)∗ FACT(D5))
Note: The function FACT(x) returns the factorial of the number x or the

number in that cell if x is a cell reference (e. g. x = C6).
Column F Enter all possible values for A (Placebo-Present count)

This is obtained by going from a count of 0 and increasing to a count of
A + B (cell C5) or A + C (cell D4), whichever is smaller.

Cells B9-E14 Highlight and Copy Cells B2:E7 creates a working table

Set the value for A (Cell C11) to 0 in the working table. If the p-value in Cell D14 ≤ T Cell D7
then copy that value (use Paste Special, value) to column G beside the appropriate A value in
column F. Continue through all the possible values for A shown in column F.

Cell G10 = SUM(G2:G8) p-value for Fisher’s Exact Test
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SAS Programs
The following programs written for the SAS System perform the same analyses as those pre-
sented in the Excel Workbooks section of this appendix. As such, no commentary is provided for
these programs other than that needed to interpret the results of the SAS output. It is assumed
that the reader has a basic understanding of the SAS System and knows how to operate SAS
in his/her computer environment. The SAS programs utilize only the basic mathematical and
statistical functions and standard procedures available in SAS/Base and SAS/STAT. The pro-
grams have been kept as simple as possible in hopes that the reader will easily be able to follow
each program’s logic. All data are contained within the program itself (Cards Statement). The
reader should be able to easily modify the program code to input data from an external file.
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Appendix IX

An Alternative Solution to the Distribution of the
Individual Bioequivalence Metric∗

The Office of Generic Drugs (OGD) of the Federal Drug Administration (FDA) has recently
published statistical guidelines for determination of bioequivalence [1], see above. Included
in that publication is a statistical approach to determining individual bioequivalence (IB), as
recommended by Hyslop et al. [1]. Herewith, is a description of an alternative approach. The
probability density function (PDF) of the IB metric is determined and used to construct a decision
rule for acceptance. The acceptance criterion is based on an upper 95% confidence interval for
the metric, defined as 2.4948. Here is shown the derivation here for the reference-scaled metric.
However, with minor modifications, this approach is also applicable to the constant denominator
metric and to population bioequivalence described in the FDA guidance [1]. The following has
been described in chapter 11, but is repeated here for the sake of continuity.

The reference-scaled metric is defined as

� = [(�t − �r)2 − �2
d + �2

t − �2
r ]/�2

r , (IX.1)

or, equivalently as

� = [(�t − �r)2 + �2
d + �2

t ]/�2
r − 1. (IX.2)

Here, �t is the mean of the parameter for the test product, �r is the mean of the parameter
for the reference product, �2

d = subject-product interaction variance, �2
t = within-subject test

variance, �2
r = within-subject reference variance.

For a four-period replicate design as described by Hyslop and in the FDA guidance [1,2],
we can also define [3]

�2
i = �2

d + 0.5�2
t + 0.5�2

r , (IX.3)

where �2
i is the variance of (�t − �r ). Combining equations (IX.2) and (IX.3),

� = [(�t − �t)2 + �2
i + 0.5�2

i ]/�2
r − 1.5. (IX.4)

The parameter estimates, Xt Xr , S2
i , S2

t and S2
r , are computed using a mixed-effects linear

model as described in the FDA guidance [1].
The analysis in the recent guidance is approximate, has reasonably good properties [1,2],

and is relatively simple to calculate. It appears to agree well with the results of the previously
used bootstrap simulation approach.

The following derivation results in a more direct approach to estimating the upper con-
fidence interval. The idea is to derive the PDF of the metric. Once the PDF is known, the
cumulative probability distribution function (CDF), the 95% confidence interval, as well as
other parameters of interest can be easily determined.

∗Abstracted from a paper submitted to the Journal, Drug Development and Industrial Pharmacy, Marcel Dekker.
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IX.1 DERIVATION AND RESULTS
In principle, the PDF of � can be determined if the joint distributions of the random variables
Xt, Xr, S2

i , S2
t and S2

r are known. In general, this would be a formidable task. However, under
the usual assumption of statistical independence of these variables [2], it is quite feasible to
compute the PDF of � . Further assumptions include [1] that the random variables Xt and
Xr are Gaussian after the usual logarithmic transformation, and [2] that the variances are
distributed as �2

i � 2/d.f . With these assumptions, which are similar to those made by Hyslop
[2], the PDF of � can be derived as shown below. In the derivation, we have used the formulae
for computing the PDF of the sum of two independent variables and the PDF of the ratio of two
independent variables. These may be found in Ref.[4].

For ease of notation, define the following random variables:

Y = (Xt − Xr)2

Z = S2
i

U = 0.5S2
t

V = S2
r

In terms of these, define further the intermediate variables,

W = Y + Z
G = W + U

The metric may then be expressed as

� = G
V

− 1.5.

Since Xt and Xr are both Gaussian, their difference is also Gaussian. Let the mean and
standard deviation of (X̄t − X̄r) be � and � , respectively. Then the PDF of Y, p(y) is given by

p(y) = 1

�
√

2�
exp

(
− y + �2

2�2

)
1√
y

cosh
(

�
√

y
�2

)
y ≥ 0

Let q(z) be the PDF of Z. Since Y and Z are independent, the PDF of W, r(w), is given by the
convolution of p(y) and q(z). Thus

r (w) =
w∫

0

p(y)q (w − y)dy

Similarly, if s(u) is the PDF of U, then the PDF of the variable G, f (g), is given by

f (g) =
g∫

0

r (w)s(g − w)dw

Finally, let a(m) be the PDF of �. If t(v) is the PDF of V, then

a (m) =
w∫

0

vt(v) f [(m + 1.5)v]dv

A program was written in MATLAB [5] to evaluate a(m) using numerical integration to
compute the various integrals in the above derivation. If the parameters defining the distri-
butions of Xt, Xr, etc. were known, this would be an exact solution. In the absence of such
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Table IX.1 Comparison of Results of Convolution Method to Hyslop Method for the

Parameter Values Shown

N Mean Difference S2i S2
t S2r Hyslopa Convolutionb

122c 0 0.02 0.02 0.0125 −0.028 2.185

0 0.02 0.02 0.01 −0.001 2.46

0 0.02 0.03 0.01 +0.005 3.065

0.2 0.12 0.12 0.065 +0.023 3.175

26d 0.05 0.12 0.1 0.085 −0.008 2.43

0.05 0.198 0.02 0.1075 +0.0004 2.50

0.05 0.08 0.049 0.05 +0.005 2.68

0.2 0.12 0.12 0.095 +0.0205 2.96

16 0.05 0.05 0.05 0.05 −0.0085 2.24

0.05 0.02 0.02 0.02 −0.0014 2.41

0.05 0.05 0.1 0.05 +0.0296 3.395

0.05 0.03 0.02 0.02 +0.0623 3.725

12 0.05 0.02 0.02 0.01 −0.0014 2.79

0.05 0.02 0.022 0.03375 −0.0118 2.46

0 0.05 0.04 0.0475 +0.0144 3.56

0.07 0.05 0.04 0.0475 +0.0222 3.175

a Hyslop method passes for negative values.
b Convolution passes for values less than 2.498.
c Sequence sizes are 30,30,30,32.
d Sequence sizes are 6,6,6,8.

knowledge, an approximate solution is obtained by using the observed values of the means and
variances as the parameter values. Clearly, this solution would approach the exact solution with
large sample sizes. With the sample sizes usually used in BE studies, we expect that the solution
should be reasonably good. A preliminary spot check of the results and decisions comparing
this new approach to that of Hyslop is shown in Table IX.1. Examples are shown where the
decisions are borderline.

REFERENCES
1. Guidance FOR Industry. Statistical Approaches to Establishing Bioequivalence. New York: Food and

Drug Administration, CDER, 2001
2. Hyslop T. Hsuan, F. Holder, DJ. A small sample confidence interval approach to assess individual
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3. Ekbohm G. Melander, H. The subject-by-formulation interaction as a criterion for inter-changeability

of drugs. Biometrics 1989; 45:1249–1254.
4. Rice JA. Mathematical Statistics and Data Analysis. Pacific Grove, CA: Wadsworth and Brooks/Cole,

1994.
5. Matlab, The Mathworks, Inc., Natick, MA.
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Appendix X

Some Statistical Considerations and Alternate
Designs and Considerations for Bioequivalence

X.1 PARALLEL DESIGN IN BIOEQUIVALENCE
The great majority of bioequivalence studies measure drug in body fluids, such that products
can be compared within an individual using crossover designs. In some rare circumstances, this
approach is either not possible or impractical. For example, drugs with long half-lives may not
be amenable to a crossover design or studies where a clinical endpoint is required in patients
because of insufficient blood concentrations. In these cases a parallel design may be used.

In parallel designs comparative products are not given to the same patient. Patients are
randomly assigned to one of the test products. In this discussion, we will use examples where
two products are to be compared, a test and reference product. Typically, a random device is used
to assign product to patients as they enter the study, with an aim of having equal numbers of
patients in each product group. For a bioequivalence study, it would be expected that patients
would all be entered together, each patient assigned a number. If more patients are needed
that can be accommodated at one site, a multicenter study may be necessary. Randomization
schemes for parallel studies have been described in the literature [1]. Note that for these designs,
the number of observations in each group needs not be identical; dropouts do not invalidate
any of the remaining data.

Endpoints in clinical studies can be “continuous” data or discrete. For example, the end-
point could be treadmill time to angina, or a local treatment for ulcers, where the endpoint is
dichotomous, that is, success or failure. We will discuss the analysis of both kinds of studies.

Another problem with parallel studies is how to construct a test comparing products.
For numerical data, one should consider whether or not to transform the data. The usual
bioequivalence study uses a log transform of the pharmacokinetic parameters. In clinical studies,
it is not obvious if the clinical result should be transformed. In general, a transformation is not
necessary, but may depend on the nature of the resulting data. For dichotomous data, we have
a different problem when comparing outcomes.

The analysis will be illustrated using the following hypothetical data. The study is for
a drug taken orally that is absorbed, but is in such low concentrations in the blood that an
acceptable analysis is not available. The study looks for a clinical endpoint that can be measured
objectively. The drug is given once daily for seven days. The endpoint is the average time it
takes for patients to fall asleep. A parallel study is used because of the potential for carryover
of a physiological or psychological nature. At first, the data are considered to be approximately
normal, and no transformation is needed. The study design is single blind, with the evaluator
being blinded, as is typical for the usual bioequivalence crossover studies. The results of the
study are as follows:

Product N Average Variance

Test 24 0.980 0.228

Reference 26 0.949 0.213

Without a (log) transformation, the confidence interval computation is more complicated
than that for the usual crossover design with a log transformation. The ratio of test/reference is
not normally distributed. Before the log transformation requirement was initiated, an approx-
imate confidence interval was computed as described by FDA and the literature [1]. However,
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presently, the FDA is recommending use of Fieller’s method for computing confidence intervals.
We will calculate the confidence interval using both of these methods for the sake of illustrating
the methods and comparing the results.

X.1.1 Old FDA Method

Confidence interval(1) = [(Average test − average reference) ± t(d.f.0.1) ∗ sqrt(variance ∗ (1/N1 + 1/N2))]
Average test

Where the t value is from the t distribution with appropriate degrees of freedom at
the (one-sided) 5% level. The variance, in this case would be the pooled variance from the two
groups. The computations for the numerator are the same as that computed for a 90% confidence
interval in a two independent group t test.

In this example, the point estimate (Test/Reference) is 103.3% with a lower and upper
90% confidence interval equal to 92.3% and 114.3%, respectively (see Table X.1 for raw data and
calculations).

