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Chapter 1
Introduction

A healthcare service system, sometimes also called a health system, a health
care system, or a healthcare system, is a system, including people, institutions,
and resources, that delivers health care services to promote the public health and
wellness of people [1, p. 2]. Like other social systems, a healthcare service system
also includes its inputs, such as patient and service resources; its output, such as
treated patients and the service performance representing the quality and quantity
of provided services; and internal service providers, such as hospitals, clinics, and
units. Unlike other simple or complicated systems, patients and service providers
(all are referred to as “entities” in this book) in a healthcare service system are
autonomous in that they make decisions on their own based on their distinct profiles
and a variety of interrelated factors. As a result, entities are self-organized in
many cases and may exhibit totally different behaviors, even if they face the same
problems and the same affecting factors. Entities may interact with each other
through service providing or receiving behavior, or through information sharing.
Such interactions may result in feedback loops between entities and impact factors
in many cases. Partially due to this reason, a healthcare service system may exhibit
certain complex phenomena, such as periodically emptying the queue for specific
services [2, p. 47], which may result in unreasonable service performance that
is quite different from managers’ expectations. Due to the complex nature of a
healthcare service system, we are facing challenges in addressing many healthcare
service management problems, such as discovering key factors and their effects
on wait times, predicting wait times for a specific service in the future, proposing
strategies for shortening wait times, and figuring out the underlying reasons that
account for the specific spatio-temporal patterns of wait times.

In this chapter, we first introduce a conceptual model for a healthcare service
system. We review its complex nature and the importance of the interactions
between the factors and entities in the system. Then, we summarize the commonly-
faced healthcare service management problems in practice by examining wait time
management as an example. We use a data-driven complex systems modeling
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2 1 Introduction

(D2CSM) approach to address problems in wait time management. This approach
enables us to systematically understand healthcare services and address the wait
time management problems either individually or integratedly using the following
four specific methods, i.e., Structural Equation Modeling (SEM)-based analysis,
integrated prediction, service management strategy design and evaluation, and
behavior-based autonomy-oriented modeling. We finally present the profiles of the
cardiac care system in Ontario, Canada, which is the research scenario in this book.

1.1 Complex Healthcare Service Systems

1.1.1 A Conceptualization of Healthcare Service Systems

According to the open systems theory [3, pp. 149–150] [4, pp. 23–30], a healthcare
service system can be normally represented by a conceptual model, as shown in
Fig. 1.1. According to this model, a healthcare service system is divided into three
parts: (1) multiple service providers that deliver healthcare services (such as hospi-
tals) and are located in different cities or regions; (2) the system’s inputs, including
patients receiving services and healthcare service resources; and (3) the system’s
outputs, which involve multiple indicators representing the service performance,
such as treated patients and wait times.

A healthcare service system can be divided hierarchically into subsystems or
entities at different levels (as shown in Fig. 1.11). For instance, a collection of
hospitals in a region can be thought of as a healthcare service system, where each
hospital can be viewed as a sub-system or a specific entity. Each sub-system can be
further divided into sub-subsystems, which are units consisting of distinct personnel
and facilities providing different services to patients. In the real world, the profiles of
service providers differ in terms of the number and types of personnel [6, p. 9], such
as physicians and general practitioners (GPs); on-site facilities, such as operating
rooms (ORs) and laboratories [7]; and costs and financing. Service providers also
vary in their service management behavior, such as scheduling time blocks in ORs
[8, 9] and referring patients to other service providers [10, 11]. Normally, service
providers’ profiles and their service management behavior, which are often referred
to as healthcare service systems’ supply factors [12], determine the actual delivery
of services to patients to a significant extent, and thus directly affect the variations
of the systems’ outputs.

A major input to a healthcare service system is patients. Patients residing in
different regions may exhibit distinct profiles because they have differences in their
ages [13], education levels [14, 15], social networks [16, 17], and other personal
characteristics. Patients’ profiles not only affect the incidence of disease, but also
influence their autonomous service utilization behavior, which directly determines,

1Note: This figure was adapted from the open systems model [5, p. 90].
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Fig. 1.1 A conceptual model illustrating a complex healthcare service system

to a large extent, the number of patient arrivals at healthcare facilities. Patients’
profiles and behavior, called the demand factors [18], may result in patient arrivals
varying at different times [19] and in different regions [20]. The inputs of a
healthcare service system also include various healthcare service resources, such
as newly graduated doctors and nurses, as well as recently purchased medical
equipment. These resources are often planned and allocated by healthcare service
managers to meet the patients’ needs and promote service performance. Another
type of input is information. The information input into the system includes various
types, such as data about the geodemographic and socioeconomic profiles of a
population; people’s attitudes towards hospitals, doctors, treatments, and service
performance; and even the built and natural environment, like geographic access
to services [21, 22], air quality, and seasonal weather [19, 23]. The information
normally has different effects on patients’ service selection behavior, and hospitals’
service management behavior.

The outputs of a healthcare service system mainly include treated patients,
service performance, and the relevant information. Service performance is normally
represented by various indicators, such as wait times, throughput, in-hospital
mortality rate, and re-admission rate. It should be noted that most of the indicators
and some of the impact factors are abstract concepts (also called latent variables
(LVs) or latent constructs) that should be estimated using several observed variables
or measurements. For instance, the wait time indicator can be judged by the median
wait times, 90th percentile wait times, or queue length [20, 24], each of which
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represents one aspect of wait times. Some of the outputs of a healthcare service
system will be fed back as inputs of the system. For instance, treated patients
may return to a hospital soon after a visit because they get sick again. Patients
and hospitals may be aware of the information about the service performance and
treatment outcomes in the past. As a result, such feedback information may then
affect the behavior of patients when they select healthcare services, or of hospitals
when they schedule patients to ORs. Due to the existence of feedback loops,
management problems related to a healthcare service system become complex
[25–27] and are hard to address.

1.1.2 Complexity and Self-Organizing Nature

As implied in Fig. 1.1, the challenges in addressing healthcare service management
problems lies in the complexity and self-organizing nature of a healthcare service
system, which include:

1. Multiple and multi-scale impact factors: The inputs, outputs, and the behavior
of a healthcare service system may be directly or indirectly affected by various
factors on different scales, which include, but are not limited to, demographics,
socioeconomic backgrounds, and environmental conditions, as well as the
healthcare-related behavior of patients [28] and hospitals [29]. For instance,
old age (physiological age at a biological scale) is an important risk factor
for cardiovascular diseases, while the patient hospital selection behavior at a
personal scale may heavily influence the distribution of actual patient flows to
various hospitals.

2. Heterogeneous entities: Entities can represent system elements, such as patients
and physicians, and sub-systems, such as hospitals and units. In a healthcare
service system, entities are heterogeneous due to the differences in their profiles
and behavior. For instance, patients differ in terms of age, gender, ethnicity,
socioeconomic background, lifestyle, decision making style, and their corre-
sponding healthcare service utilization behavior.

3. Bounded rationality: In many cases, entities can only access partial information
about the system. As a result, as Herbert A. Simon stated [30], entities may have
“bounded rationality” and may not exhibit optimal behavior. Patients may select
a hospital that had shorter wait times in the past, but now has longer wait times
because they do not have access to the latest wait time information about the
concerned hospitals.

4. Interactions and coupling relationships: Entities may spontaneously interact with
multiple impact factors and other entities directly or indirectly. Entities may also
be constrained by structural or functional relationships, which are referred to
as coupling relationships. The coupling relationships between entities can be
either pre-defined or dynamically adjusting. For instance, units in a hospital
have coupling relationships with one another due to the functional constraints
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of the logistics of patient flows. During the interaction processes, entities exert
changes in the environment or in other entities’ behavior. As a result, an entity
may affect other entities’ behavior directly, through their coupling relationships,
or indirectly, through the updated environment or through feedback.

5. Autonomous and adaptive behavior: Entities in a healthcare service system make
decisions and behave rationally based on their own behavioral rules with respect
to their perceived environmental information. Their behavior can therefore adapt
to a changing environment. For example, in response to regularly released wait
time information about each hospital, patients may select different hospitals for
specific healthcare services to avoid long wait times.

6. Emergence and self-organization: Autonomous entities achieve their goals by
adjusting their behavior so as to adapt to the dynamically changing environment
and respond to feedback. During this self-organizing process, small changes in
variables may cause larger changes in the system under some conditions. As a
result, self-organized, spatio-temporal patterns may emerge from the system that
are not predefined, indicating that the system is collectively regulated.

Since a healthcare service system is complex and self-organizing, a growing
number of studies have attempted to apply complexity science to the study of
healthcare service systems. Applying complexity theory to healthcare service
systems dates back to the middle of the 1990s, when Priesmeyer et al. used chaos
theory, one of the classical complex systems theories [31, 32], to examine clinical
pathways as nonlinear and evolving systems. Arndt and Bigelow [33] speculated on
the possible applications of chaos and complexity theories for healthcare services
management. Begun and White viewed the nursing profession as a complex adaptive
system and paid special attention to its inertial patterns [34]. Smethurst and Williams
found that the statistical distribution of the variance in wait times to see specialists
followed a power-law distribution [35], which indicated that the healthcare service
system was self-organizing, possibly due to the interactions between the patients
and available doctors. However, to the best of our knowledge, few studies aim to
understand a healthcare service system from a self-organizing systems perspective.

1.1.3 Interactions

Interactions play a critical role in the presence of emergence behavior [36] and
certain spatio-temporal patterns in a complex system. When one entity interacts
with another, or with the environment, information or instructions are exchanged.
Here, the interaction refers to a mutual or reciprocal information-exchanging action.
In general, there are two types of interactions between entities and between entities
and their environment [36]:

• Direct interaction: An entity may directly affect other entities’ behavior or
states through performing activities or exchanging information. An obvious
example is the direct interaction between a doctor and a patient for illness and
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treatments. Another example suggests that obesity may spread from person to
person, especially when people are friends or siblings, because they may exert
social influence or peer effects on each other [16]. An entity may also take a
direct interaction with its environment via a process of information exchange.
For instance, news or advertisements broadcasted by the media in the social
environment of a person may cause her to change her health-related behavior
[37].

• Indirect interaction: An entity may have effects on other entities’ behavior or
states indirectly by using the environment as an information-exchanging medium
[36]. The indirect interaction process involves two phases. In the first phase, an
entity releases information in its environment. Then, in the second phase, other
entities will be aware of the information kept in the environment and behave
accordingly. The indirect interaction between entities commonly happens in a
healthcare service system. For instance, previous studies have suggested that
the positive or negative treatment outcome of patients in a hospital may affect
the hospital’s reputation, which will in turn affect other patients’ decisions on
selecting the hospital [38]. In this case, patients who are selecting hospitals
interact indirectly with the historical patients in the same hospital via the released
information about the service outcome.

In some cases, the interactions of the impact factors, especially with autonomous
entities’ behavior, may form closed causal chains (the so-called “local feedback
loops” mentioned in the literature), which can potentially result in unpredictable
and/or self-organized behavior of a system. For instance, the long wait times in a
hospital may weaken the probability of patients selecting the hospital, which will in
turn decrease the number of patient arrivals. Therefore, the wait times in the hospital
will be reduced soon afterwards. Furthermore, the interactions and local feedback
loops between or among the entities’ behavior and impact factors can potentially
give rise to certain statistical regularities and spatio-temporal patterns, such as the
aforementioned power-law distribution of wait time variations to specialists [39],
and the pattern of so-called “oscillatory dynamics” of waiting queues [2, p. 47].
In view of this, it is necessary to model individuals’ behavior and interactions to
discover the underlying mechanisms that account for the dynamics and emergent
patterns of patient arrivals and wait times of healthcare services.

1.2 Practical Healthcare Service Management Problems

Healthcare service management refers to the leadership, process, and general
management that provide healthcare services in organizations (e.g., hospitals) [40,
p. 78]. Practically speaking, the management, or the administration of healthcare
services, usually relates to three aspects [41]:

• Volume and coverage of services, which involve the planning, implementation,
and evaluation of services;
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• Resources, such as budgets, buildings, equipments, medicines, physicians,
nurses, and information;

• External relations and stake holders, which include patients and other users of
services.

When managing healthcare services, administrators in different healthcare ser-
vice systems may find they have several difficult problems in common. We use
wait time management for a healthcare service system as an example; the following
two scenarios present a few management problems that are commonly faced by
healthcare administrators.

Scenario 1
Bob is a hospital administrator at Hamilton Health Science Centre in Ontario. Bob
finds that although the hospital has added resources to ORs, the wait times for
cardiac surgeries are still too long. He wants to know: (a) What impact factors
cause the long waits? (b) How do the impact factors affect the wait times? (c) How
can he make a reasonable prediction about patient arrivals in the near future (e.g.,
the next 5 years) so that the hospital is able to schedule the ORs for shorter wait
times?

Scenario 2
Alice is a provincial healthcare administrator in Ontario. She finds that there are
some interesting spatio-temporal patterns in patients using healthcare services in
the province. She also finds that the current resource allocation method for cardiac
surgery services is static, which results in a gap between the estimated and real
needs for services in the province. In order to make a reasonable and evidence-
based decision on regional resource allocations for cardiac surgeries to shorten
the average wait times and reduce disparities in wait times, she wants to know:
(a) What causes the spatio-temporal patterns in the patient arrivals and wait times
at hospitals in the province? (b) When healthcare resources are allocated in the
province, how can she estimate the real needs for each hospital? (c) How can she
regulate patient arrivals to hospitals in the province?

In general, the most common management problems for wait times usually relate
to the following four closely related issues:

1. Discovering the effects of certain demand or supply factors on wait times.
Wait times involve multiple demand or supply factors, which may exert direct
or indirect effects on patient arrivals and/or wait times. To gain a qualitative
understanding of the dynamics of the wait times, we need to figure out how
specific factors directly, indirectly, or moderately affect service utilization.

2. Estimating the changes in wait times with respect to the variations of certain
impact factors. Predicting the changes of wait times in the future is important
in formulating effective management strategies. Once the relationships between
the demand factors, supply factors, and wait times are identified, it is possible
and important to make a prediction of future wait times in accordance with the
variations in certain factors.
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3. Designing and evaluating service management strategies for improving wait
times. In addition to the associations between a service provider’s profiles and
wait times, service management behavior also plays a significant role in service
delivery and wait times. We therefore need to design new service management
strategies to improve wait times.

4. Explaining spatio-temporal patterns in wait times. Patients autonomously decide
whether or not to go to a hospital based on specific factors, such as the
distance between their home and the hospital, service profiles, and service
performance. Patients’ autonomous behavior may result in dynamically changing
patient arrivals at hospitals, which may then lead to variations in the wait times.
Therefore, characterizing the emergent spatio-temporal patterns in wait times
could offer crucial insights into the nature of healthcare service systems.

1.2.1 Discovering the Effects of Impact Factors on Wait Times

In reality, the demand and supply impact factors may exert direct, indirect, or
moderating effects on wait times. A direct effect measures how a dependent
variable changes when a predictor variable increases or decreases. A direct effect
is commonly represented by a positive or a negative path coefficient (weight) in
statistics. For instance, studies have found that the factor of service capacity may
directly influence the variations in wait times [29, 42]. Service capacity, therefore,
has a direct effect on wait times. An indirect effect denotes a predictor variable
that influences a dependent variable through a third variable. For instance, the
population size imposes an indirect effect on wait times, as a larger population
may be translated into a greater number of patient arrivals [43, p. 59], which
is one of the direct causes of wait times [44]. A moderating effect measures
how a third independent variable may change the direction and/or the strength
of the relationship between a predictor variable and wait times. For instance, the
prevalence of smoking and inactivity, two traditional cardiovascular risk factors,
in the less-educated population [14, 19] suggests that a higher proportion of well-
educated individuals in the population may mitigate the pressure of population size
on patient arrivals, and thus ease the burden on wait times [45]. In this book, the
direct, indirect, and moderating effects are referred to as complex effects.

From a computational perspective, discovering the direct, indirect, and/or mod-
erating effects of certain demand or supply factors on wait times can be transformed
into a research question: How can we explore the complex relationships of predictor
variables (e.g., impact factors) with dependent variables (e.g., service utilization
and wait times)? Two specific research issues must be addressed to answer this
question.

1. Modeling latent variables (LVs): As the concerned variables include those that
cannot be directly observed, how can we build a mathematical model to infer an
LV from other observed variables?



1.2 Practical Healthcare Service Management Problems 9

2. Modeling complex relationships between variables: How can we model con-
currently direct, indirect, and moderating relationships between the observed
variables and/or LV using mathematical means? How can we quantify these
relationships based on the data?

Existing studies usually rely on multivariate statistical methods to discover the
relationships (i.e., path weights) between the variables from data, such as regression
[46, 47]. These methods often model the relationship between the dependent and
independent variables as a linear, logistic, or other types of functions [48]. However,
these methods have limitations when constructing LVs and modeling the complex
relationships between variables, rather than the pairwise relationships between the
dependent and independent variables.

Therefore, the first objective of this book is to propose a method to address
the problem of investigating the direct, indirect, and/or moderating relationships
between the observed variables and LVs.

1.2.2 Estimating the Changes in Wait Times

Estimating the changes in wait times in response to the changes of certain demand
and supply impact factors is, in essence, a problem of estimating the dynamics of
specific dependent variables with respect to the variations in specific predictor vari-
ables. Three specific research issues must be addressed to answer this question:

1. Exploring complex relationships between variables: Given aggregated data that
describes the dependent and predictor variables of interest, how can we explore
the complex relationships between these variables?

2. Estimating the changes in specific dependent variables: Given the trends in the
changes of certain predictor variables, can we obtain the variations in specific
dependent variables in the future based on the identified relationships between
the variables?

3. Characterizing the dynamics of estimated variables: As the estimation results
based on variable relationships are somewhat sketchy, how can we determine the
dynamically changing process of focal dependent variables over time?

Existing studies dealing with these research issues in the healthcare context can
be classified into three categories:

1. Estimations based on pairwise variable relationships. These studies investigate
the effects of predictors on specific dependent variables using traditional statis-
tical methods, such as regression, which can be used to forecast the changes in
dependent variables if the predictors vary. For instance, the demographic profiles
of population age and ethnicity are two of the most important determinants for
utilizing cardiac surgery services. Cardiovascular risk factors, such as diabetes,
hypertension, and obesity, are higher in the age group of 50 years and above
[13, 19] and vary in different ethnic groups [19, 49]. However, these commonly
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used statistical methods may not be able to model LVs and reveal complex
relationships between variables.

2. Forecasts based on specific patterns of variables. These studies focus on finding
the underlying patterns in certain variables, which can then be used to make
scenario-based predictions. For example, previous research has found that there
are more patient arrivals in the winter compared to other seasons because of
the cold weather [19]. The arrivals also vary depending on the time of day
and the day of week [50, 51]. Some studies have tried to make forecasts for
specific scenarios, such as predicting emergency department arrivals in a disaster
[52] or during a pandemic influenza season [53]. However, predictions based on
identified patterns require that the scenarios for finding patterns and those for
predictions are the same. This requirement is difficult to satisfy in the situation
considered in this book, as the scenario may change if specific predictor variables
vary.

3. Predictions based on modeling methods. These studies attempt to characterize
the dynamically changing service performance of a healthcare service system
in a given scenario. They usually use queueing models [54] and discrete event
simulations [55] to examine the dynamics of service utilization in a healthcare
service system and to assess performance variations based on so-called “what-
if” studies [54]. However, these studies have not addressed the question of how
service performance changes in response to demographic shifts.

Motivated by the above observations, the second objective of this book is to
propose a method for estimating the changes in service utilization and performance
in response to the variations of the impact factors. This method is also required to
capture the dynamics of estimated service utilization and service performance over
time.

1.2.3 Designing and Evaluating Strategies for Shortening
Wait Times

Two specific research questions must be answered in designing and evaluating
service management strategies to cope with unpredictable patient arrivals with the
goal of making better use of healthcare resources and improving wait times.

1. Designing strategies: In view of current healthcare service management strate-
gies and the dynamics of patient arrivals, what new strategies can be proposed?

2. Evaluating strategies: With a given scenario describing the patterns of stochastic
patient arrivals and the profiles of a specific service provider, how can we model
service behavior to provide a test-bed for evaluating the effectiveness of new
strategies?

Existing studies have used mathematical methods, such as mathematical pro-
gramming, to optimize specific measurements to design better service management
strategies. The management of time blocks in ORs for cardiac surgery services can
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be used as an example. One of the most common issues considered when designing
new OR time block allocation strategies is how many OR time blocks should be
reserved to cope with the unpredictable arrival of urgent patients. Reserving more
time blocks than needed can cause decreased OR use, a longer waiting list, and a
longer waiting time for non-urgent surgeries. Reserving insufficient time blocks can
increase the risk to patients who need urgent care, incur more bumped non-urgent
surgeries, and prolong wait times for those bumped cases. To improve the use of
OR time blocks, existing studies have used mathematical methods (e.g., job shop
scheduling models) to compute the optimal number of reserved urgent time blocks
to maximize the use of OR time blocks while minimizing the overtime/cancellation
of surgeries [56]. However, these studies have not considered that patient arrivals
are dynamic because of the number of impact factors involved, such as the weather
and patients’ service utilization behavior [19]. Therefore, the theoretical optimal
solution may not perform well in an actual healthcare service.

One common way to model service behavior to evaluate different service
management strategies is to simulate the service operations with different strategies
and to compare the simulated results based on certain measurements. In healthcare
service research, the queueing model is commonly used to characterize the behavior
of a service provider and examine the dynamics of service performance, such as wait
times and queue length. In general, the queueing model describes stochastic patient
arrivals and the services delivered by a healthcare service system as a continuous-
time or a discrete-time Markov chain, where the system state corresponds to the
number of patients in the system. The expected queue lengths and wait times can be
mathematically analyzed and the dynamics of service performance can be simulated
with a specific queueing method.

The third objective of this book is therefore, within the context of time block
management in ORs, to design an adaptive service management strategy to improve
the use of service resources with respect to unpredictable patient arrivals and
evaluate the effectiveness of the adaptive strategy in improving service performance.

1.2.4 Characterizing Spatio-Temporal Patterns in Wait Times

Explaining the spatio-temporal patterns in wait times can be defined as a research
question of how to model and simulate individuals’ behavior and interactions with
respect to certain impact factors, and thus to reveal the underlying mechanisms
that account for the observed spatio-temporal patterns in wait times. Three specific
issues must be addressed to answer this question:

1. Modeling entities: What specific autonomous entities potentially play significant
roles in the emergent patterns and thus should be modeled, and how should they
be defined within the model?

2. Modeling entities’ behavior, interactions, and local feedback loop(s) with respect
to certain factors: Which behavior of the entities, major impact factors, and
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the interactions between them are relevant to the observed spatio-temporal
patterns in wait times, and hence should be investigated and modeled? As local
feedback loops [57] formed by relationships between the variables may amplify
or dampen the effects of factors or entities’ behavior on wait times and thus
result in nonlinear dynamics in the system, which local feedback loop(s) should
be modeled? How can we model entities’ behavior and formulate the rules that
govern this behavior, while taking into account the identified effects of factors
and the heterogeneity of the entities?

3. Carrying out simulation-based experiments: What spatio-temporal patterns at a
systems level emerge from the simulation? Are the simulated emergent patterns
similar to those observed in the real world? If a simulation based on the
developed model can reproduce the spatio-temporal patterns observed in the
real world, what are the underlying mechanisms that account for the emergent
patterns?

Existing studies have used the methods of stochastic modeling and simulations,
system dynamics, and agent-based modeling (ABM) to model the behavior of a
healthcare service system and simulate the dynamics or spatio-temporal patterns of
wait times. We summarize the major characteristics of these methods below:

1. Stochastic modeling and simulations aim to model a service system by defining
the service profiles, service management behavior, and stochastic properties,
such as Poisson arrivals and exponential services. Two classic methods are the
queueing model and discrete event simulation. As these methods require that
assumptions be made regarding the stochastic properties, they may encounter a
number of difficulties in characterizing the spatio-temporal patterns of the wait
times. The assumptions about the stochastic properties of a healthcare service
system may be strong and not always hold true in the real world. Further, these
methods cannot explore how entities’ behavior and interactions result in the
emergent spatio-temporal patterns at a system level, because they do not aim
to model the entities’ heterogeneous behavior.

2. System dynamics models a focal system as a causal loop diagram [58]. A
system dynamics model contains entities (referred to as “stocks” in this method)
that accumulate or are exhausted over time, and their interactions (referred to
as “flows” in this method) are usually represented by first-order differential
or integral equations [59]. Unlike other methods, system dynamics pays spe-
cial attention to modeling the internal interactions between entities and local
feedback loops [57] within a system. However, it is difficult to model the
heterogeneous and autonomous behavior of each entity with this model, as
it assumes that each entity’s behavior is fixed. Therefore, this method cannot
explain how entities’ behavior and interactions cause the emergent patterns in a
healthcare service system.

3. Agent based modeling (ABM) [60] attempts to model a healthcare service system
by defining agents (i.e., entities), their behavior, and interactions. However,
traditional ABM faces a major challenge in characterizing system-level emergent
patterns; it lacks the general principles to explicitly indicate which fundamental
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behavior of and interactions between agents play crucial roles in the emerging
spatio-temporal patterns and therefore should be modeled. Many existing models
based on ABM are more or less ad hoc, with a major focus of delicately
defining agents, whereas few of them pay attention to explaining the underlying
mechanisms for emergent patterns in a healthcare service system.

Based on the above motivations, the fourth objective of this book is to propose a
modeling method to uncover the working mechanisms that account for the emergent
patterns in wait times in a specific healthcare service system.

1.3 A Data-Driven Complex Systems Modeling Approach

In this section, we present a data-driven complex systems modeling approach
(D2CSM) for systematically understanding healthcare services and for addressing
the service management issues. Figure 1.2 summarizes the D2CSM. As shown in
the box on the left side of Fig. 1.2, the D2CSM uses four specific methods, which
include Structural Equation Modeling (SEM)-based analysis, integrated prediction,
service management strategy design and evaluation, and behavior-based autonomy-
oriented modeling, to address different management problems in a healthcare
service system. Specifically, this book uses these methods to unveil the potential
reasons for, and the working mechanisms behind, the observed patterns in wait
times in a real-world cardiac care system in Ontario, Canada, by taking the wait
time management problem as an example (as highlighted in the right-hand-side box
of Fig. 1.2). Further details about the D2CSM are presented below.

A Data-Driven Complex Systems
Modeling Approach
(D2CSM Approach)

Structural Equation Modeling (SEM)-Based
Analysis

Integrated Prediction

Service Management Strategy Design and
Evaluation

Behavior-Based Autonomy-Oriented Modeling

Understanding the Spatio-Temporal
Patterns of Wait Times in a

Cardiac Care System

Exploring complex relationships between certain
geodemographic profiles and healthcare service
utilization (Chapter 3)

Discovering the complex relationships between the
characteristics of a catheterization unit and the wait
times of a cardiac surgery unit (Chapter 4)

Predicting the changes of service utilization and
wait times with respect to demographic shifts
(Chapter 5)

Proposing and evaluating an adaptive strategy for
allocating time blocks of operating rooms
(Chapter 6)

Charactering the emergent spatio-temporal

behavior and interactions (Chapter 7)

Fig. 1.2 An overall framework of the data-driven complex systems modeling approach
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1.3.1 SEM-Based Analysis

To explore the complex relationships between observed variables and latent vari-
ables (LVs), we propose the Structural Equation Modeling (SEM)-based analysis
method in this book. In general, SEM has the ability to construct LVs [61]
and permits the exploration and confirmation of complex relationships between
variables concurrently [61, 62]. The SEM-based analysis method explicitly includes
four steps:

1. Defining LVs and developing hypotheses related to the direct, indirect, and
moderating relationships between the observed variables and LVs based on the
literature;

2. Constructing a conceptual model that contains the complex relationships between
the observed variables and LVs under consideration;

3. Using SEM to test the hypotheses with data;
4. Interpreting the test results by comparing the discovered relationships between

variables with those reported in the literature or observed in the real world.

To demonstrate and implement the SEM-based analysis method, we explore the
complex effects of certain demand or supply impact factors on patient arrivals and
wait times in a real-world cardiac care system in Ontario, Canada (this work is
shown in Chaps. 3 and 4). In Chap. 3, the direct and moderating effects of specific
geodemographic profiles (i.e., population size, age profile, service accessibility,
and education profile) on the service utilization of cardiac surgery services are
examined. Based on publicly-available aggregated data on the geodemographic
profiles of Ontario and the corresponding cardiac surgery services between 2004
and 2007, the data test results show that service accessibility and education profile
alleviate the effects of population size and age profile on service utilization. This
finding reveals that the changes in population profiles due to population growth and
aging may significantly affect the use of cardiac surgery services. It also suggests the
importance of considering the geodemographic profiles of a geographic area and, in
some cases, its neighboring areas, when allocating healthcare service resources, thus
strategically improving service utilization and reducing wait times.

In Chap. 4, the effects of a catheterization unit’s (CU’s) characteristics (e.g.,
service utilization, capacity, throughput, and wait times) on wait times in the sub-
sequent cardiac surgery unit (SU) are investigated. Based on published aggregated
data on catheterization and cardiac surgery services, our findings show that wait
times in the CU have a direct positive effect on wait times in the SU. This is a novel
result, as prior research has seldom examined the influence of one unit’s wait times
on wait times in a subsequent unit in the patient flow process. Our findings also show
that the service utilization and wait times of a preceding unit are good predictors for
the wait times of subsequent units, suggesting that such cross-unit effects must be
considered if the wait times in a healthcare service system are to be alleviated.
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1.3.2 Integrated Prediction

To predict the wait times with respect to the changes of some impact factors,
this book proposes an integrated prediction method for estimating the changes in
service utilization and performance in response to demographic shifts. Our proposed
prediction method consists of three steps:

1. Applying SEM to identify complex relationships between certain impact factors,
such as immigration profile, age profile, and healthcare service characteristics
(e.g., service utilization, physician supply, OR capacity, throughput, and wait
times);

2. Estimating the changes in service utilization and performance using the discov-
ered variable relationships, which are assumed to hold true during the estimation
period;

3. Constructing specific queueing models and conducting simulation-based experi-
ments to present the dynamics of the estimated service performance over time.

To demonstrate the implementation of the integrated projection method in
solving real world problems, Chap. 5 presents a study that employs this method
to estimate the regional use of cardiac surgery services in Ontario between 2010
and 2011, based on statistics between 2005 and 2007. The findings show that our
analytical method is able to identify the complex effects of the age profile, recent
immigrant profile, and the characteristics of cardiac surgery services on service
utilization; describe the variations in service utilization with respect to demographic
shifts; and demonstrate the temporal changes in the estimated cardiac surgery
performance in terms of the queue length. The work presented in this chapter
can enable a healthcare service system to dynamically adjust its resources and
management strategies, and thus maintain stable service performance in the face
of demographic changes.

1.3.3 Service Management Strategy Design and Evaluation

To design effective service management strategies for the better utilization of
healthcare resources and improvement in the service performance, such as the wait
times in a complex healthcare service system, it is critical to effectively utilize the
feedback information about historical patient arrivals and wait times. In this book,
we propose a method to design and evaluate service management strategies from
a self-organizing systems perspective, with the aim of proposing adaptive service
management strategies to improve wait times. In general, this method includes the
following three main steps:

1. Determining the feedback related to the managed resources, wait times, and
patients, based on which designing adaptive strategies to manage the resources;
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2. Developing a queueing model to characterize the patient arrivals and service
operations for a specific healthcare service in the real world, which is the testbed
for the evaluation of the proposed adaptive strategies;

3. Conducting discrete-event simulations based on the developed queueing model
to evaluate the effectiveness of the adaptive strategies in the better use of
healthcare resources and shortening wait times as compared to those traditional
management strategies;

To demonstrate how to design an adaptive strategy for managing healthcare
resources, Chap. 6 shows a study that proposes an adaptive OR time block allocation
strategy. This strategy incorporates historical information about OR use when
allocating OR time blocks. ORs may thus adaptively schedule their time blocks in
response to any unpredictable changes in patient arrivals and hence achieve a trade-
off between the number of bumped non-urgent surgeries and any unused urgent time
blocks. To evaluate the performance of the proposed adaptive allocation strategy,
we developed a multi-priority, multi-server, non-preemptive queueing model with
an entrance control mechanism to characterize the general perioperative practice of
the cardiac surgery ORs in the Hamilton Health Sciences Centre in Ontario, Canada.
By applying the adaptive strategy to this queueing model, we show that our adaptive
strategy is able to efficiently regulate the OR time block reservations in response to
dynamically changing patient arrivals. This adaptive strategy is able to maintain a
better trade-off between the number of bumped non-urgent surgeries and the number
of unused urgent OR time blocks, which leads to shorter waiting lists and wait times.
Furthermore, our experimental findings suggest that frequently adjusting the OR
time block allocation, approximately once a month, helps to improve OR utilization.
This finding has the potential to improve the practice of cardiac surgery services.

