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DED ICAT ION
ALFRED N. MARTIN (1919–2003)

This fiftieth anniversary edition of Martin’s Physical Phar-
macy and Pharmaceutical Sciences is dedicated to the mem-
ory of Professor Alfred N. Martin, whose vision, creativity,
dedication, and untiring effort and attention to detail led to
the publication of the first edition in 1960. Because of his
national reputation as a leader and pioneer in the then emerg-
ing specialty of physical pharmacy, I made the decision to
join Professor Martin’s group of graduate students at Pur-
due University in 1960 and had the opportunity to witness
the excitement and the many accolades of colleagues from
far and near that accompanied the publication of the first
edition of Physical Pharmacy. The completion of that work
represented the culmination of countless hours of painstak-
ing study, research, documentation, and revision on the part
of Dr. Martin, many of his graduate students, and his wife,
Mary, who typed the original manuscript. It also represented
the fruition of Professor Martin’s dream of a textbook that
would revolutionize pharmaceutical education and research.
Physical Pharmacy was for Professor Martin truly a labor of
love, and it remained so throughout his lifetime, as he worked
unceasingly and with steadfast dedication on the subsequent
revisions of the book.

The publication of the first edition of Physical Pharmacy
generated broad excitement throughout the national and inter-
national academic and industrial research communities in
pharmacy and the pharmaceutical sciences. It was the world’s
first textbook in the emerging discipline of physical pharmacy
and has remained the “gold standard” textbook on the appli-
cation of physical chemical principles in pharmacy and the
pharmaceutical sciences. Physical Pharmacy, upon its publi-
cation in 1960, provided great clarity and definition to a dis-
cipline that had been widely discussed throughout the 1950s
but not fully understood or adopted. Alfred Martin’s Physi-
cal Pharmacy had a profound effect in shaping the direction
of research and education throughout the world of pharma-
ceutical education and research in the pharmaceutical indus-
try and academia. The publication of this book transformed
pharmacy and pharmaceutical research from an essentially
empirical mix of art and descriptive science to a quantita-
tive application of fundamental physical and chemical scien-
tific principles to pharmaceutical systems and dosage forms.
Physical Pharmacy literally changed the direction, scope,

focus, and philosophy of pharmaceutical education during the
1960s and the 1970s and paved the way for the specialty dis-
ciplines of biopharmaceutics and pharmacokinetics which,
along with physical pharmacy, were necessary underpinnings
of a scientifically based clinical emphasis in the teaching of
pharmacy students, which is now pervasive throughout phar-
maceutical education.

From the time of the initial publication of Physical Phar-
macy to the present, this pivotal and classic book has been
widely used both as a teaching textbook and as an indis-
pensible reference for academic and industrial researchers in
the pharmaceutical sciences throughout the world. This sixth
edition of Martin’s Physical Pharmacy and Pharmaceutical
Sciences serves as a most fitting tribute to the extraordinary,
heroic, and inspired vision and dedication of Professor Mar-
tin. That this book continues to be a valuable and widely
used textbook in schools and colleges of pharmacy through-
out the world, and a valuable reference to pharmaceutical
scientists and researchers, is a most appropriate recognition
of the life’s work of Alfred Martin. All who have contributed
to the thorough revision that has resulted in the publication
of the current edition have retained the original format and
fundamental organization of basic principles and topics that
were the hallmarks of Professor Martin’s classic first edition
of this seminal book.

Professor Martin always demanded the best of himself, his
students, and his colleagues. The fact that the subsequent and
current editions of Martin’s Physical Pharmacy and Phar-
maceutical Sciences have remained faithful to his vision of
scientific excellence as applied to understanding and apply-
ing the principles underlying the pharmaceutical sciences is
indeed a most appropriate tribute to Professor Martin’s mem-
ory. It is in that spirit that this fiftieth anniversary edition is
formally dedicated to the memory of that visionary and cre-
ative pioneer in the discipline of physical pharmacy, Alfred
N. Martin.

John L. Colaizzi, PhD
Rutgers, The State University of New Jersey

Piscataway, New Jersey
November 2009
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PREFA C E

Ever since the First Edition of Martin’s Physical Pharmacy
was published in 1960, Dr. Alfred Martin’s vision was to pro-
vide a text that introduced pharmacy students to the applica-
tion of physical chemical principles to the pharmaceutical sci-
ences. This remains a primary objective of the Sixth Edition.
Martin’s Physical Pharmacy has been used by generations of
pharmacy and pharmaceutical science graduate students for
50 years and, while some topics change from time to time,
the basic principles remain constant, and it is my hope that
each edition reflects the pharmaceutical sciences at that point
in time.

ORGANIZATION

As with prior editions, this edition represents an updating of
most chapters, a significant expansion of others, and the addi-
tion of new chapters in order to reflect the applications of the
physical chemical principles that are important to the Phar-
maceutical Sciences today. As was true when Dr. Martin was
at the helm, this edition is a work in progress that reflects
the many suggestions made by students and colleagues in
academia and industry. There are 23 chapters in the Sixth
Edition, as compared with 22 in the Fifth Edition. All chap-
ters have been reformatted and updated in order to make
the material more accessible to students. Efforts were made
to shorten chapters in order to focus on the most important
subjects taught in Pharmacy education today. Care has been
taken to present the information in “layers” from the basic
to more in-depth discussions of topics. This approach allows
the instructor to customize their course needs and focus their
course and the students’ attention on the appropriate topics
and subtopics.

With the publication of the Sixth Edition, a Web-based
resource is also available for students and faculty members
(see the “Additional Resources” section later in this preface).

FEATURES

Each chapter begins with a listing of Chapter Objectives that
introduce information to be learned in the chapter. Key Con-
cept Boxes highlight important concepts, and each Chapter
Summary reinforces chapter content. In addition, illustra-
tive Examples have been retained, updated, and expanded.
Recommended Readings point out instructive additional
sources for possible reference. Practice Problems have been

moved to the Web (see the “Additional Resources” section
later in this preface).

SIGNIFICANT CHANGES FROM THE FIFTH EDITION

Important changes include new chapters on Pharmaceutical
Biotechnology and Oral Solid Dosage Forms. Three chap-
ters were rewritten de novo on the basis of the valuable
feedback received since the publication of the Fifth Edi-
tion. These include Chapter 1 (“Introduction”), which is
now called Interpretive Tools; Chapter 20 (“Biomaterials”),
which is now called Pharmaceutical Polymers; and Chap-
ter 23 (“Drug Delivery Systems”), which is now called
Drug Delivery and Targeting.

ADDITIONAL RESOURCES

Martin’s Physical Pharmacy and Pharmaceutical Sciences,
Sixth Edition, includes additional resources for both instruc-
tors and students that are available on the book’s companion
Web site at thepoint.lww.com/Sinko6e.

Instructors

Approved adopting instructors will be given access to the
following additional resources:

■ Practice problems and answers to ascertain student under-
standing.

Students

Students who have purchased Martin’s Physical Pharmacy
and Pharmaceutical Sciences, Sixth Edition, have access to
the following additional resources:

■ A separate set of practice problems and answers to rein-
force concepts learned in the text.

In addition, purchasers of the text can access the searchable
Full Text Online by going to the Martin’s Physical Phar-
macy and Pharmaceutical Sciences, Sixth Edition, Web site
at thePoint.lww.com/Sinko6e. See the inside front cover of
this text for more details, including the passcode you will
need to gain access to the Web site.

Patrick Sinko
Piscataway, New Jersey
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1 Interpretive Tools 
Chapter Objectives 
At the conclusion of this chapter the student should be able to: 

1. Understand the basic tools required to analyze and interpret data sets from the clinic, 
laboratory, or literature. 

2. Describe the differences between classic dosage forms and modern drug delivery 
systems. 

3. Use dimensional analysis. 
4. Understand and apply the concept of significant figures. 
5. Define determinant and indeterminant errors, precision, and accuracy. 
6. Calculate the mean, median, and mode of a data set. 
7. Understand the concept of variability. 
8. Calculate standard deviation and coefficient of variation and understand when it is 

appropriate to use these parameters. 
9. Use graphic methods to determine the slope of lines. 
10. Interpret slopes of lines and how they relate to absorption and elimination from the 

body. 

Introduction 
“One of the earmarks of evidence-based medicine is that the practitioner should not just accept the 

conventional wisdom of his/her mentor. Evidence-based medicine uses the scientific method of using 

observations and literature searches to form a hypothesis as a basis for appropriate medical therapy. 

This process necessitates education in basic sciences and an understanding of basic scientific 

principles.”1,2 Today more than ever before, the pharmacist and the pharmaceutical scientist are called 

upon to demonstrate a sound knowledge of biopharmaceutics, biochemistry, chemistry, pharmacology, 

physiology, and toxicology and an intimate understanding of the physical, chemical, and 

biopharmaceutical properties of medicinal products. Whether engaged in research and development, 

teaching, manufacturing, the practice of pharmacy, or any of the allied branches of the profession, the 

pharmacist must recognize the need to rely heavily on the basic sciences. This stems from the fact that 

pharmacy is an applied science, composed of principles and methods that have been culled from other 

disciplines. The pharmacist engaged in advanced studies must work at the boundaries between the 

various sciences and must keep abreast of advances in the physical, chemical, and biological fields in 

order to understand and contribute to the rapid developments in his or her profession. You are also 

expected to provide concise and practical interpretations of highly technical drug information to your 

patients and colleagues. With the abundance of information and misinformation that is freely and 

publicly available (e.g., on the Internet), having the tools and ability to provide meaningful interpretations 

of results is critical. 

Historically, physical pharmacy has been associated with the area of pharmacy that dealt with the 

quantitative and theoretical principles of physicochemical science as they applied to the practice of 

pharmacy. Physical pharmacy attempted to integrate the factual knowledge of pharmacy through the 

development of broad principles of its own, and it aided the pharmacist and the pharmaceutical scientist 

in their attempt to predict the solubility, stability, compatibility, and biologic action of drug products. 

Although this remains true today, the field has become even more highly integrated into the biomedical 

aspects of the practice of pharmacy. As such, the field is more broadly known today as 

the pharmaceutical sciences and the chapters that follow reflect the high degree of integration of the 

biological and physical–chemical aspects of the field. 

Developing new drugs and delivery systems and improving upon the various modes of administration 

are still the primary goals of the pharmaceutical scientist. A practicing pharmacist must also possess a 

thorough understanding of modern drug delivery systems as he or she advises patients on the best use 

of prescribed medicines. In the past, drug delivery focused nearly exclusively on pharmaceutical 
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Since significant figure rules are based upon estimations derived from statistical rules for 
handling probability distributions, they apply only to measuredvalues. The concept of 
significant figures does not pertain to values that are known to be exact. For example, integer 
counts (e.g., the number of tablets dispensed in a prescription bottle); legally defined 
conversions such as 1 pint = 473 mL; constants that are defined arbitrarily (e.g., a centimeter 
is 0.01 m); scalar operations such as “doubling” or “halving”; and mathematical constants, 
such as π and e. However, physical constants such as Avogadro's number have a limited 
number of significant figures since the values for these constants are derived from 
measurements. 

Example 1-5 
The following example is used to illustrate excessive precision. If a faucet is turned on and 
100 mL of water flows from the spigot in 31.47 sec, what is the average volumetric flow rate? 
By dividing the volume by time using a calculator, we get a rate of 3.177629488401652 
mL/sec. Directly stating the uncertainty is the simplest way to indicate the precision of any 
result. Indicating the flow rate as 3.177 ± 0.061 mL/sec is one way to accomplish this. This is 
particularly appropriate when the uncertainty itself is important and precisely known. If the 
degree of precision in the answer is not important, it is acceptable to express trailing digits 
that are not known exactly, for example, 3.1776 mL/sec. If the precision of the result is not 
known you must be careful in how you report the value. Otherwise, you may overstate the 
accuracy or diminish the precision of the result. 

In dealing with experimental data, certain rules pertain to the figures that enter into the computations: 

1. In rejecting superfluous figures, increase by 1 the last figure retained if the following figure 

rejected is 5 or greater. Do not alter the last figure if the rejected figure has a value of less than 

5. 

2. Thus, if the value 13.2764 is to be rounded off to four significant figures, it is written as 13.28. 

The value 13.2744 is rounded off to 13.27. 

3. In addition or subtraction include only as many figures to the right of the decimal point as there 

are present in the number with the least such figures. Thus, in adding 442.78, 58.4, and 2.684, 

obtain the sum and then round off the result so that it contains only one figure following the 

decimal point: 

This figure is rounded off to 503.9. 

Rule 2 of course cannot apply to the weights and volumes of ingredients in the monograph of a 

pharmaceutical preparation. The minimum weight or volume of each ingredient in a 

pharmaceutical formula or a prescription 

P.6 

 

should be large enough that the error introduced is no greater than, say, 5 in 100 (5%), using 

the weighing and measuring apparatus at hand. Accuracy and precision in prescription 

compounding are discussed in some detail by Brecht.5 

4. In multiplication or division, the rule commonly used is to retain the same number of significant 

figures in the result as appears in the value with the least number of significant figures. In 

multiplying 2.67 and 3.2, the result is recorded as 8.5 rather than as 8.544. A better rule here is 

to retain in the result the number of figures that produces a percentage error no greater than 

that in the value with the largest percentage uncertainty. 
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these variables are quantitative in nature. In other words, if you were given a set of “interval” data you 

would be able to calculate the exact differences between the different values. This makes this type of 

data “quantitative.” Since the interval between measurements can be very small, we can also say that 

the data are “continuous.” Another laboratory example of interval data measures is temperature. Think 

of the gradations on a common thermometer (in Celsius or Fahrenheit scale)—they are typically spaced 

apart by 1 degree with minor gradations at the 1/10th degree. The intervals could become even smaller; 

however, because of the physical limitations of common thermometers, smaller gradations are not 

possible since they cannot be read accurately. Of course, with digital thermometers the gradations (or 

intervals) could be much smaller but then the precision of the thermometer may become questionable. 

Another temperature scale that will be used in various sections of this text is the Kelvin scale, a 

thermodynamic temperature scale. By international agreement, 

P.7 

 

the Kelvin and Celsius scales are related through the definition of absolute zero (in other words, 0 K = -

273.15°C). Since the thermodynamic temperature is measured relative to absolute zero, the Kelvin 

scale is considered a ratio measurement. This also holds true for other physical quantities such as 

length or mass. The third common data type in the pharmaceutical sciences is ordinal 

scale measurements. Ordinal measurements represent the rank order of what is being measured. 

“Ordinals” are more subjective than interval or ratio measurements. 

The final type of measurement is called nominal data. In this type of measurement, there is no order or 

sequence of the observations. They are merely assigned different groupings such as by name, make, or 

some similar characteristic. For example, you may have three groups of tablets: white tablets, red 

tablets, and yellow tablets. The only way to associate the various tablets is by their color. In clinical 

research, variables measured at a nominal level include sex, marital status, or race. There are a variety 

of ways to classify data types and the student is referred to texts devoted to statistics such as those 

listed in the recommended readings at the end of this chapter.6,7 

Error and Describing Variability 
If one is to maintain a high degree of accuracy in the compounding of prescriptions, the manufacture of 

products on a large scale, or the analysis of clinical or laboratory research results, one must know how 

to locate and eliminate constant and accidental errors as far as possible. Pharmacists must recognize, 

however, that just as they cannot hope to produce a perfect pharmaceutical product, neither can they 

make an absolute measurement. In addition to the inescapable imperfections in mechanical apparatus 

and the slight impurities that are always present in chemicals, perfect accuracy is impossible because of 

the inability of the operator to make a measurement or estimate a quantity to a degree finer than the 

smallest division of the instrument scale. 

Error may be defined as a deviation from the absolute value or from the true average of a large number 

of results. Two types of errors are recognized: determinate(constant) and indeterminate (random or 

accidental). 

Determinate Errors 
Determinate or constant errors are those that, although sometimes unsuspected, can be avoided or 

determined and corrected once they are uncovered. They are usually present in each measurement and 

affect all observations of a series in the same way. Examples of determinate errors are those inherent in 

the particular method used, errors in the calibration and the operation of the measuring instruments, 

impurities in the reagents and drugs, and biased personal errors that, for example, might recur 

consistently in the reading of a meniscus, in pouring and mixing, in weighing operations, in matching 

colors, and in making calculations. The change of volume of solutions with temperature, although not 

constant, is a systematic error that can also be determined and accounted for once the coefficient of 

expansion is known. 

Determinate errors can be reduced in analytic work by using a calibrated apparatus, using blanks and 

controls, using several different analytic procedures and apparatus, eliminating impurities, and carrying 

out the experiment under varying conditions. In pharmaceutical manufacturing, determinate errors can 
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Attempt Weight (g) 

1 1.05 

2 0.98 

3 0.95 

4 1.00 

5 1.02 

6 1.00 

7 1.10 

8 1.03 

9 0.96 

10 0.98 
 

If ΣXi = 9.99 and N = 10, so 9.99/10 = 0.999. Given the number of significant figures, the 
average would be reported as 1.00 g, which equals 1 mL since the density of water is 1 g/mL. 

The median is the middle value of a range of values when they are arranged in rank order (e.g., from 

lowest to highest). So, the median value of the list [1, 2, 3, 4, 5] is the number 3. In this case, the mean 

is also 3. So, which value is a better indicator of the central tendency of the data? The answer in this 

case is neither—both indicate central tendency equally well. However, the value of the median as a 

summary statistic 

P.9 

 

becomes more obvious when the data set is skewed (in other words, when there are outliers or data 

points with values that are quite different from most of the others in the data set). For example, in the 

data set [1, 2, 2, 3, 10] the mean would be 3.6 but the median would be 2. In this case, the median is a 

better summary statistic than the mean because it gives a better representation of central tendency of 

the data set. Sometimes the median is referred to as a more “robust” statistic since it gives a reasonable 

outcome even with outlier results in the data set. 

Example 1-7 
As you have seen, calculating the median of a data set with an odd number of results is 
straightforward. But, what do you do when a data set has an even number of members? For 
example, in the data set [1, 2, 2, 3, 4, 10] you have 6 members to the data set. To calculate 
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formulas or complex equations but rather to give the student a perspective on analyzing data 
as well as providing a foundation for the interpretation of results. Numbers alone are not 
dynamic and do not give a sense of the behavior of the results. In some situations, equations 
or graphic representations were used to give the more advanced student a sense of the 
dynamic behavior of the results. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e 
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2 States of Matter 
Chapter Objectives 
At the conclusion of this chapter the student should be able to: 

1. Understand the nature of the intra- and intermolecular forces that are involved in 
stabilizing molecular and physical structures. 

2. Understand the differences in these forces and their relevance to different types 
molecules. 

3. Discuss supercritical states to illustrate the utility of supercritical fluids for 
crystallization and microparticulate formulations. 

4. Appreciate the differences in the strengths of the intermolecular forces that are 
responsible for the stability of structures in the different states of matter. 

5. Perform calculations involving the ideal gas law, molecular weights, vapor pressure, 
boiling points, kinetic molecular theory, van der Waals real gases, the Clausius–
Clapeyron equation, heats of fusion and melting points, and the phase rule equations. 

6. Understand the properties of the different states of matter. 
7. Describe the pharmaceutical relevance of the different states of matter to drug 

delivery systems by reference to specific examples given in the text boxes. 
8. Describe the solid state, crystallinity, solvates, and polymorphism. 
9. Describe and discuss key techniques utilized to characterize solids. 
10. Recognize and elucidate the relationship between differential scanning calorimetry, 

thermogravimetric, Karl Fisher, and sorption analyses in determining polymorphic 
versus solvate detection. 

11. Understand phase equilibria and phase transitions between the three main states of 
matter. 

12. Understand the phase rule and its application to different systems containing multiple 
components. 

Binding Forces Between Molecules 
For molecules to exist as aggregates in gases, liquids, and solids, intermolecular forces must exist. An 

understanding of intermolecular forces is important in the study of pharmaceutical systems and follows 

logically from a detailed discussion of intramolecular bonding energies. Like intramolecular bonding 

energies found in covalent bonds, intermolecular bonding is largely governed by electron orbital 

interactions. The key difference is that covalency is not established in theintermolecular state. Cohesion, 

or the attraction of like molecules, and adhesion, or the attraction of unlike molecules, are 

manifestations of intermolecular forces. Repulsion is a reaction between two molecules that forces them 

apart. For molecules to interact, these forces must be balanced in an energetically favored arrangement. 

Briefly, the term energetically favored is used to describe the intermolecular distances and 

intramolecular conformations where the energy of the interaction is maximized on the basis of the 

balancing of attractive and repulsive forces. At this point, if the molecules are moved slightly in any 

direction, the stability of the interaction will change by either a decrease in attraction (when moving the 

molecules away from one another) or an increase in repulsion (when moving the molecules toward one 

another). 

Knowledge of these forces and their balance (equilibrium) is important for understanding not only the 

properties of gases, liquids, and solids, but also interfacial phenomena, flocculation in suspensions, 

stabilization of emulsions, compaction of powders in capsules, dispersion of powders or liquid droplets 

in aerosols, and the compression of granules to form tablets. With the rapid increase in biotechnology-

derived products, it is important to keep in mind that these same properties are strongly involved in 

influencing biomolecular (e.g., proteins, DNA) secondary, tertiary, and quaternary structures, and that 

these properties have a profound influence on the stability of these products during production, 

formulation, and storage. Further discussion of biomolecular products will be limited in this text, but 
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correlations hold between small-molecule and the larger biomolecular therapeutic agents due to the 

universality of the physical principles of chemistry. 

Repulsive and Attractive Forces 
When molecules interact, both repulsive and attractive forces operate. As two atoms or molecules are 

brought closer together, the opposite charges and binding forces in the two molecules are closer 

together than the similar charges and forces, causing the molecules to attract one another. The 

negatively charged electron clouds of the molecules largely govern the balance (equilibrium) of forces 

between the two molecules. When the molecules are brought so close that the outer charge clouds 

touch, they repel each other like rigid elastic bodies. 

Thus, attractive forces are necessary for molecules to cohere, whereas repulsive forces act to prevent 

the molecules from interpenetrating and annihilating each other. 

P.18 

 

Moelwyn-Hughes1 pointed to the analogy between human behavior and molecular phenomena: Just as 

the actions of humans are often influenced by a conflict of loyalties, so too is molecular behavior 

governed by attractive and repulsive forces. 

Repulsion is due to the interpenetration of the electronic clouds of molecules and increases 

exponentially with a decrease in distance between the molecules. At a certain equilibrium distance, 

about (3-4) × 10-8 cm (3–4 Å), the repulsive and attractive forces are equal. At this position, the potential 

energy of the two molecules is a minimum and the system is most stable (Fig. 2-1). This principle of 

minimum potential energy applies not only to molecules but also to atoms and to large objects as well. 

The effect of repulsion on the intermolecular three-dimensional structure of a molecule is well illustrated 

in considering the conformation of the two terminal methyl groups in butane, where they are 

energetically favored in the transconformation because of a minimization of the repulsive forces. It is 

important to note that the arrangement of the atoms in a particular stereoisomer gives 

the configuration of a molecule. On the other hand, conformation refers to the different arrangements of 

atoms resulting from rotations about single bonds. 
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van der Waal interactions are weak forces that involve the dispersion of charge across a 
molecule called a dipole. In a permanent dipole, as illustrated by the peptide bond, the 
electronegative oxygen draws the pair of electrons in the carbon–oxygen double bond closer 
to the oxygen nucleus. The bond then becomes polarized due to the fact that the oxygen 
atom is strongly pulling the nitrogen lone pair of electrons toward the carbon atom, thus 
creating a partial double bond. Finally, to compensate for valency, the nucleus of the nitrogen 
atom pulls the electron pair involved in the nitrogen–hydrogen bond closer to itself and 
creates a partial positive charge on the hydrogen. This greatly affects protein structure, which 
is beyond the scope of this discussion. In Keesom forces, the permanent dipoles interact with 
one another in an ionlike fashion. However, because the charges are partial, the strength of 
bonding is much weaker. Debye forces show the ability of a permanent dipole to polarize 
charge in a neighboring molecule. In London forces, two neighboring neutral molecules, for 
example, aliphatic hydrocarbons, induce partial charge distributions. If one conceptualizes the 
aliphatic chains in the lipid core of a membrane like a biologic membrane or a liposome, one 
can imagine the neighboring chains in the interior as inducing a network of these partial 
charges that helps hold the interior intact. Without this polarization, the membrane interior 
would be destabilized and lipid bilayers might break down. Therefore, London forces give rise 
to the fluidity and cohesiveness of the membrane under normal physiologic conditions. 

Van der Waals Forces 
Van der Waals forces relate to nonionic interactions between molecules, yet they involve charge–charge 

interactions (see Key Concept Box on van der Waals Forces). In organic 
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chemistry, numerous reactions like nucleophilic substitutions are introduced where one molecule may 

carry a partial positive charge and be attractive for interaction with a partially negatively charged 

nucleophilic reactant. These partial charges can be permanent or be induced by neighboring groups, 

and they reflect the polarity of the molecule. The converse can be true for electrophilic reactants. The 

presence of these polarities in molecules can be similar to those observed with a magnet. For example, 

dipolar molecules frequently tend to align themselves with their neighbors so that the negative pole of 

one molecule points toward the positive pole of the next. Thus, large groups of molecules may be 

associated through weak attractions known as dipole–dipole or Keesom forces. Permanent dipoles are 

capable of inducing an electric dipole in nonpolar molecules (which are easily polarizable) to 

produce dipole-induced dipole, or Debye, interactions, and nonpolar molecules can induce polarity in 

one another by induced dipole-induced dipole, or London, attractions. This latter force deserves 

additional comment here. 

The weak electrostatic force by which nonpolar molecules such as hydrogen gas, carbon tetrachloride, 

and benzene attract one another was first recognized by London in 1930. The dispersion or London 

force is sufficient to bring about the condensation of nonpolar gas molecules so as to form liquids and 

solids when molecules are brought quite close to one another. In all three types of van der Waals forces, 

the potential energy of attraction varies inversely with the distance of separation, r, raised to the sixth 

power, r6. The potential energy of repulsion changes more rapidly with distance, as shown in Figure 2-1. 

This accounts for the potential energy minimum and the resultant equilibrium distance of separation, re. 

A good conceptual analogy to illustrate this point is the interaction of opposite poles of magnets (Fig. 2-

2). If two magnets of the same size are slid on a table so that the opposite poles completely overlap, the 

resultant interaction is attractive and the most energetically favored configuration (Fig. 2-2a). If the 

magnets are slid further so that the poles of each slide into like-pole regions of the other (Fig. 2-2b), this 

leads to repulsion and a force that pushes the magnetic poles back to the energetically favored 

configuration (Fig. 2-2a). However, it must be noted that attractive (opposite-pole overlap) and repulsive 

(same-pole overlap) forces coexist. If the same-charged poles are slid into the proximity of one another, 

the resultant force is complete repulsion (Fig. 2-2c). 
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Table 2-1 Intermolecular Forces and Valence Bonds 

Bond Type 
Bond Energy 
(approximately) (kcal/mole) 

Van der Waals forces and other intermolecular 
attractions 

  

   Dipole–dipole interaction, orientation effect, 
or Keesom force 

  

   Dipole-induced dipole interaction, induction 
effect, or Debye force 

1–10 

   Induced dipole–induced dipole interaction, 
dispersion effect, or London force 

  

   Ion–dipole interaction   

   Hydrogen bonds:   O—H· · ·O 6 

            C—H· · ·O 2–3 

            O—H· · ·N 4–7 

            N—H· · ·O 2–3 

            F—H· · ·F 7 

Primary valence bonds   

   Electrovalent, ionic, heteropolar 100–200 

   Covalent, homopolar 50–150 
 

Ion–Dipole and Ion-Induced Dipole Forces 
In addition to the dipolar interactions known as van der Waals forces, other attractions occur between 

polar or nonpolar molecules and ions. These types of interactions account in part for the solubility of 

ionic crystalline substances in water; the cation, for example, attracts the relatively negative oxygen 
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as well as the need for proper distance to an energetically favored electrovalent interaction (panels A 

and B), and the 

P.21 

 

repulsive forces that may occur between like charges (panels B and C). Ion–ion interactions may 

be intermolecular (e.g., a hydrochloride salt of a drug) orintramolecular (e.g., a salt-bridge interaction 

between counter ions in proteins). 

Clearly, the strength of ion–ion interactions will vary according to the balancing of attractive and 

repulsive forces between the cation- and anion-containing species. It is important to keep in mind that 

ion–ion interactions are considerably stronger than many of the forces described in this section and can 

even be stronger than covalent bonding when an ionic bond is formed. The strength of ion–ion 

interactions has a profound effect on several physical properties of pharmaceutical agents including salt-

form selection, solid-crystalline habit, solubility, dissolution, pH and p K determination, and solution 

stability. 

Hydrogen Bonds 
The interaction between a molecule containing a hydrogen atom and a strongly electronegative atom 

such as fluorine, oxygen, or nitrogen is of particular interest. Because of the small size of the hydrogen 

atom and its large electrostatic field, it can move in close to an electronegative atom and form an 

electrostatic type of union known as a hydrogen bond or hydrogen bridge. Such a bond, discovered by 

Latimer and Rodebush4 in 1920, exists in ice and in liquid water; it accounts for many of the unusual 

properties of water including its high dielectric constant, abnormally low vapor pressure, and high boiling 

point. The structure of ice is an open but well ordered three-dimensional array of regular tetrahedra with 

oxygen in the center of each tetrahedron and hydrogen atoms at the four corners. The hydrogens are 

not exactly midway between the oxygens, as may be observed in Figure 2-4. Roughly one sixth of the 

hydrogen bonds of ice are broken when water passes into the liquid state, and essentially all the bridges 

are destroyed when it vaporizes. Hydrogen bonds can also exist between alcohol molecules, carboxylic 

acids, aldehydes, esters, and polypeptides. 

The hydrogen bonds of formic acid and acetic acid are sufficiently strong to yield dimers (two molecules 

attached together), which can exist even in the vapor state. Hydrogen fluoride in the vapor state exists 

as a hydrogen-bonded polymer (F—H …)n, where n can have a value as large as 6. This is largely due 

to the high electronegativity of the fluorine atom interacting with the positively charged, electropositive 

hydrogen atom (analogous to an ion–ion interaction). Several structures involving hydrogen bonds are 

shown in Figure 2-4. The dashed lines represent the hydrogen bridges. It will be noticed that intra- as 

well as intermolecular hydrogen bonds may occur (as in salicylic acid). 

Bond Energies 
Bond energies serve as a measure of the strength of bonds. Hydrogen bonds are relatively weak, 

having a bond energy of about 2 to 8 kcal/mole as compared with a value of about 50 to 100 kcal for the 

covalent bond and well over 100 kcal for the ionic bond. The metallic bond, representing a third type of 

primary valence, will be mentioned in connection with crystalline solids. 
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all known gases have been liquefied. Supercritical fluids, where excessive temperature and pressure 

are applied, do exist as a separate/intermediate phase and will be discussed briefly later in this chapter. 

The critical temperature of water is 374°C, or 647 K, and its critical pressure is 218 atm, whereas the 

corresponding values for helium are 5.2 K and 2.26 atm. The critical temperature serves as a rough 

measure of the attractive forces between molecules because at temperatures above the critical value, 

the molecules possess sufficient kinetic energy so that no amount of pressure can bring them within the 

range of attractive forces that cause the atoms or molecules to “stick” together. The high critical values 

for water result from the strong dipolar forces between the molecules and particularly the hydrogen 

bonding that exists. Conversely, only the weak London force attracts helium molecules, and, 

consequently, this element must be cooled to the extremely low temperature of 5.2 K before it can be 

liquefied. Above this critical temperature, helium remains a gas no matter what the pressure. 

Methods of Achieving Liquefaction 
One of the most obvious ways to liquefy a gas is to subject it to intense cold by the use of freezing 

mixtures. Other methods depend on the cooling effect produced in a gas as it expands. Thus, suppose 

we allow an ideal gas to expand so rapidly that no heat enters the system. Such an expansion, termed 

an adiabatic expansion, can be achieved by carrying out the process in a Dewar, or vacuum, flask, 

which effectively insulates the contents of the flask from the external environment. The work done to 

bring about expansion therefore must come from the gas itself at the expense of its own heat energy 

content (collision frequency). As a result, the temperature of the gas falls. If this procedure is repeated a 

sufficient number of times, the total drop in temperature may be sufficient to cause liquefaction of the 

gas. 

A cooling effect is also observed when a highly compressed nonideal gas expands into a region of low 

pressure. In this case, the drop in temperature results from the energy expended in overcoming the 

cohesive forces of attraction between the molecules. This cooling effect is known as the Joule–Thomson 

effect and differs from the cooling produced in adiabatic expansion, in which the gas does external work. 

To bring about liquefaction by the Joule–Thomson effect, it may be necessary to precool the gas before 

allowing it to expand. Liquid oxygen and liquid air are obtained by methods based on this effect. 

Aerosols 
Gases can be liquefied under high pressures in a closed chamber as long as the chamber is maintained 

below the critical temperature. When the pressure is reduced, the molecules expand and the liquid 

reverts to a gas. This reversible change of state is the basic principle involved in the preparation of 

pharmaceutical aerosols. In such products, a drug is dissolved or suspended in a propellant, a material 

that is liquid under the pressure conditions existing inside the container but that forms a gas under 

normal atmospheric conditions. The container is so designed that, by depressing a valve, some of the 

drug–propellant mixture is expelled owing to the excess pressure inside the container. If the drug is 

nonvolatile, it forms a fine spray as it leaves the valve orifice; at the same time, the liquid propellant 

vaporizes off. 

Chlorofluorocarbons and hydrofluorocarbons have traditionally been utilized as propellants in these 

products because of their physicochemical properties. However, in the face of increasing environmental 

concerns (ozone depletion) and legislation like the Clean Air Act, the use of chlorofluorocarbons and 

hydrofluorocarbons is tightly regulated. This has led researchers to identify additional propellants, which 

has led to the increased use of other gases such as nitrogen and carbon dioxide. However, 

considerable effort is being focused on finding better propellant systems. By varying the proportions of 

the various propellants, it is possible to produce pressures within the container ranging from 1 to 6 atm 

at room 

P.27 

 

temperature. Alternate fluorocarbon propellants that do not deplete the ozone layer of the atmosphere 

are under investigation.6 

The containers are filled either by cooling the propellant and drug to a low temperature within the 

container, which is then sealed with the valve, or by sealing the drug in the container at room 
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temperature and then forcing the required amount of propellant into the container under pressure. In 

both cases, when the product is at room temperature, part of the propellant is in the gaseous state and 

exerts the pressure necessary to extrude the drug, whereas the remainder is in the liquid state and 

provides a solution or suspension vehicle for the drug. 

The formulation of pharmaceuticals as aerosols is continually increasing because the method frequently 

offers distinct advantages over some of the more conventional methods of formulation. Thus, antiseptic 

materials can be sprayed onto abraded skin with a minimum of discomfort to the patient. One product, 

ethyl chloride, cools sufficiently on expansion so that when sprayed on the skin, it freezes the tissue and 

produces a local anesthesia. This procedure is sometimes used in minor surgical operations. 

More significant is the increased efficiency often observed and the facility with which medication can be 

introduced into body cavities and passages. These and other aspects of aerosols have been considered 

by various researchers.7,8 Byron and Clark9a studied drug absorption from inhalation aerosols and 

provided a rather complete analysis of the problem. The United States Pharmacopeia (USP)9b includes 

a discussion of metered-dose inhalation products and provides standards and test procedures (USP). 

The identification of biotechnology-derived products has also dramatically increased the utilization of 

aerosolized formulations.10 Proteins, DNA, oligopeptides, and nucleotides all demonstrate poor oral 

bioavailability due to the harsh environment of the gastrointestinal tract and their relatively large size and 

rapid metabolism. The pulmonary and nasal routes of administration enable higher rates of passage into 

systemic circulation than does oral administration.11 It is important to point out that aerosol products are 

formulated under high pressure and stress limits. The physical stability of complex biomolecules may be 

adversely affected under these conditions (recall that pressure and temperature may influence the 

attractive and repulsive inter- and intramolecular forces present). 

Vapor Pressure of Liquids 
Translational energy of motion (kinetic energy) is not distributed evenly among molecules; some of the 

molecules have more energy and hence higher velocities than others at any moment. When a liquid is 

placed in an evacuated container at a constant temperature, the molecules with the highest energies 

break away from the surface of the liquid and pass into the gaseous state, and some of the molecules 

subsequently return to the liquid state, or condense. When the rate of condensation equals the rate of 

vaporization at a definite temperature, the vapor becomes saturated and a dynamic equilibrium is 

established. The pressure of the saturated vapor* above the liquid is then known as the equilibrium 

vapor pressure. If a manometer is fitted to an evacuated vessel containing the liquid, it is possible to 

obtain a record of the vapor pressure in millimeters of mercury. The presence of a gas, such as air, 

above the liquid decreases the rate of evaporation, but it does not affect the equilibrium pressure of the 

vapor. 
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attraction, and a decrease in the boiling point results. In general, however, the alcohols boil at a much 

higher temperature than saturated hydrocarbons of the same molecular weight because of association 

of the alcohol molecules through hydrogen bonding. The boiling points of carboxylic acids are more 

abnormal still because the acids form dimers through hydrogen bonding that can persist even in the 

vapor state. The boiling points of straight-chain primary alcohols and carboxylic acids increase about 

18°C for each additional methylene group. The rough parallel between the intermolecular forces and the 

boiling points or latent heats of vaporization is illustrated inTable 2-4. Nonpolar substances, the 

molecules of which are held together predominantly by the London force, have low boiling points and 

low heats of vaporization. Polar molecules, particularly those such as ethyl alcohol and water, which are 

associated through hydrogen bonds, exhibit high boiling points and high heats of vaporization. 

Table 2-4 Normal Boiling Points and Heats of Vaporization 

Compound Boiling Point (°C)Latent Heat of Vaporization (cal/g) 

Helium -268.9 6 

Nitrogen -195.8 47.6 

Propane -42.2 102 

Methyl chloride -24.2 102 

Isobutane -10.2 88 

Butane -0.4 92 

Ethyl ether 34.6 90 

Carbon disulfide 46.3 85 

Ethyl alcohol 78.3 204 

Water 100.0 539 
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Solids and the Crystalline State 
Crystalline Solids 
The structural units of crystalline solids, such as ice, sodium chloride, and menthol, are arranged in fixed 

geometric patterns or lattices. Crystalline solids, unlike liquids and gases, have definite shapes and an 

orderly arrangement of units. Gases are easily compressed, whereas solids, like liquids, are practically 

incompressible. Crystalline solids show definite melting points, passing rather sharply from the solid to 
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Fig. 2-6. The crystal lattice of sodium chloride. 

Metallic crystals are composed of positively charged ions in a field of freely moving electrons, 

sometimes called the electron gas. Metals are good conductors of electricity because of the free 

movement of the electrons in the lattice. Metals may be soft or hard and have low or high melting points. 

The hardness and strength of metals depend in part on the kind of imperfections, or lattice defects, in 

the crystals. 

Polymorphism 
Some elemental substances, such as carbon and sulfur, may exist in more than one crystalline form and 

are said to be allotropic, which is a special case ofpolymorphism. Polymorphs have different stabilities 

and may spontaneously convert from the metastable form at a temperature to the stable form. They also 

exhibit different melting points, x-ray crystal and diffraction patterns (see later discussion), and 

solubilities, even though they are chemically identical. The differences may not always be great or even 

large enough to “see” by analytical methods but may sometimes be substantial. Solubility and melting 

points are very important in pharmaceutical processes, including dissolution and formulation, explaining 

the primary reason we are interested in polymorphs. The formation of polymorphs of a compound may 

depend upon several variables pertaining to the crystallization process, including solvent differences 

(the packing of a crystal might be different from a polar versus a nonpolar solvent); impurities that may 

favor a metastable polymorph because of specific inhibition of growth patterns; the level of 

supersaturation from which the material is crystallized (generally the higher the concentration above the 

solubility, the more chance a metastable form is seen); the temperature at which the crystallization is 

carried out; geometry of the covalent bonds (are the molecules rigid and planar or free and flexible?); 

attraction and repulsion of cations and anions (later you will see how x-ray crystallography is used to 

define an electron density map of a compound); fit of cations into coordinates that are energetically 

favorable in the crystal lattice; temperature; and pressure. 

Perhaps the most common example of polymorphism is the contrast between a diamond and graphite, 

both of which are composed of crystalline carbon. In this case, high pressure and temperature lead to 

the formation of a diamond from elemental carbon. When contrasting an engagement ring with a pencil, 

it is quite apparent that a diamond has a distinct crystal habit from that of graphite. It should be noted 

that a diamond is a less stable (metastable) crystalline form of carbon than is graphite. Actually, the 

imperfections in diamonds continue to occur with time and represent the diamond converting, very 

slowly at the low ambient temperature and pressure, into the more stable graphite polymorph. 

P.30 

 

 

Nearly all long-chain organic compounds exhibit polymorphism. In fatty acids, this results from different 

types of attachment between the carboxyl groups of adjacent molecules, which in turn modify the angle 

of tilt of the chains in the crystal. The triglyceride tristearin proceeds from the low-melting metastable 

alpha (α) form through the beta prime (β′) form and finally to the stable beta (β) form, having a high 

melting point. The transition cannot occur in the opposite direction. 

Theobroma oil, or cacao butter, is a polymorphous natural fat. Because it consists mainly of a single 

glyceride, it melts to a large degree over a narrow temperature range (34°C–36°C). Theobroma oil is 

capable of existing in four polymorphic forms: the unstable gamma form, melting at 18°C; the alpha 

form, melting at 22°C; the beta prime form, melting at 28°C; and the stable beta form, melting at 34.5°C. 

Riegelman12 pointed out the relationship between polymorphism and the preparation of cacao butter 

suppositories. If theobroma oil is heated to the point at which it is completely liquefied (about 35°C), the 

nuclei of the stable beta crystals are destroyed and the mass does not crystallize until it is supercooled 

to about 15°C. The crystals that form are the metastable gamma, alpha, and beta prime forms, and the 

suppositories melt at 23°C to 24°C or at ordinary room temperature. The proper method of preparation 

involves melting cacao butter at the lowest possible temperature, about 33°C. The mass is sufficiently 
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fluid to pour, yet the crystal nuclei of the stable beta form are not lost. When the mass is chilled in the 

mold, a stable suppository, consisting of beta crystals and melting at 34.5°C, is produced. 

Polymorphism has achieved significance in last decade because different polymorphs exhibit different 

solubilities. In the case of slightly soluble drugs, this may affect the rate of dissolution. As a result, one 

polymorph may be more active therapeutically than another polymorph of the same drug. Aguiar et 

al.13 showed that the polymorphic state of chloramphenicol palmitate has a significant influence on the 

biologic availability of the drug. Khalil et al.14 reported that form II of sulfameter, an antibacterial agent, 

was more active orally in humans than form III, although marketed pharmaceutical preparations were 

found to contain mainly form III. Another case is that of the AIDS drug ritonavir, which was marketed in a 

dissolved formulation until a previously unknown, more stable and less soluble polymorph appeared. 

This resulted in a voluntary recall and reformulation of the product before it could be reintroduced to the 

market. 

Polymorphism can also be a factor in suspension technology. Cortisone acetate exists in at least five 

different forms, four of which are unstable in the presence of water and change to a stable 

form.15 Because this transformation is usually accompanied by appreciable caking of the crystals, these 

should all be in the form of the stable polymorph before the suspension is prepared. Heating, grinding 

under water, and suspension in water are all factors that affect the interconversion of the different 

cortisone acetate forms.16 
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Fig. 2-10. (a) Two molecules of the polymorph α-carbamazepine joined together by 
hydrogen bonds. (From M. M. J. Lowes, M. R. Caira, A. P. Lotter, and J. G. Van Der 
Watt, J. Pharm. Sci. 76, 744, 1987. With permission.) (b) Carbamazepine. 

Behme et al.24 reviewed the principles of polymorphism with emphasis on the changes that the 

polymorphic forms may undergo. When the change from one form to another is reversible, it is said to 

be enantiotropic. When the transition takes place in one direction only—for example, from a metastable 

to a stable form—the change is said to be monotropic. Enantiotropism and monotropism are important 

properties of polymorphs as described by Behme et al.24 

The transition temperature in polymorphism is important because it helps characterize the system and 

determine the more stable form at temperatures of interest. At their transition temperatures, polymorphs 

have the same free energy (i.e., the forms are in equilibrium with each other), identical solubilities in a 

particular solvent, and identical vapor pressures. Accordingly, plots of logarithmic solubility of two 

polymorphic forms against 1/T provide the transition temperature at the intersection of the extrapolated 

curves. Often, the plots are nonlinear and cannot be extrapolated with accuracy. For dilute solutions, in 

which Henry's law applies, the logarithm of the solubility ratios of two polymorphs can be plotted 

P.32 

 

against 1/T, and the intersection at a ratio equal to unity gives the transition temperature.25 This 

temperature can also be obtained from the phase diagram of pressure versus temperature and by using 

differential scanning calorimetry (DSC).26 

Solvates 
Because many pharmaceutical solids are often synthesized by standard organic chemical methods, 

purified, and then crystallized out of different solvents, residual solvents can be trapped in the crystalline 

lattice. This creates a cocrystal, as described previously, termed a solvate. The presence of the residual 

solvent may dramatically affect the crystalline structure of the solid depending on the types of 

intermolecular interactions that the solvent may have with the crystalline solid. In the following sections 

we highlight the influence of solvates and how they can be detected using standard solid 

characterization analyses. 

Biles27 and Haleblian and McCrone28 discussed in some detail the significance of polymorphism and 

solvation in pharmaceutical practice. 

Amorphous Solids 
Amorphous solids as a first approximation may be considered supercooled liquids in which the 

molecules are arranged in a somewhat random manner as in the liquid state. Substances such as glass, 

pitch, and many synthetic plastics are amorphous solids. They differ from crystalline solids in that they 

tend to flow when subjected to sufficient pressure over a period of time, and they do not have definite 

melting points. In the Rheology chapter, a solid is characterized as any substance that must be 

subjected to a definite shearing force before it fractures or begins to flow. This force, below which the 

body shows elastic properties, is known as theyield value. 

Amorphous substances, as well as cubic crystals, are usually isotropic, that is, they exhibit similar 

properties in all directions. Crystals other than cubic areanisotropic, showing different characteristics 

(electric conductance, refractive index, crystal growth, rate of solubility) in various directions along the 

crystal. 

It is not always possible to determine by casual observation whether a substance is crystalline or 

amorphous. Beeswax and paraffin, although they appear to be amorphous, assume crystalline 

arrangements when heated and then allowed to cool slowly. Petrolatum contains both crystalline and 

amorphous constituents. Some amorphous materials, such as glass, may crystallize after long standing. 

Whether a drug is amorphous or crystalline has been shown to affect its therapeutic activity. Thus, the 

crystalline form of the antibiotic novobiocin acid is poorly absorbed and has no activity, whereas the 
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amorphous form is readily absorbed and therapeutically active.29 This is due to the differences in the 

rate of dissolution. Once dissolved, the molecules exhibit no memory of their origin. 

X-Ray Diffraction 
X-rays are a form of electromagnetic radiation (Chapter 4) having a wavelength on the order of 

interatomic distances (about 1.54 Å for most laboratory instruments using Cu Kα radiation; the C—C 

bond is about 1.5 Å). X-rays are diffracted by the electrons surrounding the individual atoms in the 

molecules of the crystals. The regular array of atoms in the crystal (periodicity) causes certain directions 

to constructively interfere in some directions and destructively interfere in others, just as water waves 

interfere when you drop two stones at the same time into still water (due to the similarity of the 

wavelengths to the distance between the atoms or molecules of crystals mentioned). The x-ray 

diffraction pattern on modern instruments is detected on a sensitive plate arranged behind the crystal 

and is a “shadow” of the crystal lattice that produced it. Using computational methods, it is possible to 

determine the conformation of the molecules as well as their relationship to others in the structure. This 

results in a full description of the structure including the smallest building block, called the unit cell. 

The electron density and, accordingly, the position of the atoms in complex structures, such as penicillin, 

may be determined from a comprehensive mathematical study of the x-ray diffraction pattern. The 

electron density map of crystalline potassium benzylpenicillin is shown in Figure 2-11. The elucidation of 

this structure by x-ray crystallography paved the way for the later synthesis of penicillin by organic 

chemists. Aspects of x-ray crystallography of pharmaceutical interest are reviewed by Biles30 and Lien 

and Kennon.31 

Where “single” crystals are unavailable or unsuitable for analysis, a powder of the substance may be 

investigated. The powder x-ray diffraction pattern may be thought of as a fingerprint of the single-crystal 

structure. Comparing the position and intensity of the lines (the same constructive interference 

discussed previously) on such a pattern with corresponding lines on the pattern of a known sample 

allows one to conduct a qualitative and a quantitative analysis. It is important to note that two 

polymorphs will provide two distinct powder x-ray diffraction patterns. The presence of a solvate will also 

influence the powder x-ray diffraction pattern because the solvate will have its own unique crystal 

structure. This may lead to a single polymorphic form appearing as changeable or two distinct 

polymorphs. One way to determine whether the presence of a change in a powder x-ray diffraction 

pattern is due to a solvate or is a separate polymorph is to measure the powder x-ray diffraction patterns 

at various temperatures. Because solvents tend to be driven out of the structure below the melting point, 

measuring the powder x-ray diffraction patterns at several temperatures may eliminate the solvent and 

reveal an unsolvated form. Lack of a change in the powder x-ray diffraction patterns at the different 

temperatures is a strong indication that the form is not really solvated, or minor changes may indicate a 

structure that maintains its packing motif without the solvent preset (see Fig. 2-12 for spirapril). This can 

be confirmed by other methods as described later. 
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The smectic mesophase is probably of most pharmaceutical significance because it is this phase that 

usually forms in ternary (or more complex) mixtures containing a surfactant, water, and a weakly 

amphiphilic or nonpolar additive. 

In general, molecules that form mesophases (a) are organic, (b) are elongated and rectilinear in shape, 

(c) are rigid, and (d) possess strong dipoles and easily polarizable groups. The liquid crystalline state 

may result either from the heating of solids (thermotropic liquid crystals) or from the action of certain 

solvents on solids (lyotropic liquid crystals). The first recorded observation of a thermotropic liquid 

crystal was made by Reinitzer in 1888 when he heated cholesteryl benzoate. At 145°C, the solid formed 

a turbid liquid (the thermotropic liquid crystal), which only became clear, to give the conventional liquid 

state, at 179°C. 

Properties and Significance of Liquid Crystals 
Because of their intermediate nature, liquid crystals have some of the properties of liquids and some of 

the properties of solids. For example, liquid crystals are mobile and thus can be considered to have the 

flow properties of liquids. At the same time they possess the property of being birefringent, a property 

associated with crystals. In birefringence, the light passing through a material is divided into two 

components with different velocities and hence different refractive indices. 

Some liquid crystals show consistent color changes with temperature, and this characteristic has 

resulted in their being used to detect areas of elevated temperature under the skin that may be due to a 

disease process. Nematic liquid crystals may be sensitive to electric fields, a property used to 

advantage in developing display systems. The smectic mesophase has application in the solubilization 

of water-insoluble materials. It also appears that liquid crystalline phases of this type are frequently 

present in emulsions and may be responsible for enhanced physical stability owing to their highly 

viscous nature. 

The liquid crystalline state is widespread in nature, with lipoidal forms found in nerves, brain tissue, and 

blood vessels. Atherosclerosis may be related to the laying down of 

P.37 

 

lipid in the liquid crystalline state on the walls of blood vessels. The three components of bile 

(cholesterol, a bile acid salt, and water), in the correct proportions, can form a smectic mesophase, and 

this may be involved in the formation of gallstones. Bogardus34 applied the principle of liquid crystal 

formation to the solubilization and dissolution of cholesterol, the major constituent of gallstones. 

Cholesterol is converted to a liquid crystalline phase in the presence of sodium oleate and water, and 

the cholesterol rapidly dissolves from the surface of the gallstones. 

Nonaqueous liquid crystals may be formed from triethanolamine and oleic acid with a series of 

polyethylene glycols or various organic acids such as isopropyl myristate, squalane, squalene, and 

naphthenic oil as the solvents to replace the water of aqueous mesomorphs. Triangular plots or tertiary 

phase diagrams were used by Friberg et al.35a,b to show the regions of the liquid crystalline phase 

when either polar (polyethylene glycols) or nonpolar (squalene, etc.) compounds were present as the 

solvent. 

Ibrahim36 studied the release of salicylic acid as a model drug from lyotropic liquid crystalline systems 

across lipoidal barriers and into an aqueous buffered solution. 

Finally, liquid crystals have structures that are believed to be similar to those in cell membranes. As 

such, liquid crystals may function as useful biophysical models for the structure and functionality of cell 

membranes. 

Friberg wrote a monograph on liquid crystals.35b For a more detailed discussion of the liquid crystalline 

state, refer to the review by Brown,37 which serves as a convenient entry into the literature. 

The Supercritical Fluid State 
Supercritical fluids were first described more than 100 years ago and can be formed by many different 

normal gases such as carbon dioxide. Supercritical fluids have properties that are intermediate between 

those of liquids and gases, having better ability to permeate solid substances (gaslike) and having high 

densities that can be regulated by pressure (liquidlike). A supercritical fluid is a mesophase formed from 
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methods have proved to be valuable in pharmaceutical research and quality control for the 

characterization and identification of compounds, the determination of purity, 

polymorphism20,21 solvent, and moisture content, amorphous content, stability, and compatibility with 

excipients. 

In general, thermal methods involve heating a sample under controlled conditions and observing the 

physical and chemical changes that occur. These methods measure a number of different properties, 

such as melting point, heat capacity, heats of reaction, kinetics of decomposition, and changes in the 

flow (rheologic) properties of biochemical, pharmaceutical, and agricultural materials and food. The 

methods are briefly described with examples of applications. Differential scanning calorimetry is the 

most commonly used method and is generally a more useful technique because its measurements can 

be related more directly to thermodynamic properties. It appears that any analysis that can be carried 

out with DTA can be performed with DSC, the latter being the more versatile technique. 

Differential Scanning Calorimetry 
In DSC, heat flows and temperatures are measured that relate to thermal transitions in materials. 

Typically, a sample and a reference material are placed in separate pans and the temperature of each 

pan is increased or decreased at a predetermined rate. When the sample, for example, benzoic acid, 

reaches its melting point, in this case 122.4°C, it remains at this temperature until all the material has 

passed into the liquid state 

P.39 

 

because of the endothermic process of melting. A temperature difference therefore exists between 

benzoic acid and a reference, indium (melting point [mp] = 156.6°C), as the temperature of the two 

materials is raised gradually through the range 122°C to 123°C. A second temperature circuit is used in 

DSC to provide a heat input to overcome this temperature difference. In this way the temperature of the 

sample, benzoic acid, is maintained at the same value as that of the reference, indium. The difference is 

heat input to the sample, and the reference per unit time is fed to a computer and plotted 

as dH/dt versus the average temperature to which the sample and reference are being raised. The data 

collected in a DSC run for a compound such as benzoic acid are shown in the thermogram in Figure 2-

18. There are a wide variety of features in DSCs such as autosamplers, mass flow controllers, and built-

in computers. An example of a modern DSC, the Q200, is shown in Figure 2-19. The differential heat 

input is recorded with a sensitivity of ± 0.2 µW, and the temperature range over which the instrument 

operates is -180°C to 725°C. 
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The characterization by TGA of bone tissue associated with dental structures was reported by Civjan et 

al.52 Thermogravimetric analysis also can be used to study drug stability and the kinetics of 

decomposition. 

Thermomechanical analysis measures the expansion and extension of materials or changes in 

viscoelastic properties and heat distortions, such as shrinking, as a function of temperature. By use of a 

probe assembly in contact with the test material, any motion due to expansion, melting, or other physical 

change delivers an electric signal to a recorder. The furnace, in which are placed a sample and a probe, 

controls the temperature, which can be programmed over a range from -150°C to 700°C. The apparatus 

serves essentially as a penetrometer, dilatometer, or tensile tester over a wide range of programmed 

temperatures. Humphries et al.53used TMA in studies on the mechanical and viscoelastic properties of 

hair and the stratum corneum of the skin. Thermomechanical analysis is also widely used to look at 

polymer films and coatings used in pharmaceutical processes. 

Karl Fisher Method 
The Karl Fisher method is typically performed as a potentiometric titration method commonly used to 

determine the amount of water associated with a solid material. The method follows the reaction of 

iodine (generated electrolytically at the anode in the reagent bath) and sulfur with water. One mole of 

iodine reacts with 1 mole of water, so the amount of water is directly proportional to the electricity 

produced. As mentioned, a DSC measurement may indicate an endothermic reaction at 120°C. This 

endothermic reaction may constitute an actual melt of the crystalline material or may be due to either 

desolvation or a polymorphic conversion. If one measured the same material using TGA and found a 

weight loss of about 4% at the same temperature as the endotherm, one could determine that the 

endotherm arose from a desolvation process. 

Utilizing Karl Fisher analysis, one can add the solid material to the titration unit and determine the 

amount of water by mixing of reagents and the potentiometric electrodes. The Karl Fisher method is an 

aid in that it can determine whether the desolvation is all water (showing a 4% water content) or arises 

from the loss of a separate solvent trapped in the crystalline lattice. This method is routinely used for 

pharmaceutical applications, including the study of humidity effects in solids undergoing water sorption 

from the air and in quality control efforts to demonstrate the amount of water associated in different lots 

of manufactured solid products. 

Vapor Sorption/Desorption Analysis 
This technique is similar to that of TGA in that it measures weight changes in solids as they are exposed 

to different solvent vapors and humidity and/or temperature conditions, although it is typically operated 

isothermally. Greenspan54 

P.42 

 

published a definitive list of saturated salt solutions that can be used to control the relative humidity and 

are widely used to study many physicochemical properties of drugs. For example, if a selected saturated 

salt solution providing a high relative humidity is placed in a sealed container, the hygroscopicity of a 

drug can be assessed by determining the weight change in the solid under that humidity. A positive 

change in the weight would indicate that the solid material is absorbing (collectively called sorption) the 

solvent, in this case water, from the atmosphere inside the container. The ability of a solid to 

continuously absorb water until it goes into solution is called deliquescence. A weight loss could also be 

measured under low relative humidities controlled with different salts, which is termed desorption. Water 

vapor sorption/desorption can be used to study changes in the solvate state of a crystalline 

material.55,56 Variations of commercial instruments also allow the determination of the 

sorption/desorption of other solvents. The degree of solvation of a crystalline form could have an 

adverse effect on its chemical stability57and/or its manufacturability. 

Generally, the less sensitive a solid material or formulation is to changes in the relative humidity, the 

more stable will be the pharmaceutical shelf life and product performance. The pharmaceutical industry 

supplies products throughout the world, with considerable variation in climate. Therefore, the 
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write CaO as (CaCO3 - CO2). Accordingly, the number of components in this system is two. 

Table 2-7 Application of the Phase Rule to Single-Component Systems* 

System 
Number 
of Phases 

Degrees of 
Freedom Comments 

Gas, 
liquid, or 
solid 

1 F = C -
 P+ 2 
= 1 - 1 + 
2 = 2 

System is bivariant (F = 2) and lies 
anywhere within the area marked 
vapor, liquid, or solid in Figure 2-22. 
We must fix two variables, 
e.g., P2 and t2, to define system D. 

Gas–
liquid, 
liquid–
solid, or 
gas–solid 

2 F = C -
 P+ 2 
= 1 - 2 + 
2 = 1 

System is univariant (F = 1) and lies 
anywhere along a line between two-
phase regions, i.e., AO, BO, or CO 
in Figure 2-22. We must fix one 
variable, e.g., either P1 or t2, to 
define system E. 

Gas–
liquid–
solid 

3 F = C -
 P+ 2 
= 1 - 3 + 
2 = 0 

System is invariant (F = 0) and can 
lie only at the point of intersection of 
the lines bounding the three-phase 
regions, i.e., point O in Figure 2-22. 

*Key: C = number of components; P = number of phases. 
 

The number of degrees of freedom is the least number of intensive variables that must be fixed/known 

to describe the system completely. Herein lies the utility of the phase rule. Although a large number of 

intensive properties are associated with any system, it is not necessary to report all of these to define 

the system. For example, let us consider a given mass of a gas, say, water vapor, confined to a 

particular volume. Using the phase rule only two independent variables are required to define the 

system, F = 1 - 1 + 2 = 2. Because we need to know two of the variables to define the gaseous system 

completely, we say that the system has two degrees of freedom. Therefore, even though this volume is 

known, it would be impossible for one to duplicate this system exactly (except by pure chance) unless 

the temperature, pressure, or another variable is known that may be varied independent of the volume 

of the gas. Similarly, if the temperature of the gas is defined, it is necessary to know the volume, 

pressure, or some other variable to define the system completely. 

Next, consider a system comprising a liquid, say water, in equilibrium with its vapor. By stating the 

temperature, we define the system completely because the pressure under which liquid and vapor can 

coexist is also defined. If we decide to work instead at a particular pressure, then the temperature of the 

system is automatically defined. Again, this agrees with the phase rule because equation (2-18) now 

gives F = 1 - 2 + 2 = 1. 

As a third example, suppose we cool liquid water and its vapor until a third phase (ice) separates out. 

Under these conditions, the state of the three-phase ice–water–vapor system is completely defined, and 

the rule gives F = 1 - 3 + 2 = 0; in other words, there are no degrees of freedom. If we attempt to vary 
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We have seen from the phase rule that in a single-component system the maximum number of degrees 

of freedom is two. This situation arises when only one phase is present, that is, F = 1 - 1 + 2 = 2. As will 

become apparent in the next section, a maximum of three degrees of freedom is possible in a two-

component system, for example, temperature, pressure, and concentration. To represent the effect of all 

these variables upon the phase equilibria of such a system, it would be necessary to use a three-

dimensional model rather than the planar figure used in the case of water. Because in practice we are 

primarily concerned with liquid and/or solid phases in the particular system under examination, we 

frequently choose to disregard the vapor phase and work under normal conditions of 1 atm pressure. In 

this manner, we reduce the number of degrees of freedom by one. In a two-component system, 

therefore, only two variables (temperature and concentration) remain, and we are able to portray the 

interaction of these variables by the use of planar figures on rectangular-coordinate graph paper. 

Systems in which the vapor phase is ignored and only solid and/or liquid phases are considered are 

termed condensed systems. We shall see in the later discussion of three-component systems that it is 

again more convenient to work with condensed systems. 

It is important to realize that in aerosol and gaseous systems, vapor cannot be ignored. Condensed 

systems are most appropriate for solid and liquid dosage forms. As will be discussed in this and later 

chapters, solids can also have liquid phase(s) associated with them, and the converse is true. 

Therefore, even in an apparently dry tablet form, small amounts of “solution” can be present. For 

example, it will be 

P.45 

 

shown in the chapter on stability that solvolysis is a primary mechanism of solid drug degradation. 

Two-Component Systems Containing Liquid Phases 
We know from experience that ethyl alcohol and water are miscible in all proportions, whereas water 

and mercury are, for all practical purposes, completely immiscible regardless of the relative amounts of 

each present. Between these two extremes lies a whole range of systems that exhibit partial miscibility 

(or immiscibility). One such system is phenol and water, and a portion of the condensed phase diagram 

is plotted in Figure 2-23. The curve gbhci shows the limits of temperature and concentration within which 

two liquid phases exist in equilibrium. The region outside this curve contains systems having but one 

liquid phase. Starting at the point a, equivalent to a system containing 100% water (i.e., pure water) at 

50°C, adding known increments of phenol to a fixed weight of water, the whole being maintained at 

50°C, will result in the formation of a single liquid phase until the point b is reached, at which point a 

minute amount of a second phase appears. The concentration of phenol and water at which this occurs 

is 11% by weight of phenol in water. Analysis of the second phase, which separates out on the bottom, 

shows it to contain 63% by weight of phenol in water. This phenol-rich phase is denoted by the 

point c on the phase diagram. As we prepare mixtures containing increasing quantities of phenol, that is, 

as we proceed across the diagram from point b to point c, we form systems in which the amount of the 

phenol-rich phase (B) continually increases, as denoted by the test tubes drawn in Figure 2-23. At the 

same time, the amount of the water-rich phase (A) decreases. Once the total concentration of phenol 

exceeds 63% at 50°C, a single phenol-rich liquid phase is formed. 
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Fig.. 2-25. Nicootine–water system shoowing upperr and lower 
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cooled, the results indicate that more and more of the thymol separates as solid. A similar sequence of 

phase changes is observed if system y is cooled in a like manner. In this case, however, the solid phase 

that separates at 22°C is pure salol. 

The lowest temperature at which a liquid phase can exist in the salol–thymol system is 13°C, and this 

occurs in a mixture containing 34% thymol in salol. This point on the phase diagram is known as 

the eutectic point. At the eutectic point, three phases (liquid, solid salol, and solid thymol) coexist. The 

eutectic point therefore denotes an invariant system because, in a condensed system, F = 2 - 3 + 1 = 0. 

The eutectic point is the point at which the liquid and solid phases have the same composition (the 

eutectic composition). The solid phase is an intimate mixture of fine crystals of the two compounds. The 

intimacy of the mixture gives rise to the phenomenon of “contact melting,” which results in the lowest 

melting temperature over a composition range. Alternately explained, a eutectic composition is the 

composition of two or more compounds that exhibits a melting temperature 
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lower than that of any other mixture of the compounds. Mixtures of salol and camphor show similar 

behavior. In this combination, the eutectic point occurs in a system containing 56% by weight of salol in 

camphor at a temperature of 6°C. Many other substances form eutectic mixtures (e.g., camphor, chloral 

hydrate, menthol, and betanaphthol). The primary criterion for eutectic formation is the mutual solubility 

of the components in the liquid or melt phase. 

In the thermal analysis section in this chapter, we showed that calorimetry can be used to study phase 

transitions. Eutectic points are often determined by studying freezing point (melting point if one is adding 

heat) depression. Note that the freezing point in a one-component system is influenced simply by the 

temperature. In systems of two or more components, interactions between the components can occur, 

and depending on the concentrations of the components, the absolute freezing point may change. A 

eutectic point is the component ratio that exhibits the lowest observed melting point. This relationship is 

often used to provide information about how solutes interact in solution, with the eutectic point providing 

the favored composition for the solutes in solution, as illustrated in salol–thymol example. Lidocaine and 

prilocaine, two local anesthetic agents, form a 1:1 mixture having a eutectic temperature of 18°C. The 

mixture is therefore liquid at room temperature and forms a mixed local anesthetic that may be used for 

topical application. The liquid eutectic can be emulsified in water, opening the possibility for topical 

bioabsorption of the two local anesthetics.59,60 

Solid Dispersions 
Eutectic systems are examples of solid dispersions. The solid phases constituting the eutectic each 

contain only one component and the system may be regarded as an intimate crystalline mixture of one 

component in the other. A second major group of solid dispersions are the solid solutions, in which each 

solid phase contains both components, that is, a solid solute is dissolved in a solid solvent to give a 

mixed crystal. Solid solutions are typically not stoichiometric, and the minor component or “guest” inserts 

itself into the structure of the “host” crystal taking advantage of molecular similarities and/or open 

spaces in the host lattice. Solid solutions may exhibit higher, lower, or unchanged melting behavior 

depending upon the degree of interaction of the guest in the crystal structure. A third common 

dispersion is the molecular dispersion of one component in another where the overall solid is 

amorphous. Such mixed amorphous or glass solutions exhibit an intermediate glass transition 

temperature between those of the pure amorphous solids. The dispersion of solid particles in semisolids 

is also a common dispersion strategy in which crystalline or amorphous solids are dispersed to aid 

delivery, as in some topical products (e.g., [tioconazole vaginal] Monistat-1). 

There is widespread interest in solid dispersions because they may offer a means of facilitating the 

dissolution and frequently, therefore, the bioavailability of poorly soluble drugs when combined with 

freely soluble “carriers” such as urea or polyethylene glycol. This increase in dissolution rate is achieved 

by a combination of effects, the most significant of which is reduction of particle size to an extent that 

cannot be readily achieved by conventional comminution approaches. Other contributing factors include 

increased wettability of the material, reduced aggregation and agglomeration, and a likely increase in 
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solubility of the drug owing to the presence of the water-soluble carrier. Consult the reviews by Chiou 

and Riegelman61 and Goldberg62 for further details. 

Phase Equilibria in Three-Component Systems 
In systems containing three components but only one phase, F = 3 - 1 + 2 = 4 for a noncondensed 

system. The four degrees of freedom are temperature, pressure, and the concentrations of two of the 

three components. Only two concentration terms are required because the sum of these subtracted from 

the total will give the concentration of the third component. If we regard the system as condensed and 

hold the temperature constant, then F = 2, and we can again use a planar diagram to illustrate the 

phase equilibria. Because we are dealing with a three-component system, it is more convenient to use 

triangular coordinate graphs, although it is possible to use rectangular coordinates. 

The various phase equilibria that exist in three-component systems containing liquid and/or solid phases 

are frequently complex and beyond the scope of the present text. Certain typical three-component 

systems are discussed here, however, because they are of pharmaceutical interest. For example, 

several areas of pharmaceutical processing such as crystallization, salt form selection, and 

chromatographic analyses rely on the use of ternary systems for optimization. 

Rules Relating to Triangular Diagrams 
Before discussing phase equilibria in ternary systems, it is essential that the reader becomes familiar 

with certain “rules” that relate to the use of triangular coordinates. It should have been apparent in 

discussing two-component systems that all concentrations were expressed on a weight–weight basis. 

This is because, although it is an easy and direct method of preparing dispersions, such an approach 

also allows the concentration to be expressed in terms of the mole fraction or the molality. The 

concentrations in ternary systems are accordingly expressed on a weight basis. The following 

statements should be studied in conjunction with Figure 2-27: 

1. Each of the three corners or apexes of the triangle represent 100% by weight of one 

component (A, B, or C). As a result, that same apex will represent 0% of the other two 

components. For example, the top corner point in Figure 2-27 represents 100% of B. 

2. The three lines joining the corner points represent two-component mixtures of the three 

possible combinations of A, B, and C. Thus the lines AB, BC, and CAare used for 
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two-component mixtures of A and B, B and C, and C and A, respectively. By dividing each line 

into 100 equal units, we can directly relate the location of a point along the line to the percent 

concentration of one component in a two-component system. For example, point y, midway 

between A and B on the line AB, represents a system containing 50% of B (and hence 50% 

of A also). Point z, three fourths of the way along BC, signifies a system containing 75% 

of C in B. 
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of A and C together. Applying similar arguments to the other two components in the system, we 

can say that along the line AB, C = 0. As we proceed from the line AB toward C across the 

diagram, the concentration of C increases until at the apex, C = 100%. The point x lies on the 

line parallel to AB that is equivalent to 30% of C. It follows, therefore, that the concentration 

of A is 100 - (B + C) = 100 - (15 + 30) = 55%. This is readily confirmed by proceeding across 

the diagram from the line BC toward apex A; point x lies on the line equivalent to 55% of A. 

4. If a line is drawn through any apex to a point on the opposite side (e.g., line DC in Fig. 2-27), 

then all systems represented by points on such a line have a constant ratio of two components, 

in this case A and B. Furthermore, the continual addition of C to a mixture of A and B will 

produce systems that lie progressively closer to apex C (100% of component C). This effect is 

illustrated in Table 2-8, in which increasing weights of C are added to a constant-weight 

mixture of A and B. Note that in all three systems, the ratio of A to B is constant and identical to 

that existing in the original mixture. 

5. Any line drawn parallel to one side of the triangle, for example, line HI in Figure 2-27, 

represents ternary system in which the proportion (or percent by weight) of one component is 

constant. In this instance, all systems prepared along HI will contain 20% of C and varying 

concentrations of A and B. 

Ternary Systems with One Pair of Partially Miscible Liquids 
Water and benzene are miscible only to a slight extent, and so a mixture of the two usually produces a 

two-phase system. The heavier of the two phases consists of water saturated with 
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benzene, while the lighter phase is benzene saturated with water. On the other hand, alcohol is 

completely miscible with both benzene and water. It is to be expected, therefore, that the addition of 

sufficient alcohol to a two-phase system of benzene and water would produce a single liquid phase in 

which all three components are miscible. This situation is illustrated in Figure 2-28, which depicts such a 

ternary system. It might be helpful to consider the alcohol as acting in a manner comparable to that of 

temperature in the binary phenol–water system considered earlier. Raising the temperature of the 

phenol–water system led to complete miscibility of the two conjugate phases and the formation of one 

liquid phase. The addition of alcohol to the benzene–water system achieves the same end but by 

different means, namely, a solvent effect in place of a temperature effect. There is a strong similarity 

between the use of heat to break cohesive forces between molecules and the use of solvents to achieve 

the same result. The effect of alcohol will be better understood when we introduce dielectric constants of 

solutions and solvent polarity in later chapters. In this case, alcohol serves as an intermediate polar 

solvent that shifts the electronic equilibrium of the dramatically opposed highly polar water and nonpolar 

benzene solutions to provide solvation. 

Table 2-8 Effect of Adding a third Component (C) to a Binary System 
of A (5.0 G) and B (15.0 G) 
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Weight of Third 
Component C Added 
(g) 

Final System 

Ratio 
of A toB 

Location of 
System 
in Figure 2-
27 ComponentWeight (g)

Weight 
(%) 

10.0 A 5.0 16.67 3:1 Point E 

  B 15.0 50.00     

  C 10.0 33.33     

100.0 A 5.0 4.17 3:1 Point F 

  B 15.0 12.50     

  C 100.0 83.33     

1000.0 A 5.0 0.49 3:1 Point G 

  B 15.0 1.47     

  C 1000.0 98.04     
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Fig. 2-31. Temperature effects on a system of three pairs of partially miscible liquids. 

Systems containing three pairs of partially miscible liquids are of interest. Should the three binodal 

curves meet (Fig. 2-31a), a central region appears in which threeconjugate liquid phases exist in 

equilibrium. In this region, D, which is triangular, F = 0 for a condensed system under isothermal 

conditions. As a result, all systems lying within this region consist of three phases whose compositions 

are always given by the points x, y, and z. The only quantities that vary are the relative amounts of these 

three conjugate phases. Increasing the temperature alters the shapes and sizes of the regions, as seen 

in Figures 2-31b and c. 

The application and discussion of phase phenomena and their application in certain pharmaceutical 

systems will be discussed in later chapters. 

Chapter Summary 
As one of the foundational chapters of this text, many important subject areas have been 
covered from the examination of the binding forces between molecules to the various states 
of matter. Many of these subjects in this chapter are aimed at the more experienced 
pharmacy student or graduate student who is interested in understanding the fundamental 
physical aspects of the pharmaceutical sciences. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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The standard heat of formation of gaseous carbon dioxide is ∆H°f(25°C) = -94,052 cal. The negative sign 

accompanying the value for ∆H signifies that heat is evolved, that is, the reaction is exothermic. The 

state of matter or allotropic form of the elements also must be specified in defining the standard state. 

Equation (3-30) states that when 1 mole of solid carbon (graphite) reacts with 1 mole of gaseous oxygen 

to produce 1 mole of gaseous carbon dioxide at 25°C, 94,052 cal is liberated. This means that the 

reactants contain 94,052 cal in excess of the product, so that this quantity of heat is evolved during the 

reaction. If the reaction were reversed and CO2were converted to carbon and oxygen, the reaction 

would be endothermic. It would involve the absorption of 94,052 cal, and ∆H would have a positive 

value. 

The standard heats of formation of thousands of compounds have been determined, and some of these 

are given in Table 3-2. 

Table 3-2 Standard Heats of Formation at 25°C* 

Substance 
ΔH° 

(kcal/mole) Substance 
ΔH° 

(kcal/mole) 

H2(g) 0     

H(g) 52.09 Methane(g) -17.889 

O2(g) 0 Ethane(g) -20.236 

O(g) 59.16 Ethylene(g) 12.496 

l2(g) 14.88 Benzene(g) 19.820 

H2O(g) -57.798 Benzene(l) 11.718 

H2O(l) -68.317 Acetaldehyde(g) -39.76 

HCl(g) -22.063 Ethyl alcohol(l) -66.356 

Hl(g) 6.20 Glycine(g) -126.33 

CO2(g) -94.052 Acetic acid(l) -116.4 

*From F. D. Rossini, K. S. Pitzer, W. J. Taylor, et al., Selected Values of 
Properties of Hydrocarbons (Circular of the National Bureau of Standards 
461), U.S. Government Printing Office, Washington, D.C., 1947; F. D. 
Rossini, D. D. Wagman, W. H. Evans, et al., Selected Values of Chemical 
Thermodynamic Properties (Circular of the National Bureau of Standards 
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disso
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3-84) is a finite

n as the fugac

ace concentrat

have been clo

s involve no tr
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of the substanc

e number and

city (f) can be 

tion in nonide

osed. They ex

ransfer of matt

re proceeding

tain two indepe
+, Cl-, (H2O)n, H

various speci
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the overall sys

This can be sh

se, in which, a

ed of a two-co

 
as the chemica

 more conven

 
spectively, for

 
be defined in

the general d
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brium, are cha

ergy changes f

9) and (3-72),

heat absorbed

n, and from th

to (3-100) give

ce in the mola
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Whereas equation (3-137) provides a value of ∆H° based on the use of two K values at their 

corresponding absolute temperatures T1 and T2, equations (3-139) and(3-140) give the values of ∆H° 

and ∆S°, and therefore the value of ∆G° = ∆H° - T∆S°. In the least squares linear regression 

equations (3-139) and (3-140), one uses as many ln K and corresponding 1/T values as are available 

from experiment. 

Example 3-16 
In a study of the transport of pilocarpine across the corneal membrane of the eye, Mitra and 
Mikkelson4 presented a van't Hoff plot of the log of the ionization constant, Ka, of pilocarpine 
versus the reciprocal of the absolute temperature, T-1 = 1/T. 
Using the data in Table 3-4, regress Ka versus T-1. With reference to the van't Hoff equation, 
equation (3-139), obtain the standard heat (enthalpy), ∆H°, of ionization for pilocarpine and 
the standard entropy for the ionization process. From ∆H° and ∆S° calculate ∆G° at 25°C. 
What is the significance of the signs and the magnitudes of ∆H°, ∆S°, and ∆G°? 

Table 3-4 Ionization Constants of Pilocarpine at Various Temperatures*† 

T(°C) T(K) 1/T × 103 Ka × 107 log Ka 

15 288 3.47 0.74 -7.13 

20 293 3.41 1.07 -6.97 

25 298 3.35 1.26 -6.90 

30 303 3.30 1.58 -6.80 

35 308 3.24 2.14 -6.67 

40 313 3.19 2.95 -6.53 

45 318 3.14 3.98 -6.40 

*For the column headed 1/T × 103 the numbers are 1000 (i.e., 103) 
times larger than the actual numbers. Thus, the first entry in column 3 has 
the value 3.47 × 10-3 or 0.00347. Likewise, in the next column Ka × 
107 signifies that the number 0.74 and the other entries in this column are to 
be accompanied by the exponential value 10-7, not 10+7. Thus, the first value 
in the fourth column should be read as 0.74 × 10-7 and the last value 3.98 × 
10-7. 

†From A. K. Mitra and T. J. Mikkelson, J. Pharm. Sci. 77, 772, 1988. With 
permission. 

 

Answers: 
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not signal nonionization of the acid—that is, that the process is nonspontaneous—but rather simply 

show that the forward reaction, represented by its ionization constant, becomes smaller and smaller. 

Chapter Summary 
In this chapter, the quantitative relationships among different forms of energy were reviewed 
and expressed in the three laws of thermodynamics. Energy can be considered as the 
product of an intensity factor and a capacity factor; thus, the various types of energy may be 
represented as a product of an intensive property (i.e., independent of the quantity of 
material) and the differential of an extensive property that is proportional to the mass of the 
system. For example, mechanical work done by a gas on its surroundings is P dV. Some of 
the forms of energy, together with these factors and their accompanying units, are given 
in Table 3-5. 

Table 3-5 Intensity and Capacity Factors of Energy 

Energy Form 

Intensity or Potential 
Factor 
(Intensive Property) 

Capacity or 
Quantity Factor 
(Extensive Property) 

Energy Unit 
Commonly 
Used 

Heat 
(thermal) 

Temperature (deg) Entropy change 
(cal/deg) 

Calories 

Expansion Pressure (dyne/cm2) Volume change 
(cm3) 

Ergs 

Surface Surface tension 
(dyne/cm) 

Area change 
(cm2) 

Ergs 

Electric Electromotive force or 
potential difference 
(volts) 

Quantity of 
electricity 
(coulombs) 

Joules 

Chemical Chemical potential 
(cal/mole) 

Number of moles Calories 

 

Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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4 Determination of the Physical Properties of 
Molecules 
Chapter Objectives 
At the conclusion of this chapter the student should be able to: 

1. Understand the nature of intra- and intermolecular forces that are involved in 
stabilizing molecular and physical structures. 

2. Understand the differences in the energetics of these forces and their relevance to 
different molecules. 

3. Understand the differences in energies between the vibrational, translational, and 
rotational levels and define their meaning. 

4. Understand the differences between atomic and molecular spectroscopic techniques 
and the information they provide. 

5. Appreciate the differences in the strengths of selected spectroscopic techniques used 
in the identification and detection of pharmaceutical agents. 

6. Define the electromagnetic radiation spectrum in terms of wavelength, wave number, 
frequency, and the energy associated with each range. 

7. Define and understand the relationships between atomic and molecular forces and 
their response to electromagnetic energy sources. 

8. Define and understand ultraviolet and visible light spectroscopy in terms of electronic 
structure. 

9. Define and understand fluorescence and phosphorescence in terms of electronic 
structure. 

10. Understand electron and nuclear precession in atoms subjected to electromagnetic 
radiation and its role in the determination of atomic structure in a molecule. 

11. Understand polarization of light beams and the ability to use polarized light to study 
chiral molecules. 

12. Understand fundamental principles of refraction of electron and neutron beams and 
how these beams are used to determine molecular properties. 

Molecular Structure, Energy, and Resulting Physical Properties 
An atom consists of a nucleus, made up of neutrons (neutral in charge) and protons (positively 

charged), with each particle carrying a weight of approximately 1 g/mole. In addition, electrons 

(negatively charged) exist in atomic orbits surrounding the nucleus and have a significantly lower weight. 

Charged atoms arise from an imbalance in the number of electrons and protons and can lead to ionic 

interactions (discussed in Chapter 2). The atomic mass is derived from counting the number of protons 

and neutrons in a nucleus. Isotopes may also exist for a given type of atom. For example, carbon has an 

atomic number of 6, which describes the number of protons, and there are several carbon isotopes with 

different numbers of neutrons in the nucleus: 11C (with five neutrons), 12C (with six neutrons), 13C (with 

seven neutrons), 14C (with eight neutrons), and 15C (with nine neutrons).1 Carbon-13, 13C, is a common 

isotope used in nuclear magnetic resonance (NMR) and kinetic isotope effect studies on rates of 

reaction, and 14C is radioactive and used as a tracer for studies that require high sensitivity and for 

carbon dating. Both11C and 15C are very short-lived, having half-lives of 20.3 min and 2.5 sec, 

respectively, and are not used in practical applications. 

Molecules arise when interatomic bonding occurs. The molecular structure is reflected by the array of 

atoms within a molecule and is held together by bonding energy, which relies heavily on electron orbital 

orientation and overlap. This is illustrated in the Atomic Structure and Bonding Key Concept Box. Each 

bond in a complex molecule has an intrinsic energy and will have different properties, such as reactivity. 

The properties within a molecule depend on intramolecular interactions, and each molecule will possess 

a net energy of bonding that is defined by its unique composition of atoms. It is also important to note 
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measured or calculated, and such measurements should be reproducible for an individual molecule 

under optimal circumstances. 

Table 4-1 Atomic and Group Contributions to Molar Refraction* 

C— (single) 2.418 

—C== (double) 1.733 

—C[triple bond] (triple) 2.398 

Phenyl (C6H5) 25.463 

H 1.100 

O (C==O) 2.211 

O (O—H) 1.525 

O (ether, ester, C—O) 1.643 

Cl 5.967 

Br 8.865 

L 13.900 

*These values are reported for the D line of sodium as the light source. From 
J. Dean (Ed.), Lange's Handbook, 12th Ed. McGraw-Hill, New York, 1979, 
pp. 10–94. See also Bower et al., in A. Weissberger (Ed.), Physical Methods 
of Organic Chemistry, Vol. 1, Part II, 3rd Ed., Wiley-Interscience, New 
York, 1960, Chapter 28. 

 

When one carefully associates specific physical properties with the chemical nature of closely related 

molecules, one can (a) describe the spatial arrangement of atoms in drug molecules, (b) provide 

evidence for the relative chemical or physical behavior of a molecule, and (c) suggest methods for the 

qualitative and quantitative analysis of a particular pharmaceutical agent. The first and second of these 

often lead to implications about the chemical nature and potential action that are necessary for the 

creation of new molecules with selective pharmacologic activity. The third provides the researcher with 

tools for drug design and manufacturing and offers the analyst a wide range of methods for assessing 

the quality of drug products. The level of understanding of the physical properties of molecules has 

Dr. Murtadha Alshareifi e-Library

154



expa

comp

Now

and 

selec

This 

confo

mole

actio

arran

elicit

comp

restr

It is i

disco

solel

The 

librar

phys

pred

be te

librar

comp

scree

assu

mole

requ

The 

dete

Syst

Die
Elec

mole

dista

wher

10-12

attra

rely o

perm

Berg

Whe

distri

desc

desc

char

prop

mom

of th

anded greatly 

putational too

where has the i

design, where

ction. For exa

approach is b

ormation of th

ecule can be s

ons of the targ

ngements and

t the desired p

pute the numb

rictions. 

important to n

overy and des

ly on the phys

ability to desig

ries has also d

sical properties

icted. Toward

ested for nume

ries routinely c

pound whose 

ened. Finally, 

uring that durin

ecule remains 

ires to ensure

remainder of t

rmining the ph

ème Internatio

electric C
tricity is relate

ecule is at rest

ance r, their po

re the charges
2 C2 N-1 m-2, a

active and repu

on the permitt

mittivities due t

gethon and Sim

en no permane

ibution within 

cription, a dipo

cribed by a vec

rge separation

perties. In com

ments can be e

e molecule. A

and, with incre

ls to develop m

impact of com

e computation

mple, comput

based on the s

he HIV proteas

synthesized to

et. This type o

d types, such a

pharmacologic

ber of molecul

ote that these

sign. It is also 

sical properties

gn and test the

dramatically in

s of these mo

d that end, che

erous molecul

contain million

potential to m

the ability to m

ng the transitio

physically the

e human safety

this chapter d

hysical proper

onal (SI) units

Constant 
ed to the natur

t, its properties

otential energy

s q1 and q2 are

and the potent

ulsive interact

tivity of the me

to their chemic

mons.5 

ent charges ex

the molecule)

ole is a separa

ctor whose ma

n can often cre

mplex molecule

estimated from

A symmetric m

easing advanc

molecules with

mputational mo

al tools offer g

er modeling o

screening of k

se) of a therap

o optimally bind

of modeling us

as a functiona

c response. Ot

les that might 

e models are re

important to n

s of molecule(

ese molecules

ncreased the n

lecules to con

emical libraries

lar properties 

ns of compoun

make it into clin

measure the p

on from compu

e same. This is

y and drug eff

escribes some

rties of molecu

s for all practic

and Indu
re of charges i

s are defined 

y is defined by

e in coulombs

ial energy is in

ions. From eq

edium in which

cal nature, po

xist in molecul

 is given by th

ation of two op

agnitude is giv

eate chargelike

es, the electro

m partial atomi

olecule will dis

ces in technol

h ideal physic

odeling been o

great promise 

of therapeutic t

known or predi

peutic target in

d and either b

sually reveals 

al group, that c

ther computat

make reason

relatively new 

note that all of 

(s) that have b

s using a com

need for techn

nfirm that the a

s can reach w

in modern hig

nds. This aids 

nical use is gre

physical prope

uter to large-s

s a guideline t

ficacy. 

e of the well-d

ules. All of the

cal cases. 

uced Pola
in a dynamic s

by electrostat

y Coulomb's la

s (C), r is in me

n joules. Coulo

quation (4-1), i

h the charges 

lar or nonpola

les, a measur

he property we

pposing charge

ven by µ = qr. 

e interactions 

n distribution 

ic charges. A 

splay no dipol

ogy, the deve

cal properties h

of broader imp

for enhancing

targets (e.g., H

icted physical 

n a computer t

block (antagon

a limited num

can be utilized

tional program

able drugs ba

but offer grea

these comput

been determin

puter and to r

nologically sup

actual properti

well over 10,00

gh-throughput 

in the ability o

eater than all 

erties of a lead

scale manufac

that the Food 

defined interac

 quantities pre

arization
state (e.g., ele

tics. For two ch

aw, 

eters, ε0 (the p

omb's law can

t is clear that 

exist. Differen

ar. For a more 

e of their pola

e called the dip

es over a dista

Dipoles do no

and influence

can be approx

key feature of

le moment eith

elopment of co

has become c

portance than 

g the speed of

HIV protease) 

properties (e.

to elucidate ar

ist) or enhanc

mber of atomic 

 in the design

ms can then be

sed on these 

t potential for 

tational appro

ed through ye

apidly synthes

perior equipme

es match thos

0 individual m

systems. In fa

of scientists to

of the other m

d compound is

cturing, the init

and Drug Adm

ctions that are 

esented are ex

ectron flow). W

harges separa

 
permittivity con

n be used to d

electrostatic in

nt solvents hav

comprehensiv

rity (i.e., the e

pole moment 

ance r (Fig. 4-

ot have a net c

e several phys

ximated so tha

f this calculatio

her because t

omputer-based

commonplace.

in drug discov

f drug design a

 is widely utiliz

.g., the protein

rea(s) where a

ce (agonist) th

spatial 

n of a molecule

e utilized to 

molecular 

the future of d

oaches are bas

ears of researc

size chemical 

ent to measur

se that are 

molecules and 

act, “virtual” 

o select one le

molecules 

s critical to 

tially identified

ministration 

e important for 

xpressed in 

When a charge

ated by a 

nstant) = 8.85

describe both 

nteractions als

ve differing 

ve discussion

electronic 

(µ). In the sim

-2) and is gene

charge, but th

sical and chem

at overall dipo

on is the symm

there is no cha

d 

. 

very 

and 

zed. 

n 

a 

e 

e to 

drug 

sed 

ch. 

e the 

can 

ead 

d 

ed 

4 × 

so 

, see 

mplest 

erally 

is 

mical 

ole 

metry 

arge 

Dr. Murtadha Alshareifi e-Library

155



sepa

meth

A mo

field 

P.81

 

dipol

bond

pept

the h

core 

deriv

Fig.
diox
mol
vect

To p

and 

two p

some

from

that 

the q

(V, in

aration (e.g., H

hane). 

olecule can m

or by a perma

 

lar nature of a

ding structure 

ide bond and 

higher-order c

 protein struct

ved therapeuti

. 4-2. Vecto
xide, and (c
lecule. The 
tor is drawn

properly discus

dielectric cons

parallel condu

e medium acr

 the left plate 

of the battery 

quantity of ele

n volts [V]) bet

H2, O2, N2) or a

aintain a sepa

anent charge s

a peptide bond

were discusse

side chains ca

onformation o

tures, so both 

ics. Permanen

orial nature 
) a peptide b
arrow repre

n, from nega

ss dipoles and

stant. Placing 

ucting plates, s

ross a distance

to the right pla

supplying the

ctric charge (q

tween the plat

as a conseque

aration of elec

separation wit

d is an exampl

ed earlier in th

an stabilize se

of a protein. Ind

types of dipol

nt dipoles in a 

of permane
bond. The d

esents the co
ative to posi

d the effects of

a molecule in

such as the pla

e r, and apply 

ate through th

 initial potentia

q, in coulombs

tes: 

ence of cance

ctric charge eit

thin a polar m

le of a fixed or

his chapter. In

econdary struc

duced dipoles

le play a prom

molecule are 

ent dipole m
distance r is
onventional
itive. 

f solvation, on

n an electric fie

ates of an ele

 a potential ac

he battery until

al difference. 

s) stored on th

ellation of the d

ther through in

olecule. The 

r permanent d

 proteins, the 

ctures like α-h

s in a protein c

minent role in th

discussed in 

moments for 
s given by th
l direction th

ne must under

eld is one way

ctric condense

cross the plate

l the potential 

The capacitan

he plates divid

dipole vectors 

nduction by an

dipole, and its 

permanent dip

elices and can

can also influe

he stabilizatio

the next sectio

(a) water, (
he dashed li
hat a dipole

stand the conc

y to induce a d

er, which are s

es (Fig. 4-3). E

difference of t

nce (C, in fara

ed by the pote

(e.g., benzen

n external elec

effects on the

polar nature o

n also influenc

ence hydropho

on of protein-

on. 

(b) carbon 
ine for each

e moment 

cepts of polar

dipole. Consid

separated by 

Electricity will f

the plates equ

ads [F]) is equa

ential differenc

ne, 

ctric 

e 

of the 

ce 

obic 

h 

rity 

er 

flow 

uals 

al to 

ce 

Dr. Murtadha Alshareifi e-Library

156



Fig.

The 

well 

This 

wate

that 

nega

incre

on th

The 

refer

The 

defin

in Ta

by G

by P

The 

the c

incre

temp

minim

Cons

nega

Oxyg

. 4-3. Parall

capacitance o

as on the thic

value is used

er fills the spac

its negative en

ative plate (se

eased ease wi

he plates per u

capacitance o

rred to as the 

dielectric cons

nition, the diele

able 4-2. The d

Gorman and H

Pagay et al.7 

dielectric cons

capacitances a

ease, so too d

perature play a

mal resistance

sider a water m

ative plate and

gen is strongly

lel-plate con

of the condens

ckness r. When

d as a referenc

ce, the capaci

nd lies neares

e Fig. 4-3). Th

ith which elect

unit of applied

of the condens

dielectric cons

stant ordinarily

ectric constan

dielectric cons

all,6and ε for d

stant is a mea

are close, then

oes the molec

a role in these

e to charge se

molecule at th

d its negatively

y 

ndenser. 

ser in Figure 4

n a vacuum fil

ce to compare

tance is increa

st the positive 

his alignment p

trons can flow

 voltage. 

ser filled with s

stant, ε: 

y has no dime

t of a vacuum

stants of solve

drug vehicles 

asure of the ab

n there is grea

cule's ability to

e measuremen

eparation and 

he atomic leve

y charged elec

4-3 depends o

lls the space b

e capacitances

ased because

condenser pla

provides addit

w between the 

some materia

ensions becau

m is unity. Diele

ent mixtures ca

can be relate

bility of molecu

ater resistance

o separate cha

nts. If a molec

will migrate in

el with its posit

ctron cloud pu

on the type of m

between the p

s when other s

e the water mo

ate and its pos

tional moveme

plates. Thus, 

l, Cx, divided b

use it is the rat

ectric constan

an be related 

d to drug plas

ule to resist ch

e to a charge s

arges. Note th

cule has a perm

n the field. How

tively charged 

ulled and orien

medium separ

lates, the cap

substances fill

olecule can ori

sitive end lies 

ent of charge 

additional cha

by the referenc

tio of two capa

ts of some liqu

to drug solubi

ma concentra

harge separati

separation. As

at field streng

manent dipole

wever, the con

nuclei drawn 

nted toward th

rating the plat

pacitance is C0

l the space. If 

ientate itself s

nearest the 

because of th

arge can be p

ce standard, C

acitances. By 

uids are listed

ility as describ

ation as report

ion. If the ratio

s the ratios 

gth and 

e, it will have 

nverse is also 

toward the 

e positive plat

es as 

0. 

so 

e 

laced 

C0, is 

d 

bed 

ed 

os of 

true. 

te. 

Dr. Murtadha Alshareifi e-Library

157



P.82 

 

electronegative and will have a stronger attraction to the positive pole than will a less electronegative 

atom. Likewise, hydrogen atoms are more electropositive and will move further toward the positive plate 

than an atom that is more electronegative. Conceptually, this will reflect less resistance to the field. 

Table 4-2 Dielectric Constants of Some Liquids at 25°C 

Substance Dielectric Constant, ε  

N-Methylformamide 182   

Hydrogen cyanide 114   

Formamide 110   

Water 78.5   

Glycerol 42.5   

Methanol 32.6   

Tetramethylurea 23.1   

Acetone 20.7   

n-Propanol 20.1   

Isopropanol 18.3   

Isopentanol 14.7   

l-Pentanol 13.9   

Benzyl alcohol 13.1   

Phenol 9.8 (60°C) 

Ethyl acetate 6.02   
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Chloroform 4.80   

Hydrochloric acid 4.60   

Diethyl ether 4.34 (20°C) 

Acetonitrile 3.92   

Carbon disulfide 2.64   

Triethylamine 2.42   

Toluene 2.38   

Beeswax (solid) 2.8   

Benzene 2.27   

Carbon tetrachloride 2.23   

l,4-Dioxane 2.21   

Pentane 1.84 (20°C) 

Furfural 41 (20°C) 

Pyridine 12.3   

Methyl salicylate 9.41 (30°C) 
 

A molecule placed in that field will align itself in the same orientation as the water molecules even 

though the extent of the alignment and induced charge separation will dramatically differ due to atomic 

structure. For this discussion, consider a molecule like pentane. Pentane is an aliphatic hydrocarbon 

that is not charged and relies on van der Waals interactions for its primary attractive energies. Pentane 

is not a polar molecule, and carbon is not strongly electronegative. Carbon–hydrogen bonds are much 

stronger (less acidic) than oxygen–hydrogen bonds; therefore, the electrons in the σ bonds are more 

shared. The electronic structure would not favor a large charge separation in the molecule and should 
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hydration of ions and molecules. The symmetry of the molecule can also be associated with its dipole 

moment, which is observed with carbon dioxide (no net dipole) in Figure 4-2. Likewise, benzene and p-

dichlorobenzene are symmetric planar molecules and have dipole moments of zero. Meta and ortho 

derivatives of benzene, however, are not symmetric and have significant dipole moments, as listed 

in Table 4-3. 

The importance of dipole interactions should not be underestimated. For ionic solutes and nonpolar 

solvents, ion–induced dipole interactions have an essential role in solubility phenomena (Chapter 9). For 

drug–receptor binding, dipole–dipole interactions are essential noncovalent forces that contribute to 

enhance the pharmacologic effect, as described by Kollman.8 For solids composed of molecules with 

permanent dipole moments, the dipole interactions contribute to the crystalline arrangement and overall 

structural nature of the solid. For instance, water molecules in ice crystals are organized through their 

dipole forces. Additional interpretations of the significance of dipole moments are given by Minkin et al.9 

Electromagnetic Radiation 
Electromagnetic radiation is a form of energy that propagates through space as oscillating electric and 

magnetic fields at right angles to each other and to the direction of the propagation, shown in Figure 4-

4a. Both electric and magnetic fields can be described by sinusoidal waves with characteristic 

amplitude, A, and frequency, v. The common representation of the electric field in two dimensions is 

shown in 

P.84 

 

Figure 4-4b. This frequency, v, is the number of waves passing a fixed point in 1 sec. The 

wavelength, λ, is the extent of a single wave of radiation, that is, the distance between two successive 

maxima of the wave, and is related to frequency by the velocity of propagation, v: 

Table 4-3 Dipole Moments of Some Compounds 

Compound Dipole Moment (Debye Units)

p-Dichlorobenzene 0 

H2 0 

Carbon dioxide 0 

Benzene 0 

l,4-Dioxane 0 

Carbon monoxide 0.12 

Hydrogen iodide 0.38 

Hydrogen bromide 0.78 
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Hydrogen chloride 1.03 

Dimethylamine 1.03 

Barbital 1.10 

Phenobarbital 1.16 

Ethylamine 1.22 

Formic acid 1.4 

Acetic acid 1.4 

Phenol 1.45 

Ammonia 1.46 

m-Dichlorobenzene 1.5 

Tetrahydrofuran 1.63 

n-Propanol 1.68 

Chlorobenzene 1.69 

Ethanol 1.69 

Methanol 1.70 

Dehydrocholesterol 1.81 

Water 1.84 
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ElementWavelength (nm) 

As 193.7 

CA 422.7 

Na 589.0 

Cu 324.8 

Hg 253.7 

Li 670.8 

Pb 405.8 

Zn 213.9 

K 766.5 
 

Atomic spectroscopy has pharmaceutical applications in analysis of metal ions from drug products and 

in the quality control of parenteral electrolyte solutions. For example, blood levels of lithium, used to 

treat bipolar disorder (manic depressive disorder), can be analyzed by atomic spectroscopy to check for 

overdosing of lithium salts. 

In addition to having electronic states, molecules have quantized vibrational states, which are 

associated with energies due to interatomic vibrations (e.g., stretching and bending), and rotational 

states, which are related to the rotation of molecules around their center of gravity. These additional 

energy states available for electron transitions make the spectra of molecules more complex than those 

of atoms. In the case of vibration, the interatomic bonds may be thought of as springs between atoms 

(see Fig. 4-14) that can vibrate in various stretching or bending configurations depending on their 

energy levels. In rotation, the motion is similar to that of a top spinning according to its energy level. In 

addition, the molecule may have some kinetic energy associated with its translational (straight-line) 

motion in a particular direction. 

The energy levels associated with these various transitions differ greatly from one another. The energy 

associated with movement of an electron from one orbital to another is typically about 10-18 joule 

(electronic transitions absorb in the ultraviolet and visible light region between 180 and 780 nm; 

see Example 4-2), where the energy involved in vibrational changes is about 10-19 to 10-20 joule (infrared 

region) depending on the atoms involved, and the energy for rotational change is about 10-21 joule. The 

energy associated with translational change is even smaller, about 10-35 joule. The precise energies 

associated with these individual transitions depend on the atoms and bonds that compose the molecule. 

Each electronic energy state of a molecule normally has several possible vibrational states, and each of 

these has several rotational states. The rotational energy levels are lower than the vibrational levels and 

are drawn in a similar manner to the quantized vibrational levels in the electronic states, as shown 
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in Figure 4-5b. The translational states are so numerous and the energy levels between translational 

states are so small that they are normally considered a continuous form of energy and are not treated as 

quantized. The total energy of a molecule is the sum of its electronic, vibrational, rotational, and 

translational energies. 

When a molecule absorbs electromagnetic radiation, it can undergo certain transitions that depend on 

the quantized amount of energy absorbed. In Figure 4-5, the absorption of radiation (wavy lines) leads 

to two different energy transitions, ∆E, which result in the electronic transition from the lowest level of 

the ground state (S0) to an excited electronic state (S1 or S2). Electronic transitions of molecules involve 

energies corresponding to ultraviolet or visible radiation. 

P.89 

 

Purely vibrational transitions may occur within the same electronic state (e.g., a change from level 1 to 2 

in S0) and involve near-infrared (IR) radiation. Rotational transitions (not shown in Fig. 4-5) are 

associated with low-energy radiation over the entire infrared wavelength region. The relatively large 

energy associated with an electronic transition usually leads to a variety of concurrent, different 

vibrational and rotational changes. Slight differences in the vibrational and rotational nature of the 

excited electronic state complicate the spectrum. These differences lead to broad bands, characteristic 

of the ultraviolet and visible regions, rather than the sharp, narrow lines characteristic of individual 

vibrational or rotational changes in the infrared region. 

The energy absorbed by a molecule may be found only at a few discrete wavelengths in the ultraviolet, 

visible, and infrared regions, or the absorptions may be numerous and at longer wavelengths than 

originally expected. The latter case, involving longer-wavelength radiation, is normally found for 

molecules that have resonance structures, such as benzene, in which the bonds are elongated by the 

resonance and have lower energy transitions than would be expected otherwise. Electromagnetic 

energy may also be absorbed by a molecule from the microwave and radio wave regions (see Table 4-

4). Low-energy transitions involve the spin of electrons in the microwave region and the spin of nuclei in 

the radio wave region. The study of these transitions constitutes the fields of EPR and NMR 

spectroscopy. These various forms of molecular spectroscopy are discussed in the following sections. 

Ultraviolet and Visible Spectrophotometry 
Electromagnetic radiation in the ultraviolet (UV) and visible (Vis) regions of the spectrum fits the energy 

of electronic transitions of a wide variety of organic and inorganic molecules and ions. Absorbing 

species are usually classified according to the type of molecular energy levels involved in the electronic 

transition, which depends on the electronic bonding within the molecule.11,12 Commonly, covalent 

bonding occurs as a result of a pair of electrons moving around the nuclei in a way that minimizes both 

internuclear and interelectronic Coulombic repulsions. Combinations of atomic orbitals (i.e., overlap) 

give rise to molecular orbitals, which are locations in space with an associated energy in which bonding 

electrons within a molecule can be found. 
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A schematic diagram of a traditional double-beam UV–Vis spectrophotometer is shown in Figure 4-7. 

The beam of light from the source, usually a deuterium lamp, passes through a prism or grating 

monochromator to sort the light according to wavelength and spread the wavelengths over a wide 

range. This permits a particular wavelength region to be easily selected by passing it through the 

appropriate slits. The selected light is then split into two separate beams by a rotating mirror, or 

“chopper,” with one beam passed through the reference, which is typically the blank solvent used to 

dissolve the sample, and the other through the sample cell containing the test molecule. After each 

beam passes through its respective cell, it is reflected onto a second mirror in another chopper 

assembly, which alternatively selects either the reference or the combined beams to focus onto the 

photomultiplier detector. The rapidly changing current signal from the detector is proportional to the 

intensity of the particular beam, and this is fed into an amplifier, which electronically separates the 

signals of the reference beam from those of the sample beam. The final difference in beam signals is 

automatically recorded. In addition, it is common practice to first put the solvent in the sample cell and 

set the spectrophotometer's absorbance to zero to serve as the baseline reference. The samples can 

then be placed in the sample cell and measured, with the difference from the baseline being reported. 

The sample data are reported as a plot of the intensity, usually as absorbance, against the wavelength, 

as shown for the chlordiazepam lactam in Figure 4-8. 

Figure 4-9 is an illustration of a typical diode-array spectrophotometer. Note that these instruments have 

simpler optical components, and, as a result, the radiation throughput is much higher than in traditional 

double-beam instruments. After the light beam passes the sample, the radiation is focused on an 

entrance slit and directed to a grating. The transducer is a diode array from which resolutions of 0.5 nm 

can be reached. A single scan from 200 to 1100 nm takes only 0.1 sec, which leads to a significant 

improvement in the signal-to-noise ratio by accumulating multiple scans in a short time. 

Typically, a calibration curve from a series of standard solutions of known but varying concentration is 

used to generate standard curves for quantitative analysis. An absorbance spectrum can be used to 

determine one wavelength, typically an absorption maximum, where the absorbance of each sample 

can be efficiently measured. The absorbance for standards is measured at this point and plotted against 

the concentration, as shown in Figure 4-10, to obtain what is known as a Beer's-law plot. The 

concentration of an “unknown” sample can then be determined by interpolation from such a graph. 

Spectrophotometry is a useful tool for studying chemical equilibria or determining the rate of chemical 

reactions. The chemical species participating in the equilibria must have 

P.92 

 

different absorption spectra due to changes in the electronic structure in the associated or dissociated 

states (Chapter 8), which influence the bonding structure. This change results in the variation in 

absorption at a representative wavelength for each species while the pH or other equilibrium variable is 

changed. If one determines the concentrations of the species from Beer's law and knows the pH of the 

solution, one can calculate an approximate pKa for a drug. For example, if the drug is a free acid (HA) in 

equilibrium with its base (A-), then the pKa is defined by 
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(HPLC), which eliminates species interference by separating the compounds before detection occurs. 

The major use of spectrophotometry is in the field of quantitative analysis, in which the absorbance of 

chromophores is determined. Various applications of spectrophotometry are discussed by Schulman 

and Vogt.15 

Fluorescence and Phosphorescence 
Luminescence is an emission of radiation in the ultraviolet, visible, or near-IR regions from electronically 

excited species. An electron in an atom or a molecule can be excited by means of absorbing energy, for 

instance a photon of light, to reach an electronic excited state (see prior discussion of orbital transitions). 

The excited state is relatively short-lived, and the electron can return to its ground state via radiative and 

nonradiative energy emission. If the preferred path to return to the ground state involves releasing 

energy through internal conversions by changes in vibrational states or through collisions with the 

environment (e.g., solvent molecules), then the molecule will not display luminescence. Many chemical 

species, however, emit radiation when returning to the ground state either as fluorescence or as 

phosphorescence, depending on the mechanism by which the electron finally returns to the ground 

state. 

Figure 4-11 shows a simplified energy diagram (also known as a Perrin–Jablonsky diagram) of the 

typical mechanisms that a chemical species undergoes after being electronically excited. The absorption 

of a photon usually excites an electron from the ground state toward its excited states without changing 

its spin (i.e., a singlet ground state will absorb into a singlet excited state, called a spin-allowed 

transition). 

The triplet state usually cannot be achieved by excitation from the ground state, this being termed a 

“forbidden” transition according to quantum theory. It is usually reached through the process 

of intersystem crossing (ISC), which is a nonradiative transition between two isoenergetic vibrational 

levels belonging to electronic states of different multiplicities. For example, the excited singlet (S1) in the 

0 vibrational mode can move to the isoenergetic vibrational level of Tn triplet state, then vibrational 

relaxation can bring it to the lowest vibrational level of T1, with the concomitant energy loss (see Fig. 4-

11). From T1, radiative emission to S0 can occur, which is called phosphorescence. 

The excited triplet state (T1) is usually considered more stable (i.e., having a longer lifetime) than the 

excited singlet state (S1). The length of time during which light will be emitted after the molecule has 

become excited depends on the lifetime of the electronic transition. Therefore, we can expect 

phosphorescence to occur for a longer period after excitation than after fluorescence. Ordinarily, 

fluorescence occurs between 10-10 and 10-7 sec after excitation, whereas the lifetime for 

phosphorescence is between 10-7 and 1 sec. Because of its short lifetime, fluorescence is usually 

measured while the molecule is being excited. Phosphorescence uses a pulsed excitation source to 

allow enough time to detect the emission. It should be noted that measurements of 

P.94 

 

fluorescence lifetimes on the order of femtoseconds have been demonstrated to be valuable in studying 

transition states, as described by Zewail.16 
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Table 4-6 Fluorescence of Some Drugs 

Drug 

Excitation 
Wavelength 
(nm) 

Emission 
Wavelength 
(nm) Solvent 

Phenobarbital 255 410–420 0.1 N NaOH 

Hydroflumethiazide 333 393 1 N HCl 

Quinine 350 ~450 0.1 N H2SO4 

Thiamine 365 ~440 Isobutanol, after 
oxidation with 
ferricyanide 

Aspirin 280 335 1% acetic acid in 
chloroform 

Tetracycline 
hydrochloride 

330 450 0.05 N NaOH(aq) 

Fluorescein 493.5 514 Water (pH 2) 

Riboflavin 455 520 Ethanol 

Hydralazine 320 353 Concentrated H2SO4 
 

Infrared Spectroscopy 
The study of the interaction of electromagnetic radiation with vibrational or rotational resonances (i.e., 

the harmonic oscillations associated with the stretching or bending of the bond) within a molecular 

structure is termed infrared spectroscopy. Normally, infrared radiation in the region from about 2.5 to 

50 µm, equivalent to 4000 to 200 cm-1 in wave number, is used in commercial spectrometers to 

determine most of the important vibration or vibration–rotation transitions. The individual masses of the 

vibrating or rotating atoms or functional groups, as well as the bond strength and molecular symmetry, 

determine the frequency (and, therefore, also the wavelength) 

P.96 

 

of the infrared absorption. The absorption of infrared radiation occurs only if the permanent dipole 

moment of the molecule changes with a vibrational or rotational resonance. The molecular symmetry 

relates directly to the permanent dipole moment, as already discussed. Bond stretching or bending may 

affect this symmetry, thereby shifting the dipole moment as found for the normal vibrational modes (2), 

(3), and (3′) for CO2 in Figure 4-13. Other resonances, such as (1) for CO2 inFigure 4-13, do not affect 

the dipole moment and therefore do not produce infrared absorption. Resonances that shift the dipole 
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Compound or Group ppm 

Tetramethylsilane (TMS), (CH3)4Si 0.00 

Methane 0.23 

Cyclohexane 1.44 

Acetone 2.08 

Methyl chloride 3.06 

Chloroform 7.25 

Benzene 7.27 

Ethylene 5.28 

Acetylene 1.80 

R—OH (hydrogen bonded) 0.5–5.0 

R2—NH 1.2–2.1 

Carboxylic acids (R—COOH) 10–13 

H2O ~4.7 
 

In Figure 4-20, the signal bands are of simple shape, with little apparent complexity. Such sharp single 

bands are known as singlets in NMR terminology. In most NMR spectra, the bands are not as simple 

because each particular nucleus can be coupled by spin interactions to neighboring nuclei. If these 

neighboring nuclei are in different local magnetic environments, splitting of the bands can occur because 

of differences in electron densities. This leads to multiplet patterns with several lines for a single 

resonant nucleus. The pattern of splitting in the multiplet can provide valuable information concerning 

the nature of the neighboring nuclei. 
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intensification, as mentioned previously, when protons coupled to the particular carbon atom are 

irradiated. These signal changes allow particular carbon nuclei in a molecular structure to be associated 

with particular protons and to produce what is termed two-dimensional NMR spectrometry. 

Farrar29 describes the techniques involved in these experiments. 

Table 4-8 Basic Nuclear Magnetic ResonanceS (NMR) and Natural Abundance 
of Selected Isotopes* 

Isotope 

NMR Frequency (MHz) at Given Field 
Strength Natural Abundance 

(%) At 1.0000 T At 2.3487 T 

1
1H 42.57 100.00 99.985 

13
6C 10.71 25.14 1.108 

15
7N 4.31 10.13 0.365 

19
9F 40.05 94.08 100 

*From A. J. Gordon and R. A. Ford, The Chemist's Companion, Wiley, New 
York, 1972, p. 314. With permission. 

 

Nuclear magnetic resonance is a versatile tool in pharmaceutical research. Nuclear magnetic resonance 

spectra can provide powerful evidence for a particular molecular conformation of a drug, including the 

distinction between closely related isomeric structures. This identification is normally based on the 

relative position of chemical shifts as well peak multiplicity and other parameters associated with spin 

coupling. Drug–receptor interactions can be distinguished and characterized through specific changes in 

the NMR spectrum of the unbound drug after the addition of a suitable protein binder. These changes 

are due to restrictions in drug orientation. Burgen and Metcalfe30 describe applications of NMR to 

problems involving drug–membrane and drug–protein interactions. Illustrations of these interactions are 

analyzed by Lawrence and Gill31 using electron spin resonance (ESR) and by Tamir and 

Lichtenberg32 using proton-NMR techniques. The ESR and proton-NMR results show that the 

psychotropic tetrahydrocannabinols reduce the molecular ordering in the bilayer of liposomes used as 

simple models of biologic membranes. These results suggest that the cannabinoids exert their 

psychotropic effects by way of a nonspecific interaction of the cannabinoid with lipid constituents, 

principally cholesterol, of nerve cell membranes. Rackham33 reviewed the use of NMR in 

pharmaceutical research, with particular reference to analytical problems. 

P.102 

 

 

Nuclear magnetic resonance characterization has become routine, and specialized techniques have 

rapidly expanded its application breadth. Two particularly exciting applications rely on the determination 

of the three-dimensional structure of complex biomolecules34 (proteins and nucleic acids) and the 

imaging of whole organisms (tomography). The paramount importance of these developments 

employing NMR has been recognized by the awarding of the Nobel Prize in Chemistry and Medicine in 

2002 and 2003 for this work. 

Refractive Index and Molar Refraction 
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Propoxyphene +67 25 Chloroform 

Quinidine +230 15 Chloroform 

Reserpine –120 25 Chloroform 

Tetracycline hydrochloride –253 24 Methanol 

d-Tubocurarine chloride +190 22 Water 

Yohimbine +51 to +62 20 Ethanol 
 

Optical Rotatory Dispersion 
Optical rotation changes as a function of the wavelength of light, and optical rotatory dispersion (ORD) is 

the measure of the angle of rotation as a function of the wavelength. Recall that this is light in the UV–

Vis range and that different wavelengths of light have different energies, which may result in changes in 

absorption patterns of molecules due to their 

P.105 

 

electronic structure. Varying the wavelength of light changes the specific rotation for an optically active 

substance because of the electronic structure of the molecule. A graph of specific rotation versus 

wavelength shows an inflection and then passes through zero at the wavelength of maximum absorption 

of polarized light as shown in Figure 4-25. This change in specific rotation is known as the Cotton effect. 

By convention, compounds whose specific rotations show a maximum beforepassing through zero as 

the wavelength of polarized light becomes smaller are said to show a positive Cotton effect, whereas if 

{α} shows a maximum after passing through zero (under the same conditions of approaching shorter 

wavelengths), the compound shows a negative Cotton effect. Enantiomers can be characterized by the 

Cotton effect, as shown in Figure 4-26. In addition, ORD is often useful for the structural examination of 

organic compounds. Detailed discussions of ORD are given by Campbell and Dwek12 and Crabbe.36 
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structure in proteins can easily be defined by close investigation of CD spectra.37,39,40,41The 

magnitude of the absorption of the components of circularly polarized light is distinctly different for α-

helices, β-sheets, and β-turns. By measuring the CD spectrum of proteins whose secondary structure is 

known, one can compile database and use it to deconvolve the secondary structural composition of an 

unknown protein. The CD spectra for a protein can also serve as standard and be used to determine 

whether effects during production or formulation are altering the proteins' folding patterns, which could 

dramatically decrease its activity. 

Circular dichroism has also been applied to the determination of the activity of penicillin, as described by 

Rasmussen and Higuchi.42 The activity was measured as the change in the CD spectra of penicillin 

after addition of penicillinase, which enzymatically cleaves the β-lactam ring to form the penicillate ion, 

as shown for benzylpenicillin in Figure 4-27. Typical CD spectra for benzylpenicillin and its hydrolysis 

product are shown in Figure 4-27. The direct determination of penicillins by CD and the distinction of 

penicillins from cephalosporins by their CD spectra has been described by Purdie and Swallows.43 The 

penicillins all have single positive CD bands with maxima at 230 nm, whereas the cephalosporins have 

two CD bands, a positive one with a maximum at 260 nm and a negative one with maximum at 230 nm 

(wavelengths for maxima are given to within ±2 nm). This permits easy differentiation between 

penicillins and cephalosporins by CD spectropolarimetry. 

Electron and Neutron Scattering and Emission Spectroscopy 
Electrons can flow across media in response to charge separation, and do so at certain frequencies and 

wavelengths depending on the magnitude of the charge separation. Neutrons can also be generated 

and flow in a similar manner. The exact mathematical and theoretical description of this flow is well 

beyond the scope of this text. However, the concept that they can flow is important to the discussion of 

the following subjects. It must also be noted that whereas electron and neutron waves are not 

traditionally thought of as electromagnetic radiation, they can be used to determine important molecular 

properties and are included in this text. The main distinction between electrons and neutrons versus 

electromagnetic radiation is that electrons and neutrons have a finite resting mass, in contrast to 

electromagnetic radiation, which has a zero finite resting mass.12 
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microscope image combined with an energy-dispersive x-ray analysis (EDAX) linear 
profile focused on the iron x-ray fluorescence emission frequency is performed across 
the tablet. In the first tablet, the iron is uniformly contained in the center and the 
magnitude of the deviation of the line implies a higher iron concentration in the core. 
The image shows a smooth surface. After exposure to water for 1 hr, the iron and 
some of the excipients have migrated from the core, leaving a rough contour and a 
lower EDAX level. The coating has a higher level of iron by this scan, which could be 
due to dissolution and the effect of diffusion rates, as discussed in later chapters. 

Small-angle neutron scattering is another technique that can be employed to illustrate the physical 

properties of a molecule. It is related to techniques like small-angle x-ray scattering and small-angle light 

scattering. Collectively, these techniques can be used to give information about the size (even molecular 

weights for large polymeric and protein molecules), shape, and even orientation of components in a 

sample.44 Small-angle neutron scattering is primarily used for the characterization of polymers, in 

particular dendrimers, and colloids. 

Chapter Summary 
The goal of this chapter was to provide a foundation for understanding the physical properties 
of molecules including methods to make those determinations. Students should understand 
the nature of intra- and intermolecular forces, molecular energetics of these forces, and their 
relevance to different molecules. Another important aspect that was covered was the 
determination of these physical properties using a variety of atomic and molecular 
spectroscopic techniques. The student should also appreciate the differences in the 
techniques with respect to the identification and detection of pharmaceutical agents. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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This chapter focuses on molecular dispersions, which are also known as true solutions. A solution 

composed of only two substances is known as a binary solution, and the components or constituents 

are referred to as the solvent and the solute. Commonly, the terms component and constituent are used 

interchangeably to represent the pure chemical substances that make up a solution. The number of 

components has a definite significance in the phase rule. The constituent present in the greater amount 

in a binary solution is arbitrarily designated as the solvent and the constituent in the lesser amount as 

the solute. When a solid is dissolved in a liquid, however, the liquid is usually taken as the solvent and 

the solid as the solute, irrespective of the relative amounts of the constituents. When water is one of the 

constituents of a liquid mixture, it is usually considered the solvent. When dealing with mixtures of 

liquids that are miscible in all 
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proportions, such as alcohol and water, it is less meaningful to classify the constituents as solute and 

solvent. 

Physical Properties of Substances 
The physical properties of substances can be classified as colligative, additive, and constitutive. Some 

of the constitutive and additive properties of molecules were considered in Chapter 4. In the field of 

thermodynamics, physical properties of systems are classified as extensive properties, which depend on 

the quantity of the matter in the system (e.g., mass and volume), and intensive properties, which are 

independent of the amount of the substances in the system (e.g., temperature, pressure, density, 

surface tension, and viscosity of a pure liquid). 

Colligative properties depend mainly on the number of particles in a solution. The colligative properties 

of solutions are osmotic pressure, vapor pressure lowering, freezing point depression, and boiling point 

elevation. The values of the colligative properties are approximately the same for equal concentrations 

of different nonelectrolytes in solution regardless of the species or chemical nature of the constituents. 

In considering the colligative properties of solid-in-liquid solutions, it is assumed that the solute is 

nonvolatile and that the pressure of the vapor above the solution is provided entirely by the solvent. 

Additive properties depend on the total contribution of the atoms in the molecule or on the sum of the 

properties of the constituents in a solution. An example of an additive property of a compound is the 

molecular weight, that is, the sum of the masses of the constituent atoms. The masses of the 

components of a solution are also additive, the total mass of the solution being the sum of the masses of 

the individual components. 

Constitutive properties depend on the arrangement and to a lesser extent on the number and kind of 

atoms within a molecule. These properties give clues to the constitution of individual compounds and 

groups of molecules in a system. Many physical properties may be partly additive and partly constitutive. 

The refraction of light, electric properties, surface and interfacial characteristics, and the solubility of 

drugs are at least in part constitutive and in part additive properties; these are considered in other 

sections of the book. 

Types of Solutions 
A solution can be classified according to the states in which the solute and solvent occur, and because 

three states of matter (gas, liquid, and crystalline solid) exist, nine types of homogeneous mixtures of 

solute and solvent are possible. These types, together with some examples, are given in Table 5-1. 

When solids or liquids dissolve in a gas to form a gaseous solution, the molecules of the solute can be 

treated thermodynamically like a gas; similarly, when gases or solids dissolve in liquids, the gases and 

the solids can be considered to exist in the liquid state. In the formation of solid solutions, the atoms of 

the gas or liquid take up positions in the crystal lattice and behave like atoms or molecules of solids. 

Table 5-1 Types of Solutions 
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Solute Solvent Example 

Gas Gas Air 

Liquid Gas Water in oxygen 

Solid Gas Iodine vapor in air 

Gas Liquid Carbonated water 

Liquid Liquid Alcohol in water 

Solid Liquid Aqueous sodium chloride solution 

Gas Solid Hydrogen in palladium 

Liquid Solid Mineral oil in paraffin 

Solid Solid Gold—silver mixture, mixture of alums 
 

The solutes (whether gases, liquids, or solids) are divided into two main 

classes: nonelectrolytes and electrolytes. Nonelectrolytes are substances that do not ionize when 

dissolved in water and therefore do not conduct an electric current through the solution. Examples of 

nonelectrolytes are sucrose, glycerin, naphthalene, and urea. The colligative properties of solutions of 

nonelectrolytes are fairly regular. A 0.1-molar (M) solution of a nonelectrolyte produces approximately 

the same colligative effect as any other nonelectrolytic solution of equal concentration. Electrolytes are 

substances that form ions in solution, conduct electric current, and show apparent “anomalous” 

colligative properties; that is, they produce a considerably greater freezing point depression and boiling 

point elevation than do nonelectrolytes of the same concentration. Examples of electrolytes are 

hydrochloric acid, sodium sulfate, ephedrine, and phenobarbital. 

Electrolytes may be subdivided further into strong electrolytes and weak electrolytes depending on 

whether the substance is completely or only partly ionized in water. Hydrochloric acid and sodium 

sulfate are strong electrolytes, whereas ephedrine and phenobarbital are weak electrolytes. The 

classification of electrolytes according to Arrhenius and the discussion of the modern theories of 

electrolytes are given later in the book. 

Concentration Expressions 
The concentration of a solution can be expressed either in terms of the quantity of solute in a 

definite volume of solution or as the quantity of solute in a definite mass of solvent or solution. The 

various expressions are summarized in Table 5-2. 

Molarity and Normality 
Molarity and normality are the expressions commonly used in analytical work.2 All solutions of the same 

molarity 
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contain the same number of solute molecules in a definite volume of solution. When a solution contains 

more than one solute, it may have different molar concentrations with respect to the various solutes. For 

example, a solution can be 0.001 M with respect to phenobarbital and 0.1 M with respect to sodium 

chloride. One liter of such a solution is prepared by adding 0.001 mole of phenobarbital (0.001 mole × 

232.32 g/mole = 0.2323 g) and 0.1 mole of sodium chloride (0.1 mole × 58.45 g/mole = 5.845 g) to 

enough water to make 1000 mL of solution. 

Table 5-2 Concentration Expressions 

Expression Symbol Definition 

Molarity M,c Moles (gram molecular weights) of solute in 1 
liter of solution 

Normality N Gram equivalent weights of solute in 1 liter of 
solution 

Molality m Moles of solute in 1000 g of solvent 

Mole fraction X,N Ratio of the moles of one constituent (e.g., the 
solute) of a solution to the total moles of all 
constituents (solute and solvent) 

Mole percent   Moles of one constituent in 100 moles of the 
solution; mole percent is obtained by 
multiplying mole fraction by 100 

Percent by 
weight 

% 
w/w 

Grams of solute in 100 g of solution 

Percent by 
volume 

% 
v/v 

Milliliters of solute in 100 mL of solution 

Percent 
weight-in-
volume 

% 
w/v 

Grams of solute in 100 mL of solution 

Milligram 
percent 

— Milligrams of solute in 100 mL of solution 

 

Difficulties are sometimes encountered when one desires to express the molarity of an ion or radical in a 

solution. A molar solution of sodium chloride is 1 M with respect to both the sodium and the chloride ion, 

whereas a molar solution of Na2CO3 is 1 M with respect to the carbonate ion and 2 M with respect to the 
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molarity, normality, molality, mole fraction, and percentage expressions. Ideal and real 
solutions were described using Raoult's and Henry's laws. Finally, the colligative properties of 
solutions (osmotic pressure, vapor pressure lowering, freezing point depression, and boiling 
point elevation) were described. Colligative properties depend mainly on the number of 
particles in a solution and are approximately the same for equal concentrations of different 
nonelectrolytes in solution regardless of the species or chemical nature of the constituents. 
P.128 
 
 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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6 Electrolyte Solutions 
Chapter Objectives 
At the conclusion of this chapter the student should be able to: 

1. Understand the important properties of solutions of electrolytes. 
2. Understand and apply Faraday's law and electrolytic conductance. 
3. Calculate the conductance of solutions, the equivalent conductance, and the 

equivalent conductance of electrolytes. 
4. Compare and contrast the colligative properties of electrolytic solutions and 

concentrated solutions of nonelectrolytes. 
5. Apply the Arrhenius theory of electrolytic dissociation. 
6. Apply the theory of strong electrolytes; for example, calculate degree of dissociation, 

activity coefficients, and so on. 
7. Calculate ionic strength. 
8. Calculate osmotic coefficients, osmolality, and osmolarity. 
9. Understand the differences between osmolality and osmolarity. 

The first satisfactory theory of ionic solutions was that proposed by Arrhenius in 1887. The theory was 

based largely on studies of electric conductance by Kohlrausch, colligative properties by van't Hoff, and 

chemical properties such as heats of neutralization by Thomsen. Arrhenius1 was able to bring together 

the results of these diverse investigations into a broad generalization known as the theory of electrolytic 

dissociation. 

Although the theory proved quite useful for describing weak electrolytes, it was soon found 

unsatisfactory for strong and moderately strong electrolytes. Accordingly, many attempts were made to 

modify or replace Arrhenius's ideas with better ones, and finally, in 1923, Debye and Hückel put forth a 

new theory. It is based on the principles that strong electrolytes are completely dissociated into ions in 

solutions of moderate concentration and that any deviation from complete dissociation is due to 

interionic attractions. Debye and Hückel expressed the deviations in terms of activities, activity 

coefficients, and ionic strengths of electrolytic solutions. These quantities, which had been introduced 

earlier by Lewis, are discussed in this chapter together with the theory of interionic attraction. Other 

aspects of modern ionic theory and the relationships between electricity and chemical phenomena are 

considered in following chapters. 

This chapter begins with a discussion of some of the properties of ionic solutions that led to the 

Arrhenius theory of electrolytic dissociation. 

Properties of Solutions of Electrolytes 
Electrolysis 
When, under a potential of several volts, a direct electric current (dc) flows through an electrolytic cell 

(Fig. 6-1), a chemical reaction occurs. The process is known aselectrolysis. Electrons enter the cell from 

the battery or generator at the cathode (road down); they combine with positive ions or cations in the 

solution, and the cations are accordingly reduced. The negative ions, or anions, carry electrons through 

the solution and discharge them at the anode (road up), and the anions are accordingly 

oxidized. Reduction is the addition of electrons to a chemical species, and oxidation is removal of 

electrons from a species. The current in a solution consists of a flow of positive and negative ions 

toward the electrodes, whereas the current in a metallic conductor consists of a flow of free electrons 

migrating through a crystal lattice of fixed positive ions. Reduction occurs at the cathode, where 

electrons enter from the external circuit and are added to a chemical species in solution. Oxidation 

occurs at the anode, where the electrons are removed from a chemical species in solution and go into 

the external circuit. 

In the electrolysis of a solution of ferric sulfate in a cell containing platinum electrodes, a ferric ion 

migrates to the cathode, where it picks up an electron and is reduced: 
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coincide at lower concentrations, they differ widely at higher values. The initial decrease in the activity 

coefficient with increasing concentration is due to the interionic attraction, which causes the 

P.138 

 

activity to be less than the stoichiometric concentration. The rise in the activity coefficient following the 

minimum in the curve of an electrolyte, such as HCl and CaCl2, can be attributed to the attraction of the 

water molecules for the ions in concentrated aqueous solution. This solvation reduces the interionic 

attractions and increases the activity coefficient of the solute. It is the same effect that results in the 

salting out of nonelectrolytes from aqueous solutions to which electrolytes have been added. 

Table 6-1 Mean Ionic Activity Coefficients of Some Strong Electrolytes at 25°C 
On the Molal Scale 
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The milliosmolality for blood obtained by various workers using osmometry, vapor pressure, and 

freezing point depression apparatus ranges from about 250 to 350 mOsm/kg.17 The normal osmolality 

of body fluids is given in medical handbooks18 as 275 to 295 mOsm/kg, but normal values are likely to 

fall in an even narrower range of 286 ± 4 mOsm/kg.19 Freezing point and vapor pressure osmometers 

are now used routinely in the hospital. A difference of 50 mOsm/kg or more from the accepted values of 

a body fluid suggests an abnormality such as liver failure, hemorrhagic shock, uremia, or other toxic 

manifestations. Body water and electrolyte balance are also monitored by measurement of 

milliosmolality. 

Chapter Summary 
In this chapter, solutions of electrolytes were introduced and discussed. Understanding the 
properties of electrolytes in solution is still very important today in the pharmaceutical 
sciences. You should be able to understand Faraday's law and calculate the conductance in 
solutions. The rationale for using the concept of activity rather than concentrations is 
important in many chemical calculations since solutions that contain ionic solutes do not 
behave ideally even at very low concentrations. The information provided establishes a 
framework for calculating ionic strength, osmolality, and osmolarity. The successful student 
will not only be able to do these calculations but will understand the differences between 
osmolality and osmolarity. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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7 Ionic Equilibria 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Describe the Brönsted–Lowry and Lewis electronic theories. 
2. Identify and define the four classifications of solvents. 
3. Understand the concepts of acid–base equilibria and the ionization of weak acids and 

weak bases. 
4. Calculate dissociation constants Ka and Kb and understand the relationship 

between Ka and Kb. 
5. Understand the concepts of pH, pK, and pOH and the relationship between hydrogen 

ion concentration and pH. 
6. Calculate pH. 
7. Define strong acid and strong base. 
8. Define and calculate acidity constants. 

Introduction 
Arrhenius defined an acid as a substance that liberates hydrogen ions and a base as a substance that 
supplies hydroxyl ions on dissociation. Because of a need for a broader concept, Brönsted in 
Copenhagen and Lowry in London independently proposed parallel theories in 1923.1 The Brönsted–

Lowry theory, as it has come to be known, is more useful than the Arrhenius theory for the 
representation of ionization in both aqueous and nonaqueous systems. 
Brönsted–Lowry Theory 
According to the Brönsted–Lowry theory, an acid is a substance, charged or uncharged, that is capable 
of donating a proton, and a base is a substance, charged or uncharged, that is capable of accepting a 
proton from an acid. The relative strengths of acids and bases are measured by the tendencies of these 
substances to give up and take on protons. Hydrochloric acid is a strong acid in water because it gives 
up its proton readily, whereas acetic acid is a weak acid because it gives up its proton only to a small 
extent. The strength of an acid or a base varies with the solvent. Hydrochloric acid is a weak acid in 
glacial acetic acid and acetic acid is a strong acid in liquid ammonia. Consequently, the strength of an 
acid depends not only on its ability to give up a proton but also on the ability of the solvent to accept the 
proton from the acid. This is called the basic strength of the solvent. 

Key Concept 

Classification of Solvents 

Solvents can be classified as protophilic, protogenic, amphiprotic, and aprotic. A protophilic or 
basic solvent is one that is capable of accepting protons from the solute. Such solvents as 
acetone, ether, and liquid ammonia fall into this group. A protogenic solvent is a proton-
donating compound and is represented by acids such as formic acid, acetic acid, sulfuric acid, 
liquid HCl, and liquid HF. Amphiprotic solvents act as both proton acceptors and proton 
donors, and this class includes water and the alcohols. Aprotic solvents, such as the 
hydrocarbons, neither accept nor donate protons, and, being neutral in this sense, they are 
useful for studying the reactions of acids and bases free of solvent effects. 

In the Brönsted–Lowry classification, acids and bases may be anions such as HSO4
- and CH3COO-, 

cations such as NH4
+ and H3O+, or neutral molecules such as HCl and NH3. Water can act as either an 

acid or a base and thus is amphiprotic. Acid–base reactions occur when an acid reacts with a base to 
form a new acid and a new base. Because the reactions involve a transfer of a proton, they are known 
as protolytic reactions or protolysis. 
In the reaction between HCl and water, HCl is the acid and water the base: 
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Acid1 and Base1 stand for an acid–base pair or conjugate pair, as do Acid2 and Base2. Because the bare 
proton, H+, is practically nonexistent in aqueous solution, what is normally referred to as the hydrogen 
ion consists of the hydrated proton, H3O+, known as the hydronium ion. Higher solvated forms can also 
exist in solution.* In an ethanolic solution, the “hydrogen ion” is the proton attached to a molecule of 

solvent, represented as C2H5OH2
+. In equation (7-1), hydrogen chloride, the acid, has donated a proton 

to water, the base, to form the corresponding acid, H3O+, and the base, Cl-. 
The reaction of HCl with water is one of ionization. Neutralization and hydrolysis are also considered as 
acid–base reactions or proteolysis following the broad definitions of the Brönsted–Lowry concept. 
Several examples illustrate these types of reactions, as shown in Table 7-1. The displacement reaction, 
a special type of neutralization, involves the displacement of a weaker acid, such as acetic acid, from its 
salt as in the reaction shown later. 
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Table 7-1 Examples of Acid–Base Reactions 

  Acid1   Base2   Acid2   Base1 

Neutralizati

on 

NH4
+
 

+ OH
-
 = H2O + NH

3 

Neutralizati

on 

H3O
+
 

+ OH
-
 = H2O + H2

O 

Neutralizati

on 

HCl + NH3 = NH4
+
 + Cl

-
 

Hydrolysis H2O + CH3CO

O
-
 

= CH3COO

H 

+ OH
-
 

Hydrolysis NH4
+
 

+ H2O = H3O
+
 + NH

3 

Displaceme

nt 

HCl + CH3CO

O
-
 

= CH3COO

H 

+ Cl
-
 

 

Lewis Electronic Theory 
Other theories have been suggested for describing acid–base reactions, the most familiar of which is 
the electronic theory of Lewis.3 
According to the Lewis theory, an acid is a molecule or an ion that accepts an electron pair to form a 
covalent bond. A base is a substance that provides the pair of unshared electrons by which the base 
coordinates with an acid. Certain compounds, such as boron trifluoride and aluminum chloride, although 
not containing hydrogen and consequently not serving as proton donors, are nevertheless acids in this 
scheme. Many substances that do not contain hydroxyl ions, including amines, ethers, and carboxylic 
acid anhydrides, are classified as bases according to the Lewis definition. Two Lewis acid–base 
reactions are 
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The Lewis system is probably too broad for convenient application to ordinary acid–base reactions, and 
those processes that are most conveniently expressed in terms of this electronic classification should be 
referred to simply as a form of electron sharing rather than as acid–base reactions.4 The Lewis theory is 
finding increasing use for describing the mechanism of many organic and inorganic reactions. It will be 
mentioned again in the chapters on solubility and complexation. The Brönsted–Lowry nomenclature is 
particularly useful for describing ionic equilibria and is used extensively in this chapter. 

Key Concept 

Equilibrium 

Equilibrium can be defined as a balance between two opposing forces or actions. This 
statement does not imply cessation of the opposing reactions, suggesting rather a dynamic 
equality between the velocities of the two. Chemical equilibrium maintains the concentrations 
of the reactants and products constant. Most chemical reactions proceed in both a forward 
and a reverse direction if the products of the reaction are not removed as they form. Some 
reactions, however, proceed nearly to completion and, for practical purposes, may be 
regarded as irreversible. The topic of chemical equilibria is concerned with truly reversible 
systems and includes reactions such as the ionization of weak electrolytes. 

Acid–Base Equilibria 
The ionization or proteolysis of a weak electrolyte, acetic acid, in water can be written in the Brönsted–

Lowry manner as 

 
The arrows pointing in the forward and reverse directions indicate that the reaction is proceeding to the 
right and left simultaneously. According to the law of mass action, the velocity or rate of the forward 
reaction, Rf, is proportional to the concentration of the reactants: 

 
The speed of the reaction is usually expressed in terms of the decrease in the concentration of either 
the reactants per unit time. The terms rate, speed, and velocity have the same meaning here. The 
reverse reaction 

 
expresses the rate, Rr, of re-formation of un-ionized acetic acid. Because only 1 mole of each 
constituent appears in the 
P.148 
 
reaction, each term is raised to the first power, and the exponents need not appear in subsequent 
expressions for the dissociation of acetic acid and similar acids and bases. The symbols k1 and k2 are 
proportionality constants commonly known as specific reaction rates for the forward and the reverse 
reactions, respectively, and the brackets indicate concentrations. A better representation of the facts 
would be had by replacing concentrations with activities, but for the present discussion, the approximate 
equations are adequate. 
Ionization of Weak Acids 
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According to the concept of equilibrium, the rate of the forward reaction decreases with time as acetic 
acid is depleted, whereas the rate of the reverse reaction begins at zero and increases as larger 
quantities of hydrogen ions and acetate ions are formed. Finally, a balance is attained when the two 
rates are equal, that is, when 

 
The concentrations of products and reactants are not necessarily equal at equilibrium; the speeds of the 
forward and reverse reactions are what are the same. Because equation (7-7) applies at equilibrium, 
equations (7-5) and (7-6) may be set equal: 

 
and solving for the ratio k1/k1, one obtains 

 
In dilute solutions of acetic acid, water is in sufficient excess to be regarded as constant at about 55.3 
moles/liter (1 liter H2O at 25°C weights 997.07 g, and 997.07/18.02 = 55.3). It is thus combined 
with k1/k2 to yield a new constant Ka, the ionization constant or the dissociation constant of acetic acid. 

 
Equation (7-10) is the equilibrium expression for the dissociation of acetic acid, and the dissociation 
constant Ka is an equilibrium constant in which the essentially constant concentration of the solvent is 
incorporated. In the discussion of equilibria involving charged as well as uncharged acids, according to 
the Brönsted–Lowry nomenclature, the term ionization constant, Ka, is not satisfactory and is replaced 
by the name acidity constant. Similarly, for charged and uncharged bases, the termbasicity constant is 
now often used for Kb, to be discussed in the next section. 
In general, the acidity constant for an uncharged weak acid HB can be expressed by 

 

 
Equation (7-10) can be presented in a more general form, using the symbol c to represent the initial 
molar concentration of acetic acid and x to represent the concentration [H3O+]. The latter quantity is also 
equal to [Ac-] because both ions are formed in equimolar concentration. The concentration of acetic acid 
remaining at equilibrium [HAc] can be expressed as c - x. The reaction [equation (7-4)] is 

 
and the equilibrium expression (7-10) becomes 

 
where c is large in comparison with x. The term c - x can be replaced by c without appreciable error, 
giving the equation 

 
which can be rearranged as follows for the calculation of the hydrogen ion concentration of weak acids: 

 
Example 7-1 

In a liter of a 0.1 M solution, acetic acid was found by conductivity analysis to dissociate into 
1.32 × 10-3 g ions (“moles”) each of hydrogen and acetate ion at 25°C. What is the acidity or 

dissociation constant Ka for acetic acid? 
According to equation (7-4), at equilibrium, 1 mole of acetic acid has dissociated into 1 mole 
each of hydrogen ion and acetate ion. The concentration of ions is expressed as moles/liter 
and less frequently as molality. A solution containing 1.0078 g of hydrogen ions in 1 liter 
represents 1 g ion or 1 mole of hydrogen ions. The molar concentration of each of these ions 
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is expressed as x. If the original amount of acetic acid was 0.1 mole/liter, then at equilibrium 
the undissociated acid would equal 0.1 - x because x is the amount of acid that has 
dissociated. The calculation according to equation (7-12) is 

 
It is of little significance to retain the small number, 1.32 × 10-3, in the denominator, and the 
calculations give 

 

The value of Ka in Example 7-1 means that, at equilibrium, the ratio of the product of the ionic 
concentrations to that of the undissociated acid is 1.74 × 10-5; that is, the dissociation of acetic acid into 
its ions is small, and acetic acid may be considered as a weak electrolyte. 
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When a salt formed from a strong acid and a weak base, such as ammonium chloride, is dissolved in 
water, it dissociates completely as follows: 

 
The Cl- is the conjugate base of a strong acid, HCl, which is 100% ionized in water. Thus, the Cl- cannot 
react any further. In the Brönsted–Lowry system, NH4

+ is considered to be a cationic acid, which can 
form its conjugate base, NH3, by donating a proton to water as follows: 

 

 
In general, for charged acids BH+, the reaction is written as 

 
and the acidity constant is 

 
Ionization of Weak Bases 
Nonionized weak bases B, exemplified by NH3, react with water as follows: 

 

 
which, by a procedure like that used to obtain equation (7-16), leads to 

 
Example 7-2 

The basicity or ionization constant Kb for morphine base is 7.4 × 10-7 at 25°C. What is the 
hydroxyl ion concentration of a 0.0005 M aqueous solution of morphine? We have 

 

Salts of strong bases and weak acids, such as sodium acetate, dissociate completely in aqueous 
solution to given ions: 

 
The sodium ion cannot react with water, because it would form NaOH, which is a strong electrolyte and 
would dissociate completely into its ions. The acetate anion is a Brönsted–Lowry weak base, and 
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In general, for an anionic base B-, 

 
The Ionization of Water 
The concentration of hydrogen or hydroxyl ions in solutions of acids or bases may be expressed as 
gram ions/liter or as moles/liter. A solution containing 17.008 g of hydroxyl ions or 1.008 g of hydrogen 
ions per liter is said to contain 1 g ion or 1 mole of hydroxyl or hydrogen ions per liter. Owing to the 
ionization of water, it is possible to establish a quantitative relationship between the hydrogen and 
hydroxyl ion concentrations of any aqueous solution. 
The concentration of either the hydrogen or the hydroxyl ion in acidic, neutral, or basic solutions is 
usually expressed in terms of the hydrogen ion concentration or, more conveniently, in pH units. 
In a manner corresponding to the dissociation of weak acids and bases, water ionizes slightly to yield 
hydrogen and hydroxyl ions. As previously observed, a weak electrolyte requires the presence of water 
or some other polar solvent for ionization. Accordingly, one molecule of water can be thought of as a 
weak electrolytic solute that reacts with another molecule of water as the solvent. 
This autoprotolytic reaction is represented as 

 
The law of mass action is then applied to give the equilibrium expression 

 
The term for molecular water in the denominator is squared because the reactant is raised to a power 
equal to the number of molecules appearing in the equation, as required by the law of mass action. 
Because molecular water exists in great excess relative to the concentrations of hydrogen and hydroxyl 
ions, [H2O]2 is considered as a constant and is combined with k to give a new constant, Kw, known as 
the dissociation constant, the autoprotolysis constant, or the ion product of water: 

 
The value of the ion product is approximately 1 × 10-14 at 25°C; it depends strongly on temperature, as 
shown in Table 7-2. In any calculations involving the ion product, one must be certain to use the proper 
value of Kw for the temperature at which the data are obtained. 
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Table 7-2 Ion Product of Water at Various Temperatures* 
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Temperature (°C) Kw × 10
14

 pKw 

0 0.1139 14.944 

10 0.2920 14.535 

20 0.6809 14.167 

24 1.000 14.000 

25 1.008 13.997 

30 1.469 13.833 

37 2.57 13.59 

40 2.919 13.535 

50 5.474 13.262 

60 9.614 13.017 

70 15.1 12.82 

80 23.4 12.63 

90 35.5 12.45 

100 51.3 12.29 

300 400 11.40 

*From H. S. Harned and R. A. Robinson, Trans. Faraday Soc. 36, 973, 1940. 

 

Substituting equation (7-30) into (7-29) gives the common expression for the ionization of water: 
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In pure water, the hydrogen and hydroxyl ion concentrations are equal, and each has the value of 
approximately 1 × 10-7 mole/liter at 25°C.* 

 
When an acid is added to pure water, some hydroxyl ions, provided by the ionization of water, must 
always remain. The increase in hydrogen ions is offset by a decrease in the hydroxyl ions so 
that Kw remains constant at about 1 × 10-14 at 25°C. 
Example 7-3 

Calculate [OH
-
] 

A quantity of HCl (1.5 × 10-3M) is added to water at 25°C to increase the hydrogen ion 
concentration from 1 × 10-7 to 1.5 × 10-3 mole/liter. What is the new hydroxyl ion 
concentration? 
From equation (7-31), 

 

Relationship Between Ka and Kb 
A simple relationship exists between the dissociation constant of a weak acid HB and that of its 
conjugate base B-, or between BH+ and B, when the solvent is amphiprotic. This can be obtained by 
multiplying equation (7-12) by equation (7-27): 

 
and 

 
or 

 
Example 7-4 

Calculate Ka 

Ammonia has a Kb of 1.74 ×10-5 at 25°. Calculate Ka for its conjugate acid, NH4
+. We have 

 

Ionization of Polyprotic Electrolytes 
Acids that donate a single proton and bases that accept a single proton are called monoprotic 

electrolytes. A polyprotic (polybasic) acid is one that is capable of donating two or more protons, and a 
polyprotic base is capable of accepting two or more protons. A diprotic (dibasic) acid, such as carbonic 
acid, ionizes in two stages, and a triprotic (tribasic) acid, such as phosphoric acid, ionizes in three 
stages. The equilibria involved in the protolysis or ionization of phosphoric acid, together with the 
equilibrium expressions, are 
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In any polyprotic electrolyte, the primary protolysis is greatest, and succeeding stages become less 
complete at any given acid concentration. 
The negative charges on the ion HPO4

2- make it difficult for water to remove the proton from the 
phosphate ion, as reflected in the small value of K3. Thus, phosphoric acid is weak in the third stage of 
ionization, and a solution of this acid contains practically no PO4

3- ions. 
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Each of the species formed by the ionization of a polyprotic acid can also act as a base. Thus, for the 
phosphoric acid system, 

 

 
 

 
 

 
In general, for a polyprotic acid system for which the parent acid is HnA, there are n + 1 possible species 
in solution: 

 
where j represents the number of protons dissociated from the parent acid and goes from 0 to n. The 
total concentration of all species must be equal to Ca, or 

 
Each of the species pairs in which j differs by 1 constitutes a conjugate acid–base pair, and in general 

 
where Kj represents the various acidity constants for the system. Thus, for the phosphoric acid system 
described by equations (7-37) to (7-45), 

 
Ampholytes 
In the preceding section, equations (7-37), (7-38), (7-41), and (7-43) demonstrated that in the 
phosphoric acid system, the species H2PO4

- and HPO4
2- can function either as an acid or a base. A 

species that can function either as an acid or as a base is called an ampholyte and is said to 
be amphoteric in nature. In general, for a polyprotic acid system, all the species, with the exception of 
HnA and An-, are amphoteric. 
Amino acids and proteins are ampholytes of particular interest in pharmacy. If glycine hydrochloride is 
dissolved in water, it ionizes as follows: 

 

 
The species +NH3CH2COO- is amphoteric in that, in addition to reacting as an acid as shown in 
equation (7-51), it can react as a base with water as follows: 
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The amphoteric species +NH3CH2COO- is called a zwitterion and differs from the amphoteric species 
formed from phosphoric acid in that it carries both a positive and a negative charge, and the whole 
molecule is electrically neutral. The pH at which the zwitterion concentration is a maximum is known as 
the isoelectric point. At the isoelectric point the net movement of the solute molecules in an electric field 
is negligible. 
Sörensen's pH 
The hydrogen ion concentration of a solution varies from approximately 1 in a 1 M solution of a strong 
acid to about 1 × 10-14 in a 1 M solution of a strong base, and the calculations often become unwieldy. 
To alleviate this difficulty, Sörensen5 suggested a simplified method of expressing hydrogen ion 
concentration. He established the term pH, which was originally written as pH

+, to represent the 
hydrogen ion potential, and he defined it as the common logarithm of the reciprocal of the hydrogen ion 
concentration: 

 
According to the rules of logarithms, this equation can be written as 

 
and because the logarithm of 1 is zero, 

 
Equations (7-53) and (7-55) are identical; they are acceptable for approximate calculations involving pH. 
The pH of a solution can be considered in terms of a numeric scale having values from 0 to 14, which 
expresses in a quantitative way the degree of acidity (7 to 0) and alkalinity (7-14). The value 7 at which 
the hydrogen and hydroxyl ion concentrations are about equal at room temperature is referred to as 
the neutral point, or neutrality. The neutral pH at 0°C is 7.47, and at 100°C it is 6.15 (Table 7-2). The 
scale relating pH to the hydrogen and hydroxyl ion concentrations of a solution is given in Table 7-3. 
Conversion of Hydrogen Ion Concentration to pH 
The student should practice converting from hydrogen ion concentration to pH and vice versa until he or 
she is proficient in these logarithmic operations. The following examples are given to afford a review of 
the mathematical operations 
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involving logarithms. Equation (7-55) is more convenient for these calculations than equation (7-53). 

Table 7-3 The pH Scale and Corresponding Hydrogen and Hydroxyl Ion 

Concentrations 

pH [H
3
O

+
] (moles/liter) [OH

- 1
] (moles/liter)   

0 10
0
 = 1 10

-14
   

1 10
-1

 10
-13

   

2 10
-2

 10
-12

   

3 10
-3

 10
-11

 Acidic 

4 10
-4

 10
-10
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5 10
-5

 10
-9

   

6 10
-6

 10
-8

   

7 10
-7

 10
-7

 Neutral 

8 10
-8

 10
-6

   

9 10
-9

 10
-5

   

10 10
-10

 10
-4

   

11 10
-11

 10
-3

 Basic 

12 10
-12

 10
-2

   

13 10
-13

 10
-1

   

14 10
-14

 10
0
 = 1   

 

Example 7-5 

pH Calculation 

The hydronium ion concentration of a 0.05 M solution of HCl is 0.05 M. What is the pH of this 
solution? We write 

 
A handheld calculator permits one to obtain pH simply by use of the log function followed by a 
change of sign. 

A better definition of pH involves the activity rather than the concentration of the ions: 

 
and because the activity of an ion is equal to the activity coefficient multiplied by the molal or molar 
concentration [equation (7-42)], 

 
the pH may be computed more accurately from the formula 

 
Example 7-6 

Solution pH 

The mean molar ionic activity coefficient of a 0.05 M solution of HCl is 0.83 at 25°C. What is 
the pH of the solution? We write 
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If sufficient NaCl is added to the HCl solution to produce a total ionic strength of 0.5 for this 
mixture of uni-univalent electrolytes, the activity coefficient is 0.77. What is the pH of this 
solution? We write 

 

Hence, the addition of a neutral salt affects the hydrogen ion activity of a solution, and activity 
coefficients should be used for the accurate calculation of pH. 
Example 7-7 

Solution pH 

The hydronium ion concentration of a 0.1 M solution of barbituric acid was found to be 3.24 × 
10-3 M. What is the pH of the solution? We write 

 

For practical purposes, activities and concentrations are equal in solutions of weak electrolytes to which 
no salts are added, because the ionic strength is small. 
Conversion of pH to Hydrogen Ion Concentration 
The following example illustrates the method of converting pH to [H3O+]. 
Example 7-8 

Hydronium Ion Concentration 

If the pH of a solution is 4.72, what is the hydronium ion concentration? We have 

 
The use of a handheld calculator bypasses this two-step procedure. One simply enters -4.72 
into the calculator and presses the key for antilog or 10xto obtain [H3O+]. 

pK and pOH 
The use of pH to designate the negative logarithm of hydronium ion concentration has proved to be so 
convenient that expressing numbers less than unity in “p” notation has become a standard procedure. 

The mathematician would say that “p” is a mathematical operator that acts on the quantity 
[H+], Ka, Kb, Kw, and so on to convert the value into the negative of its common logarithm. In other 
words, the term “p” is used to express the negative logarithm of the term following the “p.” For example, 

pOH expresses -log[OH-], pKa is used for -log Ka, and pKw is -log Kw. Thus, equations (7-31) and (7-
33) can be expressed as 

 
 

where pK is often called the dissociation exponent. 
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The pK values of weak acidic and basic drugs are ordinarily determined by ultraviolet spectrophometry 
(95) and potentiometric titration (202). They can also be obtained by solubility analysis6,7,8 (254) and by 
a partition coefficient method.8 
Species Concentration as a Function of pH 
As shown in the preceding sections, polyprotic acids, HnA, can ionize in successive stages to yield n + 1 
possible species in solution. In many studies of pharmaceutical interest, it is important to be able to 
calculate the concentration of all acidic and basic species in solution. 
The concentrations of all species involved in successive acid–base equilibria change with pH and can 
be represented solely in terms of equilibrium constants and the hydronium ion concentration. These 
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relationships can be obtained by defining all species in solution as fractions α of total acid, Ca, added to 
the system [see equation (7-47) for Ca]: 

 
 

and in general 

 
and 

 
where j represents the number of protons that have ionized from the parent acid. Thus, dividing 
equation (7-47) by Ca and using equations (7-60) to (7-63) gives 

 
All of the α values can be defined in terms of equilibrium constants α0 and [H3O+] as follows: 

 
Therefore, 

 

 
or 

 
and, in general, 

 
Inserting the appropriate forms of equation (7-69) into equation (7-64) gives 

 
Solving for α0 yields 

 
or 

 
where D represents the denominator of equation (7-71). Thus, the concentration of HnA as a function of 
[H3O+] can be obtained by substituting equation (7-60) into equation (7-72) to give 

 
Substituting equation (7-61) into equation (7-66) and the resulting equation into equation (7-72) gives 

 
In general, 

 
and 

 
Although these equations appear complicated, they are in reality quite simple. The term D in 
equations (7-72) to (7-76) is a power series in [H3O+], each term multiplied by equilibrium constants. The 
series starts with [H3O+] raised to the power representing n, the total number of dissociable hydrogens in 
the parent acid, HnA. The last term is the product of all the acidity constants. The intermediate terms can 
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be obtained from the last term by substituting [H3O+] for Kn to obtain the next to last term, then 
substituting [H3O+] for Kn-1 to obtain the next term, and so on, until the first term is reached. The 
following equations show the denominators D to be used in equations (7-72) to (7-76) for various types 
of polyprotic acids: 
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In all instances, for a species in which j protons have ionized, the numerator in equations (7-72) to (7-
76) is Ca multiplied by the term from the denominator D that has [H3O+] raised to the n - j power. Thus, 
for the parent acid H2A, the appropriate equation for D is equation (7-79). The molar concentrations of 
the species HnA (j = 0), HA- (j = 1), and A2- (j = 2) can be given as 

 

 

 
These equations can be used directly to solve for molar concentrations. It should be obvious, however, 
that lengthy calculations are needed for substances such as citric acid or ethylenediaminetetraacetic 
acid, requiring the use of a digital computer to obtain solutions in a reasonable time. Graphic methods 
have been used to simplify the procedure.9 
Calculation of pH 
Proton Balance Equations 
According to the Brönsted–Lowry theory, every proton donated by an acid must be accepted by a base. 
Thus, an equation accounting for the total proton transfers occurring in a system is of fundamental 
importance in describing any acid–base equilibria in that system. This can be accomplished by 
establishing a proton balance equation (PBE) for each system. In the PBE, the sum of the concentration 
terms for species that form by proton consumption is equated to the sum of the concentration terms for 
species that are formed by the release of a proton. 
For example, when HCl is added to water, it dissociates completely into H3O+ and Cl- ions. The H3O+ is 
a species that is formed by the consumption of a proton (by water acting as a base), and the Cl- is 
formed by the release of a proton from HCl. In all aqueous solutions, H3O+ and OH- result from the 
dissociation of two water molecules according to equation (7-28). Thus, OH- is a species formed from 
the release of a proton. The PBE for the system of HCl in water is 

 
Although H3O+ is formed from two reactions, it is included only once in the PBE. The same would be 
true for OH- if it came from more than one source. 
The general method for obtaining the PBE is as follows: 

a. Always start with the species added to water. 
b. On the left side of the equation, place all species that can form when protons are consumed by 

the starting species. 
c. On the right side of the equation, place all species that can form when protons are released 

from the starting species. 
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d. Each species in the PBE should be multiplied by the number of protons lost or gained when it 
is formed from the starting species. 

e. Add [H3O+] to the left side of the equation and [OH-] to the right side of the equation. These 
result from the interaction of two molecules of water, as shown previously. 

Example 7-9 

Proton Balance Equations 

What is the PBE when H3PO4 is added to water? 
The species H2PO4

- forms with the release of one proton. 
The species HPO4

2- forms with the release of two protons. 
The species PO4

3- forms with the release of three protons. We thus have 
 

Example 7-10 

Proton Balance Equations 

What is the PBE when Na2HPO4 is added to water? 
The salt dissociates into two Na+ and one HPO4

2-; Na+ is neglected in the PBE because it is 
not formed from the release or consumption of a proton; HPO4

2-, however, does react with 
water and is considered to be the starting species. 
The species H2PO4

- results with the consumption of one proton. 
The species of H3PO4 can form with the consumption of two protons. 
The species PO4

3- can form with the release of one proton. 
Thus, we have 

 

Example 7-11 

Proton Balance Equations 

What is the PBE when sodium acetate is added to water? 
The salt dissociates into one Na+ and one CH3COO- ion. The CH3COO- is considered to be 
the starting species. The CH3COOH can form when CH3COO- consumes one proton. Thus, 

 
The PBE allows the pH of any solution to be calculated readily, as follows: 

a. Obtain the PBE for the solution in question. 
b. Express the concentration of all species as a function of equilibrium constants and 

[H3O+] using equations (7-73) to (7-76). 
c. Solve the resulting expression for [H3O+] using any assumptions that appear valid for 

the system. 
d. Check all assumptions. 
e. If all assumptions prove valid, convert [H3O+] to pH. 

If the solution contains a base, it is sometimes more convenient to solve the expression 
obtained in part (b) for [OH-], then convert this to pOH, and finally to pH by use of equation (7-
58). 

Solutions of Strong Acids and Bases 
Strong acids and bases are those that have acidity or basicity constants greater than about 10-2. Thus, 
they are considered 
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to ionize 100% when placed in water. When HCl is placed in water, the PBE for the system is given by 
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which can be rearranged to give 

 
where Ca is the total acid concentration. This is a quadratic equation of the general form 

 
which has the solution 

 
Thus, equation (7-85) becomes 

 
where only the positive root is used because [H3O+] can never be negative. 
When the concentration of acid is 1 × 10-6 M or greater, [Cl-] becomes much greater than* [OH-] in 
equation (7-84) and Ca2 becomes much greater than 4Kw in equation (7-88). Thus, both equations 
simplify to 

 
A similar treatment for a solution of a strong base such as NaOH gives 

 
and 

 
if the concentration of base is 1 × 106 M or greater. 
Conjugate Acid–Base Pairs 
Use of the PBE enables us to develop one master equation that can be used to solve for the pH of 
solutions composed of weak acids, weak bases, or a mixture of a conjugate acid–base pair. To do this, 
consider a solution made by dissolving both a weak acid, HB, and a salt of its conjugate base, B-, in 
water. The acid–base equilibria involved are 

 
 
 

The PBE for this system is 

 
The concentrations of the acid and the conjugate base can be expressed as 

 

 
Equation (7-96) contains Cb (concentration of base added as the salt) rather than Ca because in terms 
of the PBE, the species HB was generated from the species B- added in the form of the salt. 
Equation (7-97) contains Ca (concentration of HB added) because the species B- in the PBE came from 
the HB added. Inserting equations (7-96) and (7-97) into equation (7-95) gives 

 
which can be rearranged to yield 

 
This equation is exact and was developed using no assumptions.* It is, however, quite difficult to solve. 
Fortunately, for real systems, the equation can be simplified. 
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Solutions Containing Only a Weak Acid 
If the solution contains only a weak acid, Cb is zero, and [H3O+] is generally much greater than [OH-]. 
Thus, equation (7–99) simplifies to 

 
which is a quadratic equation with the solution 

 
In many instances, Ca is much greater than [H3O+], and equation (7-100) simplifies to 

 
Example 7-12 

Calculate pH 

Calculate the pH of a 0.01 M solution of salicylic acid, which has a Ka = 1.06 × 10-3 at 25°C. 

a. Using equation (7-102), we find 

 

b. Using equation (7-101), we find 
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The example just given illustrates the importance of checking the validity of all assumptions made in 
deriving the equation used for calculating [H3O+]. The simplified equation (7-102) gives an answer for 
[H3O+] with a relative error of 18% as compared with the correct answer given by equation (7-101). 
Example 7-13 

Calculate pH 

Calculate the pH of a 1-g/100 mL solution of ephedrine sulfate. The molecular weight of the 
salt is 428.5, and Kb for ephedrine base is 2.3 × 10-5. 

a. The ephedrine sulfate, (BH+)2SO4, dissociates completely into two BH+ cations and 
one SO4

2- anion. Thus, the concentration of the weak acid (ephedrine cation) is twice 
the concentration, Cs, of the salt added. 

 

b.  

c.  
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All assumptions are valid. We have 
 

Solutions Containing Only a Weak Base 
If the solution contains only a weak base, Ca is zero, and [OH-] is generally much greater than [H3O+]. 
Thus, equation (7-99) simplifies to 

 
This equation can be solved for either [H3O+] or [OH-]. Solving for [H3O+] using the left and rightmost 
parts of equation (7-103) gives 

 
which has the solution 

 
If Ka is much greater than [H3O+], which is generally true for solutions of weak bases, equation (7-
100) gives 

 
Equation (7-103) can be solved for [OH-] by using the left and middle portions and converting Ka to Kb to 
give 

 
and if Cb is much greater than [OH-], which generally obtains for solutions of weak bases, 

 
A good exercise for the student would be to prove that equation (7-106) is equal to equation (7-108). 
The applicability of both these equations will be shown in the following examples. 
Example 7-14 

Calculate pH 

What is the pH of a 0.0033 M solution of cocaine base, which has a basicity constant of 2.6 × 
10-6? We have 

 
All assumptions are valid. Thus, 

 

Example 7-15 

Calculate pH 

Calculate the pH of a 0.165 M solution of sodium sulfathiazole. The acidity constant for 
sulfathiazole is 7.6 × 10-8. 
(a) The salt Na+B- dissociates into one Na+ and one B- as described by equations (7-24) to (7-
27). Thus, Cb = Cs = 0.165 M. Because Ka for a weak acid such as sulfathiazole is usually 
given rather than Kb for its conjugate base, equation (7-106) is preferred over equation (7-
108): 

 
All assumptions are valid. Thus, 

 

Solutions Containing a Single Conjugate Acid–Base Pair 
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In a solution composed of a weak acid and a salt of that acid (e.g., acetic acid and sodium acetate) or a 
weak base and a salt of that base (e.g., ephedrine and ephedrine hydrochloride), Ca and Cb are 
generally much greater than either [H3O+] or [OH-]. Thus, equation (7-99) simplifies to 
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Example 7-16 

Calculate pH 

What is the pH of a solution containing acetic acid 0.3 M and sodium acetate 0.05 M? We 
write 

 
All assumptions are valid. Thus, 

 

Example 7-17 

Calculate pH 

What is the pH of a solution containing ephedrine 0.1 M and ephedrine hydrochloride 0.01 M? 
Ephedrine has a basicity constant of 2.3 × 10-5; thus, the acidity constant for its conjugate 
acid is 4.35 × 10-10. 