One could also use a log transformation if appropriate. Of course, there should be some
documentation of the rationale for a transformation. Using a log transform the results are
103.1 with a lower and upper 90% confidence interval equal to 91.8% and 115.8%, respectively

Table X.1 Data for Parallel Design Study (Clinical Endpoint)

Subject Test Subject Reference

1 0.82 1 0.83

2 0.54 2 1.22

3 1.01 3 1.14

4 1.4 4 0.88

5 0.89 5 0.95

6 1 6 1.4

7 0.76 7 1.1

8 1.23 8 0.84

9 0.87 9 0.99

10 0.99 10 0.61

11 1.1 11 0.68

12 1.15 12 1.03

13 0.76 13 0.79

14 0.65 14 1.09

15 1.25 15 0.91

16 1.11 16 1.22

17 0.77 17 1.1

18 0.63 18 0.89

19 0.98 19 1.17

20 1.32 20 0.58

21 1.26 21 1.11

22 0.94 22 0.75

23 0.99 23 0.95

24 1.11 24 1.03

25 0.88

26 0.54

Test Reference

Average 0.9804167 0.949231

Standard deviation 0.2281967 0.213353

Variance 0.0520737 0.045519

Point estimate = 1.032853863

t = 1.677224191

Pooled variance = 0.048660009

Upper level 114.3170257

Lower level 92.2537469
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Table X.2 Data For Parallel Design Study Transformed to Logarithms

Subject Test Log Subject Ref Log

1 0.82 −0.19845 1 0.83 −0.186329578

2 0.54 −0.61619 2 1.22 0.198850859

3 1.01 0.00995 3 1.14 0.131028262

4 1.4 0.336472 4 0.88 −0.127833372

5 0.89 −0.11653 5 0.95 −0.051293294

6 1 0 6 1.4 0.336472237

7 0.76 −0.27444 7 1.1 0.09531018

8 1.23 0.207014 8 0.84 −0.174353387

9 0.87 −0.13926 9 0.99 −0.010050336

10 0.99 −0.01005 10 0.61 −0.494296322

11 1.1 0.09531 11 0.68 −0.385662481

12 1.15 0.139762 12 1.03 0.029558802

13 0.76 −0.27444 13 0.79 −0.235722334

14 0.65 −0.43078 14 1.09 0.086177696

15 1.25 0.223144 15 0.91 −0.094310679

16 1.11 0.10436 16 1.22 0.198850859

17 0.77 −0.26136 17 1.1 0.09531018

18 0.63 −0.46204 18 0.89 −0.116533816

19 0.98 −0.0202 19 1.17 0.157003749

20 1.32 0.277632 20 0.58 −0.544727175

21 1.26 0.231112 21 1.11 0.104360015

22 0.94 −0.06188 22 0.75 −0.287682072

23 0.99 −0.01005 23 0.95 −0.051293294

24 1.11 0.10436 24 1.03 0.029558802

25 0.88 −0.127833372

26 0.54 −0.616186139

Test Reference

Point estimate = 1.032854 1.03123

t = 1.677224

Pooled variance = 0.05942

Upper level 115.775 (log) 0.146479

Lower level 91.8533 (log) −0.08498

(see Table X.2 for raw data and calculations). This result is similar to that for the untransformed
data, a result of the relatively low coefficient of variation.

X.1.2 Fieller’s Method
Fieller’s method can be used to compute confidence intervals for the ratio of two normally
distributed variables. There are assumptions when using Fieller’s method that include the
assumption of normality. Also the value of the denominator in Fieller’s equation must show the
reference product average to be “statistically significant” when compared to zero. In most cases,
the results of this approach should give similar conclusions as the old FDA method above.

The method is described in an FDA document [2], which is duplicated below.

X.1.2.1 Fieller’s Calculation for Crossover data (Correlated Values)
For an example of this calculation, see Ref. [2].

[(Average test/average reference) − G(� − RT/� − RR) ± (1/average reference) × Sqrt(K ∗ � − RR/n]
(1 − G)
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G = t2 ∗ � − RR

n ∗ average reference2

K =
(

Average test
average reference

)2

+ (1 − G)(� − TT) +
(

� − RT
� − RR

)

∗
(

G ∗ � − RT
� − RR − 2

∗ Average test
Average reference

)

� − TT = Variance test

� − RR = Variance reference

� − RT = ∑ (test − average test)(reference − average reference)
n − 1

X.1.2.2 Fieller’s Calculation for Independent Data
If the two groups are independent as in the above example, the term that relates to the correlation
of the data for the two groups, � − RT, is considered to be zero, and is not included in the
equation. Applying the data in Table X.1 without a transformation, the calculations are as
follows:

Interval = [(Average test/average reference) ± (1/average reference) × Sqrt(K∗�−RR/n)]/(1−G)
G=t2∗�−RR/(n∗average reference2)
K= (Average test/average reference2+(1−G)(�−TT/�−RR) − (2 ∗ Average test/average reference)

Test Reference

Average 0.9804167 0.949231

Standard

deviation

� − TT =
0.2281967

� − RR =
0.213353

Pooled

variance

0.04866

G = 0.0054659
K = 2.204524409

Upper interval = 1.09866168
Lower interval = 0.967046045

X.2 OUTLIERS
An outlier is an observation far removed from the bulk of the observations. A more detailed
discussion and statistical detection of outliers, as well as their treatment can be found in a
number of references [1].

For crossover studies and parallel studies, the detection of an outlier using common
statistical methods is straightforward. Using an appropriate statistical model, a single statistical
outlier can be identified. Although this alone may be sufficient to suspect an anomaly, usually
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it would be more definitive if other evidence is available to verify that the suspected datum is
indeed “mistaken.” A more creative approach is possible in the case of replicate designs (see
below). In these situations, we have estimates of within-subject variability that can be used to
identify outliers. For example, if the within-subject variance for a given treatment (omitting the
subject with the suspected outlier) is 0.04, and the two values for the log-transformed parameter
for the suspected data are 3.8 and 4.9 (corrected for period effects if necessary and meaningful),
we may perform an F test comparing variances for the suspect data and the remaining data.
The F ratio is

0.61
0.04

= 15.3.

If the degrees of freedom for the denominator (N − 1, where N is the number of subjects
including the outlier) is 25, an F value of 15.3 is highly significant (P < 0.01). One may wish to
correct the significance level, although there is no precedent for this approach. An alternative
analysis could be an ANOVA with and without the suspected outlier. An F test with 1 d.f. in
the numerator and appropriate d.f. in the denominator would be

[SS (all data) − SS (without outlier data)]
1

.

Another approach that has been used is to compare results for periods 1 and 2 versus
periods 3 and 4 in a 4 period fully replicated design.

Of course, if there are is an obvious cause for the outlier, a statistical justification is not
necessary. However, further evidence, even if only suspicious, is helpful.

If an outlier is detected, as noted above, the most conservative approach is to find a reason
for the outlying observation, such as a transcription error, or an analytical error, or a subject who
violated the protocol, and so on. In these cases, the data may be reanalyzed with the corrected
data, or without the outlying data if due to analytical or protocol violation, for example.

If an obvious reason for the outlier is not forthcoming, one may wish to perform a new
small study, replicating the original study, including the outlying subject along with a number
of other subjects (at least 5 or 6) from the original study. The results from the new study can
be examined to determine if the data for the outlier from the original study is anomalous. The
procedure here is not fixed, but should be reasonable, and makes sense. One can compare the
test to reference ratios for the outlying subject in the two studies, and demonstrate that the data
from the new study show the outlying subject is congruent with the other subjects in the new
study, for example.

X.3 DICHOTOMOUS OUTCOME
Studies with a dichotomous outcome (e.g., cured or not cured) are, typically, clinical studies on
patients. They may be parallel or crossover studies. An example of a crossover study with a
dichotomous outcome would be an application of a patch or topical product studying sensitivity
or evidence of a pharmacodynamic response. It would be difficult to compare products based
on a ratio for crossover designs with a dichotomous outcome. Statistical tests for such designs
would fall in the category of a McNemar test, where only those results that are different for
the two products are considered in the analysis. Thus, the results that are “positive” for both
products, or “negative” for both products would not be considered in the analysis. Thus far, no
regulatory requirements have been issued for bioequivalence for such designs.

Parallel designs for bioequivalence using dichotomous outcomes are not uncommon.
These studies usually use patients with the “disease.” The results are analyzed using either
the binomial distribution or the normal approximation to the binomial, where the outcome
may be cured or not cured. The FDA guidances suggest that the confidence interval for the
difference of the proportion of “successes” (or “failures”) between the products be within ±20%
for equivalence. Some criteria may be based on a one-sided 95% confidence interval in the case of
noninferiority studies. Proposals have been made to modify the ±20% window for equivalence
depending on the observed proportion [3].
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For example, consider the following example:

Test product 160/200 successes = 80%

Reference product 170/200 successes = 85%

The confidence interval for the difference in proportion of successes is calculated as

(85 − 80) ± sqrt
(

P0 ∗ Q0 ∗
(

1
N1

+ i
N2

))
= 5 ± 1.96 ∗ sqrt

(
0.825 ∗ 0.175 ∗

(
2

200

))
= 5 ± 7.4.

This result would pass the ± 20% requirements. The interval is −2.4% to 7.4%.

X.4 STEADY STATE STUDIES
Steady state (SS) studies have been used to study bioequivalence for some drug products,
for example, controlled release products and highly variable products. SS is approximately
attained after about 5 drug half-lives. For example, if the half-life is 8 hours, the drug should be
administered for about 40 hours; for example, five single doses given at 8-hour intervals. At SS,
theoretically, Cmax, Cmin, and the AUC during a dosing interval remain constant. In particular,
the relative amount of drug absorbed is measured by the AUC over the dosing interval at SS.
SS studies are now discouraged by the FDA. One reason given for this proposal is that the
variability is reduced in SS studies, resulting in a less sensitive test for showing differences. This
lowering of the variability, however, could be useful from a practical point of view to compare
highly variable drug products. Thus, there is some controversy about the use and utility of SS
studies.

The design of SS studies are typically crossover studies with multiple dosing. Two groups
of patients are entered into the study similar to the usual two-treatment, two-period design.
However in the SS design, multiple dosing is administered, using the usual dosing schedule,
for a sufficient period of time to attain SS. One would estimate the total number of doses needed
based on a package insert, literature or available experimental results.

SS is achieved if the PK parameters remain constant with a given multiple dosing reg-
imen. Typically, dosing should be administered for at least three or more consecutive days.
Appropriate dosage administration and sampling should be carried out to document SS. The
trough concentration data should be analyzed statistically to verify that SS was achieved prior
to Period 1 and Period 2 pharmacokinetic sampling.

According to the FDA Guidance [4,5], the following parameters should be measured:

a. Individual and mean blood drug concentration levels.
b. Individual and mean trough levels (Cmin ss).
c. Individual and mean peak levels (Cmax ss).
d. Calculation of individual and mean steady state AUCinterdose (AUCinterdose is AUC during a

dosing interval at steady state).
e. Individual and mean percent fluctuation.

[
= 100 ∗ Cmax ss − Cmin ss

Caverage ss

]

f. Individual and mean time to peak concentration.

The log-transformed AUC and Cmax data during the final dosing interval should be
analyzed statistically using analysis of variance. The 90% confidence interval for the ratio of
the geometric means of the pharmacokinetic parameters (AUC and Cmax) should be within
80% to 125%. Fluctuation for the test product should be evaluated for comparability with the
fluctuation of the reference product.
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X.5 BIOEQUIVALENCE STUDIES PERFORMED IN GROUPS
Bioequivalence studies are usually performed at a single site, where all subjects are recruited
and studied as a single group. On occasion, more than one group is required to complete a study.
For example, if a large number of subjects are to be recruited, the study site may not be large
enough to accommodate the subjects. In these situations, the study subjects are divided into two
cohorts. Each cohort is used to assess the comparative products individually, as might be done
in two separate studies. Typically, the two cohorts are of approximately equal size. Another
example of a study that is performed in groups is the so–called “Add-on” study. In Canada, if a
study fails because it was not sized sufficiently, an additional number of subjects may be studied
so that the combined, total number of subjects would be sufficient to pass the study based on
results of the initial failing study. This reduces the cost to the pharmaceutical company, which,
otherwise, would have to repeat the entire study with a larger number of subjects.