1.3.4 Behavior-Based Autonomy-Oriented Modeling

In order to model the spatio-temporal patterns of the wait times in a health-
care service system, we propose a behavior-based autonomy-oriented modeling
method based on Autonomy-Oriented Computing (AOC) [36]. Autonomy-Oriented
Computing [63] is a computational modeling and problem-solving paradigm with
a special focus on addressing the issues of self-organization and interactivity
by modeling heterogeneous individuals (entities), autonomous behavior, and the
mutual interactions between entities and certain impact factors. Compared with
agent-based modeling (ABM), AOC is more practical for discovering the underlying
mechanisms for self-organized patterns, as AOC provides a general principle,
i.e., AOC-by-prototyping [64], for explicitly stating what fundamental behavior of
and interactions between entities should be modeled. Based on AOC, our pro-
posed behavior-based autonomy-oriented modeling method contains the following
steps:

1. Autonomy-oriented modeling: Modeling entities, environments, entities’ behav-
ior, behavioral rules, and interactions from a self-organizing systems perspective
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based on AOC. This step can be further divided into the following three sub-
steps:

• Identify entities, key impact factors, and local feedback loops: In the first
sub-step, autonomous entities, the key impact factors, the mutual interactions
between entities and factors, and the local feedback loops that may play
significant roles in the self-organization of the system should be recognized
based on the literature and the observations of the system.

• Identify environmental characteristics and define environment: In the second
sub-step, the types of information that are collected and exchanged in the
environment should be determined. Accordingly, the environment that entities
reside in and interact with should be formally modeled.

• Define entities, autonomous behavior, and behavioral rules: This sub-step
handles the modeling and the design of local-autonomy-oriented entities, their
autonomous behavior, and behavioral rules. This step needs to clearly state
how entities react with respect to different impact factors and respond to
various types of information, and how entities directly, or indirectly interact
via information sharing, interact with the environment, with a special attention
to how the interactions form positive or negative feedback loops.

2. Simulation-based experiments: Conducting simulations based on the autonomy-
oriented model. During the experiments, the empirical spatio-temporal patterns
that are identified from the real world may be utilized to initialize the settings
and to parameterize and evaluate the model.

The behavior-based autonomy-oriented modeling method should be an evolu-
tionary and exploratory process to make the synthetic model as real-world driven
as possible. During this process, some parameters are initialized and configured
to make the synthetic model approximate the real system more closely. The final
synthetic model can be used to reveal the underlying mechanisms of positive-
feedback-based aggregations or negative-feedback-based regulations, which may
account for the observed self-organization and emergent behavior of the real system.

To demonstrate the implementation of the behavior-based autonomy-oriented
modeling method in addressing practical problems, Chap. 7 presents a study to
uncover the underlying mechanisms for certain spatio-temporal patterns in wait
times as observed in the cardiac care system in Ontario, Canada. We developed an
Autonomy-Oriented Computing-based cardiac surgery service (AOC-CSS) model
to characterize the behavior and interactions of patients and hospitals in cardiac
care. We then carried out simulation-based experiments from which spatio-temporal
patterns in patient arrivals and wait times emerged. These simulated emergent
patterns, especially the statistical power-law distribution of the wait time variations,
suggest that patients’ hospital selection behavior and its relationship with hospital
wait times may account for the self-regulation of the service utilization and wait
times. The experiments also revealed that this method can be effective in explaining
the self-organized regularities and investigating emergent phenomena in complex
healthcare systems.
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1.4 Research Context: A Cardiac Care System in Ontario

To better demonstrate the effectiveness of the proposed methods in dealing with
the wait time management problems, we chose the cardiac care system in Ontario,
Canada, as the research scenario. As shown in Fig. 1.3, 11 Cardiac Care Network
of Ontario (CCN)2 member hospitals that provide cardiac surgery services are
unevenly distributed across 14 local health integration networks (LHINs).3 In
Ontario, CCN is a network of 18 member hospitals providing cardiac services in
Ontario. LHINs are geographic-location-based, sub-provincial administrative units
responsible for determining the healthcare service needs and priorities for their
corresponding areas. Their covered geographic areas are shown in Table 1.1. The
relationships between the 11 CCN member hospitals and the corresponding LHINs
are shown in Table 1.2 [65, p. 20].

LHINs differ from each other in terms of their geodemographic profiles such as
population size, age structure, education levels, and immigration. To get the profiles
of LHINs, we selected 47 major cities and towns with populations of more than
40,000 according to the 2006 Canadian census.4 Figure 1.4 (based on Google map5)

Fig. 1.3 The distribution of hospitals that provide cardiac surgery services across the LHINs in
Ontario, Canada. Red dots denote hospital locations and the numbers correspond to the LHIN IDs
as shown in Table 1.1

2https://www.corhealthontario.ca/. Last accessed on April 11, 2019.
3http://www.lhins.on.ca/home.aspx. Last accessed on April 11, 2019.
4http://www12.statcan.gc.ca/census-recensement/2006/index-eng.cfm. Last accessed on April 10,
2019.
5https://maps.google.com/.

https://www.corhealthontario.ca/
http://www.lhins.on.ca/home.aspx
http://www12.statcan.gc.ca/census-recensement/2006/index-eng.cfm
https://maps.google.com/
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Table 1.1 The names, geographical areas, and scopes of LHINs in Ontario, Canada

Boundary (Major cities/
ID LHIN name Area (km2) PD towns/counties)

1 Erie St. Clair 7323.7 86.1 Windsor, Lambton, Chatham-Kent,
and Essex

2 South West 20903.5 43.1 London, Stratford, Elgin, Middlesex,
Oxford, Perth, Huron, Bruce, and part
of Grey

3 Waterloo Wellington 4746.6 144.6 Wellington, Waterloo, Guelph, and
part of Grey

4 Hamilton Niagara
Haldimand Brant

6473.0 203.3 Hamilton, Niagara, Haldimand, Brant,
and parts of Halton and Norfolk

5 Central West 2590.0 285.7 Dufferin, parts of Peel, York, and
Toronto

6 Mississauga Halton 1053.7 956.7 Mississauga, parts of Toronto, Peel,
and Halton

7 Toronto Central 192.0 5678.9 A large part of Toronto

8 Central 2730.5 561.3 Parts of Toronto, York, and Simcoe

9 Central East 15274.1 93.8 Durham, Kawartha Lakes, Haliburton,
Highlands, Heterborough, parts of
Northumberland, and Toronto

10 South East 17887.2 26.1 Kingston, Hastings, Lennox and
Addington, Prince Edward, and
Frontenac

11 Champlain 1763.1 65.1 Ottawa, Renfrew, Prescott and
Russell, Stormont, and Dundas and
Glengarry

12 North Simcoe Muskoka 8372.3 50.5 Muskoka, parts of Simcoe and Grey

13 North East 395576.7 1.4 Nipissing, Parry Sound, Sudbury,
Algoma, Cochrane, and part of Kenora

14 North West 406819.6 0.6 Thunder Bay, Rainy River, and most
of Kenora

PD: population density.

shows the locations of the sampled cities and towns. The 40,000 population cut-off
point ensures that the sampled cities and towns represent approximately 90.72% of
Ontario’s population.

Data about the cardiac care services and LHINs’ geodemographic profiles in
Ontario are publicly available. In general, two types of aggregated data [66, 67]
have been collected and used. The first type of data is survey data [67], which is
collected and published by government agencies, stakeholders in healthcare, and
service providers. Survey data provide information about the profiles and behavior
of individuals and service providers. For instance, the Census Bureau provides
survey data about the demographics, socioeconomics, and land of a region [68].
Healthcare organizations, such as the Cardiac Care Network of Ontario (CCN) and
the Ontario Physician Human Resources Data Center (OPHRDC) have published
survey data on patient hospital selection behavior [28] and the number of physicians
in each hospital in Ontario by specialty.
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Table 1.2 The relationship between the CCN member hospitals that provide cardiac surgery
services and the corresponding LHINs

LHIN name CCN member hospitals

South West London Health Sciences Centre

Waterloo Wellington St. Mary’s General Hospital

Hamilton Niagara Haldimand Brant Hamilton Health Sciences

Mississauga Halton Trillium Health Partners

Toronto Central St. Michael’s Hospital

University Health Network

Sunnybrook Health Sciences Centre

Central Southlake Regional Health Centre

South East Kingston General Hospital

Champlain University of Ottawa Heart Institute

North East Hôpital Régional de Sudbury Regional Hospital

Fig. 1.4 The locations of the sampling cities in Ontario, Canada

The second type of data is administrative data, which is often collected by health-
care organizations and service providers “for administrative, regulatory, healthcare
operations . . . purposes” [66, p. 73]. Administrative data can represent information
about service profiles, behavior, and performance. For instance, the Institute for
Clinical Evaluative Sciences (ICES) and the CCN have reported statistical data to
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Table 1.3 A summary of the major data sources for the LHINs’ geodemographics and cardiac
care services that are used in this book

Data types Data sources Link

Geodemographics Statistics Canada: 2006 Census of
Population

http://www12.statcan.gc.ca/
census-recensement/2006/index-
eng.cfm

Local Health Integration Networks
(LHIN)

http://www.lhins.on.ca/home.aspx

Google Map https://maps.google.com/

Cardiac Services Cardiac Care Network of Ontario
(CCN)

http://www.ccn.on.ca/ccn_public/
FormsHome/HomePage.aspx

Ontario Physician Human
Resources Data Center (OPHRDC)

http://www.ophrdc.org/

Institute for Clinical Evaluative
Sciences (ICES)

https://www.ices.on.ca/

College of Physicians and Surgeons
of Ontario (CPSO)

http://www.cpso.on.ca/

Ministry of Health and Long-Term
Care (MOHLTC)

http://www.health.gov.on.ca/en/

Auditor General of Ontario
Hospitals

http://www.auditor.on.ca/

The last access time for links listed in this table was April 10, 2019.

show the performance of cardiac care services in Ontario in terms of the throughput,
median wait times, 90th percentile wait times, and queue length [20, 69]. The
College of Physicians and Surgeons of Ontario (CPSO), the governing body for
medical doctors in Ontario, provides detailed information about physicians (such as
physician name, physician type, and practice locations) for hospitals in each LHIN.
The major aggregated data sets that are utilized in this book are summarized in
Table 1.3.

1.5 Structure of This Book

This book is organized as follows.
Chapter 2 briefly reviews existing studies and methods for empirically identify-

ing relationships between variables and characterizing the behavior of a healthcare
service system.

Chapter 3 presents the use of SEM-based analysis to discover the direct and
moderating effects that certain geodemographic profiles exert on service utilization,
focusing on cardiac surgery services in Ontario, Canada.

Chapter 4 also demonstrates the effectiveness of the SEM-based analysis,
exploring the direct and indirect effects of a CU’s characteristics on the wait times
of its subsequent SU.

http://www12.statcan.gc.ca/census-recensement/2006/index-eng.cfm
http://www12.statcan.gc.ca/census-recensement/2006/index-eng.cfm
http://www12.statcan.gc.ca/census-recensement/2006/index-eng.cfm
http://www.lhins.on.ca/home.aspx
https://maps.google.com/
http://www.ccn.on.ca/ccn_public/FormsHome/HomePage.aspx
http://www.ccn.on.ca/ccn_public/FormsHome/HomePage.aspx
http://www.ophrdc.org/
https://www.ices.on.ca/
http://www.cpso.on.ca/
http://www.health.gov.on.ca/en/
http://www.auditor.on.ca/


22 1 Introduction

Chapter 5 presents our integrated prediction method for estimating the changes
in service utilization and service performance with respect to demographic shifts,
within the context of cardiac surgery services in Ontario.

Chapter 6 proposes and evaluates an adaptive OR time block allocation strategy
that is designed from a self-organizing systems perspective to cope with unpre-
dictable patient arrivals.

Chapter 7 presents the use of a behavior-based autonomy-oriented modeling
method to find underlying working mechanisms that account for certain emergent
spatio-temporal patterns in patient arrivals and wait times.

Chapter 8 presents an intelligent healthcare decision support (iHDS) system that
incorporates the D2CSM approach. Two working examples, one for the OR time
block allocation, and another for the regional healthcare resource allocation, are
also demonstrated to illustrate how our proposed methods and the corresponding
iHDS system work for analyzing and supporting healthcare-related decisions.



Chapter 2
Data Analytics and Modeling Methods
for Healthcare Service Systems

In order to better utilize healthcare services and improve wait times, we should
know what factors cause long waits. How do the factors affect the wait times? How
can we estimate the changes in the wait times, taking into account the dynamics of
patient arrivals as well as some impact factors? What strategies can be proposed to
efficiently utilize healthcare service resources and thus shorten wait times? How can
we characterize the dynamics of patient arrivals and wait times? These are common
questions that have long been a concern in healthcare systems. This chapter reviews
the commonly employed methods to address these questions.

We first present the basic notations and concepts of a healthcare service system.
We then examine the commonly used multivariate methods for understanding a
healthcare service system by empirically identifying the relationships between the
variables. Finally, we survey the modeling and simulation methods that have been
used to characterize the behavior of specific healthcare service systems, and unveil
the underlying mechanisms that cause the emergent spatio-temporal patterns at a
systems level.

2.1 Basic Notations and Concepts

From a systems perspective, a healthcare service system (the conceptual model of
which is shown in Fig. 1.1) is an open system that exchanges patients, resources, and
information with the environment [70, p. 32] via its inputs and outputs. Formally, a
healthcare service system SH can be characterized by a set SH = {R, S, P,X,G},
where R = {r1, r2, · · · , rNR

} corresponds to the resources within the system,
including personnel and facilities, and NR is the number of dimensions representing
the resources; S denotes the organizational structure of these resources; P =
{p1, p2, · · · , pNP

} represents the processes, referred to as the behavior of the
system, and NP is the total number of processes that serve patients; X describes
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the states of the system at time t , X = {x1(t), x2(t), · · · , xNX
(t)}, and NX is the

number of dimensions for measuring the states of the system; and G is the goal set
of the system.

All of the elements that are outside a healthcare service system and can poten-
tially affect its inputs, structure, and processes are referred to as the environment
E of the system, E = {e1(t), e2(t), · · · , eNE

(t)}, where NE is the number of
elements. The system’s environment therefore includes all of the factors that
affect the system and are affected by it. A healthcare service system is capable
of taking in patients, resources, and information from its environment as inputs,
I = {i1(t), i2(t), · · · , iNI

(t)}, where NI is the number of different input elements.
The system then processes the inputs in some way and returns the treated patients
and information about the system states and service performance to its environment
as outputs, O = {o1(t), o2(t), · · · , oNO

(t)}, where NO is the number of different
output elements.

A copy of the outputs may be fed back as part of the inputs into the healthcare
service system and may cause changes in the system’s transformation processes
and/or future outputs. This output information is then referred to as a system
feedback F , F = {f1(t), f2(t), · · · , fNF

(t)}, where NF is the number of different
feedback elements. Feedback can be both positive and negative. Positive feedback
tends to reinforce the output of the system, whereas negative feedback regulates
it. Feedback can affect the inputs and processes of the healthcare service system
at different levels. For example, in response to feedback information about the
service performance of each hospital, patients may make different service utilization
and hospital selection decisions, and thus influence the inputs to the system, each
hospital, and specific units. With the same feedback information, hospitals and units
within the system may adjust their processes and/or reallocate their resources to
improve the performance of their services in the future.

2.2 Empirical Identification of the Relationships Between
Variables

To shed light on what causes changes in wait times, studies on healthcare services
have usually used multivariate analysis methods to statistically analyze empirical
data to unveil the underlying relationships between variables. In this section, we
review the typical types of relationships that healthcare service research has focused
on and the multivariate analysis methods that are commonly used to reveal them.

2.2.1 Types of Relationships

Studies on healthcare services have usually identified three types of statistical
relationships between different variables, which are referred to as “complex rela-
tionships” in this book.
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• Direct relationship: A direct relationship occurs when a dependent variable (e.g.,
oi) is directly affected by an independent predictor variable (e.g., ii or ri). This
relationship is measured by the direct effect that represents the extent to which
the dependent variable changes when the predictor variable increases by 1 unit.
Studies have found, for example, that an input variable, service utilization [42,
71], and a resource variable, service capacity [29, 42, 72], are direct predictors of
2 output variables, wait times, and queue length.

• Indirect relationship: An indirect relationship exists when an independent vari-
able influences a dependent variable via the effect of a third variable, commonly
known as a mediator variable. The indirect effect, which reflects the indirect
relationship between the dependent variable (e.g., ii) and the independent
variable (e.g., ei or ri), is a product of the direct effect between the independent
and the mediator (e.g., ej or ij ) variables, and that between the mediator and
the dependent variables. In the literature, a few indirect relationships between
the inputs I and outputs O of the healthcare service system have been identified.
For example, a previous study [73] found that the patient satisfaction (an output
variable oi) of the received treatment may mediate the relationship between the
service capacity (a resource variable ri in a SH ) and the behavior of revisiting a
hospital (a demand factor should be regarded as an environmental variable ei as
defined in Sect. 1.1.1).

• Moderating relationship: A moderating relationship exists when the direction
and/or strength of the relationship between two variables (e.g., ei and ii) depends
on a third variable (e.g., ej ), which is known as a moderator variable. A
few studies have discovered moderating effects in healthcare service systems.
For instance, a demand factor (also an environmental variable, as defined in
Sect. 1.1.1), education, may moderate the relationship between another envi-
ronmental variable, population size, and an input variable, patient arrivals. This
is potentially because the prevalence of smoking and inactivity, two traditional
cardiovascular risk factors, in a less-educated population [14, 19] suggests that
a higher proportion of well-educated individuals in the population may mitigate
the pressure of the population size on patient arrivals [45].

The relationship between two variables can be either linear, meaning that the
changes in the dependent variable (e.g., oi) are proportional to the changes in the
independent variable (e.g., ei or ii), or nonlinear, indicating that the changes in
the dependent variable do not correspond to constant changes in the independent
variable. Many researchers have assumed that the variables under consideration are
linearly related and thus use linear-model-based statistical methods, such as linear
regression, principle component analysis (PCA), and factor analysis, to discover
the underlying relationships. Other researchers believe that variables are not only
linearly related, and thus employ other nonlinear functions to characterize the more
complex underlying relationships, such as using the logistic function to model the
resource-limited exponential growth of wait times.
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2.2.2 Multivariate Analysis

Three requirements must be satisfied to identify the relationships between variables
in a healthcare service system.

1. Constructing observed and latent variables: The variables, such as those that
affect wait times in a healthcare service system, can be observed or unobserved,
as discussed on page 3 in Sect. 1.1.1. The observed variables and latent variables
(LVs) must therefore be modeled simultaneously.

2. Exploring complex relationships between multiple variables: Variables in a
healthcare service system may have direct, indirect, or moderating relationships
with each other, which are referred to as complex relationships in this book. Thus,
we must be able to test complex relationships between multiple variables.

3. Supporting limited-data analysis: Publicly available data about a healthcare
service system is usually aggregated and limited. We should therefore be able
to explore the relationships between multiple variables using limited data.

Existing studies have commonly used PCA [74] to summarize a set of uncor-
related variables from empirical data [75], e.g., to extract the key predictors for
wait times. PCA “converts a set of possibly correlated variables into a set of
values of linearly uncorrelated variables” called the principal components [75].
PCA is based on the following assumptions: the observed variables are partially
correlated; the relationships between all of the observed variables are linear; each
pair of observed variables should display a bivariate normal distribution to represent
random sampling; and the data describing the observed variables should be metric
(interval/ratio) data. PCA may therefore help to transform a set of potentially corre-
lated observed variables, e.g., {e1(t), e2(t), · · · , eNE

(t)}, into a set of uncorrelated
variables, e.g., {e′

1(t), e
′
2(t), · · · , e′

N ′
E

(t)}, N ′
E ≤ NE , when analyzing a healthcare

service system. For instance, PCA can extract potential key factors in wait times
from empirical data on the environment, the input, or the healthcare service system.
However, this method cannot reveal complex relationships between variables and
cannot model LVs.

Unlike PCA, factor analysis identifies unobserved variables (i.e., LVs), called
factors, which can explain the variability between a set of observed and correlated
variables. Factor analysis is based on the following assumptions: One or more
underlying factors can account for the variation between the given observed
variables; variables are partially correlated; each factor is a linear construction of
several observed variables; and the data representing the observed variables should
be metric data. Factor analysis has been used to extract various underlying factors
in healthcare service systems, such as those that contribute to long wait times [76]
and patient satisfaction with diabetes care [77]. Factor analysis may help to extract
a smaller set of LVs by removing redundancies or duplications from the correlated
observed variables. However, it cannot be used to discover different relationships
between multiple LVs.
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To unveil the relationships between variables from limited data, most studies have
relied on multiple regression [46, 47]. Multiple regression is a general statistical
method for analyzing the relationship(s) between a dependent and multiple indepen-
dent variables [48]. This method consists of several types of techniques that model
relationships using different linear or nonlinear equations. Studies have usually
used multiple linear regression to estimate the contributions of different predictor
variables (e.g., ei , ii , and ri) to wait times, assuming that these variables are linearly
related. For instance, researchers have used this method to explore the direct effects
of hospitals’ characteristics (e.g., a university/regional hospital or a county/district
county hospital) and patient socioeconomic profiles on wait times [78]. One study
used multiple linear regression to examine whether old age (≥65) affects wait
times in emergency departments [46]. However, this method identifies pairwise
relationships between observed variables, and thus is not appropriate for modeling
LVs or discovering indirect and moderating relationships between variables.

Some studies in healthcare have used logistic regression to deal with research
questions, like whether and to what extent environmental variable ei , input variable
ii , and/or system resources variable ri can predict long wait times. Logistic
regression is a special type of regression that assumes that the logit of the observed
dependent variable is a linear function of the observed independent variables [79].
Studies have used logistic regression to investigate, for example, whether patients
under 65 years old and with a lower level of education are more likely to report
unacceptable wait times [47], and whether the distance from the homes of Canadian
children with cancer to oncology treatment centers has a significant effect on
wait times in the corresponding services [80]. Nevertheless, as the aim of logistic
regression is to identify a logistic relationship between an observed dependent
variable and one or more observed independent variable(s), this method cannot
construct LVs or uncover complex relationships between variables.

In the past decade, a so-called second-generation statistical technique, structural
equation modeling (SEM), has garnered attention. SEM enables us to simultane-
ously investigate a series of direct, indirect, and moderating relationships between
observed variables and LVs [48]. SEM uses a measurement model and a structural
model to discover the complex relationships between variables. The measurement
model [48] characterizes the linear relationships between the observed variables
(i.e., measurement variables, MVs) and the corresponding LVs. One of the typical
ways to relate MVs to LVs is through the reflective measurement model, in which
each LV is reflected in its corresponding MV. The structural model [48] describes
the linear relationships between LVs. There are two classes of SEM: Partial least
squares (PLS)-based SEM and covariance-based SEM [61]. PLS-based SEM is
more suitable for theory building and allows for both confirmatory and exploratory
modeling, while covariance-based SEM is more suitable for theory testing and is
more efficient for confirmatory modeling [61]. Due to the advantages of SEM,
healthcare service studies have used SEM to test a “patient satisfaction theory” in
emergency departments [81] and to investigate whether depressive symptoms are
associated with glycemic control in diabetic adults and the extent to which these
adults’ health behavior can explain the association [82]. SEM was applicable in
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our study for analyzing the direct, indirect, and moderating relationships between
MVs and LVs of the environment E, inputs I , healthcare service system SH , and
outputs O.

Based on the identified relationships between variables, healthcare administrators
can predict the variations in the input or output variables if certain determinants
change. The assumption for making predictions based on variable relationships
is that the relationships do not change from the baseline period to the prediction
period. For instance, studies have used regression models to estimate the future
costs of care for cardiovascular disease from 2010 to 2030 in the United States
[83], predict the mental health costs in the United Kingdom [84], and estimate the
medical expenditures, healthcare use, and mortality in Switzerland in 2010 based
on the data in 2009 [85]. However, regression methods may not capture the indirect
and moderating relationships between variables, which may influence the accuracy
of the predictions in the studies that rely on these models. These predictions also
cannot demonstrate how the predicted variables change over time.

Some studies have made predictions based on time series data using the
autocorrelation method. Autocorrelation describes the correlation of a random time
series with itself at different time delays [86, p. 459]. It makes linear predictions
based on the assumption that the observed time series is self-similar. Autocorrelation
has been used, for instance, to assess the burden of children suffering from severe
viral respiratory illness in an intensive care unit [87]. However, autocorrelation
cannot describe the dynamics of a system’s behavior.

2.3 Characterization of System Behavior

Studies that use multivariate analysis methods are able to empirically identify the
statistical relationships between multiple variables in a healthcare service system.
However, these studies cannot deal with the problem of how and why the statistical
relationships are formed in a system. To address this problem, we should model and
simulate the behavior of a healthcare service system to satisfy the following two
requirements.

1. Modeling heterogeneous and autonomous entities: In a healthcare service sys-
tem, entities (e.g., patients and hospitals) are shown in heterogeneity profiles and
behave autonomously based their own decisions. Thus, any modeling method
should consider how to model the heterogeneous and autonomous entities.

2. Incorporating interactions: In a healthcare service system, the mutual inter-
actions between variables and entities at different levels potentially cause
positive-feedback-based aggregations and nonlinear dynamics. Any modeling
method should therefore incorporate the interaction issue.

To gain an understanding of the dynamics of the wait times, studies have
commonly used stochastic modeling and simulation, system dynamics, and agent-
based modeling (ABM) to model and simulate the behavior of a healthcare
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service system. In this section, we review these methods, their advantages, and
the challenges in using them to characterize specific spatio-temporal patterns at
a systems level. We discuss Autonomy-Oriented Computing (AOC), a research
paradigm that is effective in modeling and addressing self-organization issues in
complex systems, and thus may help us uncover the mechanisms that account for
the spatio-temporal patterns in wait times.

2.3.1 Stochastic Modeling and Simulation

In the delivery of healthcare services, patient arrivals and services to patients exhibit
a variability. The input of patients may dynamically change over time because of
unpredictable outbreaks of specific diseases and patients’ autonomous behavior.
Hassan et al. empirically validated the common use of the Poisson distribution to
describe stochastic patient arrivals based on the recorded data on patient arrivals in
2000 [88]. The time required for serving patients varies from one patient to another,
due to the differences in patients’ conditions and the severity of their illnesses.
The majority of studies have described stochastic services using an exponential
distribution [89].

Studies have used stochastic modeling and simulation methods to model a
healthcare service system by describing the stochastic input I and the processes
P that transform I to the output O of a healthcare service system. The aim of
these methods is to estimate the probability distributions of potential outputs or
states, taking into account random variations in one or more variables in the system.
Queueing theory (and the corresponding queueing models) is a method in this
category that analyzes queue lengths and wait times in a system over time [54].

The origin of queueing theory may date back to the work of A.K. Erlang in the
beginning of the last century [90]. Models based on queueing theory are able to
mathematically analyze queue lengths and wait times in a system by specifying its
random patient arrivals, random delivering services, on-site servers, and scheduling
strategies. Models built using queueing theory make the following assumptions:
random variables in a system statistically follow specific distributions, e.g., Poisson
arrivals and an exponential service rate; entities in the queues are passive, meaning
that they cannot make autonomous decisions and interact with each other; and the
system state, which is characterized by the lengths of the queues, satisfies a Markov
property (i.e., the future state of the system is conditional on the present state of the
system, but does not rely on the past state) [91]. Based on these assumptions, this
method uses a Markov chain with a transition rate matrix on a state space to describe
a system.

Theoretically, we can calculate the steady-state distributions of a modeled
healthcare service system with a specific queueing model and thus obtain the
system’s expected queue lengths and wait times. Here, the steady-state indicates
a state of equilibrium in which the distribution properties of a healthcare service
system are independent of time [92]. However, in some cases, it may be difficult
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to use equations to describe the randomness and interdependence of certain random
variables (e.g., patient arrivals and wait times), due to the coupling relationships and
mutual interactions between these variables. In some complicated queueing models,
it may also be difficult to mathematically analyze the steady-state distributions of
the modeled system.

To address this problem, studies have used the method of discrete event simula-
tion, which originated around 1960 [93], to simulate queueing models. This method
portrays a system’s states as a discrete sequence of events [94, 95]. An event may
present a specific action (e.g., a patient joins a service waiting queue), which causes
a change in the system’s state. Discrete event simulation is quite different from
the continuous simulation that is suited for systems with continuously changing
variables.

To simulate a healthcare service system’s random inputs of patient arrivals and its
processes, discrete event simulations usually integrate the Monte Carlo simulation.
Discrete event simulations are often used to model deterministic systems, whereas
Monte Carlo simulations sample a new value for each random variable from specific
statistical distributions. Thus, a Monte Carlo simulation can effectively simulate
healthcare service systems in which probability and non-determinism play a major
role.

Stochastic modeling and simulation methods, especially queueing theory and
discrete-event simulation, lend themselves to the analysis and prediction of the
dynamic behavior of a healthcare service system. For instance, researchers used
queueing models and discrete event simulations to analyze waiting lists for oper-
ating rooms (ORs) and recovery rooms under the constraint of the capacity (e.g.,
beds and recovery time) [42, 96], and to predict the performance of a healthcare
service system in different scenarios [54]. Jun et al. in 1999 [97], Fone et al. in 2003
[98], and Jacobson et al. in 2006 [55] surveyed the application of queueing models
and discrete-event simulations in the healthcare service literature in addressing
problems, such as forecasting the dynamics of patient flows with different resource
allocation strategies. In 2010, Günal et al. [99] and Cardoen et al. [100] further
reviewed the latest studies that used these two methods for OR planning, scheduling,
and performance modeling.

Despite the widespread application of stochastic modeling and simulation meth-
ods in healthcare, the statistical assumptions made for the stochastic properties
are relatively strong and do not always hold true in the real world. Further, these
methods assume the existence of passive entities in the system, thereby making
it difficult to model entities’ autonomous behavior with respect to certain impact
factors. Therefore, these methods cannot be used to explain how spatio-temporal
patterns in wait times emerge from individuals’ behavior and interactions.
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2.3.2 System Dynamics

System dynamics is another commonly used method for modeling and simulating
healthcare service systems. It originated in the 1950s [101] and is promoted by the
System Dynamics Society.1 System dynamics is used to explain the dynamically
changing behavior of a complex system by defining the interactions (which are
referred to as “flows”) between variables (which are referred to as “stocks”)
that may accumulate or be exhausted over time [59]. Stochastic modeling and
simulation methods characterize a healthcare service system by describing its
stochastic properties, whereas system dynamics uses a causal loop diagram to
model the internal feedback loops between the variables within a system. System
dynamics assumes that the focal system is deterministic and can be described by a
set of coupled, linear or nonlinear, first-order differential or integral equations. In
addition, it also assumes that entities contained in a stock are homogeneous, and
that interactions between variables, i.e., flows, are predefined and do not change.

System dynamics has been applied to modeling a variety of healthcare services.
For example, it has been used to qualitatively characterize the effects of interrelated
impact factors and wait times on the cardiac care system in Ontario, Canada [65].
It also has been employed to model the relationships between multiple interacting
diseases, healthcare service systems for delivering corresponding services, and
national and state policy [102]. Furthermore, it has been utilized to identify
bottlenecks in emergency healthcare by simulating patient flows [103], and to
predict the demand for ambulatory healthcare services [104].

Due to its advantages in understanding the behavior of a system by modeling
stocks, flows, and internal feedback loops, system dynamics provides a potentially
useful means for us to investigate how the interactions between multiple variables
and time delays affect the dynamics of wait times in a healthcare service system.
However, system dynamics may not fully fulfill the requirements for explaining
the causes of spatio-temporal patterns in wait times. The homogeneity assumption
relating to stocks makes it difficult to model patients’ heterogeneous behavior,
which depends on individuals’ profiles, decision-making styles, and environmental
information. The predefined, fixed interactions between stocks do not allow system
dynamics to model individuals’ adaptive and autonomous behavior. Hence, this
method cannot be used to investigate how spatio-temporal patterns in wait times
at a systems level emerge from individuals’ collective behavior and interactions.