 
All assumptions are valid. Thus, 

 

Solutions made by dissolving in water both an acid and its conjugate base, or a base and its conjugate 
acid, are examples of buffer solutions. These solutions are of great importance in pharmacy and are 
covered in greater detail in the next two chapters. 
Two Conjugate Acid–Base Pairs 
The Brönsted–Lowry theory and the PBE enable a single equation to be developed that is valid for 
solutions containing an ampholyte, which forms a part of two dependent acid–base pairs. An amphoteric 
species can be added directly to water or it can be formed by the reaction of a diprotic weak acid, H2A, 
or a diprotic weak base, A2-. Thus, it is convenient to consider a solution containing a diprotic weak acid, 
H2A, a salt of its ampholyte, HA-, and a salt of its diprotic base, A2-, in concentrations Ca, Cab, and Cb, 
respectively. The total PBE for this system is 

 
where the subscripts refer to the source of the species in the PBE, that is, [H2A]ab refers to H2A 
generated from the ampholyte and [H2A]b refers to the H2A generated from the diprotic base. Replacing 
these species concentrations as a function of [H3O+] gives 

 
Multiplying through by [H3O+] and D, which is given by equation (7-79), gives 
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This is a general equation that has been developed using no assumptions and that can be used for 
solutions made by adding a diprotic acid to water, adding an ampholyte to water, adding a diprotic base 
to water, and by adding combinations of these substances to water. It is also useful for tri- and 
quadriprotic acid systems because K3 and K4 are much smaller than K1 and K2 for all acids of 
pharmaceutical interest. Thus, these polyprotic acid systems can be handled in the same manner as a 
diprotic acid system. 
Solutions Containing Only a Diprotic Acid 
If a solution is made by adding a diprotic acid, H2A, to water to give a concentration Ca, the terms 
Cab and Cb in equation (7-112) are zero. In almost all instances, the terms containing Kw can be 
dropped, and after dividing through by [H3O+], we obtain from equation (7-112) 

 
If Ca ≫ K2, as is usually true, 

 
If [H3O+] is much greater than 2K2, the term 2K1K2Ca can be dropped, and dividing through by [H3O+] 
yields the quadratic equation 

 
The assumptions Ca is much greater than K2 and [H3O+] is much greater than 2K2 will be valid 
whenever K2 is much less than K1. Equation (7-115) is identical to equation (7-100), which was obtained 
for a solution containing a monoprotic weak acid. Thus, if Ca is much greater than [H3O+], equation (7-
115) simplifies to equation (7-100). 
Example 7-18 

Calculate pH 

Calculate the pH of a 1.0 × 10-3 M solution of succinic acid. K1 = 6.4 × 10-5 and K2 = 2.3 × 10-

6. 

a. Use equation (7-102) because K1 is approximately 30 times K2: 

 

The assumption that Ca is much greater than [H3O+] is not valid. 

b. Use the quadratic equation (7-115): 

 

Note that Ca is much greater than K2, and [H3O+] is much greater than 2K2. Thus, we have 
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Solutions Containing Only an Ampholyte 
If an ampholyte, HA-, is dissolved in water to give a solution with concentration Cab, the 
terms Ca and Cb in equation (7-112) are zero. For most systems of practical importance, the first, third, 
and fifth terms of equation (7-112) are negligible when compared with the second and fourth terms, and 
the equation becomes 

 
The term K2Cab is generally much greater than Kw, and 

 
If the solution is concentrated enough that Cab is much greater than K1, 

 
Example 7-19 

Calculate pH 

Calculate the pH of a 5.0 × 10-3 M solution of sodium bicarbonate at 25°C. The acidity 
constants for carbonic acid are K1 = 4.3 × 10-7 and K2 = 4.7 × 10-11. 
Because K2Cab (23.5 × 10-14) is much greater than Kw and Cab is much greater than K1, 
equation (7-118) can be used. We have 

 

Solutions Containing Only a Diacidic Base 
In general, the calculations for solutions containing weak bases are easier to handle by solving for [OH-] 
rather than [H3O+]. Any equation in terms of [H3O+] and acidity constants can be converted into terms of 
[OH-] and basicity constants by substituting [OH-] for [H3O+], Kb1 for K1, Kb2 for K2, and Cb for Ca. These 
substitutions are made into equation (7-112). Furthermore, for a solution containing only a diacidic 
base, Ca and Cab are zero; all terms containing Kw can be dropped; Cb is much greater than Kb2; and 
[OH-] is much greater than 2Kb2. The following expression results: 

 
If Cb is much greater than [OH-], the equation simplifies to 

 
Example 7-20 

Calculate pH 

Calculate the pH of a 1.0 × 10-3 M solution of Na2CO3. The acidity constants for carbonic acid 
are K1 = 4.31 × 10-7 and K2 = 4.7 × 10-11. 

a. Using equation (7-48), we obtain 

 

b. Because Kb2 is much greater than Kb2, one uses equation (7-120): 

 

The assumption that Cb is much greater than [OH-] is not valid, and equation (7-119) must be 
used. [See equations (7-86) and (7-87) for the solution of a quadratic equation.] We obtain 
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Use of the simplified equation (7-120) gives an answer for [OH-] that has a relative error of 24% as 
compared with the correct answer given by equation (7-119). It is absolutely essential that all 
assumptions made in the calculation of [H3O+] or [OH-] be verified! 
Two Independent Acid–Base Pairs 
Consider a solution containing two independent acid–base pairs: 

 

 
A general equation for calculating the pH of this type of solution can be developed by considering a 
solution made by adding to water the acids HB1 and HB2 in concentrations Ca1 
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and Ca2 and the bases B1

- and B2
- in concentrations Cb1 and Cb2. The PBE for this system is 

 
where the subscripts refer to the sources of the species in the PBE. Replacing these species 
concentrations as a function of [H3O+] gives 

 
which can be rearranged to 

 
Although this equation is extremely complex, it simplifies readily when applied to specific systems. 
Solutions Containing Two Weak Acids 
In systems containing two weak acids, Cb1 and Cb2 are zero, and all terms in Kw can be ignored in 
equation (7-125). For all systems of practical importance, Ca1and Ca2 are much greater than K1 and K2, 
so the equation simplifies to 

 
If Ca1 and Ca2 are both greater than [H3O+], the equation simplifies to 

 
Example 7-21 

Calculate pH 
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What is the pH of a solution containing acetic acid, 0.01 mole/liter, and formic acid, 0.001 
mole/liter? We have 

 

Solutions Containing a Salt of a Weak Acid and a Weak Base 
The salt of a weak acid and a weak base, such as ammonium acetate, dissociates almost completely in 
aqueous solution to yield NH4

+ and Ac-, the NH4
+ is an acid and can be designated as HB1, and the base 

Ac- can be designated as B2
- in equations (7-121) and (7-122). Because only a single acid, HB1, and a 

single base, B2
-, were added to water in concentrations Ca1 and Cb2, respectively, all other stoichiometric 

concentration terms in equation (7-115) are zero. In addition, all terms containing Kw are negligibly small 
and may be dropped, simplifying the equation to 

 
In solutions containing a salt such as ammonium acetate, Ca1 = Cb2 = Cs, where Cs is the concentration 
of salt added. In all systems of practical importance, Cs is much greater than K1 or K2, and equation (7-
128) simplifies to 

 
which is a quadratic equation that can be solved in the usual manner. In most instances, however, Cs is 
much greater than [H3O+], and the quadratic equation reduces to 

 
Equations (7-121) and (7-122) illustrate the fact that K1 and K2 are not the successive acidity constants 
for a single diprotic acid system, and equation (7-130) is not the same as equation (7-118); 
instead, K1 is the acidity constant for HB1 (Acid1) and K2 is the acidity constant for the conjugate acid, 
HB2 (Acid2), of the base B2

-. The determination of Acid1 and Acid2 can be illustrated using ammonium 
acetate and considering the acid and base added to the system interacting as follows: 

 
Thus, for this system, K1 is the acidity constant for the ammonium ion and K2 is the acidity constant for 
acetic acid. 
Example 7-22 

Calculate pH 

Calculate the pH of a 0.01 M solution of ammonium acetate. The acidity constant for acetic 
acid is K2 = Ka = 1.75 × 10-5, and the basicity constant for ammonia is Kb = 1.74 × 10-5. 
(a) K1 can be found by dividing Kb for ammonia into Kw: 

 
Note that all of the assumptions are valid. We have 

 

When ammonium succinate is dissolved in water, it dissociates to yield two NH4
+ cations and one 

succinate (S2-) anion. These ions can enter into the following acid–base equilibrium: 
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In this system, Cb2 = Cs and Ca1 = 2Cs, the concentration of salt added. If Cs is much greater than 
either K1 or K2, equation (7-125) simplifies to 

 
and if 2K2 is much greater than [H3O+], 

 
In this example, equation (7-132) shows that K1 is the acidity constant for the ammonium cation and K2, 
referring to Acid2, must be the acidity constant for the bisuccinate species HS- or the second acidity 
constant for succinic acid. 
In general, when Acid2 comes from a polyprotic acid HnA, equation (7-128) simplifies to 

 
and 

 
using the same assumptions that were used in developing equations (7-132) and (7-133). 
It should be pointed out that in deriving equations (7-132) to (7-136), the base was assumed to be 
monoprotic. Thus, it would appear that these equations should not be valid for salts such as ammonium 
succinate or ammonium phosphate. For all systems of practical importance, however, the solution to 
these equations yields a pH value above the final pKa for the system. Therefore, the concentrations of 
all species formed by the addition of more than one proton to a polyacidic base will be negligibly small, 
and the assumption of only a one-proton addition becomes quite valid. 
Example 7-23 

Calculate pH 

Calculate the pH of a 0.01 M solution of ammonium succinate. As shown in equation (7-
132), K1 is the acidity constant for the ammonium cation, which was found in the previous 
example to be 5.75 × 10-10, and K2 refers to the acid succinate (HS-) or the second acidity 
constant for the succinic acid system. Thus, K2 = 2.3 × 10-6. We have 

 

Solutions Containing a Weak Acid and a Weak Base 
In the preceding section, the acid and base were added in the form of a single salt. They can be added 
as two separate salts or an acid and a salt, however, forming buffer solutions whose pH is given by 
equation (7-130). For example, consider a solution made by dissolving equimolar amounts of sodium 
acid phosphate, NaH2PO4, and disodium citrate, Na2HC6H5O7, in water. Both salts dissociate to give the 
amphoteric species H2PO4

- and HC6H5O7
2-, causing a problem in deciding which species to designate 

as HB1 and which to designate as B2
- in equations (7-121) and (7-122). This problem can be resolved by 

considering the acidity constants for the two species in question. The acidity constant for H2PO4
- is 7.2 

and that for the species HC6H5O7
2- is 6.4. The citrate species, being more acidic, acts as the acid in the 

following equilibrium: 

 
Thus, K1 in equation (7-130) is K3 for the citric acid system, and K2 in equation (7-130) is K1 for the 
phosphoric acid system. 
Example 7-24 

Calculate pH 

What is the pH of a solution containing NaH2PO4 and disodium citrate (disodium hydrogen 
citrate) Na2HC6H5O7, both in a concentration of 0.01 M? The third acidity constant for 
HC6H5O7

2- is 4.0 × 10-7, whereas the first acidity constant for phosphoric acid is 7.5 × 10-3. We 
have 

 
All assumptions are valid. We find 
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The equilibrium shown in equation (7-137) illustrates the fact that the system made by dissolving 
NaH2PO4 and Na2HC6H5O7 in water is identical to that made by dissolving H3PO4 and Na3C6H5O7 in 
water. In the latter case, H3PO4 is HB1 and the tricitrate is B2

-, and if the two substances are dissolved in 
equimolar amounts, equation (7-130) is valid for the system. 
A slightly different situation arises for equimolar combinations of substances such as succinic acid, 
H2C4H4O4, and tribasic sodium phosphate, Na3PO4. In this case, it is obvious that succinic acid is the 
acid, which can protonate the base to yield the species HC4H4O4

- and HPO4
2-. The acid succinate 

(pKa 5.63) is a stronger acid than HPO4
2-(pKa 12.0), however, and an equilibrium cannot be established 

between these species and the species originally added to water. Instead, the HPO4
2- is protonated by 

the acid succinate to give C4H4O4
2-and H2PO4

-. This is illustrated in the following: 

 

 
Thus, K1 in equation (7-139) is K2 for the succinic acid system, and K2 in equation (7-130) is 
actually K2 from the phosphoric acid system. 
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Example 7-25 

Calculate pH 

Calculate the pH of a solution containing succinic acid and tribasic sodium phosphate, each at 
a concentration of 0.01 M. The second acidity constant for the succinic acid system is 2.3 × 
10-6. The second acidity constant for the phosphoric acid system is 6.2 ×10-8. Write 

a.  

All assumptions are valid. We have 

 

b. Equation (7-130) can also be solved by taking logarithms of both sides to yield 

 

Equations (7-138) and (7-139) illustrate the fact that solutions made by dissolving equimolar amounts of 
H2C4H4O4 and Na3PO4, NaHC4H4O4 and Na2HPO4, or Na2C4H4O4 and NaH2PO4 in water all equilibrate 
to the same pH and are identical. 
Acidity Constants 
One of the most important properties of a drug molecule is its acidity constant, which for many drugs 
can be related to physiologic and pharmacologic activity,10,11,12 solubility, rate of solution,13 extent of 
binding,14 and rate of absorption.15 
Effect of Ionic Strength on Acidity Constants 
In the preceding sections, the solutions were considered dilute enough that the effect of ionic strength 
on the acid–base equilibria could be ignored. A more exact treatment for the ionization of a weak acid, 
for example, would be 
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where K is the thermodynamic acidity constant, and the charges on the species have been omitted to 
make the equations more general. Equation (7-141) illustrates the fact that in solving equations involving 
acidity constants, both the concentration and the activity coefficient of each species must be considered. 
One way to simplify the problem would be to define the acidity constant as an apparent constant in 
terms of the hydronium ion activity and species concentrations and activity coefficients, as follows: 

 
and 

 
The following form of the Debye–Hückel equation16 can be used for ionic strengths up to about 0.3 M: 

 
where Zi is the charge on the species i. The value of the constant αB can be taken to be approximately 1 
at 25°C, and Ks is a “salting-out” constant. At moderate ionic strengths, Ks can be assumed to be 
approximately the same for both the acid and its conjugate base.16 Thus, for an acid with 
charge Z going to a base with chargeZ - 1, 

 
Example 7-26 

Calculate pK′2 

Calculate pK′2 for citric acid at an ionic strength of 0.01 M. Assume that pK2 = 4.78. The 
charge on the acidic species is -1. We have 

 

If either the acid or its conjugate base is a zwitterion, it will have a large dipole moment, and the 
expression for its activity coefficient must contain a term Kr, the “salting-in” constant.17 Thus, for the 
zwitterion [+ -], 

 
The first ionization of an amino acid such as glycine hydrochloride involves an acid with a charge of +1 
going to the zwitterion, [+ -]. Combining equations (7-146) and (7-144) with equation (7-143) gives 

 
The second ionization step involves the zwitterion going to a species with a charge of -1. Thus, using 
equations (7-146), (7-144), and (7-143) gives 

 
The “salting-in” constant, Kr, is approximately 0.32 for alpha-amino acids in water and approximately 0.6 
for dipeptides.17 Use of these values for Kr enables equations (7-147) and (7-148) to be used for 
solutions with ionic strengths up to about 0.3 M. 
The procedure to be used in solving pH problems in which the ionic strength of the solution must be 
considered is as follows: 

a. Convert all pK values needed for the problem into pK′ values. 
b. Solve the appropriate equation in the usual manner. 
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Example 7-27 

Calculate pH 

Calculate the pH of a 0.01 M solution of acetic acid to which enough KCl had been added to 
give an ionic strength of 0.01 M at 25°C. The pKa for acetic acid is 4.76. 

a.  
b. Taking logarithms of equation (7-99) gives 

 

in which we now write pKa as pK′a: 

 

Example 7-28 

Calculate pH 

Calculate the pH of a 10-3 M solution of glycine at an ionic strength of 0.10 at 25°C. The 
pKa values for glycine are pK1 = 2.35 and pK2 = 9.78. 

 

 

 

Chapter Summary 

In this chapter, the student is introduced to ionic equilibria in the pharmaceutical sciences. 
The Brönsted–Lowry and Lewis electronic theories are introduced. The four classes of 
solvents (protophilic, protogenic, amphiprotic, and aprotic) are described as well. The student 
should understand the concepts of acid–base equilibria and the ionization of weak acids and 
weak bases. Further, you should be able to use this theory in your practice. In other words, 
you should be able to calculate dissociation constants Ka and Kb and understand the 
relationship between Ka and Kb. It is also very important to understand the concepts of pH, 
pK, and pOH and the relationship between hydrogen ion concentration and pH. Of course, 
you should be able to calculate pH. Finally, strong acids and strong bases were defined and 
described. You should strive for a working understanding of acidity constants. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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*Reports have appeared in the literature2 describing the discovery of a polymer of the hydrogen ion 
consisting of 21 molecules of water surrounding one hydrogen ion, namely, 

 
*Under laboratory conditions, distilled water in equilibrium with air contains about 0.03% by volume of 
CO2, corresponding to a hydrogen ion concentration of about 2 × 10-6 (pH [congruent] 5.7). 
*To adopt a definite and consistent method of making approximations throughout this chapter, the 
expression “much greater than” means that the larger term is at least 20 times greater than the smaller 

term. 
*Except that, in this and all subsequent developments for pH equations, it is assumed that concentration 
may be used in place of activity. 
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8 Buffered and Isotonic Solutions 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Understand the common ion effect. 
2. Understand the relationship between pH, pKa, and ionization for weak acids and 

weak bases. 
3. Apply the buffer equation, also known as the Henderson–Hasselbalch equation, for a 

weak acid or base and its salt. 
4. Understand the relationship between activity coefficients and the buffer equation. 
5. Discuss the factors influencing the pH of buffer solutions. 
6. Understand the concept and be able to calculate buffer capacity. 
7. Describe the influence of concentration on buffer capacity. 
8. Discuss the relationship between buffer capacity and pH on tissue irritation. 
9. Describe the relationship between pH and solubility. 
10. Describe the concept of tonicity and its importance in pharmaceutical systems. 
11. Calculate solution tonicity and tonicity adjustments. 

Buffers are compounds or mixtures of compounds that, by their presence in solution, resist changes in 
pH upon the addition of small quantities of acid or alkali. The resistance to a change in pH is known 
as buffer action. According to Roos and Borm,1 Koppel and Spiro published the first paper on buffer 
action in 1914 and suggested a number of applications, which were later elaborated by Van Slyke.2 
If a small amount of a strong acid or base is added to water or a solution of sodium chloride, the pH is 
altered considerably; such systems have no buffer action. 
The Buffer Equation 
Common Ion Effect and the Buffer Equation for a Weak Acid and 
Its Salt 
The pH of a buffer solution and the change in pH upon the addition of an acid or base can be calculated 
by use of the buffer equation. This expression is developed by considering the effect of a salt on the 
ionization of a weak acid when the salt and the acid have an ion in common. 

Key Concept 

What is a Buffer? 

A combination of a weak acid and its conjugate base (i.e., its salt) or a weak base and its 
conjugate acid acts as a buffer. If 1 mL of a 0.1 N HCl solution is added to 100 mL of pure 
water, the pH is reduced from 7 to 3. If the strong acid is added to a 0.01 M solution 
containing equal quantities of acetic acid and sodium acetate, the pH is changed only 0.09 pH 
units because the base Ac- ties up the hydrogen ions according to the reaction 

 
If a strong base, sodium hydroxide, is added to the buffer mixture, acetic acid neutralizes the 
hydroxyl ions as follows: 

 

For example, when sodium acetate is added to acetic acid, the dissociation constant for the weak acid, 

 
is momentarily disturbed because the acetate ion supplied by the salt increases the [Ac-] term in the 
numerator. To reestablish the constant Ka at 1.75 × 10-5, the hydrogen ion term in the numerator [H3O+] 
is instantaneously decreased, with a corresponding increase in [HAc]. Therefore, the 
constant Ka remains unaltered, and the equilibrium is shifted in the direction of the reactants. 
Consequently, the ionization of acetic acid, 

Dr. Murtadha Alshareifi e-Library

302



 
is repressed upon the addition of the common ion, Ac-. This is an example of the common ion effect. 
The pH of the final solution is obtained by rearranging the equilibrium expression for acetic acid: 

 
If the acid is weak and ionizes only slightly, the expression [HAc] may be considered to represent the 
total concentration of acid, and it is written simply as [Acid]. In the slightly ionized acidic solution, the 
acetate concentration [Ac-] can be considered as having come entirely from the salt, sodium acetate. 
Because 1 mole of sodium acetate yields 1 mole of acetate ion, [Ac-] is equal to the total salt 
concentration and is replaced by the term [Salt]. Hence, equation (8-5) is written as 
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Equation (8-6) can be expressed in logarithmic form, with the signs reversed, as 

 
from which is obtained an expression, known as the buffer equation or the Henderson–Hasselbalch 

equation, for a weak acid and its salt: 

 
The ratio [Acid]/[Salt] in equation (8-6) has been inverted by undertaking the logarithmic operations in 
equation (8-7), and it appears in equation (8-8) as [Salt]/[Acid]. The term pKa, the negative logarithm 
of Ka, is called the dissociation exponent. 
The buffer equation is important in the preparation of buffered pharmaceutical solutions; it is satisfactory 
for calculations within the pH range of 4 to 10. 
Example 8-1 

pH Calculation 

What is the pH of 0.1 M acetic acid solution, pKa = 4.76? What is the pH after enough sodium 
acetate has been added to make the solution 0.1 M with respect to this salt? 
The pH of the acetic acid solution is calculated by use of the logarithmic form of equation (7-
102): 

 
The pH of the buffer solution containing acetic acid and sodium acetate is determined by use 
of the buffer equation (8-8): 

 
It is seen from Example 8-1 that the pH of the acetic acid solution has been increased almost 
2 pH units; that is, the acidity has been reduced to about 1/100 of its original value by the 
addition of an equal concentration of a salt with a common ion. This example bears out the 
statement regarding the repression of ionization upon the addition of a common ion. 
Sometimes it is desired to know the ratio of salt to acid in order to prepare a buffer of a 
definite pH. The following example demonstrates the calculation involved in such a problem. 

Example 8-2 

pH and [Salt]/[Acid] Ratio 

What is the molar ratio, [Salt]/[Acid], required to prepare an acetate buffer of pH 5.0? Also 
express the result in mole percent. 
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Therefore, the mole ratio of salt to acid is 1.74/1. Mole percent is mole fraction multiplied by 
100. The mole fraction of salt in the salt–acid mixture is 1.74/(1 + 1.74) = 0.635, and in mole 
percent, the result is 63.5%. 

The Buffer Equation for a Weak Base and Its Salt 
Buffer solutions are not ordinarily prepared from weak bases and their salts because of the volatility and 
instability of the bases and because of the dependence of their pH on pKw, which is often affected by 
temperature changes. Pharmaceutical solutions—for example, a solution of ephedrine base and 
ephedrine hydrochloride—however, often contain combinations of weak bases and their salts. 
The buffer equation for solutions of weak bases and the corresponding salts can be derived in a manner 
analogous to that for the weak acid buffers. Accordingly, 

 
and using the relationship [OH-] = Kw/[H3O+], the buffer equation is obtained 

 
Example 8-3 

Using the Buffer Equation 

What is the pH of a solution containing 0.10 mole of ephedrine and 0.01 mole of ephedrine 
hydrochloride per liter of solution? Since the pKb of ephedrine is 4.64, 

 

Activity Coefficients and the Buffer Equation 
A more exact treatment of buffers begins with the replacement of concentrations by activities in the 
equilibrium of a weak acid: 

 
The activity of each species is written as the activity coefficient multiplied by the molar concentration. 
The activity coefficient of the undissociated acid, γHAc, is essentially 1 and may be dropped. Solving for 
the hydrogen ion activity and pH, defined as -log aH3O

+, yields the equations 

 

 
From the Debye–Hückel expression for an aqueous solution of a univalent ion at 25°C having an ionic 
strength not greater than about 0.1 or 0.2, we write 
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and equation (8-13) then becomes 
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The general equation for buffers of polybasic acids is 

 
where n is the stage of the ionization. 
Example 8-4 

Activity Coefficients and Buffers 

A buffer contains 0.05 mole/liter of formic acid and 0.10 mole/liter of sodium formate. The 
pKa of formic acid is 3.75. The ionic strength of the solution is 0.10. Compute the pH (a) with 
and (b) without consideration of the activity coefficient correction. 

 

Some Factors Influencing the pH of Buffer Solutions 
The addition of neutral salts to buffers changes the pH of the solution by altering the ionic strength, as 
shown in equation (8-13). Changes in ionic strength and hence in the pH of a buffer solution can also be 
brought about by dilution. The addition of water in moderate amounts, although not changing the pH, 
may cause a small positive or negative deviation because it alters activity coefficients and because 
water itself can act as a weak acid or base. Bates3 expressed this quantitatively in terms of a dilution 

value, which is the change in pH on diluting the buffer solution to one half of its original strength. Some 
dilution values for National Bureau of Standards buffers are given in Table 8-1. A positive dilution value 
signifies that the pH rises with dilution and a negative value signifies that the pH decreases with dilution 
of the buffer. 

Table 8-1 Buffer Capacity of Solutions Containing Equimolar Amounts (0.1 M) 

of Acetic Acid And Sodium Acetate 

Moles of NaOH Added pH of Solution Buffer Capacity, β 

0 4.76   

0.01 4.85 0.11 

0.02 4.94 0.11 

0.03 5.03 0.11 

0.04 5.13 0.10 

0.05 5.24 0.09 

0.06 5.36 0.08 
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Temperature also influences buffers. Kolthoff and Tekelenburg4 determined the temperature coefficient 

of pH, that is, the change in pH with temperature, for a large number of buffers. The pH of acetate 
buffers was found to increase with temperature, whereas the pH of boric acid–sodium borate buffers 
decreased with temperature. Although the temperature coefficient of acid buffers was relatively small, 
the pH of most basic buffers was found to change more markedly with temperature, owing to Kw, which 
appears in the equation of basic buffers and changes significantly with temperature. Bates3 referred to 
several basic buffers that show only a small change of pH with temperature and can be used in the pH 
range of 7 to 9. The temperature coefficients for the calomel electrode are given in the study by Bates. 
Drugs as Buffers 
It is important to recognize that solutions of drugs that are weak electrolytes also manifest buffer action. 
Salicylic acid solution in a soft glass bottle is influenced by the alkalinity of the glass. It might be thought 
at first that the reaction would result in an appreciable increase in pH; however, the sodium ions of the 
soft glass combine with the salicylate ions to form sodium salicylate. Thus, there arises a solution of 
salicylic acid and sodium salicylate—a buffer solution that resists the change in pH. Similarly, a solution 
of ephedrine base manifests a natural buffer protection against reductions in pH. Should hydrochloric 
acid be added to the solution, ephedrine hydrochloride is formed, and the buffer system of ephedrine 
plus ephedrine hydrochloride will resist large changes in pH until the ephedrine is depleted by reaction 
with the acid. Therefore, a drug in solution may often act as its own buffer over a definite pH range. 
Such buffer action, however, is often too weak to counteract pH changes brought about by the carbon 
dioxide of the air and the alkalinity of the bottle. Additional buffers are therefore frequently added to drug 
solutions to maintain the system within a certain pH range. A quantitative measure of the efficiency or 
capacity of a buffer to resist pH changes will be discussed in a later section. 
pH Indicators 
Indicators may be considered as weak acids or weak bases that act like buffers and also exhibit color 
changes as their degree of dissociation varies with pH. For example, methyl red shows its full alkaline 
color, yellow, at a pH of about 6 and its full acid color, red, at about pH 4. 
The dissociation of an acid indicator is given in simplified form as 

 
The equilibrium expression is 
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Table 8-2 Color, pH, and Indicator Constant, pKIn, of Some Common Indicators 
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Indicator 

Color 

pH Range pKIn Acid Base 

Thymol blue (acid range) Red Yellow 1.2–2.8 1.5 

Methyl violet Blue Violet 1.5–3.2 – 

Methyl orange Red Yellow 3.1–4.4 3.7 

Bromcresol green Yellow Blue 3.8–5.4 4.7 

Methyl red Red Yellow 4.2–6.2 5.1 

Bromcresol purple Yellow Purple 5.2–6.8 6.3 

Bromthymol blue Yellow Blue 6.0–7.6 7.0 

Phenol red Yellow Red 6.8–8.4 7.9 

Cresol red Yellow Red 7.2–8.8 8.3 

Thymol blue (alkaline 

range) 

Yellow Blue 8.0–9.6 8.9 

Phenolphthalein Colorless Red 8.3–10.0 9.4 

Alizarin yellow Yellow Lilac 10.0–

12.0 

– 

Indigo carmine Blue Yellow 11.6–14 – 

 

HIn is the un-ionized form of the indicator, which gives the acid color, and In- is the ionized form, which 
produces the basic color. KIn is referred to as the indicator constant. If an acid is added to a solution of 
the indicator, the hydrogen ion concentration term on the right-hand side of equation (8-16) is increased, 
and the ionization is repressed by the common ion effect. The indicator is then predominantly in the form 
of HIn, the acid color. If base is added, [H3O+] is reduced by reaction of the acid with the base, 
reaction (8-16) proceeds to the right, yielding more ionized indicator In-, and the base color 
predominates. Thus, the color of an indicator is a function of the pH of the solution. A number of 
indicators with their useful pH ranges are listed in Table 8-2. 
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The equilibrium expression (8-16) can be treated in a manner similar to that for a buffer consisting of a 
weak acid and its salt or conjugate base. Hence 

 
and because [HIn] represents the acid color of the indicator and the conjugate base [In-] represents the 
basic color, these terms can be replaced by the concentration expressions [Acid] and [Base]. The 
formula for pH as derived from equation (8-18) becomes 

 
Example 8-5 

Calculate pH 

An indicator, methyl red, is present in its ionic form In-, in a concentration of 3.20 × 103 M and 
in its molecular form, HIn, in an aqueous solution at 25°C in a concentration of 6.78 × 103 M. 
From Table 8-2 a pKIn of 5.1 is observed for methyl red. What is the pH of this solution? We 
have 

 

Just as a buffer shows its greatest efficiency when pH = pKa, an indicator exhibits its middle tint when 
[Base]/[Acid] = 1 and pH = pKIn. The most efficient indicator range, corresponding to the effective buffer 
interval, is about 2 pH units, that is, pKIn ± 1. The reason for the width of this color range can be 
explained as follows. It is known from experience that one cannot discern a change from the acid color 
to the salt or conjugate base color until the ratio of [Base] to [Acid] is about 1 to 10. That is, there must 
be at least 1 part of the basic color to 10 parts of the acid color before the eye can discern a change in 
color from acid to alkaline. The pH value at which this change is perceived is given by the equation 

 
Conversely, the eye cannot discern a change from the alkaline to the acid color until the ratio of [Base] 
to [Acid] is about 10 to 1, or 

 
Therefore, when base is added to a solution of a buffer in its acid form, the eye first visualizes a change 
in color at pKIn - 1, and the color ceases to change any further at pKIn + 1. The effective range of the 
indicator between its full acid and full basic color can thus be expressed as 

 
Chemical indicators are typically compounds with chromophores that can be detected in the visible 
range and change color in response to a solution's pH. Most chemicals used as indicators respond only 
to a narrow pH range. Several indicators can be combined to yield so-called universal indicators just as 
buffers can be mixed to cover a wide pH range. A universal indicator is a pH indicator that displays 
different colors as the pH transitions from pH 1 to 12. A typical universal indicator will display a color 
range from red to purple8 
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For example, a strong acid (pH 0–3) may display as red in color, an acid (pH 3–6) as orange–yellow, 
neutral pH (pH 7) as green, alkaline pH (pH 8–11) as blue, and purple for strong alkaline pH (pH 11–14). 
The colorimetric method for the determination of pH is probably less accurate and less convenient but is 
also less expensive than electrometric methods and it can be used in the determination of the pH of 
aqueous solutions that are not colored or turbid. This is particularly useful for the study of acid–base 
reactions in nonaqueous solutions. A note of caution should be added regarding the colorimetric 
method. Because indicators themselves are acids (or bases), their addition to unbuffered solutions 
whose pH is to be determined will change the pH of the solution. The colorimetric method is therefore 
not applicable to the determination of the pH of sodium chloride solution or similar unbuffered 
pharmaceutical preparations unless special precautions are taken in the measurement. Some medicinal 
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solutions and pharmaceutical vehicles, however, to which no buffers have been added are buffered by 
the presence of the drug itself and can withstand the addition of an indicator without a significant change 
in pH. Errors in the result can also be introduced by the presence of salts and proteins, and these errors 
must be determined for each indicator over the range involved. 
Recently, Kong et al.5 reported on a rapid method for determining pKa based on spectrophotometric 
titration using a universal pH indicator. Historically, potentiometric titration, which typically uses pH 
electrodes, has been the most commonly used method for determining pKa values. This method takes 
time and requires the daily calibration of the pH electrode. Spectrophotometric titration has the 
advantage that less sample is required, it is not affected by CO2 interference, and it can provide 
multiwavelength absorbance information. The method can be applied only to compounds with 
chromophores placed close to the titratable groups. The indicator spectra can then be used to calculate 
the pH value of a solution from the pKa values, concentration, and molar extinction coefficients of the 
indicator species. In contrast to pH electrodes, chemical indicators respond rapidly and do not require 
frequent calibration. 
Buffer Capacity 
Thus far it has been stated that a buffer counteracts the change in pH of a solution upon the addition of 
a strong acid, a strong base, or other agents that tend to alter the hydrogen ion concentration. 
Furthermore, it has been shown in a rather qualitative manner how combinations of weak acids and 
weak bases together with their salts manifest this buffer action. The resistance to changes of pH now 
remains to be discussed in a more quantitative way. 
The magnitude of the resistance of a buffer to pH changes is referred to as the buffer capacity, β. It is 
also known as buffer efficiency, buffer index, and buffer value. Koppel and Spiro1 and Van 
Slyke2 introduced the concept of buffer capacity and defined it as the ratio of the increment of strong 
base (or acid) to the small change in pH brought about by this addition. For the present discussion, the 
approximate formula 

 
can be used, in which delta, Δ, has its usual meaning, a finite change, and ΔB is the small increment in 
gram equivalents (g Eq)/liter of strong base added to the buffer solution to produce a pH change of Δ 

pH. According to equation (8-23), the buffer capacity of a solution has a value of 1 when the addition of 
1 g Eq of strong base (or acid) to 1 liter of the buffer solution results in a change of 1 pH unit. The 
significance of this index will be appreciated better when it is applied to the calculation of the capacity of 
a buffer solution. 
Approximate Calculation of Buffer Capacity 
Consider an acetate buffer containing 0.1 mole each of acetic acid and sodium acetate in 1 liter of 
solution. To this are added 0.01-mole portions of sodium hydroxide. When the first increment of sodium 
hydroxide is added, the concentration of sodium acetate, the [Salt] term in the buffer equation, increases 
by 0.01 mole/liter and the acetic acid concentration, [Acid], decreases proportionately because each 
increment of base converts 0.01 mole of acetic acid into 0.01 mole of sodium acetate according to the 
reaction 

 
The changes in concentration of the salt and the acid by the addition of a base are represented in the 
buffer equation (8-8) by using the modified form 

 
Before the addition of the first portion of sodium hydroxide, the pH of the buffer solution is 

 
The results of the continual addition of sodium hydroxide are shown in Table 8-1. The student should 
verify the pH values and buffer capacities by the use of equations (8-25) and (8-23), respectively. 

Dr. Murtadha Alshareifi e-Library

309



As can be seen from Table 8-1, the buffer capacity is not a fixed value for a given buffer system but 
instead depends on the amount of base added. The buffer capacity changes as the ratio 
log([Salt]/[Acid]) increases with added base. With the addition of more sodium hydroxide, the buffer 
capacity decreases rapidly, and, when sufficient base has been added to convert the acid completely 
into sodium ions and acetate ions, the solution no longer possesses an acid reserve. The buffer has its 
greatest capacity before any base is added, where [Salt]/[Acid] = 1, and, therefore, according to 
equation (8-8), pH = pKa. The buffer capacity is also influenced 
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by an increase in the total concentration of the buffer constituents because, obviously, a great 
concentration of salt and acid provides a greater alkaline and acid reserve. The influence of 
concentration on buffer capacity is treated following the discussion of Van Slyke's equation. 
A More Exact Equation for Buffer Capacity 
The buffer capacity calculated from equation (8-23) is only approximate. It gives the average buffer 
capacity over the increment of base added. Koppel and Spiro1 and Van Slyke2 developed a more exact 
equation, 

 
where C is the total buffer concentration, that is, the sum of the molar concentrations of the acid and the 
salt. Equation (8-27) permits one to compute the buffer capacity at any hydrogen ion concentration—for 
example, at the point where no acid or base has been added to the buffer. 
Example 8-6 

Calculating Buffer Capacity 

At a hydrogen ion concentration of 1.75 × 10-5 (pH = 4.76), what is the capacity of a buffer 
containing 0.10 mole each of acetic acid and sodium acetate per liter of solution? The total 
concentration, C = [Acid] + [Salt], is 0.20 mole/liter, and the dissociation constant is 1.75 × 10-

5. We have 

 

Example 8-7 

Buffer Capacity and pH 

Prepare a buffer solution of pH 5.00 having a capacity of 0.02. The steps in the solution of the 
problem are as follows: 

a. Choose a weak acid having a pKa close to the pH desired. Acetic acid, pKa = 4.76, is 
suitable in this case. 

b. The ratio of salt and acid required to produce a pH of 5.00 was found in Example 8-
2 to be [Salt]/[Acid] = 1.74/1. 

c. Use the buffer capacity equation (8-27) to obtain the total buffer concentration, C = 
[Salt] + [Acid]: 

 

d. Finally from (b), [Salt] = 1.74 × [Acid], and from (c), 
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Therefore, 
 

and 

 

The Influence of Concentration on Buffer Capacity 
The buffer capacity is affected not only by the [Salt]/[Acid] ratio but also by the total concentrations of 
acid and salt. As shown in Table 8-1, when 0.01 mole of base is added to a 0.1 molar acetate buffer, the 
pH increases from 4.76 to 4.85, for a ΔpH of 0.09. 
If the concentration of acetic acid and sodium acetate is raised to 1 M, the pH of the original buffer 
solution remains at about 4.76, but now, upon the addition of 0.01 mole of base, it becomes 4.77, for a 
ΔpH of only 0.01. The calculation, disregarding activity coefficients, is 

 
Therefore, an increase in the concentration of the buffer components results in a greater buffer capacity 
or efficiency. This conclusion is also evident in equation (8-27), where an increase in the total buffer 
concentration, C = [Salt] + [Acid], obviously results in a greater value of β. 
Maximum Buffer Capacity 
An equation expressing the maximum buffer capacity can be derived from the buffer capacity formula of 
Koppel and Spiro1 and Van Slyke,2 equation (8-27). The maximum buffer capacity occurs where pH = 
pKa, or, in equivalent terms, where [H3O+] = Ka. Substituting [H3O+] for Ka in both the numerator and the 
denominator of equation (8-27) gives 

 
where C is the total buffer concentration. 
Example 8-8 

Maximum Buffer Capacity 

What is the maximum buffer capacity of an acetate buffer with a total concentration of 0.020 
mole/liter? We have 

 

Key Concept 

Buffer Capacity 

The buffer capacity depends on (a) the value of the ratio [Salt]/[Acid], increasing as the ratio 
approaches unity, and (b) the magnitude of the individual concentrations of the buffer 
components, the buffer becoming more efficient as the salt and acid concentrations are 
increased. 
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Neutralization Curves and Buffer Capacity 
A further understanding of buffer capacity can be obtained by considering the titration curves of strong 
and weak acids when they are mixed with increasing quantities of alkali. The reaction of an equivalent of 
an acid with an equivalent of a base is called neutralization; it can be expressed according to the 
method of Brönsted and Lowry. The neutralization of a strong acid by a strong base and a weak acid by 
a strong base is written in the form 

Dr. Murtadha Alshareifi e-Library

311



 
where (H3O+)(Cl-) is the hydrated form of HCl in water. The neutralization of a strong acid by a strong 
base simply involves a reaction between hydronium and hydroxyl ions and is usually written as 

 
Because (Cl-) and (Na+) appear on both sides of the reaction equation just given, they may be 
disregarded without influencing the result. The reaction between the strong acid and the strong base 
proceeds almost to completion; however, the weak acid–strong base reaction is incomplete because Ac-

 reacts in part with water, that is, it hydrolyzes to regenerate the free acid. 
The neutralization of 10 mL of 0.1 N HCl (curve I) and 10 mL of 0.1 N acetic acid (curve II) by 0.1 N 
NaOH is shown in Figure 8-1. The plot of pH versus milliliters of NaOH added produces the titration 
curve. It is computed as follows for HCl. Before the first increment of NaOH is added, the hydrogen ion 
concentration of the 0.1 N solution of HCl is 10-1 mole/liter, and the pH is 1, disregarding activities and 
assuming HCl to be completely ionized. The addition of 5 mL of 0.1 N NaOH neutralizes 5 mL of 0.1 N 
HCl, leaving 5 mL of the original HCl in 10 + 5 = 15 mL of solution, or [H3O+] = 5/15 × 0.1 = 3.3 × 10-

2 mole/liter, and the pH is 1.48. When 10 mL of base has been added, all the HCl is converted to NaCl, 
and the pH, disregarding the difference between activity and concentration resulting from the ionic 
strength of the NaCl solution, is 7. This is known as the equivalence point of the titration. Curve I 
in Figure 8-1 results from plotting such data. It is seen that the pH does not change markedly until nearly 
all the HCl is neutralized. Hence, a solution of a strong acid has a high buffer capacity below a pH of 2. 
Likewise, a strong base has a high buffer capacity above a pH of 12. 

 

Fig. 8-1. Neutralization of a strong acid and a 

weak acid by a strong base. 

The buffer capacity equations considered thus far have pertained exclusively to mixtures of weak 
electrolytes and their salts. The buffer capacity of a solution of a strong acid was shown by Van Slyke to 
be directly proportional to the hydrogen ion concentration, or 

 
The buffer capacity of a solution of a strong base is similarly proportional to the hydroxyl ion 
concentration, 

 
The total buffer capacity of a water solution of a strong acid or base at any pH is the sum of the separate 
capacities just given, equations (8-31) and (8-32), or 

 
Example 8-9 

Calculate Buffer Capacity 
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What is the buffer capacity of a solution of hydrochloric acid having a hydrogen ion 
concentration of 10-2 mole/liter? 
The hydroxyl ion concentration of such a solution is 10-12, and the total buffer capacity is 

 
The OH- concentration is obviously so low in this case that it may be neglected in the 
calculation. 

Three equations are normally used to obtain the data for the titration curve of a weak acid (curve II 
of Fig. 8-1), although a single equation that is somewhat complicated can be used. Suppose that 
increments of 0.1 N NaOH are added to 10 mL of a 0.1 N HAc solution. 

a. The pH of the solution before any NaOH has been added is obtained from the equation for a 
weak acid, 

 

b. At the equivalence point, where the acid has been converted completely into sodium ions and 
acetate ions, the 
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pH is computed from the equation for a salt of a weak acid and strong base in log form: 

 

The concentration of the acid is given in the last term of this equation as 0.05 because the 
solution has been reduced to half its original value by mixing it with an equal volume of base at 
the equivalence point. 

c. Between these points on the neutralization curve, the increments of NaOH convert some of the 
acid to its conjugate base Ac- to form a buffer mixture, and the pH of the system is calculated 
from the buffer equation. When 5 mL of base is added, the equivalent of 5 mL of 0.1 N acid 
remains and 5 mL of 0.1 N Ac- is formed, and using the Henderson–Hasselbalch equation, we 
obtain 

 

The slope of the curve is a minimum and the buffer capacity is greatest at this point, where the 
solution shows the smallest pH change per g Eq of base added. The buffer capacity of a 
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solution is the reciprocal of the slope of the curve at a point corresponding to the composition 
of the buffer solution. As seen inFigure 8-1, the slope of the line is a minimum, and the buffer 
capacity is greatest at half-neutralization, where pH = pKa. 

The titration curve for a tribasic acid such as H3PO4 consists of three stages, as shown in Figure 8-2. 
These can be considered as being produced by three separate acids (H3PO4, pK1 = 2.21; H2PO4

-, pK2 = 
7.21; and HPO4

2-, pK3 = 12.67) whose strengths are sufficiently different so that their curves do not 
overlap. The curves can be plotted by using the buffer equation and their ends joined by smooth lines to 
produce the continuous curve of Figure 8-2. 

 

Fig. 8-2. Neutralization of a tribasic acid. 

 

Fig. 8-3. Neutralization curve for a universal 

buffer. (From H. T. Britton, Hydrogen Ions, Vol. 

I, Van Nostrand, New York, 1956, p. 368.) 

A mixture of weak acids whose pKa values are sufficiently alike (differing by no more than about 2 pH 
units) so that their buffer regions overlap can be used as auniversal buffer over a wide range of pH 
values. A buffer of this type was introduced by Britton and Robinson.6 The three stages of citric acid, 
pK1 = 3.15, pK2 = 4.78, and pK3 = 6.40, are sufficiently close to provide overlapping of neutralization 
curves and efficient buffering over this range. Adding Na2HPO4, whose conjugate acid, H2PO4

-, has a 
pK2 of 7.2, diethylbarbituric acid, pK1 = 7.91, and boric acid, pK1 = 9.24, provides a universal buffer that 
covers the pH range of about 2.4 to 12. The neutralization curve for the universal buffer mixture is linear 
between pH 4 and 8, as seen in Figure 8-3, because the successive dissociation constants differ by only 
a small value. 
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A titration curve depends on the ratio of the successive dissociation constants. Theoretically, when 
one K is equal to or less than 16 times the previous K, that is, when successive pKs do not differ by 
greater than 1.2 units, the second ionization begins well before the first is completed, and the titration 
curve is a straight line with no inflection points. Actually, the inflection is not noticeable until one K is 
about 50 to 100 times that of the previous K value. 
The buffer capacity of several acid–salt mixtures is plotted against pH in Figure 8-4. A buffer solution is 
useful within a range of about ±1 pH unit about the pKa of its acid, where the buffer capacity is roughly 
greater than 0.01 or 0.02, as observed in Figure 8-4. Accordingly, the acetate buffer should be effective 
over a pH range of about 3.8 to 5.8, and the borate buffer should be effective over a range of 8.2 to 
10.2. In each case, the greatest capacity occurs where [Salt]/[Acid] = 1 and pH = pKa. Because of 
interionic effects, buffer capacities do not in general exceed a value of 0.2. The buffer capacity of a 
solution of the strong acid HCl becomes marked below a pH of 2, and the buffer capacity of a strong 
base NaOH becomes significant above a pH of 12. 
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Fig. 8-4. The buffer capacity of several buffer 

systems as a function of pH. (Modified from R. 

G. Bates, Electrometric pH Determinations, 

Wiley, New York, 1954.) 

The buffer capacity of a combination of buffers whose pKa values overlap to produce a universal buffer 
is plotted in Figure 8-5. It is seen that the total buffer capacity Σβ is the sum of the β values of the 
individual buffers. In this figure, it is assumed that the maximum βs of all buffers in the series are 
identical. 
Buffers in Pharmaceutical and Biologic Systems 
In Vivo Biologic Buffer Systems 
Blood is maintained at a pH of about 7.4 by the so-called primary buffers in the plasma and the 
secondary buffers in the erythrocytes. The plasma contains carbonic acid/bicarbonate and acid/alkali 
sodium salts of phosphoric acid as buffers. Plasma proteins, which behave as acids in blood, can 
combine with bases and so act as buffers. In the erythrocytes, the two buffer systems consist of 
hemoglobin/oxyhemoglobin and acid/alkali potassium salts of phosphoric acid. 
The dissociation exponent pK1 for the first ionization stage of carbonic acid in the plasma at body 
temperature and an ionic strength of 0.16 is about 6.1. The buffer equation for the carbonic 
acid/bicarbonate buffer of the blood is 
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Fig. 8-5. The total buffer capacity of a universal 

buffer as a function of a pH. (From I. M. Kolthoff 

and C. Rosenblum, Acid–Base Indicators, 

Macmillan, New York, 1937, p. 29.) 

where [H2CO3] represents the concentration of CO2 present as H2CO3 dissolved in the blood. At a pH of 
7.4, the ratio of bicarbonate to carbonic acid in normal blood plasma is 

 
or 

 
This result checks with experimental findings because the actual concentrations of bicarbonate and 
carbonic acid in the plasma are about 0.025 M and 0.00125 M, respectively. 
The buffer capacity of the blood in the physiologic range pH 7.0 to 7.8 is obtained as follows. According 
to Peters and Van Slyke,7 the buffer capacity of the blood owing to hemoglobin and other constituents, 
exclusive of bicarbonate, is about 0.025 g equivalents per liter per pH unit. The pH of the bicarbonate 
buffer in the blood (i.e., pH 7.4) is rather far removed from the pH (6.1) where it exhibits maximum buffer 
capacity; therefore, the bicarbonate's buffer action is relatively small with respect to that of the other 
blood constituents. According to the calculation just given, the ratio [NaHCO3]/[H2CO3] is 20:1 at pH 7.4. 
Using equation (8-27), we find the buffer capacity for the bicarbonate system (K1 = 4 × 10-7) at a pH of 
7.4 ([H3O+] = 4 × 10-8) to be roughly 0.003. Therefore, the total buffer capacity of the blood in the 
physiologic range, the sum of the capacities of the various constituents, is 0.025 + 0.003 = 0.028. 
Salenius8 reported a value of 0.0318 ± 0.0035 for whole blood, whereas Ellison et al.9 obtained a buffer 
capacity of about 0.039 g equivalents per liter per pH unit for whole blood, of which 0.031 was 
contributed by the cells and 0.008 by the plasma. 
It is usually life-threatening for the pH of the blood to go below 6.9 or above 7.8. The pH of the blood in 
diabetic coma is as low as about 6.8. 
Lacrimal fluid, or tears, have been found to have a great degree of buffer capacity, allowing a dilution of 
1:15 with neutral distilled water before an alteration of pH is noticed.10 In the terminology of 
Bates,11 this would be referred to today as dilution value rather than buffer capacity. The pH of tears is 
about 7.4, with a range of 7 to 8 or slightly higher. It is generally thought that eye drops within a pH 
range of 4 to 10 will not harm the cornea.12 However, discomfort and a flow of tears will occur below pH 
6.6 and above pH 9.0.12 Pure conjunctival fluid is probably more acidic than the tear fluid commonly 
used in pH measurements. This is because pH increases rapidly when the sample is removed for 
analysis because of the loss of CO2 from the tear fluid. 
Urine 
The 24-hr urine collection of a normal adult has a pH averaging about 6.0 units; it may be as low as 4.5 
or as high as 7.8. When the pH of the urine is below normal values, hydrogen ions are excreted by the 
kidneys. Conversely, when the 
P.172 
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urine is above pH 7.4, hydrogen ions are retained by action of the kidneys in order to return the pH to its 
normal range of values. 
Pharmaceutical Buffers 
Buffer solutions are used frequently in pharmaceutical practice, particularly in the formulation of 
ophthalmic solutions. They also find application in the colorimetric determination of pH and for research 
studies in which pH must be held constant. 
Gifford13 suggested two stock solutions, one containing boric acid and the other monohydrated sodium 
carbonate, which, when mixed in various proportions, yield buffer solutions with pH values from about 5 
to 9. 
Sörensen14 proposed a mixture of the salts of sodium phosphate for buffer solutions of pH 6 to 8. 
Sodium chloride is added to each buffer mixture to make it isotonic with body fluids. 
A buffer system suggested by Palitzsch15 and modified by Hind and Goyan16 consists of boric acid, 
sodium borate, and sufficient sodium chloride to make the mixtures isotonic. It is used for ophthalmic 
solutions in the pH range of 7 to 9. 
The buffers of Clark and Lubs,17 based on the original pH scale of Sörensen, have been redetermined 
at 25°C by Bower and Bates18 so as to conform to the present definition of pH. Between pH 3 and 11, 
the older values were about 0.04 unit lower than the values now assigned, and at the ends of the scale, 
the differences were greater. The original values were determined at 20°C, whereas most experiments 
today are performed at 25°C. 
The Clark–Lubs mixtures and their corresponding pH ranges are as follows: 

a. HCl and KCl, pH 1.2 to 2.2 
b. HCl and potassium hydrogen phthalate, pH 2.2 to 4.0 
c. NaOH and potassium hydrogen phthalate, pH 4.2 to 5.8 
d. NaOH and KH2PO4, pH 5.8 to 8.0 
e. H3BO3, NaOH, and KCl, pH 8.0 to 10.0 

With regard to mixture (a), consisting of HCl and KCl and used for the pH range from 1.0 to 2.2, it will be 
recalled from the discussion of the neutralization curve I inFigure 8-1 that HCl alone has considerable 
buffer efficiency below pH 2. KCl is a neutral salt and is added to adjust the ionic strength of the buffer 
solutions to a constant value of 0.10; the pH calculated from the equation -log aH

+ = -log (y ± c) 
corresponds closely to the experimentally determined pH. The role of the KCl in the Clark–Lubs buffer is 
sometimes erroneously interpreted as that of a salt of the buffer acid, HCl, corresponding to the part 
played by sodium acetate as the salt of the weak buffer acid, HAc. Potassium chloride is added to (e), 
the borate buffer, to produce an ionic strength comparable to that of (d), the phosphate buffer, where the 
pH of the two buffer series overlaps. 

Key Concept 

Phosphate Buffered Saline 

There are several variations in the formula for preparing PBS. Two common examples follow: 
Formula One: Take 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, and 0.24 g KH2PO4 in 800 mL 
distilled water. Adjust pH to 7.4 using HCl. Add sufficient (qs ad) distilled water to achieve 1 
liter. 
Formula Two: Another variant of PBS. This one is designated as ―10X PBS (0.1 M PBS, pH 
7.2)‖ since it is much more concentrated than PBS and the pH is not yet adjusted to pH 7.4. 

Take 90 g NaCl, 10.9 g Na2HPO4, and 3.2 g NaH2PO4 in 1000 mL distilled water. Dilute 1:10 
using distilled water and adjust pH as necessary. 

Many buffers are available today. One of the most common biological buffers is phosphate buffered 
saline (PBS). Phosphate buffered saline contains sodium chloride (NaCl) and dibasic sodium phosphate 
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(Na2PO4). It may also contain potassium chloride (KCl), monobasic potassium phosphate (KH2PO4), 
calcium chloride (CaCl2), and magnesium sulfate (MgSO4). 
General Procedures for Preparing Pharmaceutical Buffer 
Solutions 
The pharmacist may be called upon at times to prepare buffer systems for which the formulas do not 
appear in the literature. The following steps should be helpful in the development of a new buffer. 

a. Select a weak acid having a pKa approximately equal to the pH at which the buffer is to be 
used. This will ensure maximum buffer capacity. 

b. From the buffer equation, calculate the ratio of salt and weak acid required to obtain the 
desired pH. The buffer equation is satisfactory for approximate calculations within the pH range 
of 4 to 10. 

c. Consider the individual concentrations of the buffer salt and acid needed to obtain a suitable 
buffer capacity. A concentration of 0.05 to 0.5 M is usually sufficient, and a buffer capacity of 
0.01 to 0.1 is generally adequate. 

d. Other factors of some importance in the choice of a pharmaceutical buffer include availability of 
chemicals, sterility of the final solution, stability of the drug and buffer on aging, cost of 
materials, and freedom from toxicity. For example, a borate buffer, because of its toxic effects, 
certainly cannot be used to stabilize a solution to be administered orally or parenterally. 

e. Finally, determine the pH and buffer capacity of the completed buffered solution using a 
reliable pH meter. In some cases, sufficient accuracy is obtained by the use of 
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pH papers. Particularly when the electrolyte concentration is high, it may be found that the pH 
calculated by use of the buffer equation is somewhat different from the experimental value. 
This is to be expected when activity coefficients are not taken into account, and it emphasizes 
the necessity for carrying out the actual determination. 

Influence of Buffer Capacity and pH on Tissue Irritation 
Friedenwald et al.18 claimed that the pH of solutions for introduction into the eye may vary from 4.5 to 
11.5 without marked pain or damage. This statement evidently would be true only if the buffer capacity 
were kept low. Martin and Mims19 found that Sörensen's phosphate buffer produced irritation in the 
eyes of a number of individuals when used outside the narrow pH range of 6.5 to 8, whereas a boric 
acid solution of pH 5 produced no discomfort in the eyes of the same individuals. Martin and Mims 
concluded that a pH range of nonirritation cannot be established absolutely but instead depends upon 
the buffer employed. In light of the previous discussion, this apparent anomaly can be explained partly in 
terms of the low buffer capacity of boric acid as compared with that of the phosphate buffer and partly to 
the difference of the physiologic response to various ion species. 
Riegelman and Vaughn20 assumed that the acid-neutralizing power of tears when 0.1 mL of a 1% 
solution of a drug is instilled into the eye is roughly equivalent to 10 µL of a 0.01 N strong base. They 
pointed out that although in a few cases, irritation of the eye may result from the presence of the free 
base form of a drug at the physiologic pH, it is more often due to the acidity of the eye solution. For 
example, because only one carboxyl group of tartaric acid is neutralized by epinephrine base in 
epinephrine bitartrate, a 0.06 M solution of the drug has a pH of about 3.5. The prolonged pain resulting 
from instilling two drops of this solution into the eye is presumably due to the unneutralized acid of the 
bitartrate, which requires 10 times the amount of tears to restore the normal pH of the eye as compared 
with the result following two drops of epinephrine hydrochloride. Solutions of pilocarpine salts also 
possess sufficient buffer capacity to cause pain or irritation owing to their acid reaction when instilled 
into the eye. 
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Parenteral solutions for injection into the blood are usually not buffered, or they are buffered to a low 
capacity so that the buffers of the blood may readily bring them within the physiologic pH range. If the 
drugs are to be injected only in small quantities and at a slow rate, their solutions can be buffered 
weakly to maintain approximate neutrality. 
According to Mason,21 following oral administration, aspirin is absorbed more rapidly in systems 
buffered at low buffer capacity than in systems containing no buffer or in highly buffered preparations. 
Thus, the buffer capacity of the buffer should be optimized to produce rapid absorption and minimal 
gastric irritation of orally administered aspirin. 

Key Concept 

Parenteral Solutions 

Solutions to be applied to tissues or administered parenterally are liable to cause irritation if 
their pH is greatly different from the normal pH of the relevant body fluid. Consequently, the 
pharmacist must consider this point when formulating ophthalmic solutions, parenteral 
products, and fluids to be applied to abraded surfaces. Of possible greater significance than 
the actual pH of the solution is its buffer capacity and the volume to be used in relation to the 
volume of body fluid with which the buffered solution will come in contact. The buffer capacity 
of the body fluid should also be considered. Tissue irritation, due to large pH differences 
between the solution being administered and the physiologic environment in which it is used, 
will be minimal (a) the lower is the buffer capacity of the solution, (b) the smaller is the volume 
used for a given concentration, and (c) the larger are the volume and buffer capacity of the 
physiologic fluid. 

In addition to the adjustment of tonicity and pH for ophthalmic preparations, similar requirements are 
demanded for nasal delivery of drugs. Conventionally, the nasal route has been used for delivery of 
drugs for treatment of local diseases such as nasal allergy, nasal congestion, and nasal 
infections.22 The nasal route can be exploited for the systemic delivery of drugs such as small 
molecular weight polar drugs, peptides and proteins that are not easily administered via other routes 
than by injection, or where a rapid onset of action is required. Examples include buserelin, 
desmopressin, and nafarelin. 
Stability versus Optimum Therapeutic Response 
For the sake of completeness, some mention must be made at this point of the effect of buffer capacity 
and pH on the stability and therapeutic response of the drug being used in solution. 
As will be discussed later, the undissociated form of a weakly acidic or basic drug often has a higher 
therapeutic activity than that of the dissociated salt form. This is because the former is lipid soluble and 
can penetrate body membranes readily, whereas the ionic form, not being lipid soluble, can penetrate 
membranes only with greater difficulty. Thus, Swan and White23 and Cogan and Kinsey24 observed an 
increase in therapeutic response of weakly basic alkaloids (used as ophthalmic drugs) as the pH of the 
solution, and hence concentration of the undissociated base, was increased. At a pH of about 4, these 
drugs are predominantly in the ionic form, and penetration is slow or insignificant. When the tears bring 
the pH to about 7.4, the drugs may exist to a significant degree in the form of the free base, depending 
on the dissociation constant of the drug. 
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Example 8-10 

Mole Percent of Free Base 

The pKb of pilocarpine is 7.15 at 25°C. Compute the mole percent of free base present at 
25°C and at a pH of 7.4. We have 
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Hind and Goyan25 pointed out that the pH for maximum stability of a drug for ophthalmic use may be far 
below that of the optimum physiologic effect. Under such conditions, the solution of the drug can be 
buffered at a low buffer capacity and at a pH that is a compromise between that of optimum stability and 
the pH for maximum therapeutic action. The buffer is adequate to prevent changes in pH due to the 
alkalinity of the glass or acidity of CO2 from dissolved air. Yet, when the solution is instilled in the eye, 
the tears participate in the gradual neutralization of the solution; conversion of the drug occurs from the 
physiologically inactive form to the undissociated base. The base can then readily penetrate the lipoidal 
membrane. As the base is absorbed at the pH of the eye, more of the salt is converted into base to 
preserve the constancy of pKb; hence, the alkaloidal drug is gradually absorbed. 
pH and Solubility 
Since the relationship between pH and the solubility of weak electrolytes is treated elsewhere in the 
book, it is only necessary to point out briefly the influence of buffering on the solubility of an alkaloidal 
base. At a low pH, a base is predominantly in the ionic form, which is usually very soluble in aqueous 
media. As the pH is raised, more undissociated base is formed, as calculated by the method illustrated 
in Example 8-10. When the amount of base exceeds the limited water solubility of this form, free base 
precipitates from solution. Therefore, the solution should be buffered at a sufficiently low pH so that the 
concentration of alkaloidal base in equilibrium with its salt is calculated to be less than the solubility of 
the free base at the storage temperature. Stabilization against precipitation can thus be maintained. 
Buffered Isotonic Solutions 
Reference has already been made to in vivo buffer systems, such as blood and lacrimal fluid, and the 
desirability for buffering pharmaceutical solutions under certain conditions. In addition to carrying out pH 
adjustment, pharmaceutical solutions that are meant for application to delicate membranes of the body 
should also be adjusted to approximately the same osmotic pressure as that of the body fluids. Isotonic 
solutions cause no swelling or contraction of the tissues with which they come in contact and produce 
no discomfort when instilled in the eye, nasal tract, blood, or other body tissues. Isotonic sodium 
chloride is a familiar pharmaceutical example of such a preparation. 
The need to achieve isotonic conditions with solutions to be applied to delicate membranes is 
dramatically illustrated by mixing a small quantity of blood with aqueous sodium chloride solutions of 
varying tonicity. For example, if a small quantity of blood, defibrinated to prevent clotting, is mixed with a 
solution containing 0.9 g of NaCl per 100 mL, the cells retain their normal size. The solution has 
essentially the same salt concentration and hence the same osmotic pressure as the red blood cell 
contents and is said to be isotonic with blood. If the red blood cells are suspended in a 2.0% NaCl 
solution, the water within the cells passes through the cell membrane in an attempt to dilute the 
surrounding salt solution until the salt concentrations on both sides of the erythrocyte membrane are 
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identical. This outward passage of water causes the cells to shrink and become wrinkled or crenated. 
The salt solution in this instance is said to be hypertonic with respect to the blood cell contents. Finally, if 
the blood is mixed with 0.2% NaCl solution or with distilled water, water enters the blood cells, causing 
them to swell and finally burst, with the liberation of hemoglobin. This phenomenon is known 
as hemolysis, and the weak salt solution or water is said to be hypotonic with respect to the blood. 
The student should appreciate that the red blood cell membrane is not impermeable to all drugs; that is, 
it is not a perfect semipermeable membrane. Thus, it will permit the passage of not only water 
molecules but also solutes such as urea, ammonium chloride, alcohol, and boric acid.26 A 2.0% solution 
of boric acid has the same osmotic pressure as the blood cell contents when determined by the freezing 
point method and is therefore said to be isosmotic with blood. The molecules of boric acid pass freely 
through the erythrocyte membrane, however, regardless of concentration. As a result, this solution acts 
essentially as water when in contact with blood cells. Because it is extremely hypotonic with respect to 
the blood, boric acid solution brings about rapid hemolysis. Therefore, a solution containing a quantity of 
drug calculated to be isosmotic with blood is isotonic only when 
P.175 
 
the blood cells are impermeable to the solute molecules and permeable to the solvent, water. It is 
interesting to note that the mucous lining of the eye acts as a true semipermeable membrane to boric 
acid in solution. Accordingly, a 2.0% boric acid solution serves as an isotonic ophthalmic preparation. 

Key Concept 

Tonicity 

 

 

Osmolality and osmolarity are colligative properties that measure the concentration of the 
solutes independently of their ability to cross a cell membrane. Tonicity is the concentration of 
only the solutes that cannot cross the membrane since these solutes exert an osmotic 
pressure on that membrane. Tonicity is not the difference between the two osmolarities on 
opposing sides of the membrane. A solution might be hypertonic, isotonic, or hypotonic 
relative to another solution. For example, the relative tonicity of blood is defined in reference 
to that of the red blood cell (RBC) cytosol tonicity. As such, a hypertonic solution contains a 
higher concentration of impermeable solutes than the cytosol of the RBC; there is a net flow 
of fluid out of the RBC and it shrinks (Panel A). The concentration of impermeable solutes in 
the solution and cytosol are equal and the RBCs remain unchanged, so there is no net fluid 
flow (Panel B). A hypotonic solution contains a lesser concentration of such solutes than the 
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RBC cytosol and fluid flows into the cells where they swell and potentially burst (Panel C). In 
short, a solution containing a quantity of drug calculated to be isosmotic with blood is 
isotonic only when the blood cells are impermeable to the solute (drug) molecules and 
permeable to the solvent, water. 

To overcome this difficulty, Husa27 suggested that the term isotonic should be restricted to solutions 
having equal osmotic pressures with respect to a particular membrane. Goyan and Reck28 felt that, 
rather than restricting the use of the term in this manner, a new term should be introduced that is 
defined on the basis of the sodium chloride concentration. These workers defined the term isotonicity 

value as the concentration of an aqueous NaCl solution having the same colligative properties as the 
solution in question. Although all solutions having an isotonicity value of 0.9 g of NaCl per 100 mL of 
solution need not necessarily be isotonic with respect to the living membranes concerned, many of them 
are roughly isotonic in this sense, and all may be considered isotonic across an ideal membrane. 
Accordingly, the term isotonic is used with this meaning throughout the present chapter. Only a few 
substances—those that penetrate animal membranes at a sufficient rate—will show exception to this 
classification. 
The remainder of this chapter is concerned with a discussion of isotonic solutions and the means by 
which they can be buffered. 
Measurement of Tonicity 
The tonicity of solutions can be determined by one of two methods. First, in the hemolytic method, the 
effect of various solutions of the drug is observed on the appearance of red blood cells suspended in the 
solutions. The various effects produced have been described in the previous section. Husa and his 
associates27used this method. In their later work, a quantitative method developed by Hunter29 was 
used based on the fact that a hypotonic solution liberates oxyhemoglobin in direct proportion to the 
number of cells hemolyzed. By such means, the van't Hoff i factor can be determined and the value 
compared with that computed from cryoscopic data, osmotic coefficient, and activity coefficient.30 
Husa found that a drug having the proper i value as measured by freezing point depression or computed 
from theoretical equations nevertheless may hemolyze human red blood cells; it was on this basis that 
he suggested restriction of the term isotonic to solutions having equal osmotic pressures with respect to 
a particular membrane. 
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Table 8-3 Average Liso Values for Various Ionic Types* 

Type Liso Examples 

Nonelectrolytes 1.9 Sucrose, glycerin, urea, camphor 

Weak electrolytes 2.0 Boric acid, cocaine, phenobarbital 

Di-divalent 

electrolytes 

2.0 Magnesium sulfate, zinc sulfate 

Uni-univalent 

electrolytes 

3.4 Sodium chloride, cocaine hydrochloride, 

sodium phenobarbital 
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Uni-divalent 

electrolytes 

4.3 Sodium sulfate, atropine sulfate 

Di-univalent 

electrolytes 

4.8 Zinc chloride, calcium bromide 

Uni-trivalent 

electrolytes 

5.2 Sodium citrate, sodium phosphate 

Tri-univalent 

electrolytes 

6.0 Aluminum chloride, ferric iodide 

Tetraborate 

electrolytes 

7.6 Sodium borate, potassium borate 

*From J. M. Wells, J. Am. Pharm. Assoc. Pract. Ed. 5, 99, 1944. 

 

The second approach used to measure tonicity is based on any of the methods that determine 
colligative properties earlier in the book. Goyan and Reck28investigated various modifications of the 
Hill–Baldes technique31 for measuring tonicity. This method is based on a measurement of the slight 
temperature differences arising from differences in the vapor pressure of thermally insulated samples 
contained in constant-humidity chambers. 
One of the first references to the determination of the freezing point of blood and tears (as was 
necessary to make solutions isotonic with these fluids) is that of Lumiere and Chevrotier,32 in which the 
values of -0.56°C and -0.80°C were given, respectively, for the two fluids. Following work by Pedersen-
Bjergaard and coworkers,33,34 however, it is now well established that -0.52°C is the freezing point of 
both human blood and lacrimal fluid. This temperature corresponds to the freezing point of a 0.90% 
NaCl solution, which is therefore considered to be isotonic with both blood and lacrimal fluid. 
Calculating Tonicity Using Liso Values 
Because the freezing point depressions for solutions of electrolytes of both the weak and strong types 
are always greater than those calculated from the equation ΔTf= Kfc, a new factor, L = i Kf, is introduced 
to overcome this difficulty.35 The equation, already discussed is 

 
The L value can be obtained from the freezing point lowering of solutions of representative compounds 
of a given ionic type at a concentration c that is isotonic with body fluids. This specific value of L is 
written as Liso. 
The Liso value for a 0.90% (0.154 M) solution of sodium chloride, which has a freezing point depression 
of 0.52°C and is thus isotonic with body fluids, is 3.4: From 

 
we have 
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The interionic attraction in solutions that are not too concentrated is roughly the same for all uni-
univalent electrolytes regardless of the chemical nature of the various compounds of this class, and all 
have about the same value for Liso, namely 3.4. As a result of this similarity between compounds of a 
given ionic type, a table can be arranged listing the L value for each class of electrolytes at a 
concentration that is isotonic with body fluids. The Liso values obtained in this way are given in Table 8-
3. 
It will be observed that for dilute solutions of nonelectrolytes, Liso is approximately equal to Kf. Table 8-
3 is used to obtain the approximate ΔTf for a solution of a drug if the ionic type can be correctly 
ascertained. A plot of i Kf against molar concentration of various types of electrolytes, from which the 
values of Liso can be read, is shown in Figure 6-7 (in Chapter 6, ―Electrolytes and Ionic Equilibria‖). 
Example 8-11 

Freezing Point Lowering 

What is the freezing point lowering of a 1% solution of sodium propionate (molecular weight 
96)? Because sodium propionate is a uni-univalent electrolyte, its Liso value is 3.4. The molar 
concentration of a 1% solution of this compound is 0.104. We have 

 

Although 1 g/100 mL of sodium propionate is not the isotonic concentration, it is still proper to use Liso as 
a simple average that agrees with the concentration range expected for the finished solution. The 
selection of L values in this concentration region is not sensitive to minor changes in concentration; no 
pretense to accuracy greater than about 10% is implied or needed in these calculations. 
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The calculation of Example 8-11 can be simplified by expressing molarity c as grams of drug contained 
in a definite volume of solution. Thus, 

 
or 

 
where w is the grams of solute, MW is the molecular weight of the solute, and v is the volume of solution 
in milliliters. Substituting in equation (8-36) gives 

 
The problem in Example 8-11 can be solved in one operation by the use of equation (8-41) without the 
added calculation needed to obtain the molar concentration: 

 
The student is encouraged to derive expressions of this type; certainly equations (8-40) and (8-
41) should not be memorized, for they are not remembered for long. The Liso values can also be used 
for calculating sodium chloride equivalents and Sprowls V values, as discussed in subsequent sections 
of this chapter. 
Methods of Adjusting Tonicity and pH 
One of several methods can be used to calculate the quantity of sodium chloride, dextrose, and other 
substances that may be added to solutions of drugs to render them isotonic. 
For discussion purposes, the methods are divided into two classes. In the class I methods, sodium 
chloride or some other substance is added to the solution of the drug to lower the freezing point of the 
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solution to -0.52°C and thus make it isotonic with body fluids. Under this class are included 
the cryoscopic method and thesodium chloride equivalent method. In the class II methods, water is 
added to the drug in a sufficient amount to form an isotonic solution. The preparation is then brought to 
its final volume with an isotonic or a buffered isotonic dilution solution. Included in this class are 
the White–Vincent method and the Sprowls method. 
Class I Methods 
Cryoscopic Method 
The freezing point depressions of a number of drug solutions, determined experimentally or 
theoretically, are given in Table 8-4. According to the previous section, the freezing point depressions of 
drug solutions that have not been determined experimentally can be estimated from theoretical 
considerations, knowing only the molecular weight of the drug and the Liso value of the ionic class. 
The calculations involved in the cryoscopic method are explained best by an example. 
Example 8-12 

Isotonicity 

How much sodium chloride is required to render 100 mL of a 1% solution of apomorphine 
hydrochloride isotonic with blood serum? 
From Table 8-4 it is found that a 1% solution of the drug has a freezing point lowering of 
0.08°C. To make this solution isotonic with blood, sufficient sodium chloride must be added to 
reduce the freezing point by an additional 0.44°C (0.52°C - 0.08°C). In the freezing point 
table, it is also observed that a 1% solution of sodium chloride has a freezing point lowering of 
0.58°C. By the method of proportion, 

 
Thus, 0.76% sodium chloride will lower the freezing point the required 0.44°C and will render 
the solution isotonic. The solution is prepared by dissolving 1.0 g of apomorphine 
hydrochloride and 0.76 g of sodium chloride in sufficient water to make 100 mL of solution. 

Sodium Chloride Equivalent Method 
A second method for adjusting the tonicity of pharmaceutical solutions was developed by Mellen and 
Seltzer.36 The sodium chloride equivalent or, as referred to by these workers, the ―tonicic equivalent‖ of 

a drug is the amount of sodium chloride that is equivalent to (i.e., has the same osmotic effect as) 1 g, or 
other weight unit, of the drug. The sodium chloride equivalents E for a number of drugs are listed 
in Table 8-4. 
When the E value for a new drug is desired for inclusion in Table 8-4, it can be calculated from 
the Liso value or freezing point depression of the drug according to formulas derived by Goyan et 
al.37 For a solution containing 1 g of drug in 1000 mL of solution, the concentration c expressed in 
moles/liter can be written as 

 
and from equation (8-36) 

 
Now, E is the weight of NaCl with the same freezing point depression as 1 g of the drug, and for a NaCl 
solution containing E grams of drug per 1000 mL, 

 
where 3.4 is the Liso value for sodium chloride and 58.45 is its molecular weight. Equating these two 
values of ΔTf yields 
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Table 8-4 Isotonic Values*, † 

Substance MW E V ΔTf
1%

 Liso 

Alcohol, dehydrated 46.07 0.70 23.3 0.41 1.9 

Aminophylline 456.46 0.17 5.7 0.10 4.6 

Amphetamine sulfate 368.49 0.22 7.3 0.13 4.8 

Antipyrine 188.22 0.17 5.7 0.10 1.9 

Apomorphine 

hydrochloride 

312.79 0.14 4.7 0.08 2.6 

Ascorbic acid 176.12 0.18 6.0 0.11 1.9 

Atropine sulfate 694.82 0.13 4.3 0.07 5.3 

Diphenhydramine 

hydrochloride 

291.81 0.20 6.6 0.34 3.4 

Boric acid 61.84 0.50 16.7 0.29 1.8 

Caffeine 194.19 0.08 2.7 0.05 0.9 

Dextrose·H2O 198.17 0.16 5.3 0.09 1.9 

Ephedrine 

hydrochloride 

201.69 0.30 10.0 0.18 3.6 

Ephedrine sulfate 428.54 0.23 7.7 0.14 5.8 

Epinephrine 

hydrochloride 

219.66 0.29 9.7 0.17 3.7 
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Glycerin 92.09 0.34 11.3 0.20 1.8 

Lactose 360.31 0.07 2.3 0.04 1.7 

Morphine 

hydrochloride 

375.84 0.15 5.0 0.09 3.3 

Morphine sulfate 758.82 0.14 4.8 0.08 6.2 

Neomycin sulfate – 0.11 3.7 0.06 – 

Penicillin G 

potassium 

372.47 0.18 6.0 0.11 3.9 

Penicillin G Procaine 588.71 0.10 3.3 0.06 3.5 

Phenobarbital sodium 254.22 0.24 8.0 0.14 3.6 

Phenol 94.11 0.35 11.7 0.20 1.9 

Potassium chloride 74.55 0.76 25.3 0.45 3.3 

Procaine 

hydrochloride 

272.77 0.21 7.0 0.12 3.4 

Quinine hydrochloride 396.91 0.14 4.7 0.08 3.3 

Sodium chloride 58.45 1.00 33.3 0.58 3.4 

Streptomycin sulfate 1457.44 0.07 2.3 0.04 6.0 

Sucrose 342.30 0.08 2.7 0.05 1.6 

Tetracycline 

hydrochloride 

480.92 0.14 4.7 0.08 4.0 

Dr. Murtadha Alshareifi e-Library

327



Urea 60.06 0.59 19.7 0.35 2.1 

Zinc chloride 139.29 0.62 20.3 0.37 5.1 

*The values were obtained from the data of E. R. Hammarlund and K. 

Pedersen-Bjergaard, J. Am. Pharm. Assoc. Pract. Ed. 19, 39, 1958; J. Am. 

Pharm. Assoc. Sci. Ed. 47, 107, 1958; and other sources. The values vary 

somewhat with concentration, and those in the table are for 1% to 3% 

solutions of the drugs in most instances. A complete table of Eand ΔTf values 

is found in the Merck Index, 11th Ed., Merck, Rahway, N. J., 1989, pp. 

MISC-79 to MISC-103. For the most recent results of Hammarlund, see J. 

Pharm. Sci. 70, 1161, 1981; 78, 519, 1989. 

Key: MW = molecular weight of the drug; E = sodium chloride equivalent of 

the drug; V = volume in mL of isotonic solution that can be prepared by 

adding water to 0.3 g of the drug (the weight of drug in 1 fluid ounce of a 1% 

solution); ΔTf
1
% = freezing point depression of a 1% solution of the 

drug; Liso = the molar freezing point depression of the drug at a concentration 

approximately isotonic with blood and lacrimal fluid. 

†
The full table is available at the book's companion website at 

thepoint.lww.com/Sinko6e. 

 

Example 8-13 

Sodium Chloride Equivalents 

Calculate the approximate E value for a new amphetamine hydrochloride derivative 
(molecular weight 187). 
Because this drug is a uni-univalent salt, it has an Liso value of 3.4. Its E value is calculated 
from equation (8-45): 

 

Calculations for determining the amount of sodium chloride or other inert substance to render a solution 
isotonic (across an ideal membrane) simply involve multiplying the quantity of each drug in the 
prescription by its sodium chloride equivalent and subtracting this value from the concentration of 
sodium chloride that is isotonic with body fluids, namely, 0.9 g/100 mL. 
Example 8-14 

Tonicity Adjustment 

A solution contains 1.0 g of ephedrine sulfate in a volume of 100 mL. What quantity of sodium 
chloride must be added to make the solution isotonic? How much dextrose would be required 
for this purpose? 
The quantity of the drug is multiplied by its sodium chloride equivalent, E, giving the weight of 
sodium chloride to which the quantity of drug is equivalent in osmotic pressure: 

 
The ephedrine sulfate has contributed a weight of material osmotically equivalent to 0.23 g of 
sodium chloride. Because a total of 0.9 g of sodium chloride is required for isotonicity, 0.67 g 
(0.90 - 0.23 g) of NaCl must be added. 

Dr. Murtadha Alshareifi e-Library

328



If one desired to use dextrose instead of sodium chloride to adjust the tonicity, the quantity 
would be estimated by setting up the following proportion. Because the sodium chloride 
equivalent of dextrose is 0.16, 

 

P.179 
 
 
Other agents than dextrose can of course be used to replace NaCl. It is recognized that thimerosal 
becomes less stable in eye drops when a halogen salt is used as an ―isotonic agent‖ (i.e., an agent like 

NaCl ordinarily used to adjust the tonicity of a drug solution). Reader38 found that mannitol, propylene 
glycol, or glycerin—isotonic agents that did not have a detrimental effect on the stability of thimerosal—
could serve as alternatives to sodium chloride. The concentration of these agents for isotonicity is 
readily calculated by use of the equation (see Example 8-14) 

 
where X is the grams of isotonic agent required to adjust the tonicity, Y is the additional amount of NaCl 
for isotonicity over and above the osmotic equivalence of NaCl provided by the drugs in the solution, 
and E is the sodium chloride equivalence of the isotonic agent. 
Example 8-15 

Isotonic Solutions 

Let us prepare 200 mL of an isotonic aqueous solution of thimerosal, molecular weight 404.84 
g/mole. The concentration of this anti-infective drug is 1:5000, or 0.2 g/1000 mL. The Liso for 
such a compound, a salt of a weak acid and a strong base (a 1:1 electrolyte), is 3.4, and the 
sodium chloride equivalent E is 

 
The quantity of thimerosal, 0.04 g for the 200-mL solution, multiplied by its E value gives the 
weight of NaCl to which the drug is osmotically equivalent: 

 
Because the total amount of NaCl needed for isotonicity is 0.9 g/100 mL, or 1.8 g for the 200-
mL solution, and because an equivalent of 0.0057 g of NaCl has been provided by the 
thimerosal, the additional amount of NaCl needed for isotonicity, Y, is 

 
This is the additional amount of NaCl needed for isotonicity. The result, 1.8 g of NaCl, shows 
that the concentration of thimerosal is so small that it contributes almost nothing to the 
isotonicity of the solution. Thus, a concentration of 0.9% NaCl, or 1.8 g/200 mL, is required. 
However, from the work of Reader38 we know that sodium chloride interacts with mercury 
compounds such as thimerosal to reduce the stability and effectiveness of this preparation. 
Therefore, we replace NaCl with propylene glycol as the isotonic agent. 
From equation (8-45) we calculate the E value of propylene glycol, a nonelectrolyte with 
an Liso value of 1.9 and a molecular weight of 76.09 g/mole: 

 
Using equation (8-46), X = Y/E, we obtain 

 
where X = 4.3 g is the amount of propylene glycol required to adjust the 200-mL solution of 
thimerosal to isotonicity. 
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Class II Methods 
White–Vincent Method 
The class II methods of computing tonicity involve the addition of water to the drugs to make an isotonic 
solution, followed by the addition of an isotonic or isotonic-buffered diluting vehicle to bring the solution 
to the final volume. Stimulated by the need to adjust the pH in addition to the tonicity of ophthalmic 
solutions, White and Vincent39 developed a simplified method for such calculations. The derivation of 
the equation is best shown as follows. 
Suppose that one wishes to make 30 mL of a 1% solution of procaine hydrochloride isotonic with body 
fluid. First, the weight of the drug, w, is multiplied by the sodium chloride equivalent, E: 

 
This is the quantity of sodium chloride osmotically equivalent to 0.3 g of procaine hydrochloride. 
Second, it is known that 0.9 g of sodium chloride, when dissolved in enough water to make 100 mL, 
yields a solution that is isotonic. The volume, V, of isotonic solution that can be prepared from 0.063 g of 
sodium chloride (equivalent to 0.3 g of procaine hydrochloride) is obtained by solving the proportion 

 

 
 

In equation (8-49), the quantity 0.063 is equal to the weight of drug, w, multiplied by the sodium chloride 
equivalent, E, as seen in equation (8-47). The value of the ratio 100/0.9 is 111.1. Accordingly, 
equation (8-49) can be written as 

 
where V is the volume in milliliters of isotonic solution that may be prepared by mixing the drug with 
water, w is the weight in grams of the drug given in the problem, and E is the sodium chloride equivalent 
obtained from Table 8-4. The constant, 111.1, represents the volume in milliliters of isotonic solution 
obtained by dissolving 1 g of sodium chloride in water. 
P.180 
 
 
The problem can be solved in one step using equation (8-51): 

 
To complete the isotonic solution, enough isotonic sodium chloride solution, another isotonic solution, or 
an isotonic-buffered diluting solution is added to make 30 mL of the finished product. 
When more than one ingredient is contained in an isotonic preparation, the volumes of isotonic solution, 
obtained by mixing each drug with water, are additive. 
Example 8-16 

Isotonic Solutions 

Make the following solution isotonic with respect to an ideal membrane: 

 
The drugs are mixed with water to make 18 mL of an isotonic solution, and the preparation is 
brought to a volume of 100 mL by adding an isotonic diluting solution. 

The Sprowls Method 
A further simplification of the method of White and Vincent was introduced by Sprowls.40 He recognized 
that equation (8-51) could be used to construct a table of values of V when the weight of the drug, w, 
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was arbitrarily fixed. Sprowls chose as the weight of drug 0.3 g, the quantity for 1 fluid ounce of a 1% 
solution. The volume,V, of isotonic solution that can be prepared by mixing 0.3 g of a drug with sufficient 
water can be computed for drugs commonly used in ophthalmic and parenteral solutions. The method 
as described by Sprowls40 is further discussed in several reports by Martin and Sprowls.41 The table 
can be found in the United States Pharmacopeia. A modification of the original table was made by 
Hammarlund and Pedersen-Bjergaard42 and the values of V are given in column 4 of Table 8-4, where 
the volume in milliliters of isotonic solution for 0.3 g of the drug, the quantity for 1 fluid ounce of a 1% 
solution, is listed. (The volume of isotonic solution in milliliters for 1 g of the drug can also be listed in 
tabular form if desired by multiplying the values in column 4 by 3.3.) The primary quantity of isotonic 
solution is finally brought to the specified volume with the desired isotonic or isotonic-buffered diluting 
solutions. 
Chapter Summary 

Buffers are compounds or mixtures of compounds that, by their presence in solution, resist 
changes in pH upon the addition of small quantities of acid or alkali. The resistance to a 
change in pH is known as buffer action. If a small amount of a strong acid or base is added to 
water or a solution of sodium chloride, the pH is altered considerably; such systems have no 
buffer action. In this chapter, the theory of buffers was introduced as were several formulas 
for making commonly used buffers. Finally, the important concept of tonicity was introduced. 
Pharmaceutical buffers must usually be made isotonic so that they cause no swelling or 
contraction of biological tissues, which would lead to discomfort in the patient being treated. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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9 Solubility and Distribution Phenomena 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Define saturated solution, solubility, and unsaturated solution. 
2. Describe and give examples of polar, nonpolar, and semipolar solvents. 
3. Define complete and partial miscibility. 
4. Understand the factors controlling the solubility of weak electrolytes. 
5. Describe the influence of solvents and surfactants on solubility. 
6. Define thermodynamic, kinetic, and intrinsic solubility. 
7. Measure thermodynamic solubility. 
8. Describe what a distribution coefficient and partition coefficient are and their 

importance in pharmaceutical systems. 

General Principles 
Introduction1,2,3,4 
Solubility is defined in quantitative terms as the concentration of solute in a saturated solution at a 
certain temperature, and in a qualitative way, it can be defined as the spontaneous interaction of two or 
more substances to form a homogeneous molecular dispersion. Solubility is an intrinsic material 
property that can be altered only by chemical modification of the molecule.1 In contrast to this, 
dissolution is an extrinsic material property that can be influenced by various chemical, physical, or 
crystallographic means such as complexation, particle size, surface properties, solid-state modification, 
or solubilization enhancing formulation strategies.1Dissolution is discussed in Chapter 13. Generally 
speaking, the solubility of a compound depends on the physical and chemical properties of the solute 
and the solvent as well as on such factors as temperature, pressure, the pH of the solution, and, to a 
lesser extent, the state of subdivision of the solute. Of the nine possible types of mixtures, based on the 
three states of matter, only liquids in liquids and solids in liquids are of everyday importance to most 
pharmaceutical scientists and will be considered in this chapter. 
For the most part, this chapter will deal with the thermodynamic solubility of drugs (Fig. 9-1). The 
thermodynamic solubility of a drug in a solvent is the maximum amount of the most stable crystalline 
form that remains in solution in a given volume of the solvent at a given temperature and pressure under 
equilibrium conditions.4 The equilibrium involves a balance of the energy of three interactions against 
each other: (1) solvent with solvent, (2) solute with solute, and (3) solvent and solute. Thermodynamic 
equilibrium is achieved when the overall lowest energy state of the system is achieved. This means that 
only the equilibrium solubility reflects the balance of forces between the solution and the most stable, 
lowest energy crystalline form of the solid. In practical terms, this means that one needs to be careful 
when evaluating a drug's solubility. For example, let us say that you want to determine the solubility of a 
drug and that you were not aware that it was not in its crystalline form. It is well known that a metastable 
solid form of a drug will have a higher apparent solubility. Given enough time, the limiting solubility of the 
most stable form will eventually dominate and since the most stable crystal form has the lowest 
solubility, this means that there will be excess drug in solution resulting in a precipitate. So, initially you 
would record a higher solubility but after a period of time the solubility that you measure would be 
significantly lower. As you can imagine, this could lead to serious problems. This was vividly illustrated 
by Abbott's antiviral drug ritonavir where the slow precipitation of a new stable polymorph from dosing 
solutions required the manufacturer to perform an emergency reformulation to ensure consistent drug 
release characteristics.2,4 

Key Concept 

Solutions and Solubility 

A saturated solution is one in which the solute in solution is in equilibrium with the solid 
phase. Solubility is defined in quantitative terms as the concentration of solute in a saturated 
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solution at a certain temperature, and in a qualitative way, it can be defined as the 
spontaneous interaction of two or more substances to form a homogeneous molecular 
dispersion. An unsaturated or subsaturated solution is one containing the dissolved solute in 
a concentration below that necessary for complete saturation at a definite temperature. 
A supersaturated solution is one that contains more of the dissolved solute than it would 
normally contain at a definite temperature, were the undissolved solute present. 

P.183 
 
 

 

Fig. 9-1. The intermolecular forces that determine thermodynamic solubility. (a) 

Solvent and solute are segregated, each interacts primarily with other molecules of the 

same type. (b) To move a solute molecule into solution, the interactions among solute 

molecules in the crystal (lattice energy) and among solvent molecules in the space 

required to accommodate the solute (cavitation energy) must be broken. The system 

entropy increases slightly because the ordered network of hydrogen bonds among 

solvent molecules has been disrupted. (c) Once the solute molecule is surrounded by 

solvent, new stabilizing interactions between the solute and solvent are formed 

(solvation energy), as indicated by the dark purple molecules. The system entropy 

increases owing to the mingling of solute and solvent (entropy of mixing) but also 

decreases locally owing to the new short-range order introduced by the presence of 

the solute, as indicated by the light purple molecules.4 (Adapted from Bhattachar et 

al. 2006.4) 

Solubility Expressions 
The solubility of a drug may be expressed in a number of ways. The United States Pharmacopeia (USP) 
describes the solubility of drugs as parts of solvent required for one part solute. Solubility is also 
quantitatively expressed in terms of molality, molarity, and percentage. The USP describes solubility 
using the seven groups listed in Table 9-1. The European Pharmacopoeia lists six categories (it does 
not use the practically insoluble grouping). For exact solubilities of many substances, the reader is 
referred to standard reference works such as official compendia (e.g., USP) and the Merck Index. 
Solvent–Solute Interactions 
The pharmacist knows that water is a good solvent for salts, sugars, and similar compounds, whereas 
mineral oil is often a solvent for substances that are normally only slightly soluble in water. These 
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empirical findings are summarized in the statement, ―like dissolves like.‖ Such a maxim is satisfying to 

most of us, but the inquisitive student may be troubled by this vague idea of ―likeness.‖ 

Table 9-1 Solubility Definition in the United States Pharmacopeia 

Description Forms 

(Solubility Definition) 

Parts of Solvent 

Required for One Part 

of Solute 

Solubility 

Range 

(mg/mL) 

Solubility 

Assigned 

(mg/mL) 

Very soluble (VS) <1 >1000 1000 

Freely soluble (FS) From 1 to 10 100–1000 100 

Soluble From 10 to 30 33–100 33 

Sparingly soluble 

(SPS) 

From 30 to 100 10–33 10 

Slightly soluble 

(SS) 

From 100 to 1000 1–10 1 

Very slightly 

soluble (VSS) 

From 1000 to 

10,000 

0.1–1 0.1 

Practically 

insoluble (PI) 

>10,000 <0.1 0.01 

 

Polar Solvents 
The solubility of a drug is due in large measure to the polarity of the solvent, that is, to its dipole 
moment. Polar solvents dissolve ionic solutes and other polar substances. Accordingly, water mixes in 
all proportions with alcohol and dissolves sugars and other polyhydroxy compounds. Hildebrand 
showed, however, that a consideration of dipole moments alone is not adequate to explain the solubility 
of polar substances in water. The ability of the solute to form hydrogen bonds is a far more significant 
factor than is the polarity as reflected in a high dipole moment. Water dissolves phenols, alcohols, 
aldehydes, ketones, amines, and other oxygen- and nitrogen-containing compounds that can form 
hydrogen bonds with water: 
P.184 
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A difference in acidic and basic character of the constituents in the Lewis electron donor–acceptor 
sense also contributes to specific interactions in solutions. 
In addition to the factors already enumerated, the solubility of a substance also depends on structural 
features such as the ratio of the polar to the nonpolar groups of the molecule. As the length of a 
nonpolar chain of an aliphatic alcohol increases, the solubility of the compound in water decreases. 
Straight-chain monohydroxy alcohols, aldehydes, ketones, and acids with more than four or five carbons 
cannot enter into the hydrogen-bonded structure of water and hence are only slightly soluble. When 
additional polar groups are present in the molecule, as found in propylene glycol, glycerin, and tartaric 
acid, water solubility increases greatly. Branching of the carbon chain reduces the nonpolar effect and 
leads to increased water solubility. Tertiary butyl alcohol is miscible in all proportions with water, 
whereas n-butyl alcohol dissolves to the extent of about 8 g/100 mL of water at 20°C. 
Nonpolar Solvents 
The solvent action of nonpolar liquids, such as the hydrocarbons, differs from that of polar substances. 
Nonpolar solvents are unable to reduce the attraction between the ions of strong and weak electrolytes 
because of the solvents' low dielectric constants. Nor can the solvents break covalent bonds and ionize 
weak electrolytes, because they belong to the group known as aprotic solvents, and they cannot form 
hydrogen bridges with nonelectrolytes. Hence, ionic and polar solutes are not soluble or are only slightly 
soluble in nonpolar solvents. 
Nonpolar compounds, however, can dissolve nonpolar solutes with similar internal pressures through 
induced dipole interactions. The solute molecules are kept in solution by the weak van der Waals–

London type of forces. Thus, oils and fats dissolve in carbon tetrachloride, benzene, and mineral oil. 
Alkaloidal bases and fatty acids also dissolve in nonpolar solvents. 

Key Concept 

Solubility 

The simple maxim that like dissolves like can be rephrased by stating that the solubility of a 
substance can be predicted only in a qualitative way in most cases and only after 
considerations of polarity, dielectric constant, association, solvation, internal pressures, acid–
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base reactions, and other factors. In short, solubility depends on chemical, electrical, and 
structural effects that lead to mutual interactions between the solute and the solvent. 

Semipolar Solvents 
Semipolar solvents, such as ketones and alcohols, can induce a certain degree of polarity in nonpolar 
solvent molecules, so that, for example, benzene, which is readily polarizable, becomes soluble in 
alcohol. In fact, semipolar compounds can act as intermediate solvents to bring about miscibility of polar 
and nonpolar liquids. Accordingly, acetone increases the solubility of ether in water. Loran and 
Guth5 studied the intermediate solvent action of alcohol on water–castor oil mixtures. Propylene glycol 
has been shown to increase the mutual solubility of water and peppermint oil and of water and benzyl 
benzoate.6 
A number of common solvent types are listed in the order of decreasing ―polarity‖ in Table 9-2, together 
with corresponding solute classes. The term polarity is loosely used here to represent not only the 
dielectric constants of the solvents and solutes but also the other factors enumerated previously. 
Solubility of Liquids in Liquids 
Frequently two or more liquids are mixed together in the preparation of pharmaceutical solutions. For 
example, alcohol is added to water to form hydroalcoholic solutions of various concentrations; volatile 
oils are mixed with water to form dilute solutions known as aromatic waters; volatile oils are added to 
alcohol to yield spirits and elixirs; ether and alcohol are combined in collodions; and various fixed oils 
are blended into lotions, sprays, and medicated oils. Liquid–liquid systems can be divided into two 
categories according to the solubility of the substances in one another: (a) complete miscibility and (b) 
partial miscibility. The term miscibilityrefers to the mutual solubilities of the components in liquid–liquid 
systems. 
Complete Miscibility 
Polar and semipolar solvents, such as water and alcohol, glycerin and alcohol, and alcohol and acetone, 
are said to be 
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completely miscible because they mix in all proportions. Nonpolar solvents such as benzene and carbon 
tetrachloride are also completely miscible. Completely miscible liquid mixtures in general create no 
solubility problems for the pharmacist and need not be considered further. 

Table 9-2 Polarity of some Solvents and the Solutes that Readily Dissolve in each 

Class of Solvent 

  

Dielectric 

Constant of 

Solvent, ε 

(Approximatel

y) Solvent Solute   

Decreasin

g Polarity 

80 Water Inorganic 

salts, 

organic salts 

Decreasin

g Water 

Solubility 

↓ 50 Glycols Sugars, 

tannins 

↓ 
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  30 Methyl and 

ethyl 

alcohols 

Caster oil, 

waxes 

  

  20 Aldehydes, 

ketones, 

and higher 

alcohols, 

ethers, 

esters, and 

oxides 

Resins, 

volatile oils, 

weak 

electrolytes 

including 

barbiturates, 

alkaloids, 

and phenols 

  

  5 Hexane, 

benzene, 

carbon 

tetrachlorid

e, ethyl 

ether, 

petroleum 

ether 

Fixed oils, 

fats, 

petrolatum, 

paraffin, 

other 

hydrocarbo

ns 

  

  0 Mineral oil 

and fixed 

vegetable 

oils 

    

 

Partial Miscibility 
When certain amounts of water and ether or water and phenol are mixed, two liquid layers are formed, 
each containing some of the other liquid in the dissolved state. The phenol–water system has been 
discussed in detail in Chapter 2, and the student at this point should review the section dealing with the 
phase rule. It is sufficient here to reiterate the following points. (a) The mutual solubilities of partially 
miscible liquids are influenced by temperature. In a system such as phenol and water, the mutual 
solubilities of the two conjugate phases increase with temperature until, at the critical solution 
temperature (or upper consolute temperature), the compositions become identical. At this temperature, 
a homogeneous or single-phase system is formed. (b) From a knowledge of the phase diagram, more 
especially the tie lines that cut the binodal curve, it is possible to calculate both the composition of each 
component in the two conjugate phases and the amount of one phase relative to the other. Example 9-
1 gives an illustration of such a calculation. 
Example 9-1 

Component Weights 

A mixture of phenol and water at 20°C has a total composition of 50% phenol. The tie line at 
this temperature cuts the binodal at points equivalent to 8.4% and 72.2% w/w phenol. What is 
the weight of the aqueous layer and of the phenol layer in 500 g of the mixture and how many 
grams of phenol are present in each of the two layers? 
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Let Z be the weight in grams of the aqueous layer. Therefore, 500 - Z is the weight in grams 
of the phenol layer, and the sum of the percentages of phenol in the two layers must equal 
the overall composition of 50%, or 500 × 0.50 = 250 g. Thus, 

 

In the case of some liquid pairs, the solubility can increase as the temperature is lowered, and the 
system will exhibit a lower consolute temperature, below which the two members are soluble in all 
proportions and above which two separate layers form. Another type, involving a few mixtures such as 
nicotine and water, shows both an upper and a lower consolute temperature with an intermediate 
temperature region in which the two liquids are only partially miscible. A final type exhibits no critical 
solution temperature; the pair ethyl ether and water, for example, has neither an upper nor a lower 
consolute temperature and shows partial miscibility over the entire temperature range at which the 
mixture exists. 
Three-Component Systems 
The principles underlying systems that can contain one, two, or three partially miscible pairs have been 
discussed in detail in Chapter 2. Further examples of three-component systems containing one pair of 
partially miscible liquids are water, CCl4, and acetic acid; and water, phenol, and acetone. Loran and 
Guth5 studied the three-component system consisting of water, castor oil, and alcohol and determined 
the proper proportions for use in certain lotions and hair preparations; a triangular diagram is shown in 
their report. A similar titration with water of a mixture containing peppermint oil and polyethylene glycol is 
shown in Figure 9-2.6Ternary diagrams have also found use in cosmetic formulations 
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involving three liquid phases.7 Gorman and Hall8 determined the ternary-phase diagram of the system 
of methyl salicylate, isopropanol, and water (Fig. 9-3). 

 

Fig. 9-2. A triangular diagram showing the solubility of peppermint oil in various 

proportions of water and polyethylene glycol. 

Solubility of Solids in Liquids 
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Systems of solids in liquids include the most frequently encountered and probably the most important 
type of pharmaceutical solutions. Many important drugs belong to the class of weak acids and bases. 
They react with strong acids and bases and, within definite ranges of pH, exist as ions that are ordinarily 
soluble in water. 
Although carboxylic acids containing more than five carbons are relatively insoluble in water, they react 
with dilute sodium hydroxide, carbonates, and bicarbonates to form soluble salts. The fatty acids 
containing more than 10 carbon atoms form soluble soaps with the alkali metals and insoluble soaps 
with other metal ions. They are soluble in solvents having low dielectric constants; for example, oleic 
acid (C17H33COOH) is insoluble in water but is soluble in alcohol and in ether. 

 

Fig. 9-3. Triangular phase diagram for the three-component system methyl salicylate–

isopropanol–water. (From W. G. Gorman and G. D. Hall, J. Pharm. Sci. 53, 1017, 

1964. With permission.) 

Hydroxy acids, such as tartaric and citric acids, are quite soluble in water because they are solvated 
through their hydroxyl groups. The potassium and ammonium bitartrates are not very soluble in water, 
although most alkali metal salts of tartaric acid are soluble. Sodium citrate is used sometimes to dissolve 
water-insoluble acetylsalicylic acid because the soluble acetylsalicylate ion is formed in the reaction. 
The citric acid that is produced is also soluble in water, but the practice of dissolving aspirin by this 
means is questionable because the acetylsalicylate is also hydrolyzed rapidly. 
Aromatic acids react with dilute alkalies to form water-soluble salts, but they can be precipitated as the 
free acids if stronger acidic substances are added to the solution. They can also be precipitated as 
heavy metal salts should heavy metal ions be added to the solution. Benzoic acid is soluble in sodium 
hydroxide solution, alcohol, and fixed oils. Salicylic acid is soluble in alkalies and in alcohol. The OH 
group of salicyclic acid cannot contribute to the solubility because it is involved in an intramolecular 
hydrogen bond. 
Phenol is weakly acidic and only slightly soluble in water but is quite soluble in dilute sodium hydroxide 
solution, 

 
Phenol is a weaker acid than H2CO3 and is thus displaced and precipitated by CO2 from its dilute alkali 
solution. For this reason, carbonates and bicarbonates cannot increase the solubility of phenols in 
water. 
Many organic compounds containing a basic nitrogen atom in the molecule are important in pharmacy. 
These include the alkaloids, sympathomimetic amines, antihistamines, local anesthetics, and others. 
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Most of these weak electrolytes are not very soluble in water but are soluble in dilute solutions of acids; 
such compounds as atropine sulfate and tetracaine hydrochloride are formed by reacting the basic 
compounds with acids. Addition of an alkali to a solution of the salt of these compounds precipitates the 
free base from solution if the solubility of the base in water is low. 
The aliphatic nitrogen of the sulfonamides is sufficiently negative so that these drugs act as slightly 
soluble weak acids rather than as bases. They form water-soluble salts in alkaline solution by the 
following mechanism. The oxygens of the sulfonyl (—SO2—) group withdraw electrons, and the resulting 
electron deficiency of the sulfur atom results in the electrons of the N:H bond being held more closely to 
the nitrogen atom. The hydrogen therefore is bound less firmly, and, in alkaline solution, the soluble 
sulfonamide anion is readily formed. 
The sodium salts of the sulfonamides are precipitated from solution by the addition of a strong acid or by 
a salt of a strong acid and a weak base such as ephedrine hydrochloride. 
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The barbiturates, like the sulfonamides, are weak acids because the electronegative oxygen of each 
acidic carbonyl group tends to withdraw electrons and to create a positive carbon atom. The carbon in 
turn attracts electrons from the nitrogen group and causes the hydrogen to be held less firmly. Thus, in 
sodium hydroxide solution, the hydrogen is readily lost, and the molecule exists as a soluble anion of the 
weak acid. Butler et al.9 demonstrated that, in highly alkaline solutions, the second hydrogen ionizes. 
The pK1 for phenobarbital is 7.41 and the pK2 is 11.77. Although the barbiturates are soluble in alkalies, 
they are precipitated as the free acids when a stronger acid is added and the pH of the solution is 
lowered. 
Calculating the Solubility of Weak Electrolytes as Influenced by 
pH 
From what has been said about the effects of acids and bases on solutions of weak electrolytes, it 
becomes evident that the solubility of weak electrolytes is strongly influenced by the pH of the solution. 
For example, a 1% solution of phenobarbital sodium is soluble at pH values high in the alkaline range. 
The soluble ionic form is converted into molecular phenobarbital as the pH is lowered, and below 9.3, 
the drug begins to precipitate from solution at room temperature. On the other hand, alkaloidal salts 
such as atropine sulfate begin to precipitate as the pH is elevated. 
To ensure a clear homogeneous solution and maximum therapeutic effectiveness, the preparations 
should be adjusted to an optimum pH. The pH below which the salt of a weak acid, sodium 
phenobarbital, for example, begins to precipitate from aqueous solution is readily calculated in the 
following manner. 
Representing the free acid form of phenobarbital as HP and the soluble ionized form as P-, we write the 
equilibria in a saturated solution of this slightly soluble weak electrolyte as 

 
 

Because the concentration of the un-ionized form in solution, HPsol, is essentially constant, the 
equilibrium constant for the solution equilibrium, equation (9-1), is 

 
where So is molar or intrinsic solubility. The constant for the acid–base equilibrium, equation (9-2), is 

 
or 

 
where the subscript ―sol‖ has been deleted from [HP]sol because no confusion should result from this 
omission. 
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The total solubility, S, of phenobarbital consists of the concentration of the undissociated acid, [HP], and 
that of the conjugate base or ionized form, [P-]: 

 
Substituting So for [HP] from equation (9-3) and the expression from equation (9-5) for [P-] yields 

 

 
When the electrolyte is weak and does not dissociate appreciably, the solubility of the acid in water or 
acidic solutions is So = [HP], which, for phenobarbital is approximately 0.005 mole/liter, in other words, 
0.12%. 
The solubility equation can be written in logarithmic form, beginning with equation (9-7). By 
rearrangement, we obtain 

 
 

and finally 

 
where pHp is the pH below which the drug separates from solution as the undissociated acid. 
In pharmaceutical practice, a drug such as phenobarbital is usually added to an aqueous solution in the 
soluble salt form. Of the initial quantity of salt, sodium phenobarbital, that can be added to a solution of a 
certain pH, some of it is converted into the free acid, HP, and some remains in the ionized form, P-

 [equation (9-6)]. The amount of salt that can be added initially before the solubility [HP] is exceeded is 
therefore equal to S. As seen from equation (9-9), pHp depends on the initial molar concentration, S, of 
salt added, the molar solubility of the undissociated acid, So, also known as the intrinsic solubility, and 
the pKa. Equation (9-9) has been used to determine the pKa of sulfonamides and other 
drugs.10,11 Solubility and pH data can also be used to obtain the pK1 and pK2 values of dibasic acids as 
suggested by Zimmerman12 and Blanchard et al.13 
Example 9-2 

Phenobarbital 

Below what pH will free phenobarbital begin to separate from a solution having an initial 
concentration of 1 g of sodium phenobarbital per 100 mL at 25°C? The molar solubility, So, of 
phenobarbital is 0.0050 and the pKa is 7.41 at 25°C. The secondary dissociation of 
phenobarbital, referred to previously, can ordinarily be disregarded. The molecular weight of 
sodium phenobarbital is 254. 
The molar concentration of salt initially added is 
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An analogous derivation can be carried out to obtain the equation for the solubility of a weak base as a 
function of the pH of a solution. The expression is 

 
where S is the concentration of the drug initially added as the salt and So is the molar solubility of the 
free base in water. Here pHp is the pH above which the drug begins to precipitate from solution as the 
free base. 
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The Influence of Solvents on the Solubility of Drugs 
Weak electrolytes can behave like strong electrolytes or like nonelectrolytes in solution. When the 
solution is of such a pH that the drug is entirely in the ionic form, it behaves as a solution of a strong 
electrolyte, and solubility does not constitute a serious problem. However, when the pH is adjusted to a 
value at which un-ionized molecules are produced in sufficient concentration to exceed the solubility of 
this form, precipitation occurs. In this discussion, we are now interested in the solubility of 
nonelectrolytes and the undissociated molecules of weak electrolytes. The solubility of undissociated 
phenobarbital in various solvents is discussed here because it has been studied to some extent by 
pharmaceutical investigators. 
Frequently, a solute is more soluble in a mixture of solvents than in one solvent alone. This 
phenomenon is known as cosolvency, and the solvents that, in combination, increase the solubility of 
the solute are called cosolvents. Approximately 1 g of phenobarbital is soluble in 1000 mL of water, in 
10 mL of alcohol, in 40 mL of chloroform, and in 15 mL of ether at 25°C. The solubility of phenobarbital 
in water–alcohol–glycerin mixtures is plotted on a semilogarithm grid in Figure 9-4from the data of 
Krause and Cross.14 
By drawing lines parallel to the abscissa in Figure 9-4 at a height equivalent to the required 
phenobarbital concentration, it is a simple matter to obtain the relative amounts of the various 
combinations of alcohol, glycerin, and water needed to achieve solution. For example, at 22% alcohol, 
40% glycerin, and the remainder water (38%), 1.5% w/v of phenobarbital is dissolved, as seen by 
following the vertical and horizontal lines drawn on Figure 9-4. 

Key Concept 

Solvents and Weak Electrolytes 

The solvent affects the solubility of a weak electrolyte in a buffered solution in two ways: (a) 
The addition of alcohol to a buffered aqueous solution of a weak electrolyte increases the 
solubility of the un-ionized species by adjusting the polarity of the solvent to a more favorable 
value. (b) Because it is less polar than water, alcohol decreases the dissociation of a weak 
electrolyte, and the solubility of the drug goes down as the dissociation constant is decreased 
(pKa is increased). 
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Fig. 9-4. The solubility of phenobarbital in a mixture of water, alcohol, and glycerin 

at 25°C. The vertical axis is a logarithmic scale representing the solubility of 

phenobarbital in g/100 mL. (From G. M. Krause and J. M. Cross, J. Am. Pharm. 

Assoc. Sci. Ed. 40, 137, 1951. With permission.) 

Combined Effect of pH and Solvents 
Stockton and Johnson15 and Higuchi et al.16 studied the effect of an increase of alcohol concentration 
on the dissociation constant of sulfathiazole, and Edmonson and Goyan17 investigated the effect of 
alcohol on the solubility of phenobarbital. 
Schwartz et al.10 determined the solubility of phenytoin as a function of pH and alcohol concentration in 
various buffer systems and calculated the apparent dissociation constant. Kramer and 
Flynn18 examined the solubility of hydrochloride salts of organic bases as a function of pH, temperature, 
and solvent composition. They described the determination of the pKa of the salt from the solubility 
profile at various temperatures and in several solvent systems. Chowhan11measured and calculated the 
solubility of the organic carboxylic acid naproxen and its sodium, potassium, calcium, and magnesium 
salts. The observed solubilities were in excellent agreement with the pH–solubility profiles based on 
equation (9-9). 
The results of Edmonson and Goyan17 are shown in Figure 9-5, where one observes that the pKa of 
phenobarbital, 7.41, is raised to 7.92 in a hydroalcoholic solution containing 
P.189 
 
30% by volume of alcohol. Furthermore, as can be seen in Figure 9-4, the solubility, So, of un-ionized 
phenobarbital is increased from 0.12 g/100 mL or 0.005 M in water to 0.64% or 0.0276 M in a 30% 
alcoholic solution. The calculation of solubility as a function of pH involving these results is illustrated in 
the following example. 

 

Fig. 9-5. The influence of alcohol concentration on the dissociation constant of 

phenobarbital. (From T. D. Edmonson and J. E. Goyan, J. Am. Pharm. Assoc. Sci. 

Ed. 47, 810, 1958. With permission.) 

Example 9-3 

Minimum pH for Complete Solubility 
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What is the minimum pH required for the complete solubility of the drug in a stock solution 
containing 6 g of phenobarbital sodium in 100 mL of a 30% by volume alcoholic solution? 
From equation (9-9), 

 
For comparison, the minimum pH for complete solubility of phenobarbital in an aqueous 
solution containing no alcohol is computed using equation (9-9): 

 

From the calculations of Example 9-3, it is seen that although the addition of alcohol increases the pKa, 
it also increases the solubility of the un-ionized form of the drug over that found in water sufficiently so 
that the pH can be reduced somewhat before precipitation occurs. 
Equations (9-9) and (9-10) can be made more exact if activities are used instead of concentrations to 
account for interionic attraction effects. This refinement, however, is seldom required for practical work, 
where the values calculated from the approximate equations just given serve as satisfactory estimates. 
Influence of Complexation in Multicomponent Systems 
Many liquid pharmaceutical preparations consist of more than a single drug in solution. Fritz et 
al.19 showed that when several drugs together with pharmaceutical adjuncts interact in solution to form 
insoluble complexes, simple solubility profiles of individual drugs cannot be used to predict solubilities in 
mixtures of ingredients. Instead, the specific multicomponent systems must be studied to estimate the 
complicating effects of species interactions. 
Influence of Other Factors on the Solubility of Solids 
The size and shape of small particles (those in the micrometer range) also affect solubility. Solubility 
increases with decreasing particle size according to the approximate equation 

 
where s is the solubility of the fine particles; so is the solubility of the solid consisting of relatively large 
particles; γ is the surface tension of the particles, which, for solids, unfortunately, is extremely difficult to 
obtain; V is the molar volume (volume in cm3 per mole of particles); r is the final radius of the particles in 
cm; R is the gas constant (8.314 × 107 ergs/deg mole); and T is the absolute temperature. The equation 
can be used for solid or liquid particles such as those in suspensions or emulsions. The following 
example is taken from the book by Hildebrand and Scott.20 
Example 9-4 

Particle Size and Solubility 

A solid is to be comminuted so as to increase its solubility by 10%, that is, s/so is to become 
1.10. What must be the final particle size, assuming that the surface tension of the solid is 
100 dynes/cm and the volume per mole is 50 cm3? The temperature is 27°C. 

 

The configuration of a molecule and the type of arrangement in the crystal also has some influence on 
solubility, and a symmetric particle can be less soluble than an unsymmetric one. This is because 
solubility depends in part on the work required to separate the particles of the crystalline solute. The 
molecules of the amino acid α-alanine form a compact crystal with high lattice energy and consequently 
low solubility. The molecules of α-amino-n-butyric acid pack less efficiently in the crystal, partly because 
of the projecting side chains, and the crystal energy is reduced. Consequently, α-amino-n-butyric acid 
has a solubility of 1.80 moles/liter and α-alanine has a solubility of only 1.66 moles/liter in water at 25°C, 
although the hydrocarbon chain is longer in α-amino-n-butyric acid than in the other compound. 
P.190 
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Key Concept 

Poor Aqueous Solubility 

―Poor aqueous solubility is caused by two main factors: high lipophilicity and strong 

intermolecular interactions, which make the solubilization of the solid energetically costly. 
What is meant by good and poorly soluble depends partly on the expected therapeutic dose 
and potency of the drug. As a rule of thumb from the delivery perspective, a drug with an 
average potency of 1 mg/kg should have a solubility of at least 0.1 g/L to be adequately 
soluble. If a drug with the same potency has a solubility of less than 0.01 g/L it can be 
considered poorly soluble.‖3 

Determining Thermodynamic and “Kinetic” Solubility 
The Phase Rule and Solubility 
Solubility can be described in a concise manner by the use of the Gibbs phase rule, which is described 
using 

 
where F is the number of degrees of freedom, that is, the number of independent variables (usually 
temperature, pressure, and concentration) that must be fixed to completely determine the system, C is 
the smallest number of components that are adequate to describe the chemical composition of each 
phase, and P is the number of phases. 
The Phase Rule can be used to determine the thermodynamic solubility of a drug substance. This 
method is based on the thermodynamic principles of heterogeneous equilibria that are among the 
soundest theoretical concepts in chemistry. It does not depend on any assumptions regarding kinetics or 
the structure of matter but is applicable to all drugs. The requirements for an analysis are simple, as the 
equipment needed is basic to most laboratories and the quantities of substances are small. Basically, 
drug is added in a specific amount of solvent. After equilibrium is achieved, excess drug is removed 
(usually by filtering) and then the concentration of the dissolved drug is measured using standard 
analysis techniques such as high-performance liquid chromatography. 
A phase-solubility diagram for a pure drug substance is shown in Figure 9-6.21 At concentrations below 
the saturation concentration there is only one degree of freedom since the studies are performed at 
constant temperature and pressure. In other words, only the concentration changes. This is represented 
in Figure 9-6 by the segment A–B of the line. Once the saturation concentration is reached, the addition 
of more drug to the ―system‖ does not result in higher solution concentrations (segment B–C). Rather, 
the drug remains in the solid state and the system becomes a two-phase system. Since the 
temperature, pressure, and solution concentration are constant at drug concentrations above the 
saturation concentration, the system has zero degree of freedom. 
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Fig. 9-6. Phase-solubility diagram for a pure drug substance. The line segment A–B 

represents one phase since the concentration of drug substance is below the saturation 

concentration. Line segment B–C represents a pure solid in a saturated solution at 

equilibrium. (From Remington, The Science and Practice of Pharmacy, 21st Ed., 

Lippincott Williams & Wilkins, 2006, p. 216. With permission.) 

The situation in Figure 9-6 is valid only for pure drug substances. What if the drug substance is not 
pure? This situation is described in Figure 9-7.22 If the system has one impurity, the solution becomes 
saturated with the first component at point B. The situation becomes interesting at this point. In segment 
B–C of the line, the solution is saturated with component 1 (which is usually the major component such 
as the drug), so the drug would precipitate out of solution at concentrations greater than this. However, 
the impurity (the minor component or component 2) does not reach saturation 
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until it reaches point C on the line. The concentrations of the two components are saturated beyond 
point C (segment C–D) of the line. Once true equilibrium is achieved, one can extrapolate back to 
the Y axis (solution concentration) to determine the solubility of the two components. Therefore, the 
thermodynamic solubility of the drug would be equal to the distance A–E and the solubility of the 
impurity would be equal to the distance represented by E–F. As one can see, this procedure can be 
used to measure the exact solubility of the pure drug without having a pure form of the drug to start with. 
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Fig. 9-7. Phase-solubility curve when the drug substance contains one impurity. At 

point B, the solution becomes saturated with component 1 (the drug). The segment B–

C represents two phases—a solution phase saturated with the drug and some of the 

impurity and a solid phase of the drug. Segment C–D represents two phases—a liquid 

phase saturated with the drug and impurity and a solid phase containing the drug and 

the impurity. (From Remington, The Science and Practice of Pharmacy, 21st Ed., 

Lippincott Williams & Wilkins, 2006, p. 217. With permission.) 

The practical aspect of measuring thermodynamic solubility is, on the surface, relatively simple but it can 
be quite time-consuming.4 Some methods have been developed in attempt to reduce the time that it 
takes to get a result. Starting the experiment with a high purity crystalline form of the substance will give 
the best chance that the solubility measured after a reasonable incubation period will represent the true 
equilibrium solubility. However, this may still take several hours to several days. Also, there is still a risk 
that the incubation period will not be sufficient for metastable crystal forms to convert to the most stable 
form. This means that the measured concentration may represent the apparent solubility of a different 
crystal form. This risk must be taken into consideration when running a solubility experiment with 
material that is not known to be the most stable crystalline form.4 
Bhattachar and colleagues4 recently reviewed various aspects of solubility and they are summarized 
here. In practice, the stable crystalline form of the compound is not available in sufficient purity during 
early discovery and so the labor-intensive measurement of thermodynamic solubility is not commonly 
made. The amount of compound required to measure a thermodynamic solubility measurement 
depends on the volume of solvent used to make the saturated solution and the solubility of the 
compound in that solvent. Recent reports for miniaturized systems list compound requirements ranging 
from ~100 mg per measurement for poorly soluble compounds23 to 3 to 10 mg for pharmaceutically 
relevant compounds.24 Although early-stage solubility information is crucial to drug discovery teams, 
the number of compounds being assessed, the scarcity of compound, and questionable purity and 
crystallinity make it nearly impossible to assess thermodynamic solubility. 
These challenges have been partially met using a high-throughput kinetic measurement of antisolvent 
precipitation commonly referred to ―kinetic solubility.‖25,26,27,28 ―Kinetic solubility is a misnomer, not 

because it is not kinetic, but because it measures a precipitation rate rather than solubility. Kinetic 
solubility methods are designed to facilitate high throughput measurements, using submilligram 
quantities of compound, in a manner that closely mimics the actual solubilization process used in 
biological laboratories. Typically, the compound is dissolved in dimethyl sulfoxide (because it is a strong 
organic solvent) to make a stock solution of known concentration. This stock is added gradually to the 
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aqueous solvent of interest until the anti-solvent properties of the water drive the compound out of 
solution. The resulting precipitation is detected optically, and the kinetic solubility is defined as the point 
at which the aqueous component can no longer solvate the drug. Solubility results obtained from kinetic 
measurements might not match the thermodynamic solubility results perfectly; therefore, caution must 
be exercised such that the data from the kinetic solubility measurements are used only for their intended 
application. Since kinetic solubility is determined for compounds that have not been purified to a high 
degree or crystallized, the impurities and amorphous content in the material lead to a higher solubility 
than the thermodynamic solubility. Because kinetic solubility experiments begin with the drug in solution, 
there is a significant risk of achieving supersaturation of the aqueous solvent through precipitation of an 
amorphous or metastable crystalline form. This supersaturation can lead to a measured value that is 
significantly higher than the thermodynamic solubility, masking a solubility problem that will become 
apparent as soon as the compound is crystallized. Owing to the nature of kinetic solubility 
measurements, there is no time for equilibration of the compound in the aqueous solvent of 
measurement. Because the compounds tested are in dimethyl sulfoxide solutions, the energy required 
to break the crystal lattice is not factored into the solubility measurements.‖4 

Key Concept 

Effect of pH on Solubility 

Solubility must always be considered in the context of pH and pKa. The relationship between 
pH and solubility is shown in Figure 9-8. If the measured solubility falls on the steep portion of 
the pH–solubility profile, small changes to the pH can have a marked effect on the solubility.4 

 

Fig. 9-8. pH–solubility profile for a compound with a single, basic pKa value of 5. 

The four regions of pH-dependent solubility are the salt plateau, pHmax, ionized 

compound, and un-ionized compound. (Adapted from Bhattachar et al. 2006,4 with 

permission.) 
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Some Limitations of Thermodynamic Solubility3 
In a recent review, Faller and Ertl3 have discussed some of the limitations of traditional methods for 
determining solubility. For example, if the traditional shake-flask method is used, adsorption to the vial or 
to the filter, incomplete phase separation, compound instability, and slow dissolution can affect the 
result. When the potentiometric method is used, inaccurate pKa determination, compound degradation 
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during the titration, slow dissolution, or incorrect data analysis can affect the data quality. It is very 
important to define the experimental conditions well. The intrinsic solubility, So, needs to be 
distinguished from the solubility measured at a given pH value in a defined medium. Intrinsic solubility 
refers to the solubility of the unionized species. Artursson et al.29 has shown that this parameter is 
relatively independent of the nature of the medium used. In contrast, solubility measured at a fixed pH 
value may be highly dependent on the nature and concentration of the counter ions present in the 
medium.30 This is especially critical for poorly soluble compounds that are strongly ionized at the pH of 
the measurement. Finally, it is important to note that single pH measurements cannot distinguish 
between soluble monomers and soluble aggregates of drug molecules, which may range from dimers to 
micelles unless more sophisticated experiments are performed.30 
Computational Approaches 
In addition to measuring solubility, computational approaches are widely used and were reviewed 
recently by Faller and Ertl.3 Briefly, fragment-based models attempt to predict solubility as a sum of 
substructure contributions—such as contributions of atoms, bonds, or larger substructures. This 
approach is based on a general assumption that molecule properties are determined completely by 
molecular structure and may be approximated by the contributions of fragments in the molecule. The 
inverse relation between solubility and lipophilicity has also been recognized for a long time and 
empirical relationships between log So and log Phave been reported. Finally, numerous other 
approaches for predicting water solubility have been reported. The array of possible molecular 
descriptors that can be used is nearly unlimited. The polar surface area, which characterizes molecule 
polarity and hydrogen bonding features, is one of the most useful descriptors. Polar surface area, 
defined as a sum of surfaces of polar atoms, is conceptually easy to understand and seems to encode 
in an optimal way a combination of hydrogen-bonding features and molecular polarity. 
Distribution of Solutes between Immiscible Solvents 
If an excess of liquid or solid is added to a mixture of two immiscible liquids, it will distribute itself 
between the two phases so that each becomes saturated. If the substance is added to the immiscible 
solvents in an amount insufficient to saturate the solutions, it will still become distributed between the 
two layers in a definite concentration ratio. 

Key Concept 

Hydrophobic Parameters 

Meyer in 189931 and Overton in 190132 showed that the pharmacologic effect of simple 
organic compounds was related to their oil/water partition coefficient, P. It later became clear 
that the partition coefficient was of little value for rationalizing specific drug activity (i.e., 
binding to a receptor) because specificity also relates to steric and electronic effects. 
However, in the early 1950s, Collander33 showed that the rate of penetration of plant cell 
membranes by organic compounds was related to P. The partition coefficient, P, is a 
commonly used way of defining relative hydrophobicity (also known as lipophilicity) of 
compounds. For more about partition coefficients, see the text by Hansch and Leo.34 

If C1 and C2 are the equilibrium concentrations of the substance in Solvent1 and Solvent2, respectively, 
the equilibrium expression becomes 

 
The equilibrium constant, K, is known as the distribution ratio, distribution coefficient, or partition 

coefficient. Equation (9-13), which is known as the distribution law, is strictly applicable only in dilute 
solutions where activity coefficients can be neglected. 
Example 9-5 

Distribution Coefficient 

When boric acid is distributed between water and amyl alcohol at 25°C, the concentration in 
water is found to be 0.0510 mole/liter and in amyl alcohol it is found to be 0.0155 mole/liter. 
What is the distribution coefficient? We have 

Dr. Murtadha Alshareifi e-Library

350



 
No convention has been established with regard to whether the concentration in the water 
phase or that in the organic phase should be placed in the numerator. Therefore, the result 
can also be expressed as 

 
One should always specify, which of these two ways the distribution constant is being 
expressed. 

Knowledge of partition is important to the pharmacist because the principle is involved in several areas 
of current pharmaceutical interest. These include preservation of oil–water systems, drug action at 
nonspecific sites, and the absorption and distribution of drugs throughout the body. Certain aspects of 
these topics are discussed in the following sections. 
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Fig. 9-9. Schematic representation of the distribution of benzoic acid between water 

and an oil phase. The oil phase is depicted as a magnified oil droplet in an oil-in-water 

emulsion. 

Effect of Ionic Dissociation and Molecular Association on 
Partition 
The solute can exist partly or wholly as associated molecules in one of the phases or it may dissociate 
into ions in either of the liquid phases. The distribution law applies only to the concentration of the 
species common to both phases, namely, the monomer or simple molecules of the solute. 
Consider the distribution of benzoic acid between an oil phase and a water phase. When it is neither 
associated in the oil nor dissociated into ions in the water, equation (9-13) can be used to compute the 
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distribution constant. When association and dissociation occur, however, the situation becomes more 
complicated. The general case where benzoic acid associates in the oil phase and dissociates in the 
aqueous phase is shown schematically in Figure 9-9. 
Two cases will be treated. First, according to Garrett and Woods,35 benzoic acid is considered to be 
distributed between the two phases, peanut oil and water. Although benzoic acid undergoes 
dimerization (association to form two molecules) in many nonpolar solvents, it does not associate in 
peanut oil. It ionizes in water to a degree, however, depending on the pH of the solution. Therefore, 
in Figure 9-9 for the case under consideration, Co, the total concentration of benzoic acid in the oil 
phase, is equal to [HA]o, the monomer concentration in the oil phase, because association does not 
occur in peanut oil. 
The species common to both the oil and water phases are the unassociated and undissociated benzoic 
acid molecules. The distribution is expressed as 

 
where K is the true distribution coefficient, [HA]o = Co is the molar concentration of the simple benzoic 
acid molecules in the oil phase, and [HA]w is the molar concentration of the undissociated acid in the 
water phase. 
The total acid concentration obtained by analysis of the aqueous phase is 

 
and the experimentally observed or apparent distribution coefficient is 

 
As seen in Figure 9-9, the observed distribution coefficient depends on two equilibria: the distribution of 
the undissociated acid between the immiscible phases as expressed in equation (9-14) and the species 
distribution of the acid in the aqueous phase, which depends on the hydrogen ion concentration [H3O+] 
and the dissociation constant Ka of the acid, where 

 
Association of benzoic acid in peanut oil does not occur, and Kd (the equilibrium constant for 
dissociation of associated benzoic acid into monomer in the oil phase) can be neglected in this case. 
Given these equations and the fact that the concentration, C, of the acid in the aqueous phase before 
distribution, assuming equal volumes of the two phases, is* 

 
one arrives at the combined result:† 

 
Expression (9-19) is a linear equation of the form y = a + bx, and therefore a plot of (Ka + 
[H3O+])/Cw against [H3O+] 
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yields a straight line with a slope b = (K + 1)/C and an intercept a = Ka/C. The true distribution 
coefficient, K, can thus be obtained over the range of hydrogen ion concentration considered. 
Alternatively, the true distribution constant could be obtained according to equation (9-14) by analysis of 
the oil phase and of the water phase at a sufficiently low pH (2.0) at which the acid would exist 
completely in the un-ionized form. One of the advantages of equation (9-19), however, is that the oil 
phase need not be analyzed; only the hydrogen ion concentration and Cw, the total concentration 
remaining in the aqueous phase at equilibrium, need be determined. 
Example 9-6 

According to Garrett and Woods,35 the plot of (Ka + [H3O+])/Cw against [H3O+] for benzoic 
acid distributed between equal volumes of peanut oil and a buffered aqueous solution yields a 
slope b = 4.16 and an intercept a = 4.22 × 10-5. The Ka of benzoic acid is 6.4 × 10-5. Compute 
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the true partition coefficient, K, and compare it with the value K = 5.33 obtained by the 
authors. We have 

 
or 

 
Because 

 
the expression becomes 

 
and 

 

Second, let us now consider the case in which the solute is associated in the organic phase and exists 
as simple molecules in the aqueous phase. If benzoic acid is distributed between benzene and acidified 
water, it exists mainly as associated molecules in the benzene layer and as undissociated molecules in 
the aqueous layer. 
The equilibrium between simple molecules HA and associated molecules (HA)n in 

 
and the equilibrium constant expressing the dissociation of associated molecules into simple molecules 
in this solvent is 

 
or 

 
Because benzoic acid exists predominantly in the form of double molecules in benzene, Co can replace 
[(HA)2], where Co is the total molar concentration of the solute in the organic layer. Then equation (9-
21) can be written approximately as 

 
In conformity with the distribution law as given in equation (9-14), the true distribution coefficient is 
always expressed in terms of simple species common to both phases, that is, in terms of [HA]w and 
[HA]o. In the benzene–water system, [HA]o is given by equation (9-22), and the modified distribution 
constant becomes 

 
The results for the distribution of benzoic acid between benzene and water, as given by 
Glasstone,36 are given in Table 9-3. 
Extraction 
To determine the efficiency with which one solvent can extract a compound from a second solvent—an 
operation commonly employed in analytic chemistry and in organic chemistry—we follow 
Glasstone.37 Suppose that w grams of a solute is extracted repeatedly from V1 mL of one solvent with 
successive portions of V2 mL of a second solvent, which is immiscible with the first. Let w1 be the weight 
of the solute remaining in the original solvent after extracting with the first portion of the other solvent. 
Then, the concentration 
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of solute remaining in the first solvent is (w1/V1) g/mL and the concentration of the solute in the 
extracting solvent is (w - w1)/V2 g/mL. The distribution coefficient is thus 

Table 9-3 Distribution of Benzoic Acid between Benzene and Acidified Water at 
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6°C*,† 

[HA]w Co K″ - √Co/HAw 

0.00329 0.0156 38.0 

0.00579 0.0495 38.2 

0.00749 0.0835 38.6 

0.0114 0.195 38.8 

*The concentrations are expressed in mole/liter. 

†
From S. Glasstone, Textbook of Physical Chemistry, Van Nostrand, New 

York, 1946, p. 738. 

 

 
or 

 
The process can be repeated, and after n extractions,37 

 
By use of this equation, it can be shown that most efficient extraction results when n is large and V2 is 
small, in other words, when a large number of extractions are carried out with small portions of 
extracting liquid. The development just described assumes complete immiscibility of the two liquids. 
When ether is used to extract organic compounds from water, this is not true; however, the equations 
provide approximate values that are satisfactory for practical purposes. The presence of other solutes, 
such as salts, can also affect the results by complexing with the solute or by salting out one of the 
phases. 
Example 9-7 

Distribution Coefficient 

The distribution coefficient for iodine between water and carbon tetrachloride at 25°C 
is K=CH2O/CCCl4 = 0.012. How many grams of iodine are extracted from a solution in water 
containing 0.1 g in 50 mL by one extraction with 10 mL of CCl4? How many grams are 
extracted by two 5-mL portions of CCl4? We have 

 
Thus, 0.0011 g of iodine remains in the water phase, and the two portions of CCl4 have 
extracted 0.0989 g. 
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Solubility and Partition Coefficients 
Hansch et al.38 observed a relationship between aqueous solubilities of nonelectrolytes and partitioning. 
Yalkowsky and Valvani39 obtained an equation for determining the aqueous solubility of liquid or 
crystalline organic compounds: 

 
where S is aqueous solubility in moles/liter, K is the octanol–water partition coefficient, ΔSf is the molar 
entropy of fusion, and mp is the melting point of a solid compound on the centigrade scale. For a liquid 
compound, mp is assigned a value of 25 so that the second right-hand term of equation (9-27) becomes 
zero. 
The entropy of fusion and the partition coefficient can be estimated from the chemical structure of the 
compound. For rigid molecules, ΔSf = 13.5 entropy units (eu). For molecules with n greater than five 
nonhydrogen atoms in a flexible chain, 

 
Leo et al.38 provided partition coefficients for a large number of compounds. When experimental values 
are not available, group contribution methods38,40 are available for estimating partition coefficients. 
Example 9-8 

Molar Aqueous Solubility 

Estimate the molar aqueous solubility of heptyl p-aminobenzoate, mp 75°C, at 25°C: 
It is first necessary to calculate ΔSf and log K. 
There are nine nonhydrogens in the flexible chain (C, O, and the seven carbons of CH3). 
Using equation (9-28), we obtain 

 
For the partition coefficient, Leo et al.38 give for log K of benzoic acid a value of 1.87, the 
contribution of NH2 is -1.16, and that of CH2 is 0.50, or 7 × 0.50 = 3.50 for the seven carbon 
atoms of CH3 in the chain: 

 
We substitute these values into equation (9-27) to obtain 

 

The oil–water partition coefficient is an indication of the lipophilic or hydrophobic character of a drug 
molecule. Passage of drugs through lipid membranes and interaction with macromolecules at receptor 
sites sometimes correlate well with the octanol–water partition coefficient of the drug. In the last few 
sections, the student has been introduced to the distribution of drug molecules between immiscible 
solvents together with some important applications of partitioning; a number of useful references are 
available for further study on the subject.41,42,43,44 Three excellent books45,46,47 on solubility in the 
pharmaceutical sciences will be of interest to the serious student of the subject. 
Chapter Summary 

The concept of solubility was presented in this chapter. As described, solubility is defined in 
quantitative terms as the concentration of solute in a saturated solution at a certain 
temperature, and in a qualitative way, it can be defined as the spontaneous interaction of two 
or more substances to form a 
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homogeneous molecular dispersion. Solubility is an intrinsic material property that can be 
altered only by chemical modification of the molecule. Solubilization was not covered in this 
chapter. In order to determine the true solubility of a compound, one must measure the 
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thermodynamic solubility. However, given the constraints that were discussed an alternate 
method, kinetic solubility determination, was presented that offers a more practical alternative 
given the realities of the situation. Distribution phenomena were also discussed in some 
detail. The distribution behavior of drug molecules is important to many pharmaceutical 
processes including physicochemical (e.g., when formulating drug substances) and biological 
(e.g., absorption across a biological membrane) processes. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 

References 
1. S. Stegemann, F. Leveiller, D. Franchi, H. de Jong, and H. Linden, Eur. J. Pharm. Sci. 31, 249, 2007. 
2. J. Bauer, S. Spanton, R. Henry, J. Quick, W. Dziki, and W. Porter, J. Morris, Pharm. Res. 18, 859, 
2001. 
3. B. Faller and P. Ertl, Adv. Drug Deliv. Rev. 59, 535, 2007. 
4. S. N. Bhattachar, L. A. Deschenes, and J. A. Wesley, Drug Discov. Today 11, 1012, 2006. 
5. M. R. Loran and E. P. Guth, J. Am. Pharm. Assoc. Sci. Ed. 40, 465, 1951. 
6. W. J. O'Malley, L. Pennati, and A. Martin, J. Am. Pharm. Assoc. Sci. Ed. 47, 334, 1958. 
7. R. J. James and R. L. Goldemberg, J. Soc. Cosm. Chem. 11, 461, 1960. 
8. W. G. Gorman and G. D. Hall, J. Pharm. Sci. 53, 1017, 1964. 
9. T. C. Butler, J. M. Ruth, and G. F. Tucker, J. Am. Chem. Soc. 77, 1486, 1955. 
10. P. A. Schwartz, C. T. Rhodes, and J. W. Cooper, Jr., J. Pharm. Sci. 66, 994, 1977. 
11. Z. T. Chowhan, J. Pharm. Sci. 67, 1257, 1978. 
12. I. Zimmerman, Int. J. Pharm. 31, 69, 1986. 
13. J. Blanchard, J. O. Boyle, and S. Van Wagenen, J. Pharm. Sci. 77, 548, 1988. 
14. G. M. Krause and J. M. Cross, J. Am. Pharm. Assoc. Sci. Ed. 40, 137, 1951. 
15. J. R. Stockton and C. R. Johnson, J. Am. Chem. Soc. 33, 383, 1944. 
16. T. Higuchi, M. Gupta, and L. W. Busse, J. Am. Pharm. Assoc. Sci. Ed. 42, 157, 1953. 
17. T. D. Edmonson and J. E. Goyan, J. Am. Pharm. Assoc. Sci. Ed. 47, 810, 1958. 
18. S. F. Kramer and G. L. Flynn, J. Pharm. Sci. 61, 1896, 1972. 
19. B. Fritz, J. L. Lack, and L. D. Bighley, J. Pharm. Sci. 60, 1617, 1971. 
20. J. H. Hildebrand and R. L. Scott, Solubility of Nonelectrolytes, Dover, New York, 1964, p. 417. 
21. Remington, The Science and Practice of Pharmacy, 21st Ed., Lippincott Williams & Wilkins, 
Baltimore, MD, 2006, p. 216. 
22. Remington, The Science and Practice of Pharmacy, 21st Ed., Lippincott Williams & Wilkins, 
Baltimore, MD, 2006, p. 217. 
23. A. Glomme, J. März, and J. B. Dressman, J. Pharm. Sci. 94, 1, 2005. 
24. S. N. Bhattachar, J. A. Wesley, and C. Seadeek, J. Pharm. Biomed. Anal. 41, 152, 2006. 
25. A. Avdeef, Absorption and Drug Development Solubility, Permeability and Charge State, John Wiley 
& Sons, Hoboken, NJ, 2003. 
26. K. A. Dehring, J. Pharm. Biomed. Anal. 36, 447, 2004. 
27. T. M. Chen, H. Shen, and C. Zhu, Comb. Chem. High Throughput Screen, 5, 575, 2002. 
28. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, Adv. Drug Del. Rev. 46, 3, 2001. 
29. C. A. S. Bergstrom, K. Luthman, and P. Artursson, Eur. J. Pharm. Sci. 22, 387, 2004. 
30. A. Avdeef, D. Voloboy, and A. Foreman, Dissolution and Solubility, in J. B. Taylor and D. J. Triggle 
(Eds.), Comprehensive Medicinal Chemistry II, Vol. 5, Elsevier, Oxford, UK, ISBN: 978–0-08–044513-7, 
2007, pp. 399–423. 
31. H. Meyer, Naunyn Schmiedebergs Arch. Pharmacol. 42, 109, 1899. 
32. E. Overton, Studien über die Narkose, Fischer, Jena, Germany, 1901. 
33. R. Collander, Annu. Rev. Plant Physiol. 8, 335, 1957. 
34. C. Hansch and A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology, 
Wiley, New York, 1979. 
35. E. R. Garrett and O. R. Woods, J. Am. Pharm. Assoc. Sci. Ed. 42, 736, 1953. 

Dr. Murtadha Alshareifi e-Library

356



36. S. Glasstone, Textbook of Physical Chemistry, Van Nostrand, New York, 1946, p. 738. 
37. S. Glasstone, Textbook of Physical Chemistry, Van Nostrand, New York, 1946, pp. 741–742. 
38. C. Hansch, J. E. Quinlan, and G. L. Lawrence, J. Org. Chem. 33, 347, 1968; A. J. Leo, C. Hansch, 
and D. Elkin, Chem. Rev. 71, 525, 1971; C. Hansch and A. J. Leo, Substituent Constants for Correlation 

Analysis in Chemistry and Biology, Wiley, New York, 1979. 
39. S. H. Yalkowsky and S. C. Valvani, J. Pharm. Sci. 69, 912, 1980; G. Amidon, Int. J. 
Pharmaceutics, 11, 249, 1982. 
40. R. F. Rekker, The Hydrophobic Fragmental Constant, Elsevier, New York, 1977; G. G. Nys and R. 
F. Rekker, Eur. J. Med. Chem. 9, 361, 1974. 
41. C. Hansch and W. J. Dunn III, J. Pharm. Sci. 61, 1, 1972; C. Hansch and J. M. Clayton, J. Pharm. 
Sci. 62, 1, 1973; R. N. Smith, C. Hansch, and M. M. Ames, J. Pharm. Sci. 64, 599, 1975. 
42. K. C. Yeh and W. I. Higuchi, J. Pharm. Soc. 65, 80, 1976. 
43. R. D. Schoenwald and R. L. Ward, J. Pharm. Sci. 67, 787, 1978. 
44. W. J. Dunn III, J. H. Block, and R. S. Pearlman (Eds.), Partition Coefficient, Determination and 

Estimation, Pergamon Press, New York, 1986. 
45. K. C. James, Solubility and Related Properties, Marcel Dekker, New York, 1986. 
46. D. J. W. Grant and T. Higuchi, Solubility Behavior of Organic Compounds, Wiley, New York, 1990. 
47. S. H. Yalkowsky and S. Banerjee, Aqueous Solubility, Marcel Dekker, New York, 1992. 
Recommended Readings 
S. N. Bhattachar, L. A. Deschenes, and J. A. Wesley, Drug Discov. Today 11, 1012–1018, 2006. 
B. Faller and P. Ertl, Adv. Drug Del. Rev. 59, 533–545, 2007. 
C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, Adv. Drug Del. Rev. 46, 3–26, 2001. 
S. H. Yalkowski, Solubility and Solubilization in Aqueous Media, American Chemical Society, 
Washington DC, 1999. 
*The meaning of C in equation (9-18) is understood readily by considering a simple illustration. Suppose 
one begins with 1 liter of oil and 1 liter of water, and after benzoic acid has been distributed between the 
two phases, the concentration Co of benzoic acid in the oil is 0.01 mole/liter and the concentration Cw of 
benzoic acid in the aqueous phase is 0.01 mole/liter. Accordingly, there is 0.02 mole/2 liter or 0.01 mole 
of benzoic acid per liter of total mixture after distribution equilibrium has been attained. Equation (9-
18) gives 

 
The concentration, C, obviously is not the total concentration of the acid in the mixture at equilibrium but, 
rather, twice this value. C is therefore seen to be the concentration of benzoic acid in the water phase 
(or the oil phase) before the distribution is carried out. 
†Equation (9-19) is obtained as follows. Substituting for [A-]w from equation (9-17) into equation (9-
16) gives 

 
Then [HA]w from equation (9-14) is substituted into (a) to eliminate [HA]o from the equation: 

 
The apparent distribution constant is eliminated by substituting equation (b) into equation (9-16) to give 

 
or 

 
Co is eliminated by substituting equation (c) into equation (9-18): 
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Rearranging equation (d) gives the final result: 

 
Chapter Legacy 

Fifth Edition: published as Chapter 10 (Solubility and Distribution Phenomena). Updated by 
Patrick Sinko. 
Sixth Edition: published as Chapter 8 (Solubility and Distribution Phenomena). Updated by 
Patrick Sinko. 

 

Dr. Murtadha Alshareifi e-Library

358



10
Cha
At th

Com

mech

nonm

can d

the p

divid

orga

class

fram

Inter

dipol

comp

hydr

Me
A sa

and 

to st

Ino
The 

are k

the c

belon

Each

ion h

Hybr

not o

a bri

grou

0 Compl
apter Objec
he conclusi

1. Define th
pharmac

2. Describe
organic 

3. Describe
example

4. Describe
situation

5. Discuss 
6. Determi
7. Describe
8. Discuss 
9. Describe

binding. 
10. Underst
11. Underst

mplexes or coo

hanism or Lew

metallic atom o

donate an ele

pair of electron

ded broadly int

anic molecule; 

s, the inclusion

ework of anot

rmolecular forc

lar, and induc

plexes, and co

rophobic intera

etal Comp
atisfactory und

molecular forc

udy those sec

organic C
ammonia mol

known as the l

cobalt ion, or n

nging to the in

h ligand donat

having an inco

ridization play

ordinarily avail

ef review of th

nd-state confi

lexation
ctives 

on of this c

he three clas
ceutically rel
e chelates, th
molecular co
e the types o
es. 
e the forces 
ns where rev

the uses an
ne the stoich
e the method
the ways tha

e the equilibr

and the facto
and the ther

ordination com

wis acid–base

or ion, whethe

ctron pair can

ns, is frequent

to two classes

these are clas

n/occlusion co

ther, is also in

ces involved in

ed dipolar typ

oordinate cova

action are intro

plexes 
erstanding of 

ces, and the re

ctions dealing 

Complexe
lecules in hexa

ligandsand ar

number of am

norganic group

tes a pair of el

omplete electro

s an importan

lable in the me

he argument a

iguration of ca

n and P

hapter the s

sses of comp
evant examp
heir physical
omplexes. 
of forces that

involved in p
ersible or irre
d give exam

hiometric rati
ds of analysis
at protein bin
rium dialysis 

ors affecting 
modynamic b

mpounds, acco

e reaction betw

er free or conta

n serve as the 

tly a metallic io

s depending o

ssified accord

ompounds, inv

cluded in the t

n the formatio

es. Hydrogen 

alence is impo

oduced later in

metal ion com

eader would d

with electronic

es 
amminecobalt

e said to be c

monia groups

p include [Ag(

lectrons to for

on shell. For e

t part in coord

etal ion. The r

advanced for t

arbon is 

Protein 

student sho

plexes (coord
ples. 
lly properties

t hold togethe

polymer–drug
eversible com

mples of cyclo
io and stabili
s of complex
nding can inf
 and ultrafiltr

complexatio
basis for the

ording to the c

ween two or m

ained in a neu

donor. The ac

on, although it

n whether the

ding to one pos

volving the ent

table. 

on of complexe

 bonding prov

ortant in metal

n the chapter.

mplexation is b

do well to cons

c structure an

t (III) chloride,

coordinated to 

s coordinated t

NH3)2]
+, [Fe(C

rm a coordinat

example, 

dination compo

reader's under

he quadrivale

Binding

ould be able 

dination com

s, and what d

er organic m

g complexes
mplexes may
odextrins in p
ty constant f

xes and their
fluence drug 
ration metho

on and protei
 stability of c

lassic definitio

more different c

utral molecule 

cceptor, or con

t can be a neu

e acceptor com

ssible arrange

trapment of on

es are the van

vides a signific

l complexes. C

 

based upon a 

sult texts on in

d hybridization

 as the compo

the cobalt ion

to the metal io

CN)6]
4-, and [C

te covalent link

 
ounds in whic

rstanding of hy

nce of carbon

g 

to: 

pounds) and

differentiates 

olecular com

used for dru
y be advanta
pharmaceutic
for complex f
r strengths an
action. 
ds for determ

n binding. 
complexes. 

on, result from

chemical cons

or in an ionic 

nstituent that a

utral atom. Co

mponent is a m

ement in Table

ne compound 

 der Waals fo

cant force in so

Charge transfe

familiarity with

norganic and o

n before proce

ound [Co(NH3

. The coordina

ons, is six. Oth

r(H2O)6]
3+. 

k between itse

h sufficient bo

ybridization wi

. It will be reca

d identify 

s them from 

mplexes and 

ug delivery a
ageous. 
cal applicatio
formation. 
nd weakness

mining protei

m a donor–acce

stituents. Any 

compound, th

accepts a sha

omplexes can 

metal ion or an

e 10-1. A third

in the molecu

orces of disper

ome molecula

er and 

h atomic struc

organic chemi

eeding. 

3)6]
3+ Cl3

- is ca

ation number 

her complex io

elf and the cen

onding orbitals

will be refreshe

alled that the 

give 

nd 

ons. 

ses. 

n 

eptor 

hat 

are in 

be 

n 

 

ular 

rsion, 

ar 

cture 

stry 

lled, 

of 

ons 

ntral 

s are 

d by 

Dr. Murtadha Alshareifi e-Library

359



 

This 

two v

quad

P.19

 

the a

cannot be the

valence electr

drivalence. Ac

98 

available 2p or

I. M

II. O

III. I

*This cla
of chemi

e bonding con

rons. Pauling1

ccording to this

rbital to yield f

Tab

Metal ion co
A. Inorg
B. Chel
C. Olef
D. Arom

1. 
2. 
3. 

Organic mol
A. Quin
B. Picri
C. Caff
D. Poly
nclusion/oc
A. Chan
B. Laye
C. Clath
D. Mon
E. Macr

assification
ical bonds i

figuration of c

 suggested th

s mixing proce

four equivalen

ble 10-1 Cl

omplexes 
ganic type 
lates 
fin type 
matic type 

Pi (π) co
Sigma (σ
“Sandwi

lecular com
nhydrone ty
ic acid type
feine and oth
ymer type 
cclusion com
nnel lattice t
er type 
hrates 

nomolecular
romolecular

does not pr
involved in 

carbon, howev

he possibility o

ess, one of the

nt bonding orb

lassification

omplexes 
σ) complex
ich” compo

mplexes 
ype 

her drug com

mpounds 
type 

r type 
ar type 

retend to de
complexati

ver, because it

of hybridization

e 2s electrons 

itals: 

n of Compl

es 
ounds 

mplexes 

escribe the m
ion. It is me

t normally has

n to account fo

is promoted t

lexes* 

mechanism 
ant simply 

s four rather th

or the 

to 

or the type 
to separate 

han 

Dr. Murtadha Alshareifi e-Library

360



 

Thes

beca

sp2 h

Orbit

such

form

trans

hybr

out the v
highly sy
is given 

 

se are directed

ause it involve

hybridized, an

tals other than

h as iron, copp

ing hybrids. T

sition metal ion

ridized differen

various type
ystematized
by R. S. Mu

d toward the c

s one s and th

nd the bonds a

n the 2s and 2

per, nickel, cob

These hybrids 

ns. Table 10-2

ntly and the ge

es of comple
d classificati
ulliken, J. P

corners of a te

hree p orbitals

are directed to

2p orbitals can

balt, and zinc,

account for th

2shows some 

eometry that re

exes that are
ion of electr

Phys. Chem

etrahedron, an

s. In a double 

oward the corn

n become invo

 seem to mak

he differing ge

compounds in

esults. 

e discussed 
ron donor–a

m. 56, 801, 1

nd the structure

bond, the carb

ners of a triang

olved in hybrid

ke use of their 

ometries often

n which the ce

in the litera
acceptor int
952. 

e is known as 

bon atom is co

gle. 

ization. The tr

3d, 4s, and 4p

n found for the

entral atom or 

ature. A 
teractions 

s an sp3 hybrid

onsidered to b

ransition elem

p orbitals in 

e complexes o

r metal ion is 

d 

be 

ents, 

of the 

Dr. Murtadha Alshareifi e-Library

361



L
co
o
o
m
o
co

In
co

 

 

or 

Ligands such
omplex wit
n the metal 
f hybridizat

metal ion ha
rbitals prim
onfiguration

n combining
onfiguration

h as H2Ö H3

th a metal io
ion. A usef

tion in a me
s its 3d leve

marily in the
n of Ni2+ ca

g with 4C
n of the nick

3 , C -, or
on, and the e
ful but not i
etal ion com
els filled or 
 hybridizati

an be given 

- ligands to
kel ion may

r l- donat
electron pai
inviolate rul

mplex is to s
that can use

ion. For exa
as 

o form [Ni(C
y become ei

te a pair of e
ir enters one
le to follow
elect that co
e the lower-
ample, the g

CN)4]
2-, the 

ither 

electrons in 
e of the unfi
in estimatin

omplex in w
-energy 3d a
ground-state

electronic 

forming a 
filled orbital
ng the type 

which the 
and 4s 
e electronic 

ls 

Dr. Murtadha Alshareifi e-Library

362



 

in wh

pred

study

the c

Simi

 

and 

confi

hich the electr

icted to be the

y of a number

complex. 

larly, the triva

one may inqu

iguration of th

rons donated b

e complex form

r of complexes

lent cobalt ion

ire into the po

e metal ion le

by the ligand a

med because 

s, Werner ded

n, Co(III), has t

ossible geome

ading to filled 

are shown as 

it uses the low

duced many ye

the ground-sta

etry of the com

3d levels is 

dots. The dsp

wer-energy 3d

ears ago that t

ate electronic 

mplex [Co(NH3

p2 or square p

d orbital. By th

this is indeed 

configuration 

)6]
3+. The elec

planar structur

he preparation

the structure o

ctronic 

e is 

and 

of 

Dr. Murtadha Alshareifi e-Library

363



 

and 

follow

Wern

In th

 

the f

to ob

thus the d2sp3

wing section) 

ner2 used this

e case of diva

formation of th

btain a filled 3d

3 or octahedra

of octahedral 

s technique to 

alent copper, C

he complex [C

d configuratio

al structure is p

structure can 

prove that co

Cu(II), which h

u(NH3)4]
2+ req

n in the comp

predicted as th

be resolved in

obalt complexe

has the electro

quires the prom

lexed metal io

he structure o

nto optical iso

es are octahed

onic configurat

motion of one 

on, and a dsp2

f this complex

mers, and in a

dral. 

tion 

d electron of C

2 or planar stru

x. Chelates (se

an elegant stu

Cu2+ to a 4p le

ucture is obta

ee 

udy, 

evel 

ined: 

Dr. Murtadha Alshareifi e-Library

364



 

Altho

plana

P.19

 

havin

ough the ener

ar complex 

99 

ng the 3d leve

gy required to

els filled entire

o elevate the d

ely more than “

d electron to th

“pays” for the 

he 4p level is c

expended ene

considerable, 

ergy. 

the formation of a 

Dr. Murtadha Alshareifi e-Library

365



Tab

The 

ble 10-2 Bo

metal ion Fe(

nd Types o

III) has the gro

of Represen

ound-state con

ntative Com

nfiguration 

mpounds

Dr. Murtadha Alshareifi e-Library

366



 

and 

 

beca

Com

comp

comp

comp

Ch
Chel

whic

exist

ligan

Vitam

alrea

comp

conta

P.20

 

zinc,

two c

in forming the

ause no stabili

mpounds of this

plexes; when 

pound is term

plex can be de

helates 
lation places s

ch form square

t in either of tw

nds—ligands a

min B12 and th

ady coordinate

plexation. In c

ains 

00 

, can undergo 

cis positions a

e complex [Fe(

ization is gaine

s type, in whic

the ligands lie

ed aninner-sp

etected by ele

stringent steric

e planar comp

wo geometric f

adjacent on a 

he hemoprotei

ed in such a w

contrast, the m

chelation, sug

available for ch

(CN)6]
3-, no ele

ed over that w

ch the ligands 

e “below” a pa

phere complex

ectron spin res

c requirements

lexes, and Fe

forms. As a co

molecule—wi

ns are incapa

way that only th

metal ion in cer

ggesting that t

helation. 

ectron promot

which the d2sp

lie “above” a 

artially filled orb

x. The presenc

sonance spect

s on both met

e(III) and Co(II

onsequence o

ll be readily re

able of reacting

he transcoord

rtain enzymes

the metal is bo

tion takes plac

p3configuration

partially filled 

bital, as in the

ce of unpaired

troscopy. 

tal and ligands

I), which form

of this isomeris

eplaced by rea

g with chelatin

ination positio

s, such as alco

ound in such a

ce, 

n already poss

orbital, are ter

e previous exa

d electrons in a

s. Ions such as

octahedral co

sm, only cis-co

action with a c

ng agents beca

ons of the meta

ohol dehydrog

a way as to lea

sesses. 

rmed outer-sp

ample, the 

a metal ion 

s Cu(II) and N

omplexes, can

oordinated 

chelating agen

ause their me

al are availab

genase, which

eave 

phere 

Ni(II), 

n 

nt. 

tal is 

le for 

Dr. Murtadha Alshareifi e-Library

367



Fig.

Chlo

invol

and 

Cu(I

are l

impo

chela

and 

and 

wate

calci

Che
A su
type
may
Whe
calle
Zn(I
The 
Mole
Ethy
acco
coor

Chel

injec

to 4.

whic

Org

. 10-1. Calc

orophyll and he

lved in the life

small molecul

I) and Ni(II) w

ess susceptib

ortant because

ating agent et

copper ions s

in drug prepar

er-soluble com

um ions from 

Key Co
elates 
ubstance con
e of complex 
y be ionic or o
en the ligand
ed monodent
I) to form ch
donor atom 

ecules with tw
ylenediamine
ordinglyhexa
rdinated. 

lation can be a

ctable solution

5. The comple

ch metal comp

ganic Mo

cium ions se

emoglobin, tw

 processes of

les in the bloo

ith higher affin

ble to copper p

e this metal is 

hylenediamine

o that they ca

rations. In the

mpound. Ethyle

hard water. 

oncept 

ntaining two o
known as a 
of the primar

d provides on
tate. Pilocarp
elates of pse
of the ligand
wo and three
etetraacetic a
adentate; how

applied to the 

s is based on 

ex absorbs vis

plexes and che

olecular C

 

equestered b

wo extremely im

f plants and an

od serum. The 

nity than that o

poisoning than

possibly invol

etetraacetic ac

nnot catalyze 

process of se

enediaminetet

or more dono
chelate (Gre
ry covalent ty
ne group for a
pine behaves
eudotetrahed
d is the pyrid
e donor grou
acid has six p
wever, in som

assay of drug

the formation

sible radiation 

elating agents 

Complex

by ethylend

mportant comp

nimals. Album

 amino-termin

of dog serum a

n are dogs. Th

lved in severa

cid (Fig. 10-1)

the oxidative 

equestration, t

traacetic acid 

or groups ma
eek: “kelos, c
ype, whereas
attachment t
s as a mono
dral geometry
ine-type nitro

ups are called
points for att
me complexe

gs. A calorime

n of a 1:1 comp

at a maximum

 can be put ar

es 

ediaminetet

pounds, are n

min is the main 

nal portion of h

albumin. This 

he binding of c

al pathologic c

) has been use

degradation o

the chelating a

is widely used

ay combine w
claw”). Some
s others are 
to the centra
dentate ligan
y.7 
ogen of the i
d bidentate a
tachment to t
es, only four 

tric method fo

plex of procain

m wavelength 

re discussed b

traacetic aci

aturally occur

carrier of vari

human serum 

fact partly exp

opper to serum

onditions.3 Th

ed to tie up or 

of ascorbic aci

agent and met

d to sequester

with a metal 
e of the bond
coordinate c
l ion, the che
nd toward Co

midazole rin
and tridentate
the metal ion
or five of the

or assaying pro

namide with c

of 380 nm.4 T

by Martell and 

id. 

rring chelates 

ious metal ion

albumin binds

plains why hu

m albumin is 

he synthetic 

r sequester iro

id in fruit juice

tal ion form a 

r and remove 

to form a sp
ds in a chelat
covalent links
elate is 
o(II), Ni(II), a

g of pilocarp
e, respective
n and is 
e groups are 

ocainamide in

cupric ion at pH

The many use

 Calvin.5 

ns 

s 

mans 

on 

es 

pecial 
te 
s. 

nd 

pine. 
ely. 

 

H 4 

es to 

Dr. Murtadha Alshareifi e-Library

368



An o

force

The 

Clap

comp

On t

cons

The 

weak

over

The 

unde

P.20

 

but it

corre

Man

comp

attra

Beca

cova

inter

comp

polar

organic coordin

es of the dono

difference bet

pp.6 The comp

plex: 

he other hand

stituent molecu

dotted line in 

k secondary v

rall attraction b

type of bondin

erstood, 

01 

t may be cons

esponding to t

y organic com

pounds, and t

action between

ause the bond

alent link is not

raction or char

plexes. For ex

rizable benzen

nation compou

or–acceptor typ

tween comple

pounds dimeth

d, these two co

ules of which a

the complex o

valence force. 

between the tw

ng existing in 

sidered for the

that in metal c

mplexes are so

they are often 

n the constitue

d distance betw

t involved. Ins

rge transfer, a

xample, the po

ne molecule, a

und or molecu

pe or by hydro

exation and the

hylaniline and 

ompounds rea

are held toget

of equation (10

It is not to be 

wo aromatic m

molecular com

e present as in

complexes but

o weak that the

difficult to det

ents is probab

ween the com

stead, one mo

nd these mole

olar nitro grou

and the electro

ular complex c

ogen bonds. 

e formation of 

2,4,6-trinitroa

act at an eleva

ther by primar

0-1) indicates 

considered as

molecules. 

mplexes in wh

nvolving an ele

t ordinarily mu

ey cannot be 

tect by chemic

ly less than 5 

mponents of the

lecule polarize

ecular comple

ps of trinitrobe

rostatic interac

consists of con

organic comp

anisole react in

ated temperatu

ry valence bon

that the two m

s a clearly def

ich hydrogen 

ectron donor–a

ch weaker. 

separated from

cal and physic

kcal/mole for 

e complex is u

es the other, r

xes are often 

enzene induce

ction that resu

nstituents held

pounds has be

n the cold to g

 
ure to yield a s

nds: 

molecules are 

fined bond but

bonding plays

acceptor mech

 
m their solutio

cal means. The

most organic 

usually greate

resulting in a ty

referred to as

e a dipole in th

lts leads to co

d together by w

een shown by 

ive a molecula

salt, the 

held together

t rather as an 

s no part is no

hanism 

ons as definite

e energy of 

complexes. 

er than 3 Å, a 

ype of ionic 

s charge trans

he readily 

omplex format

weak 

ar 

r by a 

ot fully 

e 

fer 

ion: 

Dr. Murtadha Alshareifi e-Library

369



 

X-ray

show

the in

that 

acce

A fac

appr

comp

are d

Fig.
and 
H. S

y diffraction st

wn that one of 

ntermolecular

the interaction

epting nitro gro

ctor of some im

roach and clos

plex is not like

discussed in c

. 10-2. Reso
hexamethy

Stotz (Eds.)

tudies of comp

f the nitro grou

r distance betw

n involves π b

oup. 

mportance in t

se association

ely to form. Hy

connection wit

onance in a 
ylbenzene (d
,Comprehen

plexes formed

ups of trinitrobe

ween the two m

onding betwe

the formation 

n of the donor 

ydrogen bondi

h the specific 

donor–acce
donor, botto
nsive Bioch

d between trini

enzene lies ov

molecules bei

en the π elect

of molecular c

and acceptor 

ng and other 

complexes co

eptor compl
om). (From 
hemistry, Els

itrobenzene a

ver the benze

ing about 3.3 Å

trons of the be

complexes is t

molecules are

effects must a

onsidered on t

 

lex of trinitr
F. Y. Bullo
sevier, New

nd aniline der

ne ring of the 

Å. This result 

enzene ring an

the steric requ

e hindered by 

also be consid

he following p

robenzene (
ock, in M. F
w York, 196

rivatives have 

aniline molec

strongly sugg

nd the electro

uirement. If the

steric factors,

dered, and the

pages. 

(acceptor, to
Florkin and E
67, pp. 82–8

ule, 

ests 

n-

e 

, the 

se 

op) 
E. 

85. 

Dr. Murtadha Alshareifi e-Library

370



Wit

The 

reso

force

inter

and 

force

resu

char

acce

the c

fairly

to as

(D+…

acce

toge

trans

comp

do n

abso

comp

Char

with 

actio

P.20

 

Disu

and 

(see 

from

orbit

thyro

 

Dru

th permissio

difference bet

nance makes 

es and dipole–

raction is show

hexamethylbe

es contribute t

lts from a sign

rged (A-) and l

eptor complex 

charged D+ …

y weak, having

s adonor–acce

… A-) and the u

eptor molecule

ther by van de

sfer are known

plexes, new a

ot attempt to s

orption bands 

plexes that do

rge transfer co

the drugs disu

ons of their ow

02 

lfiram is used 

tolnaftate is a

 the accompa

 the pair of fre

al of the iodin

oid action in th

ug Comp

on.) 

tween a donor

the main con

–dipole interac

wn inFigure 10

enzene is the d

to the interacti

nificant transfe

eaving the do

is shown by t

 A-moieties. If

g an intermole

eptor complex

uncharged sp

e, the complex

er Waals force

n simply as mo

absorption ban

separate the f

as charge tran

o not show new

omplexes are 

ulfiram, chlom

wn: 

against alcoh

n antifungal a

nying structur

ee electrons o

e atom. Thus,

he body.9 

plexes 

r–acceptor an

tribution to co

ctions contribu

0-2 as depicted

donor, D. On t

on of A and D

er of charge, m

nor, hexameth

he double-hea

f, as in the cas

ecular binding 

x. If, on the oth

ecies (D … A)

x is called a ch

es, dipole–dipo

olecular comp

nds occur in th

first two classe

nsfer or as ele

w bands are c

of importance

methiazole, and

hol addiction, c

gent. Each of 

re of tolnaftate

n the nitrogen

, by tying up io

d a charge tra

omplexation, w

ute more to the

d by Bullock.8

the left side of

D; on the right 

making the ele

hylbenzene, p

aded arrow to

se of hexamet

energy ∆G of

her hand, reso

) contributes g

harge transfer 

ole interaction

plexes. In both

he spectra, as 

es, but rather 

ectron donor–a

called molecul

e in pharmacy

d tolnaftate. T

clomethiazole 

these drugs p

e), and a comp

n and/or sulfur

odine, molecu

ansfercomplex

whereas in the 

e stability of th

8 Trinitrobenze

f the figure, w

side of the fig

ectron accepto

positively charg

 resonate betw

thylbenzene–t

f about –4700 

onance betwee

greatly to the b

r complex. Fina

ns, and hydrog

h charge trans

shown later in

refer to all inte

acceptor comp

ar complexes

. Iodine forms

hese drugs ha

is a sedative–

possesses a n

plex may resu

r atoms of thes

les containing

x is that in the 

former, Londo

he complex. A

ene is the acce

eak dispersion

ure, the intera

or trinitrobenze

ged (D+). The 

ween the unch

rinitrobenzene

calories, the c

en the charge 

binding of the 

ally, those com

gen bonding b

fer and donor–

n Figure 10-13

eractions that 

plexes without

. 

1:1 charge tra

ave recognize

–hypnotic and

nitrogen–carbo

lt from the tran

se drugs to the

g the N—C==S

latter type, 

on dispersion 

A resonance 

eptor, A, mole

n and dipolar 

action of A and

ene negatively

 overall donor

harged D … A

e, the resonan

complex is ref

transfer struc

donor and 

mplexes boun

but lacking cha

r–acceptor 

3. In this book

produce 

t distinction. T

ansfer comple

ed pharmacolo

d anticonvulsa

on–sulfur moie

nsfer of charg

e antibonding 

S moiety inhib

ecule 

d D 

y 

r–

A and 

nce is 

ferred 

cture 

d 

arge 

k we 

Those 

exes 

ogic 

nt, 

ety 

e 

bit 

Dr. Murtadha Alshareifi e-Library

371



Higuchi and his associates10 investigated the complexing of caffeine with a number of acidic drugs. 

They attributed the interaction between caffeine and a drug such as a sulfonamide or a barbiturate to a 

dipole–dipole force or hydrogen bonding between the polarized carbonyl groups of caffeine and the 

hydrogen atom of the acid. A secondary interaction probably occurs between the nonpolar parts of the 

molecules, and the resultant complex is “squeezed out” of the aqueous phase owing to the great internal 

pressure of water. These two effects lead to a high degree of interaction. 