It is not a requirement that each group separately pass the confidence interval requirement.
The final assessment is based on a combination of both groups. The totality of data is analyzed
with a new term in the analysis of variance (ANOVA), a Treatment × Group interaction term.
This is a measure (on a log scale) of how the ratios of test to reference differ in the groups. For
example, if the ratios are very much the same in each group, the interaction would be small or
negligible. If interaction is large, as tested in the ANOVA, then the groups cannot be combined.
However, if at least one of the groups individually passes the confidence interval criteria, then the
test product would be acceptable. If interaction is not statistically significant (P > 0.10), then the
confidence interval based on the pooled analysis will determine acceptability. It is an advantage
to pool the data, as the larger number of subjects results in increased power and a greater proba-
bility of passing the bioequivalence confidence interval, if the products are truly bioequivalent.

In Canada, a second statistical test (in addition to the test for interaction) is required
when an Add-on group is studied. Each group is analyzed separately in the usual manner. The
residual variances from the two separate groups are compared using an F test. If the variances
are significantly different, the groups cannot be pooled and the product will probably fail. Note
that the second group is studied only if the original study failed because of lack of size. It is
possible that the Add-on study could pass on its own, and in this case, the test product would
be acceptable. This second test comparing variances seems rather onerous, because an analysis
is possible for the combined groups with unequal variance. However, it may be the intention
of the Canadian HPB to trade the benefit of the add-on design for unnecessarily more stringent
regulatory requirements. An intensive study of the appropriateness and properties of add-on
designs is being investigated by FDA and industry personnel in the United States at the time of
this writing. A final finding is forthcoming.

An interesting question arises if more than two groups are included in a bioequivalence
study. As before, if there is no interaction, the data should be pooled. If interaction is evident, at
least one group is different from the others. Usually, it will be obvious which group is divergent
from a visual inspection of the treatment differences in each group. The remaining groups may
then be tested for interaction. Again, as before, if there is no interaction, the data should be
pooled. If there is interaction, the aberrant group may be omitted, and the remaining groups
tested, and so on. In rare cases, it may not be obvious which group or groups are responsible
for the interaction. In that case, more statistical treatment may be necessary, and a statistician
should be consulted. In any event, if any single group or pooled groups (with no interaction)
passes the bioequivalence criteria, the test should pass. If a pooled study passes in the presence
of interaction, but no single study passes, one may still argue that the product should pass, if
there is no apparent reason for the interaction. For example, if the groups are studied at the
same location under the identical protocol, and there is overlap in time among the treatments
given to the different groups, as occurs often, there may be no obvious reason for a significant
interaction. Perhaps, the result was merely due to chance, random variation. One may then
present an argument for accepting the pooled results.

The following statistical models have been recommended for analysis of data in groups:

Model 1: GRP SEQ GRP∗SEQ SUBJ(GRP∗SEQ) PER(GRP) TRT GRP∗TRT
If the GRP∗TRT term is not significant (P > 0.10), then reanalyze the data using Model 2.
Model 2: GRP SEQ GRP∗SEQ SUBJ(GRP∗SEQ) PER(GRP) TRT
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X.6 REPLICATE STUDY DESIGNS
Replicate studies in the present context are studies in which individuals are administered one
or both products on more than one occasion. For purposes of bioequivalence, either three or
four period designs are recommended. The two treatment four-period design is the one most
used. FDA [1] gives sponsors the option of using replicate design studies for all bioequivalence
studies. Replicate studies may provide information on within-subject variance of each product
separately, as well as potential product × subject interactions, although these analyses are not
required by FDA.

The FDA recommends that submissions of studies with replicate designs be analyzed
for average bioequivalence. The following (Table X.3) is an example of the analysis of a two
treatment four-period replicate design to assess average bioequivalence. The design has each of
two products, balanced in 2 sequences, ABAB and BABA, over four periods. Table X.1 shows
the results for Cmax for a replicate study. Eighteen subjects were recruited for the study and 17
completed the study. An analysis using the usual approach for the TTTP design, as discussed
above, is not recommended. The FDA [1] recommends use of a mixed model approach as in
SAS PROC MIXED (11). The recommended code is

Table X.3 Results of a Four-Period, Two-Sequence, Two-Treatment, Replicate Design (Cmax)

Subject Product Sequence Period Cmax Ln(Cmax)

1 Test 1 1 14 2.639

2 Test 1 1 16.7 2.815

3 Test 1 1 12.95 2.561

4 Test 2 2 13.9 2.632

5 Test 1 1 15.6 2.747

6 Test 2 2 12.65 2.538

7 Test 2 2 13.45 2.599

8 Test 2 2 13.85 2.628

9 Test 1 1 13.05 2.569

10 Test 2 2 17.55 2.865

11 Test 1 1 13.25 2.584

12 Test 2 2 19.8 2.986

13 Test 1 1 10.45 2.347

14 Test 2 2 19.55 2.973

15 Test 2 2 22.1 3.096

16 Test 1 1 22.1 3.096

17 Test 2 2 14.15 2.650

1 Test 1 3 14.35 2.664

2 Test 1 3 22.8 3.127

3 Test 1 3 13.25 2.584

4 Test 2 4 14.55 2.678

5 Test 1 3 13.7 2.617

6 Test 2 4 13.9 2.632

7 Test 2 4 13.75 2.621

8 Test 2 4 13.25 2.584

9 Test 1 3 13.95 2.635

10 Test 2 4 15.15 2.718

11 Test 1 3 13.15 2.576

12 Test 2 4 21 3.045

13 Test 1 3 8.75 2.169

14 Test 2 4 17.35 2.854

15 Test 2 4 18.25 2.904

16 Test 1 3 19.05 2.947

17 Test 2 4 15.1 2.715

1 Reference 1 2 13.5 2.603

2 Reference 1 2 15.45 2.738

3 Reference 1 2 11.85 2.472

4 Reference 2 1 13.3 2.588
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Table X.3 Continued

5 Reference 1 2 13.55 2.606

6 Reference 2 1 14.15 2.650

7 Reference 2 1 10.45 2.347

8 Reference 2 1 11.5 2.442

9 Reference 1 2 13.5 2.603

10 Reference 2 1 15.25 2.725

11 Reference 1 2 11.75 2.464

12 Reference 2 1 23.2 3.144

13 Reference 1 2 7.95 2.073

14 Reference 2 1 17.45 2.859

15 Reference 2 1 15.5 2.741

16 Reference 1 2 20.2 3.006

17 Reference 2 1 12.95 2.561

1 Reference 1 4 13.5 2.603

2 Reference 1 4 15.45 2.738

3 Reference 1 4 11.85 2.472

4 Reference 2 3 13.3 2.588

5 Reference 1 4 13.55 2.606

6 Reference 2 3 14.15 2.650

7 Reference 2 3 10.45 2.347

8 Reference 2 3 11.5 2.442

9 Reference 1 4 13.5 2.603

10 Reference 2 3 15.25 2.725

11 Reference 1 4 11.75 2.464

12 Reference 2 3 23.2 3.144

13 Reference 1 4 7.95 2.073

14 Reference 2 3 17.45 2.859

15 Reference 2 3 15.5 2.741

16 Reference 1 4 20.2 3.006

17 Reference 2 3 12.95 2.561

PROC MIXED;
CLASSES SEQ SUBJ PER TRT;
MODEL LNCMAX = SEQ PER TRT/DDFM = SATTERTH;
RANDOM TRT/TYPE = FA0(2) SUB = SUBj G;
REPEATED/GRP = TRT SUB = SUBJ;
LSMEANS TRT;
ESTIMATE ’T VS. R’ TRT 1 − 1/CL ALPHA = 0.1;
RUN;

The abbreviated output is shown in Table X.4.

Table X.4 Analysis of Data from Table X.1 for Average Bioequivalece

ANALYSIS FOR LN-TRANSFORMED CMAX

 The MIXED Procedure

Class Level Information

Class Concentrations Values

SEQ 2  1 2
SUBJ  17  1 2 3 4 5 6 7 8 9 10 11 12 13

 14 15 16 17
 PER  4  1 2 3 4
 TRT 2  1 2
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Table X.4 (Continued)

Covariance Parameter Estimates (REML)

Cov Parm Subject  Group Estimate

FA(1,1) SUBJ  0.20078553
FA(2,1) SUBJ  0.22257742
FA(2,2) SUBJ -0.00000000

 DIAG SUBJ  TRT 1  0.00702204
 DIAG SUBJ  TRT 2  0.00982420

Tests of Fixed Effects

Source NDF  DDF  Type III F  Pr > F

SEQ  1  13.9  1.02  0.3294
 PER  3 48.2  0.30  0.8277
 TRT  1  51.1  18.12  0.0001

ESTIMATE Statement Results

Parameter T VS. R

Alpha = 0.1 Estimate Std Error DF t Pr > |t|

0.09755781  0.02291789  51.1  4.26  0.0001

Lower 0.0592 Upper 0.1360

Least Squares Means

Effect  TRT LSMEAN Std Error  DF  t  Pr > |t|

 TRT  1 2.71465972  0.05086200  15 53.37  0.0001
 TRT 2 2.61710191  0.05669416  15.3  46.16 0.0001

ANALYSIS FOR LN-TRANSFORMED CMAX
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Answers to Exercises

CHAPTER 1
1. (a) Tablet hardness, blood concentration of drug, creatinine in urine

(b) Number of patients with side effects, bottles with fewer than 100 tablets, white blood
cell count

(c) Any continuous variable, rating scale
(d) Race, placebo group in clinical study, number of bottles of syrup that are cloudy

2. None (This is a simple linear transformation; the C.V. is unchanged.)
3.

Interval Frequency

−99.5 to −83.5 1

−83.5 to −67.5 2

−67.5 to −51.5 10

−51.5 to −35.5 16

−35.5 to −19.5 26

−19.5 to −3.5 34

−3.5 to +12.5 33

12.5 to 28.5 24

28.5 to 44.5 8

44.5 to 60.5 2

4. −10.27
5. Approximately 82% between 95 and 105 mg (0.91– 0.09); approximately 9% above 105 mg
6. (a) Mean = −12.65, S = 31.68; (b) X̄ = −7, S = 30.48 (read data in columns). Differences

probably not significant. The last set is more precise but the standard deviations are
virtually identical (the variability is probably not different in the two sets of data).

7. Median =−16 = (−13 − 19)/2; range = 46 to − 64 = 110
8. (a) Median =−16 as in Problem 7; range = 100 to − 64 = 164

(b) Mean = −8.5, S = 40.09, S2 = 1607
10. Probably not unbiased
11. � =√

2/3 = 0.816,S̄ = 0.6285

13.
√

�(X − x̄)2
/(N − 1) =√

(0.0001 + 0 + 0.0001)/2 = 0.01. The s.d. of 2.19; 2.20, and 2.21 is
also 0.01. If a constant is added to each value (the constant added here is 1), the s.d. is
unchanged. Standard deviation depends on differences among the values, not the absolute
magnitude.

14. (a) 101.875; (b) 4.79; (c) 22.98; (d) 4.79/101.875 = 0.047; (e) 14; (f) 101.5
15. �Ni X2

i = 1(90.5)2 + 6(70.5)2 + · · · + 16(29.5)2 + 3(49.5)2 = 137,219
�Ni Xi = 1( − 90.5) + 6( − 70.5) + · · · + 16(29.5) + 3(49.5) = −1658
�Ni = 156
S2 = [137,219 − ( − 1658)2

/156]/155 = 771.6
S = 27.79

16. 16.167, 9.865, 7.009
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17. X̄w = (2 × 3 + 5 + 7 + 3 × 11 + 14 + 3 × 57)/10 = 17.9

S2
w = 7149 − 3204.1

9
= 438.3

CHAPTER 2
1.