1http://www.systemdynamics.org/. Last accessed on April 11, 2019.

http://www.systemdynamics.org/
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2.3.3 Individual-Based Modeling

Studies in healthcare have also developed various system models based on
individual-based modeling methods. Unlike stochastic modeling methods, which
focus on characterizing the uncertainty in a healthcare service system, and
system dynamics, which focuses on feedback loops and time delays in a
deterministic healthcare service system, individual-based modeling methods
describe a system by modeling and simulating the behavior of and interactions
between autonomous individuals [105]. Agent-based modeling (ABM), which
originated from Neumann’s cellular automata machine [106] in the 1940s and
Conway’s Game of Life in 1970 [107], is a traditional individual-based modeling
method that is commonly used in healthcare service research.

ABM regards each individual as an agent, which could be either a physical
element, such as a patient, or an abstract concept, such as a hospital. In ABM, each
agent makes decisions individually according to its behavioral rules and perceived
environmental information [108]. Agents can interact with each other through
competition, cooperation, or environmental information sharing. Even a simple
agent-based model can develop specific spatio-temporal patterns at a systems level,
due to autonomy and interactions [109, 110]. ABM therefore enables us to explore
the mechanisms that potentially explain how systems behavior and certain spatio-
temporal patterns arise from individuals’ behavior and the interactions between
them.

Developing an agent-based model for characterizing a healthcare service system
is challenging, as it requires a thorough understanding of the modeling system
which is inherently complex, and there is uncertainty in designing and quantifying
individuals’ behavior and interactions [111, 112]. Currently, although a unifying
framework for designing, constructing, and validating agent-based models is lacking
[113, 114], several frameworks [115], or so called “meta-models” [111], have been
proposed to guide the agent-based modeling of complex systems. The frameworks
are either domain-driven or pattern-orientated.

• Domain-driven frameworks begin with identifying and understanding the domain
of the system to be modeled. Developers or modelers then build up corresponding
agent-based models and conduct simulations based on the domain knowledge
and a specific research context. Domain-driven frameworks, such as CoSMoS,
which is proposed and promoted by the CoSMoS Project group2 [116], may
eliminate the uncertainties involved in the modeling and simulation of domain-
specific systems.

• Pattern-oriented frameworks identify multiple patterns of behavior in real
systems. The patterns are used to determine the modeling scope and reduce
parameter uncertainty in simulations. Pattern-oriented modeling, proposed by

2http://www.cosmos-research.org/about.html. Last accessed on April 11, 2019.

http://www.cosmos-research.org/about.html
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Grimm et al. [115, 117], is an example and is effective in modeling real systems
[118].

ABM also lends itself to understanding healthcare service systems. Researchers
have built different agent-based models to examine the effects of physicians’
behavior on patient outcomes [119], predict the spread of infectious diseases based
on social networks [120, 121], and evaluate patient scheduling or other operation
management strategies [122, 123].

Although ABM provides a potentially useful means for characterizing the behav-
ior of a system by modeling individuals’ heterogeneous behavior and interactions, it
still faces several difficulties in modeling a healthcare service system and explaining
its emergent spatio-temporal patterns. As different agents, such as the modeled
patients and hospitals, have various types of behavior and interactions in the real
world, does ABM need to model the agents’ behavior and interactions as explicitly
as possible? What fundamental behavior and interactions at an individual level are
crucial for emerging spatio-temporal patterns at a systems level and must therefore
be modeled? If the model incorporates too many details, it may become too complex
to assess the effects of individuals’ behavior and interactions, and other variables on
the whole system. If the model omits key behavior and/or interactions, it may not
capture the complex, self-organizing nature of a healthcare service system. Thus, the
modeled system may not show the spatio-temporal patterns at the systems level. Few
studies have successfully discovered the underlying mechanisms for the emergent
patterns of a healthcare service system using ABM, which may be due to the above
reasons.

In this regard, multi-agent Autonomy-Oriented Computing (AOC) [63, p. 9]
offers a promising alternative to solving the problems faced by ABM. AOC is a
research paradigm that uses autonomous entities (agents) to deal with the issues
of modeling and analyzing complex systems, and solving computational problems
from a complex systems perspective [36, 64]. The AOC-by-prototyping technique
[64] can be used to model a complex system from a self-organizing perspective.
AOC-by-prototyping requires recognizing and modeling the autonomous entities
that may play significant roles in the self-organization of the system; determining
and modeling the types of information that are collected and exchanged in the
environment; and identifying and modeling the entities’ behavior, their direct
interactions or indirect interactions via sharing information in the environment, and
the positive or negative feedback loops, which may enable the system to exhibit
collective aggregations or regulations. AOC-by-prototyping should be a recursively
trial-and-error process to make the synthetic system as faithful as possible. During
this process, some parameters are initialized and configured to make the synthetic
model approximate the real system more closely. The final synthetic model can be
used to reveal the underlying mechanisms of positive-feedback-based aggregations
andor negative-feedback-based regulations, which may account for the observed
self-organization and emergent behavior of the real system.

Due to the advantages of modeling a system from a self-organizing perspective,
the effectiveness of AOC has been validated in a variety of real-world applications,
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such as understanding the dynamics of the interactions between the human immun-
odeficiency virus (HIV) and the human immune system [124]. AOC therefore offers
a method for developing a specific healthcare service model to characterize the
dynamics of and spatio-temporal patterns in wait times.

2.4 Summary

Wait time management is a long-term problem. This chapter first introduced the
basic notations of a healthcare service system with its inputs, outputs, environment,
and feedback. We then summarized the types of relationships between variables
in a healthcare service system and the methods that can be used to empirically
identify these relationships from limited data. These methods typically include
PCA, factor analysis, multiple regression, logistic regression, and SEM. These
methods face the challenge of discovering complex relationships between observed
and latent variables. Utilizing the identified relationships between variables, we
can further make predictions for wait times in the future, or, estimate future wait
times using time-series-based analysis methods, such as autocorrelation. However,
these predictions cannot explain why and how the predicted variables change over
time. We reviewed the modeling and simulation methods that may be used to
characterize the behavior of a system and to simulate the dynamics of wait times.
The traditional methods include stochastic modeling and simulation methods, such
as queueing theory and discrete event simulation, system dynamics, and individual-
based modeling methods such as ABM. However, these methods face different
challenges in modeling a healthcare service system to explain its emergent spatio-
temporal patterns.

Based on this review, we presented the motivation for developing the data-driven
complex systems modeling approach that consists of SEM-based analysis, integrated
prediction, service management strategy design and evaluation, and behavior-based
autonomy-oriented modeling to understand the nature of a complex healthcare
service system in terms of wait times. We also evaluated the differences between
the methods used in existing studies and those considered in this book.



Chapter 3
Effects of Demand Factors on Service
Utilization

Although the literature has associated demand factors, such as geodemographics,
with healthcare service utilization, little is known about how these factors—such
as the population size, age profile, service accessibility, and educational profile—
interact to influence service utilization, and thus indirectly affect wait times.
Figure 3.1a presents the research focus of how this problem fits into the context of
understanding a healthcare service system. Using the Structural Equation Modeling
(SEM)-based analysis method to address this problem, we first discuss our research
hypotheses and propose a conceptual model based on a thorough literature review.
Then, we evaluate these hypotheses using the results of SEM on real world data.
Figure 3.1b summarizes the main steps of SEM-based analysis.

This chapter presents an example that employs the SEM-based analysis method
to explore whether certain demand factors, i.e., population size, age profile, service
accessibility, and educational profile, have direct or moderating effects on service
utilization in cardiac care services in Ontario, Canada. The example in this chapter
provides a qualitative illustration of the effects of some geodemographics profiles
on the dynamics of patient arrivals and on the changes in the wait times.

3.1 Introduction

Geodemographic factors, such as population size [43], age [13, 125], geographic
accessibility to services [22], and level of education [126, 127], have been rec-
ognized as important determinants of healthcare service utilization [128, 129].
Geodemographic factors are conventionally used to estimate healthcare needs (e.g.,
the population needs-based funding formula [130]) to develop better resource allo-
cation and shorter wait times. The majority of studies have focused on examining
pair-wise relationships between geodemographic factors and healthcare service
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utilization, with a scarcity of research exploring how the geodemographic factors
interact to affect healthcare service utilization.

Nevertheless, as previous studies have suggested [14, 22, 131], certain geodemo-
graphic factors may moderate (i.e., change the direction and/or strength of) [48] the
effects that other geodemographic factors have on healthcare service utilization. For
instance, if one area has more healthcare service providers, the burden of population
growth and aging on the patient arrivals for a specific hospital in that area may be
alleviated, as patients residing there have more choices and thus will be more likely
to be distributed among multiple hospitals. Geographic accessibility to services
(referred to hereafter as service accessibility) [22] may therefore have moderating
effects on the relationships between a population’s size, age profile, and service
utilization. As an additional example, individuals, including seniors, with different
education backgrounds may have different lifestyles [14] that can influence their
risk for cardiovascular disease [126, 127] and their healthcare service utilization
behavior [131]. The educational profile may therefore have a moderating effect on
the relationship between population size and healthcare service utilization.

In view of this, in this chapter, we employ the Structural Equation Model-
ing (SEM)-based analysis to examine both the direct and moderating effects of
geodemographic profiles on service utilization within the context of cardiac care,
in various sub-regions of Ontario, Canada. The sub-regions of concern are Local
Health Integration Network (LHINs) as introduced in Sect. 1.4. Although LHINs
have been in operation for years, there is a lack of academic research examining
how their geodemographic profiles affect healthcare service utilization.

Following the research steps of using SEM-based analysis method to examine
the direct and moderating effects of geodemographic profiles, we firstly develop
hypotheses based on the literature review and construct a corresponding conceptual
model. We then test the model using SEM [48, 61], based on publicly available
aggregated data representing the geodemographic factors and cardiac surgery
service utilization in Ontario from 2004 to 2007.

3.2 The Effects of Geodemographic Profiles

According to the literature, the geodemographic factors considered in the work
presented in this chapter include the population size, age profile, service acces-
sibility, educational profile. In this section, we review the literature and develop
hypotheses regarding the effects of geodemographic profiles (as direct antecedents
and moderators) on healthcare service utilization.
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3.2.1 Hypotheses

3.2.1.1 The Direct Effect of Population Size on Service Utilization

Population size, representing the total population that may use the cardiac surgery
services in an LHIN, has been shown to exert a direct positive influence on
service utilization, which is represented by the number of patient arrivals. A larger
population may translate into a greater number of people using healthcare services to
prevent or treat various types of illnesses [43, p. 59]. Population growth, which can
produce more cardiovascular patients, has been identified as one of the major driving
forces behind changes in the number of patient arrivals [65]. We thus hypothesize
that:

Hypothesis 1 (H1) Population size has a direct positive effect on service utiliza-
tion.

3.2.1.2 The Direct Effect of Age Profile on Service Utilization

Age profile, here defined as the proportion of seniors (i.e., those older than 50)
in the population that may use the cardiac surgery services in an LHIN, has
been recognized as another important factor that may influence service utilization.
Old age is a traditional cardiovascular risk factor [132]. Other risk factors for
cardiovascular disease, such as hypertension, obesity, and physical inactivity, are
also more prevalent in the segment of the population aged 50 and above [133, 134].
Further, age groups vary in their healthcare service utilization behavior [13, 125],
with seniors typically exhibiting a higher rate of use. A larger senior population may
therefore result in more cardiovascular patients [135], leading to a greater number
of patient arrivals for healthcare services, such as cardiac surgery [65]. Therefore,
we hypothesize that:

Hypothesis 2 (H2) Age profile has a direct positive effect on service utilization.

3.2.1.3 The Moderating Effects of Service Accessibility

Geographic accessibility to healthcare services in an area (i.e., service accessibility)
is an important factor influencing patients’ decisions regarding the use of such
services [21, 22, 28]. Seidel et al. [21] found that patients’ willingness to use
healthcare services was negatively associated with the distance between their
residences and the destination hospital. A survey conducted by the Cardiac Care
Network of Ontario (CCN) [28] showed that the driving distance between home and
a hospital was one of the most important factors for patients in choosing a specific
hospital, and that more than 80% of cardiovascular patients were not willing to
visit hospitals far from home. Extending these findings, we conjecture that if there
are several accessible hospitals in one area, patient arrivals for any one particular
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hospital may decrease, as the difference in the time needed for patients to travel to
one hospital or another is negligible. Under such circumstances, we would expect
patients to be dispersed among several hospitals, resulting in reduced wait times at
any particular hospital in the area.

In this study, higher service accessibility for an LHIN implies that residents in
that LHIN have access to more possible healthcare service providers. As a result,
the number of patient arrivals at any one hospital in the LHIN may decrease. The
pressure of population size or the age profile on each of the hospitals in an LHIN
with higher service accessibility may be mitigated, because patients (including
seniors) in that LHIN are likely to be dispersed among several hospitals. Thus we
hypothesize that:

Hypothesis 3.1 (H3.1) Service accessibility has a direct negative effect on service
utilization.

Hypothesis 3.2 (H3.2) Service accessibility has a negative moderating effect on
the relationship between the population size and service utilization.

Hypothesis 3.3 (H3.3) Service accessibility has a negative moderating effect on
the relationship between the age profile and service utilization.

3.2.1.4 The Moderating Effects of Educational Profile

Educational profile is defined as the proportion of well-educated individuals (i.e.,
those with more than a high school education) in the population that may use the
cardiac surgery services in an LHIN and is an important factor that may also affect
healthcare service utilization. Individuals with different education backgrounds
manifest different lifestyles [14] and are thus associated with different levels of risk
for cardiovascular disease [126, 127] and different service utilization behavior [131].
For instance, a longitudinal secondary data study in Canada showed that smoking
and inactivity, two traditional cardiovascular risk factors, were more prevalent in
the less well-educated (senior) population [14]. This study suggested that people in
the less well-educated group might have a higher demand for healthcare services
related to cardiovascular disease. Another study showed that diabetic patients
who were at greater risk for cardiovascular disease were more willing to perform
self-care behavior if they were well-educated [131]. These findings suggest that,
in addition to directly affecting service utilization, a higher proportion of well-
educated individuals in the population may mitigate the pressure of population size
and aging on service utilization. Thus, we hypothesize that:

Hypothesis 4.1 (H4.1) Educational profile has a direct negative effect on service
utilization.

Hypothesis 4.2 (H4.2) Educational profile has a negative moderating effect on the
relationship betweenpopulation size and service utilization.

Hypothesis 4.3 (H4.3) Educational profile has a negative moderating effect on the
relationship between age profile and service utilization.
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–
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Fig. 3.2 A conceptual model for exploring the effects of geodemographic profiles on service
utilization. +/−: a positive/negative relationship between two LVs

3.2.2 The Conceptual Model

The research model, presented in Fig. 3.2, illustrates the hypothesized relationships
to be tested in this chapter.

3.3 SEM Tests and Results

3.3.1 Aggregated Data

Within the context of Cardiac Care in Ontario as introduced in Sect. 1.4, we use
corresponding aggregated data from 2004 to 2007 to test the hypothesized rela-
tionships. Specifically, LHINs’ geodemographic profiles with respect to population
size, age profile, and educational profile derive from the 47 sampled cities and
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towns (as shown in Fig. 1.4) based on the Canadian census data. According to the
census data released by Statistics Canada, the geodemographic changes from year
to year in each LHIN are rather gradual. For instance, between the 2001 and 2006
censuses, the population in Ontario grew by approximately 6.6% [68]. Thus, it is
reasonable to assume that the 2006 Canadian census data will approximately reflect
the geodemographics of Ontario between 2004 and 2007.

Patients residing in an LHIN may travel to other LHINs to receive cardiac
surgeries. For example, 25% of patients residing in the Central West LHIN received
treatments from hospitals in the Mississauga Halton LHIN in the 2007/2008 fiscal
year [136]. We therefore estimate the population that could potentially use the
cardiac surgery services in each LHIN, including those residents living in other
LHINs, and thereafter derive the corresponding geodemographic profiles.

The measurement value for population size of LHIN i is calculated by:

PS′
i =

14∑

j=1

PSjPTji (i, j ∈ [1, 14], i �= j), (3.1)

where PS′
i denotes the measurement value of population size in LHIN i, PSj

represents the population size in LHIN j , and PTji is the proportion of patients
residing in LHIN j but receiving services in LHIN i. The data representing PTji

were obtained from [136].
The measurement values for age profile and educational profile for LHIN i are

calculated by:

V ′
i =

∑14
j=1 VjPTji

PS′
i

(i, j ∈ [1, 14], i �= j), (3.2)

where V ′
i denotes either the proportion of the senior/well-educated population in

LHIN i; Vj denotes the number of people aged 50 and above, or the number of
well-educated people in LHIN j , respectively.

We operationalize service accessibility as the proportion of the population
residing within a 30-min driving time to the nearest hospitals providing cardiac
surgery services in an LHIN [137]. The 30-min driving time is selected as a
threshold to measure healthcare service accessibility in accordance with previous
work [138, 139] and the CCN’s recommendations [140]. The driving time from each
selected city or town to the nearest hospital that provides cardiac surgery services
is estimated using the “Get directions” function in Google Maps. In Google Maps,
a city or town is represented by the central point of its polygonal area.1 Unlike
a geographical information system (GIS), which estimates driving time based on
the lengths of roads and road speed limits [141, 142], Google Maps considers the
actual traffic conditions on roads. Hence, Google Maps may provide a more realistic

1https://developers.google.com/maps/documentation/staticmaps/. Last accessed on April 11, 2019.

https://developers.google.com/maps/documentation/staticmaps/
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driving time than a GIS. As there may be several routes between a city or town and a
hospital in Google Maps, we tabulate the driving time for each selected city or town
to all of the hospitals providing cardiac surgery services and select the route with the
shortest driving time to approximate the service accessibility for the LHINs. Service
accessibility is calculated by:

SAi =
∑Ki

k=1 PSki ∗ ψki

PSi

, (3.3)

where SAi is the service accessibility of LHIN i; PSki is the population size of a
city/town k in LHIN i; Ki is the number of cities/towns selected in LHIN i; PSi is
the population size of LHIN i; and ψki is a parameter denoting whether a city/town
k in LHIN i is within a 30-min driving time to the nearest hospital. If the driving
time from a city/town k in LHIN i to its nearest hospital is within 30 min, ψki = 1;
otherwise, ψki = 0.

The geodemographic profiles of LHINs are summarized in Table 3.1.
The data representing cardiac surgery service utilization from 2004 to 2007 is

obtained from the CCN.2 Based on the CCN data, the average number of cardiac
surgery patient arrivals in a hospital i each month over a quarter t (i.e., Ai(t)) can
be calculated by adding the number of completed cases to the number of patients
waiting in the queue (i.e., Qi(t)), and subtracting the waiting queue length at time
t − 1 (i.e., Q(t − 1)). An overview of the aggregated data on service utilization for
each hospital is shown in Table 3.2.

Table 3.1 The measurement values for the geodemographic profiles of LHINs that have cardiac
surgery services

LHIN ID LHIN name PS′
i Age′

i (%) SAi (%) E′
i (%)

2 South West 762,804 32.55 41.05 62.68

3 Waterloo Wellington 671,709 29.73 77.69 64.16

4 Hamilton Niagara
Haldimand Brant

796,559 33.83 51.54 61.25

6 Mississauga Halton 912,292 27.54 88.20 71.51

7 Toronto Central 3,813,418 29.97 100.00 70.12

8 Central 637,510 30.07 75.13 69.35

10 South East 198,366 33.90 65.10 66.37

11 Champlain 651,966 32.80 86.40 74.16

13 North East 189,353 37.32 37.27 61.37

PS′
i : the measurement value for population size of LHIN i, Age′

i : the measurement value for
age profile of LHIN i, SAi : the measurement value for service accessibility of LHIN i, E′

i : the
measurement value for educational profile of LHIN i

2http://www.ccn.on.ca/ccn_public/FormsHome/HomePage.aspx. Last accessed on April 11, 2019.

http://www.ccn.on.ca/ccn_public/FormsHome/HomePage.aspx
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Table 3.2 Cardiac surgery service utilization from 2004 to 2007 in Ontario hospitals

LHIN ID Hospital Service utilization (Mean)

2 London Health Sciences Centre 111

3 St. Mary’s General Hospital 51

4 Hamilton Health Sciences 112

6 Trillium Health Partners 86

7 St. Michael’s Hospital 88

7 Sunnybrook Health Sciences Centre 71

7 University Health Network 143

8 Southlake Regional Health Centre 64

10 Kingston General Hospital 53

11 University of Ottawa Heart Institute 91

13 Hôpital Régional de Sudbury Regional Hospital 38

3.3.2 Two-Step SEM Tests

The partial least squares (PLS)-based SEM software SmartPLS3 is used to test
the hypothesized relationships. PLS-based SEM, when compared with LISREL,
another major type of SEM, has the advantage of theory development and thus
is more appropriate for exploratory modeling [61]. In this study, all of the latent
variables (LVs) (population size, age profile, service accessibility, educational
profile, and service utilization) are modeled as reflective constructs, which are
constructs viewed as causing, as opposed to being caused by, the observed variables
[143].

We conduct a two-step test to test both the hypothesized direct and moderating
effects.

• Step 1: Test the direct effects of population size and age profile on healthcare
service utilization;

• Step 2: Explore the direct and the moderating effects of educational profile and
service accessibility on service utilization.

3.3.3 Test Results

The research hypotheses are tested using secondary data on the service utilization
of cardiac surgery in Ontario and the relevant geodemographic factors between
2004 and 2007 (16 quarters). The mean and standard deviation of the variables are
summarized in Table 3.3.

3http://www.smartpls.de/. Last accessed on April 11, 2019.

http://www.smartpls.de/
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Table 3.3 Summary statistics for the geodemographic factors and cardiac service utilization in
Ontario between 2004 and 2007

Variable Mean Standard deviation Min Max

Population size 784,907 367,484 189,353 1,271,139

Age profile

50+ (%) 31.60 2.63 27.54 37.32

Service accessibility

≤30’ (%) 67.90 19.59 37.27 100.00

Educational profile

>High school (%) 67.38 4.24 61.25 74.16

Service utilization

No. patient arrivals in a month 82 34 16 211

3.3.3.1 Measurement Model

The common evaluation metrics for model fitting in PLS-based SEM are Cronbach’s
alpha, construct reliability, and average variance extracted. As we use one observed
variable for each LV, both Cronbach’s alpha and the construct reliability of each
LV are equal to 1, suggesting that all of the LVs are internally consistent [48].
The average variance extracted for each LV is also equal to 1, indicating adequate
convergent validity [48]. Moreover, the correlations between each LV and the other
LVs are smaller than the square root of the average variance extracted, indicating
adequate discriminant validity [144].

3.3.3.2 The Effects of Population Size and Age Profile on Service Utilization

As Fig. 3.3 reveals, in support of H1 and H2, both population size and age profile
have significant positive effects on service utilization, with path coefficients of β =
0.737 (t = 13.205, p < 0.01) and β = 0.284 (t = 5.051, p < 0.01), respectively.
These results support the previous findings that a larger population size [43, 65] and
a greater proportion of residents older than 50 [133, 134] in a geographic area imply
more cardiac surgery patients in the hospital(s) of that area.

3.3.3.3 The Effects of Service Accessibility and Educational Profile on
Service Utilization

As Fig. 3.4 shows, in support of H3.1 and H3.2, service accessibility is negatively
related to service utilization (β = −0.210, t = 2.101, p < 0.01), and weakens the
effect of population size on service utilization (β = −0.606, t = 5.240, p < 0.01).
The findings suggest that the more accessible an LHIN is in terms of healthcare
services (i.e., the more individuals within a 30-min driving time to the nearest
hospital providing cardiac surgery services), the fewer the patient arrivals at any
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Population size
0.000

Age profile
0.000

Service utilization
0.332

*** p<0.01

0.284***

0.737***

Fig. 3.3 SEM test results: the effects of population size and age profile on service utilization

Service 
accessibility 

0.000

-0.606*** -0.210***

Population size
0.000

0.972***

0.575***

Service 
utilization 

0.477

Age profile
0.000 *** p<0.01

Fig. 3.4 SEM test results: service accessibility as a moderator

one hospital in this LHIN and the weaker the effect of population size on service
utilization. However, H3.3 is not supported by our data (β = −0.070, t = 0.661,
p > 0.05), indicating that service accessibility does not have a moderating effect on
the relationship between age profile and service utilization.

H4.1 is not supported by our data (β = 0.050, t = 1.088, p > 0.1), as shown in
Fig. 3.5, suggesting that educational profile does not have a direct effect on patient
service utilization for cardiac surgery. However, in support of H4.2 and H4.3, our
results reveal that educational profile weakens the effects of population size and
age profile on service utilization, with path coefficients of β = −0.595 (t = 7.592,
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Educational
profile
0.000

Population size
0.000

-0.595*** -0.286***

Age profile
0.000

0.915***

0.464***

Service
utilization

0.495

*** p<0.01

Fig. 3.5 SEM test results: educational profile as a moderator

Table 3.4 Hypothesis testing
results

Hypotheses Supported?

H1, H2, H3.1, H3.2, H4.2, H4.3 Fully supported

H3.3, H4.1 Not supported

p < 0.01) and β = −0.286 (t = 4.987, p < 0.01), respectively. The effects of
population size and age profile on service utilization in a well-educated LHIN is
therefore probably not as strong as in a less well-educated LHIN.

Table 3.4 summarizes the testing results for each of the hypotheses.

3.4 Discussion

Meeting the needs of a population is one of the most important considerations
when allocating healthcare resources in Canada, and worldwide [130]. Previous
research has advocated the allocation of resources according to the needs of the
population, as assessed by an estimation method [130] that considers demographic-
based indicators (e.g., age, education, and smoking) [145, 146]. However, Kephart
and Asada [146] noted substantial differences between estimated and real service
needs in some regions when examining traditional estimation methods. The needs
estimation method may simply be a linear combination of all of the considered
factors that does not consider how these factors interact with one another, result-
ing in a biased estimation. Therefore, an in-depth understanding of the direct
and moderating interactions between the geodemographic factors and healthcare
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service utilization may suggest better estimation methods for healthcare service
needs. LHINs are sub-provincial administrative units responsible for planning and
funding healthcare services for their corresponding geographic areas in Ontario.
By uncovering interesting relationships between LHINs’ geodemographic factors
and healthcare service utilization, we provide LHIN administrators with valuable
information to consider in their planning and/or managing of healthcare service
resources.

In the work presented in this study, we demonstrated that service accessibility has
a significant moderating effect on the population size-service utilization relation-
ship, and that educational profile exerts significant moderating effects on both the
population size-service utilization relationship and the age profile-service utilization
relationship. These relationships have not been reported previously. The results of
our analysis confirm our prediction that service accessibility is negatively associated
with service utilization, and that it weakens the effect of population size on service
utilization. The results suggest that the more healthcare services are accessible in
an area, the fewer cardiac surgery patient arrivals any one hospital in that area will
have. We consider the Hamilton Niagara Haldimand Brant LHIN (LHIN 4) and
its neighbor, the Mississauga Halton LHIN (LHIN 6), as examples. In 2007, the
proportion of patients receiving cardiac surgery services in their resident LHINs
(referred to as the inside-LHIN proportion) was 82% in LHIN 4 and 72% in LHIN
6 [136], whereas the service accessibility was approximately 51.54% in LHIN 4
and 88.20% in LHIN 6, as shown in Table 3.1. As both LHIN 4 and LHIN 6 have
only one hospital in their own areas, the higher accessibility of LHIN 6 compared to
LHIN 4 suggests that there are more accessible hospitals in the LHINs surrounding
LHIN 6 than in those surrounding LHIN 4. As a result, patients dwelling in LHIN
4 are less likely to visit hospitals in other LHINs, compared to those dwelling in
LHIN 6, and thus the inside-LHIN proportion for LHIN 4 is higher than that for
LHIN 6. Accordingly, we expect that for LHINs with better accessibility to cardiac
surgery services (e.g., LHINs 3, 6, 7, and 11, as shown in Table 3.1), the pressure of
population growth in each of these LHINs on the hospital(s) within the LHIN may
decrease.

In contrast, the negative but insignificant moderating effect of service accessi-
bility on the relationship between the age profile and service utilization may be
because older people are more willing to visit a familiar hospital or a hospital with
familiar physicians [28]. Consequently, service accessibility in an LHIN, which
reflects patients’ options in healthcare services, may have little effect on the senior
population’s decisions when choosing cardiac surgery services.

The negative moderating effects of educational profile suggest that the effect
of population size and age profile on service utilization is less pronounced in a
well-educated population than it is in a less-educated population. Well-educated
individuals, including the elderly, may have healthier lifestyles [14] and are
more inclined to receive routine physical examinations and engage in self-care
behavior [131]. Consequently, they are less likely to develop severe cardiovascular
disease that requires cardiac surgery services [19]. As illustrated in Table 3.3, the
educational profiles of the LHINs in 2006 vary from 61.25% to 74.16%, with a



48 3 Effects of Demand Factors on Service Utilization

mean value of 67.38% and a standard deviation of 4.24%. The effects of population
growth and aging on patient arrivals in each LHIN may therefore vary depending
on the educational profiles of that LHIN. As shown in Table 3.1, LHINs 6, 7, 8,
and 11, which have more educated populations (indicated by higher-than-average
educational profiles), may have lower patient arrivals due to population growth and
aging, compared to other LHINs.

Previous research has identified population growth and aging as two important
factors driving the need for healthcare services in Ontario [18], and thus affecting
patient arrivals. Likewise, our findings reveal a significant relationship between pop-
ulation size and service utilization, and between age profile and service utilization.
This finding suggests that, monitoring the trends in population growth and aging is
an effective precautionary approach for healthcare administrators aiming to provide
sustainable healthcare services.

The literature has noted the significant positive effect that service utilization
exerts on the important performance indicator of hospital wait times [42, 44]. Our
findings suggest that geodemographic factors, such as population size, age profile,
service accessibility, and educational profile, may indirectly affect wait times for
cardiac surgery services via their influence on patient arrivals. Therefore, healthcare
administrators should consider the roles of the geodemographic factors in their
efforts to improve wait times for healthcare services.

In this chapter, we concentrate on four specific geodemographic factors, i.e.,
population size, age profile, service accessibility, and educational profile. These
factors are identified based on a literature review and are not significantly correlated
as tested on our aggregated data. It should be noted that there may be other
geodemographic factors influencing service utilization, such as income, one of
the commonly considered geodemographic characteristics in the literature. In this
work, we do not pay attention to those factors because (1) some of them may
significantly correlate with the population size, age profile, service accessibility,
or educational profile (e.g., education attainment and income in a population have
a causal relationship, as indicated by a few studies [147]); (2) the SEM test
results show that approximately 50% of the variability in service utilization can
be explained, suggesting that only considering the four factors in the data test is
acceptable for they account for the major part of the variance in service utilization.

3.5 Summary

In this chapter, we demonstrated how to use the SEM-based analysis to explore the
moderating effects of certain geodemographic factors, in addition to their direct
effects, on healthcare service utilization. Unlike previous research, we used an
SEM technique and aggregated data on geodemographic factors and cardiac surgery
services in Ontario, Canada to test the hypothesized relationships. The results reveal
that geodemographic changes due to population growth and aging may significantly
affect cardiac surgery service utilization. Geographic accessibility to healthcare
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services and a population’s educational profile exert significant effects on patient
arrivals for cardiac surgery services, both as direct antecedents and as moderators.
Our findings suggest the importance of considering the geodemographic profiles of
a geographic area, and sometimes its neighboring areas, when allocating healthcare
service resources, to strategically improve service utilization and reduce wait times.
In addition, the work presented in this chapter demonstrates that the SEM-based
analysis can be used to empirically identify the complex relationships between
demand factors and wait times.



Chapter 4
Effects of Supply Factors on Wait Times

Prior research shows that supply factors, such as supplier capacity, significantly
affect the throughput and the wait times within an isolated unit. However, it is
doubtful whether the characteristics (i.e., service utilization, capacity, throughput,
and wait times) of one unit affect the wait times of subsequent units on the patient
flow process. To answer this question, this chapter examines the impact of charac-
teristics of a catheterization unit (CU) on the wait times of a cardiac surgery unit
(SU), within the scenario of cardiac care in Ontario, Canada. Figure 4.1a presents
the research focus of this chapter within the overall framework of understanding a
healthcare service system.

The work presented in this chapter gives an additional example of using
Structural Equation Modeling (SEM)-based analysis to explore whether and how
some supply factors affect wait times in a hospital. Following the steps of SEM-
based analysis shown in Fig. 4.1b, we first propose research hypotheses and a
corresponding conceptual model based on a literature review. We then test the
hypotheses using SEM based on aggregated data that represents the characteristics
of CUs and SUs in 11 hospitals in Ontario from 2005 to 2008. We finally discuss
the interpretation of and possible extensions to our findings.