The complexation of esters is of particular concern to the pharmacist because many important drugs 

belong to this class. The complexes formed between esters and amines, phenols, ethers, and ketones 

have been attributed to the hydrogen bonding between a nucleophilic carbonyl oxygen and an active 

hydrogen. This, however, does not explain the complexation of esters such as benzocaine, procaine, 

and tetracaine with caffeine, as reported by Higuchi et al.11 There are no activated hydrogens on 

caffeine; the hydrogen in the number 8 position (formula I) is very weak (Ka = 1 × 10-14) and is not likely 

to enter into complexation. It might be suggested that, in the caffeine molecule, a relatively positive 

center exists that serves as a likely site of complexation. The caffeine molecule is numbered in formula I 

for convenience in the discussion. As observed in formula II, the nitrogen at the 2 position presumably 

can become strongly electrophilic or acidic just as it is in an imide, owing to the withdrawal of electrons 

by the oxygens at positions 1 and 3. An ester such as benzocaine also becomes polarized (formula III) 

in such a way that the carboxyl oxygen is nucleophilic or basic. The complexation can thus occur as a 

result of a dipole–dipole interaction between the nucleophilic carboxyl oxygen of benzocaine and the 

electrophilic nitrogen of caffeine. 
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Agent 
Compounds That Form Complexes with the 
Agent Listed in the First Column 

Polyethylene glycols m-Hydroxybenzoic acid, p-hydroxybenzoic 
acid, salicylic acid,o-phthalic acid, 
acetylsalicylic acid, resorcinol, catechol, 
phenol, phenobarbital, iodine (in I2 · KI 
solutions), bromine (in presence of HBr) 

Povidone (polyvinyl-
pyrrolidone, PVP) 

Benzoic acid, m-hydroxybenzoic acid, p-
hydroxybenzoic acid, salicylic acid, sodium 
salicylate,p-aminobenzoic acid, mandelic 
acid, sulfathiazole, chloramphenicol, 
phenobarbital 

Sodium 
carboxymethylcellulose 

Quinine, benadryl, procaine, pyribenzamine 

Oxytetracycline and 
tetracycline 

N-Methylpyrrolidone,N,N-
dimethylacetamide, γ-valerolactone, γ-
butyrolactone, sodium p-aminobenzoate, 
sodium salicylate, sodium p-
hydroxybenzoate, sodium saccharin, caffeine 

*Compiled from the results of T. Higuchi et al., J. Am. Pharm. Assoc. Sci. 
Ed. 43, 393, 398, 456, 1954; 44, 668, 1955; 45, 157, 1956; 46,458, 587, 
1957; and J. L. Lach et al., Drug Stand. 24, 11, 1956. An extensive table of 
acceptor and donor molecules that form aromatic molecular complexes was 
compiled by L. J. Andrews, Chem. Rev. 54, 713, 1954. Also refer to T. 
Higuchi and K. A. Connors, Phase Solubility Techniques. Advances in 
Analytical Chemistry and Instrumentation, in C. N. Reilley (Ed.), Wiley, 
New York, 1965, pp. 117–212. 

 

Polymer Complexes 
Polyethylene glycols, polystyrene, carboxymethylcellulose, and similar polymers containing nucleophilic 

oxygens can form complexes with various drugs. The incompatibilities of certain polyethers, such as the 

Carbowaxes, Pluronics, and Tweens with tannic acid, salicylic acid, and phenol, can be attributed to 

these interactions. Marcus14 reviewed some of the interactions that may occur in suspensions, 

emulsions, ointments, and suppositories. The incompatibility may be manifested as a precipitate, 

flocculate, delayed biologic absorption, loss of preservative action, or other undesirable physical, 

chemical, and pharmacologic effects. 

Plaizier-Vercammen and De Nève15 studied the interaction of povidone (PVP) with ionic and neutral 

aromatic compounds. Several factors affect the binding to PVP of substituted benzoic acid and nicotine 

derivatives. Although ionic strength has no influence, the binding increases in phosphate buffer solutions 

and decreases as the temperature is raised. 
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Crosspovidone, a cross-linked insoluble PVP, is able to bind drugs owing to its dipolar character and 

porous structure. Frömming et al.16 studied the interaction of crosspovidone with acetaminophen, 

benzocaine, benzoic acid, caffeine, tannic acid, and papaverine hydrochloride, among other drugs. The 

interaction is mainly due to any phenolic groups on the drug. Hexylresorcinol shows exceptionally strong 

binding, but the interaction is less than 5% for most drugs studied (32 drugs). Crosspovidone is a 

disintegrant in pharmaceutical granules and tablets. It does not interfere with gastrointestinal absorption 

because the binding to drugs is reversible. 

Solutes in parenteral formulations may migrate from the solution and interact with the wall of a polymeric 

container. Hayward et al.17showed that the ability of a polyolefin container to interact with drugs 

depends linearly on the octanol–water partition coefficient of the drug. For parabens and drugs that 

exhibit fairly significant hydrogen bond donor properties, a correction term related to hydrogen-bond 

formation is needed. Polymer–drug container interactions may result in loss of the active component in 

liquid dosage forms. 

Polymer–drug complexes are used to modify biopharmaceutical parameters of drugs; the dissolution 

rate of ajmaline is enhanced by complexation with PVP. The interaction is due to the aromatic ring of 

ajmaline and the amide groups of PVP to yield a dipole–dipole-induced complex.18 

Some molecular organic complexes of interest to the pharmacist are given in Table 10-3. (Complexes 

involving caffeine are listed in Table 10-6.) 

Inclusion Compounds 
The class of addition compounds known as inclusion or occlusioncompounds results more from the 

architecture of molecules than from their chemical affinity. One of the constituents of the complex is 

trapped in the open lattice or cagelike crystal structure of the other to yield a stable arrangement. 

Channel Lattice Type 
The cholic acids (bile acids) can form a group of complexes principally involving deoxycholic acid in 

combination with paraffins, organic acids, esters, ketones, and aromatic compounds and with solvents 

such as ether, alcohol, and dioxane. The crystals of deoxycholic acid are arranged to form a channel 

into which the complexing molecule can fit (Fig. 10-3). Such stereospecificity should permit the 

resolution of optical isomers. In fact, camphor has been partially resolved by complexation with 

deoxycholic acid, anddl-terpineol has been resolved by the use of digitonin, which 

P.204 

 

occludes certain molecules in a manner similar to that of deoxycholic acid: 
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5.50 5.00 17.3 × 10-3 1.83 5.98 

6.00 5.20 18.0 × 10-3 1.91 5.50 

6.50 5.35 18.5 × 10-3 1.96 5.02 

7.00 5.45 18.8 × 10-3 1.99 4.53 

7.50 5.50 19.0 × 10-3 2.03 4.03 

8.00 5.50 19.0 × 10-3 2.01 3.15 

*From the data in the last two columns, the formation curve, Figure 10-10, 
is plotted, and the following results are obtained from the curve: log K1 = 
7.9, log K2 = 6.9, and log β = 14.8 (average log β from the literature at 25°C 
is about 15.3). 

 

Table 10-5 Selected Constants for Complexes Between Metal Ions and Organic 
Ligand* 

Organic Ligand Metal Ion log K1 log K2 
log, β = 
log K1K2 

Ascorbic acid Ca2+ 0.19 — — 

Nicotinamide Ag+ — — 3.2 

Glycine (aminoacetic acid) Cu2+ 8.3 7.0 15.3 

Salicylaldehyde Fe2+ 4.2 3.4 7.6 

Salicylic acid Cu2+ 10.6 6.3 16.9 

p-hydroxybenzoic acid Fe3+ 15.2 — — 

Methyl salicylate Fe3+ 9.7 — — 
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Compound Complexed with Caffeine Approximate Stability Constant 

Suberic acid 3 

Sulfadiazine 7 

Picric acid 8 

Sulfathiazole 11 

o-Phthalic acid 14 

Acetylsalicylic acid 15 

Benzoic acid (monomer) 18 

Salicylic acid 40 

p-aminobenzoic acid 48 

Butylparaben 50 

Benzocaine 59 

p-hydroxybenzoic acid >100 

*Compiled from T. Higuchi et al., J. Am. Pharm. Assoc. Sci. Ed. 42, 138, 
1953; 43,349, 524, 527, 1954; 45, 290, 1956; 46, 32, 1957. Over 500 such 
complexes with other drugs are recorded by T. Higuchi and K. A. Connors. 
Phase solubility Techniques, in C. N. Reilley (Ed.), Advances in Analytical 
Chemistry and Instrumentation, Wiley, Vol. 4, New York, 1965, pp. 117–
212. 
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Fig. 10-15. Adenine–catechol stability constant for charge transfer complexation 
measured at various temperatures at a wavelength of 340 nm. (From F. A. Al-Obeidi 
and H. N. Borazan, J. Pharm. Sci. 65, 892, 1976. With permission.) 

P.214 

 

 

Table 10-7 Stability Constant, K, and Thermodynamic Parameters for Charge 
Transfer Interaction of Nucleic Acid Bases with Catechol in Aqueous Solution*

Temperature (°C) K (M-) ΔG° (cal/mole) ΔH° (cal/mole)
ΔS° (cal/deg 
mole) 

Adenine–catechol 

9 1.69 -294     

18 1.59 -264 -1015 -2.6 

37 1.44 -226     

Uracil–catechol 

6 0.49 396     

18 0.38 560 -3564 -14 

25 0.32 675     

37 0.26 830     

*From F. A. Al-Obeidi and H. N. Borazan, J. Pharm. Sci. 65, 892, 1976. 
With permission. 

 

Example 10-4 
Calculate Molar Absorptivity 
When A0/A is plotted against 1/D0 for catechol (electron-donor) solutions containing uracil 
(electron acceptor) in 0.1 N HCI at 6°C, 18°C, 25°C, and 37°C, the four lines were observed 
to intersect the vertical axis at 0.01041. Total concentration, A0, for uracil was 2 × 10-2 M, 
and D0 for catechol ranged from 0.3 to 0.8 M. The slopes of the lines determined by the least-
squares method were as follows: 
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Feldman and Gibaldi82 studied the effects of urea, methylurea, and 1,3-dimethylurea on the solubility of 

benzoic and salicylic acids in aqueous solution. They concluded that the enhancement of solubility by 

urea and its derivatives was a result of hydrophobic bonding rather than complexation. Urea broke up 

the hydrogen-bonded water clusters surrounding the nonpolar solute molecules, increasing the entropy 

of the system and producing a driving force for solubilization of benzoic and salicylic acids. It may be 

possible that the ureas formed channel complexes with these aromatic acids as shown inFigure 10-3 a, 

b, and c. 

The interaction of drugs with proteins in the body may involve hydrophobic bonding at least in part, and 

this force in turn may affect the metabolism, excretion, and biologic activity of a drug. 

Self-Association 
Some drug molecules may self-associate to form dimers, trimers, or aggregates of larger sizes. A high 

degree of association may lead to formation of micelles, depending on the nature of the molecule 

(Chapter 16). Doxorubicin forms dimers, the process being influenced by buffer composition and ionic 

strength. The formation of tetramers is favored by hydrophobic stacking aggregation.83 Self-association 

may affect solubility, diffusion, transport through membranes, and therapeutic action. Insulin shows 

concentration-dependent self-association, which leads to complications in the treatment of diabetes. 

Aggregation is of particular importance in long-term insulin devices, where insulin crystals have been 

observed. The initial step of insulin self-association is a hydrophobic interaction of the monomers to form 

dimers, which further associate into larger aggregates. The process is favored at higher concentrations 

of insulin.84 Addition of urea at nontoxic concentrations (1.0–3 mg/mL) has been shown to inhibit the 

self-association of insulin. Urea breaks up the “icebergs” in liquid water and associates with structured 

water by hydrogen bonding, taking an active part in the formation of a more open “lattice” structure.85 

Sodium salicylate improves the rectal absorption of a number of drugs, all of them exhibiting self-

association. Touitou and Fisher86chose methylene blue as a model for studying the effect of sodium 

salicylate on molecules that self-associate by a process of stacking. Methylene blue is a planar aromatic 

dye that forms dimers, trimers, and higher aggregates in aqueous solution. The workers found that 

sodium salicylate prevents the self-association of methylene blue. The inhibition of aggregation of 

porcine insulin by sodium salicylate results in a 7875-fold increase in solubility.87 Commercial heparin 

samples tend to aggregate in storage depending on factors such as temperature and time in storage.88 

Factors Affecting Complexation and Protein Binding 
Kenley et al.55 investigated the role of hydrophobicity in the formation of water-soluble complexes. The 

logarithm of the ligand partition coefficient between octanol and water was chosen as a measure of 

hydrophobicity of the ligand. The authors found a significant correlation between the stability constant of 

the complexes and the hydrophobicity of the ligands. Electrostatic forces were not considered as 

important because all compounds studied were uncharged under the conditions investigated. Donor–

acceptor properties expressed in terms of orbital energies (from quantum chemical calculations) and 

relative donor–acceptor strengths correlated poorly with the formation constants of the complex. It was 

suggested that ligand hydrophobicity is the main contribution to the formation of water-soluble 

complexes. Coulson and Smith89 found that the more hydrophobic chlorobiocin analogues showed the 

highest percentage of drug bound to human serum albumin. These workers suggested that chlorobiocin 

analogues bind to human albumin at the same site as warfarin. This site consists of two noncoplanar 

hydrophobic areas and a cationic group. Warfarin, an anticoagulant, serves as a model drug in protein-

binding studies because it is extensively but weakly bound. Thus, many drugs are able to compete with 

and displace warfarin from its binding sites. The displacement may result in a sudden increase of the 

free (unbound) fraction in plasma, leading to toxicity, because only the free fraction of a drug is 

pharmacologically active. Diana et al.90investigated the displacement of warfarin by nonsteroidal anti-

inflammatory drugs. Table 10-8 shows the variation of the stability constant, K, and the number of 

binding sites, n, of the complex albumin–warfarin after addition of competing drugs. Azapropazone 

Dr. Murtadha Alshareifi e-Library

408



markedly decreases the K value, suggesting that both drugs, warfarin and azapropazone, compete for 

the same binding site on albumin. Phenylbutazone also competes strongly for the binding site on 

albumin. Conversely, tolmetin may increase K, as suggested by the authors, by a conformational 

change in the albumin molecule that favors warfarin binding. The other drugs (see Table 10-8) decrease 

the K value of warfarin to a lesser extent, indicating that they do not share exclusively the same binding 

site as that of warfarin. 

Plaizier-Vercammen91 studied the effect of polar organic solvents on the binding of salicylic acid to 

povidone. He 
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found that in water–ethanol and water–propylene glycol mixtures, the stability constant of the complex 

decreased as the dielectric constant of the medium was lowered. Such a dependence was attributed to 

hydrophobic interaction and can be explained as follows. Lowering the dielectric constant decreases 

polarity of the aqueous medium. Because most drugs are less polar than water, their affinity to the 

medium increases when the dielectric constant decreases. As a result, the binding to the 

macromolecule is reduced. 

Table 10-8 Binding Parameters (± Standard Deviation) for Warfarin in the 
Presence of Displacing Drugs* 

Competing Drug 
Racemic Warfarin 

n K × 10-5 M-1 

None 1.1 ± 0.0 6.1 ± 0.2 

Azapropazone 1.4 ± 0.1 0.19 ± 0.02 

Phenylbutazone 1.3 ± 0.2 0.33 ± 0.06 

Naproxen 0.7 ± 0.0 2.4 ± 0.2 

Ibuprofen 1.2 ± 0.2 3.1 ± 0.4 

Mefenamic acid 0.9 ± 0.0 3.4 ± 0.2 

Tolmetin 0.8 ± 0.0 12.6 ± 0.6 

*From F. J. Diana, K. Veronich, and A. L. Kapoor, J. Pharm. Sci. 78, 195, 
1989. With permission. 

 

Protein binding has been related to the solubility parameter δ of drugs. Bustamante and Selles92 found 

that the percentage of drug bound to albumin in a series of sulfonamides showed a maximum at ∆ = 

12.33 cal1/2 cm-3/2. This value closely corresponds to the δ value of the postulated binding site on 

albumin for sulfonamides and suggests that the closer the solubility parameter of a drug to the δ value of 

its binding site, the greater is the binding. 
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Chapter Summary 
Complexation is widely used in the pharmaceutical sciences to improve properties such as 
solubility. The three classes of complexes or coordination compounds were discussed in the 
context to identify pharmaceutically relevant examples. The physical properties of chelates 
and what differentiates them from organic molecular complexes were also described. The 
types of forces that hold together organic molecular complexes also play an important role in 
determining the function and use of complexes in the pharmaceutical sciences. One widely 
used complex system, the cyclodextrins, was described in detail with respect to 
pharmaceutical applications. The stoichiometry and stability of complexes was described as 
well as methods of analysis to determine their strengths and weaknesses. Protein binding is 
important for many drug substances. The ways in which protein binding could influence drug 
action were discussed. Also, methods such as the equilibrium dialysis and ultrafiltration were 
described for determining protein binding. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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11 Diffusion 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Define diffusion and describe relevant examples in the pharmaceutical sciences and 
the practice of pharmacy. 

2. Understand the processes of dialysis, osmosis, and ultrafiltration as they apply to the 
pharmaceutical sciences and the practice of pharmacy. 

3. Describe the mechanisms of transport in pharmaceutical systems and identify which 
ones are diffusion based. 

4. Define and understand Fick's laws of diffusion and their application. 
5. Calculate diffusion coefficient, permeability, and lag time. 
6. Relate permeability to a rate constant and to resistance. 
7. Understand the concepts of steady state, sink conditions, membrane, and diffusion 

control. 
8. Describe the various driving forces for diffusion, drug absorption, and elimination. 
9. Describe multilayer diffusion and calculate component permeabilities. 
10. Calculate drug release from a homogeneous solid. 

Introduction 
The fundamentals of diffusion are discussed in this chapter. Free diffusion of substances through 
liquids, solids, and membranes is a process of considerable importance in the pharmaceutical sciences. 
Topics of mass transport phenomena applying to the pharmaceutical sciences include the release and 
dissolution of drugs from tablets, powders, and granules; lyophilization, ultrafiltration, and other 
mechanical processes; release from ointments and suppository bases; passage of water vapor, gases, 
drugs, and dosage form additives through coatings, packaging, films, plastic container walls, seals, and 
caps; and permeation and distribution of drug molecules in living tissues. This chapter treats the 
fundamental basis for diffusion in pharmaceutical systems. 
There are several ways that a solute or a solvent can traverse a physical or biologic membrane. The first 
example (Fig. 11-1) depicts the flow of molecules through a physical barrier such as a polymeric 
membrane. The passage of matter through a solid barrier can occur by simple molecular permeation or 
by movement through pores and channels. Molecular diffusion or permeation through nonporous media 
depends on the solubility of the permeating molecules in the bulk membrane (Fig. 11-1a), whereas a 
second process can involve passage of a substance through solvent-filled pores of a membrane (Fig. 
11-1b) and is influenced by the relative size of the penetrating molecules and the diameter and shape of 
the pores. The transport of a drug through a polymeric membrane involves dissolution of the drug in the 
matrix of the membrane and is an example of simple molecular diffusion. A second example relates to 
drug and solvent transport across the skin. Passage through human skin of steroidal molecules 
substituted with hydrophilic groups may predominantly involve transport through hair follicles, sebum 
ducts, and sweat pores in the epidermis (Fig. 11-19). Perhaps a better representation of a membrane on 
the molecular scale is a matted arrangement of polymer strands with branching and intersecting 
channels as shown in Figure 11-1c. Depending on the size and shape of the diffusing molecules, they 
may pass through the tortuous pores formed by the overlapping strands of polymer. If it is too large for 
such channel transport, the diffusant may dissolve in the polymer matrix and pass through the film by 
simple diffusion. Diffusion also plays an important role in drug and nutrient transport in biologic 
membranes in the brain, intestines, kidneys, and liver. In addition to diffusion through the lipoidal 
membrane, several other transport 
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mechanisms have been characterized in biologic membranes including energy-dependent and energy-
independent carrier-mediated transport as well as diffusion through the paracellular spaces between 
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cells. The multitude of mechanisms of transport across various mucosal membranes will be introduced 
later in this chapter. Several pharmaceutically important diffusion-based processes are covered in this 
and subsequent chapters. 

Key Concept 

Diffusion 

Diffusion is defined as a process of mass transfer of individual molecules of a substance 
brought about by random molecular motion and associated with a driving force such as a 
concentration gradient. The mass transfer of a solvent (e.g., water) or a solute (e.g., a drug) 
forms the basis for many important phenomena in the pharmaceutical sciences. For example, 
diffusion of a drug across a biologic membrane is required for a drug to be absorbed into and 
eliminated from the body, and even for it to get to the site of action within a particular cell. On 
the negative side, the shelf life of a drug product could be significantly reduced if a container 
or closure does not prevent solvent or drug loss or if it does not prevent the absorption of 
water vapor into the container. These and many more important phenomena have a basis in 
diffusion. Drug release from a variety of drug delivery systems, drug absorption and 
elimination, dialysis, osmosis, and ultrafiltration are some of the examples covered in this and 
other chapters. 

 

Fig. 11-1. (a) Homogeneous membrane without pores. (b) Membrane of dense 

material with straight-through pores, as found in certain filler barriers such as 

Nucleopore. (c) Cellulose membrane used in the filtration process, showing the 

intertwining nature of the fibers and the tortuous channels. 

Drug Absorption and Elimination 
Diffusion through biologic membranes is an essential step for drugs entering (i.e., absorption) or leaving 
(i.e., elimination) the body. It is also an important component along with convection for efficient drug 
distribution throughout the body and into tissues and organs. Diffusion can occur through the lipoidal 
bilayer of cells. This is termed transcellular diffusion. On the other hand, paracellular diffusion occurs 
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through the spaces between adjacent cells. In addition to diffusion, drugs and nutrients also traverse 
biologic membranes using membrane transporters and, to a lesser extent, cell surface receptors. 
Membrane transporters are specialized proteins that facilitate drug transport across biologic 
membranes. The interactions between drugs and transporters can be classified as energy dependent 
(i.e., active transport) or energy independent (i.e., facilitated diffusion). Membrane transporters are 
located in every organ responsible for the absorption, distribution, metabolism, and excretion (ADME) of 
drug substances. Specialized membrane transport mechanisms were covered in more detail in Chapter 
12(Biopharmaceutics) and Chapter 13 (Drug Release and Dissolution). 
Elementary Drug Release 
Elementary drug release is an important process that literally affects nearly every person in everyday 
life. Drug release is a multistep process that includes diffusion, disintegration, deaggregation, and 
dissolution. These processes are described in this and other chapters. Common examples are the 
release of steroids such as hydrocortisone from topical over-the-counter creams and ointments for the 
treatment of skin rashes and the release of acetaminophen from a tablet that is taken by mouth. Drug 
release must occur before the drug can be pharmacologically active. This includes pharmaceutical 
products such as capsules, creams, liquid suspensions, ointments, tablets, and transdermal patches. 
Osmosis 
Osmosis was originally defined as the passage of both solute and solvent across a membrane but now 
refers to an action in which only the solvent is transferred. The solvent passes through a semipermeable 
membrane to dilute the solution containing solute and solvent. The passage of solute together with 
solvent is now called diffusion or dialysis. Osmotic drug release systems use osmotic pressure as a 
driving force for the controlled delivery of drugs. A simple osmotic pump 
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consists of an osmotic core (containing drug with or without an osmotic agent) and is coated with a 
semipermeable membrane. The semipermeable membrane has an orifice for drug release from the 
―pump.‖ The dosage form, after coming in contact with the aqueous fluids, imbibes water at a rate 

determined by the fluid permeability of the membrane and osmotic pressure of core formulation. The 
osmotic imbibition of water results in high hydrostatic pressure inside the pump, which causes the flow 
of the drug solution through the delivery orifice. 
Ultrafiltration and Dialysis 
Ultrafiltration is used to separate colloidal particles and macromolecules by the use of a membrane. 
Hydraulic pressure is used to force the solvent through the membrane, whereas the microporous 
membrane prevents the passage of large solute molecules. Ultrafiltration is similar to a process 
called reverse osmosis, but a much higher osmotic pressure is developed in reverse osmosis, which is 
used in desalination of brackish water. Ultrafiltration is used in the pulp and paper industry and in 
research to purify albumin and enzymes. Microfiltration, a process that employs membranes of slightly 
larger pore size, 100 nm to several micrometers, removes bacteria from intravenous injections, foods, 
and drinking water.1 Hwang and Kammermeyer2 defined dialysisas a separation process based on 
unequal rates of passage of solutes and solvent through microporous membranes, carried out in batch 
or continuous mode. Hemodialysis is used in treating kidney malfunction to rid the blood of metabolic 
waste products (small molecules) while preserving the high-molecular-weight components of the blood. 
In ordinary osmosis as well as in dialysis, separation is spontaneous and does not involve the high-
applied pressures of ultrafiltration and reverse osmosis. 
Diffusion is caused by random molecular motion and, in relative terms, is a slow process. In a classic 
text on diffusion, E. L. Cussler stated, ―In gases, diffusion progresses at a rate of about 10 cm in a 

minute; in liquids, its rate is about 0.05 cm/min; in solids, its rate may be only about 0.0001 cm/min.‖3 A 
relevant question to ask at this point is, Can such a slow process be meaningful to the pharmaceutical 
sciences? The answer is a resounding ―yes.‖ Although the rate of diffusion appears to be quite slow, 

other factors such as the distance that a diffusing molecule must traverse are also very important. For 
example, a typical cell membrane is approximately 5-nm thick. If it is assumed that a drug will diffuse 
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into a cell at a rate of 0.0005 cm/min, then it takes only a fraction of a second for that drug molecule to 
enter the cell. On the other hand, the thickest biomembrane is skin, with an average thickness of 3 µm 
(Fig. 11-19). For the same rate of diffusion, it would take 600 times longer for the same drug molecule to 
diffuse through the skin. The time difference in the appearance of the drug on the other side of the skin 
is known as the lag time. An even more extreme example is the levonorgestrel-releasing implant.4 This 
long-acting contraceptive has been approved for 5 years of continuous use in human patients. To 
achieve low constant diffusion rates, six matchstick-sized, flexible, closed capsules made of silicon 
rubber tubing are inserted into the upper arm of patients. Annual pregnancy rates of Norplant users are 
below 1 per 100 throughout 7 years of continuous use. Levonorgestrel implants provide low 
progestogen doses: 40 to 50 µg/day at 1 year of use, decreasing to 25 to 30 µg/day in the fifth year. 
Serum levels of levonorgestrel at 5 years are 60% to 65% of those levels measured at 1 month of 
use.4 Although diffusion plays an important role in the successful delivery of levonorgestrel from the 
Norplant system, drug release from long-acting delivery systems is a function of many other factors as 
well. 
Another pharmaceutically relevant example of diffusion relates to the mixing of a drug in solution with 
intestinal contents immediately prior to drug absorption across the intestinal mucosa. At first glance, 
mixing appears to be a simple process; however, several molecular- and macroscopic-level processes 
must occur in parallel for efficient mixing to occur. It is important to remember that diffusion depends on 
random molecular motions that take place over small molecular distances. Therefore, other processes 
are responsible for the movement of molecules over much larger distances and are required for mixing 
to occur. These processes are called macroscopic processes and include convection, dispersion, and 
stirring. After the macroscopic movement of molecules occurs, diffusion mixes newly adjacent portions 
of the intestinal fluid. Diffusion and the macroscopic processes all contribute to mixing, and, qualitatively, 
the effects are similar. In 1860, Maxwell was one of the first to recognize this when he stated, ―Mass 

transfer is due partly to the motion of translation and partly to that of agitation.‖5 Unlike many other 
phenomena, diffusion in a solution always occurs in parallel with convection. Convection is the bulk 
movement of fluid accompanied by the transfer of heat (energy) in the presence of agitation. An 
example of convection relevant to intestinal absorption of drugs is fluid flow down the intestine. 
Dispersion is also relevant to intestinal flow and is related to diffusion. ―The relation exists on two very 

different levels. First, dispersion is a form of mixing, and so on a microscopic level it involves diffusion of 
molecules. Second, dispersion and diffusion are described with very similar mathematics.‖3 Although it 
is somewhat difficult to assess intestinal dispersion patterns in humans, they are most likely 
characterized as ―turbulent.‖ In certain experimental models, such as the single-pass intestinal perfusion 
procedure6 that is used to estimate the intestinal permeability of drugs in rats, flow conditions are 
optimized to obtain laminar flow hydrodynamics. Laminar flow conditions are a special example of the 
coupling of flow and diffusion. In contrast to turbulent flow, when operating under laminar flow conditions 
a dispersion coefficient can be accurately predicted. In this system, mass transport occurs by radial 
diffusion (i.e., movement toward the intestinal mucosa) and axial convection (i.e., flow down the length 
of the intestine). 
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Steady-State Diffusion 
Thermodynamic Basis 
Mass transfer is the movement of molecules in response to an applied driving force. Convective and 
diffusive mass transfer is important to many pharmaceutical science applications. Diffusive mass 
transfer is the subject of this chapter, but convective mass transfer will not be covered in detail, and the 
student is referred to other texts.7,8,9 Mass transfer is a kinetic process, occurring in systems that are 
not in equilibrium.7 To better understand the thermodynamic basis of mass transfer, consider an 
isolated system consisting of two sections separated by an imaginary membrane (Fig. 11-2).7 At 
equilibrium, the temperatures, T, pressures, P, and chemical potentials, µ, of each of two species A and 

Dr. Murtadha Alshareifi e-Library

417



B are equal in the two sections. If this isolated system is unperturbed, it will remain at this 
thermodynamic equilibrium indefinitely. Suppose that the chemical potential of one of the species, A, is 
now increased in section I so that µA,I > µA,II. Because the chemical potential of A is related to its 
concentration, the ideality of the solution, and the temperature, this perturbation of the system can be 
achieved by increasing the concentration of A in section I. The system will respond to this perturbation 
by establishing a new thermodynamic equilibrium. Although it could reestablish the equilibrium by 
altering any of the three variables in the system (T, P, or µ), let us assume that it will reequilibrate the 
chemical potentials, leaving T and Punaffected. If the membrane separating the two sections will allow 
for the passage of species A, then equilibrium will be reestablished by the movement of species A from 
section I to section II until the chemical potentials of section I and II are once again equal. The 
movement of mass in response to a spatial gradient in chemical potential as a result of random 
molecular motion (i.e., Brownian motion) is called diffusion. Although the thermodynamic basis for 
diffusion is best described using chemical potentials, it is mathematically simpler to describe it using 
concentration, a more experimentally practical variable. 

 

Fig. 11-2. Isolated system consisting of two sections separated by an imaginary 

permeable membrane. At equilibrium, the temperatures (T), pressures (P), and 

chemical properties (µ) of each of the species in the system are equal in the two 

sections. (Modified from G. L. Amidon, P. I. Lee, and E. M. Topp (Eds.), Transport 

Processes in Pharmaceutical Systems, Marcel Dekker, New York, 2000, p. 13.)84 

Fick's Laws of Diffusion 
In 1855, Fick recognized that the mathematical equation of heat conduction developed by Fourier in 
1822 could be applied to mass transfer. These fundamental relationships govern diffusion processes in 
pharmaceutical systems. The amount, M, of material flowing through a unit cross section, S, of a barrier 
in unit time, t, is known as the flux, J: 

 
The flux, in turn, is proportional to the concentration gradient, dC/dx: 
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where D is the diffusion coefficient of a penetrant (also called thediffusant) in cm2/sec, C is its 
concentration in g/cm3, and x is the distance in centimeter of movement perpendicular to the surface of 
the barrier. In equation (11-1), the mass, M, is usually given in grams or moles, the barrier surface 
area, S, in cm2, and the time, t, in seconds. The units of J are g/cm2 sec. The SI units of kilogram and 
meter are sometimes used, and the time may be given in minutes, hours, or days. The negative sign of 
equation (11-2) signifies that diffusion occurs in a direction (the positive x direction) opposite to that of 
increasing concentration. That is, diffusion occurs in the direction of decreasing concentration of 
diffusant; thus, the flux is always a positive quantity. Diffusion will stop when the concentration gradient 
no longer exists (i.e., when dC/dx = 0). 
Although the diffusion coefficient, D, or diffusivity, as it is often called, appears to be a proportionality 
constant, it does not ordinarily remain constant. D is affected by concentration, temperature, pressure, 
solvent properties, and the chemical nature of the diffusant. Therefore, D is referred to more correctly as 
a diffusion coefficientrather than as a constant. Equation (11-2) is known as Fick's first law. 
Fick's Second Law 
Fick's second law of diffusion forms the basis for most mathematical models of diffusion processes. One 
often wants to examine the rate of change of diffusant concentration at a point in the system. An 
equation for mass transport that emphasizes the change in concentration with time at a definite location 
rather than the massdiffusing across a unit area of barrier in unit time is known as Fick's second law. 
This diffusion equation is derived as follows. The concentration, C, in a particular volume element (Figs. 
11-3 and 11-4) changes only as a result of net flow of diffusing molecules into or out of the region. A 
difference in concentration results from a difference in input and output. The concentration of diffusant in 
the volume element changes with time, that is, ΔC/Δt, as 
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the flux or amount diffusing changes with distance, ΔJ/Δx, in the xdirection, or* 

 

Fig. 11-3. Diffusion cell. The donor compartment contains diffusant at 

concentration C. 

 
Differentiating the first-law expression, equation (11-2), with respect to x, one obtains 
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Substituting ∂C/∂t from equation (11-3) into equation (11-4) results in Fick's second law, namely, 

 
Equation (11-5) represents diffusion only in the x direction. If one wishes to express concentration 
changes of diffusant in three dimensions, Fick's second law is written in the general form 

 
This expression is not usually needed in pharmaceutical problems of diffusion, however, because 
movement in one direction is sufficient to describe most cases. Fick's second law states that the change 
in concentration with time in a particular region is proportional to the change in the concentration 
gradient at that point in the system. 
Steady State 
An important condition in diffusion is that of the steady state. Fick's first law, equation (11-2), gives the 
flux (or rate of diffusion through unit area) in the steady state of flow. The second law refers in general to 
a change in concentration of diffusant with time at any distance, x (i.e., a nonsteady state of flow). 
Steady state can be described, however, in terms of the second law, equation (11-5). Consider the 
diffusant originally dissolved in a solvent in the left-hand compartment of the chamber shown in Figure 
11-3. Solvent alone is placed on the right-hand side of the barrier, and the solute or penetrant diffuses 
through the central barrier from solution to solvent side (donor to receptor compartment). In diffusion 
experiments, the solution in the receptor compartment is constantly removed and replaced with fresh 
solvent to keep the concentration at a low level. This is referred to as ―sink conditions,‖ the left 

compartment being the source and the right compartment the sink. 

 

Fig. 11-4. Concentration gradient of diffusant across the diaphragm of a diffusion 

cell. It is normal for the concentration curve to increase or decrease sharply at the 

boundaries of the barrier because, in general, C1 is different from Cd, and C2 is 

different from Cr. The concentration C1 would be equal to Cd, for example, only ifK -
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 C1/Cd had a value of unity. 

Originally, the diffusant concentration will fall in the left compartment and rise in the right compartment 
until the system comes to equilibrium, based on the rate of removal of diffusant from the sink and the 
nature of the barrier. When the system has been in existence a sufficient time, the concentration of 
diffusant in the solutions at the left and right of the barrier becomes constant with respect to time but 
obviously not the same in the two compartments. Then, within each diffusional slice perpendicular to the 
direction of flow, the rate of change of concentration, dC/dt, will be zero, and by Fick's second law, 

 
C is the concentration of the permeant in the barrier expressed in mass/cm3. Equation (11-
7) demonstrates that because D is not equal to zero, d2

C/dx
2 = 0. When a second derivative such as 

this equals zero, one concludes that there is no change in dC/dx. In other words, the concentration 
gradient across 
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the membrane, dC/dx, is constant, signifying a linear relationship between concentration, C, and 
distance, x. This is shown in Figure 11-4 (in which the distance x is equal to h) for drug diffusing from left 
to right in the cell of Figure 11-3. Concentration will not be rigidly constant, but rather is likely to vary 
slightly with time, and then dC/dtis not exactly zero. The conditions are referred to as a ―quasistationary‖ 

state, and little error is introduced by assuming steady state under these conditions. 
Diffusion Driving Forces 
There are numerous diffusional driving forces in pharmaceutical systems. Up to this point the discussion 
has focused on ―ordinary diffusion,‖ which is driven by a concentration gradient.8 However, other driving 
forces include pressure, temperature, and electric potential. Examples of driving forces in 
pharmaceutical systems are shown in Table 11-1. 
Diffusion Through Membranes 
Steady Diffusion Across a Thin Film and Diffusional Resistance 
Yu and Amidon18 concisely developed an analysis for steady diffusion across a thin film as it relates to 
diffusional resistance.Figure 11-4 depicts steady diffusion across a thin film of thickness h. In this case, 
the diffusion coefficient is considered constant because the solutions on both sides of the film are dilute. 
The concentrations on both sides of the film, Cd and Cr, are kept constant and both sides are well mixed. 
Diffusion occurs in the direction from the higher concentration (Cd) to the lower concentration (Cr). After 
sufficient time, steady state is achieved and the concentrations are constant at all points in the film as 
shown in Figure 11-5. At steady state (dC/dt = 0), Fick's second law becomes 

 
Key Concept 

Membranes and Barriers 

Flynn et al.19 differentiated between a membrane and a barrier. A membrane is a biologic or 
physical ―film‖ separating the phases, and material passes by passive, active, or facilitated 

transport across this film. The termbarrier applies in a more general sense to the region or 
regions that offer resistance to passage of a diffusing material, the total barrier being the sum 
of individual resistances of membranes. 
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Fig. 11-5. Diffusion across a thin film. The solute molecules diffuse from the well-

mixed higher concentration, C1, to the well-mixed lower concentration, C2. The 

concentrations on both sides of the film are kept constant. At steady state, the 

concentrations remain constant at all points in the film. The concentration profile 

inside the film is linear, and the flux is constant. 

Integrating equation (11-8) twice using the conditions that at z = 0, C= Cd and at z = h, C = Cr, yields the 
following equation: 

 
The term h/D is often called the diffusional resistance, denoted by R. The flux equation can then be 
written as 

 
Although resistance to diffusion is a fundamental scientific principle, permeability is a term that is used 
more often in the pharmaceutical sciences. Resistance and permeability are inversely related. In other 
words, the higher the resistance to diffusion, the lower is the permeability of the diffusing substance. In 
the next few sections the concepts of permeability and series resistance will be introduced. 
Permeability 
Fick adapted the two diffusion equations (11-2) and (11-5) to the transport of matter from the laws of 
heat conduction. Equations of heat conduction are found in the book by Carslaw.20 General solutions to 
these differential equations yield complex expressions; simple equations are used here for the most 
part, and worked examples are provided so that the reader should have no difficulty in following the 
discussion of dissolution and diffusion. 
If a membrane separates the two compartments of a diffusion cell of cross-sectional area S and 
thickness h, and if the concentrations in the membrane on the left (donor) and on the right (receptor) 
sides are C1 and C2, respectively (Figure 11-4), the first law of Fick can be written as 
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Table 11-1 Driving Forces in Pharmaceutical Systems 
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Driving Force Example Description References 

Concentration Passive 

diffusion 

Passive diffusion is a 

process of mass transfer 

of individual molecules 

of a substrate brought 

about by random 

molecular motion and 

associated with a 

concentration gradient 

3 

  Drug 

dissolution 

Drug ―dissolution‖ 

occurs when a tablet is 

introduced into a 

solution and is usually 

accompanied by 

disintegration and 

deaggregation of the 

solid matrix followed by 

drug diffusion from the 

remaining small particles 

10 

Pressure Osmotic drug 

release 

Osmotic drug release 

systems utilize osmotic 

pressure as the driving 

force for controlled 

delivery of drugs; a 

simple osmotic pump 

consists of an osmotic 

core (containing drug 

with or without an 

osmotic agent) coated 

with a semipermeable 

membrane; the 

semipermeable 

membrane has an orifice 

for drug release from the 

pump; the dosage form, 

after contacting with the 

aqueous fluids, imbibes 

water at a rate 

determined by the fluid 

permeability of the 

membrane and osmotic 

pressure of core 

formulation; this osmotic 

11 

Dr. Murtadha Alshareifi e-Library

423



imbibition of water 

results in high 

hydrostatic pressure 

inside the pump, which 

causes the flow of the 

drug solution through 

the delivery orifice 

  Pressure-driven 

jets for drug 

delivery 

Pressure-driven jets are 

used for drug delivery; a 

jet injector produces a 

high-velocity jet (>100 

m/sec) that penetrates 

the skin and delivers 

drugs subcutaneously, 

intradermally, or 

intramuscularly without 

the use of a needle; the 

mechanism for the 

generation of high-

velocity jets includes 

either a compression 

spring or compressed air 

12 

Temperature Lyophilization Lyophilization (freeze-

drying) of a frozen 

aqueous solution 

containing a drug and a 

inner-matrix building 

substance involves the 

simultaneous change in 

receding boundary with 

time, phase transition at 

the ice–vapor interface 

governed by the 

Clausius–Clapeyron 

pressure–temperature 

relationship, and water 

vapor diffusion across 

the pore path length of 

the dry matrix under low 

temperature and vacuum 

conditions 

13 
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  Microwave-

assisted 

extraction 

Microwave-assisted 

extraction (MAE) is a 

process of using 

microwave energy to 

heat solvents in contact 

with a sample in order to 

partition analytes from 

the sample matrix into 

the solvent; the ability to 

rapidly heat the sample 

solvent mixture is 

inherent to MAE and is 

the main advantage of 

this technique; by using 

closed vessels, the 

extraction can be 

performed at elevated 

temperatures, 

accelerating the mass 

transfer of target 

compounds from the 

sample matrix 

14 

Electrical 

potential 

Iontophoretic 

dermal drug 

delivery 

Iontophoresis is used to 

enhance transdermal 

delivery of drugs by 

applying a small current 

through a reservoir that 

contains ionized drugs; 

one electrode (positive 

electrode to deliver 

positively charged ions 

and negative electrode to 

deliver negatively 

charged ions) is placed 

between the drug 

reservoir and the skin; 

the other electrode with 

opposite charge is placed 

a short distance away to 

complete the circuit, and 

the electrodes are 

connected to a power 

supply; when the current 

flows, charged ions are 

transported across the 

15, 16 
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skin through a pore 

  Electrophoresis Electrophoresis involves 

the movement of 

charged particles 

through a liquid under 

the influence of an 

applied potential 

difference; an 

electrophoresis cell fitted 

with two electrodes 

contains dispersion; 

when a potential is 

applied across the 

electrodes, the particles 

migrate to the oppositely 

charged electrode; 

capillary electrophoresis 

is widely used as an 

analytical tool in the 

pharmaceutical sciences 

17 
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where (C1 - C2)/h approximates dC/dx. The gradient (C1 - C2)/hwithin the diaphragm must be assumed 
to be constant for a quasistationary state to exist. Equation (11-11) presumes that the aqueous 
boundary layers (so-called static or unstirred aqueous layers) on both sides of the membrane do not 
significantly affect the total transport process. The potential influence of multiple resistances on diffusion 
such as those introduced by aqueous boundary layers (i.e., multilayer diffusion) is covered later in this 
chapter. 
The concentrations C1 and C2 within the membrane ordinarily are not known but can be replaced by the 
partition coefficient multiplied by the concentration Cd on the donor side or Cr on the receiver side, as 
follows. The distribution or partition coefficient, K, is given by 

 
Hence, 

 
and, if sink conditions hold in the receptor compartment, Cr[congruent] 0, 

 
where 

 
It is noteworthy that the permeability coefficient, also called the permeability, P, has units of linear 
velocity.* 
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In some cases, it is not possible to determine D, K, or hindependently and thereby to calculate P. It is a 
relatively simple matter, however, to measure the rate of barrier permeation and to obtain the surface 
area, S, and concentration, Cd, in the donor phase and the amount of permeant, M, in the receiving sink. 
One can then obtain P from the slope of a linear plot of M versus t: 

 
provided that Cd remains relatively constant throughout time. If Cdchanges appreciably with time, one 
recognizes that Cd = Md/Vd, the amount of drug in the donor phase divided by the donor phase volume, 
and then one obtains P from the slope of log Cd versus t: 

 
Example 11-1 

Simple Drug Diffusion Through a Membrane 

A newly synthesized steroid is allowed to pass through a siloxane membrane having a cross-
sectional area, S, of 10.36 cm2 and a thickness, h, of 0.085 cm in a diffusion cell at 25°C. 
From the horizontal intercept of a plot of Q = M/Sversus t, the lag time, tL, is found to be 47.5 
min. The original concentration C0 is 0.003 mmole/cm3. The amount of steroid passing 
through the membrane in 4.0 hr is 3.65 × 10-3 mmole. 

a. Calculate the parameter DK and the permeability, P. We have 

 

b. Using the lag time tL = h2/6D, calculate the diffusion coefficient. We have 

 

or 

 

c. Combining the permeability, Equation (11-15), with the value of D from (b), calculate 
the partition coefficient, K. We have 

 

Partition coefficients have already been discussed in the chapter on solubility. 

Examples of Diffusion and Permeability Coefficients 
Diffusivity is a fundamental material property of the system and is dependent on the solute, the 
temperature, and the medium through which diffusion occurs.20 Gas molecules diffuse rapidly through 
air and other gases. Diffusivities in liquids are smaller, and in solids still smaller. Gas molecules pass 
slowly and with great difficulty through metal sheets and crystalline barriers. Diffusivities are a function 
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of the molecular structure of the diffusant as well as the barrier material. Diffusion coefficients for gases 
and liquids passing through water, chloroform, and polymeric materials are given inTable 11-2. 
Approximate diffusion coefficients and permeabilities for drugs passing from a solvent in which they are 
dissolved (water, unless otherwise specified) through natural and synthetic membranes are given 
in Table 11-3. In the chapter on colloids, we will see that the molecular weight and the radius of a 
spherical protein can be obtained from knowledge of its diffusivity. 
Multilayer Diffusion 
There are many examples of multilayer diffusion in the pharmaceutical sciences. Diffusion across 
biologic barriers may involve a number of layers consisting of separate membranes, cell contents, and 
fluids of distribution. The passage 
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of gaseous or liquid solutes through the walls of containers and plastic packaging materials is also 
frequently treated as a case of multilayer diffusion. Finally, membrane permeation studies using Caco-2 
or MDCK cell monolayers on permeable supports such as polycarbonate filters are other common 
examples of multilayer diffusion. 

Table 11-2 Diffusion Coefficients of Compounds in Various Media* 

Diffusant 

Partial Molar 

Volume 

(cm
3
/mole) 

D × 

10
6
(cm

2
/sec) 

Medium or Barrier 

(Temperature, °C) 

Ethanol 40.9 12.4 Water (25) 

n-Pentanol 89.5 8.8 Water (25) 

Formamide 26 17.2 Water (25) 

Glycine 42.9 10.6 Water (25) 

Sodium lauryl 

sulfate 

235 6.2 Water (25) 

Glucose 116 6.8 Water (25) 

Hexane 103 15.0 Chloroform (25) 

Hexadecane 265 7.8 Chloroform (25) 

Methanol 25 26.1 Chloroform (25) 

Acetic acid 64 14.2 Chloroform (25) 
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dimer 

Methane 22.4 1.45 Natural rubber (40) 

n-Pentane — 6.9 Silicone rubber (50) 

Neopentane — 0.002 Ethycellulose (50) 

*From G. L. Flynn, S. H. Yalkowsky, and T. J. Roseman, J. Pharm. 

Sci. 63, 507, 1974. With permission. 

 

Higuchi32 considered the passage of a topically applied drug from its vehicle through the lipoidal and 
lower hydrous layers of the skin. Two barriers in series, the lipoidal and the hydrous skin layers of 
thickness h1 and h2, respectively, are shown in Figure 11-6. The resistance, R, to diffusion in each layer 
is equal to the reciprocal of the permeability coefficient, Pi, of that particular layer. Permeability,P, was 
defined earlier [equation (11-15)] as the diffusion coefficient,D, multiplied by the partition coefficient, K, 
and divided by the membrane thickness, h. For a particular lamina i, 

 

Fig. 11-6. Passage of a drug on the skin's surface through a lipid layer, h1, and a 

hydrous layer, h2, and into the deeper layers of the dermis. The curve of concentration 

against the distance changes sharply at the two boundaries because the two partition 

coefficients have values other than unity. 
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and 

 
where Ri is the resistance to diffusion. The total resistance, R, is the reciprocal of the total 
permeability, P, and is additive for a series of layers. It is written in general as 

 
 

 
where Ki is the distribution coefficient for layer i relative to the next corresponding layer, i + 1, of the 
system.19 The total permeability for the two-ply model of the skin is obtained by taking the reciprocal of 
equation (11–20c), expressed in terms of two layers, to yield 

 
The lag time to steady state for a two-layer system is 

 
When the partition coefficients, Ki, of the two layers are essentially the same and one of the h/D terms, 
say 1, is much larger than the other, however, the time lag equation for the bilayer skin system reduces 
to the simple time lag expression 
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Table 11-3 Drug Diffusion and Permeability Coefficients* 

Drug 

Membrane 

Diffusion 

Coefficient 

(cm
2
/sec) 

Membrane 

Permeability 

Coefficient 

(cm/sec) Pathway References 

Amiloride — 1.63 × 

10
-4

 

Absorption 

from 

human 

jejunum 

21 

Antipyrine — 4.5 × 10
-

4
 

Absorption 

from 

human 

jejunum 

22 

Atenolol — 0.2 × 10
-

4
 

Absorption 

from 

human 

jejunum 

22 
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Benzoic acid — 36.6 × 

10
-4

 

Absorption 

from rat 

jejunum 

23 

Carbamazepine — 4.3 × 10
-

4
 

Absorption 

from 

human 

jejunum 

22 

Chloramphenicol — 1.87 × 

10
-6

 

Through 

mouse skin 

24 

Cyclosporin A 4.3 × 

10
-6

 

— Diffusion 

across 

cellulose 

membrane 

25 

Desipramine·HCl — 4.4 × 10
-

4
 

Absorption 

from 

human 

jejunum 

22 

Enalaprilat — 0.2 × 10
-

4
 

Absorption 

from 

human 

jejunum 

22 

Estrone — 20.7 × 

10
-4

 

Absorption 

from rat 

jejunum 

23 

Furosemide — 0.05 × 

10
-4

 

Absorption 

from 

human 

jejunum 

22 

Glucosamine 9.0 × 

10
-6

 

— Diffusion 

across 

cellulose 

membrane 

25 
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Glucuronic acid 9.0 × 

10
-6

 

— Diffusion 

across 

cellulose 

membrane 

25 

Hydrochlorothiazide — 0.04 × 

10
-4

 

Absorption 

from 

human 

jejunum 

22 

Hydrocortisone — 0.56 × 

10
-4

 

Absorption 

from rat 

jejunum 

23 

  — 5.8 × 10
-

5
 

Absorption 

from rabbit 

vaginal 

tract 

26 

Ketoprofen 2.1 × 

10
-3

 

— Diffusion 

across 

abdominal 

skin from a 

hairless 

male rat 

27 

Ketoprofen — 8.4 × 10
-

4
 

Absorption 

from 

human 

jejunum 

22 

Mannitol 8.8 × 

10
-6

 

— Diffusion 

across 

cellulose 

membrane 

25 

Mannitol — 0.9 × 10
-

4
 

Diffusion 

across 

excised 

bovine 

nasal 

28 
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mucosa 

Metoprolol·
1
/2tartrate — 1.3 × 10

-

4
 

Absorption 

from 

human 

jejunum 

22 

Naproxen — 8.3 × 10
-

4
 

Absorption 

from 

human 

jejunum 

22 

Octanol — 12 × 10
-4

 Absorption 

from rat 

jejunum 

23 

PEG 400 — 0.58 × 

10
-4

 

Absorption 

from 

human 

jejunum 

29 

Piroxicam — 7.8 × 10
-

4
 

Absorption 

from 

human 

jejunum 

22 

Progesterone — 7 × 10
-4

 Absorption 

from rat 

jejunum 

23 

Propranolol — 3.8 × 10
-

4
 

Absorption 

from 

human 

jejunum 

29 

Salycylates 1.69 × 

10
-6

 

— Absorption 

from rabbit 

vaginal 

tract 

30 
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Salycylic acid — 10.4 × 

10
-4

 

Absorption 

from rat 

jejunum 

23 

Terbutaline·
1
/2sulfate — 0.3 × 10

-

4
 

Absorption 

from 

human 

jejunum 

22 

Testosterone 7.6 × 

10
-6

 

— Diffusion 

across 

cellulose 

membrane 

25 

Testosterone — 20 × 10
-4

 Absorption 

from rat 

jejunum 

23 

Verapamil·HCl — 6.7 × 10
-

4
 

Absorption 

from 

human 

jejunum 

22 

Water 2.8 × 

10
-10

 

2.78 × 

10
-7

 

Diffusion 

into human 

skin layers 

31 

*All at 37°C. 

 

Example 11-2 

Series Resistances in Cell Culture Studies 

Cell culture models are increasingly used to study drug transport; however, in many instances 
only the effective permeability, Peff, is calculated. For very hydrophobic drugs, interactions 
with the filter substratum or the aqueous boundary layer (ABL) may provide more resistance 
to drug transport than the cell monolayer itself. Because the goal of the study is to assess the 
cell transport properties of drugs,Peff may be inherently biased due to drug interactions with 
the substratum or ABL. Reporting Peff is of value only if the monolayer is the rate-limiting 
transport barrier. Therefore, prior to reporting the Peff of a compound, the effect of each of 
these barriers should be evaluated to ensure that the permeability relates to that across the 
cell monolayer. In cell culture systems the resistance to drug transport, Peff, is composed of a 
series of resistances including those of the ABL (Raq), the cell monolayer (Rmono), and the filter 
resistance (Rf) (Fig. 11-7). Total resistance is additive for a series of layers: 
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This can be written in terms of the reciprocal of the total permeability: 

 
where Peff is the measured effective permeability, Paq is the total permeability of the ABL 
(adjacent to both the apical surface of the cell monolayer and the free surface of the filter), 
and Pf is the permeability of the supporting microporous filter. 

 

Fig. 11-7. Diffusion of drug across the aqueous boundary layer (ABL) and cell 

monolayer (M) in a cell culture system. 

Permeability across the filter, Pf, can be obtained experimentally by measuring the Peff across 
blank filters: 

 
Because Paq is dependent on the flow rate, 

 
(where k is a hybrid constant that takes into account the diffusivity of the compound, 
kinematic viscosity, and geometric factors of the chamber; V is the stirring rate in mL/min; 
and n is an exponent that varies between 0 and 1 depending on the hydrodynamic conditions 
in the diffusion chamber), Pf can be calculated using nonlinear regression by 
obtaining Peff across blank filters at various flow rates. 
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Similarly, 1/Pf + 1/Pmono can be determined by measuring the Peff through the cell monolayer 
at various flow rates and by using nonlinear regression and the equation. 

 
The implicit assumption of this method is that each resistance in series is independent of the 
other barriers. Therefore, Pmono is calculated by difference, using the independently 
determined Pf. Because Paq is independent of the presence of the monolayer, Pmono can be 
calculated as follows: 

 
Because the contributions of Rf and Raq vary depending on the nature of the drug, it is 
important to correct for these biases by reporting Pmono. The deviation 
between Pmono andPeff becomes more significant if the flow rate is low (i.e.,Raq is high) or if the 
filter has low effective porosity (i.e., Rfis high). In addition, the permeability of the drug also 
plays a major role such that the deviation between Pmono and Peffbecomes more significant for 
highly permeable compounds.33 

P.233 
 
 
Membrane Control and Diffusion Layer Control 
A multilayer case of special importance is that of a membrane between two aqueous phases with 
stationary or stagnant solvent layers in contact with the donor and receptor sides of the membrane (Fig. 
11-8). 
The permeability of the total barrier, consisting of the membrane and two static aqueous diffusion layers, 
is 

 
This expression is analogous to equation (11-21). In equation (11-30), however, only one partition 
coefficient, K, appears that giving the ratio of concentrations of the drug in the membrane and in the 
aqueous solvent, K = C3/C4 = C3/C2. The flux J through this three-ply barrier is simply equal to the 
permeability, P, multiplied by the concentration gradient, (C1 - C5), that is, J = P(C1 - C5). The receptor 
serves as a sink (i.e., C5 = 0), and the donor concentration C1 is assumed to be constant, providing a 
steady-state flux.34 We thus have 

 
In equations (11-30) and (11-31), Dm and Da are membrane and aqueous solvent diffusivities, hm is the 
membrane thickness, and hais the thickness of the aqueous diffusion layer, as shown in Figure 11-
8. M is the amount of permeant reaching the receptor, and S is the cross-sectional area of the barrier. It 
is important to realize thatha is physically influenced by the hydrodynamics in the bulk aqueous phases. 
The higher the degree of stirring, the thinner is the stagnant aqueous 
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diffusion layer; the slower the stirring, the thicker is this aqueous layer. 
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Fig. 11-8. Schematic of a multilayer (three-ply) barrier. The membrane is found 

between two static aqueous diffusion layers. (From G. L. Flynn, O. S. Carpenter, and 

S. H. Yalkowsky, J. Pharm. Sci. 61, 313, 1972. With permission.) 

Equation (11-31) is the starting point for considering two important cases of multilayer diffusion, namely, 
diffusion under membrane control and diffusion under aqueous diffusion layer control. 
Membrane Control 
When the membrane resistance to diffusion is much greater than the resistances of the aqueous 
diffusion layers, that is, Rm is greater than Ra by a factor of at least 10, or correspondingly, Pm is much 
less than Pa, the rate-determining step (slowest step) is diffusion across the membrane. This is reflected 
in equation (11-31) whenhmDa is much greater than 2haDm. Thus, equation (11-31) reduces to 

 
Equation (11-32) represents the simplest case of membrane control of flux. 
Aqueous Diffusion Layer Control 
When 2haKDm is much greater than hmDa, equation (11-31)becomes 

 
and it is now said that the rate-determining barriers to diffusional transport are the stagnant aqueous 
diffusion layers. This statement means that the concentration gradient that controls the flux now resides 
in the aqueous diffusion layers rather than in the membrane. From the relationship 2haKDm ≫ hmDa, it is 
observed that membrane control shifts to diffusion layer control when the partition coefficient K becomes 
sufficiently large. 
Example 11-3 

Transfer from Membrane to Diffusion-Layer Control 

Flynn and Yalkowsky34 demonstrated a transfer from membrane to diffusion-layer control in a 
homologous series of n-alkyl p-aminobenzoates (PABA esters). The concentration gradient is 
almost entirely within the silicone rubber membrane for the short-chain PABA esters. As the 
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alkyl chain of the ester is lengthened proceeding from butyl to pentyl to hexyl, the 
concentration no longer drops across the membrane. Instead, the gradient is now found in the 
aqueous diffusion layers, and diffusion-layer control takes over as the dominant factor in the 
permeation process. The steady-state flux, J, for hexyl p-aminobenzoate was found to be 
1.60 × 10-7 mmole/cm2 sec. Da is 6.0 × 10-6 cm2/sec and the concentration of the PABA 
ester, C, is 1.0 mmole/liter. The system is in diffusion-layer control, so equation (11-33) 
applies. Calculate the thickness of the static diffusion layer, ha. We have 

 
One observes from equations (11-32) and (11-33) that, under sink conditions, steady-state 
flux is proportional to concentration, C, in the donor phase whether the flux-determining 
mechanism is under membrane or diffusion-layer control. Equation (11-33) shows that the flux 
is independent of membrane thickness, hm, and other properties of the membrane when 
under static diffusion layer control. 

 

Fig. 11-9. Steady-state flux of a series of p-aminobenzoic acid esters. Maximum flux 

occurs between the esters having three and four carbons and is due to a change from 

membrane to diffusion-layer control, as explained in the text. (From G. L. Flynn and 

S. H. Yalkowsky, J. Pharm. Sci. 61, 838, 1972. With permission.) 

The maximum flux obtained in a membrane preparation depends on the solubility, or limiting 
concentration, of the PABA homologue. The maximum flux can therefore be obtained using 
equation (11-31) in which C is replaced byCs, the solubility of the permeating compound: 

 
The maximum steady-state flux, Jmax, for saturated solutions of the PABA esters is plotted 
against the ester chain length in Figure 11-9.34 The plot exhibits peak flux between n = 3 
and n = 4 carbons, that is, between propyl and butyl p-aminobenzoates. The peak in Figure 
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11-9suggests in part the solubility characteristics of the PABA esters but primarily reflects the 
change from membrane to static diffusion-layer control of flux. For the methyl, ethyl, and 
propyl esters, the concentration gradient in the membrane gradually decreases and shifts, in 
the case of the longer-chain esters, to a concentration gradient in the diffusion layers. 
By using a well-characterized membrane such as siloxane of known thickness and a 
homologous series of PABA esters, Flynn and Yalkowsky34 were able to study the various 
factors: solubility, partition coefficient, diffusivity, diffusion lag time, and the effects of 
membrane and diffusion-layer control. From such carefully designed and conducted studies, it 
is possible to predict the roles played by various physicochemical factors as they relate to 
diffusion of drugs through plastic containers, influence release rates from sustained-delivery 
forms, and influence absorption and excretion processes for drugs distributed in the body. 
Lag Time Under Diffusion-Layer Control 

Flynn et al.19 showed that the lag time for ultrathin membranes under conditions of diffusion-
layer control can be represented as 

 

 

Fig. 11-10. Change in lag time of p-aminobenzoic acid esters with alkyl chain length. 

(From G. L. Flynn and S. H. Yalkowsky, J. Pharm. Sci. 61, 838, 1972. With 

permission.) 

where ∑ ha is the sum of the thicknesses of the aqueous diffusion layers on the donor and 
receptor sides of the membrane. The correspondence between tL in equation (11-35) with that 
for systems under membrane control, equation (11-32), is evident. The lag time 
for thick membranes operating under diffusion layer control is 

 
When the diffusion layers, ha1 and ha2, are of the same thickness, the lag time reduces to 
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The partition coefficient, which was shown earlier to be instrumental in converting the flux 
from membrane to diffusion-layer control, now appears in the numerator of the lag-time 
equation. A large K signifies lipophilicity of the penetrating drug species. As one ascends a 
homologous series of PABA esters, for example, the larger lipophilicity increases the onset 
time for steady-state behavior; in other words, lengthening of the ester molecule increases the 
lag time once the system is in diffusion-layer control. The sharp increase in lag time for PABA 
esters with alkyl chain length beyond C4 is shown in Figure 11-10.34 
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Procedures and Apparatus For Assessing Drug Diffusion 
A number of experimental methods and diffusion chambers have been reported in the literature. 
Examples of those used mainly in pharmaceutical and biologic transport studies are introduced here. 

 

Fig. 11-11. Simple diffusion cell. (From M. G. Karth, W. I. Higuchi, and J. L. Fox, J. 

Pharm. Sci. 74, 612, 1985. With permission.) 

Diffusion chambers of simple construction, such as the one reported by Karth et al.35 (Fig. 11-11), are 
probably best for diffusion work. They are made of glass, clear plastic, or polymeric materials, are easy 
to assemble and clean, and allow visibility of the liquids and, if included, a rotating stirrer. They may be 
thermostated and lend themselves to automatic sample collection and assay. Typically, the donor 
chamber is filled with drug solution. Samples are collected from the receiver compartment and 
subsequently assayed using a variety of analytical methods such as liquid scintillation counting or high-
performance liquid chromatography with a variety of detectors (e.g., ultraviolet, fluorescence, or mass 
spectrometry). Experiments may be run for hours under these controlled conditions. 
Biber and Rhodes36 constructed a Plexiglas three-compartment diffusion cell for use with either 
synthetic or isolated biologic membranes. The drug was allowed to diffuse from the two outer donor 
compartments in a central receptor chamber. Results were reproducible and compared favorably with 
those from other workers. The three-compartment design created greater membrane surface exposure 
and improved analytic sensitivity. 
The permeation through plastic film of water vapor and of aromatic organic compounds from aqueous 
solution can be investigated in two-chamber glass cells similar in design to those used for studying drug 
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solutions in general. Nasim et al.37 reported on the permeation of 19 aromatic compounds from 
aqueous solution through polyethylene films. Higuchi and Aguiar38 studied the permeability of water 
vapor through enteric coating materials, using a glass diffusion cell and a McLeod gauge to measure 
changes in pressure across the film. 
The sorption of gases and vapors can be determined by use of a microbalance enclosed in a 
temperature-controlled and evacuated vessel that is capable of weighing within a sensitivity of ± 2 × 10-

6 g. The gas or vapor is introduced at controlled pressures into the glass chamber containing the 
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polymer or biologic film of known dimensions suspended on one arm of the balance. The mass of 
diffusant sorbed at various pressures by the film is recorded directly.39 The rate of approach to 
equilibrium sorption permits easy calculation of the diffusion coefficients for gases and vapors. 

 

Fig. 11-12. Diffusion cell for permeation through stripped skin layers. The permeant 

may be in the form of a gas, liquid, or gel. Key: A, glass stopper; B, glass chamber; C, 

aluminum collar;D, membrane and sample holder. (From D. E. Wurster, J. A. 

Ostrenga, and L. E. Matheson, Jr., J. Pharm. Sci. 68, 1406, 1410, 1979. With 

permission.) 

In studying percutaneous absorption, animal or human skin, ordinarily obtained by autopsy, is 
employed. Scheuplein31described a cell for skin penetration experiments made of Pyrex and consisting 
of two halves, a donor and a receptor chamber, separated by a sample of skin supported on a 
perforated plate and securely clamped in place. The liquid in the receptor was stirred by a Teflon-coated 
bar magnet. The apparatus was submerged in a constant-temperature bath, and samples were removed 
periodically and assayed by appropriate means. For compounds such as steroids, penetration was slow, 
and radioactive methods were found to be necessary to determine the low concentrations. 
Wurster et al.40 developed a permeability cell to study the diffusion through stratum corneum (stripped 
from the human forearm) of various permeants, including gases, liquids, and gels. The permeability cell 
is shown in Figure 11-12. During diffusion experiments it was kept at constant temperature and gently 
shaken in the plane of the membrane. Samples were withdrawn from the receptor chamber at definite 
times and analyzed for the permeant. 
The kinetics and equilibria of liquid and solute absorption into plastics, skin, and chemical and other 
biologic materials can be determined simply by placing sections of the film in a constant-temperature 
bath of the pure liquid or solution. The sections are retrieved at various times, excess liquid is removed 
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with absorbant tissue, and the film samples are accurately weighed in tared weighing bottles. A 
radioactive-counting technique can also be used with this method to analyze for drug remaining in 
solution and, by difference, the amount sorbed into the film. 
Partition coefficients are determined simply by equilibrating the drug between two immiscible solvents in 
a suitable vessel at a constant temperature and removing samples from both phases, if possible, for 
analysis.41 Equilibrium solubilities of drug solutes are also required in diffusion studies, and these are 
obtained as described earlier (Chapter 8). 
Addicks et al.42 described a flowthrough cell and Addicks et al.43designed a cell that yields results 
more comparable to the diffusion of drugs under clinical conditions. Grass and Sweetana44 proposed a 
side-by-side acrylic diffusion cell for studying tissue permeation. In a later paper, Hidalgo et 
al.45 developed and validated a similar diffusion chamber for studying permeation through cultured cell 
monolayers. These chambers (Fig. 11-13 a and b), derived from the Ussing chamber, have the 
advantage of employing laminar flow conditions across the tissue or cell surface allowing for an 
assessment of the aqueous boundary layer and calculation of intrinsic membrane drug permeability. 
Biologic Diffusion 
Example 11-4 

Intestinal Drug Absorption and Secretion 

The apparent permeability, Papp, of Taxol across a monolayer of Caco-2 cells is 4.4 × 10-

6 cm/sec in the apical to basolateral direction (i.e., absorptive direction) and is 31.8 × 10-

6 cm/sec from basolateral to apical direction (i.e., secretory direction). Assuming that both 
absorptive and secretory drug transport occurs under sink conditions (Cr ≪Cd), what is the 
amount of Taxol absorbed through the intestinal wall by 2 hr after administering an oral dose? 
Assume that the Taxol concentration in the intestinal fluid is 0.1 mg/mL, and following 
intravenous administration, the initial Taxol concentration in the plasma is 10 µg/mL. How 
much Taxol will be secreted into the feces 2 hr after dosing? Assume that the effective area 
for intestinal absorption and secretion is 1 m.2,46,47 We have 

 
For intestinal absorption, 

 
For intestinal secretion, 

 

Gastrointestinal Absorption of Drugs 
Drugs pass through living membranes according to two main classes of transport, passive and carrier 
mediated. Passive transfer involves a simple diffusion driven by differences in drug concentration on the 
two sides of the membrane. In intestinal absorption, for example, the drug travels in most cases by 
passive transport from a region of high concentration 
P.237 
 
in the gastrointestinal tract to a region of low concentration in the systemic circulation. Given the 
instantaneous dilution of absorbed drug once it reaches the bloodstream, sink conditions are essentially 
maintained at all times. 
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Fig. 11-13. (a) Sweetana/Grass diffusion cell. Tissue is mounted between acrylic half-

cells. Buffer is circulated by gas lift (O2/CO2) at the inlet and flows in the direction of 

arrows, parallel to the tissue surface. Temperature control is maintained by a heating 

block. 

Carrier-mediated transport can be classified as active transport (i.e., requires an energy source) or as 
facilitated diffusion (i.e., does not depend on an energy source such as adenosine triphosphate). In 
active transport the drug can proceed from regions of lowconcentration to regions of high concentration 
through the ―pumping action‖ of these biologic transport systems. Facilitative-diffusive carrier proteins 
cannot transport drugs or nutrients ―uphill‖ or against a concentration gradient. We will make limited use 

of specialized carrier systems in this chapter and will concentrate attention mainly on passive diffusion. 
Many drugs are weakly acidic or basic, and the ionic character of the drug and the biologic 
compartments and membranes have an important influence on the transfer process. From the 
Henderson–Hasselbalch relationship for a weak acid, 

 
where [HA] is the concentration of the nonionized weak acid and [A-] is the concentration of its conjugate 
base. For a weak base, the equation is 

 
where [B] is the concentration of the base and [BH+] that of its conjugate acid. pKa is the dissociation 
exponent for the weak acid in each case. For the weak base, pKa = pKw - pKb. 
The percentage ionization of a weak acid is the ratio of concentration of drug in the ionic form, I, to total 
concentration of drug in ionic, I, and undissociated, U, form, multiplied by 100: 

 
Therefore, the Henderson–Hasselbalch equation for weak acids can be written as 

 
or 

 
Substituting U into the equation for percentage ionization yields 

 
Similarly, for a weak molecular base, 
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Table 11-4 Percentage Sulfisoxazole, pKa[congruent] 5.0, Dissociated and 

Undissociated at pH Values 
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pH Percentage Dissociated Percentage Undissociated 

2.0 0.100 99.900 

4.0 9.091 90.909 

5.0 50.000 50.000 

6.0 90.909 9.091 

8.0 99.900 0.100 

10.0 99.999 0.001 

 

In equation (11-41), pKa refers to the weak acid, whereas in (11-42), pKa signifies the acid that is 
conjugate to the weak base. 
The percentage ionization at various pH values of the weak acid sulfisoxazole, pKa [congruent] 5.0, is 
given in Table 11-4. At a point at which the pH is equal to the drug's pKa, equal amounts are present in 
the ionic and molecular forms. 
The molecular diffusion of drugs across the intestinal mucosa was long thought to be the major pathway 
for drug absorption into the body. Drug absorption by means of diffusion through intestinal cells (i.e., 
enterocytes) or in between those cells (i.e., paracellular diffusion) is governed by the state of ionization 
of the drug, its solubility and concentration in the intestine, and its membrane permeability. 
pH-Partition Hypothesis 
Biologic membranes are predominantly lipophilic, and drugs penetrate these barriers mainly in their 
molecular, undissociated form. Brodie and his associates48 were the first workers to apply the principle, 
known as the pH-partition hypothesis, that drugs are absorbed from the gastrointestinal tract by passive 
diffusion depending on the fraction of undissociated drug at the pH of the intestines. It is reasoned that 
the partition coefficient between membranes and gastrointestinal fluids is large for the undissociated 
drug species and favors transport of the molecular form from the intestine through the mucosal wall and 
into the systemic circulation. 
The pH-partition principle has been tested in a large number of in vitro and in vivo studies, and it has 
been found to be only partly applicable in real biologic systems.48,49 In many cases, the ionized as well 
as the un-ionized form partitions into, and is appreciably transported across, lipophilic membranes. It is 
found for some drugs, such as sulfathiazole, that the in vitro permeability coefficient for the ionized form 
may actually exceed that for the molecular form of the drug. 
Transport of a drug by diffusion across a membrane such as the gastrointestinal mucosa is governed by 
Fick's law: 

 
where M is the amount of drug in the gut compartment at time t, Dmis diffusivity in the intestinal 
membrane, S is the area of the membrane, K is the partition coefficient between membrane and 
aqueous medium in the intestine, h is the membrane thickness, Cgis the concentration of drug in the 
intestinal compartment, and Cp is the drug concentration in the plasma compartment at time t. The gut 
compartment is kept at a high concentration and has a large enough volume relative to the plasma 
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compartment so as to make Cg a constant. Because Cp is relatively small, it can be omitted. 
Equation(11-43) then becomes 

 
The left-hand side of (11-44) is converted into concentration units, C(mass/unit volume) × V (volume). 
On the right-hand side of (11-44), the diffusion constant, membrane area, partition coefficient, and 
membrane thickness are combined to yield a permeability coefficient. These changes lead to the pair of 
equations 

 

 
where Cg and Pg of equation (11-45) are the concentration and permeability coefficient, respectively, for 
drug passage from intestine to plasma. In equation (11-46), Cp and Pp are corresponding terms for the 
reverse passage of drug from plasma to intestine. Because the gut volume, V, and the gut 
concentration, Cg, are constant, dividing (11-45) by (11-46) yields 

 
Equation (11-47) demonstrates that the ratio of absorption rates in the intestine-to-plasma and the 
plasma-to-intestine directions equals the ratio of permeability coefficients. 
The study by Turner et al.49 showed that undissociated drugs pass freely through the intestinal 
membrane in either direction by simple diffusion, in agreement with the pH-partition principle. Drugs that 
are partly ionized show an increased permeability ratio, indicating favored penetration from intestine to 
plasma. Completely ionized drugs, either negatively or positively charged, show permeability 
ratios Pg/Pp of about 1.3, that is, a greater passage from gut to plasma than from plasma to gut. This 
suggests that penetration of ions is associated with sodium ion flux. Their forward passage, Pg, is 
apparently due to a coupling of the ions with sodium transport, which mechanism then ferries the drug 
ions across the membrane, in conflict with the simple pH-partition hypothesis. 
Colaizzi and Klink50 investigated the pH-partition behavior of the tetracyclines, a class of drugs having 
three separate pKa values, which complicates the principles of pH partition. The lipid solubility and 
relative amounts of the ionic forms of a tetracycline at physiologic pH may have a bearing on the 
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biologic activity of the various tetracycline analogues used in clinical practice. 
Modification of the pH-Partition Principle 
Ho and coworkers51 also showed that the pH-partition principle is only approximate, assuming as it 
does that drugs are absorbed through the intestinal mucosa in the nondissociated form alone. 
Absorption of relatively small ionic and nonionic species through the aqueous pores and the aqueous 
diffusion layer in front of the membrane must be considered.23 Other complicating factors, such as 
metabolism of the drug in the gastrointestinal membrane, absorption and secretion by carrier-mediated 
processes, absorption in micellar form, and enterohepatic circulatory effects, must also be accounted for 
in any model that is proposed to reflect in vivo processes. 
Ho, Higuchi, and their associates23 investigated the gastrointestinal absorption of drugs using 
diffusional principles and a knowledge of the physiologic factors involved. They employed an in situ 
preparation, as shown in Figure 11-14, known as the modified Doluisio method for in situ rat intestinal 
absorption. (The original rat intestinal preparation52 employed two syringes without the mechanical 
pumping modification.) 
The model used for the absorption of a drug through the mucosal membrane of the small intestine is 
shown in Figure 11-15. The aqueous boundary layer is in series with the biomembrane, which is 
composed of lipid regions and aqueous pores in parallel. The final reservoir is a sink consisting of the 
blood. The flux of a drug permeating the mucosal membrane is 
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Fig. 11-14. Modified Doluisio technique for in situ rat intestinal absorption. (From N. 

F. H. Ho, J. Y. Park, G. E. Amidon, et al., in A. J. Aguiar (Ed.), Gastrointestinal 

Absorption of Drugs, American Pharmaceutical Association, Academy of 

Pharmaceutical Sciences, Washington, D. C., 1981. With permission.) 

 

Fig. 11-15. Model for the absorption of a drug through the mucosa of the small 

intestine. The intestinal lumen is on the left, followed by a static aqueous diffusion 

layer (DL). The gut membrane consists of aqueous pores (a) and lipoidal regions (l). 

The distance from the membrane wall to the systemic circulation (sink) is marked off 

from 0 to -L2; the distance through the diffusion layer is 0 to L1. (From N. F. Ho, W. I. 

Higuchi, and J. Turi, J. Pharm. Sci. 61, 192, 1972. With permission.) 

or, because the blood reservoir is a sink, Cblood [congruent] 0, and 

 
where Papp is the apparent permeability coefficient (cm/sec) and Cbis the total drug concentration in bulk 
solution in the lumen of the intestine. The apparent permeability coefficient is given by 
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where Paq is the permeability coefficient of the drug in the aqueous boundary layer (cm/sec) and Pm is 
the effective permeability coefficient for the drug in the lipoidal and polar aqueous regions of the 
membrane (cm/sec). 
The flux can be written in terms of drug concentration, Cb, in the intestinal lumen by combining with it a 
term for the volume, or 

 
where S is the surface area and V is the volume of the intestinal segment. The first-order disappearance 
rate, Ku (sec-1), of the drug in the intestine appears in the expression 

 
Substituting equation (11-52) into (11-51) gives 
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Key Concept 

Transport Pathways 

 

 

Parallel transport pathways are all potential pathways encountered during a particular 
absorption step. Although many pathways are potentially available for drug transport across 
biologic membranes, drugs will traverse the particular absorption step by the path of least 
resistance. 
For transport steps in series (i.e., one absorption step must be traversed before the next one), 
the slower absorption step is always the rate-determining process. 
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and from equations (11-49) and (11-50), together with (11-53), we find 

 
or 

 
Consideration of two cases, (a) aqueous boundary layer control and (b) membrane control, results in 
simplification of equation (11-55). 

a. When the permeability coefficient of the intestinal membrane (i.e., the velocity of drug passage 
through the membrane in centimeter per second) is much greater than that of the aqueous 
layer, the aqueous layer will cause a slower passage of the drug and become a rate-limiting 
barrier. Therefore, Paq/Pm will be much less than unity, and equation(11-55) reduces to 

 

Ku is now written as Ku,max because the maximum possible diffusional rate constant is 
determined by passage across the aqueous boundary layer. 

b. If, on the other hand, the permeability of the aqueous boundary layer is much greater than that 
of the membrane,Paq/Pm will become much larger than unity, and equation(11-55) reduces to 

 

The rate-determining step for transport of drug across the membrane is now under membrane control. 
When neither Paq norPm is much larger than the other, the process is controlled by the rate of drug 
passage through both the stationary aqueous layer and the membrane. Figures 11-16 and 11-17 show 
the absorption studies of n-alkanol and n-alkanoic acid homologues, respectively, that concisely 
illustrate the biophysical interplay of pH, pKa, solute lipophilicity via carbon chain length, membrane 
permeability of the lipid and aqueous pore 
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pathways, and permeability of the aqueous diffusion layer as influenced by the hydrodynamics of the 
stirred solution. 
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Fig. 11-16. First-order absorption rate constant for a series of n-alkanols under 

various hydrodynamic conditions (static or low stirring rates and oscillation or high 

stirring fluid at 0.075 mL/sec) in the jejunum, using the modified Doluisio technique. 

(From N. F. H. Ho, J. Y. Park, W. Morozowich, and W. I. Higuchi, in E. B. Roche 

(Ed.), Design of Biopharmaceutical Properties Through Prodrugs and Analogs, 

American Pharmaceutical Association, Academy of Pharmaceutical Sciences, 

Washington, D. C., 1977, p. 148. With permission.) 

 

Fig. 11-17. First-order absorption rate constants of alkanoic acids versus buffered pH 

of the bulk solution of the rat gut lumen, using the modified Doluisio technique. 

Hydrodynamic conditions are shown in the figure. (From N. F. H. Ho, J. Y. Park, W. 

Morozowich, and W. I. Higuchi, in E. B. Roche, (Ed.), Design of Biopharmaceutical 

Properties Through Prodrugs and Analogs, American Pharmaceutical Association, 

Academy of Pharmaceutical Sciences, Washington, D. C., 1977, p. 150. With 

permission.) 

Example 11-5 

Small Intestinal Transport of a Small Molecule 
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Calculate the first-order rate constant, Ku, for transport of an aliphatic alcohol across the 
mucosal membrane of the rat small intestine if S/V = 11.2 cm-1, Paq = 1.5 × 10-4 cm/sec, 
and Pm = 1.1 × 10-4 cm/sec. We have 

 

For a weak electrolytic drug, the absorption rate constant, Ku, is23 

 
where Pm of the membrane is now separated into a term P0, the permeability coefficient of the lipoidal 
pathway for nondissociated drug, and a term Pp, the permeability coefficient of the polar or aqueous 
pathway for both ionic and nonionic species: 

 
The fraction of nondissociated drug species, Xs, at the pH of the membrane surface in the aqueous 
boundary is 

 
for weak acids, and 

 
for weak bases. Note the relationship between equations (11-59)and (11-41) and between (11-
60) and (11-42). Ka is the dissociation constant of a weak acid or of the acid conjugate to a weak base, 
and [H+]s is the hydrogen ion concentration at the membrane surface, where s stands for surface. The 
surface pHs is not necessarily equal to the pH of the buffered drug solution23 because the membrane of 
the small intestine actively secretes buffer species (principally CO2

2-and HC3
-). It is only at a pH of about 

6.5 to 7.0 that the surface pH is equal to the buffered solution pH. One readily recognizes that for 
nonelectrolytes, Xs becomes unity, and also that for large molecules such as steroids, Pp is insignificant. 
Example 11-6 

Duodenal Absorption Rate Constant 

A weakly acidic drug having a Ka value of 1.48 × 10-5 is placed in the duodenum in a buffered 
solution of pH 5.0. Assume [H+]s = 1 × 10-5 in the duodenum, Paq = 5.0 × 10-4cm/sec, P0 = 
1.14 × 10-3 cm/sec, Pp = 2.4 × 10-5 cm/sec, and S/V = 11.20 cm-1. Calculate the absorption 
rate constant, Ku, using equation (11-57). 
First, from equation (11-58), we have 

 
Then, 

 

Example 11-7 

Transcorneal Permeation of Pilocarpine 

In gastrointestinal absorption (Example 11-5) the permeability coefficient is divided into P0 for 
the lipoidal pathway for undissociated drug and Pp for the polar pathway for both ionic and 
nonionic species. In an analogous way, Pcan be divided for corneal penetration of a weak 
base into two permeation coefficients: PB for the un-ionized species and PBH+ for its ionized 
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conjugated acid. The following example demonstrates the use of these two permeability 
coefficients. 
Mitra and Mikkelson53 studied the transcorneal permeation of pilocarpine using an in vitro 
rabbit corneal preparation clamped into a special diffusion cell. The permeability (permeability 
coefficient) P as determined experimentally is given at various pH values in Table 11-5. 

Table 11-5 Permeability Coefficients at Various pH Values 

pH, 

donor 

solution 

4.6

7 

5.6

7 

6.2

4 

6.4

0 

6.6

7 

6.9

1 

7.0

4 

7.4

0 

P × 

10
6
cm/s

ec 

4.7

2 

5.4

4 

6.1

1 

6.8

1 

7.0

6 

7.6

6 

6.7

9 

8.8

5 

 

a. Compute the un-ionized fraction, fB, of pilocarpine at the pH values found in the table, 
using equation (11-60). The pKa of pilocarpine (actually the pKa of the conjugate acid 
of the weak base, pilocarpine, and known as the pilocarpinium ion) is 6.67 at 34°C. 

b. The relationship between the permeability P and the un-ionized fraction fB of 
pilocarpine base over this range of pH values is given by the equation 

 

where B stands for base and BH+ for its ionized or conjugate acid form. Noting 
that fBH

+ = 1 - fB, we can write equation (11-61) as 

 

Obtain the permeability for the protonated species,PBH
+, and the uncharged base, PB, 

using least-squares linear regression on equation (11-62) in which P, the total 
permeability, is the dependent variable and fB is the independent variable. 

c. Obtain the ratio of the two permeability coefficients,PBH
+/PB. 

Answers: 

a. The calculated fB values are given at the various pH values in the following table: 
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pH, 

donor 

soluti

on 

4.6

7 

5.6

7 

6.2

4 

6.4

0 

6.6

7 

6.9

1 

7.0

4 

7.4

0 

fB 0.0

1 

0.0

9 

0.2

7 

0.3

5 

0.5

0 

0.6

4 

0.7

0 

0.8

4 

 

b. Upon linear regression, equation (11-62) gives 

 

c. The ratio PB/PBH
+ [congruent] 2. The permeability of the un-ionized form is seen to be 

about twice that of the ionized form. 

The reader should now be in a position to explain the result under (c) based on the pH-
partition hypothesis. 
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Percutaneous Absorption 
Percutaneous penetration, that is, passage through the skin, involves (a) dissolution of a drug in its 
vehicle, (b) diffusion of solubilized drug (solute) from the vehicle to the surface of the skin, and (c) 
penetration of the drug through the layers of the skin, principally the stratum corneum. Figure 11-
18 shows the various structures of the skin involved in percutaneous absorption. The slowest step in the 
process usually involves passage through the stratum corneum; therefore, this is the rate that limits or 
controls the permeation.* 
Scheuplein54 found that the average permeability constant, Ps, for water into skin is 1.0 × 10-3 cm/hr 
and the average diffusion constant, Ds, is 2.8 ×10-10 cm2/sec (the subscript s on D stands for skin). 
Water penetration into the stratum corneum appears to alter the barrier only slightly, primarily by its 
effect on the pores of the skin. The stratum corneum is considered to be a dense homogeneous film. 
Small polar nonelectrolytes penetrate into the bulk of the stratum corneum and bind strongly to its 
components; diffusion of most substances through this barrier is quite slow. Diffusion, for the most part, 
is transcellular rather than occurring through channels between cells or through sebaceous pores and 
sweat ducts (Fig. 11-18, mechanism A rather than B, C, or E). Stratum corneum, normal and even 
hydrated, is the most impermeable biologic membrane; this is one of its important features in living 
systems. 
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It is an oversimplification to assume that one route prevails under all conditions.54 Yet after steady-state 
conditions have been established, transdermal diffusion through the stratum corneum most likely 
predominates. In the early stages of penetration, diffusion through the appendages (hair follicles, 
sebaceous and sweat ducts) may be significant. These shunt pathways are even important in steady-
state diffusion in the case of large polar molecules, as noted in the following. 
Scheuplein et al.55 investigated the percutaneous absorption of a number of steroids. They found that 
the skin's main barrier to penetration by steroid molecules is the stratum corneum. The diffusion 
coefficient, Ds, for these compounds is approximately 10-11cm2/sec, several orders of magnitude smaller 
than for most nonelectrolytes. This small value of Ds results in low permeability of the steroids. The 
addition of polar groups to the steroid molecule reduces the diffusion constant still more. For the polar 
steroids, sweat and sebaceous ducts appear to play a more important part in percutaneous absorption 
than diffusion through the bulk stratum corneum. 
The studies of Higuchi and coworkers56 demonstrated the methods used to characterize the 
permeability of different sections of the skin. Distinct protein and lipid domains appear to have a role in 
the penetration of drugs into the stratum corneum. The uptake of a solute may depend on the 
characteristics of the protein region, the lipid pathway, or a combination of these two domains in the 
stratum corneum and depends on the lipophilicity of the solute. The lipid content of the stratum corneum 
is important in the uptake of lipophilic solutes but is not involved in the attraction of hydrophilic drugs.57 
The proper choice of vehicle is important in ensuring bioavailability of topically applied drugs. Turi et 
al.58 studied the effect of solvents—propylene glycol in water and polyoxypropylene 15 stearyl ether in 
mineral oil—on the penetration of diflorasone diacetate (a steroid ester) into the skin. The percutaneous 
flux of the drug was reduced by the presence of excess solvent in the base. Optimum solvent 
concentrations were determined for products containing both 0.05% and 0.1% diflorasone diacetate. 
The important factors influencing the penetration of a drug into the skin are (a) concentration of 
dissolved drug, Cs, because penetration rate is proportional to concentration; (b) the partition 
coefficient, K, between the skin and the vehicle, which is a measure of the relative affinity of the drug for 
skin and vehicle; and (c) diffusion coefficients, which represent the resistance of drug molecule 
movement through vehicle, 
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Dv, and skin, Ds, barriers. The relative magnitude of the two diffusion coefficients, Dv and Ds, determines 
whether release from vehicle or passage through the skin is the rate-limiting step.58,59 
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Fig. 11-18. Skin structures involved in percutaneous absorption. Thickness of layers 

is not drawn to scale. Key to sites of percutaneous penetration: A, transcellular; B, 

diffusion through channels between cells; C, through sebaceous ducts; D, 

transfollicular; E, through sweat ducts. 

For diflorasone diacetate in propylene glycol–water (a highly polar base) and in polyoxypropylene 15 
stearyl ether in mineral oil (a nonpolar base), the skin was found to be the rate-limiting barrier. The 
diffusional equation for this system is 

 
where Cv is the concentration of dissolved drug in the vehicle (g/cm3), S is the surface area of 
application (cm2), Ksv is the skin–vehicle partition coefficient of diflorasone diacetate, Ds is the diffusion 
coefficient of the drug in the skin (cm2/sec), V is the volume of the drug product applied (cm3), and h is 
the thickness of the skin barrier (cm). 
The diffusion coefficient and the skin barrier thickness can be replaced by a resistance, Rs, to diffusion 
in the skin: 
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and equation (11-63) becomes 

 
In a percutaneous experimental procedure, Turi et al.58 measured the drug in the receptor rather than in 
the donor compartment of an in vitro diffusion apparatus, the barrier of which consisted of hairless 
mouse skin. At steady-state penetration, 

 
The rate of loss of drug from the vehicle in the donor compartment is equal to the rate of gain of drug in 
the receptor 
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compartment. With this change, equation (11-65) is integrated to yield 

 

Fig. 11-19. Steady-state flux of diflorasone diacetate in a mixture of 

polyoxypropylene 15 stearate ether in mineral oil. (From J. S. Turi, D. Danielson, and 

W. Wolterson, J. Pharm. Sci. 68,275, 1979. With permission.) 

 
where MR is the amount of diflorasone diacetate in the receptor solution at time t. The flux, J, is 

 
The steady-state flux for a 0.05% diflorasone diacetate formulation containing various proportions 
(weight fractions) of polyoxypropylene 15 stearyl ether in mineral oil is shown in Figure 11-19. The skin–

vehicle partition coefficient was measured for each vehicle formulation. The points represent the 
experimental values obtained with the diffusion apparatus; the line was calculated using equation(11-
68). The point at 0 weight fraction of the ether cosolvent is due to low solubility and slow dissolution rate 
of the drug in mineral oil and can be disregarded. Beyond a critical concentration, about 0.2 weight 
fraction of polyoxypropylene 15 stearyl ether, penetration rate decreases. The results69 indicated that 
one application of the topical steroidal preparation per day was adequate and that the 0.05% 
concentration was as effective as the 0.1% preparation. 
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Example 11-8 

Diflorasone Diacetate Permeation of Hairless Mouse Skin 

A penetration study of 5.0 × 10-3 g/cm3 diflorasone diacetate solution was conducted at 27°C 
in the diffusion cell of Turi et al.58 using a solvent of 0.4 weight fraction of polyoxypropylene 
15 stearyl ether in mineral oil. The partition coefficient, Kvs, for the drug distributed between 
hairless mouse skin and vehicle was found to be 0.625. The resistance, Rs, of the drug in the 
mouse skin was determined to be 6666 hr/cm. The diameter of a circular section of mouse 
skin used as the barrier in the diffusion cell was 1.35 cm.* Calculate (a) the flux, J = MR/St, in 
g/cm, and (b) the amount, MR in µg, of diflorasone diacetate that diffused through the hairless 
mouse skin in 8 hr. 
Using equation (11-68), we obtain 
(a) 

 
(b) 

 

Ostrenga and his associates60 studied the nature and composition of topical vehicles as they relate to 
the transport of a drug through the skin. The varied Ds, Kvs, and Cv to improve skin penetration of two 
topical steroids, fluocinonide and fluocinolone acetonide, incorporated into various propylene glycol–
water gels. In vivo penetration and in vitro diffusion using abdominal skin removed at autopsy were 
studied. It was concluded that clinical efficacy of topical steroids can be estimated satisfactorily from in 
vitro data regarding release, diffusion, and the physical chemical properties of drug and vehicle. 
The diffusion, Ds, of the drug in the skin barrier can be influenced by components of the vehicle (mainly 
solvents and surfactants), and an optimum partition coefficient can be obtained by altering the affinity of 
the vehicle for the drug. 
The in vitro rate of skin penetration of the drug, dQ/dt, at 25°C is obtained experimentally at definite 
times, and the cumulative amount penetrating (measured in radioactive disintegrations per minute) is 
plotted against time in minutes or hours. After steady state has been attained, the slope of the straight 
line yields the rate, dM/dt. The lag time is obtained by extrapolating the steady-state line to the time axis. 
In vitro penetration of human cadaver skin and in vivo penetration of fluocinolone acetonide from 
propylene glycol gels into living skin are compared in Figure 11-20. It is observed that the shapes and 
peaks of the two curves are approximately similar. Thus, in vitro studies using human skin sections 
should serve as a rough guide to the formulation of acceptable bases for these steroidal compounds. 
Ostrenga et al.60 were able to show a relationship between release of the steroid from its vehicle, in 
vitro penetration through human skin obtained at autopsy, and in vivo vasoconstrictor activity of the drug 
depending on compositions of the vehicle. The correlations obtained suggest that information obtained 
from diffusion studies can assist in the design of effective topical dosage forms. Some useful guidelines 
are (a) all the drug should be in solution in the vehicle, 
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(b) the solvent mixtures must maintain a favorable partition coefficient so that the drug is soluble in the 
vehicle and yet have a great affinity for the skin barrier into which it penetrates, and (c) the components 
of the vehicle should favorably influence the permeability of the stratum corneum. 
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Fig. 11-20. Comparison of in vitro penetration of steroid through a skin section and in 

vivo skin blanching test. Key: •, in vitro method; ○, in vivo method. (From J. 

Ostrenga, C. Steinmetz, and B. Poulsen, J. Pharm. Sci. 60, 1177, 1971. With 

permission.) 

Sloan and coworkers61 studied the effect of vehicles having a range of solubility parameters, d, on the 
diffusion of salicylic acid and theophylline through hairless mouse skin. They were able to correlate the 
partition coefficient, K, for the drugs between the vehicle and skin calculated from solubility parameters 
and the permeability coefficient, P, obtained experimentally from the diffusion data. The results obtained 
with salicylic acid, a soluble molecule, and with theophylline, a poorly soluble molecule with quite 
different physical chemical properties, were practically the same. 
In the studies of skin permeation described thus far, efforts were made to increase percutaneous 
absorption processes. It is important, however, that some compounds not be absorbed. Pharmaceutical 
adjuvants such as antimicrobial agents, antioxidants, coloring agents, and drug solubilizers, although 
they should remain in the vehicle on the skin's surface, can penetrate the stratum corneum. 
Parabens, typical preservatives incorporated into cosmetics and topical dosage forms, may cause 
allergic reactions if absorbed into the dermis. Komatsu and Suzuki62 studied the in vitro percutaneous 
absorption of butylparaben (butyl p-hydroxybenzoate) through guinea pig skin. Disks of dorsal skin were 
placed in a diffusion cell between a donor and receptor chamber, and the penetration of 32C-
butylparaben was determined by the fractional collection of samples from the cell's receptor side and 
measurement of radioactivity in a liquid scintillation counter. 
When butylparaben was incorporated into various vehicles containing polysorbate 80, propylene glycol, 
and polyethylene glycol 400, a constant diffusivity was obtained averaging 3.63 (±0.47 SD) × 10-

4 cm2/hr. 
The partition coefficient, Kvs, for the paraben between vehicle and skin changed markedly depending 
upon the vehicle. For a 0.015% (w/v) aqueous solution of butyl paraben, Kvs was found to be 2.77. For a 
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0.1% w/v solution of the preservative containing 2% (w/v) of polysorbate 80 and 10% (w/v) propylene 
glycol in water, the partition coefficient dropped to 0.18. There was no apparent complexation between 
these solubilizers and butylparaben, according to the authors. 
The addition of either propylene glycol or polyethylene glycol 400 to water was found to increase the 
solubility of paraben in the vehicle and to reduce its partition coefficient between vehicle and skin. By 
this means, skin penetration of butylparaben could be retarded, maintaining the preservative in the 
topical vehicle where it was desired. 
In the case of polysorbate 80, Komatsu and Suzuki62 found that this surfactant also reduced 
preservative absorption, maintaining the antibacterial action of the paraben in the vehicle. These 
workers concluded that the action of polysorbate 80 was a balance of complex factors that is difficult for 
the product formulator to predict and manage. 
Buccal Absorption 
Using a wide range of organic acids and bases as drug models, Beckett and Moffat63 studied the 
penetration of drugs into the lipid membrane of the mouths of humans. In harmony with the pH-partition 
hypothesis, absorption was related to the pKa of the compound and its lipid–water partition coefficient. 
Ho and Higuchi64 applied one of the earlier mass transfer models65 to the analysis of the buccal 
absorption of n-alkanoic acids.66 They utilized the aqueous–lipid phase model in which the weak acid 
species are transported across the aqueous diffusion layer and, subsequently, only the nonionized 
species pass across the lipid membrane. Unlike the intestinal membrane, the buccal membrane does 
not appear to possess significant aqueous pore pathways, and the surface pH is essentially the same as 
the buffered drug solution pH. Buccal absorption is assumed to be a first-order process owing to the 
nonaccumulation of drug on the blood side: 

 
where C is the aqueous concentration of the n-alkanoic acid in the donor or mucosal compartment. The 
absorption rate constant, Ku, is 
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the terms of which have been previously defined. Recall that Xs = 1/(1+10pH

s
-pK

a), or, by equation (11-
59), Xs = 1/[1 + antilog(pHs - pKa)] and is the fraction of un-ionized weak acid at pHs. 
With S = 100 cm2, V = 25 cm3, Paq = 1.73 × 10-3 cm/sec, P0 = 2.27 × 10-3 cm/sec, pKa = 4.84, and pHs = 
4.0, equations (11-59) and (11-70) yield for caproic acid an absorption rate constant 

 
Buccal absorption rate constants constructed according to the model of Ho and Higuchi agree well with 
experimental values. The study shows an excellent correspondence between diffusional theory and in 
vivo absorption and suggests a fruitful approach for structure–activity studies not only for buccal 
membrane permeation but also for bioabsorption in general. 
Uterine Diffusion 
Drugs such as progesterone and other therapeutic and contraceptive compounds may be delivered in 
microgram amounts into the uterus by means of diffusion-controlled forms (intrauterine device). In this 
way the patient is automatically and continuously provided medication or protected from pregnancy for 
days, weeks, or months.67 
Yotsuyanagi et al.68 performed in situ vaginal drug absorption studies using the rabbit doe as an animal 
model to develop more effective uterine drug delivery systems. A solution of a model drug was perfused 
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through a specially constructed cell and implanted in the vagina of the doe (Fig. 11-21), and the drug 
disappearance was monitored. The drug release followed first-order kinetics, and the results permitted 
the calculation of apparent permeability coefficient and diffusion layer thickness. 

 

Fig. 11-21. Implanted rib-cage cell in the vaginal tract of a rabbit. (From T. 

Yotsuyanagi, A. Molakhia, et al., J. Pharm. Sci. 64, 71, 1975. With permission.) 
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Fig. 11-22. Contraceptive drug in water-insoluble silicone polymer matrix. 

Dimensions and sections of the matrix are shown together with concentration 

gradients across the drug release pathway. (From S. Hwang, E. Owada, T. 

Yotsuyanagi, et al., J. Pharm. Sci. 65, 1578, 1976. With permission.) 

The drug may also be implanted in the vagina in a silicone matrix (Fig. 11-22), and drug release at any 
time can be calculated using a quadratic expression,68 

 
The method of calculation can be shown, using the data of Hwang et al.,69 which are given in Table 11-
6. When the 
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aqueous diffusion layer, haq, is 100 µm, the aqueous permeability coefficient, Paq, is 7 × 10-4 cm/sec; this 
value is used in the following example. The length, h, of the silastic cylinder (Fig. 11-21) is 6 cm, its 
radius, a0, is 1.1 cm, and the initial amount of drug per unit volume of plastic cylinder, or loading 
concentration, A, is 50 mg/cm3. 

Table 11-6 Physical Parameters for the Release of Progesterone and 

Hydrocortisone from a Silicone Matrix for Vaginal Absorption in the Rabbit69 

  Progesterone Hydrocortisone 

Solubility in matrix, Cs(mg/cm
3
) 0.572 0.014 

Diffusion coefficient in matrix,De(cm
2
/sec) 4.5 × 10

-

7
 

4.5 × 10
-7

 

Silicone–water partition coefficient,Ks 50.2 0.05 

Permeability coefficient of rabbit vaginal 

membrane,Pm(cm/sec) 

7 × 10
-4

 5.8 × 10
-5

 

Paq(whenhaq = 100 µm) 7 × 10
-4

 7 × 10
-4

 

Paq(whenhaq = 1000 µm) 0.7 × 10
-

4
 

0.7 × 10
-4

 

 

Equation (11-71) is of the quadratic form aM
2 + bM + c = 0, where, for progesterone, 
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How much progesterone is released in 5 days? In 20 days? The quadratic formula to be used here is 

 
After 5 days, 

 
After 20 days, C = -0.8384 mg/day × 20 days = -16.77 mg, and 

 
Okada et al.70 carried out detailed studies on the vaginal absorption of hormones. 
Elementary Drug Release 
Release from dosage forms and subsequent bioabsorption are controlled by the physical chemical 
properties of drug and delivery form and the physiologic and physical chemical properties of the biologic 
system. Drug concentration, aqueous solubility, molecular size, crystal form, protein binding, and 
pKa are among the physical chemical factors that must be understood to design a delivery system that 
exhibits controlled or sustained-release characteristics.71 
The release of a drug from a delivery system involves factors of both dissolution and diffusion. As the 
reader has already observed in this chapter, the foundations of diffusion and dissolution theories bear 
many resemblances. Dissolution rate is covered in great detail in the next chapter. 
Zero-Order Drug Release 
The flux, J, of equation (11-11) is actually proportional to a gradient of thermodynamic activity rather 
than concentration. The activity will change in different solvents, and the diffusion rate of a solvent at a 
definite concentration may vary widely depending on the solvent employed. The thermodynamic activity 
of a drug can be held constant (a = 1) in a delivery form by using a saturated solution in the presence of 
excess solid drug. Unit activity ensures constant release of the drug at a rate that depends on the 
membrane permeability and the geometry of the dosage form. Figure 11-23shows the 
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rate of delivery of two steroids from a device providing constant drug activity and what is known as 
―zero-order release.‖ For more information about zero-order processes the reader is referred to the 
chapter on kinetics (Chapter 14). If excess solid is not present in the delivery form, the activity 
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decreases as the drug diffuses out of the device, the release rate falls exponentially, and the process is 
referred to as first-order release, analogous to the well-known reaction in chemical kinetics. First-order 
release from dosage forms is discussed by Baker and Lonsdale.72 

 

Fig. 11-23. Drug release for two steroids from a matrix or device providing zero-order 

release. (After R. W. Baker and H. K. Lonsdale, in, A. C. Tanquary and R. E. Lacey 

(Eds.), Controlled Release of Biologically Active Agents, Plenum Press, New York, 

1974, p. 30.) 

 

Fig. 11-24. Butyl paraben diffusing through guinea pig skin from aqueous solution. 

Steady-state and nonsteady-state regions are shown. (From H. Komatsu and M. 

Suzuki, J. Pharm. Sci.68, 596, 1979. With permission.) 

Lag Time 
A constant-activity dosage form may not exhibit a steady-state process from the initial time of 
release. Figure 11-24 is a plot of the amount of butylparaben penetrating through guinea pig skin from a 
dilute aqueous solution of the penetrant. It is observed that the curve of Figure 11-23 is convex with 
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respect to the time axis in the early stage and then becomes linear. The early stage is the nonsteady-
state condition. At later times, the rate of diffusion is constant, the curve is essentially linear, and the 
system is at steady state. When the steady-state portion of the line is extrapolated to the time axis, as 
shown in Figure 11-24, the point of intersection is known as the lag time, tL. This is the time required for 
a penetrant to establish a uniform concentration gradient within the membrane separating the donor 
from the receptor compartment. 
In the case of a time lag, the straight line of Figure 11-24 can be represented by a modification of 
equation (11-13): 

 
The lag time, tL, is given by 

 
and its measurement provides a means of calculating the diffusivity,D, presuming a knowledge of the 
membrane thickness, h. Also, knowing P, one can calculate the thickness, h, from 

 
Drugs in Polymer Matrices 
A powdered drug is homogeneously dispersed throughout the matrix of an erodible tablet. The drug is 
assumed to dissolve in the polymer matrix and to diffuse out from the surface of the device. As the drug 
is released, the distance for diffusion becomes increasingly greater. The boundary that forms between 
drug and empty matrix recedes into the tablet as drug is eluted. A schematic illustration of such a device 
is shown in Figure 11-25a. Figure 11-25b shows a granular matrix with interconnecting pores or 
capillaries. The drug is leached out of this device by entrance of the surrounding medium.Figure 11-
25c depicts the concentration profile and shows the receding depletion zone that moves to the center of 
the tablet as the drug is released. 
Higuchi32 developed an equation for the release of a drug from an ointment base and later73 applied it 
to diffusion of solid drugs dispersed in homogeneous and granular matrix dosage systems (Fig. 11-25). 
Fick's first law, 

 
can be applied to the case of a drug embedded in a polymer matrix, in which dQ/dt* is the rate of drug 
released per unit area of exposed surface of the matrix. Because the boundary between the drug matrix 
and the drug-depleted matrix recedes with time, the thickness of the empty matrix, dh, through which the 
drug diffuses also increases with time. 
Whereas Cs is the solubility or saturation concentration of drug in the matrix, A is the total concentration 
(amount per unit volume), dissolved and undissolved, of drug in the matrix. 
As drug passes out of a homogeneous matrix (Fig. 11-25a), the boundary of drug (represented by the 
dashed vertical line in Fig. 11-25c) moves to the left by an infinitesimal distance, dh. The infinitesimal 
amount, dQ, of drug released because of this shift of the front is given by the approximate linear 
expression 

 
Now dQ of equation (11-76) is substituted into equation (11-75), integration is carried out, and the 
resulting equation 
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is solved for h. The steps of the derivation as given by Higuchi32 are 
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Fig. 11-25. Release of drug from homogenous and granular matrix dosage forms. (a) 

Drug eluted from a homogenous polymer matrix. (b) Drug leached from a 

heterogeneous or granular matrix. (c) Schematic of the solid matrix and its receding 

boundary as drug diffuses from the dosage form. (From T. Higuchi, J. Pharm. 

Sci.50, 874, 1961. With permission.) 

 

 

 
The integration constant, C, can be evaluated at t = 0, at which h = 0, giving 
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The amount of drug depleted per unit area of matrix, Q, at time t is obtained by integrating equation (11-
76) to yield 

 
Substituting equation (11-81) into (11-82) produces the result 

 
which is known as the Higuchi equation: 

 
The instantaneous rate of release of a drug at time t is obtained by differentiating equation (11-84) to 
yield 

 
Ordinarily, A is much greater than Cs, and equation (11-84) reduces to 

 
and equation (11-85) becomes 

 
for the release of a drug from a homogeneous polymer matrix–type delivery system. Equation (11-
86) indicates that the amount of drug released is proportional to the square root of A, the total amount of 
drug in unit volume of matrix; D, the diffusion coefficient of the drug in the matrix; Cs, the solubility of 
drug in polymeric matrix; and t, the time. 
The rate of release, dQ/dt, can be altered by increasing or decreasing the drug's solubility, Cs, in the 
polymer by complexation. The total concentration, A, of drug that the physician prescribes is also seen 
to affect the rate of drug release. 
Example 11-9 

Classic Drug Release: Higuchi Equation 

(a) What is the amount of drug per unit area, Q, released from a tablet matrix at time t = 120 
min? The total concentration of drug in the homogeneous matrix, A, is 0.02 g/cm3. The drug's 
solubility Cs is 1.0 × 10-3 g/cm3 in the polymer. The diffusion coefficient, D, of the drug in the 
polymer matrix at 25°C is 6.0 × 10-6 cm2/sec, or 360 × 10-6cm2/min. 
We use equation (11-86): 

 
(b) What is the instantaneous rate of drug release occurring at 120 min? We have 
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Release from Granular Matrices: Porosity and Tortuosity 
The release of a solid drug from a granular matrix (Fig. 11-25b) involves the simultaneous penetration of 
the surrounding liquid, dissolution of the drug, and leaching out of the drug through interstitial channels 
or pores. A granule is, in fact, defined as a porous rather than a homogeneous matrix. The volume and 
length of the opening in the matrix must be accounted for in the diffusional equation, leading to a second 
form of the Higuchi equation, 
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where ε is the porosity of the matrix and τ is the tortuosity of the capillary system, both parameters being 

dimensionless quantities. 
Porosity, ε, is the fraction of matrix that exists as pores or channels into which the surrounding liquid can 

penetrate. The porosity term, ε, in equation (11-88) is the total porosity of the matrix after the drug has 
been extracted. This is equal to the initial porosity, ε0, due to pores and channels in the matrix before the 
leaching process begins and the porosity created by extracting the drug. If A g/cm3 of drug is extracted 
from the matrix and the drug's specific volume or reciprocal density is 1/ρ cm

3/g, then the drug's 
concentration, A, is converted to volume fraction of drug that will create an additional void space or 
porosity in the matrix once it is extracted. The total porosity of the matrix, ε, becomes 

 
The initial porosity, ε0, of a compressed tablet may be considered to be small (a few percent) relative to 
the porosity A/ρ created by the dissolution and removal of the drug from the device. Therefore, the 
porosity frequently is calculated conveniently by disregarding ε0 and writing 

 
Equation (11-88) differs from equation (11-84) only in the addition of ε and τ. Equation (11-84) is 
applicable to release from a homogeneous tablet that gradually erodes and releases the drug into the 
bathing medium. Equation (11-88) applies instead to a drug-release mechanism based upon entrance of 
the surrounding medium into a polymer matrix, where it dissolves and leaches out the soluble drug, 
leaving a shell of polymer and empty pores. In equation (11-88), diffusivity is multiplied by porosity, a 
fractional quantity, to account for the decrease in D brought about by empty pores in the matrix. The 
apparent solubility of the drug, Cs, is also reduced by the volume fraction term, which represents 
porosity. 
Tortuosity, τ, is introduced into equation (11-88) to account for an increase in the path length of diffusion 
due to branching and bending of the pores as compared to the shortest ―straight-through‖ pores. 
Tortuosity tends to reduce the amount of drug release in a given interval of time, and so it appears in the 
denominator under the square root sign. A straight channel has a tortuosity of unity, and a channel 
through spherical beads of uniform size has a tortuosity of 2 or 3. At times, an unreasonable value of, 
say, 1000 is obtained for τ, as Desai et al.74 noted. When this occurs, the pathway for diffusion 
evidently is not adequately described by the concept of tortuosity, and the system must be studied in 
more detail to determine the factors controlling matrix permeability. Methods for obtaining diffusivity, 
porosity, tortuosity, and other quantities required in an analysis of drug diffusion are given by Desai et 
al.75 
Equation (11-88) has been adapted to describe the kinetics of lyophilization,13 commonly called freeze-

drying, of a frozen aqueous solution containing drug and an inert matrix-building substance (e.g., 
mannitol or lactose). The process involves the simultaneous change in the receding boundary with time, 
phase transition at the ice–vapor interface governed by the Clausius–Clapeyron pressure–temperature 
relationship, and water vapor diffusion across the pore path length of the dry matrix under low 
temperature and vacuum conditions. 
Soluble Drugs in Topical Vehicles and Matrices 
The original Higuchi model32,73 does not provide a fit to experimental data when the drug has a 
significant solubility in the tablet or ointment base. The model can be extended to drug release from 
homogeneous solid or semisolid vehicles, however, using a quadratic expression introduced by Bottari 
et al.,76 

 
where 

 
Q is the amount of drug released per unit area of the dosage form, Dis an effective diffusivity of the drug 
in the vehicle, A is the total concentration of drug, Cs is the solubility of drug in the vehicle, Cv is the 
concentration of drug at the vehicle–barrier interface, and R is the diffusional resistance afforded by the 
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barrier between the donor vehicle and the receptor phase. A* is an effective A as defined in 
equation (11-92) and is used when A is only about three or four times greater than Cs. 
When 

 
equation (11-91) reduces to one form of the Higuchi equation [equation (11-86)]: 

 
Under these conditions, resistance to diffusion, R, is no longer significant at the interface between 
vehicle and receptor phase. When Cs is not negligible in relation to A, the 
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vehicle-controlled model of Higuchi becomes 

 
The quadratic expression of Bottari, equation (11-91), should allow one to determine diffusion of drugs 
in ointment vehicles or homogeneous polymer matrices when Cs becomes significant in relation to A. 
The approach of Bottari et al.76 follows. 
Because it is a second-degree power series in Q, equation (11-91)can be solved using the well-known 
quadratic approach. One writes 

 
where, with reference to equation (11-91), a = 1, b = 2 DRA*, and C = -2DA*Cst. Equation (11-96) has 
the well-known solution 

 
or 

 
in which the positive root is taken for physical significance. If a lag time occurs, t in equation (11-98) is 
replaced by (t - tL) for the steady-state period. Bottari et al.76 obtained satisfactory value for b and c by 
use of a least-square fit of equation (11-91) involving the release of benzocaine from suspension-type 
aqueous gels. The diffusional resistance, R, is determined from steady-state permeation, and Cvis then 
obtained from the expression 

 
The application of equation (11-91) is demonstrated in the following example. 
Example 11-10 

Benzocaine Release from an Aqueous Gel 

(a) Calculate Q, the amount in milligrams of micronized benzocaine released per square 
centimeter of surface area, from an aqueous gel after 9000 sec (2.5 hr) in a diffusion cell. 
Assume that the total concentration, A, is 10.9 mg/mL, the solubility, Cs, is 1.31 mg/mL, Cv = 
1.05 mg/mL, the diffusional resistance, R, of a silicone rubber barrier separating the gel from 
the donor compartment is 8.10 × 103 sec/cm, and the diffusivity, D, of the drug in the gel is 
9.14 × 10-6 cm2/sec. From equation (11-92) we have 

 
Then, 

 
The Q(calc) of 0.90 mg/cm2 compares well with Q(obs) = 0.88 mg/cm2. 
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A slight increase in accuracy can be obtained by replacing t= 9000 sec with t = (9000 - 405) 
sec, in which the lag time t= 405 sec is obtained from a plot of experimental Q values 
versus t1/2. This correction yields a Q(calc) = 0.87 mg/cm2. 
(b) Calculate Q using equation (11-95) and compare the result with that obtained in equation 
(11-94). We have 

 
Paul and coworkers77 studied cases in which A, the matrix loading of drug per unit volume in 
a polymeric dosage form, may be greater than, equal to, or less than the equilibrium 
solubility, Cs, of the drug in a matrix. The model is a refinement of the original Higuchi 
approach,32,73 providing an accurate set of equations that describe release rates of drugs, 
fertilizers, pesticides, antioxidants, and preservatives in commercial and industrial 
applications over the entire range of ratios of A to Cs. 

A silastic capsule, as depicted in Figure 11-26a, has been used to sustain and control the delivery of 
drugs in pharmacy and medicine.78,79,80 The release of a drug from a silastic capsule is shown 
schematically in Figure 11-26b. The molecules of the crystalline drug lying against the inside wall of the 
capsule leave their crystals, pass into the polymer wall by a dissolution process, diffuse through the wall, 
and pass into the liquid diffusion layer and the medium surrounding the capsule. The concentration 
differences across the polymer wall of thickness hm and the stagnant diffusion layer of thickness ha are 
represented by the lines Cp - Cm and Cs - Cb, respectively. Cp is the solubility of the drug in the polymer 
andCm is the concentration at the polymer–solution interface, that is, the concentration of drug in the 
polymer in contact with the solution. Cs, on the other hand, is the concentration of the drug in the 
solution at the polymer–solution interface, and it 
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is seen in Figure 11-25b to be somewhat below the solubility of drug in polymer at the interface. There is 
a real difference between the solubility of the drug in the polymer and in the solution, although both exist 
at the interface. Finally, Cb is the concentration of the drug in the bulk solution surrounding the capsule. 

 

Fig. 11-26. Diffusion of a drug from a silastic capsule. (a) Drug in the capsule 

surrounded by a polymer barrier; (b) diffusion of the drug through the polymer wall 

and stagnant aqueous diffusion layer and into the receptor compartment at sink 
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conditions. (After Y. W. Chien, in J. R. Robinson (Ed.), Sustained and Controlled 

Release Drug Delivery Systems, Marcel Dekker, New York, 1978, p. 229; and Y. W. 

Chien, Chem. Pharm. Bull. 24, 147, 1976.) 

To express the rate of drug release under sink conditions, Chien78used the following expression: 

 
which is an integrated form analogous to equation (11-31). In equation (11-100), Q is the amount of drug 
released per unit surface area of the capsule and Kr is the partition coefficient, defined as* 

 
When diffusion through the capsule membrane or film is the limiting factor in drug release, that is, 
when KrDahm is much greater thanDmha, equation (11-100) reduces to 

 
and when the limiting factor is passage through the diffusion layer (Dmha ≫ KrDahm), 

 
The right-hand expression can be written because Cs = KrCp, as defined earlier in equation (11-101). 
The rate of drug release, Q/t, for a polymer-controlled process can be calculated from the slope of a 
linear Q versus t plot and from equation (11-102) is seen to equal CpDm/hm. Likewise, Q/t, for the 
diffusion-layer–controlled process, resulting from plotting Q versus t, is found to be CsDa/ha. 
Furthermore, a plot of the release rate, Q/t, versus Cs, the solubility of the drug in the surrounding 
medium, should be linear with a slope of Da/ha. 
Example 11-11 

Progesterone Diffusion out of a Silastic Capsule 

The partition coefficient, Kr = Cs/Cp, of progesterone is 0.022; the solution diffusivity, Da, is 
4.994 × 10-2 cm2/day; the silastic membrane diffusivity Dm, is 14.26 × 10-2cm2/day; the 
solubility of progesterone in the silastic membrane, Cp, is 513 µg/cm3; the thickness of the 
capsule membrane, hm, is 0.080 cm, and that of the diffusion layer,ha, as estimated by Chien, 
is 0.008 cm. 
Calculate the rate of release of progesterone from the capsule and express it in µg/cm2 per 
day. Compare the calculated result with the observed value, Q/t = 64.50 µg/cm2 per day. 
Using equation (11-100), we obtain 

 
In the example just given, (a) is KrDahm much greater thanDmha or (b) is Dmha much greater 
than KDahm? (c). What conclusion can be drawn regarding matrix or diffusion-layer control? 
First, we have 

 
Therefore, Dmha is much greater than KrDahm, and the system is 93% under aqueous 
diffusion-layer control. It should thus be possible to use the simplified equation (11-103): 
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Although Dmha is larger than KrDahm by about one order of magnitude (i.e., Dmha/KDahm = 13), 
it is evident that a considerably better result is obtained by using the full expression, equation 
(11-100). 

Example 11-12 

Contraceptive Release from Polymeric Capsules 

Two new contraceptive steroid esters, A and B, were synthesized, and the parameters 
determined for release from polymeric capsules are as follows78: 

 
Using equation (11-100) and the quantities given in the table, calculate values of hm in 
centimeter for these capsule membranes. First, we write 

 
For capsule A, 

 
Note that all units cancel except centimeter in the equation for hm. The reader should carry 
out the calculations for compound B. (Answer: 0.097 cm.) 
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Fick's Second Law as a Starting Point 
Fick's first law, equation (11-2), has been used throughout this chapter as a starting point in the 
development of equations to describe the diffusion of drugs through natural and polymeric membranes. 
However, there are many diffusion problems in which the first law of Fick is not applicable, and the 
second law, equation(11-6), 

 
must be used. Here we use u instead of C to express concentration. The symbol ∂ indicates that partial 

derivatives are being used because u is a function of both t and x. The second law is used to express 
diffusion in cylinders and spheres as well as through flat plates. The simplest form of the second-law 
diffusion equation is 

 
for symmetric diffusion outward from the axis of a cylinder of radius r. 
For diffusion proceeding symmetrically about the center of a sphere of radius r, the partial differential 
equation representing Fick's second law in its simplest form is 
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The equations for diffusion in cylinders and spheres are discussed by Crank81 and Jacobs.82 
Although the derivation of equations based on Fick's second law is in most cases beyond the 
mathematical scope of this book, it is of value to present some equations and obtain their solutions. 
Such exercises give the student practice in calculations for diffusion problems that are more complicated 
than those derived from Fick's first law. 
Diffusion in a Closed System 
Determination of D 
A simple apparatus (Fig. 11-27) was used by Graham (1861), one of the pioneers in diffusion studies, to 
obtain the diffusion coefficient,D, for solutes in various solvents. The coefficients for some solutes 
diffusing through various media are listed in Table 11-2. In the apparatus depicted in Figure 11-27, the 
height of the solution is h, the combined height of solution and solvent is H, and the distance traversed 
by the solute is x. The concentration of solute at a positionx and time t in the solution is u and its initial 
concentration is u0. From the experimental values of u, x, and t, it is possible to determine the diffusion 
coefficient, D, for the solute in the solvent. 

 

Fig. 11-27. Simple apparatus used by Graham for early diffusion studies. (From M. H. 

Jacobs, Diffusion Processes, Springer-Verlag, New York, 1976, p. 24. With 

permission.) 

Initially—that is, at time t = 0 sec—the concentration u is equal to u0(moles or grams per cm3) in the cell 
from position x = 0 to x = h (cm) and u = 0 from x = h to x = H. These statements are known as initial 

conditions. In a case in which h is taken equal to be equal to H/2, that is, both solution and solvent are of 
equal volume, the equation for u is82 

 
Equation (11-107) is simplified if we choose x, the position of sampling in the cell, to be H/6; the second 
cosine term in the parenthesis of equation (11-107) becomes cos(π/2) = cos 90° = 0. This leaves only 

the first cosine term, cos(π/6) = cos 30° = 0.866. Thus, taking x = H/6, we have 
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Recall that with trigonometric functions such as cos(π/6), π is given in degrees, that is, π = 180° and 

π/6 = 30°, whereas in terms such as 2u0/π and e-π2Dt/H2
, the value of π is 3.14159 …. 

Example 11-13 

Determination of an Aqueous Diffusion Coefficient 

A new water-soluble drug, corazole, is placed in a Graham diffusion cell (see Fig. 11-27) at an 
initial concentration of u0= 0.030 mmole/cm3 to determine its diffusion coefficient in water at 
25°C. The height of the solution, h, in the cell is 2.82 cm and the total height of aqueous 
solution and overlying water, H, is 5.64 cm. A sample is taken at a depth of x = H/6 cm at 
time, t, of 4.3 hr (15,480 sec) and is found by spectrophotometric analysis to have a 
concentration, u, of 0.0225 mmole/cm3. D is obtained by rearranging equation (11-108): 

 

Fig. 11-28. Diffusion apparatus with one open and one closed boundary. (From M. H. 

Jacobs, Diffusion Processes, Springer-Verlag, New York, 1976, p. 47. With 

permission.) 
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Diffusion in Systems with One Open Boundary 
The Graham cell for the determination of diffusion coefficients is an example of a closed system. In 
pharmaceutics, physiology, and biochemistry, systems with one or two open boundaries are of more 
interest than the closed-boundary system. In 1850, Graham introduced a system with one open and one 
closed boundary, as shown in Figure 11-28. Insignificant mixing occurs between the solution and the 
water because of differences in density. The condition at the interface between the solution and the 
water layer, known as a boundary condition, is expressed as ―u = 0 when x = h.‖ A second boundary 

condition states that the change in concentration, u, with the change in position, x, is zero, or, in 
mathematical notation, ∂u/∂x = 0. This occurs at the bottom of the cell, because the solute cannot pass 
out through the bottom. In addition to the two boundary conditions, it is useful to specify aninitial 
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condition, as was done for the closed cell treated earlier. The initial condition is often taken as uniformity 
of concentration within the solution in the inner vessel of the cell, that is, u = u0 at t = 0. 
For a system with one open and one closed surface, the amount,M0,t, of solute escaping between time 0 
and time t is expressed by the equation82* 

 
where A is the cross-sectional area of the inner cell of height h (seeFig. 11-28), and the other terms 
have been defined in connection with equations (11-107) and (11-108). 
Example 11-14 

Drug Diffusion from an Open Boundary 

Calculate the total amount, M0,t, of the new drug corazole that escapes between times t = 0 
and t = 2.70 hr (9720 sec) from the cell with one open boundary (Fig. 11-28). The area,A, of 
the cell is 8.27 cm2 and its height, h, is 2.65 cm. The original concentration, u0, of the drug in 
the cell is 0.0437 g/cm3. The total amount of drug, M, in the cell is the concentration in 
g/cm3 multiplied by A × h, the volume of the cell: 0.0437 g/cm3 × 8.27 cm2 × 2.65 cm = 0.9577 
g. The diffusion coefficient, D, of the drug corazole in water at 25°C is 16.5 × 10-5 cm2/sec, as 
found in Example 11-13. 
Inserting these values into equation (11-109) yields 

 
Thus, we arrive at the result that in a cell containing 0.0437 g/cm3 or 0.9577 g of total drug, 
0.5153 g diffuses out in 2.7 hr. 
The diffusion of macromolecules, such as proteins, is discussed in the chapter on colloids. 

Osmotic Drug Release11 
Osmotic drug release systems use osmotic pressure as driving force for the controlled delivery of drugs. 
A simple osmotic pump consists of an osmotic core containing drug with or without an osmotic agent 
coated with a semipermeable membrane. The semipermeable membrane has an orifice for drug release 
from the pump. The dosage form, after coming in contact with aqueous fluids, imbibes water at a rate 
determined by the fluid permeability of the membrane and osmotic pressure of core formulation. This 
osmotic imbibition of water results in high hydrostatic pressure inside the pump, which causes the flow 
of the drug solution through the delivery orifice. A lag time of 30 to 60 min is observed in most of the 
cases as the system hydrates. Approximately 60% to 80% of drug is released at a constant rate (zero 
order) from the pump. 
The drug release rate from a simple osmotic pump can be described by the following mathematic 
equation: 

 
where dM/dt is drug release rate, A is the membrane area, K is the membrane permeability, h is the 
membrane thickness, Δπ and Δpare the osmotic and hydrostatic pressure differences between the 
inside and outside of the system, respectively, and C is the drug concentration inside the pump (i.e., 
dispensed fluid). If the size of the delivery orifice is sufficiently large, the hydrostatic pressure inside the 
system is minimized and Δπ is much greater than Δp. When the osmotic pressure in an environment is 
negligible, such as the gastrointestinal 
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fluids, as compared to that of core, π can be safely substituted for Δπ. Therefore, equation (11-110) can 
be simplified to 

 
When all the parameters on the right-hand side of equation (11-111)remain constant, the drug release 
rate from an osmotic device is constant. This can be achieved by carefully designing the formulation and 
selecting the semipermeable membrane to achieve a saturated drug solution inside the pump so that π 

and C remain constant. 
Drug release from osmotic systems is governed by various formulation factors such as the solubility and 
osmotic pressure of the core component(s), size of the delivery orifice, and nature of the rate-controlling 
membrane. 
Solubility 
The kinetics of osmotic drug release is directly related to the solubility of the drug within the core. 
Assuming a tablet core of pure drug, we find the fraction of the core released with zero-order kinetics 
from. 

 
where F(z) is the fraction released by zero-order kinetics, S is the drug's solubility (g/mL), and ρ is the 

density (g/mL) of the core tablet. Drugs with low solubility (≤0.05 g/mL) can easily reach saturation and 
would be released from the core through zero-order kinetics. However, according to equation (11-112), 
the zero-order release rate would be slow due to the small osmotic pressure gradient and low drug 
concentration. Conversely, highly water-soluble drugs would demonstrate a high release rate that would 
be zero order for a small percentage of the initial drug load. Thus, the intrinsic water solubility of many 
drugs might preclude them from incorporation into an osmotic pump. However, it is possible to modulate 
the solubility of drugs within the core and thus extend this technology to the delivery of drugs that might 
otherwise have been poor candidates for osmotic delivery. 
Osmotic Pressure 
Osmotic pressure, like vapor pressure and boiling point, is a colligative property of a solution in which a 
nonvolatile solute is dissolved in a volatile solvent. The osmotic pressure of a solution is dependent on 
the number of discrete entities of solute present in the solution. From equation (11-111), it is evident that 
the release rate of a drug from an osmotic system is directly proportional to the osmotic pressure of the 
core formulation. For controlling drug release from these systems, it is important to optimize the osmotic 
pressure gradient between the inside compartment and the external environment. It is possible to 
achieve and maintain a constant osmotic pressure by maintaining a saturated solution of osmotic agent 
in the compartment. If a drug does not possess sufficient osmotic pressure, an osmotic agent can be 
added to the formulation. 
Delivery Orifice 
Osmotic delivery systems contain at least one delivery orifice in the membrane for drug release. The 
size of the delivery orifice must be optimized to control the drug release from osmotic systems. If the 
size of delivery orifice is too small, zero-order delivery will be affected because of the development of 
hydrostatic pressure within the core. This hydrostatic pressure may not be relieved because of the small 
orifice size and may lead to deformation of the delivery system, thereby resulting in unpredictable drug 
delivery. On the other hand, the size of the delivery orifice should not be too large, for otherwise solute 
diffusion from the orifice may take place. To optimize the size of the orifice, we can use the equation 

 
where As is the cross-sectional area, π = 3.14 …, L is the diameter of the orifice, V/t is the volume 
release per unit time, η is the viscosity of the drug solution, and ΔP is the difference in hydrostatic 
pressure. 
Semipermeable Membrane 
The choice of a rate-controlling membrane is an important aspect in the formulation development of oral 
osmotic systems. The semipermeable membrane should be biocompatible with the gastrointestinal tract. 
The membrane should also be water permeable and provide effective isolation from the dissolution 
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process in the gut environment. Therefore, drug release from osmotic systems is independent of the pH 
and agitational intensity of the gastrointestinal tract. To ensure that the coating is able to resist the 
pressure within the device, the thickness of the membrane is usually kept between 200 and 300 µm. 
Selecting membranes that have high water permeability can ensure high hydrostatic pressure inside the 
osmotic device and hence permit rapid drug release flow through the orifice. 
In summary, designing a drug with suitable solubility and selecting a semipermeable membrane with 
favorable water permeability and orifice size are the key factors for ensuring a sustained and constant 
drug release rate through an osmotic drug delivery system. 
Example 11-15 

Osmotic Release of Potassium Chloride 

Five hundred mg of potassium chloride was pressed into 0.25 mL of water; the 
semipermeable membrane thickness is 0.025 cm with an area of 2.2 cm2. The drug solubility 
is 330 mg/mL. The density of the solution is 2 g/mL. Here Kπ= 0.686 × 10-3 cm2/hr, and the 
diffusion coefficient, D, is 0.122 × 10-3 cm2/hr. What is the release rate of potassium chloride 
in this osmotic delivery system?83 
Assuming the osmotic pressure is the main driving force of the system, we obtain, using 
equation (11-111), 

 
Correcting for the contribution of diffusion, we obtain 
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Chapter Summary 

The fundamentals of diffusion were discussed in this chapter. Free diffusion of substances 
through liquids, solids, and membranes is a process of considerable importance to the 
pharmaceutical sciences. A fundamental understanding of the processes of dialysis, osmosis, 
and ultrafiltration is essential for pharmaceutical sciences. The mechanisms of transport in 
pharmaceutical systems were described in some detail. Fick's laws of diffusion were also 
defined and their application described. Important parameters such as diffusion coefficient, 
permeability, and lag time were discussed and sample calculations were performed to 
illustrate their use. The various driving forces behind diffusion, drug absorption, and 
elimination were described as well as elementary drug diffusion. Although many of the 
treatments in this chapter appear to be highly mathematical because of the extensive use of 
equations, the equations and their derivations are useful as the student learns about these 
important pharmaceutical processes at the mechanistic level. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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12 Biopharmaceutics 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Define ADME, disposition, elimination, bioavailability. 
2. Understand the role of membrane transporters in ADME, and name two major 

transporter superfamilies and examples of members of those families. 
3. Understand Overton's rule. 
4. Describe concerted drug transport. 
5. Define Phase 1, 2, and 3 drug metabolism and give examples. 
6. Understand the concepts of inhibition and induction as they relate to drug 

transporters, metabolizing enzymes, ADME, and pharmacokinetics. 
7. Describe clinically significant examples of induction and inhibition. 
8. Describe the brain-barrier systems. 
9. Relate rates of absorption, disposition, metabolism, and elimination to points on a 

curve of plasma level versus time. 
10. Understand the role of the stomach and intestine in drug absorption and elimination; 

gastric emptying; intestinal transit; and regional differences in absorptive capacity, 
transporters, and enzymes. 

11. Discuss the roles of the liver and the kidney in ADME and drug clearance. 
12. Define apparent volume of distribution and/or clearance. 
13. Relate Ka and Kel to ADME parameters (permeability, extraction ratios, clearance). 
14. Describe causes of low bioavailability. 

The purpose of this chapter is to provide the student with a biopharmaceutical foundation for studying 
the contemporary pharmaceutical sciences. The intended audience is predoctoral pharmacy (PharmD) 
and pharmaceutical science (PhD) graduate students. This information will be valuable to the practicing 
pharmacist because he or she is in a unique position to integrate and interpret the vast amounts of 
biologic, chemical, and physical information regarding drugs and drug products. The pharmacist can 
then convey practical advice to patients regarding the potential for drug interactions and for managing 
complex multidrug-treatment regimens. The pharmaceutical scientist also requires an understanding of 
this subject matter because of its emerging importance in drug discovery and development, including 
basic and applied research as well as in fields such as regulatory affairs. 
The pharmaceutical sciences have been undergoing a revolution of sorts over the last two decades. A 
transition has occurred from focusing solely on the physical aspects of pharmacy such as dissolution, 
solubility, and compaction physics to the integration of these important disciplines with the 
biopharmaceutical sciences. First, in the 1970s and 1980s, there was an explosion of activity in the 
discovery and characterization of the cytochromes P-450 (CYP450s), an important group of enzymes 
responsible for metabolizing many endogenous and exogenous substances,1including 40% to 50% of 
all medications.2 CYP450s transform drugs and other xenobiotics into more hydrophilic substances in 
order to facilitate their elimination from the body. More recently, it has become increasingly recognized 
that membrane transporters play an important role in the absorption and elimination of drugs. Drug 
transporters are membrane-spanning proteins that facilitate the movement of endogenous or exogenous 
molecules across biologic membranes. Included in this broad category are proteins involved in active 
(i.e., energy- or adenosine triphosphate [ATP]-dependent) transport, facilitated transport, and ion 
channels. Membrane transporters and metabolizing enzymes are found throughout the human body and 
in all organs involved in the absorption and disposition of drugs. Whereas membrane transporters 
facilitate the movement of drugs and their metabolites into and out of specific organs, groups of organs 
make up subsystems in the human body with discrete functions. For example, ―enterohepatic cycling‖ 

involves the movement of drugs from the intestine into the liver, back out into the bile, and then back 
into the intestine. 
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Although the complex interplay between these systems evolved for various physiologic purposes, the 
impact on drug–blood levels and the resulting therapeutic effect can be quite significant. We will explore 
the basic biopharmaceutical foundation for these complex systems and present the practical 
implications for pharmacotherapy throughout the chapter. 
In an editorial in Molecular Pharmaceutics,3 G. L. Amidon concisely reflected the sentiment that was the 
basis for preparing this chapter: ―Traditional scientific endeavors in drug delivery and drug product 

development have been rather phenomenological, more descriptive, and somewhat based on trial and 
error. That has been primarily due to a lack of tools and our limited understanding of the mechanisms 
involved at a cellular and molecular level. The rapid advances in the field of biological sciences, cell and 
molecular biology, and genomics and proteomics, in particular, have penetrated more than just the drug 
discovery phase of the pharmaceutical sciences. They are now rapidly changing the views and 
strategies in pharmaceutics and the pharmaceutical development sciences. While the impact is 
particularly evident in the membrane transporter and metabolism fields, advances 
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in the physical and material sciences, in parallel, are altering the pharmaceutical properties of drug 
candidates and delivery systems in new and innovative ways. The computational tool of bioinformatics, 
molecular property, biopharmaceutical property, and metabolism estimation have advanced rapidly in 
the past decade and are now having a significant impact on drug discovery and drug development. 
Traditional pharmacokinetics did not have molecular tools for understanding membrane transport and 
metabolism, or the effect of genetic polymorphism. Prodrug design and synthesis could not readily 
consider where and what enzymes convert the prodrug to the active drug. Receptors were primarily 
investigated for designing new chemical entities until molecular pharmaceutical scientists recognized 
that ligand-receptor interactions could be used to target drug to the receptor-expressing cells. Moreover, 
traditional dosage forms have not had to deal with high-molecular-weight ‗biopharmaceuticals,‘ which 

generally have more complex pharmaceutical properties and sites of action hidden deep within the 
target cells.‖ In this chapter, the student will be introduced to the biopharmaceutical considerations of 

the pharmaceutical sciences. 
Fundamentals 
Absorption, Distribution, Metabolism, and Excretion 
The molecular processes, tissues, and organs that control the absorption and disposition of drugs form 
the basis for the study of biopharmaceutics. The two primary processes relate to input into the body, that 
is, absorption and output from the body (i.e., disposition). 
Absorption relates to the mechanisms of drug input into the body and into a tissue or an organ within the 
body. Disposition can be broken down into distribution and elimination. After a drug enters the systemic 
circulation, it is distributed to the body's tissues.Distribution depends on many factors, including blood 
perfusion, cell membrane permeability, and tissue binding. The penetration of a drug into a tissue 
depends on the rate of blood flow to the tissue, partition characteristics between blood and tissue, and 
tissue mass. When entry and exit rates are the same, distribution equilibrium between blood and tissue 
is reached. It is reached more rapidly in richly vascularized areas than in poorly perfused areas unless 
diffusion across membrane barriers is the rate-limiting step. After equilibrium is attained, bound and 
unbound drug concentrations in tissues and in extracellular fluids are reflected by plasma 
concentrations. Elimination relates to the chemical transformation and/or physical removal of drug from 
the body. Hence, elimination is the sum of the processes related to drug loss from the body, 
namely, metabolism and excretion. Metabolism and excretion occur simultaneously with distribution, 
making the process dynamic and complex. Excretion is the process by which a drug or metabolite is 
removed from the body without further chemical modification. Three primary routes of excretion occur 
through the bile (i.e., biliary excretion), intestine, and kidney (i.e., renal excretion). 
Terminology 
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The following definitions are taken primarily from a variety of sources, which are indicated immediately 
after the defined term. In some cases, the original source has an expanded discussion on the topic, so 
the student is encouraged to utilize these sources for additional insights. 
Bioavailability4 
According to the U.S. Food and Drug Administration, bioavailability describes the rate and extent to 
which the active drug ingredient is absorbed from a drug product and becomes available at the site of 
drug action. Because pharmacologic response is generally related to the concentration of drug at the 
site of drug action, the availability of a drug from a dosage form is a critical element of a drug product's 
clinical efficacy. However, drug concentrations usually cannot be readily measured directly at the site of 
action. Therefore, most bioavailability studies involve the determination of drug concentration in the 
blood or urine. This is based on the premise that the drug at the site of action is in equilibrium with drug 
in the blood. This does not mean that the drug concentrations in blood and tissues are equal. Instead, it 
assumes that equilibrium is maintained and that blood concentrations are proportional to tissue and 
active-site concentrations. It is therefore possible to obtain an indirect measure of drug response by 
monitoring drug levels in the blood or urine. Thus, bioavailability is concerned with how quickly and how 
much of a drug appears in the blood after a specific dose is administered. The bioavailability of a drug 
product often determines the therapeutic efficacy of that product because it affects the onset, intensity, 
and duration of therapeutic response of the drug. 
In most cases, one is concerned with the extent of absorption of drug (i.e., the fraction of the dose that 
actually reaches the bloodstream) because this represents the ―effective dose‖ of a drug. This is 

generally less than the amount of drug that is actually administered in the dosage form. 
In some cases, notably those where acute conditions are being treated, one is also concerned with the 
rate of absorption of a drug because rapid onset of pharmacologic action 
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is desired. Food can slow drug absorption and result in lower blood levels. This is particularly important 
for drugs that depend on certain levels for maximum effectiveness. Good examples of this are antibiotics 
that need to achieve minimum inhibitory concentrations to be effective. Conversely, there are instances 
where a slower rate of absorption is desired, either to avoid adverse effects or to produce a prolonged 
duration of action. 

Key Concept 

Biopharmaceutical Process: ADME 

 Absorption 
 Disposition 

 Distribution 
 Elimination 

 Metabolism 
 Excretion 

Key Concept 

Bioavailability Variability and Therapeutic Index 

Therapeutic problems (e.g., toxicity, lack of efficacy) are encountered most frequently during 
long-term therapy when a patient who is stabilized on one formulation is given a 
nonequivalent substitute. This is well known for drugs like digoxin or phenytoin. Sometimes 
therapeutic equivalence may be achieved despite differences in bioavailability. For example, 
the therapeutic index (ratio of the maximum tolerated dose to the minimum effective dose) of 
amoxicillin is so wide that moderate blood concentration differences due to bioavailability 
differences in amoxicillin products may not affect therapeutic efficacy or safety. In contrast, 
bioavailability differences are important for a drug with a relatively narrow therapeutic index 
(e.g., digoxin). 
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Absolute Bioavailability4 
―Absolute‖ bioavailability, F, is the fraction of an administered dose that actually reaches the systemic 
circulation and ranges from F = 0 (i.e., no drug absorption) to F = 1 (i.e., complete drug absorption). 
Because the total amount of drug reaching the systemic circulation is directly proportional to the area 
under the curve (AUC) of plasma drug concentration versus time, F is determined by comparing the 
respective AUCs of the test product and the drug administered intravenously. 
Bioequivalence5 refers to chemical equivalents (i.e., drug products that contain the same compound in 
the same amount and that meet current official standards) that, when administered to the same person 
in the same dosage regimen, result in equivalent concentrations of drug in blood and tissues. 
Therapeutic equivalence refers to drug products that, when administered to the same person in the 
same dosage regimen, provide essentially the same therapeutic effect or toxicity. Bioequivalent 
products are expected to be therapeutically equivalent. 
Genotype6 
Genotype is the ―internally coded, inheritable information‖ carried by all living organisms. This stored 

information is used as a ―blueprint‖ or set of instructions for building and maintaining a living creature. 

These instructions are found within almost all cells (hence the word ―internal‖ in the definition), are 

written in a coded language (the genetic code), are copied at the time of cell division or reproduction, 
and are passed from one generation to the next (―inheritable‖). These instructions are intimately involved 

with all aspects of the life of a cell or an organism. They control everything from the formation of protein 
macromolecules to the regulation of metabolism and synthesis. 
Membrane Permeability 
Membrane permeability relates to the velocity with which a drug molecule moves across a membrane. 
The units of measurement for permeability are distance per time (e.g., cm/sec). Permeability is inversely 
related to the resistance of transport across membranes or tissues. Therefore, the higher the 
permeability, the lower is the resistance to movement across the membrane. Drugs can permeate 
membranes by passive diffusion through the cell membrane or between cells and by using transporters 
that ―carry‖ drugs across the membrane. Passive permeability across membranes is determined by the 
solubility of the permeating molecule in the membrane, diffusion across the membrane into the cell, and 
the thickness of the barrier. This is covered in more detail inChapter 13. 
Permeability as it relates to drug transporters is covered later in this chapter. 
Phenotype6 
Phenotype is the ―outward, physical manifestation‖ of the organism. These are the physical parts, the 

sum of the atoms, molecules, macromolecules, cells, structures, metabolism, energy utilization, tissues, 
organs, reflexes, and behaviors: anything that is part of the observable structure, function, or behavior of 
a living organism. Rogers et al.7 defined phenotype as it relates to drug metabolism: ―Phenotype is the 

observed characteristic (as influenced by dietary intake and environmental exposure) of a patient's 
enzyme activity, and includes such designations as ‗poor metabolizer,‘ ‗intermediate metabolizer,‘ 

‗extensive metabolizer,‘ and ‗ultrarapid extensive metabolizer.‘‖ Patients who express dysfunctional or 

inactive enzymes are considered poor metabolizers.8 Prodrugs, which require biotransformation to an 
active metabolite to elicit a therapeutic effect, are often not effective in these patients. 
Example 12-1 

Codeine and Analgesia 

Drug toxicity can be observed in patients who are poor metabolizers because of impaired 
clearance of medications requiring biotransformation for elimination and excretion. 
Intermediate metabolizers are patients who demonstrate decreased enzyme activity and have 
diminished drug metabolism.2 Extensive metabolizers are patients who express enzymes that 
have normal activity,9 in whom the anticipated medication response would be seen with 
standard doses of drugs. Ultrarapid extensive metabolizers are patients who have higher 
quantities of expressed enzymes because of gene duplication.8 Normal doses of drugs in 
these patients may result in reduced or no efficacy (or toxicity with prodrugs) because of rapid 
metabolism.8 In this example, codeine, a commonly used analgesic for postoperative pain, 
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will be examined. It is well known that the quality of pain management varies among patients. 
Codeine is thought to be an effective analgesic because it is metabolized by the cytochrome 
P-450 2D6 (CYP2D6) pathway to morphine. This product is then quickly glucuronidated to 
morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), active analgesics. 
However, it has been shown that CYP2D6 is polymorphic in a number of different alleles, 
potentially causing a slow-metabolism phenotype, and may even be overexpressed (i.e., 
ultrarapid metabolizing phenotype) in certain people. This polymorphism results in patients 
having differing abilities to utilize that pathway for creating an active and effective analgesic. 
How common are these variations in drug metabolism? The frequency of poor metabolizers is 
6% of the U.S. population, whereas only 1% of the Asian population is considered to be poor 
metabolizers. Similarly, the ultrarapid-metabolizing phenotype is also found worldwide, the 
greatest percentage being in Ethiopia (29%). In the case of codeine, a poor metabolizer will 
not receive as much pain management from a typical dose as a normal patient, and an 
ultrarapid-metabolizing patient may overdose at a similar dose. 
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Relationship Between Genotype and Phenotype 
The ―internally coded, inheritable information,‖ or genotype, carried by all living organisms holds the 

critical instructions that are used and interpreted by the cellular machinery of the cells to produce the 
―outward, physical manifestation,‖ or phenotype, of the organism.6 
Relative Bioavailability4 
―Relative‖ bioavailability refers to the availability of a drug product as compared to another dosage form 

or product of the same drug given in the same dose. These measurements determine the effects of 
formulation differences on drug absorption. The relative bioavailability of one product compared to that 
of another, both products containing the same dose of the same drug, is obtained by comparing their 
respective AUCs. 
Pharmacokinetics4 
Pharmacokinetics is the mathematics of the time course of absorption, distribution, metabolism, and 
excretion (ADME) of drugs in the body. The biologic, physiologic, and physicochemical factors that 
influence the transfer processes of drugs in the body also influence the rate and extent of ADME of 
those drugs in the body. In many cases, the pharmacologic action and the toxicologic action are related 
to the plasma concentration of drugs. Through the study and application of pharmacokinetics, the 
pharmacist can individualize therapy for the patient. 
Pharmacodynamics 
Pharmacodynamics is the study of the biochemical and physiologic effects of drugs and their 
mechanisms of action. 
Pharmacogenetics 
Pharmacogenetics is the study of how genetic variations affect drug response. 
Omics10 
The burgeoning fields of genomics and proteomics are spawning multiple ―omic‖ subdisciplines and 

related areas. The suffix generally refers to the study of a complete grouping or system of biomolecules, 
such as a genome, containing all of an organism's genes, or its proteome, containing all of its proteins. 
For example, genomics is the scientific study of a genome and the roles that genes play, alone and 
together, in directing growth and development and in controlling and determining biologic structure and 
function. As the field has grown, it has been broken down into several major branches. Structural 
genomics focuses on the physical aspects of the genome through the construction and comparison of 
gene maps and sequences as well as gene discovery, localization, and characterization. At the same 
time, functional genomics attempts to move data from structural genomics toward biologic function by 
understanding what genes do, how they are regulated, and their activity. Pharmacogenomics looks at 
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genetic makeup or genetic variations and their connection to drug response. Variations in drug targets, 
usually proteins, and target pathways are studied to understand how the variations are manifested and 
how they influence response. The term pharmacogenetics is sometimes used instead, but it can also 
refer specifically to genetic profiles or tests that predict drug response. 
Molecular and Cellular Biopharmaceutics 
Introduction* 
A biologic membrane is a lipid bilayer, typically embedded with proteins, that acts as a barrier within or 
surrounds the components of a cell. The membrane that separates a cell from the surrounding medium 
is called a plasma membrane. Such membranes also define most organelles (i.e., structures with 
specialized functions suspended in the cytoplasm) within cells. The typical structure of a cell membrane 
is shown in Figure 12-1. The membrane is characterized by a lipid bilayer that is typically about 5-nm 
thick. The lipid bilayer is composed of two opposing layers of lipid molecules arranged so that their 
hydrocarbon tails face one another to form the oily bilayer core, whereas their electrically charged or 
polar heads face the watery or ―aqueous‖ solutions on either side of the membrane. Most of the proteins 
found in biologic membranes are integral membrane proteins (i.e., they are anchored to the 
cytoskeleton). Examples of the functions that integral membrane proteins serve include the identification 
of the cell for recognition by other cells, the anchoring of one cell to another or to surrounding media, the 
initiation of intracellular responses to external molecules, and the transport of molecules across the 
membrane. In 1899, Overton12,13 concluded that the entry of any molecule into a cell is the result of its 
―selective solubility‖ in the cell's boundary, and that the more soluble in lipids the molecule is, the greater 

is its permeability, a discovery that has since been called the Overton rule.11 Overton's studies led to 
the hypothesis that cell 
P.262 
 
membranes are composed of lipid domains, which mediate transport of lipophilic molecules, and protein 
pores, which transport hydrophilic molecules. Eventually, these data were unified in the hypothesis that 
cell membranes are mosaics composed of lipid domains, through which lipophilic molecules permeate, 
and (water-filled) pore regions, presumably made up of proteins that allow the transport of hydrophilic 
molecules.11,12,13,14,15,16 
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Fig. 12-1. Typical structure of a cell membrane. It is composed of a lipid bilayer that 

is 5-nm thick. Various types of proteins are part of the bilayer and serve a variety of 

physiological functions. 

Overton also suggested that ions must use a different pathway across the membrane because the low 
dielectric constant of lipids prevented solvation of charged particles. However, large ions have 
significant lipid solubility because their charge is spread over a much larger area, providing an 
explanation for the rapid permeability of large charged particles, including many drugs. Because many 
drugs are organic acids or bases, the role of ionization in drug absorption has been the subject of much 
study over the years. Historically, in the pharmaceutical sciences, the role of ionization in membrane 
permeation has been described by the pH-partition hypothesis.17,18 As a general rule, the pH-partition 
hypothesis states that nonionized (i.e., lipid-soluble) drugs pass quickly through membranes, whereas 
ionized species are too polar to pass easily. Thus, it was expected that the rate of permeation of most 
drugs, which are organic acids and bases, is determined by the gradient for the nonionized form. The 
pH-partition hypothesis is covered in detail in Chapter 11. 
Over the last several years, the mechanisms by which drugs and other xenobiotics are transported 
across biologic membranes have been reevaluated in light of the vast amount of information recently 
discovered during the mapping of the human genome and the identification of a vast number of proteins 
that may be involved in moving drugs across membranes. With the identification of aquaporins (in other 
words, water-conducting, protein-based channels), lipid transporters capable of transporting lipids such 
as the nonionized form of short-chain fatty acids, and drug transporters that can transport water and 
lipid-soluble drugs, the view of membrane transport is rapidly changing. In the words of Al-Awqati, in 
evaluating Overton's landmark work, ―Needless to say, the [current analysis] … neither reduces the 

importance of Overton's insight into the lipid structure of the cell membrane nor nullify the likelihood that 
a few molecules may indeed travel through the lipid bilayer. However, what is certain today is that most 
molecules of physiological or pharmacological significance are transported into or out of cells by 
proteins rather than by a ‗passive‘ solubility into the lipid layer and diffusion through it.‖11 This 
adequately sums up the changes in our thinking about the membrane transport of drugs. The next 
section introduces drug-transporting proteins. 
Drug Transporters, Cells, and Transport Pathways 
Transporters are membrane proteins whose function is to facilitate the movement of molecules across 
cellular membranes. Although their primary function is to transport nutrients or other endogenous 
substances, many transporters also translocate drugs. For example, PepT1 is a transporter located at 
the brush border membrane of the human intestine responsible for the uptake of di- and tripeptides. 
However, it is able to transport many different drugs, such as valacyclovir, the L-valine ester prodrug of 
the acyclic nucleoside acyclovir,19 angiotensin-converting enzyme inhibitors,20 and cephalosporin 
antibiotics.21 The human genome sequence suggests that there are more than 700 known 
transport/carrier genes,22 and it has been estimated that at least 4% to 5% of the human proteome 
could be transporters23 (Fig. 12-2). 
P.263 
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Fig. 12-2. Membrane transport functions identified by analysis of coding regions in 

five complete genomes. Circular representations from the center to the outer 

ring:Mycoplasma genitalium, Methanococcus jannaschii, Synechocystis PCC6803, 

Haemophilus influenzae, and Saccharomyces cerevisiae. Colors represent the four 

role categories: (1) amino acids, peptides and amines (light purple); (2) carbohydrates, 

organic alcohols and acids (dark purple); (3) cations (white); and (4) anions (gray). 

Ion-coupled permeases are designated by ovals, ABC transporters are shown as 

composites (circles, diamonds and ovals), and all other transporters are represented by 

rectangles. Arrows that point outward indicate efflux from the cell; those that point 

inward designate solute uptake from the environment. (From R. A. Clayton, O. White, 

K. A. Ketchum, and J. C. Venter, The first genome from the third domain of life, 

Nature 387(6632), 459–462, 1997. With permission.) 
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Fig. 12-3. Drug transport mechanisms across cell membranes fall into three general 

categories. In panel (A) primary active transport is depicted. In primary active 

transport, a drug or nutrient (S) is translocated across the membrane by means of a 

transport protein that spans the membrane. Energy in the form of ATP is required to 

drive the process. In panel (B) secondary active transport is depicted. In this case the 

drug or nutrient (S) crosses the membrane in the same manner as in (A). However, a 

second substrate (S1 or S2) is also moved into or out of the cell. In panel (C) 

facilitative transport is shown. Although transport is facilitated by proteins, the 

process is not energy dependent. 

Drug transport mechanisms fall into three categories based on energetics and cotransport of other 
substances. These are primary and secondary active transport and facilitative transport. These 
mechanisms are depicted in Figure 12-3. Active transport involves the use of energy, usually ATP, to 
transport substrates across a biologic membrane. By using ATP, active transporters can move 
substrates to areas of high or low concentration. P-Glycoprotein (P-gp) is an example of a primary active 
transporter. Secondary active transport involves the cotransport of another substance such as an ion (e. 
g., H+ or Na+) along with the substrate. If the cotransported substance is transported in the same 
direction as the substrate, the process is called symport. If the cotransported substance is moved in the 
opposite direction, it is called antiport. An example of a symporter is the oligopeptide transporter PepT1. 
PepT1 transports a H+ and a small peptide, typically a di- or tripeptide, into cells. Numerous drugs are 
also substrates for PepT1 including valacyclovir,19 angiotensin-converting enzyme inhibitors,20 and 
cephalosporin antibiotics.21 Glucose and Na+ transport by means of the glucose transporter is another 
classic example of symport. An example of an antiporter is Na+/K+-ATPase, which transports Na+and 
K+ in opposite directions. Facilitative transport (also known as facilitated diffusion) is a non–energy-
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dependent transporter-mediated mechanism. Because the transport mechanism is not energy 
dependent, these transporters cannot move substrates against a concentration gradient. In other words, 
substrates can only move from areas of high concentration to areas of low concentration. An example of 
a facilitative transport mechanism involves the equilibrative nucleoside transporters es and ei. 
In this chapter, two major transporter superfamilies, the ATP-binding cassette (ABC) and the solute 
carrier family (SLC), will be introduced. The ABC transporter superfamily is the largest transporter gene 
family. ABC transporters directly use ATP hydrolysis as the driving force to pump substrates out of cells 
or prevent them from entering cells. The genes encoding ABC transporters are widely dispersed in the 
genome and show a high degree of amino acid sequence identity among eukaryotes.24,25 Using 
phylogenetic analysis, we can divide the human ABC superfamily into seven subfamilies with more than 
40 members. Several well-characterized drug transporting–related members are listed in Table 12-
1.26Delineation of the topology of a transporter 
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is very important to gaining an understanding of its physiologic functions and substrate specificity. 
Knowing the transporter's structure may also enable the design of useful molecules to manipulate its 
transport activity and optimize the drug's pharmacokinetic behavior through enhanced absorption and 
targeted delivery. Membrane transporters may have various configurations across membranes. These 
configurations are shown in Figure 12-4 and are referred to as topologies. The topology of a membrane 
transporter relates to its physiologic function. Because of difficulties in crystallizing membrane proteins, 
the topology of ABC transporters has been proposed on the basis of computational simulations and 
confirmed by experimental data. In general, ABC transporters contain two ATP-binding domains, also 
known as nucleotide-binding domains, which are located intracellularly, and 12 membrane–spanning α-
helices, which associate with each other to become specific membrane-spanning domains. Some 
transporters in the ABC superfamily, such as breast cancer resistance protein (BCRP, ABCG2), contain 
only one membrane-spanning domain and nucleotide-binding domain and are believed to associate with 
other proteins themselves to become functional. As a result of this, BCRP is also known as a half 
transporter. 

Table 12-1 ATP-Binding Cassette Family Transporters 

  Symbol Alias 

Rodent 

Ortholo

gue 

Tissue 

Distributi

on 

Subcellula

r 

Localizati

on Functions 

Subfa

mily 

A 

AB

CA1 

ABC

-1 

Abc

a1 

Many 

tissue

s 

– A major 

regulator of 

cellular 

cholesterol 

and 

phospholip

id 

homeostasi

s. It 

effluxes 

phospholip
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ids (PS) 

and 

cholesterol 

from 

macrophag

es to apoA-

I, reversing 

foam cell 

formation. 

Likely not 

involved in 

hepatic 

cholesterol 

secretion 

and 

intestinal 

apical 

cholesterol 

transport. 

Subfa

mily 

B 

AB

CB1 

P-

gp, 

MD

R1 

Abc

b1b 

Many 

tissue

s 

(espe

cially 

those 

with 

barrie

r 

functi

ons 

such 

as L, 

BBB, 

P, K, 

I) 

Apica

l 

Efflux 

pump for 

xenobiotic 

compounds 

with broad 

substrate 

specificity, 

which is 

responsible 

for 

decreased 

drug 

accumulati

on in 

multidrugr

esistant 

cells and 

often 

mediates 

the 

developme

nt of 

resistance 

to 

anticancer 

drugs. 
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  AB

CB4 

MD

R3 

Abc

b1a 

L Apica

l 

Most likely 

involved in 

biliary 

phosphatid

ylcholine 

secretion 

from 

hepatocytes 

in a bile 

salt–

dependent 

manner. 

Subfa

mily 

C 

AB

CC1 

MR

P1 

Abc

c1a 

Lu, T, 

I 

Latera

l 

MRP1 

transports 

glucuronid

es and 

sulfate-

conjugated 

steroid 

hormones 

and bile 

salts. It 

also 

transports 

drugs and 

other 

hydrophobi

c 

compounds 

in presence 

of 

glutathione

. 

  AB

CC2 

MR

P2, 

CM

OAT 

Abc

c2 

L, I, 

K 

Apica

l 

MRP2 

excretes 

glucuronid

es and 

sulfate-

conjugated 

steroid 

hormones 

and bile 

salts into 
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bile. Other 

substrates 

include 

anticancer 

drugs such 

as 

vinblastine 

and anti-

HIV drugs 

such as 

saquinavir. 

Contributes 

to drug 

resistance. 

  AB

CC3 

MR

P3 

Abc

c3 

I, K Latera

l 

MRP3 is 

inducible 

transporter 

in the 

biliary and 

intestinal 

excretion 

of organic 

anions. 

  AB

CC4 

MR

P4 

  Many 

tissue

s 

(espe

cially 

L) 

Basol

ateral 

MRP4 

transports 

prostagland

ins out of 

hepatocytes 

back to 

blood 

circulation. 

It also 

transports 

cyclic 

nucleotides 

and some 

nucleoside 

monophosp

hate 

analogues 

including 

nucleoside-

based 
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antiviral 

drugs. 

  AB

CC5 

    L   Similar 

substrate 

specificity 

with MRP4 

  AB

CC6 

    K and 

L 

  MRP6 

transports 

glutathione 

conjugates. 

Subfa

mily 

G 

AB

CG2 

BCR

P, 

MX

R, 

ABC

P 

Abc

g2 

P, B, 

L, I 

Apica

l 

BCRP 

functions 

as a 

xenobiotic 

transporter, 

which 

contributes 

to 

multidrug 

resistance. 

It serves as 

a cellular 

defense 

mechanism 

in response 

to 

mitoxantro

ne and 

anthracycli

ne 

exposure. It 

also 

transports 

organic 

anions, 

steroids 

(cholesterol

, estradiol, 

progesteron

e, 

testosteron
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e), and 

certain 

chlorophyll 

metabolites

. 

Key: L = liver; Lu = lung; T = testis; I = intestine; P = placenta; B = brain; 

K = kidney; BBB = blood–brain barrier. 

 

 

Fig. 12-4. Topologies of membrane-integrated proteins. (Drawn by G. You. With 

permission.) 
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Fig. 12-5. Predicted structure of (a) multidrug resistance protein-1, (b) P-

glycoprotein, and (c) breast cancer resistance protein. Shown is the linear secondary 

structure with putative transmembrane helices and the two ATP-binding domains. The 

potential glycosylation sites are denoted as C. (From T. Litman, T. E. Druley, W. D. 

Stein, and S. E. Bates, Cell. Mol. Life Sci. 58 (7), 931, 2001. 

The commonly agreed topologies of three well-studied ABC transporters, P-gp, BCRP, and multidrug-
resistance protein-1 (MRP1), are shown in Figure 12-5. It is important to realize that these structures are 
highly educated guesses and will remain somewhat controversial until the exact crystal structures can 
be determined. 
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Table 12-2 Solute Carrier Family Transporters 

Dr. Murtadha Alshareifi e-Library

495



  Symbol Alias 

Rodent 

Ortholog

ue 

Tissue 

Distribut

ion 

Subcellula

r 

Localizatio

n Functions 

SL

C15 

SLC1

5A1 

hPep

T1 

Slc1

5a1 

I, K – Proton-

coupled 

uptake of 

oligopeptides 

of 2–4 amino 

acids, beta-

lactam 

antibiotics 

SL

C21 

SLC2

1A3 

OAT

P, 

OAT

P-A 

Slc2

1a7 

Man

y 

tissu

es 

(B, 

I, L, 

P, 

K) 

Latera

l 

Mediates 

cellular uptake 

of organic 

ions in the 

liver. Its 

substrates 

include bile 

acids, 

bromosulfopht

halein, some 

steroidal 

compounds, 

and 

fexofenadin. 

  SLC2

1A6 

OAT

P2, 

OAT

P-C, 

LST

-1 

  L Basola

teral 

Mediates the 

Na
+
-

independent 

transport of 

organic anions 

such as 

pravastatin, 

taurocholate, 

methotrexate, 

dehydroepian

drosterone 

sulfate, 17-

beta-

glucuronosyl 

estradiol, 

estrone 

sulfate, 
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prostaglandin 

e2, 

thromboxane 

b2, 

leukotriene 

c3, 

leukotriene 

e4, thyroxine, 

and 

triiodothyroni

ne. It may 

play an 

important role 

in the hepatic 

clearance of 

bile acids and 

organic 

anions. 

SL

C22 

SLC2

2A1 

OCT

1 

Slc2

2a1 

L, 

K, I 

Basola

teral 

Play a critical 

role in the 

elimination of 

many 

endogenous 

small organic 

cations as well 

as a wide 

array of drugs 

and 

environmental 

toxins. 

  SLC2

2A6 

OAT

1, 

PAH

T 

Slc2

2a6 

K, 

B, P 

Basola

teral 

Involved in 

the sodium-

dependent 

transport and 

excretion of 

endogenous 

organic 

anions, such 

asp-

aminohippurat

e, cyclic 

nucleotides, 

dicarboxylates
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, and 

neurotransmitt

er metabolites, 

and 

xenobiotics 

such as β-

lactam 

antibiotics, 

nonsteroidal 

anti-

inflammatory 

drugs, and 

anti-HIV and 

antitumor 

drugs. 

Key: L = liver; T = testis; I = intestine; P = placenta; B = brain; K = kidney. 

 

ABC transporters interact with a wide variety of substrates, including sugars, amino acids, metal ions, 
peptides, proteins, and a large number of hydrophobic compounds and metabolites. ABC transporters 
play very important roles in many cellular processes, and several human genetic disorders such as 
cystic fibrosis, neurologic disease, retinal degeneration, cholesterol and bile transport defects, and 
anemia are the result of transporter dysfunction. ABC transporters are among the key players in 
multidrug resistance, a frequently observed phenomenon in cancer therapy, and they also significantly 
influence the pharmacokinetic behavior of many drugs. Because of this, drug transporters are becoming 
increasingly implicated in determining therapeutic outcomes. 
Another transporter family that is involved in drug absorption and disposition is known as the SLC. More 
than 20 SLC subfamilies have been identified; they are responsible for transporting a variety of 
endogenous and exogenous substances, such as amino acids, glucose, oligopeptides, antibiotics, and 
nonsteroidal anti-inflammatory, antitumor, and anti-HIV drugs. In this chapter, only those well-
characterized and drug transport–relevant SLC members are described. Their tissue distribution, 
subcellular localization, functions, and substrates are listed in Table 12-2. Computer modeling based on 
hydropathy analysis has enabled us to predict the linear secondary structures of organic anion 
transporters (OATs), organic cation transporters (OCTs), and organic anion-transporting polypeptides 
(OATPs) (Fig. 12-6). Unlike ABC transporters, these membrane-integrated transporters do not carry 
potential ATP-binding sites or an ATPase domain that can hydrolyze ATP. Most SLC members transport 
substrates with another ion in the same or opposite direction as the substrate. For example, the 
transport of oligopeptides and peptidomimetics by means of PepT1, the small peptide transporter (a 
symporter), has been shown to be proton and 
P.268 
 
membrane potential dependent on the apical surface of an epithelial cell (Fig. 12-7). Briefly, the 
Na+/H+ exchanger, an antiporter, located at the apical cell surface generates a lower pH in the 
microclimate of intestinal villi. Substrates are then taken up into epithelial cells by PepT1 coupled with 
the influx of proton. The influx of protons acts as the driving force for PepT1-mediated uptake, and this 
transport system is known as proton dependent.27 It was demonstrated that the lower pH in the lumen 
(pH 5–6.5) and the inside negative membrane potential established by Na+/K+-ATPase were critical 
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factors in the unidirectional uptake of substrates into cells by PepT1. Therefore, PepT1 functions as a 
net absorptive influx transporter rather than as secretory transporter in intestine. The effects of the 
proton on the orientation of PepT1 and symport events are depicted in Figure 12-8. In a similar manner, 
Na+ and glucose cotransport effect the orientation and function of the glucose transporter (SLC2A1). 
These events are depicted in Figure 12-9. 

 

Fig. 12-6. Proposed topology of rat organic anion-transporting peptide-1 (rOATP1), 

organic cation transporter-1 (rOCT1), and organic ion transporter-1 (rOAT1). All 

transporters have 12 transmembrane helices. rOATP1 has a large extracellular loop 

between transmembrane helices 9 and 10, whereas rOCT1 and rOAT1 carry the large 

extracellular loop between helices 1 and 2. 
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Fig. 12-7. A proposed model of PepT1-mediated transport. Di- or tripeptides enter the 

cells together with protons via PepT1 at the brush border membrane, and the proton 

and Na
+
 gradients are maintained by the H

+
–Na

+
 exchanger and Na

+
/K

+
-ATPase, 

respectively. 

The elimination of organic anions from blood into urine by OAT also involves the translocation of 
multiple ions across the basolateral membrane in the proximal tubule epithelium in the kidney. As shown 
in Figure 12-10, Na+/K+-ATPase establishes an inwardly directed Na+ gradient. This Na+ gradient then 
moves dicarboxylates into the cells via a Na-dicarboxylate cotransporter (SDCT2), which produces an 
outwardly directed dicarboxylate gradient. Finally, OAT transfers organic anions such as para-
aminohippurate (PAH) into cells using the coupled efflux of dicarboxylate as the driving force. 
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Fig. 12-8. Proposed mechanism of substrate transport by PepT1, the intestinal peptide 

transporter. (From D. R. Herrera-Ruiz and G. T. Knipp, J. Pharm. Sci. 92, 691, 2003. 

With permission.) 