2.

3.

4.
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5.

6.

7.
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CHAPTER 3
1. Larger sample, more representative, blinded, less bias, etc.
2. All patients with disease who can be treated by antibiotic
3. Preference for new formulation among 24 panelists; number of broken tablets in sample of

100; race of patients in clinical study
4. 50,000 specked, but 20,000 are also chipped. Therefore, 30,000 are only specked. Probability

of speck or chip is 0.06 (60,000 tablets have either a speck or a chip).
5. (a) P(A and B) = P(A|B)P(B). Let A = high blood pressure and B = diabetic. Then P(A and

B) = (0.85)(0.10) = 0.085.
(b) If independent, P(A) = P(A|B); 0.25 
= 0.85; they are not independent.

6. (0.75)2(0.25)2 = 0.35163 × 6 = 0.21094. There are 6 ways of choosing 2 patients out of 4
(

4
4
)

.

7. (0.6)3(0.4)3 = 0.013824 × 20 = 0.276. There are 20 ways of choosing 3 patients out of 6
(

6
4
)

.
8. 0.3697
9. (a) Approximately 0.8; (b) 0.2

10. Z = (170 − 215)/35 = 1.29; probability = approximately 0.10
11. Z = (60 − 50)/5 = 2,P(X ≤ 60) = 0.977; Z = (40 − 50)/5 = − 2,P(X ≤ 40)

= 0.023; P(40) ≤ X ≤ 60) = 0.977 − 0.023 = 0.954
12. Not necessarily; the patient may have a cholesterol value in the extremes of the normal

distribution.
13. Z = (137 − 140)/2.5 = −1.2, probability ≤ Z = 0.115; Z = (142 − 140)/2.5 = 0.8, probability

≤ Z = 0.788; P(137 ≤ Z ≤ 142) = 0.788 − 0.115 = 0.673
14. Z = (280 − 205)/45 = 1.67; probability = 0.952; probability Z > 280 = 1 − 0.952 = 0.048
15. There are 36 equally likely possibilities, of which one is 2.
16. Yes! The order of heads and tails is not considered in the computation of probability.

17. P(0 defects) =
(

20
0
)

(0.01)0(0, 99)20 = 0.818; P(1 defect) =
(

20
1
)

(0.01)1(0.99)19 = 0.165; P(0 or 1 defect) = 0.818 + 0.165 = 0.983
18.

(
10
1
)

(0.5)1(0.5)9 = 0.0098

19.
(

4
2
)

(0.01)2(0.99)2 = 0.00059. The probability is small; and two of four cures can be consid-
ered unlikely. The probability of this event plus equally likely or less likely events (three of
four and four of four cures) is close to 0.00059. Thus, we conclude that the new treatment
is effective.

20.
√

(0.01)(0.99)20 = 0.445;
√

(0.01)(0.00)/20 = 0.022 (Problem 17)√
(0.01)(0.99)4 = 0.199;

√
(0.01)(0.99)/4 = 0.497 (Problem 19)

21. S =√
(0.5)(0.5)/20 = 0.112; Z = (0.75 − 0.5)/0.112 = 2.24; P(Z > 2.24) = 1 − 0.988 = 0.012

Drug is a promising candidate. The probability of observing such a large response is small
if the true proportion of responses is 50%.

22. P(0 defects) = 0.9930 = 0.7397; P(1 defect) = (30)(0.01)(0.99)29 = 0.2242;
P(0 or 1 defect) = 0.7397 + 0.2242 = 0.9639; P(more than 1 defect) = 1 − 0.9639 = 0.0361

23. 85 = 35 + 50 + 50 − 20 − 15 − 25 + P(ABC); P(ABC) = 10%

CHAPTER 4
1. Starting at the upper left corner,∗ going down in Table IV.1. Even numbers to A. Patients

assigned to A: 1, 2, 3, 5, 6, 8, 13, 14, 15, 16, 17, and 19.

∗ We started at the upper left and read down for convenience and for the purpose of illustration. Otherwise, the
starting point should be random.
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2. Start as in Problem 1. If the number is 1 to 3, assign to A; 4 to 6, assign to B; 7 to 9, assign
to C; do not count zeros.

Patient Random number Treatment

1 4 B

2 8 C

3 2 A

4 5 B

5 8 C

6 4 B

7 9 C

8 2 A

9 1 A

10 5 B

11 5 B

12 5 B

13 4 B

14 6 B (8 B’s)

15 8 C

16 3 A

17 9 C

18 3 A

19 8 C

20 8 C

21 9 C (8 C’s)

Remaining patients (22, 23, 24) given A

(May also randomize in groups of three; e.g., the first three patients are B, C, A—random
numbers 4 and 8 refer to B and C.)

3. Start as above in Table IV.1. Use two-digit numbers between 1 and 30: 28, 24, 14, 6, 17, 29.
5. Placebo: 1, 2, 4, 5, 7, 8, 9, 10, 12, 18; Drug: 3, 6, 11, 13, 14, 15, 16, 17, 19, 20.
6. Take 20 tablets at a specific time every hour, all at the same time each hour (e.g., on the

hour). Take 20 tablets each hour, but randomize the time the 20 are taken; e.g., first hour,
take the sample at 5 min past the hour; second hour, take at 25 min past the hour; etc. Take
tablets, one every 3 min during each hour. Take tablets at random times during each hour.

7. (see also Problem 3) 44, 8, 28, 55, 88
10. X̄ = 300.7

CHAPTER 5
1. Z = (49.8 − 54.7)/2 =−2.45; = 0.0071
2. 103 ± 2.58(2.2)/

√
10 = 103 ± 1.8 = 101.2 to 104.8

3. (a) 5.95 ± 2.57(1.16/
√

6 = 5.95 ± 0.17
(b) 0.024 ± 1.96

√
(0.024)(0.976)/500 = 2.4 ± 1.34%

(c) (0.83 − 0.50) ± 1.06
√

(0.83)(0.17) >sh> 60 + (0.50)(0.50)/50 = 0.33 ± 0.17
4. (a) Z = |498 − 502|/(5.3/

√
6 = 1.85; not significant, � = 0.05; two tailed test

(b) t = (5.08 − 4.86)/
√

0.095(2/5 = 1.13; not significant at 5% level
(c) T = 4/

√
(15.2)/6 = 2.51; t5 = 2.57; just misses significance at 5% level; two-tailed test.

5. (a) 0.098, larger
(b) 0.350 and 0.261, average s.d. = 0.305, pooled s.d.= 0.308

6. (a) X̄ = 10.66, s.d.= 0.932
(b) X̄ = 9.66, s.d. = 0.4696. t18 = 1/(0.738

√
2/10 = 3.03; difference is significant

(c) Approximate test: Z = (0.7 − 0.2)/
√

(0.45)(0.55)(2/10) = 2.24; significant. Chi-square
test with correction = 3.23; not quite significant.

(d) 0.45 ± 1.96
√

(0.45)(0.55)(1/20) = 0.45 ± 0.22



638 ANSWERS TO EXERCISES

7. Paired t test; 3 d.f.; � = 0.05; two tailed test
(a) t = 0.07

√
0.0039/4 = 2.23; not significant

(b) 0.07 ± 3.18(0.0627)/
√

4 = 0.07 ± 0.10
8. (a) Paired t test, 11 d.f.; t = 0.5/(0.612/

√
12 = 2.83; significant at 5% level

(b) 0.5 ± 2.2(0.612/
√

12 = 0.5 ± 0.39
9. 9/60 and 6/65 = 15/125 = 0.12; 80/1000 and 57/1000 = 137/2000 = 0.685

10. t = (16.7 − 15)/(3.87/
√

10) = 1.39; 10% level, one-sided test, this is significant
11. Chi-square = (3.5)2(2/12 + 2/88) = 2.32; not significant
12. Z = (|0.05 − 0.028| − 1/400)/

√
(0.028)(0.972)/200 = 1.67; not significant. 0.05 ±

1.96
√

(0.95)(0.05)/(200) = 0.5 ± 0.03; 10 ± 1.96
√

(0.95)(0.05)(200) = 10 ± 6
13. (a) 50 ± 1.96

√
(0.01)(0.99)(5000) = 50 ± 13.79 in 5000 for 1,000,000 tablets; 10,000 ± 2758

(b) (0.01 − 0.02)/
√

(0.02)(0.98)/5000 = −5.05; P #of 0.001;
very unlikely 1.96

√
(0.01)(0.99)/N = 0.001, N = (1.96)2(0.99)(0.01/10) = 38,032

14. Chi-square = (4.5)2(1/35.45 + 1/24.55 + 1/29.55 + 1.20.45) = 3.07; not significant at 5%
level. (40/60 − 25/50) ± 1.96

√
(0.67)(0.33)/60 ± (0.5(0.5)/50 = 0.167 ± 0.183

15. Z = (|0.75 − 0.5| − 1/80)/
√

(0.5)(0.5)/40 = 3.0; P < 0.05
16. Z = (|0.45 − 0.2| − 1/40)/

√
(0.8)(0.2)/20 = 2.51; P < 0.05; 0.45 ±

2.58
√

(0.45)(0.55)/20 = 0.45 ± 0.287
17. Chi-square = (3.5)2(1/13.85 + 1/86.15 + 1/13.15 + 1/81.85) = 2.10; not significant
18. (1.8)2(1/7.2 + 1/7.8 + 1/52.8 + 1/57.2) = 0.98
19.

80
57

920
943

= 2×2 table

� 2 = 112(1/68.5 + 1/931.5 + 1/68.5 + 1/931.5) = 3.79; just misses significance at
5% level

20. F9,9 = 0.869/0.220 = 3.94, P < 0.10 (Table IV.6). This is a two-sided test. A ratio of 3.18 is
needed for significance at the 10% level.

21. Correct � 2 = 3.79; d’Agostino = 2.04
22. � 2 = 28.6135 – 20.8591 = 7.75 (P < 0.05)

23. �2 = 9 × 5
0.711

= 63.29 � = 7.96

24. �2 = (7.8)2

18.49
= 95 � = 9.7

CHAPTER 6
1. 2(5/10)2(1.96 + 0.84)2 + 0.25(1.96)2 = approximately 5 per group
2. 2(5/10)2(1.96 + 0.84)2 = approximately 4 per group
3. [(0.8 × 0.2 + 0.9 × 0.1)/(0.1)2](1.96 + 1.28)2 = approximately 263 per group
4. [(0.5 × 0.5 + 0.5 × 0.5)/(0.2)2](1.96 + 1.28)2 = approximately 132 per group
5. (1.96)2(0.5 × 0.5)/(0.15)2 = approximately 43

(1.96)2(0.2)(0.8)/(0.15)2 = approximately 28
6. (10/10)2(1.96 + 2.32)2 + 2 = approximately 21 tablets
7. (a) Z	 = (3/5)

√
19/2 − 1.96 = −0.11; power is approximately 46%

(b) Z	 = (3/5)
√

49/2 − 1.96 = 1.01; power = 84%
8. (10/3)2(1.96 + 1.28)2 = approximately 117
9. Z	 = (0.2/0.25)

√
10 − 1.96 = 0.57; power is approximately 71%

10. 2(12/10)2(1.96 + 1.65)2 + 0.25Z2
� = approximately 39

11. Z	 = (15/40)
√

16 − 1.96 =−0.46; power = approximately 0.32
12. (1.96)2(0.90)(0.10)/(0.05)2 = 138.2 = approximately 139
13. N = 2(5/6)2(1.96 + 1.28)2 + 0.25(1.96)2 = 15.5 = approximately 16
14. 23 tablets per formulation
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CHAPTER 7
1. (a) b = 40/10 = 4; a12 − (4)(3) = 0

(b) S2
y,x = (164 − 16.10)/3 = 1.33; S2

b 1.33/10 = 0.133
t = 4/

√
0.133 = 10.95; significantly different from 0

(c) |4 − 5|/√0.133 = 2.74; d.f. = 3; not significant, 3.18 needed for significance
(d) 3 hr;Y = 4X = 12 ± 3.18

√
1.33

√
1/5 + 0.10 = 10.36 to 13.64.