4.1 Introduction

The effect of highly fluctuating service utilization (represented by the number
of patient arrivals, also called as demand) and available service capacity on the
performance of a healthcare service system deserves long-standing attention [148,
149]. Service utilization, capacity, and performance are all important characteristics
describing a healthcare service system. Service utilization is often represented by the
number of visits to services [150, 151] or the expenditure on services [152, 153].
Some of the factors affecting the service utilization of a healthcare service system
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are increasing numbers of patients due to aging and a growing population [65], the
incidence of specific diseases such as diabetes [154], the development of diagnostic
and treatment technology [65], the position of the patient on a waiting list [155], the
geographic distance between the patient and the services [21], patients’ personal
profiles (e.g., demographics [156] and socioeconomic condition [15, 157]), and
unpredictable patient behavior like balking, reneging, jockeying, and repeating
[96, 97, 158].

The capacity of a healthcare service system denotes the resources (e.g., financial,
human, and physical) available to serve patients [159]. Capacity is usually judged
by the quantity and quality of the resources at hand [29, 65] or the working time
available [160]. Capacity is affected by factors such as human resources, for exam-
ple skilled doctors and assistants (e.g., nurses, anesthetists) [29]; physical resources,
for example beds and equipment [65]; management strategies, for example resource
utilization and allocation [100]; and resource planning and scheduling [97, 100].

Performance is commonly summarized using throughput and wait times [20,
97, 161]. Throughput is typically quantified by counting the number of patients
who have received a needed healthcare service in a given period [162]. It is thus
a way to observe the use of healthcare service resources. Unlike throughput, wait
times represent the amount of time patients have to wait before receiving needed
healthcare services [20, 163]. Wait times are a particular concern in healthcare,
especially for key services such as catheterization and cardiac surgery. A long wait is
not only an impediment to quality care but also a risk factor for patients [164, 165].
There are various measurements for wait times, such as median wait times (i.e.,
the point at which half of the patients have received their treatment and the other
half are still waiting) and queue length (i.e., the total number of patients in the
waiting list) [20, 163]. Wait times differ depending on patient urgency categories.
In a government dominated healthcare service system (e.g., Canada), each patient
on the key units’ waiting lists is assigned an urgency rating score according to
the presenting symptoms [166, 167]. Wait times strategies are adopted based on
different urgency categories [20]. The higher the urgent score patients have, the
shorter time they will wait.

Prior research has empirically investigated the relationships between service
utilization, capacity, throughput, and wait times. Service utilization has been shown
to have a significant effect on capacity [168], throughput, and wait times in different
units (e.g., a congested recovery room and an emergency department) [29, 42, 71].
Capacity has been found to have a positive effect on service utilization, that
is, a higher capacity attracts more patients to a hospital, especially non-urgent
patients [35, 39]. Capacity has also been discovered to exert a significant negative
effect on wait times [29, 71, 169]. Although previous studies have suggested that
improvements in throughput often accompany a reduction in wait times [170], the
effect of throughput on wait times has not been empirically investigated.

Healthcare units and services have generally evolved in silos focusing on
satisfying their own customers [171]. Accordingly, previous research has focused
on the relationships between the characteristics within a specific unit. However,
we argue that it is inadequate to examine the within-unit relationships in isolation
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Fig. 4.2 The unit framework for cardiac care. ECG: Electrocardiogram; PTCA: Percutaneous
Transluminal Coronary Angioplasty; PCI: Percutaneous Coronary Intervention

[171, 172], because, in the real world, all the units in a healthcare service system are
networked via patient flow. For example, based on the cardiac treatment guideline
[173], units involved in cardiac care are sequentially connected according to patient
visits (as shown in Fig. 4.2). A directed link between two units denotes that they
are temporally related, i.e., patients usually visit the unit the arrow points toward
(i.e., the subsequent unit) after visiting the unit the arrow points away from (i.e., the
preceding unit). There is usually a “funnel and filter effect” between two temporally
related units, as preceding units “determine the absolute numbers of and speed of
throughput for patients proceeding” into the subsequent units [174, p. 163]. In the
context of cardiac care, a “diagnostic-therapeutic” cascade effect may also exist
between a CU and a SU, as if more catheterization diagnostic tests are performed,
more cardiac surgeries are likely to occur [175–177]. Thus, investigating the effect
of cross-unit relationships, in addition to within-unit relationships, may reveal
important insights for wait times management [172].

In summary, the impact factors for a unit’s service performance, wait times
and throughput, have been studied from the demand and the supply perspectives
(as shown in Fig. 4.3). The relationships between service utilization, capacity,
throughput, and wait times have been investigated within a unit. However, little
attention has been paid to the relationships between the characteristics in a cross-
unit context, a gap this study aims to fill. We use an SEM-based analysis to
explore whether and how the characteristics of one unit exert an influence on the
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Fig. 4.3 The research framework summarizing the impact factors for throughput and wait times

characteristics of other temporally related units, focusing on wait times in particular.
Figure 4.3 shows the overall research framework. We choose the CU and the SU
as our research context because they both provide key services [20, 163]; they are
temporally connected [178]; and published data on the two units are available.

4.2 The Effects of a Unit’s Characteristics on Wait Times
in a Subsequent Unit

Matching fluctuating patient arrivals for healthcare service systems with available
capacity is known to be important for improving outcomes such as morbidity and
mortality rate, as well as wait times [179]. Thus, there has been extensive research
examining the relationships between service utilization, capacity, throughput, and
wait times, especially within a single unit.

4.2.1 Hypotheses

4.2.1.1 Within-Unit Relationships

Prior research has shown that service utilization has a positive effect on throughput
and wait times. For example, Asaro et al. [71] found that increasing patient arrivals
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in an emergency department (i.e., service utilization) also increased the throughput
and wait times in the department. Schoenmeyr et al. [42] revealed a sensitive
relationship between the caseload (i.e., service utilization) and the wait times in
a congested recovery room. Harewood et al. [72] found that annual wait times
for routine endoscopic procedures lengthened dramatically because of a significant
increase in the demand for annual procedures on the endoscopy services. Therefore,
we hypothesize that:

Hypothesis 1 (H1) Service utilization has a direct positive effect on throughput
within a unit.

Hypothesis 2 (H2) Service utilization has a direct positive effect on wait times
within a unit.

In analyzing the current research on the relationship between service utilization
and capacity, Baker [168] noted that the desire to meet patient demands was a
dominant driving force for capacity changing. Buerhaus [180] pointed out that
service utilization increasing for aging population may result in an expanding
nursing workforce (human resources) to avoid threatening the healthcare quality.
Justman et al. [181] indicated that HIV scale-up is needed to develop laboratory
systems and infrastructures (i.e., physical resources). Several researchers have
argued that capacity has a positive effect on service utilization [35, 39]. For instance,
Smethurst and Williams [39] noted that for each disease investigated, there were
many more patients who did not visit the doctor than there were those who did visit
(i.e., “latent” patients). To meet these potential overwhelming patient arrivals, the
supplier may increase the system’s capacity. Changes in the capacity may trigger
changes in patient arrivals, because more patients are then attracted to that system.
However, this argument has not been empirically tested [182]. We thus hypothesize
that:

Hypothesis 3 (H3) Service utilization has a direct positive effect on capacity within
a unit.

Prior research has indicated that capacity is important to ensure better perfor-
mance in a healthcare service system, measured in throughput and wait times. For
instance, Harindra et al. [29] found that supplier capacity was an important factor
determining access inequalities (which is usually represented by wait times) in
catheterization in Canada. Schoenmeyr et al. [42] showed that the physical capacity
of a supplier (e.g., beds) had a significant effect on the wait times in a congested
recovery room. Trzeciak and Rivers [169] also found that inpatient capacity (e.g.,
beds) had an effect on the throughput in an emergency department. Harewood et
al. [72] further showed that modifications in routine clinical practice (i.e., service
capacity) could significantly affect a procedure’s wait times.

Some studies have revealed that improving capacity may help improve the
throughput and the wait times in a unit. Mukherjee [183] found that improving the
management of physicians (e.g., staffing mix) improved patient throughput. Others
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showed that improving capacity management (such as employing intelligent patient
scheduling) shortened wait times efficiently [184, 185]. Therefore, we hypothesize
that:

Hypothesis 4 (H4) Capacity has a direct positive effect on throughput within a
unit.

Hypothesis 5 (H5) Capacity has a direct positive effect on wait times within a
unit.

Few studies have investigated the relationship between throughput and wait
times. Brenner et al. suggested that improvements in throughput are often accompa-
nied by a reduction in wait times [170]. An intuitive explanation is that given stable
patient arrivals (i.e., determined number of arrivals) in a unit, if resources (physical
or human resources) in the unit can be more efficiently used, the patients may be
treated quicker. So that the wait times of each patient may be shortened. Therefore,
we hypothesize that:

Hypothesis 6 (H6) Throughput has a direct negative effect on wait times within a
unit.

4.2.1.2 Cross-Unit Relationships

Prior research has examined the relationships of characteristics among several units
within a hospital. Alter et al. [174] reported that catheterization has a “funnel and
filter” effect on cardiac surgery. Patient arrivals and the capacity of the CU therefore
determine the absolute number of and speed of throughput for patients proceeding
into the SU. Similarly, prior research has revealed that the CU and the SU have
a “diagnostic and therapeutic” cascade effect [175–177]: if more catheterization
diagnostic tests are performed in the CU, more patients may undergo cardiac
surgeries. However, these studies do not explain clearly how and to what extent
the capacity of one unit may influence the wait times of another. To the best of our
knowledge, no prior study has examined whether and to what extent the wait times
of one unit influences the wait times of a temporally related unit. We hypothesize
that:

Hypothesis 7 (H7) Service utilization of the CU has a positive effect on service
utilization of the SU.

Hypothesis 8 (H8) Capacity of the CU has a positive effect on service utilization
of the SU.

Hypothesis 9 (H9) Wait times in the CU have a positive effect on the wait times in
the SU.
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Fig. 4.4 The conceptual model for this study. Cath: catheterization; Surgery: cardiac surgery; H1–
H9: research hypotheses; +/–: a positive or a negative relationship between two variables

4.2.2 The Conceptual Model

We postulate a conceptual two-layer wait times model, representing the hypothe-
sized within-unit and cross-unit wait times relationships, as shown in Fig. 4.4. The
relationships between four characteristics within the CU and the SU are illustrated
in Layer 1 and Layer 2. Cross-unit wait times relationships are represented by the
effects between the two layers.

4.3 SEM Tests and Results

4.3.1 Aggregated Data

The aggregated data used in this study was obtained from Cardiac Care Network
(CCN), Ontario Physician Human Resources Data Center (OPHRDC), and College
of Physicians and Surgeons of Ontario (CPSO) in Ontario, Canada. The reported
data from CCN includes the number of completed cases in a month, the average
number of patients waiting at the end of a month, and the monthly average
median wait times for each hospital. We are particularly interested in the units of
catheterization and cardiac surgery, because a regional priority rating score system
has been established for these two units (but not other units) in Ontario [166, 167].
The CCN thus provides more detailed statistics for the CU and SU than for other
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Table 4.1 Cardiac surgery statistics from January 2008 to March 2008 in Ontario hospitals

Hospital C UM (d) SM (d) EM (d) Q

London Health Sciences Centre 115 2 5 17 33

St. Mary’s General Hospital 61 3 5 9 24

Hamilton Health Sciences 127 1 6 12 69

Trillium Health Partners 79 2 4 9 22

St. Michael’s Hospital 89 5 6 15 26

Sunnybrook HSC 56 3 4 16 22

University Health Network 129 2 6 13 135

Southlake Regional HC 75 5 7 28 42

Kingston General Hospital 47 3 15 20 30

University of Ottawa Heart Institute 98 6 21 52 100

Hôpital Régional de Sudbury Regional Hospital 36 7 6 19 21

C: the number of completed cases; UM: median wait times for urgent patients; SM: median wait
times for semi-urgent patients; EM: median wait times for elective patients; Q: the number of
patients waiting at the end of a month; d: days

units. Table 4.1 shows the major information provided in the CCN report. From
Table 4.1, we can observe the variability of the throughput and the wait times for a
specific unit.

We propose an equation as follows to calculate the monthly average number of
arrivals from the existing statistic data, so that the demands of CU and SU can be
estimated successfully.

Ai(t) = Bi(t) + Qi(t) − Qi(t − 1), (4.1)

where, Ai(t) is the monthly average number of arrivals in quarter t in unit i, Bi(t)

is the monthly average number of patients who have received treatment in quarter t

in unit i, and Qi(t) is the average number of patients waiting at the end of a month
in quarter t in unit i.

The capacity of SUs is precisely measured by the number of physicians who
specialize in cardiac surgery. The capacity of CUs is approximately measured by
the number of physicians who perform diagnostic radiology, because catheterization
is one of the tests that uses radiology, and information about the physicians
who perform catheterization is unavailable. However, since the OPHRDC data is
organized by LHINs, not by hospitals, it needs to be processed so as to align with
the CCN data. Table 1.2 shows the CCN member hospitals and the corresponding
LHINs. From this table, we can see direct correspondences between the LHINs and
CCN member hospitals, except the LHINs of Toronto Central (TC) and North East
(NE), which have more than one CCN hospital. To facilitate data analysis, the two
LHINs’ data should be decomposed to generate data for related hospitals.

The main idea behind data decomposition is to utilize hospitals’ physician ratio
(calculated from the number of specific physicians in a hospital to the total number
of the specific physicians in the corresponding LHIN in year of 2010) in TC and
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Table 4.2 A summary of the characteristics of the CU and SU

Characteristics Measurements CU SU

Service utilization Monthly number of arrivals 340 82

Capacity Number of physicians, yearly 60 7

Throughput Monthly number of completed patients 346 83

Wait times Median wait times of U/S/E patients 1/10/15 3/6/19

Number of waits at the end of a month 101 58

CU: Catheterization unit; SU: Cardiac surgery unit; U: urgent; S: semi-urgent; E: elective

NE to compute the number of physicians for relevant hospitals from 2005 to 2008.
The physician ratios for CU and SU in each hospital in TC and NE can be obtained
from CPSO. Then, after observing the OPHRDC data, we found that in TC and NE,
the changes in CU ranged from 0 to 9 physicians per LHIN year to year (the total
average number of catheterization physicians per hospital in the two LHINs was 60);
and the changes in SU ranged from 0 to 1 physician per LHIN year to year (the total
average number of cardiac surgery physicians per hospital in the two LHINs was
7). Therefore, we can assume that the physician ratios in TC and NE are relatively
stable, i.e., the physician ratios are the same in each year since 2005. So that the
number of specific physicians in each hospital can be calculated successfully by the
specific physician ratio of each hospital multiplied by the number of the specific
physicians in the corresponding LHIN each year.

By integrating and processing the two sets of data as discussed above, we obtain
comprehensive information about the 11 hospitals (enumerated in Table 4.1) that
provide catheterization and cardiac surgery. Table 4.2 outlines the characteristics of
the two units and their measurements with the data summary. Specifically, we focus
on the data from 2005 to 2008 (15 quarters in total), because the year of 2004 is the
end of the first 6-year cardiac expansion plan [65] and the start of the second 10-
year cardiac improvement plan [20, 186]. In total, there are 165 data points for CU
and SU (one hospital one quarter is regarded as a data point). In the next subsection,
we will describe the statistical analysis methods used to investigate within-unit and
cross-unit wait times relationships.

4.3.2 SEM Tests

We use PLS-based SEM [61] to test the proposed two-layer wait times model
(shown in Fig. 4.4) and the related hypotheses as this study is exploratory rather
than confirmatory. The software SmartPLS1 is used for path modeling and PLS-
based data analysis.

In SEM-based data analysis, the measurements for wait times are modeled as
formative indicators rather than reflective ones [61, 143]. A formative model is
used when a latent construct (i.e., a factor, such as service utilization, capacity,

1http://www.smartpls.de/. Last accessed on April 11, 2019.

http://www.smartpls.de/
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throughput, and wait times) is viewed as an explanatory combination of its manifest
variables (i.e., measurements) [144, 187]. In contrast, in a reflective model, the
manifest variables are viewed as being caused by a underlying common dimension
or a construct [187]. Here, the manifest variables for wait times are not interchange-
able or correlated with one another because they measure wait times from different
perspectives. Therefore, the LV wait times is the summation of its corresponding
manifest variables. In other words, the measurement items of wait times will be
formative in the construct of wait times.

We use the data for the CU and SU in the same quarter to test the cross-unit
relationships. As the longest waiting time for a patient in the CU is around one
month, we can assume that the great majority of patients who need cardiac surgery
will be transferred from the CU to the SU within a quarter. In the next section, we
present the results of the PLS analysis, focusing on how the characteristics affect one
another within a unit and how the characteristics of the CU affect the characteristics
of the SU, particularly the SU’s wait times.

4.3.3 Test Results

4.3.3.1 Within-Unit Relationships

As illustrated in Fig. 4.5, in support of H1–H3, service utilization has a significant
positive effect on throughput, capacity, and wait times. The path coefficients for the
effect of service utilization on throughput are β = 0.585 (t = 18.677, p < 0.01) for
the CU and β = 0.797 (t = 35.115, p < 0.01) for the SU. The path coefficients for
the effect of service utilization on capacity are β = 0.921 (t = 127.754, p < 0.01)
for the CU and β = 0.574 (t = 25.219, p < 0.01) for the SU. The path coefficients
for the effect of service utilization on wait times are β = 0.619 (t = 2.908, p <

0.05) for the CU and β = 0.472 (t = 6.111, p < 0.01) for the SU. These results
confirm findings from prior studies [29, 42, 71, 72, 168], providing further evidence
that service utilization is an important predictor for capacity, throughput and wait
times within a unit.

In support of H4, capacity has a significant positive effect on throughput. The
path coefficients for the effect of capacity on throughput are β = 0.410 (t =
13.162, p < 0.01) for the CU and β = 0.155 (t = 5.914, p < 0.01) for the
SU. These results also confirm findings from prior studies [169, 183], suggesting
that an improvement in capacity will lead to improved throughput within a unit.

Hypothesis H5 is only partially supported by our data. For the CU, capacity has
a significant negative effect on wait times (β = −0.252, t = 2.465, p < 0.01),
thus supporting H5. However, for the SU, capacity has a significant positive effect
on wait times (β = 0.115, t = 3.071, p < 0.01), which does not support H5. This
finding differs with prior studies [42, 72], which suggests that an improvement in a
unit’s capacity can significantly shorten its patients’ wait times.

The positive effect of capacity on wait times for the SU can be explained using
Smethurst and Williams’s work [35, 39]. They found that hospital waiting lists are
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Fig. 4.5 PLS test results based on a formative measurement model. Cath: catheterization; Surgery:
cardiac surgery

self-regulating. When capacity increases to meet the needs of patients, the number
of patient arrivals may change again, creating an even greater number of patient
arrivals. A mass of “hidden” patients [39] who have diseases but have not been
willing to go to a hospital, may be persuaded to visit that hospital if they believe
that they will be treated quicker. Hence, expanding the capacity of the SU may help
shorten wait times temporarily, but the wait times will then increase beyond their
initial values, as patient arrivals increase in response to the larger capacity.

Hypothesis H6 is not supported by our data. Throughput has a significant positive
effect on wait times (β = 0.352, t = 1.659, p < 0.1) in the CU, whereas the effect
of throughput on wait times is negligible for the SU (β = 0.049, t = 0.593, p >

0.1). This finding suggests that throughput and wait times have similar changing
patterns in the CU, but not in the SU, which is contrary to the expectation that an
improvement in the throughput will result in an improvement in wait times.

Urgent patients’ queue jumping behavior may explain the positive relationship
between throughput and wait times in the CU. Queue jumping means that urgent
patients can skip the queue and jump to any position on a waiting list because of their
treatment priority [188]. If more urgent patients arrive, units delay the treatment
of the semi-urgent and elective patients to serve the high priority patients in time,
indirectly making the non-urgent patients wait longer. The overall wait times for the
unit may increase as a result. The absence of a significant relationship between the
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throughput and wait times in the SU could be because the SU has much fewer urgent
patients than the CU does. For instance, in the fiscal year of 2004, the percentage
of urgent patients in the CU in Ontario was 49% (out of a total of 52,628 patients),
whereas the percentage of urgent patients in the SU was only 23% (out of a total of
7825 patients) [20]. This finding implies that, in some cases, throughput and wait
times may not be directly related to reflect the quality of a unit’s performance.

4.3.3.2 Cross-Unit Relationships

As show in Fig. 4.5, H7 is not supported by our data (β = 0.022, t = 0.277, p >

0.1). The service utilization of the CU does not have a significant effect on the
service utilization of the SU. The capacity of the CU has a significant positive effect
on the service utilization of the SU (β = 0.644, t = 8.498, p < 0.01), which
supports H8.

These two findings explain the formation of the “funnel and filter” effect [174]
between the CU and the SU. They suggest that more arrivals in the CU usually
lengthen the waiting list, but do not heavily affect the throughput proceeding to the
SU. In reality, the CU always has a waiting list, as can be seen in the CCN data.
However, the capacity of the CU heavily determines the absolute number of and
speed of throughput for patients proceeding into the SU, forming the “funnel and
filter”.

In support of H9, the results of our analysis reveal that the wait times in the
CU have a significant positive effect on the wait times in the SU (β = 0.330, t =
9.859, p < 0.01). This is strong evidence that the wait times in the CU are an
important predictor for the wait times in the SU. A possible explanation for this
effect is a delay cascade [189]. Unnikrishnan et al. [189] simulated and observed
that delays will cascade in an emergency department network. In that study, all
of the emergency departments in different hospitals were networked by the transfer
paths of ambulances). In other words, delays in an emergency department will result
in the wait times increasing in other emergency departments nearby. Cardiac care
has a similar unit network (shown in Fig. 4.2) in a hospital. Therefore, delays in
one unit may spread to other related units in the unit network, forming the direct
cross-unit wait times relationship.

Table 4.3 summarizes the hypothesis testing results. An examination of our
results, shown in Fig. 4.5, reveals both direct and indirect causal paths from the
characteristics of the CU to the wait times in the SU. The service utilization and
capacity of the CU also have indirect effect on the wait times in the SU, in addition
to the direct effects. In other words, the wait times in the SU may be influenced by
the CU via the following causal paths: wait times in the CU → wait times in the
SU; service utilization of the CU → capacity of the CU → service utilization of the
SU → wait times in the SU; and service utilization of the CU → capacity of the
CU → service utilization of the SU → capacity of the SU → wait times in the SU.
The service utilization of the CU appears to be the most essential driving force for
the wait times dynamics in the CU and in the SU.
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Table 4.3 Hypothesis testing
results

Hypotheses Supported?

H1–H4, H8, H9 Fully supported

H5 Partially supported

H6, H7 Not supported

4.4 Discussion

In this chapter, we have examined whether and how the characteristics of a
preceding unit can affect the wait times in the SU. Unlike prior studies, we used
SEM to assess the cross-unit wait times relationships from data published on
healthcare services in Ontario, Canada. The results of our analysis validate the
proposed conceptual model, thus providing empirical support for the hypothesized
relationships between the characteristics service utilization, capacity, throughput,
and wait times, both within a unit and across units.

Our results show that the wait times in the CU have a direct positive effect on the
wait times in the SU. This is a novel result, as prior research has seldom examined
the influence of one unit’s wait times on the wait times in a subsequent unit in the
patient flow process. A possible explanation for the effect is a delay cascade in the
cardiac care unit network (Fig. 4.2), proposed by Unnikrishnan et al. [189].

The results of our analysis provide empirical evidence for previous findings that
within a unit, service utilization has a positive effect on capacity, throughput, and
wait times; within a unit, capacity has a positive effect on throughput; and that across
units, the service utilization of one unit will be positively influenced by the capacity
of the preceding unit.

We also obtained the surprising findings that the relationship between capacity
and wait times differs in units with different profiles (e.g., different patient propor-
tion in each urgency category); throughput has a positive effect on the wait times
in a unit; there are direct and indirect wait times relationships between temporally-
related units; and that service utilization of the CU is an essential predictor for the
other characteristics of the CU and SU.

However, there may be other factors affecting a unit’s performance in addition to
service utilization, capacity, and cross-unit relationships. For example, the patient
risk profile (i.e., the value of predicted operative mortality) has been identified as
a factor that may affect triage or referral patterns and the allocation of resources
[190]. Although the exact effects of patient risk profiles on service performance
(wait times in particular) are still unclear, these relationships should be explored by
incorporating patient risk into our conceptual model.

There are different methods for calculating the value of risk for patients under-
going catheterization (e.g., SYNTAX2) and cardiac surgery (e.g., EuroSCORE3 and
Higgins Score [191]) based on several risk factors. For example, the surgical risk

2http://www.syntaxscore.com/. Last accessed on April 11, 2019.
3http://www.euroscore.org/. Last accessed on April 11, 2019.

http://www.syntaxscore.com/
http://www.euroscore.org/
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factors for isolated coronary artery bypass graft (CABG) surgery include age, sex,
precious CABG, left ventricular function, and coronary anatomy, among others.
[178, 192]. The Institute for Clinical Evaluative Science of Ontario has published
data on the distribution of risk profiles in isolated CABG, the major type of cardiac
surgery, in 2005 and 2006 in Ontario hospitals [178]. We used this published risk
profile data (represented by the percentage of low-, medium-, and high-risk patients
for catheterization in a hospital), to investigate the relationship between risk profiles
and wait times. The missing data for each hospital’s risk profiles for 2007 and 2008
are substituted with the mean value of the available risk data for that hospital [178],
which is a common method for handling missing data in statistical data analysis
[193, 194]. By integrating our original cardiac care data with the risk profile data,
we conduct an additional PLS analysis to test the extended two-layer wait times
model, with risk profiles added as an extra predictor of wait times in the SU (see
Figs. 4.6, 4.7, and 4.8).
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Fig. 4.6 PLS test results for the extended two-layer wait times model with the low-risk profile in
the SU. Cath: catheterization; Surgery: cardiac surgery
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Fig. 4.7 PLS test results for the extended two-layer wait times model with the medium-risk profile
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The results of the analysis (Figs. 4.6, 4.7, and 4.8) reveal that the pattern of
within- and cross-unit relationships (i.e., hypotheses H1–H9) between characteris-
tics (i.e., service utilization, capacity, throughput, and wait times in the CU and SU)
remain unchanged. When risk profiles are represented differently, as a percentage
of low-risk patients, percentage of medium-risk patients, or percentage of high-risk
patients, they can have different effects on the wait times in the SU.

The percentage of low-risk patients has a significant negative effect on wait times
(see Fig. 4.6). The explanation for this finding is still unclear as almost no prior work
has addressed this issue to the best of our knowledge. However, we postulate that
the treatment process for low-risk patients is easier than for higher-risk patients, and
hence, the length of stay (including the pre-operative, operating, and post-operative
stay) of low-risk patients may be shorter than higher-risk patients. Therefore, if there
are more low-risk patients in the SU, the total wait times in this unit will decrease.

Interestingly, the percentage of medium-risk patients has a significant positive
effect on wait times (see Fig. 4.7). This may be due to unexpected upgrading of the
patients proceeding to cardiac surgery to more urgent categories (e.g., upgrading the
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Fig. 4.8 PLS test results for the extended two-layer wait times model with the high-risk profile in
the SU. Cath: catheterization; Surgery: cardiac surgery

medium-risk patients from semi-urgent to urgent) [195, 196]. The upgrading event
may trigger queue jumping behavior [188], which will hinder the normal treatment
schedule and result in longer wait times. This observation is consistent with the prior
findings that proportionately more patients in the more urgent categories than in the
less urgent categories may have wait times in excess of the maximum acceptable
[197].

The percentage of high-risk patients does not have a significant effect on wait
times (see Fig. 4.8), contrary to our expectation. Prior work indicates that high-
risk patients tend to be assigned higher priorities in the triage process [195], and
thus more high-risk patients may imply more urgent patients. As urgent patients
are more likely to undergo expedited surgery, treatment for non-urgent patients
may be delayed, resulting in prolonged overall wait times [188]. Although, we do
not yet have a sound explanation for this unexpected lack of effect, the observed
inconsistency between the effect of the high-risk profile and that of the medium-risk
profile may be due to the methodology used to stratify the patient risk profiles and
priority categories, an issue that deserves further investigation.
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4.5 Summary

In this chapter, we demonstrated an additional example of using the method of
SEM-based analysis to examine whether and how the characteristics of a preceding
unit exerts an effect on the wait times in subsequent units. Focusing on cardiac
care services, we investigated two temporally related units in cardiac care, the CU
and its subsequent unit, the SU. Our results reveal that wait times in the CU has
a direct positive effect on wait times in the SU; capacity of the CU has a direct
positive effect on service utilization of the SU. Within each unit, there are significant
relationships between the characteristics, except for the effect of throughput on
wait times in the SU; different patient risk profiles may affect the wait times in
the SU in different ways (e.g., positive or negative effects). The findings presented
in this chapter suggest that when healthcare administrators seek to alleviate wait
times in a healthcare service system, they should consider the cross-unit wait times
relationships and take into account the relationship between priority triage and risk
stratification, especially for cardiac surgery. The work presented in this chapter
once again demonstrates that the SEM-based analysis is effective in identifying the
complex relationships between multiple observed variables and LVs.



Chapter 5
Integrated Prediction of Service
Performance

Estimating the changes of patient arrivals and service performance over the mid- or
long-term is a common problem faced by healthcare service managers. To address
this problem, we should know what factors result in the changes of the patient
arrivals and service performance. How do these factors change in the future? How
do the patient arrivals and service performance change in accordance with the
variations of these factors? Figure 5.1a shows the research focus in this chapter
with respect to the larger context of understanding a healthcare service system.

This chapter presents an example to show how to use our proposed integrated
prediction method for predicting the changes of the healthcare service performance
with respect to demographic shifts in the context of cardiac surgery services
in Ontario, Canada. As illustrated in Fig. 5.1b, the integrated prediction method
consists of the following three steps: (1) applying the Structural Equation Modeling
(SEM)-based analysis to identify the complex relationships between demographic
profiles and healthcare service characteristics (e.g., capacity, supply, utilization, and
performance); (2) carrying out the prediction to estimate the service utilization
and service performance based on the discovered complex relationships and demo-
graphic shifts; and (3) conducting the queueing model analysis to gain insights into
the changing patterns of the estimated service performance over time. The work
presented in this chapter shows that the proposed method gives a way to reasonably
estimate the variations in service utilization and service performance with respect
to the changes of certain factors.

5.1 Introduction

Many areas in the world now face notable demographic changes/shifts due to aging
and immigration [129, 198]. For example, it was projected that the population
aged 65 and above in Ontario, Canada, would increase from 1.8 million in 2010
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to 4.1 million in 2036, accounting for 13.9% and 23.4% of the total population,
respectively [128]. The number of new immigrants in Ontario was predicted to
increase by 0.107–0.135 million annually from 2010 to 2036, accounting for nearly
70% of the total population growth [128].

Demographic shifts (e.g., age and ethnic profiles) are known to have a direct
effect on healthcare service utilization due to their correlations with risk factors
for certain diseases and with service utilization behavior. For example, risk factors
associated with cardiovascular diseases are more prevalent in the population aged
50 years old and above [13, 19]. Ethnic groups differ in their risks for cardiovascular
diseases [19, 49, 199] and in their healthcare service utilization behavior [200, 201].

Demographic shifts will also have an effect on the performance (i.e., throughput
and wait times) of a healthcare service. It has been found that healthcare service
performance is affected not only by supply factors, such as physical and human
resources, and management strategies [51, 202], but also by the dynamics of patient
arrivals in terms of volume and characteristics (e.g., patient profile and severity of
diseases with various co-morbidities) [44, 202]. An in-depth understanding of the
potential changes in healthcare service characteristics (e.g., service utilization and
performance) due to demographic changes will be helpful for middle-/long-term
healthcare resource planning and allocation.

In view of this, in this chapter, we attempt to address the following research
questions.

• The relationships between demographic profiles and healthcare service utiliza-
tion involve several factors with direct and/or indirect, linear and/or nonlinear,
and dynamic interactions. How can we learn these multi-factor complex relation-
ships from limited aggregated data?

• Once we have found the multi-factor complex relationships between demo-
graphic profiles and healthcare service utilization, how can we predict the
changes in service utilization with respect to demographic shifts?

• Estimation results based on multi-factor complex relationships are somewhat
uncertain and cannot demonstrate the dynamics of estimated service utilization
over time. How can we determine the dynamically changing process of healthcare
service utilization with respect to demographic shifts?

To answer these questions, we propose a method of integrated prediction. This
method uses an SEM-based analysis to discover the complex effects of multiple
factors on service utilization and service performance, carries out a prediction to
estimate healthcare service utilization based on the derived multi-factor complex
relationships, and constructs a queueing model to simulate the dynamics of the
estimated performance over time.