In addition to transporting a wide variety of endogenous substance such as PAH, urate, cAMP, cGMP, 
tetraethyl ammonium, aliphatic quaternary ammonium compounds, and bile acids, SLC transporters 
also transport many clinically useful drugs including antibiotics and antiallergy, anti-HIV, and antitumor 
medications. A large body of data has shown that SLC transporters play a very important role in drug 
absorption and disposition and may be at the heart of numerous and significant drug–drug interactions. 
Most drug transporters are located in tissues with barrier functions such as intestine, kidney, liver, and 
the brain barriers. The cells at the border of these barriers are usually polarized. In other words, the 
plasma membrane of these cells is organized into at least two discrete regions with different 
compositions and functions. Figure 12-11 shows an example of a polarized cell and the transport 
pathways through and between cells. Enterocytes (i.e., intestinal absorptive cells) at the brush border 
membrane of intestine and epithelial cells at the renal proximal tubule have an apical domain (AP) 
facing the lumen and basolateral domain (BL) facing the blood circulation; hepatocytes are polarized 
into a canalicular (AP) membrane facing the bile duct and a sinusoidal (BL) membrane facing the blood 
circulation; syncytiotrophoblasts at the maternal–fetal interface of placenta have apical domain facing 
the maternal blood and a basolateral domain facing the fetus. The brain capillary endothelial cells that 
function as the blood–brain barrier (BBB) are also polarized into luminal and antiluminal membranes. In 
most cases, the expression of a drug transporter is usually restricted to one side, the apical or 
basolateral domain, of polarized cells (e.g., PepT1 is located only on the apical membrane). 
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Drug transporters can be categorized into efflux or influx transporters according to the direction that they 
transport substrates across cell membranes. Under this definition, transporters that pump substrates out 
of the cells are 
P.270 
 
called efflux transporters and those that transfer substrates into the cells are called influx transporters. 
This definition is widely used when drug transport studies are performed at the cellular level. For 
example, P-gp and multidrug-resistant proteins (MRPs) belong to the efflux transporter group because 
they pump substrates out of the cytosol and into the extracellular environment. On the other hand, 
PepT1, OCTs, OATs, and OATPs are categorized as influx transporters due to their ability to bring 
substrates into cells. Another way of classifying drug transporters is from a pharmacokinetic point of 
view. Based on this terminology system, transporters that transfer their substrates in the direction of the 
systemic circulation from outside the 
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body or into organs like the brain or the liver are called absorptive transporters, whereas transporters 
that transport drugs out of an organ or from the blood circulation into bile, urine, and gut lumen are 
called secretory transporters. For example, MRP1 (ABCC1) is an efflux transporter that can pump drugs 
such as saquinavir, an HIV protease inhibitor, out of cells. However, considering that MRP1 expression 
in enterocytes in the intestine is restricted to the basolateral membrane, efflux of saquinavir by MRP1 in 
the intestine leads to the movement of drug into the blood circulation. Therefore, MRP1 is considered an 
absorptive efflux transporter. Similarly, influx transporters could function as either absorptive or 
secretory transporters depending on the tissue and membrane domain where they are expressed. For 
example, intestinally expressed organic anion-transporting polypeptide-A (OATP-A) is localized on the 
apical domain of enterocytes. Orally administered fexofenadine, a histamine H1-receptor antagonist, is 
transported into intestinal cells by OATP-A and then into the blood stream; therefore, OATP-A is 
considered an absorptive influx transporter.28 An influx transporter could also act as a secretory pump. 
For example, studies at the cellular level have demonstrated that organic anion transporter-1 (OAT1) is 
an influx transporter with substrates such as PAH, prostaglandin E2 (PGE2), decarboxylates, and 
various anionic drugs. In the kidney, OAT1 is found on the basolateral membrane of tubular epithelial 
cells responsible for eliminating certain endogenous and exogenous substances and their metabolites 
from the blood into the urine. Therefore, kidney OAT1 is thought to be a secretory influx transporter. In 
other words, OAT1 takes up substrates into kidney cells, but the process is oriented toward moving 
them out of the body.29 

Dr. Murtadha Alshareifi e-Library

502



 

Fig. 12-9. Mechanism of glucose transport across a membrane by the glucose 

transporter. 

 

Fig. 12-10. Model of organic anion transporter (OAT)-mediated organic anion 

transport. Key: SDCT2 = Na
+
-coupled dicarboxylate cotransporter-2; OA

-
 = organic 
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anion. 

 

Fig. 12-11. Pathways across a cell monolayer. Drugs can cross between cells (i.e., 

paracellularly) or through cells (i.e., transcellularly). Drug transport out of cells is 

termed efflux and into cells is called influx. 

Example 12-2 

Concerted Transport Across Cells12 

Concerted drug or xenobiotic transport occurs when the transport of a compound is facilitated 
across both membrane domains of a polarized cell by membrane transporters. Concerted 
transport implies that the transporters on the two domains move drugs in the same direction 
(Fig. 12-12). In this example, Madin–Darby canine kidney (MDCK) cells were cultured in a 
specialized device called a Transwell. A Transwell is a porous support made of a polymer and 
is used to grow cells as a continuous monolayer of polarized cell membranes (apical and 
basolateral) and functional cell–cell tight junctions. In this example, the human MRP2 or 
OATP8 genes were heterologously expressed in MDCK cells, and their expression was 
restricted to the apical and basolateral membranes, respectively (Fig. 12-13). When the 
basolateral-to-apical (B → A) transport of estradiol-17-β-glucuronide, a metabolite of a sex 
hormone, was measured, it was found that the rank order of B → A permeability of estradiol-
17-β-glucuronide is MDCK–MRP2/OATP8 (MDCK expressing both MRP2 and OATP8) ≫ 
MDCK–MRP2 (MDCK expressing MRP2) > MDCK (Fig. 12-14). This observation indicated 
that estradiol-17-β-glucuronide was taken up by OATP8 at the basolateral membrane and 
extruded by MRP2 at the apical membrane in a concerted manner. In other words, OATP8 
and MRP2 transport their common substrates in the same direction to achieve more efficient 
substrate movement across the cell monolayer. When MRP2 was not present, translocation 
(i.e., net transport) was reduced, suggesting that without the MRP2 transporter, estradiol-17-
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β-glucuronide would accumulate inside the cells. Because many drugs are substrates for 
more than one transporter, it is likely that there are numerous concerted transport pathways 
for drugs across each membrane domain. 

Drug Metabolism 
Introduction5 
The first human metabolism study was performed in 1841 by Alexander Ure, who observed the 
conversion of benzoic acid to hippuric acid and proposed the use of benzoic acid for the treatment of 
gout.30 Much has been learned about drug metabolism since that time, and the purpose of this section 
is to provide the biopharmaceutical background needed for the student to better understand drug 
metabolism. Because lipophilic drugs are efficiently deposited in tissues and cells, are readily 
reabsorbed across renal tubular cells, and tend to be highly bound to plasma proteins such as albumin, 
their clearance is very low. This can be partially explained by the fact that lipophilic drugs rapidly diffuse 
into hepatocytes or other cells containing various metabolic enzymes and have easy access to 
cytochrome P-450 anchored to endoplasmic reticulum (Fig. 12-15). To facilitate drug elimination and 
maintain homeostasis after the exposure to xenobiotics including drugs and environmental toxins, 
numerous biochemical transformations occur. These transformations are facilitated by two major groups 
of enzymes, and the process is called ―drug metabolism.‖ Metabolic reactions generally have the effect 
of converting drugs into more polar metabolites than the parent drug. The conversion to a more polar 
form has important biologic consequences because it enhances the ability of the body to eliminate 
drugs. 
Drug metabolism involves a wide range of chemical reactions, including oxidation, reduction, hydrolysis, 
hydration, conjugation, condensation, and isomerization. The enzymes involved are present in many 
tissues but generally are more concentrated in the liver. For many drugs, metabolism occurs in two 
apparent phases. Phase I reactions involve the formation of a new or modified functional group or a 
cleavage (oxidation, reduction, hydrolysis); these are nonsynthetic reactions. Phase II reactions involve 
conjugation with an endogenous compound (e.g., glucuronic acid, sulfate, glycine) and are therefore 
synthetic reactions. Metabolites formed in synthetic reactions are more polar and more readily excreted 
by the kidneys (in urine) and the liver (in bile) than those formed in nonsynthetic reactions. Some drugs 
undergo either phase I or phase II reactions; thus, phase numbers reflect functional rather than 
sequential classification. Drugs are metabolized to various degrees by oxidation, reduction, hydrolysis, 
and conjugation in the body. Some drugs are eliminated without any structural changes occurring at all. 
The process of elimination of a compound from the body without further chemical modification is known 
as excretion. Williams32classified all known metabolic 
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reactions as either phase I or phase II reactions. In recent years, a third phase of drug metabolism has 
been classified and is commonly referred to as phase III metabolism. The three ―phases‖ of drug 

metabolism are shown in Figure 12-16. Phase I reactions include oxidation, reduction, or hydrolysis of 
the drug. In a phase II reaction, the drug or its polar metabolite is coupled to an endogenous substrate 
such as uridine diphosphate (UDP) glucuronic acid, sulfate, acetate, or amino acid. The third phase of 
drug metabolism involves transporting the drug, metabolite, or conjugated metabolite across a biologic 
membrane and out of the body. For example, one such mechanism, originally called phase III 
detoxification,33 utilizes the GS-X pump to transport xenobiotic metabolites out of the body. Because 
phase III reactions (i.e., membrane transporters) were covered in the previous section, only phase I and 
II reactions will be discussed here. 

Key Concept 

Concerted Transport12,31 

Given the presence of various transporters on the two domains of polarized cells and the 
possible differences in transport direction (i.e., influx vs. efflux), it is natural to consider how 
these transporters may work with each other (i.e., in ―concert‖) or against each other. 
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Recently, the phenomenon of ―concerted transport,‖ when membrane transporters on the AP 

and BL domains of a cell transport a drug substrate in the same direction (i.e., absorptive or 
secretory direction), has been studied. The liver is an important organ involved in the 
metabolism and clearance of endo- and xenobiotics. As seen in the accompanying figure, 
drugs are taken up by hepatocytes in the liver directly by passive diffusion or by means of 
influx transporters at the sinusoidal membrane (BL). They are then converted intracellularly to 
pharmacologically inactive, active, or sometimes toxic metabolites by the cytochromes P450 
(CYPs). The metabolites are then conjugated with various endogenous compounds such as 
glucuronide and sulfate; consequently, they are excreted into the bile passively by diffusion or 
by means of transporters such as the MRP family at the canalicular membrane (AP). It has 
been found that influx transporters at the sinusoidal membrane (e.g., OATP-C and OATP8) 
and efflux transporters at the canalicular membrane (e.g., MRP2 and P-gp) work in concert to 
transport drugs and other substances into the bile. Therefore, the alliance between influx 
transporters on the basolateral/sinusoidal membrane and efflux transporters at 
apical/canalicular membranes of hepatocytes can efficiently eliminate endogenous wastes or 
toxic xenobiotics into bile. 

 

Uptake, biotransformation, and multidrug-resistance protein (MRP)–mediated export 

of endogenous substances, drugs, and carcinogens. Key: CYPs, cytochrome P-450s; 

GSH = …; UDPGlc UA = …; PAPS = …; ATP = adenosine triphosphate. (From J. 

König et al., Biochim. Biophys. Acta 1461, 377, 1999. With permission.) 

Phase I Reactions 
A major class of oxidative transformations was initially characterized by O. Hayaishi in Japan34 and H. 
S. Mason in the United States.35This class of oxygenases had requirements for both an oxidant 
(molecular oxygen) and a reductant (reduced nicotinamide-adenine dinucleotide phosphate [NADP]) 
and hence was given the name ―mixed-function oxidases.‖ An understanding of the biochemical nature 
of these reactions grew out of early studies on liver pigments by Garfinkel36 and Klingenberg,37 who 
observed in liver microsomes an unusual carbon monoxide–binding pigment with an absorbance 
maximum at 450 nm. Omura and Sato38 ultimately characterized this pigment as a cytochrome. The 
function of this unique cytochrome, called P-450 (CYP450), was initially revealed in 1963 in studies by 
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Estabrook et al.,39 using microsomes from the adrenal cortex for the catalysis of the hydroxylation of 
17-hydroxyprogesterone to deoxycorticosterone. 
The most actively studied drug metabolism reaction is the CYP450-mediated reaction because the 
CYP450 family represents key enzymes in phase I reactions with several unique properties. This vast 
family is composed of more than 57 isoforms in humans alone (Table 12-3), mediates multiple oxidative 
reactions, and has very broad substrate 
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specificity (Table 12-4). Phase I reactions introduce a functional group (—OH, —NH2, —SH, or —
COOH) to drugs and usually results in a small increase in hydrophilicity. Various molecules with very 
diverse chemical structures and different molecular weights, ranging from ethylene (28 g/mole) to 
cyclosporine (1201 g/mole) are known to be substrates and/or inhibitors of CYP450. Catalysis by 
CYP450 is very slow compared to that of other enzymes such as catalase, superoxide dismutase, and 
peroxidase. 

 

Fig. 12-12. Vectorial transport by human uptake transporter SLC21A8 (OATP8) and 

the apical export pump ABCC2 (MRP2). Key: MDCK = Madin–Darby canine kidney 

cell; MRP2 = multidrug-resistance protein-2; OATP8, organic anion-transporting 

peptide-8. (From Y. Cui, J. Konig, and D. Keppler, Mol. Pharmacol. 60 (5), 934, 

2001. With permission.) 
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Fig. 12-13. Vectorial transport by (A) human uptake transporter SLC21A8 (OATP8) 

or (B) the apical export pump ABCC2 (MRP2). Key: MDCK = Madin–Darby canine 

kidney cell, MRP2 = multidrug-resistance protein-2; OATP8, organic anion-

transporting peptide-8. (From Y. Cui, J. Konig, and D. Keppler, Mol. 

Pharmacol. 60 (5), 934, 2001. With permission.) 
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Fig. 12-14. Transcellular transport (from basolateral to apical) of estradiol 17-β-

gluronide (E2 17βG). (From Y. Cui, J. Konig, and D. Keppler, Mol. 

Pharmacol. 60 (5), 934, 2001. With permission.) 

CYP450 actually consists of two enzymes, catalyzing two separate but coupled reactions: 

 

 

More than 60 reactions are catalyzed by CYP450 (Table 12-5), and even a single CYP450 isoform can 
generate the several metabolites from a single substrate. The function of CYP depends largely on the 
presence of molecular oxygen and/or drugs as substrates. For example, CYP450 can act as both an 
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oxidative and a reducing enzyme (Fig. 12-17). These complex enzyme systems or mixed-function 
oxidases require NADPH, molecular oxygen, CYP450, NADPH–CYP450 
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reductase, and phospholipids. An overall scheme showing the catalytic cycle of CYP450 is shown 
in Figure 12-18. 

 

Fig. 12-15. Phase I and phase II enzymes integrated within or spanning across the 

lipid bilayer of the smooth endoplasmic reticulum (SER). Cytochrome P-450 enzyme 

complex, including cytochrome b5, and reduced nicotinamide-adenine dinucleotide 

phosphate (NADPH) as a cofactor are present in SER. Also present are 

glucuronyltransferase enzymes (GT). (From A. S. Kane, University of Maryland, 

College Park, Md., http://aquaticpath.umd.edu/appliedtox/metabolism.pdf, 2003.) 

Phase II Reactions 
The first reference to phase II drug metabolism was made more than 150 years ago, when 
Stadeler40 referred to the presence of conjugated phenol in urine, which was later isolated and 
characterized as phenyl sulfate by Baumann. A glucuronide conjugate was first discovered by 
Jeffe,41 who found that o-nitrotoluene gave rise to o-nitrobenzyl alcohol excreted as a conjugate in the 
dog: a few other sugar conjugates were also reported in the 1870s by von Mering's group42 and 
Schmiedeberg's group.43 Although the mercapturic acids were found in 1879 by Baumann and 
Preusse,44 the full mechanism of glutathione conjugation was not known until Barnes et 
al.45 characterized the relationship between glutathione and mercapturic acid in 1959. The enzymes 
responsible for phase II reactions are UDP-glucuronosyltransferases (UGTs) for glucuronidation, 
sulfotransferases (SULTs) for sulfation, and glutathione S-transferases (GSTs) for glutathione 
conjugation. Glucuronidation, the most common phase II reaction, is the only one that occurs in the liver 
microsomal enzyme system.5 
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Fig. 12-16. Phase III elimination reactions in bile begin with oxidation in the liver 

(phase I), followed by conjugation (phase II). (From M. Vore, Environ. Health 

Perspect. 102, 5, 1994. With permission.) 

There are numerous enzyme families, and a variety of isoforms within families and different types of 
isozymes are found in the various animal species and humans. Three well-documented and important 
phase II enzyme families are shown in Table 12-6. Phase II reactions involve the conjugation of certain 
functional groups using conjugating cofactors as shown in Table 12-7. Polar groups introduced by phase 
I reactions are used as attachment sites for conjugation (phase II) reactions. For instance, a hydroxyl 
group added during a phase I reaction is a good target for glucuronide or sulfate conjugation. 
Conjugation reactions greatly increase the hydrophilicity and promote the excretion of drugs. Hydrophilic 
conjugates of drugs are typically less active than the parent compounds, with some notable exceptions, 
such as morphine-6-glucuronide, N-(4-hydroxylphenyl) retinamide glucuronide, and minoxidil sulfate, 
where the metabolites are more potent than their respective parent drugs. Glucuronides are secreted in 
bile and eliminated in urine. Chloramphenicol, meprobamate, and morphine are metabolized this way. 
Amino acid conjugation with glutamine or glycine produces conjugates (e.g., salicyluric acid formed from 
salicylic acid and glycine) that are readily excreted in urine but are not extensively secreted in bile. 
Acetylation is the primary metabolic pathway for sulfonamides. Hydralazine, isoniazid, and procainamide 
are also acetylated. Sulfoconjugation is the reaction between phenolic or alcoholic groups and inorganic 
sulfate, which is partially derived from sulfur-containing amino acids (e.g., cysteine). The sulfate esters 
formed are polar and readily 
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excreted in urine. Drugs that form sulfate conjugates include acetaminophen, estradiol, methyldopa, 
minoxidil, and thyroxine. Methylation is a major metabolic pathway for inactivation of some 
catecholamines. Niacinamide and thiouracil are also methylated.5 

Table 12-3 Isoforms of Cytochrome P-450 Enzyme in Animals and Humans 
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Isoform Mouse Rat Rabbit Dog Human 

CYP1A 1, 2 1, 2 1, 2 1, 2 1, 2 

CYP2A 4, 5, 12 1–3 10, 11 ? 6, 7, 14 

CYP2B 9, 10, 14, 

19, 20 

1–3, 8, 12, 

15, 22–24 

4, 5 11 6, 7 

CYP2C 9, 10, 29, 

37–40 

6, 7, 11–14, 

23, 24 

1–5, 11–

16, 30 

21, 

41, 42 

8, 9, 

18, 19 

CYP2D 9–12 1–5, 18 23, 24 15 6 

CYP2E 1 1 1, 2 1 1 

CYP3A 11, 14, 

16, 25 

1, 2, 9, 18, 

23 

6 12, 26 3, 4, 5, 

7, 43 

 

Enzyme Induction and Inhibition 
Most marketed drugs are metabolized by more than one CYP450 isoform, which means it is highly likely 
that drug–drug interactions are possible. Pharmacokinetic interactions related to drug metabolism can 
be categorized as either enzyme induction or inhibition. 
Induction 
Most drug-metabolizing enzymes are expressed constitutively, that is, they are synthesized in the 
absence of any discernible external stimulus. It has been shown that an increase in the activity of 
hepatic microsomal enzymes such as CYP450 can occur after exposure to structurally diverse drugs 
and xenobiotics. The stimulation of enzyme activity in response to an environmental signal is referred to 
as enzyme induction. Enzyme induction involves multiple mechanisms and usually occurs at the gene 
transcriptional level. Inducing agents may increase the rate of their own metabolism as well as those of 
other unrelated drugs by inducing various phase I and phase II enzymes (Table 12-8). 

Table 12-4 Marker Substrates, Reactions, and Typical Inhibitors for 

Cytochrome P-450 Isozymes 
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CYP Substrate (Reaction) Inhibitor (Mechanism) 

1A2 7-Methoxyresorufin (O-

demethylation) 

Furafylline (mechanism based) 

  Caffeine (N3-demethylation) 7,8-Benzoflavone (competitive) 

  Phenacetin (O-deethylation) Fluvoxamine (competitive) 

2A6 Coumarin (7-hydroxylation) Methoxalen (mechanism based) 

    Tryptamine (competitive) 

    Trancylcypromine 

(competitive) 

2B6 7-Benzoxyresorufin (O-

debenzylation) 

Orphenadrine (competitive) 

  (S)-Mephenytoin (N-

demethylation) 

  

2C8 Paclitaxel (6α-

hydroxylation) 

Quercetin 

2C9 Tolbutamide (methyl 

hydroxylation) 

Sulfaphenazole (competitive) 

  Phenytoin (4α-

hydroxylation) 

Tienilic acid (mechanism 

based) 

  Diclofenac (4α-

hydroxylation) 

  

  (S)-Warfarin (7-

hydroxylation) 

  

2C19 (S)-Mephenytoin (4α- Ticlopidine (competitive) 
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hydroxylation) 

  Omeprazole (oxidation) Omeprazole 

2D6 Debrisoquine (4-

hydroxylation) 

Quinidine (competitive) 

  Bufuralol (1-hydroxylation) Fluoxetine (competitive) 

  Dextromethorphan (O-

demethylation) 

Paroxetine (competitive) 

2E1 Chlorzoxazone (6-

hydroxylation) 

Diethyldithiocarbamate 

(mechanism based) 

  4-Nitrophenol (3-

hydroxylation) 

4-Methylpyrazole (competitive) 

  N-Nitrosodimethylamine (N-

demethylation) 

Disulfiram (mechanism based) 

  Aniline (4-hydroxylation) Pyridine 

3A4 Nifedipine (oxidation) Troleandomycin (metabolic 

intermediate complex) 

  Erythromycin (N-

demethylation) 

Erythromycin (metabolic 

intermediate complex) 

  Testosterone (6α-

hydroxylation) 

Ketoconazole, itraconazole 

(competitive) 

  Midazolam (1-

hydroxylation) 

Gestodene (mechanism based) 
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Table 12-5 Phase I Drug-Metabolizing Reactions 

Oxidation Reduction Hydrolysis 

Aromatic hydroxylation Nitro reduction Amidine 

hydrolysis 

Alipatic hydroxylation Azo reduction Ester 

hydrolysis 

N-Oxidation (formation of N-

oxide and N-OH) 

Ketone reduction Amide 

hydrolysis 

S-oxidation (sulfoxidation)     

N-, O-, S-dealkylation Reduction of α, β-

unsaturated ketones 

  

Oxidation of cyclic amines to 

lactams 

Aldehyde reduction   

Oxidative deamination N-, S-oxide 

reduction 

  

Oxidation of methyl to carboxyl 

group 

    

Epoxidation     

Alcohol oxidation (conversion to 

aldehyde or carboxylic acid) 

    

Dehydrogenation, β-oxidation     

 

Example 12-3 

Clinically Significant Enzyme Induction46 

Administration of two or more drugs together may lead to serious drug interactions as a result 
of enzyme induction. Triazolam is a short-acting hypnotic drug that is extensively metabolized 
by CYP3A4. Rifampin is used with other medicines to treat tuberculosis and is known to be a 
potent inducer of CYP3A4. Coadministration of rifampin markedly reduces plasma 
concentrations and the pharmacologic effects of many drugs including triazolam. To 
potentially induce CYP3A4 enzymes, 600 mg of rifampin or placebo was administered once 
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daily to 10 healthy volunteers for 5 days. On the sixth day, 0.5 mg of triazolam was orally 
administered, and the plasma concentration profile of triazolam was monitored for 10 hr (Fig. 
12-19). As expected, a significant drug–drug interaction between rifampin and triazolam was 
observed. The area under the plasma concentration versus time curve of triazolam in the 
rifampin phase was only 5% of that in the placebo phase and the maximum plasma 
concentration of triazolam was 12.4% of the control value. The conclusion of this study was 
that triazolam becomes pharmacologically ineffective after long-term rifampin treatment 
because the induction of microsomal enzymes by rifampin causes an increase in the 
metabolism of triazolam and a marked decrease in the plasma concentration and the efficacy 
of triazolam. 

Inhibition 
Enzyme inhibition generally occurs without delay and can result in the immediate loss of activity for one 
or more enzymes. Many drugs and xenobiotics are capable of inhibiting drug metabolism. With 
metabolism decreases, drug accumulation often occurs, leading to prolonged drug action and possibly 
serious adverse effects. Enzyme inhibition by drugs or xenobiotics can occur in several ways, including 
competitive inhibition, the destruction of preexisting enzymes, interference with enzyme synthesis, and 
inactivation of the drug-metabolizing enzymes by complexation. Drugs containing imidazole, pyridine, or 
quinoline groups, such as ketoconazole, metyrapone, and quinidine, are well-known reversible 
inhibitors. Inactivation of metabolizing enzymes by complexation is called quasi-irreversible inhibition 
and occurs when a noncovalent tight bond is formed between the metabolite and CYP450. Macrolide 
antibiotics such as troleandomycin and erythromycin, hydrazines such as isoniazid, and 
methylenedioxybenzenes such as isosafrole are all known as quasi-irreversible inhibitors. Lastly, 
xenobiotics containing specific functional groups can be metabolized by CYP450 to reactive 
intermediates that bind to the enzyme covalently. For example, compounds that contain olefins and 
acetylenes can alkylate the heme. It is also known that some S- or N-containing compounds such as 
tienilic and cyclopropylamine covalently bind to the apoprotein. 

 

Fig. 12-17. Dual function of cytochrome P-450. Key: NADP = reduced nicotinamide-

adenine dinucleotide phosphate. (From A. Y. H. Lu, Rutgers University, New 

Brunswick, N. J., Lecture Note, 2003.) 

Example 12-4 

Clinically Significant Enzyme Inhibition: Grapefruit Juice47 

Many commonly consumed foods, drinks, and natural products or dietary supplements are 
known to alter the disposition of drugs. One particularly well-studied case, grapefruit juice, is 
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the subject of this example. Grapefruit juice is known to cause a considerable increase in the 
oral bioavailability of many drugs. This is because grapefruit juice is an inhibitor of CYP3A, a 
major player in the intestinal and hepatic metabolism of drugs, and when coadministered with 
substrates of CYP3A it causes a significant increase in drug–blood levels. The main 
mechanism of this drug–drug interaction is attributed to a decrease in intestinal CYP3A in 
humans (i.e., CYP3A4) by approximately 45% to 65%. In contrast, a single ―dose‖ of 

grapefruit juice does not affect hepatic CYP3A4. Long-term multiple administrations of 
grapefruit juice inhibit CYP3A4 not only in the intestine but also in the liver. Verapamil is a 
calcium-channel blocker that undergoes extensive metabolism mainly by CYP3A4 in human. 
Verapamil was administered to 24 volunteers as a CYP3A4 substrate with grapefruit juice for 
7 days. Grapefruit juice caused about a 50% increase in steady-state plasma concentrations 
of verapamil, showing a significant food–drug interaction (Fig. 12-20). 
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Fig. 12-18. Catalytic cycle of cytochrome P-450. Key: NADP = nicotinamide-adenine 

dinucleotide phosphate. ην represents energy. RH represents the drug substrate. (From 

A. P. Alvares and W. B. Pratt, in W. B. Pratt and P. Taylor (Eds.), Principles of Drug 

Action, 3rd Ed., Churchill Livingstone, New York, 1990, p. 469. With permission.) 

Enzyme Inhibition Kinetics 
Although a thorough discussion of enzyme kinetics is presented inChapter 16, some pertinent points are 
highlighted here. If needed as a refresher, the student is referred to basic biochemistry textbooks for 
relevant background information. Enzyme inhibition (Fig. 12-21) can be classified by enzyme kinetics 
expressed by a change in Km(the Michaelis–Menten constant) and/or Vm (maximal velocity). In 
competitive inhibition, the inhibitor binds to a free binding site on the enzyme. An increase in the inhibitor 
concentration results in a lower chance of binding between the substrate and enzyme, and thus 
theKm value increases without a corresponding change in Vm, 

Table 12-6 Isoforms of Phase II Enzymes in Animals and Humans 
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Enzyme Mouse Rat Rabbit Dog Human 

UGT1A 1, 5, 6, 

9 

1–3, 4P, 5–8, 

9P, 10 

? 6 1, 2P, 3–10, 

11P, 12P 

UGT2A 1 1 2 ? 1 

UGT2B 5 1–3, 6, 8, 12 13, 14, 

16 

? 4, 7, 10, 11, 

15, 17 

SULT1 A, B, 

C, E 

A, B, C, E ? A A, B, C, E 

SULT2 A A ? ? A, B 

GST A, P A, M, S ? ? A, M, P, T, Z 

 

 
where I is concentration of inhibitor and Ki is inhibitory constant. In the case of noncompetitive inhibition, 
the inhibitor binds to its own binding site regardless of whether the substrate binding site is occupied. 
Because the degree of enzyme inhibition is dependent on the inhibitor concentration and is independent 
of substrate binding, the Vm values decrease with increasing inhibitor concentrations without 
changing Km, 

 
Uncompetitive inhibition is observed when the inhibitor binds only to the enzyme–substrate complex. 
This results in a change in both Kmand Vm. Mixed-type enzyme inhibition 
P.278 
 
can also lead to changes in both parameters, and that could confuse the interpretation of the results. 

Table 12-7 Phase II Drug-Metabolizing Reactions and Cofactors 
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Reactions Cofactors 

Glucuronidation N-, O-, S-, C-

Glucuronidation Carbamic acid glucuronide 

UDP-Glucuronic acid 

(UDPGA) 

Sulfate conjugation 3-Phosphoadenosine 

5′-phosphosulfate (PAPS) 

Glycine conjugation Glycine 

Acetylation Acetyl CoA 

Methylation N-, O-, S-Methylation S-adenosyl-L-methionine 

(SAM) 

Glutathione conjugation Glutathione 

 

Metabolism and Drug Disposition 
Orally dosed drug molecules are absorbed from the gastrointestinal (GI) tract through the GI wall and 
pass through the liver prior to reaching the systemic circulation. During the absorption process, drug 
molecules are exposed to various dispositional processes such as intestinal metabolism, intestinal 
secretion, hepatic metabolism, and biliary secretion. Among these processes, intestinal and hepatic 
metabolism are lumped together and are commonly referred to as ―first-pass metabolism.‖ In the past, 

first-pass metabolism and hepatic first-pass metabolism were considered synonymous because of the 
dominating role of the liver in drug metabolism. However, recent studies have demonstrated that 
intestinal metabolism can be significant, especially if the role and potential impact of intestinal drug 
secretion is considered, and so it is best to refer to the process as ―first-pass metabolism‖ unless 

specific mechanistic information is available that defines the role of the intestine and/or liver. The degree 
of the metabolism may vary greatly with each drug, and the resulting oral bioavailability can be very low. 
If a drug is completely absorbed and is not secreted, the oral fraction of dose absorbed or 
bioavailability, F, indicates the portion of drug that is absorbed intact: 

Table 12-8 Drugs that induce Metabolism Clinically* 
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Inducing Agent Induced Enzyme 

Tobacco CYP1A2 

Phenobarbital, rifampin CYP2B6 

Rifampin, secobarbital CYP2C9 

Ethanol, isoniazid CYP2E1 

Carbamazepine, troglitazone, phenobarbital, 

phenytoin, rifabutin, rifampin, St. John's wort 

(hyperforin) 

CYP3A4,5,7 

Phenobarbital Glucuronide transferase 

Red grape (ellagic acid), garlic oil, rosemary, 

soy, cabbage, brussels sprouts† 

Glutathione-S-transferase 

and glucuronide 

transferase 

*Modified from Department of Medicine, Indiana University, Bloomington, 

Ind., http://medicine.iupui.edu/flockhart/clinlist.htm, 2003. 

†
In vitro or animal data. 
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Fig. 12-19. Plasma concentration of triazolam in 10 individuals after 0.5 mg of 

oral triazolam, after pretreatment with 600 mg of rifampin once daily (•) or 

placebo (^) for 5 days. 

 
To get the precise value of first-pass metabolism from the F value, all of the foregoing assumptions must 
be satisfied. The fraction lost to metabolism would be equal to 1 - F. Of course, if absorption were 
incomplete, then 1 - F would represent the fraction of drug not absorbed due to incomplete absorption 
and/or lost to metabolism. Poor absorption could be due to many factors including low intestinal 
permeability; binding to intestinal tissue, mucus, or debris; or instability in the GI tract. The extraction 
ratio (ER) is commonly used to directly measure drug removal from the intestine or liver: 

 
where Ca is the drug concentration in the blood entering the organ and Cv is the drug concentration 
leaving the organ. The relationship between bioavailability and intestinal and hepatic extraction ratios is 
expressed by the equation 

 
where FABS is the fraction of the dose absorbed through the intestinal mucosal membrane into the portal 
vein and ERGI and ERHare the gut and hepatic extraction ratios, respectively. When absorption is 
complete (i.e., FABS = 1) and 
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intestinal extraction is negligible (ERGI [congruent] 0), the equation can be simplified to 
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Fig. 12-20. Mean concentration versus time profile of (S)-verapamil within one 

dosing interval following oral administration of 120 mg of verapamil twice daily for 7 

days during coadministration of water or grapefruit juice starting 48 hr prior to the 

dosing interval. 

 
Substituting equation (12-6) into equation (12-3) and rearranging results in 

 
which is used as an estimation of the liver extraction ratio. 
Metabolism and Protein Binding 
Hepatic clearance, CLH, can be related to liver blood flow, Q, and the intrinsic clearance, CLint, of liver 
using the following equation: 

 
where the intrinsic clearance is the ability of the liver to remove drug without flow limitations. The 
Michaelis–Menten equation can be rearranged to give 

 
where the value of the rate of reaction, V, divided by the drug concentration, S, is conceptually the same 
as the intrinsic clearance, CLint. Because the hepatic metabolizing enzymes are rarely saturated in a 
clinical situation, one can assume that Km is much greater than S, and equation (12-9) reduces to 
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In other words, the intrinsic clearance is constant, assuming the metabolizing enzymes are not saturated 
and that the protein binding of the drug is constant. Protein binding affects the intrinsic clearance of 
drugs because intrinsic clearance contains the free drug fraction,fu, and the intrinsic clearance of free 
drug, CLint: 

 
Equation (12-8) can be rewritten as 

 
When the intrinsic clearance is much greater than hepatic blood flow, the hepatic clearance is 
dependent only on blood 
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flow. On the other hand, if the intrinsic clearance is much lower than hepatic blood flow, then hepatic 
clearance is dependent only on the intrinsic clearance. These two extremes are called flow-limited and 
metabolism-limited extraction, respectively. Drug protein binding does not affect hepatic clearance for 
drugs that demonstrate high intrinsic clearance. However, low-extraction drugs may be affected by 
protein binding, depending on the free fraction of drug. The studies of Blaschke48 demonstrate the 
relationship between protein binding and hepatic clearance (Fig. 12-22). Hepatic clearance of low 
extracted and medium- or low-binding drugs (less than 75% to about 80%) are not greatly affected by 
the changes in protein binding. These drugs are categorized as capacity-limited, binding-insensitive 
drugs. High-protein-binding and low-extraction drugs are considered capacity-limited, binding-sensitive 
drugs because a small change in the bound portion usually means large changes in the free drug 
fraction. 
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Fig. 12-21. The Lineweaver–Burk plot is used to distinguish the types of enzyme 

inhibition. Key: [I] = inhibitor concentration, [S] = substrate concentration. (a) 

Competitive inhibition, (b) noncompetitive inhibition, (c) uncompetitive inhibition. 

(Modified from D. P. Goldenberg, University of Utah, Salt Lake City, Utah. Lecture 

Slides inhibitors II. pdf, 

http://courses.biology.utah.edu/goldenberg/biol.3515/index.html, 2003.) 

Drug Metabolism at the Subcellular Level 
The endoplasmic reticulum (ER) is one of the most important cellular organelles in drug metabolism. 
Other fractions such as the mitochondria or cytosolic fraction play an important role in some cases 
(Table 12-9). The subcellular fractions comprising the S9 fraction, microsomes, and cytosolic fraction 
are the most widely used in vitro systems for studying drug metabolism. These fractions can be isolated 
by differential centrifugation techniques, which have permitted important advances in studies of drug 
metabolism. Because microsomal enzymes can oxidize a large portion of xenobiotics, incubation of a 
drug with liver microsomes is a widely used in vitro technique. Enzyme preparations have another 
advantage in that they are easy to prepare and can be obtained from small amounts of tissue. The level 
of drug-metabolizing enzymes is also readily determined. Enzyme kinetic parameters obtained from liver 
microsomes can be used to predict in vivo clearance. For instance, intrinsic clearance, CLint, is 
calculated from Km and Vm in equation (12-8), and this intrinsic clearance is used again in calculating in 
vivo CLH using equation (12-6) or (12-10) when the major elimination route of the drug is hepatic 
metabolism. Cellular fractions, like all experimental systems, have some limitations. 
Organ-Level Biopharmaceutics 
Organ-level biopharmaceutics is an important aspect of pharmacokinetics because the many transport 
and metabolism components that have already been introduced work together in a dynamic 
environment. In essence, it serves as a link between the molecular/cellular-level aspects and the ―intact‖ 

system studied in pharmacokinetics. In this section, various organ systems and groups of organs that 
define key biopharmaceutical and pharmacokinetic processes will be described in detail. The key organ 
systems that will be discussed are the brain and choroid plexus, intestine, kidney, and liver. The kidney 
and liver are the primary organs of drug excretion (Fig. 12-23). Because the lung and the skin are minor 
organs of drug excretion, they will not be covered in depth in this chapter. Examples of groups of organs 
include the ―first-pass‖ organ system, which includes the intestine, liver, and lungs, and the 

―enterohepatic‖ recirculation organs, which include the intestine, liver, and gallbladder. This chapter will 

not deal extensively with species differences in organ-level biopharmaceutics. However, for 
reference, Tables 12-10, 12-11 and12-12 are provided to show differences in organ weights, volumes, 
and blood flow for mice, rats, rabbits, rhesus monkeys, dogs, and humans. These values are used in 
correlative studies using physiologically based pharmacokinetic (PBPK) models (see the next section) in 
order to predict species differences and human dosing based on preclinical animal results. 
Brain-Barrier Systems 
In 1885, Paul Ehrlich,49 a German scientist, observed that many dyes can be distributed widely into 
body tissues but fail to stain brain parenchyma. This was attributed to a brain-barrier system. In fact, 
because the central nervous system is so well perfused, permeability is generally the major determinant 
of the drug distribution rate into the brain. Drugs reach the central nervous system by means of brain 
capillaries and the cerebral spinal fluid (CSF). Although the brain 
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receives about one sixth of the cardiac output, distribution of drugs to brain tissue is highly restricted. 
The restricted brain exposure to drugs and other xenobiotics is the result of two brain-barrier systems: 
(a) the BBB, which is formed by brain capillary endothelial cells, and (b) the blood–CSF barrier or the 
choroid plexus. 
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The brain-barrier systems are shown in Figure 12-24. Figure 12-24adepicts a brain capillary. It is 
composed of four kinds of cells: endothelial cells, pericytes, astrocytes, and neurons. The endothelial 
cells of the brain capillaries are more tightly joined to one another than are those of other capillaries. 
Another barrier to water-soluble drugs is the glial connective tissue cells (astrocytes), which form an 
astrocytic sheath close to the basement membrane of the capillary endothelium. The capillary 
endothelium and the astrocytic sheath form the BBB. Because the capillary wall rather than the 
parenchymal cell forms the barrier, the brain's permeability characteristics differ from those of other 
tissues. Drugs can also enter ventricular CSF directly by means of the choroid plexus. Figure 12-
24b shows the choroid plexus. It acts as a BBB in the brain parenchyma because this capillary has a 
tight junction. There are two kinds of blood–CSF barriers. One is the arachnoid membrane and the other 
is formed by the epithelial cells of choroid plexus. Because these capillaries are permeable, only the 
arachnoid membrane and epithelial cells of choroid plexus function as a brain barrier. 
Polar compounds cannot enter the brain by passive diffusion but can enter the interstitial fluids of most 
other tissues. Because membrane transporters are known to play a major role in the uptake of many 
compounds, it is likely that they also play a major role in the blood–brain and blood–CSF barriers. For 
example, drug uptake into brain endothelial cells is likely to be assisted by membrane transporters as 
described earlier in this chapter. However, secretory efflux transporters like P-gp may ultimately play a 
major role in limiting drug uptake into the brain parenchyma. As shown in Figure 12-25, a drug may 
permeate the apical membrane and be taken up into the brain endothelial cell. However, efflux 
transporters like P-gp are able to move the drugs back across the apical membrane and into the blood, 
protecting the brain from toxic substances or preventing drug absorption into the brain tissue. So, in 
addition to having a physically tight endothelium, membrane transporters play a major role in the brain's 
barrier properties. The following example with the HIV protease inhibitor amprenavir provides a good 
demonstration of the important role that membrane transporters play in the function of the BBB. 

Key Concept 

Blood Levels and Rates of Absorption/Elimination 

The rates of absorption and elimination of drugs ultimately determine the resulting blood 
levels of drug that are achieved in the blood circulation, organs, tissues, and cells. Each point 
on a blood/plasma/serum drug concentration versus time curve reflects the rates of 
absorption and elimination at that time point (Fig. 12-28). From now on these curves will be 
referred to as plasma level versus time curves (PLTCs). If the rate of absorption is greater 
than the rate of elimination at that time point, the slope of the PLTC will be positive and the 
plasma concentrations are increasing. If the rate of absorption is slower than the rate of 
elimination at a given time point, the slope of the PLTC will be negative and the plasma 
concentrations are decreasing. When the rates of absorption and elimination are equal, the 
slope is zero and the corresponding (x, y) time point is known as (Tmax,Cmax). As shown 
in Figure 12-28a, when the net rate of input into the body decreases, the slope of the 
absorptive phase also decreases and there is a shift of Tmax (to a larger value) and Cmax (to a 
lower value) as well. A slower input rate would result from a lower permeability, lower 
solubility, or slower gastric emptying rate. When the input rate is held constant but the rate of 
elimination is varied, a similar situation occurs (Fig. 12-28b). As the elimination rate constant 
increases, there is a shift in Tmax to the left (i.e., shorter) and a decrease in Cmax. 

Example 12-5 

Amprenavir Brain Penetration 

To examine the role of P-gp in the effectiveness of the blood–brain barrier, Polli et 
al.50 examined the brain uptake of the HIV protease inhibitor amprenavir in mice. They 
examined the effect of the coadministration of ritonavir, another HIV protease inhibitor 
(GF120918), a specific P-gp inhibitor, or ―genetic‖ P-gp–knockout (mdr1a/1b double 
knockout) mice on the brain uptake of amprenavir. Using whole-body autoradiography, they 
were able to visualize the brain uptake of amprenavir under these three conditions. In mice 
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treated with GF120918 and in the genetic knockout mice, they observed a 14- and 27-fold 
increase in brain amprenavir concentrations, respectively, due to the lack of P-gp. This can be 
visualized nicely in Figure 12-26. In Figure 12-26a the brain and CSF are shaded gray, 
indicating that amprenavir was able to penetrate the brain when P-gp was inhibited by 
GF120918. The control animal in Figure 12-26bshows is no amprenavir in the brain when P-
gp is active and functional, suggesting that membrane transporters such as P-gp are an 
effective part of the blood–brain barrier. Ritonavir did not have an effect on amprenavir brain 
concentrations. 

Gastrointestinal Tract51 
The GI tract is depicted in Figure 12-27. The role of GI tract in drug absorption is clearly evident. 
However, more recently the realization that the GI tract and, more specifically, the intestine play a role in 
drug metabolism and excretion has occurred. The stomach provides several major functions that affect 
the bioavailability of orally administered drugs. It processes food into chyme by vigorous contractions 
that mix ingested contents with gastric secretions and assist intestinal absorption. It regulates input of 
the liquefied nutrients into the small intestine. The stomach is a major site of chemical and enzymatic 
degradation. Because the stomach controls the rate of input into the intestine, where the majority of 
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drug and nutrient absorption takes place, it has a considerable impact on the pharmacokinetics of drugs. 
This is because it controls the concentration of drugs at the most important site of GI absorption—the 
small intestine. Therefore, if a drug's permeability and solubility are not low and do not limit their 
absorption, the gastric emptying rate will essentially control the blood concentration–time profile of the 
drug. If gastric emptying is slower, then the net absorption rate will be slower, the peak blood 
levels, Cmax, will be lower, and the time to peak blood levels, Tmax, will be longer. 
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Fig. 12-22. The effect of hepatic extraction ratio and percent plasma protein binding 

on classification of hepatic clearance (flow limited; capacity-limited, binding sensitive 

and capacity-limited, binding insensitive). Any drug metabolized primarily by the 

liver can be plotted on the triangular graph. The closer a drug falls to a corner of the 

triangle, the more likely it is to have the characteristic changes in disposition in liver 

disease. (From T. F. Blaschke, Clin. Pharmacokinet. 2, 40, 1977. With permission.) 

Example 12-652 

Gastric Emptying 

Gastric emptying rate significantly affects drug absorption and the appearance of drug in the 
blood. Acetaminophen is a high-permeability and high-solubility drug. Therefore, the 
appearance of acetaminophen in the blood is strictly related to its emptying from the stomach 
and presentation to the absorbing site, the small intestine. In this study, acetaminophen was 
administered to five healthy male individuals. To stimulate gastric emptying, they also 
received metoclopramide. To reduce the gastric emptying rate, they received propantheline. 
As can be seen in Figure 12-29, altering the gastric emptying rate significantly altered the rate 
of acetaminophen absorption. In fact, Figure 12-29is very similar to the theoretical expectation 
as seen in the simulation in Figure 12-28a. Although this example demonstrates the role of 
gastric emptying, one should keep in mind that reduced permeability, reduced solubility, or 
even slower release from a drug product would result in qualitatively similar behavior. 
Examination of PLTCs has limited value because it is easy to conclude from Figure 12-29 that 
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absorption rate was slowed, but the cause of the reduced absorption rate cannot be 
understood without further information about the drug or its biopharmaceutics. 

The stomach can be thought of as a two-part system, the upper part consisting of the fundus and upper 
body and the lower part consisting of the antrum and lower body. These two sections affect the motility 
of gastric contents and are very different. The upper section acts as a reservoir that can expand to 
accommodate ingested materials. This expansion does not cause a significant increase in internal 
pressure and helps generate a pressure gradient between the stomach and the small intestine. Gastric 
emptying is controlled by a gastric pacemaker, a group of smooth muscle cells in the midcorpus on the 
greater curvature of the stomach. Neural control of 
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gastric emptying occurs by means of extrinsic and intrinsic innervation. Contractions occur at a basal 
rate of three to four cycles per minute or as peristaltic waves initiated by the entry of solids into the 
stomach.53 Emptying occurs at a constant rate because the antrum maintains a relatively constant 
volume.54 The proximal stomach controls the emptying of liquids. It is directly related to the 
gastroduodenal pressure gradient.55 Noncaloric liquids such as sodium chloride empty from the 
stomach in a monoexponential pattern, the rate decreasing as intragastric volume and pressure 
decrease. If the intragastric fluid is caloric, acidic, or nonisotonic, initial emptying is retarded and then 
follows a more linear pattern.56The lower section of the stomach acts as a forceful grinder by 
developing powerful peristaltic contractions. These waves of contraction increase in force as they near 
the pylorus. When these forceful waves reach the pylorus, the membrane that separates the stomach 
from the duodenum is opened, and the contents of the stomach are administered as spurts of chyme. 

Table 12-9 Subcellular Fractions and Metabolic Reactions 

Fraction Centrifugation Metabolic Reaction 

Nuclei and cell 

debris 

500 × g Little metabolic activity 

Mitochondira 8000 × g Glycine conjugation, fatty acid β-

oxidation, monoamine oxidase 

Lysosomes 15,000 × g Ester hydrolysis, not so much 

involved in drug metabolism 

Microsomes 100,000 ×g Most of phase I reaction, 

glucuronidation, N-, O-methylation 

Cytosol 100,000 

×gsupernatant 

Hydrolysis, alcohol and aldehyde 

dehydrogenase, sulfate and 

glutathione conjugation, 

acetylation 
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Fig. 12-23. Once absorbed from any of the many sites of administration, drug is 

conveyed by blood to all sites within the body including the eliminating organs. 

Sites of administration include: a, artery; b, peripheral vein; c, muscle and 

subcutaneous tissue; d, lung; and e, gastrointestinal tract. The dark- and light-

colored lines with arrows refer to the mass movement of drug in blood and in bile, 

respectively. The movement of virtually any drug can be followed from site of 

administration to site of elimination. (From M. Rowland and T. N. Tozer, Clinical 

Pharmacokinetics: Concepts and Application, 3rd Ed., Lippincott Williams & 

Wilkins, Baltimore, MD, 1995, p. 12.) 

Gastric motility is controlled by a very complex set of neural and hormonal signals. For instance, the 
system has a feedback loop in case the chyme is too acidic. Whereas gastrin is a hormone that 
stimulates gastric acid secretion, motilin is associated with housekeeping waves of motility that occur in 
the fasted condition. The fasted gastric motility cycle serves two functions and occurs as four ―phases.‖ 

This cycle repeats about every 2 hr during the fasted state. Phase I typically lasts 40 to 60 min and 
consists of a gentle mixing period due to smooth muscle quiescence, during which there are only rare 
contractions. Phase II follows with peristaltic contractions occurring with an increase in frequency for 
approximately 25 to 40 min. These waves of activity originate in the stomach and propagate through the 
small intestine. Phase III is sometimes referred to as the ―housekeeper‖ wave because the pylorus 

remains open to allow indigestible particles that are less than 12 mm in size to pass into the small 
intestine. Particles that are larger than 12 mm are rejected by the pylorus and remain in the stomach 
until they become small enough to pass. Phase III, which lasts 15 to 25 min, is characterized by 
powerful peristaltic contractions that occur three times a minute and empty the stomach into the small 
intestine. Phase IV lasts up to 7 min and is a transition between the forceful contractions of phase III and 
the gentle mixing contractions of phase I. The pH of fasting healthy adults is approximately 2 to 3, 
whereas fed-state pH is considerably higher, in the range of pH 5 to 6. 
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The volume and composition of ingested food determines the rate of gastric emptying.57 Gastric 
emptying of liquids is 
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rapid (half-time is about 12 min so that 95% is emptied within 1 hr).58 An increase in caloric content 
generally slows gastric emptying so that the rate of delivery of calories into the duodenum is relatively 
constant.59 It is estimated that nearly 50% of a solid meal remains in the stomach after ~2 hr. The 
temperature of the ingested meal is not important for liquids, which conduct heat rapidly, but may delay 
the emptying of hot or cold semisolid or solid meals, which have a higher thermal inertia. Gastric 
emptying occurs more rapidly in the morning than in the evening.60 Gastric emptying is slightly slower in 
healthy individuals older than 70 years of age of both sexes,61 even though the absorption of orally 
administered drugs does not seem to vary with age.61,62 The results of studies of the effect of body 
weight on gastric emptying of solids and liquids are inconsistent. Accelerated,63 delayed,64 and 
unchanged gastric emptying65 have all been reported. The differences in emptying rates are difficult to 
explain, but it appears that moderate obesity is not a major modifying factor, although the emptying of 
solids may be delayed in obese individuals who are at least 63% in excess of ideal weight.66 The 
influence of gender on gastric emptying is controversial. Whereas some authors have found similar 
gastric emptying rates for men and women,61,66 others have found slower gastric emptying in women 
than in men.67,68 The difference could be attributed to the phase of the menstrual cycle at the study 
time because the rate of solid gastric emptying decreases linearly during the menstrual cycle toward the 
luteal phase (days 19–28). The emptying of liquids does not differ between the two phases of the 
cycle.66,69 Pregnancy is believed to delay gastric emptying. However, the majority of studies have not 
shown delayed gastric emptying of liquids in women presenting during the first or second trimester for 
terminations of pregnancy, at elective caesarean section,70 and at first and third postpartum 
days.71 Absorption may occur from the stomach, but, typically, absorption is minimal. Although 
nonionized lipophilic molecules of moderate size may be absorbed, and even though the duration of 
exposure to epithelium is short, there is very little absorption 
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because of the small epithelial surface area and the physically thick, viscous mucus layer. 

Table 12-10 Weights of Various Organs in the Mouse, Rat, Rabbit, Monkey, 

Dog, and Human* 

Organ 

Mouse 

(0.02 kg) 

Rat (0.25 

kg) 

Rabbit 

(2.5 kg) 

Rhesus 

Monkey (5 

kg) 

Dog (10 

kg) 

Human 

(70 kg) 

Brain 0.36 1.8 14 90 80 1400 

Liver 1.75 10.0 77 150 320 1800 

Kidneys 0.32 2.0 14 25 50 310 

Heart 0.08 1.0 5 18.5 80 330 

Spleen 0.1 0.75 1 8 25 180 
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Adrenals 0.004 0.05 0.5 1.2 1 14 

Lung 0.12 1.5 18 33 100 1000 

*Organ weights are given in grams. 

From B. Davies and T. Morris, Pharm. Res. 10, 1093, 1993. 

 

Table 12-11 Volumes of Various Body Fluids and Organs in the Mouse, Rat, 

Rabbit, Monkey, Dog, And Human* 

  

Mouse 

(0.02 kg) 

Rat 

(0.25 kg) 

Rabbit 

(2.5 kg) 

Rhesus 

Monkey 

(5 kg) 

Dog (10 

kg) 

Human (70 

kg) 

Brain – 1.2 – – 72 1450 

Liver 1.3 19.6 100 145 480 1690 

Kidneys 0.34 3.7 15 30 60 280 

Heart 0.095 1.2 6 17 120 310 

Spleen 0.1 1.3 1 – 36 192 

Lungs 0.1 2.1 17 – 120 1170 

Gut 1.5 11.3 120 230 480 1650 

Muscle 10.0 245 1450 2500 5530 35,000 

Adipose – 10.0 120 – – 10,000 

Skin 2.9 40.0 110 500 – 7800 
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Blood 1.7 14.5 165 367 900 5200 

Total body 

water 

14.5 167 1790 3465 6036 42,000 

Intracellular 

fluid 

– 92.8 1165 2425 3276 23,800 

Extracellular 

fluid 

– 74.2 625 1040 2760 18,200 

Plasma 

volume 

1.0 7.8 110 224 515 3000 

*Organ and other volumes are given in milliliters. 

From B. Davies and T. Morris, Pharm. Res. 10, 1093, 1993. 

 

Table 12-12 Flow of Blood through the Major Organs and Flow of other Fluids 

in the Mouse, Rat, Rabbit, Monkey, Dog, and Human* 

  

Mouse 

(0.02 kg) 

Rat (0.25 

kg) 

Rabbit 

(2.5 kg) 

Rhesus 

Monkey (5 

kg) 

Dog (10 

kg) 

Human 

(70 kg) 

Brain – 1.3 – 72 45 700 

Liver 1.8 14.8 177 218 309 1450 

Kidneys 1.3 9.2 80 148 216 1240 

Heart 0.28 3.9 16 60 54 240 

Spleen 0.09 0.63 9 21 25 77 

Gut 1.5 7.5 111 125 216 1100 

Muscle 0.91 7.5 155 90 250 750 
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Adipose – 0.4 32 20 35 260 

Skin 0.41 5.8 – 54 100 300 

Hepatic 

artery 

0.35 2.0 37 51 79 300 

Portal 

vein 

1.45 9.8 140 167 230 1150 

Cardiac 

output 

8.0 74.0 530 1086 1200 5600 

Urine 

flow 

1.0 50.0 150 375 300 1400 

Bile flow 2.0 22.5 300 125 120 350 

GFR 0.28 1.31 7.8 10.4 61.3 125 

*All blood flows are in mL/min; urine and bile flows and glomerular 

filtration rate (GFR) are in mL/day. 

 

Absorption of drugs, fluid, and nutrients can occur from each section of the small intestine and colon. 
The absorption of fluids, nutrients, electrolytes, and xenobiotics occurs as chyme moves through the GI 
tract. The small intestine is partitioned into three sections of different sizes and function, the duodenum, 
the jejunum, and the ileum. Water is able to flow into or out of the lumen to maintain the isotonicity of the 
luminal contents with plasma. Approximately 8 to 9 liters 
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of fluid enter the upper GI tract every day—approximately 7 liters of secreted juices and 1.5 liters of 
ingested fluid. About 1 liter of fluid enters the colon, and only 100 mL of water leaves the body in the 
feces. For most drugs, the duodenum and the proximal jejunum are the best sites of absorption because 
they have the highest absorptive surface area. In general, absorptive surface area decreases as one 
travels down the intestine.72 The ratio of the absolute surface area of the human stomach to that of the 
small intestine is 1 to 3800; this shows why absorption of substances by the stomach is generally 
neglected. Similarly, the 570-fold difference73 between the small intestine and the colon suggests that 
the majority of absorption occurs in the small intestine. However, although this takes into account the 
surface area, the transit time of the colon is 4 to 24 times longer (i.e., 12–72 hr as compared to 3–4 hr) 
than in the small intestine. Therefore, a longer residence time could offset a lower absorptive surface 
area, making the colon as good site for the absorption of drugs as the small intestine. 
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Fig. 12-24. (a) This is a schematic of brain capillary. It is composed of four kinds of 

cells; endothelial cell, pericyte, astrocyte, and neurons. Because of the close 

anatomical proximity of the cells, they stimulate endothelial cells to proliferate and 

differentiate. (b) This is a schematic of the brain-barrier system. The capillary has a 

tight junction. Hence, it acts as a blood–brain barrier in the brain parenchyma. There 

are two kinds of blood–CSF barriers. One is the arachnoid membrane and the other is 

the epithelial cell of choroid plexus. These capillaries are permeable. So, in these 

areas only arachnoid membrane and epithelial cells of choroid plexus can function as 

a barrier. (From B. Schlosshauer, Bioessays 15, 341, 1993. With permission.) 

 

Fig. 12-25. P-glycoprotein, an efflux secretory transporter, is widely thought to limit 

entry of drugs into the brain, testis, intestines, and other organs and tissues. Drugs 

enter cells but are effluxed out of the cell by P-gp before they can enter the brain. This 

mechanism is responsible for minimizing brain exposure to toxic chemicals. 
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Fig. 12-26. Distribution of [14 C]-amprenavir in male CD-1 mice pretreated with the 

P-gp inhibitor GF120918. Animals treated with GF120918 (a) had a 13-fold increase 

in brain and 3.3-fold increase in CSF levels of amprenavir-related material over 

vehicle-treated mice (b). 

Small intestinal absorption is also dramatically affected by regional differences in the distribution of 
transporters, metabolic enzymes, and so on. The practical implication of this is that even though the 
absorptive surface area in the duodenum is higher than in the ileum, absorption from the ileum is not 
necessarily lower for drugs and nutrients. For example, intestinal reabsorption of bile salts plays a 
crucial role in human health and disease. The small intestine absorbs 90% to 95% of the bile salts. Of 
the remaining bile salts, the colon converts the salts of deoxycholic acid and 
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lithocholic acid. Only 1% of the lithocholate is absorbed, and the colon excretes the rest. The bile salts 
lost to excretion in the colon are replaced by synthesis of new ones in the liver at a rate of 0.2 to 0.4 
g/day, with a total bile salt amount of 3.5 g, which is constantly recycled by enterohepatic circulation. 
Enterohepatic circulation is discussed later in this chapter. Bile acid reabsorption is primarily localized in 
the terminal ileum and is mediated by a 48-kd sodium-dependent bile acid cotransporter known as 
ASBT, which is given the molecular designation SLC10A2.74 
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Fig. 12-27. Gastrointestinal system. 
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Fig. 12-28. Effect of absorption and elimination rate constant on the plasma 

concentration versus time profile. (a) Absorption (input) rate is increased from 0.2/hr 

to 0.5/hr while holding the elimination rate constant resulting in an increase in the 

slope of the absorptive phase. (b) The input rate is held constant while elimination 

rate constant is changed. Note that absorptive phase is unchanged (i.e., slopes are 

equal). 

 

Fig. 12-29. Effect of propantheline and metoclopramide on acetaminophen 

absorption. Acetaminophen absorption is very rapid and is only limited by its 
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introduction into the intestine by the stomach. Metoclopramide increases the rate of 

acetaminophen gastric emptying resulting in a faster rate of absorption, 

higher Cmaxand shorter tmax. Propantheline has the opposite effect, slowing gastric 

emptying rate and delaying absorption. (From J. Nimmo, R. C. Heading, P. Tothill, 

and L. F. Prescott, Br. Med. J. 1, 587, 1973. With permission.) 
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Region-specific absorption has been reported in animals and humans for a variety of drugs including 
allopurinol,75 amoxicillin,76benzoate,77 lefradafiban,78 oxyprenolol,79 talinolol,80 and thymidine 
analogues.81 Regional variation in the distribution of drug transporters also brings variatiability in 
absorption. Regional distribution of apical absorptive transporters including the apical bile acid 
transporter,82,83 monocarboxylic acid transporter-1,84 a nucleoside transporter,85 OATP3,86 and the 
peptide transporter PEPT187 has been reported. Segmental variability is also known to occur for 
metabolic enzymes and efflux/secretory transporters as well. The cytochrome P-450 3 
A,88,89,90,91,92,93,94 SULTs, GSTs, and the UDP-glucuronosyltransferases95,96,97,98,99 are higher 
at the proximal than at the distal intestine. MRP2 intestinal secretion follows the distribution of the 
cytochrome P-450s and conjugation enzymes,100,101 whereas P-glycoprotein93,102,103,104,105 is 
higher in the jejunum/ileum than other parts of the intestine. Basolateral MRP3, in contrast to MRP2, is 
more prevalent in the ileum and colon.106 
The impact of the varied regional distributions of drug transporters and metabolizing enzymes is difficult 
to predict because drugs can be substrates for numerous transporters and enzymes. For example, 
saquinavir, an HIV protease inhibitor, is known to be a substrate for the transporters P-gp, MRP1, 
MRP2, OATP-A, OATP-C, and the metabolic enzyme CYP3A.106,107,108,109,110 In addition to 
regional intestinal distribution, substrate affinity, enzyme/transporter capacity, turnover rate, and other 
factors ultimately determine the segmental absorption behavior and pharmacokinetics of drugs. 
Changes also occur in the characteristics of the paracellular spaces throughout the intestine. Intestinal 
pH is relatively constant and ranges from about pH 5 in the duodenal bathing region of the upper small 
intestine to pH 6.5 to 7.2 in other areas of the intestine and colon. 
Kidney 
Excretion is the process by which a drug or a metabolite is eliminated from the body without further 
chemical change. The kidneys, which transport water-soluble substances out of the body, are the major 
organs of excretion. The kidney performs two critical functions in the distribution and excretion of drug 
molecules. They excrete the metabolites formed by the liver or other organs/tissues and control the 
concentrations of many of the molecules found in the blood stream. The kidney does this by filtration of 
the blood. A depiction of a kidney is shown in Figure 12-30. Blood enters the glomerulus through the 
afferent arteriole and leaves through the efferent arteriole. About one fifth of the plasma reaching the 
glomerulus is filtered through pores in the glomerular endothelium; the remainder passes through the 
efferent arterioles surrounding the renal tubules. Drugs bound to plasma proteins are not filtered; only 
unbound drug is contained in the filtrate.5 After filtration in the glomerulus, the blood and waste/filtrate 
streams continue to be processed by the nephron, the individual working unit of the kidney. There are 
approximately 1 million nephrons in each kidney. The glomerular filtrate has essentially the same 
composition as the plasma that entered the glomerulus without a significant amount of protein and no 
red blood cells. Filtration occurs in the glomerulus by size and charge exclusion. However, secretion and 
reabsorption occurring in the tubules occur because of the permeability of the molecule being 
transported. The pore size of the glomerulus is large enough to allow molecules that are up to 8 nm in 
diameter to pass through. 
As seen in Table 12-13, there is a steep molecular weight dependence on permeability in the kidney. 
The permeability of the solute is affected by size and charge if it is transported by passive diffusion; 
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however, in the kidney, solutes are transported out of the tubules by active transport. The primary 
reason is that passive diffusion occurs from regions of higher solute concentrations to lower 
concentrations. Because typical solute concentrations in the blood will be more dilute than those in the 
collecting duct and urine, diffusion out will not be favored. Another important factor is that the pores are 
lined with proteoglycans that have a very strong negative charge. It is this electrostatic repulsion that 
keeps albumin, which is only 6 nm in diameter, and most other proteins greater than molecular weight 
69,000 from being filtered in the glomerulus. The kidney has a blood flow of 1200 mL/min, which creates 
a flow from the glomerulus into the proximal tubule of 125 mL/min. The bulk of this fluid flow is water, 
and if water was not actively reabsorbed, 180 liters of water would be lost each day. Fortunately, more 
than 99% of the water and varying amounts of its solutes are normally reabsorbed into the blood by way 
of the proximal tubules. This concentrates the filtrate greatly. The filtrate that comes from the glomerulus 
passes through the proximal tubule, where conservation of ions, glucose, and amino acids occurs by 
active and passive transport. In the proximal tubule, these molecules are reabsorbed from the 
glomerulus filtrate by the blood in the efferent arteriole. About 65% of the glomerular filtrate is 
reabsorbed before reaching the loop of Henle. The filtrate continues moving through the loop of Henle 
and distal tubule, where it is continuously reabsorbed. The maximal rate of reabsorption for various 
substances is shown inTables 12-14 and 12-15. These values indicate the maximum rate at which a 
species can be reabsorbed. The transport rate, however, may not be linear in concentration. This occurs 
when a system undergoes saturation kinetics. Although the efferent arteriole is in the process of 
reabsorbing water and other vital ions and solutes from the tubules, it also secretes molecules into the 
tubules. The remaining substance in the tubules enters a collecting duct and is considered urine. The 
ability of the kidneys to clean or clear the plasma of various substances is defined as plasma clearance: 

 
There are several substances that are routinely measured to determine kidney function: creatinine, 
inulin, and 
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p-aminohippurate (PAH). These measure glomerular filtration rate and plasma flow through the kidneys. 
Inulin is not reabsorbed from the tubules and is not actively secreted into the tubules; therefore, any 
inulin found in the urine comes from glomerular filtration. As shown in Table 12-16, inulin is filtered in the 
glomerulus as easily as water is. Therefore, the plasma clearance of inulin is equal to the glomerular 
filtration rate. In terms of ADME and pharmacokinetics, the kidney is a primary organ of drug excretion. 
Drugs may be filtered by the glomerulus, reabsorbed into the blood stream by the proximal tubule, or 
secreted from the blood stream into the distal tubule. For proteins, general rules for glomerular filtration 
are as follows: (a) If the protein is bigger than immunoglobulin G (150 kd, 55-Å radius), it is rarely 
excreted; (b) if the protein is smaller than 40 kd and has a radius less than 30 Å, it is almost completely 
excreted; (c) negatively charged molecules are retained, even if small, because of charge repulsion with 
Bowman's space; and (d) elongated molecules have higher clearance than spherical molecules. 
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Fig. 12-30. Left kidney and adrenal gland. 

Table 12-13 Permeability and Molecular Size 

Molecular Weight Permeability Compared to Water Example Substance 

5200 1.00 Inulin 

30,000 0.5 Very small protein 

69,000 0.005 Albumin 

 

The limited ability of the kidneys to clear large materials from the body has been used as a way to 
increase the circulation time and decrease the clearance of drugs. Numerous studies have been 
published showing that polymers of similar size to proteins are cleared in a similar manner. For 
example, the molecular-weight threshold limiting glomerular filtration of an HPMA (N-(2-
hydroxypropyl)methacrylamide) copolymer was found to be about 45 kd in rats.111 In mice, the 
molecular-weight cutoff was found to be about 30 kd for poly(ethylene glycol) (PEG).112 This size 
limitation has been exploited in drug delivery, with PEG being the most common polymer employed to 
date. PEG is advantageous as a protein-modifying agent because it is inert, water-soluble, nontoxic, and 
modular in size. Pegylation (i.e., chemically adding a PEG to a therapeutic agent) is now a well-
established method of modifying the pharmacologic properties of a protein by, for example, delaying 
clearance and reducing protein immunogenicity.110,111,112,113,114,115 Among the various disease 
states that have been targeted for the study of drugs incorporating pegylation technology, the treatment 
of chronic hepatitis C with interferon-based compounds offers significant potential for clinical impact. 
Two compounds, peginterferon alfa-2a (PEGASYS) and peginterferon alfa-2b (PEG-Intron), are both 
approved for use alone and in combination with ribavirin for the treatment of chronic hepatitis C. 
However, the different PEG moieties attached to the native protein, the site of attachment, and the type 
of bond involved lead to vast differences with respect to the pharmacokinetics and pharmacodynamics 
of these two compounds. 

Table 12-14 Tubular Transport Maximums of Important Substances 

Reabsorbed from Renal Tubules 
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Substance Value Units 

Glucose 320 mg/min 

Phosphate 0.1 mm/min 

Sulfate 0.06 mm/min 

Amino acids 1.5 mm/min 

Urate 15 mg/min 

Plasma protein 30 mg/min 

Hemoglobin 1 mg/min 

Lactate 75 mg/min 

Acetoacetate Variable, ~30 mg/min 

 

Table 12-15 Tubular Transport Maximums of Important Substances Secreted 

into Renal Tubules 

Creatinine 16 mg/min 

p-Aminohippurate 80 mg/min 

Glomerular filtrate 125 mL/min 

Flowing into the loops of Henle 45 mL/min 

Flowing into the distal tubules 25 mL/min 

Flowing into the collecting tubules 12 mL/min 

Flowing into the urine 1 mL/min 

 

Example 12-7 
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The Design and Development of Pegfilgrastim (PEG-rmetHuG-CSF, Neulasta) 

The following is the abstract of a paper by Molineux116: 

 The addition of a polyethylene glycol (PEG) moiety to filgrastim (rmetHu-G-CSF, 
Neupogen) resulted in the development of pegfilgrastim. Pegfilgrastim is a long-acting 
form of filgrastim that requires only once-per-cycle administration for the management 
of chemotherapy-induced neutropenia. Pegylation increases the size of filgrastim so 
that it becomes too large for renal clearance. Consequently, neutrophil-mediated 
clearance predominates in elimination of the drug. This extends the median serum 
half-life of pegfilgrastim to 42 hr, compared with between 3.5 and 3.8 hr for Filgrastim, 
though in fact the half-life is variable, depending on the absolute neutrophil count, 
which in turn reflects of the ability of pegfilgrastim to sustain production of those same 
cells. The clearance of the molecule is thus dominated by a self-regulating 
mechanism. Pegfilgrastim retains the same biological activity as filgrastim and binds 
to the same G-CSF receptor, stimulating the proliferation, differentiation, and 
activation of neutrophils. Once-per-chemotherapy cycle administration of 
pegfilgrastim reduces the duration of severe neutropenia as effectively as daily 
treatment with filgrastim. In clinical trials, patients receiving pegfilgrastim also had a 
lower observed incidence of febrile neutropenia than patients receiving filgrastim. 
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Table 12-16 Relative Concentrations of Substances in the Glomerular Filtrate 

and in the Urine 

Substance* 

Glomerular Filtrate 

(125 mL/min) Urine (1 mL/min) 
Urine/Concentra

tion in Plasma 

(plasma 

clearance per 

minute) 

Quantity/

min (mEq) 

Concentrati

on 

(mEq/liter) 

Quantity/

min (mEq) 

Concentrati

on 

(mEq/liter) 

Na
+
 17.7 142 0.128 128 0.9 

K
+
 0.63 5 0.06 60 12 

Ca
2+

 0.5 4 0.0048 4.8 1.2 

Mg
2+

 0.38 3 0.015 15 5.0 

Cl
-
 12.9 103 0.144 144 1.3 

HCO3
-
 3.5 28 0.014 14 0.5 
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H2PO4
-
 0.25 2 0.05 50 25 

HPO4
2-

 0.25 2 0.05 50 25 

SO4
2-

 0.09 0.7 0.033 33 47 

Glucos

e 

125† 100† 0† 0† 0 

Urea 33 26 18.2 1820 70 

Uric 

acid 

3.8 3 0.42 42 14 

Creatini

ne 

1.4 1.1 1.96 196 140 

Inulin – – – – 125 

PAH – – – – 585 

*PAH = p-Aminohippurate. 

†Units for glucose are mg for quantity and mg/dL for concentration. 

From Textbook of Medical Physiology, 8th Ed., W. B. Saunders, 

Philadelphia, PA, 1991, p. 304. 

 

Liver 
The liver is an extremely important organ in biopharmaceutics and pharmacokinetics. After drug is 
absorbed from the gut, it potentially undergoes metabolism in the liver, secretion from the liver into bile, 
or reaches the systemic circulation intact. Of course, metabolites may also be secreted into bile, further 
metabolized, or make it into the systemic circulation. The liver is unique in its blood supply because it 
receives oxygenated blood from the hepatic artery and nutrient-rich but deoxygenated blood from the 
stomach, intestine, and spleen. The split between the two streams is approximately one fifth oxygenated 
and the remainder is nutrient rich. In most cases, the liver is thought of as containing lobules 
serviced/drained by a central vein in the center of each. However, the liver can functionally be thought of 
as being organized into acini, with two input streams, the hepatic artery and the portal vein, passing 
through the sinusoids and leaving through a terminal hepatic vein (Fig. 12-31). The sinusoids are lined 
with unique epithelial cells called hepatocytes. The hepatocytes have distinct polarity. Their basolateral 
side is lined with microvilli to take up nutrients, proteins, and xenobiotics. The apical side forms the 
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canalicular membranes through which bile components are secreted. It is the hepatocytes that perform 
functions essential for life. These functions include the production of bile and its carriers (bile acids, 
cholesterol, lecithin, phospholipids), the synthesis of essential serum proteins (albumin, carrier proteins, 
coagulation factors, many hormonal and growth factors), the regulation of nutrients and metabolism, and 
the conjugation of lipophilic compounds (bilirubin, cations, drugs) for excretion in the bile or the 
urine.117 

Key Concept 

Importance of Equilibria in Adme 

It is very important to realize that ADME is filled with a number of dynamic equilibria that 
occur in a variety of organs and tissues. The net result of all of these processes is the 
observed plasma concentration versus time profiles. From the moment that a drug enters the 
body, the drug molecule strives to be in equilibrium between the tissues and blood. Other 
equilibria that occur are blood: active site concentration, parent: metabolite, blood: bile, blood: 
urine, and bound drug: unbound drug. These are just some of the equilibria that occur and the 
ones that play an important role in the blood or plasma concentration level measured in the 
study of pharmacokinetics. The rates of absorption, distribution, and elimination control drug–

blood concentrations and are discussed further in the next section. 

Earlier in the chapter, there was a discussion about metabolizing enzymes and transporters. These two 
systems are found in abundance within liver and play a major role in drug distribution and elimination. 
The liver is a major site of metabolism in the body, and it works with the kidney in removing waste from 
the blood stream. As mentioned previously, there are 
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three phases of drug metabolism. Phases I and II are involved in the biotransformation of drugs and, 
therefore, are strictly related to the ADME process of metabolism. In addition to metabolism, the liver 
also plays an important role in drug and metabolite excretion out of the body. This process is also known 
as phase III metabolism and involves the transport of drugs and metabolites out of cells by means of 
membrane transporters. In the liver this process is known as enterohepatic cycling and occurs by biliary 
excretion from the gall bladder and intestinal reabsorption of a solute (i.e., drug or metabolite), 
sometimes with hepatic conjugation (see phase II discussion earlier in the chapter) and intestinal 
deconjugation. Therefore, the liver's role in drug distribution or excretion occurs in conjunction with the 
intestine and the gall bladder. Drug is absorbed from the intestine and enters the liver, where the drug or 
metabolites can be secreted into the bile of the gall bladder. The gall bladder secretes bile, usually in 
conjunction with meals, and the drugs and metabolites reenter the intestinal tract. Therefore, the biliary 
―system‖ contributes to excretion to the degree that drug is not reabsorbed from the GI tract. In other 

words, the drug or metabolite is considered eliminated from the body as long as it is not reabsorbed 
from the intestine. On the other hand, the biliary system also contributes to drug distribution to the extent 
that intact secreted drug is reabsorbed from the intestine. In a fairly unique set of circumstances, in the 
enterohepatic cycling system even metabolized drug, usually a terminal step, can be reversed, adding to 
the distribution phase of drug disposition. For example, it has been shown that phase II metabolism (i.e., 
conjugation), particularly with glucuronic acid, typically leads to biliary excretion. Drug conjugates 
secreted into the intestine also undergo enterohepatic cycling when they are hydrolyzed and the drug 
becomes available for reabsorption. Metabolism is usually considered to be part of the elimination 
process (i.e., permanent removal from the body). However, the process of enterohepatic recycling could 
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also be considered as distribution because the metabolism step is reversible and drug can be absorbed 
over and over again into the body. Once again, secreted conjugates that are not converted back to the 
original drug and are excreted in the feces are considered to be ―eliminated.‖ 
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Fig. 12-31. A section of liver lobule showing the location of hepatic veins, hepatic 

cells, liver sinusoids, and branches of the portal vein and hepatic artery. (From S. C. 

Smeltzer and B. G Bare, Textbook of Medical-Surgical Nursing, 9th Ed., Lippincott 

Williams & Wilkins, Philadelphia, 2000.) 

Drugs and their metabolites that are extensively excreted in bile are transported across the biliary 
epithelium against a concentration gradient requiring active secretory transport by membrane 
transporters. Secretory transport may approach an upper limit at high plasma concentrations of a drug, 
and substances with similar physicochemical properties may compete for excretion via the same 
mechanism. The drug transporters responsible for this behavior are those found in the liver and will not 
be reviewed here. Factors affecting biliary excretion include drug characteristics (chemical structure, 
polarity, and molecular size), transport across sinusoidal plasma membrane and cannicular membranes, 
biotransformation, and possible reabsorption from intrahepatic bile ductules. Intestinal reabsorption to 
complete the enterohepatic cycle may depend on hydrolysis of a drug conjugate by gut bacteria. Larger 
drugs (i.e., with a molecular weight greater than 300–500 g/mole) with both polar and lipophilic groups 
are more likely to be excreted in bile. Smaller molecules are generally excreted only in negligible 
amounts. The renal and hepatic excretion pathways are complementary to each other. In other words, a 
compound with high renal excretion, which is typical for a low-molecular-weight compound, will have low 
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biliary excretion and vice versa.118,119 These values can be species dependent. For example, the 
excretion of organic anions greater than 500 g/mole is found to occur in the bile in humans, whereas the 
values are slightly lower for rats, guinea pigs, and rabbits, ranging from 325 to 475 
g/mole.120 Additionally, compounds which are usually excreted into the bile are more lipophilic; contain 
charged groups, such as carboxylic acid, sulfonic acid, or quaternary ammonium groups, are highly 
protein-bound anions bound to albumin, whereas cations are mainly bound to orosomucoid or a1-acid 
glycoprotein and have a high molecular weight. The opposite is true for substrates of renal excretion. 
These broad classifications should serve only as a guide. Levofloxacin, ofloxacin (Floxin), and 
ciprofloxacin are broad-spectrum antimicrobial agents for oral administration and are part of a class of 
fluorinated carboxyquinolones. These drugs are primarily excreted in the urine, yet they are carboxylic 
acids. For example, only 4% to 8% of Floxin (molecular weight 361.4) is excreted in the feces,121 which 
would disprove the rule of carboxylic acids always being excreted in the feces. 
Finally, dose dependencies are expected for enterohepatic circulation because membrane transporters 
play a major role and saturation at high doses or inhibition by competing substances may occur. This 
could lead to excretion by an alternative pathway or reduced drug excretion and significantly higher 
blood levels and, possibly, toxicity. In general, enterohepatic cycling may prolong the pharmacologic 
effect of certain drugs and drug metabolites. The pharmacokinetics (i.e., apparent volume of distribution 
and clearance) of a drug that undergoes enterohepatic cycling may be substantially altered. 
Enterohepatic cycling is also associated with the occurrence of multiple drug–blood level peaks and a 
longer apparent half-life in the plasma concentration–time profile. Of particular importance is the 
potential amplifying effect of enterohepatic variability in defining differences in the bioavailability. 
Bioavailability is also affected by the extent of intestinal absorption, gut-wall P-glycoprotein efflux, and 
gut-wall metabolism. Recently, there has been a considerable increase in our understanding of the role 
of transporters, gene expression of intestinal and hepatic enzymes, and hepatic zonation. Drugs, 
disease, and genetics may result in induced or inhibited activity of transporters and metabolizing 
enzymes. Reduced expression of one transporter, for example, hepatic canalicular multidrug resistance-
associated protein-2 (MRP2), is often associated with enhanced expression of others, for example, the 
usually quiescent basolateral efflux MRP3, to limit hepatic toxicity. 
Example 12-8 

Biliary Excretion 

Although the first impression about biliary excretion may be that it plays a role in orally 
absorbed medications, this example shows that drugs introduced into the body by other 
routes (e.g., intravenously) may also be excreted into the bile. These drugs may have poor 
oral absorption properties, so enterohepatic cycling is probably minimal for them. Both P-
glycoprotein and MRP2, ATP-dependent membrane transporters, exist in a variety of normal 
tissues and play important roles in the disposition of various drugs. Sugie et al.122 studied 
the contribution of P-glycoprotein and/or MRP2 to the disposition of azithromycin in rats. The 
disappearance of azithromycin from plasma after intravenous administration was significantly 
delayed in rats treated with intravenous injection of cyclosporine, a P-glycoprotein inhibitor, 
but was normal in rats pretreated with an intraperitoneal injection of erythromycin, a CYP3A4 
inhibitor. When rats received an infusion of azithromycin with cyclosporine and probenecid, an 
MRP2 inhibitor, a significant decrease in the steady-state biliary clearance of azithromycin of 
5% and 40% of the corresponding control values was observed, respectively. However, 
neither inhibitor altered the renal clearance of azithromycin, suggesting the lack of renal 
tubular secretion of azithromycin. Tissue distribution experiments showed that azithromycin is 
distributed largely into liver, kidney, and lungs, whereas neither inhibitor altered the tissue-to-
plasma concentration ratio of azithromycin. Significant reduction in the biliary excretion of 
azithromycin was observed in Eisai hyperbilirubinemic rats, which have a hereditary 
deficiency in MRP2. These results suggest that azithromycin is a substrate for both P-
glycoprotein and MRP2 and that the biliary and intestinal excretion of azithromycin is 
mediated via these two drug transporters. 
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Introductory Pharmacokinetics 
Introduction 
This section is not meant to replace pharmacokinetics textbooks, but rather to link the basic 
biopharmaceutical concepts introduced in this chapter to the simplest pharmacokinetic models, 
parameters, and behavior that relate to drug input and output into/from the body. We will cover the 
correlation 
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between in vitro and in vivo data using compartment models, permeability, and intrinsic clearance. 
Pharmacokinetics is the kinetic study of the ADME of drugs in the body. The compartment model 
assumes that the body is a simplified system of compartments and that drug transfer and elimination 
rates between/from compartments occur by a first-order process. Other transfer and elimination 
functions (e.g., nonlinear functions) have also been used in compartment models but will not be the 
focus of this chapter. A one-compartment model is the simplest and best-studied pharmacokinetic model 
even though few drugs truly follow these simplified kinetics. A number of in vitro and in situ models have 
been employed to predict in vivo drug absorption, including the parallel artificial membrane permeability 
assay, human colon carcinoma cells (Caco-2), Madin–Darby canine kidney (MDCK) cells, Ussing 
chamber using animal intestinal tissues, and in situ intestinal perfusion. The permeability data from 
these models, such as apparent permeability, Pa, and effective permeability, Peff, can be used in the 
calculation of an absorption rate constant, Ka, in the one-compartment model. Pa and Peff are typically 
synonymous terms and are considered ―lumped‖ permeability coefficients because they represent a 

measure of all of the transport and metabolism processes occurring at a particular time. In other words, 
the apparent or effective permeability is the net permeability due to permeability by all pathways in the 
intended direction but also accounting for loss due to degradation, metabolism, binding, or transport in 
the opposite direction. In this section, we will also link the basic biopharmaceutical processes to the 
elimination rate constant, Kel, which can be calculated using the intrinsic clearance, CLint, from in vitro 
metabolism experiments. The basic assumptions for each type of correlation will be listed and explained 
in this section with brief introduction of the one compartment model. 

Key Concept 

Apparent Volume of Distribution5 

The volume of fluid into which a drug appears to be distributed or diluted is called the 
apparent volume of distribution (i.e., the fluid volume required to contain the drug in the body 
at the same concentration as in plasma). This parameter provides a reference for the plasma 
concentration expected for a given dose and for the dose required to produce a given 
concentration. However, it provides little information about the specific pattern of distribution. 
Each drug is uniquely distributed in the body. Some drugs go into fat, others remain in the 
extracellular fluid, and still others are bound avidly to specific tissues, commonly liver or 
kidney. Many acidic drugs (e.g., warfarin, salicylic acid) are highly protein bound and thus 
have a small apparent volume of distribution. Many basic drugs (e.g., amphetamine, 
meperidine) are avidly taken up by tissues and thus have an apparent volume of distribution 
larger than the volume of the entire body. 

Compartmental Models and Ka/Kel 
In the first model, we will not consider drug absorption but rather drug elimination. In the one-
compartment model with rapid intravenous injection, a drug distributes into the body according to one-
compartment-model ―behavior.‖ In other words, drug distribution in a one-compartment model is 
complete and instantaneous. The drug is eliminated by a first-order process, 

 
where X represents the amount of drug in the body at time t after administration and kel is the elimination 
rate constant. Integration of equation (12-14) gives the following expression: 
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where X0 is the initial drug dose. The elimination rate constant, kel, can be calculated from two 
fundamental pharmacokinetic parameters, total body clearance, CLt, and apparent volume of 
distribution, Vd: 

 
CLt is defined as the volume of plasma or blood that is completely cleared of drug per unit time: 

 
Vd is a theoretical volume factor relating the amount of drug in the body and the concentration of drug in 
the plasma or blood: 

 
where C is the drug concentration in plasma or blood. 
The elimination rate constant represents the sum of two processes: 

 
where km is the elimination rate constant by metabolism and ke is the elimination rate constant by 
excretion. If the metabolism is dominant over excretion during elimination, the elimination constant can 
be replaced by km. If (a) the liver is the major metabolic organ, (b) hepatic drug metabolism shows no 
enzymatic saturation, and (c) the intrinsic clearance, CLint, is much smaller than liver blood flow,Q, then 
total body clearance, CLt, values, calculated with the one-compartment 
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intravenous model, correlates well with the intrinsic clearance, CLint. 

Key Concept 

Drug Clearance and Organ Blood Flow 

Two situations arise that show the relationship between drug clearance and liver blood flow. 
Organ clearance, CL, is given by CL = QCLint/(Q + CLint). In the case when Q much greater 
than CLint, organ CL = CLint. This occurs for drugs such as antipyrine, barbiturates, 
antiepileptics, and cumarin derivatives. In the second case, when Q is much less than CLint, 
organ CL = Q. This occurs for various analgesics, tricyclic antidepressants, and beta-
blockers. Protein binding may also have an effect, so, considering the free fraction of drug, fB, 
one should use fB·CLint instead of CLint in this situation. Liver blood flow in humans is 20.7 
mL/min/kg or 1450 mL/min for a 70-kg person. 
Example 1: Q much greater than CLint. Antipyrine is negligibly bound to plasma proteins, 
eliminated exclusively through hepatic metabolism, and more than 99% of a given dose is 
excreted into urine as metabolites.123 The intrinsic clearance of antipyrine is 12.8 
mL/min/person, which was calculated from in vitro intrinsic clearance, 1.62 × 10-4mL/min/mg 
protein,118 and total liver microsomal protein, 7.88 × 10-4 mg/person.90 Human hepatic blood 
flow is reported as 1450 mL/min/70-kg person.124 In vivo systemic clearance of antipyrine is 
reported as 13.5 (9.3–22.8) mL/min/person in patients with liver cirrhosis and 49.3 (31.1–103) 
mL/min/person in healthy individuals. Calculated in vitro intrinsic clearance of antipyrine is 
close to the values for patients with liver cirrhosis, probably because in vitro experiments were 
done with liver samples obtained from patients who underwent partial hepatectomy. 
Example 2: CLint much greater than Q. In vivo systemic clearance propranolol is 1.21±0.15 
liter/min for (+)-propranolol and 1.03±0.12 liter/min for (-)-propranolol.125The intrinsic 
clearance of racemic propranolol was 4180 mL/min/person, which was calculated from in vitro 
intrinsic clearance, 0.053 mL/min/mg protein,126 and total liver microsomal protein, 7.88 × 
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104 mg/person.90 Human hepatic blood flow is 1450 mL/min/70-kg person as shown 
inExample–1. 

In a one-compartment model with a drug absorption step such as oral administration, the drug enters 
the body by a first-order process. In this case, absorption is slower than the instantaneous injection that 
occurs during intravenous administration. Distribution of the absorbed drug molecules is instantaneous 
and elimination occurs according to one-compartment-model behavior as described previously: 

 

 
where Xa is the amount of drug in the absorption site at time t after administration and ka is the 
absorption rate constant. Integration of equations (12-20) and (12-21) gives the following expression: 

 
where F is the fraction of the dose, X0, absorbed following oral administration. 
The absorption rate constant as well as the elimination rate constant can be calculated from in vitro or in 
situ data in the oral absorption model. The absorption rate constant, ka, can be related to the effective 
permeability, 

 
where SA is the surface area, V is the volume of the intestinal segment, and r is the intestinal radius. If 
one assumes that a cylinder can be used to estimate the intestinal shape, then the SA/Vratio simplifies 
to 2/r. Others have examined the effect of other, more realistic intestinal geometries.127 However, for 
the purposes of this example, assuming cylindrical geometry keeps the mathematics straightforward. 
One can ―build‖ a model of the human body absorption and disposition of drugs by using compartmental 

models. Each compartment can represent an organ, tissue, or set of organs or tissues (Fig. 12-23). For 
example, sometimes a two-compartment model is appropriate. Here, fast-perfused and slow-perfused 
tissues are grouped together into separate compartments. Typically, when organs or tissues are lumped 
together it is difficult to examine the behavior of specific individual organ systems. When the goal is to 
examine specific organ systems, PBPK models are constructed (Fig. 12-23). Using flow rates (e.g., 
blood flow, intestinal transit), volumes, and input and output rate constants, one can construct a PK 
model of an organ system. The PBPK models have a long and rich history that is covered in much more 
detail in a course in pharmacokinetics. We leave those details to those courses. 
Bioavailability4 
Introduction 
The words absorption and bioavailability are used in many ways. The purpose of this section is to 
introduce the student to the biopharmaceutical basis and practical meanings of the word bioavailability. 
―Bioavailability,‖ as defined by the U.S. Food and Drug Administration in the Code of Federal 

Regulations (21 CFR 320.1[a]), means the rate and extent to which the active ingredient or active 
moiety is absorbed from a drug product and becomes available at the site of action. Because 
pharmacologic response is generally related to the concentration of drug at the receptor site, the 
availability of a drug from a dosage form is a critical element of a drug product's clinical efficacy. 
However, drug concentrations usually cannot 
P.297 
 
be readily measured directly at the site of action. Therefore, most bioavailability studies involve the 
determination of drug concentrations in the blood or the urine. This is based on the premise that the 
drug at the site of action is in equilibrium with the drug in the blood. It is therefore possible to obtain an 
indirect measure of drug response by monitoring drug levels in the blood or the urine. Thus, 
bioavailability is concerned with how quickly and how much of a drug appears in the blood after a 
specific dose is administered. The bioavailability of a drug product often determines the therapeutic 
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efficacy of that product because it affects the onset, intensity, and duration of therapeutic response of 
the drug. In most cases one is concerned with the extent of absorption of drug (i.e., the fraction of the 
dose that actually reaches the blood stream) because this represents the ―effective dose‖ of a drug. This 

is generally less than the amount of drug actually administered in the dosage form. In some cases, 
notably those where acute conditions are being treated, one is also concerned with the rate of 
absorption of a drug because rapid onset of pharmacologic action is desired. Conversely, these are 
instances where a slower rate of absorption is desired, either to avoid adverse effects or to produce a 
prolonged duration of action. 
Causes of Low Bioavailability5 
When a drug rapidly dissolves and readily crosses membranes, absorption tends to be complete, but 
absorption of orally administered drugs is not always complete. Before reaching the vena cava, a drug 
must move down the GI tract and pass through the gut wall and liver, common sites of drug metabolism; 
thus, a drug may be metabolized (first-pass metabolism) before it can be measured in the systemic 
circulation. Many drugs have low oral bioavailability because of extensive first-pass metabolism. For 
such drugs (e.g., isoproterenol, norepinephrine, testosterone), extraction in these tissues is so extensive 
that bioavailability is virtually zero. For drugs with an active metabolite, the therapeutic consequence of 
first-pass metabolism depends on the contributions of the drug and the metabolite to the desired and 
undesired effects. Intestinal secretion of drugs by transporters such as MRP2 and P-gp and 
enterohepatic recirculation may also cause low oral bioavailability. Low bioavailability is most common 
with oral dosage forms of poorly water-soluble, slowly absorbed drugs. More factors can affect 
bioavailability when absorption is slow or incomplete than when it is rapid and complete, so slow or 
incomplete absorption often leads to variable therapeutic responses. Insufficient time in the GI tract is a 
common cause of low bioavailability. Ingested drug is exposed to the entire GI tract for no more than 1 
to 2 days and to the small intestine for only 2 to 4 hr. If the drug does not dissolve readily or cannot 
penetrate the epithelial membrane (e.g., if it is highly ionized and polar), time at the absorption site may 
be insufficient. In such cases, bioavailability tends to be highly variable as well as low. Age, gender, 
activity, genetic phenotype, stress, disease (e.g., achlorhydria, malabsorption syndromes), or previous 
GI surgery can affect drug bioavailability. Reactions that compete with absorption can reduce 
bioavailability. They include complex formation (e.g., between tetracycline and polyvalent metal ions), 
hydrolysis by gastric acid or digestive enzymes (e.g., penicillin and chloramphenicol palmitate 
hydrolysis), conjugation in the gut wall (e.g., sulfoconjugation of isoproterenol), adsorption to other drugs 
(e.g., digoxin and cholestyramine), and metabolism by luminal microflora. 
Chapter Summary 

A shift has occurred in the pharmaceutical sciences from focusing solely on the physical and 
chemical aspects of pharmacy such as dissolution, solubility, and compaction physics to the 
integration of these important disciplines with the biopharmaceutical sciences. The purpose of 
this chapter was to provide the student with a biopharmaceutical foundation for studying the 
contemporary pharmaceutical sciences. At this point you should be able to define ADME and 
understand the differences between the two possibilities for Ds (distribution and disposition) 
and Es (excretion and elimination) in ADME. Two major membrane transporter superfamilies 
play an important role in ADME and if they work together (concerted drug transport), drugs 
and metabolites can be moved into or out of the body with great efficiency. Phase 1, 2, and 
―3‖ drug metabolism was also introduced in this chapter. The student should have a good 
understanding of the concepts of inhibition and induction as they relate to drug transporters, 
metabolizing enzymes, ADME, and pharmacokinetics. Graphical representations of the rates 
of absorption, disposition, metabolism, and elimination and blood (plasma) level versus time 
curves were also introduced. The very important concept of bioavailability was introduced. 
Finally, various organ systems were covered to give the student a better understanding of the 
complexity of ADME and the interplay of molecular, cellular, and organ level functions on 
pharmacokinetics. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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13 Drug Release and Dissolution 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Define dissolution and describe relevant examples in the pharmaceutical sciences 
and practice of pharmacy. 

2. Understand the differences among immediate-, modified-, delayed-, extended-, and 
controlled-release delivery systems. 

3. Differentiate between zero-order and first-order release kinetics. 
4. Define and understand intrinsic dissolution rate and define the driving force for 

dissolution. 
5. Understand the effect of surface area on dissolution rate. 
6. Differentiate the Hixson–Crowell, Noyes–Whitney, and Higuchi models of dissolution 

and release. 
7. Understand the concept of sink conditions. 
8. Define the Biopharmaceutics Classification System and discuss the role of 

permeability and solubility. 
9. Understand how media properties can affect dissolution, for example, viscosity, pH, 

lipids, surfactants. 
10. Describe and understand the mechanics of the most commonly used dissolution 

apparatuses. 

Introduction* 
Disintegration tests, official in the United States Pharmacopeia(USP) since 1950, are only indirectly 
related to drug bioavailability and product performance.1 In 1962, dissolved drug was known to be 
necessary for physiologic action and it was becoming increasingly recognized that capsule and tablet 
monographs in which the drug substance had a solubility of less than 1% in aqueous media should 
include a dissolution requirement. In 1968, the USP/National Formulary (NF) recommended the 
adoption of a basket-stirred-flask test apparatus (USP apparatus 1) to determine the dissolution of solid 
oral dosage forms.1 With the introduction of USP XIX/NF XIV in 1975, it was shown that a compendial in 
vivo bioavailability standard was not required, provided that a satisfactory in vitro–in vivo correlation 
(IVIVC) could be established. In 1978, the USP paddle apparatus was officially adopted and was found 
to be advantageous for disintegrating dosage forms. Today, the quality control of many drug products is 
based on the kinetics of drug release in vitro.2,3,4,5Drug release testing is also routinely used to predict 
how formulations or drug products are expected to perform in patients. These two distinct areas of 
dissolution and drug release testing have evolved over the past decade and will be described in this 
chapter. 
The five types of dosage forms that can be characterized by release in vitro are: (a) solid oral dosage 
forms, (b) rectal dosage forms such as suppositories, (c) pulmonary (lung delivery) dosage forms, (d) 
modified-release dosage forms, and (e) semisolid products such as ointments, creams, and transdermal 
products. Over the last several years, the pharmaceutical industry, pharmaceutical scientists, and the 
Food and Drug Administration have worked together to improve the guidance available for classifying, 
studying, and documenting postapproval changes to manufacturing processes.5 The first round of this 
effort resulted in the publication of several SUPAC (Scale Up Post Approval Change) guidances, 
including the initial guidance, SUPAC-IR,3 for immediate-release drug products, followed by SUPAC-
MR,5 for modified-release drug products, SUPAC-SS,4 for semisolids, and PAC-ATLS, for analytical lab 
changes. A number of additional SUPAC documents are in various stages of development. Parallel with 
these efforts, the explicit link between physicochemical properties such as drug dissolution and 
bioavailability was becoming formally recognized as reflected in the Biopharmaceutics Classification 
System (BCS), introduced in 1995.6 The BCS proposed a straightforward classification of drug products 
on the basis of their 
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solubility and permeability characteristics. Beginning in 1998, interest in studying the link between 
dissolution testing and bioavailability was revived and continues through today.7,8,9,10,11Standard 
pharmacopeial dissolution monographs were typically designed as quality control procedures to ensure 
that batch-to-batch drug product variability is kept within acceptable scientific and regulatory standards. 
However, with the widespread adoption of the BCS, the possibility of substituting dissolution tests for 
clinical studies has called the conditions of established compendial dissolution tests into question 
because there is now a need to better predict the in vivo performance of drug products. In this chapter, 
we cover the basic theoretical and analytical background for performing drug release and dissolution 
calculations, the release testing of oral drug products, the BCS and biorelevant dissolution conditions, 
and dissolution testing methods and apparatus, and provide numerous examples to help the student 
gain an understanding of dissolution and drug release. 

Key Concept 

Drug Release 

Drug release is the process by which a drug leaves a drug product and is subjected to 
absorption, distribution, metabolism, and excretion, eventually becoming available for 
pharmacologic action. Drug release is described in several ways. Immediate release refers to 
the instantaneous availability of drug for absorption or pharmacologic action.Immediate-

release drug products allow drugs to dissolve with no intention of delaying or prolonging 
dissolution or absorption of the drug. Modified-release dosage forms include both delayed- 
and extended-release drug products.Delayed release is defined as the release of a drug at a 
time other than immediately following administration. Extended-release products are 
formulated to make the drug available over an extended period after administration. 
Finally,controlled release includes extended-release and pulsatile-release products. Pulsatile 

release involves the release of finite amounts (or pulses) of drug at distinct time intervals that 
are programmed into the drug product. 

Key Concept 

Dissolution 

Dissolution refers to the process by which a solid phase (e.g., a tablet or powder) goes into a 
solution phase such as water. In essence, when a drug “dissolves,” solid particles separate 

and mix molecule by molecule with the liquid and appear to become part of that liquid. 
Therefore, drug dissolution is the process by which drug molecules are liberated from a solid 
phase and enter into a solution phase. If particles remain in the solid phase once they are 
introduced into a solution, a pharmaceutical suspension results. Suspensions are covered 
in Chapters 17 and 18. In the vast majority of circumstances, only drugs in solution can be 
absorbed, distributed, metabolized, excreted, or even exert pharmacologic action. Thus, 
dissolution is an important process in the pharmaceutical sciences. 

Terminology* 

 Drug Product: A drug product is a finished dosage form (e.g., tablet and capsule) that 
contains a drug substance, generally, but not necessarily in association with one or more other 
ingredients (21 Code of Federal Regulations 314.3(b)). A solid oral dosage form includes but is 
not limited to tablets, chewable tablets, enteric-coated tablets, capsules, caplets, encapsulated 
beads, and gelcaps. 

 Drug Substance: An active ingredient that is intended to furnish pharmacologic activity or 
other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of a disease, or to 
affect the structure of any function of the human body, but does not include intermediates used 
in the synthesis of such ingredient (21 Code of Federal Regulations 314.3(b)). 
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 Enteric Coated: Intended to delay the release of the drug (or drugs) until the dosage form has 
passed through the stomach. Enteric-coated products are delayed-release dosage forms. 

 Extended Release: Extended-release products are formulated to make the drug available over 
an extended period after ingestion. This allows a reduction in dosing frequency compared to a 
drug presented as a conventional dosage form (e.g., as a solution or an immediate-release 
dosage form). 

 Modified-Release Dosage Forms: Dosage forms whose drug-release characteristics of time 
course and/or location are chosen to accomplish therapeutic or convenience objectives not 
offered by conventional dosage forms such as a solution or an immediate-release dosage form. 
Modified-release solid oral dosage forms include both delayed- and extended-release drug 
products. 

 Immediate Release: Allows the drug to dissolve in the gastrointestinal contents with no 
intention of delaying or prolonging the dissolution or absorption of the drug. 

 In Vitro–in Vivo Correlation: A predictive mathematical model describing the relationship 
between an in vitro property of an oral dosage form (usually the rate or extent of drug 
dissolution or release) and a relevant in vivo response (e.g., plasma drug concentration or 
amount of drug absorbed). 

The Basics 
Biopharmaceutics (Chapter 12) and the design of modern drug delivery systems (Chapter 23), as dealt 
with later, are based partly on principles of diffusion and dissolution theory. This chapter lays a 
foundation for the study of these topics by way of presenting concepts, illustrations, and worked 
examples. Drug release is introduced first because it is largely based on diffusion, which was introduced 
in Chapter 11. We then cover drug dissolution with examples from the literature and with applications of 
both subjects to pharmaceutical problems. 
Drug dissolution and release patterns commonly fall into two groups: zero- and first-order release. 
Typically in the pharmaceutical sciences, zero-order release is achieved from nondisintegrating dosage 
forms such as topical or transdermal delivery systems, implantable depot systems, or oral controlled-
release delivery systems. Because many of these delivery systems are covered inChapter 23 on drug 
delivery systems and Chapter 20 on pharmaceutical polymers, the mathematical basis will be introduced 
in this chapter. In 
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these cases, drug “dissolution” is commonly referred to as drug “release” because it is dependent on 

diffusion (Chapter 11). The advanced student can find a more in-depth treatment of the mathematical 
models of dissolution from the review by Costa and Sousa Lobo.13 The following sections review basic 
models with an emphasis on understanding the conceptual basis for drug release and dissolution. The 
student should view each equation as a short-hand way of describing the relationships among the 
parameters/factors that affect the process that is being described. 

Key Concept 

Zero-Order Release Kinetics 

Zero-order release kinetics refers to the process of constant drug release from a drug delivery 
device such as oral osmotic tablets, transdermal systems, matrix tablets with low-soluble 
drugs, and other delivery systems. “Constant” release is defined in this context as the same 

amount of drug release per unit of time. In its simplest form, zero-order drug release can be 
represented as 

 
where Q is the amount of drug released or dissolved (assuming that release occurs rapidly 
after the drug dissolves), Q0 is the initial amount of drug in solution (it is usually zero), 
and K0 is the zero-order release constant. 
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Dissolution 
When a tablet or other solid drug form is introduced into a beaker of water or into the gastrointestinal 
tract, the drug begins to pass into solution from the intact solid. Unless the tablet is a contiguous 
polymeric device, the solid matrix also disintegrates into granules, and these granules deaggregate in 
turn into fine particles. Disintegration, deaggregation, and dissolution may occur simultaneously with the 
release of a drug from its delivery form. These steps are separated for clarification as depicted in Figure 
13-1. 

 

Fig. 13-1. Disintegration, deaggregation, and dissolution stages as a drug leaves a 

tablet or granular matrix. (From J. G. Wagner, Biopharmaceutics and Relevant 

Pharmacokinetics, Drug Intelligence Publications, Hamilton, IL, 1971, p. 99. With 

permission). 

The effectiveness of a tablet in releasing its drug for systemic absorption depends somewhat on the rate 
of disintegration of the dosage forms and deaggregation of the granules. Ordinarily of more importance, 
however, is the dissolution rate of the solid drug. Frequently, dissolution is the limiting or rate-controlling 
step in the absorption of drugs with low solubility because it is often the slowest of the various stages 
involved in release of the drug from its dosage form and passage into systemic circulation. Classical 
dissolution has been reviewed by Wurster and Taylor,14 Wagner,15 and Leeson and 
Carstensen.16 Release rate processes in general are discussed by Higuchi.17 This has been an active 
area of research for many years, and reviews have appeared recently on numerous aspects of drug 
dissolution, including the influence of physicochemical properties of drugs on dissolution18 and on the 
modeling and comparison of dissolution profiles.13 Articles such as these will provide the student with a 
thorough yet broad overview of the current status of the field. 
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Several theories have been used to build mathematical models that describe drug dissolution from 
immediate- and modified-release dosage forms. In this chapter, the focus will be on drug dissolution 
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from solid dosage forms. Because dissolution is a kinetic process, the rate of dissolution reflects the 
amount of drug dissolved over a given time period. In certain cases, an equation can be exactly derived 
that describes the dissolution time dependence. This is called an analytical mathematical solution. 
However, in many cases, an analytical solution cannot be derived and an empirical relationship is used. 
Several common mathematical models will be covered in the following sections. The pharmacy student 
should keep in mind that the most important lesson to be learned at this stage is not how to derive these 
equations but rather how to use them as short-hand formulas to understand the different factors that 
affect dissolution rate and how dissolution patterns can vary and ultimately influence the efficacy of 
therapeutic regimens in patients. 
The rate at which a solid dissolves in a solvent was proposed in quantitative terms by Noyes and 
Whitney19 in 1897 and elaborated subsequently by other workers. The equation can be written as 

 
or 

 
where M is the mass of solute dissolved in time t, dM/dt is the mass rate of dissolution (mass/time), D is 
the diffusion coefficient of the solute in solution, S is the surface area of the exposed solid, h is the 
thickness of the diffusion layer, Cs is the solubility of the solid (i.e., concentration of a saturated solution 
of the compound at the surface of the solid and at the temperature of the experiment), and C is the 
concentration of solute in the bulk solution and at time t. The quantitydC/dt is the dissolution rate, 
and V is the volume of solution. 
In dissolution or mass transfer theory, it is assumed that anaqueous diffusion layer or stagnant liquid 

film of thickness h exists at the surface of a solid undergoing dissolution, as observed inFigure 13-2. 
This thickness, h, represents a stationary layer of solvent in which the solute molecules exist in 
concentrations from Csto C. Beyond the static diffusion layer, at x greater than h, mixing occurs in the 
solution, and the drug is found at a uniform concentration, C, throughout the bulk phase. 

Key Concept 

First-Order Kinetics 

The Noyes–Whitney19 equation is 
 

where K is the “first-order” proportionality constant. The Hixson and Crowell20 equation 
further considers the surface area of the dissolving solid: 

 

Key Concept 

Driving Force for Dissolution and Sink Conditions 

The saturation solubility of a drug is a key factor in the Noyes–Whitney19 equation. The 
driving force for dissolution is the concentration gradient across the boundary layer. 
Therefore, the driving force depends on the thickness of the boundary layer and the 
concentration of drug that is already dissolved. When the concentration of dissolved drug, C, 
is less than 20% of the saturation concentration, Cs, the system is said to operate under “sink 

conditions.” The driving force for dissolution is greatest when the system is under sink 

conditions. Under sink conditions, equation (13-5) can be written in a simplified form: 
 

At the solid surface–diffusion layer interface, x = 0, the drug in the solid is in equilibrium with drug in the 
diffusion layer. The gradient, or change in concentration with distance across the diffusion layer, is 
constant, as shown by the straight downward-sloping line. This is the gradient represented in 
equations (13-2) and (13-3) by the term (Cs - C)/h. The similarity of the Noyes–Whitney19 equation to 
Fick's first law (Chapter 11) is evident in equation (13-2). 
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Therefore, when C is considerably less than the drug's solubility, Cs, the system is represented by sink 

conditions, and concentration Ccan be eliminated from equations (13-2) and (13-3). Equation (13-2)then 
becomes 

 
In the derivation of equations (13-2) and (13-3), it was assumed thath and S were constant, but this is 
not the case. The static diffusion layer thickness is altered by the force of agitation at the surface of the 
dissolving tablet and will be referred to later. The surface area, S, obviously does not remain constant as 
a powder, granule, or tablet dissolves, and it is difficult to obtain an accurate measure of S as the 
process continues. In experimental studies of dissolution, the surface may be controlled by placing a 
compressed pellet in a holder that exposes a surface of constant area. Although this ensures better 
adherence to the requirements of equations (13-2)through (13-7) and provides valuable information on 
the drug, it does not simulate the actual dissolution of the material in practice. 
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Fig. 13-2. Dissolution of a drug from a solid matrix, showing the stagnant diffusion 

layer between the dosage form surface and the bulk solution. 

In calculating the diffusion coefficient and dissolution rate constant, the application of equations (13-
2) through (13-7) is demonstrated by way of the following two examples. 
Example 13-1 

Calculate Dissolution Rate Constant 

A preparation of drug granules weighing 0.55 g and having a total surface area of 0.28 
m2 (0.28 × 104 cm2) is allowed to dissolve in 500 mL of water at 25°C. After the first minute, 
0.76 g has passed into solution. The quantity D/h can be referred to as a dissolution rate 
constant, k. 
If the solubility, Cs, of the drug is 15 mg/mL at 25 °C, what is k? From equation (12-
7), M changes linearly with tinitially, and 
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In this example, 0.760 g dissolved in 500 mL after a time of 1 min, or 760 mg/500 mL = 1.5 mg/cm3. This 
value is one tenth of the drug's solubility and can be omitted from equation (13-2) without introducing 
significant error, shown by employing the full equation(13-2): 

 
When this result is compared with 3.02 × 10-4 cm/sec, obtained using the less exact expression, it 
shows that “sink conditions” are in effect, and that the concentration term, C, can be omitted from the 
rate equation. 
Example 13-2 

Hixson–Crowell Cube-Root Law20 

The diffusion layer thickness in Example 13-1 is estimated to be 5 × 10-3 cm. Calculate D, the 
diffusion coefficient, using the relation k = D/h. 
We have 

 

If a dosage form's dimensions diminish proportionally in such a manner that the geometric shape of the 
dosage form stays constant as dissolution is occurring, then dissolution occurs in planes that are parallel 
to the dosage form surface and we use the Hixson–Crowell20 cube-root model to understand its 
behavior. It is thought that tablet dissolution occurs in this manner. For a drug powder consisting of 
uniformly sized particles, it is possible to derive an equation that expresses the rate of dissolution based 
on the cube root of the weight of the particles. 
The radius of the particle is not assumed to be constant. The particle (sphere) shown in Figure 13-3 has 
a radius r and a surface area 4πr2. 
Through dissolution, the radius is reduced by dr, and the infinitesimal volume of this section lost is 

 
For N such particles, the volume loss is 

 
The surface area of N particles is 

 
Now, the infinitesimal mass change as represented by the Noyes–Whitney law,19 equation (13–2), is 

 
where k is used for D/h as in Example 13-1. The drug's density multiplied by the infinitesimal volume 
change, ρ dV, can be set equal to dM, or 
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Fig. 13-3. Schematic of a particle, showing the change in surface area and volume as 

the particle dissolves. The volume, dV, dissolved indt seconds is given by Thickness × 

Surface area = dr × 4πr
2
. (From J. T. Carstensen,Pharmaceutics of Solids and Solid 

Dosage Forms, Wiley, New York, 1977, p. 75. With permission.) 
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Equations (13-9) and (13-10) are substituted into equation (13-12) to yield 

 
Equation (13-13) is divided through by 4Nπr2 to give 

 
Integration with r = r0 at t = 0 produces the expression 

 
The radius of spherical particles can be replaced by the mass of Nparticles by using the relationship 
(see inside front cover for the volume of a sphere) 

 
where d = 2r, the diameter of the particle. Taking the cube root of equation (13–16) yields 

 
The diameter, d, from equation (13-17) is substituted for 2r into equation (13-15), giving 

 
where 

 
M0 is the original mass of the drug particles. Equation (13-18) is known as the Hixson–Crowell cube-root 
law,20 and κ is the cube-root dissolution rate constant. 
Example 13-3 

Calculate Dissolution Rate Constant 

A specially prepared tolbutamide powder of fairly uniformly sized particles with a diameter of 
150 µm weighed 75 mg. Dissolution of the drug was determined in 1000 mL of water at 25°C 
as a function of time. Determine the value of κ, the cube-root dissolution rate constant, at 
each time interval and calculate the average value of κ. The data and results are set forward 
in the accompanying table. 
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In the situation in which the aqueous diffusion layer thickness of a spherical particle is comparable to or 
larger than the size of the sphere (e.g., micronized particles less than 50 µm in diameter), the change in 
particle radius with time becomes 

 
and the estimated time for complete dissolution, τ (i.e., when r2 = 0), is 

 
Example 13-4 

Dissolution Time 

In clinical practice, diazepam injection (a sterile solution of diazepam in a propylene glycol–
ethanol–water cosolvent system) is often diluted manyfold with normal saline injection. An 
incipient precipitation of diazepam occurs invariably upon addition of saline followed by 
complete dissolution within 1 min upon shaking. With Cs in water equal to 3 mg/mL, ρ about 

equal to 1.0 g/mL, and D equal to 5 × 10-6 cm2/sec, calculate the time for complete dissolution 
when r0 = 10 µm (10 × 10-4 cm). 
We have 

 

More Complex Models of Dissolution: Convective Diffusion 
Convection, the transfer of heat (energy) and the presence of agitation accompanying the movement of 
a fluid, can be combined with diffusion to provide a convective diffusion model for the study of 
dissolution.21 The convective diffusion model, unlike the simpler Noyes–Whitney19 and Nernst–
Brünner22 approaches, takes into consideration such factors as flow rate, mixing (agitation), and the 
dimensions of the dosage form. Nelson and Shah23 investigated the convective diffusion model for the 
dissolution of alkyl p-aminobenzoates as test compounds. De Smidt et al.24 also used a convective 
diffusion model in the study of the dissolution kinetics of griseofulvin in solutions of the solubilizing agent 
sodium dodecylsulfate. 
Example 13-5 

Drug Dissolution 
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De Smidt et al.24 introduced a drug dissolution rate approach to model the rates of 
dissolution of alkyl p-aminobenzoates in a specially designed diffusion cell. The model is 
based on convective diffusion, the equations of which can be used to calculate R, the rate of 
diffusion or permeation rate: 

 
for a rectangular tablet surface of width b and length L in the direction of flow, and 

 
for a circular tablet surface of radius r. In these equations, Dis the diffusivity or diffusion 
coefficient, Cs is the solubility, and α is the rate of shear as the solvent is pumped over the 
dissolving surface. The rate of shear is calculated from α= 6Q/H2

W, where Q is the flow rate 
and H and W are the height and width, respectively, of a channel in the diffusion cell to allow 
the flow of solvent (water) over the dissolving tablet. 
Experiments on dissolution rate, R, were carried out at 37°C with rectangular tablet surfaces 
containing the drug model ethyl p-aminobenzoate. The long axis of the rectangular surface 
was 25.4 mm and the short axis 3.175 mm. 
(a, b) Compute the rate of dissolution, R, with the long axis,L, placed perpendicular to the 
direction of flow, and then with the long axis placed parallel to the direction of flow. The flow 
rate, Q, is 14.9 mL/min; the diffusivity and the solubility of the drug are D = 9.86 × 10-

6 cm2/sec and Cs = 7.27 × 10-6 mole/cm3, respectively; and H2
W = 0.3506 cm3. 

(c) The experiment is repeated but using a disk with a circular surface of area equal to the 
surface area of the rectangle referred to in (a). Compute R, expressing the results in 
mole/min. 
(d) What differences do you find between this model and the classic stagnant or unstirred 
diffusion layer model? You can refer to Nelson and Shah23 to check the answers given here. 
(a) The rate of shear is 

 
For the long axis perpendicular to flow, b = 2.54 cm and L = 0.3175 cm. Then, 

 
(b) For the long axis parallel to the flow, b = 0.3175 cm andL = 2.54 cm. Then, 

 
For the long axis perpendicular to the flow, R is twice the value when the long axis is parallel 
to the flow, as observed in (a) and (b): 

 
(c) The surface area of the rectangular tablet is 2.54 cm × 0.3175 cm = 0.806 cm2, which is 
also the surface area of the circular tablet or disk. Therefore, the radius, r, of the circular 
surface is πr2 = 0.806, or r = 0.507 cm, and the rate, R, of diffusion or permeation for a tablet 
of circular surface [equation (13-23)] is 

 
(d) The convective diffusion (CD) model, which takes into account fluid flow as well as 
diffusion, has several parameters in common with the classic diffusion model. These include 
the solubility, Cs, diffusion coefficient or diffusivity, D, and the dimensions of a rectangular or 
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circular surface, b, L, and r. In the classic model, R is proportional to D, where in the CD 
model, R is proportional to D2/3. In the classic model, R is proportional to the surface area, S, 
of a rectangle or disk; in the CD model, R is proportional to a reduced function of surface 
area, that is, bL

2/3 or r5/3
. A new parameter, α, the rate of shear over the dissolving surface, is 

introduced in the CD model; it is calculated from the flow rate and the dimensions of the 
diffusion cell. 
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Drug Release 
Release from dosage forms and subsequent absorption are controlled by the physical chemical 
properties of drug and delivery system and the physiologic and physical chemical properties of the 
biologic system. Drug concentration, aqueous solubility, molecular size, crystal form, protein binding, 
and pKa are among the physical chemical factors that must be understood to design a delivery system 
that exhibits controlled- or sustained-release characteristics.25 
The Higuchi (Equation) Model26,27 
Higuchi developed a theoretical model for studying the release of water-soluble and poorly soluble drugs 
from a variety of matrices, including semisolid and solids. We will cover the factors that control drug 
release from solid dosage forms later in this chapter. A powdered drug is homogeneously dispersed 
throughout the matrix of an erodible tablet. The drug is assumed to dissolve in the polymer matrix and to 
diffuse out from the surface of the device. As the drug is released, the distance for diffusion becomes 
increasingly greater. The boundary that forms between drug and empty matrix therefore recedes into the 
tablet as drug is eluted. A schematic illustration of such a device is shown in Figure 13-4a. Figure 13-
4b shows a granular matrix with interconnecting pores or capillaries. The drug is leached out of this 
device by entrance of the surrounding medium.Figure 13-4c depicts the concentration profile and shows 
the receding depletion zone that moves to the center of the tablet as the drug is released. 
Higuchi26 developed an equation for the release of a drug from an ointment base and later27 applied it 
to diffusion of solid drugs dispersed in homogeneous and granular matrix dosage systems (Fig. 13-4). 
Recall that Fick's first law (Chapter 11), 

 
can be applied to the case of a drug embedded in a polymer matrix, where dQ/dt is the rate of drug 
released per unit area of exposed surface of the matrix. Because the boundary between the drug matrix 
and the drug-depleted matrix recedes with time, the thickness of the empty matrix, dh, through which the 
drug diffuses also increases with time. 
Whereas Cs is the solubility or saturation concentration of drug in the matrix, A is the total concentration 
(amount per unit volume), dissolved and undissolved, of drug in the matrix. 
As drug passes out of a homogeneous matrix (Fig. 13-4a), the boundary of drug (represented by the 
dashed vertical line in Fig. 13-4c) moves to the left by an infinitesimal distance, dh. The infinitesimal 
amount, dQ, of drug released because of this shift of the front is given by the approximate linear 
expression 

 
Now, dQ of equation (13-35) is substituted into equation (13-34), integration is carried out, and the 
resulting equation 
P.307 
 
is solved for h. The steps of the derivation as given by Higuchi26 are 
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Fig. 13-4. Release of drug from homogeneous and granular matrix dosage forms. (a) 

Drug eluted from a homogeneous polymer matrix. (b) Drug leached from a 

heterogeneous or granular matrix. (c) Schematic of the solid matrix and its receding 

boundary as drug diffuses from the dosage form. (From T. Higuchi, J. Pharm. 

Sci.50, 874, 1961. With permission.) 

 

 

 
The integration constant, C, can be evaluated at t = 0, at which h = 0, giving 
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The amount of drug depleted per unit area of matrix, Q, at time t is obtained by integrating equation (13-
25) to yield 

 
Substituting equation (13–30) into (13–31) produces the result 

 
which is known as the Higuchi equation: 

 
The instantaneous rate of release of a drug at time t is obtained by differentiating equation (13-33) to 
yield 

 
Ordinarily, A is much greater than Cs, and equation (13-33) reduces to 

 
and equation (13-34) becomes 

 
for the release of a drug from a homogeneous polymer matrix–type delivery system. Equation (13-
35) indicates that the amount of drug released is proportional to the square root of A, the total amount of 
drug in unit volume of matrix; D, the diffusion coefficient of the drug in the matrix; Cs, the solubility of 
drug in polymeric matrix; and t, the time. 
The rate of release, dQ/dt, can be altered by increasing or decreasing the drug's solubility, Cs, in the 
polymer by complexation. The total concentration, A, of drug that the physician prescribes is also seen 
to affect the rate of drug release. 
Example 13-6 

Drug Release 

(a) What is the amount of drug per unit area, Q, released from a tablet matrix at time t = 120 
min? The total concentration of drug in the homogeneous matrix, A, is 0.02 g/cm3. The drug's 
solubility, Cs, is 1.0 × 10-3 g/cm3 in the polymer. The diffusion coefficient, D, of the drug in the 
polymer matrix at 25°C is 6.0 × 10-6 cm2/sec or 360 × 10-6cm2/min. 
We use equation (13-35): 

 
(b) What is the instantaneous rate of drug release occurring at 120 min? 
We have 
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Release from Granular Matrices: Porosity and Tortuosity 
The release of a solid drug from a granular matrix (Fig. 13-4b) involves the simultaneous penetration of 
the surrounding liquid, dissolution of the drug, and leaching out of the drug through interstitial channels 
or pores. A granule is, in fact, defined as a porous rather than a homogeneous matrix. The volume and 
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length of the opening in the matrix must be accounted for in the diffusional equation, leading to a second 
form of the Higuchi equation: 

 
where ε is the porosity of the matrix and τ is the tortuosity of the capillary system, both parameters being 
dimensionless quantities. 
Porosity, ε, is the fraction of matrix that exists as pores or channels into which the surrounding liquid can 
penetrate. The porosity term, ε, in equation (13-37) is the total porosity of the matrix after the drug has 
been extracted. This is equal to the initial porosity, ε0, due to pores and channels in the matrix before the 
leaching process begins and the porosity created by extracting the drug. If A g/cm3 of drug is extracted 
from the matrix and the drug's specific volume or reciprocal density is 1/ρ cm

3/g, then the drug's 
concentration, A, is converted to volume fraction of drug that will create an additional void space or 
porosity in the matrix once it is extracted. The total porosity of the matrix, ε, becomes 

 
The initial porosity, ε0, of a compressed tablet can be considered to be small (a few percent) relative to 
the porosity, A/ρ, created by the dissolution and removal of the drug from the device. Therefore, the 

porosity frequently is calculated conveniently by disregarding ε0 and writing 

 
Tablet porosity and its measurement and applications in pharmacy are discussed in more detail in 
sections Capsule-Type Devices and Dissolution and Release from Oral Drug Products. 
Equation (13-37) differs from equation (13-33) only in the addition of ε and τ. Equation (13-33) is 
applicable to release from a homogeneous tablet that gradually erodes and releases the drug into the 
bathing medium. Equation (13-37) applies instead to a drug-release mechanism based on entrance of 
the surrounding medium into a polymer matrix, where it dissolves and leaches out the soluble drug, 
leaving a shell of polymer and empty pores. In equation (13-37), diffusivity is multiplied by porosity, a 
fractional quantity, to account for the decrease in D brought about by empty pores in the matrix. The 
apparent solubility of the drug, Cs, is also reduced by the volume fraction term, which represents 
porosity. 
Tortuosity, τ, is introduced into equation (13-37) to account for an increase in the path length of diffusion 
due to branching and bending of the pores, as compared to the shortest “straight-through” pores. 

Tortuosity tends to reduce the amount of drug release in a given interval of time, and so it appears in the 
denominator under the square root sign. A straight channel has a tortuosity of unity, and a channel 
through spherical beads of uniform size has a tortuosity of 2 or 3. At times, an unreasonable value of, 
say, 1000 is obtained for τ, as Desai et al28a noted. When this occurs, the pathway for diffusion 
evidently is not adequately described by the concept of tortuosity, and the system must be studied in 
more detail to determine the factors controlling matrix permeability. Methods for obtaining diffusivity, 
porosity, tortuosity, and other quantities required in an analysis of drug diffusion are given by Desai et 
al.28b 
Equation (13-37) has been adapted to describe the kinetics of lyophilization,29 commonly called freeze-

drying, of a frozen aqueous solution containing drug and an inert matrix-building substance (e.g., 
mannitol or lactose). The process involves the simultaneous change in the receding boundary with time, 
phase transition at the ice–vapor interface governed by the Clausius–Clapeyron pressure–temperature 
relationship, and water vapor diffusion across the pore path length of the dry matrix under low-
temperature and vacuum conditions. 
Soluble Drugs in Topical Vehicles and Matrices 
The original Higuchi model26,27 does not provide a fit to experimental data when the drug has a 
significant solubility in the tablet or ointment base. The model can be extended to drug release from 
homogeneous solid or semisolid vehicles, however, using a quadratic expression introduced by Bottari 
et al.30: 

 
Here, 
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Q is the amount of drug released per unit area of the dosage form, Dis an effective diffusivity of the drug 
in the vehicle, A is the total concentration of drug, Cs is the solubility of drug in the vehicle, Cv is the 
concentration of drug at the vehicle–barrier interface, and R is the diffusional resistance afforded by the 
barrier between the donor vehicle and the receptor phase. A is an effective area as defined in 
equation (13-41) and is used when A is only about three or four times greater than Cs. 
When 

 
equation (13-40) reduces to one form of the Higuchi equation [equation (13-35)]: 

 
Under these conditions, resistance to diffusion, R, is no longer significant at the interface between 
vehicle and receptor phase. When Cs is not negligible in relation to A, the vehicle-controlled model of 
Higuchi becomes 

 
as derived earlier equation (13-33). 
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The quadratic expression of Bottari, equation (13-40), should allow one to determine diffusion of drugs 
in ointment vehicles or homogeneous polymer matrices when Cs becomes significant in relation to A. 
The approach of Bottari et al.30 follows. 
Because it is a second-degree power series in Q, equation (13-40)can be solved using the well-known 
quadratic approach. One writes 

 
where, with reference to equation (13-40), a is unity, b = 2DRA, and c= -2DACst. Equation (13-43) has 
the well-known solution 

 
or 

 
where the positive root is taken for physical significance. If a lag time occurs, t in equation (13-45) is 
replaced by (t - tL) for the steady-state period. Bottari et al.30 obtained satisfactory values for b and c by 
use of a least-square fit of equation (13-40) involving the release of benzocaine from suspension-type 
aqueous gels. R, the diffusional resistance, is determined from steady-state permeation, and Cv is then 
obtained from the expression 

 
The application of equation (13-40) is demonstrated in the following example. 
Example 13-7 

Calculate Q 

Calculate Q, the amount in milligrams, of micronized benzocaine released per cm2 of surface 
area from an aqueous gel after 9000 sec (2.5 hr) in a diffusion cell. Assume that the total 
concentration, A, is 10.9 mg/mL; the solubility, Cs, is 1.31 mg/mL; Cv = 1.05 mg/mL; the 
diffusional resistance, R, of a silicone rubber barrier separating the gel from the donor 
compartment is 8.10 × 103 sec/cm; and the diffusivity, D, of the drug in the gel is 9.14 × 10-

6 cm2/sec. From equation (13-41), 

 
Then, 
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The Q(calc) of 0.90 mg/cm2 compares well with Q(obs) = 0.88 mg/cm2. 
A slight increase in accuracy can be obtained by replacing t= 9000 sec with t = (9000 - 405) 
sec, in which the lag time t= 405 sec is obtained from a plot of experimental Q values 
versus t1/2. This correction yields a Q(calc) = 0.87 mg/cm2. 
(b) Calculate Q using equation (13–42b) and compare the result with that obtained in (a). 
We have 

 

Paul and coworkers31 studied cases in which A, the matrix loading of drug per unit volume in a 
polymeric dosage form, may be greater than, equal to, or less than the equilibrium solubility, Cs, of the 
drug in a matrix. The model is a refinement of the original Higuchi approach,26,27 providing an accurate 
set of equations that describe release rates of drugs, fertilizers, pesticides, antioxidants, and 
preservatives in commercial and industrial applications over the entire range of ratios of A to Cs. 
Capsule-Type Device 
A silastic capsule, as depicted in Figure 13-5a, has become a popular sustained and controlled delivery 
form in pharmacy and medicine.32,33,34 The release of a drug from a silastic capsule is shown 
schematically in Figure 13-5b. The molecules of the crystalline drug lying against the inside wall of the 
capsule leave their crystals, pass into the polymer wall by a dissolution process, diffuse through the wall, 
and pass into the liquid diffusion layer and the medium surrounding the capsule. The concentration 
differences across the polymer wall of thickness, hm, and the stagnant diffusion layer of thickness, ha, 
are represented by the lines Cp - Cm and Cs -Cb, respectively, where Cp is the solubility of the drug in the 
polymer and Cm is the concentration at the polymer–solution interface, that is, the concentration of drug 
in the polymer in contact with the solution. On the other hand, Cs is the concentration of the drug in the 
solution at the polymer–solution interface, 
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and it is seen in Figure 13-5b to be somewhat below the solubility of drug in polymer at the interface. 
There is a real difference between the solubility of the drug in the polymer and that in the solution, 
although both exist at the interface. Finally, Cb is the concentration of the drug in the bulk solution 
surrounding the capsule. 
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Fig. 13-5. Diffusion of drug from an elastic capsule. (a) Drug in the capsule 

surrounded by a polymer barrier; (b) diffusion of drug through the polymer wall and 

stagnant aqueous diffusion layer and into the receptor compartment at sink conditions. 

(From Y. W. Chien, in J. R. Robinson (Ed.), Sustained and Controlled Release Drug 

Delivery Systems, Marcel Dekker, New York, 1978, p. 229; Y. W. Chien, Chem. 

Pharm. Bull.24, 147, 1976.) 

To express the rate of drug release under sink conditions, Chien32used the following expression: 

 
In equation (13-47), Q is the amount of drug released per unit surface area of the capsule and Kr is the 
partition coefficient, defined as: 

 
When diffusion through the capsule membrane or film is the limiting factor in drug release, that is, 
when KrDahm is much greater thanDmha, equation (13-47) reduces to: 

 
and when the limiting factor is passage through the diffusion layerDmha ≫ KrDahm), 

 
The right-hand expression can be written because Cs = KrCp as defined earlier, in equation (13-48). 
The rate of drug release, Q/t, for a polymer-controlled process can be calculated from the slope of a 
linear Q-versus-t plot, and from equation (13-49) is seen to equal CpDm/hm. Likewise, Q/t, for the 
diffusion-layer–controlled process, resulting from plotting Q versus t, is found to be CsDa/ha. 
Furthermore, a plot of the release rate, Q/t, versus Cs, the solubility of the drug in the surrounding 
medium, should be linear with a slope of Da/ha. 
Example 13-8 

Progesterone Release Rate 

The partition coefficient, Kr = Cs/Cp, of progesterone is 0.022; the solution diffusivity, Da, is 
4.994 × 10-2 cm2/day; the silastic membrane diffusivity, Dm, is 14.26 × 10-2cm2/day; the 
solubility of progesterone in the silastic membrane, Cp, is 513 µg/cm3; the thickness of the 
capsule membrane, hm, is 0.080 cm; and that of the diffusion layer,ha, as estimated by 
Chien,30 is 0.008 cm. 
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Calculate the rate of release of progesterone from the capsule and express it in µg/cm2 per 
day. Compare the calculated result with the observed value, Q/t = 64.50 µg/cm2 per day. 
Using equation (13-47), we find 

 

In the example just given, (a) is KrDahm ≫ Dmha or (b) is Dmha ≫KDahm? (c). What conclusion can be 
drawn regarding matrix or diffusion-layer control? 
We have 

 
Therefore, Dmha ≫ Kr Dahm, and the system is 93% under aqueous diffusion-layer control. It should thus 
be possible to use the simplified equation (13-50): 

 
Although Dmha is larger than KrDahm by about one order of magnitude (i.e., Dmha/KDahm = 13), it is 
evident that a considerably better result is obtained by using the full expression, equation (13-47). 
Example 13-9 

Calculate Membrane Thickness 

Two new contraceptive steroid esters, A and B, were synthesized, and the parameters 
determined for release from polymeric capsules are as follows32: 

  Kr Da(cm
2
/day) Dm(cm

2
/day) Cp(µg/cm

3
) ha (cm) 

Q/t(obs)(µg/cm
2
per 

day) 

A 0.15 25 × 10
-

2
 

2.6 × 10
-

2
 

100 0.008 24.50 

B 0.04 4.0 × 

10
-2

 

3.0 × 10
-

2
 

85 0.008 10.32 

 

Using equation (13-47) and the quantities in the table, calculate values of hm in centimeter for 
these capsule membranes. 
We have 
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For capsule A, 

 
Note that all units cancel except centimeter in the equation for hm. The reader should carry 
out the calculations for compound B. (Answer: 0.097 cm) 
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Fig. 13-6. A schematic representation of the factors that determine the fraction of 

drug that is absorbed from a drug product across the intestinal mucosa. 

Decomposition, adsorption to intestinal components, or complexation can reduce the 

amount of drug available for absorption. Drug uptake is controlled by the drug's 

permeability through the intestinal mucosa and the length of time that it stays at the 

absorption site (i.e., residence time). The longer it stays within the “absorption 

window” and the higher the permeability, the more is the drug absorbed across the 

intestinal mucosa. (From J. B. Dressman, G. L. Amidon, C. Reppas, and V. P. Shah, 
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Pharm. Res. 15, 11, 1998. With permission.) 

Dissolution and Release from Oral Drug Products 
After a solid dosage form such as a tablet is administered by mouth to a patient, it must first disintegrate 
into larger clusters of particles known as aggregates. Deaggregation then occurs and individual particles 
are liberated. Finally, particles dissolve, releasing the active drug into solution. Dissolution is a time-
dependent (or kinetic) process that represents the final step of drug release, which is ultimately required 
before a drug can be absorbed or exert a pharmacologic effect. For immediate-release dosage forms, 
the rate of drug release and dissolution relative to the rate of transit through the intestine and the 
permeability profile of the small intestine to the drug determines the rate and the extent of drug 
absorption (Fig. 13-6). If drug dissolution is slow compared with drug absorption, less drug may be 
absorbed, especially if the drug is absorbed preferentially in certain locations (“absorption windows”) of 

the gastrointestinal tract. Slower absorption due to slower dissolution can also result in lower peak drug 
blood levels. On the other hand, semisolid dosage forms such as topical drug products are applied to 
the skin and remain in the area of application. As described in the SUPAC-SS Guidance,4b semisolid 
dosage forms are complex formulations having complex structural elements. Often they are composed 
of two phases (oil and water), one of which is a continuous (external) phase, the other of which is a 
dispersed (internal) phase. The active ingredient is often dissolved in one phase even though 
occasionally the drug is not fully soluble in the system and is dispersed in one or both phases, thus 
creating a three-phase system. The physical properties of the dosage form depend on various factors: 
the size of the dispersed particles, the interfacial tension between the phases, the partition coefficient of 
the active ingredient between the phases, and the product rheology. These factors combine to 
determine the release characteristics of the drug as well as other characteristics, such as viscosity. 

Table 13-1 The Biopharmaceutics Classification System (BCS)*,† 

Class I Class II Class III Class IV 

High 

solubility, high 

permeability 

Low solubility, 

high 

permeability 

High 

solubility, low 

permeability 

Low solubility, 

low 

permeability 

*From G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison, Pharm. 

Res. 12, 413, 1995. 

†The goal of the system is to provide guidance as to when in vitro studies 

may be used in lieu of clinical studies to establish the bioequivalence of two 

products. 

 

The BCS6 categorizes drugs into four types (Table 13-1), depending on their solubility and permeability 
characteristics. Solubility is covered in Chapter 9 and permeability in Chapter 11. For the purposes of 
this chapter, it would be helpful to give some perspective on the role of solubility, permeability, and drug 
release on the availability of drug in the human body after oral administration. In most situations, only 
drug that dissolves and is released from the drug product will be available for absorption through the 
intestinal tissues and into the blood stream of patients. Therefore, the rate at which the drug dissolves 
(in other words, dissolution rate) and its solubility become important factors, and these have already 
been discussed in some detail. Permeability is a measure of how rapidly a drug can penetrate a biologic 
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tissue such as the intestinal mucosa and appears on the other side (e.g., the blood side). Therefore, a 
drug must be soluble and permeable 
P.312 
 
for absorption to occur. To classify drugs according to these two important factors, the BCS was 
proposed. According to the BCS, class I drugs are well absorbed (more than 90% absorbed) because 
they are highly permeable and go rapidly into solution. Poor absorption of class I drugs is only expected 
if they are unstable or if they undergo reactions (such as binding or complexation) in the intestine that 
inactivate them. Bioavailability could also be low if they are metabolized in the intestine or liver or are 
subject to secretory processes such as intestinal or enterohepatic cycling. Class II drugs are those with 
solubilities too low to be consistent with complete absorption even though they are highly membrane 
permeable. Class III drugs have good solubility but low permeability. In other words, they are unable to 
permeate the gut wall quickly enough for absorption to be complete. Class IV drugs have neither 
sufficient solubility nor permeability for absorption to be complete. Class IV drugs tend to be the most 
problematic, although there are numerous examples of class IV drugs that are successfully used in the 
clinic. The student should keep in mind that even though class IV drugs do not possess optimal 
properties, some drugs in this category may still be absorbed well enough so that oral administration is a 
viable option. 

Key Concept 

The Role of Dissolution Testing 

In a 1998 review article, Dressman and colleagues7summarized the situation well: 
Dissolution tests are used for many purposes in the pharmaceutical industry: in the 
development of new products, for quality control, and to assist with the determination of 
bioequivalence. Recent regulatory developments such as the Biopharmaceutics Classification 
Scheme have highlighted the importance of dissolution in the regulation of postapproval 
changes and introduced the possibility of substituting dissolution tests for clinical studies in 
some cases. Therefore, there is a need to develop dissolution tests that better predict the in 
vivo performance of drug products. This could be achieved if the conditions of the 
gastrointestinal tract were successfully reconstructed in vivo. 

Numerous factors need to be considered if dissolution tests are to be considered biorelevant. 
They are the composition, hydrodynamics (fluid flow patterns), and volume of the contents in 
the gastrointestinal tract. Biorelevant media considerations are covered in this section and the 
apparatus used to measure dissolution are covered in the next. Other aspects are also 
covered throughout the book. The student who wants to study this in more detail is referred to 
the original review article. 

Typically, the BCS is used to build an IVIVC. According to the Food and Drug Administration Guidance 
document, an IVIVC is “a predictive mathematical model describing the relationship between an in vitro 

property of an oral dosage form (usually the rate or extent of drug dissolution or release) and a relevant 
in vivo response (e.g., plasma drug concentration or amount of drug absorbed).”5 Because the focus of 
this chapter is drug dissolution and release, we will focus on aspects of IVIVCs related only to these 
phenomena. Correlation of in vivo results with dissolution tests is likely to be best for class II drugs 
because dissolution rate is the principal limiting characteristic to absorption. Another case where good 
IVIVCs are often obtained is when a class I drug is formulated as an extended-release product. This is 
because the release profile controls the rate of absorption and absorption profile. In the first case, drug 
dissolution (and solubility) are the rate-limiting step for absorption, whereas in the second case, the drug 
has adequate solubility and permeability, so its ability to be absorbed is controlled by its availability in 
the lumen of the gastrointestinal tract. Therefore, release from the dosage form is the key process. 
These examples highlight the practical differences between the processes of drug dissolution and 
release. Controlled-release products work using a combination of mechanisms and are covered 
in Chapter 21. 
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There are several physicochemical and physiologic factors that control the dissolution of drug products 
in humans and need to be considered when designing dissolution tests. They are the composition, 
mixing patterns (i.e., hydrodynamics), and volume of the contents in the gastrointestinal tract. These are 
reviewed in detail by Dressman et al.7 The student must keep in mind that the gastrointestinal tract is an 
organ with a multitude of functions and drug products; foods and nutrients can remain in the 
gastrointestinal tract for up to 24 to 30 hr if they are not completely absorbed. The conditions of the 
gastrointestinal tract vary with the location of the segment of interest. To link the three key factors that 
control the dissolution of drugs in the gastrointestinal tract with the mathematical understanding 
developed earlier in the chapter, let us reexamine the Noyes–Whitney equation19 with some commonly 
used modifications7 as introduced by Levich21 and Nernst–Brunner22 

 
where A is the effective surface area of the drug, D is the diffusion coefficient of the drug, δ is the 

diffusion boundary layer thickness adjacent to the dissolving surface, Cs is the saturation solubility of the 
drug under intestinal conditions, Xd is the amount of drug already in solution, and V is the volume of the 
dissolution media. To manipulate the effective surface area of a drug, a formulator may attempt to 
reduce the particle size to increase wettability. In the intestine, however, there are natural surface 
tension–reducing agents that promote drug dissolution. Most of these natural surfactants are found in 
the secretions that come from the stomach and bile. If one were to design a biorelevant dissolution test 
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for drugs with poor dissolution characteristics, it would be important to account for the natural 
surfactants located in the stomach and the intestine. The maximum solubility of the drug in the intestine 
is influenced by many factors (solubility is covered in Chapter 9) such as the buffer capacity, pH, the 
presence of food, and natural surfactants such as bile salts and lecithin. Dressman et al.35showed that 
the presence of a meal in humans immediately raised the pH of the stomach from its normally acidic 
state (pH 1.5–3.0) to pH 5.5 to 7.0. This could dramatically affect the solubility of drugs, which, in turn, 
can affect the oral bioavailability. The diffusivity of the drug, or its natural ability to diffuse through the 
intestinal contents, will be a function of the viscosity of the intestinal contents. Viscosity will depend on 
the level of natural secretions, which may vary in the fed and fasted states, and the presence of food. 
The boundary layer thickness around the dissolving particle will depend on how vigorous local mixing is. 
In other words, if motility or mixing is higher, then the stagnant layer surrounding the particle will be 
smaller. If mixing is reduced, then the stagnant layer becomes larger and may alter dissolution. For 
dissolution to proceed, there must be a driving force. As shown in equation (13-51), the “driving force” is 

represented by the term Cs - Xd/V. If the difference between Cs andXd/V is great, then the rate of drug 
dissolution, Xd/dt, will be greater. As the concentration of dissolved drug (Xd/V) becomes larger, the 
driving force is reduced. So, the relevant question is, “How can drug dissolution in the gastrointestinal 

tract ever be complete?” To maximize drug dissolution, the concentration of dissolved drug must be 

minimized. Of course, this happens when the drug is absorbed through the intestinal wall and into the 
blood. The rate of absorption is related to the permeability of the drug (Chapter 15) and intestinal drug 
concentration, Xd/V. For passively absorbed drugs, the greater the intestinal drug concentration, the 
faster is the rate of absorption. Therefore, dissolved drug concentrations in the intestine can be kept low, 
which enhances dissolution. When Xd/V is no greater than 20% of Cs, this condition is met and is known 
as “sink conditions.” Maintaining sink conditions in a dissolution test is another matter altogether, but is a 
very important concern. 
Biorelevant Media 
Based on all of the previous considerations, biorelevant media have been proposed. The rationale for 
proposing the various components was provided in the previous comments. Because of the significant 
difference between the stomach and the intestine, media representative of the gastric and intestinal 
environments is commonly used. The major differences between gastric and intestinal media are the pH 
and presence of bile. Another important consideration is the absence or presence of food in the 
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stomach. When food is absent, conditions between patients do not vary too much. Because the stomach 
is acidic (<pH 3) in most patients in the fasted state, the main variables are the type and volume of liquid 
administered with the dosage form. If water is the administered fluid, the buffer capacity is low, and this 
would not be a factor in dissolution testing. Although it is known that the surface tension of gastric 
contents is reduced, the exact physiologic agents that are responsible are not known. Therefore, sodium 
lauryl sulfate is commonly used in dissolution testing to achieve this effect. The composition of simulated 
fasted-state gastric fluid (pH 1.2) is rather simple and is listed in Table 13-2. In the fed state, the 
conditions of the stomach are highly dependent on the type and quantity of meal ingested. Simulated 
intestinal fluid (SIF) is described in the 26th edition of the United States Pharmacopeia as a 0.05 M 
buffer solution containing potassium dihydrogen phosphate (Table 13-2). The pH of this buffer is 6.8 and 
falls within the range of normal intestinal pH. Pancreatin may also be added if a more biorelevant form of 
the medium is required. Pancreatin is a mixture of the fat-dissolving enzyme lipase, the protein-
degrading enzymes called proteases, and those that break down carbohydrates, like amylase. If SIF 
does not contain pancreatin, it is indicated using the notation SIFsp, where the “sp” means “sans 

pancreatin” or “without pancreatin.” Some of the parameters that can profoundly influence the 
dissolution rate of drug products such as the buffer capacity, pH, and surfactant concentrations and how 
they can be introduced into a biorelevant dissolution test have been discussed. Other considerations are 
the volume of the contents in the stomach or intestinal segment and the duration of the test as it related 
to residence time in the stomach or intestinal segment. 

Table 13-2 Composition of Dissolution Media for in Vitro Dissolution Testing 

Medium Composition Amount 

Simulated gastric fluid NaCl 2.0 g 

   pH 1.2 (SGFsp), USP 26 Concentrated HCl 7.0 mL 

  Deionized water to 1.0 L* 

Simulated intestinal fluid KH2PO4 68.05 g 

   pH 6.8 (SIFsp), USP 26 NaOH 8.96 g 

  Deionized water to 10.0 L† 

*Add 3.2 g of pepsin for SGF. 

†Add X g of pancreatin for SIF. 

 

Methods and Apparatus 
The objective of most pharmacopeial dissolution monographs is to establish procedures for evaluating 
batch-to-batch consistency in the dissolution of drug products. Similar dissolution characteristics for 
different batches of the same drug product imply similar performance of the product in humans. 
Although there are many customized and original dissolution testing devices reported in the literature, 
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the purpose of this section is to introduce the basic apparatus used in compendial testing of immediate- 
and modified-release oral dosage forms. 
P.314 
 
 
USP Methods I and II for Dissolution36,37,38 
The most commonly used methods for evaluating dissolution first appeared in the 13th edition of 
the United States Pharmacopeia in early 1970. These methods are known as the USP basket (method I) 
and paddle (method II) methods and are referred to as “closed-system” methods because a fixed 

volume of dissolution medium is used. In practice, a rotating basket or paddle provides a steady stirring 
motion in a large vessel with 500 to 1000 mL of fluid that is immersed in a temperature-controlled water 
bath (Fig. 13-7a)36,39Variants of these two standard apparatuses have been reported and are depicted 
in Figure 13-7b (see Shiu36 for a complete discussion). The devices are very simple, robust, and easily 
standardized. Descriptions for apparatus specifications are detailed in the current version of the USP. 
The USP basket and paddle methods are the methods of choice for dissolution testing of immediate-
release oral solid dosage forms. The use of alternative dissolution methods should be considered only 
after USP methods I and II are found to be unsatisfactory. Biorelevant dissolution media were discussed 
in the previous section. Other commonly used media include (a) water, 
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(b) 0.1 N HCl, (c) buffer solutions, (d) water or buffers with surfactants, and (e) low-content alcoholic 
aqueous solutions. The temperature of the medium is usually maintained at body temperature (37°C) for 
dissolution testing. Although water is one of the most commonly listed dissolution media found in USP 
monographs, it may not be physiologically relevant due to the lack of buffering capacity. In the following 
examples, a variety of conditions are used that result in significantly different dissolution profiles, 
suggesting that the appropriate selection of dissolution conditions must be made. 
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Fig. 13-7. (Top) Pictures of USP basket and paddle apparatus. Note the dye coming 

from the tablet in the basket in the left panel. Types of dissolution apparatus include 

(a) a stationary basket-rotating paddle for immediate-release oral solid dosage forms, 

(b) a modified stationary basket rotating paddle for suppositories, (c) a rotating 

dialysis cell, and (d) a rotating paddle–rotating basket. (From G. K. Shiu, Drug Inf. 

J. 30, 1045, 1996. With permission.) 
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Fig. 13-8. (a) Dissolution profiles of norethindrone acetate of a norethindrone acetate: 

ethinyl estradiol combination tablet by various dissolution media and methods. (b) 

Dissolution profiles of theophylline from an aged theophylline soft gelatin product 

under various dissolution media by USP basket method at 100 rpm rotating speed. E1, 

E2, E3, and E4 are pepsin with increasing enzyme activity. E5 is a commercially 

available intestinal enzyme, pancreatin. (From G. K. Shiu, Drug Inf. J. 30, 1045, 

1996. With permission.) 

Example 13-10 

Dissolution Profiles of Norethindrone Acetate(Fig. 13-8a) 
Before 1990, water was used as the dissolution medium for testing combination of oral 
contraceptive drug products. Water was used for norethindrone (NE): ethyl estradiol (EE) 
tablets and 3% isopropanol was used for NE: mestranol (ME) tablets. The dissolution data for 
norethindrone are shown in Figure 13-8a. An example of an acceptable dissolution profile is 
seen when the dissolution medium is 0.1 N HCl with 0.02% sodium lauryl sulfate in the USP 
basket method at 100 rpm. (Example taken from Shiu36; original data in Nguyen et al.40) 

Example 13-11 

Dissolution Profiles of Theophylline from Soft Gelatin Capsules36 (Fig. 13-8b) 
This example shows the role of biorelevant dissolution media. Inclusion of the appropriate 
enzymes in the dissolution medium has been considered appropriate because they are found 
naturally in the gastrointestinal tract. We often assume that the dosage form assists in 
improving bioavailability. This example shows that this is not always the case; this example is 
consistent with the report of a workshop published in 1996,41 where it was recognized that 
discrepancies between dissolution and bioavailability occur because the gel that comprises 
soft and hard gelatin capsules becomes cross-linked. In this example, the dissolution of 
theophylline from aged soft gelatin capsules was studied in a variety of media: water, 
increasing amounts of pepsin in simulated gastric fluid (SGF) (E1 through E4), SIF, and SIF 
with pancreatin (Fig. 13-8b). The highest dissolution rates were observed in the media with 
enzymes present, and for pepsin, an increase in dissolution was observed with increasing 
pepsin activity, showing the role of the soft gelatin capsule dosage form in hindering the 
release of theophylline. 
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Special Considerations for Modified-Release Dosage Forms: 
USP Apparatuses 3 and 4* 
Modified-release delivery systems are similar in size and shape to conventional immediate-release 
dosage forms. For example, shown in Figure 13-9 are nifedipine (Procardia® XL) “tablets,” which are 

actually nondisintegrating osmotic pumps (Chapter 21). The mechanisms for controlling the release of 
the drugs are becoming very sophisticated, and special consideration must be given to how drug 
release is 
P.316 
 
evaluated. Regulatory guidances recommend four dissolution apparatuses for modified-release dosage 
forms. Although the existing apparatuses are adequate for the intended purpose, equipment may 
require either modifications or completely new designs to accommodate these new release 
mechanisms. For example, nondisintegrating dosage forms (e.g., Procardia XL) requiring a delivery 
orifice for drug release may dictate a special design or modification of the dissolution apparatus so that 
the orifice is not blocked. In contrast, disintegrating or eroding delivery systems pose the challenge of 
transferring the dosage form to different media without losing any of the pieces. In general, methods of 
agitation, changing the medium, and holding the dosage form in the medium without obstructing the 
release mechanism are relevant to drug testing. A challenging component of a dissolution test for a 
modified-release delivery system is changing the media to obtain a pH gradient or to simulate fed and 
fasted conditions. The ability to easily change the medium is the focus of commercially available 
dissolution equipment targeted for modified-release delivery systems, and several equipment designs 
are available. The USP Apparatus 3, a reciprocating cylinder, dips a transparent cylinder containing the 
dosage form at a rate determined by the operator.43,44 The tubes have a mesh base to allow the 
medium to drain into a sampling reservoir as the tube moves up and down, thus creating convective 
forces for dissolution. The cylinders can also be transferred to different media at specified times, 
automatically. A second design is the rotating bottle apparatus, which also allows for changing of 
medium to simulate a pH gradient or fed and fasted conditions. The USP Apparatus 4 is a flowthrough 
cell containing the dosage form that is fed with dissolution medium from a reservoir. Directing the fluid 
through a porous glass plate or a bed of beads produces a dispersed flow of medium. Turbulent or 
laminar flow can be achieved by changing the bottom barrier. As with Apparatus 3, the medium can be 
changed to provide a pH gradient, surfactants, and other medium components. 
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Fig. 13-9. Procardia
®
 XL tablets. These tablets are orally delivered osmotic pumps 

that release drug through a laser-drilled orifice. Although the tablets look like 

conventional tablets, they behave differently. For example, they do not disintegrate 

and are excreted in the stool intact. (FromPhysicians' Desk Reference, 58th Ed., 

Thomson PDR, Montvale, N. J., 2004. With permission.) 

Chapter Summary 

Dissolution and drug release are fundamental concepts that affect the practice of pharmacy 
on a daily basis. Examples include patients who now have to take only one tablet daily 
instead of one tablet three times daily because they are taking the osmotic pump form of the 
medication. Not only does drug delivery improve convenience for patients but it also improves 
compliance as they adhere to treatment regimens that may have been too complex. At this 
point the student should understand these concepts and understand the differences among 
immediate-, modified-, delayed-, extended-, and controlled-release delivery systems. You 
should also be able to differentiate between zero-order and first-order release kinetics as well 
as understand intrinsic dissolution rate and the driving force for dissolution. Understanding the 
effect of surface area and sink conditions on dissolution rate is critical and helps explain why 
drugs are so well absorbed after oral administration. The BCS was discussed and the 
important role of permeability and solubility was demonstrated. Finally, the student should 
have an appreciation for the different roles that dissolution testing plays in the pharmaceutical 
sciences (a quality control versus predictive role) and understand how media properties such 
as viscosity, pH, lipids, and surfactants can affect dissolution. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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14 Chemical Kinetics and Stability 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Define reaction rate, reaction order, and molecularity. 
2. Understand and apply apparent zero-order kinetics to the practice of pharmacy. 
3. Calculate half-life and shelf life of pharmaceutical products and drugs. 
4. Understand Michaelis–Menten (nonlinear) kinetic behavior and linearization 

techniques. 
5. Interpret pH–rate profiles and kinetic data. 
6. Understand the basis for transition-state theory and its application to chemical 

kinetics. 
7. Describe the influence of temperature, ionic strength, solvent, pH, and dielectric 

constant on reaction rates. 
8. Calculate the increase in rate constant as a function of temperature (Q10). 
9. Describe the factors that influence solid-state chemical kinetics. 
10. Identify and describe methods for the stabilization of pharmaceutical agents. 
11. Understand stability-testing protocols and regulatory requirements. 

The purpose of stability testing is to provide evidence on how the quality of a drug substance or drug 
product varies with time under the influence of a variety of environmental factors, such as temperature, 
humidity, and light, and to establish a retest period for the drug substance or a shelf life for the drug 
product and recommended storage conditions. Although the pharmaceutical scientist plays a critical role 
in determining the stability of pharmaceuticals, practicing pharmacists should be able to interpret this 
information for their patients. This chapter introduces the rates and mechanisms of reactions with 
particular emphasis on decomposition and stabilization of drug products. It is essential for pharmacists 
and pharmaceutical scientists to study, understand, and interpret conditions of instability of 
pharmaceutical products as well as to be able to offer solutions for the stabilization of these products. 
Pharmaceutical manufacturers routinely utilize the principles covered in this chapter; however, with the 
resurgence of pharmaceutical compounding, it is essential for practicing pharmacists to understand drug 
product stability as well. If a community pharmacist is asked to compound a prescription product, there 
are many factors that he or she must consider. The pharmacist must recognize that alterations in 
stability may occur when a drug is combined with other ingredients. For example, if thiamine 
hydrochloride, which is most stable at a pH of 2 to 3 and is unstable above pH 6, is combined with a 
buffered vehicle of, say, pH 8 or 9, the vitamin is rapidly inactivated.1 Knowing the rate at which a drug 
deteriorates at various hydrogen ion concentrations allows one to choose a vehicle that will retard or 
prevent the degradation. Patients expect that products will have a reasonable shelf life. Even though 
pharmaceutical manufacturers label prescription and over-the-counter drug products with expiration 
dating to guide the patient/consumer in these matters, patients may store these products in a bathroom 
medicine cabinet where the humidity and temperature are higher than the typical storage place for 
medications. How does this affect the shelf life of the product? A community pharmacy practitioner 
should be able to understand this and advise patients on these matters. 
The experimental investigation of the possible breakdown of new drugs is not a simple matter. 
Applications of chemical kinetics in pharmacy result in the production of more stable drug preparations, 
the dosage and rationale of which may be established on sound scientific principles. Thus, as a result of 
current research involving the kinetics of drug systems, the pharmacist is able to assist the physician 
and patient regarding the proper storage and use of medicinal agents. This chapter brings out a number 
of factors that bear on the formulation, stabilization, and administration of drugs. Concentration, 
temperature, light, pH, and catalysts are important in relation to the speed and the mechanism of 
reactions and will be discussed in turn. 
Fundamentals and Concentration Effects 

Dr. Murtadha Alshareifi e-Library

586



Rates, Order, and Molecularity of Reactions 
The rate, velocity, or speed of a reaction is given by the expressiondc/dt, where dc is the increase or 
decrease of concentration over an infinitesimal time interval dt. According to the law of mass action, the 
rate of a chemical reaction is proportional to the product of the molar concentration of the reactants each 
raised to a power usually equal to the number of molecules, a and b, of the substances A and B, 
respectively, undergoing reaction. In the reaction 

 
the rate of the reaction is 

 
where k is the rate constant. 
P.319 
 
 
The overall order of a reaction is the sum of the exponents [a + b, e.g., in equation (14-2)] of the 
concentration terms, A and B. The order with respect to one of the reactants, A or B, is the 
exponent a orb of that particular concentration term. In the reaction of ethyl acetate with sodium 
hydroxide in aqueous solution, for example, 

 
the rate expression is 

 
The reaction is first order (a = 1) with respect to ethyl acetate and first order (b = 1) with respect to 
sodium hydroxide solution; overall the reaction is second order (a + b = 2). 
Suppose that in this reaction, sodium hydroxide as well as water was in great excess and ethyl acetate 
was in a relatively low concentration. As the reaction proceeded, ethyl acetate would change 
appreciably from its original concentration, whereas the concentrations of NaOH and water would 
remain essentially unchanged because they are present in great excess. In this case, the contribution of 
sodium hydroxide to the rate expression is considered constant and the reaction rate can be written as 

 
where k′ = k[NaOH]. The reaction is then said to be a pseudo–first-order reaction because it depends 
only on the first power (a = 1) of the concentration of ethyl acetate. In general, when one of the 
reactants is present in such great excess that its concentration may be considered constant or nearly 
so, the reaction is said to be ofpseudo-order. 
Example 14-1 

Reaction Order 

In the reaction of acetic anhydride with ethyl alcohol to form ethyl acetate and water, 
 

the rate of reaction is 

 
What is the order of the reaction with respect to acetic anhydride? With respect to ethyl 
alcohol? What is the overall order of the reaction? 
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If the alcohol, which serves here as the solvent for acetic anhydride, is in large excess such 
that a small amount of ethyl alcohol is used up in the reaction, write the rate equation for the 
process and state the order. 
Answer: The reaction appears to be first order with respect to acetic anhydride, second order 
with respect to ethyl alcohol, and overall third order. However, because alcohol is the solvent, 
its concentration remains essentially constant, and the rate expression can be written as 

 
Kinetically the reaction is therefore a pseudo–first-order reaction, as noted by Glasstone.2 

Molecularity 
A reaction whose overall order is measured can be considered to occur through several steps or 
elementary reactions. Each of the elementary reactions has a stoichiometry giving the number of 
molecules taking part in that step. Because the order of an elementary reaction gives the number of 
molecules coming together to react in the step, it is common to refer to this order as themolecularity of 
the elementary reaction. If, on the other hand, a reaction proceeds through several stages, the term 
molecularity is not used in reference to the observed rate law: One step may involve two molecules, a 
second step only one molecule, and a subsequent step one or two molecules. Hence, order and 
molecularity are ordinarily identical only for elementary reactions. Bimolecular reactions may or may not 
be second order. 
In simple terms, molecularity is the number of molecules, atoms, or ions reacting in an elementary 
process. In the reaction 

 
the process is unimolecular because the single molecule, Br2, decomposes to form two bromine atoms. 
In the single-step reaction 

 
the process is bimolecular because two molecules, one of H2 and one of I2, must come together to form 
the product HI. Termolecularreactions, that is, processes in which three molecules must come together 
simultaneously, are rare. 
Chemical reactions that proceed through more than one step are known as complex reactions. The 
overall order determined kinetically may not be identical with the molecularity because the reaction 
consists of several steps, each with its own molecularity. For the overall reaction 

 
the order has been found experimentally to be 2. The reaction is not termolecular, in which two 
molecules of NO would collide simultaneously with one molecule of O2. Instead, the mechanism is 
postulated to consist of two elementary steps, each being bimolecular: 

 
P.320 
 
 
Rate Constants, Half-Life, Shelf Life, and Apparent or Pseudo-
order 
Specific Rate Constant 
The constant, k, appearing in the rate law associated with a single-step (elementary) reaction is called 
the specific rate constant for that reaction. Any change in the conditions of the reaction, for example, in 
temperature or solvent, or a slight change in one of the reacting species, will lead to a rate law having a 
different value for the specific rate constant. Experimentally, a change of specific rate constant 
corresponds simply to a change in the slope of the line given by the rate equation. Variations in the 
specific rate constant are of great physical significance because a change in this constant necessarily 
represents a change at the molecular level as a result of a variation in the reaction conditions. 
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Rate constants derived from reactions consisting of a number of steps of different molecularity are 
functions of the specific rate constants for the various steps. Any change in the nature of a step due to a 
modification in the reaction conditions or in the properties of the molecules taking part in this step could 
lead to a change in the value of the overall rate constant. At times, variations in an overall rate constant 
can be used to provide useful information about a reaction, but quite commonly, anything that affects 
one specific rate constant will affect another; hence, it is quite difficult to attach significance to variations 
in the overall rate constant for these reactions. 
Units of the Basic Rate Constants 
To arrive at units for the rate constants appearing in zero-, first-, and second-order rate laws, the 
equation expressing the law is rearranged to have the constant expressed in terms of the variables of 
the equation. Thus, for a zero-order reaction, 

 
for a first-order reaction, 

 
Key Concept 

Apparent or Pseudo-Order 

“Apparent” or “pseudo”-order describes a situation where one of the reactants is present in 
large excess or does not effect the overall reaction and can be held constant. For example, 
many hydrolysis decomposition reactions of drug molecules are second order. Usually the 
amount of water present is in excess of what is needed for the reaction to proceed. In other 
words, the concentration of water is essentially constant throughout the reaction. In this case, 
the second-order reaction behaves like a first-order reaction and is called an apparent or 
pseudo–first-order reaction. 

Key Concept 

Half-Life and Shelf Life 

The half-life is the time required for one-half of the material to disappear; it is the time at 
which A has decreased to ½ A. The shelf life is the time required for 10% of the material to 
disappear; it is the time at which A has decreased to 90% of its original concentration (i.e., 
0.9 A). 

and for a second-order reaction, 

 
where A is the molar concentration of the reactant. It is an easy matter to replace the units moles/liter by 
any other units (e.g., pressure in atmospheres) to obtain the proper units for the rate constants if 
quantities other than concentration are being measured. 
Zero-Order Reactions 
Garrett and Carper3 found that the loss in color of a multisulfa product (as measured by the decrease of 
spectrophotometric absorbance at a wavelength of 500 nm) followed a zero-order rate. The rate 
expression for the change of absorbance, A, with time is therefore 
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where the minus sign signifies that the absorbance is decreasing (i.e., the color is fading). The velocity 
of fading is seen to be constant and independent of the concentration of the colorant used. The rate 
equation can be integrated between the initial absorbance, A0, corresponding to the original color of the 
preparation at t = 0, and At, the absorbance after t hours: 

 
or 

 
The initial concentration corresponding to A0 is ordinarily written as aand the concentration remaining at 
time t as c. 
P.321 
 
 
When this linear equation is plotted with c on the vertical axis againstt on the horizontal axis, the slope 
of the line is equal to -k0. Garrett and Carper3 obtained a value for k of 0.00082 absorbance decrease 
per hour at 60°C, indicating that the color was fading at this constant rate independent of concentration. 
Because the half-life is the time required for one-half of the material to disappear, in the present 
case A0 = 0.470 and ½A0 = 0.235: 

 
Suspensions. Apparent Zero-Order Kinetics4 
Suspensions are another case of zero-order kinetics, in which the concentration in solution depends on 
the drug's solubility. As the drug decomposes in solution, more drug is released from the suspended 
particles so that the concentration remains constant. This concentration is, of course, the drug's 
equilibrium solubility in a particular solvent at a particular temperature. The important point is that the 
amount of drug in solution remains constant despite its decomposition with time. The reservoir of solid 
drug in suspension is responsible for this constancy. 
The equation for an ordinary solution, with no reservoir of drug to replace that depleted, is the first-order 
expression, equation (14-11): 

 
where [A] is the concentration of drug remaining undecomposed at time t, and k is known as a first-order 
rate constant. When the concentration [A] is rendered constant, as in the case of asuspension, we can 
write 

 
so that the first-order rate law (14-11) becomes 

 
Equation (14-10) obviously is a zero-order equation. It is referred to as an apparent zero-order equation, 
being zero order only because of the suspended drug reservoir, which ensures constant concentration. 
Once all the suspended particles have been converted into drug in solution, the system changes to a 
first-order reaction. 

Key Concept 

Shelf Life and Expiration Dating 

Shelf life (also referred to as the expiration dating period) is the time period during which a 
drug product is expected to remain within the approved specification for use, provided that it 
is stored under the conditions defined on the container label. 
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Expiration date is the date placed on the container label of a drug product designating the 
time prior to which a batch of the product is expected to remain within the approved shelf-life 
specification if stored under defined conditions and after which it must not be used. 

Example 14-2 

Shelf Life of an Aspirin Suspension 

A prescription for a liquid aspirin preparation is called for. It is to contain 325 mg/5 mL or 6.5 
g/100 mL. The solubility of aspirin at 25°C is 0.33 g/100 mL; therefore, the preparation will 
definitely be a suspension. The other ingredients in the prescription cause the product to have 
a pH of 6.0. The first-order rate constant for aspirin degradation in this solution is 4.5 × 10-

6 sec-1. Calculate the zero-order rate constant. Determine the shelf life, t90, for the liquid 
prescription, assuming that the product is satisfactory until the time at which it has 
decomposed to 90% of its original concentration (i.e., 10% decomposition) at 25°C. 
Answer: k0 = k × [Aspirin in solution], from equation (14-9). 
Thus, 

 

First-Order Reactions 
In 1918, Harned5 showed that the decomposition rate of hydrogen peroxide catalyzed by 0.02 M KI was 
proportional to the concentration of hydrogen peroxide remaining in the reaction mixture at any time. 
The data for the reaction 

 
are given in Table 14-1. Although two molecules of hydrogen peroxide appear in the stoichiometric 
equation as just written, the reaction was found to be first order. The rate equation is written as 

 
where c is the concentration of hydrogen peroxide remaining undecomposed at time t and k is the first-
order velocity constant. Integrating equation (14-11) between concentration c0 at time t = 0 and 
concentration c at some later time, t, we have 

 
P.322 
 
 

Table 14-1 Decomposition of Hydrogen Peroxide at 25°C in Aqueous Solution 

Containing 0.02 m KI* 

Dr. Murtadha Alshareifi e-Library

591



t (min) a - x K (min
-1

) 

0 57.90 – 

5 50.40 0.0278 

10 43.90 0.0277 

25 29.10 0.0275 

45 16.70 0.0276 

65 9.60 0.0276 

∞ 0 – 

*Based on H. S. Harned, J. Am. Chem. Soc.40, 1462, 1918. 