5 hr;Y = 4X = 20 ±3.18
√

1.33
√

1/5 + 4/10 = 17.16 to 22.84
(e) Y = 4(20) = 80 ± 3.18

√
1 + 1/5 + (20 − 3)2/10 = 80 ± 20.1

(f) b = ∑
Xy/

∑
X2 = 220/55 = 4

2. (a) a =−0.073; b = 0.2159
(b) S2

y,x = 0.003377; S2
a = 0.001848; −1.69(3 d.f.); not significant; may be due to interfering

impurity
(c) C = 7.98; confidence limits are 7.43 to 8.64; see Eq. (7.17)

3. (a) b = 27/41.2 = 0.655, a = 100 − 0.655(200.4) =−31.3
(b) Y =−31.3 + 0.655)(200) = 99.74
(c) 99.74 ± 3.18

√
0.0102

√
1/5 + (200 − 200.42/41.2 = 99.74 ± 0.46

4. (a) 0.9588
(b) t10 = 10.7; r is significantly different from 0 at 5% level

5. r = 0.6519; t8 = 1.84/0.76 = 2.43, significant at 5% level
6. r = −0.93135; t7 = 6.77, significant at 5% level
7. r = 0.2187; F = 6.54/1.067 = 6.135

rds = (6.135) − 1)/
√

(6.135) + 1)2 − 4(0.21872)6.135 = 0.728
t8 = 0.728

√
8/

√
1 − 0.7282 = 3.00; p < 0.05; drug B is less variable

8. Y =−3.90082 + 0.99607X; predicted values: 0.10049 (X = ln 5); 0.20043 (X = ln 10), 0.49928
(X = ln 25), 0.99584 (X = ln 50), 1.98626 (X = ln 100).

9. (a) C = 2.5482 − 0.01209t; (b) 24.66 mos; (c) 23.27 mos; (d) 23.55 mos.
10. a = 0.5055

CHAPTER 8
1. For significance at the 5% level, t(8 d.f.) ≥ 2.31 (two-sided test) A vs. B : t = (101.2−

99.4)/Sp
√

1/5 + 1/5 = 2.84(P < 0.05); Sp = 1.0. A vs. C : t = (101.6 − 101.2)/(1.58
√

1/5 + 1/5)
= 0.40. B vs. C : t = (101.6 − 99.4)/(1.67

√
1/5 + 1/5) = 2.08

2.
Source d.f. MS F

Between treatments 2 0.167 0.039

Within treatments 3 4.33

Treatments are not significantly different.
3. Pooled error term from ANOVA table (Table 8.3) = 2.10

Avs.B : t = 1.8/
√

2.10(2/5) = 1.96
Avs. C : t = 0.44
B vs. C : t = 2.40 (P < 0.05)
Pooled error results in different values of t. This is appropriate if F is significant and/or
tests are proposed a priori (use pooled error, i.e., WMS).

4. (a) H0: �1 = �2 = �3 = �4; Ha : �i 
= � j ; � = 0.05
(b) Fixed
(c)

Source d.f. MS F

Between analysts 3 2.89 5.78 (<0.05)

Within analysts 8 0.50

LSD = 2.31
√

0.5(2/3) = 1.33
A differs from B, C, and D; B differs from C and D
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(d) Tukey test: 4.53
√

0.5(3) = 1.85; only analysts A and C differ at 5% level Scheffé test:√
0.5(3)4.07(1/3 + 1/3) = 2.02; none of the analysts differ at 5% level

5. H0: �i = � j ; Ha : �i 
= � j ; � = 5%
(a)

Source d.f. MS F

Between clinics 6 16.425 8.21 (P < 0.05)

Within clinics 13 2

(b) Yes
(c) Fisher’s LSD method (for example) at the 5% level

LSD = 2.16
√

2(1/3 + 1/3) = 2.49
Clinic 1 
= clinics 2, 5, 7; clinic 2 
= clinics 3, 5, 6; clinic 3 
= clinics 5, 7; clinic 4 
=
clinic 5; clinic 5 
= clinics 6, 7; clinic 6 
= clinic 7 For comparisons to clinic 7,
LSD = 2.16

√
2(1/3 + 1/2) = 2.79

6. (a) Drugs fixed; (b) Machines fixed; (c) formulations fixed; (d) Machines random; (e) Clus-
ters chosen at random

7. H0: �1 = �2 = �3; � = 0.05

Source d.f. MS F

Between batches 2 115.2 10.26 (P < 0.05)

Within batches 12 11.24

t test shows that batch 3 is different from batches 1 and 2; e.g., batch 1 vs. batch 3:
t12 = (20.33 − 11.8)/

√
11.24(1/6 + 1/5

8. (a)
Source d.f. MS F

Row 5 1679.0

Column 2 8.22 0.34 (P > 0.05)

Error 10 23.96

(b)
Source d.f. MS F

Row 5 52.99

Column 2 26.06 5.37 (P < 0.05)

Error 10 4.86 (F2,10 = 4.10 for

� = 0.05)

(c) Averages of drugs are: placebo = −0.33, drug 1 = −3.67, and drug 2 = −4.17. Tukey
test: 3.88

√
4.86/6 = 3.49; therefore, drug 2 is different from placebo. Newman–Keuls

test: Drugs 1 and 2 different from placebo (P < 0.05). Dunnett test: Drug 1 and drug 2
different from control (P < 0.05).

9. (a) If the six presses comprise all of the presses, the presses are fixed. Hours are fixed (i.e.,
each hour of the run is represented).

Source d.f. MS F

Hour 4 11.95 6.76 (P < 0.05)

Presses 5 2.45 1.38 (P > 0.05)

Error 20 1.77

(b) Presses are not significantly different (5% level)
(c) “Hours” are significantly different.
(d) Assume no interaction
(e) Use Tukey test: 4.23

√
1.77/6 = 2.30; hour 3 is significantly different from hours 1, 2,

and 5.
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10.
Source d.f. MS F

Rows 2 7.06 2.05

Columns 2 16.89 4.91 (P < 0.05)

Interaction 4 3.03 0.88

Within 9 3.44

(F2,9 = 4.26 for significance at 5% level.)

“Presses” are significant. “Interaction” is not significant. Interaction means that differences
between presses depend on the hour at which tablets are assayed.

11. Average results: A = 2.90, B = 6.50, C = 6.07
If “sites” are random, use CR as error term.
5.04

√
22.66/24 = 4.90 (no significant differences).

If “sites fixed,” use within error.
3.4
√

3.215/24 = 1.24 A is lower than B and C)
12. ANOVA Table:

Source d.f. Sum-Squares Mean Square

C 2 14.29167 7.145834

B 2 9.125 4.5625

Error 3 7.083334 2.361

Total (Adj) 7 30.5

13. ANOVA Table:

Source d.f. Sum-Squares Mean Square F-Ratio Prob > F

A (Method) 1 6.438E-04 7.438E-04 7.15 0.0369

Error 6 5.406E-04 9.010E-05

Total (Adj) 7 1.184E-03

Method average

1.9921655

2.974223

P = 0.0366 from ANCOVA

CHAPTER 9
1. ANOVA Table:

Source d.f. MS F

Stearate 1 1.56 5.21

Mixing time 1 1.82 6.1

Stearate X mixing time 1 0.72 2.41

Mixing time and stearate are significant at 5% level. Interaction is not significant.



642 ANSWERS TO EXERCISES

2. Low starch, low stearate Low starch, high stearate

0.475 0.487

0.421 0.426

Av. = 0.448 Av. = 0.4565

High starch − low starch = 0.4565 − 0.4480 = 0.0085
3. ANOVA:

Source d.f. MS F

a 1 0.66 14.0∗
b 1 0.06 1.3

ab 1 0.03 —

c 1 7.41 158∗∗
ac 1 0.10 —

bc 1 3.25 69∗∗
abc 1 0.01 —

∗P < 0.05; ∗∗P < 0.01.

Error = (0.03 + 0.10 + 0.01)/3 = 0.047; d.f. = 3
(a) a, c, bc
(b)

(c) When C is low, as B is increased, recovery is increased.
When C is high, as B is increased, recovery is decreased.

4. Synergism (or antagonism) would be evidenced by a significant AB interaction. If the effects
are additive, we would expect an increase of 12 for the AB combination beyond placebo
(4 from A and 8 from B). This is close to the observed increase of 14 (35 − 21) for AB. The
combination of A and B work better than either one alone, but the evidence for synergism
is not strong.

5. Weigh (1), ab, ac, bc: empty, a and b together, a and c together, b and c together.

Source d.f. MS F

A 1 2014 21.3a

B 1 356 3.8

AB 1 14 0.2

C 1 45 0.5

AC 1 741 7.9b

BC 1 121 1.3

ABC 1 36 —

D 1 5704 60.5a

AD 1 114 1.2

BD 1 226 2.4

ABD 1 128 —

CD 1 0.02 0

ACD 1 10 —

BCD 1 10 —

ABCD 1 271 —

Total 15 9806

Estimate of error = 94.3
aP < 0.01
bP < 0.05
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AC interaction is significant: at low C, the A effect is 52.2 − 43.3; i.e., changing from low to
high level of A has little effect when C is at the low level. At high C, the A effect is 62.4 −
26.4.

CHAPTER 10
1. 1.00, 1.11, 1.60, 1.64, 1.74, 1.80, 2.06, 2.16, 2.30, 2.34, 2.36, 2.57, 2.70, 2.90, 2.90, 2.99, 3.10, 3.12,

3.18, 3,66

2. log Y =−0.127 + 1.068 logX
log 47 =−0.127 + 1.068 logX
log X = 1.685
X = 48.4 mg

3. R̄ = 1.066,S = 0.281; (0.066)/(0.089) = 0.75 (not significant at 5% level). The t test for log B
− log A is identical except for sign as the t test for log A − log B. This example shows the
problems of using ratios. The average of A/B is not (in general) the reciprocal of B/A.

4. (62 − 54)/(62 − 47) = 8/15 = 0.533. This is an outlier according to the Dixon test. We prob-
ably should not omit this value without further verification. The outlier could be due to
analytical error and/or the presence of tablets with unusual high potency.

5. Winsorized, 50.7; using all values, 51.4.
6. t = [2.8 − 0.6]/[1.732

√
1/5 + 1/5] = 2.01.

(Note the difference between the variances of the two groups.)
Use a square-root transformation:
Process 1: mean = 1.4363, s.d. = 0.960
Process 2: mean = 0.6, s.d. = 0.548
t = [1.4363 − 0.6]/[0.782

√
1/5 + 1/5] = 1.69

CHAPTER 11
1. (b)

t =
√

107.2 − (−3.05)
1983.9(1/20 + 1/20)

= 7.83(t2 = F )

2.
Source d.f. MS F

Subjects 11 5.19

Treatment 1 0.04 0.005 Treatments are not

significantly different.

Order 1 2.04 0.25

Error 10 8.04
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3.
Source d.f. MS F

Subjects 11 16.41

Treatments 1 155 13.19 (P < 0.01)

Order 1 177 9.96 (P < 0.05)

Error 10 11.75

(22.3 − 17.3) ± 2.23
√

11.75(1/12 + 1/12) = 5 ± 3.12

Grizzle analysis: Residual effect = (245)2+(230)2

12
− (475)2

24
= 9.375;

within MS = 17.11; F1,10 = 9.375/17.11 = 0.55; not significant at 5% level
4. A/B = 1.334,S2 = 0.238; t = (1.334 − 1.0)/

√
0.238(1/12) = 2.37; P< 0.05.