We apply the integrated prediction method to estimate the changes in service
utilization and service performance in cardiac surgery services in Ontario, Canada.
Our method is shown to be able to identify the complex relationships between the
age profile, recent immigrant (RI) profile, and characteristics of cardiac surgery;
describe the variations in healthcare service utilization with respect to demographic
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shifts; and demonstrate the temporal changes in estimated cardiac surgery perfor-
mance using queueing model simulations.

5.2 Integrated Prediction

We propose an analytical method (shown in Fig. 5.2) to unveil the underlying
relationships between demographic shifts and healthcare service utilization.

1. Analysis of complex relationships between factors: Based on a training data set
(e.g., statistics), we use SEM [48] to identify the complex relationships between
multiple factors (e.g., the age and recent immigrant profiles, and cardiac surgery
characteristics in our case study).

2. Qualitative prediction: Based on the identified multi-factor complex relation-
ships from the first step, we propose a set of equations to estimate the changes in
service utilization with respect to demographic shifts.

3. Dynamics simulation: Based on the estimated service utilization, we build spe-
cific queueing models to simulate the operation of different healthcare services,
such as cardiac surgery operating rooms (CS-ORs) in our case study, to gain
insights into the performance dynamics of their provided services over time.

5.2.1 SEM-Based Analysis

SEM uses a measurement model and a structural model to explore the complex
relationships between factors/variables (as shown in Fig. 5.3). The measurement
model [48] characterizes the linear relationships between observed measurement
variables (MVs) and the corresponding latent variables (LVs). One of the typical
ways to relate MVs to LVs is through the reflective measurement model, in which
each LV is reflected in its corresponding MV. Formally, let � = {ξ1, ξ2, . . . , ξN }
be a set of LVs and Xξj

= {xj1, xj2, . . . , xNξ Mξj
} be a set of MVs relating

to ξj (∀j ∈ [1, Nξ ]), where Nξ = |�| denotes the total number of LVs and
Mξj

= |Xξj
| denotes the total number of MVs which relate to ξj (∀j ∈ [1, Nξ ]).

The relationship between xjk (∀k ∈ [1,Mξj
]) and its related ξj can be expressed as

follows [203]:

xjk = πjk0 + πjkξj + εjk, (5.1)

where πjk0 and πjk (i.e., loading in SEM) are the regression parameters and εjk is
the residual error.

The structural model [48] describes the linear relationships between the LVs.
Formally, let �̃ξj

(�̃ξj
⊂ �) be a set of LVs that ξj relates to. The relationships



5.2 Integrated Prediction 73

F
ig

.5
.2

A
sc

he
m

at
ic

di
ag

ra
m

of
th

e
th

re
e-

st
ep

in
te

gr
at

ed
pr

ed
ic

tio
n

m
et

ho
d

an
d

its
ap

pl
ic

at
io

n
to

ca
rd

ia
c

su
rg

er
y

se
rv

ic
es



74 5 Integrated Prediction of Service Performance

p11
p21

p12 p22

Measurement Model

Structural Model

e11 11

12

21

22

b12
e21

e12 e22

x1 x2

z2

Fig. 5.3 The basic components in SEM

between ξj (ξj ∈ �) and its related LVs (�̃ξj
) can be written as follows [203]:

ξj = βj0 +
∑

i

βjiξi + ζj , (5.2)

where βj0 is a constant number, βji (i.e., the path coefficient in SEM) is the
regression weight of ξi (∀ξi ∈ �̃ξj

) relating to ξj , and ζj is the residual error.
We test multi-factor complex relationships using Partial Least Squares (PLS)-

based SEM, as it is more suitable for exploratory studies, as in this study, than
covariance-based SEM [61].

5.2.2 Prediction

In this subsection, we describe how to estimate healthcare service utilization based
on demographic shifts and multi-factor complex relationships. The estimation
process follows four sub-steps.

S1: Calculating the value of any exogenous LV with respect to the change in each
corresponding MV using Eq. 5.3. An exogenous LV ξj (ξj ∈ �) is an LV that
does not vary due to other LVs.

ξ ′
j = f (θjk|πjk, σjk,�xjk) = xjk(1 + �xjk)

τ

πjk

− σjk + θjk, (5.3)

where ξ ′
j is the estimation value of ξj given the changes in its MV; σjk = πjk0+εjk

πjk

represents a constant value; �xjk is the changing rate of xjk per time unit; and
θjk represents how ξj will change in accordance with a variation in xjk .
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S2: Taking an estimation value for each exogenous LV based on Eq. 5.4. Let X′
ξj

(X′
ξj

⊆ Xξj
) be a set of changed MVs related to an exogenous LV ξj , and let

M ′
ξj

= |X′
ξj

| denote the number of MVs that change in the estimation time τ .

As each exogenous LV, ξj , has |X′
ξj

| estimated values in accordance with the

changes in the MVs X′
ξj

, we minimize the expectation of θjk (k ∈ [1,M ′
ξj

]) to
get one reasonable estimation value for the exogenous LV, ξj .

ξ ′
j = arg min

k∈[1,M ′
ξj

]
E(f (θjk|πjk, σjk,�xjk)). (5.4)

It should be noted that if all of the MVs related to an exogenous LV, ξj , do not
change during the estimation time τ , then the estimation value of ξj , i.e., ξ ′

j , will
be equal to the original value of ξj discovered by SEM.

S3: Calculating any endogenous LV, ξj (ξj ∈ �), with Eq. 5.5, based on the
multi-factor complex relationships learned by SEM. An endogenous LV is an LV
which varies depending on other LVs.

ξ ′
j = βj0 +

∑

i

βjiξ
′
i + ζj , (5.5)

where ξ ′
j is the estimated value of ξj given the estimated values of its related

LVs, �̃ξj
.

S4: Calculating the MVs related to each endogenous LV using Eq. 5.1.

5.2.3 Queueing Model Simulation

Queueing models are useful for simulating the operation of healthcare systems and
investigating interrelated processes, such as arriving at a queue and waiting [42, 54,
96]. A general queueing model (as shown in Fig. 5.4) for simulating a healthcare
service system should define the following four basic characteristics.

• Patient types and arrival patterns (commonly denoted by λ): Patients to specific
healthcare services can be divided into different types according to their charac-
teristics. For example, as shown in Fig. 5.4, patients are usually categorized as
urgent, semi-urgent, and elective. Different patient groups may differ in arrival
rates and received services, such as service priority and service time. The arrival
pattern is usually represented by a statistical distribution of inter-arrival times.

• Patient behavior: Some patients may be sensitive to wait times and may quit a
queue if they have to wait too long, whereas others may be willing to stay in a
queue no matter how long they will wait. This patient behavior may affect the
performance of a healthcare service system and thus should be stated clearly in
modeling.
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Fig. 5.4 A schematic diagram of a general queueing model for healthcare. E: elective, S: semi-
urgent, U: urgent

• Service capacity and service patterns (commonly denoted by μ): In a healthcare
service system, the service capacity usually corresponds to the number of service
stations (e.g., the number of ORs). The service behavior usually exhibits specific
patterns. For instance, the service time for patients normally follows a specific
distribution (e.g., an exponential distribution or a uniform distribution).

• Service discipline: Service discipline determines the order that patients in a
queue. Some commonly used service disciplines in a healthcare service system
are first come first served and priority-based.

5.3 Estimating the Performance of Cardiac Surgery Services

We apply the proposed integrated prediction method within the context of the
cardiac surgery services in Ontario, Canada, to discover the effects of demographic
profiles on cardiac surgery utilization and performance; predict how cardiac surgery
utilization and performance change in response to demographic shifts; and demon-
strate the dynamics of cardiac surgery performance in terms of queue length and
wait times by modeling and simulating the operational process of CS-ORs. The
explicit analytical is illustrated in Fig. 5.2.

We introduce the utilized data in Sect. 5.3.1. In Sect. 5.3.2, we describe the
hypothetical complex relationships between the age profile, recent immigrant
profile, cardiac surgery capacity (i.e., the number of CS-ORs), supply (i.e., the
number of physicians who are able to perform cardiac surgeries), service utilization
(i.e., the number of patient arrivals), and performance (i.e., the throughput and wait
times of semi-urgent/elective patients) and test these relationships with SEM. The
process of predicting cardiac surgery utilization based on SEM test results is shown
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in Sect. 5.3.3. The multi-server multi-queue with an entrance control queueing
model (MSMQ-EC) used to simulate CS-ORs is shown in Sect. 5.3.4. We present
and discuss the estimation and simulation results in Sect. 5.3.5.

5.3.1 Aggregated Data

As described in Sect. 1.4, the aggregated data describing cardiac surgery characteris-
tics and the number of ORs were obtained primarily from the Cardiac Care Network
of Ontario (CCN). The aggregated data about physicians for cardiac surgery in
each hospital were got from Ontario Physician Human Resources Data Center
(OPHRDC). Demographic data on patient age and recent immigration in each local
health integration networks (LHIN) were derived from 47 sampled cities and towns
(as shown in Fig. 1.4) based on 2006 census data published by Statistics Canada.

In this work, the age profile in an LHIN is defined as the ratio of the population
aged 50 years and above to the total population in the LHIN. This age population
is of interest because it is the major cohort of cardiac surgery patients [134]. An
LHIN’s RI profile is the ratio of recent immigrants from Asia and Africa to the
total population in the LHIN. We are interested in these ethnic groups because
they account for approximately 70% of new immigrants. In addition, prior work
has shown that, compared with white groups, the risk factors for cardiovascular
diseases are more prevalent in black, South Asian, Southeast Asian, West Asian and
Middle Eastern ethnic groups [19, 49]. As patients dwelling in one LHIN may travel
to other LHINs to receive cardiac surgeries, we preprocess the demographic data by
the cross-LHIN ratio reported by the CCN, so as to more precisely characterize the
demographic profiles for each LHIN.

As shown in Fig. 5.2, we used the aggregated data concerning demographic
profiles and cardiac surgery characteristics from 2005 to 2007 (12 quarters) as the
training data set. The aggregated data from 2008 to 2012 were used to calculate the
changes in the demographic profiles and to evaluate the estimated cardiac surgery
service utilization and performance. Table 5.1 provides an overview of the training
data set.

5.3.2 Relationships Between Demographic Factors and Service
Characteristics

We must first derive the hypothetical complex relationships between demographic
profiles, cardiac surgery service utilization, and service performance, before the
relationships can be tested with SEM. According to prior work, aging and immi-
gration are two major factors accounting for demographic changes [129, 198]. Both
age profile [13, 19] and RI profile [19, 49, 199] may have a positive effect on cardiac
surgery service utilization. Cardiac surgery capacity and supply may have effects
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Table 5.1 A summarization of the LVs and MVs in the training data set

LV MV Mean

Age profile Ratio of population aged 50 and over in an LHIN 0.34

RI profile Ratio of recent immigrants from Asia and Africa in
an LHIN

0.05

Service utilization Average number of patient arrivals, monthly 82

Capacity Number of cardiac surgery physicians, yearly 7

Supply Number of CS-ORs 3

Throughput Average number of completed patients, monthly 83

Wait times Median wait times of S/E patient* 6/19

Queue length, monthly 58

RI: profile recent immigrant profile, S: semi-urgent patient, E: elective patient, *: the median wait
time of urgent patient is not considered a measurement for the LV wait times because it does not
significantly reflect wait times according to our pre-data analysis.

Age profile

RI profile

Service
utilization Capacity

Supply

Throughput Wait times

x1

x2

x7

x3

x4

x5

x6

b15 b35

b25
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b46
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b36
b45 b37

b47

b67

Fig. 5.5 The hypothetical relationships between the demographic profiles, service utilization, and
service performance

on service utilization [39, 204], throughput [44], and wait times[44]. Throughput
may have an effect on wait times [44]. We then use the hypothetical relationships
to empirically examine the effects of the demographic profiles on cardiac surgery
characteristics, as shown in Fig. 5.5. The MVs for each LV in Fig. 5.5 are listed in
Table 5.1.

5.3.3 Service Performance Prediction

Once the relationships between the demographic factors and service characteristics
have been identified, cardiac surgery performance in response to demographic
changes can be predicted by the following sub-steps.
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S1: Calculating the values of the exogenous LVs, i.e., the age profile, RI profile,
capacity, and supply. As the cardiac surgery capacity and supply only change
slightly from one year to the next, according to real-world observations, we
assume that the cardiac surgery capacity and supply will not change during
the estimation time. We can therefore make a clearer observation on how
demographic shifts affect cardiac surgery service utilization and performance,
and whether existing cardiac surgery resources are capable of providing a stable
service in terms of wait times. The changes in the age and RI profiles can be
expressed by:

{
ξ1 = x1(1 + �Age)τ

ξ2 = x2(1 + �RI)τ ,
(5.6)

where �Age and �RI are the changes in the age and RI profiles, respectively,
at time τ .

S2: Calculating the values of the endogenous LVs, i.e., service utilization,
throughput, and wait times, using:

⎧
⎨

⎩

ξ5 = β50 + β15ξ1 + β25ξ2 + β35ξ3 + β45ξ4 + ζ5

ξ6 = β60 + β36ξ3 + β46ξ4 + β56ξ5 + ζ6

ξ7 = β70 + β37ξ3 + β47ξ4 + β57ξ5 + β67ξ6 + ζ7.

(5.7)

S3: Calculating the values of the MVs that relate to the endogenous LVs, i.e.,
the number of patient arrivals, queue length, and median wait times for semi-
urgent/elective patient. We can therefore estimate the values of cardiac surgery
service utilization and performance with respect to changes in the demographic
profiles.

5.3.4 The MSMQ-EC Queueing Model

We build an MSMQ-EC queueing model based on the real-life execution of CS-ORs
in Ontario, to gain insights into the temporally changing patterns in cardiac surgery
performance with respect to demographic shifts. The MSMQ-EC is similar to the
queueing model in our prior work [205]:

• M homogeneous ORs with the same service rate μ;
• Three patient groups, urgent (U), semi-urgent (S), and elective (E), with the

arrival rates λU , λS , and λE , respectively;
• N physicians maintaining N priority queues.

The service principle of the queueing model is as follows. Urgent patients have
the highest priority and should be immediately settled in an available CS-OR.
If all of the CS-ORs are occupied, urgent patients must wait and bump the first
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available CS-OR block for non-urgent patients. Semi-urgent and elective patients
are scheduled by physicians following a priority-based service principle. A new
incoming non-urgent (Ū , i.e., semi-urgent or elective) patient will first be assigned
to a physician j (∀j ∈ [1, N]) with a probability pj,Ū . Physician j performs a
non-urgent surgery with a probability qj,Ū that represents the “entrance control” of
CS-ORs for non-urgent surgeries. Similar to the prior work [205], pj,Ū and qj,Ū

follow uniform distributions in the simulation.

5.3.5 Prediction Results

In this subsection, we demonstrate the estimation results of cardiac surgery uti-
lization in the Hamilton Health Science Centre (HHSC) hospital, located in the
Hamilton Niagara Haldimand Brant LHIN (LHIN 4), between 2008 and 2011. The
complex relationships in cardiac surgery are extracted from the training data set
using the software SmartPLS.1 The simulation results based on the MSMQ-EC
queueing model demonstrate the dynamics of cardiac surgery performance. In the
simulation, the queueing model was parameterized using the general operational
data for the HHSC CS-ORs in 2007. All of the simulation studies are implemented
using the discrete-event simulation toolbox SimEvents in MATLAB 2010.

5.3.5.1 The Results of SEM Tests and Service Utilization Estimation

According to the PLS test results (as shown in Fig. 5.6), service utilization has an R2

of 0.631, throughput has an R2 of 0.874, and wait times has an R2 of 0.610. These
endogenous LVs are therefore well explained by their dependent variables. For
example, the R2 of the LV service utilization reflects that its dependent variables,
i.e., age profile, RI profile, capacity, and supply, explain 63.1% of the variance
in service utilization. Although there may be other factors influencing service
utilization other than the factors that we have considered, the results imply that the
factors used capture most of the variation in service utilization. The PLS test results
show that all of the hypothetical effects between the LVs are significant, except the
effects of supply on throughput and wait times, and the effect of throughput on wait
times.

It should be noted that LVs with significant correlations (as shown in Fig. 5.6a)
can be considered in the prediction process. The path coefficients used in the
calculation process are shown in Fig. 5.6b. The age profile, RI profile, capacity, and
supply should be considered when calculating the value of service utilization, as the
four exogenous LVs have significant direct effects on service utilization according
to Fig. 5.6a. Two directly related LVs, capacity and service utilization, must be

1www.smartpls.de/. Last accessed on April 11, 2019.

www.smartpls.de/
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Fig. 5.6 The PLS test results. (a) Correlations between the LVs; (b) Path coefficients between the
LVs. RI recent immigrant

considered when calculating the values of throughput and wait times, as both of the
LVs have significant direct effects. Other LVs, i.e., age profile, RI profile, capacity,
and supply have significant indirect effects via service utilization, so their effects
must also be included in the calculation.

The rate of change in the age profile in LHIN 4 is 0.073% from 2006 to 2010 and
0.093% from 2006 to 2011 [128], respectively. As detailed information about the RI
profile in LHIN 4 is not available, we use the trends for Ontario as a whole instead.
According to [128], the RI ratio is assumed to be 0.009 of the total population in
Ontario since 2008. The estimated cardiac surgery utilization in LHIN 4 is shown
in Table 5.2. The estimated results reveal that our method is able to estimate cardiac
surgery utilization and wait times to some extent.
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Table 5.2 The estimated
values for cardiac surgery
utilization and performance
(average value in a month)

2010E 2011E 2010A 2011A

Service utilization 108 115 – –

Throughput 98 102 83 84

Wait times 14.53 14.98 – –

Queue length 65 67 – –

SMW 6.7 7.0 – –

EMW 20.9 21.6 20 20

E: estimated value in LHIN 4, A: actual value in Ontario,
SMW: semi-urgent median wait times, EMW: elective
median wait times, –: actual data is not available
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Fig. 5.7 The estimated service utilization and resulting simulated queue lengths from 2010 to
2011

5.3.5.2 Simulation Results Based on the MSMQ-EC Queueing Model

To observe the dynamics of cardiac surgery performance in terms of queue length
and wait times in CS-ORs in 2010 and 2011, we show our simulation results based
on the MSMQ-EC queueing model with the estimated service utilization. According
to the CCN data, we assume that there are 50 patients waiting at the end of 2009.
We initialize the queueing model with three servers (ORs), which can provide 1400
cases annually, in accordance with the actual CS-OR operations in the HHSC. The
simulation results for the queue length and average wait time from 2010 to 2011 are
shown in Figs. 5.7 and 5.8.
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Fig. 5.8 The estimated service utilization and resulting simulated average wait times from 2010
to 2011

5.4 Discussion

The prediction results as shown in Table 5.2 and Figs. 5.7 and 5.8 present the
advantages of our integrated prediction methods from two aspects. First of all,
according to the estimation results as shown in Table 5.2, the estimated throughput
of cardiac surgery services in LHIN 4 is higher than the actual average throughput
in Ontario, and the estimated elective wait times for cardiac surgery in LHIN 4 are
almost equal to those in Ontario. This finding is in accordance with the observed
performance pattern of cardiac surgery services in LHIN 4, as the ratios of the
throughput and elective wait times for cardiac surgery in LHIN 4 to those in Ontario
are 1.42 and 1.02, respectively, according to the training data set. This reveal that
our proposed integrated prediction method is able to identify key impact factors and
their complex relationships with service utilization and wait times. Therefore, it is
reasonable to predict the service utilization and performance in a middle or long
term based on the identified key factors and effects.

Secondly, as shown in Figs. 5.7 and 5.8, our integrated prediction is further able
to represent the dynamics of service performance during the prediction period. For
instance, according to Table 5.2, the estimated queue lengths in 2010 and 2011 are
different. The estimated queue length in 2010 does not increase beyond 60. The
pattern does not hold in 2011, in which the simulated queue length shows a sharp
increase. The longest queue length reaches 120 in 2011. Higher estimated service
utilization in 2011 than in 2010 may account for the rising queue length in 2011, as
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shown in Fig. 5.7. According to Fig. 5.8, the simulated average waiting time in 2011
is also longer than that in 2010. The average waiting time is around 7 days in 2010
and rises to almost 10 days at the end of 2011.

However, due to the limited data about service utilization and performance, the
evaluation of prediction accuracy of the proposed method needs further extension.
Possible extensions of this work mainly include two aspect: (1) to give a range of
variations in the predicting service utilization and service performance instead of
determined values because the assumption that impact factors keep the same chang-
ing rate over time is somewhat strong and does not agreement with the real world;
(2) to show the deviations of estimated service utilization and performance over
time based on queueing model simulations by taking into account the randomness
relating to patients’ or service providers’ behavior.

5.5 Summary

In this chapter, we focused on how to predict the changes in healthcare service
performance based on the underlying relationships between the demographic pro-
files, health service utilization, and service performance. We proposed an integrated
prediction method consisting of SEM-based analysis, prediction, and queueing
model simulations, and tested the method on cardiac surgery services in Ontario,
Canada. The results show that our proposed method can reveal the complex rela-
tionships between the demographic profiles and healthcare service characteristics,
which enables us to reasonably predict the changes in service utilization and
service performance with respect to demographic shifts. Our queueing models,
which characterize certain operations within a healthcare service system, allow us to
observe the dynamics of the queue length and wait times in response to demographic
shifts over time. This method will be helpful for a healthcare service system aiming
to dynamically adjust its resources and management strategies, and thus maintain a
stable service in terms of performance.



Chapter 6
An Adaptive Strategy for Wait Time
Management

Healthcare service managers often consider how to improve service management
behavior to better service performance. Commonly-faced problems include how
to allocate time blocks of operating rooms (ORs) for patients who have different
levels of urgency and how to schedule patients so as to shorten wait times. In this
chapter, we discuss how to design adaptive strategies for time block allocations in
ORs with the aim of improving service performance with respect to unpredictable
patient arrivals. Figure 6.1a summarizes the research focus of this chapter and how
it fits into the larger context of understanding a healthcare service system.

The work presented in this chapter shows the method and process of designing
and evaluating strategies for improving service management behavior. According
to the research steps as shown in Fig. 6.1b, we first propose an adaptive OR
time block allocation strategy from a self-organizing systems perspective, which
incorporates historical feedback information about ORs. We then evaluate the
performance of the proposed strategy using a queueing model derived from general
perioperative practices based on discrete-event simulations. This work shows that
our proposed adaptive strategy is able to efficiently allocate OR time blocks to deal
with unpredictable patient arrivals.

6.1 Introduction

The healthcare service system is a complex system [26, 27] consisting of numerous
factors affecting the system’s performance, e.g., unpredictable patient arrivals (often
referred to service utilization), service capacity, and service management; and
interactions (coupling relationships) between the factors and the system’s perfor-
mance/outcome. As one of the major cost areas in hospitals, the operating room
(OR) can also be viewed as a typical complex healthcare service system, consisting
of a number of impact factors (e.g., unpredictable arrivals) and positive/negative

© Springer Nature Switzerland AG 2019
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Fig. 6.1 A schematic diagram illustrating the design and evaluation of an adaptive strategy for
improving time block allocations in ORs. (a) The research focus of this chapter (highlighted in
red) with respect to the larger context of understanding a healthcare service system. (b) Research
steps for using the method of service management strategy design and evaluation for OR time
block allocations

relationships between those impact factors and OR performance (e.g., the positive
effect of arrivals on the waiting time and queue length [44], and the positive effect
of service capacity on arrivals [39]). Due to the nature of its complexity, researchers
and healthcare administrators have realized that improving the healthcare service
system from a self-organizing systems perspective is promising [26, 27]. In this
chapter, we aim to improve the utilization of ORs by incorporating an adaptive OR
time block allocation strategy proposed from a complex systems point of view.

Different resource management strategies have been proposed to improve the
utilization of ORs with respect to different indicators, such as service throughput,
average waiting time, queue length, the number of bumped non-urgent surgeries, and
the number of unused OR time blocks [206]. A common strategy is to improve the
allocation of OR time blocks. Existing studies have attempted to improve OR time
block allocation by (1) estimating surgery lengths more accurately (e.g., the time
taken to perform a combined coronary artery bypass surgery should be longer than a
non-combined case), so that the size of time blocks can be assigned more reasonably
[206]; (2) analyzing and controlling the factors that cause surgery delays [207], e.g.,
reducing the delay of the first surgery to avoid the cancelation of following surgeries
in a day, for example; or by (3) strategically arranging non-urgent surgeries, as they
account for nearly 85% of all surgeries [208].
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A challenging, basic question involved in OR time block allocation is how many
OR time blocks should be reserved to cope with the unpredictable arrival of urgent
patients. Reserving more time blocks than those are actually needed may cause
lower OR utilization, a longer waiting list, and longer wait times for non-urgent
surgeries, whereas reserving insufficient time blocks may increase urgent patients’
risk, result in more bumped non-urgent surgeries, and prolong the wait times for
those bumped cases.

Earlier studies have used mathematical methods (e.g., job shop scheduling
models) to compute the optimal number of reserved urgent time blocks. The goal
of these methods is to maximize OR time block utilization while minimize the
overtime or cancellation of surgeries [56].

In some Ontario hospitals, OR time blocks are distributed to surgeons based on
the allocations made in previous years and may only be reviewed two or three times
a year. As this allocation strategy is relatively static, it may not cope well with
actual patient arrivals. Patient arrivals are dynamic because of the number of impact
factors involved, such as the weather and patients’ service utilization behavior [19].
Adaptively reserving time blocks in accordance with dynamic patient arrivals will
therefore lead to better use of OR resources.

This chapter uses a complex systems perspective to propose an adaptive OR time
block allocation strategy for coping with dynamic patient arrivals. We measure the
effectiveness of our strategy using the number of bumped non-urgent surgeries (i.e.,
cancelled surgeries that are replaced by urgent surgeries), and the number of unused
urgent time blocks, which are assigned to urgent surgeries in advance but not used.
We believe that a more effective OR time block allocation strategy will improve OR
utilization. We evaluate the performance of our strategy by building a multi-priority,
multi-server, non-preemptive queueing model with an entrance control mechanism
based on the general practice of cardiac surgery operating rooms (CS-ORs) in the
HHSC1 in Ontario, and based on which to carry out discrete-event simulations.

6.2 Designing an Adaptive OR Time Block Allocation
Strategy

One way to allocate OR time blocks is to reserve a certain number of time blocks
for urgent surgeries and assign the remaining time blocks to surgeons for non-
urgent surgeries. The number of time blocks allocated for urgent surgeries or to
surgeons are usually based on the allocation methods used in previous years [9].
Allocating ORs with such a relatively static strategy may not effectively use ORs
as patient arrivals are unpredictable. We therefore propose an adaptive OR time
block allocation strategy that incorporates the system’s feedback. As illustrated in
Fig. 6.2, the main idea behind our strategy is to periodically adjust the time blocks

1http://www.hhsc.ca/. Last accessed on April 11, 2019.

http://www.hhsc.ca/
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Reservation (t-1)

Urgent Surgery

Allocation (t-1)

Bumped Surgery

Reallocate

Arrival of Urgent

Patients (t-1)

OR Performance (t-1)

Fig. 6.2 The OR scheduler with a feedback mechanism

Fig. 6.3 The adjusted window mechanism for updating OR time blocks for urgent surgeries

allocated for urgent surgeries based on the feedback information. In period t , the OR
scheduler is fed the OR time block allocation, the numbers of bumped non-urgent
surgeries, the unused urgent time blocks, and the dynamic arrivals in t − 1.

Our adaptive strategy uses an adjusted window mechanism, which is shown in
Fig. 6.3. When the OR scheduler makes a decision on the allocation of time blocks
for the coming period t , the information from the past period t − 1 is fed back to
the OR scheduler. If the number of bumped non-urgent surgeries is larger than a
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threshold θ1 in t − 1, the scheduler increases the number of time blocks for urgent
surgeries (as denoted as R(t)) by a step size of �p in t . If the number of unused
urgent time blocks is larger than a threshold θ2, the scheduler decreases R(t) by a
step size of �q in T . The thresholds θ1 and θ2 are defined by θi = bi∗σ∗t

t̂
(i ∈

{1, 2}), where bi is a positive integer, t̂ is a unit of time (1 week here), and σ is the
standard threshold in t̂ .

6.3 Modeling OR Services

We examine the performance of our adaptive strategy by building a queueing
model to simulate the queueing situations in ORs with respect to the arrival/service
patterns, service discipline (e.g., priority based service discipline), and scheduling
strategies. Our queueing model (as shown in Fig. 6.4) is based on the CS-ORs in
the Hamilton Health Science Centre (HHSC) in 2004. We assume that there are two
homogeneous (in terms of service rate) ORs, each of which has two time blocks
in average per day and works 5 days/week. The 1400 patient arrivals for cardiac
surgeries each year are categorized into urgent (U ), semi-urgent (S), and elective
(E) priority groups. According to the historical data from [20], the ratios of U ,
S, and E patients are 0.23, 0.6, and 0.17, respectively. Patient arrivals in winter
are approximately one quarter greater than in other seasons, because of seasonal
factors such as weather. We assume that the arrival rate λi of each priority group
i (i ∈ {U, S,E}) follows a Poisson distribution and the service rate μ of each OR
follows an Exponential distribution, similar to previous work [96].

p q

p q

p q

p q

p

p

q

q

1,U Surgeon 1 1,U

Arrival (U) 2,U 2,U

(lU)

3,U

Surgeon 2

Surgeon 3 3,U

Operating 
room 1
(m )

Arrival (S)
(l S )

4,U Surgeon 4 4,U
Scheduler

Operating 
room 2

Arrival (E)
(lE)

5,U

6,U

Surgeon 5

Surgeon 6

5,U

6,U

(m )

Priority queues

Fig. 6.4 A multi-priority, multi-server, non-preemptive queueing model with an entrance control
mechanism
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According to the scheduling rule, U patients are settled immediately in an
available OR as they have the highest priority. If all of the ORs are unavailable,
U patients bump the first prescheduled OR block for non-urgent surgery. In reality,
a number of OR time blocks are reserved to cope with U patients. In our model, we
use δ0 to denote the initial number of time blocks reserved for urgent surgeries in a
unit of time t̂ (t̂ = 1 week in this work). S and E patients are scheduled by surgeons
following a priority-based service principle. New non-urgent (i.e., S and E) patients
are assigned to a surgeon j (j ∈ [1, 6] in our case denotes one of the six surgeons)
with a probability pj,Ū (Ū denotes non-urgent patients) and then wait in the queue
of surgeon j . In reality, surgeons normally perform non-urgent surgeries in time
blocks allocated to them in advance. Therefore, we assume that a patient at the head
of a queue j will move to the OR with a probability qj,Ū at the next time step. It
should be noted that pj,Ū and qj,Ū follow uniform distributions in our simulations.

The queueing model is implemented using the discrete-event simulation toolbox
SimEvents integrated with MATLAB 2010. The parameters in the simulations are
initialized with statistical data from the HHSC in 2004. The performance of the
adaptive strategy and its sensitivity to the parameter settings are investigated in
specific scenarios.

6.4 Simulation-Based Experiments

6.4.1 Aggregated Data and Experimental Settings

HHSC is one of the most comprehensive healthcare service systems in Ontario,
Canada. Approximately 1400 cardiac surgeries are performed each year in this
hospital. In 2004, it had six specialized surgeons and two ORs. The aggregated data
about the operations of HHSC come from several organizations. Reports published
by the Surgical Process Analysis and Improvement Expert Panel in Ontario2 and
by the Office of the Auditor General of Ontario Hospitals [9] list the general rules
for scheduling ORs in the HHSC. The data representing the performance of the
HHSC since 2004, including the number of surgeries completed in each month
(throughput) and the number of patients waiting at the end of each month (queue
length) also come from CCN. Furthermore, a study in collaboration with the HHSC
in 2004 [206] reported data on the average service time per surgery and the number
of canceled surgeries. Table 6.1 summarizes the HHSC cardiac surgery data, which
are utilized to initialize our simulations.