 

Converting to common logarithms yields 

 
or 

 
In exponential form, equation (14-12) becomes 

 
and equation (14-13) becomes 

 
Equations (14-15) and (14-16) express the fact that, in a first-order reaction, the concentration 
decreases exponentially with time. As shown in Figure 14-1, the concentration begins at c0 and 
decreases as the reaction becomes progressively slower. The concentration asymptotically approaches 
a final value c∞ as time proceeds toward infinity. 
Equation (14-14) is often written as 
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Fig. 14-1. Fall in concentration of a decomposing drug with time. In addition 

to C0and C∞, ½C0 and the corresponding time, t½, are shown. The rate of decrease of 

concentration with time, -dC/dt, at an arbitrary concentration,C1, is also shown. 

 

Fig. 14-2. A linear plot of log C versus time for a first-order reaction. 

where the symbol a is customarily used to replace c0, x is the decrease of concentration in time t, 
and a - x = c. 
The specific reaction rates listed in Table 14-1 were calculated by using equation (14-17). Probably the 
best way to obtain an average kfor the reaction is to plot the logarithm of the concentration against the 
time, as shown in Figure 14-2. The linear expression in equation(14-13) shows that the slope of the line 
is -k/2.303, from which the rate constant is obtained. If a straight line is obtained, it indicates that the 
reaction is first order. Once the rate constant is known, the concentration of reactant remaining at a 
definite time can be computed as demonstrated in the following examples. 
Example 14-3 

Decomposition of Hydrogen Peroxide 
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The catalytic decomposition of hydrogen peroxide can be followed by measuring the volume 
of oxygen liberated in a gas burette. From such an experiment, it was found that the 
concentration of hydrogen peroxide remaining after 65 min, expressed as the volume in 
milliliters of gas evolved, was 9.60 from an initial concentration of 57.90. 
(a) Calculate k using equation (14-14). 
(b) How much hydrogen peroxide remained undecomposed after 25 min? 

 

Example 14-4 

First-Order Half-Life 

A solution of a drug contained 500 units/mL when prepared. It was analyzed after 40 days 
and was found to contain 300 units/mL. Assuming the decomposition is first order, at what 
time will the drug have decomposed to one-half of its original concentration? 
We have 
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Half-Life 
The period of time required for a drug to decompose to one-half of the original concentration as 
calculated in Example 14-3 is the half-life, t1/2, for a first-order reaction: 

 
In Example 14-4, the drug has decomposed by 250 units/mL in the first 54.3 days. Because the half-life 
is a constant, independent of the concentration, it remains at 54.3 days regardless of the amount of drug 
yet to be decomposed. In the second half-life of 54.3 days, half of the remaining 250 units/mL, or an 
additional 125 units/mL, are lost; in the third half-life, 62.5 units/mL are decomposed, and so on. 
The student should now appreciate the reason for stating the half-life rather than the time required for a 
substance to decompose completely. Except in a zero-order reaction, theoretically it takes an infinite 
period of time for a process to subside completely, as illustrated graphically in Figure 14-1. Hence, a 
statement of the time required for complete disintegration would have no meaning. Actually, the rate 
ordinarily subsides in a finite period of time to a point at which the reaction may be considered to be 
complete, but this time is not accurately known, and the half-life, or some other fractional-life period, is 
quite satisfactory for expressing reaction rates. 

Dr. Murtadha Alshareifi e-Library

594



The same drug may exhibit different orders of decomposition under various conditions. Although the 
deterioration of hydrogen peroxide catalyzed with iodine ions is first order, it has been found that 
decomposition of concentrated solutions stabilized with various agents may become zero order. In this 
case, in which the reaction is independent of drug concentration, decomposition is probably brought 
about by contact with the walls of the container or some other environmental factor. 
Second-Order Reactions 
The rates of bimolecular reactions, which occur when two molecules come together, 

 
are frequently described by the second-order equation. When the speed of the reaction depends on the 
concentrations of A and B with each term raised to the first power, the rate of decomposition of A is 
equal to the rate of decomposition of B, and both are proportional to the product of the concentrations of 
the reactants: 

 
If a and b are the initial concentrations of A and B, respectively, and xis the concentration of each 
species reacting in time t, the rate law can be written as 

 
where dx/dt is the rate of reaction and a - x and b - x are the concentrations of A and B, respectively, 
remaining at time t. When, in the simplest case, both A and B are present in the same concentration so 
that a = b, 

 
Equation (14-21) is integrated, using the conditions that x = 0 at t = 0 and x = x at t = t. 

 
or 

 
When, in the general case, A and B are not present in equal concentrations, integration of equation (14-
20) yields 

 
or 

 
It can be seen by reference to equation (14-22) that when x/a(a - x) is plotted against t, a straight line 
results if the reaction is second order. The slope of the line is k. When the initial 
concentrations aand b are not equal, a plot of log [b(a - x)/a(b - x)] against t should yield a straight line 
with a slope of (a - b)k/2.303. The value of k can thus be obtained. It is readily seen from equation (14-
23) or (14-25)that the units in which k must be expressed for a second-order reaction are 1/(mole/liter) × 
1/sec where the concentrations are given in mole/liter and the time in seconds. The rate constant, k, in a 
second-order reaction therefore has the dimensions liter/(mole sec) or liter mole-1 sec-1. 
Example 14-5 

Saponification of Ethyl Acetate 

Walker6 investigated the saponification of ethyl acetate at 25°C: 
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The initial concentrations of both ethyl acetate and sodium hydroxide in the mixture were 
0.01000 M. The change in concentration, x, of alkali during 20 min was 0.000566 mole/liter; 
therefore, (a - x) = 0.01000 - 0.00566 = 0.00434. 
Compute (a) the rate constant and (b) the half-life of the reaction. 

a. Using equation (14-23), we obtain 

 

b. The half-life of a second-order reaction is 

 

It can be computed for the reaction only when the initial concentrations of the 
reactants are identical. In the present example, 
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Determination of Order 
The order of a reaction can be determined by several methods. 
Substitution Method 
The data accumulated in a kinetic study can be substituted in the integrated form of the equations that 
describe the various orders. When the equation is found in which the calculated k values remain 
constant within the limits of experimental variation, the reaction is considered to be of that order. 
Graphic Method 
A plot of the data in the form of a graph as shown in Figure 14-2 can also be used to ascertain the order. 
If a straight line results when concentration is plotted against t, the reaction is zero order. The reaction is 
first order if log (a - x) versus t yields a straight line, and it is second order if 1/(a - x) versus t gives a 
straight line (in the case in which the initial concentrations are equal). When a plot of 1/(a -
 x)2against t produces a straight line with all reactants at the same initial concentration, the reaction is 
third order. 
Half-Life Method 
In a zero-order reaction, the half-life is proportional to the initial concentration, a, as observed in Table 
14-2. The half-life of a first-order reaction is independent of a; t1/2 for a second-order reaction, in 
which a = b, is proportional to 1/a; and in a third-order reaction, in which a = b = c, it is proportional to 
1/a2. The relationship between these results shows that, in general, the half-life of a reaction in which 
the concentrations of all reactants are identical is 

 
where n is the order of the reaction. Thus, if two reactions are run at different initial 
concentrations, a1 and a2, the respective half-livest1/2(2) and t1/2(2) are related as follows: 
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Table 14-2 Rate and Half-Life Equations 

or, in logarithmic form, 

 
and finally 

 
The half-lives are obtained graphically by plotting a versus t at two different initial concentrations and 
reading the time at 1/2a1 and 1/2a2. The values for the half-lives and the initial concentrations are then 
substituted into equation (14-30), from which the order n is obtained directly. Rather than using different 
initial concentrations, one can take two concentrations during a single run as a1 and a2and determine 
the half-lives t1/2(1) and t1/2(2) in terms of these. If the reaction is first order, t1/2(1) = t1/2(2) because the half-
life is independent of concentration in a first-order reaction. Then log(t1/2(1)/t1/2(2)) = log 1 = 0, and one 
can see from equation (14-30)that 

 
Complex Reactions 
Many reactions cannot be expressed by simple zero-, first-, and second-, or third-order equations. They 
involve more than one-step or elementary reactions and accordingly are known as complex reactions. 
These processes include reversible, parallel, and consecutive reactions. 

a. Reversible reaction: 

 

b. Parallel or side reactions: 
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c. Series or consecutive reactions: 

 

Reversible Reactions 
The simplest reversible reaction is one in which both the forward and the reverse steps are first-order 
processes: 

 
Although at first this equation appears to be that for an equilibrium between A and B, it must be pointed 
out that an equilibrium situation requires that the concentrations of A and B do not change with time. 
Because this expression is intended to explain a kinetic process, it must follow that the equation 
describes the approach to equilibrium. That is, the situation represented is one in which A decreases to 
form B and some 
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of the product B reverts back to A. According to this description, thenet rate at which A decreases will be 
given by the rate at which Adecreases in the forward step less the rate at which A increases in the 
reverse step: 

 
This rate law can be integrated by noting that 

 
Substitution of equation (14-32) into equation (14-31) affords, upon integration, 

 
Equation (14-33) can be simplified by introducing the equilibrium condition 

 
where 

 
Equations (14-34) and (14-35) can be used to solve for the equilibrium concentration in terms of the 
starting concentration: 

 
Use of equation (14-36) in equation (14-33) enables us to give a simple form of the rate law: 

 
or 
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Equation (14-38) has the advantage that the approach of A to equilibrium can be 

followed over a much wider range of concentrations than if an attempt is made 

to obtain the first-order rate constant, kf, in the early stages of the reaction 

when B ≈ 0. The equation corresponds to a straight line intersecting at zero and 

having a slope given by  Because the equilibrium constant of the reaction is 

given by 

 

 
both the forward and reverse rate constants can be evaluated once the slope of the line and the 
equilibrium constant have been determined. 
The tetracyclines and certain of their derivatives undergo a reversible isomerization at a pH in the range 
of 2 to 6. This isomerization has been shown to be an epimerization, resulting in epitetracyclines, which 
show much less therapeutic activity than the natural form. Considering only that part of the tetracycline 
molecule undergoing change, we can represent the transformation by the scheme 

 
The natural configuration of tetracycline has the N(CH3)2 group above the plane and the H group below 
the plane of the page. Under acidic conditions, the natural compound A is converted reversibly to 
the epi isomer B. 
McCormick et al.7 followed the epimerization of iso-7-chlorotetracycline and its epi isomer and noted 
that each isomer led to the same equilibrium distribution of isomers (Fig. 14-3). In the solvent 
dimethylformamide containing 1 M aqueous NaH2PO4 at 25°C, the equilibrium distribution consisted of 
32% iso-7-chlorotetracycline and 68% iso-7-chloro-4-epi-tetracycline, which gives an equilibrium 
constant 

 
The data used to arrive at Figure 14-3, when plotted according to equation (14-38), give the line shown 
in Figure 14-4. The slope of this line is 0.010 min-1. Because from equation (14-38) the slope Sis 

 
and from equation (14-39) 
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Fig. 14-3. Approach to equilibrium in the reversible epimerizations of iso-7-chloro-

epi-tetracycline ^—^—^ and iso-7-chlorotetracycline •—•—•. (From J. D. 

McCormick, J. R. D. et al., J. Am. Chem. Soc. 79, 2849, 1957.) 
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Fig. 14-4. Reversible epimerization of iso-7-chlorotetracycline in dimethylformamide 

containing 1 M NaH2PO4 at 25°C. 

the elimination of kf from these equations affords a value for kr. Thus, it is found that 

 
or 

 
From this value, kf is found to be 
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Parallel or Side Reactions 
Parallel reactions are common in drug systems, particularly when organic compounds are involved. 
General acid–base catalysis, to be considered later, belongs to this class of reactions. 
The base-catalyzed degradation of prednisolone will be used here to illustrate the parallel-type process. 
Guttman and Meister8investigated the degradation of the steroid prednisolone in aqueous solutions 
containing sodium hydroxide as a catalyst. The runs were carried out at 35°C, and the rate of 
disappearance of the dihydroxyacetone side chain was followed by appropriate analytic techniques. The 
decomposition of prednisolone was found to involve parallel pseudo–first-order reactions with the 
appearance of acidic and neutral steroidal products: 

 
The mechanism of the reaction can be represented as 

 
where P, A, and N are the concentrations of prednisolone, an acid product, and a neutral product, 
respectively. 
The corresponding rate equation is 

 
where k = k1 + k2. This first-order equation is integrated to give 

 
or 

 
The rate of formation of the acidic product can be expressed as 

 
Integration of equation (14-45) yields 

 
where A is the concentration of the acid product at time, t, and A0 andP0 are the initial concentrations of 
the acid and prednisolone, respectively. Actually, A0 is equal to zero because no acid is formed before 
the prednisolone begins to decompose. Therefore, 

 
Likewise, for the neutral product, 
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Equations (14-47) and (14-48) suggest that for the base-catalyzed breakdown of prednisolone, a plot of 
the concentration A or Nagainst (1 - e-kt) should yield a straight line. At t = 0, the curve should pass 
through the origin, and at t = ∞, the function should have a value of unity. The value for k, the overall 
first-order rate constant, was obtained by a plot of log[Prednisolone] against the time at various 
concentrations of sodium hydroxide. It was possible to check the validity of expression (14-47) using 
the k values that were now known for each level of hydroxide ion concentration. A plot of the acidic 
material formed against (1 - e-kt) yielded a straight line passing through the origin as predicted by 
equation (14-47). The value of k1, the rate constant for the formation of the acidic product, was then 
calculated from the slope of the line, 
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Table 14-3 Rate Constants for the Base-Catalyzed Degradation of Prednisolone 

in Air at 35°C 

NaOH (Normality) k (hr
-1

) k1 (hr
-1

) k2 (hr
-1

) 

0.01 0.108 0.090 0.018 

0.02 0.171 0.137 0.034 

0.03 0.233 0.181 0.052 

0.04 0.258 0.200 0.058 

0.05 0.293 0.230 0.063 

 

and the value of k2, the rate constant for the formation of the neutral degradation product, was obtained 
by subtracting k1 from k. The data, as tabulated by Guttman and Meister,8 are given in Table 14-3. 
The stability of hydrocortisone, 

 
was explored by Allen and Gupta9 in aqueous and oil vehicles, water-washable ointment bases, and 
emulsified vehicles in the presence of other ingredients, at elevated temperatures and at various 

Dr. Murtadha Alshareifi e-Library

602



degrees of acidity and basicity. Hydrocortisone was unstable at room temperature in aqueous vehicles 
on the basic side of neutrality; alcohol and glycerin appeared to improve the stability. The decomposition 
in water and propylene glycol was a pseudo–first-order reaction. In highly acidic and basic media and at 
elevated temperatures, the decomposition of hydrocortisone was of a complex nature, following a 
parallel scheme. 
Series or Consecutive Reactions 
Consecutive reactions are common in radioactive series in which a parent isotope decays by a first-
order process into a daughter isotope and so on through a chain of disintegrations. We take a simplified 
version of the degradation scheme of glucose as illustrative of consecutive-type reactions. The depletion 
of glucose in acid solution can be represented by the following scheme,10 where 5-HMF is 5-
hydroxymethylfurfural: 

 

 
The scheme is seen to involve all of the complex-type reactions, reversible, parallel, and consecutive 
processes. At low concentrations of glucose and acid catalyst, the formation of polysaccharides can be 
neglected. Furthermore, owing to the indefinite nature of the breakdown products of 5-HMF, these can 
be combined together and referred to simply as constituent C. The simplified mechanism is therefore 
written as the series of reactions 

 
where A is glucose, B is 5-HMF, and C is the final breakdown products. The rate of decomposition of 
glucose is given by the equation 

 
The rate of change in concentration of 5-HMF is 

 
and that of the breakdown products is 

 
When these equations are integrated and proper substitutions made, we obtain 

 

 
and 

 
By the application of equations (14-53) through (14-55), the rate constants k1 and k2 and the 
concentration of breakdown products Ccan be determined. Glucose is found to decompose by a first-
order reaction. As glucose is depleted, the concentration of 5-HMF increases rapidly at the beginning of 
the reaction and then increases at a slower rate as time progresses. The decomposition products of 5-
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HMF increase slowly at first, indicating an induction or lag period, and then increase at a greater rate. 
These later products are responsible for the discoloration of glucose solutions that occurs when the 
solutions are sterilized at elevated temperatures. 
Kinetic studies such as these have considerable practical application in pharmacy. When the 
mechanism of the breakdown of parenteral solutions is better understood, the manufacturing pharmacist 
should be able to prepare a stable product having a long shelf life. Large supplies of glucose 
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injection and similar products can then possibly be stockpiled for use in times of emergency. 
Mauger et al.11 studied the degradation of hydrocortisone hemisuccinate at 70°C over a narrow pH 
range and found the reaction to be another example of the consecutive first-order type. At pH 6.9, the 
rate constant k1 was 0.023 hr-1 and k2 was 0.50 hr-1. 
The Steady-State Approximation 
Michaelis–Menten Equation 
A number of kinetic processes cannot have their rate laws integrated exactly. In situations such as 
these, it is useful to postulate a reasonable reaction sequence and then to derive a rate law that applies 
to the postulated sequence of steps. If the postulated sequence is reasonably accurate and reflects the 
actual steps involved in the reaction, the observed kinetics for the reaction should match the curve given 
by the derived rate law. 
The steady-state approximation is commonly used to reduce the labor in deducing the form of a rate 
law. We illustrate this approximation by deriving the Michaelis–Menten equation. 
Michaelis and Menten12 assumed that the interaction of a substrate,S, with an enzyme, E, to yield a 
product, P, followed a reaction sequence given by 

 
According to this scheme, the rate of product formation is 

 
We have no easy means of obtaining the concentration of enzyme–substrate complex, so it is 
necessary that this concentration be expressed in terms of easily measurable quantities. In an enzyme 
study, we can usually measure S, P, and E0, the total concentration of enzyme. 
The rate of formation of (E · S) is 

 
or 

 
If the concentration of E·S is constant throughout most of the reaction and is always much less than the 
concentrations of S andP, we can write 

 
It follows from equations (14-58) and (14-59) that 

 
where the subscript ss is used to designate the concentration referred to as the steady-state value. 
The total concentration of enzyme, E0, is the sum of the concentrations of enzyme both free, E, and 
bound, E · S, 

 
Eliminating E from equations (14-60) and (14-61), we obtain 

 

Dr. Murtadha Alshareifi e-Library

604



or 

 
where 

 
Thus, under steady-state conditions, the rate of product formation is given by 

 
which can be recognized as the Michaelis–Menten equation. The Michaelis–Menten constant, Km, 
indicates the tendency of the enzyme–substrate complex to decompose to starting substrate or to 
proceed to product, relative to the tendency of the complex to be formed. 
It is useful to introduce a maximum velocity for the Michaelis–Menten scheme, namely (dP/dt)maximum, 
which is usually written as Vm. When S is very large, all enzyme E0 is present as E·S, that is, all enzyme 
is combined with the substrate and the reaction proceeds at maximum velocity. From equation (14-
56), dP/dt becomes Vm andVm = k3E0 because E · S is equivalent to E0. Accordingly, from equation (14-
65), 

 
Equation (14-66) can be inverted to obtain a linear expression known as the Lineweaver–Burk equation: 

 

 
From equation (14-68) we see that a plot of 1/V versus 1/S yields a straight line with an intercept on the 
vertical axis of 1/Vm and a slope of Km/Vm (Fig. 14-5). Knowing Vm from the intercept and 
obtainingKm/Vm as the slope, we can calculate Km, the Michaelis constant. 
Example 14-6 

Linear Transformations of the Michaelis–Menten Equation 

The velocity, V, of an enzymatic reaction at increasing substrate concentration [S] was 
experimentally determined to be as follows: 

V[µg/(liters min)] 0.0350 0.0415 0.0450 0.0490 0.0505 

[S] (molarity, M) 0.0025 0.0050 0.0100 0.0167 0.0333 
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Fig. 14-5. A Lineweaver–Burk plot of Michaelis–Menten kinetics showing the 

calculation of Km by two means. 

(a) Following the Lineweaver–Burk form of the Michaelis–Menten equation, plot 1/V versus 
1/[S] using the following data and calculate Vm and Km using linear regression analysis. The 
data for the Lineweaver–Burk plot and the regression analysis are as follows: 

1/V[min/(µg/liter)] 28.57 24.10 22.22 20.41 19.80 

1/[S] (liters/mole) 400 200 100 59.88 30.0 

 

(b) Extrapolate the line to the horizontal axis (x axis), where the intercept is -1/Km. Read -
1/Km as accurately as possible by eye and obtain Km as its reciprocal. Compare this value 
with that obtained by linear regression in (a). 
Answer: (a) Linear regression analysis yields 

 
(b) By extrapolation, 
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Michaelis–Menten kinetics is used not only for enzyme reactions but also for biochemical processes in 
the body involving carriers that transport substances across membranes such as blood capillaries and 
the renal tubule. It is assumed, for example, that L-tyrosine is absorbed from the nasal cavity into 
systemic circulation by a carrier-facilitated process, and Michaelis–Menten kinetics is applied to this 
case. 
Rate-Determining Step 
In a reaction sequence in which one step is much slower than all the subsequent steps leading to the 
product, the rate at which the product is formed may depend on the rates of all the steps preceding the 
slow step but does not depend on any of the steps following. The slowest step in a reaction sequence is 
called, somewhat misleadingly, the rate-determining step of the reaction. 
Consider the mechanistic pathway 

 
which can be postulated for the observed overall reaction 

 
If the concentrations of the intermediates B and D are small, we can apply the steady-state 
approximation to evaluate their steady-state concentrations. These are given by 

 
and 

 
For the rate of formation of the product, we can write 

 
or 

 
If, in the mechanistic sequence, step 3 is the slow step (the rate-determining step), we can say 
that k2 ≫ k3 C, and equation (14-69)is simplified to a second-order expression, 

 
On the other hand, if step 2, the reverse reaction, is the slow step, then k3C ≫ k2, and equation (14-
69) reduces to a first-order expression, 

 
Thus, we see that reactions may exhibit a simple first- or second-order behavior, yet the detailed 
mechanism for these reactions may be quite complex. 
Temperature Effects 
A number of factors other than concentration may affect the reaction velocity. Among these are 
temperature, solvents, catalysts, and light. This section discusses the effect of temperature covered. 
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Collision Theory 
Reaction rates are expected to be proportional to the number of collisions per unit time. Because the 
number of collisions increases as the temperature increases, the reaction rate is expected to increase 
with increasing temperature. In fact, the 
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speed of many reactions increases about two to three times with each 10° rise in temperature. As a 
reaction proceeds from reactants to products, the system must pass through a state whose energy is 
greater than that of the initial reactants. This “barrier” is what prevents the reactants from immediately 

becoming products. The activation energy, Ea, is a measure of this barrier. The effect of temperature on 
reaction rate is given by the equation, first suggested by Arrhenius, 

 

Fig. 14-6. A plot of log k against 1/T for the thermal decomposition of glucose. 

 
or 

 
where k is the specific reaction rate, A is a constant known as theArrhenius factor or the frequency 

factor, Ea is the energy of activation,R is the gas constant, 1.987 calories/deg mole, and T is the 
absolute temperature. The constants A and Ea will be considered further in later sections of the chapter. 
They can be evaluated by determining k at several temperatures and plotting 1/T against log k. As seen 
in equation (14-73), the slope of the line so obtained is -Ea/2.303 R, and the intercept on the vertical axis 
is log A, from whichEa and A can be obtained. 
Data obtained from a study of the decomposition of glucose solutions between 100°C and 140°C in the 
presence of 0.35 N hydrochloric acid are plotted in this manner in Figure 14-6.* It should be observed 
that because the reciprocal of the absolute temperature is plotted along the horizontal axis, the 
temperature is actuallydecreasing from left to right across the graph. It is sometimes advantageous to 
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plot log t1/2 instead of log k on the vertical axis. The half-life for a first-order reaction is related to k by 
equation (14-18),t1/2 = 0.693/k, and in logarithmic form 

 
Substituting equation (14-74) into equation (14-73) gives 

 
or 

 
and Ea/2.303R is obtained as the slope of the line resulting from plotting log t1/2 against 1/T. Higuchi et 
al.13 plotted the results of the alkaline hydrolysis of procaine in this manner, as shown in Figure 14-7. 
Ea can also be obtained by writing equation (14-73) for a temperature T2 as 

 
and for another temperature T1 as 

 
Subtracting these two expressions yields 

 

 

Fig. 14-7. A plot of log t1/2 against 1/T for the alkaline hydrolysis of procaine. (From 

T. Higuchi, A. Havinga, and L. W. Busse, J. Am. Pharm. Assoc. Sci. Ed. 39, 405, 

1950.) 
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Example 14-7 

Decomposition of 5-HMF 

The rate constant k1 for the decomposition of 5-hydroxymethylfurfural at 120°C (393 K) is 
1.173 hr-1 or 3.258 × 10-4 sec-1 and k2 at 140°C (413 K) is 4.860 hr-1. What is the activation 
energy, Ea, in kcal/mole and the frequency factor, A, in sec-1 for the breakdown of 5-HMF 
within this temperature range? 
We have 

 
At 120°C, using equation (14-73), we obtain 

 

Classic Collision Theory of Reaction Rates 
The Arrhenius equation is largely an empirical relation giving the effect of temperature on an observed 
rate constant. Relations of this type are observed for unimolecular and bimolecular reactions and often 
are also observed for complex reactions involving a number of bimolecular and unimolecular steps. 
Although it is extremely difficult, in most cases, to attach significance to the temperature dependence of 
complex reactions, the temperature dependence of uni- and bimolecular reactions appears to reflect a 
fundamental physical requirement that must be met for a reaction to occur. 
The manner by which temperature affects molecular motion can be understood by considering a 
hypothetical situation in which all the molecules of a substance are moving in the same direction at the 
same velocity. If a molecule deviates from its course, it will collide with another molecule, causing both 
molecules to move off in different directions with different velocities. A chain of collisions between 
molecules can then occur, which finally results in random motion of all the molecules. In this case, only 
a certain fraction of the molecules have a velocity equivalent to the initial velocity of the ordered system. 
The net result is that for a fixed number of molecules at a given temperature, and therefore at a definite 
total energy, a distribution of molecular velocities varying from zero upward is attained. Because kinetic 
energy is proportional to the square of velocity, the distribution of molecular velocities corresponds to 
the distribution of molecular energies, and the fraction of the molecules having a given kinetic energy 
can be expressed by the Boltzmann distribution law, 

 
From the Boltzmann distribution law we note that of the total number of moles, NT, of a 
reactant, Ni moles have a kinetic energy given byEi. The collision theory of reaction rates postulates that 
a collision must occur between molecules for a reaction to occur and, further, that a reaction between 
molecules does not take place unless the molecules are of a certain energy. By this postulate, the rate 
of a reaction can be considered proportional to the number of moles of reactant having sufficient energy 
to react, that is, 

 
The proportionality constant in this relation is divided into two terms: the collision number, Z, which for a 
reaction between two molecules is the number of collisions per second per cubic centimeter, and the 
steric or probability factor, P, which is included to take into account the fact that not every collision 
between molecules leads to reaction. That is, P gives the probability that a collision between molecules 
will lead to product. 
Substituting for Ni in equation (14-76) yields 

 
which, when compared with the general rate law 

 
leads to the conclusion that 
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Thus, collision-state theory interprets the Arrhenius factor A in terms of the frequency of collision 
between molecules, 

 
and the Arrhenius activation energy, Ea, as the minimum kinetic energy a molecule must possess in 
order to undergo reaction, 

 
Yang14 showed the error possible in determining the activation energy, Ea, and the predicted shelf life 
when the kinetic order in an accelerated stability test is incorrectly assigned, for example, when an 
actual zero-order reaction can equally well be described by a first-order degradation. 
Q10 Calculations 
In an excellent reference text for pharmacists, Connors et al.1described a straightforward calculation 
that facilitates a practical understanding of temperature effects. Using this method, one can estimate the 
effect of a 10° rise in temperature on the stability of pharmaceuticals. Just as was done in Example 14-
7, this so-calledQ10 method relies on the ratio of reaction rate constants at two different temperatures. 
The quantity Q10 was originally defined by Simonelli and Dresback15 as 

 
Q10 is the factor by which the rate constant increases for a 10°C temperature increase. The Q10 factor 
can be calculated from the following equation: 
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If the activation energy is known, the corresponding Q10 value can be obtained from equation (14-83). 
The Q10 approximation method is useful for making quick approximations. As noted by Connors et 
al.,1the activation energies for drug decompositions usually fall in the range of 12 to 24 kcal/mole, with 
typical values 19 to 20 kcal/mole. To make approximations when Ea is unknown, it is reasonable to use 
these typical values to calculate Q10 values. For example, using Equation (14-83), we have Q10 = 2, 3, 
and 4 when Ea = 12.2, 19.4, and 24.5, respectively, when the temperature rises from 20°C to 30°C. This 
simple calculation demonstrates that the degradation rate of most pharmaceutical agents will increase 
by two to four times, with an average of three times, for a 10°C rise in temperature in a range (from 
20°C to 30°C) that typical consumers will experience. The more advanced student may be interested in 
generalizing the Q10 approach to estimate the effect of increasing or decreasing the temperature by 
variable amounts. To do this, use the following equation: 

 
Example 14-8 

Effect of Temperature Increase/Decrease on Rate Constants 

Calculate the factors by which rate constants may change for (a) a 25°C to 50°C temperature 
change and (b) a 25°C to 0°C temperature change. 
Answer: 

a. Using equation (14-84), with ΔT = +25, we obtain 

 

Thus, the rate increases between 6-fold and 32-fold, with a probable average 
increase of about 16-fold. 
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b. When ΔT = -1, we have 

 

Thus, the rate decreases to between 1/6 and 1/32 of the initial rate. 

Shelf-Life Calculations 
The following examples illustrate situations that pharmaceutical scientists and practicing pharmacists 
are likely to encounter. 
Example 14-9 

Increased Shelf Life of Aspirin (Connors et al.,1 pp. 12–18) 
Aspirin is most stable at pH 2.5. At this pH the apparent first-order rate constant is 5 × 10-

7 sec-1 at 25°C. The shelf life of aspirin in solution under these conditions can be calculated as 
follows: 

 
As one can see, aspirin is very unstable in aqueous solution. Would making a suspension 
increase the shelf life of aspirin? 
The solubility of aspirin is 0.33 g/100 mL. At pH 2.5, the apparent zero-order rate constant for 
an aspirin suspension is 

 
If one dose of aspirin at 650 mg per teaspoonful is administered, then one has 650 mg/5 mL = 
13 g/100 mL. 
For this aspirin suspension, 

 
The increase in the shelf life of suspensions as compared to solutions is a result of the 
interplay between the solubility and the stability of the drug. In the case of aspirin, the solid 
form of the drug is stable, whereas when aspirin is in solution it is unstable. As aspirin in 
solution decomposes, the solution concentration is maintained as additional aspirin dissolves 
up to the limit of its aqueous solubility. 

Example 14-10 

How Long Can a Product Be Left Out at Room Temperature? 

Reconstituted ampicillin suspension is stable for 14 days when stored in the refrigerator 
(5°C). If the product is left at room temperature for 12 hr, what is the reduction in the 
expiration dating? 
To solve this problem we must use the following equation: 

 
The estimate of t90(T2) is independent of order. In other words, it is not necessary to know the 
reaction order to make this estimate. 

Other Factors—A Molecular Viewpoint 
Transition-State Theory 
An alternative to the collision theory is the transition-state theory or absolute rate theory, according to 
which an equilibrium is considered to exist between the normal reactant molecules and an activated 
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complex of these molecules. Decomposition of the activated complex leads to product. For an 
elementary bimolecular process, the reaction can be written as 

 
A double dagger is used to designate the activated state, namely [A … B]‡. 
The rate of product formation in this theory is given by 

 
where v is the frequency with which an activated complex goes to product. Because an equilibrium 
exists between the 
P.333 
 
reactants and the activated complex, 

 
and this expression can be rearranged to 

 
Hence, 

 
The general rate law for a bimolecular reaction is 

 
so it follows that 

 
It will be recalled from previous thermodynamic considerations that 

 
or 

 
and 

 
Replacing the ordinary K for present purposes with K‡ and making similar substitutions for the 

thermodynamic quantities, we obtain 

 
and 

 
where ΔG‡, ΔS‡, and ΔH‡ are the respective differences between the standard free energy, entropy, 

and enthalpy in the transition state and in the normal reactant state. 
In this theory, the Arrhenius factor A is related to the entropy of activation of the transition state: 

 
and the Arrhenius activation energy, Ea, is related to the entropy of activation of the transition state: 

 
For most practical purposes, ΔV‡ = 0; hence, 

 
In principle, the transition-state theory gives the influence of temperature on reaction rates by the 
general equation 

 
where the frequency of decomposition of the transition-state complex, v, may vary depending on the 
nature of the reactants. Eyring16 showed that the quantity v can be considered, to a good 
approximation, as a universal factor for reactions, depending only on temperature, and that it can be 
written as 
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where R is the molar gas constant, T is the absolute temperature, Nis Avogadro's number, and h is 
Planck's constant. The factor RT/Nhhas a value of about 1012 to 1013 sec-1 at ordinary temperatures (~2 
× 1010 T). In many unimolecular gas reactions in which ΔS‡ is zero so that eΔS‡/R = 1, the rate constant 
ordinarily has a value of about 1013

e
-E

a
/RT, or 

 
When the rate deviates from this value, it can be considered as resulting from the eΔS‡/R factor. When 
the activated complex represents a more probable arrangement of molecules than found in the normal 
reactants, ΔS‡ is positive and the reaction rate will be greater than normal. Conversely, when the 
activated complex results only after considerable rearrangement of the structure of the reactant 
molecules, making the complex a less probable structure, ΔS‡ is negative, and the reaction will be 
slower than predicted from equation (14-103). The collision theory and the transition-state theory are 
seen to be related by comparing equations (14-80), (14-98), and (14-102). One concludes that 

 
The collision number, Z, is identified with RT/Nh and the probability factor, P, with the entropy term 
ΔS

‡/R. 
Example 14-11 

Acid-Catalyzed Hydrolysis of Procaine 

In the study of the acid-catalyzed hydrolysis of procaine, Marcus and Baron17 obtained the 
first-order reaction rate, k, from a plot of log c versus t and the activation energy, Ea, from an 
Arrhenius plot of log k versus 1/T. The values were k= 38.5 × 10-6 sec-1 at 97.30°C and Ea = 
16.8 kcal/mole. 
Compute ΔS‡ and the frequency factor, A, using equations (14-97) and (14-98), and the 
probability factor P. It is first necessary to obtain RT/Nh at 97.30°C or about 371 K: 

 
Then, from equation (14-97), in which 

 
and from equation (14-98), 

 
Finally, from the discussion accompanying equation (14-104), 
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Marcus and Baron17 compared the kinetics of the acid-catalyzed hydrolyses of procainamide, procaine, 
and benzocaine. They found that the frequency factors for procainamide and procaine were 
considerably lower than the values expected for compounds of this type. Procainamide and procaine are 
diprotonated species in acid solution, that is, they have taken on two protons, and hydrolysis in the 
presence of an acid involves the interaction of positively charged ions, namely the diprotonated procaine 
molecule and the hydronium ion: 
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According to these authors, the two positively charged protonated centers on the procaine molecule 
exert a considerable repulsive effect on the attacking hydronium ions. This repulsion results in a low 
frequency factor. The ΔS‡ is unusually negative (Example 14-8) perhaps for the following reason. When 
the third proton finally attaches itself, the activated complex that results is a highly charged ion. The 
activated molecule is markedly solvated, reducing the freedom of the solvent and decreasing the 
entropy of activation. This effect also tends to lower the frequency factor. 
Medium Effects: Solvent, Ionic Strength, Dielectric Constant 
Effect of the Solvent 
The influence of the solvent on the rate of decomposition of drugs is a topic of great importance to the 
pharmacist. Although the effects are complicated and generalizations cannot usually be made, it 
appears that the reaction of nonelectrolytes is related to the relative internal pressures or solubility 
parameters of the solvent and the solute. The effects of the ionic strength and the dielectric constant of 
the medium on the rate of ionic reactions are also significant and will be discussed in subsequent 
sections. 
Solutions are ordinarily nonideal, and equation (14-88) should be corrected by including activity 
coefficients. For the bimolecular reaction, 

 
the thermodynamic equilibrium constant should be written in terms of activities as 

 
where a‡ is the activity of the species in the transition state and aAand aB are the activities of the 
reactants in their normal state. Then the following expressions, analogous to equations (14-87) and (14-
90), are obtained: 

 
or 

 
or 

 
where k0 = RTK‡/Nh is the rate constant in an infinitely dilute solution, that is, one that behaves ideally. 
It will be recalled from previous chapters that the activity coefficients may relate the behavior of the 
solute in the solution under consideration to that of the solute in an infinitely dilute solution. When the 
solution is ideal, the activity coefficients become unity and k0 = k in equation (14-107). This condition 
was tacitly assumed in equation (14-90). 
Now, the activity coefficient Δ2 of a not too highly polar nonelectrolytic solute in a dilute solution is given 
by the expression 

 
where V2 is the molar volume of the solute and Δ1 and Δ2 are the solubility parameters for the solvent 
and solute, respectively. The volume fraction term, F2, is assumed here to have a value of unity. 
Writing equation (14-107) in logarithmic form, 
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and substituting for the activity coefficients from (14-108) gives 

 
where VA, VB, V‡, and the corresponding δA, δB, and δ‡ are the molar volumes and solubility parameters 

of reactant A, reactant B, and the activated complex (A ··· B)‡, respectively. The quantity Δ1 is the 
solubility parameter of the solvent. 
Thus, it is seen that the rate constant depends on the molar volumes and the solubility parameter terms. 
Because these three squared terms, (δ1 - δA)2, (δ1 - δB)2, and (δ1 - δ‡)2 represent the differences 
between solubility parameters or internal pressures of the solvent and the reactants, and the solvent and 
the activated complex, they can be symbolized, respectively, as ΔδA, ΔδB, and Δδ‡. The molar volumes 

do not vary significantly, and the rate constant therefore depends primarily on the difference between 
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(ΔδA + ΔδB) and Δδ‡. This is readily seen by writing equation (14-110) as 

 
It is assumed that the properties of the activated complex are quite similar to those of the products so 
that Δδ‡ can be taken as a squared term expressing the internal pressure difference between the 
solvent and the products. This equation indicates that if the internal pressure or “polarity” of the products 

is similar to that of the solvent, so that Δδ‡ [congruent] 0, and the internal pressures of the reactants are 
unlike that of the solvent, so that ΔδA and ΔδB > 0, then the rate will be large in this solvent relative to 
the rate in an ideal solution. If, conversely, the reactants are similar in “polarity” to the solvent so that 

ΔδA and ΔδB [congruent] 0, whereas the products are not similar to the solvent, that is, Δδ‡ > 0, then 

(ΔδA + ΔδB) - Δδ‡ will have a sizable negative value and the rate will be small in this solvent. 
As a result of this analysis, it can be said that polar solvents, those with high internal pressures, tend to 
accelerate reactions that form products having higher internal pressures than the reactants. If, on the 
other hand, the products are less polar than the reactants, they are accelerated by solvents of low 
polarity or internal pressure and retarded by solvents of high internal pressure. To illustrate this 
principle, we can use the reaction between ethyl alcohol and acetic anhydride: 

 
The activated complex, resembling ethyl acetate, is less polar than the reactants, and, accordingly, the 
reaction should be favored in a solvent having a relatively low solubility parameter. The rate constants 
for the reaction in various solvents are given in Table 14-4together with the solubility parameters of the 
solvents.18 The reaction slows down in the more polar solvents as predicted. 
Influence of Ionic Strength 
In a reaction between ions, the reactants A and B have charges zAand zB, respectively, and the 
activated complex (A ··· B)‡ has a charge of zA + zB. A reaction involving ions can be represented as 

 

Table 14-4 Influence of Solvents on rate Constants 
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Solvent Solubility Parameter, δ k at 50°C 

Hexane 7.3 0.0119 

Carbon tetrachloride 8.6 0.0113 

Chlorobenzene 9.5 0.0053 

Benzene 9.2 0.0046 

Chloroform 9.3 0.0040 

Nitrobenzene 10.0 0.0024 

 

The activity coefficient, γi, of an ion in a dilute aqueous solution (<0.01 M) at 25°C is given by the 
Debye–Hückel equation as 

 
where µ is the ionic strength. Therefore, we can write 

 
Substituting into equation (14-109) results in the expression, at 25°C, 

 
where k0 is the rate constant in an infinitely dilute solution in which µ= 0. It follows from equation (14-
113) that a plot of log k against √µ should give a straight line with a slope of 1.02zAzB. If one of the 
reactants is a neutral molecule, zAzB = 0, and the rate constant, as seen from equation (14-113), should 
then be independent of the ionic strength in dilute solutions. Good agreement has been obtained 
between experiment and theory as expressed by equation(14-113). 
If the reacting molecules are uncharged in a solution having a reasonable ionic strength, the rate 
expression is 

 
where b is a constant obtained from experimental data. Carstensen19 considered the various ionic 
strength effects in pharmaceutical solutions. 
Influence of Dielectric Constant 
The effect of the dielectric constant on the rate constant of an ionic reaction, extrapolated to infinite 
dilution where the ionic strength effect is zero, is often a necessary piece of information in the 
development of new drug preparations. One of the equations by which this effect can be determined is 

 
where kε = ∞ is the rate constant in a medium of infinite dielectric constant, N is Avogadro's 
number, zA and zB are the charges on the two ions, e is the unit of electric charge, r‡ is the distance 

between ions in the activated complex, and ε is the dielectric constant of the solution, equal 
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approximately to the dielectric constant of the solvent in dilute solutions. The term ln kε = ∞ is obtained by 
plotting ln kagainst 1/ε and extrapolating to 1/ε = 0, that is, to ε = ∞. Such a plot, according to 

equation (14-115), should yield a straight line with a positive slope for reactant ions of opposite sign and 
a negative slope for reactants of like sign. For a reaction between ions of opposite sign, an increase in 
dielectric constant of the solvent results in a decrease in the rate constant. For ions of like charge, on 
the other hand, an increase in dielectric constant results in an increase in the rate of the reaction. 
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When a reaction occurs between a dipole molecule and an ion A, the equation is 

 
where zA is the charge on the ion A, rA is the radius of the ion, and r‡ is the radius of the activated 

complex. Equation (14-116) predicts that a straight line should be obtained when ln k is plotted against 
1/ε, the reciprocal of the dielectric constant. Because r‡, the radius of the combined ion and neutral 

molecule in the transition state, will be larger than rA, the radius of the ion, the second term on the right 
side of the equation will always be positive, and the slope of the line will consequently be positive. 
Therefore, ln k will increase with increasing values of 1/ε, that is, the rate of reaction between an ion and 

a neutral molecule will increase with decreasing dielectric constant of the medium. This relationship, 
however, does not hold if different solvents are used or if the solutions are not dilute, in which case ionic 
strength effects become significant. 
The orientation of the solvent molecules around the solute molecules in solution will result in an effect 
that has not been accounted for in the equations given previously. When a solvent mixture is composed 
of water and a liquid of low dielectric constant, water molecules will be oriented about the ions in 
solution, and the dielectric constant near the ion will be considerably greater than that in the bulk of the 
solution. Thus, when ln k is plotted against the reciprocal of the dielectric constant of the solvent 
mixture, deviations from the straight line predicted by equations (14-115) and (14-116)will frequently 
result. 
A number of studies relating the dielectric constant of the solvent medium to the rate of reactions have 
been undertaken. Several investigations involving compounds of pharmaceutical interest are briefly 
reviewed here. 
Amis and Holmes20 studied the effect of the dielectric constant on the acid inversion of sucrose. When 
the dielectric constant was reduced by adding dioxane to the aqueous solvent, the rate of the reaction 
was found to increase in accord with the theory of ion–dipole reactions as expressed by equation (14-
116). 
To determine the effect of dielectric constant on the rate of glucose decomposition in acidic solution, 
Heimlich and Martin10 carried out tests in dioxane–water mixtures. The results shown in Table 14-5are 
those expected for a reaction between a positive ion and a dipole molecule. As observed in the table, 
the dielectric constant of the medium should be an important consideration in the stabilization of glucose 
solutions because replacing water with a solvent of lower dielectric constant markedly increases the rate 
of breakdown of glucose. Marcus and Taraszka21 studied the kinetics of the hydrogen-ion–catalyzed 
degradation of the antibiotic chloramphenicol in water–propylene glycol systems. The decrease in 
dielectric constant resulted in an increase in the rate of the reaction, a finding that agrees with the 
requirements for an ion–dipole reaction. 

Table 14-5 Decomposition of 0.278 m Solutions of Glucose at pH 1.27 and 100°C 

in Dioxane–Water Mixtures* 
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Dioxane (% by 

Weight) 

Dielectric Constant of the 

Solvent at 100°C 

Rate 

Constantk(×10
5
 hr

-1
) 

0 55 4.58 

9.98 48 4.95 

29.74 35 6.34 

49.32 22 10.30 

*Dioxane is toxic and cannot be used in pharmaceutical preparations. 

 

These findings have considerable pharmaceutical significance. The replacement of water with other 
solvents is often used in pharmacy as a means of stabilizing drugs against possible hydrolysis. The 
results of the investigations reviewed here suggest, however, that the use of a solvent mixture of 
lowered dielectric constant actually may increase rather than decrease the rate of decomposition. On 
the other hand, as pointed out by Marcus and Taraszka,21 a small increase in decomposition rate due 
to the use of nonaqueous solvents may be outweighed by enhancement of solubility of the drug in the 
solvent of lower dielectric constant. Thus, there is a need for thorough kinetic studies and cautious 
interpretation of the results before one can predict the optimum conditions for stabilizing drug products. 
Catalysis: Specific and General Acid–Base and pH Effects 
As already noted, the rate of a reaction is frequently influenced by the presence of a catalyst. Although 
the hydrolysis of sucrose in the presence of water at room temperature proceeds with a decrease in free 
energy, the reaction is so slow as to be negligible. When the hydrogen ion concentration is increased by 
adding a small amount of acid, however, inversion proceeds at a measurable rate. 
A catalyst is therefore defined as a substance that influences the speed of a reaction without itself being 
altered chemically. When a catalyst decreases the velocity of a reaction, it is called a negative catalyst. 
Actually, negative catalysts often may be changed permanently during a reaction and should be 
called inhibitors rather than catalysts. 
Because a catalyst remains unaltered at the end of a reaction, it does not change the overall ΔG° of the 
reaction, and, hence, according to the relationship 

 
it cannot change the position of the equilibrium of a reversible reaction. The catalyst increases the 
velocity of the reverse reaction to the same extent as the forward reaction so that although the 
equilibrium is reached more quickly in the presence of the catalyst, the equilibrium constant, 

 
remains the same and the product yield is not changed. 
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Catalysis is considered to operate in the following way. The catalyst combines with the reactant known 
as the substrate and forms an intermediate known as a complex, which then decomposes to regenerate 
the catalyst and yield the products. In this way, the catalyst decreases the energy of activation by 
changing the mechanism of the process, and the rate is accordingly increased. 

Dr. Murtadha Alshareifi e-Library

619



Alternatively, a catalyst may act by producing free radicals such as H3, which 

bring about fast chain reactions. Chain reactions are reactions consisting of a 

series of steps involving free atoms or radicals that act as intermediates. The 

chain reaction is begun by an initiating step and stopped by a chain-breaking or 

terminating step. Negative catalysts, or inhibitors, frequently serve as chain 

breakers in such reactions. Antiknock agents act as inhibitors in the explosive 

reactions attending the combustion of motor fuels. 

 

Catalytic action may be homogeneous or heterogeneous and may occur in either the gaseous or the 
liquid state. Homogeneous catalysis occurs when the catalyst and the reactants are in the same phase. 
Acid–base catalysis, the most important type of homogeneous catalysis in the liquid phase, will be 
discussed in some detail in the next section. 
Heterogeneous catalysis occurs when the catalyst and the reactants form separate phases in the 
mixture. The catalyst may be a finely divided solid such as platinum or it may be the walls of the 
container. The catalysis occurs at the surface of the solid and is therefore sometimes known as contact 

catalysis. The reactant molecules are adsorbed at various points or active centers on the rough surface 
of the catalyst. Presumably, the adsorption weakens the bonds of the reactant molecules and lowers the 
activation energy. The activated molecules then can react, and the products diffuse away from the 
surface. 
Catalysts may be poisoned by extraneous substances that are strongly adsorbed at the active centers of 
the catalytic surface where the reactants would normally be held during reaction. Carbon monoxide is 
known to poison the catalytic action of copper in the hydrogenation of ethylene. Other substances, 
known as promoters, are found to increase the activity of a catalyst. For example, cupric ions promote 
the catalytic action of ferric ions in the decomposition of hydrogen peroxide. The exact mechanism of 
promoter action is not understood, although the promoter is thought to change the properties of the 
surface so as to enhance the adsorption of the reactants and thus increase the catalytic activity. 
Specific Acid–Base Catalysis 
Solutions of a number of drugs undergo accelerated decomposition on the addition of acids or bases. If 
the drug solution is buffered, the decomposition may not be accompanied by an appreciable change in 
the concentration of acid or base so that the reaction can be considered to be catalyzed by hydrogen or 
hydroxyl ions. When the rate law for such an accelerated decomposition is found to contain a term 
involving the concentration of hydrogen ion or the concentration of hydroxyl ion, the reaction is said to 
be subject to specific acid–base catalysis. 
As an example of specific acid–base catalysis, consider the pH dependence for the hydrolysis of esters. 
In acidic solution, we can consider the hydrolysis to involve an initial equilibrium between the esters and 
a hydrogen ion followed by a rate-determining reaction with water, R: 

 
This general reaction scheme assumes that the products, P, of the hydrolysis reaction do not recombine 
to form ester. 
For the generalized reaction, the rate of product formation is given by 
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The concentration of the conjugate acid, SH+, can be expressed in terms of measurable quantities 
because the pre-equilibrium requires that 

 
Thus, 

 
and it follows that 

 
Because water, R, is present in great excess, equation (14-120)reduces to the apparent rate law 

 
where 

 
The hydrogen ion concentration term in equation (14-121) indicates that the process is a specific 
hydrogen-ion–catalyzed reaction. 
By studying the acid-catalyzed hydrolysis of an ester at various concentrations of hydrogen ion, that is, 
by hydrolyzing the ester in buffer solutions of differing pH, we can obtain a rate–pH profile for the 
reaction. At a given pH, an apparent first-order reaction is observed: 

 
where 

 
Taking logarithms of equation (14-124) gives 

 
or, equivalently, 

 
We finally arrive at the expression 
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Thus, a plot of log kobs against the pH of the solution in which the reaction is run gives a line of slope 
equal to -1. 
Consider now the specific hydroxide-ion–catalyzed decomposition of an ester, S. We can write the 
general reaction as 

 
and the rate of product, P, formation is therefore given by 

 
Under buffer conditions, an apparent first-order reaction is again observed: 

 
where now 

 
or, because 

 

 
Taking the logarithm of equation (14-132), 

 
we find that 
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In this case, a plot of log kobs against pH should be linear with a slope equal to +1. 
Figure 14-8 shows the rate–pH profile for the specific acid–base–catalyzed hydrolysis of methyl-dl-o-
phenyl-2-piperidylacetate.22 Note that an increase in pH from 1 to 3 results in a linear decrease in rate, 
as expected from equation (14-127), for specific hydrogen ion catalysis, whereas a further increase in 
pH from about 3 to 7 results in a linear increase in rate, as expected from equation (14-134), for specific 
hydroxide ion catalysis. Near pH 3, a minimum is observed that cannot be attributed to either hydrogen 
ion or hydroxyl ion participation in the reaction. This minimum is indicative of a solvent catalytic effect, 
that is, un-ionized water may be considered as the reacting species. Because of the pH independence 
of this reaction, the rate law is given by 

 

Fig. 14-8. Rate–pH profile for the specific acid–base–catalyzed hydrolysis of methyl-

dl-o-phenyl-2-piperidylacetate. (From S. Siegel, L. Lachmann, and L. Malspeis, J. 

Pharm. Sci. 48,431, 1959. With permission.) 

 
so that 

 
Sometimes a minimum plateau extends over a limited pH region, indicating that solvent catalysis is the 
primary mode of reaction in this region. 
Solvent catalysis may occur simultaneously with specific hydrogen ion or specific hydroxide ion 
catalysis, especially at pH values that are between the pH regions in which definitive specific ion and 
solvent catalytic effects are observed. Because each catalytic pathway leads to an increase in the same 
product, the rate law for this intermediate pH region can be written as: 

 
or 

 
depending, respectively, on whether the pH is slightly lower or slightly higher than that for the solvent 
catalyzed case. 
We can now summarize the pH dependence of specific acid–base–catalyzed reactions in terms of the 
general rate law, 
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for which 

 
At low pH, the term k1[H+] is greater than k0 or k2[OH-] because of the greater concentration of hydrogen 
ions, and specific hydrogen ion catalysis is observed. Similarly, at high pH, at which the concentration of 
[OH-] is greater, the term k2[OH-] outweighs the k0and k1[H+] terms, and specific hydroxyl ion catalysis is 
observed. When the concentrations of H+ and OH- are low, or if the productsk1[H+] and k2[OH-] are small 
in value, only k0 is important, and the reaction is said to be solvent catalyzed. If the pH of the reaction 
medium is slightly acidic so that k0 and k1[H+] are important andk2[OH-] is negligible, both solvent and 
specific hydrogen ion catalysis operate simultaneously. A similar result is obtained when the pH of the 
medium is slightly alkaline, a 
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condition that could allow concurrent solvent and specific hydroxide ion catalysis. 
General Acid–Base Catalysis 
In most systems of pharmaceutical interest, buffers are used to maintain the solution at a particular pH. 
Often, in addition to the effect of pH on the reaction rate, there may be catalysis by one or more species 
of the buffer components. The reaction is then said to be subject to general acid or general base 

catalysis depending, respectively, on whether the catalytic components are acidic or basic. 
The rate–pH profile of a reaction that is susceptible to general acid–base catalysis exhibits deviations 
from the behavior expected on the basis of equations (14-127) and (14-134). For example, in the 
hydrolysis of the antibiotic streptozotocin, rates in phosphate buffer exceed the rate expected for specific 
base catalysis. This effect is due to a general base catalysis by phosphate anions. Thus, the alkaline 
branch of the rate–pH profile for this reaction is a line whose slope is different from 1 (Fig. 14-9).23 
Other factors, such as ionic strength or changes in the pKa of a substrate, may also lead to apparent 
deviations in the rate–pH profile. Verification of a general acid or general base catalysis may be made 
by determining the rates of degradation of a drug in a series of buffers that are all at the same pH (i.e., 
the ratio of salt to acid is constant) but that are prepared with an increasing concentration of buffer 
species. Windheuser and Higuchi,24 using acetate buffer, found that the degradation of thiamine is 
unaffected at pH 3.90, where the buffer is principally acetic acid. At higher pH values, however, the rate 
increases in direct proportion to the concentration of acetate. In this case, acetate ion is the general 
base catalyst. 
Webb et al.25 demonstrated the general catalytic action of acetic acid, sodium acetate, formic acid, and 
sodium formate in the decomposition of glucose. The equation for the overall rate of decomposition of 
glucose in water in the presence of acetic acid, HAc, and its conjugate base, Ac-, can be written as 
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Fig. 14-9. Rate–pH profile of a reaction susceptible to general base catalysis. (From 

E. R. Garrett, J. Pharm. Sci. 49, 767, 1960. With permission.) 

 
where [G] is the concentration of glucose, k0 is the specific reaction rate in water alone, and the 
other k values, known as catalytic coefficients, represent the specific rates associated with the various 
catalytic species. The overall first-order rate constant, k, which involves all effects, is written as follows: 

 
or, in general, 

 
where ci is the concentration of the catalytic species i, and ki is the corresponding catalytic coefficient. In 
reactions in which only specific acid–base effects occur, that is, in which only [H+] and [OH-] act as 
catalysts, the equation is 

 
Example 14-12 

Catalytic Coefficient of Glucose Decomposition 

A sample of glucose was decomposed at 140°C in a solution containing 0.030 M HCl. The 
velocity constant, k, was found to be 0.0080 hr-1. If the spontaneous rate constant, k0, is 
0.0010 hr-1, compute the catalytic coefficient, kH. The catalysis due to hydroxyl ions in this 
acidic solution can be considered as negligible. The data are substituted in equation (14-144): 

 

In 1928, Brönsted26 showed that a relationship exists between the catalytic power as measured by the 
catalytic coefficients and the strength of general acids and bases as measured by their dissociation 
constants. The catalytic coefficient for a weak acid is related to the dissociation constant of the acid by 
the expression 

 
and the corresponding equation for catalysis by a weak base is 

 
Here Ka is the dissociation constant of the weak acid, and a, b, α, and β are constants for a definite 
reaction, solvent, and temperature. From this relationship, the catalytic effect of a Brönsted–Lowry acid 
or base on the specific reaction rate can be predicted if the dissociation constant of the weak electrolyte 
is known. The relationships in equations (14-145) and (14-146) hold because both the catalytic power 
and the dissociation constant of a weak electrolyte depend on the ability of a weak acid to donate a 
proton or a weak base to accept a proton. 
P.340 
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Fig. 14-10. Rate–pH profile for the hydrolysis of acetylsalicylic acid at 17°C. (From I. 

J. Edwards, Trans. Faraday Soc. 46, 723, 1950.) 

Noncatalytic salts can affect the rate constant directly through their influence on ionic strength as 
expressed by equation (14-113). Second, salts also affect the catalytic action of some weak electrolytes 
because, through their ionic strength effect, they change the classic dissociation constant, Ka, of 
equations (14-145) and (14-146). These two influences, known respectively as 
the primary andsecondary salt effects, are handled in a kinetic study by carrying out the reaction under 
conditions of constant ionic strength, or by obtaining a series of k values at decreasing ionic strengths 
and extrapolating the results to µ = 0. 
An interesting rate–pH profile is obtained for the hydrolysis of acetylsalicylic acid (Fig. 14-10). In the 
range of pH from 0 to about 4, there is clearly specific acid–base catalysis and a pH-independent 
solvolysis, as first reported by Edwards.27 Above pH 4, there is a second, pH-independent region, the 
plateau extending over at least 3 pH units. Fersht and Kirby28 and others have provided suggestions for 
the presence of this plateau. 
The hydrolysis of hydrochlorothiazide, 
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Fig. 14-11. The pH profile for the hydrolysis of hydrochlorothiazide. (From J. A. 

Mollica, C. R. Rohn, and J. B. Smith, J. Pharm. Sci. 58, 636, 1969. With permission.) 

was studied by Mollica et al.29 over a pH range from 1 to 13. The reaction was found to be reversible, 
the fraction that had reacted at equilibrium, Xe, being about 0.4. The pH profile provides a complex 
curve (Fig. 14-11), indicating multiple steps and an intermediate involved in the reaction. 
Stability of Pharmaceuticals 
Decomposition and Stabilization of Medicinal Agents 
Pharmaceutical decomposition can be classified as hydrolysis, oxidation, isomerization, epimerization, 
and photolysis, and these processes may affect the stability of drugs in liquid, solid, and semisolid 
products. Mollica et al.30 reviewed the many effects that the ingredients of dosage forms and 
environmental factors may have on the chemical and physical stability of pharmaceutical preparations. 
Hou and Poole31 investigated the kinetics and mechanism of hydrolytic degradation of ampicillin in 
solution at 35°C and 0.5 ionic strength. The decomposition observed over a pH range of 0.8 to 10.0 
followed first-order kinetics and was influenced by both specific and general acid–base catalysis. The 
pH–rate profile exhibited maximum stability in buffer solutions at pH 4.85 and in nonbuffered solutions at 
pH 5.85. The degradation rate is increased by the addition of various carbohydrates such as sucrose to 
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the aqueous solution of ampicillin.32 The Arrhenius plot shows the activation energy, Ea, to be 18 
kcal/mole at pH 5 for the hydrolysis of ampicillin. 
Alcohol is found to slow slow hydrolysis because of the decrease in the dielectric constant of the 
solvent. The half-life for the degradation of ampicillin in an acidified aqueous solution at 35°C is 8 hr; in 
a 50% alcohol solution the half-life is 13 hr. 
P.341 
 
 
Higuchi et al.33 reported that chloramphenicol decomposed through hydrolytic cleavage of the amide 
linkage according to the reaction. 

 
The rate of degradation was low and independent of pH between 2 and 7 but was catalyzed by general 
acids and bases, including HPO4

2- ions, undissociated acetic acid, and a citrate buffer. Its maximum 
stability occurs at pH 6 at room temperature, its half-life under these conditions being approximately 3 
years. Below pH 2 the hydrolysis of chloramphenicol is catalyzed by hydrogen ions. In alkaline solution 
the breakdown is affected by both specific and general acid–base catalysis.34 
The activation energy for the hydrolysis at pH 6 is 24 kcal/mole, and the half-life of the drug at pH 6 and 
25°C is 2.9 years. 
Beijnen et al.35 investigated the stability of doxorubicin, 

 
in aqueous solution using a stability-indicating high-performance liquid chromatographic assay 
procedure. Doxorubicin has been used with success against various human neoplasms for the last 20 
years. The decomposition of the drug has not been studied in depth because it presents difficulties in 
analysis. It chelates with metal ions, self-associates in concentrated solutions, adsorbs to surfaces such 
as glass, and undergoes oxidative and photolytic decomposition. 
Beijnen and associates35 studied the degradation kinetics of doxorubicin as a function of pH, buffer 
effects, ionic strength, temperature, and drug concentration. The decomposition followed pseudo–first-
order kinetics at constant temperature and ionic strength at various pH values. The pH–rate profile 
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showed maximum stability of the drug at about pH 4.5. Some study was made of the degradation in 
alkaline solution, other systematic work having been done only with degradation of doxorubicin in acid 
solution below pH 3.5. Work has also been reported on the stability of doxorubicin infusions used in 
clinical practice. 
Steffansen and Bundgaard36 studied the hydrolysis of erythromycin and erythromycin esters in aqueous 
solution: 

 
Erythromycin is an antibiotic that acts against gram-positive and some gram-negative bacteria. It has the 
disadvantage of degradation in an acidic environment, as found in the stomach; various methods have 
been suggested to protect the drug as it passes through the gastrointestinal tract. Most recent among 
these protective actions is the conversion of erythromycin into esters at the 2′ position. These are known 

as prodrugs because they are inactive until erythromycin is released from the esters by enzymatic 
hydrolysis in the body. 
Vinckier et al.37 studied the decomposition kinetics of erythromycin as a function of buffer type and 
concentration, ionic strength, pH, and temperature. Erythromycin was found to be most stable in a 
phosphate buffer and least stable in a sodium acetate buffer. Changes in ionic strength showed only a 
negligible effect on the kinetics of erythromycin. Log k–pH profiles were obtained over the pH range of 
about 2 to 5 and showed linearity with a slope of approximately 1, indicating specific acid catalysis in the 
decomposition of erythromycin at 22°C. Specific base catalysis occurs at higher pH values. 
Erythromycin base is most stable at pH 7 to 7.5.38 
Atkins et al.39 also studied the kinetics of erythromycin decomposition in aqueous acidic and neutral 
buffers. They concluded that pH is the most important factor in controlling the stability of erythromycin A 
in acidic aqueous solutions. 

 
P.342 
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The degradation of mitomycin C in acid solution was studied by Beijnen and Underberg.40 Mitomycin C 
shows both strong antibacterial and antitumor activity. Degradation in alkaline solution involves the 
removal of an amino group and replacement by a hydroxyl group, but the breakdown of mitomycin C is 
more complicated in acid solution, involving ring opening and the formation of two isomers, 
namely trans and cis mitosene: 

 
To study the mechanism of degradation the authors designed a high-performance liquid 
chromatographic assay that allows quantitative separation of the parent drug and its decomposition 
products. The kinetics of mitomycin C in acid solution was studied at 20°C. To obtain pH values below 
3, the solutions were acidified with aqueous perchloric acid, and for the pH range of 3 to 6, they were 
buffered with an acetic acid–acetate buffer. The degradation of mitomycin C shows first-order kinetics 
over a period of more than three half-lives. 
The influence of pH and buffer species on the decomposition of mitomycin C is expressed as 

 
where k0 is the first-order constant for decomposition in water alone and kH is a second-order rate 
constant (catalytic coefficient) associated with catalysis due to the [H+]. The second-order rate 
constants kA and kB are catalytic coefficients for catalysis by the buffer components, [HAc] and [Ac-], 
respectively [equation (14-142)]. The term kOH[OH-] is neglected because this study is conducted only in 
the acid region of the pH scale. 
The log(rate constant)–pH profile for the decomposition of mitomycin C at 20°C is shown in Figure 14-
12. In other work, Beijnen and associates40 showed that the inflection point in the curve is associated 
with the pKa = 2.6 for mitomycin C. The straight-line portions of the curve, that is, below pH = 0 and 
above pH = 3, both exhibit slopes of approximately -1. Slopes of -1 in this region of the profile are an 
indication of specific acid catalysis for decomposition of the neutral form of mitomycin C (MMC) and for 
the protonated form (MMCH+). 
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Fig. 14-12. The pH–rate constant profile for mitomycin C decomposition at 20°C. 

(From J. H. Beijnen and W. J. M. Underberg, Int. J. Pharm.24, 219, 1985. With 

permission.) 

Procaine decomposes mainly by hydrolysis, the degradation being due primarily to the breakdown of the 
uncharged and singly charged forms.13 The reaction of procaine is catalyzed by hydrogen and hydroxyl 
ions. Both the free base and the protonated form are subject to specific base catalysis. Marcus and 
Baron17 obtained an activation energy, Ea, of 16.8 kcal/mole for procaine at 97.30°C. 
Garrett41 reviewed the degradation and stability of procaine. 

 
Triamcinolone acetonide, a glucocorticoid (adrenal cortex) hormone, is a potent anti-inflammatory agent 
when applied topically as a cream or suspension. Gupta42 studied the stability of water–ethanol 
solutions at various pH values, buffer 
P.343 
 
concentrations, and ionic strengths. The decomposition of triamcinolone acetonide followed first-order 
kinetics, the rate constant, kobs, varying with the pH of phosphate, sodium hydroxide, and hydrochloric 
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acid buffer solutions. The optimum pH for stability was found from a pH–rate profile to be about 3.4 and 
to be related to the concentration of the phosphate buffer. In the hydrochloric acid buffer solution, 
triamcinolone acetonide underwent hydrolysis to form triamcinolone and acetone. A study of the reaction 
in solvents of varying ionic strength showed that log kobs decreased linearly with increasing values of √µ, 

suggesting that reaction occurs between the protonated, [H+], form of the drug and the phosphate buffer 
species, H2PO4

-/HPO4
2-. 

 

Fig. 14-13. Chemical structures of the closely related antineoplastic agents vinblastine 

and vincristine, isolated from Vinca rosea, and vindesine, a synthetic derivative of 

vinblastine. (From D. Vendrig, J. H. Beijnen, O. van der Houwen, and J. Holthuis, Int. 

J. Pharm, 50, 190, 1989. With permission.) 

Vincristine and vinblastine are natural alkaloids used as cytotoxic agents in cancer chemotherapy (Fig. 
14-13). Vendrig et al.43investigated the degradation kinetics of vincristine sulfate in aqueous solution 
within the pH range of -1.0 to 11 at 80°C. The drug exhibited first-order kinetics under these conditions; 
the rate constant, kobs, was calculated using the first-order equation [equation (14-14)] at various pH 
values to plot the pH profile as seen in Figure 14-14. The degradation rates were found to be 
independent of buffer concentration and ionic strength within the pH range investigated. Vincristine 
appears to be most stable in aqueous solution between pH 3.5 and 5.5 at 80°C. 
The effect of temperature on the degradation of vincristine at various pH values from 1.2 to 8.2 and 
within the temperature range of 60°C to 80°C was assessed using the Arrhenius equation [equation (14-
72) or (14-73)]. The 
P.344 
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activation energy, Ea, and the Arrhenius factor, A, are given in Table 14-6. 

 

Fig. 14-14. Log k–pH profile for the decomposition of vincristine. (From D. Vendrig, 

J. H. Beijnen, O. van der Houwen, and J. Holthuis, Int. J. Pharm. 50, 194, 1989. With 

permission.) 

Table 14-6 Activation Energies and Arrhenius Factors for Vincristine at various pH 

values at 80°C* 

pH Ea (cal/mole × 10
-4

) A (sec
-1

) 

1.2 1.482 1 × 10
6
 

3.5 2.008 9 × 10
6
 

5.2 1.745 4 × 10
5
 

7.0 2.534 9 × 10
10

 

8.2 2.773 9 × 10
12

 

*Based on D. E. M. M. Vendrig, J. H. Beijnen, O. A. G. J. van der Houwen, and 

J. J. M. Holthuis, Int. J. Pharm. 50, 189, 1989. 

 

Example 14-13 

Vincristine 
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Vendrig et al.43 listed the activation energies in kJ/mole for vincristine from pH 1.2 to 8.2. 
Convert the following values for Ea to quantities expressed in cal/mole, as found in Table 14-
6: 

pH 1.2 3.5 5.2 7.0 8.2 

Ea(kJ/mole) 62 84 73 106 116 

 

The conversion of units is obtained by writing a sequence of ratios so as to change SI to cgs 
units. For the first value, that of Ea at pH 1.2, 

 
or 

 
or 

 
In the CRC Handbook of Chemistry and Physics, we find the conversion factor 1 joule = 
0.239045 cal; therefore, we can make the direct conversion 

 
or 

 

The kinetic study of the autoxidation of ascorbic acid is an interesting research story that began about 
50 years ago. Some of the reports are reviewed here as an illustration of the difficulties encountered in 
the study of free radical reactions. Although the decomposition kinetics of ascorbic acid probably has 
been studied more thoroughly than that of any other drug, we are only now beginning to understand the 
mechanism of the autoxidation. The overall reaction can be represented as 

 
One of the first kinetic studies of the autoxidation of ascorbic acid to dehydroascorbic acid was 
undertaken in 1936 by Barron et al.44These investigators measured the oxygen consumed in the 
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reaction, using a Warburg type of vessel and a manometer to obtain the rate of decomposition of 
ascorbic acid. They found that when great care was taken to free the solution of traces of copper, 
ascorbic acid was not oxidized by atmospheric oxygen at a measurable rate except in alkaline solutions. 
Cupric ion was observed to oxidize ascorbic acid rapidly to dehydroascorbic acid, and KCN and CO 
were found to break the reaction chain by forming stable complexes with copper. 
Dekker and Dickinson45 suggested a scheme for oxidation of ascorbic acid by the cupric ion and 
obtained the following equations for the decomposition: 

 
and in the integrated form, 

 
where [H2 A]0 is the initial concentration and [H2A] is the concentration of ascorbic acid at time t. The 
experimental results compared favorably with those calculated from equation (14-149), and it was 
assumed that the initial reaction involved a slow oxidation of the ascorbate ion by cupric ion to a 
semiquinone, which was immediately oxidized by oxygen to dehydroascorbic acid. As the reaction 
proceeded, however, the specific reaction rate, k, was found to increase gradually. 
Dekker and Dickinson45 observed that the reaction was retarded by increasing the initial concentration 
of ascorbic acid, presumably because ascorbic acid depleted the free oxygen. When oxygen was 
continually bubbled through the mixture, the specific rate of decomposition did not decrease with 
increasing ascorbic acid concentration. 
Weissberger et al.46 showed that the autoxidation of ascorbic acid involved both a singly and a doubly 
charged anion of L-ascorbic acid. Oxygen was found to react with the divalent ion at atmospheric 
pressure about 105 times as fast as with the monovalent ion of the acid at ordinary temperatures 
P.345 
 
when metal catalysis was repressed. When copper ions were added to the reaction mixture, however, it 
was found that only the singly charged ion reaction was catalyzed. Copper was observed to be an 
extremely effective catalyst because 2 × 10-4 mole/liter increased the rate of the monovalent ion reaction 
by a factor of 10,000. 

 

Fig. 14-15. The pH profile for the oxidative degradation of ascorbic acid. Key: • = 

calculated rate constant; ^ = rate constant extrapolated to zero buffer concentration 
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where only the effect of hydrogen and/or hydroxyl ions is accounted for. (From S. M. 

Blaug and B. Hajratwala, J. Pharm. Sci. 61, 556, 1972; 63, 1240, 1974. With 

permission.) 

Nord47 showed that the rate of the copper-catalyzed autoxidation of ascorbic acid was a function of the 
concentrations of the monovalent ascorbate anion, the cuprous ion, the cupric ion, and the hydrogen ion 
in the solution. The kinetic scheme proposed by Nord appears to compare well with experimental 
findings. 
Blaug and Hajratwala48 observed that ascorbic acid degraded by aerobic oxidation according to the 
log(rate constant)–pH profile ofFigure 14-15. The effects of buffer species were eliminated so that only 
the catalysis due to hydrogen and hydroxyl ions was considered. Dehydroascorbic acid, the recognized 
breakdown product of ascorbic acid, was found to decompose further into ketogulonic acid, which then 
formed threonic and oxalic acids. 
According to Rogers and Yacomeni,49 ascorbic acid exhibits maximum degradation at pH 4 and 
minimum degradation at pH 5.6 in citric acid–phosphate buffers in the presence of excess oxygen at 
25°C. The pH–rate profile can be fit closely to the experimental points using first- and second-order rate 
constants k1 = 5.7 × 10-6 M-1 sec-1, k2 = 1.7 sec-1, and k3 = 7.4 × 10-5 M-1 sec-1 in the rate expression 

 
where k2 is the first-order solvent catalysis term, ordinarily written ask0, and k1 and k3 are the catalytic 
coefficients. 
Takamura and Ito50 studied the effect of metal ions and flavonoids on the oxidation of ascorbic acid, 
using polarography at pH 5.4. Transition metal ions increased the rate of first-order oxidation; the rate 
was increased by 50% in the presence of Cu2+. Flavonoids are yellow pigments found in higher plants. 
The flavonoid constituents rutin and hesperidan were used in the past to reduce capillary fragility and 
bleeding.51 Takamura and Ito50 found that flavonoids inhibited the Cu2+-catalyzed oxidation in the 
following order of effectiveness: 3-hydroxyflavone < rutin < quercitin. This order of inhibition 
corresponded to the order of complexation of Cu2+ by the flavonoids, suggesting that the flavonoids 
inhibit Cu2+-catalyzed oxidation by tying up the copper ion in solution. 
Oxidation rates under conditions similar to those in pharmaceutical systems were examined by Fyhr and 
Brodin.52 They investigated the iron-catalyzed oxidation of ascorbic acid at 35°C at pH values of 4 to 6 
and partial pressures of oxygen of 21 kilopascal (kPa) and at iron concentrations between 0.16 and 1.25 
ppm. These workers found the oxidation of ascorbic acid to be first order with respect to the total 
ascorbic acid concentration. Trace-element analysis was used to follow changes in iron concentration. 
Akers53 studied the standard oxidation potentials of antioxidants in relation to stabilization of 
epinephrine in aqueous solution. He found that ascorbic acid or a combination of 0.5% thiourea with 
0.5% acetylcysteine was the most effective in stabilizing parenteral solutions of epinephrine. 
Thoma and Struve54 attempted to protect epinephrine solutions from oxidative degradation by the 
addition of redox stabilizers (antioxidants) such as ascorbic acid. Sodium metabisulfite, Na2S2O5, 
prevented discoloration of epinephrine solutions but improved the stability only slightly. The best 
stabilization of epinephrine in solution was provided by the use of nitrogen. 
The decomposition of a new antiasthmatic agent (2-[(4-hydroxyphenyl)amino]-5-
methoxybenzenemethanol or HPAMB), which acts therapeutically by contraction of vascular and 
pulmonary smooth muscles, was investigated in the presence and absence of the antioxidant ascorbic 
acid in phosphate buffer (pH 7.9) and in aqueous solution (pH 7.1).55 As shown in Figure 14-16, the 
drug broke down 
P.346 
 
rapidly at 25°C in water in the absence of ascorbic acid, whereas no loss in drug concentration occurred 
in the presence of 0.1% ascorbic acid. In two nonaqueous solvents, ethanol and dimethyl sulfoxide, the 
oxidative decomposition rate of HPAMB was much slower than in aqueous solution. 
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Fig. 14-16. Decomposition of HPAMB alone and in the presence of ascorbic acid. 

The curve for the oxidized product resulting from HPAMB breakdown is also shown. 

(From A. B. C. Yu and G. A. Portman, J. Pharm. Sci. 79, 913, 1990. With 

permission.) 

Photodegradation 
Light energy, like heat, may provide the activation necessary for a reaction to occur. Radiation of the 
proper frequency and of sufficient energy must be absorbed to activate the molecules. The energy unit 
of radiation is known as the photon and is equivalent to onequantum of energy. Photochemical reactions 
do not depend on temperature for activation of the molecules; therefore, the rate of activation in such 
reactions is independent of temperature. After a molecule has absorbed a quantum of radiant energy, 
however, it may collide with other molecules, raising their kinetic energy, and the temperature of the 
system will therefore increase. The initial photochemical reaction may often be followed by thermal 
reactions. 
The study of photochemical reactions requires strict attention to control of the wavelength and intensity 
of light and the number of photons actually absorbed by the material. Reactions that occur by 
photochemical activation are usually complex and proceed by a series of steps. The rates and 
mechanisms of the stages can be elucidated through a detailed investigation of all factors involved, but 
in this elementary discussion of the effect of light on pharmaceuticals, we will not go into such 
considerations. 
Examples of photochemical reactions of interest in pharmacy and biology are the irradiation of 
ergosterol and the process of photosynthesis. When ergosterol is irradiated with light in the ultraviolet 
region, vitamin D is produced. In photosynthesis, carbon dioxide and water are combined in the 
presence of a photosensitizer, chlorophyll. Chlorophyll absorbs visible light, and the light then brings 
about the photochemical reaction in which carbohydrates and oxygen are formed. 
Some studies involving the influence of light on medicinal agents are reviewed here. 
Moore56 described the kinetics of photooxidation of benzaldehyde as determined by measuring the 
oxygen consumption with a polarographic oxygen electrode. Photooxidation of drugs is initiated by 
ultraviolet radiation according to one of two classes of reactions. The first is a free radical chain process 
in which a sensitizer, for example, benzophenone, abstracts a hydrogen atom from the drug. The free 
radical drug adds a molecule of oxygen, and the chain is propagated by removing a hydrogen atom from 
another molecule of oxidant, a hydroperoxide, which may react further by a nonradical mechanism. The 
scheme for initiation, propagation, and termination of the chain reaction is shown in Figure 14-17. 
The second class of photooxidation is initiated by a dye such as methylene blue. 
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A manometer is usually used to measure the rate of absorption of oxygen from the gas phase into a 
stirred solution of the oxidizing drug. In some cases, as in the oxidation of ascorbic acid, 
spectrophotometry may be used if the absorption spectra of the reactant and product are sufficiently 
different. An oxygen electrode or galvanic cell oxygen analyzer has also been used to measure the 
oxygen consumption. 

 

Fig. 14-17. Steps in the photooxidation of benzaldehyde. (From D. E. Moore, J. 

Pharm. Sci. 65, 1449, 1976. With permission.) 

Earlier studies of the photooxidation of benzaldehyde in n-decane solution showed that the reaction 
involved a free radical mechanism. Moore proposed to show whether a free radical process also 
occurred in a dilute aqueous solution and to study the antioxidant efficiency of some polyhydric phenols. 
The photooxidation of benzaldehyde was found to follow a free radical mechanism, and efficiency of the 
polyhydric phenolic antioxidants ranked as follows: catechol > pyrogallol > hydroquinone > resorcinol 
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> n-propyl gallate. These antioxidants could be classified as retarders rather than inhibitors because 
they slowed the rate of oxidation but did not inhibit the reaction. 
Asker et al.57 investigated the photostabilizing effect of DL-methionine on ascorbic acid solution. A 10-
mg% concentration of DL-methionine was found to enhance the stability of a 40-mg% solution of 
ascorbic acid buffered by phosphate but not by citrate at pH 4.5. 
Uric acid was found to produce a photoprotective effect in buffered and unbuffered solutions of 
sulfathiazole sodium.58 The addition of 0.1% sodium sulfite assisted in preventing the discoloration of 
the sulfathiazole solution prepared in either a borate or a phosphate buffer. 
P.347 
 
 
Furosemide (Lasix) is a potent diuretic, available as tablets and as a sterile solution for injection. It is 
fairly stable in alkaline solution but degrades rapidly in acid solution. 

 
Irradiation of furosemide with 365 nm of ultraviolet light in alkaline solutions and in methanol results in 
photooxidation and reduction, respectively, to yield a number of products. The drug is relatively stable in 
ordinary daylight or under fluorescent (room) lighting but has a half-life of only about 4 hr in direct 
sunlight. Bundgaard et al.59discovered that it is the un-ionized acid form of furosemide that is most 
sensitive to photodegradation. In addition to investigating the photoliability of furosemide, these workers 
also studied the degradation of the ethyl, dimethylglycolamide, and diethylglycolamide esters of 
furosemide and found them to be very unstable in solutions of pH 2 to 9.5 in both daylight and artificial 
room lighting. The half-lives of photodegradation for the esters were 0.5 to 1.5 hr. 
Andersin and Tammilehto60 noted that apparent first-order photokinetics had been shown by other 
workers for adriamycin, furosemide, menadione, nifedipine, sulfacetamide, and theophylline. 
Photodegradation of the tromethamine (TRIS buffer, aminohydroxymethylpropanediol) salt of ketorolac, 
an analgesic and anti-inflammatory agent, appeared in ethanol to be an exception60; it showed 
apparent first-order kinetics at low concentrations, 2.0 µg/mL or less, of the drug (Fig. 14-18a). When 
the concentration of ketorolac tromethamine became 10 µg/mL or greater, however, the kinetics 
exhibited non–first-order rates. That is, the plots of drug concentration versus irradiation time were no 
longer linear but rather were bowed at these higher concentrations (Fig. 14-18b).61 
Nifedipine is a calcium antagonist used in coronary artery disease and in hypertension; unfortunately, it 
is sensitive to light both in solution and in the solid state. Matsuda et al.62 studied the photodegradation 
of nifedipine in the solid state when exposed to the radiation of mercury vapor and fluorescent light 
sources. The drug decomposed into four compounds, the main photoproduct being a nitrosopyridine. It 
readily degraded in ultraviolet and visible light, with maximum decomposition occurring at a wavelength 
of about 380 nm (3.80 × 10-7 m). The rate of degradation of nifedipine was much faster when exposed to 
a mercury vapor lamp than when subjected to the rays of a fluorescent lamp; however, the degradation 
in the presence of both light sources exhibited first-order kinetics. The drug is more sensitive to light 
when in solution. The photodecomposition of nifedipine in the crystalline solid state was found to be 
directly related to the total irradiation intensity. The total intensity was used as a convenient parameter 
to measure accelerated photodecomposition of nifedipine in the solid state and thus to estimate its 
photostability under ordinary conditions of light irradiation. 
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Fig. 14-18. A semilogarithmic plot of the photolysis of ketorolac tromethamine 

in ethyl alcohol. Key:  = under argon; ^ = under air; [circle with right half 

black] = under oxygen. (a) At low drug concentrations; (b) at high drug 

concentrations. (From L. Gu, H. Chiang, and D. Johnson, Int. J. Pharm. 41, 109, 

1988. With permission.) 

 

The photosensitivity of the dye FD&C Blue No. 2 causes its solution to fade and gradually to become 
colorless. Asker and Collier63studied the influence of an ultraviolet absorber, uric acid, on the 
photostability of FD&C Blue No. 2 in glycerin and triethanolamine. They found that the greater the 
concentration of uric acid in triethanolamine, the more photoprotection was afforded the dye. Glycerin 
was not a suitable solvent for the photoprotector because glycerin accelerates the rate of color fading, 
possibly owing to its dielectric constant effect. 
As would be expected for a reaction that is a function of light radiation and color change rather than 
concentration, these reactions follow zero-order kinetics. Photodegradation reactions of chlorpromazine, 
menadione, reserpine, and colchicine are also kinetically zero order. 
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Asker and Colbert64 assessed the influence of various additives on the photostabilizing effect that uric 
acid has on solutions of FD&C Blue No. 2. The agents tested for their synergistic effects belong to the 
following classes: antioxidants, chelating agents, surfactants, sugars, and preservatives. It was found 
that the antioxidants DL-methionine and DL-leucine accelerated the photodegradation of the FD&C Blue 
No. 2 solutions. The addition of the surfactant Tween 80 (polysorbate 80) increased the 
photodegradation of the dye, as earlier reported by Kowarski65 and other workers. Lactose has been 
shown by these authors and others to accelerate the color loss of FD&C Blue No. 2, and the addition of 
uric acid retards the photodegradation caused by the sugar. Likewise, methylparaben accelerates the 
fading of the blue color, and the addition of uric acid counteracts this color loss. Chelating agents, such 
as disodium edetate (EDTA disodium), significantly increased the rate of color loss of the dye. EDTA 
disodium has also been reported to increase the rate of degradation of epinephrine, physostigmine, and 
isoproterenol, and it accelerates the photodegradation of methylene blue and riboflavine. Acids, such as 
tartaric and citric, tend to increase the fading of dye solutions. 
Asker and Jackson66 found a photoprotective effect by dimethyl sulfoxide on FD&C Red No. 3 solutions 
exposed to long- and short-wave ultraviolet light. Fluorescent light was more detrimental to photostability 
of the dye solution than were the ultraviolet light sources. 
Accelerated Stability and Stress Testing 
The Federal Food, Drug, and Cosmetic Act requires that manufacturers establish controls for the 
manufacture, processing, packing, and holding of drug products to ensure their safety, identity, strength, 
quality, and purity [§501(a)(2)(B)]. Requirements for these controls, also known as current good 
manufacturing practices, are established and monitored by the Food and Drug Administration (FDA). 
Stability studies should include testing of those attributes of the drug substance or drug product that are 
susceptible to change during storage and are likely to influence quality, safety, and/or efficacy. The 
testing should cover, as appropriate, the physical, chemical, biologic, and microbiologic attributes, 
preservative content (e.g., antioxidant, antimicrobial preservative), and functionality tests (e.g., for a 
dose delivery system). As part of the current good manufacturing practice regulations, the FDA requires 
that drug products bear an expiration date determined by appropriate stability testing (21 Code of 
Federal Regulations 211.137 and 211.166). The stability of drug products needs to be evaluated over 
time in the same container-closure system in which the drug product is marketed. In some cases, 
accelerated stability studies can be used to support tentative expiration dates in the event that full shelf-
life studies are not available. When a manufacturer changes the packaging of a drug product (e.g., from 
a bottle to unit dose), stability testing must be performed on the product in its new packaging, and 
expiration dating must reflect the results of the new stability testing. Accelerated stability studies are 
designed to increase the rate of chemical degradation or physical change of a drug substance or drug 
product by using exaggerated storage conditions as part of the formal stability studies. Data from these 
studies, in addition to long-term stability studies, can be used to assess longer-term chemical effects at 
nonaccelerated conditions and to evaluate the effect of short-term excursions outside the label storage 
conditions such as might occur during shipping. Results from accelerated testing studies are not always 
predictive of physical changes. Stress testing of the drug substance or drug product can help identify the 
likely degradation products, which in turn can help establish the degradation pathways and the intrinsic 
stability of the molecule and validate the stability-indicating power of the analytical procedures used. The 
nature of the stress testing will depend on the individual drug substance and the type of drug product 
involved. 

Key Concept 

Stress Testing 

Stress testing to elucidate the intrinsic stability of the drug substance is part of the 
development strategy and is normally carried out under more severe conditions than those 
used for accelerated testing. The testing typically includes the effects of temperature [in 10°C 
increments (e.g., 50°C–60°C) above that for accelerated testing], humidity (e.g., 75% relative 
humidity or greater) where appropriate, oxidation, and photolysis on the drug substance. 
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Stress testing of the drug product is undertaken to assess the effect of severe conditions on 
the drug product. Such studies include photostability testing and specific testing of certain 
products (e.g., metered-dose inhalers, creams, emulsions, refrigerated aqueous liquid 
products). 

The method of accelerated testing of pharmaceutical products based on the principles of chemical 
kinetics was demonstrated by Garrett and Carper.3 According to this technique, the k values for the 
decomposition of a drug in solution at various elevated temperatures are obtained by plotting some 
function of concentration against time, as shown in Figure 14-19 and already discussed in the early 
sections of this chapter. The logarithms of the specific rates of decomposition are then plotted against 
the reciprocals of the absolute temperatures as shown in Figure 14-20, and the resulting line is 
extrapolated to room temperature. The k25 is used to obtain a measure of the stability of the drug under 
ordinary shelf conditions. 
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Fig. 14-19. Accelerated breakdown of a drug in aqueous solution at elevated 

temperature. 

Example 14-14 

Expiration Dating 

The initial concentration of a drug decomposing according to first-order kinetics is 94 
units/mL. The specific decomposition rate, k, obtained from an Arrhenius plot is 2.09 × 10-5 hr-

1 at room temperature, 25°C. Previous experimentation has shown that when the 
concentration of the drug falls below 45 units/mL it is not sufficiently potent for use and should 
be removed from the market. What expiration date should be assigned to this product? 
We have 
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Free and Blythe and, more recently, Amirjahed67 and his associates suggested a similar method in 
which the fractional life period (Example 14-2) is plotted against reciprocal temperatures and the time in 
days required for the drug to decompose to some fraction of its original potency at room temperature is 
obtained. The approach is illustrated in Figures 14-21 and 14-22. As observed in Figure 14-21, the log 
percent of drug remaining is plotted against time in days, and the time for the potency to fall to 90% of 
the original value (i.e.,t90) is read from the graph. In Figure 14-22, the log time to 90% is then plotted 
against 1/T, and the time at 25°C gives the shelf life of the product in days. The decomposition data 
illustrated in Figure 14-21 result in a t90 value of 199 days. Shelf life and expiration dates are estimated 
in this way; Baker and Niazi68 pointed out limitations of the method. 

 

Fig. 14-20. Arrhenius plot for predicting drug stability at room temperatures. 
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Fig. 14-21. Time in days required for drug potency to fall to 90% of original value. 

These times, designated t90, are then plotted on a log scale in Figure 14-22. 

By either of these methods, the overage, that is, the excess quantity of drug that must be added to the 
preparation to maintain at least 100% of the labeled amount during the expected 
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shelf life of the drug, can be easily calculated and added to the preparation at the time of manufacture. 
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Fig. 14-22. A log plot of t90 (i.e., time to 90% potency) on the vertical axis against 

reciprocal temperature (both Kelvin and centigrade scales are shown) on the 

horizontal axis. 

An improved approach to stability evaluation is that of nonisothermal kinetics, introduced by Rogers69 in 
1963. The activation energy, reaction rates, and stability predictions are obtained in a single experiment 
by programming the temperature to change at a predetermined rate. Temperature and time are related 
through an appropriate function, such as 

 
where T0 is the initial temperature and a is a reciprocal heating rate constant. At any time during the run, 
the Arrhenius equation for time zero and time t can be written as 

 
and substituting (14-151) into (14-152) yields 

 
Because temperature is a function of the time, t, a measure of stability, kt, is directly obtained over a 
range of temperatures. A number of variations have been made on the method,70,71,72,73and it is now 
possible to change the heating rate during a run or combine a programmed heating rate with isothermal 
studies and receive printouts of activation energy, order of reaction, and stability estimates for projected 
times and at various temperatures. 
Although kinetic methods need not involve detailed studies of mechanism of degradation in the 
prediction of stability, they do demand the application of sound scientific principles if they are to be an 
improvement over extended room-temperature studies. Furthermore, before an older method, although 
somewhat less than wholly satisfactory, is discarded, the new technique should be put through a 
preliminary trial period and studied critically. Some general precautions regarding the use of accelerated 
testing methods are appropriate at this point. 
In the first place, it should be reemphasized that the results obtained from a study of the degradation of 
a particular component in a vehicle cannot be applied arbitrarily to other liquid preparations in general. 
As Garrett74 pointed out, however, once the energy of activation is known for a component, it probably 
is valid to continue to use this value although small changes of concentration (e.g., addition of overage) 
or slight formula changes are made. The known activation energy and a single-rate study at an elevated 
temperature may then be used to predict the stability of that component at ordinary temperatures. 
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Testing methods based on the Arrhenius law are valid only when the breakdown is a thermal 
phenomenon with an activation energy of about 10 to 30 kcal/mole. If the reaction rate is determined by 
diffusion or photochemical reactions, or if the decomposition is due to freezing, contamination by 
microorganisms, excessive agitation during transport, and so on, an elevated temperature study is 
obviously of little use in predicting the life of the product. Nor can elevated temperatures be used for 
products containing suspending agents such as methylcellulose that coagulate on heating, proteins that 
may be denatured, and ointments and suppositories that melt under exaggerated temperature 
conditions. Emulsion breaking involves aggregation and coalescence of globules, and some emulsions 
are actually more stable at elevated temperatures at which Brownian movement is increased. Lachman 
et al.75 reviewed the stability testing of emulsions and suspensions and the effects of packaging on the 
stability of dosage forms. 
Statistical methods should be used to estimate the errors in rate constants, particularly when assays are 
based on biologic methods; this is accomplished by the method of least squares as discussed by 
Garrett74 and Westlake.76 
The investigator should be aware that the order of a reaction may change during the period of the study. 
Thus, a zero-order degradation may subsequently become first order, second order, or fractional order, 
and the activation energy may also change if the decomposition proceeds by several mechanisms. At 
certain temperatures, autocatalysis (i.e., acceleration of decomposition by products formed in the 
reaction) may occur so as to make room-temperature stability predictions from an elevated-temperature 
study impractical. 
In conclusion, the investigator in the product development laboratory must recognize the limitations of 
accelerated studies, both the classic and the more recent kinetic type, and must distinguish between 
those cases in which reliable prediction can be made and those in which, at best, only a rough indication 
of product stability can be obtained. Where accelerated methods are not applicable, extended aging 
tests must be employed under various conditions to obtain the desired information. 
Containers and Closures 
The information for this section is largely taken from the FDA Guidances for Containers and Closures. 
The interested student should refer to the specific guidances for additional information. A container 
closure or packaging system refers to the sum of packaging components that together contain and 
protect the dosage form. This includes primary packaging components and secondary packaging 
components, if the latter are intended to provide additional protection to the drug product. Packaging 
components are typically made from glass, high-density polyethylene resin, metal, or other materials. 
Typical components are containers (e.g., ampules, vials, bottles), container liners (e.g., tube liners), 
closures (e.g., screw caps, stoppers), closure liners, stopper overseals, container inner seals, 
administration ports (e.g., on large-volume parenterals), overwraps, administration accessories, and 
container labels. A package or market package refers to the container closure system and labeling, 
associated components (e.g., dosing cups, droppers, spoons), and external packaging (e.g., cartons or 
shrink wrap). A market package is the article 
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provided to a pharmacist or retail customer upon purchase and does not include packaging used solely 
for the purpose of shipping such articles. There are many issues that relate to container closure 
systems, including protection, compatibility, safety, and performance of packaging components and/or 
systems. The purpose of this section is to raise the student's awareness of the stability aspects related 
to container closure systems. 
The United States Pharmacopeial Convention has established requirements for containers that are 
described in many of the drug product monographs in United States Pharmacopeia (USP). For capsules 
and tablets, these requirements generally relate to the design characteristics of the container (e.g., tight, 
well closed, or light-resistant). For injectable products, materials of construction are also addressed 
(e.g., “Preserve in single-dose or in multiple-dose containers, preferably of Type I glass, protected from 
light”). These requirements are defined in the General Notices and Requirements (Preservation, 
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Packaging, Storage, and Labeling) section of the USP. The requirements for materials of construction 
are defined in the General Chapters of the USP. 
The type and extent of stability information required for a particular drug product depends on the dosage 
form and the route of administration. For example, the kind of information that should be provided about 
a packaging system for an injectable dosage form or a drug product for inhalation is often more detailed 
than that which should be provided about a packaging system for a solid oral dosage form. More 
detailed information usually should be provided for a liquid-based dosage form than for a powder or a 
solid because a liquid-based dosage form is more likely to interact with the packaging components. The 
suitability of a container closure system for a particular pharmaceutical product is ultimately proven by 
full shelf-life stability studies. A container closure system should provide the dosage form with adequate 
protection from factors (e.g., temperature, light) that can cause a reduction in the quality of that dosage 
form over its shelf life. As discussed earlier in this chapter, there are numerous causes of degradation 
such as exposure to light, loss of solvent, exposure to reactive gases (e.g., oxygen), absorption of water 
vapor, and microbial contamination. A drug product can also suffer an unacceptable loss in quality if it is 
contaminated by filth. Not every drug product is susceptible to degradation by all of these factors. Not all 
drug products are light sensitive. Not all tablets are subject to loss of quality due to absorption of 
moisture. Sensitivity to oxygen is most commonly found with liquid-based dosage forms. Light protection 
is typically provided by an opaque or amber-colored container or by an opaque secondary packaging 
component (e.g., cartons or overwrap). The USP test for light transmission is an accepted standard for 
evaluating the light transmission properties of a container. Situations exist in which solid- and liquid-
based oral drug products have been exposed to light during storage because the opaque secondary 
packaging component was removed, contrary to the approved labeling and the USP monograph 
recommendation. Loss of solvent can occur through a permeable barrier (e.g., a polyethylene container 
wall), through an inadequate seal, or through leakage. Leaks can develop through rough handling or 
from inadequate contact between the container and the closure (e.g., due to the buildup of pressure 
during storage). Leaks can also occur in tubes due to a failure of the crimp seal. Water vapor or reactive 
gases (e.g., oxygen) may penetrate a container closure system either by passing through a permeable 
container surface (e.g., the wall of a low-density polyethylene bottle) or by diffusing past a seal. Plastic 
containers are susceptible to both routes. Although glass containers would seem to offer better 
protection because glass is relatively impermeable, glass containers are more effective only if there is a 
good seal between the container and the closure. 
Biotechnology Products 
Biotechnological/biologic products have distinguishing characteristics to which consideration should be 
given in any well-defined testing program designed to confirm their stability during the intended storage 
period. For such products in which the active components are typically proteins and/or polypeptides, 
maintenance of molecular conformation and, hence, of biologic activity is dependent on noncovalent as 
well as covalent forces. Examples of these products are cytokines (interferons, interleukins, colony-
stimulating factors, tumor necrosis factors), erythropoietins, plasminogen activators, blood plasma 
factors, growth hormones and growth factors, insulins, monoclonal antibodies, and vaccines consisting 
of well-characterized proteins or polypeptides. These products are particularly sensitive to 
environmental factors such as temperature changes, oxidation, light, ionic content, and shear. To 
ensure maintenance of biologic activity and to avoid degradation, stringent conditions for their storage 
are usually necessary. The evaluation of stability may necessitate complex analytical methodologies. 
Assays for biologic activity, where applicable, should be part of the pivotal stability studies. Appropriate 
physicochemical, biochemical, and immunochemical methods for the analysis of the molecular entity 
and the quantitative detection of degradation products should also be part of the stability program 
whenever purity and molecular characteristics of the product permit their use. The shelf lives of 
biotechnological/biologic products may vary from days to several years. With only a few exceptions, the 
shelf lives for existing products and potential future products will be within the range of 0.5 to 5 years. 
This takes into account the fact that degradation of biotechnological/biologic products may not be 
governed by the same factors during different intervals of a long storage period. Therefore, if the 
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expected shelf life is within this range, the FDA makes certain recommendations in their Guidance to 
Industry. When shelf lives of 1 year or less are proposed, the real-time stability studies should be 
conducted monthly for the first 3 months and at 3-month intervals thereafter. For products with proposed 
shelf lives of greater than 1 year, the studies should be conducted every 3 months during the first 
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year of storage, every 6 months during the second year, and annually thereafter. 
Solid-State Stability 
The breakdown of drugs in the solid state is an important topic, but it has not been studied extensively in 
pharmacy. The subject has been reviewed by Garrett,77 Lachman,78 and Carstensen,79 and is 
discussed here briefly. 
Pure Solids 
The decomposition of pure solids, as contrasted with the more complex mixture of ingredients in a 
dosage form, has been studied, and a number of theories have been proposed to explain the shapes of 
the curves obtained when decomposition of the compound is plotted against time. Carstensen and 
Musa80 described the decomposition of solid benzoic acid derivatives, such as aminobenzoic acid, 
which broke down into a liquid, aniline, and a gas, carbon dioxide. The plot of concentration of 
decomposed drug versus time yielded a sigmoidal curve (Fig. 14-23). After liquid begins to form, the 
decomposition becomes a first-order reaction in the solution. Such single-component pharmaceutical 
systems can degrade by either zero-order or first-order reaction, as observed inFigure 14-23. It is often 
difficult to determine which pattern is being followed when the reaction cannot be carried through a 
sufficient number of half-lives to differentiate between zero and first order. 
Solid Dosage Forms 
The decomposition of drugs in solid dosage forms is more complex than decay occurring in the pure 
state of the individual compound. The reactions may be zero or first order, but in some cases, as with 
pure compounds, it is difficult to distinguish between the two. Tardif81 observed that ascorbic acid 
decomposed in tablets by a pseudo–first-order reaction. 

 

Fig. 14-23. Decomposition of a pure crystalline solid such as potassium 

permanganate, which involves gaseous reaction products. (From J. T. Carstensen, J. 

Pharm. Sci. 63, 4, 1974. With permission.) 
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In tablets and other solid dosage forms, the possibility exists for solid–solid interaction. Carstensen et 
al.82 devised a program to test for possible incompatibilities of the drug with excipients present in the 
solid mixture. The drug is blended with various excipients in the presence and absence of 5% moisture, 
sealed in vials, and stored for 2 weeks at 55°C. Visual observation is done and the samples are tested 
for chemical interaction by thin-layer chromatography. The method is qualitative but, in industrial 
preformulation, provides a useful screening technique for uncovering possible incompatibilities between 
active ingredient and pharmaceutical additives before deciding on a suitable dosage form. 
Lach and associates83 used diffuse reflectance spectroscopy to measure interactions of additives and 
drugs in solid dosage forms. Blaug and Huang84 used this spectroscopic technique to study the 
interaction of spray-dried lactose with dextroamphetamine sulfate. 
Goodhart and associates85 studied the fading of colored tablets by light (photolysis reaction) and 
plotted the results as color difference at various light-energy values expressed in foot-candle hours. 
Lachman, Cooper, and their associates86 conducted a series of studies on the decomposition of FD&C 
colors in tablets and established a pattern of three separate stages of breakdown. The photolysis was 
found to be a surface phenomenon, causing fading of the tablet color to a depth of about 0.03 cm. 
Interestingly, fading did not occur further into the coating with continued light exposure, and the 
protected contents of the color-coated tablets were not adversely affected by exposure to light. 
As noted by Monkhouse and Van Campen,87 solid-state reactions exhibit characteristics quite different 
from reactions in the liquid or gaseous state because the molecules of the solid are in the crystalline 
state. The quantitative and theoretical approaches to the study of solid-state kinetics are at their frontier, 
which, when opened, will probably reveal a new and fruitful area of chemistry and drug science. The 
authors87 classify solid-state reactions as additionwhen two solids, A and B, interact to form the new 
solid, AB. For example, picric acid reacts with naphthols to form what are referred to 
as picrates. A second kind of solid-state reaction is an exchangeprocess, in which solid A reacts with 
solid BC to form solid AB and release solid C. Solid–gas reactions constitute another class, of which the 
oxidation of solid ascorbic acid and solid fumagillin are notable examples. Other types of solid-state 
processes include polymorphic transitions, sublimation, dehydration, and thermal decomposition. 
Monkhouse and Van Campen87 reviewed the experimental methods used in solid-state kinetics, 
including reflectance spectroscopy, x-ray diffraction, thermal analysis, microscopy, dilatometry, and gas 
pressure–volume analysis. Their review closes with sections on handling solid-state reaction data, 
temperature effects, application of the Arrhenius plot, equilibria expressions involved in solid-state 
degradation, and use of the van't Hoff equation for, say, a solid drug hydrate in equilibrium with its 
dehydrated form. 
P.353 
 
 
Chapter Summary 

The purpose of stability testing is to provide evidence on how the quality of a drug substance 
or drug product varies with time under the influence of a variety of environmental factors, such 
as temperature, humidity, and light, and to establish a retest period for the drug substance or 
a shelf life for the drug product and recommended storage conditions. This fundamental topic 
was covered in this chapter. This chapter introduces the rates and mechanisms of reactions 
with particular emphasis on decomposition and stabilization of drug products. It is essential 
for pharmacists and pharmaceutical scientists to study, understand, and interpret conditions 
of instability of pharmaceutical products as well as to be able to offer solutions for the 
stabilization of these products. It is also essential for them to define reaction rate, reaction 
order, and molecularity, while understanding and applying apparent zero-order kinetics to the 
practice of pharmacy. By the conclusion of this chapter and some practice, the student should 
be able to calculate half-life and shelf life of pharmaceutical products and drugs as well as 
interpret pH–rate profiles and kinetic data. You should also be able to describe the influence 
of temperature, ionic strength, solvent, pH, and dielectric constant on reaction rates. Be 
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familiar with Q10 calculations as they aid in the understanding of the relationship between 
reaction rate constant and temperature. Finally, stabilizing pharmaceutical agents is critical for 
making acceptable products in the industrial and community pharmacy setting. Therefore, you 
should understand stabilization techniques, stability testing protocols, and regulatory 
requirements. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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15 Interfacial Phenomena 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Differentiate among different types of interfaces and describe relevant examples in 
the pharmaceutical sciences. 

2. Understand the terms surface tension and interfacial tension and their application in 
pharmaceutical sciences. 

3. Appreciate the different methods of surface and interface tension measurements. 
4. Calculate surface and interface tensions, surface free energy, its changes, work of 

cohesion and adhesion, and spreading coefficient for different types of interfaces. 
5. Understand the mechanisms of adsorption on liquid and solid interfaces. 
6. Classify surface-active agents and appreciate their applications in pharmacy. 
7. Differentiate between different types of monolayers and recognize basic methods for 

their characterization. 
8. Recognize the electric properties of interfaces and the effects of electrolytes. 

Several types of interface can exist, depending on whether the two adjacent phases are in the solid, 
liquid, or gaseous state (Table 15-1). For convenience, these various combinations are divided into two 
groups, namely, liquid interfaces and solid interfaces. In the former group, the association of a liquid 
phase with a gaseous or another liquid phase will be discussed. The section on solid interfaces will deal 
with systems containing solid–gas and solid–liquid interfaces. Although solid–solid interfaces have 
practical significance in pharmacy (e.g., the adhesion between granules, the preparation of layered 
tablets, and the flow of particles), little information is available to quantify these interactions. This is due, 
at least in part, to the fact that the surface region of materials in the solid state is quiescent, in sharp 
contrast to the turbulence that exists at the surfaces of liquids and gases. Accordingly, solid–solid 
systems will not be discussed here. A final section will outline the electric properties of interfaces. 
The term surface is customarily used when referring to either a gas–solid or a gas–liquid interface. 
Although this terminology will be used in this chapter, the reader should appreciate that every surface is 
an interface. Thus, a tabletop forms a gas–solid interface with the atmosphere above it, and the surface 
of a raindrop constitutes a gas–liquid interface. 
The symbols for the various interfacial tensions are shown in the second column of Table 15-1, where 
the subscript L stands for liquid, V for vapor or gas, and S for solid. Surface and interfacial tensions are 
defined later. 

Key Concept 

Interfaces 

When phases exist together, the boundary between two of them is known as an interface. 
The properties of the molecules forming the interface are often sufficiently different from those 
in the bulk of each phase that they are referred to as forming an interfacial phase. If a liquid 
and its vapors exist together in the same container, the liquid takes the bottom part of the 
container. The remainder of the container is filled up by the liquid vapor, which, as with any 
gas, has a tendency to take all available space. Molecules in both the liquid and the gas are 
in constant motion and can move from the liquid into the vapor and back from the vapor to the 
liquid. However, the distinct boundary between the vapor and the liquid is preserved under 
constant temperature, and the exchange of molecules does not destroy the equilibrium 
between these two phases due to the labile (i.e., dynamic) character of this boundary. 

Because every physical entity, be it a cell, a bacterium, a colloid, a granule, or a human, possesses an 
interface at its boundary with its surroundings, the importance of the present topic is self-evident. 
Interfacial phenomena in pharmacy and medicine are significant factors that affect adsorption of drugs 
onto solid adjuncts in dosage forms, penetration of molecules through biologic membranes, emulsion 
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formation and stability, and the dispersion of insoluble particles in liquid media to form suspensions. The 
interfacial properties of a surface-active agent lining the alveoli of the lung are responsible for the 
efficient operation of this organ.1,2,3 Several authors4,5,6 have reviewed the relationship between 
surface properties of drugs and their biologic activity. 
Liquid Interfaces 
Surface and Interfacial Tensions 
In the liquid state, the cohesive forces between adjacent molecules are well developed. Molecules in the 
bulk liquid are surrounded in all directions by other molecules for which they have an equal attraction, as 
shown in Figure 15-1. On 
P.356 
 
the other hand, molecules at the surface (i.e., at the liquid–air interface) can only develop attractive 
cohesive forces with other liquid molecules that are situated below and adjacent to them. They can 
develop adhesive forces of attraction with the molecules constituting the other phase involved in the 
interface, although, in the case of the liquid–gas interface, this adhesive force of attraction is small. The 
net effect is that the molecules at the surface of the liquid experience an inward force toward the bulk, 
as shown in Figure 15-1. Such a force pulls the molecules of the interface together and, as a result, 
contracts the surface, resulting in a surface tension. 

Table 15-1 Classification of Interfaces 

Phase 

Interfacial 

Tension Types and Examples of Interfaces 

Gas–Gas — No interface possible 

Gas–liquid γLV Liquid surface, body of water exposed to 

atmosphere 

Gas–solid γSV Solid surface, table top 

Liquid–

liquid 

γLL Liquid–liquid interface, emulsion 

Liquid–

solid 

γLS Liquid–solid interface, suspension 

Solid–solid γSS Solid–solid interface, powder particles in 

contact 

 

This ―tension‖ in the surface is the force per unit length that must be applied parallel to the surface so as 
to counterbalance the net inward pull. This force, the surface tension, has the units of dynes/cm in the 
cgs system and of N/m in the SI system. It is similar to the situation that exists when an object dangling 
over the edge of a cliff on a length of rope is pulled upward by a man holding the rope and walking away 
from the edge of the top of the cliff. This analogy to surface tension is sketched in Figure 15-2. 
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Fig. 15-1. Representation of the unequal attractive forces acting on molecules at the 

surface of a liquid as compared with molecular forces in the bulk of the liquid. 

 

Fig. 15-2. Visualization of surface tension as akin to a person lifting a weight up the 

side of a cliff by pulling the rope in a horizontal direction. 

Interfacial tension is the force per unit length existing at the interface between two immiscible liquid 
phases and, like surface tension, has the units of dynes/cm. Although, in the general sense, all tensions 
may be referred to as interfacial tensions, this term is most often used for the attractive force between 
immiscible liquids. Later, we will use the term interfacial tension for the force between two liquids, γLL, 
between two solids, γSS, and at a liquid–solid interface,γLS. The term surface tension is reserved for 
liquid–vapor, γLV, and solid–vapor, γSV, tensions. These are often written simply as γL andγS, 
respectively. Ordinarily, interfacial tensions are less than surface tensions because the adhesive forces 
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between two liquid phases forming an interface are greater than when a liquid and a gas phase exist 
together. It follows that if two liquids are completely miscible, no interfacial tension exists between them. 
Some representative surface and interfacial tensions are listed in Table 15-2. 
Surface tension as a force per unit length can also be illustrated by means of a three-sided wire frame 
across which a movable bar is placed (Fig. 15-3). A soap film is formed over the area ABCD and can be 
stretched by applying a force f (such as a hanging mass) to the movable bar, length L, which acts 
against the surface tension of the soap film. When the mass is removed, the film will contract owing to 
its surface tension. The surface tension, γ, of the solution forming the film is then a function of the force 
that must be applied to break the film over the length of the movable bar in contact with the film. 
Because the soap film has two liquid–gas interfaces (one above and one below the plane of the paper), 
the 
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total length of contact is in fact equal to twice the length of the bar. 

Table 15-2 Surface Tension and Interfacial Tension (Against Water) at 20°C* 

Substance 

Surface Tension 

(dynes/cm) Substance 

Interfacial Tension 

(dynes/cm) 

Water 72.8 Mercury 375 

Glycerin 63.4 n-Hexane 51.1 

Oleic acid 32.5 Benzene 35.0 

Benzene 28.9 Chloroform 32.8 

Chloroform 27.1 Oleic acid 15.6 

Carbon 

tetrachloride 

26.7 n-Octyl 

alcohol 

8.52 

Caster oil 39.0 Caprylic acid 8.22 

Olive oil 35.8 Olive oil 22.9 

Cottonseed oil 35.4 Ethyl ether 10.7 

Liquid 

petrolatum 

33.1     
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*From P. Becher, Emulsions: Theory and Practice, 2nd Ed., Reinhold, New 

York, 1962, and other sources. 

 

Thus, 

 
where fb is the force required to break the film and L is the length of the movable bar. 

 

Fig. 15-3. Wire-frame apparatus used to demonstrate the principle of surface tension. 

Example 15-1 

Calculating the Surface Tension of Water 
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If the length of the bar, L, is 5 cm and the mass required to break a soap film is 0.50 g, what is 
the surface tension of the soap solution? 
Recall that the downward force is equal to the mass multiplied by the acceleration due to 
gravity. Then 

 

Surface Free Energy 
To move a molecule from the inner layers to the surface, work needs to be done against the force of 
surface tension. In other words, each molecule near the surface of liquid possesses a certain excess of 
potential energy as compared to the molecules in the bulk of the liquid. The higher the surface of the 
liquid, the more molecules have this excessive potential energy. Therefore, if the surface of the liquid 
increases (e.g., when water is broken into a fine spray), the energy of the liquid also increases. Because 
this energy is proportional to the size of the free surface, it is called a surface free energy. Each 
molecule of the liquid has a tendency to move inside the liquid from the surface; therefore, the liquid 
takes form with minimal free surface and with minimal surface energy. For example, liquid droplets tend 
to assume a spherical shape because a sphere has the smallest surface area per unit volume. 
To increase the surface of the liquid without any additional changes in the liquid state, in particular 
without changes in liquid temperature, work must be done against the surface tension. To evaluate the 
amount of work in increasing the surface area, we can write equation (15-1) as γ × 2L = f. When the bar 
is at a position AD in Figure 15-3 and a mass is added to extend the surface by a distance ds, the 
work dW (force multiplied by distance) is 
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and, because 2L × ds is equal to the increase in surface area, dA, produced by extending the soap film, 

 
For a finite change, 

 
where W is the work done, or surface free energy increase, expressed in ergs, γ is the surface tension 
in dynes/cm, and ΔA is the increase in area in cm2. Any form of energy can be divided into an intensity 
factor and a capacity factor (see Chapter 3). Surface tension is the intensity factor, and a change in area 
is the capacity factor of surface free energy. Surface tension can be defined as thesurface free energy 

change per unit area increase consistent with equation (15–2). 
Example 15-2 

Calculation of Work against Surface Tension 

What is the work required in Example 15-1 to pull the wire down 1 cm as shown in Figure 15-
3? 
Because the area is increased by 10 cm2, the work done is given by the equation 

 
Repeat the calculations using SI units. We have 

 
Also, 1 joule = 107 ergs. Therefore, W = 49 × 10-3 Nm/m2 × 10-3 m2 = 490 × 10-7 joule = 490 
ergs. 

Equation 15-2 defines surface tension as the work per unit area required to produce a new surface. 
From thermodynamics, at T andP constant, the surface tension can also be viewed as the increment in 
Gibbs free energy per unit area (see Hiemenz7). Thus, equation(15-2) can be written as 
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This definition has the advantage that the path-dependent variable Wis replaced by a thermodynamic 
function G, which is independent of the path. Many of the general relationships that apply to G also 
serve for γ. This fact enables us to compute the enthalpy and entropy of a surface: 

 
Key Concept 

Surface Free Energy and Surface Tension 

The surface layer of a liquid possesses additional energy as compared to the bulk liquid. This 
energy increases when the surface of the same mass of liquid increases and is therefore 
called surface free energy. Surface free energy per unit of surface of the liquid is defined 
as surface tension and is often denoted as γ. This means that for an increase of liquid surface 
of S units without any other changes in the liquid state and without changes in its 
temperature, the work equal to γS must be done. 

and 

 
Combining equations (15-4) and (15-5), we obtain 

 
Thus, from a plot of surface tension against absolute temperature, we can obtain the slope of the 
line, ∂γ/∂T, and thus find -Ss from equation (15-5). If Hs does not change appreciably over the 
temperature range considered, the intercept gives the Hs value. It should be noted that the units 
for Ss and Hs are given in two dimensions, ergs/cm2 deg for Ss and ergs/cm2 for Hs in the cgs system. In 
the SI system, Ss is given in units of joule/m2 deg and Hsin units of joule/m2. 
Example 15-3 

Calculation of S
s
 and H

s
 

The surface tension of methanol in water (10% by volume) at 20°C, 30°C, and 50°C (293.15, 
303.15, and 323.15 K, respectively) is 59.04, 57.27, and 55.01 dynes/cm (or ergs/cm2), 
respectively.8 Compute Ss and Hs over this temperature range. 
Using linear regression of γ versus T according to equation (15-6), we find the slope to be -
0.131 erg/cm2 deg = (∂γ/∂T)p= -Ss; hence, Ss = 0.131 and the intercept is 97.34 erg/cm2= Hs. 
The equation is therefore 

 
If we compute Hs at each temperature from equation (15-6) and if Ss remains constant at -
.131, we find 

 
H

s appears to be practically constant, very similar to the intercept from the regression 
equation, Hs = 97.34 erg/cm2= 97.34 mJ/m2. Note that the numerical value of surface tension 
in the cgs system, like that for Hs in the cgs system, is the same as that in the SI system when 
the units mJ are used. Thus, one can convert surface tension readily from cgs to SI 
units.7 For example, if the surface tension of methanol in water (10% by volume) at 20°C is 
59.04 erg/cm2 in the cgs system, we can write without carrying out the conversion calculation 
that γ for the methanol-in-water mixture at 20°C is 59.04 mJ/m2 in SI units. 

Pressure Differences Across Curved Interfaces 
Another way of expressing surface tension is in terms of the pressure difference that exists across a 
curved interface. 
P.359 
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Consider a soap bubble (Fig. 15-4) having a radius r. The total surface free energy, W, is equal to 4πr

2
γ, 

where 4πr
2 is the area of the spherical bubble. (See the formulas, bottom, inside front cover.) Suppose 

that the bubble is caused to shrink so that its radius decreases by dr. The final surface free energy is 
now 

 

Fig. 15-4. Schematic representation of the pressure difference across the curved 

surface of a soap bubble. 

 
 

Because dr is small compared to r, the term containing (dr)2 in equation (15-8) can be disregarded. 
The change in surface free energy is therefore -8πγr dr, negative because the surface area has shrunk. 
Opposing this change is an equal and opposite energy term that depends on the pressure difference, 
ΔP, across the wall of the bubble. Because pressure is a force per unit area, or force = pressure × area, 
the work change brought about by a decrease in radius dr is 

 
At equilibrium, this must equal the change in surface free energy, and so 

 
or 

 
Therefore, as the radius of a bubble decreases, the pressure of the air inside increases relative to that 
outside. Equation (15-11) is a simplification of the Young–Laplace equation and can be used to explain 
capillary rise, as seen in the following section. 
Measurement of Surface and Interfacial Tensions 
Of the several methods that exist for obtaining surface and interfacial tensions, only the capillary 

rise and the DuNoüy ring methods will be described here. For details of the other methods, such as drop 
weight, bubble pressure, pendent drop, sessile drop, Wilhelmy plate, and oscillating drop, refer to the 
treatises by Adamson,9Harkins and Alexander,10 Drost-Hansen,11 Hiemenz,7 and Matsumoto et 
al.12 It is worth noting, however, that the choice of a particular method often depends on whether 
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surface or interfacial tension is to be determined, the accuracy and convenience desired, the size of 
sample available, and whether the effect of time on surface tension is to be studied. There is no one 
best method for all systems. 
The surface tensions of most liquids decrease almost linearly with an increase in temperature, that is, 
with an increase in the kinetic energy of the molecules. In the region of its critical temperature, the 
surface tension of a liquid becomes zero. The surface tension of water at 0°C is 75.6, at 20°C it is 72.8, 
and at 75°C it is 63.5 dynes/cm. It is therefore necessary to control the temperature of the system when 
carrying out surface and interfacial tension determinations. 
Capillary Rise Method 
When a capillary tube is placed in a liquid contained in a beaker, the liquid generally rises up the tube a 
certain distance. Because the force of adhesion between the liquid molecules and the capillary wall is 
greater than the cohesion between the liquid molecules, the liquid is said to wet the capillary wall, 
spreading over it and rising in the tube (spreading is discussed in some detail later). By measuring this 
rise in a capillary, it is possible to determine the surface tension of the liquid. It is not possible, however, 
to obtain interfacial tensions using the capillary rise method. 
Consider a capillary tube with an inside radius r immersed in a liquid that wets its surface, as seen 
in Figure 15-5a. Because of the surface tension, the liquid continues to rise in the tube, but because of 
the weight of the liquid, the upward movement is just balanced by the downward force of gravity. 
The upward vertical component of the force resulting from the surface tension of the liquid at any point 
on the circumference is given by 

 
as seen in the enlarged sketch (Fig. 15-5b). The total upward force around the inside circumference of 
the tube is 

 
where θ is the contact angle between the surface of the liquid and the capillary wall and 2πr is the inside 
circumference of the capillary. For water and other commonly used liquids, the angle θ is insignificant, 
that is, the liquid wets the capillary wall so that cos θ is taken as unity for practical purposes (see left 
side of Fig. 15-5b). 
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Fig. 15-5. (a) Measuring surface tension by means of the capillary-rise principle. (b) 

Enlarged view of the force components and contact angle at the meniscus of a liquid. 

For many liquids, the contact angle θ (exaggerated in the figure) is nearly zero, as 

shown on the left-hand side of the diagram. 
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The counteracting force of gravity (mass × acceleration) is given by the product of the cross-sectional 
area, πr

2, the height, h, of the liquid column to the lowest point of the meniscus, the difference in the 
density of the liquid, ρ, and its vapor, ρ0, and the acceleration of gravity: πr

2 h(ρ - ρ0)g + w. The last 
term, w, is added to account for the weight of liquid above h in the meniscus. When the liquid has risen 
to its maximum height, which can be read from the calibrations on the capillary tube, the opposing 
forces are in equilibrium, and accordingly the surface tension can be calculated. The density of the 
vapor, the contact angle, and w can usually be disregarded; hence, 

 
and finally 

 
Example 15-4 

Calculation of the Surface Tension of Chloroform by the Capillary Rise Method 

A sample of chloroform rose to a height of 3.67 cm at 20°C in a capillary tube having an 
inside radius of 0.01 cm. What is the surface tension of chloroform at this temperature? The 
density of chloroform is 1.476 g/cm3. We write 

 

Capillary rise can also be explained as being due to the pressure difference across the curved meniscus 
of the liquid in the capillary. We have already seen in equation (15-11) that the pressure on the concave 
side of a curved surface is greater than that on the convex side. This means that the pressure in the 
liquid immediately below the meniscus will be less than that outside the tube at the same height. As a 
result, the liquid will move up the capillary until the hydrostatic head produced equals the pressure drop 
across the curved meniscus. 
Using the same symbols as before and neglecting contact angles, we obtain 

 
where ρgh is the hydrostatic head. Rearranging equation (15-13)gives 

 
which is identical with equation (15-12) derived on the basis of adhesive forces versus cohesive forces. 
The DuNoüy Ring Method 
The DuNoüy tensiometer is widely used for measuring surface and interfacial tensions. The principle of 
the instrument depends on the fact that the force necessary to detach a platinum–iridium ring immersed 
at the surface or interface is proportional to the surface or interfacial tension. The force required to 
detach the ring in this manner is provided by a torsion wire and is recorded in dynes on a calibrated dial. 
P.361 
 
The surface tension is given by the formula [compare with equation(15-1)] 
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Fig. 15-6. Schematic of the tensiometer ring pulling a column of water above the 

surface before it brakes away. 

 
In effect, the instrument measures the weight of liquid pulled out of the plane of the interface 
immediately before the ring becomes detached (Fig. 15-6). A correction factor is necessary in 
equation(15-15) because the simple theory does not take into account certain variables such as the 
radius of the ring, the radius of the wire used to form the ring, and the volume of liquid raised out of the 
surface. Errors as large as 25% may occur if the correction factor is not calculated and applied. The 
method of calculating the correction factor has been described13,14; with care, a precision of about 
0.25% can be obtained. 
Example 15-5 

DuNoüy Ring Method 

The published surface tension of water at 18°C is 73.05 dynes/cm, and the density, ρ1, of 
water at this temperature is 0.99860 g/cm3

. The density, ρ2, of moist air that is, air saturated 
with the vapor of the liquid, water, at 18°C is 0.0012130. Therefore, ρ1 - ρ2, the density of 
water overlaid with air, is 0.99739 g/cm3. The dial reading in dynes or newtons on the 
tensiometer is equal to the mass, M, of the liquid lifted by the ring multiplied by the gravity 
constant, 980.665 cm/sec2; that is, 

 
It is thus possible to obtain the mass M of liquid lifted with the ring (M = 0.7866 g) before it 
breaks away from the water surface. The ring must be kept absolutely horizontal for accurate 
measurement. The volume, V, of water lifted above the free surface of water is calculated 
from the mass of water lifted and the density at 18°C, or 

 

Table 15-3 Some Harkins and Jordan β Values* 
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R
3
 V 

β 

R/r = 30 R/r = 40 R/r = 50 R/r = 60 

0.50 0.9402 0.9687 0.9876 0.9984 

1.00 0.8734 0.9047 0.9290 0.9438 

2.00 0.8098 0.8539 0.8798 0.9016 

3.00 0.7716 0.8200 0.8520 0.8770 

3.50 0.7542 0.8057 0.8404 0.8668 

*From W. D. Harkins and H. F. Jordan, J. Am. Chem. Soc. 52, 1751, 1930; 

H. L. Cupples, J. Phys. Chem. 51, 1341, 1947. 

 

The ring of the tensiometer has a radius, R, of 0.8078 cm, and R3 = 0.527122 cm3. The 
radius, r, of the wire that forms the ring is 0.01877 cm. Two values, R3/V and R/r, are needed 
to enter the tables of Harkins and Jordan13 to obtain the correction factor, β, by interpolation. 
An abbreviated table of R3/V and R/r values needed to obtain β is given in Table 15-3. In this 
example R3/V = 0.52712/0.78866 = 0.66838 and R/r = 0.8078/0.01877 = 43.0368. Introducing 
these values into Table VIII-C of Harkins and Jordan13 and by interpolation, one obtains β = 
0.9471 (18°C). 
Finally, using equation (15-15), we obtain the surface tension for water at 18°C: 

 
Without the correction factor, β, γ is calculated here to be 75.99 dynes/cm. The value of γ for 
water at 18°C is recorded in handbooks as approximately 73.05 dynes/cm. The error relative 
to the published value at 18°C is (73.05 - 71.97/73.05) × 100 = 1.48%. 

The correction factor β can be calculated from an equation rather than obtaining it from tabulated values 
of R/r and R3/V as done inExample 15-4. Zuidema and Waters15 suggested an equation for 
calculating β, as discussed by Shaw16: 

 
Example 15-6 

Surface Tension Correction Factor Calculation 

Use equation (15-15) to calculate β, the surface tension correction at 20°C, for a = 
0.7250, b = 0.09075 m-1 sec2 for all tensiometer rings, and c = 0.04534 - 1.6790 r/R, with Rthe 
radius of the ring in m, r the radius in m of the wire from which the ring is constructed, M the 
mass in kg of the liquid lifted above the liquid surface as the ring breaks away from the 
surface, g the acceleration due to gravity in m/sec2

, ρ1the density of the liquid in kg/m-3, and 
ρ2 the density of the air saturated with the liquid in kg/m3; that is, the upper phase of an 
interfacial system. With the following data, which must be expressed in SI units for use in 
equation (15-15), β is calculated and used in equation (15-15) to obtain the corrected surface 
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tension. The terms of equation (15-15) in SI units are R = 0.012185 m, r = 0.0002008 m, M = 
0.0012196 kg, g = 9.80665 m/sec, ρ1 = 998.207 kg/m3, and ρ2 = 1.2047 kg/m3. Finally, c = 
0.04534 - 1.6790 r/R = 0.017671. Substituting into equation (15-15), we have 

 
The literature value of γ for water at 20°C is 72.8 dynes/cm (or ergs/cm2) in cgs units. Using 
the uncorrected equation γ= Mg(4πR) and SI units, we obtain for water at 20°C 

 
Multiplying numerator and denominator by m2 yields the result 0.07811 joule/m2, and 
expressing the value in mJ/m2, we have 78.11 mJ/m2. This is a useful way to express surface 
tension in SI units because the value 78.11 is numerically the same as that in the cgs system; 
namely, 78.11 ergs/cm2 (see Example 15-3). To correct the value γ= Mg(4πR) expressed 
either in cgs or SI units, we multiply by the Harkins and Jordan13 or the Zuidema and 
Waters15value for β at a given liquid density and temperature, Mvalue, and ring dimensions. 
For the particular case in this example, 

 
The error in the Zuidema and Waters15 value of 71.7 mJ/m2relative to the literature value, 
72.8 mJ/m2, at 20°C is (72.8 - 71.7)/72.8 × 100 = 1.51%. 
The modern variant of the surface tensiometer, the Sigma 70 Surface Tensiometer from KSV 
Instruments (Monroe, Conn.), offers advanced, microprocessor-based measurement using 
either the Wilhelmy plate or DuNoüy ring method. The Wilhelmy plate method is based on the 
measurement of the force necessary to detach a plate from the surface of a liquid. 

P.362 
 
 
Spreading Coefficient 
When a substance such as oleic acid is placed on the surface of water, it will spread as a film if the force 
of adhesion between the oleic acid molecules and the water molecules is greater than the cohesive 
forces between the oleic acid molecules themselves. The term film used here applies to a duplex film as 
opposed to a monomolecular film. Duplex films are sufficiently thick (100 Å or more) so that the surface 
(boundary between oleic acid and air) and interface (boundary between water and oleic acid) are 
independent of one another. 
The work of adhesion, which is the energy required to break the attraction between the unlike 
molecules, is obtained by reference toFigure 15-7. Figure 15-7a shows a hypothetical cylinder (cross-
sectional area 1 cm2) of the sublayer liquid, S, overlaid with a similar section of the spreading liquid, L. 
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Fig. 15-7. Representation of the work of adhesion involved in separating a substrate 

and an overlaying liquid. 

By equation (15-2), surface or interfacial work is equal to surface tension multiplied by the area 
increment. The work required to separate the two sections of liquid in Figure 15-7, each with a cross-
sectional area of 1 cm2, is therefore numerically related to the surface or interfacial tension involved, the 
area increment being unity: 

 
Accordingly, it is seen in Figure 15-7b that the work done is equal to the newly created surface 
tensions, γL and γS, minus the interfacial tension, γLS, that has been destroyed in the process. The work 
of adhesion is thus 

 
The work of cohesion, required to separate the molecules of the spreading liquid so that it can flow over 
the sublayer, is obtained by reference to Figure 15-8. Obviously, no interfacial tension exists between 
the like molecules of the liquid, and when the hypothetical 1-cm2 cylinder in Figure 15-8a is divided, two 
new surfaces are created in Figure 15-8b, each with a surface tension of γL. Therefore, the work of 
cohesion is 

 
With reference to the spreading of oil on a water surface, spreading occurs if the work of adhesion (a 
measure of the force of attraction between the oil and the water) is greater than the work of cohesion. 
The term (Wa - Wc) is known as the spreading coefficient, S; if it is positive, the oil will spread over a 
water surface. Equations (15-16)and (15-17) can be written as 

 
P.363 
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Fig. 15-8. Representation of the work of cohesion involved in separating like 

molecules in a liquid. 

where γS is the surface tension of the sublayer liquid, γL is the surface tension of the spreading liquid, 
and γLS is the interfacial tension between the two liquids. Rearranging equation (15-18) gives 

 
or 

 
Figure 15-9 shows a lens of material placed on a liquid surface (e.g., oleic acid on water). From 
equation (15-20), one sees that spreading occurs (S is positive) when the surface tension of the 
sublayer liquid is greater than the sum of the surface tension of the spreading liquid and the interfacial 
tension between the sublayer and the spreading liquid. If (γL + γLS) is larger than γS, the substance forms 
globules or a floating lens and fails to spread over the surface. An example of such a case is mineral oil 
on water. 
Spreading can also be thought of in terms of surface free energy. Thus, the added substance will spread 
if, by so doing, it reduces the surface free energy of the system. Put another way, if the surface free 
energy of the new surface and the new interface is less than the free energy of the old surface, 
spreading will take place. 
Up to this point, the discussion has been restricted to initialspreading. Before equilibrium is reached, 
however, the water surface becomes saturated with the spreading material, which in turn becomes 
saturated with water. If we use a prime (′) to denote the values following equilibration (i.e., final rather 

than initial values), then the new surface tensions are γS′ and γL′. When mutual saturation has taken 
place, the spreading coefficient may be reduced or may even become negative. This means that 
although initial spreading of the material may occur on the liquid substrate, it can be followed by 
coalescence of the excess material into a lens ifS′ becomes negative in value. This reversal of 
spreading takes place when γS′ becomes less than (γLS + γL′). Note that the value of γLSdoes not change 
because the interfacial tension is determined under conditions of mutual saturation. 
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Fig. 15-9. Forces existing at the surface of a lens floating in a substrate liquid. 

Example 15-7 

Spreading Benzene over Water 

If the surface tension of water γS is 72.8 dynes/cm at 20°C, the surface tension of 
benzene, γL, is 28.9 dynes/cm, and the interfacial tension between benzene and water, γLS, is 
35.0 dynes/cm, what is the initial spreading coefficient? Following equilibration, γS′ is 62.2 
dynes/cm and γL′ is 28.8 dynes/cm. What is the final spreading coefficient? We have 

 
Therefore, although benzene spreads initially on water, at equilibrium there is formed a 
saturated monolayer with the excess benzene (saturated with water) forming a lens. 

In the case of organic liquids spread on water, it is found that although the initial spreading coefficient 
may be positive or negative, the final spreading coefficient always has a negative value. Duplex films of 
this type are unstable and form monolayers with the excess material remaining as a lens on the surface. 
The initial spreading coefficients of some organic liquids on water at 20°C are listed inTable 15-4. 
It is important to consider the types of molecular structures that lead to high spreading coefficients. Oil 
spreads over water because it contains polar groups such as COOH or OH. 
P.364 
 
Hence, propionic acid and ethyl alcohol should have high values ofS, as seen in Table 15-4. As the 
carbon chain of an acid, oleic acid, for example, increases, the ratio of polar–nonpolar character 
decreases and the spreading coefficient on water decreases. Many nonpolar substances, such as liquid 
petrolatum (S = -13.4), fail to spread on water. Benzene spreads on water not because it is polar but 
because the cohesive forces between its molecules are much weaker than the adhesion for water. 

Table 15-4 Initial Spreading Coefficient, S, at 20°C* 
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Substance S (dynes/cm) 

Ethyl alcohol 50.4 

Propionic acid 45.8 

Ethyl ether 45.5 

Acetic acid 45.2 

Acetone 42.4 

Undecylenic acid 32 (25°C) 

Oleic acid 24.6 

Chloroform 13 

Benzene 8.9 

Hexane 3.4 

Octane 0.22 

Ethylene dibromide -3.19 

Liquid petrolatum -13.4 

*From W. D. Harkins, The Physical Chemistry of Surface Films, Reinhold, 

New York, 1952, pp. 44–45. 

 

The applications of spreading coefficients in pharmacy should be fairly evident. The surface of the skin 
is bathed in an aqueous–oily layer having a polar–nonpolar character similar to that of a mixture of fatty 
acids. For a lotion with a mineral oil base to spread freely and evenly on the skin, its polarity and hence 
its spreading coefficient should be increased by the addition of a surfactant. The relation between 
spreading, HLB (hydrophile–lipophile balance), and emulsion stability has been studied.17 Surfactant 
blends of varying HLBs were added to an oil, a drop of which was then placed on water. The HLB of the 
surfactant blend that caused the oil drop to spread was related to the required HLB of the oil when used 
in emulsification. (See hydrophile-lipophile classification in this chapter). 
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Adsorption at Liquid Interfaces 
Surface free energy was defined previously as the work that must be done to increase the surface by 
unit area. As a result of such an expansion, more molecules must be brought from the bulk to the 
interface. The more work that has to be expended to achieve this, the greater is the surface free energy. 
Certain molecules and ions, when dispersed in the liquid, move of their own accord to the interface. 
Their concentration at the interface then exceeds their concentration in the bulk of the liquid. Obviously, 
the surface free energy and the surface tension of the system are automatically reduced. Such a 
phenomenon, where the added molecules are partitioned in favor of the interface, is termedadsorption, 
or, more correctly, positive adsorption. Other materials (e.g., inorganic electrolytes) are partitioned in 
favor of the bulk, leading to negative adsorption and a corresponding increase in surface free energy 
and surface tension. Adsorption, as will be seen later, can also occur at solid interfaces. Adsorption 
should not be confused with absorption. The former is solely a surface effect, whereas in absorption, the 
liquid or gas being absorbed penetrates into the capillary spaces of the absorbing medium. The taking 
up of water by a sponge is absorption; the concentrating of alkaloid molecules on the surface of clay is 
adsorption. 
Surface-Active Agents 
It is the amphiphilic nature of surface-active agents that causes them to be absorbed at interfaces, 
whether these are liquid–gas or liquid–liquid interfaces. Thus, in an aqueous dispersion of amyl alcohol, 
the polar alcoholic group is able to associate with the water molecules. The nonpolar portion is rejected, 
however, because the adhesive forces it can develop with water are small in comparison to the cohesive 
forces between adjacent water molecules. As a result, the amphiphile is adsorbed at the interface. The 
situation for a fatty acid at the air–water and oil–water interface is shown in Figure 15-10. At the air–
water interface, the lipophilic chains are directed upward into the air; at the oil–water interface, they are 
associated with the oil phase. For the amphiphile to be concentrated at the interface, it must be 
balanced with the proper amount of water- and oil-soluble groups. If the molecule is too hydrophilic, it 
remains within the body of the aqueous phase and exerts no effect at the interface. Likewise, if it is too 
lipophilic, it dissolves completely in the oil phase and little appears at the interface. 
Systems of Hydrophile–Lipophile Classification 
Griffin18 devised an arbitrary scale of values to serve as a measure of the hydrophilic–lipophilic balance 
of surface-active agents. By means of this number system, it is possible to establish an HLB range of 
optimum efficiency for each class of surfactant, as seen inFigure 15-11. The higher the HLB of an agent, 
the more hydrophilic it is. The Spans, sorbitan esters manufactured by ICI Americas Inc., are lipophilic 
and have low HLB values (1.8–8.6); the Tweens, polyoxyethylene derivatives of the Spans, are 
hydrophilic and have high HLB values (9.6–16.7). 
The HLB of a nonionic surfactant whose only hydrophilic portion is polyoxyethylene is calculated by 
using the formula 
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Key Concept 

Surfactants 

Molecules and ions that are adsorbed at interfaces are termed surface-active 

agents or surfactants. An alternative term is amphiphile, which suggests that the molecule or 
ion has a certain affinity for both polar and nonpolar solvents. Depending on the number and 
nature of the polar and nonpolar groups present, the amphiphile may be 
predominantly hydrophilic (water-loving), lipophilic (oil-loving), or reasonably well balanced 
between these two extremes. For example, straight-chain alcohols, amines, and acids are 
amphiphiles that change from being predominantly hydrophilic to lipophilic as the number of 
carbon atoms in the alkyl chain is increased. Thus, ethyl alcohol is miscible with water in all 
proportions. In comparison, the aqueous solubility of amyl alcohol, C5H11OH, is much 
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reduced, whereas cetyl alcohol, C16H33OH, may be said to be strongly lipophilic and insoluble 
in water. 

where E is the percentage by weight of ethylene oxide. A number of polyhydric alcohol fatty acid esters, 
such as glyceryl monostearate, can be estimated by using the formula 

 
where S is the saponification number of the ester and A is the acid number of the fatty acid. The HLB of 
polyoxyethylene sorbitan monolaurate (Tween 20), for which S = 45.5 and A = 276, is 

 

Fig. 15-10. Adsorption of fatty acid molecules at a water–air interface (upper panel) 

and a water–oil interface (lower panel). 

 
The HLB values of some commonly used amphiphilic agents are given in Table 15-5. 
The oil phase of an oil-in-water (O/W) emulsion requires a specific HLB, called the required hydrophile–

lipophile balance (RHLB). A different RHLB is required to form a water-in-oil (W/O) emulsion from the 
same oil phase. The RHLB values for both O/W and W/O emulsions have been determined empirically 
for a number of oils and oil-like substances, some of which are listed in Table 15-6. 
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Fig. 15-11. A scale showing surfactant function on the basis of hydrophilic–lipophilic 

balance (HLB) values. Key: O/W = oil in water. 

P.366 
 
 

Table 15-5 Hydrophilic–Lipophilic Balance (HLB) Values of Some Amphiphilic 

Agents 

Substance HLB 

Oleic acid 1 

Polyoxyethylene sorbitol beeswax derivative (G-1706) 2.0 

Sorbitan tristearate 2.1 

Glyceryl monostearate 3.8 

Sorbitan monooleate (Span 80) 4.3 

Diethylene glycol monostearate 4.7 
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Glyceryl monostearate, self-emulsifying (Tegin) 5.5 

Diethylene glycol monolaurate 6.1 

Sorbitan monolaurate (Span 20) 8.6 

Polyethylene lauryl ether (Brij 30) 9.5 

Gelatin (Pharmagel B) 9.8 

Methyl cellulose (Methocel 15 cps) 10.5 

Polyoxyethylene lauryl ether (G-3705) 10.8 

Polyoxyethylene monostearate (Myrj 45) 11.1 

Triethanolamine oleate 12.0 

Polyoxyethylene alkyl phenol (Igepal Ca-630) 12.8 

Polyethylene glycol 400 monolaurate 13.1 

Polyoxyethylene sorbitan monooleate (Tween 80) 15.0 

Polyoxyethylene sorbitan monolaurate (Tween 20) 16.7 

Polyoxyethylene lauryl ether (Brij 35) 16.9 

Sodium oleate 18.0 

Potassium oleate 20 

Sodium lauryl sulfate 40 

 

Table 15-6 Required Hydrophilic–Lipophilic Balance (HLB) for Some Oil-Phase 
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Ingredients for Oil-Inwater (O/W) and Water-in-Oil (W/O) Emulsions* 

  O/W W/O 

Cottonseed oil 6–7 — 

Petrolatum 8 — 

Beeswax 9–11 5 

Paraffin wax 10 4 

Mineral oil 10–12 5–6 

Methyl silicone 11 — 

Lanolin, anhydrous 12–14 8 

Carnauba wax 12–14 — 

Lauryl alcohol 14 — 

Caster oil 14 — 

Kerosene 12–14 — 

Cetyl alcohol 13–16 — 

Stearyl alcohol 15–16 — 

Carbon tetrachloride 16 — 

Lauric acid 16 — 

Oleic acid 17 — 
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Stearic acid 17 — 

*From The Atlas HLB System, Atlas Chemical Industries, Wilmington, DE; 

P. Becher, Emulsions, Theory and Practice, 2nd Ed., Reinhold, New York, 

1966, p. 249. 

 

Example 15-8 

Calculation of HLB Value for Oil-in-Water Emulsions 

For the oil-in-water emulsion, 

Ingredient Amount RHLB (O/W) 

1. Beeswax 15 g 9 

2. Lanolin 10 g 12 

3. Paraffin wax 20 g 10 

4. Cetyl alcohol 5 g 15 

5. Emulsifier 2 g   

6. Preservative 0.2 g   

7. Color As required   

8. Water, purified q.s. 100 g   

Key: RHLB = required hydrophilic–lipophilic balance value. 

 

One first calculates the overall RHLB of the emulsion by multiplying the RHLB of each oil-like 
component (items 1–4) by the weight fraction that each oil-like component contributes to the 
oil phase. The total weight of the oil phase is 50 g. Therefore, 
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Beeswax 15/50 × 9 = 2.70 

Lanolin 10/50 × 12 = 2.40 

Paraffin 20/50 × 10 = 4.00 

Cetyl alcohol 5/50 × 15 =1.50 

Total RHLB for the emulsion 20/50 × 10 = 10.60 

 

Next, one chooses a blend of two emulsifying agents, one with an HLB above and the other 
with an HLB below the required HLB of the emulsion (RHLB = 10.6 in this example). 
From Table 15-5, we choose Tween 80, with an HLB of 15, and Span 80, with an HLB of 4.3. 
The formula for calculating the weight percentage of Tween 80 (surfactant with the higher 
HLB) is 

 
where HLB high is for the higher value, 15, and HLB low is for the lower value, 4.3. We have 

 
Two grams of emulsifier has been estimated as proper protection for the O/W emulsion. 
Therefore, 2.0 g × 0.59 = 1.18 g of Tween 80 is needed and the remainder, 0.82 g, must be 
supplied by Span 80 for the 100-g emulsion. 

The choice of the mixture of emulsifiers and the total amount of the emulsifier phase is left to the 
formulator, who determines these unknowns over time by preparation and observation of the several 
formulas chosen. 
A mathematical formula for determining the minimum amount of surfactant mixture was suggested by 
Bonadeo19: 

 
where ρs is the density of the surfactant mixture, ρ is the density of the dispersed (internal) phase, 

and Q is the percentage of the dispersant (continuous phase) of the emulsion. The required HLB, written 
as RHLB, is the HLB of the oil phase needed to form an O/W or W/O emulsion. 
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Example 15-9 

W/O and O/W Formulations 

We wish to formulate two products, (a) a W/O and (b) an O/W emulsion, containing 40 g of a 
mixed oil phase and 60 g of water. 
(a) The oil phase consists of 70% paraffin and 30% beeswax. The density of the oil phase is 
0.85 g/cm3 and the density of the aqueous phase is about 1 g/cm3 at room temperature. The 
density of the mixture of surfactants for the W/O emulsion is 0.87 g/cm3. The required HLB 
values of paraffin and of beeswax for a W/O emulsion are 4.0 and 5.0, respectively. 
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The amount Qs in grams of a mixture of sorbitan tristearate (HLB = 2.1) and diethylene glycol 
monostearate (HLB = 4.7) to obtain a water-in-oil emulsion is obtained by the use of equation 
(15-24), first calculating the RHLB of the oil phase: 

 
Note that for a W/O emulsion we used the density of the internal phase, ρwater [congruent] 1, 
and the percentage of dispersant, oil, 40%. 
(b) The RHLB of the oil phase, 70% paraffin and 30% beeswax, for an O/W emulsion is 

 
and the total amount of surfactant mixture is 

 
For an O/W emulsion, we used the density ρ of the oil as the internal phase and the 

percentage of dispersant as the aqueous phase. 
For the amount of surfactant mixture in the W/O emulsion we can raise the value Qs roughly 
to 1.0 g and for the O/W emulsion to about 2.0 g. We can then calculate the weights of the 
two emulsifying agents for each emulsion, using the equation 

 
For the W/O emulsion, the percentage by weight of diethylene glycol monostearate (HLB = 
4.7) combined with sorbitan tristearate (HLB = 2.1) is 

 
The fraction or percentage of sorbitan monostearate is therefore 0.15 g, or 15% of the 1 g of 
mixed emulsifier. 
For the O/W emulsion, the percentage by weight of Tween 80 (HLB = 15) combined with 
diethylene glycol monolaurate (HLB = 6.1) is 

 
The fraction or percentage of diethylene glycol monolaurate is therefore 0.60, or 60%, and 
0.40, or 40%, of a 2-g mixture of emulsifier phase = 0.8 g of Tween 80. The remainder, 1.2 g, 
is the amount of diethylene glycol monolaurate in the 2-g emulsifier phase. 

Other scales of HLB have been developed, although none has gained the acceptance afforded the HLB 
system of Griffin. A titration method and other techniques for determining the hydrophile–lipophile 
character of surfactants have been proposed.20,21,22 
Types of Monolayer at Liquid Surfaces 
For convenience of discussion, absorbed materials are divided into two groups: those that form ―soluble‖ 

monolayers and those that form ―insoluble‖ films. The distinction is made on the basis of the solubility of 
the adsorbate in the liquid subphase. Thus, amyl alcohol may be said to form a soluble monolayer on 
water, whereas cetyl alcohol would form an insoluble film on the same sublayer. It must be emphasized 
that this is really only an arbitrary distinction, for the insoluble films are, in effect, the limiting case of 
those compounds that form soluble monolayers at liquid interfaces. There are, however, important 
practical reasons why such a classification is made. 
It will become apparent in the following sections that three interrelated parameters are important in 
studying liquid interfaces: (a) surface tension, γ; (b) surface excess, Γ, which is the amount of 

amphiphile per unit area of surface in excess of that in the bulk of the liquid; and (c) c, the concentration 
of amphiphile in the bulk of the liquid. As we shall see, it is relatively easy with soluble monolayers to 
measure surface tension and c to compute the surface excess. With insoluble monolayers, c is taken to 
be zero, whereas surface tension and surface excess can be obtained directly. Materials that lie on the 
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borderline between soluble and insoluble systems can be studied by either approach, and, invariably, 
similar results are obtained. 
Data obtained from such studies are of increasing biologic and pharmaceutical interest. For example, 
emulsions are stabilized by the presence of an interfacial film between the oil and water phases. 
Knowledge of the area occupied by each amphiphilic molecule at the interface is important in achieving 
optimum stability of the emulsion. The efficiency of wetting and detergent processes depends on the 
concentration of material adsorbed. Monolayers of adsorbed amphiphiles can be used as in vitro models 
for biologic membranes that are thought to consist of two monolayers placed back to back with the 
hydrocarbon chains intermeshed. Consequently, these model systems are finding increasing application 
for in vitro studies of drug absorption across biologic membranes. Studies of interfacial adsorption also 
provide valuable information on the dimensions of molecules because it is possible to calculate the 
areas occupied by amphiphilic molecules. 
Soluble Monolayers and the Gibbs Adsorption Equation 
The addition of amphiphiles to a liquid system leads to a reduction in surface tension owing to these 
molecules or ions being adsorbed as a monolayer. Adsorption of amphiphiles in these binary systems 
was first expressed quantitatively by Gibbs23 in 1878: 

 
Γ is the surface excess or surface concentration, that is, the amount of the amphiphile per unit area of 
surface in excess 
P.368 
 
of that in the bulk of the liquid, c is the concentration of amphiphile in the liquid bulk, R is the gas 
constant, T is the absolute temperature, and dγ/dc is the change in surface tension of the solution with 
change of bulk concentration of the substance. The derivation of equation (15-26) is given in the 
following paragraphs. 
Recall that the free energy change of a bulk phase containing two components is written as 

 
Two immiscible bulk phases can be considered to be separated by an interface or ―surface phase‖ in 

which the contribution to the volume is ignored, and a new energy term, γ dA [equation (15-2)], is 
introduced to account for the work involved in altering the surface area, A. The surface tension, γ, is the 
work done at a constant temperature and pressure per unit increase of surface area. The new work 
done on the surface phase is equal to the surface free energy increase, dG

s. Therefore, we can write 

 
At equilibrium, the free energy of the entire system is zero under the conditions of constant temperature, 
pressure, and surface area. Because no matter passes in or out of the system as a whole, the chemical 
potential of a component i is the same in the two bulk phases as it is in the surface phase, s: 

 
Such a system consisting of two immiscible liquids, water, α, and oleic acid, β, separated by the surface 
phase, s, is shown in Figure 15-12a. Equation (15-27) can be integrated at constant temperature and 
composition to give the surface free energy, 

 
Because the surface free energy depends only on the state of the system, dG

s is an exact differential 
and can be obtained by general differentiation of equation (15-29) under the condition of variable 
composition, 

 
Comparing this result with equation (15-27) shows that 

 
and at constant temperature, 
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When equation (15-32) is divided through by the surface area A, andn1
s/A and n2

s/A are given the 
symbols Γ1 and Γ2, respectively, we obtain 

 
As expressed by equation (15-33), the chemical potentials of the components in the surface are equal to 
those in the bulk phases, provided that the system is in equilibrium at constant temperature, pressure, 
and surface area. 

 

Fig. 15-12. A system consisting of oleic acid and water. (a) Graphic description of the 

two bulk phases, α and β, and the interface, s. (b) Condition where only the α phase 

and the surface or s phase need to be considered. 

Now consider a single-phase solution of oleic acid (solute or component 2) in water (solvent or 
component 1) as shown in Figure 15-12b. Under these circumstances, it is possible to drop the 
superscripts on the chemical potentials and write 

 
where Γ1 and Γ2 are the number of moles of the components per unit area in the surface 
and µ1 and µ2 are the chemical potentials of the two components in the solution. 
It is possible to make an arbitrary choice of the surface, and we do so in a manner that makes Γ1 equal 
to zero, that is, we arrange the boundary so that none of the solvent is present in the surface (Fig. 15-
12b). Then, equation (15-34) becomes 
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and 

 
P.369 
 
 
The chemical potential of the solute can be expressed in terms of the activity using the equation 

 
By differentiating at constant temperature, one obtains 

 
Substituting this value in equation (15-36) produces the result 

 
From differential calculus, if y = ln a2, then d ln a2 = da2/a2. Substituting this result in equation (15-
38) results in the Gibbs adsorption equation, 

 
This is equation (15-26), which was given in terms of concentration,c, instead of activity. If the solution is 
dilute, a2 can be replaced by cwithout introducing a significant error. 
When the surface tension, γ, of a surfactant is plotted against the logarithm of the surfactant activity or 
concentration, log c2, the plot takes on the shape shown in Figure 15-13. The initial curved segment A–

B is followed by a linear segment, B–C, along which there is a sharp decrease in surface tension as 
log c2 increases. The point C corresponds to the critical micelle concentration (CMC), the concentration 
at which micelles form in the solution. Beyond the CMC, the line becomes horizontal because further 
additions of surfactant are no longer being accompanied by a decrease in surface tension. Along the 
linear segment B–C, the surface excess Γ is constant because from equation (15-38), replacing activity 
with concentration, we find 

 
The slope ∂γ/∂ ln c2 reaches a limiting value and remains constant. Saturation adsorption of the 
surfactant has been reached at point B; that is, Γ2 does not increase further as the bulk concentration 
increases. However, the surface tension decreases greatly until point C is reached. Within the segment 
B–C of the curve, the surfactant molecules are closely packed at the surface and the surface area 
occupied per molecule is constant. Both the surface excess Γ2 and the area per surfactant molecule can 
be calculated using equation (15-40). 
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Fig. 15-13. Decrease in the surface tension of water when a strait-chain amphiphile is 

added. Key: CMC = critical micelle concentration. (Replotted from H. Schott, J. 

Pharm. Sci. 69, 852, 1980.) 

Example 15-10 

Calculation of Area per Molecule of a Surfactant 

The limiting slope of a plot of γ versus ln c2 for a nonionic surfactant, C12H25O(CH2CH2O)12H2, 
is ∂γ/∂ ln c2 = -5.2937 dynes/cm at 23.0°C. Calculate Γ2 and the area per molecule of this 
surfactant. 
From the Gibbs adsorption equation (15-40), 

 
The surface excess, 2.15 × 10-10 mole/cm2, is multiplied by 6.0221 × 1023 mole-1, Avogadro's 
number, to obtain molecules/cm2. The reciprocal then gives the area per molecule: 

 

The validity of the Gibbs equation has been verified experimentally. One of the more ingenious methods 
is due to McBain and Swain,24who literally fired a small microtome blade across a liquid surface so as 
to collect the surface layer. Analysis of the liquid scooped up and collected by the speeding blade 
agreed closely with that predicted by the Gibbs equation. Radioactive techniques using weak beta 
emitters also have been successfully used.25 
Insoluble Monolayers and the Film Balance 
Insoluble monolayers have a fascinating history that goes back to before the American Revolution. 
During a voyage to England in 1757, Benjamin Franklin observed, as had seamen for centuries before 
him, that when cooking grease was thrown from the ship's galley onto the water, the waves were 
calmed by the film that formed on the surface of the sea. In 1765, Franklin followed up this observation 
with an experiment on a half-acre pond in England and found that the application of 1 teaspoonful of oil 
was just sufficient to cover the pond and calm the waves. In 1899, Lord Rayleigh showed that when 
small amounts of certain slightly soluble oils were placed on a clean surface of water contained in a 
trough, they spread to form a layer one molecule thick (monomolecular layer). Prior to Rayleigh's work, 
a woman named Agnes Pockels, from Lower Saxony, Germany, who had no formal scientific training, 
developed a ―film balance‖ for studying insoluble monolayers. She carried out a series of experiments, 
which she summarized in a letter to Lord Rayleigh in January 1881. In fact, she invented the film 
balance in 
P.370 
 
1883, more than 30 years before Langmuir, whose name is normally associated with this type of 
apparatus. These and other early contributions in the area of surface phenomena are described in a 
series of papers by Giles and Forrester.26 
Knowing the area of the film and the volume of the spreading liquid, it should be possible to compute the 
thickness of such films. The film thickness is equal to the length of the molecules standing in a vertical 
position on the surface when the molecules are packed in closest arrangement. Furthermore, if the 
molecular weight and the density of the spreading oil are known, the cross-sectional area available to 
the molecules should be easily computed. 
Example 15-11 

Calculation of the Length and the Cross-Sectional Area of a Fatty Acid Molecule 

We noted that Benjamin Franklin placed 1 teaspoonful (~5 cm3
) of a fatty acid ―oil‖ on a half-

acre (~2 × 107 cm2) pond. Assume that the acid, having a molecular weight of 300 and a 
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density of 0.90 g/cm3, was just sufficient to form a condensed monomolecular film over the 
entire surface. What was the length and the cross-sectional area of the fatty acid molecule? 
(a) The thickness of oil on the pond is approximately equal to the length of the vertically 
oriented fatty acid molecule: 

 
(b) 

 

We can readily see from this example that the area of cross section per molecule is given by 

 
where M is molecular weight of the spreading liquid, S is the surface area covered by the film, V is the 
volume of the spreading liquid, ρ is its density, and N is Avogadro's number. 
Langmuir, Adam, Harkins, and others made quantitative studies of the properties of films that are spread 
over a clear surface of the substrate liquid (usually water) contained in a trough. The film can be 
compressed against a horizontal float by means of a movable barrier. The force exerted on the float is 
measured by a torsion-wire arrangement similar to that employed in the ring tensiometer. This 
apparatus is called a film balance. The compressive force per unit area on the float is known as 
the surface or film pressure, π; it is the difference in surface tension between the pure substrate, γ0, and 
that with a film spread on it, γ, and is written as 

 
Surface tension (interfacial tension) is the resistance of the surface (interface) to an expansion in area, 
and film pressure, π, is the lowering of this resistance to expansion, as expressed quantitatively in 
equation (15-42). Schott27 stated that the film pressure, π, is an expansion pressure exerted on the 

monolayer that opposes the surface tension, γ0, or contraction of the clean (water) surface. The surface-
active molecules of the monolayer are thought to insert themselves into the surface of the water 
molecules of a film balance to reduce the resistance of the water surface to expansion. The presence of 
the surfactant molecules increases the ease of expansion, presumably by breaking or interfering with 
hydrogen bonding, van der Waals interaction, and other cohesive forces among the water molecules. 
These attractive forces produce the ―springlike‖ action in the water surface, as measured by the surface 

tension, γ0, and the introduction of surfactant molecules into the clean water surface reduces the 
springiness of the interacting water molecules and decreases the surface tension γ0 to γ0 - γ or π 

[equation (15–42)]. 
In carrying out an experiment with the film balance, the substance under study is dissolved in a volatile 
solvent (e.g., hexane) and is placed on the surface of the substrate, which has previously been swept 
clean by means of a paraffined or Teflon strip. The liquid spreads as a film, and the volatile solvent is 
permitted to evaporate. A cross-sectional view of the interface after spreading is shown inFigure 15-14. 
The movable barrier is then moved to various positions in the direction of the float. The area of the 
trough available to the film at each position is measured, and the corresponding film pressure is read 
from the torsion dial. The film pressure is then plotted against the area of the film or, more conveniently, 
against the cross-sectional area per molecule, A2 [see Example 15-11 and equation (15-41) for 
computing the molecule's cross-sectional area from the area of the film]. The results for stearic acid and 
lecithin are shown in Figure 15-15. 
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Fig. 15-14. Cross-sectional view of a spreading liquid on the surface of a film 

balance. 

P.371 
 
 

 

Fig. 15-15. Surface film pressure, π, for stearic acid and lecithin plotted as a function 

of cross-sectional area per molecule. 

Frequently, a variety of phase changes are observed when an insoluble film is spread at an interface 
and then compressed. A representation of what can occur with a straight-chain saturated aliphatic 
compound at the air–water interface is shown in Figure 15-16. When the film is spread over an area 
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greater than 50 to 60 Å2/molecule (region G), it exerts little pressure on the floating barrier. The film acts 
like a gas in two dimensions. As the film begins to be compressed (region L1 - G), a liquid phase, L1, 
appears that coexists in equilibrium with the gas phase. This occurs at a low surface pressure (e.g., 0.2 
dyne/cm or less). The liquid expanded state (region L1) can be thought of as a bulk liquid state, but in 
two dimensions. Further compression of the film often leads to the appearance of an intermediate phase 
(region I) and then a less compressible condensed liquid state, region L2. This then gives way to the 
least compressible state, region S, where the film can be regarded as being in a two-dimensional solid 
state. In these latter stages of film compression, the film or surface pressure, π = γ0 - γ1, rises rapidly as 
the curve passes through the regions L2 and S inFigure 15-16. This increase in π with compression of 

the surfactant film results from surface-active molecules being forcibly inserted and crowded into the 
surface. This process opposes the natural tendency of the water surface to contract, and the surface 
tension decreases from γ0 to γ. Finally, the molecules slip over one another, and the film breaks when it 
is greatly compressed. 
The regions marked along the plot in Figure 15-16 can be represented schematically in terms of the 
positioning of the spreading molecules in the surface, as shown in Figure 15-17. In region G of Figure 
15-16, the molecules in the monolayer lie on the surface with great distances between them, as in a 
three-dimensional gas. In the part of the curve marked L1 and L2 in Figure 15-16, the molecules are 
forced closer together, and, as shown schematically in Figure 15-17b, are beginning to stand erect and 
interact with one another, analogous to a three-dimensional liquid. In region S of Figure 15-16, the 
spreading molecules are held together by strong forces; this condition, analogous to the solid state in 
three-dimensional chemistry, shows little compressibility 
P.372 
 
relative to that of a gas or a liquid. The S state is shown schematically in Figure 15-17c, where the 
molecules on the surface of the film balance are compressed together as far as possible. Further 
compression of the film by a movement from right to left on the horizontal axis of the graph in Figure 15-
14, that is, a movement from left to right of the movable barrier, brings about a collapse of the 
monolayer film, one part sliding over the other, as depicted in Figure 15-16. 

 

Dr. Murtadha Alshareifi e-Library

684



Fig. 15-16. Phase changes that occur when a liquid film is spread at an interface and 

then compressed. Key: G = two-dimensional gas; L1 - G = liquid phase in equilibrium 

with two-dimensional gas; L1 = liquid expanded or two-dimensional bulk liquid state; 

I = intermediate state; L2 = condensed liquid state; S = two-dimensional solid state. 

When compressed by a force greater than required to form a solid surface, the film 

collapses, as shown by the arrow at the top of the figure. (Replotted from P. C. 

Heimenz, Principles of Colloid and Surface Chemistry, 2nd Ed., Marcel Dekker, New 

York, 1986, p. 364.) 

 

Fig. 15-17. Insoluble monolayers. Insoluble monolayer films exhibit characteristics 

that can be equated to those of the solid, liquid, and gaseous states of matter. (a) 

Gaseous film. Molecules are apart and have significant surface mobility. The 

molecules essentially act independently. (b) Liquid film. Monolayer is coherent and 

relatively densely packed but is still compressible. (c) Condensed film. Monolayer is 

coherent, rigid, essentially incompressible, and densely packed, with high surface 

viscosity. The molecules have little mobility and are oriented perpendicular to the 

surface. 