5. log X = 0.0954265; antilog = 1.246; S2 = 0.0309; t = 1.88 (not significant; assume no order
effect); 0.0954 ± 2.20

√
0.031(1/12) = −0.016 to 0.207; antilogs: 0.96 to 1.61

6. Two-way ANOVAS:

Placebo Active
Combined

ANOVA

Source d.f. MS d.f. MS d.f. MS

Patients 5 2.866 5 2.742 10 2.804

Weeks 3 1.055 3 7.264 3 3.91

Patients × weeks 15 0.956 15 0.897 30 0.926

Drugs 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 15.1875

Drugs × weeks 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 4.41

For “drugs,” F1,10 = 15.1875/2.804 = 5.416(P< 0.05); for “drugs × weeks,” F3,15 = 4.41/

0.926 = 4.76P< 0.05). From the accompanying plot and the F test for interaction, the active
effect increases with time while the placebo is relatively constant.

7. N = 2(55/60)2(1.96 + 1.28)2 + 1=∼19
8. |− 4.75 + 7.6 |/ (3.433

√
1/8 + 1/9) = 1.71(P > 0.05)

10. Suppose that we start in column 5 in the Blocks of 6 section of Table 11.1. We can equate
numbers 1 and 2 to Treatment A, 3 and 4 to Treatment B, and 5 and 6 to Treatment C. The
assignments are as follows:
From Table 11.1

3 2 5 1 5

2 1 2 6 6

1 3 3 5 4

5 5 4 2 3

6 6 1 3 2

4 4 6 4 1
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Subject Treatment Subject Treatment Subject Treatment

1 B 13 C 25 C

2 A 14 A 26 C

3 A 15 B 27 B

4 C 16 B 28 B

5 C 17 A 29 A

6 B 18 C 30 A

7 A 19 A

8 A 20 C

9 B 21 C

10 C 22 A

11 C 23 B

12 B 24 B

11. A = 3, B = 2. The effect of A in Period 2 = 3 (Direct effect) + 2 (carryover) + 3 (period) =
8. The effect of B in Period 2 is 2 + 2 + 3 = 7. A − B = 8 − 7 = 1.

12. N = 2(0.8)(1 − 0.8){(1.65 + 1.28)/0.16}2 = 108 per group.

CHAPTER 12
1. X̄ = 9.95; limits are 9.95 ± 1.88(0.10) = 9.95 ± 0.19

R̄ = 0.10; forN = 2, limits are 0 to (3.27)(0.10) = 0.33
2. � =√

0.02(0.98)/1000 = 0.004427; 3� = 0.0133; 0.02 ± 3� = 0.0067 to 0.0333
3. X̄ control chart is centered at 47.6 with limits 47.6 ± 1.02(1.2) = 47.6 ± 1.22. R chart has a

target of 1.2 with lower limit of 0 and upper limit of 2.57(1.2) = 3.1 (see Table IV.10).
4. P = 1%; accept if 0 or 1 rejects. Probability 0 rejects = 0.99100 = 0.366.

P(1 reject) = 0.370; P(batch rejected) = 1 − 0.736 = 0.264.

5. X̄ = 10.02; limits : 10.02 ± 0.31(0.38) = 10.02 ± 0.12
R = 0.38; limits: lower is 0.22(0.38) = 0.08; upper is 1.78(0.38) = 0.68
Many means are out of limits. Either find cause or, if not possible, use moving average if
means are well within official limits.

6. p = 50/100,000 = 0.005 = probability of reject; q = 0.9995; therefore, probability of passing
batch = 0.9995100 = 0.951

7.
Source d.f. MS

Between 3 483.3

Within 8 87.83

Between-analyst component = (483.3 − 87.83)/3 = 131.8; within-analyst component =
87.83
Three analysts perform four essays:

S2 = 4(131.8) + 87.83
12

= 51.3

Four analysts perform two assays:

S2 = 2(131.8) + 87.83
8

= 43.9

Cost is $24 for both procedures. The latter procedure (four analysts) is more precise.
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8. Limits are 399.6 ± 1.02(3.48) = 399.6 ± 3.55

9. X̄ = 10.21,R̄ = 0.24,S̄ = √
0.052 = 0.23

Limits for X̄ = 10.21 ± 1.88(0.24) = 10.21 ± 0.45
Limits for R̄ = 0 to 3.27(0.24) = 0 to 0.78

10. N = 4; limit = 2.28,R̄ = 2.28(12.5) = 28.5 (0 is lower limit)
11. 6.25 vs. 3.8
13. (a) 90 + 1.71(0.3/2 + 0.5 + 4/20)1/2 = 91.58

110 − 1.71(0.3/2 + 0.5 + 4/20)1/2 = 108.42
(b) 90 + 1.71(0.3 + 0.5 + [4/20]/2)1/2 = 91.62
110 − 1.71(0.3 + 0.5 + [4/20]/2)1/2 = 108.38
Consider the advantages and disadvantages of different kinds of replication.

CHAPTER 13
1. R̄ = 3.375; upper limit = 3.375 × 2.57 = 8.7
2. X̄ = 106.5; R̄ = 5.4; limits = 106.5 ± 1.02(5.4) = 106.5 ± 5.5
3. S2

1 = 15.67; S2
2 = 2.83; S2

3 = 3.94
S̄2 = 7.48
X2

2 = 72.440 − 61.958 = 10.482(P< 0.05)
4. R̄ = 2.38; upper limit = 2.38 × 3.27 = 7.78
5. X̄ = 102.4; R̄ = 3.3; limits = 102.4 ± 3(3.3)/1.128 = 102.4 ± 8.8

CHAPTER 15
1. t = 0.583/0.6685

√
1/12 = 3.02; P < 0.05; parametric t test shows significance

2. (a) 9 of 12 comparisons are higher for B: not significant
(b) (b) t = 0.5/(0.61

√
1/12) = 2.83; P< 0.05

3. � Ranks for A= 11(or 67); � ranks for B = 67; N = 12, � = 0.05

Z =
∣∣67 − 12(13)/4

∣∣√
12(12.5)(13)/12

= 2.20; P< 0.05

4. Use the Wilcoxon signed-rank test.
∑

R = 13.5 (or 22.5); P > 0.05 (not significant).
5. Use the Wilcoxon rank sum test.

Z =
∣∣74 − 10(10 + 10 + 1)/2

∣∣√
10(10(10 + 10 + 1)/12

= 2.34; P< 0.05

t = 4.35 − 2.09√
3.816(1/10 + 1/10)

= 2.59; P< 0.05
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6. Use the Kruskal-Wallis test. Sum of ranks = 63.5, 40.5, and 16.

� 2
2 = 12

15(16)
(1133.3) − 3(15 + 1) = 8.67; P< 0.05

There is a significant difference (batch 3 has lowest dissolution).
7. Sum of ranks = 31, 21.5, and 19.5.

� 2
2 = 12

36(3 + 1)
(312+21.52+19.52) − 3(12)(4) = 6.29; P< 0.05

The standard has the highest Cmax (standard is greater than B, P < 0.05; see Ref. 2).
8.

0 1 2 Total

A 50(38.9) 50(61.1) 75(75) 175

B 20(31.1) 60(48.9) 60(60) 140

Total 70 110 135 315

X 2
2 = 11.69; P < 0.01. The distribution of scores for A and B is different.

9.
Capping

Yes No Total

Yes 13(1.8) 45(56.2) 58

Specks No 18(29.2) 924(912.8) 942

Total 31 969 1000

(a) S1
2 = 73.7 (corrected); P � 0.01; not independent

(b) Z = |0.714 − 0.5| −1/126√
0.5(0.5)/63

= 3.27; P< 0.01

The difference is significant at the 1% level.
10. The probability of the fourfold table is 0.0304:

12!5!14!21!
0!12!5!9!26!

= 0.0304

The only least likely table has five tumors in the controls and zero tumors in the treated
group. This table has a probability of 0.012.4. Therefore, the probability of the given table
+ more unlikely tables is 0.0304 + 0.01204 = 0.0421. The � 2 test (corrected) is equal to 3.98,
which is equal to P = 0.0460.

11. The median is 303.25. There are nine runs. According to Table IV.14, fewer than 6 or more
than 15 runs are needed for significance at the 5% level. Therefore, the sequence is not
significantly nonrandom for both one- and two-sided tests.

14. � 2 = 5.44(P< 0.05)
15.

Source d.f. Sum-Squares Mean Square

A (Treatment) 1 2.485E-04 2.485E-04

B (Subject) 11 .637813 .057983

Error 11 1.138684 .1035167

Total (Adj) 23 1.776746

90%C.I. : (4.9615 − 4.9551) ± 1.8
√

0.1035167/6 = 0.0064 ± 0.2364 = 0.795 to 1.275
16. Sequence 1: P1 + T1−P2−T2

Sequence 2: P1 + T2−P2−T1
Seq. 1 − Seq. 2 = 2(TP − T2)

17. Sequence:

∣∣73 − 8(8 + 9 + 1)/2
∣∣√

8 × 9(8 + 9 + 1)/12
= 0.096P> 0.5

Period:

∣∣54 − 8(8 + 9 + 1)/2
∣∣√

8 × 9(8 + 9 + 1)/12
= 1.73P< 0.10
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18. Answer: p = 0.012

Source d.f. Sum-Squares Mean Square F-Ratio Prob > F

A (Press) 3 .9815 .3271667 5.64 0.012

B (Formula) 4 5.288004 1.322001

AB 12 .6959966 5.79E-02

Total (Adj) 19 6.965501

19.
Source d.f. Sum-Squares Mean Square

Formulation 4 0 0

Press 3 156.3 52.1

Error 12 113.7 9.475

Total (Adj) 19 270

LSDX̄ = 2.18

√
9.475

(1
5

+ 1
5

)
= 4.244

Sum = 5 × 4.244 = 21.22

CHAPTER 16
1. (a) ′ X1 = 0; ′ X2 = 1; ′ X3 = 0; Y = 10.725 + 2.225 = 12.95

(b) ′ X1 = 1; ′ X2 = 1; ′ X3 = 0.6; Y = 15.36
2. See Eq. (16.4). ′ X1 = (1 − 1)/1 = 0; ′ X2 = (0.5 − 0.5)/0.5 = 0; ′ X3 = (2.5 − 2.5)/2.5 = 0
3. Y = (9.7 + 7.2 + 8.4 + 4.1)/4 + (−9.7 + 7.2 − 8.4 + 4.1)X1/4 + (−9.7 − 7.2 + 8.4 + 4.1)X2/

4 + (9.7 − 7.2 − 8.4 + 4.1)X1 X2/4 = 7.35 − 1.7X1 − 1.1X2 − 0.45X1 X2
4. A′ = (8.75 − 7.5)/2.5 = 0.5; B ′ = (100 − 75)/25 = 1.0; Y = 7.35 − 1.7(0.5) − 1.1(1) − 0.45(0.5) =

5.725
5. Y = 19.75 + 4.25(St) + 3.25(M) − 2.25(M)(St). Note: M and St are coded. One possibility is

(St) = −0.23 and (M) = −1. This is equivalent to 15 min of mixing and 0.539% stearate, for
a 15-min dissolution time.