2http://www.health.gov.on.ca/en/pro/programs/ecfa/quality/research/cst_periop.aspx. Last acce-
ssed on April 11, 2019.

http://www.health.gov.on.ca/en/pro/programs/ecfa/quality/research/cst_periop.aspx
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Table 6.1 Cardiac surgery
services in the HHSC in 2004

Performance indicator Data

Queue length (at the end of a month)

Quarter 1 156

Quarter 2 159

Quarter 3 149

Quarter 4 147

Cancellations

Bumped non-urgent surgeries 77

Service time

Average 4.6 h
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Fig. 6.5 The simulated queue lengths over 3 years. Inserted plots: the time blocks for urgent
surgeries allocated with the adaptive strategy. Settings: δ0 = 7/week, t̂ = 4 weeks, θ1 = 2 ∗ t̂ ,
θ2 = 1 ∗ t̂ , �p = 1, �q = 1

6.4.2 Experimental Results

We first investigate the effect of our adaptive strategy in shortening queue lengths
over a 3-year period (i.e., 156 weeks, where 13 weeks represents one quarter in
the simulation and the third quarter each year corresponds to the winter season)
using the queueing model. As shown in Fig. 6.5, the average queue length with the
adaptive strategy is slightly shorter than that without the adaptive strategy. Please
note that simulation results are obtained from a single simulation run with patient
arrival patterns described in the preceding section and parameter settings as given
in the figure caption. Queue lengths at the initial time step (t = 0) in the simulation
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are both set to 156, which is the number of patients who were waiting for cardiac
surgeries at the end of 2003 in HHSC. The fluctuations in queue lengths, especially
the increasing periods in the weeks 27–39, 79–91, and 131–143, correspond to the
increased patient arrivals in the winter compared with other seasons.

The existing OR time block allocation strategy depends heavily on the allocation
methods used in previous years. A hidden assumption behind this strategy is that
patient arrivals do not vary much within a year. This assumption may not hold
in reality as patient arrivals are dynamic in response to the complex environment
(e.g., the weather) and patients’ personal behavior. The static time block allocation
strategy may therefore result in a number of bumped non-urgent surgeries when
there are more urgent arrivals, or it may lead to under-utilization of OR time blocks
due to fewer urgent arrivals. The strategy proposed in this chapter adaptively adjusts
OR time blocks based on historical information, for example, the utilization of ORs
in the previous week/month/quarter and the number of urgent/non-urgent arrivals.

6.5 Discussion

We conduct several additional simulation experiments with different parameter
settings (i.e., the initial reserved blocks for urgent surgeries in a week, the
adjustment time interval, threshold, and step size) to confirm the observations made.
Figure 6.6 shows that without the adaptive strategy, the number of bumped non-
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Fig. 6.6 OR utilization with respect to different initial urgent OR time blocks. AS adaptive
strategy, BNS bumped non-urgent surgeries, UUB unused urgent time blocks, δ0 = 7/week,
t̂ = 4 weeks, θ1 = 2 ∗ t̂ , θ2 = 1 ∗ t̂ , �p =, �q = 1
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urgent surgeries drops and the number of unused time blocks increases when δ0
increases. This finding suggests that the utilization of ORs without the adaptive
strategy is more sensitive to the number of time blocks allocated to urgent surgeries,
whereas the adaptive strategy is robust to the initial number of OR blocks for urgent
surgeries. The figure also shows that the OR can maintain a trade-off between the
number of bumped non-urgent surgeries and the number of unused urgent time
blocks with the adaptive strategy. This finding implies that hospitals can adapt to
dynamically changing patient arrivals with our adaptive strategy and hence can
improve their OR utilization. Furthermore, Fig. 6.6 reveals that OR utilization is
improved when δ0 is set to 5–8.

The time interval T for allocating OR time blocks (e.g., once per week/month/
quarter) is another key parameter in the adaptive strategy. Figure 6.7 shows the
effects of different updating time intervals (i.e., a unit of time t̂) on OR utilization in
terms of the trade-offs between the numbers of bumped non-urgent surgeries (BNSs)
and unused urgent time blocks (UUB). We measure the trade-off with NBNS

NUUB
, where

NBNS denotes the number of BNS and NUUB represents the number of UUB. OR
utilization improves as the value of the trade-off approaches 1 (represented by the
dotted line in Fig. 6.7). As Fig. 6.7 shows, updating the OR time block once every 4–
8 weeks will both reduce the number of bumped non-urgent surgeries and balance
the number of unused urgent blocks. In the scenario as presented in this figure,
updating the OR time block once every 4 weeks will result in the best OR utilization.
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Fig. 6.7 The trade-offs ( NBNS

NUUB
) of the adaptive strategy with respect to different t̂ . Settings: δ0 =

7/week, θ1 = 2 ∗ t̂ , θ2 = 1 ∗ t̂ , �p = �q = 1
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The adjustment thresholds (θ1 and θ2) and the step sizes (�p and �q) may
also affect the performance of the adaptive strategy. According to Fig. 6.8, larger
adjustment thresholds (i.e., larger σ ) result in a larger number of unused urgent time
blocks and a smaller number of bumped non-urgent surgeries. This is reasonable, as
seven time blocks are initially reserved for urgent surgeries, which almost satisfy the
average number of urgent arrivals in a week according to the patient arrival patterns.
Intuitively, larger thresholds make ORs less likely to increase or decrease the time
blocks for urgent surgeries, and vice versa. In such cases, the adaptive strategy will
be less flexible and hence can lead to a worse OR utilization.

Figure 6.9 shows that smaller step sizes (e.g., �p and �q are set to 1 or 2) can
guarantee better OR utilization in the given specific scenario. Intuitively, a larger
step size will lead to the number of time blocks for urgent surgeries increasing or
decreasing by a larger amount at a time, and thus will result in a larger number of
unused urgent time blocks or bumped non-urgent surgeries in the next time step.

We can fine-tune the parameter settings of the adaptive strategy using the above
results. Figure 6.10 presents a comparison of the queue lengths generated by the
original adaptive strategy (defined by Setting I, which is the same as the setting
configuration of the adaptive strategy in Fig. 6.5), the fine-tuned adaptive strategy
(defined by Setting II), and by the allocation schedule without the adaptive strategy.
The fine-tuned adaptive strategy has a shorter queue length than the original adaptive
strategy most of the time.
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6.6 Summary

In this chapter, we proposed an adaptive strategy for allocating OR time blocks
based on a feedback mechanism. We evaluated the effectiveness of the adaptive
strategy in improving the utilization of service resources using a specific multi-
priority, multi-server, non-preemptive queueing model with an entrance control
mechanism based on the general perioperative process of CS-ORs. Simulation
results showed that our adaptive strategy is able to efficiently regulate OR time
block reservations in response to the dynamics of patient arrivals. The adaptive
strategy could maintain a better trade-off between the number of bumped non-
urgent surgeries and the number of unused urgent OR time blocks, leading to shorter
waiting lists and wait times. The findings presented in this chapter suggest that
frequently adjusting the OR time block allocation (i.e., once per month) is helpful
for improving OR utilization. The work shown in this chapter also demonstrates that
the method of service management strategy design and evaluation from a complex
systems perspective is promising for improving service management.



Chapter 7
Spatio-Temporal Patterns in Patient
Arrivals and Wait Times

When regional healthcare service managers review the operations of healthcare
services in a past period of time, they often feel confused about some of the
unexpected spatio-temporal patterns in patient arrivals and wait times. How did
these patterns emerge? What reasons and mechanisms account for the emerging
patterns? How can patient arrivals be regulated at different hospitals and thus
improve the service utilization in the region? In this chapter, we present how to use
our proposed behavior-based autonomy-oriented modeling method to characterize
the spatio-temporal patterns in cardiac surgery services in Ontario, Canada, with the
aim of answering some of the aforementioned questions. Figure 7.1a summarizes
the research focus of this chapter with respect to the larger context of understanding
a healthcare service system and the corresponding research steps.

The work shown in this chapter presents the process of using the behavior-based
autonomy-oriented modeling method to characterize emergent spatio-temporal
patterns at a systems level by taking into account the underlying entities’ behavior
(e.g., the patients’ hospital selection behavior) with respect to various impact
factors (e.g., the distance between homes and services, hospital resourcefulness,
and historical wait time information). According to the steps of the behavior-
based autonomy-oriented modeling method shown in Fig. 6.1b, we first develop an
Autonomy-Oriented Computing (AOC)-based cardiac surgery service model (AOC-
CSS model). By experimenting with the AOC-CSS model, we reveal the working
mechanisms that explain how the spatio-temporal patterns in patient arrivals and
wait times at a systems level emerge from individual patients’ hospital selection
behavior and their interactions with hospital wait times. The work presented in this
chapter also reveals that our proposed behavior-based autonomy-oriented modeling
method is useful in finding the underlying reasons for emergent spatio-temporal
patterns in complex healthcare systems.

© Springer Nature Switzerland AG 2019
L. Tao, J. Liu, Healthcare Service Management, Health Information Science,
https://doi.org/10.1007/978-3-030-15385-4_7
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7.1 Introduction

A healthcare service system, such as the cardiac care system schematically illus-
trated in Fig. 7.2, is well recognized as a complex system [26, 27]. Some interesting
self-organizing spatio-temporal patterns in healthcare service utilization, such as the
power-law distribution of variations in the time that patients spend on specialists’
waiting lists [39], have been reported. However, it is still unclear what individual
behavior and underlying factors (e.g., distance from homes to services, hospital
resourcefulness in terms of physician supply, and service performance) account for
these emergent spatio-temporal patterns.

In this chapter, we use a behavior-based autonomy-oriented modeling method
to understand some spatio-temporal patterns relating patient arrivals and wait times
from a complex systems self-organizing perspective within the context of cardiac
surgery services. To model the real-world cardiac surgery system in Ontario,
Canada, the following essential issues must be addressed.

• Scope: What factors, entities, processes, and hierarchical levels (e.g., services at a
hospital or regional level) are relevant to the spatio-temporal patterns, and hence
should be investigated and modeled?

• Coupling relationships and/or interactions: What are the relationships between
the impact factors and variables? What local feedback loop(s) is(are) crucial
for understanding global-level self-organized regularities and thus should be
modeled?

• Heterogeneity: Patient behavior when choosing a hospital may be heterogeneous
due to the differences in personal profiles, and service distributions in and
around their residence areas. Hospitals may also be heterogeneous in delivering
healthcare services because of variations in equipped resources and management
strategies. Thus, capturing the heterogeneity of patients and hospitals is essential
in modeling a real-world healthcare service system.

We use a behavior-based autonomy-oriented modeling method [36] to construct
an AOC-CSS model. In modeling the real-world cardiac care system in Ontario,
Canada, we consider multiple factors affecting patient arrivals (as shown in
Fig. 7.2), such as weather, demographics of cities and towns in Ontario, geographic
accessibility of cardiac surgery services, resourcefulness of a hospital, wait times,
and patients’ hospital selection behavior.

Following a behavior-based autonomy-oriented modeling method, we firstly
introduce the spatio-temporal patterns in patient arrivals and wait times, which are
observed from the aggregated data on cardiac surgery services. We then identify
the key entities, major factors, and local feedback loops that should be modeled.
After that, we present the detailed formulation of the developed AOC-CSS model,
along with model-based simulations and corresponding results. We finally discuss
the underlying mechanism that is revealed by the validated AOC-CSS model and
a sensitivity analysis on the key parameters that influence the emergence of self-
organized patterns.
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7.2 Empirical Spatio-Temporal Patterns in Cardiac Surgery
Services

Prior studies have empirically identified self-organized regularities in healthcare
systems. For instance, Smethurst and Williams found that the monthly absolute
variations in the time that patients spend on specialists’ waiting lists (calculated as
the change in the mean wait times w̄ at time steps t and t − 1 (w̄t − w̄t−1)/w̄t )
followed a power-law distribution [39] and concluded that hospital waiting lists
were self-regulating. We aim to discover the corresponding patterns in the cardiac
surgery services from empirical data, focusing on three research questions.

1. What are the statistical distributions of the variations in the number of patient
arrivals and wait times?

2. What are the spatial patterns of patient flows? Are there any underlying patterns
that may be observed from the spatial distribution of patient flows?

3. What are the temporal patterns in patient arrivals and wait times?

We once again focus on the cardiac care system in the province of Ontario,
Canada, specifically the Ontario Local Health Integration Networks (LHINs).
The Cardiac Care Network of Ontario (CCN) has published monthly wait time
information for cardiac surgery services in 11 member hospitals across Ontario
between January 2005 to December 2006. We accessed the data in February 2011.
As shown in Table 4.1, the reported CCN data include the number of completed
cases in a month (i.e., throughput), the average number of patients waiting at the
end of a month (i.e., queue length), and the monthly median wait times for urgent,
semi-urgent, and elective patients. We use the median wait times for elective patients
(referred to hereafter as the median wait times) to measure wait times, which
represents the changes in the overall wait times for cardiac surgery services to a
great extent.

Based on the CCN data, we are able to calculate the average monthly number of
patient arrivals at each hospital by:

Ai(t) = Bi(t) + Qi(t) − Qi(t − 1), (7.1)

where Ai(t) is the average monthly number of arrivals in quarter t of unit i, Bi(t) is
the average monthly number of patients who have received treatment in quarter t of
unit i, and Qi(t) is the average number of patients waiting at the end of a month in
quarter t of unit i.

We use the above-described data for cardiac surgery services over 2 years, from
January 2005 to December 2006, to discover the self-organized patterns in patient
arrivals and wait times.
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7.2.1 Statistical Regularities

Following the work of Smethurst and Williams [35, 39], we first investigate the
statistical distributions of the variations in patient arrivals and wait times. From
the CCN data, the month-to-month variations in patient arrivals and wait times are
calculated by:

vt+1 = yt+1 − ymin

ymax − ymin

− yt − ymin

ymax − xmin

, (7.2)

where vt+1 denotes the variation in patient arrivals or wait times at time t + 1, yt

denotes the number of patient arrivals or the wait times at time t , ymin and ymax

are the minimum and the maximum values of patient arrivals or wait times over the
2-year period, respectively. In this work, each time step t corresponds to a month.

The absolute month-to-month variations in patient arrivals or wait times, v′
t , are

then calculated by:

v′
t = |vt |. (7.3)

Two types of self-organized regularities are identified from the (absolute)
variations in patient arrivals and wait times, as shown in Figs. 7.3 and 7.4. As
shown in Fig. 7.3, the monthly variations in patient arrivals against the percentage
of variation occurrences follow a normal distribution with a mean value of 0.004
and a standard deviation (SD) of 0.226. The normality of the distribution passes the
Kolmogorov-Smirnov test [209, pp. 392–394].
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As shown in Fig. 7.4, the monthly absolute variations in the median wait times
follow a power-law distribution with a power of −1.36 and a standard deviation
of 0.28 (linear fitness: p < 0.001). The fitness of the power-law distribution is
tested using the method proposed by Clauset et al. [210] (power-law test: p < 0.1).
The median wait times for cardiac surgery services therefore exhibits a statistical
regularity in its month-to-month variations, suggesting that the cardiac care system
is, to a degree, able to self-organize [211] its wait times.

7.2.2 Spatial Patterns

7.2.2.1 Patient Flow Distributions

Figure 7.5 shows the distribution of the number of patients residing in each
LHIN against the LHINs where they receive cardiac surgery services between
2007 and 2008 in Ontario, Canada [136]. The distribution can be regarded as
the spatial pattern of patient flows, which represents the aggregated effects of
patients’ hospital selection behavior. We find approximately the same spatial pattern
using the reported statistical data from 2007 to 2011 [69, 136, 212–214]. The
percentage of cardiac surgery patients operated in an LHIN with respect to their
LHIN residence varies within 5% year to year over the 4 years, with a maximum
value of approximately 10%.
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Fig. 7.5 The distribution of
cardiac surgery patients with
respect to their LHIN
residences between 2007 and
2008 in Ontario, Canada
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7.2.2.2 Patient-Attraction and Patient-Distribution Degrees for LHINs

The spatial pattern of patient flows shown in Fig. 7.5 may represent additional
information about the probability that an LHIN attracts patients residing in other
LHINs, called the patient-attraction degree, or the probability that patients living in
a specific LHIN travel to other LHINs for services, called the patient-distribution
degree. A higher patient-attraction degree indicates that the LHIN is linked by more
patients from other LHINs and reveals how heavily patients from other LHINs can
affect the arrivals for the hospital(s) in a specific LHIN. A higher patient-distribution
degree indicates that patients living in that LHIN are more likely to disperse to
other LHINs to receive cardiac surgery services. This in turn reveals the extent
to which patients in a specific LHIN may influence arrivals at hospitals in other
LHINs. In this section, we introduce how to reveal this underlying information and
the corresponding patterns.

Calculation Method
We use the idea behind the hyperlink-induced topic search (HITS) algorithm
designed by Kleinberg [215] to calculate the patient-attraction degree and the
patient-distribution degree for each LHIN from the patient flow distribution. The
HITS algorithm is a linkage structure-based analysis algorithm. It characterizes to
what extent a web page is an “authority” by estimating the in-degree of a page, or
to what extent it is a “hub” by estimating the out-degree of a page, based on the
relationships between a set of related web pages.

Our method is similar to the HITS algorithm. Based on the distribution of patient
flows, LHINs can form a network structure where a directed link between two
LHINs indicates that there are patients coming from the LHIN the link points
away from, to the LHIN the link points toward. Thus, an LHIN can be regarded as
analogous to a web page, its patient-attraction degree as analogous to the “authority”
value of a web page, and its patient-distribution degree as analogous to the “hub”
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value of a web page. We can therefore estimate the values of the patient-attraction
degree and patient-distribution degree for each LHIN via the eigenvectors of the
matrices associated with the distribution of patient flows, as proposed by Kleinberg
[215].

Given a patient-flow matrix PF = {fij }N×M , each entry fij of F is the
percentage of patients residing in LHIN i and receiving cardiac surgery services in
LHIN j . Based on Kleinberg’s theorem [215, p. 11], the patient-attraction degree
vector (i.e., the authority weight vector in the HITS algorithm) is the principle
eigenvector of P T

F PF and the patient-distribution degree vector (i.e., the hub weight
vector in the HITS algorithm) is the principle eigenvector of PF P T

F . We use the
patient flow distribution between 2007 and 2008, using data obtained from [136],
to calculate the patient-attraction degree and the patient-distribution degree for each
LHIN.

Patient-Attraction and Patient-Distribution Degrees
We calculate the patient-distribution degree and the patient-attraction degree for
each LHIN using the method described above. From the patient-distribution degrees
shown in Fig. 7.6, we observe that LHINs can be roughly classified into two groups,
a high-patient-distribution group and a low-patient-distribution group. LHINs in
the high-distributed group (LHINs 5–9 and 12) have obviously larger distributed
degrees than those in the low-distributed group (LHINs 1–4, 10, 11, 13, and 14).
These two distributed groups may be related to the geographic accessibility to
services (service accessibility) for each LHIN. The LHINs in the high-distributed
group are more accessible to cardiac surgery services than the LHINs in the low-
distributed group, according to the service accessibilities presented in Table 3.1.

From the patient-attraction degree for each LHIN shown in Fig. 7.6, we again
observe that the LHINs can be roughly classified into two groups, a high-patient-
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attraction group and a low-patient-attraction group. The LHINs in the high-patient-
attraction group (LHINs 6–8) have more patients traveling from other LHINs than
the LHINs in the low-patient-attraction group (LHINs 1–5 and 9–14). The formation
of the two groups may be driven by the geographic locations and reputations (e.g.,
the number of physicians and wait times) of the hospitals in each LHIN. For
instance, LHIN 7 has the highest patient-attraction degree and is the only LHIN
with three hospitals, which all have sufficient personnel and facilities. LHIN 6 and
8’s relatively higher patient-attraction degrees could be because these LHINs have
hospitals providing cardiac surgeries and they have one or more neighboring LHINs
that lack cardiac surgery services (e.g., LHIN 5, 9, and 12), as shown in Fig. 1.3.

7.2.3 Temporal Patterns

As patient arrivals and wait times change dynamically, there may be temporal
regularities, in addition to the statistical and spatial patterns already identified. We
aim to identify any existing temporal patterns, focusing on two specific research
questions.

1. What are the changing trends in patient arrivals and wait times? Are there any
patterns in the temporal variations in patient arrivals and wait times, such as
monthly or seasonal patterns?

2. As historical information about the wait times in each hospital is expected
to affect the subsequent patient arrivals, does the cardiac care system exhibit
patterns that reveal the potential interactions between patient arrivals and wait
times?

Figures 7.7 and 7.8 show the monthly variations in patient arrivals and wait times,
respectively, in cardiac surgery services in Ontario from 2005 to 2006. Although
patient arrivals for cardiac surgery services fluctuate from month to month in both
Ontario (shown in Fig. 7.7a) and in each hospital (shown in Fig. 7.7b), there is a
seasonal pattern. Cardiac surgery services have relatively smaller numbers of patient
arrivals in the warm season (shown as the shadowed areas in Fig. 7.7a), which runs
from the fifth month (May) to the eighth month (August), than in the colder months.

We observe a similar seasonal pattern in the dynamically changing wait times
in Fig. 7.8. The median wait times in Ontario consistently decrease from the sixth
month (June) to the tenth month (October) each year, shadowed in Fig. 7.8. The
lower wait times may be due to the lower patient numbers in cardiac surgery services
in the warm season, as illustrated in Fig. 7.7a.
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Fig. 7.7 The changes in
patient arrivals for cardiac
surgery services in (a)
Ontario, and (b) five hospitals
that provide cardiac surgery
services
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7.3 AOC-CSS Modeling

7.3.1 Identifying Key Elements in Modeling

7.3.1.1 Entities

In Ontario, each location (e.g., a city or a town) has a certain number of patients
that require cardiac surgery services. When these patients are recommended to
have cardiac surgeries by their general practitioners (GPs) or specialists, they
will choose a specific hospital to receive the required services from [216]. In
most cases, patients make their decisions with their GPs, as 93% of Ontario’s
population are registered with a GP [217] and most of the patients will follow a GP’s
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Fig. 7.8 The changes in the
median wait times for cardiac
surgery services in (a)
Ontario, and (b) five hospitals
that provide cardiac surgery
services
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recommendations [28, 218]. Patient hospital selection behavior therefore represents
the consequence of a patient-GP mutual decision. After patients make a decision on
hospital selection, they visit the selected hospital and wait to receive the treatment
[216]. Finally, patients leave the hospital after finishing the treatment. From the
afore described process, we can therefore identify three entities in the cardiac care
system, the patient, the GP, and the hospital.
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7.3.1.2 Major Impact Factors

Dynamically changing patient arrivals and wait times may be directly or indirectly
affected by various factors. These factors, as illustrated in Fig. 7.2, can be divided
into two categories.

• Factors affecting the patient population: Factors such as environment (e.g.,
weather), demographics (e.g., population size and age), and socioeconomics
(e.g., education), may affect the number of patients who have cardiovascular
disease. Thus, we consider these factors when initializing the parameter of
generating patient population for each city or town in simulations.

• Factors affecting the dynamics of patient arrivals to hospitals: Factors such as
the geographic distance between homes to a hospital, hospital reputation (e.g.,
hospital resourcefulness), hospital performance (e.g., wait times), and decision
making style may affect patients’ hospital selection behavior, and thus result in
the variations of patient arrivals to each hospital. We therefore consider these
factors when designing behavioral rules for patients and hospitals.

In our modeling, based on the literature and our SEM-based studies (please refer
to Chaps. 3 and 4 for these studies), the factors that affect the patient population and
thus should be considered in the simulation initialization are summarized below.

• Geodemographic profile of a location: As we investigated in Chap. 3, cities
and towns with distinct geodemographic factors have different patient arrivals
for cardiac surgery services. We therefore consider the differences in the
geodemographic profiles of locations, which are represented by the patient arrival
rate in the modeling.

• Seasonal weather: Seasonal weather is an important contributing factor for
the outbreak of many diseases, including cardiac diseases [19], and therefore
influences patient arrivals and wait times in cardiac care services. For instance,
as shown in Fig. 7.5, the patient arrival rate in the warm season (from May to
October) in Ontario is approximately 15% lower than that in the cold season
(from January to April and from November to December), according to the
reported CCN data [136]. We therefore consider the factor of seasonal weather
in our modeling, which is represented in different arrival rates in warm and cold
seasons.

The identified major factors that influence the patient behavior in selecting
hospitals and the hospital behavior in delivering services and thus are considered
in our modeling are summarized below.

• Geographic distance: As revealed by our SEM-based analysis (please refer to
Chap. 3 for the study) and the literature, the geographic distance between homes
and a hospital is negatively associated with the probability that patients and GPs
select a hospital [11, 219], because patients are more likely to visit hospitals close
to their homes. Thus, we take into account the geographic distance in modeling
patients’ hospital selection behavior.
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• Hospital resourcefulness: The resourcefulness of a hospital, represented by
the number of physicians [29] in this study, is positively correlated with the
probability that patients and GPs select a specific hospital [29, 220, 221] because
more hospital resources may attract more patient arrivals [39]. We therefore
consider this factor when designing behavioral rules for patients’ hospital
selection behavior.

• Hospital performance in terms of wait times: Wait times for receiving the
required cardiac care services are a major concern for patients [28] and GPs
[11, 222], who are usually in favor of hospitals with short wait times [11, 28, 222].
We therefore take this factor into consideration when designing behavioral rules
for patients.

7.3.1.3 Local Feedback Loops

The impact factors of wait times may have complex relationships, coupled interac-
tions, and/or feedback loops [57]. These interactions, especially the local feedback
loops, may result in nonlinear phenomena (e.g., self-regulating patient arrivals and
wait times) in the complex cardiac care system.

We identify two local feedback loops between the impact factors, shown in
Fig. 7.9. The first negative feedback loop (namely AW-loop) exists between the
factors of patient arrivals and wait times, due to the patient-GP mutual decisions
on hospital selection. For instance, long wait times in a hospital may weaken the
probability of patients and GPs selecting that hospital, which will in turn decrease
the number of patient arrivals and result in a decrease in wait times.

As shown in Fig. 7.9, the factors of patient arrivals, hospital service rate, and wait
times form a positive feedback loop (named as ASW-loop) due to hospitals’ service
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Fig. 7.9 The effects of impact factors on patient-GP mutual decisions on hospital selection and
the local feedback loops. +/–: a positive or negative relationship between two factors
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adjustment behavior. If there are more patient arrivals at a hospital, that hospital will
increase its service rate. Wait times will therefore decrease, which will in turn result
in a larger number of patient arrivals.

7.3.2 Modeling Environment

In this study, the geographic relationship/structure between patients’ locations and
hospitals is conceptualized as a bipartite location-hospital network CH , defined
below.

Definition 7.1 (Location-Hospital Network) A location-hospital network can be
described as a bipartite network CH = (C,H, F, I). The location node set C(N) =
{ci} (i ∈ [1, N]) denotes N cities, towns, or concerned sub-regions as patients’
locations. The hospital node set H(M) = {hj } (j ∈ [1,M]) represents M hospitals
that provide specific healthcare services, H ∩ C = ∅. The adjacent matrix F =
{fij }N×M (fij ∈ [0, 1],∑j∈[1,M] fij = 1) represents whether or not there are
patient flows between each pair of city-hospital nodes. IN = {inij }N×M represents
the static or dynamic information between each pair of city-hospital nodes.

Here, each location node ci (∀ci ∈ C) represents a city or town with a
population of more than 40,000 in 2006 in Ontario, Canada, according to census
data. Each hospital node hj (∀hj ∈ H) denotes a hospital that provides cardiac
surgery services in Ontario, Canada. The location-hospital information is defined as
IN = {inij (t)|i ∈ [1, N], j ∈ [1,M]} = {dij |i ∈ [1, N], j ∈ [1,M]}, where dij

represents the distance from a city or town ci (∀ci ∈ C) to a hospital hj (∀hj ∈ H).
Following Chap. 3, the distance dij is represented by the driving time between a
city or town and a hospital. The driving time is again estimated using the “Get
directions” function in Google Maps.

Based on the location-hospital network CH , the environment E in the AOC-
CSS model records the released information about hospitals. We formally define
the environment E as described below.

Definition 7.2 (Environment) The environment E for the AOC-CSS model is
represented by a bipartite network, as defined in Definition 7.1. E maintains
information that can be accessed by patients and GPs. We define the environment E

as a tuple < D,RS,W >, where the elements are defined as follows:

• D: Distance information D = {dij |i ∈ [1, N ], j ∈ [1,M]}. Each dij records the
driving time between a city/town ci (∀ci ∈ C) and a hospital hj (∀hj ∈ H).

• RS: Hospital resourcefulness information RS = {rsj |j ∈ [1,M]}, where rsj
records the number of physicians in hj (∀hj ∈ H).

• W : Wait time information W = {wj,τ |j ∈ [1,M]}. Each wj,τ records the wait
time information for a hospital hj (∀hj ∈ H) at time round τ . Here, a unit time
round τ to review hospital operations (e.g., 1 month or one quarter) includes
NT number of unit time steps t (a unit of time to record the hospital operational
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information, e.g., 1 day), i.e., τ = NT ∗ t . In this paper, wj,τ records the median
wait times of hj over the past time round τ − 1.

7.3.3 Modeling Entities

7.3.3.1 Patient

As reported in [28], a large number of patients may not have access to wait time
information and thus they may not consider wait times when they select a hospital.
Patients can therefore be categorized as wait time-sensitive or wait time-insensitive,
according to their decision making styles. Wait time-sensitive patients consider all of
the acquired information about the hospitals (i.e., distance, hospital resourcefulness,
and wait times). Wait time-insensitive patients do not take in to account wait time
information when they select hospitals. A patient entity is defined as described
below.

Definition 7.3 (Patient Entity) A patient entity, patient , maintains a record:
< patientID, cityID, Pr , rule, hospitalID, type, joinT ime, endT ime, w̃ >,
where the elements are defined as follows:

• patientID: This records the unique identity represented by a constant for a
patient.

• cityID: This denotes the unique identity for the city/town that a patient comes
from.

• Pr : This denotes the probability of a patient considering the factor of wait times
when selecting a hospital. Accordingly, the probability of a patient who does not
take into account the factor of wait times when choosing a hospital is 1 − Pr .

• rule: This indicates how a patient chooses a hospital along with the GP.
• hospitalID: This indicates the unique identity for the hospital that a patient

arrives at.
• type: This represents the urgency of a patient entity to the cardiac surgery service

according to the severity of illness, ∀k ∈ [1,K] (K ≥ 1). In this study, there are
two urgent types: urgent patients and non-urgent patients.

• joinT ime: This denotes the time step that a patient joins in the queue of a
hospital.

• endT ime: This indicates the time step that a patient has been served in a hospital.
• w̃: This records the wait time information of a patient, w̃ = endT ime −

joinT ime.
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7.3.3.2 GP

In the AOC-CSS model, patients come to a hospital that is selected by patient-
GP mutual decisions and the released information in the environment E. As most
cardiac surgery patients are referred by GPs, we define entities GP [N ] to record and
represent patient-GP mutual decisions on hospital selection, as described below.

Definition 7.4 (GP Entity) GP [N ] records the information about patients who
live in specific locations and receive cardiac surgery services. Each entity GPi (i ∈
[1, N ]) maintains a record: < cityID,Ak(t) >, where the elements are defined as
follows:

• cityID: This represents the unique identity of a location.
• Ak(t): This denotes the patient flow information for urgent type k (k ∈ K)

patients, Ak(t) = {âk,j (t)}. Each âk,j (t) records the number of type k (k ∈ K)

patients to hospital hj (hj ∈ H ) at time step t .

7.3.3.3 Hospital

We model the operations of a hospital entity based on queuing theory. As CS-ORs in
a hospital are, to a certain extent, homogeneous, it is reasonable to regard a hospital
j as one server (i.e., one OR) with a service rate μj , and thus assume that each
hospital is an M/M/1 queuing model [223]. A hospital entity is defined as described
below.

Definition 7.5 (Hospital Entity) Hospital[M] records the information on
all of the hospitals. Each hospital entity hj (∀hj ∈ H ) maintains a record
< hospitalID, cityID, Ãk(t), μ(t), rule, w(τ),Q >, where the elements are
defined as follows:

• hospitalID: This represents the unique identity for a hospital.
• cityID: This indicates the unique identity for the city/town in which a hospital

is located.
• Ãk(t): This records the patient arrival information for type k (k ∈ K) patients,

Ãk(t) = {ãi,k(t)}. Each ãi,k(t) records the number of type k (k ∈ K) patients
coming from city/town ci at each time step.

• μ(t): This denotes the hospital service rate at time step t .
• rule: This represents how the hospital adjust the service rate with respect to the

accumulated patient arrivals. The specific rule will be formally described in the
next subsection.

• w(τ): This records the wait time information of hospital hj in a past time period,
which will be released in environment E. In this work, the wait time information
w released at time round τ is the average median wait times for the past time
round τ − 1.

• Q: This records the information about the queue that includes all the patient
entities waiting for cardiac surgery services at each time step.
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7.3.4 Designing Behavioral Rules

7.3.4.1 Behavioral Rules for Patients Selecting Hospitals

Based on the literature review and the analysis of variable relationships presented
in Chaps. 3 and 4, we identify stylized facts regarding the effects of key factors that
influence patient-GP mutual decisions for hospital selection and the variations of
patient arrivals in hospitals.