Table 15-7 Dimensions of Organic Molecules Determined by Means of the Film 

Balance 
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Substance Formula 

Length of 

Molecule (Å) 

Cross-Sectional 

Area (Å
2
) 

Stearic acid C17H35COOH 25 22 

Tristearin (C128H35O2)3C3H5 25 66 

Cetyl alcohol C16H33OH 22 21 

Myricyl 

alcohol 

C30H61OH 41 27 

 

The cross-sectional area per molecule of the close-packed film at zero surface pressure is obtained by 
extrapolating the linear portion of the curve to the horizontal axis, as seen in Figure 15-16. The values 
for some organic molecules determined in this way by Langmuir28 are listed in Table 15-7. It is seen 
that myricyl alcohol, with 30 carbons in the chain, has a length almost twice that of the other molecules. 
Its cross-sectional area at the interface is not markedly different from that of other single-chain 
molecules, however, confirming that it is the cross-sectional area of the alkyl chain, rather than the 
length, that is being measured. Tristearin, with three fatty acid chains, has a cross-sectional area about 
three times that of the molecules with only one aliphatic chain. 
The electric potential and viscosity of monomolecular films can be studied by means of the film balance, 
and the molecular weight of high polymers such as proteins can be estimated by its use. The film-
balance technique also has considerable significance in the study of biologic systems. Because some 
protein molecules unfold from a spherical configuration into a flat film when spread on the surface of the 
film trough, the relationship between unfolding and biologic activity can be studied. The sizes and 
shapes of molecules of steroids, hormones, and enzymes and their interaction with drugs at interfaces 
can also be investigated by means of the film balance. The interaction between insulin injected under 
the surface layer and several lipids spread at constant surface pressure on a film balance was studied 
by Schwinke et al.29 The film balance and its applications are discussed in the books of 
Adam,30 Harkins,31Sobotka,32 and Gaines.33 
Mention has been made of the fact that materials forming an insoluble monolayer can be thought of as 
being in the gaseous, liquid, or solid state, depending on the degree of compression to which the film is 
subjected. Thus, the surface pressure for molecules in the gaseous state at an interface is comparable 
to the pressure, P, that molecules in three-dimensional gaseous systems exert on the walls of their 
containers. Just as the equation of state for an ideal gas in three dimensions is PV = nRT (see the ideal 
gas law in States of Matter), that for a monolayer is 

 
where π is the surface pressure in dynes/cm and A is the area that each mole of amphiphile occupies at 
the interface. 
Equation (15-43), the two-dimensional ideal gas law, can be derived as follows. When the concentration 
of amphiphile at the interface is small, solute–solute interactions are unimportant. Under these 
conditions, surface tension decreases in a linear fashion with concentration. We can therefore write 

 
where γ0 is the surface tension of the pure substrate, γ is the surface tension produced by the addition 
of c moles/liter of adsorbate, and bis the slope of the line. Because the slope of such a plot is negative, 
and because π = γ0 - γ, equation (15-44) can be rewritten as 
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The Gibbs adsorption equation (15-26) can be expressed in the following form: 

 
because dγ/dc is the slope of the line. 
Substituting for equation (15-45) in equation (15-46) and cancelingc, which is common to both sides, we 
obtain 

 
Surface excess has the dimensions of moles/cm2 and can be represented by n/A, where n is the 
number of moles and A is the area in cm2. Thus, 

 
or 

 
which is equation (15-43). 
As with the three-dimensional gas law, equation (15-43) can be used to compute the molecular weights 
of materials adsorbed as gaseous films at an interface. Nonideal behavior also occurs, and plots 
of πA versus π for monolayers give results comparable to those in three-dimensional systems 
when PV is plotted against P. Equations similar to van der Waal's equation (see van der Waals Equation 
for Real Gases in States of Matter) for nonideal behavior have been developed. 
The relation between the Gibbs adsorption equation and equation(15-43) emphasizes the point made 
earlier that the distinction between soluble and insoluble films is an arbitrary one, made on the basis of 
the experimental techniques used rather than any fundamental differences in physical properties. 
P.373 
 
 
The variation of the surface pressure, π, with temperature at the several ―phase changes‖ observed in 

the two-dimensional isothermπ-area (see Fig. 15-16) can be analyzed by a relationship analogous to the 
Clapeyron equation: 

 
where A1 and A2 are the molar areas (cm2/mole) of the two phases and T and ΔH are, respectively, the 
temperature and enthalpy for the phase change.33 Note that π, ΔH, and (A1 - A2) are the two-
dimensional equivalents of pressure, enthalpy, and change of volume, respectively, in the Clapeyron 
equation. 
Example 15-12 

Calculation of Enthalpy Change 

Consideration of monolayers of insoluble amphiphilic compounds with a polymerizable group 
serves to investigate the polymerization behavior at the gas–water interface. The π–

A isotherms resulting from film balance experiments withn-hexadecyl acrylate monolayers in 
the temperature range 13°C to 28°C showed two breaks corresponding to phase transitions 
(changes in state). 
Compute ΔH, the enthalpy change of transition from the condensed liquid state, L2, to the 
liquid expanded state, L1. The areas per molecule at L1 and L2 are 0.357 and 0.265 
nm2/molecule, respectively. The change of surface pressure with temperature, dπ/dt, is 0.91 
mN/mK, and the temperature of transition is 24.2°C.34 
From equation (15-48), 
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Adsorption at Solid Interfaces 
Adsorption of material at solid interfaces can take place from either an adjacent liquid or gas phase. The 
study of adsorption of gases arises in such diverse applications as the removal of objectionable odors 
from rooms and food, the operation of gas masks, and the measurement of the dimensions of particles 
in a powder. The principles of solid–liquid adsorption are used in decolorizing solutions, adsorption 
chromatography, detergency, and wetting. 
In many ways, the adsorption of materials from a gas or a liquid onto a solid surface is similar to that 
discussed for liquid surfaces. Thus, adsorption of this type can be considered as an attempt to reduce 
the surface free energy of the solid. The surface tensions of solids are invariably more difficult to obtain, 
however, than those of liquids. In addition, the solid interface is immobile in comparison to the turbulent 
liquid interface. The average lifetime of a molecule at the water–gas interface is about 1 µ sec, whereas 
an atom in the surface of a nonvolatile metallic solid may have an average lifetime of 
1037 sec.35 Frequently, the surface of a solid may not be homogeneous, in contrast to liquid interfaces. 
The Solid–Gas Interface 
The degree of adsorption of a gas by a solid depends on the chemical nature of the adsorbent (the 
material used to adsorb the gas) and the adsorbate (the substance being adsorbed), the surface area of 
the adsorbent, the temperature, and the partial pressure of the adsorbed gas. The types of adsorption 
are generally recognized as physical or van der Waals adsorption and chemical adsorption or 
chemisorption. Physical adsorption, associated with van der Waals forces, is reversible, the removal of 
the adsorbate from the adsorbent being known as desorption. A physically adsorbed gas can be 
desorbed from a solid by increasing the temperature and reducing the pressure. Chemisorption, in 
which the adsorbate is attached to the adsorbent by primary chemical bonds, is irreversible unless the 
bonds are broken. 
The relationship between the amount of gas physically adsorbed on a solid and the equilibrium pressure 
or concentration at constant temperature yields an adsorption isotherm when plotted as shown in Figure 
15-18. The term isotherm refers to a plot at constant temperature. The number of moles, grams, or 
milliliters, x, of gas adsorbed on, m, grams of adsorbent at standard temperature and pressure is plotted 
on the vertical axis against the equilibrium pressure of the gas in mm Hg on the horizontal axis, as seen 
inFigure 15-18a. 
One method of obtaining adsorption data is by the use of an apparatus similar to that shown in Figure 
15-19, which consists essentially of a balance contained within a vacuum system. The solid, previously 
degassed, is placed on the pan, and known amounts of gas are allowed to enter. The increase in weight 
at the corresponding equilibrium gas pressures is recorded. This can be achieved by noting the 
extension of a calibrated quartz spring used to suspend the pan containing the sample. The data are 
then used to construct an isotherm on the basis of one or more of the following equations. 
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Fig. 15-18. Adsorption isotherms for a gas on a solid. (a) Amount, x, of gas adsorbed 

per unit mass, m, of adsorbent plotted against the equilibrium pressure. (b) Log of the 

amount of gas adsorbed per unit mass of adsorbent plotted against the log of the 

pressure. 

P.374 
 
 

 

Fig. 15-19. Schematic of apparatus used to measure the absorption of gases on solids. 

Freundlich36 suggested a relationship, the Freundlich isotherm, 

 
where y is the mass of gas, x, adsorbed per unit mass, m, of adsorbent, and k and n are constants that 
can be evaluated from the results of the experiment. The equation is handled more conveniently when 
written in the logarithmic form, 

 
which yields a straight line when plotted as seen in Figure 15-18b. The constant, log k, is the intercept 
on the ordinate, and 1/n is the slope of the line. 
Langmuir37 developed an equation based on the theory that the molecules or atoms of gas are 
adsorbed on active sites of the solid to form a layer one molecule thick (monolayer). The fraction of 
centers occupied by gas molecules at pressure p is represented byθ, and the fraction of sites not 
occupied is 1 - θ. The rate, r1, of adsorption or condensation of gas molecules on the surface is 
proportional to the unoccupied spots, 1 - θ, and to the pressure, p, or 
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The rate, r2, of evaporation of molecules bound on the surface is proportional to the fraction of surface 
occupied, θ, or 

 

Fig. 15-20. Various types of adsorption isotherms. 

 
and at equilibrium r1 = r2, or 

 
By rearrangement, we obtain 

 
We can replace k1/k2 by b and θ by y/ym, where y is the mass of gas adsorbed per gram of adsorbent at 
pressure p and at constant temperature and ym is the mass of gas that 1 g of the adsorbent can adsorb 
when the monolayer is complete. Inserting these terms into equation (15-54) produces the formula 

 
which is known as the Langmuir isotherm. By inverting equation (15-55) and multiplying through by p, 
we can write this for plotting as 

 
A plot of p/y against p should yield a straight line, and ym and b can be obtained from the slope and 
intercept. 
Equations (15-49), (15-50), (15-55), and (15-56) are adequate for the description of curves only of the 
type shown in Figure 15-18a. This is known as the type I isotherm. Extensive experimentation, however, 
has shown that there are four other types of isotherms, as seen inFigure 15-20, that are not described 
by these equations. Type II isotherms are sigmoidal in shape and occur when gases undergo physical 
adsorption onto nonporous solids to form a monolayer followed 
P.375 
 
by multilayer formation. The first inflection point represents the formation of a monolayer; the continued 
adsorption with increasing pressure indicates subsequent multilayer formation. Type II isotherms are 
best described by an expression derived by Brunauer, Emmett, and Teller23 and termed for 
convenience the BET equation. This equation can be written as 
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where p is the pressure of the adsorbate in mm Hg at which the mass, y, of vapor per gram of adsorbent 
is adsorbed, p0 is the vapor pressure when the adsorbent is saturated with adsorbate vapor, ymis the 
quantity of vapor adsorbed per unit mass of adsorbent when the surface is covered with a 
monomolecular layer, and b is a constant proportional to the difference between the heat of adsorption 
of the gas in the first layer and the latent heat of condensation of successive layers. The saturated vapor 
pressure,p0, is obtained by bringing excess adsorbate in contact with the adsorbent. For the case of 
simple monolayer adsorption, the BET equation reduces to the Langmuir isotherm. 
Isotherms of the shape shown as IV in Figure 15-20 are typical of adsorption onto porous solids. The 
first point of inflection, when extrapolated to zero pressure, again represents the amount of gas required 
to form a monolayer on the surface of the solid. Multilayer formation and condensation within the pores 
of the solid are thought to be responsible for the further adsorption shown, which reaches a limiting 
value before the saturation vapor pressure, p0, is attained. Type III and type V isotherms are produced 
in a relatively few instances in which the heat of adsorption of the gas in the first layer is less than the 
latent heat of condensation of successive layers. As with type IV isotherms, those of type V show 
capillary condensation, and adsorption reaches a limiting value before p0 is attained. The type II 
isotherm results when b is greater than 2.0 and type III when bis less than 2.0 in the BET 
expression (15-57). Types IV and V frequently involve hysteresis and appear as shown in Figures 15-
21and 15-22, respectively. 
The total surface area of the solid can be determined from those isotherms in which formation of a 
monolayer can be detected, that is, Types I, II, and IV. This information is obtained by multiplying the 
total number of molecules in the volume of gas adsorbed by the cross-sectional area of each molecule. 
The surface area per unit weight of adsorbent, known as the specific surface, is important in pharmacy 
because the dissolution rates of drug particles depend, in part, on their surface area. 
The Solid–Liquid Interface 
Drugs such as dyes, alkaloids, fatty acids, and even inorganic acids and bases can be absorbed from 
solution onto solids such as charcoal and alumina. The adsorption of solute molecules from solution can 
be treated in a manner analogous to the adsorption of molecules at the solid–gas interface. Isotherms 
that fit one or more of the equations mentioned previously can be obtained by substituting solute 
concentration for the vapor pressure term used for solid–gas systems. For example, the adsorption of 
strychnine, atropine, and quinine from aqueous solutions by six different clays38 was capable of being 
expressed by the Langmuir equation in the form 
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Fig. 15-21. Type IV isotherm showing hysteresis. 
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Fig. 15-22. Type V isotherm showing hysteresis. 

P.376 
 
 

 

Fig. 15-23. Adsorption of strychnine on various clays. (Modified from M. Barr and S. 

Arnista, J. Am. Pharm. Assoc. Sci. Ed. 46, 486–489, 1957.) 

where c is the equilibrium concentration in milligrams of alkaloidal base per 100 mL of solution, y is the 
amount of alkaloidal base, x, in milligrams adsorbed per gram, m, of clay (i.e., y = x/m), and b and ymare 
constants defined earlier. In later studies, Barr and Arnista39investigated the adsorption of diphtheria 
toxin and several bacteria by various clays. They concluded that attapulgite, a hydrous magnesium 
aluminum silicate, was superior to kaolin as an intestinal adsorbent. The results of the adsorption of 
strychnine on activated attapulgite, halloysite (similar to kaolinite), and kaolin, all washed with gastric 
juice, are shown in Figure 15-23. 
The smaller the slope, the better is the adsorption. Thus, it can be calculated from Figure 15-23 that an 
equilibrium concentration of, say, 400 mg of strychnine/100 mL of solution, x/m, gives approximately 40, 
20, and 6.7 mg/g for attapulgite, halloysite, and kaolin, respectively. When an orally administered drug 
causes gastrointestinal disturbances, commercial adsorbent, antacid, or antidiarrheal preparations are 
often taken by the patient, and these preparations may interact with the drug to reduce its absorption. 
The absorption of quinidine salts (an antiarrhythmic agent), for example, is impaired by combining with 
kaolin, pectin, montmorillonite, and similar adsorbents. Moustafa et al.40 found that the adsorption of 
quinidine sulfate by antacid and antidiarrheal preparations, loperamide, Kaopectate, Simeco, 
magnesium trisilicate, and bismuth subnitrate was well expressed by both Freundlich and Langmuir 
adsorption isotherms. 
Nikolakakis and Newton41 studied the solid–solid adsorption of a fine cohesive powder onto the surface 
of coarse free-flowing particles to form what is called an ―ordered‖ mixture. These systems provide very 
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homogeneous mixtures of powders ordinarily having good physical stability. Examples of ―ordered‖ 

mixtures are dry blends of sucrose and antibiotics that can be reconstituted with water to provide 
antibiotic syrup formulations. Sorbitol can replace sucrose to prepare sucrose-free formulations for 
patients with diabetes. During blending, a fine powder of an antibiotic is adsorbed onto the surface of 
coarse particles of sorbitol. Nikolakakis and Newton41 obtained an apparent Langmuir or type I isotherm 
when the weight of drug adsorbed per unit weight of sorbitol, x/m, was plotted against the 
concentration, c, of nonadsorbed drug at equilibrium. Thus, using the linear form, equation (15-58), one 
can find the b and ym values. The ym value is the amount of antibiotic per unit weight of sorbitol required 
to form a monolayer on the surface of sorbitol particles. This can be considered as a measure of the 
adsorption capacity or number of binding sites of sorbitol for the antibiotic. The quantity b is an empirical 
affinity or binding constant that is given thermodynamic significance by some workers (see 
Hiemenz,7 see Fundamentals and Concentration Effects in Chemical Kinetics and Stability). 
Example 15-13 

Solid–Solid Adsorption of Cephalexin 

The values of c/y against c for the solid–solid adsorption of cephalexin monohydrate onto 
sorbitol are as follows: 
Calculate b and ym. 
Using a regression analysis of c/y (y axis) against c (xaxis), we find the c/y = 25.2 + 5.93c. 
Thus, 

 

c (% w/w*) 5 10 15 20 

c/y (% w/w) 54.85 84.5 114.15 143.8 

g adsorbate/g 

adsorbent 

        

*Note that we express c as percent w/w on both the xand y axes. We 

express y = x/m as gram adsorbate/gram adsorbent, which is dimensionless. 

Therefore, the units for c/y on the x axis are simply% w/w. Like y, ym is 

dimensionless, and b has the units 1 (% w/w). 

 

Activated Charcoal 
An example of a substance that can adsorb enormous amounts of gases or liquids is activated charcoal, 
the residue from destructive distillation of various organic materials, treated to increase its adsorptive 
power. To adsorb more adsorbate, an adsorbent of a given mass should have the greatest possible 
surface area. This might be achieved by the use of porous or milled adsorbents. Consider the following 
example: A sphere with a diameter of 1.2 cm has a volume of 1 cm3 and a surface area of 5 cm2. If the 
sphere is divided into two spheres each with a diameter of 1 cm, together they will have the same 
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volume of 1 cm3 but an increased surface area of 6 cm2. Particles with a diameter of about 0.01 cm and 
a summary 
P.377 
 
volume of 1 cm3 will have a total surface of about 500 cm3. If we continue to divide the spheres and 
finally mill them to particles with diameters of about 10-6 cm, the total surface area will increase to 
hundreds of square meters. Modern activated charcoal has thousands of square meters of active 
surface area per 1 g of mass. It is used as an antidote for poisonings due to many substances, including 
drugs (sulfonylureas, acetaminophen, phenobarbital, etc.). 
Activated charcoal is made from material burnt in a superheated high-oxygen atmosphere, creating 
small holes in the range of 100 to 800 Å in diameter throughout the grain of the charcoal. This effectively 
increases the charcoal's surface area so that the surface area of 1 g of charcoal is approximately 1000 
m2. The usual dose for activated charcoal treatment is 50 to 100 g for adults and 1 to 2 g/kg for children. 
Activated charcoal is frequently administered to poisoned patients. The assumption is that toxin 
absorption is prevented and that toxicity (as defined by morbidity and mortality) of the poisoning is 
decreased. Yet, there is no evidence that activated charcoal improves outcome.42 
Sorptive uptake of lignin and tannin from an aqueous phase by activated charcoal was 
investigated.43 The sorption reaction was found to be of a first order. The influence on the rate of 
sorption of various factors, such as amount of sorbent and pH of the system, has been investigated. 
Sorption data fit well into the Langmuir adsorption isotherm, indicating formation of a monolayer over a 
homogeneous sorbent surface. Desorption studies indicate the irreversible nature of the sorption 
reaction, whereas interruption studies suggest film diffusion to be rate limiting.43 
Shadnia et al.44 described the treatment and successful outcome of a patient who had taken a dose of 
strychnine that would normally be fatal. A 28-year-old man was admitted 2 hr after ingestion of 1 to 1.5 g 
of strychnine. He was severely agitated and in mild respiratory distress; blood pressure was 90/60 
mm Hg, pulse 110/min, and peripheral pulses weak. He had generalized hyperactive reflexes and had 
several generalized tonic–clonic convulsions in the emergency department. Treatment consisted of 
gastric lavage with water, oral administration of activated charcoal and sorbitol solution, continuous 
intravenous administration of midazolam, and then sodium thiopental, furosemide, sodium bicarbonate, 
and hemodialysis for acute renal failure. His clinical course included respiratory distress, agitation, 
generalized tonic–clonic convulsions, hyperactivity, oliguria, and acute tubular necrosis prior to recovery 
in 23 days. 
Tanaka et al.45 reported a case of impaired absorption of orally administered phenobarbital associated 
with the concomitant administration of activated charcoal, and recovery of the absorption after 
administration of the two drugs was separated by a 1.5-hr interval. A 78-year-old woman weighing 50 kg 
who had undergone brain surgery was prescribed phenobarbital 120 mg/day for postoperative 
convulsions. Her serum phenobarbital concentration reached 24.8 µg/mL (therapeutically effective level 
is 10–30 µg/mL). Thereafter, her renal function worsened, and activated charcoal 6 g/day was started. 
Four months after the start of activated charcoal, blood analysis revealed that the serum phenobarbital 
concentration was as low as 4.3 µg/mL. The phenobarbital dose was increased to 150 mg/day. Further 
evaluation revealed that activated charcoal and phenobarbital had been administered concomitantly. 
The dosage regimen was altered to separate the administration of the agents by at least 1.5 hr. 
Subsequently, the patient's serum phenobarbital concentration increased to 11.9 µ/mL within 3 weeks. 
Her serum phenobarbital concentration was measured monthly thereafter and remained stable in the 
range of 15.8 to 18.6 µ/mL. The patient's low serum phenobarbital concentration was considered likely 
to have been due to impaired gastrointestinal absorption of phenobarbital as a result of adsorption of 
phenobarbital on the activated charcoal. An objective causality assessment showed that the interaction 
was probable. Therefore, administration of activated charcoal and phenobarbital should be separated by 
an interval of at least 1.5 hr. 
Fourteen adsorbent materials were tested in the pH range of 3 to 8 for deoxynivalenol and nivalenol-
binding ability.46 Only activated carbon was effective, with binding capacities of 35.1 and 8.8 µ mole of 
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deoxynivalenol and nivalenol per gram of adsorbent, respectively, calculated from the adsorption 
isotherms. A dynamic laboratory model simulating the gastrointestinal tract of healthy pigs was used to 
evaluate the small-intestinal absorption of deoxynivalenol and nivalenol and the efficacy of activated 
carbon in reducing the relevant absorption. The in vitro intestinal absorptions of deoxynivalenol and 
nivalenol were 51% and 21%, respectively, as referred to 170 µg of deoxynivalenol and 230 µg of 
nivalenol ingested through contaminated (spiked) wheat. Most absorption occurred in the jejunal 
compartment for both mycotoxins. The inclusion of activated carbon produced a significant reduction in 
the intestinal mycotoxin absorption. At 2% inclusion, the absorption with respect to the intake was 
lowered from 51% to 28% for deoxynivalenol and from 21% to 12% for nivalenol. The binding activity of 
activated carbon for these trichothecenes was lower than that observed for zearalenone, a mycotoxin 
frequently co-occurring with them in naturally contaminated cereals. 
The adsorption of three barbiturates—phenobarbital, mephobarbital, and primidone from simulated 
intestinal fluid, without pancreatin, by activated carbon was studied using the rotating-bottle 
method.46The concentrations of each drug remaining in solution at equilibrium were determined with 
the aid of a high-performance liquid chromatography system employing a reversed-phase column. The 
competitive Langmuir-like model, the modified competitive Langmuir-like model, and the LeVan–

Vermeulen model were each fit to the data. Excellent agreement was obtained between the 
experimental and predicted data using the modified competitive Langmuir-like model and the LeVan–

Vermeulen model. The agreement obtained from the original competitive Langmuir-like model was less 
satisfactory. These observations are not surprising because the competitive Langmuir-like model 
assumes that the capacities of the adsorbates are 
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equal, whereas the other two models take into account the differences in the capacities of the 
components. The results of these studies indicate that the adsorbates employed are competing for the 
same binding sites on the activated carbon surface. The results also demonstrate that it is possible to 
accurately predict multicomponent adsorption isotherms using only single-solute isotherm 
parameters.47 

Key Concept 

Wetting Agent 

A wetting agent is a surfactant that, when dissolved in water, lowers the advancing contact 
angle, aids in displacing an air phase at the surface, and replaces it with a liquid phase. 
Examples of the application of wetting to pharmacy and medicine include the displacement of 
air from the surface of sulfur, charcoal, and other powders for the purpose of dispersing these 
drugs in liquid vehicles; the displacement of air from the matrix of cotton pads and bandages 
so that medicinal solutions can be absorbed for application to various body areas; the 
displacement of dirt and debris by the use of detergents in the washing of wounds; and the 
application of medicinal lotions and sprays to the surface of the skin and mucous membranes. 

Hill et al.48 studied extracorporeal liver support for episodic (acute) type C hepatic encephalopathy 
(AHE) failing to respond to medical therapy. A series of patients with cirrhosis and AHE failing to 
respond to at least 24 hr of medical therapy underwent a maximum of three 6-hr charcoal-based 
hemodiabsorption treatments. It was found that a charcoal-based hemodiabsorption treatment in which 
a standardized anticoagulation protocol is used is safe and effective treatment for AHE not responding 
to standard medical therapy. 
Although activated charcoal is useful in the management of poisonings, it should not be considered as 
harmless, especially in children. Donoso et al.49 reported the case of a patient who developed 
obstructive laryngitis secondary to aspiration of activated charcoal with a protected airway. This case 
shows that nasogastric administration of activated charcoal presents a significant degree of risk. 
Vomiting also frequently complicates the administration of activated charcoal. Little is known about the 
patient, poison, or procedure-specific factors that contribute to emesis of charcoal. Osterhoudt et 
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al.50 estimated the incidence of vomiting subsequent to therapeutic administration of charcoal to 
poisoned children 18 years or less of age and examined the relative contributions of several risk factors 
to the occurrence of vomiting. One of every 5 children given activated charcoal vomited. Children with 
previous vomiting or nasogastric tube administration were at highest risk, and these factors should be 
accounted for in future investigation of antiemetic strategies. Sorbitol content of charcoal was not a 
significant risk factor for emesis. 
Wetting 
Adsorption at solid surfaces is involved in the phenomena of wetting and detergency. The tendency of 
molecules of liquids to move from the surface into the bulk and decrease the surface of the liquid–gas 
interface is explained by the fact that molecules of liquid undergo very weak attraction from the 
molecules of gas on the interface. There is a limited number of gas molecules in a unit of volume in the 
gaseous phase as compared with that in liquid phase. When a liquid comes into contact with the solid, 
the forces of attraction between the liquid and the solid phases begin to play a significant role. In this 
case, the behavior of the liquid will depend on the balance between the forces of attraction of molecules 
in the liquid and the forces of attraction between the liquid and the solid phases. In the case of mercury 
and glass, attractive forces between molecules of mercury and glass are much smaller than the forces 
of attraction between molecules of mercury themselves. As a result, mercury will come together as a 
single spherical drop. In contrast, for water and glass (or mercury and zinc), attractive forces between 
the solid and liquid molecules are greater than the forces between molecules of liquid themselves, and 
so the liquid is able to wet the surface of the glass. 
The most important action of a wetting agent is to lower the contact angle between the surface and the 
wetting liquid. The contact angle is the angle between a liquid droplet and the surface over which it 
spreads. As shown in Figure 15-24, the contact angle between a liquid and a solid may be 0°, 
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signifying complete wetting, or may approach 180°, at which wetting is insignificant. The contact angle 
may also have any value between these limits, as illustrated in the Figure. At equilibrium, the surface 
and interfacial tensions can be resolved into 
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Fig. 15-24. Contact angles from 0° to 180°. 

 
which is known as Young's equation. 
When γS of equation (15-59) is substituted into equation (15-19), we have 

 
and combining equation (15-59) with equation (15-16) results in 

 
which is an alternative form of Young's equation. Equations (15-60)and (15-61) are useful expressions 
because they do not include γSor γSL, neither of which can be easily or accurately measured. The 
contact angle between a water droplet and a greasy surface results when the applied liquid, water, wets 
the greasy surface incompletely. When a drop of water is placed on a scrupulously clean glass surface, 
it spreads spontaneously and no contact angle exists. This result can be described by assigning to 
water a high spreading coefficient on clean glass, or by stating that the contact angle between water and 
glass is zero. If the appropriate wetting agent is added to water, the solution will spread spontaneously 
on a greasy surface. For a wetting agent to function efficiently—in other words, to exhibit a low contact 
angle—it should have an HLB of about 6 to 9 (see Fig. 15-11). 
Example 15-14 

Comparison of Different Tablet Binders 

Wettability of tablet surfaces influences disintegration and dissolution and the subsequent 
release of the active ingredient(s) from the tablet. 
A tablet binder is a material that contributes cohesiveness to a tablet so that the tablet 
remains intact after compression. The influence of tablet binders on wettability of 
acetaminophen tablets was studied by Esezobo et al.51The effect of the contact angle of 
water on the acetaminophen tablets, the surface tension of the liquid, and the disintegration 
time of the tablets is given in the following table. The water on the tablet surface is saturated 
with the basic formulation ingredients excluding the binder. The concentration of the tablet 
binders, povidone (polyvinylpyrrolidone, PVP), gelatin, and tapioca, is constant at 5% w/w. 

Binder γ (N/m)* Cos θ t (min) 

Povidone 71.23 0.7455 17.0 

Gelatin 71.23 0.7230 23.5 

Tapioca 71.33 0.7570 2.0 

*The surface tension, γ, is given in joules/m, or newtons, the SI force unit, 

divided by meters. In the cgs system, γ is expressed in the force unit of dynes 

divided by centimeters, or in ergs/cm
2
. 

 

Using equations (15-60) and (15-61), compute S, the spreading coefficient, and WSL, the work 
of adhesion, for water on the tablet surface, comparing the influence of the three binders in 
the formulation. Observe the disintegration times found in the table and use them to refute or 
corroborate the S and WSL results. 
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The spreading coefficient is negative, but the values are small. Tapioca shows the smallest 
negative value, S = -17.33, followed by PVP and finally gelatin. These results agree with the 
work of adhesion, tapioca > PVP > gelatin. When the work of adhesion is higher, the bond 
between water and tablet surface is stronger, and the better is the wetting. 
From the table, we observe the tablet disintegration times to be on the order tapioca < PVP < 
gelatin, which agrees qualitatively with the S and WSL values. That is, the better the wetting, 
reflected in a larger work of adhesion and a smaller negative spreading coefficient, the shorter 
is the tablet disintegration time. Other factors, such as tablet porosity, that were not 
considered in the study cause the relationship to be only qualitative. 

Example 15-15 

The Influence of Additives on the Spreading Coefficient of a Film Coating 

Formulation to a Model Tablet Surface 

One of the requirements of tablet film coating is that good adhesion of the coat to the tablet 
must be achieved. The properties of the coating formulation as well as those of the tablet can 
influence adhesion. The prerequisite for good adhesion is the spreading of the atomized 
droplets over the surface of the tablet and limited penetration of the coating solution into the 
pores of the tablet. Both of these are controlled by the surface energetics of the tablet and the 
coating solution. Khan et al.52 determined the spreading coefficients of hydroxypropyl 
methylcellulose (HPMC) containing additives on a model tablet surface. Four formulations 
were studied. The formulations contained (a) 9% HPMC, 1% polyethylene glycol 400 (PEG 
400); (b) 9% HPMC, 1% PEG 400, 2% microcrystalline cellulose (MCC); (c) 9% HPMC, 1% 
PEG 400, 2% MCC, 2% lactose; and (d) 9% HPMC, 1% PEG 400, 0.5% Tween 20. Tablets 
consisted of 75.2% MCC, 24.2% lactose, 0.4% magnesium atearate, and 0.2% colloidal 
silicon dioxide (all w/w). Two batches of tablets with average breaking loads of 127 and 191 N 
were produced. 
Contact angles (degrees) and spreading coefficients (SC, mJ/m2) for the coating formulations 
of the tablets (N = 10; means ± SD) are as follows: 
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Coating Formulations 

127-N Tablet 191-N Tablet 

Contact Angle SC Contact Angle SC 

(a) HPMC 43 ± 0.48 41.2 46 ± 0.47 39.6 

(b) MCC 54 ± 0.34 40.2 54 ± 0.32 38.6 

(c) Lactose 50 ± 0.37 39.0 51 ± 0.52 37.4 

(d) Tween 53 ± 0.93 41.8 52 ± 0.47 40.2 

 

The inclusion of additives changes the contact angle of the coating formulations to a limited 
extent. The spreading coefficients are all high and positive, indicating effective spreading of 
the coating formulations on the surface of the tablets. 
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Fig. 15-25. Critical surface tension (Zisman) plot for a model skin. (Replotted from J. 

C. Charkoudian, J. Soc. Cosmet. Chem. 39, 225, 1988.) 

Zisman and his associates53 found that when the cosine of the contact angle, cos θ, was plotted versus 
the surface tension for a homologous series of liquids spread on a surface such as Teflon 
(polytetrafluoroethylene), a straight line resulted. The line can be extrapolated to cos θ = 1, that is, to a 
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contact angle of zero, signifying complete wetting. The surface tension at cos θ = 1 was given the 
term critical surface tension and the symbol γc. Various series of liquids on a given solid surface were all 
found to have about the same value of γc, as observed in Figure 15-25. Zisman concluded that γc was 
characteristic for each solid, Teflon, for example, having a value of about 18 ergs/cm2. Because the 
surface of Teflon consists of —CF2— groups, Zisman reasoned that all surfaces of this nature would 
have critical surface tensions of about 18 ergs/cm2, and any liquid with a surface tension less than 18 
ergs/cm2 would wet a surface composed of —CF2— groups.54,55 
Example 15-16 

Wetting of Model Skin 

Charkoudian56 designed a model skin surface with physical and chemical properties 
approximating those reported for human skin. The model skin consisted of a protein (cross-
linked gelatin), a synthetic lipidlike substance, and water, with the protein and lipid in a ratio of 
3 to 1. To further characterize the artificial skin, the surface tensions of several liquids and 
their contact angles on the model skin surface were determined at 20°C, as given in the 
following table: 

Liquid Water Glycerin 

Diiodo 

methane 

Ethylene 

glycol 

Benzyl 

alcohol 

Mineral 

oil 

γ(dynes/cm) 72.8 63.4 50.8 48.3 39.2 31.9 

Cos θ 0.45 0.56 0.79 0.77 0.96 0.97 

 

Plot cos θ versus γ and compute the critical surface tension, γc, for complete wetting of the 
artificial skin surface. The value of γc for in vivo human skin is about 26 to 28 dynes/cm. 
From the results obtained, which liquid in the table would be expected to best wet the model 
skin surface? 
The plot is shown in Figure 15-25. Although the liquids in the table do not constitute a 
homologous series, they appear to fit nicely the Zisman53 principle, producing a straight line 
that extrapolates to cos θ corresponding to a critical surface tension of γc = 33 dynes/cm. 
Mineral oil, with a surface tension of 31.9 dynes/cm, most closely approximates the critical 
surface tension, γc = 33 dynes/cm, of the model skin surface. For a more exact calculation 
of γc, least squares linear regression analysis can be applied to yield 

 
For the specific value of cos θ = 1, we obtain γc = 33.0 dynes/cm. It is noted that the critical 
surface tension, γc, for the artificial skin used in this study is somewhat higher (γc= 33.0 
dynes/cm) than values reported elsewhere in the literature for human skin (γc = 26–28 
dynes/cm). This is believed to be due in part to the absence of sweat and sebaceous 
secretions, which lower the γc value of viable human skin. 

Although one frequently desires to determine the relative efficiencies of wetting agents, it is difficult to 
measure the contact angle. Nor are spreading coefficients usually available, because no convenient 
method is known for directly measuring the surface tension of a solid surface. As a result of these 
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difficulties, empirical tests are used in industry, one of the best-known wetting tests being that of 
Draves23. The Draves test involves measuring the time for a weighted skein of cotton yarn to sink 
through the wetting solution contained in a 500-mL graduate. No method has been suggested for 
estimating the ability of a wetting agent to promote spreading of a lotion on the surface of the skin, and 
the application properties of such products are ordinarily determined by subjective evaluation. 
Detergents are surfactants that are used for the removal of dirt. Detergency is a complex process 
involving the removal of foreign matter from surfaces. The process includes many of the actions 
characteristic of specific surfactants: initial wetting of the dirt and of the surface to be cleaned; 
deflocculation and suspension; emulsification or solubilization of the dirt particles; and sometimes 
foaming of the agent for entrainment and washing away of the particles. Because the detergent must 
possess a combination of properties, its efficiency is best ascertained by actual tests with the material to 
be cleaned. 
Other dispersion stabilizers, including deflocculating, suspending, and emulsifying agents, are 
considered in Chapter 17. 
Applications of Surface-Active Agents 
In addition to the use of surfactants as emulsifying agents, detergents, wetting agents, and solubilizing 
agents, they find application as antibacterial and other protective agents and as aids to the absorption of 
drugs in the body. 
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A surfactant may affect the activity of a drug or may itself exert drug action. As an example of the first 
case, the penetration of hexylresorcinol into the pinworm, Ascaris, is increased by the presence of a low 
concentration of surfactant. This potentiation of activity is due to a reduction in interfacial tension 
between the liquid phase and the cell wall of the organism. As a result, the adsorption and spreading of 
hexylresorcinol over the surface of the organism is facilitated. When the concentration of surface-active 
agent present exceeds that required to form micelles, however, the rate of penetration of the 
anthelmintic decreases nearly to zero. This is because the drug is now partitioned between the micelles 
and the aqueous phase, resulting in a reduction in the effective concentration. Quaternary ammonium 
compounds are examples of surface-active agents that in themselves possess antibacterial 
activity.55 This may depend in part on interfacial phenomena, but other factors are also important. The 
agents are adsorbed on the cell surface and supposedly bring about destruction by increasing the 
permeability or ―leakiness‖ of the lipid cell membrane. Death then occurs through a loss of essential 

materials from the cell. Both gram-negative and gram-positive organisms are susceptible to the action of 
the cationic quaternary compounds, whereas anionic agents attack gram-positive organisms more easily 
than gram-negative bacteria. Nonionic surfactants are least effective as antibacterial agents. In fact, 
they often aid rather than inhibit the growth of bacteria, presumably by providing long-chain fatty acids in 
a form that is easily metabolized by the organism. 
Miyamoto et al.58 studied the effects of surfactants and bile salts on the gastrointestinal absorption of 
antibiotics using an in situ rat-gut perfusion technique. Polyoxyethylene lauryl ether reduced the 
absorption of propicillin in the stomach and increased it in the small intestine. Some surfactants increase 
the rate of intestinal absorption, whereas others decrease it. Some of these effects may result from 
alteration of the membrane by the surfactant. The effects of surfactants on the solubility of drugs and 
their bioabsorption have been reviewed by Mulley59 and Gibaldi and Feldman.60 
Foams and Antifoaming Agents 
Any solutions containing surface-active materials produce stable foams when mixed intimately with air. 
A foam is a relatively stable structure consisting of air pockets enclosed within thin films of liquid, the 
gas-in-liquid dispersion being stabilized by a foaming agent. The foam dissipates as the liquid drains 
away from the area surrounding the air globules, and the film finally collapses. Agentssuch as alcohol, 
ether, castor oil, and some surfactants can be used to break the foam and are known as antifoaming 

agents. Foams are sometimes useful in pharmacy (e.g., vaginal contraceptive or antimicrobial 
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formulations) but are usually a nuisance and are prevented or destroyed when possible. The 
undesirable foaming of solubilized liquid preparations poses a problem in formulation. 

 

Fig. 15-26. Common soaps. 

All of the soaps (sodium oleate, etc.) are fatty acid salts (anionic surfactant). They are characterized by 
(a) a long hydrocarbon chain, which may be monounsaturated (i.e., have one double bond, like sodium 
oleate), polyunsaturated (i.e., have more than one double bond), or saturated (i.e., no double bonds), 
and (b) a carboxylate group at the end (Fig. 15-26). Any surfactant that is not a soap is adetergent. The 
cleaning action of soaps and detergents is based on the property known as detergency. Possibly, the 
most important industrial role for surfactants is the formation of emulsions. An emulsion is a dispersion 
of one liquid in a second, immiscible liquid. Salad dressings, milk, and cream are emulsions, as are 
medicinal creams such as moisturizers. Emulsions are multiphase systems, even though they often look 
like they are just one phase. The phases in an emulsion are normally called the continuous phase and 
the dispersed phase. Detergency is a complex process involving the removal of foreign matter from 
surfaces. The process includes the following main steps (Fig. 15-27): (a) The hydrocarbon tails of the 
detergent anions dissolve in the grease; (b) the grease spot gradually breaks up and becomes 
pincushioned by the detergent anions; and (c) small bits of grease are held in colloidal suspension by 
the detergent. The anionic heads keep the grease from coalescing because the particles carry the same 
electric charge. 
Lung Surfactant 
Lung surfactant is surface-active agent that covers the surface of alveoli contacted with air. It decreases 
the surface tension at the air–alveoli interface almost to zero and therefore 
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accomplishes two main tasks. First, it prevents the collapse of alveoli. Second, main surfactant function 
is to decrease the pressure inside the alveoli. Thus, lung surfactant allows us to breathe and prevents 
pulmonary edema. Lung surfactant is a complex mixture of proteins and lipids but the major component 
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is phosphatidylcholine. Some pathologic conditions were found to decrease the activity of lung 
surfactant. In the United States, 40,000 premature infants per year are born without enough lung 
surfactant, resulting in thousands of deaths. The typical premature infant has only 1/20 of the lung 
surfactant needed to breathe. Fortunately, additional artificial lung surfactant can be administered. 
Calfactant (Infasurf; Forest Pharmaceuticals, St. Louis, MO) is one of the available artificial surfactants. 
Infasurf (calfactant) Intratracheal Suspension is a sterile, nonpyrogenic lung surfactant intended for 
intratracheal instillation only. It is an extract of natural surfactant from calf lungs and includes 
phospholipids, neutral lipids, and hydrophobic surfactant-associated proteins B and C (SP-B and SP-C). 
It contains no preservatives. Infasurf is an off-white suspension of calfactant in 0.9% aqueous sodium 
chloride solution. It has a pH of 5.0 to 6.0. Each milliliter of Infasurf contains 35 mg of total phospholipids 
(including 26 mg of phosphatidylcholine, of which 16 mg is disaturated phosphatidylcholine) and 0.65 
mg of proteins, including 0.26 mg of SP-B. Treatment with calfactant often rapidly improves oxygenation 
and lung compliance. 

 

Fig. 15-27. Mechanism of detergent action. (a) The hydrocarbon tails of the detergent 

anions dissolve in the grease; (b) the grease spot gradually breaks up and becomes 

pincushioned by the detergent anions, and (c) small bits of grease are held in colloidal 

suspension by the detergent. 

Electric Properties of Interfaces 
This section deals with some of the principles involved with surfaces that are charged in relation to their 
surrounding liquid environment. Discussion of the applications arising from this phenomenon is given in 
the chapters dealing with colloidal systems (Chapter 16) and suspensions (Chapter 17). 
Particles dispersed in liquid media may become charged mainly in one of two ways. The first involves 
the selective adsorption of a particular ionic species present in solution. This may be an ion added to the 
solution or, in the case of pure water, it may be the hydronium or hydroxyl ion. The majority of particles 
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dispersed in water acquire a negative charge due to preferential adsorption of the hydroxyl ion. Second, 
charges on particles arise from ionization of groups (such as COOH) that may be situated at the surface 
of the particle. In these cases, the charge is a function of pK and pH. A third, less common origin for the 
charge on a particle surface is thought to arise when there is a difference in dielectric constant between 
the particle and its dispersion medium. 
The Electric Double Layer 
Consider a solid surface in contact with a polar solution containing ions, for example, an aqueous 
solution of an electrolyte. Furthermore, let us suppose that some of the cations 
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are adsorbed onto the surface, giving it a positive charge. Remaining in solution are the rest of the 
cations plus the total number of anions added. These anions are attracted to the positively charged 
surface by electric forces that also serve to repel the approach of any further cations once the initial 
adsorption is complete. In addition to these electric forces, thermal motion tends to produce an equal 
distribution of all the ions in solution. As a result, an equilibrium situation is set up in which some of the 
excess anions approach the surface, whereas the remainder are distributed in decreasing amounts as 
one proceeds away from the charged surface. At a particular distance from the surface, the 
concentrations of anions and cations are equal, that is, conditions of electric neutrality prevail. It is 
important to remember that the system as a whole is electrically neutral, even though there are regions 
of unequal distribution of anions and cations. 
Such a situation is shown in Figure 15-28, where aa′ is the surface of the solid. The adsorbed ions that 
give the surface its positive charge are referred to as the potential-determining ions. Immediately 
adjacent to this surface layer is a region of tightly bound solvent molecules, together with some negative 
ions, also tightly bound to the surface. The limit of this region is given by the line bb′ inFigure 15-28. 
These ions, having a charge opposite to that of the potential-determining ions, are known 
as counterions or gegenions. The degree of attraction of the solvent molecules and counterions is such 
that if the surface is moved relative to the liquid, the shear plane is bb′ rather than aa′, the true surface. 
In the region bounded by the lines bb′ and cc′, there is an excess of negative ions. The potential at bb′ is 
still positive because, as previously mentioned, there are fewer anions in the tightly bound layer than 
cations adsorbed onto the surface of the solid. Beyond cc′, the distribution of ions is uniform and electric 
neutrality is obtained. 
Thus, the electric distribution at the interface is equivalent to a double layer of charge, the first layer 
(extending from aa′ to bb′) tightly bound and a second layer (from bb′ to cc′) that is more diffuse. The so-
called diffuse double layer therefore extends from aa′ to cc′. 
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Fig. 15-28. The electric double layer at the surface of separation between two phases, 

showing distribution of ions. The system as a whole is electrically neutral. 

Two situations other than that represented by Figure 15-28 are possible: (a) If the counterions in the 
tightly bound, solvated layer equal the positive charge on the solid surface, then electric neutrality 
occurs at the plane bb′ rather than cc′. (b) Should the total charge of the counterions in the region aa′–

bb′ exceed the charge due to the potential-determining ions, then the net charge at bb′ will be negative 
rather than less positive, as shown in Figure 15-28. This means that, in this instance, for electric 
neutrality to be obtained at cc′, an excess of positive ions must be present in the region bb′–cc′. 
The student should appreciate that if the potential-determining ion is negative, the arguments just given 
still apply, although now positive ions will be present in the tightly bound layer. 
Nernst and Zeta Potentials 
The changes in potential with distance from the surface for the various situations discussed in the 
previous section can be represented as shown in Figure 15-29. The potential at the solid 
surface aa′ due to the potential-determining ion is theelectrothermodynamic (Nernst) potential, E, and is 
defined as the difference in potential between the actual surface and the 
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electroneutral region of the solution. The potential located at the shear plane bb′ is known as 
the electrokinetic, or zeta, potential, δ. The zeta potential is defined as the difference in potential 
between the surface of the tightly bound layer (shear plane) and the electroneutral region of the solution. 
As shown in Figure 15-29, the potential initially drops off rapidly, followed by a more gradual decrease 
as the distance from the surface increases. This is because the counterions close to the surface act as a 
screen that reduces the electrostatic attraction between the charged surface and those counterions 
further away from the surface. 
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Fig. 15-29. Electrokinetic potential, E, at solid–liquid boundaries. Curves are shown 

for three cases characteristic of the ions or molecules in the liquid phase. Note that 

although E is the same in all three cases, the zeta potentials are positive (δ1), zero (δ2), 

and negative (δ3). 

The zeta potential has practical application in the stability of systems containing dispersed particles 
because this potential, rather than the Nernst potential, governs the degree of repulsion between 
adjacent, similarly charged, dispersed particles. If the zeta potential is reduced below a certain value 
(which depends on the particular system being used), the attractive forces exceed the repulsive forces, 
and the particles come together. This phenomenon is known as flocculation and is discussed in the 
chapters dealing with colloidal and coarse dispersions. 
Effect of Electrolytes 
As the concentration of electrolyte present in the system is increased, the screening effect of the 
counterions is also increased. As a result, the potential falls off more rapidly with distance because the 
thickness of the double layer shrinks. A similar situation occurs when the valency of the counterion is 
increased while the total concentration of electrolyte is held constant. The overall effect frequently 
causes a reduction in zeta potential. 
Chapter Summary 

Several types of interface can exist, depending on whether the two adjacent phases are in the 
solid, liquid, or gaseous state. For convenience, this chapter divided these various 
combinations into two groups, namely, liquid interfaces andsolid interfaces. In the former 
group, the association of a liquid phase with a gaseous or another liquid phase was 
discussed. The section on solid interfaces dealt with systems containing solid–gas and solid–

liquid interfaces. Although solid–solid interfaces have practical significance in pharmacy (e.g., 
the adhesion between granules, the preparation of layered tablets, and the flow of particles), 
little information is available to quantify these interactions. This is due, at least in part, to the 
fact that the surface region of materials in the solid state is quiescent, in sharp contrast to the 
turbulence that exists at the surfaces of liquids and gases. Accordingly, solid–solid systems 
were not discussed. Finally, the electric properties of interfaces were outlined. By the 
conclusion of this chapter you should understand the terms surface tension and interfacial 
tension and their application in pharmaceutical sciences as well as appreciate the various 
methods of measuring surface and interface tensions. The student should also be able to 
classify surface-active agents and appreciate their applications in pharmacy. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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16 Colloidal Dispersions 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Differentiate between different types of colloidal systems and their main 
characteristics. 

2. Understand the main optical properties of colloids and applications of these 
properties for the analysis of colloids. 

3. Know the main types of microscopic systems used for analysis of colloids. 
4. Appreciate the major kinetic properties of colloids. 
5. Understand the main electrical properties of colloids and their application for the 

stability, sensitization, and protective action of colloids. 
6. Recognize the benefits of solubilization by colloids. 
7. Understand the benefits and know the main types of modern colloidal drug delivery 

systems. 

Introduction 
It is important that the pharmacist understand the theory and technology of dispersed systems. 
Knowledge of interfacial phenomena and a familiarity with the characteristics of colloids and small 
particles are fundamental to an understanding of the behavior of pharmaceutical dispersions. There are 
three types of dispersed systems encountered in the pharmaceutical sciences: molecular, colloidal, and 
coarse dispersions. Molecular dispersions are homogeneous in character and form true solutions. The 
properties of these systems were discussed in earlier chapters. Colloidal dispersions will be considered 
in the present chapter. Powders and granules and coarse dispersions are discussed in other chapters; 
all are examples of heterogeneous systems. It is important to know that the only difference between 
molecular, colloidal, and coarse dispersions is the size of the dispersed phase and not its composition. 
Dispersions consist of at least one internal phase that is dispersed in a dispersion medium. Sometimes 
putting these systems into one of the three categories is a bit tricky. So, we will start by looking at an 
example of a complex dispersed system that we are all very familiar with—blood. Blood is a specialized 
fluid that delivers vital substances such as oxygen and nutrients to various cells and tissues in the body. 
The dispersion medium in blood is plasma, which is mostly water (~90% or so). Blood is composed of 
more than one dispersed phase. Nutrients such as peptides, proteins, and glucose are dissolved in 
plasma forming a molecular dispersion or true solution. Oxygen, however, is carried to cells and tissues 
by red blood cells. Given the size of red blood cells (~6 µm in diameter and 2 µm in width) they would be 
considered to form a coarse dispersion in blood. White blood cells such as leukocytes and platelets are 
the other major cells types carried in blood. The last major component of blood is serum albumin. Serum 
albumin forms a true solution in water. However, the size of the individual serum albumin particles in 
solution is >1 nm, which puts them into the colloidal dispersion group. As you can now see, blood is a 
complex bodily fluid that is an example of the three types of dispersed systems that you will encounter in 
the pharmaceutical sciences. 
Size and Shape of Colloidal Particles 
Particles in the colloidal size range possess a surface area that is enormous compared with the surface 
area of an equal volume of larger particles. Thus, a cube having a 1-cm edge and a volume of 1 
cm3 has a total surface area of 6 cm2. If the same cube is subdivided into smaller cubes each having an 
edge of 100 µm, the total volume remains the same, but the total surface area increases to 600,000 
cm2. This represents a 105-fold increase in surface area. To compare the surface areas of different 
materials quantitatively, the term specific surface is used. This is defined as the surface area per unit 
weight or volume of material. In the example just given, the first sample had a specific surface of 6 
cm2/cm3, whereas the second sample had a specific surface of 600,000 cm2/cm3. The possession of a 
large specific surface results in many of the unique properties of colloidal dispersions. For example, 
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platinum is effective as a catalyst only when in the colloidal form as platinum black. This is because 
catalysts act by adsorbing the reactants onto their surface. Hence, their catalytic activity is related to 
their specific surface. The color of colloidal dispersions is related to the size of the particles present. 
Thus, as the particles in a red gold sol increase in size, the dispersion takes on a blue color. Antimony 
and arsenic trisulfides change from red to yellow as the particle size is reduced from that of a coarse 
powder to that within the colloidal size range. 
Because of their size, colloidal particles can be separated from molecular particles with relative ease. 
The technique of separation, known as dialysis, uses a semipermeable membrane of collodion or 
cellophane, the pore size of which will prevent the passage of colloidal particles, yet permit small 
molecules and ions, such as urea, glucose, and sodium chloride, to pass through. The principle is 
illustrated in Figure 16-1, which shows that, at equilibrium, the colloidal 
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material is retained in compartment A, whereas the subcolloidal material is distributed equally on both 
sides of the membrane. By continually removing the liquid in compartment B, it is possible to obtain 
colloidal material in A that is free from subcolloidal contaminants. Dialysis can also be used to obtain 
subcolloidal material that is free from colloidal contamination—in this case, one simply collects the 
effluent. Ultrafiltration has also been used to separate and purify colloidal material. According to one 
variation of the method, filtration is conducted under negative pressure (suction) through a dialysis 
membrane supported in a Büchner funnel. When dialysis and ultrafiltration are used to remove charged 
impurities such as ionic contaminants, the process can be hastened by the use of an electric potential 
across the membrane. This process is called electrodialysis. 

Key Concept 

Dispersed Systems 

Dispersed systems consist of particulate matter, known as the dispersed phase, distributed 
throughout a continuous ordispersion medium. The dispersed material may range in size from 
particles of atomic and molecular dimensions to particles whose size is measured in 
millimeters. Accordingly, a convenient means of classifying dispersed systems is on the basis 
of the mean particle diameter of the dispersed material. Based on the size of the dispersed 
phase, three types of dispersed systems are generally considered: (a) molecular dispersions, 
(b) colloidaldispersions, and (c) coarse dispersions. The size ranges assigned to these 
classes, together with some of the associated characteristics, are shown in the accompanying 
table. The size limits are somewhat arbitrary, there being no distinct transition between either 
molecular and colloidal dispersions or colloidal and coarse dispersions. For example, 
certain macro (i.e., large) molecules, such as the polysaccharides, proteins, and polymers in 
general, are of sufficient size that they may be classified as forming both molecular and 
colloidal dispersions. Some suspensions and emulsions may contain a range of particle sizes 
such that the smaller particles lie within the colloidal range, whereas the larger ones are 
classified as coarse particles. 

Classification of Dispersed Systems Based on Particle Size 
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Class 

Particle 

Size* 

Characteristics of 

System Examples 

Molecular 

dispersion 

Less 

than 1 

nm 

Invisible in electron 

microscope 

Pass through 

ultrafilter and 

semipermeable 

membrane 

Undergo rapid 

diffusion 

Oxygen molecules, 

ordinary ions, 

glucose 

Colloidal 

dispersion 

From 1 

nm to 

0.5 µm 

Not resolved by 

ordinary microscope 

(although may be 

detected under 

ultramicroscope) 

Visible in electron 

microscope 

Pass through filter 

paper 

Do not pass 

semipermeable 

membrane 

Diffuse very slowly 

Colloidal silver sols, 

natural and synthetic 

polymers, cheese, 

butter, jelly, paint, 

milk, shaving cream, 

etc. 

Coarse 

dispersion 

Greater 

than 0.5 

µm 

Visible under 

microscope 

Do not pass through 

normal filter paper 

Do not dialyze 

through 

semipermeable 

membrane 

Do not diffuse 

Grains of sand, most 

pharmaceutical 

emulsions and 

suspensions, red 

blood cells 

* 1 nm (nanometer) = 10
-9

 m; 1 µm (micrometer) = 10
-6

 m. 
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Fig. 16-1.Sketch showing the removal of 

electrolytes from colloidal material by 

diffusion through a semipermeable 

membrane. Conditions on the two sides, A 

and B, of the membrane are shown at the 

start and at equilibrium. The open circles are 

the colloidal particles that are too large to 

pass through the membrane. The solid dots 

are the electrolyte particles that pass through 

the pores of the membrane. 

Dialysis has been used increasingly in recent years to study the binding of materials of pharmaceutical 
significance to colloidal particles. Dialysis occurs in vivo. Thus, ions and small molecules pass readily 
from the blood, through a natural semipermeable membrane, to the tissue fluids; the colloidal 
components of the blood remain within the capillary system. The principle of dialysis is utilized in the 
artificial kidney, which removes low–molecular-weight impurities from the body by passage through a 
semipermeable membrane. 
The shape adopted by colloidal particles in dispersion is important because the more extended the 
particle, the greater 
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is its specific surface and the greater is the opportunity for attractive forces to develop between the 
particles of the dispersed phase and the dispersion medium. A colloidal particle is something like a 
hedgehog—in a friendly environment, it unrolls and exposes maximum surface area. Under adverse 
conditions, it rolls up and reduces its exposed area. Some representative shapes of spherocolloids and 
fibrous colloids are shown in Figure 16-2. As will be seen in later discussions, such properties as flow, 
sedimentation, and osmotic pressure are affected by changes in the shape of colloidal particles. Particle 
shape may also influence pharmacological action. 

 

Fig. 16-2.Some shapes that can be assumed by 

colloidal particles: (a) spheres and globules, (b) 

short rods and prolate ellipsoids, (c) oblate 

ellipsoids and flakes, (d) long rods and threads, 

(e) loosely coiled threads, and (f) branched 

threads. 

Types of Colloidal Systems 
Lyophilic Colloids 
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Systems containing colloidal particles that interact to an appreciable extent with the dispersion medium 
are referred to as lyophilic(solvent-loving) colloids. Owing to their affinity for the dispersion medium, 
such materials form colloidal dispersions, or sols, with relative ease. Thus, lyophilic colloidal sols are 
usually obtained simply by dissolving the material in the solvent being used. For example, the 
dissolution of acacia or gelatin in water or celluloid in amyl acetate leads to the formation of a sol. 
The various properties of this class of colloids are due to the attraction between the dispersed phase 
and the dispersion medium, which leads to solvation, the attachment of solvent molecules to the 
molecules of the dispersed phase. In the case of hydrophilic colloids, in which water is the dispersion 
medium, this is termed hydration. Most lyophilic colloids are organic molecules, for example, gelatin, 
acacia, insulin, albumin, rubber, and polystyrene. Of these, the first four produce lyophilic colloids in 
aqueous dispersion media (hydrophilic sols). Rubber and polystyrene form lyophilic colloids in 
nonaqueous, organic solvents. These materials accordingly are referred to as lipophilic colloids. These 
examples illustrate the important point that the term lyophilic has meaning only when applied to the 
material dispersed in a specific dispersion medium. A material that forms a lyophilic colloidal system in 
one liquid (e.g., water) may not do so in another liquid (e.g., benzene). 
Lyophobic Colloids 
The second class of colloids is composed of materials that have little attraction, if any, for the dispersion 
medium. These 
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are the lyophobic (solvent-hating) colloids and, predictably, their properties differ from those of the 
lyophilic colloids. This is primarily due to the absence of a solvent sheath around the particle. Lyophobic 
colloids are generally composed of inorganic particles dispersed in water. Examples of such materials 
are gold, silver, sulfur, arsenous sulfide, and silver iodide. 

Key Concept 

Colloidal Systems 

All kinds of dispersed phases might form colloids in all possible kinds of media, except for a 
gas–gas combination. Because all gases mix uniformly at the molecular level, gases only 
form solutions with each other. Possible types of colloidal dispersions are shown in the 
accompanying table. Colloidal systems are best classified into three groups—lyophilic, 
lyophobic, and association—on the basis of the interaction of the particles, molecules, or ions 
of the dispersed phase with the molecules of the dispersion medium. 

Types of Colloidal Dispersions* 

Dispersion 

Medium 

Dispersed 

Phase Colloid Type Examples 

Solid Solid Solid sol Pearls, opals 

Solid Liquid Solid 

emulsion 

Cheese, butter 

Solid Gas Solid foam Pumice, marshmallow 

Liquid Solid Sol, gel Jelly, paint 
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Liquid Liquid Emulsion Milk, mayonnaise 

Liquid Gas Foam Whipped cream, shaving 

cream 

Gas Solid Solid 

aerosols 

Smoke, dust 

Gas Liquid Liquid 

aerosols 

Clouds, mist, fog 

* A gas in a gas always produces a solution. 

 

In contrast to lyophilic colloids, it is necessary to use special methods to prepare lyophobic colloids. 
These are (a) dispersion methods, in which coarse particles are reduced in size, and (b) condensation 
methods, in which materials of subcolloidal dimensions are caused to aggregate into particles within the 
colloidal size range. Dispersion can be achieved by the use of high-intensity ultrasonic generators 
operating at frequencies in excess of 20,000 cycles per second. A second dispersion method involves 
the production of an electric arc within a liquid. Owing to the intense heat generated by the arc, some of 
the metal of the electrodes is dispersed as vapor, which condenses to form colloidal particles. Milling 
and grinding processes can be used, although their efficiency is low. So-called colloid mills, in which the 
material is sheared between two rapidly rotating plates set close together, reduce only a small amount 
of the total particles to the colloidal size range. 
The required conditions for the formation of lyophobic colloids by condensation or aggregation involve a 
high degree of initial supersaturation followed by the formation and growth of nuclei. Supersaturation 
can be brought about by change in solvent or reduction in temperature. For example, if sulfur is 
dissolved in alcohol and the concentrated solution is then poured into an excess of water, many small 
nuclei form in the supersaturated solution. These grow rapidly to form a colloidal sol. Other 
condensation methods depend on a chemical reaction, such as reduction, oxidation, hydrolysis, and 
double decomposition. Thus, neutral or slightly alkaline solutions of the noble metal salts, when treated 
with a reducing agent such as formaldehyde or pyrogallol, form atoms that combine to form charged 
aggregates. The oxidation of hydrogen sulfide leads to the formation of sulfur atoms and the production 
of a sulfur sol. If a solution of ferric chloride is added to a large volume of water, hydrolysis occurs with 
the formation of a red sol of hydrated ferric oxide. Chromium and aluminum salts also hydrolyze in this 
manner. Finally, the double decomposition between hydrogen sulfide and arsenous acid results in an 
arsenous sulfide sol. If an excess of hydrogen sulfide is used, HS- ions are adsorbed onto the particles. 
This creates a large negative charge on the particles, leading to the formation of a stable sol. 
Association Colloids: Micelles and the Critical Micelle 
Concentration 
Association or amphiphilic colloids form the third group in this classification. As shown in the Interfacial 
Phenomena chapter, certain molecules or ions, termed amphiphiles or surface-active agents, are 
characterized by having two distinct regions of opposing solution affinities within the same molecule or 
ion. When present in a liquid medium at low concentrations, the amphiphiles exist separately and are of 
such a size as to be subcolloidal. As the concentration is increased, aggregation occurs over a narrow 
concentration range. These aggregates, which may contain 50 or more monomers, are called micelles. 
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Because the diameter of each micelle is of the order of 50 Å, micelles lie within the size range we have 
designated as colloidal. The concentration of monomer at which micelles form is termed the critical 

micelle concentration(CMC). The number of monomers that aggregate to form a micelle is known as 
the aggregation number of the micelle. 
The phenomenon of micelle formation can be explained as follows. Below the CMC, the concentration of 
amphiphile undergoing adsorption at the air–water interface increases as the total concentration of 
amphiphile is raised. Eventually, 
P.390 
 
a point is reached at which both the interface and the bulk phase become saturated with monomers. 
This is the CMC. Any further amphiphile added in excess of this concentration aggregates to form 
micelles in the bulk phase, and, in this manner, the free energy of the system is reduced. The effect of 
micellization on some of the physical properties of solutions containing surface-active agents is shown 
in Figure 16-3. Note particularly that surface tension decreases up to the CMC. From the Gibbs' 
adsorption equation, this means increasing interfacial adsorption. Above the CMC, the surface tension 
remains essentially constant, showing that the interface is saturated and micelle formation has taken 
place in the bulk phase. 

 

Fig. 16-3.Properties of surface-active agents 

showing changes that occur sharply at the critical 

micelle concentration. (Modified from W. J. 

Preston, Phys. Coll. Chem. 52, 85, 1948.) 

In the case of amphiphiles in water, the hydrocarbon chains face inward into the micelle to form, in 
effect, their own hydrocarbon environment. Surrounding this hydrocarbon core are the polar portions of 
the amphiphiles associated with the water molecules of the continuous phase. Aggregation also occurs 
in nonpolar liquids. The orientation of the molecules is now reversed, however, with the polar heads 
facing inward while the hydrocarbon chains are associated with the continuous nonpolar phase. These 
situations are shown in Figure 16-4, which also shows some of the shapes postulated for micelles. It 
seems likely that spherical micelles exist at concentrations relatively close to the CMC. At higher 
concentrations, laminar micelles have an increasing tendency to form and exist in equilibrium with 
spherical micelles. The student is cautioned against regarding micelles as solid particles. The individual 
molecules forming the micelle are in dynamic equilibrium with those monomers in the bulk and at the 
interface. 
As with lyophilic sols, formation of association colloids is spontaneous, provided that the concentration 
of the amphiphile in solution exceeds the CMC. 
Amphiphiles may be anionic, cationic, nonionic, or ampholytic (zwitterionic), and this provides a 
convenient means of classifying association colloids. A typical example of each type is given in Table 
16-1. Thus, Figure 16-4a represents the micelle of an anionic association colloid. A certain number of 
the sodium ions are attracted to the surface of the micelle, reducing the overall negative charge 
somewhat. These bound ions are termed counter ions orgegenions. 
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Mixtures of two or more amphiphiles are usual in pharmaceutical formulations. Assuming an ideal 
mixture, one can predict the CMC of the mixture from the CMC values of the pure amphiphiles and their 
mole fractions, x, in the mixture, according to the expression1 

 
Example 16-1 

Critical Micelle Concentration 

Compute the CMC of a mixture of n-dodecyl octaoxyethylene glycol monoether (C12E8) and n-
dodecyl β-D-maltoside (DM). The CMC of C12E8 is CMC1 = 8.1 × 10-5M (mole/liter) and its 
mole fraction is x1 = 0.75; the CMC of DM is CMC2 = 15 × 10-5 M. 
We have 

 
From equation (16-1), 

 
The experimental value is 9.3 × 10-5 M. 
The properties of lyophilic, lyophobic, and association colloids are outlined in Table 16-2. 
These properties, together with the relevant methods, will be discussed in the following 
sections. 

Optical Properties of Colloids 
The Faraday–Tyndall Effect 
When a strong beam of light is passed through a colloidal sol, a visible cone, resulting from the 
scattering of light by the colloidal particles, is formed. This is the Faraday–Tyndall effect. 
The ultramicroscope, developed by Zsigmondy, allows one to examine the light points responsible for 
the Tyndall cone. An intense light beam is passed through the sol against a dark background at right 
angles to the plane of observation, and, although the particles cannot be seen directly, the 
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bright spots corresponding to particles can be observed and counted. 

 

Fig. 16-4.Some probable shapes of micelles: (a) 

spherical micelle in aqueous media, (b) reversed 

micelle in nonaqueous media, and (c) laminar 

micelle, formed at higher amphiphile 

concentration, in aqueous media. 

Electron Microscope 
The electron microscope, capable of yielding pictures of the actual particles, even those approaching 
molecular dimensions, is now widely used to observe the size, shape, and structure of colloidal 
particles. 
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The success of the electron microscope is due to its high resolving power, which can be defined in 
terms of d, the smallest distance by which two objects are separated and yet remain distinguishable. 
The smaller the wavelength of the radiation used, the smaller is dand the greater is the resolving power. 
The optical microscope uses visible light as its radiation source and is able to resolve only two particles 
separated by about 20 nm (200 Å). The radiation source of the electron microscope is a beam of high-
energy electrons having wavelengths in the region of 0.01 nm (0.1 Å). With current instrumentation, this 
results in d being approximately 0.5 nm (5 Å), a much-increased power of resolution over the optical 
microscope. 
P.392 
 
 

Table 16-1 Classification and Typical Examples of Association Colloids 

Type 

Example 

Compound Amphiphile 

Gegenio

ns 

Anionic Sodium lauryl sulfate CH3(CH2)11OSO3
-
 Na

+
 

Cationic Cetyl trimethyl-

ammonium bromide 

CH3(CH2)15N
+
(CH3)3 Br

-
 

Nonioni

c 

Polyoxyethylene lauryl 

ether 

CH3(CH2)10CH2O(CH2

OCH2)23H 

– 

Amphol

ytic 

Dimethyldodecylammo

niopropane sulfonate 

CH3(CH2)11N
+
(CH3)2(C

H2)3OSO2
-
 

– 

 

Light Scattering 
This property depends on the Faraday–Tyndall effect and is widely used for determining the molecular 
weight of colloids. It can also be used to obtain information on the shape and size of these particles. 
Scattering can be described in terms of the turbidity, τ, the fractional decrease in intensity due to 

scattering as the incident light passes through 1 cm of solution. It can be expressed as the intensity of 
light scattered in all directions, Is, divided by the intensity of the incident light, I. At a given concentration 
of dispersed phase, the turbidity is proportional to the molecular weight of the lyophilic colloid. Because 
of the low turbidities of most lyophilic colloids, it is more convenient to measure the scattered light (at a 
particular angle relative to the incident beam) rather than the transmitted light. 
The turbidity can then be calculated from the intensity of the scattered light, provided that the 
dimensions of the particle are small compared with the wavelength of the light used. The molecular 
weight of the colloid can be obtained from the following equation: 

 

Table 16-2 Comparison of Properties of Colloidal Sols* 
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Lyophilic 

Association 

(Amphiphilic) Lyophobic 

Dispersed phase consists 

generally of large 

organicmolecules lying 

within colloidal size range 

Dispersed phase 

consists of 

aggregates 

(micelles) of small 

organic molecules 

or ions whose 

sizeindividually is 

below the colloidal 

range 

Dispersed phase 

ordinarily consists 

of inorganic 

particles, such as 

gold or silver 

Molecules of dispersed 

phase are solvated, i.e., they 

are associated with the 

molecules comprising the 

dispersion medium 

Hydrophilic or 

lipophilic portion of 

the molecule is 

solvated, depending 

on whether the 

dispersion medium 

is aqueous or 

nonaqueous 

Little if any 

interaction 

(solvation) occurs 

between particles 

and dispersion 

medium 

Molecules disperse 

spontaneously to form 

colloidal solution 

Colloidal 

aggregates are 

formed 

spontaneously when 

the concentration of 

amphiphile exceeds 

the critical micelle 

concentration 

Material does not 

disperse 

spontaneously, 

and special 

procedures 

therefore must be 

adopted to 

produce colloidal 

dispersion 

Viscosity of the dispersion 

medium ordinarily is 

increased greatly by the 

presence of the dispersed 

phase; at sufficiently high 

concentrations, the sol may 

become a gel; viscosity and 

gel formation are related to 

solvation effects and to the 

shape of the molecules, 

which are usually highly 

asymmetric 

Viscosity of the 

system increases as 

the concentration of 

the amphiphile 

increases, as 

micelles increase in 

number and become 

asymmetric 

Viscosity of the 

dispersion 

medium is not 

greatly increased 

by the presence of 

lyophobic 

colloidal 

particles, which 

tend to be 

unsolvated and 

symmetric 
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Dispersions are stable 

generally in the presence of 

electrolytes; they may be 

salted out by high 

concentrations of very 

soluble electrolytes; effect 

is due primarily to 

desolvation of lyophilic 

molecules 

In aqueous 

solutions, the 

critical micelle 

concentration is 

reduced by the 

addition of 

electrolytes; salting 

out may occur at 

higher salt 

concentrations 

Lyophobic 

dispersions are 

unstable in the 

presence of even 

small 

concentrations of 

electrolytes; 

effect is due to 

neutralization of 

the charge on the 

particles; 

lyophilic colloids 

exert a protective 

effect 

*From J. Swarbick and A. Martin, American Pharmacy, 6th Ed., Lippincott, 

Philadelphia, 1966, p. 161. 
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Fig. 16-5. A plot of Hc/τagainst the concentration 

of a polymer (colloid). 

where τ is the turbidity in cm-1, c is the concentration of solute in g/cm3 of solution, M is the weight-
average molecular weight in g/mole or daltons, and B is an interaction constant (see osmotic 
pressure). H is constant for a particular system and is written as 

 
where n (dimensionless) is the refractive index of the solution of concentration c(g/cm3) at a 
wavelength λ in cm-1, dn/dc is the change in refractive index with concentration at c, and N is Avogadro's 
number. A plot of Hc/τ against concentration (Fig. 16-5) results in a straight line with a slope of 2B. The 
intercept on the Hc/τaxis is 1/M, the reciprocal of which yields the molecular weight of the colloid. 
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When the molecule is asymmetric, the intensity of the scattered light varies with the angle of 
observation. Data of this kind permit an estimation of the shape and size of the particles. Light scattering 
has been used to study proteins, synthetic polymers, association colloids, and lyophobic sols. 
Chang and Cardinal2 used light scattering to study the pattern of self-association in aqueous solution of 
the bile salts sodium deoxycholate and sodium taurodeoxycholate. Analysis of the data showed that the 
bile salts associate to form dimers, trimers, and tetramers and a larger aggregate of variable size. 
Racey et al.3 used quasielastic light scattering, a new light-scattering technique that uses laser light and 
can determine diffusion coefficients and particle sizes (Stokes's diameter) of macromolecules in 
solution. Quasielastic light scattering allowed the examination of heparin aggregates in commercial 
preparations stored for various times and at various temperatures. Both storage time and refrigeration 
caused an increase in the aggregation state of heparin solutions. It has not yet been determined 
whether the change in aggregation has any effect on the biologic activity of commercial preparations. 
Light Scattering and Micelle Molecular Weight 
Equation (16-2) can be applied after suitable modification to compute the molecular weight of colloidal 
aggregates and micelles. When amphiphilic molecules associate to form micelles, the turbidity of the 
micellar dispersion differs from the turbidity of the solution of the amphiphilic molecules because 
micelles are now also present in equilibrium with the monomeric species. Below the CMC, the 
concentration of monomers increases linearly with the total concentration, c; above the CMC, the 
monomer concentration remains nearly constant; that is, cmonomer [congruent] CMC. The concentration of 
micelles can therefore be written as 

 
The corresponding turbidity of the solution due to the presence of micelles is obtained by subtracting the 
turbidity due to monomers,τmonomer = τCMC, from the total turbidity of the solution: 

 
Accordingly, equation (16-2) is modified to 

 
where the subscript CMC indicates the turbidity or concentration at the critical micelle concentration, 
and B and H have the same meaning as in equation (16-2). Thus, the molecular weight, M, of the 
micelle and the second virial coefficient, B, are obtained from the intercept and the slope, respectively, 
of a plot of H(c - cCMC)/(τ -τCMC) versus (c - cCMC). Equation (16-5) is valid for two-component systems, 
that is, for a micelle and a molecular surfactant in this instance. 
When the micelles interact neither among themselves nor with the molecules of the medium, the slope 
of a plot of equation (16-5) is zero; that is, the second virial coefficient, B, is zero and the line is parallel 
to the horizontal axis, as seen in Figure 16-6. This behavior is typical of nonionic and zwitterionic 
micellar systems in which the size distribution is narrow. However, as the concentration of micelles 
increases, intermicellar interactions lead to positive values of B, the slope of the line having a positive 
value. For ionic micelles the plots are linear with positive slopes, owing to repulsive intermicellar 
interactions that result in positive values of the interaction coefficient,B. A negative second virial 
coefficient is usually an indication that the micellar system is polydisperse.4,5 
Example 16-2 

Computation of the Molecular Weight of Micelles 

Using the following data, compute the molecular weight of micelles of 
dimethylalkylammoniopropane sulfonate, a zwitterionic surfactant investigated by Herrmann5: 
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Fig. 16-6.A plot 

ofH(c -cCMC)/(τ - 

τCMC) versus (c -

cCMC) × 10
3
 for a 

zwitterionic 

surfactant in 

which Bis zero. 

(From K. W. 

Hermann, J. Colloid 

Interface Sci. 22,352, 

1966.) 

Using equation (16-5), we obtain the micellar molecular weight from a plot of H(c - cCMC)/τ -
 τCMC versus (c - cCMC) (see Fig. 16-6); the intercept is 1/M = 1.66 × 10-5 mole/g; therefore, M = 
60, 241 g/mole. The slope is zero, that is, 2Bin equation (16-5) is zero. 
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Example 16-3 

Why is the Sky Blue? 

When a beam of light passes through a colloid, colloidal particles scatter the light. The 
intensity of scattered, Is, light is inversely proportional to the fourth power of the 
wavelength, λ (Rayleigh law): 

 
Thus, shorter-wavelength light (blue) is scattered more intensely than longer-wavelength light 
(yellow and red), and so the scattered light is mostly blue, whereas transmitted light has a 
yellow or reddish color (Fig. 16-7). Because of the constant motion of molecules, the 
atmosphere is inhomogeneous and constantly forms clusters with higher density of air. These 
inhomogeneities may be considered as colloidal particles. The scattering of short-wavelength 
light gives the sky its blue color. In contrast, transmitted light has a yellow color. At sunrise 
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and sunset, sunlight has to travel a longer distance through the atmosphere than at noon. 
This is especially important in the lower atmosphere because it has a higher density (i.e., 
more gas molecules). Because of this longer distance, the yellow light also scatters. Sunsets 
can be more spectacular than sunrises because of an increase in the number of particles in 
the atmosphere due to pollution or natural causes (wind, dust), throughout the day. 

Kinetic Properties of Colloids 
Grouped under this heading are several properties of colloidal systems that relate to the motion of 
particles with respect to the dispersion medium. The motion may be thermally induced (Brownian 
movement, diffusion, osmosis), gravitationally induced (sedimentation), or applied externally (viscosity). 
Electrically induced motion is considered in the section on electrical properties of colloids. 

 

Fig. 16-7.Because of the constant motion of 

molecules, the atmosphere is inhomogeneous and 

constantly forms clusters with higher density of 

air. These inhomogeneities can be considered as 

colloidal particles, which scatter the light. The 

intensity of scattered light is inversely 

proportional to the fourth power of the 

wavelength, (λ) (Rayleigh law). The scattering of 

short-wavelength light gives the sky its blue 

color. In contrast, transmitted light has a yellow 

or reddish color. 

Brownian Motion 
Brownian motion describes the random movement of colloidal particles. The erratic motion, which may 
be observed with particles as large as about 5 µm, was explained as resulting from the bombardment of 
the particles by the molecules of the dispersion medium. The motion of the molecules cannot be 
observed, of course, because the molecules are too small to see. The velocity of the particles increases 
with decreasing particle size. Increasing the viscosity of the medium, which may be accomplished by the 
addition of glycerin or a similar agent, decreases and finally stops the Brownian movement. 
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Diffusion 
Particles diffuse spontaneously from a region of higher concentration to one of lower concentration until 
the concentration of the system is uniform throughout. Diffusion is a direct result of Brownian movement. 
According to Fick's first law, the amount, dq, of substance diffusing in time, dt, across a plane of area, S, 
is directly proportional to the change of concentration, dc, with distance traveled, dx. 
Fick's law is written as 

 
D is the diffusion coefficient, the amount of material diffusing per unit time across a unit area 
when dc/dx, called the concentration gradient, is unity. D thus has the dimensions of area per unit time. 
The coefficient can be obtained in colloidal chemistry by diffusion experiments in which the material is 
allowed to pass through a porous disk, and samples are removed and analyzed periodically. Another 
method involves measuring the change in the concentration or refractive index gradient of the free 
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boundary that is formed when the solvent and colloidal solution are brought together and allowed to 
diffuse. 
If the colloidal particles can be assumed to be approximately spherical, the following equation, 
suggested by Sutherland and Einstein6, can be used to obtain the radius of the particle and the particle 
weight or molecular weight: 

 
or 

 
where D is the diffusion coefficient obtained from Fick's law as already explained, k is the Boltzmann 
constant, R is the molar gas constant, T is the absolute temperature, η is the viscosity of the solvent, r is 
the radius of the spherical particle, and N is Avogadro's number. Equation (16-7) is called 
the Sutherland–Einstein or theStokes–Einstein equation. The measured diffusion coefficient can be 
used to obtain the molecular weight of approximately spherical molecules, such as egg albumin and 
hemoglobin, by use of the equation 

 
where M is molecular weight and [v with bar above] is the partial specific volume (approximately equal to 
the volume in cm3 of 1 g of the solute, as obtained from density measurements). 
Analysis of equations (16-6) and (16-7) allows us to formulate the following three main rules of diffusion: 
(a) the velocity of the molecules increases with decreasing particle size; (b) the velocity of the molecules 
increases with increasing temperature; and (c) the velocity of the molecules decreases with increasing 
viscosity of the medium. 
Example 16-4 

The Computation of Protein Properties from its Diffusion Coefficient 

The diffusion coefficient for a spherical protein at 20°C is 7.0 × 10-7 cm2/sec and the partial 
specific volume is 0.75 cm3/g. The viscosity of the solvent is 0.01 poise (0.01 g/cm sec). 
Compute (a) the molecular weight and (b) the radius of the protein particle. 
(a) By rearranging equation (16-8), we obtain 

 
(b) From equation (16-7), 

 

Osmotic Pressure 
The osmotic pressure, π, of a dilute colloidal solution is described by the van't Hoff equation: 

 
where c is molar concentration of solute. This equation can be used to calculate the molecular weight of 
a colloid in a dilute solution. Replacing c with cg/M in equation (16-9), in which cg is the grams of solute 
per liter of solution and M is the molecular weight, we obtain 

 
Then, 
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which applies in a very dilute solution. The quantity π/cg for a polymer having a molecular weight of, say, 
50,000 is often a linear function of the concentration, cg, and the following equation can be written: 

 
where B is a constant for any particular solvent/solute system and depends on the degree of interaction 
between the solvent and the solute molecules. The term Bcg in equation (16-12) is needed because 
equation (16-11) holds only for ideal solutions, namely, those containing low concentrations of 
spherocolloids. With linear lyophilic molecules, deviations occur because the solute molecules become 
solvated, leading to a reduction in the concentration of ―free‖ solvent and an apparent increase in solute 

concentration. The role ofB in estimating the asymmetry of particles and their interactions with solute 
was discussed by Hiemenz.7 
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Fig. 16-8.Determination of molecular weight by 

means of the osmotic pressure method. 

Extrapolation of the line to the vertical axis 

where cg = 0 gives RT/M, from which Mis 

obtained. Refer to text for significance of lines I, 

II, and III. Lines II and III are taken to represent 

two samples of a species of hemoglobin. 

A plot of π/cg against cg generally results in one of three lines (Fig. 16-8), depending on whether the 
system is ideal (line I) or real (lines II and III). Equation (16-11) applies to line I and equation (16-
12)describes lines II and III. The intercept is RT/M, and if the temperature at which the determination 
was carried out is known, the molecular weight of the solute can be calculated. In lines II and III, the 
slope of the line is B, the interaction constant. In line I, Bequals zero and is typical of a dilute 
spherocolloidal system. Line III is typical of a linear colloid in a solvent having a high affinity for the 
dispersed particles. Such a solvent is referred to as a ―good‖ solvent for that particular colloid. There is a 

marked deviation from ideality as the concentration is increased and B is large. At higher 
concentrations, or where interaction is marked, type III lines can become nonlinear, requiring that 
equation (16-12) be expanded and written as a power series: 

 
where C is another interaction constant. Line II depicts the situation in which the same colloid is present 
in a relatively poor solvent having a reduced affinity for the dispersed material. Note, however, that the 
extrapolated intercept on the π/cg axis is identical for both lines II and III, showing that the calculated 
molecular weight is independent of the solvent used. 
Example 16-5 

Calculation of Molecular Weight of Hemoglobin 
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Let us assume that the intercept (π/cg)0 for line III in Figure 16-8 has the value 3.623 × 10-

4 liter atm/g, and the slope of the line is 1.80 × 10-6 liter2 atm/g2. What is the molecular weight 
and the second virial coefficient, B, for a sample of hemoglobin using the data given here? 
In Figure 16-8, line III crosses the vertical intercept at the same point as line II. These two 
samples of hemoglobin have the same limiting reduced osmotic pressure, as (π/cg)0 is called, 
and therefore have the same molecular weight. The B values, and therefore the shape of the 
two samples and their interaction with the medium, differ as evidenced by the different slopes 
of lines II and III. 
At the intercept, (π/cg)0 = RT/M. Therefore, 

 
The slope of line III, representing one of the hemoglobin samples, is divided by RT to 
obtain B, as observed in equation (16-12): 

 
The other hemoglobin sample, represented by line II, has a slope of 4.75 × 10-9 liter2 atm/g2, 
and its B value is therefore calculated as follows: 

 
Estimate the B value for the protein represented by line I. Is its molecular weight larger or 
smaller than that of samples II and III? Refer to equations (16-11) and (16-12) in arriving at 
your answers. 

Sedimentation 
The velocity, v, of sedimentation of spherical particles having a density ρ in a medium of density ρ0 and 
a viscosity η0 is given byStokes's law: 

 
where g is the acceleration due to gravity. If the particles are subjected only to the force of gravity, then 
the lower size limit of particles obeying Stokes's equation is about 0.5 µm. This is because Brownian 
movement becomes significant and tends to offset sedimentation due to gravity and promotes mixing 
instead. Consequently, a stronger force must be applied to bring about the sedimentation of colloidal 
particles in a quantitative and measurable manner. This is accomplished by use of the ultracentrifuge, 
developed by Svedberg in 1925,8 which can produce a force one million times that of gravity. 
In a centrifuge, the acceleration of gravity is replaced by ω2

x, where ωis the angular velocity and x is the 
distance of the particle from the center of rotation. Equation (16-14) is accordingly modified to 

 
The speed at which a centrifuge is operated is commonly expressed in terms of the number of 
revolutions per minute (rpm) of the rotor. It is frequently more desirable to express the rpm as angular 
acceleration (ω2

x) or the number of times that the force of gravity is exceeded. 
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Example 16-6 

Calculation of Centrifuge Force 
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A centrifuge is rotating at 1500 rpm. The midpoint of the cell containing the sample is located 
7.5 cm from the center of the rotor (i.e., x = 7.5 cm). What is the average angular acceleration 
and the number of g's on the suspended particles? 
We have 

 
that is, the force produced is 188.7 times that due to gravity. 

The instantaneous velocity, v = dx/dt, of a particle in a unit centrifugal field is expressed in terms of 
the Svedberg sedimentation coefficient s, 

 
Owing to the centrifugal force, particles having a high molecular weight pass from position x1 at 
time t1 to position x2 at time t2, and the sedimentation coefficient is obtained by integrating equation (16-
15) to give 

 
The distances x1 and x2 refer to positions of the boundary between the solvent and the high–molecular-
weight component in the centrifuge cell. The boundary is located by the change of refractive index, 
which can be attained at any time during the run and translated into a peak on a photographic plate. 
Photographs are taken at definite intervals, and the peaks of the schlieren patterns, as they are called, 
give the position x of the boundary at each time t. If the sample consists of a component of a definite 
molecular weight, the schlieren pattern will have a single sharp peak at any moment during the run. If 
components with different molecular weights are present in the sample, the particles of greater weight 
will settle faster, and several peaks will appear on the schlieren patterns. Therefore, ultracentrifugation 
not only is useful for determining the molecular weight of polymers, particularly proteins, but also can be 
used to ascertain the degree of homogeneity of the sample. Gelatin, for example, is found to be a 
polydisperse protein with fractions of molecular weight 10,000 to 100,000. (This accounts in part for the 
fact that gelatin from various sources is observed to have variable properties when used in 
pharmaceutical preparations.) Insulin, on the other hand, is a monodisperse protein composed of two 
polypeptide chains, each made up of a number of amino acid molecules. The two chains are attached 
together by disulfide (S—S) bridges to form a definite unit having a molecular weight of about 6000. 
The sedimentation coefficient, s, can be computed from equation(16-16) after the two 
distances x1 and x2 are measured on the schlieren photographs obtained at times t1 and t2; the angular 
velocity ω is equal to 2π times the speed of the rotor in revolutions per second. Knowing s and 
obtaining D from diffusion data, it is possible to determine the molecular weight of a polymer, such as a 
protein, by use of the expression 

 
where R is the molar gas constant, T is the absolute temperature, [v with bar above] is the partial 
specific volume of the protein, and ρ0 is the density of the solvent. Both s and D must be obtained at, or 
corrected to, 20°C for use in equation (16-17). 
Example 16-7 

Molecular Weight of Methylcellulose Based on the Sedimentation Coefficient 

The sedimentation coefficient, s, for a particular fraction of methylcellulose at 20°C (293 K) is 
1.7 × 10-13 sec, the diffusion coefficient, D, is 15 × 10-7 cm2/sec, the partial specific volume, [v 
with bar above], of the gum is 0.72 cm3/g, and the density of water at 20°C is 0.998 g/cm3. 
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Compute the molecular weight of methylcellulose. The gas constant R is 8.31 × 107 erg/(deg 
mole). 
We have 

 

Kirschbaum9 reviewed the usefulness of the analytic ultracentrifuge and used it to study the micellar 
properties of drugs (Fig. 16-9). Richard10 determined the apparent micellar molecular weight of the 
antibiotic fusidate sodium by ultracentrifugation. He concluded that the primary micelles composed of 
five monomer units are formed, followed by aggregation of these pentamers into larger micelles at 
higher salt concentrations. 
The sedimentation method already described is known as thesedimentation velocity technique. A 
second method, involvingsedimentation equilibrium, can also be used. Equilibrium is established when 
the sedimentation force is just balanced by the counteracting diffusional force and the boundary is 
therefore stationary. In this method, the diffusion coefficient need not be determined; however, the 
centrifuge may have to be run for several weeks to attain equilibrium throughout the cell. Newer 
methods of calculation have been developed recently for obtaining molecular weights by the equilibrium 
method without requiring these long periods of centrifugation, enabling the protein chemist to obtain 
molecular weights rapidly and accurately. 
Molecular weights determined by sedimentation velocity, sedimentation equilibrium, and osmotic 
pressure determinations are in good agreement, as can be seen from Table 16-3. 
P.398 
 
 

 

Fig. 16-9. (a) Schematic of an ultracentrifuge. (b) 

Centrifuge cell. (From H. R. Allok and F. W. 

Lampe,Contemporary Polymer Chemistry, 

Prentice-Hall, Englewood Cliffs, N. J., 1981, pp. 

366, 367. With permission.) 

Viscosity 
Viscosity is an expression of the resistance to flow of a system under an applied stress. The more 
viscous a liquid is, the greater is the applied force required to make it flow at a particular rate. The 
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fundamental principles and applications of viscosity are discussed in detail in Chapter 19. This section is 
concerned with the flow properties of dilute colloidal systems and the manner in which viscosity data can 
be used to obtain the molecular weight of material comprising the disperse phase. Viscosity studies also 
provide information regarding the shape of the particles in solution. 

Table 16-3 Molecular Weights of Proteins in Aqueous Solution Determined by 

Different Methods* 

Material 

Molecular Weight 

Sedimentation 

Velocity 

Sedimentation 

Equilibrium 

Osmotic 

Pressure 

Ribonuclease 12,700 13,000 – 

Myoglobin 16,900 17,500 17,000 

Ovalbumin 44,000 40,500 45,000 

Hemoglobin 

(horse) 

68,000 68,000 67,000 

Serum albumin 

(horse) 

70,000 68,000 73,000 

Serum globulin 

(horse) 

167,000 150,000 175,000 

Tobacco mosaic 

virus 

59,000,000 – – 

*From D. J. Shaw, Introduction to Colloidal and Surface Chemistry, 

Butterworths, London, 1970, p. 32. For and extensive listing of molecular 

weights of macromolecules, see C. Tanford, Physical Chemistry of 

Macromolecules, Wiley, New York, 1961. 

 

Einstein developed an equation of flow applicable to dilute colloidal dispersions of spherical particles, 
namely, 

 
In equation (16-18), which is based on hydrodynamic theory, η0 is the viscosity of the dispersion 
medium and η is the viscosity of the dispersion when the volume fraction of colloidal particles present is 
φ. The volume fraction is defined as the volume of the particles divided by the total volume of the 

dispersion; it is therefore equivalent to a concentration term. Both η0 and η can be determined using a 
capillary viscometer. 
Several viscosity coefficients can be defined with respect to this equation. These include relative 

viscosity (ηrel), specific viscosity(ηsp), and intrinsic viscosity (η). From equation (16-18), 
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and 

 
or 

 
Because volume fraction is directly related to concentration, equation(16-21) can be written as 

 
where c is expressed in grams of colloidal particles per 100 mL of total dispersion. For highly polymeric 
materials 
P.399 
 
dispersed in the medium at moderate concentrations, the equation is best expressed as a power series: 

 

Fig. 16-10.Determination of molecular weight 

using viscosity data. (Replotted from D. R. 

Powell, J. Swarbrick, and G. S. Banker, J. Pharm. 

Sci.55, 601, 1966. With permission.) 

 
By determining η at various concentrations and knowing η0, one can calculate ηsp from equation (16-20). 
If ηsp/c is plotted against c (Fig. 16-10) and the line extrapolated to infinite dilution, the intercept 
is k1[equation (16-23)]. This constant, commonly known as the intrinsic viscosity, [η], is used to calculate 
the approximate molecular weights of polymers. According to the so-called Mark–Houwink equation, 

 
where K and a are constants characteristic of the particular polymer–solvent system. These constants, 
which are virtually independent of molecular weight, are obtained initially by determining [η] 
experimentally for polymer fractions whose molecular weights have been determined by other methods 
such as light scattering, osmotic pressure, or sedimentation. Once K and a are known, measurement of 
[η] provides a simple yet accurate means of obtaining molecular weights for fractions not yet subjected 
to other methods. Intrinsic viscosity [η], together with an interaction constant, k′, provides the 

equation, ηsp/c = [η] + k′[η]2c, which is used in choosing solvent mixtures for tablet film coating polymers 
such as ethyl cellulose.11 
The shapes of particles of the disperse phase affect the viscosity of colloidal dispersions. Spherocolloids 
form dispersions of relatively low viscosity, whereas systems containing linear particles are more 
viscous. As we saw in previous sections, the relationship of shape and viscosity reflects the degree of 
solvation of the particles. If a linear colloid is placed in a solvent for which it has a low affinity, it tends to 
―ball up,‖ that is, to assume a spherical shape, and the viscosity falls. This provides a means of 

detecting changes in the shape of flexible colloidal particles and macromolecules. 
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The characteristics of polymers used as substitutes for blood plasma (plasma extenders) depend in part 
on the molecular weight of the material. These characteristics include the size and shape of the 
macromolecules and the ability of the polymers to impart the proper viscosity and osmotic pressure to 
the blood. The methods described in this chapter are used to determine the average molecular weights 
of hydroxyethyl starch, dextran, and gelatin preparations used as plasma extenders. Ultracentrifugation, 
light scattering, x-ray analysis (small-angle x-ray scattering12), and other analytic tools13 were used by 
Paradies to determine the structural properties of tyrothricin, a mixture of the peptide antibiotics 
gramicidin and tyrocidine B. The antibiotic aggregate has a molecular weight of 28,600 daltons and was 
determined to be a rod 170 Å in length and 30 Å in diameter. 
Electrical Properties of Colloids 
The properties of colloids that depend on, or are affected by, the presence of a charge on the surface of 
a particle are discussed under this heading. The various ways in which the surfaces of particles 
dispersed in a liquid medium acquire a charge were outlined in the Interfacial Phenomena chapter. 
Mention was also made of the zeta (electrokinetic) potential and how it is related to 
theNernst (electrothermodynamic) potential. The potential versus distance diagram for a spherical 
colloidal particle can be represented as shown in Figure 16-11. Such a system can be formed, for 
example, by adding a dilute solution of potassium iodide to an equimolar solution of silver nitrate. A 
colloidal precipitate of silver iodide 
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particles is produced, and, because the silver ions are in excess and are adsorbed, a positively charged 
particle is produced. If the reverse procedure is adopted, that is, if silver nitrate is added to the 
potassium iodide solution, iodide ions are adsorbed on the particles as the potential-determining ion and 
result in the formation of a negatively charged sol. 

 

Fig. 16-11.Diffuse double layer and the zeta 

potential. 

Electrokinetic Phenomena 
The movement of a charged surface with respect to an adjacent liquid phase is the basic principle 
underlying four electrokinetic phenomena: electrophoresis, electroosmosis, sedimentation potential, 
and streaming potential. 
Electrophoresis involves the movement of a charged particle through a liquid under the influence of an 
applied potential difference. An electrophoresis cell fitted with two electrodes contains the dispersion. 
When a potential is applied across the electrodes, the particles migrate to the oppositely charged 
electrode. Figure 16-12illustrates the design of a commercially available instrument. The rate of particle 
migration is observed by means of an ultramicroscope and is a function of the charge on the particle. 
Because the shear plane of the particle is located at the periphery of the tightly bound layer, the rate-
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determining potential is the zeta potential. From knowledge of the direction and rate of migration, the 
sign and magnitude of the zeta potential in a colloidal system can be determined. The relevant equation, 

 
which yields the zeta potential, ζ, in volts, requires a knowledge of the velocity of migration, v, of the sol 
in cm/sec in an electrophoresis tube of a definite length in cm, the viscosity of the medium, η, in poises 
(dynes sec/cm2

), the dielectric constant of the medium, ε, and the potential gradient, E, in volts/cm. The 
term v/E is known as the mobility. 
It is instructive to carry out the dimensional analysis of equation (16-25). In one system of fundamental 
electric units, E, the electric field strength, can be expressed in electrostatic units of statvolt/cm (1 
coulomb = 3 × 109 statcoulombs, and 1 statvolt = 300 practical volts). The dielectric constant is not 
dimensionless here, but rather from Coulomb's law may be assigned the units of statcoulomb2/(dyne 
cm2). The 

 
equation can then be written dimensionally, recognizing that statvolts × statcoulombs = dyne cm, as 

 
It is more convenient to express the zeta potential in practical volts than in statvolts. Because 1 statvolt 
= 300 practical volts, equation(16-27) is multiplied by 300 to make this conversion, that is, statvolts × 
300 practical volts/statvolt = 300 practical volts. Furthermore, E is ordinarily measured in practical 
volts/cm and not in statvolt/cm, and this conversion is made by again multiplying the right-hand side of 
equation (16-27) by 300. The final expression is equation (16-25), in which the factor 300 × 300 = 9 × 
104 converts electrostatic units to volts. 

 

Fig. 16-12.Principle of zeta potential 

measurement (based on the zeta meter) showing 

the ultramicroscope and the flow cell. 

For a colloidal system at 20°C in which the dispersion medium is water, equation (16-25) reduces 
approximately to 
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The coefficient of 141 at 20°C becomes 128 at 25°C. 
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Example 16-8 

Determination of the Zeta Potential from Electrophoretic Data 

The velocity of migration of an aqueous ferric hydroxide sol was determined at 20°C using the 
apparatus shown inFigure 16-12 and was found to be 16.5 × 10-4 cm/sec. The distance 
between the electrodes in the cell was 20 cm, and the applied emf was 110 volts. What is (a) 
the zeta potential of the sol and (b) the sign of the charge on the particles? 

a.  
b. The particles were seen to migrate toward the negative electrode of the 

electrophoresis cell; therefore, the colloid is positively charged. The zeta potential is 
often used to estimate the stability of colloids, as discussed in a later section. 

Electroosmosis is essentially opposite in principle to electrophoresis. In the latter, the application of a 
potential causes a charged particle to move relative to the liquid, which is stationary. If the solid is 
rendered immobile (e.g., by forming a capillary or making the particles into a porous plug), however, the 
liquid now moves relative to the charged surface. This is electroosmosis, so called because liquid 
moves through a plug or a membrane across which a potential is applied. Electroosmosis provides 
another method for obtaining the zeta potential by determining the rate of flow of liquid through the plug 
under standard conditions. 
Sedimentation potential, the reverse of electrophoresis, is the creation of a potential when particles 
undergo sedimentation. Thestreaming potential differs from electroosmosis in that forcing a liquid to flow 
through a plug or bed of particles creates the potential. 
Schott14 studied the electrokinetic properties of magnesium hydroxide suspensions that are used as 
antacids and laxatives. The zero point of charge occurred at pH [congruent] 10.8, the zeta potential, ζ, 
of magnesium hydroxide being positive below this pH value. Increasing the pH or hydroxide ion 
concentration produced a change in the sign of ζ from positive to negative, with the largest 
negative ζ value occurring at pH 11.5. 
Takenaka and associates15 studied the electrophoretic properties of microcapsules of sulfamethoxazole 
in droplets of a gelatin–acacia coacervate as part of a study to stabilize such drugs in microcapsules. 
Donnan Membrane Equilibrium 
If sodium chloride is placed in solution on one side of a semipermeable membrane and a negatively 
charged colloid together with its counterions R-Na+ is placed on the other side, the sodium and chloride 
ions can pass freely across the barrier but not the colloidal anionic particles. The system at equilibrium 
is represented in the following diagram, in which R- is the nondiffusible colloidal anion and the vertical 
line separating the various species represents the semipermeable membrane. The volumes of solution 
on the two sides of the membrane are considered to be equal. 

 
After equilibrium has been established, the concentration in dilute solutions (more correctly the activity) 
of sodium chloride must be the same on both sides of the membrane, according to the principle of 
escaping tendencies. Therefore, 
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The condition of electroneutrality must also apply. That is, the concentration of positively charged ions in 
the solutions on either side of the membrane must balance the concentration of negatively charged ions. 
Therefore, on the outside, 

 
and inside, 

 
Equations (16-30) and (16-31) can be substituted into equation (16-29) to give 

 

 

Equation (16-33), the Donnan membrane equilibrium, gives the ratio of 

concentrations of the diffusible anion outside and inside the membrane at 

equilibrium. The equation shows that a negatively charged polyelectrolyte inside 

a semipermeable sac would influence the equilibrium concentration ratio of a 

diffusible anion. It tends to drive the ion of like charge out through the 

membrane. When [R
-
]i is large compared with [Cl

-
]i, the ratio roughly equals

If, on the other hand, [Cl
-

]i is quite large with respect to [R
-
]i, the ratio in equation (16-33)becomes equal 

to unity, and the concentration of the salt is thus equal on both sides of the 

membrane. 

 

The unequal distribution of diffusible electrolyte ions on the two sides of the membrane will obviously 
result in erroneous values for osmotic pressures of polyelectrolyte solutions. If, however, the 
concentration of salt in the solution is made large, the Donnan equilibrium effect can be practically 
eliminated in the determination of molecular weights of proteins involving the osmotic pressure method. 
Higuchi et al.16 modified the Donnan membrane equilibrium, equation (16-33), to demonstrate the use 
of the polyelectrolyte sodium carboxymethylcellulose for enhancing the absorption of drugs such as 
sodium salicylate and potassium benzylpenicillin. If [Cl-] in equation (16-33) is replaced by 
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the concentration of the diffusible drug, anion [D-] at equilibrium, and [R-] is used to represent the 
concentration of sodium carboxymethylcellulose at equilibrium, we have a modification of theDonnan 

membrane equilibrium for a diffusible drug anion, 

 
It will be observed that when [R-]i/[D-]i = 8, the ratio [D-]o/[D-]i = 3, and when [R-]i/[D-]i = 99, the ratio [D-

]o/[D-]i = 10. Therefore, the addition of an anionic polyelectrolyte to a diffusible drug anion should 
enhance the diffusion of the drug out of the chamber. By kinetic studies, Higuchi et al.16 showed that 
the presence of sodium carboxymethylcellulose more than doubled the rate of transfer of the negatively 
charged dye scarlet red sulfonate. 
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Other investigators have found by in vivo experiments that ion-exchange resins and even sulfate and 
phosphate ions that do not diffuse readily through the intestinal wall tend to drive anions from the 
intestinal tract into the bloodstream. The opposite effect, that of retardation of drug absorption, may 
occur if the drug complexes with the macromolecule. 
Example 16-9 

Donnan Membrane Expression 

A solution of dissociated nondiffusible carboxymethylcellulose is equilibrated across a 
semipermeable membrane with a solution of sodium salicylate. The membrane allows free 
passage of the salicylate ion. Compute the ratio of salicylate on the two sides of the 
membrane at equilibrium, assuming that the equilibrium concentration of 
carboxymethylcellulose is 1.2 × 10-2 g equivalent/liter and the equilibrium concentration of 
sodium salicylate is 6.0 × 10-3 g equivalent/liter. Use the modified Donnan membrane 
expression, equation (16-34): 

 

Stability of Colloid Systems 
The presence and magnitude, or absence, of a charge on a colloidal particle is an important factor in the 
stability of colloidal systems. Stabilization is accomplished essentially by two means: providing the 
dispersed particles with an electric charge, and surrounding each particle with a protective solvent 
sheath that prevents mutual adherence when the particles collide as a result of Brownian movement. 
This second effect is significant only in the case of lyophilic sols. 
A lyophobic sol is thermodynamically unstable. The particles in such sols are stabilized only by the 
presence of electric charges on their surfaces. The like charges produce a repulsion that prevents 
coagulation of the particles. If the last traces of ions are removed from the system by dialysis, the 
particles can agglomerate and reduce the total surface area, and, owing to their increased size, they 
may settle rapidly from suspension. Hence, addition of a small amount of electrolyte to a lyophobic sol 
tends to stabilize the system by imparting a charge to the particles. Addition of electrolyte beyond that 
necessary for maximum adsorption on the particles, however, sometimes results in the accumulation of 
opposite ions and reduces the zeta potential below its critical value. The critical potential for finely 
dispersed oil droplets in water (oil hydrosol) is about 40 millivolts, this high value signifying relatively 
great instability. The critical zeta potential of a gold sol, on the other hand, is nearly zero, which 
suggests that the particles require only a minute charge for stabilization; hence, they exhibit marked 
stability against added electrolytes. The valence of the ions having a charge opposite to that of the 
particles appears to determine the effectiveness of the electrolyte in coagulating the colloid. The 
precipitating power increases rapidly with the valence or charge of the ions, and a statement of this fact 
is known as the Schulze–Hardy rule. 
These observations permitted Verwey and Overbeek17 and Derjaguin and Landau18 to independently 
develop a theory that describes the stability of lyophobic colloids. According to this approach, known as 
the DLVO theory, the forces on colloidal particles in a dispersion are due to electrostatic repulsion and 
London-type van der Waals attraction. These forces result in potential energies of repulsion, VR, and 
attraction, VA, between particles. These are shown in Figure 16-13 together with the curve for the 
composite potential energy, VT. There is a deep potential ―well‖ of attraction near the origin and a high 

potential barrier of repulsion at moderate distances. A shallow secondary trough of attraction (or 
minimum) is sometimes observed at longer distances of separation. The presence of a secondary 
minimum is significant in 
P.403 
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the controlled flocculation of coarse dispersions. Following this principle, one can determine somewhat 
quantitatively the amount of electrolyte of a particular valence type required to precipitate a colloid. 

 

Fig. 16-13.Potential energy versus interparticle 

distance for particles in suspension. 

Not only do electrolytes bring about coagulation of colloidal particles, but the mixing of oppositely 
charged colloids can also result in mutual agglomeration. 
Lyophilic and association colloids are thermodynamically stable and exist in true solution so that the 
system constitutes a single phase. The addition of an electrolyte to a lyophilic colloid in moderate 
amounts does not result in coagulation, as was evident with lyophobic colloids. If sufficient salt is added, 
however, agglomeration and sedimentation of the particles may result. This phenomenon, referred to as 
―salting out,‖ was discussed in the chapter on solubility. 
Just as the Schulze–Hardy rule arranges ions in the order of their capacity to coagulate hydrophobic 
colloids, the Hofmeister orlyotropic series ranks cations and anions in order of coagulation of hydrophilic 
sols. Several anions of the Hofmeister series in decreasing order of precipitating power are citrate, 
tartrate, sulfate, acetate, chloride, nitrate, bromide, and iodide. The precipitating power is directly related 
to the hydration of the ion and hence to its ability to separate water molecules from the colloidal 
particles. 
Alcohol and acetone can also decrease the solubility of hydrophilic colloids so that the addition of a 
small amount of electrolytes may then bring about coagulation. The addition of the less polar solvent 
renders the solvent mixture unfavorable for the colloid, and electrolytes can then salt out the colloid with 
relative ease. We can thus regard flocculation on the addition of alcohol, followed by salts, as a gradual 
transformation from a sol of a lyophilic nature to one of a more lyophobic character. 
When negatively and positively charged hydrophilic colloids are mixed, the particles may separate from 
the dispersion to form a layer rich in the colloidal aggregates. The colloid-rich layer is known as 
acoacervate, and the phenomenon in which macromolecular solutions separate into two liquid layers is 
referred to ascoacervation. As an example, consider the mixing of gelatin and acacia. Gelatin at a pH 
below 4.7 (its isoelectric point) is positively charged; acacia carries a negative charge that is relatively 
unaffected by pH in the acid range. When solutions of these colloids are mixed in a certain proportion, 
coacervation results. The viscosity of the upper layer, now poor in colloid, is markedly decreased below 
that of the coacervate, and in pharmacy this is considered to represent a physical incompatibility. 
Coacervation need not involve the interaction of charged particles; the coacervation of gelatin may also 
be brought about by the addition of alcohol, sodium sulfate, or a macromolecular substance such as 
starch. 
Sensitization and Protective Colloidal Action 
The addition of a small amount of hydrophilic or hydrophobic colloid to a hydrophobic colloid of opposite 
charge tends to sensitize or even coagulate the particles. This is considered by some workers to be due 
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to a reduction of the zeta potential below the critical value (usually about 20–50 millivolts). Others 
attribute the instability of the hydrophobic particles to a reduction in the thickness of the ionic layer 
surrounding the particles and a decrease in the coulombic repulsion between the particles. The addition 
of large amounts of thehydrophile (hydrophilic colloid), however, stabilizes the system, the hydrophile 
being adsorbed on the hydrophobic particles. This phenomenon is known as protection, and the added 
hydrophilic sol is known as a protective colloid. The several ways in which stabilization of hydrophobic 
colloids can be achieved (i.e., protective action) have been reviewed by Schott.19 

Table 16-4 The Gold Number of Protective Colloids 

Protective Colloid Gold Number 

Gelatin 0.005–0.01 

Albumin 0.1 

Acacia 0.1–0.2 

Sodium oleate 1–5 

Tragacanth 2 

 

The protective property is expressed most frequently in terms of thegold number. The gold number is 
the minimum weight in milligrams of the protective colloid (dry weight of dispersed phase) required to 
prevent a color change from red to violet in 10 mL of a gold sol on the addition of 1 mL of a 10% solution 
of sodium chloride. The gold numbers for some common protective colloids are given in Table 16-4. 
A pharmaceutical example of sensitization and protective action is provided when bismuth subnitrate is 
suspended in a tragacanth dispersion; the mixture forms a gel that sets to a hard mass in the bottom of 
the container. Bismuth subcarbonate, a compound that does not dissociate sufficiently to liberate the 
bismuth ions, is compatible with tragacanth. 
These phenomena probably involve a sensitization and coagulation of the gum by the Bi3+ ions. The 
flocculated gum then aggregates with the bismuth subnitrate particles to form a gel or a hard cake. If 
phosphate, citrate, or tartrate is added, it protects the gums from the coagulating influence of the 
Bi3+ ions, and, no doubt, by reducing the zeta potential on the bismuth particles, partially flocculates the 
insoluble material. Partially flocculated systems tend to cake considerably less than deflocculated 
systems, and this effect is significant in the formulation of suspensions.20 
Solubilization 
An important property of association colloids in solution is the ability of the micelles to increase the 
solubility of materials that are normally insoluble, or only slightly soluble, in the dispersion medium used. 
This phenomenon, known as 
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solubilization, has been reviewed by many authors, including Mulley,21 Nakagawa,22 Elworthy et 
al.,23 and Attwood and Florence.24 Solubilization has been used with advantage in pharmacy for many 
years; as early as 1892, Engler and Dieckhoff25solubilized a number of compounds in soap solutions. 
Knowing the location, distribution, and orientation of solubilized drugs in the micelle is important to 
understanding the kinetic aspect of the solubilization process and the interaction of drugs with the 
different elements that constitute the micelle. These factors may also affect the stability and 
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bioavailability of the drug. The location of the molecule undergoing solubilization in a micelle is related to 
the balance between the polar and nonpolar properties of the molecule. Lawrence26 was the first to 
distinguish between the various sites. He proposed that nonpolar molecules in aqueous systems of ionic 
surface-active agents would be located in the hydrocarbon core of the micelle, whereas polar 
solubilizates would tend to be adsorbed onto the micelle surface. Polar–nonpolar molecules would tend 
to align themselves in an intermediate position within the surfactant molecules forming the micelle. 
Nonionic surfactants are of most pharmaceutical interest as solubilizing agents because of their lower 
toxicity. Their micelles show a gradient of increased polarity from the core to the polyoxyethylene–water 
surface. The extended interfacial region between the core and the aqueous solution, that is, the polar 
mantle, is greatly hydrated. The anisotropic distribution of water molecules within the polar mantle favors 
the inclusion (solubilization) of a wide variety of molecules.27 Solubilization may therefore occur in both 
the core and the mantle, also called thepalisade layer. Thus, certain compounds (e.g., phenols and 
related compounds with a hydroxy group capable of bonding with the ether oxygen of the 
polyoxyethylene group) are held between the polyoxyethylene chains. Under these conditions, such 
compounds can be considered as undergoing inclusion within the polyoxyethylene exterior of the micelle 
rather than adsorption onto the micelle surface. 
Figure 16-14 depicts a spherical micelle of a nonionic, polyoxyethylene monostearate, surfactant in 
water. The figure is drawn in conformity with Reich's suggestion28 that such a micelle may be regarded 
as a hydrocarbon core, made up of the hydrocarbon chains of the surfactant molecules, surrounded by 
the polyoxyethylene chains protruding into the continuous aqueous phase. Benzene and toluene, 
nonpolar molecules, are shown solubilized in the hydrocarbon interior of the micelle. Salicylic acid, a 
more polar molecule, is oriented with the nonpolar part of the molecule directed toward the central 
region of the micelle and the polar group toward the hydrophilic chains that spiral outward into the 
aqueous medium. Parahydroxybenzoic acid, a predominantly polar molecule, is found completely 
between the hydrophilic chains. 
The pharmacist must give due attention to several factors when attempting to formulate solubilized 
systems successfully. It is essential that, at the concentration employed, the surface-active agent, if 
taken internally, be nontoxic, miscible with the solvent (usually water), compatible with the material to be 
solubilized, free from disagreeable odor and taste, and relatively nonvolatile. Toxicity is of paramount 
importance, and, for this reason, most solubilized systems are based on nonionic surfactants. The 
amount of surfactant used is important: A large excess is undesirable, from the point of view of both 
possible toxicity and reduced absorption and activity; an insufficient amount can lead to precipitation of 
the solubilized material. The amount of material that can be solubilized by a given amount of surfactant 
is a function of the polar–nonpolar characteristics of the surfactant (commonly termed the hydrophile–

lipophile balance %HLB) and of the molecule being solubilized. 

 

Fig. 16-14. A spherical micelle of nonionic 

surfactant molecules. (A) A nonpolar molecule 

solubilized in the nonpolar region of the micelle. 

(B) A more polar molecule found partly 

embedded in the central region and partially 

extending into the palisade region. (C) A polar 

molecule found lying well out in the palisade 

layer attracted by dipolar forces to the 

polyoxyethylene chains. 
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It should be appreciated that changes in absorption and biologic availability and activity may occur when 
the material is formulated in a solubilized system. Drastic changes in the bactericidal activity of certain 
compounds take place when they are solubilized, and the pharmacist must ensure that the 
concentration of surface-active agent present is optimum for that particular system. The stability of 
materials against oxidation and hydrolysis may be modified by solubilization. 
Solubilization has been used in pharmacy to bring into solution a wide range of materials, including 
volatile oils, coal tar and resinous materials, phenobarbital, sulfonamides, vitamins, hormones, and 
dyes.23,29 
P.405 
 
 

 

Fig. 16-15.Phase diagram for the ternary system 

water, Tween 20, and peppermint oil. 

O'Malley et al.30 investigated the solubilizing action of Tween 20 on peppermint oil in water and 
presented their results in the form of a ternary diagram as shown in Figure 16-15. They found that on 
the gradual addition of water to a 50:50 mixture of peppermint oil and Tween 20, polysorbate 20, the 
system changed from a homogeneous mixture (region I) to a viscous gel (region II). On the further 
addition of water, a clear solution (region III) again formed, which then separated into two layers (region 
IV). This sequence of changes corresponds to the results one would obtain by diluting a peppermint oil 
concentrate in compounding and manufacturing processes. Analyses such as this therefore can provide 
important clues for the research pharmacist in the formulation of solubilized drug systems. 
Determination of a phase diagram was also carried out by Boon et al.31 to formulate a clear, single-
phase liquid vitamin A preparation containing the minimum quantity of surfactant needed to solubilize 
the vitamin. Phase equilibrium diagrams are particularly useful when the formulator wishes to predict the 
effect on the phase equilibria of the system of dilution with one or all of the components in any desired 
combination or concentration. 
Factors Affecting Solubilization 
The solubilization capacity of surfactants for drugs varies greatly with the chemistry of the surfactants 
and with the location of the drug in the micelle. If a hydrophobic drug is solubilized in the micelle core, 
an increase of the lipophilic alkyl chain length of the surfactant should enhance solubilization. At the 
same time, an increase in the micellar radius by increasing the alkyl chain length reduces the Laplace 
pressure, thus favoring the entry of drug molecules into the micelle (see Example 16-10). 
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Fig. 16-16.Schematic of nonionic micelle of n-

polyoxyethylene glycol monoether showing the 

intrusion of polyoxyethylene chains into the 

micelle core. (a) Micelle with palisade 

environment intact. (b) Palisade layer partially 

destroyed by loss of polyoxyethylene groups into 

the hydrophobic core. 

For micelles consisting of ionic surfactants, an increase in the radius of the hydrocarbon core is the 
principal method of enhancing solubilization,32 whereas for micelles built up from nonionic surfactants, 
evidence of this effect is not well grounded. Attwood et al.33 showed that an increase of carbon atoms 
above 16 in an n-polyoxyethylene glycol monoether—a nonionic surfactant—increases the size of the 
micelle, but, for a number of drugs, does not enhance solubilization. Results from NMR imaging, 
viscosity, and density testing34 suggested that some of the polar groups of the micelle, that is, some 
polyoxyethylene groups outside the hydrocarbon core of the micelle, double back and intrude on the 
core, depressing its melting point and producing a fluid micellar core (Fig. 16-16). However, this 
movement of polyethylene groups into the hydrocarbon core disrupts the palisade layer and tends to 
destroy the region of solubilization for polar–nonpolar compounds (semipolar drugs). Patel et 
al.35 suggested that the solubilizing nature of the core be increased with a more polar surfactant that 
would not disrupt the palisade region. Attwood et al.33 investigated the manner in which an ether or a 
keto group introduced into the hydrophobic region of a surfactant, octadecylpolyoxyethylene glycol 
monoether, affects the solubilization and micellar character of the surfactant. It was observed that the 
ether group lowered the melting point of the hydrocarbon and thus was able to create a liquid core 
without the intrusion phenomenon, which reduced the solubilizing nature of the surfactant for semipolar 
drugs. 
The principal effect of pH on the solubilizing power of nonionic surfactants is to alter the equilibrium 
between the ionized and un-ionized drug (solubilizate). This affects the solubility in water and modifies 
the partitioning of the drug between the micellar and the aqueous phases. As an example, the more 
lipophilic un-ionized form of benzoic acid is solubilized to a greater extent in polysorbate 80 than the 
more hydrophilic ionized form.36 However, solubilization of drugs having hydrophobic parts in the 
molecule and more than one 
P.406 
 
dissociation constant may not correlate with the lipophilicity of the drug.37 

Key Concept 

Pharmaceutical Applications of Colloids 

Colloids are extensively used for modifying the properties of pharmaceutical agents. The most 
common property that is affected is the solubility of a drug. However, colloidal forms of many 
drugs exhibit substantially different properties when compared with traditional forms of these 
drugs. Another important pharmaceutical application of colloids is their use as drug delivery 
systems. The most often-used colloid-type drug delivery systems include hydrogels, 
microspheres, microemulsions, liposomes, micelles, nanoparticles, and nanocrystals. 
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Pharmaceutical Applications of Colloids 
Certain medicinals have been found to possess unusual or increased therapeutic properties when 
formulated in the colloidal state. Colloidal silver chloride, silver iodide, and silver protein are effective 
germicides and do not cause the irritation that is characteristic of ionic silver salts. Coarsely powdered 
sulfur is poorly absorbed when administered orally, yet the same dose of colloidal sulfur may be 
absorbed so completely as to cause a toxic reaction and even death. Colloidal copper has been used in 
the treatment of cancer, colloidal gold as a diagnostic agent for paresis, and colloidal mercury for 
syphilis. 
Many natural and synthetic polymers are important in contemporary pharmaceutical practice. Polymers 
are macromolecules formed by the polymerization or condensation of smaller, noncolloidal molecules. 
Proteins are important natural colloids and are found in the body as components of muscle, bone, and 
skin. The plasma proteins are responsible for binding certain drug molecules to such an extent that the 
pharmacologic activity of the drug is affected. Naturally occurring plant macromolecules such as starch 
and cellulose that are used as pharmaceutical adjuncts are capable of existing in the colloidal state. 
Hydroxyethyl starch is a macromolecule used as a plasma substitute. Other synthetic polymers are 
applied as coatings to solid dosage forms to protect drugs that are susceptible to atmospheric moisture 
or degradation under the acid conditions of the stomach. Colloidal electrolytes (surface-active agents) 
are sometimes used to increase the solubility, stability, and taste of certain compounds in aqueous and 
oily pharmaceutical preparations. 

Table 16-5 Colloid-Based Delivery Systems for Therapeutics* 

Typical 

Mean 

Particle 

Diameter 

Delivery System 

Type 

Representative Systems 

of Each Type 

Characteristic 

Applications 

0.5–20 

µm 

Microspheres, 

hydrogels 

Alginate, gelatin, 

chitosan, polymeric 

microspheres, 

synthetic, 

biodegradable, 

polymeric hydrogels 

Sustained 

release of 

therapeutics, 

scaffolds for cell 

delivery in tissue 

engineering 

0.2–5 

µm 

Microparticles Polystyrene, 

poly(lactide) 

microspheres 

Targeted 

delivery of 

therapeutics 

0.15–2 

µm 

Emulsions, 

microemulsions 

Oil-in-water, water-

in-oil, lipid 

emulsions, oil-in-

water 

microemulsions 

Controlled and 

targeted delivery 

of therapeutics 

30–

1000 

nm 

Liposomes Phospholipid and 

polymer-based 

bilayer vesicles 

Targeted 

delivery of 

therapeutics 
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3–80 

nm 

Micelles Natural and synthetic 

surfactant micelles 

Targeted 

delivery of 

therapeutics 

2–100 

nm 

Nanoparticles Lipid, polymer, 

inorganic 

nanoparticles 

Targeted 

delivery of 

therapeutics, in 

vivo 

navigational 

devices 

2–100 

nm 

Nanocrystals Quantum dots Imaging agents 

*Based on K. Kostarelos, Adv. Colloid Interface Sci. 106, 147, 2003. 

 

In addition to mentioned pharmaceutical application, colloids are used as delivery systems for 
therapeutics. Seven main types of colloidal drug delivery systems in use are: hydrogels, microparticles, 
microemulsions, liposomes, micelles, nanoparticles, and nanocrystals (Table 16-538). A more detailed 
description of different drug delivery systems is given in Chapter 23. Here, we mention the main 
characteristics of each colloidal delivery system. 
Hydrogels 
Whereas a gel is a colloid with a liquid as dispersion medium and a solid as a dispersed phase (see Key 
Concept, Colloidal Systems), a hydrogel is a colloidal gel in which water is the dispersion medium. 
Natural and synthetic hydrogels are now used for wound healing, as scaffolds in tissue engineering, and 
as sustained-release delivery systems. Wound gels 
P.407 
 
are excellent for helping create or maintain a moist environment. Some hydrogels provide absorption, 
desloughing, and debriding capacities to necrotic and fibrotic tissue. When used as scaffolds for tissue 
engineering, hydrogels may contain human cells to stimulate tissue repair.39 Because they are loaded 
with pharmaceutical ingredients, hydrogels provide a sustained release of drugs. Special attention has 
been given to environmentally sensitive hydrogels.40These hydrogels have the ability to sense changes 
in pH, temperature, or the concentration of a specific metabolite and release their load as a result of 
such a change. These hydrogels can be used as site-specific controlled drug delivery systems. 
Hydrogels that are responsive to specific molecules, such as glucose or antigens, can be used as 
biosensors as well as drug delivery systems. Light-sensitive, pressure-responsive, and electrosensitive 
hydrogels also have the potential to be used in drug delivery. Although the concepts of these 
environment-sensitive hydrogels are sound, the practical applications require significant improvements 
in the hydrogel properties. The most important challenges that should be addressed in designing useful 
environmentally sensitive hydrogels include slow response time, limited biocompatibility, and 
biodegradability. However, if the achievements of the past can be extrapolated into the future, it is highly 
likely that responsive hydrogels with a wide array of desirable properties will be forthcoming.40 
Microparticles 
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Microparticles are small (0.2–5 µm), loaded microspheres of natural or synthetic polymers. 
Microparticles were initially developed as carriers for vaccines and anticancer drugs. More recently, 
novel properties of microparticles have been developed to increase the efficiency of drug delivery and 
improve release profiles and drug targeting. Several investigations have focused on the development of 
methods of reducing the uptake of the nanoparticles by the cells of the reticuloendothelial system and 
enhance their uptake by the targeted cells. For instance, functional surface coatings of 
nonbiodegradable carboxylated polystyrene or biodegradable poly(D,L-lactide-co-glycolide) 
microspheres with poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) were investigated in attempts to 
shield them from nonspecific phagocytosis and to allow ligand-specific interactions via molecular 
recognition.41 It was found that coatings of PLL-g-PEG-ligand conjugates provided for the specific 
targeting of microspheres to human blood–derived macrophages and dendritic cells while reducing 
nonspecific phagocytosis. Microparticles can also be used to facilitate nontraditional routes of drug 
administration. For example, it was found that microparticles can be used to improve immunization using 
the mucosal route of administration of therapeutics.42 It was found in this study that after mucosal 
delivery, microparticles can translocate to tissues in the systemic compartment of the immune system 
and provoke immunologic reactions. 
Emulsions and Microemulsions 
Microemulsions are excellent candidates as potential drug delivery systems because of their improved 
drug solubilization, long shelf life, and ease of preparation and administration. Three distinct 
microemulsions—oil external, water external, and middle phase—can be used for drug delivery, 
depending upon the type of drug and the site of action.43,44 In contrast to microparticles, which 
demonstrate distinct differences between the outer shell and core, microemulsions are usually formed 
with more or less homogeneous particles. Microemulsions are used for controlled release and targeted 
delivery of different pharmaceutic agents. For instance, microemulsions were used to deliver 
oligonucleotides (small fragments of DNA) specifically to ovarian cancer cells.45 In contrast to 
microemulsions, nanoemulsions consist in very fine oil-in-water dispersions, having droplet diameter 
smaller than 100 nm. Compared to microemulsions, they are in a metastable state, and their structure 
depends on the history of the system. Nanoemulsions are very fragile systems. The nanoemulsions can 
find an application in skin care due to their good sensorial properties (rapid penetration, merging 
textures) and their biophysical properties (especially their hydrating power).46 
Liposomes 
Liposomes consist of an outer uni- or multilaminar membrane and an inner liquid core. In most cases, 
liposomes are formed with natural or synthetic phospholipids similar to those in cellular plasma 
membrane. Because of this similarity, liposomes are easily utilized by cells. Liposomes can be loaded 
by pharmaceutical or other ingredients by two principal ways: lipophilic compounds can be associated 
with liposomal membrane, and hydrophilic substances can be dissolved in the inner liquid core of 
liposomes. To decrease uptake by the cells of the reticuloendothelial system and/or enhance their 
uptake by the targeted cells, the membrane of liposomes can be modified by polymeric chains and/or 
targeting moieties or antibodies specific to the targeted cells. Because they are relatively easy to 
prepare, biodegradable, and nontoxic, liposomes have found numerous applications as drug delivery 
systems.47,48 
Micelles 
Micelles are structures similar to liposomes but do not have an inner liquid compartment. Therefore, 
they can be used as water-soluble biocompatible microcontainers for the delivery of poorly soluble 
hydrophobic pharmaceuticals.49 Similar to liposomes, their surface can be modified with antibodies 
(immunomicelles) or other targeting moieties providing the ability of micelles to specifically interact with 
their antigens.50 One type of micelles, Pluronic block copolymers, are recognized pharmaceutical 
excipients listed in the US and British Pharmacopoeia. They have been used extensively in a 
P.408 
 
variety of pharmaceutical formulations including delivery of low–molecular-mass drugs, polypeptides, 
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and DNA.51 Furthermore, Pluronic block copolymers are versatile molecules that can be used as 
structural elements of polycation-based gene delivery systems (polyplexes). 
Nanoparticles 
Nanocapsules are submicroscopic colloidal drug carrier systems composed of an oily or an aqueous 
core surrounded by a thin polymer membrane. Two technologies can be used to obtain such 
nanocapsules: the interfacial polymerization of a monomer or the interfacial nanodeposition of a 
preformed polymer.52 Solid lipid nanoparticles were developed at the beginning of the 1990s as an 
alternative carrier system to emulsions, liposomes, and polymeric nanoparticles. They were used, in 
particular, in topical cosmetic and pharmaceutical formulations.53 A novel nanoparticle-based drug 
carrier for photodynamic therapy has been developed by Roy et al.54This carrier can provide stable 
aqueous dispersion of hydrophobic photosensitizers, yet preserve the key step of photogeneration of 
singlet oxygen, necessary for photodynamic action. Nanoparticles have also found applications as 
nonviral gene delivery systems.55 
Nanocrystals 
Inorganic nanostructures that interface with biologic systems have recently attracted widespread interest 
in biology and medicine.56Larson et al.57 set out to explore the feasibility of in vivo targeting by using 
semiconductor quantum dots (qdots), which are small (<10 nm) inorganic nanocrystals that possess 
unique luminescent properties; their fluorescence emission is stable and tuned by varying the particle 
size or composition. By adding a targeting moiety, one can direct these qdots specifically to the targeted 
organs and tissues. In particular, it was found that ZnS-capped CdSe qdots coated with a lung-targeting 
peptide accumulate in the lungs of mice after intravenous injection, whereas two other peptides 
specifically direct qdots to blood vessels or lymphatic vessels in tumors.57 As in case of liposomes, 
adding polyethylene glycol to the qdot coating prevents nonselective accumulation of qdots in 
reticuloendothelial tissues. All these make qdots promising imaging agents. The use of semiconductor 
quantum dots as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding 
biologic environments such as living tissue.57 
Chapter Summary 

Although colloidal dispersion have been important in the pharmaceutical sciences for 
decades, with the advent of nanotechnology, they are now becoming a driving force behind 
drug delivery systems and technology. This chapter provided basic information on colloidal 
dispersions such as basic definitions, the types of colloidal systems, electric, kinetic, and 
optical properties, their role in solubilization, and applications of colloids in the pharmaceutical 
sciences. The drug delivery aspects of colloids are discussed inChapter 23 as well. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 

References 
1. C. J. Drummond, G. G. Warr, F. Grieser, B. W. Nihaen and D. F. Evans, J. Phys. Chem. 89, 2103, 
1985. 
2. Y. Chang and J. R. Cardinal, J. Pharm Sci. 67, 994, 1978. 
3. T. J. Racey, P. Rochon, D. V. C. Awang and G. A. Neville, J. Pharm. Sci. 76, 314, 1987; T. J. Racey, 
P. Rochon, F. Mori and G. A. Neville, J. Pharm. Sci. 78, 214, 1989. 
4. P. Mukerjee, J. Phys. Chem. 76, 565, 1972. 
5. K. W. Herrmann, J. Colloid Interface Sci. 22, 352, 1966. 
6. P. Atkins, J. D. Paula, Physical Chemistry, W. H. Freeman, NY and Company, 7 Ed., 2006. 
7. P. C. Hiemenz, Principles of Colloid and Surface Chemistry, 2nd Ed., Marcel Dekker, New York, 
1986, pp. 127, 133, 148. 
8. T. Svedberg and J. B. Nicholas, J. Am. Chem. Soc. 49, 2920, 1927. 
9. J. Kirschbaum, J. Pharm. Sci. 63, 981, 1974. 
10. A. J. Richard, J. Pharm. Sci. 64, 873, 1975. 
11. H. Arwidsson and M. Nicklasson, Int. J. Pharm. 58, 73, 1990. 
12. H. H. Paradies, Eur. J. Biochem. 118, 187, 1981. 

Dr. Murtadha Alshareifi e-Library

744



13. H. H. Paradies, J. Pharm. Sci. 78, 230, 1989. 
14. H. Schott, J. Pharm. Sci. 70, 486, 1981. 
15. H. Takenaka, Y. Kawashima and S. Y. Lin, J. Pharm. Sci.70, 302, 1981. 
16. T. Higuchi, R. Kuramoto, L. Kennon, T. L. Flanagan and A. Polk, J. Am. Pharm. Assoc. Sci. 43, 646, 
1954. 
17. E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, 
Amsterdam, 1948. 
18. B. Derjaguin and L. Landau, Acta Phys. Chim. USSR 14,663, 1941; J. Exp. Theor. Physics 
USSR 11, 802, 1941. 
19. H. Schott, in Remington's Pharmaceutical Sciences, 16th Ed., Mack, Easton, PA, 1980, Chapter 20. 
20. B. Haines and A. N. Martin, J. Pharm. Sci. 50, 228, 753, 756, 1961. 
21. B. A. Mulley, in Advances in Pharmaceutical Sciences, Academic Press, New York, 1964, Vol. 1, pp. 
87–194. 
22. T. Nakagawa, in Nonionic Surfactants, M. J. Schick, Marcel Dekker, New York, 1967. 
23. P. H. Elworthy, A. T. Florence and C. B. Macfarlane,Solubilization by Surface-Active Agents, 
Chapman & Hall, London, 1968. 
24. D. Attwood and A. T. Florence, Surfactant Systems, Chapman & Hall, London, 1983. 
25. C. Engler and E. Dieckhoff, Arch. Pharm. 230, 561, 1892. 
26. A. S. C. Lawrence, Trans. Faraday Soc. 33, 815, 1937. 
27. E. Keh, S. Partyka and S. Zaini, J. Colloid Interface Sci. 129,363, 1989. 
28. I. Reich, J. Phys. Chem. 60, 260, 1956. 
29. B. W. Barry and D. I. El Eini, J. Pharm. Pharmacol. 28, 210, 1976. 
30. W. J. O'Malley, L. Pennati and A. Martin, J. Am. Pharm. Assoc. Sci. 47, 334, 1958. 
31. P. F. G. Boon, C. L. J. Coles and M. Tait, J. Pharm. Pharmacol. 13, 200T, 1961. 
32. T. Anarson and P. H. Elworthy, J. Pharm. Pharmacol. 32,381, 1980. 
33. D. Attwood, P. H. Elworthy and M. J. Lawrence, J. Pharm. Pharmacol. 41, 585, 1989. 
34. P. H. Elworthy and M. S. Patel, J. Pharm. Pharmacol. 36,565, 1984; J. Pharm. Pharmacol. 36, 116, 
1984. 
35. M. S. Patel, P. H. Elworthy and A. K. Dewsnup, J. Pharm. Pharmacol. 33, 64P, 1981. 
36. J. H. Collett and L. Koo, J. Pharm. Sci. 64, 1253, 1975. 
37. K. Ikeda, H. Tomida and T. Yotsuyanagi, Chem. Pharm. Bull. 25, 1067, 1977. 
P.409 
 
 
38. K. Kostarelos, Adv. Colloid Interface Sci. 106, 147, 2003. 
39. J. Kisiday, M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang and A. J. Grodzinsky, Proc. Natl. Acad. 
Sci. USA 99, 9996, 2002. 
40. Y. Qiu and K. Park, Adv. Drug Deliv. Rev. 53, 321, 2001. 
41. S. Faraasen, J. Voros, G. Csucs, M. Textor, H. P. Merkle and E. Walter, Pharm. Res. 20, 237, 2003. 
42. J. E. Eyles, V. W. Bramwell, E. D. Williamson and H. O. Alpar, Vaccine 19, 4732, 2001. 
43. R. P. Bagwe, J. R. Kanicky, B. J. Palla, P. K. Patanjali and D. O. Shah, Crit. Rev. Ther. Drug Carrier 
Syst. 18, 77, 2001. 
44. S. Benita (Ed.), Submicron Emulsion in Drug Targeting and Delivery, Harwood Academic 
Publishers, Amsterdam, 1998. 
45. H. Teixeira, C. Dubernet, H. Chacun, L. Rabinovich, V. Boutet, J. R. Deverre, S. Benita and P. 
Couvreur, J. Controlled Release 89, 473, 2003. 
46. O. Sonneville-Aubrun, J. T. Simonnet and F. L'Alloret, Adv. Colloid Interface Sci. 108–109, 145, 
2004. 
47. D. J. Crommelin and G. Storm, J. Liposome Res. 13, 33, 2003. 
48. D. D. Lasic and D. Papahadjopoulos (Eds.), Medical Applications of Liposomes, Elsevier Health 
Sciences, Amsterdam, 1998. 

Dr. Murtadha Alshareifi e-Library

745



49. R. Savic, L. Luo, A. Eisenberg and D. Maysinger, Science300, 615, 2003. 
50. V. P. Torchilin, A. N. Lukyanov, Z. Gao and B. Papahadjopoulos-Sternberg, Proc. Natl. Acad. Sci. 
USA 100,6039, 2003. 
51. A. V. Kabanov, P. Lemieux, S. Vinogradov and V. Alakhov, Adv. Drug Deliv. Rev. 54, 223, 2002. 
52. P. Couvreur, G. Barratt, E. Fattal, P. Legrand and C. Vauthier, Crit. Rev. Ther. Drug Carrier 
Syst. 19, 99, 2002. 
53. R. H. Muller, M. Radtke and S. A. Wissing, Adv. Drug Deliv. Rev. 54(Suppl 1), S131, 2002. 
54. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty 
and P. N. Prasad, J. Am. Chem. Soc. 125, 7860, 2003. 
55. F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Kruger, B. Gansbacher and C. 
Plank, Gene Ther. 9, 102, 2002. 
56. M. E. Akerman, W. C. Chan, P. Laakkonen, S. N. Bhatia and E. Ruoslahti, Proc. Natl. Acad. Sci. 
USA 99, 12617, 2002. 
57. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise and W. W. Webb, 
Science 300, 1434, 2003. 
Recommended Readings 
T. Cosgrove, Colloid Science: Principles, Methods and Applications, Blackwell, Oxford, UK, 2005. 
P. C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd Ed., Marcel Dekker, 
New York, 1997. 
Chapter Legacy 

Fifth Edition: published as Chapter 17 (Colloids). Updated by Tamara Minko. 
Sixth Edition: published as Chapter 16 (Colloidal Dispersions). Updated by Patrick Sinko. 

 

Dr. Murtadha Alshareifi e-Library

746



17 Coarse Dispersions 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Describe what pharmaceutical suspensions are and what roles they play in the 
pharmaceutical sciences. 

2. Discuss the desirable qualities of pharmaceutical suspensions. 
3. Discuss the factors that affect the stability of suspensions and explain flocculation. 
4. Describe settling and sedimentation theory and calculate sedimentation rates. 
5. Define and calculate the two useful sedimentation parameters, sedimentation volume 

and degree of flocculation. 
6. Describe the approaches commonly used in the preparation of physically stable 

suspensions. 
7. Define pharmaceutical emulsion and emulsifying agent and identify the main types of 

emulsions. 
8. Discuss the four classifications of pharmaceutical emulsion instability. 
9. Understand semisolids, thixotropic properties, syneresis, and swelling. 
10. Classify pharmaceutical semisolids. 
11. Describe coarse dispersions and give examples. 

Particulate systems have been classified on the basis of size into molecular dispersions (Chapter 5), 
colloidal systems (Chapter 16), and coarse dispersions (this chapter). This chapter attempts to provide 
the pharmacist with an insight into the role of physics and chemistry in the research and development of 
the several classes of coarse dispersions. The theory and technology of these important pharmaceutical 
classes are based on interfacial and colloidal principles, micromeritics, and rheology (Chapters 
15, 16, 18, and 19, respectively). 
Suspensions 
A pharmaceutical suspension is a coarse dispersion in which insoluble solid particles are dispersed in a 
liquid medium. The particles have diameters for the most part greater than 0.1 µm, and some of the 
particles are observed under the microscope to exhibit Brownian movement if the dispersion has a low 
viscosity. 
Examples of oral suspensions are the oral antibiotic syrups, which normally contain 125 to 500 mg per 5 
mL of solid material. When formulated for use as pediatric drops, the concentration of suspended 
material is correspondingly greater. Antacid and radiopaque suspensions generally contain high 
concentrations of dispersed solids. Externally applied suspensions for topical use are legion and are 
designed for dermatologic, cosmetic, and protective purposes. The concentration of dispersed phase 
may exceed 20%. Parenteral suspensions contain from 0.5% to 30% of solid particles. Viscosity and 
particle size are significant factors because they affect the ease of injection and the availability of the 
drug in depot therapy. 

Key Concept 

Suspensions 

Suspensions contribute to pharmacy and medicine by supplying insoluble and what often 
would otherwise be distasteful substances in a form that is pleasant to the taste, by providing 
a suitable form for the application of dermatologic materials to the skin and sometimes to the 
mucous membranes, and for the parenteral administration of insoluble drugs. Therefore, 
pharmaceutical suspensions can be classified into three groups: orally administered mixtures, 
externally applied lotions, and injectable preparations. 

An acceptable suspension possesses certain desirable qualities, including the following. The suspended 
material should not settle rapidly; the particles that do settle to the bottom of the container must not form 
a hard cake but should be readily redispersed into a uniform mixture when the container is shaken; and 
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the suspension must not be too viscous to pour freely from the orifice of the bottle or to flow through a 
syringe needle. In the case of an external lotion, the product must be fluid enough to spread easily over 
the affected area and yet must not be so mobile that it runs off the surface to which it is applied; the 
lotion must dry quickly and provide an elastic protective film that will not rub off easily; and it must have 
an acceptable color and odor. 
It is important that the characteristics of the dispersed phase be chosen with care so as to produce a 
suspension having optimum physical, chemical, and pharmacologic properties. Particle-size distribution, 
specific surface area, inhibition of crystal growth, and changes in polymorphic form are of special 
significance, and the formulator must ensure that these and other properties1,2,3 do not change 
sufficiently 
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during storage to adversely affect the performance of the suspension. Finally, it is desirable that the 
product contain readily obtainable ingredients that can be incorporated into the mixture with relative 
ease by the use of standard methods and equipment. 
The remainder of this section will be devoted to a discussion of some of the properties that provide the 
desirable characteristics just enumerated. 
For pharmaceutical purposes, physical stability of suspensions may be defined as the condition in which 
the particles do not aggregate and in which they remain uniformly distributed throughout the dispersion. 
Because this ideal situation is seldom realized, it is appropriate to add that if the particles do settle, they 
should be easily resuspended by a moderate amount of agitation. 
Interfacial Properties of Suspended Particles 
Little is known about energy conditions at the surfaces of solids, yet knowledge of the thermodynamic 
requirements is needed for the successful stabilization of suspended particles. 
Work must be done to reduce a solid to small particles and disperse them in a continuous medium. The 
large surface area of the particles that results from the comminution is associated with a surface free 
energy that makes the system thermodynamically unstable, by which we mean that the particles are 
highly energetic and tend to regroup in such a way as to decrease the total area and reduce the surface 
free energy. The particles in a liquid suspension therefore tend to flocculate, that is, to form light, fluffy 
conglomerates that are held together by weak van der Waals forces. Under certain conditions—in a 
compacted cake, for example—the particles may adhere by stronger forces to form what are 
termed aggregates. Caking often occurs by the growth and fusing together of crystals in the precipitates 
to produce a solid aggregate. 
The formation of any type of agglomerate, either floccules or aggregates, is taken as a measure of the 
system's tendency to reach a more thermodynamically stable state. An increase in the work, W, or 
surface free energy, ΔG, brought about by dividing the solid into smaller particles and consequently 
increasing the total surface area, ΔA, is given by 

 
where γSL is the interfacial tension between the liquid medium and the solid particles. 
Example 17-1 

Surface Free Energy 

Compute the change in the surface free energy of a solid in a suspension if the total surface 
is increased from 103 to 107 cm2. Assume that the interfacial tension between the solid and 
the liquid medium, γSL, is 100 dynes/cm. 
The initial free energy is 

 
When the surface area is 107 cm2, 

 
The change in the free energy, ΔG21, is 109 - 105[congruent] 109 erg/cm2. The free energy has 
been increased by 109, which makes the system more thermodynamically unstable. 
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To approach a stable state, the system tends to reduce the surface free energy; equilibrium is reached 
when ΔG = 0. This condition can be accomplished, as seen from equation (17-1), by a reduction of 
interfacial tension, or it can be approached by a decrease of the interfacial area. The latter possibility, 
leading to flocculation or aggregation, can be desirable or undesirable in a pharmaceutical suspension, 
as considered in a later section. 
The interfacial tension can be reduced by the addition of a surfactant but cannot ordinarily be made 
equal to zero. A suspension of insoluble particles, then, usually possesses a finite positive interfacial 
tension, and the particles tend to flocculate. An analysis paralleling this one could also be made for the 
breaking of an emulsion. 
The forces at the surface of a particle affect the degree of flocculation and agglomeration in a 
suspension. Forces of attraction are of the London–van der Waals type; the repulsive forces arise from 
the interaction of the electric double layers surrounding each particle. The formation of the electric 
double layer is considered in detail inChapter 15, which deals with interfacial phenomena. The student is 
advised to review, at this point, the section dealing with the electrical properties of interfaces because 
particle charge, electric double-layer formation, and zeta potential are all relevant to the present topic. 
The potential energy of two particles is plotted in Figure 17-1 as a function of the distance of separation. 
Shown are the curves depicting the energy of attraction, the energy of repulsion, and the net energy, 
which has a peak and two minima. When the repulsion energy is high, the potential barrier is also high, 
and collision of the particles is opposed. The system remains deflocculated, and, when sedimentation is 
complete, the particles form a close-packed arrangement with the smaller particles filling the voids 
between the larger ones. Those particles lowest in the sediment are gradually pressed together by the 
weight of the ones above; the energy barrier is thus overcome, allowing the particles to come into close 
contact with each other. To resuspend and redisperse these particles, it is again necessary to overcome 
the high-energy barrier. Because this is not easily achieved by agitation, the particles tend to remain 
strongly attracted to each other and form a hard cake. When the particles are flocculated, the energy 
barrier is still too large to be surmounted, and so the approaching particle resides in the second energy 
minimum, which is at a distance of separation of perhaps 1000 to 2000 Å. This distance is sufficient to 
form the loosely structural flocs. These concepts evolve from the Derjaguin and Landau, Verwey and 
Overbeek (DLVO) theory for the stability of lyophobic sols. Schneider et al.4 prepared a computer 
program for 
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calculating the repulsion and attraction energies in pharmaceutical suspensions. They showed the 
methods of handling the DLVO equations and the careful consideration that must be given to the many 
physical units involved. Detailed examples of calculations were given. 
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Fig. 17-1. Potential energy curves for particle interactions in suspension. (From A. 

Martin, J. Pharm. Sci. 50, 514, 1961. With permission.) 

To summarize, flocculated particles are weakly bonded, settle rapidly, do not form a cake, and are easily 
resuspended; deflocculated particles settle slowly and eventually form a sediment in which aggregation 
occurs with the resultant formation of a hard cake that is difficult to resuspend. 
Settling in Suspensions 
As mentioned earlier, one aspect of physical stability in pharmaceutical suspensions is concerned with 
keeping the particles uniformly distributed throughout the dispersion. Although it is seldom possible to 
prevent settling completely over a prolonged period of time, it is necessary to consider the factors that 
influence the velocity of sedimentation. 
Theory of Sedimentation 
The velocity of sedimentation is expressed by Stokes's law: 
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where v is the terminal velocity in cm/sec, d is the diameter of the particle in cm, ρs and ρo are the 
densities of the dispersed phase and dispersion medium, respectively, g is the acceleration due to 
gravity, and ηo is the viscosity of the dispersion medium in poise. 
Dilute pharmaceutical suspensions containing less than about 2 g of solids per 100 mL of liquid conform 
roughly to these conditions. (Some feel that the concentration must be less than 0.5 g/100 mL before 
Stokes's equation is valid.) In dilute suspensions, the particles do not interfere with one another during 
sedimentation, andfree settling occurs. In most pharmaceutical suspensions that contain dispersed 
particles in concentrations of 5%, 10%, or higher percentages, the particles exhibit hindered settling. 
The particles interfere with one another as they fall, and Stokes's law no longer applies. 
Under these circumstances, some estimation of physical stability can be obtained by diluting the 
suspension so that it contains about 0.5% to 2.0% w/v of dispersed phase. This is not always 
recommended, however, because the stability picture obtained is not necessarily that of the original 
suspension. The addition of a diluent may affect the degree of flocculation (or deflocculation) of the 
system, thereby effectively changing the particle-size distribution. 
To account for the nonuniformity in particle shape and size invariably encountered in real systems. We 
can write Stokes's equation in other forms. One of the proposed modifications is5 

 
where v′ is the rate of fall at the interface in cm/sec and v is the velocity of sedimentation according to 
Stokes's law. The term ε represents the initial porosity of the system, that is, the initial volume fraction of 

the uniformly mixed suspension, which varies from zero to unity. The exponent n is a measure of the 
―hindering‖ of the system. It is a constant for each system. 
Example 17-2 

The average particle diameter of calcium carbonate in aqueous suspension is 54 µm. The 
densities of CaCO3 and water, respectively, are 2.7 and 0.997 g/cm3. The viscosity of water is 
0.009 poise at 25°C. Compute the rate of fall v′ for CaCO3 samples at two different porosities, 
ε1 = 0.95 and ε2= 0.5. The n value is 19.73. 
From Stokes's law, equation (17-2), 

 
Taking logarithms on both sides of equation (17-3), we obtain ln v′ = ln v + n ln ε. 
For ε1 = 0.95, 

 
Analogously, for ε2 = 0.5, v′ = 3.5 × 10

-7 cm/sec. Note that at low porosity values (i.e., 0.5, 
which corresponds to a high concentration of solid in suspension), the sedimentation is 
hindered, leading to small v′ values. On the other hand, when the suspension becomes 

infinitely diluted (i.e., ε = 1), the rate of fall is given by v′ = v. In the present example, if ε = 1, 
 

which is the Stokes-law velocity. 
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Effect of Brownian Movement 
For particles having a diameter of about 2 to 5 µm (depending on the density of the particles and the 
density and viscosity of the suspending medium), Brownian movement counteracts sedimentation to a 
measurable extent at room temperature by keeping the dispersed material in random motion. 
The critical radius, r, below which particles will be kept in suspension by kinetic bombardment of the 
particles by the molecules of the suspending medium (Brownian movement) was worked out by 
Burton.6 
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It can be seen in the microscope that Brownian movement of the smallest particles in a field of particles 
of a pharmaceutical suspension is usually eliminated when the sample is dispersed in a 50% glycerin 
solution, having a viscosity of about 5 centipoise. Hence, it is unlikely that the particles in an ordinary 
pharmaceutical suspension containing suspending agents are in a state of vigorous Brownian motion. 
Sedimentation of Flocculated Particles 
When sedimentation is studied in flocculated systems, it is observed that the flocs tend to fall together, 
producing a distinct boundary between the sediment and the supernatant liquid. The liquid above the 
sediment is clear because even the small particles present in the system are associated with the flocs. 
Such is not the case in deflocculated suspensions having a range of particle sizes, in which, in 
accordance with Stokes's law, the larger particles settle more rapidly than the smaller particles. No clear 
boundary is formed (unless only one size of particle is present), and the supernatant remains turbid for a 
considerably longer period of time. Whether the supernatant liquid is clear or turbid during the initial 
stages of settling is a good indication of whether the system is flocculated or deflocculated, respectively. 

 

Fig. 17-2. Sedimentation volumes produced by adding varying amounts of 

flocculating agent. Examples (b) and (c) are pharmaceutically acceptable. 

According to Hiestand,7 the initial rate of settling of flocculated particles is determined by the floc size 
and the porosity of the aggregated mass. Subsequently, the rate depends on compaction and 
rearrangement processes within the sediment. The termsubsidence is sometimes used to describe 
settling in flocculated systems. 
Sedimentation Parameters 
Two useful parameters that can be derived from sedimentation (or, more correctly, subsidence) studies 
are sedimentation volume, V, orheight, H, and degree of flocculation. 
The sedimentation volume, F, is defined as the ratio of the final, or ultimate, volume of the sediment, Vu, 
to the original volume of the suspension, Vo, before settling. Thus, 

 
The sedimentation volume can have values ranging from less than 1 to greater than 1. F is normally less 
than 1, and in this case, the ultimate volume of sediment is smaller than the original volume of 
suspension, as shown in Figure 17-2a, in which F = 0.5. If the volume of sediment in a flocculated 
suspension equals the original volume of suspension, then F = 1 (Fig. 17-2b). Such a product is said to 
be in ―flocculation equilibrium‖ and shows no clear supernatant on standing. It is therefore 

pharmaceutically acceptable. It is possible for F to have values greater than 1, meaning that the final 
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volume of sediment is greater than the original suspension volume. This comes about because the 
network of flocs formed in the suspension is so loose and fluffy that the volume they 
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are able to encompass is greater than the original volume of suspension. This situation is illustrated 
in Figure 17-2c, in which sufficient extra vehicles have been added to contain the sediment. In example 
shown, F = 1.5. 
The sedimentation volume gives only a qualitative account of flocculation because it lacks a meaningful 
reference point.7 A more useful parameter for flocculation is β, the degree of flocculation. 
If we consider a suspension that is completely deflocculated, the ultimate volume of the sediment will be 
relatively small. Writing this volume as V∞, based on equation (17-4), we have 

 
where F∞ is the sedimentation volume of the deflocculated, or peptized, suspension. The degree of 
flocculation, β, is therefore defined as the ratio of F to F∞, or 

 
Substituting equations (17-4) and (17-5) in equation (17-6), we obtain 

 
The degree of flocculation is a more fundamental parameter than Fbecause it relates the volume of 
flocculated sediment to that in a deflocculated system. We can therefore say that 

 
Example 17-3 

Compute the sedimentation volume of a 5% w/v suspension of magnesium carbonate in 
water. The initial volume is Vo = 100 mL and the final volume of the sediment is Vu = 30 mL. If 
the degree of flocculation is β = F/F∞ = 1.3, what is the deflocculated sedimentation 
volume, F∞? 
We have 

 

Formulation of Suspensions 
The approaches commonly used in the preparation of physically stable suspensions fall into two 
categories—the use of a structured vehicle to maintain deflocculated particles in suspension, and the 
application of the principles of flocculation to produce flocs that, although they settle rapidly, are easily 
resuspended with a minimum of agitation. 
Structured vehicles are pseudoplastic and plastic in nature; their rheologic properties are discussed 
in Chapter 19. As we shall see in a later section, it is frequently desirable that thixotropy be associated 
with these two types of flow. Structured vehicles act by entrapping the particles (generally deflocculated) 
so that, ideally, no settling occurs. In reality, some degree of sedimentation will usually take place. The 
―shear-thinning‖ property of these vehicles does, however, facilitate the re-formation of a uniform 
dispersion when shear is applied. 
A disadvantage of deflocculated systems, mentioned earlier, is the formation of a compact cake when 
the particles eventually settle. It is for this reason that the formulation of flocculated suspensions has 
been advocated.8 Optimum physical stability and appearance will be obtained when the suspension is 
formulated with flocculated particles in a structured vehicle of the hydrophilic colloid type. Consequently, 
most of the subsequent discussion will be concerned with this approach and the means by which 
controlled flocculation can be achieved. Whatever approach is used, the product must (a) flow readily 
from the container and (b) possess a uniform distribution of particles in each dose. 
Wetting of Particles 
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The initial dispersion of an insoluble powder in a vehicle is an important step in the manufacturing 
process and requires further consideration. Powders sometimes are added to the vehicle, particularly in 
large-scale operations, by dusting on the surface of the liquid. It is frequently difficult to disperse the 
powder owing to an adsorbed layer of air, minute quantities of grease, and other contaminants. The 
powder is not readily wetted, and although it may have a high density, it floats on the surface of the 
liquid. Finely powdered substances are particularly susceptible to this effect because of entrained air, 
and they fail to become wetted even when forced below the surface of the suspending medium. 
The wettabilityof a powder can be ascertained easily by observing the contact angle that powder makes 
with the surface of the liquid. The angle is approximately 90° when the particles are floating well out of 
the liquid. A powder that floats low in the liquid has a lesser angle, and one that sinks obviously shows 
no contact angle. Powders that are not easily wetted by water and accordingly show a large contact 
angle, such as sulfur, charcoal, and magnesium stearate, are said to be hydrophobic. Powders that are 
readily wetted by water when free of adsorbed contaminants are called hydrophilic. Zinc oxide, talc, and 
magnesium carbonate belong to the latter class. 
Surfactants are quite useful in the preparation of a suspension in reducing the interfacial tension 
between solid particles and a vehicle. As a result of the lowered interfacial tension, the advancing 
contact angle is lowered, air is displaced from the surface of particles, and wetting and deflocculation 
are promoted. Schott et al.9studied the deflocculating effect of octoxynol, a nonionic surfactant, in 
enhancing the dissolution rate of prednisolone from tablets. The tablets break up into fine granules that 
are deflocculated in suspension. The deflocculating effect is proportional to the surfactant concentration. 
However, at very high surfactant concentration, say, 15 times the critical micelle concentration, the 
surfactant produces extensive flocculation. Glycerin and similar 
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hygroscopic substances are also valuable in levigating the insoluble material. Apparently, glycerin flows 
into the voids between the particles to displace the air and, during the mixing operation, coats and 
separates the material so that water can penetrate and wet the individual particles. The dispersion of 
particles of colloidal gums by alcohol, glycerin, and propylene glycol, allowing water to subsequently 
penetrate the interstices, is a well-known practice in pharmacy. 
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Fig. 17-3. Caking diagram, showing the flocculation of a bismuth subnitrate 

suspension by means of the flocculating agent monobasic potassium phosphate. 

(From A. Martin and J. Swarbrick, in Sprowls' American Pharmacy, 6th Ed., 

Lippincott, Philadelphia, 1966, p. 205. With permission.) 

To select suitable wetting agents that possess a well-developed ability to penetrate the powder mass, 
Hiestand7 used a narrow trough, several inches long and made of a hydrophobic material, such as 
Teflon, or coated with paraffin wax. At one end of the trough is placed the powder and at the other end 
the solution of the wetting agent. The rate of penetration of the latter into the powder can then be 
observed directly. 
Controlled Flocculation 
Assuming that the powder is properly wetted and dispersed, we can now consider the various means by 
which controlled flocculation can be produced so as to prevent formation of a compact sediment that is 
difficult to redisperse. The topic, described in detail by Hiestand,7is conveniently discussed in terms of 
the materials used to produce flocculation in suspensions, namely electrolytes, surfactants, and 
polymers. 
Electrolytes act as flocculating agents by reducing the electric barrier between the particles, as 
evidenced by a decrease in the zeta potential and the formation of a bridge between adjacent particles 
so as to link them together in a loosely arranged structure. 
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If we disperse particles of bismuth subnitrate in water, we find that, based on electrophoretic mobility 
studies, they possess a large positive charge, or zeta potential. Because of the strong forces of 
repulsion between adjacent particles, the system is peptized or deflocculated. By preparing a series of 
bismuth subnitrate suspensions containing increasing concentrations of monobasic potassium 
phosphate, Haines and Martin10 were able to show a correlation between apparent zeta potential and 
sedimentation volume, caking, and flocculation. The results are summarized inFigure 17-3 and are 
explained in the following manner. 
The addition of monobasic potassium phosphate to the suspended bismuth subnitrate particles causes 
the positive zeta potential to decrease owing to the adsorption of the negatively charged phosphate 
anion. With the continued addition of the electrolyte, the zeta potential eventually falls to zero and then 
increases in the negative direction, as shown in Figure 17-3. Microscopic examination of the various 
suspensions shows that at a certain positive zeta potential, maximum flocculation occurs and will persist 
until the zeta potential has become sufficiently negative for deflocculation to occur once again. The 
onset of flocculation coincides with the maximum sedimentation volume determined. Fremains 
reasonably constant while flocculation persists, and only when the zeta potential becomes sufficiently 
negative to effect repeptization does the sedimentation volume start to fall. Finally, the absence of 
caking in the suspensions correlates with the maximum sedimentation volume, which, as stated 
previously, 
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reflects the amount of flocculation. At less than maximum values ofF, caking becomes apparent. 

Key Concept 

What is a Polymer? 

Polymers are long-chain, high–molecular-weight compounds containing active groups spaced 
along their length. These agents act as flocculating agents because part of the chain is 
adsorbed on the particle surface, with the remaining parts projecting out into the dispersion 
medium. Bridging between these latter portions leads to the formation of flocs. 

These workers10 also demonstrated a similar correlation when aluminum chloride was added to a 
suspension of sulfamerazine in water. In this system, the initial zeta potential of the sulfamerazine 
particles is negative and is progressively reduced by adsorption of the trivalent aluminum cation. When 
sufficient electrolyte is added, the zeta potential reaches zero and then increases in a positive direction. 
Colloidal and coarse dispersed particles can possess surface charges that depend on the pH of the 
system. An important property of the pH-dependent dispersions is the zero point of charge, that is, the 
pH at which the net surface charge is zero. The desired surface charge can be achieved through 
adjusting the pH by the addition of HCl or NaOH to produce a positive, zero, or negative surface charge. 
The negative zeta potential of nitrofurantoin decreases considerably when the pH values of the 
suspension are charged from basic to acidic.11 
Surfactants, both ionic and nonionic, have been used to bring about flocculation of suspended particles. 
The concentration necessary to achieve this effect would appear to be critical because these 
compounds can also act as wetting and deflocculating agents to achieve dispersion. 
Felmeister and others12 studied the influence of a xanthan gum (an anionic heteropolysaccharide) on 
the flocculation characteristics of sulfaguanidine, bismuth subcarbonate, and other drugs in suspension. 
Addition of xanthan gum resulted in increased sedimentation volume, presumably by a polymer-bridging 
phenomenon. Hiestand13 reviewed the control of floc structure in coarse suspensions by the addition of 
polymeric materials. 
Hydrophilic polymers also act as protective colloids, and particles coated in this manner are less prone 
to cake than are uncoated particles. These polymers exhibit pseudoplastic flow in solution, and this 
property serves to promote physical stability within the suspension. Gelatin, a polyelectrolytic polymer, 
exhibits flocculation that depends on the pH and ionic strength of the dispersion medium. Sodium 
sulfathiazole, precipitated from acid solution in the presence of gelatin, was shown by Blythe14 to be 
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free-flowing in the dry state and not to cake when suspended. Sulfathiazole normally carries a negative 
charge in aqueous vehicles. The coated material, precipitated from acid solution in the presence of 
gelatin, however, was found to carry a positive charge. This is due to gelatin being positively charged at 
the pH at which precipitation was carried out. It has been suggested8 that the improved properties result 
from the positively charged gelatin-coated particles being partially flocculated in suspension, presumably 
because the high negative charge has been replaced by a smaller, albeit positive, charge. Positively 
charged liposomes have been used as flocculating agents to prevent caking of negatively charged 
particles. Liposomes are vesicles of phospholipids having no toxicity and that can be prepared in various 
particle sizes.15 They are adsorbed on the negatively charged particles. 
Flocculation in Structured Vehicles 
Although the controlled flocculation approach is capable of fulfilling the desired physical chemical 
requisites of a pharmaceutical suspension, the product can look unsightly if F, the sedimentation 
volume, is not close or equal to 1. Consequently, in practice, a suspending agent is frequently added to 
retard sedimentation of the flocs. Such agents as carboxymethylcellulose, Carbopol 934, Veegum, 
tragacanth, and bentonite have been employed, either alone or in combination. 
This can lead to incompatibilities, depending on the initial particle charge and the charge carried by the 
flocculating agent and the suspending agent. For example, suppose we prepare a dispersion of 
positively charged particles that is then flocculated by the addition of the correct concentration of an 
anionic electrolyte such as monobasic potassium phosphate. We can improve the physical stability of 
this system by adding a minimal amount of one of the hydrocolloids just mentioned. No physical 
incompatibility will be observed because the majority of hydrophilic colloids are themselves negatively 
charged and are thus compatible with anionic flocculating agents. If, however, we flocculate a 
suspension of negatively charged particles with a cationic electrolyte (aluminum chloride), the 
subsequent addition of a hydrocolloid may result in an incompatible product, as evidenced by the 
formation of an unsightly stringy mass that has little or no suspending action and itself settles rapidly. 
Under these circumstances, it becomes necessary to use a protective colloid to change the sign on the 
particle from negative to positive. This is achieved by the adsorption onto the particle surface of a fatty 
acid amine (which has been checked to ensure its nontoxicity) or a material such as gelatin, which is 
positively charged below its isoelectric point. We are then able to use an anionic electrolyte to produce 
flocs that are compatible with the negatively charged suspending agent. 
This approach can be used regardless of the charge on the particle. The sequence of events is depicted 
in Figure 17-4, which is self-explanatory. 
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Fig. 17-4. The sequence of steps involved in the formation of a stable suspension. 

(From A. Martin and J. Swarbrick, in Sprowls' American Pharmacy, 6th Ed., 

Lippincott, Philadelphia, 1966, p. 206. With permission.) 

Rheologic Considerations 
The principles of rheology can be applied to a study of the following factors: the viscosity of a 
suspension as it affects the settling of dispersed particles, the change in flow properties of the 
suspension when the container is shaken and when the product is poured from the bottle, and the 
spreading qualities of the lotion when it is applied to an affected area. Rheologic considerations are also 
important in the manufacture of suspensions. 
The only shear that occurs in a suspension in storage is due to a settling of the suspended particles; this 
force is negligible and may be disregarded. When the container is shaken and the product is poured 
from the bottle, however, a high shearing rate is manifested. As suggested by Mervine and 
Chase,16 the ideal suspending agent should have a high viscosity at negligible shear, that is, during 
shelf storage; and it should have a low viscosity at high shearing rates, that is, it should be free-flowing 
during agitation, pouring, and spreading. As seen in Figure 17-5, pseudoplastic substances such as 
tragacanth, sodium alginate, and sodium carboxymethylcellulose show these desirable qualities. The 
Newtonian liquid glycerin is included in the graph for comparison. Its viscosity is suitable for suspending 
particles but is too high to pour easily and to spread on the skin. Furthermore, glycerin shows the 
undesirable property of tackiness (stickiness) and is too hygroscopic to use in undiluted form. The 
curves in Figure 17-5 were obtained by use of the modified Stormer viscometer. 
A suspending agent that is thixotropic as well as pseudoplastic should prove to be useful because it 
forms a gel on standing and becomes fluid when disturbed. Figure 17-6 shows the consistency curves 
for bentonite, Veegum (Vanderbilt Co.), and a combination of bentonite and sodium 
carboxymethylcellulose. The hysteresis loop of bentonite is quite marked. Veegum also shows 
considerable thixotropy, both when tested by inverting a vessel containing the dispersion and when 
analyzed in a rotational viscometer. When bentonite and carboxymethylcellulose dispersions are mixed, 
the resulting curve shows both pseudoplastic and thixotropic characteristics. Such a combination should 
produce an excellent suspending medium. 
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Fig. 17-5. Rheologic flow curves of various suspending agents analyzed in a modified 

Stormer viscometer. 

Preparation of Suspensions 
The factors entering into the preparation and stabilization of suspensions involve certain principles of 
interest to physical pharmacy and are briefly discussed here. The physical 
P.418 
 
principles involved in the dispersion of solids by different types of equipment were discussed by 
Oldshue.17 

 

Fig. 17-6. Flow curves for 5% suspending agents in water, showing thixotropy. The 

curves were obtained with the Ferranti–Shirley cone–plate viscometer. 
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A suspension is prepared on the small scale by grinding or levigating the insoluble material in the mortar 
to a smooth paste with a vehicle containing the dispersion stabilizer and gradually adding the remainder 
of the liquid phase in which any soluble drugs may be dissolved. The slurry is transferred to a graduate, 
the mortar is rinsed with successive portions of the vehicle, and the dispersion is finally brought to the 
final volume. 
On a large scale, dispersion of solids in liquids is accomplished by the use of ball, pebble, and colloid 
mills. Dough mixers, pony mixers, and similar apparatus are also employed. Only the colloid mill is 
described here; a discussion of the other mills can be found in the book by Fischer.18a Dry grinding in 
ball mills is treated by Fischer,18a Berry and Kamack,18b and Prasher.18c 
The colloid mill is based on the principle of a high-velocity, cone-shaped rotor that is centered with 
respect to a stator at a small adjustable clearance. The suspension is fed to the rotor by gravity through 
a hopper, sheared between the rotor and the stator, and forced out below the stator, where it may be 
recycled or drawn off. 
The efficiency of the mill is based on the clearance between the disks, the peripheral velocity of the 
rotor, and the non-Newtonian viscosity of the suspension. The mill breaks down the large aggregates 
and flocs so that they can be dispersed throughout the liquid vehicle and then protected by the 
dispersion stabilizer. The shearing action that leads to disaggregation occurs at the surfaces of the 
rotating and stationary disks and between the particles themselves in a concentrated suspension. If the 
yield value is too great, the material fails to flow; if the viscosity is low, a loss in effectiveness of shearing 
action occurs. Therefore, the yield value should be low, and the plastic or apparent viscosity of the 
material should be at a maximum consistent with the optimum rate of flow through the mill. If the 
material is highly viscous or if the plates are adjusted to a clearance that is too narrow, the temperature 
rises rapidly, and cooling water must be circulated around the stator to dissipate the heat that is 
produced. Dilatant materials—for example, deflocculated suspensions containing 50% or more of 
solids—are particularly troublesome. They flow freely into the mill but set up a high shearing rate and 
produce overheating and stalling of the motor. Beginning any milling process with the plates set at a 
wide clearance minimizes this danger. If this technique fails, however, the material must be milled in 
another type of equipment or the paste must be diluted with a vehicle until dilatancy is eliminated. 
Physical Stability of Suspensions 
Raising the temperature often leads to flocculation of sterically stabilized suspensions, that is, 
suspensions stabilized by nonionic surfactants. Repulsion due to steric interactions depends on the 
nature, thickness, and completeness of the surfactant-adsorbed layers on the particles. When the 
suspension is heated, the energy of repulsion between the particles can be reduced owing to 
dehydration of the polyoxyethylene groups of the surfactant. The attractive energy is increased and the 
particles flocculate.19 Zapata et al.20 studied the mechanism of freeze–thaw instability in aluminum 
hydrocarbonate and magnesium hydroxide gels as model suspensions because of their well-known 
sensitivity to temperature changes. During the freezing process, particles can overcome the repulsive 
barrier caused by ice formation, which forces the particles close enough to experience the strong 
attractive forces present in the primary minimum and form aggregates according to the DLVO theory. 
When the ice melts, the particles remain as aggregates unless work is applied to overcome the primary 
energy peak. Aggregate size was found to be inversely related to the freezing rate. The higher the 
freezing rate, the smaller is the size of ice crystals formed. These small crystals do not result in the 
aggregation of as many suspension particles as do large ice crystals. 
In addition to particle aggregation, particle growth is also a destabilizing process resulting from 
temperature fluctuations orOstwald ripening during storage. Fluctuations of temperature can change the 
particle size distribution and polymorphic form of a drug, altering the absorption rate and drug 
bioavailability.21 Particle growth is particularly important when the solubility of the drug is strongly 
dependent on the temperature. Thus, when temperature is raised, crystals of drug may dissolve and 
form supersaturated solutions, which favor crystal growth. This can be prevented by the addition of 
polymers or surfactants. Simonelli et al.3 studied the inhibition of sulfathiazole crystal growth by 
polyvinylpyrrolidone. These authors suggested that the polymer forms a noncondensed netlike film over 
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the sulfathiazole crystal, allowing the crystal to grow out only through the openings of the net. The 
growth is thus controlled by the pore size of the polymer network at the crystal surface. The smaller the 
pore size, the higher is the supersaturation of the solution required for the crystals to grow. This can be 
shown using the Kelvin equation as applied to a particle suspended in a saturated solution3: 

 
where c is the solubility of a small particle of radius R in an aqueous vehicle and co is the solubility of a 
very large crystalline particle; γ is the interfacial tension of the crystal, ρ is the density of the crystal, 
andM is the molecular weight of the solute. N is Avogadro's number, k is the Boltzmann constant, 
and N × k = 8.314 × 107 ergs-1 mole-1. The ratio c/co defines the supersaturation ratio that a large crystal 
requires in the aqueous solution saturated with respect to the small particle. According to equation (17-
8), as the radius of curvature of a protruding crystal decreases, the protrusion will require a 
correspondingly larger supersaturation ratio before it can grow. The radius of curvature of a protrusion 
must equal that of the pore of the polymer on the crystal surface. 
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Example 17-4 

Supersaturation Ratio 

Assume that the interfacial tension of a particle of drug in an aqueous vehicle is 100 ergs/cm2, 
its molecular weight is 200 g/mole, and the temperature of the solution is 30°C or 303 K. (a) 
Compute the supersaturation ratio, c/co, that is required for the crystal to grow. The radius, R, 
of the particle is 5 µm, or 5 × 10-4 cm, and its density is 1.3 g/cm3. (b) Compute the 
supersaturation ratio when the particle is covered by a polymer and the pore radius, R, of the 
polymer at the crystal surface is 6 × 10-7 cm. 
Using the Kelvin equation, we obtain 

 

 
Notice that c/co in part (a) represents slight oversaturation, whereas in (b) the supersaturation 
concentration must be 7.6 times larger than the solubility of the drug molecule for the 
crystalline particle to grow. In other words, the addition of a polymer greatly increases the 
point at which supersaturation occurs and makes it more difficult for the drug crystal to grow. 