6. Y + 10A+ 15B + 30AB; let B = 1 − A.Y = 10A+ 15(1 − A) + 30A(1 − A) =−30A2 + 25A+ 15;
dY/d A=−60A+ 25 = 0; A= 0.417 = 41.7%

7. (a) Y = 292A+ 5.6B + 50.4C−492.8AB−186.8AC−49.6BC + 54.6ABC
(b) 100% B is 5.6 min. Combinations between 50 and 100% B and 0 and 50% A may give a

fast dissolution (e.g., 0.6 of B and 0.4 of A = less than 2 min).
(c) There are many combinations. For example, 35% of A and 65% of C results in a disso-

lution of approximately 92 min.
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Accuracy, 21, 23, 359
Alias, 235
Allergy test, 416–417

alpha error (see also Hypothesis testing), 94
Alternative hypothesis (see Hypothesis testing)
Analgesics, 209, 259
Analysis of covariance (ANCOVA), 210–214
Analysis of variance (ANOVA), 182

in assay procedure, 151, 244, 322
assumptions in, 153
comparisons in penalty, 188

planned vs. unplanned, 187–189
computations, 183–187
degrees of freedom in, 160, 185–186
difference from baseline, 264
error terms, 208
F distribution in, 119, 186
in factorial designs, 222
fixed model, 198, 199–203
hypothesis in, 119
incorrect analysis, 187
interaction in, 199
interpretation, 183
missing data, 208–209
model, 186
fixed and random, 196–198
multiple comparisons, 189–196

contrasts, 192
correlated outcomes, 194–196
Dunnett, 194
experiment–wise, 188, 192
LSD, 190–191
multiple range test, 191–192
Newman–Keuls, 193–194
penalty, 188
planned vs. unplanned, 187–189
Scheffe method, 190
studentized range, 192

nested, 334
one–way

assumptions in, 183
computations, 183–186
fixed and random models, 196–198
nonparametric (Wilcoxon rank sum test),

408–409
nonparametric test, Kruskal–Wallis,

402–404
random effect, 332
unequal sample sizes, 196–198

power in, 138–140
randomized block (see also Analysis of variance

(ANOVA), two-way), 198
repeated measures, (see also Repeated measures

design), 198
sum of squares (see also Sum of squares), 13

residual, 165
table, ANOVA, 458
test of hypotheses, 152
three factor, 234–235, 360
treatment sum of squares, 183
treatment mean square, 184
total sum of squares, 183
two way, 198

Analytical methods comparison
Greenbriar, 327
statistical methods in development, 327
transformations in, 240–241

Anesthetic, 435
Antagonistic, 224
Antianginal, 262
Antibiotic, 41, 45–46, 135, 366
Antihypertensives, 89, 99–100, 171
Anti–inflammatory, 37, 457
AQL (see Quality control)
Arcsine transformation, 248
Area under curve (AUC) (see also Crossover

design), 131
Arthritis, 418
Assay

and Barr decision, 173
composite, 339, 341
outliers, 243
single failure (see Barr decision)
USP test, 488

Assay development, 327
automated procedure, 410
statistical methods, 327
validation, 399

Asthmatics, 74, 76
Attributes, 2, 111, 156

inspection for, 77–78
AUC (see also Bioequivalence), 109, 109–110, 133,

140
Averaging assays and Barr Decision, 500
Average (see also Mean), 8–9

Bar graph, 26, 37
column chart, 35
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Barr decision, 173
average confirms, 501–503
content uniformity test, 500
homogenous sample replication, 500–501

Bartlett’s test, 121, 358
Baseline readings, 198, 264–265
Beer’s law, 26–27, 147
Behrens–Fisher method, 105, 106
Bernoulli trial, 367
Beta error (see also Hypothesis testing), 99, 124, 145,

299
Bias, 21–22, 72, 107
Binomial (see also Probability), 44–52, 68

distribution, 40, 44
normal approximation to, 62

continuity correction, 63
expansion, 368, 371
hypothesis tests, 48, 87

parameters, 46
randomized blocks, 419–420
standard deviation (see also Standard deviation),

46
sampling, 78
in sign test, 393–394
summary of properties, 49–51
test, 110

Bioanalytical method (see Validation)
Bioassay, 457
Bioavailability, 109, 119, 144, 176
Bioequivalence (see also Crossover design)

carryover in (see Crossover design)
confidence interval in (see also Confidence

Intervals), 280–281
designs, 269
dichotomous outcome, 45
in groups, 622
individual, 124, 284, 285, 292–293
interaction in (see Crossover design)
long half life, 270
non–absorbed drug, 615
nonparametric, 396
outliers, 487–488, 619–620
parallel design in, 616–619

Fieller’s method, 618–619
old FDA method, 617–618

Biological Variation, 16, 183
Bivariate normal, 172, 176
Blends, 71, 500
Blend sampling, 341
Blinding, 22, 259
Block, 198–199

binomial outcome, 419–420
Blood pressure, 2, 3, 8, 21–22, 28, 90–91, 99,

100
Bootstrap, bootstrapping, 296, 366, 384–385
Bonferroni, 189, 195
Bracketing, 82, 156
Bulk powder sampling, 78

Calibration curve, 154, 358ff
Cancer, 299

Carryover (see also Crossover design), 198, 260,
268ff

Categorical variables, 2, 35, 390
Censored data, 209
Central Limit Theorem, 60–62, 104, 368–369, 374,

375–376
Change from baseline, 90, 199, 211, 263
Chi–square

distribution, 64–65, 114–116
test (see also Proportions), 114–117

Cholesterol, 4, 59ff, 173, 225
Clinical(pre), 86, 108, 113, 301
Clinical significance, 262–263, 274, 299
Clinical trials (see also Experimental designs)

ANOVA in post treatment results, 265
controlled, 258
experimental design in (see Experimental

designs)
general principles, 258
guidelines, 258
multiclinic (see Multiclinic studies)
random assignment in, 75, 261

Cmax (see also Bioequivalence), 133, 239, 270ff
Cochran, 173, 208, 391, 419
Coding, 18–20
Coefficient of variation, 1, 16, 163
Column charts (see Graphs)
Completely randomized design, 182
Components of variance (see Variance)
Composite designs (see also Optimization),

435–439
Composite (tablets), 253
Computer Intensive Methods, 366

Bootstrapping, 384–389
Monte Carlo, 379
packages for, 366
simulation, 384ff

Concomitant variable, 210, 214
Conditional probability, 43
Confidence Intervals (see also Bioequivalence), 82ff

in ANOVA, 119
asymmetric, 88–89
coefficients, 104–105
construction of, 118
in crossover studies (see Crossover design)
for log–transformed data, 143, 281, 284
Monte Carlo simulation, using, 366–369
nonparametric, 396, 397
one–sided, 88, 161

continuity correction, 111
overlapping, 106

ratios, 109
in regression, 159–163
slope and intercept, 159
standard deviation known, 84–85
statistical test, 94
t distribution for, 64
Westlake, 89

Confounding (see also Factorial designs), 225, 236,
273

Consumer risk, 336
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Content uniformity, 79, 122, 124
USP test, 59

Contingency tables (see also Chi–square), 116,
411–413

chi–square tests in, 411
expected values in, 412
four–fold tables (2 × 2 tables), 412, 414

combined sets, 418–419
related samples, 416–418

Mantel–Haenszel test, 418
multiple comparisons in, 406
RXC tables, 412–413

Continuity correction, 63, 114, 117–118, 299
Contour plot, 439, 442–443
Contrasts, 192, 193
Control Charts (see Quality control)
Controlled study, 258
Control group, 108, 199

in paired t test, 108
positive control, 262

Correction factor (see Continuity correction)
Correction Term, 14, 185
Correlation

coefficient, 166–167
comments, 174–175
diagrams (see also Scatter plot), 33–34
and independence, 172–173
interpretation, 175
matrix, 195
misuse, 171, 174
multiple correlated outcomes, 194–196
multiple, 465
test of zero, 173

Correlated outcomes, multiple, 194–196
Counts, 114, 249
Covariance (see Analysis of covariance)
Covariate, 210–214
Critical region, 94, 96
Crossover design (see also Bioequivalence)

add–on studies, 622
advantages and disadvantages, 266–269
analysis of variance, 278
AUC, 276, 277, 278
average bioequivalence, 294
in bioequivalence studies, 266
carryover, differential, 268, 270, 274
carryover, Grizzle analysis, 268–269
carryover in, 273
carryover, test for, 277–278
Cmax, 270–272, 274, 276
Hyslop method for IB, 301
individual bioequivalence (IB), 292–293
components of variance, 327
IB metric, 296, 297
IB scaling, 295, 296
IB statistical analysis, 296

Cumulative probability (see Probability)

Data characteristics, 390–393
Defects, 71, 113, 324
Degrees of Freedom, 16, 64, 65, 85, 98160

Dependent variables, 38, 210
Destructive testing, 71, 491
Descriptive plots, 26
Design (see Experimental design)
Detection limit, 359
Dichotomous outcome, 620–621
Difference to be detected, 129, 139
Discrete variables, 2–3
Dissolution, 21, 31–34

FDA guidance, 343
Distributions

chi square (see also Chi square), 64–65
continuous, 52
cumulative, 7, 48
discrete, 40, 47
F (see also F distribution), 65, 119
frequency, 3–7
normal (see also Normal), 8, 40, 53
Poisson, 63–64
tails, 40
Uniform, 369, 371

Dixon test, 252, 495
Dose response, 147, 457, 458, 460
Double Blind, 89, 259, 263
Double dummy, 259
Drug content, 21, 76, 131, 249, 254, 255, 332–336,

350
Dunnet’s test, 194

ED50, 3, 46
Efficiency, 77, 225, 268
Estimation, 82–84
Evolutionary operation (EVOP), 446
Excel, Microsoft, 366, 389, 504
Excipients, 66, 425
Exercise test, 205, 263–264
Expected number (see also Chi square), 52, 111, 115
Experimental designs (see also Analysis of variance

(ANOVA)), 210
balanced incomplete block, 261
in clinical trials, 258
analysis of covariance, 264
analysis of variance, 266
baseline values, 263
change from baseline, 262–263
crossover designs (see Crossover designs)
error, 265
general principles, 258
one–way ANOVA, 182
parallel, 262–265
patients, choice of, 260–261
power, 264
randomization, 261
repeated measures (see Repeated measures

design)
Experimental error, 149, 151, 198, 229
Expiration date, 155, 156, 161
Exploratory data analysis, 164, 245

F Distribution (see also Distributions), 65, 119, 120
Factorial experiments, 228–229
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Factorial designs (see also Optimization), 222
advantages, 225
aliases, 235
analysis of variance in, 233
calculations, 231

Yates method, 239
confounding in, 236
defining contrast, 237
definitions, 222
effects, 222
main (effects), 222
example of, 237
factors in, 237

choice of, 240
fractional, 234
half replicate, 235
interaction in, 222
interpretation, 232
levels in, 232
notation, 235
orthogonal, 225
performing, 226
quadratic response, 229
recommendations in performing, 228–229
replicates in, 233
runs in, 234
synergism, 226
variation, 229
worked example, 230
Yates analysis, 233

Fieller’s Theorem (see Relative potency)
First order kinetics, 240
Fisher–Behrens (see Behrens–Fisher method)
Fisher’s Exact Test, 413–416
Fixed model (see Analysis of variance

(ANOVA))
Fixed margins in Fisher’s test, 414
Formulation, 92, 103ff
Fourfold table (see also Contingency tables)
Fractional factorial designs (see Factorial designs)
Frequency distribution

cumulative, 3–6, 7
table, 10

Friedman test, 404–408

Gauss–Markov, 213
Generic, 200
Geometric mean, 11, 242, 396
Graphs

bar charts, 26
column charts, 35
connecting points in, 30
construction, 28–32
deception in, 30
histogram, 26
key, 26
labeling, 28–33
pie charts, 35
scatter plot, 33–34
semi–log, 34–35
standard deviation in, 26

Greenbriar procedure, 3327
Grizzle (see Crossover design)
Group Sequential analysis (see Interim analysis)

Half–normal plot, 433
Harmonic mean, 11–12
Headache, 88, 118
Heteroscedascity, 240, 359
Histogram (see also Graphs), 26–28
Hypergeometric distribution, 414
Hypnotic drugs, 108
Hypothesis testing, 48, 82

alpha error, 90
assumptions, 96
beta error, 99
binomial, 110–112
chi–square tests, 114
degrees of freedom, 120
expected values in, 115

single sample, 112
null hypothesis, 104, 109, 112
one–sample, 109
one–sided, 99
paired test, 107–108
proportions, test for, 110
related samples, 119
significance level (see Significance)
two independent groups t test, 119

assumptions, 120
planning, 106

two–sided, 106
variances known, 106
variances unequal, 106
variances unknown, 106