• Stylized fact 1: The probability that patients select a hospital is exponentially and
inversely related to the distance between their homes and a hospital [21].

• Stylized fact 2: Patients usually prefer to visit a hospital that is resourceful in
terms of personnel (e.g., physicians) and facilities (e.g., ORs) [29, 220, 221].
Hospital resourcefulness and the number of patient arrivals are therefore posi-
tively correlated [44].

• Stylized fact 3: Patients usually prefer to visit a hospital with shorter wait times
[11, 28, 222]. However, a large proportion of patients, especially the elderly, may
not have access to wait time information or are less likely to consider the wait
times when they select hospitals [28].

Based on the stylized facts, we develop two specific behavioral rules, i.e., a DHW
rule and a DH rule, to model how patients choose a hospital. The two behavioral
rules are our assumptions in this work, which are defined below.

Definition 7.6 (DHW Rule) DHW stands for distance, hospital resourcefulness,
and wait times. This rule represents how a patient residing in the location ci (∀ci ∈
C) estimates the arrival probability aij for a hospital hj (∀hj ∈ H), using the
distance dij , hospital resourcefulness rsj , and released wait time information wj(τ)

at time τ . The hospital selection probability for a hospital hj is calculated by:

aij = f (dij ) ∗ f (rj ) ∗ f (wj (τ ))

f (dij ) = d ′
ij∑

hk∈H d ′
ik

d ′
ij =

∑
hk∈H d

αd

ik

d
αd

ij

f (rj ) = r
αr

j∑
hk∈H r

αr

k

f (wj (τ )) =
∑

hk∈H w
αw

j (τ )

w
αw

j (τ )
,

(7.4)
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where αd (αd ∈ [0, 1]), αr (αr ∈ [0, 1]), and αw (αw ∈ [0, 1]) are exponential
parameters indicating the sensitivity of patients to the factors of distance, hospital
resourcefulness, and wait times, respectively.

Definition 7.7 (DH Rule) DH stands for distance and hospital resourcefulness.
This rule represents how a patient chooses a hospital hj with respect to the distance
dij and hospital resourcefulness rsj . The hospital selection probability is calculated
by:

aij = f (dij ) ∗ f (rj )

f (dij ) = d ′
ij∑

hk∈H d ′
ik

d ′
ij =

∑
hk∈H d

αd

ik

d
αd

ij

f (rj ) = r
αr

j∑
hk∈H r

αr

k

.

(7.5)

7.3.4.2 A Behavioral Rule for Hospitals to Adjust Their Service Rates

Hospitals may periodically change their service rates to adapt to unpredictable
patient arrivals. For instance, as shown in Fig. 7.10, changes in the throughput,
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Fig. 7.10 The number of patient arrivals versus the number of treated cases in the cardiac surgery
service in Ontario, Canada, between January 2005 and December 2006
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which represents the actual serviced numbers of patients, follows approximately
the same pattern as changes in the patient arrivals in cardiac surgery services in
Ontario. The correlation coefficient between the throughput and patient arrivals
is 0.896 (p < 0.0001), implying that the service rate of a hospital may vary in
accordance with the changes in patient arrivals. We therefore define an S rule for
hospitals to adjust their service rates by assuming that service rate of a hospital
and the queue length (representing the accumulated patient arrivals at present) is
positively and linearly related. The definition of the S rule is given as below.

Definition 7.8 (S Rule) S stands for service rate adjustment. This rule represents
how a hospital hj (∀hj ∈ H) changes its service rate μj (T̃ ) in response to the
aggregated patient arrivals at the past time T̃ − 1. The service rate adjustment is
calculated by:

μj (T̃ ) = μ̄j ∗ (
aj ∗ Aj(T̃ − 1)

Āj

+ bj ), (7.6)

where T̃ is the frequency that hospitals adjust their service rate (usually 1 week in
Ontario [9]); μj (T̃ ) is the service rate of a hospital hj at time T̃ ; μ̄j is the average
service rate of a hospital hj ; Aj(T̃ − 1) is the aggregated patient arrivals at the time
T̃ − 1; Āj is the average patient arrivals at a hospital hj ; and aj and bj are two
adjustment parameters.

7.4 Simulation-Based Experiments

In this section, we conduct simulations based on our AOC-CSS model, aiming to
understand the observed spatio-temporal patterns in wait times in the cardiac care
services.

7.4.1 Experimental Settings

The parameters in the AOC-CSS model are initialized using publicly available
data. The CCN published monthly statistical reports on cardiac surgery service
utilization in Ontario hospitals between January 2005 and December 2006. The
average number of treated cases, the median wait times, and the queue length in
a month for each hospital are reported. Therefore, the service rate μj for a hospital
hj can be approximated as the average number of served cases in a day. The arrival
rate for each patient type in the city/town ci can be approximated by:

∑

k∈K

GPi.λk = si ∗ mi, (7.7)
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where si is the patient-generation probability, i.e., the probability that a person in the
city/town ci is a patient who needs a cardiac surgery service, and mi is the size of the
total population in the city/town ci . The parameter si represents the heterogeneity of
the city/town ci in producing a patient population requiring cardiac surgery services
with respect to its demographics and socioeconomic factors. The patient-generation
probabilities for the cities and towns in each LHIN can be inferred from [20]. The
total population mi for each city/town is gathered from the 2006 Canada Census
data.1

As seasonal weather is an important contributing factor influencing patient
arrivals [19], the arrival rate is adjusted seasonally in our simulation. The patient
arrival rate is approximately 15% lower in the warm season (from May to October
in Ontario) than in the cold season (from January to April and from November to
December in Ontario), according to the reported CCN data.

Near 20% of patients consider wait times when they select hospitals [28].
Therefore, we assume that the probability that a patient considers the factor of
wait times when selecting a hospital is relatively small and we set this probability
Pr = 0.2 in our simulations.

According to the practice, patients are categorized into two types, urgent and
non-urgent, i.e., K = 2. Following the data reported in [20, p. 71], the arrival
rate of urgent patients versus that of non-urgent patients is set to 0.23:0.77. Urgent
patients have a higher priority for receiving cardiac surgery services than non-urgent
patients.

The values of the exponential parameters (αd , αr , and αw) are estimated using the
spatial pattern of real patient flows (shown in Fig. 7.5). Based on our experiments,
we found that the mean and standard deviation of absolute errors have relatively
small values when αd = 4, αr = 1, and αw = 1. Here, the absolute error is defined
as |eij | = |âij − â′

ij |, where eij is the error between the actual percentage of patients
residing in LHIN li who attend hospitals in LHIN lj from 2007 to 2008 in Ontario
(as denoted as âij ), and that obtained from our simulations (as denoted as â′

ij ).
We run our simulations over 2 years, so that the simulated data can be directly

compared to the observed real-world data. At each time step, the simulation runs
1000 times and generates an average number of patient for each city/town.

7.4.2 Statistical Regularities in Patient Arrivals and Wait Times

In this section, we examine the statistical regularities in patient arrivals and wait
times in our synthetic cardiac care system. Figure 7.11 compares the distribution of
the variations in patient arrivals in the real world (represented by the squares in the
figure) and the distribution obtained from the simulation (represented by the stars in

1http://www12.statcan.gc.ca/census-recensement/2006/index-eng.cfm. Last accessed on April 11,
2019.

http://www12.statcan.gc.ca/census-recensement/2006/index-eng.cfm
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Fig. 7.11 The distributions of variations in simulated and observed patient arrivals in cardiac
surgery services

the figure). The simulation approximately reproduces the shape of the distribution of
observed patient-arrival variations, shown in Fig. 7.11. The observed patient-arrival
variations have a mean of 0.0004 and a standard deviation of 0.226, whereas the
simulated patient-arrival variations have a mean of 0.0013 and a standard deviation
of 0.232.

The relative entropy or the Kullback-Leibler (KL) divergence is a measure of the
difference between two probability distributions [224]. The KL divergence of the
statistical distribution of simulated patient-arrival variations from that of real-world
patient-arrival variations is 0.1398. The small value of the KL divergence implies
that the distribution of patient-arrival variations obtained from the simulation may
approximate that of the real world.

Figure 7.12 presents the statistical distribution of absolute variations in the
median wait times obtained from our simulation. The absolute variations in the
median wait times follow a power-law distribution with a power of −1.47 (linear
fitness: p < 0.0001). The fitness of the power-law distribution is tested using the
Clauset method [210] (power-law test: p < 0.1). This distribution indicates that the
synthetic cardiac surgery service is self-organizing in terms of its wait times.

Figure 7.13 compares the statistical distribution of absolute variations in the
median wait times obtained from our simulation to the distribution of the observed
data. The KL divergence of the distribution of the simulated absolute wait-time
variations (represented by stars in the figure) from that of the observed absolute
wait-time variations (represented by squares in the figure) is 0.1227. The small value
of the KL divergence implies that the two distributions are similar.
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Fig. 7.12 The distribution of simulated absolute wait times variations (by month) in cardiac
surgery services
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Fig. 7.13 The distributions of simulated and observed wait times variations in cardiac surgery
services

7.4.3 Patient-Attraction and Patient-Distribution Degrees
of LHINs

Figure 7.14 compares the observed and simulated distributions of LHINs’ patient-
attraction degrees and patient-distribution degrees. The simulated patient-attraction
and patient-distribution degrees for each LHIN are approximately the same as
the observed degrees, except for LHIN 12, which has a lower simulated patient-
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Fig. 7.14 A comparison of the simulated and observed distributions of LHINs’ patient-attraction
and patient-distribution degrees

distribution degree than that observed in the real world. In the simulation, most
patients living in LHIN 12 select the hospital in LHIN 8 because it has the shortest
driving time (0.6 h). However, in the real world, although LHIN 6 and 7 are not
next to LHIN 12 and have longer driving times (1.2 h and 1.1 h, respectively),
approximately 25% of patients who live in LHIN 12 visit the four hospitals (Trillium
Health Parters, St. Michael’s Hospital, Sunnybrook Health Sciences Centre, and
University Health Network) in LHIN 6 and 7, as these hospitals have good resources
and the driving time between homes and these hospitals are short enough to be
acceptable.

The simulated distributions in Fig. 7.14 exhibit low- and high-patient-attraction
groups, and low- and high-patient-distribution groups that are almost the same as
the groups exhibited by the observed distributions, shown in Fig. 7.6. LHINs 5–9
have obviously larger patient-distribution degrees and thus form a high-patient-
distribution group, whereas LHINs 1–4 and 10–13 have less patients travelling
to other LHINs for cardiac surgery services and thus fall into the low-patient-
distribution group. Similarly to the observed distributions, LHINs 6–8 exhibit higher
attraction degrees in the simulation and thus form a high-patient-attraction group,
whereas the other LHINs (LHINs 1–5 and 9–14) fall into the low-patient-attraction
group.
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7.4.4 Spatio-Temporal Patterns in Patient Arrivals and Wait
Times

7.4.4.1 The Dynamics of Patient Arrivals in Each Hospital

Figures 7.15 and 7.16 compare the observed and simulated temporal patterns in
patient arrivals for each hospital and show that our AOC-CSS model is able to
approximately reproduce the observed temporal patterns in patient arrivals, as the
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Fig. 7.15 The observed and simulated temporal patterns in patient arrivals in hospitals H1–H6
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Fig. 7.16 The observed and simulated temporal patterns in patient arrivals in hospitals H7–H11

correlation coefficient R of the simulated and observed patient arrival variations for
each hospital is positive.

7.4.4.2 The Dynamics of Wait Times in Each Hospital

Figures 7.17 and 7.18 compare the observed and simulated temporal patterns of the
median wait times for each hospital and show that our AOC-CSS model is able to
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Fig. 7.17 The observed and simulated temporal patterns in wait times in hospitals H1–H6

approximately reproduce the observed temporal pattern of median wait times, as the
correlation coefficient R of the simulated and observed patient arrival variations for
each hospital is positive.
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Fig. 7.18 The observed and simulated temporal patterns in wait times in hospitals H7–H11



7.5 Discussion 125

7.5 Discussion

7.5.1 Explaining the Underlying Causes of Spatio-Temporal
Patterns

Based on our AOC-CSS model and simulation-based experiments, we are able
to characterize the spatio-temporal patterns in patient arrivals and wait times as
observed in real-world cardiac surgery services. These patterns are partially due
to the local feedback loop between patient arrivals and hospital wait times, shown
in Fig. 7.9.

Let us take the city of Brampton, Ontario, as an example to illustrate the self-
organizing process at an individual level. The four hospitals which are nearest
to Brampton and offer cardiac surgery services are Trillium Health Parters (H4),
St. Michael’s Hospital (H5), Sunnybrook Hospital (H6), and University Health
Network (H7). The average driving times for patients living in Brampton to travel
to these hospitals are less than 0.7 h. Figure 7.19 presents the dynamically changing
preferences of patients residing in Brampton for the four hospitals and shows that
patients living in Brampton generally prefer H7, because the driving distances from
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Fig. 7.19 The dynamically changing preferences of patients residing in the city of Brampton (in
LHIN 5) to the four neighboring hospitals. (a): H4, Trillium Health Partners; (b): H5, St. Michael’s
Hospital; (c): H6, Sunnybrook Hospital; (d): H7, University Health Network. The shaded areas in
this figure represent the warm seasons in Ontario, Canada
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Brampton to the four hospitals are almost the same, varying between 0.5 h and 0.7 h,
and H7 has more physicians than the other three hospitals. As the values for the
factors of driving distance and hospital resourcefulness are not changed during the
simulation, the changing wait times for the four hospital are the only cause of the
dynamically changing arrival probabilities.

For instance, Fig. 7.19d shows that in the first 2 months, the arrival probabilities
for patients living in Brampton for H7 are high, because the wait times in this
hospital are short, at approximately 22 days. Due to the high arrival probabilities in
the first 2 months, more patients may prefer to visit H7 than the other three hospitals,
which will in turn result in longer wait times in H7. The wait time information for
H7 is then released into the environment and is used by patients when they make
hospital selection decisions in the third month. As a result, the arrival probability
of patients living in Brampton for H7 in the third month will decrease. This self-
regulating process is initiated by autonomous patient/GP entities according to their
hospital selection behavioral rules and incorporates the feedback loop between wait
times and hospital selection behavior, potentially accounting for the observed self-
organized spatio-temporal patterns at a systems level.

Figure 7.19 also shows that the trends of the changes in arrival probabilities
for the four hospitals are complementary. The increase in arrival probabilities to
some of the hospitals in some months therefore accompanies the decrease in arrival
probabilities to other hospitals. Due to the differences in the wait times in the four
hospitals, a few patients may therefore transfer between the four hospitals to avoid
a long wait. For instance, in the first warm season (from month 3 to month 8), the
arrival probabilities for H4 and H6 increase because their reference wait times are
less than 20 days, whereas the arrival probabilities for H5 and H7 decrease because
their wait times are much longer than 20 days. It should be noted that although
the arrival probabilities for H4 and H6 increase, the wait times in all four hospitals
decrease in the first warm season. The number of patient arrivals in the warm season
is smaller than in the cold season. As more patients may be willing to travel to H4
and H6 in the first warm season, the accumulated patient arrivals in the first warm
season may result in the increase in wait times in the initial several months in the
second cold season (from month 9 to month 12), which will in turn reduce the arrival
probabilities for the two hospitals. With the same analysis process described above,
we can explain the variations in the arrival probabilities and wait times for the four
hospitals in the subsequent months.

7.5.2 Sensitivity Analysis

To investigate the sensitivity of our results, we now discuss the statistical distribu-
tions of the median wait times with respect to different time scales for calculating
the variations in wait times; and different probabilities (i.e., Pr ) that a patient takes
the wait time information into account when making hospital selection decisions.
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Fig. 7.20 The distribution of simulated absolute wait times variations (calculated by week) in
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Fig. 7.21 The distribution of simulated absolute wait times variations (calculated by half-month)
in cardiac surgery services. The distribution follows a power law with a power of −1.86 (p < 0.1;
linear fitness (red line, p < 0.001; standard deviation SD = 0.38)

7.5.2.1 Wait Times Variations at Different Time Scales

Figures 7.20 and 7.21 show the statistical distributions of absolute wait times
variations calculated by week and by half-month, respectively. We use the method
developed by Clauset et al. [210] to test whether our simulated data follows a power
law distribution. We find that the absolute wait times variations presented in the two
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figures both fit a power-law distribution (power-law test: p < 0.1). The power of
the statistical distribution calculated by week is −2.19 and calculated by half-month
is −1.86, suggesting that absolute wait times variations in different time scales are
able to represent the self-organizing property of the cardiac care system in terms of
wait times, such as by week (as shown in Fig. 7.20), by half-month (as shown in
Fig. 7.21), and by month (as shown in Fig. 7.12).

7.5.2.2 The Probability for Selecting DHW Rule, Pr

Figure 7.22 shows the distributions of absolute wait times variations (calculated
by month) in cardiac surgery services with respect to different probabilities that
a patient considers wait times when choosing a hospital, Pr . Table 7.1 presents
the corresponding p-values of power-law tests with respect to various Pr based
on Clauset’s method [210]. According to Fig. 7.22 and Table 7.1, when there are
no wait time-sensitive patients (i.e., Pr = 0) who take into account the wait
time information when choosing hospitals, the distribution of absolute wait times
variations does not follow a power-law distribution, as the power-law test is not
significant (p = 0.13). If all of the patients select hospitals without considering
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Fig. 7.22 The distributions of absolute wait times variations (by month) in cardiac surgery
services with respect to different Pr

Table 7.1 The p-values of power-law tests for distributions of absolute wait times variations with
respect to different Pr

Pr 1 0.75 0.5 0.25 0

p-value 0.16 0.16 0.16 0.10 0.13
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the wait time information, the feedback loop between the patient hospital selection
behavior and wait times is absent. Thus, patient arrivals cannot adapt to the
dynamically changing wait times in hospitals.

According to Fig. 7.22 and Table 7.1, when there is a relatively small probability
that a patient considers wait times when choosing a hospital, e.g., Pr = 0.25, the
distribution of absolute variations in the median wait times follows a power-law
distribution (as suggested by Clauset et al. [210], if p ≤ 0.1, the data for the power-
law fitness test follows a power-law distribution). This suggests that the system is
self-regulating due to the wait time-sensitive patients who select different hospitals
in accordance with the variations in wait times in each hospital.

However, when Pr becomes large, for instance, 0.5, 0.75, or 1, as shown in
Fig. 7.22 and Table 7.1, the distributions of absolute wait time variations do not
follow power-law distributions. The p-values of the power-law tests are all larger
than 0.1. A large number of wait time-sensitive patients may therefore not result in
a self-regulating healthcare service system, as the patient arrivals for each hospital
may fluctuate highly if more patients are sensitive to the wait time information when
they select hospitals. This can be observed in Fig. 7.22, which shows that larger Pr

values result in larger variations in absolute wait time variations.

7.5.3 Remarks on Future Extensions

The work presented in this chapter can be extended from several directions. First
of all, the proposed AOC-CSS model does not take into account how opinions
and experiences of socially connected people affect patients’ hospital selection
decisions. The model also omits the topological structure between interacting
doctors and patients. However, in the real world, prior patients’ experiences with
specific service providers and physicians may spread through a social network, and
thus affect the hospital selection decisions of subsequent patients. The influence of
socially connected people, which is referred to as social influence in the literature,
plays a significant role in patients’ choice of hospitals [225]. It therefore would
be valuable to extend the current AOC-CSS model by incorporating the effects of
social influence and by taking into account the various social structures between
patients and doctors. By doing so, we may thus develop a more realistic model for
characterizing patients’ hospital selection behavior. The extended model may also
enable us to evaluate the effects of patients’ experience and social interactions on
the emergent spatio-temporal patterns in service utilization and wait times.

Secondly, this work assumes that all physicians in hospitals are homogeneous
in serving patients. Based on this assumption, specific queuing models have been
developed to characterize the behavior of hospitals. As physicians may differ in
how they prioritize and serve patients [202], the allocated time blocks for serving
patients [226], and their medical skills [226], future research could take into
account the heterogeneity in physicians. The resulting extended hospital models
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may better represent the actual operation of healthcare services. Furthermore,
modeling heterogeneous physicians may help to design more practical strategies
for improving service management behavior.

Finally, in the current work as presented in this chapter, we have investigated
how patients select hospitals with respect to the factors of distance, resourcefulness,
and wait times, which are identified as key impact factors based on the SEM-based
analysis and the literature review. However, the perceived hospital reputation, an
unobserved factor that covers patients’ perceptions of multiple dimensions, such as
hospital resourcefulness, physicians’ medical skill, and service outcome, is another
important factor influencing patients’ choices of a hospital [38, 227]. In the future
work, it would be interesting for us to consider the perceived hospital reputation into
our AOC-CSS model, so as to better represent the real-world situations and evaluate
the effects of hospital reputation on the dynamics of patient arrivals to different
hospitals.

7.6 Summary

In this chapter, we used a behavior-based autonomy-oriented modeling method to
characterize the spatio-temporal patterns in a cardiac care system from a complex
self-organizing systems perspective. We described three types of entities, patients,
GPs, and hospitals, and the environment that they reside in and access information
from. Based on the identified major impact factors of distance, hospital resourceful-
ness, and wait times, and their interaction relationships and local feedback loops, we
derived specific behavioral rules for wait time-sensitive and wait time-insensitive
patients to make mutual decisions with their GPs on hospital selection. We also
designed a specific behavioral rule for hospitals to adjust their service rates with
respect to the waiting patients. Through simulation-based experiments, we observed
that the constructed white-box AOC-CSS model produces spatio-temporal patterns
that are approximately similar to those observed in the real-world cardiac surgery
system. The patient-GP mutual hospital selection behavior and its relationship with
hospital wait times may therefore account for self-regulating service utilization. The
study also revealed that the behavior-based autonomy-oriented modeling method
provides a potentially effective means for explaining the self-organized regularities
and investigating emergent phenomena in complex healthcare systems.



Chapter 8
An Intelligent Healthcare Decision
Support System

In the previous chapters, we showed how to systematically utilize the four specific
methods, i.e., Structural Equation Modeling (SEM)-based analysis, integrated
prediction, service management strategy design and evaluation, and behavior-based
autonomy-oriented modeling, to address practical healthcare service management
problems. This chapter presents an intelligent healthcare decision support (iHDS)
system that implements the four methods to develop, analyze, investigate, support,
and provide advice for healthcare-related decisions. The iHDS system provides the
architecture and components for user interactions, data collection and processing,
data-driven inferences and simulations, and decision analytics and support to
generate solutions for various healthcare analytics and decision-making problems.
This chapter also describes two cases to illustrate how the iHDS system works
to address practical healthcare analytics problems. One case illustrates how the
components and methods work to generate adaptive solutions for allocating time
blocks in operating rooms (ORs), while the other addresses the need for adaptive
decision support in regional healthcare resource allocation that has the advantage of
reducing healthcare performance disparities.

8.1 Introduction

Healthcare decision analytics and support serve as the most crucial functions
for healthcare-service-providing organizations, practitioners, researchers, decision
makers, patients, general users, and other relevant stakeholders. To demonstrate how
the data-driven complex systems modeling approach (D2CSM) can be implemented
to address practical decision analytics and support problems in this chapter, we
provide a comprehensive design of our iHDS system. This system (1) helps
users extract and infer, integrate, fuse, and interpret healthcare-related information;
(2) provides various functions and techniques to scientifically develop, analyze,
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and evaluate healthcare related decisions for services and operations, such as OR
time block assignments (discussed in Chap. 6), that involve many dynamically-
interacting endogenous and exogenous impact factors (discussed in Chaps. 4 and 5)
in multiple temporal or spatial scales (discussed in Chap. 7); and (3) produces
evidence-based recommendations and analytics support for users.

Potential users of the iHDS system include healthcare administrators at a
regional level and an individual health service level, healthcare-service-providing
organizations, such as hospitals and labs, healthcare workers, such as doctors and
nurses, stakeholders, such as secondary service providers and patients (here, patients
should be understood in a broad sense, and include all the potential healthcare
service users). For instance, regional (e.g., a country, a province, a city, or a
district) healthcare administrators can be supported by the iHDS system when they
plan and allocate healthcare resources and propose strategies and procedures for
public healthcare infrastructure and services. Hospital and other healthcare service
administrators can use the iHDS system as an aid when they analyze, evaluate,
and predict the outcomes and efficacy of their strategies and operations, e.g., in
scheduling physical and human resources and smoothing out the logistic processes
among different units. Healthcare-service-providing organizations and healthcare
workers, such as doctors, may be assisted by the iHDS system to help them make
their clinical decisions about treating patients based on evidence derived from
different sources, such as historical patient clinical data and academic/medical
research findings. Patients can benefit in their own health related decisions (e.g.,
daily care, doctor, or treatment selections), as the iHDS system offers evidence-
based information and decision suggestions with respect to their own specific
profiles.

Users can access the iHDS system and present their analytics and decision
problems in any centralized, distributed, and pervasive manner. The objective(s),
problem types, issues, sub-questions, criteria, requirements (e.g., indicators and
measurements), and corresponding decision or control variables and constraints for
the decision analytics problem will be automatically extracted or inferred from the
users’ problem sketches or descriptions. The iHDS system extracts or infers the
contextual information for the users and analytics problem at hand, such as the
users’ profiles and the scope of the analytics problem (e.g., the decision analytics
and supports for a region or for a hospital). The system has the ability to record
and recall encountered users and to automatically identify or infer the types of
subsequent users with their profiles and relate their needs (i.e., required decision
analytics and support problems) together, to intelligently and automatically infer
and recommend the decision analytics problems for subsequent users.

Five major categories of data sources will be utilized by the iHDS system to
achieve the objectives of different healthcare analytics and decision problems. The
first major category of data sources corresponds to the existing healthcare service
operations, including patient profiles and clinical information from actual healthcare
systems, as well as investment, policies, and management information, both at
a regional level and an individual healthcare service level. The second category
of data sources relates to ubiquitous patient data, including personal information
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(e.g., personal profiles and daily activities), patient health information routinely
collected from ubiquitous devices (e.g., smart phones), and clinical and patient
information distributed in health related physical and online communities (e.g.,
forums). The third category of data sources comes from the healthcare-related sec-
ondary service providers, such as community health service centers, rehabilitation
centers, insurance companies, pharmacy companies, and medical apparatus and
instruments companies. The fourth data source relates to the exogenous factors,
dynamic or static, which affect the inputs of actual healthcare service systems
(e.g., geodemographic-, environmental-, and socioeconomic-related factors, as well
as human behavior), and serve as the essential contexts for healthcare-related
decisions. Finally, academic/medical research databases will be incorporated into
the iHDS system with prior academic/medical research findings to be utilized for
healthcare evidential inferences, hypothesis generations, and model constructions,
as well as to discover explicit and implicit relationships among impact factors and
decision parameters and variables, e.g., drug-drug interactions in drug development.

The iHDS system is able to identify, infer, and support the analytics and decision-
making tasks at different service scales, depending on users’ decision-making needs
and requirements. The analytics techniques, which will be used either individually
or in an integrated manner depending on the specific tasks at hand, include
statistical analysis tools (e.g., regression, ANOVA, and SEM), intelligent analysis
tools (e.g., artificial intelligence, machine learning, and data mining techniques),
and intelligent complex-healthcare-systems modeling and strategic analysis tools
(e.g., AOC-based modeling and queueing modeling), optimization and intelligent
computation tools (e.g., mathematical programming), numerical or agent-based
simulation tools, and visualization tools. This intelligently configured and integrated
processing capability allows for producing solutions to practical healthcare decision
analytics problems that involve complex-systems behavior and a large number of
intrinsic or extrinsic interactive impact factors.

8.2 An Overview of the iHDS System

Figure 8.1 schematically illustrates the key modules for the iHDS system, i.e.,
the Intelligent User Interface, Healthcare Decision Analytics and Support System
(HDASS) module, and Information Management System (IMS) module, as well as
its interactions with users and healthcare-related data.

The Intelligent User Interface is capable of (1) permitting users to access the
iHDS system in any centralized, distributed, or pervasive manner and to input
their sketches or descriptions of analytics and decision problems, as well as to
optionally modify the solution repository, settings, and configurations; (2) extract-
ing or inferring the contextual information for users and analytics problems at
hand; (3) extracting, inferring, or refining objective(s), problem types, issues,
sub-questions, criteria, requirements (e.g., indicators and measurements), and the
corresponding decisions or constraints for the decision analytics problems; (4) intel-
ligently inferring and recommending the decision analytics problems for subsequent
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users; and (5) extracting or inferring feedback from users (e.g., on the intermediate
result evaluations) during the analytics process.

The IMS module collects, preprocesses, and maintains the data collected from
Existing Hospital Operations (e.g., databases of electronic health records (EHR),
electronic medical records (EMR), the hospital information system (HIS), and the
management information system (MIS)), Ubiquitous Patient Health Data Sources
(e.g., patient online communities), Secondary Service Providers (e.g., insurance
companies and pharmacy companies), Determinants for Healthcare (e.g., geodemo-
graphic, environmental, climate, socioeconomic related behavior), and Academic/
Medical Research Databases (e.g., Medline and PubMed). It contains information
buses for handling database inputs and communications between the HDASS and
IMS in any centralized, distributed, or pervasive manner.

The most important component in the iHDS system is HDASS. HDASS receives
the input information from users through either an integrated or a distributed user-
HDASS interface. With an analytics engine, HDASS extracts and infers the desired
type of problems (e.g., whether they are optimization problems or statistical analysis
problems) and the desired issues to be addressed for users (e.g., which candidate
techniques should be chosen and how the selected techniques are individually,
sequentially, iteratively, or integrally used) from the input information. HDASS
then determines, accesses, retrieves, organizes, and preprocesses the required
data for analytics. After that, HDASS generates analytics solutions, performs the
analytics tasks based on the empirical and secondary data stored, maintained, and
integrated in the information management system (IMS), and intelligently fine-
tunes the solutions according to users’ criteria, requirements, and feedback on the
intermediate results during the analytics, investigation, and simulation processes.
At the end of the analytics process, HDASS returns the analytics results in the form
of comprehensive textual or graphical reports, with outputs of recommendations,
scenario analyses, predictions, evaluations, visualizations, intelligent data analysis,
data mining, and statistical analysis. Furthermore, it retains the resulting healthcare
decision analytics solutions (i.e., in terms of the generalized flows of problem-
solving with respect to the computational types, issues, and sub-questions of the
decision analytics problems, instead of the exact instances of the problems) in
its solution repository, such that the accumulatively aggregated solutions in the
repository can be stored, inter-connected, updated, and utilized for tackling similar
or more complex types, issues, and sub-questions of future problems.

The analytics engine in HDASS implements and intelligently deploys three main
groups of analytics methods. The first and most important group of methods is for
strategic analysis. Exemplified methods in this group include techniques for algo-
rithmic or mechanism design, exact or approximate queueing modeling, discrete
event simulation, optimization (e.g., mathematical programming), and AOC-based
modeling. This group of methods, integrated with the following two groups if
needed, is especially useful in solving complex decision analytics problems. The
second group of analytics methods consists of intelligent data analysis methods,
such as artificial intelligence techniques, machine learning techniques, data mining
techniques, and pattern recognition techniques. The third group of analytics methods



136 8 An Intelligent Healthcare Decision Support System

encompasses data-driven statistical analysis methods, such as regression, ANOVA,
structural equation modeling, and factor analysis.

Depending on different decision analytics and support problems, the three groups
of analytics methods will be utilized either individually, sequentially, iteratively, or
in any integrated manner, depending on the specific tasks at hand. For instance, in
some cases, the results of data-driven analysis will be used to support the further
intelligent data analysis and the strategic analysis tasks; the intelligent data analysis
results will also feed the strategic analysis methods. In other cases, the three groups
of analytics methods, as well as their underlying possessed techniques, will be
integrally utilized, e.g., the simulation, evaluation, and prediction results obtained
from the strategic analysis will be further investigated by employing data-driven
analysis or intelligent data analysis.