Ziller and Rupprecht22 designed a control unit to monitor crystal growth and studied the inhibition of 
growth by poly (vinylpyrrolidone) (PVP) in acetaminophen suspensions. According to these workers, 
some of the segments of the polymer PVP attach to the free spaces on the drug crystal lattice and the 
polymer is surrounded by a hydration shell (Fig. 17-7). The adsorbed segments of the polymer inhibit 
crystal growth of acetaminophen because they form a barrier that impedes the approach of the drug 
molecules from the solution to the crystal surface. High–molecular-weight polymers of PVP are more 
effective than low–molecular-weight polymers because the adsorption of the polymer on the crystal 
surface becomes more irreversible as the chain length increases. 
The stability of suspensions may also decrease owing to interaction with excipients dissolved in the 
dispersion medium. Zatz and Lue19studied the flocculation by sorbitol in sulfamerazine suspensions 
containing nonionic surfactants as wetting agents. The flocculation by sorbitol depends on the cloud 
point of the surfactant. Thus, the lower the cloud point, the less sorbitol was needed to induce 
flocculation. The fact that the cloud point can be lowered by preservatives such as methylparaben 
shows that the choice of additives may change the resistance to caking of a suspension containing 
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nonionic surfactants. Zatz and Lue19 suggested that the cloud point can be used to estimate the critical 
flocculation concentration of sorbitol. Lucks et al.23 studied the adsorption of preservatives such as 
cetylpyridinium chloride on zinc oxide particles in suspension. Increasing amounts of this preservative 
led to charge reversal of the suspension. Cetylpyridinium chloride, a cationic surfactant, has a positive 
charge and is strongly adsorbed at the particle surface. The positive end of the preservative molecule 
adsorbs on the negatively charged surface of the zinc oxide particles, forming a layer with the 
hydrocarbon chains oriented outward toward the dispersion medium. A second layer of preservative 
adsorbs at this monolayer, with the positively charged groups now directed toward the dispersion 
medium. Thus, the physical stability of the suspension may be enhanced owing to the repulsion of like-
charged particles. However, the strong adsorption of the preservative on the zinc oxide particles 
reduces the biologically active free fraction of preservative in the dispersion medium, and the 
microbiologic activity is diminished. 

 

Fig. 17-7. Dissolution and crystallization of a drug in the presence of a polymer 

adsorbed on the drug crystal. (From H. K. Ziller and H. Rupprecht, Drug Dev. Ind. 

Pharm. 14, 2341, 1988. With permission.) 

Emulsions 
An emulsion is a thermodynamically unstable system consisting of at least two immiscible liquid phases, 
one of which is dispersed as globules (the dispersed phase) in the other liquid phase (the continuous 
phase), stabilized by the presence of an emulsifying agent. The various types of emulsifying agents 
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are discussed later in this section. Either the dispersed phase or the continuous phase may range in 
consistency from that of a mobile liquid to a semisolid. Thus, emulsified systems range from lotions of 
relatively low viscosity to ointments and creams, which are semisolid in nature. The particle diameter of 
the dispersed phase generally extends from about 0.1 to 10 µm, although particle diameters as small as 
0.01 µm and as large as 100 µm are not uncommon in some preparations. 
Emulsion Types 
Invariably, one liquid phase in an emulsion is essentially polar (e.g., aqueous), whereas the other is 
relatively nonpolar (e.g., an oil). When the oil phase is dispersed as globules throughout an aqueous 
continuous phase, the system is referred to as an oil-in-water (o/w) emulsion. When the oil phase serves 
as the continuous phase, the emulsion is spoken of as a water-in-oil (w/o) product. Medicinal emulsions 
for oral administration are usually of the o/w type and require the use of an o/w emulsifying agent. These 
include synthetic nonionic surfactants, acacia, tragacanth, and gelatin. Not all emulsions that are 
consumed, however, belong to the o/w type. Certain foods such as butter and some salad dressings are 
w/o emulsions. 
Externally applied emulsions may be o/w or w/o, the former employing the following emulsifiers in 
addition to the ones mentioned previously: sodium lauryl sulfate, triethanolamine stearate, monovalent 
soaps such as sodium oleate, and self-emulsifying glyceryl monostearate, that is, glyceryl monostearate 
mixed with a small amount of a monovalent soap or an alkyl sulfate. Pharmaceutical w/o emulsions are 
used almost exclusively for external application and may contain one or several of the following 
emulsifiers: polyvalent soaps such as calcium palmitate, sorbitan esters (Spans), cholesterol, and wool 
fat. 
Several methods are commonly used to determine the type of an emulsion. A small quantity of a water-
soluble dye such as methylene blue or brilliant blue FCF may be dusted on the surface of the emulsion. 
If water is the external phase (i.e., if the emulsion is of the o/w type), the dye will dissolve and uniformly 
diffuse throughout the water. If the emulsion is of the w/o type, the particles of dye will lie in clumps on 
the surface. A second method involves dilution of the emulsion with water. If the emulsion mixes freely 
with the water, it is of the o/w type. Another test uses a pair of electrodes connected to an external 
electric source and immersed in the emulsion. If the external phase is water, a current will pass through 
the emulsion and can be made to deflect a voltmeter needle or cause a light in the circuit to glow. If the 
oil is the continuous phase, the emulsion fails to carry the current. 
Pharmaceutical Applications 
An o/w emulsion is a convenient means of orally administering water-insoluble liquids, especially when 
the dispersed phase has an unpleasant taste. More significant in contemporary pharmacy is the 
observation that some oil-soluble compounds, such as some vitamins, are absorbed more completely 
when emulsified than when administered orally as an oily solution. The use of intravenous emulsions 
has been studied as a means of maintaining debilitated patients who are unable to assimilate materials 
administered orally. Tarr et al.24 prepared emulsions of taxol, a compound with antimitotic properties, 
for intravenous administration as an alternative method to the use of cosolvents in taxol administration. 
Davis and Hansrani25 studied the influence of droplet size and emulsifying agents on the phagocytosis 
of lipid emulsions. When the emulsion is administered intravenously, the droplets are normally rapidly 
taken up by the cells of the reticuloendothelial system, in particular the fixed macrophages in the liver. 
The rate of clearance by the macrophages increases as the droplet size becomes larger or the surface 
charge, either positive or negative, increases. Therefore, emulsion droplets stabilized by a nonionic 
surfactant (zero surface charge) were cleared much more slowly than the droplets stabilized by 
negatively charged phospholipids. Radiopaque emulsions have found application as diagnostic agents 
in x-ray examinations. 
Emulsification is widely used in pharmaceutical and cosmetic products for external use. This is 
particularly so with dermatologic and cosmetic lotions and creams because a product that spreads 
easily and completely over the affected area is desired. Such products can now be formulated to be 
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water washable and nonstaining and, as such, are obviously more acceptable to the patient and the 
physician than some of the greasy products used a decade or more ago. Emulsification is used in 
aerosol products to produce foams. The propellant that forms the dispersed liquid phase within the 
container vaporizes when the emulsion is discharged from the container. This results in the rapid 
formation of a foam. 
Theories of Emulsification 
There is no universal theory of emulsification because emulsions can be prepared using several 
different types of emulsifying agent, each of which depends for its action on a different principle to 
achieve a stable product. For a theory to be meaningful, it should be capable of explaining (a) the 
stability of the product and (b) the type of emulsion formed. Let us consider what happens when two 
immiscible liquids are agitated together so that one of the liquids is dispersed as small droplets in the 
other. Except in the case of very dilute oil-in-water emulsions (oil hydrosols), which are somewhat 
stable, the liquids separate rapidly into two clearly defined layers. Failure of two immiscible liquids to 
remain mixed is explained by the fact that the cohesive force between the molecules of each separate 
liquid is greater than the adhesive force between the two liquids. The cohesive force of the individual 
phases is manifested as an interfacial energy or tension at the boundary between the liquids, as 
explained in Chapter 15. 
When one liquid is broken into small particles, the interfacial area of the globules constitutes a surface 
that is enormous 
P.421 
 
compared with the surface area of the original liquid. If 1 cm3 of mineral oil is dispersed into globules 
having a volume–surface diameter, dvs of 0.01 µm (10-6 cm) in 1 cm3 of water so as to form a fine 
emulsion, the surface area of the oil droplets becomes 600 m2. The surface free energy associated with 
this area is about 34 × 107ergs, or 8 calories. The total volume of the system, however, has not 
increased; it remains at 2 cm3. The calculations are made by use of equations (18-15) and (18-17) from 
which 

Table 17-1 Some Typical Emulsifying Agents* 

Name Class 

Type of 

Emulsion 

Formed 

Triethanolamine oleate Surface-active 

agent (anionic) 

o/w (HLB = 

12) 

N-cetyl N-ethyl morpholinium 

ethosulfate (Atlas G-263) 

Surface-active 

agent (cationic) 

o/w (HLB = 

25) 

Sorbitan monooleate (Atlas Span 

80) 

Surface-active 

agent (nonionic) 

w/o (HLB = 

4.3) 

Polyoxyethylene sorbitan 

monooleate (Atlas Tween 80) 

Surface-active 

agent (nonionic) 

o/w (HLB = 

15) 

Acacia (salts of d-glucuronic Hydrophilic colloid o/w 
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acid) 

Gelatin (polypeptides and amino 

acids) 

Hydrophilic colloid o/w 

Bentonite (hydrated aluminum 

silicate) 

Solid particle o/w (and 

w/o) 

Veegum (magnesium aluminum 

silicate) 

Solid particle o/w 

Carbon black Solid particle w/o 

*Key: o/w = oil in water; w/o = water in oil; HLB = hydrophilic–lipophilic 

balance value. 

 

 
The work input or surface free energy increase is given by the equation W = γ ow × ΔA, and the 
interfacial tension, γ ow, between mineral oil and water is 57 dynes/cm (erg/cm2). Thus, 

 
and because 1 cal = 4.184 joules, 

 
In summary, if 1 cm3 of mineral oil is mixed with 1 cm3 of water to produce fine particles (dvs = 0.01 µm), 
the total surface is equivalent to an area slightly greater than that of a basketball court, or about 600 m2. 
(In real emulsions, the particles are ordinarily about 10 to 100 times larger than this, and the surface 
area is proportionately smaller.) The increase in energy, 8 calories, associated with this enormous 
surface is sufficient to make the system thermodynamically unstable, hence the droplets have a 
tendency to coalesce. 
To prevent coalescence or at least to reduce its rate to negligible proportions, it is necessary to 
introduce an emulsifying agent that will form a film around the dispersed globules. Emulsifying agents 
can be divided into three groups, as follows: 

a. Surface-active agents, which are adsorbed at oil–water interfaces to form monomolecular films 
and reduce interfacial tension. These agents are discussed in detail inChapter 15, dealing with 
interfacial phenomena. 

b. Hydrophilic colloids (discussed in Chapter 16), which form amultimolecular film around the 
dispersed droplets of oil in an o/w emulsion.26,27 

c. Finely divided solid particles, which are adsorbed at the interface between two immiscible liquid 
phases and form what amounts to a film of particles around the dispersed globules. The factor 
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common to all three classes of emulsifying agent is the formation of a film, whether it be 
monomolecular, multimolecular, or particulate. 

On this basis, we can now discuss some of the more important theories relating to the stability and type 
of emulsion formed. 
Examples of typical emulsifying agents are given in Table 17-1. 
Monomolecular Adsorption 
Surface-active agents, or amphiphiles, reduce interfacial tension because of their adsorption at the oil–
water interface to form monomolecular films. Because the surface free energy increase, W, 
equals γ o/w × ΔA and we must, of necessity, retain a high surface area for the dispersed phase, any 
reduction in γ o/w, the interfacial tension, will reduce the surface free energy and hence the tendency for 
coalescence. It is not unusual for a good emulsifying agent of this type to reduce the interfacial tension 
to 1 dyne/cm; we can therefore reduce the surface free energy of the system to approximately 1/60 of 
that calculated earlier. 
The reduction in surface free energy is of itself probably not the main factor involved. Of more likely 
significance is 
P.422 
 
the fact that the dispersed droplets are surrounded by a coherent monolayer that helps prevent 
coalescence between two droplets as they approach one another. Ideally, such a film should be flexible 
so that it is capable of reforming rapidly if broken or disturbed. An additional effect promoting stability is 
the presence of a surface charge, which will cause repulsion between adjacent particles. 
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Fig. 17-8. Representations of combinations of emulsifying agents at the oil–water 

interface of an emulsion. (After J. H. Schulman and E. G. Cockbain, Trans. Faraday 

Soc. 36, 651, 1940.) 

In practice, combinations of emulsifiers rather than single agents are used most frequently today in the 
preparations of emulsions. In 1940, Schulman and Cockbain28 first recognized the necessity of a 
predominantly hydrophilic emulsifier in the aqueous phase and a hydrophobic agent in the oil phase to 
form a complex film at the interface. Three mixtures of emulsifying agents at the oil–water interface are 
depicted in Figure 17-8. The combination of sodium cetyl sulfate and cholesterol leads to a complex film 
(Fig. 17-8a) that produces an excellent emulsion. Sodium cetyl sulfate and oleyl alcohol do not form a 
closely packed or condensed film (Fig. 17-8b), and, consequently, their combination results in a poor 
emulsion. InFigure 17-8c, cetyl alcohol and sodium oleate produce a close-packed film, but 
complexation is negligible, and again a poor emulsion results. 

 

Fig. 17-9. Schematic of oil droplets in an oil–water emulsion, showing the orientation 

of a Tween and a Span molecule at the interface. (From J. Boyd, C. Parkinson, and P. 

Sherman, J. Coll. Interface Sci. 41, 359, 1972. With permission.) 

A hydrophilic Tween can be combined with a lipophilic Span, varying the proportions so as to produce 
the desired o/w or w/o emulsion.29Boyd et al.30 discussed the molecular association of Tween 40 and 
Span 80 in stabilizing emulsions. In Figure 17-9, the hydrocarbon portion of the Span 80 (sorbitan 
monooleate) molecule lies in the oil globule and the sorbitan radical lies in the aqueous phase. The 
bulky sorbitan heads of the Span molecules prevent the hydrocarbon tails from associating closely in the 
oil phase. When Tween 40 (polyoxyethylene sorbitan monopalmitate) is added, it orients at the interface 
such that part of its hydrocarbon tail is in the oil phase and the remainder of the chain, together with the 
sorbitan ring and the polyoxyethylene chains, is located in the water phase. It is observed that the 
hydrocarbon chain of the Tween 40 molecule is situated in the oil globule between the Span 80 chains, 
and this orientation results in effective van der Waals attraction. In this manner, the interfacial film is 
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strengthened and the stability of the o/w emulsion is increased against particle coalescence. The same 
principle of mixed emulsifying agents can be applied in the use of combinations such as sodium stearate 
and cholesterol, sodium lauryl sulfate and glyceryl monostearate, and tragacanth and Span. Chun et 
al.31determined the hydrophile–lipophile balance (HLB) of some natural agents and further discussed 
the principle of mixed emulsifiers. 
The type of emulsion that is produced, o/w or w/o, depends primarily on the property of the emulsifying 
agent. This characteristic is referred to as the hydrophile–lipophile balance, that is, the polar–nonpolar 
nature of the emulsifier. In fact, 
P.423 
 
whether a surfactant is an emulsifier, wetting agent, detergent, or solubilizing agent can be predicted 
from a knowledge of the HLB, as discussed in a previous chapter. In an emulsifying agent such as 
sodium stearate, C17 H35COONa, the nonpolar hydrocarbon chain, C17H35—, is the lipophilic or ―oil-
loving‖ group; the carboxyl group, —COONa, is the hydrophilic or ―water-loving‖ portion. The balance of 

the hydrophilic and lipophilic properties of an emulsifier (or combination of emulsifiers) determines 
whether an o/w or w/o emulsion will result. In general, o/w emulsions are formed when the HLB of the 
emulsifier is within the range of about 9 to 12, and w/o emulsions are formed when the range is about 3 
to 6. An emulsifier with a high HLB, such as a blend of Tween 20 and Span 20, will form an o/w 
emulsion. On the other hand, Span 60 alone, having an HLB of 4.7, tends to form a w/o emulsion. 
It would appear, therefore, that the type of emulsion is a function of the relative solubility of the 
surfactant, the phase in which it is more soluble being the continuous phase. This is sometimes referred 
to as the rule of Bancroft, who observed this phenomenon in 1913. Thus, an emulsifying agent with a 
high HLB is preferentially soluble in water and results in the formation of an o/w emulsion. The reverse 
situation is true with surfactants of low HLB, which tend to form w/o emulsions. Beerbower, Nixon, and 
Hill32 suggested an explanation for emulsion type and stability and devised a general scheme for 
emulsion formulation based on the Hildebrand and Hansen solubility parameters. 
Multimolecular Adsorption and Film Formation 
Hydrated lyophilic colloids have been used for many years as emulsifying agents, although their use is 
declining because of the large number of synthetic surfactants now available. In a sense, they can be 
regarded as surface active because they appear at the oil–water interface. They differ, however, from 
the synthetic surface-active agents in that (a) they do not cause an appreciable lowering of interfacial 
tension and (b) they form a multi- rather than a monomolecular film at the interface. Their action as 
emulsifying agents is due mainly to the latter effect because the films thus formed are strong and resist 
coalescence. An auxiliary effect promoting stability is the significant increase in the viscosity of the 
dispersion medium. Because the emulsifying agents that form multilayer films around the droplets are 
invariably hydrophilic, they tend to promote the formation of o/w emulsions. 
Solid-Particle Adsorption 
Finely divided solid particles that are wetted to some degree by both oil and water can act as 
emulsifying agents. This results from their being concentrated at the interface, where they produce a 
particulate film around the dispersed droplets so as to prevent coalescence. Powders that are wetted 
preferentially by water form o/w emulsions, whereas those more easily wetted by oil form w/o emulsions. 
Physical Stability of Emulsions 
Probably the most important consideration with respect to pharmaceutical and cosmetic emulsions is the 
stability of the finished product. The stability of a pharmaceutical emulsion is characterized by the 
absence of coalescence of the internal phase, absence of creaming, and maintenance of elegance with 
respect to appearance, odor, color, and other physical properties. Some workers define instability of an 
emulsion only in terms of agglomeration of the internal phase and its separation from the product. 
Creaming, resulting from flocculation and concentration of the globules of the internal phase, sometimes 
is not considered as a mark of instability. An emulsion is a dynamic system, however, and flocculation 
and resultant creaming represent potential steps toward complete coalescence of the internal phase. 
Furthermore, in the case of pharmaceutical emulsions, creaming results in a lack of uniformity of drug 
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distribution and, unless the preparation is thoroughly shaken before administration, leads to variable 
dosage. Certainly, the visual appeal of an emulsion is affected by creaming, and this is just as real a 
problem to the pharmaceutical compounder as is separation of the internal phase. 
Another phenomenon important in the preparation and stabilization of emulsions is phase inversion, 
which can be an aid or a detriment in emulsion technology. Phase inversion involves the change of 
emulsion type from o/w to w/o or vice versa. Should phase inversion occur following preparation, it may 
logically be considered as an instance of instability. 
In the light of these considerations, the instability of pharmaceutical emulsions may be classified as 
follows: 

a. Flocculation and creaming 
b. Coalescence and breaking 
c. Miscellaneous physical and chemical changes 
d. Phase inversion 

Creaming and Stokes's Law 
Those factors that find importance in the creaming of an emulsion are related by Stokes's law, 
equation (17-2). The limitations of this equation to actual systems have been discussed previously for 
suspensions, and these apply equally to emulsified systems. 
Analysis of the equation shows that if the dispersed phase is less dense than the continuous phase, 
which is generally the case in o/w emulsions, the velocity of sedimentation becomes negative, that is, an 
upward creaming results. If the internal phase is heavier than the external phase, the globules settle, a 
phenomenon customarily noted in w/o emulsions in which the internal aqueous phase is denser than the 
continuous oil phase. This effect can be referred to as creaming in a downward direction. The greater 
the difference between the density of the two phases, the larger the oil globules, and the less viscous 
the external phase, the greater is the rate of creaming13 
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By increasing the force of gravity through centrifugation, the rate of creaming can also be increased. 
The diameter of the globules is seen to be a major factor in determining the rate of creaming. Doubling 
the diameter of the oil globules increases the creaming rate by a factor of 4. 
Example 17-5 

Velocity of Creaming 

Consider an o/w emulsion containing mineral oil with a specific gravity of 0.90 dispersed in an 
aqueous phase having a specific gravity of 1.05. If the oil particles have an average diameter 
of 5 µm, or 5 × 10-4 cm, the external phase has a viscosity of 0.5 poise (0.5 dyne sec/cm2 or 
0.5 g/cm sec), and the gravity constant is 981 cm/sec2, what is the velocity of creaming in 
cm/day? 
We have 

 
and because a 24-hr day contains 86,400 sec, the rate of upward creaming, -v, is 

 

The factors in Stokes's equation can be altered to reduce the rate of creaming in an emulsion. The 
viscosity of the external phase can be increased without exceeding the limits of acceptable consistency 
by adding a viscosity improver or thickening agent such as methylcellulose, tragacanth, or sodium 
alginate. The particle size of the globules can be reduced by homogenization; this, in fact, is the basis 
for the stability against creaming of homogenized milk. If the average particle size of the emulsion in the 
example just given is reduced to 1 µm, or one fifth of the original value, the rate of creaming is reduced 
to 0.014 cm/day or about 5 cm/year. Actually, when the particles are reduced to a diameter below 2 to 5 
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µm, Brownian motion at room temperature exerts sufficient influence so that the particles settle or cream 
more slowly than predicted by Stokes's law. 
Little consideration has been given to the adjustment of densities of the two phases in an effort to 
reduce the rate of creaming. Theoretically, adjusting the external and internal phase densities to the 
same value should eliminate the tendency to cream. This condition is seldom realized, however, 
because temperature changes alter the densities. Some research workers have increased the density of 
the oil phase by the addition of oil-soluble substances such as α-bromonaphthalene, bromoform, and 
carbon tetrachloride, which, however, cannot be used in medicinal products. Mullins and 
Becker33 added a food grade of a brominated oil to adjust the densities in pharmaceutical emulsions. 
Equation (17-2) gives the rate of creaming of a single droplet of the emulsion, whereas one is frequently 
interested in the rate of creaming at the center of gravity of the mass of the disperse phase. 
Greenwald34 developed an equation for the mass creaming rate, to which the interested reader is 
referred for details. 
Coalescence and Breaking 
Creaming should be considered as separate from breaking because creaming is a reversible process, 
whereas breaking is irreversible. The cream floccules can be redispersed easily, and a uniform mixture 
is reconstituted from a creamed emulsion by agitation because the oil globules are still surrounded by a 
protective sheath of emulsifying agent. When breaking occurs, simple mixing fails to resuspend the 
globules in a stable emulsified form because the film surrounding the particles has been destroyed and 
the oil tends to coalesce. Considerable work has been devoted to the study of breaking instability. The 
effects of certain factors on breaking are summarized in the following paragraphs. 
King35 showed that reduction of particle size does not necessarily lead to increased stability. Rather, he 
concluded that an optimum degree of dispersion for each particular system exists for maximum stability. 
As in the case of solid particles, if the dispersion is nonuniform, the small particles wedge between 
larger ones, permitting stronger cohesion so that the internal phase can coalesce easily. Accordingly, a 
moderately coarse dispersion of uniform-sized particles should have the best stability. Viscosity alone 
does not produce stable emulsions; however, viscous emulsions may be more stable than mobile ones 
by virtue of the retardation of flocculation and coalescence. Viscous or ―tacky‖ emulsifiers seem to 

facilitate shearing of the globules as the emulsion is being prepared in the mortar, but this bears little or 
no relationship to stability. Knoechel and Wurster36 showed that viscosity plays only a minor role in the 
gross stability of o/w emulsions. Probably an optimumrather than a high viscosity is needed to promote 
stability. 
The phase–volume ratio of an emulsion has a secondary influence on the stability of the product. This 
term refers to the relative volumes of water and oil in the emulsion. As shown in the section on powders, 
uniform spherical particles in loose packing have a porosity of 48% of the total bulk volume. The volume 
occupied by the spheres must then be 52%. 
If the spheres are arranged in closest packing, theoretically they cannot exceed 74% of the total volume 
regardless of their size. Although these values do not consider the distortions of size and shape and the 
possibility of small particles lying between larger spheres, they do have some significance with respect 
to real emulsions. Ostwald and Kolloid37 showed that if one attempts to incorporate more than about 
74% of oil in an o/w emulsion, the oil globules often coalesce and the emulsion breaks. This value, 
known as the critical point, is defined as the concentration of the internal phase above which the 
emulsifying agent cannot produce a stable emulsion of the desired type. In some stable emulsions, the 
value may be higher than 74% owing to the irregular shape and size of the globules. Generally 
speaking, however, a phase–volume ratio of 50:50 (which approximates loose packing) results in about 
the most stable emulsion. This fact was discovered empirically by pharmacists many years ago, and 
most 
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medicinal emulsions are prepared with a volume ratio of 50 parts of oil to 50 parts of water. 
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Fig. 17-10. Parental emulsion droplets in the presence of the negatively charged 

emulsifier lecithin and stabilized by electrostatic repulsion by calcium ions. The 

emulsion may be flocculated and destabilized by the bridging effect of heparin, a 

negatively charged polyelectrolyte, which overcomes the stabilizing electrostatic 

repulsion of the Ca
2+

 ions. (From O. L. Johnson, C. Washington, S. S. Davis, and K. 

Schaupp, Int. J. Pharm. 53, 237, 1989. With permission.) 

Emulsions can be stabilized by electrostatic repulsion between the droplets, that is, by increasing their 
zeta potential. Magdassi and Siman-Tov38 used lecithin to stabilize perfluorocarbon emulsions, which 
appear to be a good blood substitute. Lecithin is a mixture of phospholipids having a negative charge at 
physiologic pH. The stabilizing effect is due to the adsorption of lecithin at the droplet surface, which 
creates a negative charge and consequently electrostatic repulsion. Lecithin produces very stable 
emulsions of triglyceride acids in water for intravenous administration. However, the stability of these 
emulsions may be poor because in clinical practice they are mixed with electrolytes, amino acids, and 
other compounds for total parenteral nutrition. The addition of positively charged species such as 
sodium and calcium ions or cationic amino acids—the charge on the latter depending on the pH—

reduces the zeta potential and may cause flocculation. Johnson et al.39 studied the effect of heparin 
and various electrolytes, frequently used clinically, on the stability of parenteral emulsions. Heparin, an 
anticoagulant, is a negatively charged polyelectrolyte that causes rapid flocculation in emulsions 
containing calcium and lecithin. The critical flocculation concentration occurs at a specific zeta potential. 
The value of this zeta potential can be determined by plotting the flocculation rate against the surface 
potential and extrapolating to zero flocculation rate.40 Johnson et al.39 explained the destabilizing effect 
of heparin as follows. Divalent electrolytes such as calcium bind strongly to the surface of droplets 
stabilized with lecithin to form 1:2 ion–lipid complexes. This causes a charge reversal on the droplets, 
leading to positively charged particles. The droplets are then flocculated by a bridging of the negatively 
charged heparin molecules across the positively charged particles, as depicted inFigure 17-10. 
When the oil particles, which usually carry a negative charge, are surrounded in an o/w emulsion by a 
film of emulsifier, particularly a nonionic agent, the electrokinetic effects are probably less significant 
than they are in suspensions in maintaining the stability of the system. The effect of electrolytes in these 
systems has been studied by Schott and Royce.41 Probably the most important factors in the 
stabilization of an emulsion are the physical properties of the emulsifier film at the interface. To be 
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effective, an emulsifier film must be both tough and elastic and should form rapidly during emulsification. 
Serrallach et al.42 measured the strength of the film at the interface. They found that a good emulsifying 
agent or emulsifier combination brings about a preliminary lowering of the interfacial tension to produce 
small uniform globules and forms rapidly to protect the globules from reaggregation during manufacture. 
The film then slowly increases in strength over a period of days or weeks. 
Evaluation of Stability 
According to King and Mukherjee,43 the only precise method for determining stability involves a size–

frequency analysis of the emulsion from time to time as the product ages. For 
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rapidly breaking emulsions, macroscopic observation of separated internal phase is adequate, although 
the separation is difficult to read with any degree of accuracy. In the microscopic method, the particle 
diameters are measured, and a size–frequency distribution of particles ranging from 0.0 to 0.9 µm, 1.0 
to 1.9 µm, 2.0 to 2.9 µm, and so on, is made as shown in Figure 17-11. The particle size or diameter of 
the globules in micrometers is plotted on the horizontal axis against the frequency or number of globules 
in each size range on the vertical axis. Finkle et al.44 were probably the first workers to use this method 
to determine the stability of emulsions. Since that time, many similar studies have been made. Schott 
and Royce45showed that the experimental problems involved in microscopic size determinations are 
Brownian motion, creaming, and field flow. Brownian motion affects the smallest droplets, causing them 
to move in and out of focus so that they are not consistently counted. Velocity of creaming is 
proportional to the square of the droplet diameter, and creaming focuses attention on the largest 
droplets because they move faster toward the cover glass than do smaller ones. Field flow is the motion 
of the entire volume of emulsion in the field due to the pressure exerted by the immersion objective on 
the cover glass, evaporation of the continuous phase, or convection currents resulting from heating by 
the light source. These workers45described an improved microscopic technique that overcomes these 
experimental problems and gives a more accurate measure of the droplet size. 

 

Fig. 17-11. Particle-size distribution of an emulsion. Such curves ordinarily are 

skewed to the right as shown in the figure, and the mode diameter, that is, the highest 

point on the curve or the most frequent value, is seen to occur at the lower end of the 

scale of diameters. The arithmetic mean diameter, dav, will be found somewhat to the 

right of the mode in a right-skewed distribution, and the mean volume–surface 

diameter, dvs, is to the right of the arithmetic mean. 
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An initial frequency distribution analysis on an emulsion is not an adequate test of stability because 
stability is not related to initial particle size. Instead, one should perhaps consider the coalescence of the 
dispersed globules of an aging emulsion or the separation of the internal phase from the emulsion over 
a period of time. Boyd et al.,30 however, deemed this method unsatisfactory because the globules can 
undergo considerable coalescence before the separation becomes visible. These workers conducted 
particle-size analyses with a Coulter centrifugal photosedimentometer. Mean volume diameters were 
obtained, and these were converted to number of globules per milliliter. King and 
Mukherjee43 determined the specific interfacial area, that is, the area of interface per gram of emulsified 
oil, of each emulsion at successive times. They chose the reciprocal of the decrease of specific 
interfacial area with time as a measure of the stability of an emulsion. 
Other methods used to determine the stability of emulsions are based on accelerating the separation 
process, which normally takes place under storage conditions. These methods employ freezing, thaw–

freeze cycles, and centrifugation. 
Merrill46 introduced the centrifuge method for evaluating the stability of emulsions. Garrett, Vold, and 
others47 used the ultracentrifuge as an analytic technique in emulsion technology. Coulter counting, 
turbidimetric analysis, and temperature tests have also been used in an effort to evaluate new 
emulsifying agents and determine the stability of pharmaceutical emulsions. Garti et al.48 developed a 
method for evaluating the stability of oil–water viscous emulsions (ointments and cosmetic creams) 
containing nonionic surfactants. The method is based on electric conductivity changes during 
nondestructive short heating–cooling–heating cycles. Conductivity curves are plotted during the 
temperature cycling. A stability index is defined as Δ/h, where h is the change in the conductivity 
between 35°C and 45°C and Δ is the conductivity interval within the two heating curves at 35°C, as 

shown in Figure 17-12. The stability indexindicates the relative change in conductivity between two 
cycles. The smaller the conductivity, the greater is the stability of the emulsion. The method was applied 
in a series of emulsions at different HLBs, emulsifier concentrations, and oil-phase 
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concentrations. The authors reviewed earlier work on electric conductivity of emulsions as related to 
stability. 

 

Fig. 17-12. A conductivity versus temperature plot involving successively (a) heating, 

(b) cooling, and (c) heating. (From N. Garti and S. Magdassi, Drug Dev. Ind. 
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Pharm. 8, 475, 1982. With permission.) 

Phase Inversion 
When controlled properly during the preparation of an emulsion, phase inversion often results in a finer 
product, but when it gets out of hand during manufacturing or is brought about by other factors after the 
emulsion is formed, it can cause considerable trouble. 
An o/w emulsion stabilized with sodium stearate can be inverted to the w/o type by adding calcium 
chloride to form calcium stearate. Inversion can also be produced by alterations in phase-volume ratio. 
In the manufacture of an emulsion, one can mix an o/w emulsifier with oil and then add a small amount 
of water. Because the volume of the water is small compared with that of the oil, the water is dispersed 
by agitation in the oil even though the emulsifier preferentially forms an oil-in-water system. As more 
water is slowly added, the inversion point is gradually reached and the water and emulsifier envelope 
the oil as small globules to form the desired o/w emulsion. This procedure is sometimes used in the 
preparation of commercial emulsions, and it is the principle of the continental method used in 
compounding practice. The preparation of emulsions is discussed in books on general pharmacy and on 
compounding and dispensing. 
Preservation of Emulsions 
Although it is not always necessary to achieve sterile conditions in an emulsion, even if the product is for 
topical or oral use, certain undesirable changes in the properties of the emulsion can be brought about 
by the growth of microorganisms. These include physical separation of the phases, discoloration, gas 
and odor formation, and changes in rheologic properties.49 Emulsions for parenteral use obviously must 
be sterile. 
The propagation of microorganisms in emulsified products is supported by one or more of the 
components present in the formulation. Thus, bacteria have been shown to degrade nonionic and 
anionic emulsifying agents, glycerin, and vegetable gums present as thickeners, with a consequent 
deterioration of the emulsion. As a result, it is essential that emulsions be formulated to resist microbial 
attack by including an adequate concentration of preservative in the formulation. Given that the 
preservative has inherent activity against the type of contamination encountered, the main problem is 
obtaining an adequate concentration of preservative in the product. Some of the factors that must be 
considered to achieve this end are presented here. 
Emulsions are heterogeneous systems in which partitioning of the preservative will occur between the 
oil and water phases. In the main, bacteria grow in the aqueous phase of emulsified systems, with the 
result that a preservative that is partitioned strongly in favor of the oil phase may be virtually useless at 
normal concentration levels because of the low concentration remaining in the aqueous phase. The 
phase–volume ratio of the emulsion is significant in this regard. In addition, the preservative must be in 
an un-ionized state to penetrate the bacterial membrane. Therefore, the activity of weak acid 
preservatives decreases as the pH of the aqueous phase rises. Finally, the preservative molecules must 
not be ―bound‖ to other components of the emulsion, because the complexes are ineffective as 

preservatives. Only the concentration of free, or unbound, preservative is effective. These points have 
been discussed in some detail in earlier sections. In addition to partitioning, ionization, and binding, the 
efficacy of a particular preservative is also influenced by emulsion type, nutritive value of the product, 
degree of aeration, and type of container used. These factors are discussed by Wedderburn.49 
Rheologic Properties of Emulsions 
Emulsified products may undergo a wide variety of shear stresses during either preparation or use. In 
many of these processes, the flow properties of the product will be vital for the proper performance of 
the emulsion under the conditions of use or preparation. Thus, spreadability of dermatologic and 
cosmetic products must be controlled to achieve a satisfactory preparation. The flow of a parenteral 
emulsion through a hypodermic needle, the removal of an emulsion from a bottle or a tube, and the 
behavior of an emulsion in the various milling operations employed in the large-scale manufacture of 
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these products all indicate the need for correct flow characteristics. Accordingly, it is important for the 
pharmacist to appreciate how formulation can influence the rheologic properties of emulsions. 
The fundamentals of rheology are discussed in Chapter 19. Most emulsions, except dilute ones, exhibit 
non-Newtonian flow, which complicates interpretation of data and quantitative comparisons among 
different systems and formulations. In a comprehensive review, Sherman50 discussed the principal 
factors that influence the flow properties of emulsions. The material of this section outlines some of the 
viscosity-related properties of the dispersed phase, the continuous phase, and the emulsifying agent. 
For a more complete discussion of these and other factors that can modify the flow properties of 
emulsions, the reader is referred to the original article by Sherman50 and Sherman's book.51 
The factors related to the dispersed phase include the phase–volume ratio, the particle-size distribution, 
and the viscosity of the internal phase itself. Thus, when volume concentration of the dispersed phase is 
low (less than 0.05), the system is Newtonian. As the volume concentration is increased, the system 
becomes more resistant to flow and exhibits pseudoplastic flow characteristics. At sufficiently high 
concentrations, plastic flow occurs. When the volume concentration approaches 0.74, inversion may 
occur, with a marked change in viscosity; reduction in mean particle size increases the viscosity; and the 
wider the particle size distribution, the 
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lower is the viscosity when compared with a system having a similar mean particle size but a narrower 
particle-size distribution. 
The major property of the continuous phase that affects the flow properties of an emulsion is not, 
surprisingly, its own viscosity. The effect of the viscosity of the continuous phase may be greater, 
however, than that predicted by determining the bulk viscosity of the continuous phase alone. There are 
indications that the viscosity of a thin liquid film, of say 100 to 200 Å, is several times the viscosity of the 
bulk liquid. Higher viscosities may therefore exist in concentrated emulsions when the thickness of the 
continuous phase between adjacent droplets approaches these dimensions. Sherman pointed out that 
the reduction in viscosity with increasing shear may be due in part to a decrease in the viscosity of the 
continuous phase as the distance of separation between globules is increased. 
Another component that may influence the viscosity of an emulsion is the emulsifying agent. The type of 
agent will affect particle flocculation and interparticle attractions, and these in turn will modify flow. In 
addition, for any one system, the greater the concentration of emulsifying agent, the higher will be the 
viscosity of the product. The physical properties of the film and its electric properties are also significant 
factors. 
Microemulsions 
The term microemulsion may be a misnomer because microemulsions consist of large or ―swollen‖ 

micelles containing the internal phase, much like that found in a solubilized solution. Unlike the common 
macroemulsions, they appear as clear, transparent solutions, but unlike micellar solubilized systems, 
microemulsions may not be thermodynamically stable. They appear to represent a state intermediate 
between thermodynamically stable solubilized solutions and ordinary emulsions, which are relatively 
unstable. Microemulsions contain droplets of oil in a water phase (o/w) or droplets of water in oil (w/o) 
with diameters of about 10 to 200 nm, and the volume fraction of the dispersed phase varies from 0.2 to 
0.8. 
As often recommended in the formation of ordinary emulsions or macroemulsions, an emulsifying 
adjunct or cosurfactant is used in the preparation of microemulsions. An anionic surfactant, sodium 
lauryl sulfate or potassium oleate, can be dispersed in an organic liquid such as benzene, a small 
measured amount of water is added, and the microemulsion is formed by the gradual addition of 
pentanol, a lipophilic cosurfactant, to form a clear solution at 30°C. The addition of pentanol temporarily 
reduces the surface tension to approximately zero, allowing spontaneous emulsification. The surfactant 
and cosurfactant molecules form an adsorbed film on the microemulsion particles to prevent 
coalescence. 
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Shinoda and Kunieda52 showed that by choosing a surfactant and cosurfactant that have similar HLB 
values, one can increase the solubilization of an organic liquid in water and enlarge the microemulsion 
droplet size without affecting stability. With ionic surfactants at normal temperatures, one expects o/w 
microemulsions to be formed when the phase volume ratio favors water, analogous to the rule for 
macroemulsions. 

 

Fig. 17-13. A ternary-phase diagram of water, mineral oil, and a mixture of 

surfactants showing the boundary of the microemulsion region. The zones within the 

microemulsion region are labeled F for fluid and G for gel. (From N. J. Kate and L. V. 

Allen, Jr., Int. J. Pharm. 57, 87, 1989. With permission.) 

The microemulsion region is usually characterized by constructing ternary-phase diagrams, as shown 
in Figure 17-13, the axes representing water, mineral oil, and a mixture of surfactant and cosurfactant at 
different ratios.53 The phase diagrams allow one to determine the ratios oil:water: surfactant–
cosurfactant at the boundary of the microemulsion region. The microemulsion appears by visual 
observation as an isotropic, optically clear liquid system. Kale and Allen53 studied water-in-oil 
microemulsions consisting of the system Brij 96-cosurfactant–mineral oil–water. Brij 96 
[polyoxyethylene(10) oleyl ether] is a nonionic surfactant commonly used in the preparation of macro- 
and microemulsions. The cosurfactants studied were ethylene glycol, propylene glycol, and 
glycerin. Figure 17-13 shows the phase diagram for the system upon varying the ratio Brij 96:propylene 
glycol. Within the microemulsion region, zones of different viscosity, labeled as fluid (F) or gel (G), can 
be observed. The microemulsion region becomes smaller as the cosurfactant concentration increases. 
According to the researchers, the transition from fluid microemulsion to gel-like microemulsion may be 
due to the change in the nature and shape of the internal oil phase. Thus, at low water content the 
internal phase consists of spherical structures, whereas at higher water concentration the interfacial film 
expands to form gel-like cylindrical and laminar structures. As the water content is further increased, 
aqueous continuous systems of low viscosity with internal phases of spherical structures (droplets) are 
again formed. 
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The droplet average molecular weight of a microemulsion can be measured by light-scattering 
techniques. Because the internal phase is not usually very dilute, the droplets interact with one another, 
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resulting in a decrease in the turbidity. Thus, the effective diameter obtained is smaller than the actual 
droplet diameter. The latter can be obtained from a plot of the effective diameter (obtained at various 
dilutions of the microemulsion) against the concentration of the internal phase. Extrapolation to zero 
concentration gives the actual diameter.53 Attwood and Ktistis54 showed that the extrapolation 
procedure often cannot be applied because many microemulsions exhibit phase separation on dilution. 
They described a procedure for overcoming these difficulties and obtaining true particle diameter using 
light scattering. 
Microemulsions have been studied as drug delivery systems. They can be used to increase the 
bioavailability of drugs poorly soluble in water by incorporation of the drug into the internal phase. 
Halbert et al.55 studied the incorporation of both etoposide and a methotrexate diester derivative in 
water-in-oil microemulsions as potential carriers for cancer chemotherapy. Etoposide was rapidly lost 
from the microemulsion particles, whereas 60% of the methotrexate diester remained incorporated in 
the internal phase of the microemulsion. The methotrexate diester microemulsions showed an in vitro 
cytotoxic effect against mouse leukemia cells. Microemulsions have also been considered as topical 
drug delivery systems. Osborne et al.56 studied the transdermal permeation of water from water-in-oil 
microemulsions formed from water, octanol, and dioctyl sodium sulfosuccinate, the latter functioning as 
the surfactant. These kinds of microemulsions can be used to incorporate polar drugs in the aqueous 
internal phase. The skin used in the experiments was fully hydrated so as to maximize the water 
permeability. The delivery of the internal phase was found to be highly dependent on the microemulsion 
water content: The diffusion of water from the internal phase increased tenfold as the water amount in 
the microemulsion increased from 15% to 58% by weight. Linn et al.57 compared delivery through 
hairless mouse skin of cetyl alcohol and octyl dimethyl para-aminobenzoic acid (PABA) from water-in-oil 
microemulsions and macroemulsions. The delivery of these compounds from microemulsions was faster 
and showed deeper penetration into the skin than delivery from the macroemulsions. The authors 
reviewed a number of studies on the delivery of drugs from the microemulsions. These reports, including 
several patents, dealt with the incorporation of fluorocarbons as blood substitutes and for the topical 
delivery of antihypertensive and anti-inflammatory drugs. Microemulsions are used in cosmetic 
science,58 foods, and dry cleaning and wax-polishing products.59 

Key Concept 

Classification of Gels 

Gels can be classified as two-phase or single-phase systems. The gel mass may consist of 
floccules of small particles rather than large molecules, as found in aluminum hydroxide gel, 
bentonite magma, and magnesia magma, and the gel structure in these two-phase systems is 
not always stable (Fig. 17-14a and b). Such gels may be thixotropic, forming semisolids on 
standing and becoming liquids on agitation. 
On the other hand, a gel may consist of macromolecules existing as twisted, matted strands 
(Fig. 17-14c). The units are often bound together by stronger types of van der Waals forces 
so as to form crystalline and amorphous regions throughout the entire system, as shown 
in Figure 17-14d. Examples of such gels are tragacanth and carboxymethylcellulose. These 
gels are considered to be one-phase systems because no definite boundaries exist between 
the dispersed macromolecules and the liquid. 
Gels can be classified as inorganic and organic. Most inorganic gels can be characterized as 
two-phase systems, whereas organic gels belong to the single-phase class because the 
condensed matrix is dissolved in the liquid medium to form a homogeneous gelatinous 
mixture. Gels may contain water, and these are called hydrogels, or they may contain an 
organic liquid, in which case they are calledorganogels. Gelatin gel belongs to the former 
class, whereas petrolatum falls in the latter group. 

Semisolids 
Gels 
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A gel is a solid or a semisolid system of at least two constituents, consisting of a condensed mass 
enclosing and interpenetrated by a liquid. When the coherent matrix is rich in liquid, the product is often 
called a jelly. Examples are ephedrine sulfate jelly and the common table jellies. When the liquid is 
removed and only the framework remains, the gel is known as a xerogel. Examples are gelatin sheets, 
tragacanth ribbons, and acacia tears. 
Hydrogels retain significant amounts of water but remain water-insoluble and, because of these 
properties, are often used in topical drug design. The diffusion rate of a drug depends on the physical 
structure of the polymer network and its chemical nature. If the gel is highly hydrated, diffusion occurs 
through the pores. In gels of lower hydration, the drug dissolves in the polymer and is transported 
between the chains.60 Cross-linking increases the hydrophobicity of a gel and diminishes the diffusion 
rate of the drug. The fractional release, F, of a drug from a gel at time t can be expressed in general as 

 
where Mt is the amount released at time t, M0 is the initial amount of drug, k is the rate constant, and n is 
a constant 
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called the diffusional exponent. When n = 0, tn = 1 and the release Fis of zero order; if n = 0.5, Fick's law 
holds and the release is represented by a square root equation. Values of n greater than 0.5 indicate 
anomalous diffusion due generally to the swelling of the system in the solvent before the release takes 
place.61 Morimoto et al.62 prepared a polyvinyl alcohol hydrogel for rectal administration that has a 
porous, tridimensional network structure with high water content. The release of indomethacin from the 
gel followed Fickian diffusion over a period of 10 hr. 

 

Fig. 17-14. Representations of gel structures. (a) Flocculated particles in a two-phase 

gel structure. (b) Network of elongated particles or rods forming a gel structure. (c) 

Matted fibers as found in soap gels. (d) Crystalline and amorphous regions in a gel of 

carboxymethylcellulose. (From H. R. Kruyt,Colloid Science, Vol. II, Elsevier, New 

York, 1949.) 

Example 17-6 

Diffusional Component 

The release fraction, F, of indomethacin is 0.49 at t = 240 min. Compute the diffusional 
exponent, n, knowing that k = 3.155% min-n. 
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Because the rate constant k is expressed as percentage, the fractional release, F, is also 
expressed in percentage units in equation (17-9), that is, 49%. Taking the ln on both sides of 
equation (17-9), we obtain 

 
Therefore, with the exponent of t equal to 0.5, equation (17-9) becomes F = kt

1/2, which is a 
Fickian diffusion. 

Syneresis and Swelling 
When a gel stands for some time, it often shrinks naturally, and some of its liquid is pressed out. This 
phenomenon, known assyneresis, is thought to be due to the continued coarsening of the matrix or 
fibrous structure of the gel with a consequent squeezing-out effect. Syneresis is observed in table jellies 
and gelatin desserts. The ―bleeding‖ in connection with the liberation of oil or water from ointment bases 
usually results from a deficient gel structure rather than from the contraction involved in syneresis. 

 

Fig. 17-15. Swelling isotherms of gelatin at (•) 25°C and (^) at 20°C. Swelling is 

measured as the increase in weight of gelatin strips in buffer solution at various times. 

The points a and b are discussed in the text. (From C. M. Ofner III and H. Schott, J. 

Pharm. Sci. 75, 790, 1986. With permission.) 

The opposite of syneresis is the taking up of liquid by a gel with an increase in volume. This 
phenomenon is known as swelling. Gels may also take up a certain amount of liquid without a 
measurable increase in volume, and this is called imbibition. Only those liquids that solvate a gel can 
bring about swelling. The swelling of protein gels is influenced by pH and the presence of electrolytes. 
Ofner and Schott63 studied the kinetics of swelling of gelatin by measuring the increase in weight of 
short rectangular strips of gelatin films after immersion in buffer solutions as a function of time,t. A plot of 
the weight, W, in grams of aqueous buffer absorbed per gram of dry gelatin against t in hours gives the 
swelling isotherms (Fig. 17-15). The horizontal portions of the two isotherms correspond to equilibrium 
swelling. To obtain a linear expression, t/W is plotted against t (the plot is not shown here) according to 
the equation 

 
Rearranging and differentiating equation (17-10), we obtain 
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As t → 0, equation (17-11) gives the initial swelling rate, dW/dt = 1/A, which is the reciprocal of the 
intercept of equation (17-10). The reciprocal of the slope, 1/B = W∞, is the equilibrium swelling, that is, 
the theoretical maximum uptake of buffer solution at t∞. 
P.431 
 
 
Example 17-7 

Initial Swelling Rate 

The increase in weight of 330 mg for a 15% gelatin sample 0.27 mm thick was measured in 
0.15 M ammonium acetate buffer at 25°C. The t/W values at several time periods are as 
follows:* 

 

 

Compute the initial swelling rate and the equilibrium swelling. 
A regression of t/W against t gives 

 
The initial swelling rate, 1/A, is the reciprocal of the intercept, 

 
The equilibrium swelling is 

 

Equation (17-10) represents a second-order process. When the constants A and B are used to 
backcalculate the swelling, W, at several times and are compared with the experimental data, the higher 
deviations are found in the region of maximum curvature of the isotherms (Fig. 17-15). Ofner and 
Schott63 attributed the deviations to the partially crystalline structure of gelatin. Thus, the first part of 
curve a in Figure 17-15 corresponds to the swelling of the amorphous region, which is probably 
complete at times corresponding to maximum curvature, namely 6 to 10 hr at 20°C. The penetration of 
the solvent into the crystalline region is slower and less extensive because this region is more tightly 
ordered and has a higher density (part b of the curve in Fig. 17-15). 
Gelatin is probably the most widely employed natural polymer in pharmaceutical products; it is used in 
the preparation of soft and hard gelatin capsules, tablet granulations and coatings, emulsions, and 
suppositories. Gelatin may interact with gelatin-encapsulated drugs or excipients by absorbing 
significant amounts of them, and some compounds may change the dissolution rate of soft gelatin 
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capsules. Ofner and Schott64 studied the effect of six cationic, anionic, and nonionic drugs or excipients 
on the initial swelling rate and equilibrium swelling in gelatin. The cationic compounds reduced the 
equilibrium swelling, W∞, substantially, whereas the nonionic and anionic compounds increased it. The 
researchers suggested that the cationic additives such as quaternary ammonium compounds may 
cause disintegration and dissolution problems with both hard and soft gelatin capsules. 
Cross-linked hydrogels with ionizable side chains swell extensively in aqueous media. The swelling 
depends on the nature of the side groups and the pH of the medium. This property is important because 
diffusion of drugs in hydrogels depends on the water content in the hydrogel. Kou et al.65 used 
phenylpropanolamine as a model compound to study its diffusion in copolymers of 2-hydroxyethyl 
methacrylate and methacrylic acid cross-linked with tetraethylene glycol dimethacrylate. The drug 
diffusivity, D, in the gel matrix is related to the matrix hydration by the relation 

 
where Do is the diffusivity of the solute in water and Kf is a constant characteristic of the system. The 
term H represents the matrix hydration and is defined as 

 
According to equation (17-12), a plot of ln D against 1/(H - 1) should be linear with slope Kf and intercept 
ln Do. 
Example 17-8 

Diffusion Coefficients 

Compute the diffusion coefficients of phenylpropanolamine in a gel for two gel hydrations, H = 
0.4 and H = 0.9. The diffusion coefficient of the solute in water is Do = 1.82 × 10-6cm2/sec, 
and Kf, the constant of equation (17-12), is 2.354. 
For H = 0.4, 

 
For H = 0.9, 

 
The swelling (hydration) of the gel favors drug release because it enhances the diffusivity of 
the drug, as shown in the example. 

Classification of Pharmaceutical Semisolids 
Semisolid preparations, with special reference to those used as bases for jellies, ointments, and 
suppositories, can be classified as shown in Table 17-2. The arrangement is arbitrary and suffers from 
certain difficulties, as do all classifications. 
Some confusion of terminology has resulted in recent years, partly as a result of the rapid development 
of the newer types of bases. Terms such as ―emulsion-type,‖ ―water-washable,‖ ―water-soluble,‖ ―water-
absorbing,‖ ―absorption base,‖ ―hydrophilic,‖ ―greaseless,‖ and others have appeared in the literature as 

well as on the labels of commercial bases where the meaning is obscure and sometimes misleading. 
The title ―greaseless‖ has been applied both to water-dispersible bases that contain no grease and to 
o/w bases because they feel greaseless to the touch and are easily removed from the skin and clothing. 
The terms 
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―cream‖ and ―paste‖ are also often used ambiguously. Pectin paste is a jelly, whereas zinc oxide paste is 
a semisolid suspension. And what does the term ―absorption base‖ mean? Does it imply that the base is 

readily absorbed into the skin, that drugs incorporated in such a base are easily released and absorbed 
percutaneously, or that the base is capable of absorbing large quantities of water? These few examples 
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point out the difficulties that arise when different titles are used for the same product or when different 
definitions are given to the same term. 

Table 17-2 A Classification of Semisolid Bases 

  Examples 

I. Organogels   

   A. Hydrocarbon type Petrolatum, mineral oil–polyethylene gel* 

   B. Animal and 

vegetable fats 

Lard, hydrogenated vegetable oils, 

Theobroma oil 

   C. Soap base greases Aluminum stearate, mineral oil gel 

   D. Hydrophilic 

organogels 

Carbowax bases, polyethylene glycol 

ointment 

II. Hydrogels   

   A. Organic hydrogels Pectin paste, tragacanth jelly 

   B. Inorganic hydrogels Bentonite gel, colloidal magnesium 

aluminum silicate gels 

III. Emulsion-type 

semisolids 

  

   A. Emulsifiable bases   

      1. Water-in-oil 

(absorption) 

Hydrophilic petrolatum, wool fat 

      2. Oil-in-water Anhydrous Tween base† 

   B. Emulsified bases   

      1. Water-in-oil Hydrous wool fat, rose water ointment 
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      2. Oil-in-water Hydrophilic ointment, vanishing cream 

*Plastibase (E. R. Squibb). J. Am. Pharm. Assoc. Sci. Ed. 45, 104, 1956. 

†White petrolatum, stearyl alcohol, glycerin, Tween 60 (Atlas-ICI). 

 

Organogels 
Petrolatum is a semisolid gel consisting of a liquid component together with a ―protosubstance‖ and a 

crystalline waxy fraction. The crystalline fraction provides rigidity to the gel structure, whereas the 
protosubstance or gel former stabilizes the system and thickens the gel. Polar organogels include the 
polyethylene glycols of high molecular weight known as Carbowaxes (Union Carbide Corp., New York). 
The Carbowaxes are soluble to about 75% in water and therefore are completely washable, although 
their gels look and feel like petrolatum. 
Hydrogels 
Bases of this class include organic and inorganic ingredients that are colloidally dispersible or soluble in 
water. Organic hydrogels include the natural and synthetic gums such as tragacanth, pectin, sodium 
alginate, methylcellulose, and sodium carboxymethylcellulose. Bentonite mucilage is an inorganic 
hydrogel that has been used as an ointment base in about 10% to 25% concentration. 
Emulsion-Type Bases 
Emulsion bases, as might be expected, have much greater affinity for water than do the oleaginous 
products. 
The o/w bases have an advantage over the w/o bases in that the o/w products are easily removed from 
the skin and do not stain clothing. These bases are sometimes called water washable. They have the 
disadvantage of water loss by evaporation and of possible mold and bacterial growth, thus requiring 
preservation. Two classes of emulsion bases are discussed: emulsifiable and emulsified. 

a. Emulsifiable bases. We choose to call these basesemulsifiable because they initially contain no 
water but are capable of taking it up to yield w/o and o/w emulsions. The w/o types are 
commonly known as absorption basesbecause of their capacity to absorb appreciable 
quantities of water or aqueous solutions without marked changes in consistency. 

b. Emulsified bases. Water-in-oil bases in which water is incorporated during manufacture are 
referred to in this book as emulsified w/o bases to differentiate them from the emulsifiable w/o 
bases (absorption bases), which contain no water. The emulsified oil-in-water bases are 
formulated as is any emulsion with an aqueous phase, an oil phase, and an emulsifying agent. 
The components of emulsified ointments, however, differ in some ways from the ingredients of 
liquid emulsions. 

The oil phase of the ointment may contain petrolatum, natural waxes, fatty acids or alcohols, solid 
esters, and similar substances that increase the consistency of the base and provide certain desirable 
application properties. 
Comparison of Emulsion Bases 
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The absorption bases have the advantage over oleaginous products in absorption of large amounts of 
aqueous solution. Furthermore, they are compatible with most drugs and are stable over long periods. 
When compared with o/w bases, the w/o preparations are superior in that they do not lose water readily 
by evaporation because water is the internal phase. Although emulsified o/w or washable bases do have 
the 
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undesirable property of drying out when not stored properly and of losing some water during 
compounding operations, they are more acceptable than the nonwashable absorption bases because 
they are easily removed with water from the skin and clothing. 
Hydrophilic Properties of Semisolids 
Petrolatum is hydrophilic to a limited degree, taking up about 10% to 15% by weight of water through 
simple incorporation. 
The water-absorbing capacity of oleaginous and water-in-oil bases can be expressed in terms of 
the water number, first defined in 1935 by Casparis and Meyer66 as the maximum quantity of water that 
is held (partly emulsified) by 100 g of a base at 20°C. The test consists in adding increments of water to 
the melted base and triturating until the mixture has cooled. When no more water is absorbed, the 
product is placed in a refrigerator for several hours, removed, and allowed to come to room temperature. 
The material is then rubbed on a slab until water no longer exudes, and, finally, the amount of water 
remaining in the base is determined. Casparis and Meyer found the water number of petrolatum to be 
about 9 to 15; the value for wool fat is about 185. 
Rheologic Properties of Semisolids 
Manufacturers of pharmaceutical ointments and cosmetic creams have recognized the desirability of 
controlling the consistency of non-Newtonian materials. 
Probably the best instrument for determining the rheologic properties of pharmaceutical semisolids is 
some form of a rotational viscometer. The cone–plate viscometer is particularly well adapted for the 
analysis of semisolid emulsions and suspensions. The Stormer viscometer, consisting of a stationary 
cup and rotating bob, is also satisfactory for semisolids when modified, as suggested by Kostenbauder 
and Martin.67 
Consistency curves for the emulsifiable bases hydrophilic petrolatum and hydrophilic petrolatum in 
which water has been incorporated are shown in Figure 17-16. It will be observed that the addition of 
water to hydrophilic petrolatum has lowered the yield point (the intersection of the extrapolated 
downcurve and the load axis) from 520 to 340 g. The plastic viscosity (reciprocal of the slope of the 
downcurve) and the thixotropy (area of the hysteresis loop) are increased by the addition of water to 
hydrophilic petrolatum. 
The effect of temperature on the consistency of an ointment base can be analyzed by use of a properly 
designed rotational viscometer.Figures 17-17 and 17-18 show the changes of plastic viscosity and 
thixotropy, respectively, of petrolatum and Plastibase as a function of temperature.68 The modified 
Stormer viscometer was used to obtain these curves. As observed in Figure 17-17, both bases show 
about the same temperature coefficient of plastic viscosity. These results account for the fact that the 
bases have about the same degree of ―softness‖ when rubbed between the fingers. Curves of yield 

value versus temperature follow approximately the same relationship. The curves of Figure 17-
18 suggest strongly that it is the alternation of thixotropy with temperature that differentiates the two 
bases. Because thixotropy is a consequence of gel structure,Figure 17-18 shows that the waxy matrix of 
petrolatum is probably broken down considerably as the temperature is raised, whereas the resinous 
structure of Plastibase withstands temperature changes over the ranges ordinarily encountered in its 
use. 
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Fig. 17-16. Flow curves for hydrophilic petrolatum and hydrophilic petrolatum 

containing water. (After H. B. Kostenbauder and A. Martin, J. Am. Pharm. Assoc. 

Sci. Ed. 43, 401, 1954.) 

Based on data and curves such as these, the pharmacist in the development laboratory can formulate 
ointments with more desirable consistency characteristics, the worker in the 
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production plant can better control the uniformity of the finished product, and the dermatologist and the 
patient can be assured of a base that spreads evenly and smoothly in various climates, yet adheres well 
to the affected area and is not tacky or difficult to remove. 
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Fig. 17-17. The temperature coefficient of plastic viscosity of (•) Plastibase (E. R. 

Squibb and Sons, New Brunswick, NJ) and (^) petrolatum. (From A. H. C. Chun, M. 

S. Thesis, Purdue University, Purdue, Ind., June 1956.) 

 

Fig. 17-18. The temperature coefficient of thixotropy of Plastibase (E. R. Squibb and 

Sons) and petrolatum. (After A. H. C. Chun, M. S. Thesis, Purdue University, Purdue, 

Ind., June 1956.) 

Rigidity and viscosity are two separate parameters used to characterize the mechanical properties of 
gels. Ling69 studied the effect of temperature on rigidity and viscosity of gelatin. He used arigidity index, 

f, which is defined as the force required to depress the gelatin surface a fixed distance. To measure 
rigidity, a sample of gelatin solution or gel mass is subjected to penetrative compression by a flat-ended 
cylindrical plunger that operates at a constant speed. In this method, the strain rate (rate of deformation 
of the gel) is constant and independent of stress (force applied). Ling found that thermal degradation 
with respect to rigidity followed second-order kinetics, 

 
The integrated form of equation (17-13) is 

 
where f is the rigidity index of the gelatin solution or gelatin gel at time t, f0 is the rigidity index at time 
zero, kf is the rate constant (g-1hr-1), and t is the heating time in hours. The quantities f0 and kf can be 
computed from the intercept and the slope of equation (17-14) at a given temperature. 
Example 17-9 

Rigidity Index 

The rigidity degradation of a 6% pharmaceutical-grade gelatin USP was studied69 at 65°C. 
The rigidity index values at several times are as follows: 
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Compute the rigidity index, f0, at time zero and the rate constant, kf, at 65°C. 
The regression of 1/f versus t gives the equation 

 
At t = 0 we have intercept 1/f0 = 0.0167 g-1; f0 = 59.9 g. The slope is kf = 1.5 × 10-4 g-1 hr-1. 
Using the regression equation, we can compute the rigidity index, f, at time t, say 60 hr: 

 
The force needed to depress the gelatin surface has decreased from its original value, f0 = 
59.9 g. Therefore, gelatin lost rigidity after heating for 60 hr. 

The effect of temperature on the rate constant, kf, can be expressed using the Arrhenius equation, 

 
Thus, a plot of ln kf against 1/T gives the Arrhenius constant, A, and the energy of activation, Ea. 
Fassihi and Parker70 measured the change in the rigidity index, f, of 15% to 40% gelatin gel, USP type 
B, before and after gamma irradiation (which is used to sterilize the gelatin). They found that the rigidity 
index diminished with irradiation and that the kinetics of rigidity degradation is complex. For gels 
containing more than 20% gelatin, the rigidity index follows a sigmoidal curve at increasing radiation 
doses, as shown in Figure 17-19. Gelatin is widely used in tablet manufacturing as a binder to convert 
fine powders into granules. The loss of rigidity index reduced the binding properties of gelatin and 
decreased the hardness of lactose granules prepared with irradiated gelatin. These workers suggested 
that doses of gamma radiation should be held to less than 2 megarad (Mrad) to obtain gelatins of 
acceptable quality for pharmaceutical applications. 
Universe of Topical Medications 
Katz71 devised a ―universe of topical medications‖ (Fig. 17-20) by which one can consider the various 
topical medications such as pastes, absorption bases, emulsified products, lotions, and suspensions. 
The basic components of most dermatologic preparations are powder, water, oil, and emulsifier. 
Beginning at Aon the ―universal wheel‖ of Figure 17-20, one is confronted with the simple powder 
medication, used 
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as a protective, drying agent and lubricant and as a carrier for locally applied drugs. Passing 
counterclockwise around the wheel, we arrive at the paste, B, which is a combination of powder from 
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segment A and an oleaginous material such as mineral oil or petrolatum. An oleaginous ointment for 
lubrication and emolliency and devoid of powder is shown in segment C. 

 

Fig. 17-19. Rigidity index of gelatin gel as a function of gamma irradiation at various 

concentrations (15%–40%) of the gel. (From A. R. Fassihi and M. S. Parker, J. 

Pharm. Sci. 77,876, 1988. With permission.) 

The next section, D, is a waterless absorption base, consisting of oil phase and w/o emulsifier and 
capable of absorbing aqueous solutions of drugs. At the next region of the wheel, E, water begins to 
appear along with oil and emulsifier, and a w/o emulsion results. The proportion of water is increased 
at F to change the ointment into a w/o cream. At G, the base is predominantly water, and an o/w 
emulsifier is used to form the opposite type of emulsion, that is, an o/w cream. Still more water and less 
oil converts the product into an o/w lotion at H. At point I on the universal wheel, only water remains, 
both oil and surfactant being eliminated, and this segment of the wheel represents an aqueous liquid 
preparation, a soak, or a compress. 
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Fig. 17-20. Universe of topical medication. (From M. Katz, in E. J. Ariens 

(Ed.), Drug Design, Academic Press, New York, 1973. With permission.) 

Finally, at section J, the powder from A is incorporated, and the aqueous product becomes a shake 
preparation, as represented by calamine lotion. Accordingly, this ingenious wheel classifies nearly all 
types of topical preparations from solid pastes and ointments, through w/o and o/w emulsions, to liquid 
applications and shake lotions. It serves as a convenient way to discuss the various classes of 
dermatologic and toiletry products that are prepared by the manufacturer or practicing pharmacist and 
applied topically by the patient. 
Drug Kinetics in Coarse Disperse Systems 
The kinetics of degradation of drugs in suspension72 can be described as a pseudo–zero-order process 
(see Chapter 14), 

 
where k1 is the first-order constant of the dissolved drug, V is the volume of the suspension, and Cs is 
the solubility of the drug. If the solubility is very low, the kinetics can be described as found in the section 
on solid-state kinetics (see Chapter 14). For very viscous dispersed systems, the kinetics of degradation 
can be partially controlled by the dissolution rate as given by the Noyes–Whitney equation, 

 
where Cs is the solubility of the drug, C is the concentration of solute at time t, S is the surface area of 
the expanded solid, and K is the dissolution rate constant. It is assumed that as a molecule degrades in 
the liquid phase it is replaced by another molecule dissolving. The overall decrease in concentration in 
the liquid phase can be written as 

 
where -kC expresses the rate of disappearance at time t due to degradation, and KS(Cs - C) is the rate 
of appearance of the drug in the liquid phase due to dissolution of the particles. The solution of this 
differential equation is 

 
At large t values, C becomes 

 
and the amount of drug remaining in suspension at large values of tis 

 
P.436 
 
 
where M0 is the initial amount of drug in suspension. Equation (17-21) is an expression for a zero-order 
process, as is equation (17-16), but the slopes of the two equations are different. Because the 
dissolution rate constant, K, in equation (17-21) is proportional to the diffusion coefficient, D, K is 
inversely proportional to the viscosity of the medium; therefore, the more viscous the preparation, the 
greater is the stability. 
Example 17-10 

Particles and Decomposition 

The first-order decomposition rate of a drug in aqueous solution is 5.78 × 10-4 sec-1 and the 
dissolution rate constant, K, is 3.35 × 10-6 cm-2 sec-1. What is the amount of drug remaining in 
25 cm3 of a 5% w/v suspension after 3 days? Assume spherical particles of mean volume 
diameter,dvn, 2 × 10-4 cm. The density of the powder is 3 g/cm3 and the solubility of the drug is 
2.8 × 10-4 g/cm3. 
The initial amount of drug is 

 
The number of particles, N, in 25 cm3 can be computed from equation (18-4): 
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The number of particles in 1.25 g is N = 7.96 × 1010 × 1.25 = 9.95 × 1010 particles. 
The total surface area is 

 
From equation (17-21), 

 

Kenley et al.73 studied the kinetics of degradation of fluocinolone acetonide incorporated into an oil-in-
water cream base. The degradation followed a pseudo–first-order constant at pH values from 2 to 6 and 
at several temperatures. The observed rate constants increased with increasing temperature, and acid 
catalysis at low pH values and basic catalysis at pH above 4 were observed. The observed rate 
constant for the degradation process can be written as 

 
Figure 17-21 compares the degradation of fluocinolone acetonide from oil-in-water creams with that of 
triamcinolone acetonide, a related steroid, in aqueous solution. From the figure, both creams and 
solution share a similar log(Rate)-pH profile over the pH range of 2 to 6, with a minimum rate near pH 4. 
This may indicate that the degradation in oil-in-water creams is confined to an aqueous environment, the 
nonaqueous components of the cream having little influence.73 

 

Fig. 17-21. The pH–log(kobs) profile for degradation of fluocinolone acetonide and 

triamcinolone acetonide at 50°C. Key: • = experimentally determined kobs (month
-1

) 

for fluocinolone acetonide cream; ^ = triamcinolone acetonide solution. The solid 

lines were obtained from the calculated values of kobs using equation(17-22). (From A. 

Kenley, M. O. Lee, L. Sukumar, and M. Powell, Pharm. Res. 4, 342, 1987. With 

permission.) 

Dr. Murtadha Alshareifi e-Library

790



Because ln k = ln A - Ea/RT, where A is the Arrhenius factor and Ea is the energy of activation, 
equation (17-22) can be rewritten in terms of activation parameters, A and Ea, for each of the catalytic 
coefficients,ko, kH, and kOH: 

 
Equation (17-23) allows one to compute the degradation rate constant k at several temperatures and pH 
values. 
Example 17-11 

Degradation Rate Constant 

The natural logarithm of the Arrhenius parameters for neutral-, acid-, and base-catalyzed 
hydrolysis of fluocinolone acetonide in oil-in-water creams are ln Ao = 22.5, ln AH = 38.7, and 
ln AOH = 49.5. The corresponding energies of activation are EaO = 17,200, EaH = 22,200, 
andEaOH = 21,100 cal/mole. The H+ and OH- concentrations in equation (17-23) are 
expressed, as usual, in moles per liter, and the first-order rate constant, k, is expressed in this 
example in month-1. Compute the degradation rate constant, k, at 40°C and pH 4. 
From equation (17-23), 
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Teagarden et al.74 determined the rate constant, k, for the degradation of prostaglandin E1 (PGE1) in an 
oil-in-water emulsion. At acidic pH values, the degradation of PGE1 showed large rate constants. This 
fact was attributed to the greater effective concentration of hydrogen ions at the oil–water interface, 
where PGE1 is mainly located at low pH values. 
Drug Diffusion in Coarse Disperse Systems 
The release of drugs suspended in ointment bases can be calculated from the Higuchi equation: 

 
where Q is the amount of drug released at time t per unit area of exposure, Cs is the solubility of the 
drug in mass units per cm3 in the ointment, and A is the total concentration, both dissolved and 
undissolved, of the drug. D is the diffusion coefficient of the drug in the ointment (cm2/sec). 
Iga et al.75 studied the effect of ethyl myristate on the release rate of 4-hexylresorcinol from a 
petrolatum base at pH 7.4 and temperature 37°C. They found that the release rate was proportional to 
the square root of time, according to the Higuchi equation. Increasing concentrations of ethyl myristate 
enhanced the release rate of the drug owing to the increase of drug solubility, Cs, in the ointment [see 
equation (17-24)]. This behavior was attributed to formation of 1:1 and 1:2 complexes between 
hexylresorcinol and ethyl myristate. 
Example 17-12 

Calculate Q 

The solubility of hexylresorcinol in petrolatum base is 0.680 mg/cm3. After addition of 10% 
ethyl myristate, the solubility, Cs, of the drug is 3.753 mg/cm3. Compute the amount, Q, of 
drug released after 10 hr. The diffusion coefficient, D, is 1.31 × 10-8 cm2/sec and the initial 
concentration, A, is 15.748 mg/cm3. 
We have 
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After addition of 10% ethyl myristate, we find 

 

The release of a solubilized drug from emulsion-type creams and ointments depends on the drug's initial 
concentration. It is also a function of the diffusion coefficient of the drug in the external phase, the 
partition coefficient between the internal and external phases, and the volume fraction of the internal 
phase. If the drug is completely solubilized in a minimum amount of solvent, the release from the vehicle 
is faster than it is from a suspension-type vehicle. 
Ong and Manoukian76 studied the delivery of lonapalene, a nonsteroidal antipsoriatic drug, from an 
ointment, varying the initial concentration of drug and the volume fraction of the internal phase. In the 
study, lonapalene was completely solubilized in the ointment systems. Most of the drug was dissolved in 
the internal phase, consisting of propylene carbonate–propylene glycol, but a fraction was also 
solubilized in the external phase of a petrolatum base consisting of glyceryl monostearate, white wax, 
and white petrolatum. The data were treated by the approximation of Higuchi,77 

 
where Q is the amount of drug released per unit area of application,C0 is the initial concentration in the 
ointment, De is the effective diffusion coefficient of the drug in the ointment, and t is the time after 
application. For a small volume of the internal phase, 

 
where the subscripts 1 and 2 refer to the external and internal phases, respectively, and K is the 
partition coefficient between the two phases. When D2 is much greater than D1, 

 
De, the effective diffusion coefficient, is obtained from the release studies [equation (17-25)], and D1 can 
be computed from equation(17-27) if one knows the volume fraction of the external and internal 
phases, φ1 and φ2, respectively. The drug is released according to two separate rates: an initial 
nonlinear and a linear, diffusion-controlled rate (Fig. 17-22). The initial rates extending over a period of 
30 min are higher than the diffusion-controlled rates owing to the larger transference of drug directly to 
the skin from the surface globules. The high initial rates provide immediate availability of the drug for 
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absorption. In addition, the release of drug from the external phase contributes to the initial rates. 
Equation (17-25) is applicable only to the linear portion of the graph, where the process becomes 
diffusion controlled (Fig. 17-22). 
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Fig. 17-22. Amount per unit area, Q, of lonapalene at time t from an emulsion-type 

ointment. Key: □ = 0.5%; ▼ = 1.0%; and • = 2.0% drug. (From J. T. H. Ong and E. 

Manoukian, Pharm. Res. 5, 16, 1988. With permission.) 

Example 17-13 

Amount Released 

Compute the amount of lonapalene released per cm2 after t= 24 hr from a 
0.5% w/v emulsified ointment. The internal phase of the ointment consists of the drug 
solubilized in a propylene carbonate–propylene glycol mixture and the external phase is a 
white petrolatum–glyceryl monostearate–white wax mixture. The volume fraction of the 
internal phase, φ2, is 0.028, the diffusion coefficient of the drug in the external phase, D1, is 
2.60 × 10-9 cm2/sec, and the partition coefficient, K, between the internal and external phases 
is 69. 
From equation (17-27), the effective diffusion coefficient is 

 
Note that the sum of the volume fractions of internal and of external phases is equal to 1; 
therefore, knowing the external volume fraction to be φ2 = 0.028, one simply has the internal 
volume fraction, φ1 = 1 - 0.028. The initial concentration of drug is 0.5 g per 100 cm3, that is, 5 
mg/mL. From equation (17-25), the amount of lonapalene released after 24 hr is 

 

The rate of release also depends on the solubility of the drug as influenced by the type of emulsion. 
Rahman et al.78 studied the in vitro release and in vivo percutaneous absorption of naproxen from 
anhydrous ointments and oil-in-water and water-in-oil creams. The results fitted equation (17-25), the 
largest release rates being obtained when the drug was incorporated into the water phase of the creams 
by using the soluble sodium derivative of naproxen. After application of the formulations to rabbit skin, 
the absorption of the drug followed first-order kinetics, showing a good correlation with the in vitro 
release. 
Chiang et al.79 studied the permeation of minoxidil, an antialopecia (antibaldness) agent, through the 
skin from anhydrous, oil-in-water, and water-in-oil ointments. The rate of permeation was higher from 
water-in-oil creams. 
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Drug release from fatty suppositories can be characterized by the presence of an interface between the 
molten base and the surrounding liquid. The first step is drug diffusion into the lipid–water interface, 
which is influenced by the rheologic properties of the suppository. In a second step, the drug dissolves 
at the interface and is then transported away from the interface.80 Because the dissolution of poorly 
water-soluble drugs on the aqueous side of the lipid–water interface is the rate-limiting step, the release 
is increased by the formation of a water-soluble complex. Arima et al.80 found that the release of ethyl 
4-biphenyl acetate, an anti-inflammatory drug, from a lipid suppository base was enhanced by 
complexation of the drug with a hydrosoluble derivative of β-cyclodextrin. The increase in solubility and 
wettability as well as the decrease in crystallinity due to an inclusion-type complexation may be the 
cause of the enhanced release. On the other hand, complexation of flurbiprofen with methylated 
cyclodextrins, which are oil soluble and surface active, enhances the release from hydrophilic 
suppository bases. This is due to the decreased interaction between the drug complex and the 
hydrophilic base.81Coprecipitation of indomethacin with PVP also enhances the release from lipid 
suppository bases because it improves wetting, which avoids the formation of a cake at the oil–aqueous 
suppository interface.82 
Nyqvist-Mayer et al.83 studied the delivery of a eutectic mixture of lidocaine and prilocaine (two local 
anesthetics) from emulsions and gels. Lidocaine and prilocaine form eutectic mixtures at approximately 
a 1:1 ratio. The eutectic mixture has a eutectic temperature of 18°C, meaning that it is a liquid above 
18°C and can therefore be emulsified at room temperature. The mechanism of release from this 
emulsion and transport through the skin is complex owing to the presence of freely dissolved species, 
surfactant-solubilized species, and emulsified species of the local anesthetic mixture. The passage of 
these materials across the skin membrane is depicted in Figure 17-23. The solute lost due to transport 
across the membrane is replenished by dissolution of droplets as long as a substantial number of 
droplets are present. Micelles of surfactant with a fraction of the solubilized drug may act as carriers 
across the aqueous diffusion layer, diminishing the diffusion layer resistance. Droplets from the bulk are 
also transported to the boundary layer and supply solute, which diffuses through the membrane, thus 
decreasing the limiting effect of the aqueous layer to diffusion of solute. Because the oil phase of this 
emulsion is formed by the eutectic mixture itself, there is no transport of drug between the inert oil and 
water, as occurs in a conventional emulsion and which would result in a decreased thermodynamic 
activity, a, or ―escaping tendency.‖ The system actually resembles a suspension that theoretically has 

high thermodynamic activity owing to the saturation of the drug in the external phase. In a suspension, 
the dissolution rate of the particles could be a limiting factor. In contrast, the fluid state of the eutectic 
mixture lidocaine–prilocaine 
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may promote a higher dissolution rate. The total resistance, RT, to the skin permeation of the free 
dissolved fraction of prilocaine is given by the sum of the resistances of the aqueous layer, Ra, and the 
resistance of the membrane, Rm: 
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Fig. 17-23. Delivery of a eutectic mixture of lidocaine–prilocaine from an emulsion 

into a receptor compartment. (From A. A. Nyqvist-Mayer, A. F. Borodin, and S. G. 

Frank, J. Pharm. Sci. 75,365, 1986. With permission.) 

 
Fig. 17-24. Release of lidocaine–prilocaine from an emulsion (^) and from a gel 

( ). (From A. A. Nyqvist-Mayer, A. F. Borodin, and S. G. Frank, J. Pharm. 

Sci. 75, 365, 1986. With permission.) 

 

 
or 
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where D is the diffusion coefficient of the drug, ha is the thickness of the aqueous layer, hm is the 
thickness of the membrane, and P is the permeability coefficient associated with the membrane and the 
aqueous layer; K is the partition coefficient between the membrane and the aqueous layer. The 
subscripts a and m stand for aqueous layer and membrane, respectively. Equation (17-29) is analogous 
to equation (11-30), except that the constant 2 in the denominator has been eliminated in this case 
because we consider only one aqueous layer (Fig. 17-24). 
Example 17-14 

Compute the total permeability, P, of a 1:1.3 ratio of lidocaine–prilocaine in the form of a 
eutectic mixture. The thicknesses of the aqueous and membrane layers are 200 and 127 µm, 
respectively. The diffusion coefficient and the partition coefficient of the drugs at the 
membrane–aqueous layers are as follows: lidocaine, Da = 8.96 × 10-6 cm2/sec,Dm = 2.6 = 10-

7 cm2/sec, and K = 9.1; prilocaine, Da = 9.14 × 10-6 cm2/sec, Dm = 3 × 10-7 cm2/sec, and K = 
4.4. 
For lidocaine, according to equation (17-29), 

 
For prilocaine, 

 
The permeability of the mixture PT can be calculated from the proportion of each 
component.83 Because the proportion of lidocaine is 1 and that of prilocaine 1.3, the total 
amount is 1 + 1.3 = 2.3. Therefore, the permeability of the mixture is 

 

The total amount released from the emulsion consists of an initial steady-state portion, from which the 
release rate can be computed. When the formulation is thickened with carbomer 934P (carbopol), a gel 
results. The release rates from the gel and the emulsion are compared in Figure 17-24. In the gel, the 
release rate continuously decreases owing to the formation of a depletion zone in the gel. The thickness 
of the stagnant diffusion layer next to the membrane increases to such a degree that the release 
process becomesvehicle controlled. After 1 hr, the amount delivered is a function of the square root of 
time, and the apparent diffusion coefficient in the gel can be computed from the Higuchi equation (17-
24). The release process is both membrane layer and aqueous layer controlled for nongelled systems 
(emulsions). For gelled systems the initial release is also membrane layer and aqueous layer controlled, 
but later, at t > 1 hr, the release becomes formulation or vehicle controlled, that is, the slowest or rate-
determining step in the diffusion of the drug is passage through the vehicle. 
Chapter Summary 

Particulate systems have been classified on the basis of size into molecular dispersions, 
colloidal systems, and coarse dispersions. This chapter attempts to provide the pharmacist 
with an insight into the role of physics and chemistry in the research and development of the 
several classes of coarse dispersions. The theory and technology of these important 
pharmaceutical classes are based on interfacial and colloidal principles, micromeritics, and 
rheology (Chapters 15, 16, 18 and 19, respectively). Pharmaceutical suspensions were 
introduced and the roles they play in the pharmaceutical sciences were described. In addition, 
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the desirable qualities of pharmaceutical suspensions and the factors that affect the stability 
of suspensions were also discussed. The concepts 
P.440 
 
of flocculation, settling and sedimentation theory were introduced and the student was shown 
how to calculate sedimentation rates. Two useful sedimentation parameters, sedimentation 
volume and degree of flocculation were discussed. The student should be aware of the 
approaches commonly used in the preparation of physically stable suspensions. 
Pharmaceutical emulsions and emulsifying agents were introduced and the main types of 
emulsions discussed. The student should be able to classify pharmaceutical semisolids as 
well as understand thixotropic properties, syneresis, and swelling. Finally, examples of coarse 
dispersions were given. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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18 Micromeritics 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Understand the concept of particle size as it applies to the pharmaceutical sciences. 
2. Discuss the common particle sizes of pharmaceutical preparations and their impact 

on pharmaceutical processing/preparation. 
3. Be familiar with the units for particle size, area, and volume and typical calculations. 
4. Describe how particles can be characterized and why these methods are important. 
5. Discuss the methods for determining particle size. 
6. Discuss the role and importance of particle shape and surface area. 
7. Understand the methods for determining particle surface area. 
8. State the two fundamental properties for any collection of particles. 
9. Describe what a derived property of a powder is and identify the important derived 

properties. 

Knowledge and control of the size and the size range of particles are of profound importance in 
pharmacy. Thus, size, and hence surface area, of a particle can be related in a significant way to the 
physical, chemical, and pharmacologic properties of a drug. Clinically, the particle size of a drug can 
affect its release from dosage forms that are administered orally, parenterally, rectally, and topically. The 
successful formulation of suspensions, emulsions, and tablets, from the viewpoints of both physical 
stability and pharmacologic response, also depends on the particle size achieved in the product. In the 
area of tablet and capsule manufacture, control of the particle size is essential in achieving the 
necessary flow properties and proper mixing of granules and powders. These and other factors 
reviewed by Lees1 make it apparent that a pharmacist today must possess a sound knowledge of 
micromeritics. 
Particle Size and Size Distribution 
In a collection of particles of more than one size (in other words, in a polydisperse sample), two 
properties are important, namely, (a) the shape and surface area of the individual particles and (b) the 
size range and number or weight of particles present and, hence, the total surface area. Particle size 
and size distributions will be considered in this section; shape and surface area will be discussed 
subsequently. 

Key Concept 

Micromeritics 

The science and technology of small particles was given the name micromeritics by Dalla 
Valle.2 Colloidal dispersions are characterized by particles that are too small to be seen in the 
ordinary microscope, whereas the particles of pharmaceutical emulsions and suspensions 
and the ―fines‖ of powders fall in the range of the optical microscope. Particles having the size 
of coarser powders, tablet granulations, and granular salts fall within the sieve range. The 
approximate size ranges of particles in pharmaceutical dispersions are listed in Table 18-1. 
The sizes of other materials, including microorganisms, are given in Tables 18-2 and 18-3. 
The unit of particle size used most frequently in micromeritics is the micrometer, µm, also 
called the micron, µ, and equal to 10-6 m, 10-4 cm, and 10-3 mm. One must not confuse µm 
with mµ, the latter being the symbol for a millimicron or 10-9 m. The millimicron now is most 
commonly referred to as the nanometer (nm). 

The size of a sphere is readily expressed in terms of its diameter. As the degree of asymmetry of 
particles increases, however, so does the difficulty of expressing size in terms of a meaningful diameter. 
Under these conditions, there is no one unique diameter for a particle. Recourse must be made to the 
use of an equivalent spherical diameter, which relates the size of the particle to the diameter of a sphere 
having the same surface area, volume, or diameter. Thus, the surface diameter, ds, is the diameter of a 
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sphere having the same surface area as the particle in question. The diameter of a sphere having the 
same volume as the particle is the volume diameter, dv, whereas the projected diameter, dp, is the 
diameter of a sphere having the same observed area as the particle when viewed normal to its most 
stable plane. The size can also be expressed as the Stokes diameter, dst, which describes an equivalent 
sphere undergoing sedimentation at the same rate as the asymmetric particle. Invariably, the type of 
diameter used reflects the method employed to obtain the diameter. As will be seen later, the projected 
diameter is obtained by microscopic techniques, whereas the Stokes diameter is determined from 
sedimentation studies on the suspended particles. 
P.443 
 
 

Table 18-1 Particle Dimensions in Pharmaceutical Disperse Systems 

Particle Size, Diameter 

Approximate 

Sieve Size Examples 

Micrometers 

(µm) Millimeters 

0.5–10 0.0005–

0.010 

– Suspensions, fine emulsions 

10–50 0.010–

0.050 

– Upper limit of subsieve range, 

coarse emulsion particles; 

flocculated suspension 

particles 

50–100 0.050–

0.100 

325–140 Lower limit of sieve range, 

fine powder range 

150–1000 0.150–

1.000 

100–18 Coarse powder range 

1000–

3360 

1.000–

3.360 

18–6 Average granule size 

 

Any collection of particles is usually polydisperse. It is therefore necessary to know not only the size of a 
certain particle but also how many particles of the same size exist in the sample. Thus, we need an 
estimate of the size range present and the number or weight fraction of each particle size. This is the 
particle-size distribution, and from it we can calculate an average particle size for the sample. 
If a drug product formulator desires to work with particles of approximately uniform size 
(i.e., monodisperse rather thanpolydisperse), he or she may obtain batches of latex particles as small as 
0.060 µm (60 nm) in diameter with a standard deviation, σ, of ±0.012 µm and particles as large as 920 
µm (0.920 nm) with σ = ±32.50. Such particles of uniform size3 are used in science, medicine, and 
technology for various diagnostic tests; as particle-size standards for particle analyzers; for the accurate 
determination of pore sizes in filters; and as uniformly sized surfaces upon which antigens can be 
coated for effective immunization. Nanosphere Size Standards4 are available in 22 sizes, from 21 nm 
(0.021 µm) to 900 nm (0.9 µm or 0.0009 mm) in diameter for instrument calibration and quality control in 
the manufacture of submicron-sized products such as liposomes, nanoparticles, and microemulsions. 
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Average Particle Size 
Suppose we have conducted a microscopic examination of a sample of a powder and recorded the 
number of particles lying within various size ranges. Data from such a determination are shown in Table 
18-4. To compare these values with those from, say, a second batch of the same material, we 
P.444 
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usually compute an average or mean diameter as our basis for comparison. 

Dr. Murtadha Alshareifi e-Library

802



 

Dr. Murtadha Alshareifi e-Library

803



Table 18-2 A Scale of the Ranges of Various Small Particles, Together with the 

Wavelength of Light and Other Electromagnetic Waves That Illuminate 

Materials Found in These Size Ranges 

Table 18-3 ROD Length and Diameter of Various Microorganisms 

Organism 

Rod 

Length 

(µm) 

Rod or Coccus 

Diameter (µm) Significance 

Acetobacter 

melanogenus 

1.0–

2.0 

0.4–0.8 Strong beer/vinegar 

bacterium 

Alcaligenes viscolactis 0.8–

2.6 

0.6–1.0 Causes ropiness in milk 

Bacillus anthracis 3.0–

10.0 

1.0–1.3 Causes anthrax in 

mammals 

B. stearothermophilus 2.0–

5.0 

0.6–1.0 Biologic indicator for 

steam sterilization 

B. subtilis 2.0–

3.0 

0.7–0.8 Biologic indicator for 

ethylene oxide 

sterilization 

Clostridium 

botulinum (B) 

3.0–

8.0 

0.5–0.8 Produces exotoxin 

causing botulism 

C. perfringens 4.0–

8.0 

1.0–1.5 Produces toxin causing 

food poisoning 

C. tetani 4.0–

8.0 

0.4–0.6 Produces exotoxin 

causing tetanus 

Diplococcus 

pneumoniae 

  0.5–1.25 Causes lobar pneumonia 

Erwinia aroideae 2.0–

3.0 

0.5 Causes soft rot in 

vegetables 
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Escherichia coli 1.0–

3.0 

0.5 Indicator of fecal 

contamination in water 

Haemophilus 

influenzae 

0.5–

2.0 

0.2–0.3 Causes influenza and 

acute respiratory 

infections 

Klebsiella pneumoniae 5.0 0.3–0.5 Causes pneumonia and 

other respiratory 

inflammations 

Lactobacillus 

delbrueckii 

2.0–

9.0 

0.5–0.8 Causes souring of grain 

mashes 

Leuconostoc 

mesenteroides 

  0.9–1.2 Causes slime in sugar 

solutions 

Mycoplasma 

pneumoniae(PPLO) 

  0.3–0.5 Smallest known free-

living organism 

Pediococcus 

acidilactici 

  0.6–1.0 Causes mash spoilage in 

brewing 

P. cerevisiae   1.0–1.3 Causes deterioration in 

beer 

Pseudomonas diminuta 1.0 0.3 Test organism for 

retention of 0.2-µm 

membranes 

Salmonella enteritidis 2.0–

3.0 

0.6–0.7 Causes food poisoning 

S. hirschfeldii 1.0–

2.5 

0.3–0.5 Causes enteric fever 

S. typhimurium 1.0–

1.5 

0.5 Causes food poisoning 

in humans 
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S. typhosa 2.0–

3.0 

0.6–0.7 Causes typhoid fever 

Sarcina maxima   4.0–4.5 Isolated from fermenting 

malt mash 

Serratia marcescens 0.5–

1.0 

0.5 Test organism for 

retention of 0.45-µm 

membranes 

Shigella dysenteriae 1.0–

3.0 

0.4–0.6 Causes dysentery in 

humans 

Staphylococcus aureus   0.8–1.0 Causes pus-forming 

infections 

Streptococcus lactis   0.5–1.0 Contaminant in milk 

S. pyogenes   0.6–1.0 Causes pus-forming 

infections 

Vibrio percolans 1.5–

1.8 

0.3–0.4 Test organism for 

retention of 0.2-µm 

membranes 

 

Table 18-4 Calculation of Statistical Diameters from Data Obtained by Use of 

the Microscopic Method (Normal Distribution) 
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Size 

Range 

(µm) 

Mean of 

Size 

Range 

(µm) 

Number 

of 

Particles 

in Each 

Size 

Range,n nd nd
2
 nd

3
 nd

4
 

0.50–

1.00 

0.75 2 1.50 1.13 0.85 0.64 

1.00–

1.50 

1.25 10 12.50 15.63 19.54 24.43 

1.50–

2.00 

1.75 22 38.50 67.38 117.92 206.36 

2.00–

2.50 

2.25 54 121.50 273.38 615.11 1384.00 

2.50–

3.00 

2.75 17 46.75 128.56 353.54 972.24 

3.00–

3.50 

3.25 8 26.00 84.50 274.63 892.55 

3.50–

4.00 

3.75 5 18.75 70.31 263.66 988.73 

    ∑ n= 

118 

∑ nd = 

265.50 

∑ nd
2
= 

640.89 

∑ nd
3
 = 

1645.25 

∑ nd
4
 = 

4468.95 
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Table 18-5 Statistical Diameters* 

Edmundson5 derived a general equation for the average particle size, whether it be an arithmetic, a 
geometric, or a harmonic mean diameter: 

 
In equation (18-1), n is the number of particles in a size range whose midpoint, d, is one of the 
equivalent diameters mentioned previously. The term p is an index related to the size of an individual 
particle, because d raised to the power p = 1, p = 2, or p = 3 is an expression of the particle length, 
surface, or volume, respectively. The value of the index p also decides whether the mean is arithmetic 
(p is positive), geometric (p is zero), or harmonic (p is negative). For a collection of particles, the 
frequency with which a particle in a certain size range occurs is expressed by nd

f. When the frequency 
index, f, has values of 0, 1, 2, or 3, then the size frequency distribution is expressed in terms of the total 
number, length, surface, or volume of the particles, respectively. 
Some of the more significant arithmetic (p is positive) mean diameters are shown in Table 18-5. These 
are based on the values of p and f used in equation (18-1). The diameters calculated from the data 
in Table 18-4 are also included. For a more complete description of these diameters, refer to the work of 
Edmundson.5 
Particle-Size Distribution 
When the number, or weight, of particles lying within a certain size range is plotted against the size 
range or mean particle size, a so-called frequency distribution curve is obtained. Typical examples are 
shown in Figures 18-1 (based on Table 18-4) and 18-2 (based onTable 18-6). Such plots give a visual 
representation of the distribution that an average diameter cannot achieve. This is important because it 
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is possible to have two samples with the same average diameter but different distributions. Moreover, it 
is immediately apparent from a frequency distribution curve what particle size occurs most frequently 
within the sample. This is termed the mode. 
An alternative method of representing the data is to plot the cumulative percentage over or under a 
particular size versus 
P.446 
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particle size. This is done in Figure 18-3, using the cumulative percent undersize (column 5, Table 18-
6). A sigmoidal curve results, with the mode being that particle size at the greatest slope. 

 

Fig. 18-1. A plot of the data of Table 18-4 so as to yield a size–frequency distribution. 

The data are plotted as a bar graph or histogram, and a superimposed smooth line or 

frequency curve is shown drawn through the histogram. 
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Fig. 18-2. Frequency distribution plot of the data in Table 18-6. 

Table 18-6 Conversion of Number Distribution to Weight Distribution (Log-

Normal Distribution) 
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The reader should be familiar with the concept of a normaldistribution. As the name implies, the 
distribution is symmetric around the mean, which is also the mode. 
The standard deviation, σ, is an indication of the distribution about the mean.* In a normal distribution, 
68% of the population lies ±1 σfrom the mean, 95.5% lies within the mean ±2 σ, and 99.7% lies within 
the mean ±3 σ. The normal distribution, shown in Figure 18-1, is not commonly found in pharmaceutical 
powders, which are frequently processed by milling or precipitation.6 Rather, these systems tend to 
have an nonsymmetric, or skewed, distribution of the type depicted in Figure 18-2. When the data 
in Figure 18-2 (taken from Table 18-6) are plotted as frequency versus the logarithm of the particle 
diameter, a typical bell-shaped curve is frequently obtained. This is depicted in Figure 18-4. A size 
distribution fitting this pattern is spoken of as a log-normal distribution, in contrast to the normal 
distribution shown in Figure 18-1. 
A log-normal distribution has several properties of interest. When the logarithm of the particle size is 
plotted against the cumulative percent frequency on a probability scale, a linear relationship is observed 
(Fig. 18-5). Such a linear plot has the distinct advantage that we can now characterize a log-normal 
distribution curve by means of two parameters—the slope of the line and a reference point. Knowing 
these two parameters, we can reproduce Figure 18-5and, by working back, can come up with a good 
approximation ofFigure 18-2, Figure 18-3, or Figure 18-4. The reference point used is the logarithm of 
the particle size equivalent to 50% on the probability scale, that is, the 50% size. This is known as 
the geometric mean diameter and is given the symbol dg. The slope is given by the geometric standard 
deviation, σg, which is the quotient of the ratio (84% undersize or 16% oversize)/(50% size) or (50% 
size)/(16% undersize or 84% oversize). This is simply the slope of the straight line. In Figure 18-5, for 
the number distribution data, dg = 7.1 µm andσg = 1.43. Sano et al.7 used a spherical agglomeration 
technique with soluble polymers and surfactants to increase the dissolution rate of the poorly soluble 
crystals of tolbutamide. The spherical particles were free flowing and yielded log probability plots as 
shown in Figure 18-5. The dissolution of the tolbutamide agglomerates followed the Hixon–Crowell cube 
root equation, as did the dissolution rate of tolbutamide crystals alone. 
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Fig. 18-3. Cumulative frequency plot of the data inTable 18-6. 
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Fig. 18-4. Frequency distribution plot of the data in Table 18-6 showing log-normal 

relation. 

Number and Weight Distributions 
The data in Table 18-6 are shown as a number distribution, implying that they were collected by a 
counting technique such as microscopy. Frequently, we are interested in obtaining data based on a 
weight, rather than a number, distribution. Although this can be achieved by using a technique such as 
sedimentation or sieving, it will be more convenient, if the number data are already at hand, to convert 
the number distribution to a weight distribution and vice versa. 

 

Fig. 18-5. Log probability plots of the data in Table 18-6. 

Two approaches are available. Provided the general shape and density of the particles are independent 
of the size range present in the sample, an estimate of the weight distribution of the data inTable 18-
6 can be obtained by calculating the values shown in columns 9 and 10. These are based on nd

3 in 
column 8. These data have been plotted alongside the number distribution data in Figures 18-2 and 18-
3, respectively. 
The significant differences in the two distributions are apparent, even though they relate to the same 
sample. For example, in Figure 18-3, only 12% of the sample by number is greater than 11 µm, yet 
these same particles account for 42% of the total weight of the particles. For this reason, it is important 
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to distinguish carefully between size distributions on a weight and a number basis. Weight distributions 
can also be plotted in the same manner as the number distribution data, as seen in Figures 18-
4 and 18-5. Note that inFigure 18-5 the slope of the line for the weight distribution is identical with that 
for the number distribution. Thus, the geometric standard deviation on a weight basis, σ′g, also equals 
1.43. Customarily, the prime is dropped because the value is independent of the type of distribution. The 
geometric mean diameter (the particle size at the 50% probability level) on a weight basis, d′g, is 10.4 
µm, whereas dg = 7.1 µm. 
Provided the distribution is log-normal, the second approach is to use one of the equations developed 
by Hatch 
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and Choate.8 By this means, it is possible to convert number distributions to weight distributions with a 
minimum of calculation. In addition, a particular average can be readily computed by use of the relevant 
equation. The Hatch–Choate equations are listed in Table 18-7. 

Table 18-7 Hatch–Choate Equations for Computing Statistical Diameters from 

Number and Weight Distributions 

Diameter Number Distribution Weight Distribution 

Length-number 

mean 

log dln = log dg + 1.151 

log
2
 σg 

log dln = log dg′ - 5.757 

log
2
 σg 

Surface-number 

mean 

log dsn = log dg + 2.303 

log
2
 σg 

log dsn = log dg′ - 4.606 

log
2
 σg 

Volume-number 

mean 

log dvn = log dg + 3.454 

log
2
 σg 

log dvn = log dg′ - 3.454 

log
2
 σg 

Volume-surface 

mean 

log dvs = log dg + 5.757 

log
2
 σg 

log dvs = log dg′ - 1.151 

log
2
 σg 

Weight-moment 

mean 

log dwm = log dg + 

8.059 log
2
σg 

log dwm = log dg′ + 

1.151 log
2
 σg 

 

Example 18-1 

Using Distribution Data 

From the number distribution data in Table 18-6 and Figure 18-5, it is found that dg = 7.1 µm 
and σg = 1.43, or log σg = 0.1553. Using the relevant Hatch–Choate equation, 
calculate dln and d′g. 
The equation for the length-number mean, dln, is 

 
To calculate d′g, we must substitute into the following Hatch–Choate equation: 
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or 

 
One can also use an equation suggested by Rao,9 

 
to readily obtain d′g knowing dg and σg. In this example, 

 
The student should confirm that substitution of the relevant data into the remaining Hatch–

Choate equations in Table 18-7 yields the following statistical diameters: 

 

Particle Number 
A significant expression in particle technology is the number of particles per unit weight, N, which is 
expressed in terms of dvn. 
The number of particles per unit weight is obtained as follows. Assume that the particles are spheres, 
the volume of a single particle is π d3vn/6, and the mass (volume × density) is (π dvn3ρ)/6 g per particle. 

The number of particles per gram is then obtained from the proportion 

 
and 

 
Example 18-2 

Number of Particles 

The mean volume number diameter of the powder, the data for which are given in Table 18-4, 
is 2.41 µm, or 2.41 × 10-4cm. If the density of the powder is 3.0 g/cm3, what is the number of 
particles per gram? 
We have 

 

Methods for Determining Particle Size 
Many methods are available for determining particle size. Only those that are widely used in 
pharmaceutical practice and are typical of a particular principle are presented. For a detailed discussion 
of the numerous methods of particle size analysis, consult the work by Edmundson5 and Allen10 and 
the references given there to other sources. The methods available for determining the size 
characteristics of submicrometer particles were reviewed by Groves.11 
Microscopy, sieving, sedimentation, and the determination of particle volume are discussed in the 
following section. None of the measurements are truly direct methods. Although the microscope allows 
the observer to view the actual particles, the results obtained are probably no more ―direct‖ than those 

resulting from other methods because only two of the three particle dimensions are ordinarily seen. The 
sedimentation methods yield a particle size relative to the rate at which particles settle through a 
suspending medium, a measurement important in the development of emulsions and suspensions. The 
measurement of particle volume, using an 
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apparatus called the Coulter counter, allows one to calculate an equivalent volume diameter. 
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However, the technique gives no information as to the shape of the particles. Thus, in all these cases, 
the size may or may not compare with that obtained by the microscope or by other methods; the size is 
most directly applicable to the analysis for which it is intended. A guide to the range of particle sizes 
applicable to each method is given in Figure 18-6. 

 

Fig. 18-6. Approximate size ranges of methods used for particle-size and specific-

surface analysis. 

Optical Microscopy 
It should be possible to use the ordinary microscope for particle-size measurement in the range of 0.2 to 
about 100 µm. According to the microscopic method, an emulsion or suspension, diluted or undiluted, is 
mounted on a slide or ruled cell and placed on a mechanical stage. The microscope eyepiece is fitted 
with a micrometer by which the size of the particles can be estimated. The field can be projected onto a 
screen where the particles are measured more easily, or a photograph can be taken from which a slide 
is prepared and projected on a screen for measurement. 
The particles are measured along an arbitrarily chosen fixed line, generally made horizontally across the 
center of the particle. Popular measurements are the Feret diameter, the Martin diameter,12 and 
the projected area diameter, all of which can be defined by reference to Figure 18-7, as suggested by 
Allen.13 Martin's diameter is the length of a line that bisects the particle image. The line can be drawn in 
any direction but must be in the same direction for all particles measured. The Martin diameter is 
identified by the number 1 inFigure 18-7. Feret's diameter, corresponding to the number 2 in the figure, 
is the distance between two tangents on opposite sides of the particle parallel to some fixed direction, 
the y direction in the figure. The third measurement, number 3 in Figure 18-7, is the projected area 
diameter. It is the diameter of a circle with the same area as that of the particle observed perpendicular 
to the surface on which the particle rests. 
A size–frequency distribution curve can be plotted as in Figure 18-1for the determination of the 
statistical diameters of the distribution. Electronic scanners have been developed to remove the 
necessity of measuring the particles by visual observation. 
Prasad and Wan14 used video recording equipment to observe, record, store, and retrieve particle-size 
data from a microscopic examination of tablet excipients, including microcrystalline cellulose, sodium 
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carboxymethylcellulose, sodium starch glycolate, and methylcellulose. The projected area of the particle 
profile, Feret's diameter, and various shape factors (elongation, bulkiness, and surface factor) were 
P.451 
 
determined. The video recording technique was found to be simple and convenient for microscopic 
examination of excipients. 

 

Fig. 18-7. A general diagram providing definitions of the Feret, Martin, and projected 

diameters. (From T. Allen,Particle Size Measurements, 2nd Ed., Chapman Hall, 

London, 1974, p. 131. With permission.) 

A disadvantage of the microscopic method is that the diameter is obtained from only two dimensions of 
the particle: length and breadth. No estimation of the depth (thickness) of the particle is ordinarily 
available. In addition, the number of particles that must be counted (300–500) to obtain a good 
estimation of the distribution makes the method somewhat slow and tedious. Nonetheless, microscopic 
examination (photomicrographs) of a sample should be undertaken even when other methods of 
particle-size analysis are being used, because the presence of agglomerates and particles of more than 
one component may often be detected. 
Sieving 
This method uses a series of standard sieves calibrated by the National Bureau of Standards. Sieves 
are generally used for grading coarser particles; if extreme care is used, however, they can be 
employed for screening material as fine as 44 µm (No. 325 sieve). Sieves produced by photoetching 
and electroforming techniques are available with apertures from 90 µm to as low as 5 µm. According to 
the method of the U. S. Pharmacopeia for testing powder fineness, a mass of sample is placed on the 
proper sieve in a mechanical shaker. The powder is shaken for a definite period of time, and the 
material that passes through one sieve and is retained on the next finer sieve is collected and weighed. 
Another approach is to assign the particles on the lower sieve with the arithmetic or geometric mean 
size of the two screens. Arambulo and Deardorff15 used this method of size classification in their 
analysis of the average weight of compressed tablets. Frequently the powder is assigned the mesh 
number of the screen through which it passes or on which it is retained. King and Becker16 expressed 
the size ranges of calamine samples in this way in their study of calamine lotion. 
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When a detailed analysis is desired, the sieves can be arranged in a nest of about five with the coarsest 
at the top. A carefully weighed sample of the powder is placed on the top sieve, and after the sieves are 
shaken for a predetermined period of time, the powder retained on each sieve is weighed. Assuming a 
log-normal distribution, one plots the cumulative percent by weight of powder retained on the sieves on 
the probability scale against the logarithm of the arithmetic mean size of the openings of each of two 
successive screens. As illustrated in Figure 18-5, the geometric mean weight diameter, d′g, and the 
geometric standard deviation, σg, can be obtained directly from the straight line. 
According to Herdan,17 sieving errors can arise from a number of variables including sieve loading and 
duration and intensity of agitation. Fonner et al.18 demonstrated that sieving can cause attrition of 
granular pharmaceutical materials. Care must be taken, therefore, to ensure that reproducible 
techniques are employed so that different particle-size distributions between batches of material are not 
due simply to different sieving conditions. 
Sedimentation 
The application of ultracentrifugation to the determination of the molecular weight of high polymers has 
already been discussed. The particle size in the subsieve range can be obtained by gravity 
sedimentation as expressed in Stokes's law, 

 
or 

 
where v is the rate of settling, h is the distance of fall in time t, dst is the mean diameter of the particles 
based on the velocity of sedimentation, ρs is the density of the particles and ρ0 that of the dispersion 
medium, g is the acceleration due to gravity, and η0 is the viscosity of the medium. The equation holds 
exactly only for spheres falling freely without hindrance and at a constant rate. The law is applicable to 
irregularly shaped particles of various sizes as long as one realizes that the diameter obtained is a 
relative particle size equivalent to that of sphere falling at the same velocity as that of the particles under 
consideration. The particles must not be aggregated or clumped together in the suspension because 
such clumps would fall more rapidly than the individual particles and erroneous results would be 
obtained. The proper deflocculating agent must be found for each sample that will keep the particles 
free and separate as they fall through the medium. 
Example 18-3 

Stokes Diameter 

A sample of powdered zinc oxide, density 5.60 g/cm3, is allowed to settle under the 
acceleration of gravity, 981 cm/sec2, at 25°C. The rate of settling, v, is 7.30 × 10-3cm/sec; the 
density of the medium is 1.01 g/cm3, and its viscosity is 1 centipoise = 0.01 poise or 0.01 
g/cm sec. Calculate the Stokes diameter of the zinc oxide powder. 
We have 

 

For Stokes's law to apply, a further requirement is that the flow of dispersion medium around the particle 
as it sediments is laminar orstreamline. In other words, the rate of sedimentation of a particle must not 
be so rapid that turbulence is set up, because this in turn will affect the sedimentation of the particle. 
Whether the flow is turbulent or laminar is indicated by the dimensionless Reynolds number, Re, which 
is defined as 

 
where the symbols have the same meaning as in equation (18-5). According to Heywood,19 Stokes's 
law cannot be used if 
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Re is greater than 0.2 because turbulence appears at this value. On this basis, the limiting particle size 
under a given set of conditions can be calculated as follows. 
Rearranging equation (18-7) and combining it with equation (18-5)gives 

 
and thus 

 
Under a given set of density and viscosity conditions, equation (18-9)allows calculation of the maximum 
particle diameter whose sedimentation will be governed by Stokes's law, that is, when Redoes not 
exceed 0.2. 
Example 18-4 

Largest Particle Size 

A powdered material, density 2.7 g/cm3, is suspended in water at 20°C. What is the size of 
the largest particle that will settle without causing turbulence? The viscosity of water at 20°C 
is 0.01 poise, or g/cm sec, and the density is 1.0 g/cm3. 
From equation (18-9), 

 

Example 18-5 

Particle Size, Setting, and Viscosity 

If the material used in Example 18-4 is now suspended in a syrup containing 60% by weight 
of sucrose, what will be the critical diameter, that is, the maximum diameter for whichRe does 
not exceed 0.2? The viscosity of the syrup is 0.567 poise, and the density is 1.3 g/cm3. 
We have 

 

Several methods based on sedimentation are used. Principal among these are the pipette method, the 
balance method, and the hydrometer method. Only the first technique is discussed here because it 
combines ease of analysis, accuracy, and economy of equipment. 
The Andreasen apparatus is shown in Figure 18-8. It usually consists of a 550 mL vessel containing a 
10 mL pipette sealed into a ground-glass stopper. When the pipette is in place in the cylinder, its lower 
tip is 20 cm below the surface of the suspension. 
The analysis is carried out in the following manner. A 1% or 2% suspension of the particles in a medium 
containing a suitable deflocculating agent is introduced into the vessel and brought to the 550 mL mark. 
The stoppered vessel is shaken to distribute the particles uniformly throughout the suspension, and the 
apparatus, with pipette in place, is clamped securely in a constant-temperature bath. At various time 
intervals, 10 mL samples are withdrawn and discharged by means of the two-way stopcock. The 
samples are evaporated and weighed or analyzed by other appropriate means, correcting for the 
deflocculating agent that has been added. 
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Fig. 18-8. Andreasen apparatus for determining particle size by the gravity 

sedimentation method. 

The particle diameter corresponding to the various time periods is calculated from Stokes's law, with h in 
equation (18-6) being the height of the liquid above the lower end of the pipette at the time each sample 
is removed. The residue or dried sample obtained at a particular time is the weight fraction having 
particles of sizes less than the size obtained by the Stokes-law calculation for that time period of settling. 
The weight of each sample residue is therefore called the weight undersize, and the sum of the 
successive weights is known as the cumulative weight undersize. It can be expressed directly in weight 
units or as percentage of the total weight of the final sediment. Such data are plotted in Figures 18-
2, 18-3 and 18-4. The cumulative percentage by weight undersize can then be plotted on a probability 
scale against the particle diameter on a log scale, as inFigure 18-5, and the statistical diameters 
obtained as explained previously. 
Particle Volume Measurement 
A popular instrument for measuring the volume of particles is the Coulter counter (Fig. 18-9). This 
instrument operates on the principle that when a particle suspended in a conducting liquid passes 
through a small orifice on either side of which are electrodes, a change in electric resistance occurs. In 
practice, a known volume of a dilute suspension is pumped through the orifice. Provided the suspension 
is sufficiently dilute, the particles pass through essentially one at a time. A constant voltage is applied 
across the electrodes to produce a current. As the particle travels through the orifice, it 
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displaces its own volume of electrolyte, and this results in an increased resistance between the two 
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electrodes. The change in resistance, which is related to the particle volume, causes a voltage pulse 
that is amplified and fed to a pulse-height analyzer calibrated in terms of particle size. The instrument 
records electronically all those particles producing pulses that are within two threshold values of the 
analyzer. By systematically varying the threshold settings and counting the number of particles in a 
constant sample size, it is possible to obtain a particle-size distribution. The instrument is capable of 
counting particles at the rate of approximately 4000 per second, and so both gross counts and particle-
size distributions are obtained in a relatively short period of time. The data may be readily converted 
from a volume distribution to a weight distribution. 

 

Fig. 18-9. Schematic diagram of a Coulter counter, used to determine particle volume. 

The Coulter counter has been used to advantage in the pharmaceutical sciences to study particle 
growth and dissolution20,21 and the effect of antibacterial agents on the growth of microorganisms.22 
The use of the Coulter particle-size analyzer together with a digital computer was reported by Beaubien 
and Vanderwielen23 for the automated particle counting of milled and micronized drugs. Samples of 
spectinomycin hydrochloride and a micronized steroid were subjected to particle-size analysis together 
with polystyrene spheres of 2.0 to 80.0 µm diameter, which were used to calibrate the apparatus. The 
powders showed log-normal distributions and were well characterized by geometric volume mean 
diameters and geometric standard deviations. Accurate particle sizes were obtained between 2 and 80 
µm diameter with a precision of about 0.5 µm. The authors concluded that the automated Coulter 
counter was quite satisfactory for quality control of pharmaceutical powders. The Coulter particle 
counter was used by Ismail and Tawashi24 to obtain size distributions of the mineral part of human 
kidney (urinary) stones and to determine whether there is a critical size range for stone formation. The 
study provided a better understanding of the clustering process and the packing of the mineral 
components of renal stones. 
Beckman Coulter also manufactures a submicron-particle sizing instrument, the Beckman Coulter Model 
N5, for analyzing particles in the size range of 0.0033 to 0.3 µm. By the use of photon correlation 
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spectroscopy, the instrument senses the Brownian motion of the particles in suspension. The smaller a 
particle, the faster it moves by Brownian motion. A laser beam passes through the sample and a sensor 
detects the light scattered by the particles undergoing Brownian motion. The Beckman Coulter Model 
N5 instrument provides not only particle-size and size distribution data but also molecular weights and 
diffusion coefficients. Submicron size determination is important in pharmacy in the analysis of 
microemulsions, pigments and dyes, colloids, micelles and solubilized systems, liposomes, and 
microparticles. 
An investigation of contaminant particulate matter in parenteral solutions for adherence to the standards 
set by the 1986 ItalianPharmacopóeia was conducted by Signoretti et al.25 They studied the number 
and nature of the particulates in 36 large-volume injectable solutions using scanning electron 
microscopy and x-ray analysis. About one fifth of the samples showed a considerable number of 
particles of sizes greater than 20 µm in diameter. The particles were identified as textile fibers, cellulose, 
plastic material, and contaminants from the manufacturing and packaging processes, such as pieces of 
rubber and bits of metal. Because of their number, size, shape, surface properties, and chemical nature, 
these contaminants can cause vascular occlusions and inflammatory, neoplastic, and allergic reactions. 
Embolisms may occur with particles larger than 5 µm. 
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According to the standards of the Italian Pharmacopóeia for parenteral solutions of greater than 100 mL, 
no more than 100 particles 5 µm and larger and no more than four particles 20 µm in diameter and 
larger may be present in each milliliter of solution. These workers found that a considerable number of 
the manufacturers failed to produce parenteral preparations within the limits of the Pharmacopóeia, the 
contaminants probably occurring in most cases from filters, clothing, and container seals. 
In the preparation of indomethacin sustained-release pellets, Li et al.26 used a Microtrac particle-size 
analyzer (Leeds and Northrup Instruments) to determine the particle size of indomethacin as obtained 
from the manufacturer and as two types of micronized powder. The powders were also examined under 
a microscope with a magnification of 400×, and photomicrographs were taken with a Polaroid SX-70 
camera. Pellets (referred to as IS pellets) containing indomethacin and Eudragit S-100 were prepared 
using a fluid bed granulator or a Wurster column apparatus. Eudragit (Röhm Pharma) is an acrylic 
polymer for the enteric coating of tablets, capsules, and pellets. Its surface properties and chemical 
structure as a film coating polymer were reviewed by Davies et al.27 Sieve analysis with U.S. standard 
sieves Nos. 12, 14, 16, 18, 20, 25, and 35 was used to determine the particle-size distribution of the IS 
pellets. The yield of IS pellets depended greatly on the particle size of the indomethacin powder. 
Batches using two micronized powders (average diameter of 3.3 and 6.4 µm, respectively) produced a 
higher yield of the IS pellets than did the original indomethacin powder (40.6 µm) obtained directly from 
the drug manufacturer. Davies et al.27 concluded that both the average particle diameter and the 
particle-size distribution of the indomethacin powder must be considered for maximum yield of the 
sustained-release pellets. 
Carli and Motta28 investigated the use of microcomputerized mercury porosimetry to obtain particle-size 
and surface area distributions of pharmaceutical powders. Mercury porosimetry gives the volume of the 
pores of a powder, which is penetrated by mercury at each successive pressure; the pore volume is 
converted into a pore-size distribution. The total surface area and particle size of the powder can also be 
obtained from the mercury porosimetry data. 
Particle Shape and Surface Area 
Knowledge of the shape and the surface area of a particle is desirable. The shape affects the flow and 
packing properties of a powder as well as having some influence on the surface area. The surface area 
per unit weight or volume is an important characteristic of a powder when one is undertaking surface 
adsorption and dissolution rate studies. 
Particle Shape 
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A sphere has minimum surface area per unit volume. The more asymmetric a particle, the greater is the 
surface area per unit volume. As discussed previously, a spherical particle is characterized completely 
by its diameter. As the particle becomes more asymmetric, it becomes increasingly difficult to assign a 
meaningful diameter to the particle—hence, as we have seen, the need for equivalent spherical 
diameters. It is a simple matter to obtain the surface area or volume of a sphere because for such a 
particle 

 
and 

 
where d is the diameter of the particle. The surface area and volume of a spherical particle are therefore 
proportional to the square and cube, respectively, of the diameter. To obtain an estimate of the surface 
or volume of a particle (or collection of particles) whose shape is not spherical, however, one must 
choose a diameter that is characteristic of the particle and relate this to the surface area or volume 
through a correction factor. Suppose the particles are viewed microscopically, and it is desired to 
compute the surface area and volume from the projected diameter, dp, of the particles. The square and 
cube of the chosen dimension (in this case, dp) are proportional to the surface area and volume, 
respectively. By means of proportionality constants, we can then write 

 
where αs is the surface area factor and ds is the equivalent surface diameter. For volume we write 

 
where αv is the volume factor and dv is the equivalent volume diameter. The surface area and volume 
―shape factors‖ are, in reality, the ratio of one diameter to another. Thus, for a sphere, αs = π ds2/dp2 = 
3.142 and αv = π dv3/6 dp3 = 0.524. There are as many of these volume and shape factors as there are 
pairs of equivalent diameters. The ratio αs/αv is also used to characterize particle shape. When the 
particle is spherical, αs/αv = 6.0. The more asymmetric the particle, the more this ratio exceeds the 
minimum value of 6. 
Specific Surface 
The specific surface is the surface area per unit volume, Sv, or per unit weight, Sw, and can be derived 
from equations (18-12) and (18-13). Taking the general case, for asymmetric particles where the 
characteristic dimension is not yet defined, 

 
P.455 
 
 
where n is the number of particles. The surface area per unit weight is therefore 

 
where ρ is the true density of the particles. Substituting for equation(18-14) in (18-15) leads to the 
general equation 

 
where the dimension is now defined as dvs, the volume–surface diameter characteristic of specific 
surface. When the particles are spherical (or nearly so), equation (18-16) simplifies to 

 
because αs/αv = 6.0 for a sphere. 
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Example 18-6 

Surface Area 

What are the specific surfaces, Sw and Sv, of particles assumed to be spherical in which ρ = 

3.0 g/cm3 and dvsfrom Table 18-5 is 2.57 µm? 
We have 

 

Methods for Determining Surface Area 
The surface area of a powder sample can be computed from knowledge of the particle-size distribution 
obtained using one of the methods outlined previously. Two methods are commonly available that 
permit direct calculation of surface area. In the first, the amount of a gas or liquid solute that 
is adsorbed onto the sample of powder to form a monolayer is a direct function of the surface area of the 
sample. The second method depends on the fact that the rate at which a gas or liquid permeates a bed 
of powder is related, among other factors, to the surface area exposed to the permeant. 
Adsorption Method 
Particles with a large specific surface are good adsorbents for the adsorption of gases and of solutes 
from solution. In determining the surface of the adsorbent, the volume in cubic centimeters of gas 
adsorbed per gram of adsorbent can be plotted against the pressure of the gas at constant temperature 
to give a type II isothermas shown in Figure 18-10. 
The adsorbed layer is monomolecular at low pressures and becomes multimolecular at higher 
pressures. The completion of the monolayer of nitrogen on a powder is shown as point B in Figure 18-
10. The volume of nitrogen gas, Vm, in cm3 that 1 g of the powder can adsorb when the monolayer is 
complete is more accurately given by using the Brunaver, Emmett, and Teller (BET) equation, which can 
be written as 

 

Fig. 18-10. Isotherm showing the volume of nitrogen adsorbed on a powder at 

increasing pressure ratio. Point B represents the volume of adsorbed gas 

corresponding to the completion of a monomolecular film. Key: STP = standard 

temperature and pressure. 
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where V is the volume of gas in cm3 adsorbed per gram of powder at pressure p, p0 is the saturation 
vapor pressure of liquefied nitrogen at the temperature of the experiment, and b is a constant that 
expresses the difference between the heat of adsorption and heat of liquefaction of the adsorbate 
(nitrogen). Note that at p/p0 = 1, the vapor pressure, p, is equal to the saturation vapor pressure. 
An instrument used to obtain the data needed to calculate surface area and pore structure of 
pharmaceutical powders is the Quantasorb QS-16, manufactured by the Quantachrome Corporation 
(Boynton, FL). Absorption and desorption of nitrogen gas on the powder sample is measured with a 
thermal conductivity detector when a mixture of helium and nitrogen is passed through a cell containing 
the powder. Nitrogen is the absorbate gas; helium is inert and is not adsorbed on the powder surface. A 
Gaussian or bell-shaped curve is plotted on a strip-chart recorder, the signal height being proportional to 
the rate of absorption or desorption of nitrogen and the area under the curve being proportional to the 
gas adsorbed on the particles. Quantasorb and similar instruments have replaced the older vacuum 
systems constructed of networks of glass tubing. These required long periods of time to equilibrate and 
were subject to leakage at valves and breaks in the glass lines. The sensitivity of the new instrument is 
such that small powder samples can be analyzed. Quantasorb's versatility allows the use of a number of 
individual gases or mixtures of gases as adsorbates over a range of temperatures. The instrument can 
be used to measure the true density of powdered material and to obtain pore-size and pore-volume 
distributions. The characteristics of porous materials and the method of analysis are discussed in the 
following sections. 
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Fig. 18-11. A linear plot of the Brunaver, Emmett, and Teller (BET) equation for the 

adsorption of nitrogen on a powder. 

Instead of the graph shown in Figure 18-10, a plot of p/V(p0 - p) against p/p0, as shown in Figure 18-11, 
is ordinarily used to obtain a straight line, the slope and intercept of which yield the values b andVm. The 
specific surface of the particles is then obtained from 
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where M/σ is the molar volume of the gas, 22,414 cm3/mole at standard temperature and pressure 
(STP), and the factor 104 is included in the denominator to convert square centimeters to square 
meters. N is Avogadro's number, 6.02 × 1023 molecules/mole, andAm is the area of a single close-
packed nitrogen molecule adsorbed as a monolayer on the surface of the particles. Emmett and 
Brunauer29 suggested that the value of Am for nitrogen be calculated from the formula 

 
where M is the molecular weight, 28.01 g/mole, of N2; σ is the density, 0.81 g/cm3, of N2 at its boiling 
point, 77 K (-196°C); and N is Avogadro's number. The quantity 1.091 is a packing factor for the 
nitrogen molecules on the surface of the adsorbent. We have 

 
Am for liquid nitrogen has been obtained by several methods and is generally accepted as 16.2 Å2, or 
16.2 × 10-16 cm2. The specific surface is calculated from equation (18-19) and is expressed in square 
meters per gram. 
Experimentally, the volume of nitrogen that is adsorbed by the powder contained in the evacuated glass 
bulb of the Quantasorb or similar surface-area apparatus is determined at various pressures and the 
results are plotted as shown in Figure 18-11. The procedure was developed by Brunauer, Emmett, and 
Teller30 and is commonly known as the BET method. It is discussed in some detail by Hiemenz and by 
Allen.31 Swintosky et al.32 used the procedure to determine the surface area of pharmaceutical 
powders. They found the specific surface of zinc oxide to be about 3.5 m2/g; the value for barium sulfate 
is about 2.4 m2/g. 
Example 18-7 

Specific Surface 

Using the Quantasorb apparatus, a plot of p/V(p0 - p) versusp/p0 was obtained as shown 
in Figure 18-11 for a new antibiotic powder. Calculate Sw, the specific surface of the powder, 
in m2/g. The data can be read from the graph to obtain the following values: 

 
Following the BET equation (18-18) and using linear regression, the intercept, 1/(Vmb), is I = 
0.00198 and the slope (b - 1)/(Vmb) is S = 0.67942. By rearranging equation (18-18), we 
find Vm: 

 
The specific surface, Sw, is obtained using equation (18-19): 

 

Assuming that the particles are spherical, we can calculate the mean volume–surface diameter by use 
of equation (18-17): 
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where ρ is the density of the adsorbent and Sw is the specific surface in square centimeters per gram of 
adsorbent. Employing this method, Swintosky et al.32 found the mean volume–surface diameter of zinc 
oxide particles to be 0.3 µm. 
Air Permeability Method 
The principal resistance to the flow of a fluid such as air through a plug of compacted powder is the 
surface area of the powder. The greater is the surface area per gram of powder, Sw, the greater is the 
resistance to flow. Hence, for a given pressure drop across the plug, permeability is inversely 
proportional to specific surface; measurement of the former provides a means of estimating this 
parameter. From equation (18-16) or (18-17), it is then possible to compute dvs. 
A plug of powder can be regarded as a series of capillaries whose diameter is related to the average 
particle size. The 
P.457 
 
internal surface of the capillaries is a function of the surface area of the particles. According to Poiseuille 
equation, 

 

Fig. 18-12. The Fisher subsieve sizer. An air pump generates air pressure to a 

constant head by means of the pressure regulator. Under this head, the air is dried and 

conducted to the powder sample packed in the tube. The flow of air through the 

powder bed is measured by means of a calibrated manometer and is proportional to 

the surface area or the average particle diameter. 

 
where V is the volume of air flowing through a capillary of internal diameter d and length l in t seconds 
under a pressure difference of ΔP. The viscosity of the fluid (air) is η poise. 
In practice, the flow rate through the plug, or bed, is also affected by (a) the degree of compression of 
the particles and (b) the irregularity of the capillaries. The more compact the plug, the lower is 
theporosity, which is the ratio of the total space between the particles to the total volume of the plug. 
The irregularity of the capillaries means that they are longer than the length of the plug and are not 
circular. 
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The Kozeny–Carman equation, derived from the Poiseuille equation, is the basis of most air 
permeability methods. Stated in one form, it is 

 
where A is the cross-sectional area of the plug, K is a constant (usually 5.0 ± 0.5) that takes account of 
the irregular capillaries, and ε is the porosity. The other terms are as defined previously. 
A commercially available instrument is the Fisher subsieve sizer. The principle of its operation is 
illustrated in Figure 18-12. This instrument was modified by Edmundson33 to improve its accuracy and 
precision. 
Equation (18-22) apparently takes account of the effect of porosity onSw or dvs. It is frequently observed, 
however, that dvs decreases with decreasing porosity. This is especially true of pharmaceutical powders 
that have diameters of a few micrometers. It is customary, therefore, in these cases to quote the 
minimum value obtained over a range of porosities as the diameter of the sample. This noncompliance 
with equation (18-22) probably arises from initial bridging of the particles in the plug to produce a 
nonhomogeneous powder bed.5 It is only when the particles are compacted firmly that the bed becomes 
uniform and dvs reaches a minimum value. 
Because of the simple instrumentation and the speed with which determinations can be made, 
permeability methods are widely used pharmaceutically for specific-surface determinations, especially 
when the aim is to control batch-to-batch variations. When using this technique for more fundamental 
studies, it would seem prudent to calibrate the instrument. 
Bephenium hydroxynaphthoate, official in the 1973 British Pharmaceutical Codex, is standardized by 
means of an air permeability method. The drug, used as an anthelmintic and administered as a 
suspension, must possess a surface area of not less than 7000 cm2/g. As the specific surface of the 
material is reduced, the activity of the drug also falls. 
Seth et al.34a studied the air permeability method of the U. S. Pharmacopeia, 20th edition, which used a 
Fisher subsieve sizer for determining the specific surface area of griseofulvin (also see U. S. 

Pharmacopeia34b). The authors suggested improvements in the method, principal among which was 
the use of a defined porosity, such as 0.50. This specified value is used in the ASTM Standard C-204–

79 (1979) for measuring the fineness of Portland cement. 
The volume surface diameter, dvs, and therefore the specific surface,Sw, or surface area per unit weight 
in grams [equation (18-19)] of a powder can be obtained by use of this instrument (see Fig. 18-12). It is 
based on measuring the flow rate of air through the powder sample. If the sample weight is made 
exactly equal to the density of the powder 
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sample, a more elaborate equation35,36 for the average particle diameter, dvs, is reduced to the simple 
expression 
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Fig. 18-13. Open hysteresis loop of an adsorption isotherm, presumably due to 

materials having “ink-bottle” pores, as shown in the inset. Key: STP = standard 

temperature and pressure. 

 
where c is an instrument constant, L is the sample height in cm, A is the cross-sectional area of the 
sample holder in cm2, F is the pressure drop across a flowmeter resistance built into the instrument, 
and P is the air pressure as it enters the sample. The pressure (in cm of water) is measured with a water 
manometer rather than the better-known mercury manometer. 
Pore Size 
Materials of high specific area may have cracks and pores that adsorb gases and vapors, such as 
water, into their interstices. Relatively insoluble powdered drugs may dissolve more or less rapidly in 
aqueous medium depending on their adsorption of moisture or air. Other properties of pharmaceutical 
importance, such as the dissolution rate of drug from tablets, may also depend on the adsorption 
characteristics of drug powders. The adsorption isotherms for porous solids display hysteresis, as seen 
in Figures 18-13 and 18-14, in which the desorption or downcurve branch lies above and to the left of 
the adsorption or upcurve. In Figure 18-13, the open hysteresis loop is due to a narrow-neck or ―ink-
bottle‖ type of pore (see the inset in Fig. 18-13) that traps adsorbate, or to irreversible changes in the 
pore when adsorption of the gas has occurred so that desorption follows a different pattern than 
adsorption. The curve of Figure 18-14 with its closed hysteresis loop is more difficult to account for. 
Notice in Figures 18-13 and 18-14that at each relative pressure p/p0, there are two volumes (at 
pointsa and b in Fig. 18-14) corresponding to a relative pressure c. 
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The upcurves of Figures 18-13 and 18-14 correspond to gas adsorption into the capillaries and the 
downcurve to desorption of the gas. A smaller volume of gas is adsorbed during adsorption 
(point a of Fig. 18-14) than is lost during desorption (point b). Vapor condenses to a liquid in small 
capillaries at a value less than p0, the saturation vapor pressure, which can be taken as the vapor 
pressure at a flat surface. If the radius of the pore is r and the radius of the meniscus is R (Fig. 18-15, 
point a), p/p0 can be calculated using expression known as the Kelvin equation,* 
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Fig. 18-14. Closed hysteresis loop of the adsorption isotherm of a porous material. 

Atp/p0 = c on the curve of the loop, the volume of the pore is given by point a. At 

relative pressure c on the downcurve of the pore, volume is given by point b. 

where M is molecular weight of the condensing gas and ρ is its density at a particular 

temperature, M/σ is the molar volume of the fluid and γ is its surface tension, N is Avogadro's number, 
and k is the Boltzmann constant, 1.381 × 10-16 erg/deg molecule. If the condensing vapor is water with a 
density of 0.998 at 20°C and a surface tension of 72.8 ergs/cm2 and if the radius of the meniscus in the 
capillary R is 1.67 × 10-7 cm, we can calculate p/p0 to be 
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Fig. 18-15. (a) Pore into which vapor is condensing, corresponding to point a, c on 

the upcurve of Figure 18-14. Key: θa = advancing contact angle; r = pore radius; R= 

radius of meniscus. (b) Pore from which the liquid is vaporizing, corresponding to 

point b, c on the downcurve of Figure 18-14. Key: θd = receding or desorption contact 

angle; R and R are defined as in (a); c = condensed vapor on walls of the capillary. 

 
During adsorption, the capillary is filling (point a, c in Fig. 18-14) and the contact angle, θa (advancing 
contact angle), is greater than that during desorption, θd, at which time the capillary is emptying. The 
radius of the meniscus will be smaller in the receding stage than in the advancing stage because the 
capillary is partly filled with fluid from multilayer adsorption. This smaller receding contact angle means a 
smaller radius of the meniscus, as seen in Figure 18-15b, and p/p0 will decrease because R is in the 
denominator of the Kelvin equation, the right-hand side of which is negative. 
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Table 18-8 Water Adsorption and Desorption on a Clay as a Function of Relative 

Pressure, p/p0 
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  (1) p/p0 

(2) V1(Absorption) 

(mL/g) 

(3) V2(Desorption) 

(mL/g) 

(4) Radius 

(Å) 

(5) 

Cumulative 

Pore Volume 

(%) 

1 0.20 0.079 0.123 <6.7 54.9 

2 0.31 0.109 0.147 <9.2 65.6 

3 0.40 0.135 0.165 <11.7 73.7 

4 0.49 0.141 0.182 <15.1 81.3 

5 0.66 0.152 0.191 <30 85.3 

6 0.80 0.170 0.200 <48.4 89.3 

7 0.96 0.224 0.224 <265 100 

 

The Kelvin equation gives a reasonable explanation for the differences of p/p0 on adsorption and 
desorption and consequently provides for the existence of the hysteresis loop. The Kelvin equation, 
together with the hysteresis loops in adsorption–desorption isotherms (Fig. 18-14), can be used to 
compute the pore-size distribution.37 During desorption, at a given p/p0 value, water will condense only 
in pores of radius equal to or below the value given by the Kelvin equation. Water will evaporate from 
pores of larger radius. Thus, from the desorption isotherm, the volume of water retained at a given 
pressure p/p0 corresponds to the volume of pores having radius equal to or below the radius calculated 
from the Kelvin equation at this p/p0 value. 
Example 18-8 

Pore Radius 

Yamanaka et al.38 obtained experimental values for a water adsorption–desorption isotherm 
at 20°C on a clay. These values, which are given in Table 18-8, are selected from Figure 7 of 
their work.38 
(a) Compute the radius of pores corresponding to the relative pressures p/p0 given in Table 
18-8. 
(b) Assuming that all pores are of radius less than 265 Å, compute the cumulative percentage 
of pore volume with radii less than those found in part (a). 
(c) Compute the percentage of pore volume at 20°C with radii between 40 and 60 Å. 
(a) Using the Kelvin equation for p/p0 = 0.2, we obtain 

 
The results for the several p/p0 values are shown in the fourth column of Table 18-8. 
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(b, c) The total cumulative pore volume is 0.224 mL/g, corresponding to the intersection of the 
adsorption and desorption curves (row 7 in Table 18-8). It corresponds to 100% cumulative 
pore volume. Therefore, for, say, pores of radius less than 48.4 Å (Table 18-8, column 4, row 
6), the cumulative percentage of pore volume is 

 
where the value 0.200 mL/g is taken from the desorption isotherm (Table 18-8, column 3, row 
6). The results are given in column 5 of Table 18-8. 

Christian and Tucker39 made a careful and extensive study of pore models and concluded that a model 
that included a combination of cylindrical and slit-shaped pores provided the best quantitative fit of the 
data obtained on both the adsorption and desorption branches of the pore distribution plots. A 
modification of the BET equation assuming multilayer adsorption at the capillary walls has also been 
found to provide a satisfactory model for the hysteresis that occurs with porous solids.40 
The adsorption of water vapor, flavoring agents, perfumes, and other volatile substances into films, 
containers, and other polymeric materials used in pharmacy is important in product formulation and in 
the storage and use of drug products. Sadek and Olsen41showed that the adsorption isotherms for 
water vapor on methylcellulose, povidone, gelatin, and polymethylmethacrylate all exhibited hysteresis 
loops. Hydration of gelatin films was observed to be lowered by treatment with formaldehyde, which 
causes increased cross-linking in gelatin and a decrease in pore size. Povidone showed increased 
water adsorption on treatment with acetone, which enlarged pore size and increased the number of sites 
for water sorption. In a study of the action of tablet disintegrants, Lowenthal and Burress42 measured 
the mean pore diameter of tablets in air permeability apparatus. A linear correlation was observed 
between log mean pore diameter and tablet porosity, allowing a calculation of mean pore diameter from 
the more easily obtained tablet porosity. Gregg and Sing43 discussed pore size and pore-size 
distribution in some detail. 
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Derived Properties of Powders 
The preceding sections of this chapter have been concerned mainly with size distribution and surface 
areas of powders. These are the two fundamental properties of any collection of particles. There are, in 
addition, numerous derived properties that are based on these fundamental properties. Those of 
particular relevance to pharmacy are discussed in the remainder of this chapter. Very important 
properties, those of particle dissolution and dissolution rate, are subjects of separate chapters. 
Porosity 
Suppose a powder, such as zinc oxide, is placed in a graduated cylinder and the total volume is noted. 
The volume occupied is known as the bulk volume, Vb. If the powder is nonporous, that is, has no 
internal pores or capillary spaces, the bulk volume of the powder consists of the true volume of the solid 
particles plus the volume of the spaces between the particles. The volume of the spaces, known as 
the void volume, v, is given by the equation 

 
where Vp is the true volume of the particles. The method for determining the volume of the particles will 
be given later. 
The porosity or voids ε of the powder is defined as the ratio of the void volume to the bulk volume of the 

packing: 

 
Porosity is frequently expressed in percent, ε × 100. 
Example 18-9 

Calculate Porosity 
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A sample of calcium oxide powder with a true density of 3.203 and weighing 131.3 g was 
found to have a bulk volume of 82.0 cm3 when placed in a 100 mL graduated cylinder. 
Calculate the porosity. 
The volume of the particles is 

 
From equation (18-25), the volume of void space is 

 
and from equation (18-26) the porosity is 

 

Packing Arrangements 
Powder beds of uniform-sized spheres can assume either of two ideal packing arrangements: 
(a) closest or rhombohedral and (b)most open, loosest, or cubic packing. The theoretical porosity of a 
powder consisting of uniform spheres in closest packing is 26% and for loosest packing is 48%. The 
arrangements of spherical particles in closest and loosest packing are shown in Figure 18-16. 

 

Fig. 18-16. Schematic representation of particles arranged in (a) closest packing and 

(b) loosest packet. The dashed circle in (a) shows the position taken by a particle in a 

plan above that of the other three particles. 

The particles in real powders are neither spherical in shape nor uniform in size. It is to be expected that 
the particles of ordinary powders may have any arrangement intermediate between the two ideal 
packings of Figure 18-16, and most powders in practice have porosities between 30% and 50%. If the 
particles are of greatly different sizes, however, the smaller ones may shift between the larger ones to 
give porosities below the theoretical minimum of 26%. In powders containing flocculates or aggregates, 
which lead to the formation of bridges and arches in the packing, the porosity may be above the 
theoretical maximum of 48%. In real powder systems, then, almost any degree of porosity is possible. 
Crystalline materials compressed under a force of 100,000 lb/in.2 can have porosities of less than 1%. 
Densities of Particles 
Because particles may be hard and smooth in one case and rough and spongy in another, one must 
express densities with great care. Density is universally defined as weight per unit volume; the difficulty 
arises when one attempts to determine the volume of particles containing microscopic cracks, internal 
pores, and capillary spaces. 
For convenience, three types of densities can be defined43,44: (a)the true density of the material itself, 
exclusive of the voids and intraparticle pores larger than molecular or atomic dimensions in the crystal 
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lattices, (b) the granule density as determined by the displacement of mercury, which does not penetrate 
at ordinary pressures into pores smaller than about 10 µm, and (c) the bulk density as determined from 
the bulk volume and the weight of a dry powder in a graduated cylinder.* 
When a solid is nonporous, true and granule densities are identical, and both can be obtained by the 
displacement of helium or a liquid such as mercury, benzene, or water. When the material is porous, 
having an internal surface, the true density is best approximated by the displacement of helium, which 
penetrates into the smallest pores and is not adsorbed by the material. The density obtained by liquid 
displacement is considered as approximately equal to true density but may 
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differ from it somewhat when the liquid does not penetrate well into the pores. 
The methods for determining the various densities are now discussed. True density, ρ, is the density of 

the actual solid material. Methods for determining the density of nonporous solids by displacement in 
liquids in which they are insoluble are found in general pharmacy books. If the material is porous, as is 
the case with most powders, the true density can be determined by use of a helium densitometer, as 
suggested by Franklin.45 The volume of the empty apparatus (dead space) is first determined by 
introducing a known quantity of helium. A weighed amount of powder is then introduced into the sample 
tube, adsorbed gases are removed from the powder by an outgassing procedure, and helium, which is 
not adsorbed by the material, is again introduced. The pressure is read on a mercury manometer, and 
by application of the gas laws, the volume of helium surrounding the particles and penetrating into the 
small cracks and pores is calculated. The difference between the volume of helium filling the empty 
apparatus and the volume of helium in the presence of the powder sample yields the volume occupied 
by the powder. Knowing the weight of the powder, one is then able to calculate the true density. The 
procedure is equivalent to the first step in the BET method for determining the specific surface area of 
particles. 
The density of solids usually listed in handbooks is often determined by liquid displacement. It is the 
weight of the body divided by the weight of the liquid it displaces, in other words, the loss of weight of 
the body when suspended in a suitable liquid. For solids that are insoluble in the liquid and heavier than 
it, an ordinary pycnometer can be used for the measurement. For example, if the weight of a sample of 
glass beads is 5.0 g and the weight of water required to fill a pycnometer is 50.0 g, then the total weight 
would be 55.0 g. When the beads are immersed in the water and the weight is determined at 25°C, the 
value is 53.0 g, or a displacement of 2.0 cm3 of water, and the density is 5.0 g/2.00 cm3 = 2.5 g/cm3. 
The true density determined in this manner may differ slightly depending on the ability of the liquid to 
enter the pores of the particles, the possible change in the density of the liquid at the interface, and 
other complex factors. 
Because helium penetrates into the smallest pores and crevices (Fig. 18-17), it is generally conceded 
that the helium method gives the closest approximation to true density. Liquids such as water and 
alcohol are denied entrance into the smallest spaces, and liquid displacement accordingly gives a 
density somewhat smaller than the true value. True densities are given in Table 18-9 for some powders 
of pharmaceutical interest. 
Granule density, ρg, can be determined by a method similar to the liquid displacement method. Mercury 
is used because it fills the void spaces but fails to penetrate into the internal pores of the particles. The 
volume of the particles together with their intraparticle spacesthen gives the granule volume, and from a 
knowledge of the powder weight, one finds the granule density. Strickland et al.46 determined the 
granule density of tablet granulations by the mercury displacement method, using a specially designed 
pycnometer. A measure of true density was obtained by highly compressing the powders. The samples 
were compressed to 100,000 lb/in2, and the resulting tablets were weighed. The volumes of the tablets 
were computed after measuring the tablet dimensions with calipers. The weight of the tablet divided by 
the volume then gave the ―true‖ or high-compression density. 
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Fig. 18-17. Pores and crevices of a pharmaceutical granule. Water or mercury 

surrounds such a particle and rests only in the surface irregularities such as regions A 

and B. Helium molecules may enter deep into the cracks at points C, allowing 

calculation of true rather than granule density. 

The intraparticle porosity of the granules can be computed from a knowledge of the true and granule 
density. The porosity is given by the equation 

 
or 

 
where Vp is the true volume of the solid particles and Vg is the volume of the particles together with the 
intraparticle pores. 
Example 18-10 

Intraparticle Porosity 

The granule density, ρg, of sodium bicarbonate is 1.450 and the true density, ρ, is 2.033. 

Compute the intraparticle porosity. 
We have 

 

The granule densities and internal porosity or percent pore spaces in the granules, as obtained by 
Strickland et al.,46 are shown inTable 18-10. The difference in porosity depends on the method of 
granulation, as brought out in the table. 
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Table 18-9 True Density in g/cm
3
 of Solids Commonly Used in Pharmacy 
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Aluminum oxide 4.0 Mercuric chloride 5.44 

Benzoic acid 1.3 Mercuric iodide 6.3 

Bismuth subcarbonate 6.86 Mercuric oxide 11.1 

Bismuth subnitrate 4.9 Mercurous chloride 7.15 

Bromoform 2.9 Paraffin 0.90 

Calcium carbonate 

(calcite) 

2.72 Potassium bromide 2.75 

Calcium oxide 3.3 Potassium carbonate 2.29 

Chalk 1.8–

2.6 

Potassium chloride 1.98 

Charcoal (air free) 2.1–

2.3 

Potassium iodide 3.13 

Clay 1.8–

2.6 

Sand, fine dry 1.5 

Cork 0.24 Silver iodide 5.67 

Cotton 1.47 Silver nitrate 4.35 

Gamboge 1.19 Sodium borate, borax 1.73 

Gelatin 1.27 Sodium bromide 3.2 

Glass beads 2.5 Sodium chloride 2.16 

Graphite 2.3– Sucrose 1.6 
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2.7 

Kaolin 2.2–

2.5 

Sulfadiazine 1.50 

Magnesium carbonate 3.04 Sulfur, precipitated 2.0 

Magnesium oxide 3.65 Talc 2.6–

2.8 

Magnesium sulfate 1.68 Zinc oxide 

(hexagonal) 

5.59 

 

Bulk density, ρb, is defined as the mass of a powder divided by the bulk volume. A standard procedure 
for obtaining bulk density or its reciprocal, bulk specific volume, has been established.47 A sample of 
about 50 cm3 of powder that has previously been passed through a U. S. Standard No. 20 sieve is 
carefully introduced into a 100 mL graduated cylinder. The cylinder is dropped at 2 sec intervals onto a 
hard wood surface three times from a height of 1 in. The bulk density is then obtained by dividing the 
weight of the sample in grams by the final volume in cm3 of the sample contained in the cylinder. The 
bulk density does not actually reach a maximum until the container has been dropped or tapped some 
500 times; however, the three-tap method has been found to give the most consistent results among 
various laboratories. The bulk density of some pharmaceutical powders is compared with true and 
apparent densities in Table 18-11. The term ―light‖ as applied to pharmaceutical powders means low 

bulk density or large bulk volume, whereas ―heavy‖ signifies a powder of high bulk density or small 

volume. It should be noted that these terms have no relationship to granular or true densities. 

Table 18-10 Densities and Porosities of Tablet Granulations* 

Granulation 

“True” or High-

Compression 

Density (g/cm
3
) 

Granule Density by 

Mercury 

Displacement (g/cm
3
) 

Pore Space 

(Porosity) 

Sulfathiazole† 1.530 1.090 29 

Sodium 

bicarbonate† 

2.033 1.450 29 

Phenobarbital† 1.297 0.920 29 

Aspirin‡ 1.370 1.330 2.9 
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*From W. A. Strickland, Jr., L. W. Busse, and T. Higuchi, J. Am. Pharm. 

Assoc. Sci. Ed. 45, 482, 1956. With permission. 

†Granulation prepared by wet method using starch paste. 

‡Granulation prepared by dry method (slugging process). 

 

The bulk density of a powder depends primarily on particle-size distribution, particle shape, and the 
tendency of the particles to adhere to one another. The particles may pack in such a way as to leave 
large gaps between their surfaces, resulting in a light powder or powder of low bulk density. On the 
other hand, the smaller particles may shift between the larger ones to form a heavy powder or one of 
high bulk density. 
The interspace or void porosity of a powder of porous granules is the relative volume of interspace voids 
to the bulk volume of the powder, exclusive of the intraparticle pores. The interspace porosity is 
computed from a knowledge of 
P.464 
 
the bulk density and the granule density and is expressed by the equation 

Table 18-11 Comparison of Bulk Densities with True Densities 

  Bulk Density (g/cm
3
) True Density (g/cm

3
) 

Bismuth subcarbonate heavy 1.01 6.9* 

Bismuth subcarbonate light 0.22 6.9* 

Magnesium carbonate heavy 0.39 3.0* 

Magnesium carbonate light 0.07 3.0* 

Phenobarbital 0.34 1.3† 

Sulfathiazole 0.33 1.5† 

Talc 0.48 2.7* 
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*Density obtained by liquid displacement. 

†True density obtained by helium displacement. 

 

 

 
where Vb = w/ρb is the bulk volume and Vg = w/ρg is the granule volume, that is, the volume of the 
particles plus pores. 
The total porosity of a porous powder is made up of voids between the particles as well as pores within 
the particles. The total porosity is defined as 

 
where Vb is the bulk volume and Vp is the volume of the solid material. This equation is identical with 
that for nonporous powders [equation (18-26)]. As in the previous cases, Vp and Vb can be expressed in 
terms of powder weights and densities: 

 
and 

 
where w is the mass (―weight‖) of the powder, ρ is the true density, and ρb is the bulk density. 
Substituting these relationships into equation (18-31) gives for the total porosity 

 
or 

 
Example 18-11 

Bulk Density and Total Porosity 

The weight of a sodium iodide tablet was 0.3439 g and the bulk volume was measured by use 
of calipers and found to be 0.0963 cm3. The true density of sodium iodide is 3.667 g/cm3. 
What is the bulk density and the total porosity of the tablet? 
We have 
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In addition to supplying valuable information about tablet porosity and its evident relationship to tablet 
hardness and disintegration time, bulk density can be used to check the uniformity of bulk chemicals 
and to determine the proper size of containers, mixing apparatus, and capsules for a given mass of the 
powder. These topics are considered in subsequent sections of this chapter. 
In summary, the differences among the three densities (true, granule, and bulk) can be understood 
better by reference to their reciprocals: specific true volume, specific granule volume, and specific bulk 
volume. 
The specific true volume of a powder is the volume of the solid material itself per unit mass of powder. 
When the liquid used to measure it does not penetrate completely into the pores, the specific volume is 
made up of the volume per unit weight of the solid material itself and the small part of the pore volume 
within the granules that is not penetrated by the liquid. When the proper liquid is chosen, however, the 
discrepancy should not be serious. Specific granule volume is the volume of the solid and essentially all 
of the pore volume within the particles. Finally, specific bulk volume constitutes the volume per unit 
weight of the solid, the volume of theintraparticle pores, and the void volume or volume of interparticle 
spaces. 
Example 18-12 

Total Porosity 

The following data apply to a 1 g sample of a granular powder: 

 
(a) What are the specific true volume, V, the specific granule volume, Vg, and the specific bulk 
volume, Vb? 

 
(b) Compute the total porosity, εtotal, the interspace porosity, εinterspace, or void spaces between 
the particles, and the intraparticle porosity, εintraparticle, or pore spaces within the particles. 
We have 
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Thus, the solid constitutes 15% of the total bulk and 85% is made up of void space; 80% of 
the bulk is contributed by the voids between the particles and 5% of the total bulk by the 
pores and crevices within the particles. These pores, however, contribute 25% to the volume 
of granules, that is, particles plus pores. 
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Bulkiness 
Specific bulk volume, the reciprocal of bulk density, is often calledbulkiness or bulk. It is an important 
consideration in the packaging of powders. The bulk density of calcium carbonate can vary from 0.1 to 
1.3, and the lightest or bulkiest type would require a container about 13 times larger than that needed for 
the heaviest variety. Bulkiness increases with a decrease in particle size. In a mixture of materials of 
different sizes, however, the smaller particles shift between the larger ones and tend to reduce the 
bulkiness. 
Flow Properties 
A bulk powder is somewhat analogous to a non-Newtonian liquid, which exhibits plastic flow and 
sometimes dilatancy, the particles being influenced by attractive forces to varying degrees. Accordingly, 
powders may be free-flowing or cohesive (―sticky‖). Neumann48discussed the factors that affect the flow 
properties of powders. Of special significance are particle size, shape, porosity and density, and surface 
texture. Those properties of solids that determine the magnitude of particle–particle interactions were 
reviewed by Hiestand.49 
With relatively small particles (less than 10 µm), particle flow through an orifice is restricted because the 
cohesive forces between particles are of the same magnitude as gravitational forces. Because these 
latter forces are a function of the diameter raised to the third power, they become more significant as the 
particle size increases and flow is facilitated. A maximum flow rate is reached, after which the flow 
decreases as the size of the particles approaches that of the orifice.50 If a powder contains a 
reasonable number of small particles, the powder's flow properties may be improved be removing the 
―fines‖ or adsorbing them onto the larger particles. Occasionally, poor flow may result from the presence 
of moisture, in which case drying the particles will reduce the cohesiveness. A review by Pilpel51 deals 
with the various apparatus for the measurement of the properties of cohesive powders and the effects 
on cohesive powders of particle size, moisture, glidants, caking, and temperature. 
Dahlinder et al.52 reviewed the methods for evaluating flow properties of powders and granules, 
including the Hausner ratio or packed bulk density versus loose bulk density, the rate of tamping, the 
flow rate and free flow through an orifice, and a ―drained‖ angle of repose. The Hausner ratio, the free 

flow, and the angle of repose correlated well with one another and were applicable even for fairly 
cohesive tablet granulations. 
Elongated or flat particles tend to pack, albeit loosely, to give powders with a high porosity. Particles 
with a high density and a low internal porosity tend to possess free-flowing properties. This can be offset 
by surface roughness, which leads to poor flow characteristics due to friction and cohesiveness. 
Free-flowing powders are characterized by ―dustibility,‖ a term meant to signify the opposite of 

stickiness. Lycopodium shows the greatest degree of dustibility; if it is arbitrarily assigned a dustibility of 
100%, talcum powder has value of 57%, potato starch 27%, and fine charcoal 23%. Finely powdered 
calomel has a relative dustibility of 0.7%.48 These values should have some relation to the uniform 
spreading of dusting powders when applied to the skin, and stickiness, a measure of the cohesiveness 
of the particles of a compacted powder, should be of some importance in the flow of powders through 
filling machines and in the operation of automatic capsule machines. 
Poorly flowing powders or granulations present many difficulties to the pharmaceutical industry. The 
production of uniform tablet dosage units has been shown to depend on several granular properties. 
Arambulo and coworkers53 observed that as the granule size was reduced, the variation in tablet weight 
fell. The minimum weight variation was attained with granules having a diameter of 400 to 800 µm. As 
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the granule size was reduced further, the granules flowed less freely and the tablet weight variation 
increased. The particle-size distribution affects the internal flow and segregation of a granulation. 
Raff et al.54 studied the flow of tablet granulations. They found that internal flow and granule demixing 
(i.e., the tendency of the powder to separate into layers of different sizes) during flow through the hopper 
contribute to a decrease in tablet weight during the latter portion of the compression period. 
Hammerness and Thompson55observed that the flow rate of a tablet granulation increased with an 
increase in the quantity of fines added. An increase in the amount of lubricant also raised the flow rate, 
and the combination of lubricant and fines appeared to have a synergistic action. 
The frictional forces in a loose powder can be measured by theangle of repose, φ. This is the maximum 
angle possible between the surface of a pile of powder and the horizontal plane. If more material is 
added to the pile, it slides down the sides until the mutual friction of the particles, producing 
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a surface at an angle φ, is in equilibrium with the gravitational force. The tangent of the angle of repose 
is equal to the coefficient of friction, µ, between the particles: 

 
Hence, the rougher and more irregular the surface of the particles, the higher will be the angle of 
repose. This situation was observed by Fonner et al.,56 who, in studying granules prepared by five 
different methods, found the repose angle to be primarily a function of surface roughness. Ridgeway 
and Rupp57 studied the effect of particle shape on powder properties. Using closely sized batches of 
sand separated into different shapes, they showed that, with increasing departure from the spherical, 
the angle of repose increased while bulk density and flowability decreased. 
To improve flow characteristics, materials termed glidants are frequently added to granular powders. 
Examples of commonly used glidants are magnesium stearate, starch, and talc. Using a recording 
powder flowmeter that measured the weight of powder flowing per unit time through a hopper orifice, 
Gold et al.58 found the optimum glidant concentration to be 1% or less. Above this level, a decrease in 
flow rate was usually observed. No correlation was found between flow rate and repose angle. By 
means of a shear cell and a tensile tester, York59 was able to determine an optimum glidant 
concentration for lactose and calcium hydrogen phosphate powders. In agreement with the result of 
Gold et al.,58 the angle of repose was found to be unsuitable for assessing the flowability of the 
powders used. 
Nelson60 studied the repose angle of a sulfathiazole granulation as a function of average particle size, 
presence of lubricants, and admixture of fines. He found that, in general, the angle increased with 
decreasing particle size. The addition of talc in low concentration decreased the repose angle, but in 
high concentration it increased the angle. The addition of fines—particles smaller than 100 mesh—to 
coarse granules resulted in a marked increase of the repose angle. 
The ability of a powder to flow is one of the factors involving in mixing different materials to form a 
powder blend. Mixing, and the prevention of unmixing, is an important pharmaceutical operation 
involved in the preparation of many dosage forms, including tablets and capsules.61 Other factors 
affecting the mixing process are particle aggregation, size, shape, density differences, and the presence 
of static charge. Train62 and Fischer63 described the theory of mixing. 
Compaction: Compressed Tablets 
Neumann64 found that when powders were compacted under a pressure of about 5 kg/cm2, the 
porosities of the powders composed of rigid particles (e.g., sodium carbonate) were higher than the 
porosities of powders in closest packing, as determined by tapping experiments. Hence, these powders 
were dilatant, that is, they showed an unexpected expansion, rather than contraction, under the 
influence of stress. In the case of soft and spongy particles (e.g., kaolin), however, the particles 
deformed on compression, and the porosities were lower than after tapping the powder down to its 
condition of closest packing. Similar experiments might be conducted to determine the optimum 
condition for packing powders into capsules on the manufacturing scale. 
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Fig. 18-18. The influence of compressional force on the specific surface of a 

sulfathiazole granulation. (From T. Higuchi et al., J. Am. Pharm. Assoc. Sci. 

Ed. 41, 93, 1952; J. Am. Pharm. Assoc. Sci. Ed. 42, 1944, 1953; J. Am. Pharm. 

Assoc. Sci. Ed. 43, 344, 596, 685, 718, 1954; J. Am. Pharm. Assoc. Sci. Ed. 44, 223, 

1955; J. Am. Pharm. Assoc. Sci. Ed. 49, 35, 1960; J. Pharm. Sci. 52, 767, 1963.) 

The behavior of powders under compression is significant in pharmaceutical tableting. Although basic 
information can be obtained from the literature on powder metallurgy and the compression of metallic 
powders, Train,65 who performed some of the fundamental work in this area, pointed out that not all the 
theories developed for the behavior of metals will necessarily hold when applied to nonmetals. 
Much of the early work was carried out by Higuchi and associates,66who studied the influence of 
compression force on the specific surface area, granule density, porosity, tablet hardness, and 
disintegration time of pharmaceutical tablets. As illustrated in Figure 18-18, the specific surface of a 
sulfathiazole tablet granulation as determined by the BET method increased to a maximum and then 
decreased. The initial increase in surface area can be attributed to the formation of new surfaces as the 
primary crystalline material is fragmented, whereas the decrease in specific surface beyond a 
compression force of 2500 lb is presumably due to cold bonding between the unit particles. It was also 
observed that porosity decreased and density increased as a linear function of the logarithm of the 
compression force, except at the higher force levels. As the compression increased, the tablet hardness 
and fracture resistance also rose. Typical results obtained using an instrumented rotary tablet 
machine67 are shown in Figure 18-19. 
The strength of a compressed tablet depends on a number of factors, the most important of which are 
compression force and particle size. The literature dealing with the effect of particle size has been 
outlined by Hersey et al.,68 who, as a result of their studies, concluded that, over the range 4 to 925 µm, 
there is no simple relationship between strength and particle size. These workers did find that for simple 
crystals, 
P.467 
 
the strength of the tablet increased with decreasing particle size in the range of 600 to 100 µm. 
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Fig. 18-19. Effect of compressional force on tablet hardness and fracture strength. 

(From E. L. Knoechel, C. C. Sperry, and C. J. Lintner, J. Pharm. Sci. 56, 116, 1967.) 

The work initiated by Higuchi and coworkers66 involved the investigation of other tablet ingredients, the 
development of an instrumented tablet machine, and the evaluation of tablet lubricants. The reader who 
desires to follow this interesting work should consult the original reports, as well as other 
studies69,70,71,72,73in this area. Tableting research and technology were comprehensively reviewed in 
1972 by Cooper and Rees.74Deformation processes during decompression may be the principal factors 
responsible for the success or failure of compact formation.75 
Chapter Summary 

Knowledge and control of the size and the size range of particles are of profound importance 
in pharmacy. At this point you should understand that particle size is related in a significant 
way to the physical, chemical, and pharmacologic properties of a drug. Clinically, the particle 
size of a drug can affect its release from dosage forms that are administered orally, 
parenterally, rectally, and topically. The successful formulation of suspensions, emulsions, 
and tablets, from the viewpoints of both physical stability and pharmacologic response, also 
depends on the particle size achieved in the product. The student should have an 
understanding of the common particle sizes of pharmaceutical preparations and their impact 
on pharmaceutical processing/preparation; be familiar with the units for particle size, area, 
and volume and typical calculations; and be able to describe how particles can be 
characterized and why these methods are important. In the area of tablet and capsule 
manufacture, control of the particle size is essential in achieving the necessary flow properties 
and proper mixing of granules and powders. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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19 Rheology 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Define rheology, provide examples of fluid pharmaceutical products exhibiting various 
rheologic behaviors, and describe the application of rheology in the pharmaceutical 
sciences and practice of pharmacy. 

2. Understand and define the following concepts: shear rate, shear stress, viscosity, 
kinematic viscosity, fluidity, plasticity, yield point, pseudoplasticity, shear thinning, 
dilatancy, shear thickening, thixotropy, hysteresis, antithixotropy, rheopexy, plug flow, 
and viscoelasticity. 

3. Define and understand Newton's law of flow and its application. 
4. Differentiate flow properties and corresponding rheograms between Newtonian and 

non-Newtonian materials. 
5. Understand and calculate the effects of temperature on viscosity and recognize 

similarities between viscous flow and diffusion relative to temperature. 
6. Recognize and identify specific rheologic behaviors with their corresponding 

rheograms. 
7. Appreciate the fundamentals of the practical determination of rheologic properties 

and describe four types of viscometers and their utility and limitations in determining 
rheologic properties of various systems. 

8. Appreciate the differences between continuous or steady shear rheometry and 
oscillatory and creep measurements in determining the consistency of viscoelastic 
materials. 

The term ―rheology,‖ from the Greek rheo (―to flow‖) and logos(―science‖), was suggested by Bingham 

and Crawford (as reported by Fischer1) to describe the flow of liquids and the deformation of 
solids. Viscosity is an expression of the resistance of a fluid to flow; the higher the viscosity, the greater 
is the resistance. As will be seen later, simple liquids can be described in terms of absolute viscosity. 
Rheologic properties of heterogeneous dispersions are more complex, however, and cannot be 
expressed by a single value. 
Fundamental principles of rheology are used to study paints, inks, doughs, road-building materials, 
cosmetics, dairy products, and other materials. An understanding of the viscosity of liquids, solutions, 
and dilute and concentrated colloidal systems has both practical and theoretical value. Scott-
Blair2 recognized the importance of rheology in pharmacy and suggested its application in the 
formulation and analysis of such pharmaceutical products as emulsions, pastes, suppositories, and 
tablet coatings. Manufacturers of medicinal and cosmetic creams, pastes, and lotions must be capable 
of producing products with acceptable consistency and smoothness and reproducing these qualities 
each time a new batch is prepared. In many industries, a trained person with extensive experience 
handles in-process material periodically during manufacture to determine its ―feel‖ and ―body‖ and judge 

proper consistency. The variability of such subjective tests at different times under varying 
environmental conditions is, however, well recognized. A more serious objection, from a scientific 
standpoint, is the failure of subjective tests to distinguish various properties that make up the total 
consistency of the product. If these individual physical characteristics are delineated and studied 
objectively according to the analytic methods of rheology, valuable information can be obtained for use 
in formulating better pharmaceutical products. 
Rheology is involved in the mixing and flow of materials, their packaging into containers, and their 
removal prior to use, whether this is achieved by pouring from a bottle, extrusion from a tube, or 
passage through a syringe needle. The rheology of a particular product, which can range in consistency 
from fluid to semisolid to solid, can affect its patient acceptability, physical stability, and even biologic 

Dr. Murtadha Alshareifi e-Library

849



availability. For example, viscosity has been shown to affect absorption rates of drugs from the 
gastrointestinal tract. 
Rheologic properties of a pharmaceutical system can influence the selection of processing equipment 
used in its manufacture. Inappropriate equipment from this perspective may result in an undesirable 
product, at least in terms of its flow characteristics. These and other aspects of rheology that apply to 
pharmacy are discussed by Martin et al.3 
When classifying materials according to types of flow and deformation, it is customary to place them in 
one of two categories: Newtonian or non-Newtonian systems. The choice depends on whether or not 
their flow properties are in accord with Newton's law of flow. 
Newtonian Systems 
Newton's Law of Flow 
Consider a ―block‖ of liquid consisting of parallel plates of molecules, similar to a deck of cards, as 
shown in Figure 19-1. If the bottom layer is fixed in place and the top plane of liquid is moved at a 
constant velocity, each lower layer will move with a velocity directly proportional to its distance 
P.470 
 
from the stationary bottom layer. The difference of velocity, dv, between two planes of liquid separated 
by an infinitesimal distance,dr, is the velocity gradient or rate of shear, dv/dr. The force per unit 
area, F′/A, required to bring about flow is called the shearing stressand is given the symbol F. Newton 
was the first to study flow properties of liquids in a quantitative way. He recognized that the higher the 
viscosity of a liquid, the greater is the force per unit area (shearing stress) required to produce a certain 
rate of shear. Rate of shear is given the symbol G. Hence, rate of shear should be directly proportional 
to shearing stress, or 

 

Fig. 19-1. Representation of the shearing force required to produce a definite velocity 

gradient between the parallel planes of a block of material. 

 
where η is the coefficient of viscosity, usually referred to simply asviscosity. 
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Fig. 19-2. Representative flow curves for various materials. 