Hyslop (see Individual bioequivalence)

Incomplete block, 261
Incomplete three way design, 301
Independence, 102, 104, 120, 173, 186, 225
Independent variable, 26, 34, 147
Individual bioequivalence (see Bioequivalence)
In–house limits (see Release limits)
Inspection for attributes, 127
Intent to treat, 261
Interaction (see also Analysis of variance (ANOVA);

Factorial designs), 157
Interim analysis, 307–308
Interval scale data, 34

Kinetic study, 249
Kruskal–Wallis Test, 402–404

Last value carried forward (LVCF), 209
Latin square, 266–268

randomization in, 261
LD50, 3, 45
Least significant difference (LSD) (see also Analysis

of variance (ANOVA)), 190–191
Levels in factorial designs (see Factorial)
Limits (see Release limits)
Least squares line (see Regression), 241, 245
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Linearity
test for, 174

Linear Regression (see also Regression), 147
Linearize, 167, 241
Logarithm, 240

transformation (see also Transformation)
Lognormal, 66, 167, 243, 244
Log transformation (see also Transformation), 240,

241–245
Lund (see Outliers), 256

Main effects (see Factorial designs)
Mann–Whitney U–test (see Wilcoxon rank sum

test), 398
Mantel–Haenszel test, 424 (see also Contingency

tables)
Marginal totals, 115, 116
Matrix, 156, 305
Mean (see also Average)

geometric, 11, 242, 284
harmonic, 11
standard error of, 16–17
variance of, 17
weighted, 17

Measurements
objective, 90
subjective, 90

Median, 1, 12–13, 66–68
Mil–Std (see also Quality control), 128
Missing data, 208–209, 267, 269
Mixing time in validation (see Validation)
Mixture designs (see Optimization)
Mode, 13
Model

in multiple regression, 167
reduced and full, 210

Monte Carlo methods, 379
Moving range (see Quality control)
Multiclinic studies, 306–307

interaction, 306
Multiple comparisons (see also Analysis of variance

(ANOVA)), 187ff
in RXC tables, 116

Multiple correlated outcomes, 194–196
Multiple regression (see Regression)
Mutually exclusive, 41–43, 45, 93

Nesting, 286, 334
Nominal values, 2, 307
Nonlinear regression (see also Regression),

166–170
Nonlinearity, 151, 165, 361
Nonparametric tests, 392, 396
Nonparametric tolerance test, 420–421
Normal distribution, 8, 3, 40, 53

areas under, 53–60
cumulative, 56
deviate, 60
standard, 56, 60

Null hypothesis (see Hypothesis testing)

Observed number (see Chi square test), 87, 115
Office of Generic Drugs (OGD), 613
Ointment, 111, 351
One–at–a–time experiments, 226, 228
One–sided confidence interval, 88
Operating characteristic (see Quality control,

acceptance sampling)
Optical density, 26
Optimization

center point, 431
combination drug product, 434
composite design, 435
coding in, 430
constraints in, 107

orthogonality in, 429
curvature, 432
experimental error in, 460
extra–design point, 431
fractional factorial in, 234

Ordinal measurements, 390
Origin, line through, 151, 517
Orthogonal (see also Factorial designs), 225
Out of Specification (OOS), 335, 478
Outliers

in bioequivalence studies, 286, 490–491
for chemical assay, 488–489
defined, 249
described, 619–620
for destructive testing, 491
example of handling, 253
level of significance test, 477
statistical tests, 250

P value, 94, 102
Pain, 2
Paired t test (see t distribution)
Pairing, 109
Parallel groups, 89, 107, 182, 199, 266
Parallelism (see Slopes), 201, 206, 213
Parameter, 8–9, 11, 15
Particle size, 11, 66
Percentile, 13
Pharmacodynamic, 269, 272, 281
Pharmacokinetics, 147, 167, 244
Pie chart, 26
Placebo, 28, 75, 89–92
Plackett–Burman designs (see Screening designs)
Point estimate, 82–83
Poisson distribution, 63–64
Polynomial, (see also Optimization), 427
Pooled standard deviation (see also Standard

deviation), 86, 104, 114
Pooling proportions, 112
Population, 8
Power

curve, 139
example, 132–133

Precision, 20–21
Preclinical test, 113, 413
Preference test, 93, 124
Prediction interval in regression, 162–163
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Probability
binomial (see also Binomial distribution),50
chi–square (see Chi–square)
continuous distribution, 53
cumulative, 53
density, 53
distributions (see also Binomial distribution, F

distribution, Normal distribution, t
distribution), 44–45

multiplicative law, 43
mutually exclusive, 41
sampling, 15
theorems, 40

Producer risk, 324
Proportions (see also Hypothesis testing)

chi–square test, 114–117
normal distribution test, 110
two independent groups test, 100–102

Quade test (see Friedman test)
Quadratic equation, 167, 224, 361
Quality control

acceptance sampling, 324
assay of tablets, 312
control charts, 314
moving range, 318
operating characteristic, 324
sampling, 78
Shewhart, 312
standard deviation, 312
statistical control, 312
trends in, 314

Quantitation limit, 359
Quartiles, 13

RXC matrix data, 405
Random

numbers, 71
number table, 72–75
sampling, 72
variables, 1, 34

categorical, 3
continuous, 2
discrete, 2–3
nominal, 2

Randomized block (see also Analysis of variance
(ANOVA)), 198, 210, 404–408, 419

Random model (see Analysis of variance
(ANOVA))

Range (see also Quality control), 13–16
Ranking, 391, 392, 394
Rating Scale, 2
Ratio scale, 392
Regression

assumptions in, 152–153
confidence intervals in, 159
for intercept, 159
one–sided in stability, 161
prediction interval, 162
for slope, 163

Rejecting a batch, 326

Rejection region (see Critical region)
Relative potency

assumptions, 460
confidence limits in, 461
Fieller’s Theorem, 272, 281

Release limits, 336–338
Repeated measures design

experimental, 301–303
ANOVA, 303–306

Replicates
appropriate averaging, 490
crossover designs, 287–300
study design, 623–625

Replication in two–way ANOVA (see Analysis of
variance (ANOVA))

replicates in factorial designs, 203, 522
Reproducibility, 16, 198, 226, 294, 357
Resampling, 345, 490

computer packages for, 389
Retesting, 254, 345, 487, 495–496
Residuals, 164–165
Residual sum of squares in ANOVA, 359
Residual variation, 229
Response surface (see Optimization)
RSD, 16, 122, 339, 494
Runs test, 324

test for randomness, 409–411

Sample
authoritative, 72
choosing, 74
choosing and Barr, 487
haphazard, 72
judgment, 72
nonprobability, 72
probability, 72
random, 41
representative, 78
statistics, 8

Sample Size, 95
Sampling

authoritative, 72
cluster, 71, 77

two–stage, 77
error, 50
fraction, 77
judgment, 72
nonprobability, 72
plans (see Quality control)
probability, 72
quality control, in, 78
random, 41
representative, 72

Satterthwaite, 338, 340
Scatter Plots, 33–34, 170
Scheffe test (see also Analysis of variance

(ANOVA)), 190, 192–193
Screening designs

for drugs, 434
composite design, 435–439
interaction in, 462



Index 655

optimization using factorial design, 427–435
extra (Center) points, 433–434
optimization of combination drug product,

434–435
replication (sample size), 433

Plackett Burman designs, 449–450
Sedative, 402
Semi–logarithmic plots, 34–35, 245
Sensitivity, 128, 380
Sequential analysis, 195, 233, 261, 313, 446–449
75/75 Rule (see Crossover designs), 276, 284
Shelf life, 155–156, 159–160, 162, 215–218, 336
Side effects, 2, 87, 88
Sign test, 45, 112, 393–394
Simplex Lattice (see also Optimization), 439–446
Simulations, 366
Slopes, pooling in stability (see Stability)
Significance level, 99, 102, 104, 109, 143, 189, 218,

285
Solubility (see Optimization)
Solubility phase diagram, 440
SOP, 314
Spectrophotometric analysis, 164
Spheronization, 236
Split plot design (see Repeated measures design)
Stability, 88, 155–160, 168

accelerated, 215
bracketing, 156
expiration date, 156, 158
one–side confidence interval, 161
optimal designs in, 156

Standard curve, 151
Standard deviation, 13
Standard error of mean, 16–17, 32
Standard scores, 20
Stem and Leaf plot, 6
Stick diagram, 37
Strata, 75–76
Studentized range, 192
Studentized residuals, 256
Subgroups (see Quality control)
Subsample, 77
Sum of Squares, 13, 148, 153, 172

between, 183–185
regression, 172
total, 183–185

Symmetry, 335

t distribution (see also Distributions; Hypothesis
testing)

modified, 406
paired sample t test, 107–110

T procedure (see Outliers)
Tablets, 2, 8–10

assay, 93, 158
batch, 9, 41, 78, 318
components of variance, 182
content uniformity (see also Content uniformity)
defects, 41, 44, 50, 51, 63
dissolution (see Dissolution)
excipients (see Optimization)

formulation, 33, 34, 92, 103
hardness, 170, 222, 312
homogeneity, 356
inspection, 8, 51, 77–78, 322
optimization, 439
physical properties, 465
potencies, 7, 10, 13
presses, 113–114, 404
quality, 3
sampling, 9, 44, 45
stability, 158
weight, 2, 8

Time to peak (Tmax) (see also Bioequivalence), 274,
393

Tolerance interval, 123–124, 254–255, 420
nonparametric, 420–421

Topical products, 266, 420
Transformation, 240–249

arcsine, 248
linearizing, 241
log dose, 457
logarithmic, 284
proportions, 295
reciprocal, 249
square root, 240, 249
standard normal (see Normal distribution)
summary, 249

Trapezoidal rule, 31, 271–272, 280
Triplicates and outliers, 250–252
Two by two tables (see Chi–square; Contingency

tables)
Two, one–sided t test, 143, 276, 283
Two–sided test (see Hypothesis testing)

Ulcers, 300
Uniformity, 342
Universe, 8
USP, 58, 122, 254, 336, 342, 343

weight test, 58

Vaccine, 137
Validation

analytical, 358–364
ANOVA in, 358
between and within, 358
bioanalytical, 370

Variables, 1–3
continuous, 2, 53
dependent, 26, 34, 147, 215
discontinuous, 40–41
discrete, 2–3, 40

attributes, 2
categorical, 2
nominal, 2

independent, 26, 209
random (see also Random, variables), 1
relationships, 26

Variance, 14–18
analysis of (see Analysis of variance (ANOVA))
comparison in related samples, 107–108,

175–177
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Variance (Continued)
comparison in validation, 321, 349
comparison of (see also Hypothesis

testing)
components of

in assay development, 327
limits, determining in–house, 336–337

confidence limits for, 122
linear combination of independent variables,

456
pooled in ANOVA, 103–104, 121
pooling, 86, 103
properties of, 455
weighted average, 11, 17–18
within batch, 318

Variation, 1, 16
biological, 16, 183
interindividual, 183, 266
random, 1

Weighted, 240
analysis, 166, 239
average, 10–11
regression (see also Regression), 163–164

Weight (see Tablet)
Westlake, 89, 284
Wilcoxon rank sum test (2 independent groups),

398–402
correction for ties in, 400, 404
efficiency of, 400
normal approximation in, 399

Wilcoxon signed rank test, 394–397
Winsorizing (see Outliers), 252–253

Yates, 111, 118, 232–233
Yates analysis in factorial designs, 233
Yates continuity correction, 111, 1114

Z transformation (see Normal distribution)
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