8.3 Key Components of the iHDS System

The operations of the Intelligent User Interface and the HDASS and IMS modules
are executed by their components, as shown in the drawing in Fig. 8.2. Users access
the iHDS system aided by the User Accessing component within the Intelligent
User Interface module. Functions of the Collecting Decision Analytics Problem
Description component permit users to present their decision analytics problems
and then automatically extract, infer, and refine the objective(s), problem types,
issues, sub-questions, criteria, requirements (e.g., indicators and measurements),
and corresponding decision or control variables and constraints for the decision
analytics problem. The User Profiling component extracts or infers the contextual
information for users and the analytics problem, such as the users’ profiles and ana-
lytics scale of the problem (e.g., decision analytics and supports for a region or for a
hospital) during the user-system interaction process. With the functions provided by
the component of Inferring and Recommending User’s Needs in Decision Analytics,
the Intelligent User Interface is able to record and recall the encountered users and
identify and infer the types of subsequent users with their profiles and relate their
needs (i.e., the required decision analytics and support problems) together, so as to
intelligently infer and recommend the decision analytics problems for subsequent
users. The Intelligent User Interface module runs consistently during the analytics
processes to gather and incorporate user-initiated feedback (e.g., on the intermediate
result evaluation), and intelligently infer feedback on behalf of users by Gathering
User-Initiated Feedback or Intelligently Inferring Feedback on the Intermediate
Results.

Data stored, maintained, and integrated in the IMS module are collected from
five major data sources related to healthcare. The first typical data sources included
in the present iHDS system are the existing hospital operations databases, such
as electronic health records databases (EHR), electronic medical records (EMR)
databases, hospital information system (HIS) databases, and management infor-
mation system (MIS) databases. Ubiquitous patient health data form the second
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major data source. Ubiquitous patient health data include personal information
(e.g., personal profiles and daily activities) and patient health information routinely
collected from ubiquitous devices (e.g., smart phones), and clinical and patient
information (e.g., experiences of treatments and medication) distributed in health-
related physical and online communities (e.g., forums). IMS also contains data
from secondary service providers related to healthcare, such as community health
service centers, rehabilitation centers, insurance companies, pharmacy companies,
and medical apparatus and instruments companies. Since the demand for healthcare
services is constantly affected by certain exogenous factors to the healthcare system,
primary and secondary data on the determinants for healthcare, such as demographic
(usually represented by census data), environmental, climate, and socioeconomic
factors and human behavior, are gathered, stored, and tracked in IMS. The fifth and
final data source integrated in the iHDS system encompasses medical research and
other relevant databases, such as Medline and PubMed, which feed the HDASS
with prior academic research findings. These data sources are utilized for healthcare
evidential inferences, hypothesis generation, and model construction, as well as
for discovering explicit and implicit relationships among the impact factors and
decision parameters and variables, e.g., drug-drug interactions in drug development.
In IMS, those data sources are collected, cleaned, and integrated through an input
information bus. The preprocessed data in IMS then support the decision analytics
and tasks in HDASS by a standard query through an output information bus. The
iHDS system described herein is susceptible to variations and modifications other
than those specifically described.

The HDASS module offers methods for recognizing and inferring decision
analytics problems, building and fine-tuning solutions, supporting techniques, and
automatically generating various kinds of outputs (e.g., decision recommendation
output and statistical analytics output) for users. With a User-HDASS Interface,
the output of the Intelligent User Interface component (i.e., the Decision Analytics
Problem Description, Contextual Information, Criteria and Requirements, and Feed-
back) will be temporarily stored in the Input Information Repository, from which the
Solution Builder within the Analytics Engine will then be invoked to (1) recognize
and infer problems (e.g., types, issues, and sub-questions) to be addressed, select
suitable solutions and intelligently integrate the suitable techniques (i.e., generate
a solution for an analytics task); (2) determine the necessary data sources for
analytics and access, retrieve, organize, and preprocess the needed data queried by
the HDASS-IMS Interface from IMS to parameterize and support various analytics
and decision-making tasks; (3) operate the components of the Strategic Analysis,
Intelligent Data Analysis, and Data-Driven Statistical Analysis individually or in
an integrated manner upon receiving the treated data; (4) intelligently fine-tune the
solution, as well as the parameter settings in the solution, according to the users’
criteria and requirements as well as the extracted or inferred contextual information;
(5) return the intermediate and final analytics results automatically generated by
the Comprehensive Report, Decision Recommendation Output, Decision Scenario
Analysis Output, Decision Prediction Output, Decision Evaluation Output, Sim-
ulation Visualization Output, Intelligent Data Analysis and Data Mining Output,
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Statistical Analysis Output, and Intermediate Results; and (6) retain the resulting
healthcare decision analytics solutions (i.e., in terms of the generalized flows of
problem-solving with respect to the computational types, issues, and sub-questions
of the decision analytics problems, instead of the exact instances of the problems)
in its solution repository. The accumulatively aggregated solutions in the repository
then can be stored, inter-connected, updated, and utilized for managing similar or
more complex types, issues, and sub-questions of future problems.

The functions and examples of the integrated techniques provided by the
Analytics Engine of the HDASS module are presented in the drawing shown in
Fig. 8.3. The Identifying Problem Types sub-module within the Solution Builder,
supported by the functions of Semantic Analysis (e.g., XML-based, HL 7 Standards-
based) and Problem Classification and Matching, will help to infer the type and the
scope of the analytics problems (e.g., optimization problems or statistical analysis
problems or a combination of both problem types) and issues or sub-questions to be
addressed by the Input Information Repository.

With respect to the identified problem types, scope, issues, and sub-
questions, the Determining Solution sub-module will choose suitable existing
solutions and intelligently extend, revise, customize, or integrate the suitable
techniques (i.e., generate a solution for an analytics task) to build new solutions
by calling the Retrieving Existing Solutions, Meta-Knowledge About the
Relationship Between Problems and Solutions, and Required Analytics Techniques
Extension/Customization/Revise/Integration. The techniques categorized in the
Strategic Analysis, Intelligent Data Analysis, and Data-Driven Statistical Analysis
sub-modules will be used individually, sequentially, or in an integrated manner for
solving the decision analytics problems.

During the analytics process, the Determining Solution sub-module will mon-
itor and evaluate the automatically built solution based on the users’ criteria,
requirements, and feedback on the intermediate results, so as to automatically
and intelligently improve the solution by calling the Fine-Tuning Solution. The
updated or newly-built solutions will be incrementally stored and maintained in the
Maintaining Solution sub-module by calling the Updating Personalized Solution
Information and Updating Technique Repositories of Strategic Analysis/Intelligent
Data Analysis/Data-Driven Statistical Analysis sub-modules. This function of the
iHDS system allows for the solutions to be accumulatively aggregated for future
reuse.

The Solution Builder component also determines the needed data sources for
analytics by Determining Required Data Sources within Acquiring Required Data,
and prepares the needed data by calling Required Data Accessing, Retrieving,
Organizing, and Preprocessing to support various data analytics and data-driven
modeling steps.

Before executing the techniques already chosen and extended, customized,
revised, and integrated in the solution, the Configuring Solution sub-module of
the Solution Builder will initialize and parameterize the techniques with the related
variables by calling Initializing and Parameterizing Techniques in Solution. During
the analytics process, the Configuring Solution sub-module will automatically and
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intelligently fine-tune the parameter settings in the solution according to users’
criteria and requirements, contextual information, intermediate analytics results, and
users’ feedback by calling Fine-Tuning Parameter Settings.

After the intelligent selection and composition of the decision analytics and
support techniques in providing the solution(s) via Solution Builder, the Analytics
Engine will execute the techniques categorized as Strategic Analysis, Intelligent
Data Analysis, and Data-Driven Statistical Analysis. In the Strategic Analysis sub-
module, the functions include Modeling, Evaluation, Simulation, and Predication
for selected strategies, where techniques from Computational Modeling and Simula-
tion Analysis Technique Repository, as exemplified by the Algorithmic/Mechanism
Design, Queueing Model, Discrete Event Simulation, Optimization (such as mathe-
matical programming), and AOC-Based Model, will be used. The Strategic Analysis
phase will be carried out separately, or based on the results from the Intelligent
Data Analysis and the Data-Driven Statistical Analysis phases and vice versa (i.e.,
providing results to Intelligent Data Analysis and Data-Driven Statistical Analysis).
In Intelligent Data Analysis, the data analysis functions will be achieved by utilizing
techniques in Intelligent Data Analysis Technique Repository, as exemplified by
Artificial Intelligence Techniques, Machine Learning Techniques, Data Mining
Techniques, and Pattern Recognition Techniques. The Intelligent Data Analysis
phase will also be executed based on the result from the Data-Driven Statistical
Analysis phase (and vice versa), in which techniques from Data-Driven Statistical
Analysis Technique Repository, as exemplified by Regression, ANOVA, Structural
Equation Modeling, and Factor Analysis, will be used.

8.4 Case 1: Adaptive OR Time Block Allocation

The drawing in Fig. 8.4 presents the key modules for the first case (i.e., the
Intelligent User Interface, the HDASS module, and the IMS module), and their
interactions with the users (i.e., as healthcare workers) and healthcare-related data
collected from Existing Hospital Operations. The drawing in Fig. 8.5 shows the sub-
modules within the Analytics Engine in the first case, which includes the processes
and methods in the Solution Builder and Strategic Analysis modules, respectively.

After users access the iHDS system via the User Accessing component of
the Intelligent User Interface in any centralized, distributed or pervasive manner,
the Collecting Decision Analytics Problem Description component within the
Intelligent User Interface module will collect the general description of the problem
(i.e., how can OR time blocks be adaptively allocated to maintain a stable OR
performance in the face of dynamically-changing and non-deterministic patient
arrivals?). The User Profiling component of the Intelligent User Interface module
extracts and infers the contextual information for the user and the analytics problem,
such as whether the user type is a hospital administrator or the work place and ana-
lytics context are the cardiac surgery ORs in the Hamilton Health Science Centre.
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Fig. 8.5 The employed
techniques and specific
processes within the
Analytics Engine module in
the first case for designing
adaptive strategies for the OR
time block allocation
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The objective(s), problem types, issues, sub-questions, criteria, requirements
(e.g., indicators and measurements), and corresponding decision variables and
constraints for the decision analytics problem will be extracted, inferred, and refined
from the users’ problem sketches or descriptions. For instance, the objective should
be to provide an adaptive method for OR time block allocation. For instance, the
inferred sub-questions may include: (1) how to characterize dynamically-changing
and non-deterministic patient arrivals, (2) how to characterize the operations of
ORs, and (3) what mechanism helps to adaptively allocate OR time blocks for
unpredictable patients with different urgent levels. The criteria and requirements
include the trade-off between the number of bumped non-urgent surgeries and
unused urgent time blocks, the average wait times for measuring the performance
of ORs, and the dynamics of wait times with or without the produced adaptive OR
time block allocation method.

Upon the inputs from the Decision Analytics Problem Description (e.g., objec-
tive(s), problem types, issues, and sub-questions), Contextual Information (e.g.,
users’ profiles and analytics context for problems), and Criteria and Requirements
components from the Intelligent User Interface, the Solution Builder of the HDASS
module identifies and infers the problem types based on the functions provided by
Semantic Analysis and Problem Classification and Matching sub-modules within
the Solution Builder. According to the problem sketch from the user and the inferred
objective, problem type, issues, sub-questions, contextual information, criteria,
requirements (e.g., indicators and measurements), and corresponding decision
variables and constraints, the problem will be solved by integrating mechanism
design-based optimization along with simulation-based evaluation, and the ORs’
wait time dynamics demonstration.

To build a solution to achieve the analytics objective and to answer the sub-
questions, the Retrieving Existing Solution from Solution Repository and Meta-
Knowledge About the Relationship Between Problems and Solutions sub-modules
within the Determine Solution component automatically find that the Queueing
Model and Discrete Event Simulation from the Computational Modeling and
Simulation Analysis Technique Repository within the Strategic Analysis component
are useful approaches for modeling and simulating the operations of ORs’ existing
solutions. The Solution Builder then automatically and intelligently builds a solution
that sequentially utilizes Algorithmic/Mechanism Design to produce an adaptive OR
time block allocation strategy, Queueing Model to model the operations of ORs,
and Discrete Event Simulation to simulate the proposed queueing model with an
adaptive OR time block allocation strategy to evaluate (in terms of the trade-off
between the number of bumped non-urgent surgeries and unused urgent time blocks
for the ORs’ time block allocation and the average wait times for measuring the
performance of ORs) and fine-tune the produced adaptive OR time block allocation
method through the functions of Fine-Tuning Solution.

The Acquiring Required Data sub-module of the Solution Builder determines
and accesses the necessary data sources for developing, parameterizing, analyzing,
and evaluating the adaptive OR time block allocation method aided by the functions
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of Determining Required Data Sources and Required Data Accessing, Retrieving,
Organizing and Preprocessing.

IMS collects and stores the necessary data for parameterizing, simulating,
and evaluating the method of adaptive OR time block allocation for the
existing operations at the Hamilton Health Sciences Centre (HHSC) in
Centralized/Distributed/Pervasive MIS Databases. The HHSC contains six
specialized surgeons and two operating rooms, and provides 1400 cardiac surgeries
annually. Table 6.1 is an example that shows a summary of the HHSC cardiac
surgery data.

Aided by the functions of Initializing and Parameterizing Techniques in Solution
of Configuring Solution within the Analytics Engine, this case utilizes the data to
initialize the parameter settings of the adaptive OR time block allocation method,
the corresponding queueing model, and the subsequent discrete event simulations.

To achieve the objective of adaptive OR time block allocation, Algorith-
mic/Mechanism Design in the Analytics Engine within HDASS produces an
adaptive OR time block allocation scheduler based on a feedback mechanism (refer
to Fig. 6.2). The main idea of this case is to adjust time blocks for urgent surgeries
periodically based on the feedback information corresponding to the arrivals of
different priority groups and the effectiveness of ORs. Specifically, this adaptive
method utilizes an adjusted window mechanism, which is shown in Fig. 6.3.

To present the performance of the disclosed adaptive method, this case has
specifically built a queueing model (refer to Fig. 6.4) based on the empirical data on
cardiac surgery operating rooms in HHSC. The Discrete Event Simulation is utilized
to simulate the queueing model. The simulations are carried out based on the HHSC
statistical data. To compare the performance, the exemplified system carries out the
simulations under the same conditions after a single run. It can also perform multiple
simulation runs.

In the first case, System Output within HDASS includes Decision Evaluation
Output for the queueing model and the adaptive OR time block allocation method
by simulations, Decision Recommendation Output for result findings, and Com-
prehensive Report comprising the simulation results, sensitivity analysis for key
parameters (e.g., the adjustment step sizes and the thresholds) of the adaptive OR
scheduling strategy, Decision Evaluation Output and Decision Recommendation
Output. Figure 6.5 shows the Decision Evaluation Output for evaluating the
effectiveness of the adaptive OR time block allocation method in terms of the
queue length. Figures 6.6 and 6.7 show another two outputs as the exemplified
Decision Evaluation Output. Figure 6.6 shows that the adaptive method can reduce
the number of bumped non-urgent surgeries. Figure 6.7 shows the changes in the
OR time blocks for urgent surgeries with the adaptive strategy over time.

The Decision Recommendation Output in the first case contains the following
recommendations: (1) the generated adaptive OR time block allocation method is
able to more efficiently regulate the OR time block reservation in accordance with
the changing pattern of patient arrivals; (2) the hospital OR scheduler employing
the generated adaptive method can maintain a better trade-off between the number
of bumped non-urgent surgeries and the number of unused urgent OR time blocks;
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and (3) frequently adjusting the OR time block allocation (i.e., once per week or per
month) can improve the ORs’ effectiveness. The Comprehensive Report comprising
the above-mentioned evaluation outputs and decision recommendation outputs is
also generated for users.

8.5 Case 2: Adaptive Regional Healthcare
Resource Allocation

Healthcare resource allocation is an important problem for regional healthcare
administrators. Prior research [130] has advocated allocating resources according
to the occurrence and harmfulness of diseases in the population, for instance, as
assessed by the population-needs-based funding formula based on neighborhood
geodemographic factors (e.g., population size, age profile, geographic accessibility
to services, and educational profile). However, examining traditional estimation
methods for service needs, such as those introduced in prior research [146], shows
there are substantial differences between the estimated and real needs in some
regions. A possible explanation for the biased estimation is that the needs estimation
method is simply a linear combination of the considered factors that does not take
into consideration how these factors interact with each another as well as how
patients’ behavior relates to healthcare.

Imagine that you are a regional healthcare administrator in Ontario. You find
that the current resource allocation method for cardiac surgery services is static and
results in a gap between the estimated and real needs in LHINs. Therefore, you
would like to make a reasonable and evidence-based decision on regional resource
allocation for cardiac surgery to shorten the regional average wait times and reduce
wait time disparities. You seek help from the iHDS system and design your decision
analytics and support problem as follows:

“How can I adaptively allocate cardiac surgery resources in Ontario to shorten
the provincial average wait time and reduce wait time disparities in the face of
dynamically-changing and non-deterministic patient arrivals?”

After receiving your request and the general problem description, the iHDS
system intelligently identifies and infers the objective(s), problem types, issues,
sub-questions, contextual information, criteria, requirements (e.g., indicators and
measurements), and corresponding decision variables and constraints, builds a
solution, employs or customizes the identified techniques for decision analysis,
and returns an adaptive regional resource allocation method, statistical and strategic
analysis outputs, decision evaluation, and recommendation outputs. In what follows,
we will show the operational process, methods and components of the present
iHDS system involved in the second case to: (1) analyze the relationships between
neighborhood geodemographic factors and cardiac surgery characteristics (e.g., the
number of patient arrivals) pertaining to the hospitals; (2) model patient arrival
behavior and cardiac surgery service operations in the hospitals to investigate the
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temporal-spatial patterns of service utilizations and complex emergent behavior
(i.e., behavior of a complex healthcare system, such as reneging behavior in hospital
selection) of the exemplified cardiac surgery service through simulation; and (3)
automatically generate an adaptive method for allocating regional cardiac surgery
resources based on simulations.

The drawing in Fig. 8.6 presents the key modules involved in the second test
case of the iHDS system, i.e., the Intelligent User Interface, the HDASS, and the
IMS modules, and its interactions (e.g., through the intermediate results and user’s
feedback on them) with the user (e.g., you, as a healthcare worker) via the Intelligent
User Interface and necessary healthcare-related data about Existing Hospital Oper-
ations, Determinants for Healthcare (e.g., demographic and socioeconomic related
behavior), and Academic/Medical Research Databases.

The drawing in Fig. 8.7 shows the sub-modules within the Analytics Engine for
the second case, which includes the processes and methods in the Solution Builder,
Strategic Analysis, and Data-Driven Statistical Analysis modules, respectively.

After you access the iHDS system via the User Accessing component of the
Intelligent User Interface in any centralized, distributed, or pervasive manner, the
Collecting Decision Analytics Problem Description component of the Intelligent
User Interface will gather the general description of the problem (i.e., How can I
adaptively allocate cardiac surgery resources in Ontario to shorten the province’s
average wait times and reduce wait time disparities in the face of dynamically-
changing and non-deterministic patient arrivals?).

The User Profiling component of the Intelligent User Interface module extracts
and infers the contextual information for the user (i.e., you, in this case) and
the analytics problem, such as the user type is a provincial healthcare service
administrator and the analytics context is the cardiac surgery services in Ontario.
The objective(s), problem types, issues, sub-questions, criteria, requirements (e.g.,
indicators and measurements), and corresponding decision variables and constraints
for the decision analytics problem will be automatically extracted, inferred, and
refined from the user’s problem and the extracted or inferred contextual infor-
mation. For instance, the objective is to provide an adaptive method for regional
healthcare resource allocation in order to shorten the regional average wait times
and reduce regional wait time disparities. Sub-questions will involve: (1) what
and how geodemographic factors affect the cardiac surgery service characteristics
(e.g., the number of patient arrivals and wait times), (2) how to model patient
service utilization behavior, so as to characterize dynamically-changing and non-
deterministic patient arrivals to investigate the temporal-spatial patterns of cardiac
surgery service utilizations, and even to capture the emergent behavior (e.g.,
reneging behavior in hospital selection) of the exemplified complex healthcare
system, (3) how to characterize the operations of cardiac surgery services, and (4)
what mechanism helps to adaptively allocate the cardiac surgery resources with
respect to the regional heterogeneity in terms of geodemographic factors and the
patient heterogeneity in terms of health service utilization behavior. Examples of the
criteria and requirements include the measurement of regional wait time disparities,



148 8 An Intelligent Healthcare Decision Support System

F
ig

.8
.6

T
he

co
m

po
ne

nt
s,

fu
nc

tio
ns

,a
nd

em
pl

oy
ed

te
ch

ni
qu

es
in

th
e

se
co

nd
te

st
ca

se
of

ut
ili

zi
ng

th
e

iH
D

S
sy

st
em

to
ad

ap
tiv

el
y

al
lo

ca
te

re
gi

on
al

he
al

th
ca

re
re

so
ur

ce
s



8.5 Case 2: Adaptive Regional Healthcare Resource Allocation 149

Fig. 8.7 The sub-modules
with specific processes and
employed techniques within
the Analytics Engine module
in the second case of utilizing
the iHDS system
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the temporal-spatial patterns, and the dynamically-changing process of regional
patient arrivals and wait times for cardiac surgery services.

Upon the input from the Intelligent User Interface module about the decision
analytical problem description (e.g., objective(s) and sub-questions), the contextual
information (e.g., users’ profiles and analytics context for problems), and the
criteria and requirements components, the HDASS Solution Builder identifies the
problem types based on the functions provided by the embedded Semantic Analysis
and Problem Classification and Matching sub-modules. According to the problem
defined by the user and the inferred objective, problem type, issues, sub-questions,
contextual information, criteria, requirements (e.g., indicators and measurements),
and corresponding decision variables and constraints, the problem will be solved by
integrating the statistical analysis, mechanism design, modeling and simulation, and
optimization.

To build a solution to achieve the analytics objective(s) and answer the sub-
questions, the Retrieving Existing Solution from Solution Repository and Meta-
Knowledge About the Relationship Between Problems and Solutions within the
Determine Solution automatically infers that: (1) SEM is suitable for modeling
and analyzing the complex and hierarchical relationships between geodemographic
factors and cardiac surgery service characteristics in that it is efficient in construct-
ing latent variables (i.e., variables that cannot be measured directly) and testing
complex relationships among the observed and latent variables, as explained by
Hair et al. [48]; (2) the AOC-Based Model is in favor of modeling the cardiac
surgery system with respect to patient service utilization behavior; (3) the Queueing
Model and Discrete Event Simulation modules from the Computational Modeling
and Simulation Analysis Technique Repository within the Strategic Analysis sub-
modules are useful approaches to modeling and simulating the operations of
ORs; and (4) Simulation-Based Optimization is beneficial to generate an adaptive
resource allocation method through simulation independently or based on the
Algorithmic/Mechanism Design.

The Solution Builder then automatically and intelligently builds a solution that
integrally utilizes Structural Equation Modeling, AOC-Based Model, Queueing
Model, Discrete Event Simulation, Algorithmi/Mechanism Design, and Simulation-
Based Optimization to achieve the objective(s) of the user and answer the closely-
interrelated sub-questions. Specifically, the AOC-based modeling of the cardiac
surgery system with respect to patient service utilization behavior (i.e., arrival
behavior) will refer to the SEM results. The AOC-based cardiac surgery model
comprises a specific queueing model for service operations. Both AOC-based
multi-agent simulations and discrete event simulations will together support the
implementation of Simulation-Based Optimization.

Accordingly, the Acquiring Required Data component of the Solution Builder
determines and accesses the necessary data sources for this analytics problem aided
by the functions of the Determining Required Data Sources and Required Data
Accessing, Retrieving, Organizing and Preprocessing. The data sources involved
in this analytics problem contain Existing Hospital Operations (about the charac-
teristics of cardiac surgery services), Secondary Service Provider (e.g., about the
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referral for cardiac surgery from family doctors), and Determinants for Healthcare
(e.g., the geodemographic profiles for a region).

IMS has collected, stored, and maintained the necessary data for developing,
parameterizing, analyzing, modeling, simulating, and evaluating of the adaptive
resource allocation problem. The HIS and MIS databases contain data representing
cardiac surgery characteristics (i.e., arrival, capacity, supply, and wait time) in
Ontario, Canada, in the years between 2004 and 2007. The databases of Census Data
Sources have stored neighborhood geodemographic data gathered from the 2006
Canadian Census with respect to the population size, age profile, and educational
profile. In this illustration, 47 major cities/towns in Ontario with populations of more
than 40,000 (this population cut-off point was determined so that the cities/towns
included in the sample represented approximately 90.72% of Ontario’s population)
were selected to derive the geodemographic profiles for 14 LHINs. In addition,
the Secondary Service Providers’ databases collected and stored the driving time
from each sampled city or town to the nearest hospital that provides cardiac surgery
services to measure service accessibility. In this illustration, the driving times were
estimated based on the “Get Directions” function in Google Maps.

For the solution, the iHDS system in the second case first automatically
(1) builds hypotheses based on the previous studies stored and maintained in
Centralized/Distributed/Pervasive Academic/Medical Research Databases, in which
data were gathered from Academic/Medical Research Databases (e.g., Medline and
PubMed), and (2) utilizes the SEM method to capture the relationships between
geodemographic factors and patient arrivals for cardiac surgery services based on
the data queried from the HIS Databases, MIS Databases, and Secondary Service
Providers’ Data Sources.

According to the determined solution, the iHDS system in the second case auto-
matically and intelligently models the cardiac surgery system considering patient
arrival behavior based on the findings of the SEM test and AOC-based modeling to
identify and evaluate the dynamics of patient arrivals and wait times and capture the
complex emergent behavior of the healthcare system. In the AOC-Based Cardiac
Surgery System Model, the behavior of three types of autonomous behavior-based
entities, i.e., patient, GP, and hospital, their behavioral interactions, as well as the
environment actively carrying out information exchanges, are automatically and
computationally modeled.

As suggested by the preceding SEM-based Statistical Analysis Output and prior
studies [29], the major factors that should be considered in modeling autonomous
patients’/GPs’ hospital selection behavior include the quantities of healthcare
physical (e.g., the number of operating rooms) and human resources (e.g., the
number of physicians), the geographic distance from home to hospitals, and the
waiting time for receiving the requested healthcare services. As in the actual cardiac
surgery system, patients almost follow GPs’ referral suggestions. Therefore, the
iHDS system sets that autonomous patient entities always select the hospital that
is recommended by their GPs.

The autonomous hospital selection behavior of a GP is automatically and
computationally modeled based on the following decision process. When GP
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entities choose a hospital, they will first calculate the utility (representing the
degree of satisfaction on a hospital in terms of the travel distance, service quality
assurance, and wait times for receiving services) for each hospital based on released
information and their experience on historical referrals in terms of wait times. The
hospital that has the highest expected utility will be recommended.

The autonomous behavior of hospital entities is automatically and computation-
ally modeled based on queueing processes. Thus, in the second case, the Queueing
Model proposed a general Multi-Priority, Multi-Server, Non-Preemptive Queueing
Model for a hospital.

Based on the AOC-based cardiac surgery system model described earlier,
discrete-event simulations were carried out to validate the model and to examine
the temporal-spatial service utilization patterns, the dynamics of patient arrivals and
healthcare service performance in terms of the throughput, wait times, and queue
length, and the emergent behavior of the complex healthcare system in different
scenarios. In addition, adaptive methods and strategies for healthcare resource
allocation were generated, evaluated, and recommended by means of AOC-based
(i.e., AOC-by-self-discovery) modeling and simulation.

The second case provides decision analytics and support in the form of the textual
or graphical Comprehensive Report, Decision Recommendation Output, Decision
Scenario Analysis Output, Decision Prediction Output, Decision Evaluation Output,
Simulation Visualization Output, and Statistical Analysis Output. In particular, the
generated SEM testing results and suggestions for healthcare resource allocation
are formatted and reported by the Statistical Analysis Output and Decision Rec-
ommendation Output in the module of System Output within HDASS. In Decision
Recommendation Output, the generated findings of the SEM testing results suggest
that: (1) regional wait time disparities in cardiac surgery services are associated with
differences in geodemographic profiles, such as service accessibility and education;
(2) the allocation of resources for a particular healthcare service in one area should
consider the geographic distribution of the same service in neighboring areas; and
(3) an increase in physician resources and the more efficient use of existing surgical
facilities may contribute to a reduction in cardiac surgery wait time.

Built on the above results, the simulation results of the AOC-based cardiac
surgery system modeling and the following strategic analysis on adaptive healthcare
resource allocation are generated, formatted, and reported in the forms of the
textual or graphical Comprehensive Report, Decision Recommendation Output,
Decision Scenario Analysis Output, Decision Prediction Output, Decision Evalu-
ation Output, and Simulation Visualization Output. After being parameterized by
the actual geodemographic and hospital characteristics data, the AOC-based cardiac
surgery system model is validated by autonomous behavior-based simulations. The
temporal-spatial hospital service utilization patterns and the dynamics of patient
arrivals and hospital performance are generated and observed. Then, based on the
validated AOC-based cardiac surgery system model, simulations are run in different
scenarios (e.g., a sharp increase of urgent cardiac surgery patients because of cold
weather or hospitals providing more accurate and timely wait time information to
represent their performance for patients) and generate the corresponding results and
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findings by Decision Scenario Analysis Output and Decision Prediction Output.
In such simulations, interesting complex emergent behavior (e.g., patient reneging
patterns represented by the number of patients who left the nearest hospitals
or left before being transferred by their GPs) of the cardiac surgery system is
captured. Similarly, the effectiveness of adaptive resource allocation methods or
strategies is evaluated by autonomous behavior-based simulations and reported by
Decision Evaluation Output. By utilizing or extending the functions of 2D or 3D
geographical information systems, such as Google Earth, the iHDS system in the
second case employs Simulation Visualization Output to visualize the dynamics
of patient arrivals and healthcare performance such as throughput, wait times
and queue length, and spatial-temporal service utilization patterns, as well as the
emergent behavior of the complex healthcare system for all of the above-mentioned
simulations.

8.6 Remarks on the Industrial Applications
of the iHDS System

Our iHDS system relates to the architecture of systems in either stand-alone,
distributed, collaborative, or pervasive settings; key components of the systems and
their underlying processes and couplings; the computational techniques built into
the methods; input data sources integrated into and output results produced and
distributed by the systems; and the modules for carrying out the corresponding
user interaction, data access and collection, data integration and processing, data-
driven inferences and simulation, intelligent computations, decision analytics, and
support for generating solutions to various healthcare analytics and decision-making
problems. The running of the iHDS system was illustrated by two working cases.
One case showed how the iHDS system generated adaptive solutions for OR time
block allocation. The generated output can readily be used to help ORs maintain
a stable performance in the face of dynamically-changing and non-deterministic
patient arrivals (e.g., due to geodemographic, environmental, climate, and socioe-
conomic variations). Here, the non-deterministic patients may be predicted by
various statistical and mathematical techniques, although particular outcomes may
not happen with complete certainty. The second case showed how the iHDS system
performed decision analytics tasks and adaptive decision support in allocating
regional healthcare resource, reducing healthcare performance disparities, and
optimizing resource utilization.

The iHDS system may be implemented using general-purpose or specialized
computing platforms, computing devices, computer processors, or electronic cir-
cuitries including, but not limited to, digital signal processors (DSP), application
specific integrated circuits (ASIC), field programmable gate arrays (FPGA), and
other relevant programmable logic devices configured or programmed according
to the teachings of the present disclosure. Specialists can develop computer
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instructions or software code running on general-purpose or specialized computing
platforms, computing devices, computer processors, or programmable logic devices
based on the guidelines presented in this book. When implemented, the different
functions of the iHDS system may be performed in a different order or concurrently
with each other, if desired. Furthermore, one or more of the above-described
functions may be optional or may be combined.
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Ai(t) – Patient arrivals to hospital i at time t ,
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Bi(t) – Patient throughput of unit i at time t ,
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a SH , 24
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times, 112
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PTji – Proportion of patients from LHIN j to

LHIN i, 41
Qi(t) – Queue length in hospital i at time t , 42

R = {r1, r2, · · · , rNR
} – Resources in a SH , 23

R(t) – The number of time blocks for urgent
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μ – Service rate in a queueing model, 76
πjk – Regression parameter, 72
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σ – A standard threshold in t̂ , 89
σjk – A constant term relating to ξj and xjk , 74
τ – A time round, 111
θi – Threshold for adjusting OR time blocks,

89
θjk – A parameter representing the changes of

ξj with respect to xjk , 74
T̃ – Time period for adjusting the service rate,
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w̃ – Wait time information, 112
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cityID – City’s identity, 112

dij – Distance from a city ci to a hospital hj ,
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endT ime – The time step that a patient has
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hospitalID - Hospital’s identity, 112
joinT ime – The time step that a patient joins

in a hospital, 112
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assigned to a physician j , 80
patient – A patient entity, 112
patientID – Patient’s identity, 112
qj,Ū – Probability of a non-urgent patient

served by a physician j , 80
rule – Behavior rule, 112
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type – Patient type, 112
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