Equation (19-1) is frequently written as 

 
where F = F′/A and G = dv/dr. A representative flow curve, orrheogram, obtained by 
plotting F versus G for a Newtonian system is shown in Figure 19-2a. As implied by equation (19-2), a 
straight line passing through the origin is obtained. 
The unit of viscosity is the poise, defined with reference to Figure 19-1 as the shearing force required to 
produce a velocity of 1 cm/sec between two parallel planes of liquid each 1 cm2 in area and separated 
by a distance of 1 cm. The cgs units for poise are dyne sec cm-2 (i.e., dyne sec/cm2) or g cm-1 sec-1 (i.e., 
g/cm sec). These units are readily obtained by a dimensional analysis of the viscosity coefficient. 
Rearranging equation (19-1) to 

 
gives the result 
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A more convenient unit for most work is the centipoise (cp, plural cps), 1 cp being equal to 0.01 
poise. Fluidity, φ, a term sometimes used, is defined as the reciprocal of viscosity: 

 
P.471 
 
 

Table 19-1 Absolute Viscosity of Some Newtonian Liquids at 20°C 

Liquid Viscosity (cp) 

Castor oil 1000 

Chloroform 0.563 

Ethyl alcohol 1.19 

Glycerin, 93% 400 

Olive oil 100 

Water 1.0019 

 

Kinematic Viscosity 
Kinematic viscosity is the absolute viscosity [as defined in equation(19-1)] divided by the density of the 
liquid at a specific temperature: 

 
The units of kinematic viscosity are the stoke (s) and the centistoke(cs). Arbitrary scales (e.g., Saybolt, 
Redwood, Engler, and others) for measurement of viscosity are used in various industries; these are 
sometimes converted by use of tables or formulas to absolute viscosities and vice versa. 
Viscosities of some liquids commonly used in pharmacy are given in Table 19-1 at 20°C. A number of 
viscosity-increasing agents are described in the United States Pharmacopeia. 
Example 19-1 

Measuring Viscosity 

a. An Ostwald viscometer (see Fig. 19-11) was used to measure acetone, which was 
found to have a viscosity of 0.313 cp at 25°C. Its density at 25°C is 0.788 g/cm3. 
What is the kinematic viscosity of acetone at 25°C? 

b. Water is ordinarily used as a standard for viscosity of liquids. Its viscosity at 25°C is 
0.8904 cp. What is the viscosity of acetone relative to that of water (relative viscosity, 
ηrel) at 25°C? 

Solutions: 

a. Kinematic viscosity = 0.313 cp ÷ 0.788 g/cm3 = 0.397 poise/(g/cm3), or 0.397 cs. 
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b. ηrel(acetone) = 0.313 cp/0.8904 cp = 0.352 (dimensionless). 

Table 19-2 Viscosity of Glycerin at Several Temperatures* 

Temp

eratur

e (°C) 

-42 -20 0 6 15 20 25 30 

Temp

eratur

e (K) 

231 253 273 279 288 293 298 303 

1/T (

K
-1

) 

0.0

043

2 

0.0

039

5 

0.0

036

6 

0.0

035

8 

0.0

034

7 

0.0

034

1 

0.0

033

6 

0.0

033

0 

η (cp) 6.7

1 × 

10
6
 

1.3

4 × 

10
5
 

121

10 

626

0 

233

0 

149

0 

954 629 

ln η 15.

719 

11.

806 

9.4

02 

8.7

42 

7.7

54 

7.3

07 

6.8

61 

6.4

44 

*Data from CRC Handbook of Chemistry and Physics, 63rd Ed., CRC Press, 

Boca Raton, Fla., 1982, p. F–44. 

 

Temperature Dependence and the Theory of Viscosity 
Whereas the viscosity of a gas increases with temperature, that of a liquid decreases as temperature is 
raised, and the fluidity of a liquid (the reciprocal of viscosity) increases with temperature. The 
dependence of the viscosity of a liquid on temperature is expressed approximately for many substances 
by an equation analogous to the Arrhenius equation of chemical kinetics: 

 
where A is a constant depending on the molecular weight and molar volume of the liquid and Ev is an 
―activation energy‖ required to initiate flow between molecules. 
The energy of vaporization of a liquid is the energy required to remove a molecule from the liquid, 
leaving a ―hole‖ behind equal in size to that of the molecule that has departed. A hole must also be 

made available in a liquid if one molecule is to flow past another. The activation energy for flow has 
been found to be about one-third that of the energy of vaporization, and it can be concluded that the free 
space needed for flow is about one-third the volume of a molecule. This is presumably because a 
molecule in flow can back, turn, and maneuver in a space smaller than its actual size, like a car in a 
crowded parking lot. More energy is required to break bonds and permit flow in liquids composed of 
molecules that are associated through hydrogen bonds. These bonds are broken at higher temperatures 
by thermal movement, however, and Ev decreases markedly. Diffusional phenomena (Chapter 12) 
exhibit a similar dependence on temperature; like fluidity (the reciprocal of viscosity), rates of diffusion 
increase exponentially with temperature. 

Dr. Murtadha Alshareifi e-Library

853



Example 19-2 

Temperature Dependence of Viscosity 

The modified Arrhenius equation (19-5) is used to obtain the dependence of viscosity of 
liquids on temperature. Use equation (19-5) and the viscosity versus temperature data for 
glycerin (Table 19-2) to obtain the constant A and Ev(activation energy to initiate flow). What 
is the value of r2, the square of the correlation coefficient? 
Equation (19-5) is written in logarithmic form 

 
According to equation (19-6), a regression of ln η against 1/T gives Ev from the slope and 
ln A from the intercept. Using the values given in Table 19-2, we obtain 
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Non-Newtonian Systems 
The majority of fluid pharmaceutical products are not simple liquids and do not follow Newton's law of 
flow. These systems are referred to as non-Newtonian. Non-Newtonian behavior is generally exhibited 
by liquid and solid heterogeneous dispersions such as colloidal solutions, emulsions, liquid suspensions, 
and ointments. When non-Newtonian materials are analyzed in a rotational viscometer and results are 
plotted, various consistency curves, representing three classes of flow, are 
recognized: plastic, pseudoplastic, anddilatant. 
Plastic Flow 
In Figure 19-2b, the curve represents a body that exhibits plastic flow; such materials are known 
as Bingham bodies in honor of the pioneer of modern rheology and the first investigator to study plastic 
substances in a systematic manner. 
Plastic flow curves do not pass through the origin but rather intersect the shearing stress axis (or will if 
the straight part of the curve is extrapolated to the axis) at a particular point referred to as the yield 

value. A Bingham body does not begin to flow until a shearing stress corresponding to the yield value is 
exceeded. At stresses below the yield value, the substance acts as an elastic material. The rheologist 
classifies Bingham bodies, that is, those substances that exhibit a yield value, as solids, whereas 
substances that begin to flow at the smallest shearing stress and show no yield value are defined as 
liquids. Yield value is an important property of certain dispersions. 
The slope of the rheogram in Figure 19-2b is termed the mobility, analogous to fluidity in Newtonian 
systems, and its reciprocal is known as the plastic viscosity, U. The equation describing plastic flow is 

 
where f is the yield value, or intercept, on the shear stress axis in dynes/cm2, and F and G are as 
previously defined. 
Plastic flow is associated with the presence of flocculated particles in concentrated suspensions. As a 
result, a continuous structure is set up throughout the system. A yield value exists because of the 
contacts between adjacent particles (brought about by van der Waals forces), which must be broken 
down before flow can occur. Consequently, the yield value is an indication of force of flocculation: The 
more flocculated the suspension, the higher will be the yield value. Frictional forces between moving 
particles can also contribute to yield value. As shown in the following example, once the yield value has 
been exceeded, any further increase in shearing stress (i.e., F - f) brings about a directly proportional 
increase in G, rate of shear. In effect, a plastic system resembles a Newtonian system at shear stresses 
above the yield value. 
Example 19-3 
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Calculating Plastic Viscosity 

A plastic material was found to have a yield value of 5200 dynes/cm2. At shearing stresses 
above the yield value, Fwas found to increase linearly with G. If the rate of shear was 150 
sec-1 when F was 8000 dynes/cm2, calculate U, the plastic viscosity of the sample. 
Substituting into equation (19-7), we find 

 

Pseudoplastic Flow 
Many pharmaceutical products, including liquid dispersions of natural and synthetic gums (e.g., 
tragacanth, sodium alginate, methylcellulose, and sodium carboxymethyl cellulose) exhibitpseudoplastic 

flow. Pseudoplastic flow is typically exhibited by polymers in solution, in contrast to plastic systems, 
which are composed of flocculated particles in suspension. As seen in Figure 19-2c, the consistency 
curve for a pseudoplastic material begins at the origin (or at least approaches it at low rates of shear). 
Therefore, there is no yield value as there is in a plastic system. Furthermore, because no part of the 
curve is linear, the viscosity of a pseudoplastic material cannot be expressed by any single value. 
The viscosity of a pseudoplastic substance decreases with increasing rate of shear. An apparent 
viscosity can be obtained at any rate of shear from the slope of the tangent to the curve at the specified 
point. The most satisfactory representation for a pseudoplastic material, however, is probably a graphic 
plot of the entire consistency curve. 
The curved rheogram for pseudoplastic materials results from a shearing action on long-chain 
molecules of materials such as linear polymers. As shearing stress is increased, normally disarranged 
molecules begin to align their long axes in the direction of flow. This orientation reduces internal 
resistance of the material and allows a greater rate of shear at each successive shearing stress. In 
addition, some of the solvent associated with the molecules may be released, resulting in an effective 
lowering of both the concentration and the size of the dispersed molecules. This, too, will decrease 
apparent viscosity. 
Objective comparisons between different pseudoplastic systems are more difficult than with either 
Newtonian or plastic systems. For example, Newtonian systems are completely described by viscosity, 
η, and plastic systems are adequately described by yield value, f, and plastic viscosity, U. However, 
several approaches have been used to obtain meaningful parameters that will allow different 
pseudoplastic materials 
P.473 
 
to be compared. Of those discussed by Martin et al.,3 the exponential formula 
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Fig. 19-3. Explanation of dilatant flow behavior. 

 
has been used most frequently for pseudoplastics. The exponent Nrises as flow becomes increasingly 
non-Newtonian. When N = 1, equation (19-8) reduces to equation (19-2) and flow is Newtonian. The 
term η′ is a viscosity coefficient. Following rearrangement, we can write equation (19-8) in the 
logarithmic form 

 
This is an equation for a straight line. Many pseudoplastic systems fit this equation when log G is plotted 
as a function of log F.4 Several of the more important pseudoplastic suspending agents used in 
pharmacy, however, do not conform to equation (19-9).5 Modified equations were suggested by 
Shangraw et al. and Casson and Patton.6 Pseudoplastic systems have been characterized on the basis 
of the assumption that the typical rheogram of a pseudoplastic substance is composed of a first-order 
segment and a zero-order segment.7 
Dilatant Flow 
Certain suspensions with a high percentage of dispersed solids exhibit an increase in resistance to flow 
with increasing rates of shear. Such systems actually increase in volume when sheared and are hence 
termed dilatant; Figure 19-2d illustrates their flow properties. This type of flow is the inverse of that 
possessed by pseudoplastic systems. Whereas pseudoplastic materials are frequently referred to as 
―shear-thinning systems,‖ dilatant materials are often termed ―shear-thickening systems.‖ When stress is 

removed, a dilatant system returns to its original state of fluidity. 
Equation (19-8) can be used to describe dilatancy in quantitative terms. In this case, N is always less 
than 1 and decreases as degree of dilatancy increases. As N approaches 1, the system becomes 
increasingly Newtonian in behavior. 
Substances possessing dilatant flow properties are invariably suspensions containing a high 
concentration (about 50% or greater) of small, deflocculated particles. As discussed previously, 
particulate systems of this type that are flocculated would be expected to possess plastic, rather than 
dilatant, flow characteristics. Dilatant behavior can be explained as follows. At rest, particles are closely 
packed with minimal interparticle volume (voids). The amount of vehicle in the suspension is sufficient, 
however, to fill voids and permits particles to move relative to one another at low rates of shear. Thus, a 
dilatant suspension can be poured from a bottle because under these conditions it is reasonably fluid. 
As shear stress is increased, the bulk of the system expands or dilates; hence the term dilatant. The 
particles, in an attempt to move quickly past each other, take on an open form of packing, as depicted 
in Figure 19-3. Such an arrangement leads to a significant increase in interparticle void volume. The 
amount of vehicle remains constant and, at some point, becomes insufficient to fill the increased voids 
between particles. Accordingly, resistance to flow increases because particles are no longer completely 
wetted, or lubricated, by the vehicle. Eventually, the suspension will set up as a firm paste. 
Behavior of this type suggests that appropriate precaution be used during processing of dilatant 
materials. Conventionally, processing of dispersions containing solid particles is facilitated by the use of 
high-speed mixers, blenders, or mills. Although this is advantageous with all other rheologic systems, 
dilatant materials may solidify under these conditions of high shear, thereby overloading and damaging 
processing equipment. 
Thixotropy 
As described in the previous sections, several types of behavior are observed when rate of shear is 
progressively increased and plotted against resulting shear stress. It may have been assumed that if the 
rate of shear were reduced once the desired maximum had been reached, the downcurve would be 
identical with, and superimposable on, the upcurve. Although this is true for Newtonian systems, the 
downcurve for non-Newtonian systems can be displaced relative to the upcurve. With shear-thinning 
systems (i.e., pseudoplastic), the downcurve is frequently displaced to the left of the upcurve 
P.474 
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(as in Fig. 19-4), showing that the material has a lower consistency at any one rate of shear on the 
downcurve than it had on the upcurve. This indicates a breakdown of structure (and hence shear 
thinning) that does not reform immediately when stress is removed or reduced. This phenomenon, 
known as thixotropy, can be defined8as ―an isothermal and comparatively slow recovery, on standing of 

a material, of a consistency lost through shearing.‖ As so defined, thixotropy can be applied only to 

shear-thinning systems. Typical rheograms for plastic and pseudoplastic systems exhibiting this 
behavior are shown in Figure 19-4. 

Key Concept 

Rheograms 

A rheogram is a plot of shear rate, G, as a function of shear stress, F. Rheograms are also 
known as consistency curves or flow curves. The rheologic properties of a given material are 
most completely described by its unique rheogram. 
The simplest form of a rheogram is produced by Newtonian systems, which follow the 
equation for a straight line passing through the origin: 

 
The slope, f, is known as fluidity and is the reciprocal ofviscosity, η: 

 
Therefore, the greater the slope of the line, the greater is the fluidity or, conversely, the lower 
is the viscosity. The rheogram of Newtonian systems can easily be obtained with a single-
point determination. 
Plasticity is the simplest type of non-Newtonian behavior in which the curve is linear only at 
values of F, beyond its yield value. If the curve is nonlinear throughout the entire range 
ofF values tested, then the system is non-Newtonian and either pseudoplastic (shear thinning; 
slope increases with F) or dilatant (shear thickening; slope decreases with F) or a 
combination of the two. If the curve shows a hysteresis loop, that is, the curve obtained on 
increasing shear stress is not superimposable with that obtained on decreasing shear stress, 
then the system is thixotropic. 
A non-Newtonian system can only be fully characterized by generating its complete 
rheogram, which requires use of a multipoint rheometer. 

Thixotropic systems usually contain asymmetric particles that, through numerous points of contact, set 
up a loose threedimensional network throughout the sample. At rest, this structure confers some degree 
of rigidity on the system, and it resembles a gel. As shear is applied and flow starts, this structure begins 
to break down as points of contact are disrupted and particles become aligned. The material undergoes 
a gel-to-sol transformation and exhibits shear thinning. On removal of stress, the structure starts to 
reform. This process is not instantaneous; rather, it is a progressive restoration of consistency as 
asymmetric particles come into contact with one another by undergoing random Brownian movement. 
Rheograms obtained with thixotropic materials are therefore highly dependent on the rate at which 
shear is increased or decreased and the length of time a sample is subjected to any one rate of shear. 
In other words, the previous history of the sample has a significant effect on the rheologic properties of a 
thixotropic system. For example, suppose that in Figure 19-5 the shear rate of a thixotropic material is 
increased in a constant manner from point a to point b and is then decreased at the same rate back to e. 
Typically, this would result in the so-called hysteresis loop abe. If, however, the sample was taken to 
point b and the shear rate held constant for a certain period of time (say, t1 seconds), shearing stress, 
and hence consistency, would decrease to an extent depending on time of shear, rate of shear, and 
degree of structure in the sample. Decreasing the shear rate would then result in the hysteresis loop 

abce. If the sample had been held at the same rate of shear for t2seconds, the loop abcde would 
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have been observed. Therefore, the rheogram of a thixotropic material is not unique but will depend on 
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rheologic history of the sample and approach used in obtaining the rheogram. This is an important point 
to bear in mind when attempting to obtain a quantitative measure of thixotropy. This will become 
apparent in the next section. 

 

Fig. 19-4. Thixotropy in plastic and pseudoplastic flow systems. 

 

Fig. 19-5. Structural breakdown with time of a plastic system possessing thixotropy 

when subjected to a constant rate of shear for t1 and t2seconds. See text for discussion. 

Measurement of Thixotropy 
A quantitative measurement of thixotropy can be attempted in several ways. The most apparent 
characteristic of a thixotropic system is the hysteresis loop formed by the upcurves and downcurves of 
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the rheogram. This area of hysteresis has been proposed as a measure of thixotropic breakdown; it can 
be obtained readily by means of a planimeter or other suitable technique. 
With plastic (Bingham) bodies, two approaches are frequently used to estimate degree of thixotropy. 
The first is to determine structural breakdown with time at a constant rate of shear. The type of 
rheogram needed for this estimation is shown in Figure 19-5; the steps necessary to obtain it have 
already been described. Based on such a rheogram, a thixotropic coefficient, B, the rate of breakdown 
with time at constant shear rate, is calculated as follows: 

 
where U1 and U2 are the plastic viscosities of the two downcurves, calculated from equation (19-7), after 
shearing at a constant rate fort1 and t2 seconds, respectively. The choice of shear rate is arbitrary. A 
more meaningful, though time-consuming, method for characterizing thixotropic behavior is to measure 
fall in stress with time at several rates of shear. 
The second approach is to determine the structural breakdown due to increasing shear rate. The 
principle involved in this approach is shown in Figure 19-6, in which two hysteresis loops are obtained 
having different maximum rates of shear, v1 and v2. In this case, a thixotropic coefficient, M, the loss in 
shearing stress per unit increase in shear rate, is obtained from 

 

Fig. 19-6. Structural breakdown of a plastic system possessing thixotropy when 

subjected to increasing shear rates. See text for discussion. 

 
where M is in dynes sec/cm2 and U1 and U2 are the plastic viscosities for two separate downcurves 
having maximum shearing rates of v1 and v2, respectively. A criticism of this technique is that the two 
rates of shear, v1 and v2, are chosen arbitrarily; the value of Mwill depend on the rate of shear chosen 
because these shear rates will affect the downcurves and hence the values of U that are calculated. 
Bulges and Spurs 
Dispersions employed in pharmacy may yield complex hysteresis loops when sheared in a viscometer in 
which shear rate (rather than shear stress) is increased to a point, then decreased, and the shear stress 
is read at each shear rate value to yield appropriate rheograms. Two such complex structures are 
shown in Figures 19-7and 19-8. A concentrated aqueous bentonite gel, 10% to 15% by weight, 
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produces a hysteresis loop with a characteristic bulge in the upcurve. It is presumed that the crystalline 
plates of bentonite form a ―house-of-cards structure‖ that causes the swelling of bentonite magmas. This 

three-dimensional structure results in a bulged hysteresis loop as observed in Figure 19-7. In still more 
highly structured systems, such as a procaine penicillin gel formulated by Ober et al.9 for intramuscular 
injection, the bulged curve may actually develop into a spurlike protrusion (Fig. 19-8). The structure 
demonstrates a high yield or spur value, Υ, that traces out a bowed upcurve when the three-dimensional 
structure breaks in the viscometer, as observed in Figure 19-8. The spur value represents a sharp point 
of structural breakdown at low shear rate. It is difficult to produce the spur, and it may not be observed 
unless a sample of the gel is allowed to age undisturbed in the cup-and-bob assembly for some time 
before the rheologic run is made. The 
P.476 
 
spur value is obtained by using an instrument in which the rate of shear can be slowly and uniformly 
increased, preferably automatically, and the shear stress read out or plotted on an X–Yrecorder as a 
function of shear rate. Ober et al.9 found that penicillin gels having definite Υ values were very 

thixotropic, forming intramuscular depots upon injection that afforded prolonged blood levels of the drug. 

 

Fig. 19-7. Rheogram of a thixotropic material showing a bulge in the hysteresis loop. 

Dr. Murtadha Alshareifi e-Library

860



 

Fig. 19-8. Rheogram of a thixotropic material showing a spur value γ in the hysteresis 

loop. 

Negative Thixotropy 
From time to time in the measurement of supposedly thixotropic materials, one observes a phenomenon 
called negative thixotropy orantithixotropy, which represents an increase rather than a decrease in 
consistency on the downcurve. This increase in thickness or resistance to flow with increased time of 
shear was observed by Chong et al.10 in the rheologic analysis of magnesia magma. It was detected at 
shear rates of greater than 30 sec-1; below 30 sec-1 the magma showed normal thixotropy, the 
downcurve appearing to the left of the upcurve. As pointed out by Chong et al., antithixotropy had been 
reported by other investigators but not in pharmaceutical systems. 
It was observed that when magnesia magma was alternately sheared at increasing and then at 
decreasing rates of shear, the magma continuously thickened (an increase in shearing stress per unit 
shear rate) but at a decreasing rate, and it finally reached an equilibrium state in which further cycles of 
increasing–decreasing shear rates no longer increased the consistency of the material. The 
antithixotropic character of magnesia magma is demonstrated inFigure 19-9. The equilibrium system 
was found to be gel-like and to provide great suspendability, yet it was readily pourable. When allowed 
to stand, however, the material returned to its sol-like properties. 
Antithixotropy or negative thixotropy should not be confused with dilatancy or rheopexy. Dilatant 
systems are deflocculated and ordinarily contain greater than 50% by volume of solid dispersed phase, 
whereas antithixotropic systems have low solids content (1%–10%) and are flocculated, according to 
Samyn and Jung.11Rheopexy is a phenomenon in which a solid forms a gel more readily when gently 
shaken or otherwise sheared than when allowed to form the gel while the material is kept at rest.12 In a 
rheopectic system, the gel is the equilibrium form, whereas in antithixotropy, the equilibrium state is the 
sol. Samyn and Jung noted that magnesia magma and clay suspensions may show a negative 
rheopexy, analogous to negative thixotropy. It is believed that antithixotropy results from an increased 
collision frequency of dispersed particles or polymer molecules in suspension, resulting in increased 
interparticle bonding with time. This changes an original state consisting of a large number of individual 
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particles and small floccules to an eventual equilibrium state consisting of a small number of relatively 
large floccules. At rest, the large floccules break up and gradually return to the original state of small 
floccules and individual particles. 

 

Fig. 19-9. Rheogram of magnesia magma showing antithixotropic behavior. The 

material is sheared at repeated increasing and then decreasing rates of shear. At 

stage D, further cycling no longer increased the consistency, and the upcurves and 

downcurves coincided. (From C. W. Chong, S. P. Eriksen, and J. W. Swintosky, J. 

Am. Pharm. Assoc. Sci. Ed. 49, 547, 1960. With permission.) 

As more rheologic studies are done with pharmaceuticals, negative thixotropy no doubt will be observed 
in other materials. 
Thixotropy in Formulation 
Thixotropy is a desirable property in liquid pharmaceutical systems that ideally should have a high 
consistency in the container, yet pour or spread easily. For example, a well-formulated thixotropic 
suspension will not settle out readily in the container, will become fluid on shaking, and will remain long 
enough for a dose to be dispensed. Finally, it will regain consistency rapidly enough so as to maintain 
the particles in a suspended state. A similar pattern of behavior is desirable with emulsions, lotions, 
creams, ointments, and parenteral suspensions to be used for intramuscular depot therapy. 
With regard to suspension stability, there is a relationship between degree of thixotropy and rate of 
sedimentation; 
P.477 
 
the greater the thixotropy, the lower the rate of settling. Concentrated parenteral suspensions containing 
from 40% to 70% w/v of procaine penicillin G in water were found to have a high inherent thixotropy and 
were shear thinning.9 Consequently, breakdown of the structure occurred when the suspension was 
caused to pass through the hypodermic needle. Consistency was then recovered as rheologic structure 
reformed. This led to formation of a depot of drug at the site of intramuscular injection where drug was 
slowly removed and made available to the body. The degree of thixotropy was related to the specific 
surface of the penicillin used. 
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Degree of thixotropy may change over time and result in an inadequate formulation. Thixotropic systems 
are complex, and it is unrealistic to expect that rheologic changes can be meaningfully followed by the 
use of one parameter. Thus, in a study concerned with the aging effects of thixotropic clay, 
Levy13 found it necessary to follow changes in plastic viscosity, area of hysteresis, yield value, and spur 
value. 
Determination of Rheologic Properties 
Choice of Viscometer 
Successful determination and evaluation of rheologic properties of any particular system depend, in 
large part, on choosing the correct instrumental method. Because shear rate in a Newtonian system is 
directly proportional to shearing stress, instruments that operate at a single shear rate can be used. 
These ―single-point‖ instruments provide a single point on the rheogram; extrapolation of a line through 

this point to the origin will result in a complete rheogram. Implicit in the use of a single-point instrument 
is prior knowledge that the flow characteristics of the material are Newtonian. Unfortunately, this is not 
always the case, and, if the system is non-Newtonian, a single-point determination is virtually useless in 
characterizing its flow properties. It is therefore essential that, with non-Newtonian systems, the 
instrument can operate at a variety of shear rates. Such multipoint instruments are capable of producing 
a complete rheogram for non-Newtonian systems. For example, multipoint evaluation of pseudoplastic 
materials would allow assessment of viscosity of a suspending agent at rest (negligible shear rate), 
while being agitated, poured from a bottle, or applied to the skin (moderately high shear rate). Single-
point instruments are unable to describe these changes. As illustrated in Figure 19-10, single-point 
instruments can lead to erroneous results if used to evaluate non-Newtonian systems because flow 
properties could vary significantly despite identical measured viscosities. Even multipoint instruments, 
unless properly designed, will not give satisfactory results. 

 

Fig. 19-10. Errors inherent in the use of a “one-point” instrument for non-Newtonian 

systems. Regardless of the fact that A is Newtonian, B is pseudoplastic, and C and D 
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are two different plastic systems, a “one-point” instrument could indicate a common 

viscosity of 20 poise (F = 4000 dynes/cm
2
 and G = 200 sec

-1
). Use of a “one-point” 

instrument is proper only in the case of the Newtonian systems. (From A. Martin, G. 

S. Banker, and A. H. C. Chun, in H. S. Bean, A. H. Beckett, and J. E. Carless 

(Eds.),Advances in Pharmaceutical Sciences, Academic Press, London, 1964, Chapter 

1. With permission.) 

The important conclusion, therefore, is that although all viscometers can be used to determine viscosity 
of Newtonian 
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systems, only those with variable–shear-rate controls can be used for non-Newtonian materials. Many 
types of viscometers have been discussed in detail.3,14,15,16 This discussion will be limited to four 
instruments: capillary, falling-sphere, cup-and-bob, and cone-and-plate viscometers. The first two are 
single–shear-rate instruments suitable for use only with Newtonian materials, whereas the latter two 
(multipoint, rotational instruments) can be used with both Newtonian and non-Newtonian systems. 
Other rheologic properties such as tackiness or stickiness, ―body,‖ ―slip,‖ and ―spreadability‖ are difficult 

to measure by means of conventional apparatus and, in fact, do not have precise meanings. However, 
the individual factors—viscosity, yield value, thixotropy, and the other properties that contribute to the 
total consistency of non-Newtonian pharmaceuticals—can be analyzed to some degree of satisfaction in 
reliable apparatus. An attempt must be made to express these properties in meaningful terms if 
rheology is to aid in the development, production, and control of pharmaceutical preparations. 
Capillary Viscometer 
The viscosity of a Newtonian liquid can be determined by measuring the time required for the liquid to 
pass between two marks as it flows by gravity through a vertical capillary tube known as an Ostwald 

viscometer. A modern adaptation of the original Ostwald viscometer is shown in Figure 19-11. The time 
of flow of the liquid under test is compared with the time required for a liquid of known viscosity (usually 
water) to pass between the two marks. If η1 and η2 are the viscosities of the unknown and the standard 
liquids, respectively, η1and η2 are the respective densities of the liquids, and t1 and t2 are the respective 
flow times in seconds, the absolute viscosity of the unknown liquid, η1, is determined by substituting the 
experimental values in the equation 
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Fig. 19-11. Ostwald–Cannon–Fenske viscometer. 

 
The value η1/η2 = ηrel is known as the relative viscosity of the liquid under test. 
Example 19-4 

Viscosity of Acetone 

Consider the viscosity measurement of acetone discussed in Example 19-1. Assume that the 
time required for acetone to flow between the two marks on the capillary viscometer was 45 
sec and for water the time was 100 sec, at 25°C. The density of acetone is 0.786 g/cm3 and 
that of water is 0.997 g/cm3 at 25°C. The viscosity of water is 0.8904 cp at this temperature. 
The viscosity of acetone at 25°C can be calculated using equation (19-12): 

 

Equation (19-12) is based on Poiseuille's law for a liquid flowing through a capillary tube, 

 
where r is the radius of the inside of the capillary, t is the time of flow,ΔP is the pressure head in 
dyne/cm2 under which the liquid flows, lis the length of the capillary, and V is the volume of liquid 
flowing. Equation (19-12) is obtained from Poiseuille's law, equation (19-13), as follows. The radius, 
length, and volume of a given capillary viscometer are invariants and can be combined into a 
constant, K. Equation (19-13) can then be written as 

 
The pressure head ΔP depends on density the ρ of the liquid being measured, the acceleration of 

gravity, and the difference in heights of liquid levels in the two arms of the viscometer. Acceleration of 
gravity is a constant, however, and if the levels in the capillary are kept constant for all liquids, these 
terms can be incorporated in the constant and the viscosities of the unknown and the standard liquids 
can be written as 
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Therefore, when flow periods for two liquids are compared in the same capillary viscometer, the division 
of (19-15) by (19-16) gives equation (19-12). The United States Pharmacopeia suggests a capillary 
apparatus for determining the viscosity of high-viscosity types of methylcellulose solutions. 
P.479 
 
 

 

Fig. 19-12. Blood flow through the heart, lungs, arteries, veins, and capillaries. Blood 

with oxygen bound to hemoglobin is pumped through the left ventricle (LV) of the 

heart to the arteries and is released in the tissues. Carbon dioxide is taken up by the 

venous blood and is pumped to the right ventricle (RV) of the heart by way of the 

right atrium (RA). The blood then passes to the lungs, where carbon dioxide is 

released and oxygen is taken up. The blood, now rich in oxygen, passes from the 

lungs to the left atrium (LA) and through the left ventricle (LV) to complete the cycle. 

Clinical Correlate: Poiseuille's Law 
Poiseuille's law can be used to calculate the pressure difference in the arteries and capillaries: Figure 
19-12 depicts blood circulation in the body.17 The systolic pressure is normally about 120 mm Hg and 
the diastolic pressure about 80 mm Hg. Therefore, at rest the average blood pressure is about 100 
mm Hg. 
The Poiseuille equation (19-13) can be written as 
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where the viscosity, η, of the blood at normal body temperature is 4 cp or 0.04 poise = 0.04 dyne 

sec/cm2, and l is the distance, say 1 cm, along an artery. The average rate of blood flow, V/t, at rest is 
80 cm3/sec, and the pressure drop, ΔP, over a distance of 1 cm along the artery is 3.8 mm Hg (1 
dyne/cm2 = 7.5 × 10-4 mm Hg). The radius, r (cm), of the artery can be calculated as follows: 

 
The radius is (0.001608)1/4 = 0.200 cm. 

 

Fig. 19-13. Hoeppler falling-ball viscometer. 

Falling-Sphere Viscometer 
In this type of viscometer, a glass or steel ball rolls down an almost vertical glass tube containing the 
test liquid at a known constant temperature. The rate at which a ball of a particular density and diameter 
falls is an inverse function of the viscosity of the sample. The Hoeppler viscometer, shown in Figure 19-
13, is a commercial instrument based on this principle. The sample and ball are placed in the inner glass 
tube and allowed to reach temperature equilibrium with the water in the surrounding constant-
temperature jacket. The tube and jacket are then inverted, which effectively places the ball at the top of 
the inner glass tube. The time for the ball to fall between two marks is accurately measured and 
repeated several times. The viscosity of a Newtonian liquid is then calculated from 

 
where t is the time interval in seconds for the ball to fall between the two points and Sb and Sf are the 
specific gravities of the ball and fluid, respectively, at the temperature being used. B is a constant for a 
particular ball and is supplied by the manufacturer. Because a variety of glass and steel balls of different 
diameters are available, this instrument can be used over the range 0.5 to 200,000 poise. For best 
results, a ball should be used such that t is not less than 30 sec. 
Cup-and-Bob Viscometer 
In cup-and-bob viscometers, the sample is sheared in the space between the outer wall of a bob and the 
inner wall of a cup into which the bob fits. The principle is illustrated in Figure 19-14. The various 
instruments available differ mainly in whether the torque results from rotation of the cup or of the bob. In 
the Couette type of viscometer, the cup is rotated. The viscous drag on the bob due to the sample 
causes it to turn. The resultant torque is proportional to the viscosity of the sample. The MacMichael 
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viscometer is an example of such an instrument. The Searle type of viscometer uses a stationary cup 
and a rotating bob. The torque resulting from 
P.480 
 
the viscous drag of the system under examination is generally measured by a spring or sensor in the 
drive to the bob. The Rotovisco viscometer, shown in Figure 19-15, is an example of this type; it can 
also be modified to operate as a cone and plate instrument. 

 

Fig. 19-14. Principle of rotational cup-and-bob viscometer (Searle type). See text for 

explanation. 
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Fig. 19-15. Haake Rotovisco viscometer. The rate of shear, G, is selected manually or 

programmed for automatic plotting of upcurves and downcurves. Its value in sec
-1

 is 

proportional to the speed of the bob shaft, dialed in and read as n on the console. The 

shear stress is read on the scale S or obtained from the rheogram, plotted on the X–

Yrecorder. 

Example 19-5 

Shear Stress and Rate of Shear 

The Haake Rotovisco apparatus uses interchangeable measuring heads, MK-50 and MK-500. 
The shear stress, F, in dyne/cm2 is obtained from a dial reading S and is calculated using the 
formula 

 
where KF is a shear stress factor. 
The shear rate, G, in sec-1, is proportional to the adjustable speed, n, in revolutions per 
minute of the rotating cylinder in the cup containing the sample. The formula for shear rate is 

 
where KG is a shear rate factor that varies with the particular rotating cylinder used. Three 
cups and cylinders (sensor systems) are supplied with the instrument, MVI, MVII, and MVIII. 
For the measuring head MK-50 and the sensor system MVI, the values for the constants 
KF and KG are 2.95 dyne/cm2 and = 2.35 min/sec, respectively. 
In the analysis of a solution of a new glucose derivative that is found to be Newtonian, the 
following data were obtained in a typical experimental run at 25°C using the Haake 
viscometer with the MK-50 head and the MVI sensor system. With the cylinder rotating at 180 
rpm, the dial reading S was obtained as 65.5 scale divisions.18 Calculate the Newtonian 
viscosity of the new glucose derivative. What are the values of shear stress, F, and the rate of 
shear, G? 
Using equations (19-18) and (19-19), we obtain 

 

Dr. Murtadha Alshareifi e-Library

869



Now, the Newtonian viscosity is readily obtained as 
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A popular viscometer based on the Searle principle is the Stormer instrument. This viscometer, a 
modification of that described by Fischer,19 is shown in Figure 19-16. In operation, the test system is 
placed in the space between the cup and the bob and allowed to reach temperature equilibrium. A 
weight is placed on the hanger, and the time required for the bob to make 100 revolutions is recorded. 
These data are then converted to revolutions per minute (rpm). The weight is increased and the whole 
procedure repeated. In this way, a rheogram can be constructed by plotting rpm versus weight added. 
By the use of appropriate constants, the rpm values can be converted to actual shear rates in sec-1. 
Similarly, the weights added can be transposed into the units of shear stress, namely, dyne/cm2. 
According to Araujo,20 the Stormer instrument should not be used with systems having a viscosity 
below 20 cp. 
It can be shown that, for a rotational viscometer, equation (19-1)becomes 

 
where Ω is the angular velocity in radians/sec produced by T, the torque in dynes cm. The depth to 
which the bob is immersed in the liquids is h, and Rb and Rc are the radii of the bob and cup, 
respectively (see Fig. 19-14). The viscous drag of the sample on the base of the bob is not taken into 
account by equation (19-20). Either an ―end correction‖ must be applied or, more usually, the base of 

the bob is recessed, as shown in Figure 19-14. In this case, a pocket of air is entrapped between the 
sample and the base of the bob, rendering the contribution from the base of the bob negligible. It is 
frequently more convenient to combine all the constants in equation(19-20), with the result that 

 

Fig. 19-16. Stormer viscometer. The falling weights cause the bob to rotate in the 

stationary cup. The velocity of the bob is obtained by means of a stopwatch and the 
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revolution counter. 

 
where Kv is a constant for the instrument. With the modified Stormer viscometer, Ω is a function of v, the 
rpm generated by the weight, w, in grams, which is proportional to T. Equation (19-21) can then be 
written as 

 
The constant Kv can be determined by analyzing an oil of known viscosity in the instrument; reference 
oils for this purpose are obtained from the National Bureau of Standards. 
The equation for plastic viscosity when employing the Stormer viscometer is 

 
where U is the plastic viscosity in poises, wf is the yield value intercept in grams, and the other symbols 
have the meaning given in equation (19-22). 
The yield value of a plastic system is obtained by use of the expression 

 
where Kf is equal to 

 
where Rc is the radius of the cup and Rb is the radius of the bob. 
Example 19-6 

Plastic Viscosity of a Gel 

A sample of a gel was analyzed in a modified Stormer viscometer (see Fig. 19-16). A driving 
weight, w, of 450 g produced a bob velocity, v, of 350 rpm. A series of velocities was obtained 
using other driving weights, and the data were plotted as shown in Figure 19-2b. The yield 
value intercept,wf, was obtained by extrapolating the curve to the shearing stress axis 
where v = 0, and the value of wf was found to be 225 g. The instrumental constant, Kv, is 
52.0, and Kf is 20.0. What is the plastic viscosity and the yield value of the sample? 
We have 

 

The Brookfield viscometer is a rotational viscometer of the Searle type that is popular in the quality-
control laboratories of pharmaceutical manufacturers. A number of spindles (bobs) of various 
geometries, including cylinders, t-bars, and a cone–plate configuration, are available to provide scientific 
rheologic data for Newtonian and non-Newtonian liquids and for empirical viscosity measurements on 
pastes and other 
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semisolid materials. Various models of the Brookfield viscometer are available for high-, medium-, and 
low-viscosity applications.Figure 19-17 depicts a cone-and-plate type of Brookfield viscometer. 

Key Concept 

Plug Flow 

One potential disadvantage of cup-and-bob viscometers is variable shear stress across the 
sample between the bob and the cup. In contrast to Newtonian systems, the apparent 
viscosity of non-Newtonian systems varies with shear stress. With plastic materials, the 
apparent viscosity below the yield value can be regarded as infinite. Above the yield value, 
the system possesses a finite viscosity U, the plastic viscosity. In a viscometer of the Searle 
type, the shear stress close to the rotating bob at relatively low rates of shear may be 
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sufficiently high so as to exceed the yield value. The shear stress at the inner wall of the cup 
could (and frequently does), however, lie below the yield value. Material in this zone would 
therefore remain as a solid plug and the measured viscosity would be in error. A major factor 
determining whether or not plug flow occurs is the gap between the cup and the bob. The 
operator should always use the largest bob possible with a cup of a definite circumference so 
as to reduce the gap and minimize the chances of plug flow. In a system exhibiting plug flow 
in the viscometer, more and more of the sample is sheared at a stress above the yield value 
as the speed of rotation of the bob is increased. It is only when the shear stress at the wall of 
the cup exceeds the yield value, however, that the system as a whole undergoes laminar, 
rather than plug, flow and the correct plastic viscosity is obtained. 
The phenomenon of plug flow is important in the flow of pastes and concentrated 
suspensions through an orifice (e.g., the extrusion of toothpaste from a tube). High-shear 
conditions along the inner circumference of the tube aperture cause a drop in consistency. 
This facilitates extrusion of the material in the core as a plug. This phenomenon is, however, 
undesirable when attempting to obtain the rheogram of a plastic system with a cup-and-bob 
viscometer. Cone-and-plate viscometers do not suffer from this drawback. 

 

Fig. 19-17. A digital-type cone-and-plate Brookfield viscometer. 

Cone-and-Plate Viscometer 
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The Ferranti–Shirley viscometer is an example of a rotational cone-and-plate viscometer. The 
measuring unit of the apparatus is shown in Figure 19-18; the indicator unit and speed control amplifier 
are not shown. In operation, the sample is placed at the center of the plate, which is then raised into 
position under the cone, as shown inFigure 19-19. A variable-speed motor drives the cone, and the 
sample is sheared in 
P.483 
 
the narrow gap between the stationary plate and the rotating cone. The rate of shear in revolutions per 
minute is increased and decreased by a selector dial and the viscous traction or torque (shearing stress) 
produced on the cone is read on the indicator scale. A plot of rpm or rate of shear versus scale reading 
or shearing stress can thus be constructed in the ordinary manner. 

 

Fig. 19-18. The measuring unit of the Ferranti–Shirley cone–plate viscometer. 
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Fig. 19-19. Constant–shear-rate conditions in the cone and plate viscometer. The 

cone-to-plate angle, ψ, is greatly exaggerated here; it is ordinarily less than 1° (<0.02 

rad). 

The viscosity in poise of a Newtonian liquid measured in the cone–plate viscometer is calculated by use 
of the equation 

 
where C is an instrumental constant, T is the torque reading, and vis the speed of the cone in 
revolutions per minute. For a material showing plastic flow, the plastic viscosity is given by the equation 

 
and the yield value is given by 

 
where T f is the torque at the shearing stress axis (extrapolated from the linear portion of the curve) 
and C f is an instrumental constant. 
Example 19-7 

Plastic Viscosity of an Ointment Base 

A new ointment base was designed and subjected to rheologic analysis at 20°C in a cone–

plate viscometer with an instrumental constant, C, of 6.277 cm-3. At a cone velocity of v = 125 
rpm the torque reading, T, was 1287.0 dyne cm. The torque, Tf, at the shearing stress axis 
was found to be 63.5 dyne cm. 
The plastic viscosity of the ointment base at 20°C was thus calculated using equation (19-
26) to be 

 
The yield value, f, is obtained using equation (19-27), whereCf = 113.6 cm-3 for a medium-size 
cone (radius of 2.007 cm): 

 

A cone-and-plate viscometer possesses several significant advantages over the cup-and-bob type of 
instrument. Most important is the fact that the rate of shear is constant throughout the entire sample 
being sheared. As a result, any chance of plug flow is avoided. The principle is illustrated in Figure 19-
19, from which it can be seen that G, the rate of shear at any diameter, is the ratio of the linear velocity, 
Ωr, to the gap width, d. Thus, 
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The ratio r/d is a constant and is proportional to ψ, the angle between the cone and the plate in radians. 

Thus, 

 
and is independent of the radius of the cone. The cone angle generally ranges from 0.3° to 4°, with the 
smaller angles being preferred. Other advantages of a cone-and-plate viscometer are the time saved in 
cleaning and filling and the temperature stabilization of the sample during a run. Whereas a cup-and-
bob viscometer may require 20 to 50 mL of a sample for a determination, the cone-and-plate viscometer 
requires a sample volume of only 0.1 to 0.2 mL. By means of a suitable attachment, it is also possible to 
increase and then decrease the rate of shear in a predetermined, reproducible manner. At the same 
time, the shear stress is plotted as a function of the rate of shear on an X–Y recorder. This is a valuable 
aid when determining the area of hysteresis or thixotropic coefficients because it allows comparative 
studies to be run in a consistent manner. The use of this instrument in the rheologic evaluation of some 
pharmaceutical semisolids has been described by Hamlow,21 Gerding,22 and Boylan.23 
Viscoelasticity 
A number of methods have been used to measure the consistency of pharmaceutical and cosmetic 
semisolid products. The discussion in this chapter has centered on the fundamentals of continuous or 
steady shear rheometry of non-Newtonian materials. Oscillatory and creep measurements are also of 
considerable importance for investigating the properties of semisolid drug products, foods, and 
cosmetics that are classified as viscoelastic materials. 
Continuous shear mainly employs the rotational viscometer and is plotted as flow curves (see Fig. 19-2), 
which provide useful information by which to characterize and control products in industry. Continuous 
shear does not keep the material being tested in its rheologic ―ground state‖ but resorts to gross 

deformation and alteration of the material during measurement. Analysis of viscoelastic materials is 
designed instead not to destroy the structure, so that measurements can provide information on the 
intermolecular and interparticle forces in the material. 
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Viscoelastic measurements are based on the mechanical properties of materials that exhibit both 
viscous properties of liquids and elastic properties of solids. Many of the systems studied in pharmacy 
belong to this class, examples being creams, lotions, ointments, suppositories, suspensions, and the 
colloidal dispersing, emulsifying, and suspending agents. Biologic materials such as blood, sputum, and 
cervical fluid also show viscoelastic properties. Whereas steady shear in rotational viscometers and 
similar flow instruments yields large deformations and may produce false results, oscillatory and creep 
methods allow the examination of rheologic materials under nearly quiescent equilibrium conditions. 
Davis24 described creep and oscillatory methods for evaluating the viscoelastic properties of 
pharmaceutical materials, and Barry25reviewed these methods for pharmaceutical and cosmetic 
semisolids. 
A semisolid is considered to demonstrate both solid and liquid characteristics. The flow of a Newtonian 
fluid is expressed by using equation (19-2), 

 
relating shear stress, F, and shear rate, G. A solid material, on the other hand, is not characterized by 
flow but rather by elasticity, and its behavior is expressed by the equation for a spring (derived from 
Hooke's law): 

 
where E is the elastic modulus (dyne/cm2), F is the stress (dyne/cm2), and γ is the strain 
(dimensionless). Using a mechanical model, we can represent a viscous fluid as movement of a piston 
in a cylinder (or dashpot, as it is called) filled with a liquid, as seen inFigure 19-20a. An example of a 
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dashpot is an automobile shock absorber. An elastic solid is modeled by the movement of a Hooke 
spring (Fig. 19-20b). The behavior of a semisolid as a viscoelastic body can therefore be described by 
the combination of the dashpot and spring, as observed in Figure 19-20c. The combination of spring and 
shock absorber in a car, which provides a relatively smooth ride over rough roads, is analogous to the 
spring and dashpot of Figure 19-20c. 

 

Fig. 19-20. Mechanical representation of a viscoelastic material using a dashpot and 

spring. The dashpot and spring in series is called aMaxwell element or unit. 

 

Fig. 19-21. Spring and dashpot combined in parallel as a mechanical model of a 

viscoelastic material, known as a Voigt element. 

This mechanical model of a viscoelastic material, a non-Newtonian material showing both viscosity of 
the liquid state and elasticity of the solid state, and combined in series is called a Maxwell element. The 
spring and dashpot can also be combined in a parallel arrangement as seen in Figure 19-21. This 
second model for viscoelasticity is known as a Voigt element. 
As a constant stress is applied to the Maxwell unit, there is a strain on the material that can be thought 
of as a displacement of the spring. The applied stress can be thought of as also producing a movement 
of the piston in the dashpot due to viscous flow. Removal of the stress leads to complete recovery of the 
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spring, but the viscous flow shows no recovery, that is, no tendency to return to its original state. In the 
Voigt model, in which the spring and the dashpot are attached in parallel rather than in series, the drag 
of the viscous fluid in the dashpot simultaneously influences the extension and compression of the 
spring that characterizes the solid nature of the material, and the strain will vary in an exponential 
manner with time. Strain is expressed as a deformation or compliance, J, of the test material, in 
which J is strain per unit stress. The compliance of a viscoelastic material following the Voigt model is 
given as a function of time, t, by the expression 

 
where J∞ is the compliance or strain per unit stress at infinite time and τ is viscosity per unit modulus, 
η/E (dyne sec cm-2/dyne cm-2), which is called retardation time and has the unit of seconds. 
The Maxwell and Voigt mechanical models representing viscoelastic behavior in two different ways can 
be combined into a generalized model to incorporate all possibilities of flow and deformation of non-
Newtonian materials. One of 
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several Voigt units can be combined with Maxwell elements to represent the changes that a 
pharmaceutical solid, such as an ointment or a cream, undergoes as it is stressed. As observed inFigure 
19-22, two Voigt elements are combined with a Maxwell element to reproduce the behavior of a sample 
of wool fat24 at 30°C. The compliance, J, as a function of time is measured with an instrument known as 
a creep viscometer (Fig. 19-23) and is plotted in Figure 19-22 to obtain a creep curve. The creep curve 
is observed to be constructed of three parts, first a sharply rising portion ABcorresponding to the elastic 
movement of the uppermost spring; second, a curved portion BC, a viscoelastic region representing the 
action of the two Voigt units; and third, a linear portion CDcorresponding to movement of the piston in 
the dashpot at the bottom of the Maxwell–Voigt model representing viscous flow. 
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Fig. 19-22. A creep curve obtained by analyzing a sample of wool fat in a creep 

viscometer (Fig. 19-23) at 30°C. The creep curve results from a plot of compliance, J, 

equation (19-31), against the time in minutes during which a stress is applied to the 

sample. The inset shows the combination of Maxwell and Voigt elements required to 

represent the viscoelasticity of the wool fat sample. E0, E1, and E2, the spring moduli, 

can be calculated from the plot and by use of equation (19-32) and the three 

viscosities η1, η2, and η0. (From S. S. Davis, Pharm. Acta Helv. 49, 161, 1974. With 

permission.) 

The compliance equation corresponding to the observed behavior of wool fat (Fig. 19-22), as simulated 
by the Maxwell–Voigt model (inset in Fig. 19-22), is 

 
where γ0 is the instantaneous strain and F is the constant applied shear stress.24,25 The quantity γ0/F is 
readily obtained from the experimental curve (region AB) in Figure 19-22. The viscoelastic region of the 
curve (BC) is represented by the intermediate term of equation (19-32), where Jm and Jn are the mean 
compliance of bonds in the material and τm and τn are the mean retardation times for the two Voigt units 
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of Figure 19-22. It is sometimes found that three or more Voigt units are needed in the model to reflect 
the 
P.486 
 
observed behavior of the material. The final term of equation (19-32)corresponds to the linear 
portion, CD, of the creep curve. This section represents a condition of Newtonian compliance in which 
the rupture of bonds leads to the flow of the material, where F is the constant applied stress and γ is the 
shear strain in this region of the curve. 

 

Fig. 19-23. Main components of a creep viscometer used to obtain creep compliance 

curves such as those found in Figures 19-22 and 19-24. 

When stress is removed by the operator of the creep rheometer (Fig. 19-23), a recovery (DEF) of the 
sample is obtained. It is composed of an instantaneous elastic recovery, DE, equivalent to AB, followed 
by an elastic recovery region, EF, equivalent to BC. In the creep compliance curve of Figure 19-22, flow 
occurs in region CD, irreversibly destroying the structure, and in the recovery curve this portion is not 
reproduced. By such an analysis, Davis24 obtained the elastic moduli (inset of Fig. 19-22) E0 = 2.7 × 
104 dynes/cm, E1 = 5.4 × 104 dynes/cm, and E2 = 1.4 × 104 dynes/cm, and the three viscosities η1 = 7.2 
× 105 poise, η2 = 4.5 × 106 poise, and η0 = 3.1 × 107 poise for wool fat. 
The creep curve used to measure the viscoelasticity of non-Newtonian pharmaceutical, dermatologic, 
and cosmetic materials can shed some light on the molecular structure of the materials and therefore 
provide information for modification and improvement of these vehicles. Creep compliance curves were 
used by Barry25 to study the changes with temperature in samples of white petrolatum (White Soft 
Paraffin, British Pharmacopoeia) as observed in Figure 19-24. 
P.487 
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The behavior was complex, requiring five Voigt units and one Maxwell element to describe the observed 
creep compliance curves at 5°C and 25°C and three Voigt units at 45°C, where some of the structure 
had been destroyed by melting. Three curves are characteristic of the crystalline bonding and the 
interaction of crystalline and amorphous material that constitute petrolatum. The curves were 
automatically plotted on an X–Y recorder as the material was stressed in the creep viscometer. The 
circles plotted along the lines of Figure 19-24 were obtained by use of an equation similar to 
equation (19-32), showing the accuracy with which the creep curves can be reproduced by a theoretical 
model of Voigt and Maxwell units. 

 

Fig. 19-24. Creep compliance curves of Soft White Paraffin (British Pharmacopoeia) 

at three temperatures. (From B. W. Barry, in H. S. Bean, A. H. Beckett, and J. E. 

Carless (Eds.), Advances in Pharmaceutical Sciences, Vol. 4, Academic Press, New 

York, 1974, p. 36. With permission.) 

Another dynamic rheologic method that does not disturb the structure of a material is that of oscillatory 
testing.24,25,26,27 A thin layer of material is subjected to an oscillatory driving force in an apparatus 
known as a rheogoniometer, such as that shown inFigure 19-25. The shearing stress produced by the 
oscillating force in the membrane of the apparatus results in a shear rate proportional to the surface 
velocity of the material. The viscoelastic behavior of materials obtained by oscillatory shear 
measurements can be analyzed by an extension of the Maxwell spring-and-dashpot model. 
Steady shear methods involving rotational viscometers tend to break down materials under analysis, 
and although they yield useful data on thixotropy and yield stress, for example, they do not provide 
information about the original structure and bonding in pharmaceutical and cosmetic semisolids. 
Viscoelastic analysis performed by creep or oscillatory methods is particularly useful for studying the 
structure of liquid and semisolid emulsions and gels.26 Viscoelastic measurements can also be used to 
measure the rheologic changes occurring in a cream after it is broken down in various stages by milling, 
incorporation of drugs, or spreading on the skin. 
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Fig. 19-25. Apparatus for oscillatory testing of viscoelastic materials. (From G. B. 

Thurston and A. Martin, J. Pharm. Sci. 67, 1499, 1978. With permission.) 

Radebaugh and Simonelli28 studied the viscoelastic properties of anhydrous lanolin, which were found 
to be a function of strain, shear frequency, shear history, and temperature. The energy of activation,Ev, 
was calculated for the structural changes of the lanolin sample, which was found to undergo a major 
mechanical transition between 10°C and 15°C. The Ev for the transition was about 90 kcal that expected 
for glass transition. Rather than a sharp change from a rubbery to a glasslike state, however, anhydrous 
lanolin appeared to change to a state less ordered than glass. The glass–rubber transition and the glass 
transition temperature are discussed inChapter 20. The viscoelastic properties were determined using a 
Rheometrics mechanical spectrometer (RMS 7200; Rheometrics, Inc., Union, N.J.). The rheometer 
introduces a definite deformation into the sample at a specified rate and at a chosen temperature. 
For the design of mucolytic agents in the treatment of bronchitis, asthma, and cystic fibrosis, viscoelastic 
methods are also of value in the analysis of sputum. Other biologic fluids such as blood, vaginal 
material, and synovial fluids may be analyzed by viscoelastic test methods. The unsteady shear to 
which synovial fluids are subjected in the body during the movement of leg and arm joints requires the 
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elastic properties of these fluids, in addition to viscous properties that are observed only in steady shear. 
Thurston and Greiling29used oscillatory shear to analyze cases of noninflammatory and inflammatory 
joint disease associated with arthritis. The macromolecule hyaluronic acid is primarily responsible for the 
high viscosity and non-Newtonian character of synovial fluid and gives it simple Newtonian rather than 
the desired non-Newtonian properties. Changes in viscoelasticity of synovial fluids, measured in the 
oscillatory instrument shown in Figure 19-25, can therefore serve as sensitive indicators of joint disease. 
Psychorheology 
In addition to desirable pharmaceutical and pharmacologic properties, topical preparations must meet 
criteria of feel, spreadability, color, odor, and other psychologic and sensory characteristics. Workers in 
the food industry have long tested products such as butter, chocolate, mayonnaise, and bread dough for 
proper consistency during manufacture, packaging, and end use. Sensations in the mouth, between the 
fingers, and on the skin are important considerations for manufacturers of foods, cosmetics, and 
dermatologic products. Scott-Blair30 discussed psychorheology (as this subject is called) 
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in the food industry. Kostenbauder and Martin31 assessed the spreadability of ointments in relation to 
their rheologic properties. In consultation with dermatologists, they divided the products into three 
classes. Class I products were soft, mainly for ophthalmic use; class II products included common 
medicated ointments of intermediate consistency; and class III products involved stiff protective products 
for use in moist ulcerative conditions. The yield values and plastic viscosity for each class of product 
were reported. 
Boylan23 showed that the thixotropy, consistency, and yield value of bacitracin ointment, USP, 
decreased markedly as the temperature was raised from 20°C to 35°C. Thus, although a product may 
be sufficiently thixotropic in its container, this property can be lost following application to the skin. 
Barry et al.32 carried out sensory testing on topical preparations. They used a panel to differentiate 
textural parameters and established rheologic methods for use in industry as control procedures for 
maintaining uniform skin feel and spreadability of dermatologic products. Cussler et al.33 studied the 
texture of non-Newtonian liquids of widely different rheologic properties applied to the skin. They found 
that a panel of untrained subjects could accurately assess the consistency of a material by the use of 
only three attributes: smoothness, thinness, and warmth. Smoothness was related to a coefficient of 
friction and thinness to non-Newtonian viscous parameters that could be measured with appropriate 
instruments. The characteristic of warmth was found to be sufficiently complex to require further study. 
Applications to Pharmacy 
The rheologic behavior of poloxamer vehicles was studied as a function of concentration over a 
temperature range of 5°C to 35°C using a cone–plate viscometer.34 Poloxamers are block polymers 
from BASF Wyandotte Corp. that have the chemical structure 

 
Poloxamers with a wide range of molecular weights are available as Pluronics. Some of the poloxamers 
are used in dermatologic bases or topical ophthalmic preparations because of their low toxicity and their 
ability to form clear water-based gels. 
The aqueous solubility of the poloxamers decreases with an increase in temperature, the hydration of 
the polymer being reduced by the breaking of hydrogen bonds at higher temperatures. The desolvation 
that results, together with the entanglement of the polymer chains, probably accounts for the gel 
formation of the poloxamers. 
A linear relationship was found between shear rate and shear stress (Newtonian behavior) for the 
poloxamer vehicles in the sol state, which exists at low concentrations and low temperatures. As the 
concentration and temperature were increased, some of the poloxamers exhibited a sol–gel 
transformation and became non-Newtonian in their rheologic character. The addition of sodium chloride, 
glycerin, or propylene glycol resulted in increased apparent viscosities of the vehicles. 
Polymer solutions can be used in ophthalmic preparations, as wetting solutions for contact lenses, and 
as tear replacement solutions for the condition known as dry eye syndrome. Both natural (e.g., dextran) 
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and synthetic (e.g., polyvinyl alcohol) polymers are used with the addition of various preservatives. A 
high-molecular-weight preparation of sodium hyaluronate at concentrations of 0.1% to 0.2% has been 
introduced to overcome the dry eye condition. 
For high-polymer solutions, the viscosity levels off to a zero-shear viscosity (a high viscosity) at low 
shear rates. The viscosity decreases as the shear rate is increased because the normally twisted and 
matted polymer molecules align in the streamlined flow pattern and exhibit pseudoplasticity or shear 
thinning. 
Bothner et al.35 suggested that a suitable tear substitute should have shear-thinning properties as do 
natural tears to conform to the low shear rate during nonblinking and the very high shear rate during 
blinking. The low viscosity at high shear rates produces lubrication during blinking, and the high viscosity 
at zero shear rate prevents the fluid from flowing away from the cornea when the lids are not blinking. 
Using a computer-controlled Couette viscometer, they studied the rheologic properties of eight 
commercial tear substitutes, together with 0.1% and 0.2% solutions of sodium hyaluronate. For five of 
the commercial products, the viscosity was independent of shear rate; thus, these products behaved as 
Newtonian liquids. Two products showed slight shear thinning at high shear rates. Only the commercial 
product Neo-Tears and the two noncommercial sodium hyaluronate solutions showed the desired 
pseudoplastic behavior. For Neo-Tears the viscosity at high shear rate, 1000 sec-1, was 3-fold that at 
zero shear. For 0.1% sodium hyaluronate the value was 5-fold and for 0.2% sodium hyaluronate it was 
30-fold. Therefore, sodium hyaluronate appears to be an excellent candidate as a tear replacement 
solution. 
The rheologic properties of suppositories at rectal temperatures can influence the release and 
bioabsorption of drugs from suppositories, particularly those having a fatty base. Grant and 
Liversidge36 studied the characteristics of triglyceride suppository bases at various temperatures, using 
a rotational rheometer. Depending on the molten (melted) character of the base, it behaved either as 
Newtonian material or as a plastic with thixotropy. 
Fong-Spaven and Hollenbeck37 studied the rheologic properties as a function of the temperature of 
mineral oil–water emulsions stabilized with triethanolamine stearate (TEAS). The stress required to 
maintain a constant rate of shear was monitored as temperature increased from 25°C to 75°C. 
Unexpected, but reproducible discontinuities in the plots of temperature versus apparent viscosity were 
obtained using a Brookfield digital viscometer and were attributed 
P.489 
 
possibly to shifts in the liquid crystalline structures. As seen inFigure 19-26, where apparent viscosity is 
plotted versus temperature for a 5% TEAS mineral oil–water emulsion, viscosity decreases as 
temperature is raised to about 48°C. The viscosity reverses and increases to a small peak at 54°C and 
then decreases again with increasing temperature. This unusual behavior is considered to result from 
gel formation, which stabilizes the internal phase. Liquid-crystalline structures of TEAS exist, and at 
higher temperatures the structures disintegrate or ―melt‖ to form a large number of TEAS molecules in a 

gel-like arrangement that exhibits increased resistance to flow. As the temperature rises above 54°C the 
gel structure is gradually destroyed and viscosity again decreases, as shown in Figure 19-26. 
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Fig. 19-26. Viscosity versus temperature plots of an oil–water emulsion over a period 

of 9 weeks. (From F. Fong-Spaven and R. G. Hollenbeck, Drug Dev. Ind. 

Pharm. 12,289, 1986. With permission.) 

Patterned after the manufacture and use of cosmetic sticks, solidified sodium stearate–based sticks 
were prepared and tested for topical application using a Ferranti–Shirley cone–plate viscometer. The 
sticks contained propylene glycol, polyethylene glycol 400, and polyethylene glycol 600 as humectants 
and the topically active drugs panthenol, chlorphenesin, and lignocaine. Thixotropic breakdown was 
much lower in these medicated sticks than in comparable bases. The addition of the three topical drugs 
to the stearate-based sticks caused changes in yield values, thixotropy, and plastic viscosity; possible 
reasons for the changes were advanced.38 
Rowe and Sadeghnejad39 studied the rheologic properties of microcrystalline cellulose, an ingredient 
incorporated into wet powder masses to facilitate granulation in the manufacture of tablets and granules. 
The authors designed a mixer torque rheometer to measure the torque changes as water was added to 
the powder mixture (torque is the force acting to produce rotation of a body). As the mixture became 
wetter, torque increased until the mass was saturated, then decreased with further addition of water as a 
slurry (suspension) was formed. A plot of torque in Newton meters (1 N m = 1 joule) against increasing 
water content produced a bell-shaped curve, as shown in Figure 19-27. This behavior was explained, 
according to the authors, by the three states of liquid saturation of a powder mass, as described by 
Newitt and Conway-Jones.40 
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Fig. 19-27. Changes of torque in a mixer torque rheometer as water is added to a 

mixture of powders. (From R. C. Rowe and G. R. Sadeghnejad, Int. J. Pharm.38, 227, 

1987. With permission.) 

With the early addition of liquid, a pendular state exists (see Fig. 19-28) with lenses of liquid at the 
contact points of the particles. The liquid forces out some of the air originally filling the spaces between 
particles. As more liquid is added, a mixture of liquid and air exists between the particles to produce 
the funicular state. The torque on the mixer increases for these two conditions until the end of the 
funicular state. The pores are then filled with liquid to yield thecapillary state, and with the addition of 
more liquid the torque decreases as a slurry (suspension) is produced (liquid-droplet state). These 
stages of saturation are depicted schematically inFigure 19-28. 
The three microcrystalline celluloses from different sources39exhibited essentially the same plot of 
torque versus water added (see Fig. 19-27). Yet the curves, only one of three shown here, rose to 
slightly different heights and the maxima occurred at different amounts of water added. 
An account of the rheology of suspensions, emulsions, and semisolids is presented in Chapter 19, and 
the flow properties of powders are dealt with in Chapter 20. Consideration is given inChapter 18 to the 
rheology of colloid materials, 
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which find wide application in pharmacy as suspending agents. Boylan23 considered some of the 
rheologic aspects of parenteral suspensions and emulsions. 
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Fig. 19-28. The states of liquid saturation of a powder. (a) Pendular state with lenses 

of liquid at the contact points of the particles. (b) A mixture of liquid and air between 

the particles, producing the funicular state. (c) Pores filled with liquid to yield the 

capillary state. (d) Liquid droplets completely enveloping particles (the liquid-

droplet state). (Modified from D. M. Newitt and J. M. Conway-Jones, Trans. Inst. 

Chem. Eng. 36, 422, 1958.) 

Table 19-3 Pharmaceutical Areas in which Rheology is Significant* 

1. Fluids 

a. Mixing 

b. Particle-size reduction of disperse systems with shear 

c. Passage through orifices, including pouring, packaging in bottles, 

and passage through hypodermic needles 

d. Fluid transfer, including pumping and flow through pipes 

e. Physical stability of disperse systems 

2. Quasisolids 

a. Spreading and adherence on the skin 

b. Removal from jars or extrusion from tubes 

c. Capacity of solids to mix with miscible liquids 

d. Release of the drug from the base 

3. Solids 

a. Flow of powders from hoppers and into die cavities in tabletting 

or into capsules during encapsulation 

b. Packagability of powdered or granular solids 

4. Processing 

a. Production capacity of the equipment 

b. Processing efficiency 
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*From A. Martin, G. S. Banker, and A. H. C. Chun, in H. S. Bean, A. H. 

Beckett, and J. E. Carless (Eds.), Advances in Pharmaceutical Sciences, 

Academic Press, London, 1964, Chapter 1. With permission. 

 

A summary of the major areas of product design and processing in which rheology is significant is given 
in Table 19-3. Although the effects of processing can affect the flow properties of pharmaceutical 
systems, a detailed discussion of this area is outside the scope of this text. For an account of this topic 
as well as a comprehensive presentation of the theoretical and instrumental aspects of rheology, refer to 
the review by Martin et al.3 The theory and application of viscoelasticity were briefly reviewed in the 
previous section. Detailed discussions of this approach are given in the references cited. 
Chapter Summary 

In this chapter the basics of rheology were presented. An understanding of the viscosity of 
liquids, solutions, and dilute and concentrated colloidal systems has both practical and 
theoretical values in the pharmaceutical sciences. Rheology is involved in the mixing and flow 
of materials, their packaging into containers, and their removal prior to use, whether this is 
achieved by pouring from a bottle, extrusion from a tube, or passage through a syringe 
needle. The rheology of a particular product, which can range in consistency from fluid to 
semisolid to solid, can affect its patient acceptability, physical stability, and even biologic 
availability. Materials are classified according to types of flow and deformation. Finally, the 
theory and methods for determining the rheologic properties of pharmaceutical materials as 
well as the application to the pharmaceutical sciences were discussed. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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20 Pharmaceutical Polymers 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Know the basic concepts of polymers, definitions, and descriptive terms. 
2. Understand the principles of polymer synthesis. 
3. Distinguish the basic principles of homogeneous and dispersion polymerizations. 
4. Understand the thermal, physical, and mechanical properties of polymers in general. 
5. Explain the glass transition temperature and factors affecting the Tg. 
6. Understand how polymer molecular weight affects its properties. 
7. Know what types of polymers are generally used in the pharmaceutical area. 
8. Explain why polymers are used in drug delivery applications. 

Introduction 
Synthetic and natural-based polymers have found their way into the pharmaceutical and biomedical 
industries and their applications are growing at a fast pace. Understanding the role of polymers as 
ingredients in drug products is important for a pharmacist or pharmaceutical scientist who deals with 
drug products on a routine basis. Having a basic understanding of polymers will give you the opportunity 
to not only familiarize yourself with the function of drug products but also possibly develop new 
formulations or better delivery systems. This chapter will provide the basis for understanding 
pharmaceutical polymers. The basic concepts of polymer chemistry, polymer properties, types of 
polymers, polymers in pharmaceutical and biomedical industries, and reviews of some polymeric 
products in novel drug delivery systems and technologies will be covered. 
History of Polymers 
Polymers have a wide-ranging impact on modern society. Polymers are more commonly referred to as 
―plastics‖ since people are more familiar with plastic products that they encounter around the house than 

any other type of polymeric product. Plastics have the ability to be molded, cast, extruded, drawn, 
thermoformed, or laminated into a final product such as plastic parts, films, and filaments. The first 
semisynthetic polymer ever made was guncotton (cellulose nitrate) by Christian F. Schönbein in 1845. 
The manufacturing process for this polymer was changed over the years due to its poor solubility, 
processability, and explosivity resulting in a variety of polymers such as Parkesine, celluloid (plasticized 
cellulose nitrate), cellulose acetate (cellulose treated with acetic acid), and hydrolyzed cellulose acetate 
soluble in acetone. In 1872, Bakelite, a strong and durable synthetic polymer based on phenol and 
formaldehyde, was invented. Polycondensation-based polymeric products such as Bakelite and those 
based on phenoxy, epoxy, acrylic, and ketone resins were used as cheap substitutes for many parts in 
the auto and electronic industries. Other synthetic polymers were invented later including polyethylene 
(1933), poly (vinyl chloride) (1933), polystyrene (1933), polyamide (1935), Teflon (1938), and synthetic 
rubbers (1942). Polyethylene was used to make radar equipment for airplanes. The British air force 
used polyethylene to insulate electrical parts of the radars in their airplanes. Synthetic rubber, which 
could be made in approximately 1 hr as compared to 7 years for natural rubbers, was used to make tires 
and other military supplies. Teflon was used in atomic bombs to separate the hot isotopes of uranium. 
Nylon was used to make parachutes, replacing silk, which had to be imported from Japan. 
The plastics revolution advanced technologies in the 20th century and opened new fields of application 
in the pharmaceutical and biomedical sectors. In recent years, polymers have been used to develop 
devices for controlling drug delivery or for replacing failing natural organs. In oral delivery, polymers are 
used as coatings, binders, taste maskers, protective agents, drug carriers, and release controlling 
agents. Targeted delivery to the lower part of the gastrointestinal tract (e.g., in the colon) was made 
possible by using polymers that protect drugs during their passage through the harsh environment of the 
stomach. Transdermal patches use polymers as backings, adhesives, or drug carriers in matrix or 
membrane products (these are described later in the book). Controlled delivery of proteins and peptides 
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has been made possible using biodegradable polymers. In many drug products you may find at least 
one polymer that enhances product performance. The key difference between early polymers and 
pharmaceutical polymers is biocompatibility. 
Polymers in General1,2,3,4,5 
The word ―polymer‖ means ―many parts.‖ A polymer is a large molecule made up of many small 

repeating units. In the 
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early days of polymer synthesis, little was known about the chemical structures of polymers. Herman 
Staudinger, who received the Nobel Prize in Chemistry in 1953, coined the term ―macromolecule‖ in 

1922 and used it in reference to polymers. The difference between the two is that polymers are made of 
repeating units, whereas the term macromolecule refers to any large molecule, not necessarily just 
those made of repeating units. So, polymers are considered to be a subset of macromolecules. 

 

Fig. 20-1. Polymer anatomy. 

A monomer is a small molecule that combines with other molecules of the same or different types to 
form a polymer. Since drawing a complete structure of a polymer is almost impossible, the structure of a 
polymer is displayed by showing the repeating unit (the monomer residue) and an ―n‖ number that 

shows how many monomers are participating in the reaction. From the structural prospective, 
monomers are generally classified as olefinic (containing double bond) and functional (containing 
reactive functional groups) for which different polymerization methods are utilized. If two, three, four, or 
five monomers are attached to each other, the product is known as a dimer, trimer, tetramer, or 
pentamer, respectively. An oligomer contains from 30 to 100 monomeric units. Products containing 
more than 200 monomers are simply called a polymer (Fig. 20-1). From a thermodynamic perspective, 
polymers cannot exist in the gaseous state because of their high molecular weight. They exist only as 
liquids or high solid materials. 
Example 20-1 

Molecular Weight 

A polyethylene with molecular weight of 100,000 g/mol is made of almost 3570 monomer 
units (—CH2CH2—) with the molecular weight of 28 g/mol. 
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Since polymers originate from oil, they are generally cheap materials. Unlike other materials such as 
metals or ceramics, polymers are large molecular weight materials and their molecular weight can be 
adjusted for a given application. For example, silicone polymers are supplied as vacuum grease (low 
molecular weight) and as durable implants (very high molecular weight). By changing the molecular 
weight, the physical and mechanical properties of the polymer can be tailor-made. This can be achieved 
by changing the structure of the monomer building blocks or by blending them with other polymers. 
Blending is a process intended to achieve superior properties that are unattainable from a single 
polymer. For example, polystyrene is not resistant against impact, so a polystyrene cup can be easily 
smashed into pieces if compressed between your fingers. However, polystyrene blended with 
polybutadiene is an impact resistant product. Alternatively, monomers of styrene and butadiene can be 
copolymerized to make a new copolymer of styrene–butadiene. 
Polymer Synthesis 
To make polymers, monomers have to interact with each other. Let us consider a simple scenario in 
which just one monomer type is going to be polymerized. The structure of the monomer molecule will tell 
us how we should polymerize it. A monomer may be unsaturated; in other words it may contain a double 
bond of σ(sigma) and π (pi) between a pair of electrons. The π bond generally requires low energy to 

break; therefore, polymerization starts at this site by the addition of a free radical on the monomer. On 
the other hand, if a monomer does not contain a double bond but possesses functional groups such as 
hydroxyl, carboxyl, or amines, they can interact via condensation. These two types of polymerization 
processes are described in the next two sections. 
Addition Polymerization 
Free-radical polymerization is also known as chain or addition polymerization. As the name implies, a 
radical-generating ingredient induces an initiator triggering polymerization. The initiator is an unstable 
molecule that is cleaved into two radical-carrying species under the action of heat, light, chemical, or 
high-energy irradiation. Each initiating radical has the ability to attack the double bond of a monomer. In 
this way, the radical is transferred to the monomer and a monomer radical is produced. This step in 
polymerization is calledinitiation. The monomer radical is also able to attack another monomer and then 
another monomer, and so on and so forth. This step is called propagation by which a macroradical is 
formed. Macroradicals prepared in this way can undergo another reaction with another macroradical or 
with another inert compound (e.g., an impurity in the reaction) which terminates the macroradical. Figure 
20-2 shows the free-radical polymerization of styrene, a monomer, to polystyrene. Monomers such as 
acrylic acid, acrylamide, acrylic salts (such as sodium acrylate), and acrylic esters (methyl acrylate) 
contain double bonds and they can be polymerized via addition reactions. 
Condensation Polymerization 
In condensation polymerization, also called step polymerization, two or more monomers carrying 
different reactive 
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functional groups interact with each other as shown in Figure 20-3. For example, a monomer containing 
a reactive hydrogen from the amine residue can react with another monomer containing a reactive 
hydroxyl group (a residue of carboxyl group) to generate a new functional group (amide) and water as a 
side product. If a monomer containing the reactive hydrogen reacts with a monomer containing reactive 
chlorine, the side product will be hydrochloric acid. Since each monomer is bifunctional (in other words, 
it contains two reactive hydrogens or two reactive chlorines), the reaction product can grow by reacting 
with another monomer generating a macromonomer. Nylon is prepared via condensation polymerization 
of a diamine and diacid chloride. The diamine and diacid chloride are dissolved in water and 
tetrachloroethylene, respectively. Since the two solutions do not mix with each other, they form two 
immiscible separate layers, with tetrachloroethylene at the bottom. At the interface of the two solutions, 
the two monomers interact and form the polymer. The polymers can then be gently removed from the 
interface as fiber. There are no radicals involved in this polymerization reaction. 
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Fig. 20-2. Addition or free-radical polymerization of styrene. 

Free-radical polymerization is an addition reaction that is characterized by fast growth of macroradicals. 
There is a high chance that high–molecular-weight chains are formed at the beginning of the reaction. 
On the other hand, condensation polymerization is a stepwise reaction in which smaller species are 
initially formed first and then combined to make higher-molecular-weight species. This reaction tends to 
be slow generally lasting for several hours. Figure 20-4 shows the concept. 
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Fig. 20-3. Examples of condensation polymerization. 

 

Fig. 20-4. Condensation versus addition polymerizations. 

Polymerization Methods 
Now, the question is how can polymers be made from monomers? Reactions may be carried out in 
homogeneous or heterogeneous systems. The former includes bulk and solution polymerizations, 
whereas the latter includes any dispersed system such as suspensions, emulsions, and their reverse 
phase counterparts; in other words, inverse suspensions and inverse emulsions. 
Homogeneous Polymerization 
Bulk polymerization occurs when no other materials except the monomer and initiator are used. If the 
monomer is water-soluble, a linear water-soluble polymer is theoretically prepared. With oil-soluble 
monomers, the polymer will be linear and soluble in oil. Surprisingly, sometimes when an olefinic water-
soluble monomer is polymerized in bulk, a water-swellable polymer is prepared. This is due to excessive 
exothermic heat resulting in hydrogen abstraction from the polymer backbone, which promotes cross-
linking reactions at the defective site. The cross-linked polymer obtained without using any chemical 
cross-linker is called a popcorn polymer and the reaction is called ―popcorn polymerization.‖ 

Crospovidone, a superdisintegrant in solid dose formulations, is a cross-linked polymer of vinyl 
pyrrolidone which is produced by popcorn polymerization. 
In certain circumstances when the monomer is very temperature sensitive, a popcorn polymer can be 
obtained even without using an initiator. The monomer acrylic acid is glacial with a melting point around 
13°C. If the monomer was stored at freezing temperature, the polymerization stabilizer will be unevenly 
distributed between the liquid and thawing phases. This results in poor protection of the monomer and 
sudden polymerization that generates tremendous amounts of heat. 
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To solve the problems associated with exothermic heat in bulk polymerization, polymerization can 
alternatively be conducted in solution. Depending on the monomer solubility, water or organic solvents 
can be used as diluents or solvents. Again, a water-soluble or an oil-soluble polymer is obtained if 
monomers are water-soluble or oil-soluble, respectively. The solvent or diluent molecules reside in 
between the monomer molecules and they reduce the amount of interaction between the two 
neighboring monomers. In this way, less amounts of heat are generated in a given period of time and a 
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less exothermic but controllable reaction is conducted. Polymers prepared accordingly are generally 
soluble in their corresponding solvents, but they are swellable if a cross-linker is used during their 
polymerization. The cross-linker can be water-soluble or oil-soluble. Swellability of a polymer can be 
modified by the simultaneous use of water-soluble and oil-soluble cross-linkers. 
Dispersion Polymerization 
Dispersion polymerization occurs in suspensions, emulsions, inverse suspensions, and inverse 
emulsions. In dispersion polymerization, two incompatible phases of water and oil are dispersed into 
each other. One phase is known as the minor (dispersed) phase and the other as the major (continuous) 
phase. The active material (monomer) can be water-soluble or oil-soluble. To conduct polymerization in 
a dispersed system, the monomer (in the dispersed phase) is dispersed into the continuous phase using 
a surface-active agent. The surfactant is chosen on the basis of the nature of the continuous phase. 
Generally, a successful dispersion polymerization requires that the surfactant be soluble in the 
continuous phase. Therefore, if the continuous phase is water, the surfactant should have more 
hydrophilic groups. On the other hand, if the continuous phase is oil, a more hydrophobic (lipophilic) 
surfactant would be selected. Generally, two basic factors control the nature of the dispersion system. 
These are surfactant concentration and the surface tension of the system (nature of the dispersed 
phase) as shown in Figure 20-5. Dispersed systems were discussed in earlier chapters. The surfactant 
concentration determines the size of the polymer particles. The system will be a suspension or inverse 
suspension with particle sizes around 0.2 to 0.8 mm below the critical micelle concentration. Above the 
critical micelle concentration, 10 to 100 µm particles are formed. Nanosize particles can be made if a 
sufficient amount of surfactant is used. Nanoemulsion or inverse nanoemulsion systems are rarely used 
in the pharmaceutical industry because of the amount of surfactant required to stabilize the system. 
Surfactants represent undesirable impurities that affect drug stability and formulation acceptability. 
Water-insoluble polymers based on acrylic or methacrylic esters are prepared via suspension or 
emulsion polymerization. Eudragit L30D is a copolymer of methacrylic acid and ethyl acrylate which is 
manufactured using an emulsion technique. Eudragit NE30D is also a copolymer of ethyl acrylate and 
methyl methacrylate which can be manufactured in an emulsion system. On the other hand, water-
soluble polymers based on acrylic or methacrylic salts as well as acrylamide can be prepared using 
inverse suspension or inverse emulsion systems. Emulsion systems that use water as a continuous 
phase are known as latex. Table 20-1 summarizes important polymerization methods that are potentially 
used to prepare pharmaceutical polymers. 

 

Fig. 20-5. Dispersion systems. 

Copolymers and Polymer Blends 
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If one polymer system cannot address the needs of a particular application, its properties need to be 
modified. For this reason, polymer systems can be physically blended or chemically reacted. With the 
former, a two-phase system generally exists, whereas with the latter a monophase system exists. This 
can clearly be seen in a differential scanning calorimeter by monitoring the glass transition temperature 
(Tg) of the individual polymers. With polymer blends, two Tg values are observed while one single Tg is 
detected for copolymers. Thermal analysis is discussed in detail in Chapter 2. 
Copolymerization refers to a polymerization reaction in which more than one type of monomer is 
involved. Generally, copolymerization includes two types of monomers. If one monomer is involved, the 
process is called polymerization and the product is a homopolymer. For example, polyethylene is a 
homopolymer since it is made of just one type of monomer. Depending on their structure, monomers 
display different reactivities during the polymerization reaction. If the reactivities of two monomers are 
similar, there will be no preference for which monomer is added next, so the polymer that is formed is 
called a random copolymer. When one monomer is preferentially added to another monomer, the 
monomers are added to each other alternatively and the polymer product is called an alternate 

copolymer. Sometimes, monomers preferentially add onto themselves and a block copolymer is formed. 
This happens when one monomer has a very high reactivity toward itself. Once more reactive 
monomers have participated in the reaction, the macroradical of the first monomer will attack the second 
monomer with the lower activity, and the second monomer will then grow as a block. Pluronic 
surfactants (EO-PO-EO terpolymers) are 
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composed of block units of ethylene oxide and propylene oxides attached to each other. The major 
difference between graft copolymer and the other copolymer types is the nature of their building blocks. 
Other copolymer types are made of two or more monomer types, while a monomer and a polymer are 
generally used to make graft copolymers. For example, the physical chemical properties of 
carboxymethyl cellulose (CMC) can be changed by grafting various monomers such as acrylic acid, 
acrylamide, and acrylonitrile onto the cellulose backbone. Although not very common, a terpolymer will 
be obtained when three monomers participate in the polymerization reaction. Different types of 
copolymer products are shown in Figure 20-6. 

Table 20-1 Polymerization Methods 
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Example 20-2 

Pharmaceutical Polymers 
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In pharmaceutical solid oral dosage forms, the Eudragit polymers are used for sustained 
release, drug protection, and taste-masking applications. These polymers are made of acrylic 
esters (methyl methacrylate, ethyl acrylate). Their solubility, swellability, and pH dependent 
properties have been modified by incorporating anionic and cationic monomers such as 
methacrylic acid and dimethylaminoethyl acrylate. 

 

Fig. 20-6. Polymers made of two or more monomer units. 

From a commercial standpoint, polymer properties can be simply changed by mixing or blending one or 
two polymer systems. Polymer blends are simply made by physical blending of two different polymers in 
molten or in solution state. The blend is either solidified at lower temperature if prepared by melting or 
recovered at higher temperature if prepared in solution. Some thermoplastic polymers are not resistant 
to sudden stresses. Once impacted, the craze (microcrack) and macrocracks will grow very quickly 
within their structure and the polymer will simply and suddenly break apart. These polymers have rigid 
structures with high Tg values. Adding a low Tg polymer (in other words, a flexible polymer) such as 
rubber particles improves the impact resistance of these polymers by preventing the cracks from 
growing. 
Interpenetrating Polymer Networks 
Interpenetrating polymer networks (IPNs) are also composed of two or more polymer systems but they 
are not a simple physical blend. Semi-IPNs or semi-interpenetrating polymer networks are prepared by 
dissolving a polymer into a solution of another monomer. An initiator as well as a cross-linker is added 
into the solution and the monomer is polymerized and cross-linked in the presence of the dissolved 
polymer. The result will be a structure in which one cross-linked polymer interpenetrates into a non–

cross-linked polymer system. With fully interpenetrated structures, two different monomers and their 
corresponding cross-linkers are polymerized and cross-linked simultaneously. This results in a doubly 
cross-linked 
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polymer system that interpenetrates into one another. Alternatively, conducting the cross-linking reaction 
on a semi-interpenetrated product can form a full-IPN structure. The non–cross-linked phase of the 
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semi-IPN product will be further cross-linked with a chemical cross-linker or via physical 
complexation.6,7 
Example 20-3 

IPN Polymer Structure 

Elastic superporous hydrogels have been developed for oral gastric retention of the drugs 
with a narrow absorption window. These hydrogels are prepared using a two-step process. 
First, a semi-IPN structure is prepared by polymerizing and cross-linking a synthetic monomer 
(such as acrylamide) in the presence of a water-soluble polymer (e.g., alginate). Although the 
cross-linked acrylamide polymer is not soluble in water, the alginate component is. In the 
second step, the prepared semi-IPN is further treated with cations (such as calcium) to 
provide insolubility to the alginate component via ion-complexation. This results in a full IPN 
structure with a balanced swelling and mechanical properties. 

Topology and Isomerism 
The topology of a polymer describes whether the polymer structure is linear, branched, or cross-linked. 
Topology can affect polymer properties in its solid or solution states. With a linear polymer, the polymer 
chains are not chemically attached to each other, instead weaker intermolecular forces hold the polymer 
chains together. A linear polymer can show dual behavior. Chains in a linear polymer can freely move, 
which offers the polymer a low melting temperature. On the other hand, linear chains have a higher 
chance of approaching each other in their solid state, which increases their crystallinity and melting 
temperature. The same holds true for branched polymers in which short or long side groups are 
attached to the backbone of the polymer. Branched polymer chains move with difficulty because of the 
steric hindrance induced by the side groups but they presumably possess weaker intermolecular forces, 
which apparently help them move freely. With cross-linked polymers, the chains are chemically linked 
and will be restricted from moving to a sensible extent depending on the level of cross-linking. Very 
highly cross-linked polymers are very rigid structures that degrade at high temperatures before their 
chains start to move. 
In solution, a branched polymer might display a better solvent permeability compared to its linear 
counterpart due to its side groups. Gum Arabic is a highly branched polymer with very high solubility in 
water. If a linear polymer is cross-linked, its solubility will be sacrificed at the expense of swellability. 
Therefore, a cross-linked polymer can swell in a solvent to an extent that is inversely related to the 
amount of cross-linker. Figure 20-7 summarizes and correlates polymer topology to its solution and melt 
properties. 
Isomerism can be classified as structural isomerism (Fig. 20-8a), sequence isomerism (Fig. 20-8b), and 
stereoisomerism (Fig. 20-8c). Gutta Percha natural rubber (trans-polyisoprene) and its synthetic 
counterpart (cis-polyisoprene) are similar in structure but their trans and cis nature results in a medium-
crystal and amorphous behavior, respectively. This important feature can be accounted for in terms of 
the position of a methyl group. The cis andtrans isomers of a same polymer display 
different Tg and Tm values, for example, polyisoprene (Tg of -70°C versus -50°C; Tm of 39°C versus 
80°C), polybutadiene (Tg of -102°C versus -50°C; Tm of 12°C versus 142°C).1 With sequence 
isomerism, monomers with pendant groups can attach to each other in head-to-tail, head-to-head, or 
tail-to-tail conformation. Stereoisomerism applies to polymers with chiral centers, which results in three 
different configurations—isotactic (pendant groups located on one side), syndiotactic (pendant groups 
located alternatively on both sides), and atactic (pendant groups located randomly on both sides) 
configurations. 
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Fig. 20-7. Polymer topology and properties. 

Example 20-4 

Stereoisomerism 

The isotactic and atactic polypropylenes display glass transition temperatures of 100°C and -
20°C, respectively. While the isotactic one is used for special packaging purposes, the atactic 
one is commonly used as a cheap excipient in general adhesive formulations. 

Thermoplastic and Thermoset Polymers 
Polymers with a linear or branched structure generally behave as thermoplastics. Thermoplastic 
polymers can undergo melting, which is potentially useful in processes such as compression molding, 
injection molding, and thermoforming. In other words, a polymer that is originally a solid can flow upon 
application of heat. The process of thermomelting and 
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solidification can be repeated indefinitely with thermoplastic polymers. Examples include polystyrene, 
polyethylene, and poly (vinyl chloride). On the other hand, thermosetting polymers are cross-linked 
polymers, which are formed upon combined application of a cross-linker and heat or combined 
application of heat and reaction of internal functional groups. In some cross-linking reactions such as in 
curing rubbers, the reaction is assisted by simultaneous application of heat and pressure. Therefore, 
these polymers assume a different status than thermoplastic polymers as their flow behavior is 
temperature independent. Once a thermoset polymer is formed, it does not soften upon heating and 
decomposes with further application of heat. Since there is no reversible melting and solidifying in 
thermoset polymers, this feature is very useful when a thermoresistant polymer is desirable. Processing 
of polymers is generally favored by increasing temperature. A more processable polymer is one that 
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requires a lower temperature to move its chains. A cross-linked polymer loses its processability as chain 
movement is hindered with the addition of cross-linker. On the other hand, linear and branched 
polymers gain more freedom to move as temperature increases. 

 

Fig. 20-8. (a) Structural isomerism; (b) sequence isomerism; and (c) stereoisomerism. 

Key Concept 
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Cross-Linking 

A ladder is composed of two long legs and multiple short pieces that are used to connect 
them. When a ladder is used, you do not want its legs to move or even worse, to separate 
from each other. A ladder with more connection points on the two legs is more secure and 
more stable than a ladder with less. One cannot climb on a ladder without a connector. In 
polymer terms, cross-linked polymers are long linear chains (ladder legs) that are cross-linked 
using a functional or an olefin cross-linker (ladder legs connector). Cross-linked polymers are 
also intended for applications where a certain amount of load is applied. Examples of this are 
tires (made of cross-linked rubbers) and hydrogels (made of cross-linked hydrophilic 
polymers) that are expected to function and to survive under the service load of mechanical 
and swelling pressure, respectively. When you drive your car, the last thing you want is to 
have your tire melt away. 

For a polymer in its solution state, solubility in a solvent is also an entropy-favored process. In other 
words, a linear or branched polymer generally dissolves in an appropriate solvent. Addition of cross-
links to their structure will hinder chain movement and reduce their solubility in that solvent. This is why 
cross-linked polymers swell when they are placed in a compatible solvent. 
Polymer Properties 
Crystalline and Amorphous Polymers 
Polymers display different thermal, physical, and mechanical properties depending on their structure, 
molecular weight, linearity, intra- and intermolecular interactions. If the structure is linear, polymer 
chains can pack together in regular arrays. For example, polypropylene chains fit together in a way that 
intermolecular attractions stabilize the chains into a regular lattice or crystalline state. With increased 
temperature, the crystal cells (crystallites) start to melt and the whole 
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polymer mass suddenly melts at a certain temperature. Above the melting temperature, polymer 
molecules are in continuous motion and the molecules can slip past one another. 
In many cases, the structure of a polymer is so irregular that crystal formation is thermodynamically 
infeasible. Such polymers form glass instead of crystal domains. A glass is a solid material existing in a 
noncrystalline (i.e., amorphous) state. Amorphous structure is formed due to either rapid cooling of a 
polymer melt in which crystallization is prevented by quenching or due to the lack of structural regularity 
in the polymer structure. Rotation around single bonds of the polymer chains becomes very difficult at 
low temperatures during rapid cooling; therefore, the polymer molecules forcedly adopt a disordered 
state and form an amorphous structure. Amorphous or glassy polymers do not generally display a sharp 
melting point; instead, they soften over a wide temperature range.8 
Example 20-5 

Crystalline and Amorphous 

Polystyrene and poly (vinyl acetate) are amorphous with melting range of 35°C to 85°C and 
70°C to 115°C, respectively. On the other hand, poly (butylene terephthalate) and poly 
(ethylene terephthalate) are very crystalline with sharp melting range of 220 and 250°C to 
260°C, respectively. 

Polymer strength and stiffness increases with crystallinity as a result of increased intermolecular 
interactions. With an increase in crystallinity, the optical properties of a polymer are changed from 
transparent (amorphous) to opaque (semicrystalline). This is due to differences in the refractive indices 
of the amorphous and crystalline domains, which lead to different levels of light scattering. From a 
pharmaceutical prospective, good barrier properties are needed when polymers are used as a 
packaging material or as a coating. Crystallinity increases the barrier properties of the polymer. Small 
molecules like drugs or solvents usually cannot penetrate or diffuse through crystalline domains. 
Therefore, crystalline polymers display better barrier properties and durability in the presence of 
attacking molecules. Diffusion and solubility are two important terms that are related to the level of 
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crystallinity in a polymer. On the other hand, a less crystalline or an amorphous polymer is preferred 
when the release of a drug or an active material is intended. Crystallinity in a given polymer depends on 
its topology and isomerism (linear versus branched; isotactic versus atactic), polymer molecular weight, 
intermolecular forces, pendant groups (bulky versus small groups), rate of cooling, and stretching mode 
(uniaxial versus biaxial). Another unique property of a crystalline polymer or a polymer-containing 
crystalline domains is anisotropy. A crystal cell displays different properties along longitudinal and 
transverse directions. This causes the polymer to behave like an anisotropic material. 

Key Concept 

Anisotropy 

Take a roll of toilet paper from your bathroom and try to tear it apart from two directions 
perpendicular to each other. What will you observe? 
If you tear it along the roll direction (its length), it will easily tear apart and the tear line will be 
smooth and even. On the other hand, tearing in the other direction would be very difficult and 
the tear line will appear as a random irregular corrugated line. Why is this? 
Toilet paper is manufactured using a process that applies a force along the roll direction. 
Because of the applied force, the chains are aligned in the direction of the force. When you try 
to tear the tissue in this direction, there is no barrier to the force and the material does not 
resist. On the other hand, tearing the tissue requires cutting the chains in the perpendicular 
direction that implies resistance from the material. This is anisotropy, which means material 
properties are different in different directions. Pharmaceutical tablets are generally 
compressed in one direction, which might affect drug release or tablet properties throughout. 

Thermal Transitions 
Thermal transitions in polymers can occur in different orders. In other words, the volume of a polymer 
can change with temperature as a first- or second-order transition. When a crystal melts, the polymer 
volume increases significantly as the solid turns to a liquid. The melting temperature (Tm) represents a 
first-order thermal transition in polymers. On the other hand, the volume of an amorphous polymer 
gradually changes over a wide temperature range or so-called glass transition temperature. This 
behavior represents a second-order thermal transition in polymers. As shown in Figure 20-
9, Tm and Tg of a given polymer can be detected by differential scanning calorimetry (DSC) as an 
endothermic peak and a baseline shift, respectively. These two thermal transitions reflect the structural 
movement of the crystalline and amorphous regions of a polymer chain. 
Glass Transition Temperature 
Tg is an expression of molecular motion, which is dependent on many factors. Therefore, the Tg is not 
an absolute property of a material and is influenced by the factors affecting the movement of polymer 
chains. At temperatures well below the Tg, amorphous polymers are hard, stiff, and glassy although they 
may not necessarily be brittle. On the other hand, at temperatures well above the Tg, polymers are 
rubbery and might flow. The Tg values for linear organic polymers range from about -100°C to above 
300°C. Even though some organic polymers are expected to have Tg values above 
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300°C, they decompose at temperatures below their transition temperatures. From a pharmaceutical 
standpoint, Tg is an important factor for solid dosage forms. For example, a chewable dosage form 
needs to be soft and flexible at mouth temperature of about 37°C. This means the polymer used as a 
chewable matrix should be softened at this temperature. Pharmaceutically acceptable polymers with 
their Tg values close to the service temperature of 37°C would be the best candidates. Nicotine gum 
(Nicorette) gum is used as an aid in smoking cessation. It works by providing low levels of nicotine, 
which lessens the physical signs of withdrawal symptoms. The nicotine is released into the mouth as the 
patient chews the gum. After placing a piece of the Nicorette gum into the mouth the patient should 
chew it slowly several times. The patient should stop chewing it once he or she notices a tingling 
sensation or a peppery taste in the mouth. At this point the nicotine is being released and the patient 
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should ―park‖ the gum in the buccal area (in other words, between the cheek and the gum) and leave it 

there until the taste or tingling sensation is almost gone. The patient can resume chewing a few more 
times and then stop once the taste comes back. The patient should repeat this for about 30 min or until 
the taste or tingling sensation does not return. The reason that the patient ―parks‖ the gum is because 

the release of nicotine should be slow and constant chewing will release the nicotine too quickly 
resulting in nausea, hiccups, or stomach problems. The patient should also avoid drinking or eating at 
this time. You have most likely experienced how gum behaves differently when you drink cold water or 
hot tea. This is all reflected in glass–rubber transition of the chewable matrix. 

 

Fig. 20-9. Thermal transitions in polymers. 

As mentioned before, the Tg of a polymer is dependent on many factors and the most important ones 
are discussed here. Segmental motion in polymers is facilitated by the empty space in between the 
polymer chain ends, also called the free volume. As the free volume increases, polymer segments gain 
more freedom to move and this affects the temperature at which the movement occurs. For example, 
low- and high-density polyethylenes are different in terms of the size of the free volume inside their 
structures. At a given weight, a low-density polymer occupies more volume as compared with its high-
density counterpart. This means the polymer chain in general and the chain segments in particular can 
move with more ease resulting in a lower Tg value. 
Tg and the length of the polymer chain: Long polymer chains provide smaller free volume than their 
shorter counterparts. Since more free volume corresponds to lower Tg values, polymers containing short 
chains or having lower molecular weight possess lower Tg values. 
Tg and polymer chain side group: A side group may be bulky or polar. Because of its steric hindrance, 
higher temperature is needed to induce segmental motion in polymers containing bulky groups. For 
example, polystyrene and polypropylene are only different in terms of their side groups, phenyl versus 
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methyl, respectively. The larger size of the phenyl group results in the much higher Tg value of 
polystyrene, 100°C as opposed to -20°C for polypropylene. On the other hand, polar side groups 
provide stronger intermolecular interactions that significantly affect the segmental motion of the polymer 
chains. Poly (vinyl chloride) is similar to polyethylene except hydrogen is replaced by one chlorine atom. 
Since chlorine is more polar than hydrogen, the PVC polymer displays a much higher Tg of 100°C 
compared to -120°C for polyethylene. 
Tg and polymer chain flexibility: Flexible polymer chains display higher entropy (desire to move) than 
rigid chains. Flexible and rigid chains behave similar to liquid and solid, respectively. Groups such as 
phenyl, amide, sulfone, and carbonyl either inside the backbone or as a side group hanging on the 
backbone affect the overall polymer flexibility. For example, poly (ethylene adipate) and poly (ethylene 
terephthalate) are structurally very similar except for the phenylene residue in phthalate versus the 
butylene residue in adipate. This results in almost a 100°C difference in Tg values of the two polymers (-
70°C versus 69°C, respectively). 
Tg and polymer chain branching: Linear polymer chains possess smaller free volume as opposed to 
their branched counterparts. Therefore, higher Tg values are expected for linear polymers. On the other 
hand, branches in branched polymers impose hindrance or restriction to segmental motion, for which 
higher Tg values are expected. Therefore, branching has no obvious effect on the Tgunless the whole 
structure of the polymer is known. 
Tg and polymer chain cross-linking: Compared to cross-linked chains, linear chains have a higher 
entropy and the desire to move; hence, they display low Tg values. Adding cross-links to linear polymer 
chains limits chain movement resulting in less entropy at a given temperature and hence a 
higher Tg value. For very highly cross-linked polymers, Tg values are expected to be very high to the 
extent that the 
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polymer starts to decompose before it shows any segmental motion. 
Tg and processing rate: In order to prepare polymer products, the polymer needs to be processed at 
different temperatures or pressures that can significantly affect the molecular motion in polymers. 
Therefore, the rate of processes such as heating, cooling, loading, and so on and so forth might be 
considered when evaluating the Tg value of a given polymer. Kinetically speaking, if the rate of the 
process is high (fast cooling, fast loading), the polymer chains cannot move to the extent that they are 
expected to. They virtually behave like rigid chains with lower tendency to move, which results in 
reading high Tg values. For instance, when a differential scanning calorimeter is used to measure 
the Tg of a polymer, different Tg values may be observed if the same polymer is heated up at different 
heating rates. This implies that the heating rate has to be very realistic and should be consistent with the 
conditions in which the polymer is expected to serve. 
Tg and plasticizers: Plasticizer molecules can increase the entropy and mobility of the polymer chains. 
This is translated to lower Tgvalues for plasticized polymers compared with their nonplasticized 
counterparts. 
Plasticized Polymers 
A plasticizer is added to a polymer formulation to enhance its flexibility and to help its processing. It 
facilitates relative movement of polymer chains against each other. The addition of a plasticizer to a 
polymer results in a reduction in the glass transition temperature of the mixture. Since plasticizers 
increase molecular motion, drug molecules can diffuse through the plasticized polymer matrix at a 
higher rate depending on the plasticizer concentration. 
Example 20-6 

Plasticized Polymers 

Fluoxetine (Prozac Weekly) (fluoxetine hydrochloride) capsules contain hydroxypropyl 
methylcellulose and hydroxypropyl cellulose acetate succinate plasticized with sodium lauryl 
sulfate and triethyl citrate. Omeprazole magnesium (Prilosec), a delayed release oral 
suspension, contains hydroxypropyl cellulose, hydroxypropyl methylcellulose, and methacrylic 
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acid copolymer plasticized with glyceryl monostearate, triethyl citrate, and polysorbate. 
Triacetin can be found in ranitidine HCl (Zantac) 150-tablet formulations, which contains 
hydroxypropyl methylcellulose as its polymer matrix. Dibutyl sebacate is found in 
methylphenidate HCl (Metadate) CD which contains polymers such as povidone, 
hydroxypropyl methylcellulose, and ethyl cellulose. 

Molecular Weight 
Addition of a monomer to a growing macroradical during polymer synthesis occurs by a diffusion or a 
random walk process. Monomers may or may not be added equally to the growing macroradicals. As a 
result, a polymer batch may contain polymer chains with different lengths (molecular weights) and hence 
different molecular weight distributions. A very narrow molecular weight distribution is very much desired 
for a polymer that is intended to be mechanically strong. On the other hand, a polymeric adhesive may 
have wide distribution of molecular sizes. In general, a given polymer cannot be identified as a molecule 
with a specific molecular weight. Since chains are different, the molecular weight of all chains should be 
considered and must be averaged to have a more realistic figure for molecular weight of a given 
polymer. There are different ways that molecular weights of a polymer can be expressed; by the number 
of the chains, by the weight of the chains (the chain size), or by viscosity. However, the two most 
common ways are number (Mn) and weight (Mw) average calculations. If all polymer chains are similar in 
size, then the number and weight average values will be equivalent. If chains are of different sizes, then 
weight average is distancing itself from the number average value. The term polydispersity (PD) 
indicates how far the weight average can distance itself from the number average. A PD value closer to 
1 means the polymer system is close to monodispersed and all of the polymer chains are almost similar 
in size. The farther the value from 1 indicates that the polymer system is polydispersed and chains are 
different in size. Figure 20-10 shows the concept. 
Consider that you have received two different batches of a same polymer as shown in Table 20-2. The 
first batch contains 2 chains of 50,000 g/mol and 10 chains of 20,000 g/mol in size. The second batch 
contains 2 chains of 100,000 g/mol and 10 chains of 10,000 g/mol in size. Calculations show both 
batches have the same number averages of 25,000 g/mol. Should you, as a pharmaceutical scientist, 
claim that the two batches are similar and you can use them interchangeably within your formulation? 
You continue with the calculation to find out the weight average values for the two batches. Surprisingly, 
two very different numbers, 30,000 g/mol and 70,000 g/mol, are found for the batch 1 and the batch 2, 
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respectively. This shows that the two batches are beyond a doubt different. Another important piece of 
data that can help you with your decision is PD which is the ratio of weight to number 
averages.Polydispersity of 2.8 versus 1.2 indicates that the batch 2 contains very different chains. If 
both polymer batches are soluble in water, they will definitely show different solubility behavior in the 
presence of water. The shorter chains are dissolved faster in water than longer chains. Drug release 
from these batches will certainly be different as they assume different PD values. 
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Fig. 20-10. Molecular weight distribution in polymer systems. 

Key Concept 

Number and Weight Averages 

A research institute is planning to hire a good scientist who can publish a tangible number of 
high-quality manuscripts per year. The institute receives two resumes in which both scientists 
have claimed 20 publications a year. The applicants were then asked to submit more details 
about the journals in which they have published. Now, the institute knows not only the total 
number of publications but also the type and the number of journals they have published in. 
Journals were then categorized on the basis of their impact factor (IF) as very high, high, 
medium, and low. If the total number of publications is divided by the number of journals, both 
scientists score the same with an average of five publications per journal per year. The 
number will change if the impact factors of the journals are also considered in the calculation. 
So, the new calculation shows average numbers of 1.6 as opposed to 3.4 for the scientists 1 
and 2, respectively. It looks like the institute has found a tool to discriminate between the 
achievements of the two scientists. These new numbers show that the scientist 2 is more 
capable in publishing high-quality manuscripts. A similar discussion is valid for different 
polymer chains (journals) with different molecular weights (impact factors). With number 
average, all chains are considered similar and the effect of their size is simply overlooked. 
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Journal IF Scientist 1 Scientist 2 N1 W1 N2 W2 

Very high IF 20 2 8         

High IF 10 4 6 5 1.6 5 3.4 

Medium IF 4 6 4         

Low IF 1 8 2         

Total 35 20 20         

 

Different techniques are used to calculate different averages. Since the number average relies on the 
number of polymer chains, technique to measure this should also rely on the number of species such as 
number of particles, and so on and so forth. It is well-known that colligative properties such as osmotic 
pressure and freezing point depression are dependent on the number of particles in the solution. 
Colligative properties were introduced earlier in the book. These techniques are very appropriate for 
calculating the average Mn of a given polymer. On the other hand, the weight average relies on the size 
of the molecules. Techniques such as light scattering are also reliant on the size of the molecules. 
Large- and small-sized molecules scatter light in a very different way. Therefore, it is reasonable to use 
a light-scattering technique to calculate the average Mw of a polymer. 

 

Table 20-2 Average Molecular Weights and Polydispersity 

Mechanical Properties 
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Depending on their structure, molecular weight, and intermolecular forces, polymers resist differently 
when they are stressed. They can resist against stretching (tensile strength), compression (compressive 
strength), bending (flexural strength), sudden stress (impact strength), and dynamic loading (fatigue). 
With increasing molecular weight and hence the level of intermolecular forces, polymers display superior 
properties under an applied stress. As far as structure is concerned, a flexible polymer can perform 
better under stretching whereas a rigid polymer is better under compression. 
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A polymer is loaded and its deformation is monitored to measure its strength. Figure 20-11 shows the 
stress–strain behavior of different materials. For elastic materials such as metals and ceramics, the 
stress and strain (deformation) correlation is linear up to the failure point. Generally, these materials 
show high stress and very low elongation (deformation, strain) at their breaking point. Polymeric 
materials such as fibers and highly cross-linked polymers display elastic behavior, in other words, a 
linear stress/strain correlation up to their breaking point. With an increase in intermolecular forces within 
a fibrous product or cross-link density of a cross-linked polymer, the slope of the stress/strain line will 
become steeper. The sharper the slope, the higher the modulus. Modulus and stiffness are two terms 
that can be used interchangeably to demonstrate the strength of a polymer. Some polymeric materials 
do not display a sharp or abrupt breaking point. Instead, they yield at certain stresses and continue to 
deform under lower stresses before they finally break apart. Tough plastics show this typical behavior. 
Rubbers or elastomers on the other hand display completely different behavior, which depends on the 
level of cross-linking or curing. Generally, under very small stresses, they deform to a large extent to 
more than 10 to 15 times their original lengths. You may recall a rubber band when you stretch it from 
both ends. Highly cross-linked rubbers show very low deformation at their breaking point. In fact, cross-
linking is the process by which properties of a rubber can be enhanced to a very tough plastic or even a 
fiber. Regardless of the polymer type (fiber, tough plastic, or rubber), certain amounts of energy are 
needed to break the polymer apart (in other words, toughness) and the area under the stress/strain 
curve measures it. The larger the area is, the tougher the polymer. 

Key Concept 

Molecular Weight Distribution 

If you are planning to hire individuals for a cheerleading team, you may impose very strict 
requirements. For example they should all be 6-feet tall with a body mass index of 20. In the 
same sense, a soccer team might need a goalkeeper as well as a defense and forward, for 
each of which you may have different requirements. For example, height is very important for 
the goalkeeper position, whereas speed and accuracy is the most important requirement for 
the forward. In polymer terms, chain size distribution per se is not a bad or a good thing. 
Depending on the application, the polymer needs to have a sharp or wide size distribution. A 
polymer for an engineering application like the ones they use in aircrafts or spacecrafts may 
need to have a narrow size distribution, whereas for a general-purpose application you may 
use a polymer with a wider size distribution. 
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Fig. 20-11. Mechanical properties of polymers. 

Viscoelastic Properties 
Mechanical properties of a given polymer are generally measured at a fixed rate of loading, certain 
temperature or relative humidity, and so on and so forth. Polymers are neither a pure elastic nor a pure 
fluid material. They have the ability to store energy (display elastic behavior) and to dissipate it (display 
viscous behavior). For this reason, most polymers are viscoelastic materials. For example, poly (vinyl 
chloride) has a glass transition temperature of about 100°C. This means, it behaves like a solid at 
temperatures below its Tg and like a fluid at temperatures above its Tg. Since a typical PVC product is 
generally used at room temperature, its Tg is supposed to be well above the temperature of the 
environment in which it is expected to serve. In other words, a PVC product behaves like a solid or glass 
at any temperature (including its service temperature) below its Tg. Now, assume that your PVC product 
is expected to serve under a certain load (thermal, mechanical, etc.) and at certain temperature below 
its Tg, but for various periods of time. Such a loaded polymer, which originally behaves as a solid, or 
elastic may change its behavior upon a long-term loading. Over time, the polymer intermolecular forces 
will essentially become weaker and hence, the polymer becomes softer. This can be seen in the glass 
windows used in the old churches as they show different thicknesses from top to the bottom. 
There are generally two methods to evaluate the viscoelasticity in polymers; the creep test and the 
stress relaxation test. With the former, the polymer is first loaded with a certain weight and its 
deformation is then monitored over the time. With the latter, the polymer is first deformed to a certain 
extent, and then its stress relaxation (internal stress) is monitored with the time. 
Molecular Weight and Polymer Properties 
Mechanical properties of a given polymer generally increase with an increase in molecular weight. 
Polymer melts and 
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polymer solutions are handled with more difficulty as their molecular weight increases. This is due to a 
phenomenon called entanglement, which affects the flow of the polymer chains. As molecular weight 
increases, polymer chains are more likely entangled into each other at certain molecular weights. This 
results in poor polymer flow either in solid state (as a melt) or in solution state (as a solution). For many 
applications, there is a working range of molecular weights that a given polymer in solid or solution state 
can successfully be processed. 
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Key Concept 

Entanglement 

Let us say that there are two laundry machines with the total capacity of each 20 lb and you 
separate your clothes into two small (shorts) and large (pants) groups, each weighing 20 lb. 
Once the laundry step is completed, the clothes are to be transferred into a dryer. An 
important observation to make is that more time will be spent to separate the large clothes 
from each other, which is not the case with the small clothes. This happens because large 
clothes have a tendency to tie into each other. Because of this, the washer should be loaded 
with a smaller number of large articles of clothing as it makes it easier to wash and dry them. 
In polymer terms, large molecular-weight polymers (large clothes) have a better affinity to tie 
into each other as opposed to their smaller molecular-weight counterparts (small clothes). 
This is called entanglement. This occurs after a certain molecular weight and affects the 
polymer properties in both the solution and solid states. 

Variety of Polymers 
Depending on their applications, polymers may be classified as rubbers, plastics, fibers, adhesives, and 
coatings. Each application requires a polymer to possess certain properties. 
Rubbers 
Rubbers are mostly used in tire manufacturing. A tire is a dynamic service environment that experiences 
friction with the ground surface; has to carry a heavy load of car weight and its passengers; and is 
exposed to ultraviolet radiation, ozone, oxygen (inside and outside of the tire), weathering conditions 
(wind, rain), and fatigue (dynamic loading and unloading). From a processing prospective, a tire is a 
composite of a few rubbers, metal, fiber, particulate fillers, and more. This requires rubber components 
of a tire to have excellent cohesive (strength) and adhesive (adhesion) properties. Rubbers have unique 
elongation properties, they can be stretched without failure, and they can be loaded with static and 
dynamic loads under very severe conditions. Just imagine for a moment, landing of a fully loaded cargo 
plane or a commercial aircraft. Different rubbers offer different properties. Those with double bonds 
(e.g., isoprene, butadiene) offer resiliency but are very susceptible to oxidation and ozonation. Those 
without double bonds (e.g., ethylene–propylene rubber) are very durable against weathering conditions. 
Some are very resistant to oil (e.g., chloroprene and nitrile) and some have excellent impermeability 
(e.g., isobutylene–isoprene rubber). Tube-in tires are still used in which the tube part is basically made 
of an air-impermeable rubber called butyl. Silicone is a very inert rubber with almost no affinity to any 
material. Therefore, silicone rubber is an excellent candidate for very durable parts such as implants in 
biomedical applications. Rubbers in general are not very strong in their raw form but they have a 
potential to be cross-linked and cured. None of the rubbers used in tires can serve this application 
without undergoing a curing process. Rubber is loaded with certain chemicals (curing agents) and is 
cured or cross-linked at high pressure and temperature. Generally speaking, the glass transition 
temperatures of the rubbery polymers (elastomers) are below the room temperature. 
Plastics 
Plastics on the other hand possess completely different properties. Their glass transition temperature is 
generally above the room temperature as opposed to elastomers as shown in Figure 20-12. Plastic 
parts are manufactured by techniques such as injection molding, extrusion, and thermoforming that 
require the plastic to be in its molten state. Plastics that are used in general applications such as 
packaging are generally cheap and are structurally weak. Polymers such as polyethylene, 
polypropylene, and polystyrene have only carbon in their backbone. The other groups of plastics which 
are used in engineering applications are required to be impact resistant, weather resistant, solvent 
resistant, and so on and so forth. These are generally heterogeneous plastics, which have elements 
other than carbon such as N, Si, and O in their backbone. Polyesters, polyamides, and polyacetals are 
engineering plastics with very high intermolecular forces and hence high melting point. 
Fibers 
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Polymers for fibrous products are required to have a crystalline structure with a very sharp melting point. 
For this application, polymers need to be meltable and spinnable. Polypropylene fibers are used for 
plastic baskets, they are weak, and do not possess any specific properties. On the other hand, Kevlar 
fibers are used for bulletproof jackets. This application requires the fiber to have very strong 
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intermolecular forces. In manufacturing fibers, both general and engineering plastics are used. 
Examples of fiber-forming materials are cellulose acetate, rayon, polypropylene, nylon, polyester, 
polyamide, and polyacrylonitrile. 

 

Fig. 20-12. Plastics and elastomers. 

Adhesives and Coatings 
The required properties of polymers for adhesive and coating applications are tackiness and 
adhesiveness. This means that adhesive forces (interaction with a second material) should be in 
balance with cohesive forces (interaction with itself). Both forces increase with the molecular weight of 
the polymer as molecular interactions increase between the same or different molecules due to 
increased surface area. Structurally speaking, the cohesive forces within a polymer can be modulated 
by changing its molecular weight, crystallinity, or addition of a second material such as plasticizers or 
oils. The adhesive intended for a nonpolar adherent should be nonpolar as well. On the other hand, very 
polar adhesive materials such as epoxy and cyanoacrylate are suggested for very polar adherents 
including metals. Generally speaking, the rule of thumb ―like dissolves like‖ is simply applied to polymers 

for adhesive and coating applications. Like plastics, adhesives can be categorized as general and 
engineering (structural). The difference is the level of intermolecular forces within the adhesive structure. 
Structural adhesives are generally used for engineering application such as in air and aerospace 
industries where high quality, durability, and strength are the basic requirements. To ensure that these 
requirements are met, the adhesive undergoes special treatment such as curing. Cyanoacrylate-based 
adhesives or silicone adhesives are generally cured by absorbing moisture from the air. Epoxy 
adhesives are generally supplied as two components and cured in the presence of a third component 
(primary, secondary, and tertiary amines). Polyester adhesives are cured using peroxides and catalyzed 
by amines. The curing process increases the cohesive forces at the expense of adhesive forces. Since 
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an adhesive should possess a balance of cohesive and adhesive properties, the curing process should 
also be optimized. 
Coating and adhesive applications rely on similar concepts. A successful adhesive or coating process 
requires that the matrix onto which the adhesive is applied to be fully covered by the polymer material, 
which is generally applied in an emulsion form. Coatings are used for protection purposes. A successful 
adhesive application requires careful understanding of the properties of the adhesive and adherents 
since an adhesive is generally trapped in between two or more materials. For coating applications, the 
coating polymer is generally exposed to a second environment such as air, oxygen, water, stomach 
fluid, intestinal fluid, solvents, and so on and so forth. This requires a thorough understanding of the 
coated matrix, coating material, as well as the service environment in which the material is expected to 
serve. Examples of coating materials are poly (vinyl acetate), acrylate esters, ethyl cellulose, and so on 
and so forth. 
Polymers as Rheology Modifiers 
Polymer chains are in a coiled conformation at rest, and they assume extended conformation once they 
are loaded. In applications where increased viscosity of the solution is desirable, the goal is to increase 
the chain end-to-end distance under a given load. In dissolution of a polymer and polymer swelling, the 
load originates from the interaction of a polymer and a solvent as well as concentration gradient of ions 
inside the polymer structure and the solution. Apparently longer end-to-end distances are potentially 
obtained if the polymer chains are longer and have more interaction with the solvent. In case of water as 
a solvent, the more hydrophilic polymer will be better. On the other hand, a more lipophilic polymer 
would be more desirable when the dissolution or swelling medium is organic. Figure 20-13 shows how 
different polymer chains and solutions display different rheological behavior, which is characterized by 
the volume occupied by the polymer chains. Because of their hydrophilicity and high molecular weight, 
gums are the candidate of choice for increasing the viscosity of the aqueous solutions or dispersions. 
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Key Concept 

Polymer Structure and Solution Viscosity 

Your cotton-based clothes get wetter on a rainy day as compared to plastics. So, if you go for 
a daylong trip on a rainy day, you might want to wear a poncho which is 100% plastic in order 
to repel the water. In polymer terms, polymers with water-loving functional groups make more 
and closer contacts with water, which causes molecules of water to move slower, which 
means they generate more viscosity. 

Hydrogels 
The concept of an end-to-end distance is also applied in swellable polymers. As mentioned earlier, the 
driving force for the dissolution and swelling processes are similar. Certain materials, when placed in 
excess water, are able to swell rapidly and retain large volumes of water in their structures. Such 
aqueous gel networks are called hydrogels. These are usually made of a hydrophilic polymer that is 
cross-linked either by chemical bonds or by other cohesion forces such as ionic interaction, hydrogen 
bonding, or hydrophobic interactions. Hydrogels behave like an elastic solid in a sense that they can 
return to their original conformation even after a long-term loading. 
A hydrogel swells for the same reason as its linear polymer dissolves in water to form a polymer solution 
or hydrosol. From a general physicochemical standpoint, a hydrosol is simply an aqueous solution of a 
polymer. Many polymers can undergo reversible transformation between hydrogel and hydrosol. When 
a hydrogel is made by introducing gas (air, nitrogen, or carbon dioxide) during its formation, it is called a 
porous hydrogel. 
A hydrogel swells in water or in any aqueous medium because of positive forces (polymer–solvent 
interaction, osmotic, electrostatic) and negative forces (elastic) acting upon the polymer chains as 
shown in Figure 20-14. Dissolution of a polymer in a solvent is an entropy-driven process that happens 
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spontaneously. A dry hydrogel is in its solid state and has the tendency to obtain more freedom as it 
goes into solution. If a polymer structure is nonionic, the major driving force of swelling will be polymer–
solvent interactions. As the ion content of a hydrogel increases, two very strong osmotic and 
electrostatic forces are generated within the hydrogel structure. The presence of ions inside the gel and 
the absence of the same ions in the solvent trigger a diffusion process (osmosis) by which water enters 
the polymer structure until the concentration of the ion inside the gel and the solvent becomes 
equivalent. In fact, the polymer diffuses into water to balance its ion content with the surrounding 
solution. Polymer chains carrying ions are charged either negatively (anionic) or positively (cationic). In 
either case, similar charges on the polymer backbone will repel each other upon ionization in an 
aqueous medium. This creates more spaces inside the hydrogel and more water can be absorbed into 
its structure. Since swelling in many applications is a desirable property (e.g., in superabsorbent baby 
diapers or superdisintegrants in pharmaceutical solid dosage forms), the infinite dilution of the polymer 
needs to be restricted. Linking polymer chains to each other can do this, generating elastic forces and 
causing less entropy. 

 

Fig. 20-13. Polymers as rheology modifier. 

Example 20-7 

Superdisintegrants 

In pharmaceutical solid dosage forms, a superdisintegrant is generally used to help the 
dosage form with a proper disintegration. The concept behind this is the osmotic pressure that 
is generated by either hydrophilicity (as in vinyl pyrrolidone) or ionic (as in carboxymethyl 
cellulose) nature of the structure. Sodium starch glycolate (Explotab, Primojel, Vivastar P), 
cross-linked poly (vinyl pyrrolidone) (Crospovidone), and cross-linked sodium salt of 
carboxymethyl cellulose (Ac-Di-Sol, Croscarmelose) are widely used as a tablet and capsule 
disintegrant in oral dosage forms. 
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Fig. 20-14. Swelling forces in hydrogels. 

Example 20-8 

Osmotic Tablet and Pump 

Alza's Oros and Duros technologies are based on an osmosis concept. Oros provides 24 hr 
controlled drug release that is independent of many factors such as diet status. Tablets using 
Oros technology as shown in Figure 20-15 are made of two sections coated with a 
semipermeable material. The upper section contains drug and the lower section contains the 
osmotic agent either a salt or a water-soluble/swellable polymer. The membrane allows water 
or the aqueous medium to enter into the osmotic agent compartment. In the presence of 
water, osmotic pressure pushes the bottom compartment upward which in turn forces the 
drug through a laser-drilled orifice on top of the tablet. Since 1983, this technology has been 
used in a number of prescription and over-the-counter products marketed in the United 
States, including nifedipine (Procardia XL), glipizide (Glucotrol XL), methylphenidate, 
oxybutynin, and pseudoephedrine (Sudafed 24 Hour). Duros technology is utilized in implants 
that deliver drugs over a very long period. Leuprolide implant (Viadur) osmotic implant is 
based on Alza's Duros pump technology which delivers leuprolide acetate over a year long 
period. 
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Fig. 20-15. An osmotic tablet based on Oros technology. 

Depending on the nature of cross-linking, a hydrogel is classified as chemical or physical. 
Chemical Gels 
Chemical gels are those that are covalently cross-linked. Therefore, chemical gels will not dissolve in 
water or other organic solvent unless the covalent cross-links are broken apart. At least two different 
approaches can be used to form chemical gels, either by adding an unsaturated olefinic monomer 
carrying more than one double bond (e.g., N,N′-methylene bisacrylamide, ethylene glycol 
dimethacrylate) or by reacting the functional groups on the polymer backbone. The first approach is 
used to make water swellable gels or hydrogels. In general, cross-linking through double bond is 
energetically favored as less energy is required to break a double bond than to react the functional 
groups. Cross-linked polymers of acrylic acid, sodium acrylate, and acrylamide have found extensive 
application in hygiene and agricultural industries as water absorbent polymers. These can absorb urine 
in diapers or can retain the water in the soil. 
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As far as the swelling is concerned, temperature has often a positive effect on the swelling process. 
Most chemical gels especially those made of hydrophilic chains can swell more in warmer solutions. 
These gels are so-called thermoswelling chemical gels. On the other hand, some hydrogels made of 
relatively hydrophobic monomers shrink upon increase in temperature, and they are known as 
thermoshrinking chemical gels. The thermoshrinking hydrogels undergo thermally reversible swelling 
and deswelling. The temperature at which this sharp transition occurs is corresponded to a lower critical 
solution temperature of the non–cross-linked polymer. 
Physical Gels 
Hydrogen bonding, hydrophobic interaction, and complexation are three major tools in preparing a 
physical gel. A hydrogen bond is formed when two electronegative atoms, such as nitrogen and oxygen 
interact with the same hydrogen, N–H···O. The hydrogen is covalently attached to one atom, the donor, 
but interacts electrostatically with the other, the acceptor. This type of interaction occurs extensively in 
poly (vinyl alcohol), for example. Although its structure suggests an easy dissolution in water, a poly 
(vinyl alcohol) at molecular weight more than 100,000 g/mol is water insoluble. In order to dissolve the 
polymer, the hydrogen bonds need to be broken and that requires the solution to be heated up to 80°C 
to 90°C. 
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Hydrophobic interactions are considered to be the major driving force for the folding of 
thermoresponsive hydrogels and globular proteins. The existence of hydrophobic groups will change the 
hydrophilic lipophilic balance (HLB) of the polymer that in turn affects its solubility in water. The more 
hydrophobic groups within the hydrogel structure, the more temperature dependent the swelling will be. 
As the number of hydrophobic group increases, the solubility–insolubility transition or swelling–

deswelling transition shifts to a lower temperature. Polymers, such as methylcellulose, hydroxypropyl 
methylcellulose, or certain PEO/PPO/PEO triblock copolymers, dissolve only in cold water and form a 
viscous solution. Once the solution temperature increases up to a certain point, these solutions become 
thicker by forming a gel. 
Complexation may happen between two oppositely charged groups of different polymer structures or via 
metal ions. In water, alginic acid with negatively charged groups and chitosan with positively charged 
groups can form a complex. The solubility of the complex is generally dependent on the pH of the 
dissolution medium and the pKa of the polymers. On the other hand, alginic acid carrying negatively 
charged carboxyl groups can form insoluble complexes with divalent and trivalent ions such as calcium, 
aluminum, and iron. These complexes are also reversible and pH dependent. Hydrogels either chemical 
or physical are also known as smart, intelligent, or responsive as they react to the environmental 
changes such as pH, temperature, salt concentration, salt type, solvent composition, or pressure. The 
unique properties of responsive hydrogels are ideal for making sensors and modulated drug delivery 
systems. 
Polymers for Pharmaceutical Applications 
In a traditional pharmaceutics area, such as tablet manufacturing, polymers are used as tablet binders 
to bind the excipients of the tablet. Modern or advanced pharmaceutical dosage forms utilize polymers 
for drug protection, taste masking, controlled release of a given drug, targeted delivery, increase drug 
bioavailability, and so on and so forth. 
Apart from solid dosage forms, polymers have found application in liquid dosage forms as rheology 
modifiers. They are used to control the viscosity of an aqueous solution or to stabilize suspensions or 
even for the granulation step in preparation of solid dosage forms. Major application of polymers in 
current pharmaceutical field is for controlled drug release, which will be discussed in detail in the 
following sections. In the biomedical area, polymers are generally used as implants and are expected to 
perform long-term service. This requires that the polymers have unique properties that are not offered 
by polymers intended for general applications. Table 20-3provides a list of polymers with their 
applications in pharmaceutical and biomedical industries. 
In general, the desirable polymer properties in pharmaceutical applications are film forming (coating), 
thickening (rheology modifier), gelling (controlled release), adhesion (binding), pH-dependent solubility 
(controlled release), solubility in organic solvents (taste masking), and barrier properties (protection and 
packaging). 
From the solubility standpoint, pharmaceutical polymers can be classified as water-soluble and water-
insoluble (oil-soluble or organic soluble). The cellulose ethers with methyl and hydroxypropyl 
substitutions are water-soluble, whereas ethyl cellulose and a group of cellulose esters such as 
cellulose acetate butyrate or phthalate are organic soluble. Hydrocolloid gums are also used when 
solubility in water is desirable. The synthetic water-soluble polymers have also found extensive 
applications in pharmaceutical industries, among them polyethylene glycol, polyethylene glycol vinyl 
alcohol polymers, polyethylene oxide, polyvinyl pyrrolidone, and polyacrylate or polymethacrylate esters 
containing anionic and cationic functionalities are well-established. 
Cellulose-Based Polymers 
Although cellulose itself is insoluble in water, its water-soluble derivatives have found extensive 
applications in pharmaceutical dosage forms. The structure of cellulose is shown in Figure 20-16. Methyl 
cellulose, CMC, and hydroxypropyl methylcellulose are the most common cellulose-based polymers with 
methyl, carboxymethyl, and 
P.509 

Dr. Murtadha Alshareifi e-Library

916



 
 
P.510 
 
hydroxypropyl/methyl substitution, respectively. Table 20-4 shows how functional group substitution 
results in different cellulose-based polymers with different properties. 

Table 20-3 Polymers in Pharmaceutical and Biomedical Applications 

Water-Soluble Synthetic Polymers 

Poly (acrylic acid) Cosmetic, pharmaceuticals, immobilization 

of cationic drugs, base for Carbopol 

polymers 

Poly (ethylene oxide) Coagulant, flocculent, very high molecular-

weight up to a few millions, swelling agent 

Poly (ethylene glycol) Mw <10,000; liquid (Mw <1000) and wax 

(Mw >1000), plasticizer, base for 

suppositories 

Poly (vinyl pyrrolidone) Used to make betadine (iodine complex of 

PVP) with less toxicity than iodine, plasma 

replacement, tablet granulation 

Poly (vinyl alcohol) Water-soluble packaging, tablet binder, 

tablet coating 

Polyacrylamide Gel electrophoresis to separate proteins 

based on their molecular weights, coagulant, 

absorbent 

Poly (isopropyl 

acrylamide) and poly 

(cyclopropyl 

methacrylamide) 

Thermogelling acrylamide derivatives, its 

balance of hydrogen bonding, and 

hydrophobic association changes with 

temperature 

Cellulose-Based Polymers 

Ethyl cellulose Insoluble but dispersible in water, aqueous 

coating system for sustained release 
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applications 

Carboxymethyl cellulose Superdisintegrant, emulsion stabilizer 

Hydroxyethyl and 

hydroxypropyl celluloses 

Soluble in water and in alcohol, tablet 

coating 

Hydroxypropyl methyl 

cellulose 

Binder for tablet matrix and tablet coating, 

gelatin alternative as capsule material 

Cellulose acetate 

phthalate 

Enteric coating 

Hydrocolloids 

Alginic acid Oral and topical pharmaceutical products; 

thickening and suspending agent in a variety 

of pastes, creams, and gels, as well as a 

stabilizing agent for oil-in-water emulsions; 

binder and disintegrant 

Carrageenan Modified release, viscosifier 

Chitosan Cosmetics and controlled drug delivery 

applications, mucoadhesive dosage forms, 

rapid release dosage forms 

Hyaluronic acid Reduction of scar tissue, cosmetics 

Pectinic acid Drug delivery 

Water-Insoluble Biodegradable Polymers 

(Lactide-co-glycolide) 

polymers 

Microparticle–nanoparticle for protein 

delivery 

Starch-Based Polymers 
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Starch Glidant, a diluent in tablets and capsules, a 

disintegrant in tablets and capsules, a tablet 

binder 

Sodium starch glycolate Superdisintegrant for tablets and capsules in 

oral delivery 

Plastics and Rubbers 

Polyurethane Transdermal patch backing (soft, 

comfortable, moderate moisture 

transmission), blood pump, artificial heart, 

and vascular grafts, foam in biomedical and 

industrial products 

Silicones Pacifier, therapeutic devices, implants, 

medical grade adhesive for transdermal 

delivery 

Polycarbonate Case for biomedical and pharmaceutical 

products 

Polychloroprene Septum for injection, plungers for syringes, 

and valve components 

Polyisobutylene Pressure sensitive adhesives for transdermal 

delivery 

Polycyanoacrylate Biodegradable tissue adhesives in surgery, a 

drug carrier in nano- and microparticles 

Poly (vinyl acetate) Binder for chewing gum 

Polystyrene Petri dishes and containers for cell culture 

Polypropylene Tight packaging, heat shrinkable films, 

containers 
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Poly (vinyl chloride) Blood bag, hoses, and tubing 

Polyethylene Transdermal patch backing for drug in 

adhesive design, wrap, packaging, containers 

Poly (methyl 

methacrylate) 

Hard contact lenses 

Poly (hydroxyethyl 

methacrylate) 

Soft contact lenses 

Acrylic acid and butyl 

acrylate copolymer 

High Tg pressure–sensitive adhesive for 

transdermal patches 

2-Ethylhexyl acrylate and 

butyl acrylate copolymer 

Low Tg pressure–sensitive adhesive for 

transdermal patches 

Vinyl acetate and methyl 

acrylate copolymer 

High cohesive strength pressure–sensitive 

adhesive for transdermal patches 

Ethylene vinyl acetate 

and polyethylene 

terephthalate 

Transdermal patch backing (occlusive, heat 

sealable, translucent) 

Ethylene vinyl acetate 

and polyethylene 

Transdermal patch backing (heat sealable, 

occlusive, translucent) 

Polyethylene and 

polyethylene 

terephthalate 

Transdermal patch backing (when ethylene 

vinyl acetate copolymer is incompatible with 

the drug) 
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Fig. 20-16. Cellulose structure. 

Methocel polymers including pure methylcellulose and hydroxypropyl-substituted methylcellulose display 
thermogelling property in water. As the temperature of the solution increases, the hydrophobic groups of 
these polymers start to aggregate, as a result the polymer solution will assume a cloudy appearance. 
The cloud point temperature for the pure methyl cellulose (with no hydroxypropyl substitution) is about 
50°C. As more methyl groups are substituted with hydroxypropyl groups, which have better solubility in 
water, the cloud point temperature shifts to higher temperature (60°C–85°C for the Methocel E, F, and 
K). Generally speaking, cloud point temperature is critically dependent on the methyl substitution. On 
the other hand, aqueous viscosity of the Methocel polymers is more dependent on the polymer 
molecular weight than its methyl/hydroxypropyl content. 

Table 20-4 Cellulose-Based Polymers 

R Polymer Characteristics 

H Cellulose Water-insoluble due to excessive 

hydrogen bonding 

H and CH3 Methyl cellulose 

(MC) 

Soluble in cold water only; 

commercially available as 

Methocel A (Dow Chemical); 

swells and disperses slowly in 

cold water to form a colloidal 

dispersion; practically insoluble 

in ethanol, saturated salt 

solutions, and hot water; soluble 

in glacial acetic acid, displays 

thermogelling property 

H and CH2CH3 Ethyl cellulose Water-insoluble; aqueous coating 
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(EC) system for sustained release 

applications; impermeable 

barrier; plasticized EC composed 

of dibutyl sebacate and oleic 

acid; Ethocel is commercially 

available from Dow; Ethyl 

cellulose latex, Aquacoat, is also 

available from FMC Corp 

H and 

CH2COOH 

Carboxymethyl 

cellulose (CMC) 

Water-soluble; variable degree of 

substitution; cross-linked CMC is 

water-swellable and known as 

croscarmellose sodium in 

National Formulary (NF); FMC 

Corp. supplies cross-linked CMC 

(Ac-Di-Sol; Accelerated 

Dissolution) as tablet 

superdisintegrant 

H and 

CH2CH2OH 

Hydroxyethyl 

cellulose (HEC) 

Soluble in water and in alcohol 

H and 

CH2CHOHCH3 

Hydroxypropyl 

cellulose (HPC) 

Water-soluble at low 

temperature; film-coating 

application 

H and CH3 and 

CH2CHOHCH3 

Hydroxypropyl 

methylcellulose 

(HPMC) 

Soluble in water below 60°C and 

in organic solvents; Dow 

Chemical supplies HPMC as 

Methocel (such as E, F, K) for 

tablet coating; HPMC coating 

replaced sugar coating with the 

advantage of much shorter 

coating time; possess 

thermogelling property; is also 

used as capsule material to 

substitute the animal-based 

gelatin 

 

Hydrocolloids 
Various hydrocolloids or polysaccharide gums are originated from a variety of sources as summarized 
in Table 20-5. 
Most gums are hydrophilic and contain very long polymeric chains as well as different functional groups. 
These features are very attractive in many pharmaceutical processes such as coating, stabilization, 
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thickening, binding, solubilization, and disintegration. Gums behave differently in water and aqueous 
solutions. Almost all display thickening property, whereas some show gelling property. Although 
thickening is a desirable property for solution, suspension, and emulsion dosage forms, gelling property 
is utilized in drug encapsulation for controlled delivery applications. Gums such as guar gum can provide 
excellent thickening property, whereas gums including alginate and chitosan can offer a gelling property 
in the presence of ions. Similar to synthetic polymers, gums can be blended to provide superior 
properties through 
P.511 
 
synergy, which cannot be achieved by individual gum alone. On the negative side, gums are obtained 
from natural sources with different assay and qualities. Therefore, as opposed to synthetic polymers, the 
batch-to-batch consistency and quality would be a major challenge for pharmaceutical suppliers. 
Besides, gums are a good platform for bacteria growth, which limits their shelf life and requires 
sterilization. 

Table 20-5 Hydrocolloids from Different Sources 

Plant 

Exudates Seed Gum 

Seaweed 

Extract Microbial 

Plant 

Extract 

Animal-

Based 

Gum 

arabic 

Guar Agar Xantha

n 

Pectin Chitosa

n 

Karaya Locust 

bean 

Carrageena

n 

Gellan Konja

c 

Gelatin 

Tragacant

h 

Psylliu

m 

Alginate Curdla

n 

    

Ghatti 

 

Polysaccharides and their derivatives can be used as a rate controller in sustained release formulations 
due to their gelling property.9 Gums can easily be derivatized to change their solution properties. For 
instance, chitosan is only soluble in acidic water, but its carboxymethyl derivative is soluble at a wider 
pH range. Gums offer a wide range of molecular weights that also affect their dissolution properties. 
They are biodegradable and their chemical composition varies greatly.10 The physicochemical 
properties of polysaccharide solutions and gels have recently been reviewed for pharmaceutical and 
food applications.11 Polysaccharides are claimed to effectively treat local colon disorders if they are 
used in colon-targeting delivery systems, which utilize the colonic microflora.12 Inulin, amylase, guar 
gum, and pectin are specifically degraded by the colonic microflora and used as polymer drug 
conjugates and coating. It has been shown that drug release in the colon can be maximized if the 
hydrophobicity of the gums is modified chemically or physically using other conventional hydrophobic 
polymers.13 In cancer therapy, polysaccharides are used as immune-modulators. A few fungal 
polysaccharides, either alone or in combination with chemotherapy and/or radiotherapy, have been used 
clinically in the treatment of various cancers.9 It was suggested that iron stabilized into a polysaccharide 
structure can be used to treat anemia. The product can also be used in resonance imaging as well as in 
separation of cells and proteins utilizing magnetic fields due to its magnetic properties.14 
Alginic acid is a linear polysaccharide that mainly consists of two building blocks of mannuronic (M) and 
guluronic (G) acid residues. Alginic acid and its salts are anionic polymers that can offer gelling 
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properties. Since they contain carboxyl group, they can easily undergo a complexation reaction in the 
presence of ions. Depending on its source, the mannuronic and guluronic contents of the alginate 
product can be different. Between the two building blocks, the G blocks are responsible for the gelling 
property; as such, a product rich in G block offers stronger gel in the presence of ions, in particular, 
calcium. Excipient suppliers provide different grades of alginate with broad range of G/M ratios. 
Apparently, the mechanical property of the alginate gel is determined by the G/M contents of the 
product, the type of ion (monovalent, divalent, trivalent), the concentration of ion in the solution, as well 
as the duration of the gelling process. For the encapsulation purposes, all these factors have to be 
considered in designing a tailor-made delivery system. Alginic acid and its derivatives have found 
applications as a stabilizing agent, binding agent, drug carrier, and so on and so forth. The antibiotic 
griseofulvin, which is supplied as oral suspension, contains sodium alginate stabilized with 
methylparaben. Alginic acid and ammonium calcium alginate can be found in metaxalone tablets. 
Alginate microbeads can be used to entrap drugs, macromolecules, and biological cells. For this 
application, parameters such as calcium salt, other hardening agents, and different drying methods have 
been studied.15 Islets of Langerhans embedded into alginate encapsulates can be transplanted without 
the risk of protein contamination and immune system suppression.16 
Carrageenan is a sulfated linear polysaccharide of galactose and anhydrogalactose. It carries a half-
ester sulfate group with the ability to react with proteins. If carrageenan is used in a solution containing 
proteins, the solution becomes gel or viscous due to a complex formation between carrageenan and 
charged amino acids of the protein. Therefore, a formulation scientist should be aware of any 
incompatibility issues which might jeopardize the stability of the drug solution, suspension, or emulsion. 
Depending on the concentration and location of the sulfated ester groups, carrageenan can be found in 
three different grades of kappa, iota, and lambda. Kappa carrageenan can form a strong and brittle gel, 
especially in the presence of potassium ions or if blended with locust bean gum. If a drug formulation 
requires a softer and more elastic gel, iota carrageenan can be used. Both kappa and iota carrageenan 
can be used for controlled delivery application as they display gelling properties under certain 
circumstances. If a drug formulation needs to be thickened and does not contain proteins of any source, 
a lambda carrageenan can be utilized. Donepezil hydrochloride orally disintegrating tablets and 
cefpodoxime proxetil oral suspension contain carrageenan. Carrageenan is shown to increase the 
permeation of sodium fluorescein through porcine skin as it changes the rheological 
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properties of the drug solution.17 In capillary electrophoresis, a sulfated polysaccharide such as 
carrageenan can be used to separate the enantiomers of weakly basic pharmaceutical compounds. 
Different enantiomers of racemic compounds such as propranolol and pindolol have been separated 
using carrageenan.18,19 
Chitosan is obtained from chitin, the second most abundant natural polymer after cellulose, which can 
be found in shrimp, crab, and lobster shells. Chitosan is a cationic polymer and has been investigated 
as an excipient in controlled delivery formulations and mucoadhesive dosage forms because of its 
gelling and adhesive properties. The bitter taste of natural extracts such as caffeine has been masked 
using chitosan. Chitosan can potentially be used as a drug carrier, a tablet excipient, delivery platform 
for parenteral formulations, disintegrant, and tablet coating.20,21 From toxicity and safety standpoint, 
lower–molecular-weight chitosan (as an oligosaccharide) has been shown to be safer with negligible 
cytotoxicity on Caco-2 cells.22 During the encapsulation process using synthetic polymers, the protein is 
generally exposed to the conditions which might cause their denaturation or deactivation. Therefore, a 
biocompatible alternative such as chitosan is desirable for such applications.23 Because of its cationic 
nature, chitosan can make complexes with negatively charged polymers such as hyaluronic acid (HA) to 
make a highly viscoelastic polyelectrolyte complex. The complex has the potential to be used as cell 
scaffold and as a drug carrier for gene delivery.24 Gels based on chitosan and ovalbumin protein have 
been suggested for pharmaceutical and cosmetic use.25 In veterinary area, chitosan can be used in the 
delivery of chemotherapeutics such as antibiotics, antiparasitics, anesthetics, painkillers, and growth 
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promotants.26 As an absorption enhancer, a protonated chitosan is able to increase paracellular 
permeability of peptide drugs across mucosal epithelia. While trimethyl derivative of chitosan is believed 
to enhance the permeation of neutral and cationic peptide analogs, the carboxymethyl derivative of 
chitosan offers gelling properties in an aqueous environment or with anionic macromolecules at neutral 
pHs.27 Chitosan can also be mixed with nonionic surfactants such as sorbitan esters to make emulsion 
like solutions or creams.28 To prepare chitosan beads or microspheres, the chitosan matrix needs to be 
treated with an anionic compound like pentasodium tripolyphosphate. A sustained release dosage form 
of salbutamol sulfate bead can be prepared using chitosan in phosphate buffer.29 
Pectin is a ripening product of green fruits such as lemon and orange skin. Protopectin is an insoluble 
pectin precursor present in such fruits, which is converted to pectinic acid and subsequently to pectin. 
The main component of pectin is D-galacturonic acid, which is in part esterified via methylation. 
Depending on its methoxyl content, pectin is classified as high methoxyl (HM, 50% or more 
esterification) and low methoxyl (LM, less than 50% esterification). Pectins can form a gel in an aqueous 
solution if certain conditions are existed. For instance, high methoxyl pectins require a minimum of 65% 
soluble solids and low pH (<3.5) to form a gel, whereas low methoxyl pectins require calcium and may 
form a gel at a much lower solid content, that is, 20%. Gelation and association of pectin chains in the 
presence of pH-reducing additives has also been reported.30 While pectin is generally known as a 
suspending and thickening agent, it is also claimed to reduce blood cholesterol levels and to treat 
gastrointestinal disorders.31 Pectin can be found in amlexanox oral paste. 
Xanthan gum is found in a number of drug formulations including cefdinir oral suspension and 
nitazoxanide tablets. It is a highly branched glucomannan polysaccharide with excellent stability under 
acidic conditions. Xanthan is generally used in solution and suspension products for its thickening 
property. Because of its very rigid structure, its aqueous solution is significantly stable over a wide pH 
range. Similar to locust bean gum, xanthan gum is also nongelling but forms a gel once it is mixed with 
the locust bean gum. Concentrated xanthan gum solutions resist flow due to excessive hydrogen 
bonding in the helix structure, but they display shear-thinning rheology under the influence of shear flow. 
This feature of xanthan gum solutions is critical in food, pharmaceutical, and cosmetic manufacturing 
processes.32 Oxymorphone hydrochloride extended-release tablets contain TIMERx, which consists of 
xanthan gum, and locust bean gum for controlled delivery.33 Rectal delivery of morphine can be 
controlled using cyclodextrins as an absorption enhancer and xanthan as a swelling hydrogel. This 
combination produces a sustained plasma level of morphine and increases its rectal bioavailability.34 
HA consists of N-acetyl-D-glucosamine and beta-glucoronic acid and has been used as fluid 
supplement in arthritis, in eye surgery, and to facilitate healing of surgical wounds. Solaraze gel for the 
topical treatment of actinic keratoses is composed of 3% sodium diclofenac in 2.5% HA gel.35 Sodium 
hyaluronate and its derivatives have been evaluated in vitro and in vivo for optimized delivery of a 
variety of active molecules such as antibiotic gentamicin and cytokine interferon.36 Hyaluronan is 
biocompatible and nonimmunogenic and has been suggested as a drug carrier for ophthalmic, nasal, 
pulmonary, parenteral, and dermal routes.37Sodium hyaluronate topical (Seprafilm), which is used to 
reduce scar tissue as a result of abdominal or pelvic surgery, is a bioresorbable membrane containing 
sodium hyaluronate. 
Gum arabic or gum acacia is best known for its emulsifying property and its solution viscosity at very 
high solid concentration. Locust bean gum consists of mannose and galactose sugar units at a ratio of 
4:1. Like almost all gum solutions, an aqueous solution of this gum displays shear-thinning rheology. It 
shows synergistic effect with xanthan and kappa carrageenan. Gellan gum has been used in 
pharmaceutical dosage forms as a swelling agent,38 as a tablet binder,39 and as a rheology 
modifier.40 Drug delivery behavior of scleroglucan hydrogels has been examined using theophylline as 
a model drug.41 As an alternative tablet binder to starch and polyvinyl pyrrolidone, seed galactomannan 
of Leucaena, a natural polysaccharide comparable to guar 
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gum, has been evaluated for poorly compressible drugs such as paracetamol.42 Schizophyllan, which is 
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secreted by fungus, has been evaluated as an immunostimulant (to suppress tumor growth), antitumor, 
antihepatitis, anti-HIV, and antiviral agent.43,44 Sustained release formulations based on guaran,45 in 
situ gel-forming ability of xyloglucan,46 and borax–guar gum complexes for colon specific drug delivery 
have also been studied.47 
One of the most recent applications of gums is in film forming. Recent concepts and products such as 
breath films, cough strips, flu, and sore throat strips have all been realized on the basis of film-forming 
ability of gums. Generally speaking, as opposed to branched gums, linear gums have more sites 
available for intermolecular hydrogen bonding; as a result, they offer better film-forming properties. 
Individual and blended gum products based on agar, alginate, κ-carrageenan, methyl cellulose, pectin, 
CMC, and guar can potentially be used in film dosage forms. 
Polymers in Drug Delivery 
Introduction 
Pharmaceutical polymers are widely used to achieve taste masking; controlled release (e.g., extended, 
pulsatile, and targeted), enhanced stability, and improved bioavailability. Monolithic delivery devices are 
systems in which a drug is dispersed within a polymer matrix and released by diffusion. The rate of the 
drug release from a matrix product depends on the initial drug concentration and relaxation of the 
polymer chains, which overall displays a sustained release characteristic. Extended release alprazolam 
tablet is an example of monolithic products, in which extended or sustained delivery is provided by 
swelling and erosion of the polymer matrix. Alternatively, a drug can be released from a drug core 
through a porous or nonporous membrane. While drug release through a nonporous membrane is 
essentially driven by diffusion, porous membrane generates an extra path for the drug release, that is, 
through pores. The status of drug release from membrane systems can generally be modified via 
membrane thickness, use of plasticizers, pore structure (size, size distribution, and morphology), and 
filler tortuosity (filler orientation). Membrane systems have found applications in drug stability, enteric 
release, taste masking, and sustained release. Enteric-coated products are the ones that pass the 
stomach environment safely and release the drug at a higher pH environment of the intestine. These 
have to be coated with a pH-operative coating such as an anionic polymer. Examples of enteric-coated 
products are duloxetine, mesalazine, naproxen, omeprazole, and amino salicylic acid. Drugs such as 
lutein and lycopene are more stable in membrane dosage forms. Reservoir systems have been utilized 
to taste mask acetaminophen and caffeine. Potassium chloride and diltiazem are also offered sustained 
release property if formulated in a membrane system. 
Synthetic Polymers 
Synthetic polymers based on acrylic or methacrylic acids have found extensive applications in the drug 
delivery area to protect the drug or to release the drug in a controlled manner. These are classified as 
cationic, anionic, and neutral (nonionic) polymers. Despite the different solubility and swellability across 
the GI tract, the drug release from these matrices occurs through a diffusion process. 
Cationic polymers: One of the most widely used cationic polymers for protective coating applications has 
dimethyl aminoethyl methacrylate for a functional group. As far as its purity is concerned, the polymer 
contains less than 3000 ppm of residual monomers including butyl methacrylate (<1000 ppm), methyl 
methacrylate (<1000 ppm), and dimethyl aminoethyl methacrylate (<1000 ppm). These are used as pH-
dependent drug delivery platforms to protect sensitive drugs, to mask unpleasant tastes and odor, to 
protect the active ingredient from moisture, and also to improve drug storage stability. Eudragit E 100 is, 
for instance, supplied as a granule and is used in taste-masking applications where a low pH solubility 
(<5) is desirable. 
Anionic polymers: Anionic polymers have methacrylic acid as a functional group and are generally used 
for drug delivery past the stomach into the duodenum, jejunum, ileum, or colon. As discussed in Chapter 
10, since the pH of the fasted stomach is below pH 3 in nearly every healthy person and below pH 2 in 
most people, the stomach represents a harsh environment for many drugs. Since the methacrylic group 
dissociates at the higher pH of the small intestine and colon, anionic polymers such as Eudragit L 100-
55 (with dissolution at pH 5.5) and Eudragit S 100 (with dissolution at pH >7.0) are highly desirable. 
Aqueous dispersions of these polymers (Eudragit L 30 D-55) are generally available for direct use in 
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enteric coating applications. Kollicoat MAE 30 DP (Fig. 20-17), a combination of methacrylic acid and 
ethyl acrylate (1:1) monomers, is supplied as a 30% aqueous dispersion. The polymer is used as a film-
former in enteric coating of solid dosage forms. 
Neutral polymers: Acrylate or methacrylate polymers with or without aminoethyl functionality are 
generally insoluble or have pH-independent swelling property. These are neutral acrylic polymers which 
are used for sustained release applications where insolubility of the polymeric drug carrier is very much 
desirable. Neutral polymers with added functionality are supplied as powder (e.g., Eudragit 
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RS PO), granule (e.g., Eudragit RS 100), and aqueous dispersions (e.g., Eudragit RS 30 D). Neutral 
polymers with no added functionality are supplied as aqueous dispersions (Eudragit NE30D, NM30D, 
and NE40D). 

 

Fig. 20-17. A copolymer for an enteric tablet-coating application. 

Biodegradable Polymers 
Alternatively the drug can be released from a dosage form as a result of polymer erosion. Erosion 
occurs because of biodegradation or swelling and might happen within the bulk of the polymer or may 
be limited to the polymer surface at a time. Porous and nonporous platforms can provide bulk and 
surface erosion, respectively. Polymers with ester and amide functional groups are susceptible to a 
hydrolytic degradation in strong acidic and basic environment. When a polymer starts to erode from its 
surface, the drug imbedded within the polymer matrix will be released at a rate depending on the 
erosion rate of the polymer. If erosion happens in bulk, a much faster release is expected as an 
enormous number of hydrolysable sites are simultaneously cleaved up in water. 
Biodegradable polymers are classified as natural-based and synthetic. Polysaccharides and protein-
based polymers are obtained from the natural sources. Polyesters or copolyesters of lactic acid and 
glycolic acid, polycaprolactone, polyanhydrides, and polyethylene glycol are the most common synthetic 
biodegradable polymers, which are used for variety of pharmaceutical applications. 
Example 20-9 

Injectable Implant 

Injectable implants have been developed on the basis of biodegradable polymers. Leuprolide 
(Eligard), a delivery system for prostate cancer, is supplied as an injectable suspension that 
utilizes the Atrigel technology for delivering the hormone leuprolide acetate. The delivery 
system consists of a biodegradable (lactide-co-glycolide) copolymer dissolved in a 
biocompatible solvent. The polymer gradually loses its organic solubility once it is injected 
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subcutaneously. Doxycycline (Atridox), a bioabsorbable delivery system for the treatment of 
periodontal disease, also uses Atrigel technology to deliver an antibiotic, doxycycline hyclate. 

Alternatively, a drug may be released as a result of matrix swelling. The matrix is made of 
nonbiodegradable but erodible polymers, which control the drug delivery due to its swelling. A polymer 
in its swollen form is mechanically weak and can be eroded at different rates depending on the swelling 
feature of the matrix.48 A fast swelling hydrogel may undergo faster erosion and provide faster drug 
release compared with a slow swelling hydrogel. The release kinetics from a swellable matrix is 
generally zero-order. 
Ion-Exchange Resins 
These are polymeric materials with two characteristics; they swell in an aqueous medium and they 
contain complexable and ionizable groups. Ion-exchange resins are generally made of methacrylic acid, 
sulfonated styrene, and divinyl benzene (DVB). The acidic resins can be weak or strong. Weak acid 
resins are produced on the basis of methacrylic acid (containing COOH) monomer cross-linked with 
DVB. The counter-ion of the acidic carboxyl group is hydrogen (as in Polacrilex resin, Amberlite IRP64) 
or potassium (as in Polacrilin potassium, Amberlite IRP88). To make an ion-exchange resin with 
stronger acidity, the water-insoluble styrene is used as a monomer, which is sulfonated to become water 
compatible. Similarly, DVB is used to cross-link the polymer and the counter-ion of the sulfate group 
(SO3) is generally sodium. The commercial product of sodium polystyrene sulfonate (Amberlite IRP69) 
is used to treat hyperkalemia. Cation exchangers are anionic polymers which contain carboxyl or sulfate 
groups with hydrogen, potassium, and sodium as counter-ions. On the other hand, cationic ion-
exchange resins with the ability to exchange anions carry quaternary ammonium groups, -N+(R)3 with 
chlorine as a counter-ion. Cholestyramine resin (Duolite AP143) is cationic styrene DVB polymer which 
is an anion exchanger and used to reduce cholesterol or to sequestrate the bile acid. Because of their 
unique properties, the ion-exchange resins are generally used for taste masking, drug stabilization, 
tablet disintegration, and sustained release applications. 
Cationic or anionic drugs can be complexed into the structure of an ion-exchange resin due to its ionic 
structure. The stability of the complex inside the mouth masks the taste of the drug since the drug will 
not be free to interact with taste buds. The drug will be released in the gastric medium once the complex 
becomes unstable. Certain drugs have a poor shelf life due to their instability against moisture, light, 
heat, and so on and so forth. Shelf stability and bioavailability of these drugs increase when formulated 
with ion-exchange resins. The DVB–cross-linked potassium methacrylate copolymer possesses a very 
high swelling capacity in water. Although this polymer generally swells fast and to a high degree, its 
swelling properties are significantly affected by pH, the presence of salts, and the ionic strength of the 
aqueous solution. Nevertheless, the swelling pressure generated by this polymer is sufficient to 
disintegrate tablet dosage forms in an aqueous medium. These polymers can also provide a sustained 
or a zero-order release due to their high swelling capacity. 
Chapter Summary 

Polymers have been used as a main tool to control the drug release rate from the 
formulations. They are also increasingly used as taste-masking agent, stabilizer, and 
protective agent in oral drug delivery. Polymers can bind the particles of a solid dosage form 
and also change the flow properties of a liquid dosage form. Extensive applications of 
polymers in drug delivery have been realized because polymers offer unique properties which 
so far have not been attained by any other materials. Polymers are macromolecules having 
very large chains, contain a variety of functional groups, can be blended with other low- and 
high–molecular-weight materials, and can be tailored for any applications. Understanding 
P.515 
 
the basic concepts of polymers provides a foundation for further understanding of drug 
products and designing of better delivery systems. 

Dr. Murtadha Alshareifi e-Library

928



This chapter provides basic concepts behind the behavior of polymers in the solid and 
solution states. Chapter begins with a general introduction on polymers and continues with 
different types of polymer structure and polymerization methods to make them. The major 
polymer concepts and properties, such as synthesis, topology, crystallinity, thermal 
transitions, molecular weight (averages and distribution), swelling, entanglement, rheology, 
and mechanical properties, are discussed in detail. The chapter continues with a variety of 
polymer products including rubbers, plastics, fibers, adhesives, and coatings, and also 
highlights important properties of each group. The chapter concludes with major applications 
of polymers in pharmaceutical industry, such as ion-exchange resins. Many examples, 
pictures, and concept boxes have been added to better appreciate these topics. This chapter 
can serve as a valuable source of information for those with little or no background in 
polymers, researchers in the polymer, pharmaceutics and biomedical areas, as well as 
pharmacy students. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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21 Pharmaceutical Biotechnology 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Describe pharmaceutical biotechnology and understand the idea behind such 
therapeutics. 

2. Understand the differences between small and large molecule therapeutics. 
3. Identify currently available recombinant protein-based pharmaceuticals. 
4. Know how characterization leads to the successful development of macromolecular 

pharmaceuticals. 
5. Define physical degradation and give examples. 
6. List the common types of chemical degradation reactions. 
7. Describe biotechnology product formulation challenges. 
8. Discuss the approaches used to produce stable formulations of peptides, proteins, 

nucleic acids, and viruses. 
9. Define the acronym GRAS and understand its importance in formulation. 
10. Understand and describe the differences in the ultimate goals of the formulation of 

biotherapeutics and vaccines. 

Introduction 
Up to this point, the text has primarily been concerned with drugs of molecular weight under a few 
thousand (“small molecules”). Nevertheless, much larger molecules, such as proteins, DNA, and 

carbohydrates as well as macromolecular assemblies including viruses and bacteria, have been used as 
drugs and vaccines for quite some time and many are currently in development. For example, animal-
derived hormones such as insulin and somatotropin (growth hormone) as well as human blood–derived 
proteins such as coagulation factors and immunoglobulin (antibody) preparations have saved millions of 
lives during the last century. The availability of synthetic versions of such materials fall into a subclass of 
pharmaceutical products derived by a general series of procedures known as biotechnology. 
Here, in keeping with the general theme of physical pharmacy, the focus will be on what is often called 
“pharmaceutical biotechnology.” There are many comprehensive texts3,4,5,6,7,8 that discuss the more 
general aspects of biotechnology with extended discussions of fermentation (the major emphasis of 
biotechnology until fairly recently), industrial enzymes, and related topics. In this chapter, the analysis, 
preformulation and formulation of large molecules intended for pharmaceutical use, generally focusing 
on proteins and nucleic acids, as well as vaccines will be introduced. Methods of their production and 
delivery will also be briefly discussed but the interested student should refer to more detailed 
discussions in these areas.3,4,5,6,7,8 

Key Concept 

Defining Pharmaceutical Biotechnology 

The Oxford American Dictionary defines this as: “the exploitation of biological processes for 

industrial and other purposes, esp. the genetic manipulation of microorganisms for the 
production of antibiotics, hormones, etc.”1 The Oxford Dictionary of Biochemistry and 
Molecular Biology somewhat more elaborately defines it as: “the integration of natural 

sciences and engineering sciences in order to achieve the application of organisms, cells, 
parts thereof and molecular analogues for products and services (European Federation of 
Biotechnology General Assembly, 1989); a field of technological activity in which biochemical, 
genetic, microbiological, and engineering techniques are combined for the pursuit of technical 
and applied aspects of research into biological materials and, in particular, into biological 
processing. It includes traditional technologies such as fermentation processes, antibiotic 
production, and sewage treatment, as well as newer ones such as biomolecular engineering 
and single-cell protein production.”2 
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The basic idea in pharmaceutical biotechnology is to employ biological processes and biological 
molecules to create drugs and vaccines. Our ability to do this has arisen from a dramatic increase in our 
understanding of the molecular and cellular basis of life. This has included the ability to create and 
manipulate both nucleic acids and proteins through an extensive series of procedures that is usually 
referred to as molecular biology. These methods will be very briefly discussed below. One consequence 
of this dramatic technology expansion has been the rise of the biotechnology industry. This is directly 
manifested in the creation of a series of companies such as Genentech, Amgen, Genzyme, Biogen-
Idec, MedImmune, and many more. In addition, there also exist many hundreds of smaller biotech 
businesses spread throughout the world focusing on an extensive variety of human diseases employing 
a diverse array of biotechnology-related technologies. Furthermore, previously small molecule focused 
large pharmaceutical companies such as Pfizer, Merck, GlaxoSmithKline, Wyeth, and Novartis all 
contain within 
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themselves large biotechnology divisions. Currently, there are more than a hundred approved peptide 
and protein pharmaceuticals (see http://www.drugbank.ca) with hundreds more in clinical trials. It seems 
fair to say that the clinical importance of large molecules is approaching that of their smaller cousins. 
The recent mapping of the human genome has further opened up new opportunities with the 
identification of several tens of thousands of genes providing both new targets and potential new 
macromolecular drugs. Opportunities for both improved and novel diagnostic procedures have also 
appeared as a result of the advances mentioned above. 
Types of Biotechnology-Derived Products 
Peptides and Proteins9,10,11 
Peptides and proteins are formed by the creation of a peptide bond between combinations of the 20 
naturally occurring amino acids. The primary distinction between the two is one of size with polymer 
lengths less than 30 to 40 residues defining peptides and longer sequences, proteins. A second 
distinction is one of levels of structure. While both peptides and proteins contain defined orders of their 
amino acids (their primary structure or sequence), proteins also usually contain additional higher-order 
structures (Fig. 21-1). For example, most proteins contain regions of regular, local chain interactions 
known as secondary structure. The two most common types of secondary structure in proteins are the α 

helix and β sheet. Various types of turns (reversals of chain direction) and more disordered regions are 
also commonly present. Recently, it has been recognized that some proteins also exist in fairly 
disordered states, at least in their purified forms. Large peptides may also contain significant regions of 
secondary structure. 
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Fig. 21-1. Some typical structures of biopharmaceuticals. Several of these (human 

serum albumin (HSA), IgG, lysozyme, a fibroblast growth factor (FGF), and DNA) 

are used to produce data in later figures. Note the highly helical nature of HSA and 

lysozyme and the extensive β-structure present in IgG and FGF. In the first four cases, 

the structures are shown in both ribbon and space-filling forms. 

Proteins can also bring their various elements of secondary structure together to form what we refer to 
as tertiary structure. This creates a distinct three-dimensional structure for most proteins. Modern 
methods of x-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy often allow the 
location in 3-D space of the individual atoms in a protein to be determined with a resolution of 1 to 3 Å. 
This has resulted in very detailed pictures of thousands of proteins with more appearing each day (Fig. 
21-1). One conclusion that has been reached from such work is that distinct, common “domains” (small 

compact regions of various secondary structure combinations) exist in most proteins, reflecting both 
evolutionary and functional relationships among many proteins. It is important to realize, however, that 
the static picture of proteins, seen by crystallography, fails to provide a complete representation of 
protein structure. Proteins exist in a highly dynamic equilibrium of various conformational states. This 
will be considered in more detail below. 
Individual proteins can also associate into defined multisubunit assemblies forming what is known as 
quaternary structure. This can involve either multiple copies of the same proteins or heterogeneous 
mixtures of different types of subunits. There also exists another way in which proteins can associate 
with themselves, which is referred to as aggregation (Fig. 21-2). This type of structure is especially 
important to the pharmaceutical scientist since it constitutes a major pathway of physical degradation for 
many protein pharmaceuticals. This process can be highly ordered (as seen in crystallization or the 
assembly of fibers) or highly disordered forming amorphous protein particles. We will further consider 
this latter process below. 
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Peptides and proteins of pharmaceutical utility can conveniently be placed into a number of different 
classes. A wide variety of peptide-based drugs are now available. These include antitumor agents such 
as leuprolide, diabetes drugs 
P.518 
 
such as insulin and exenatide (Byetta), immunosuppressants like cyclosporine, and labor-inducing 
agents like oxytocin. Peptides can be either isolated from natural sources such as animals, bacteria, or 
fungi, or chemically synthesized. They are usually sufficiently small that they can in many ways be 
treated like lower–molecular-weight pharmaceuticals. 

 

Fig. 21-2. Aggregation of proteins is a major pathway of their physical degradation. 

The native state of a protein can associate into ordered species that are crystalline or 

fibrous in nature and assemble into defined oligomeric species such as dimers and 

tetramers or into amorphous aggregates. Under various forms of stress, some structure 

can be lost, often into forms known as molten globule states, which can also form 

disordered aggregates or associate into soluble aggregates which form amyloid 

materials or become surface active and bind to membrane or container surfaces. 

Native assemblies can also frequently be surface active. These intermediate states are 

the most common origin of aggregation problems in protein pharmaceuticals. More 

complete unfolding is rarely encountered because these intermediate states dominate 

but unfolded (denatured) protein can aggregate as well. (Modified from C. M. Dobson 

and M. Karplus. The fundamentals of protein folding: bringing together theory and 
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experiment. Curr. Opin. Struct. Biol. 9, 92–101, 1999.) 

Proteins that are used as drugs currently cover such a wide range of diseases that it is difficult to 
summarize their activities and applications. Only a few examples are provided here. Many of the early 
pharmaceutical proteins were derived from human or animal blood or tissue. Insulin and somatotropin 
(growth hormone) were originally derived from animal pancreases and human brains, respectively. 
Serum albumin, coagulation factor XIII, and the hepatitis B surface antigen were all obtained from 
human blood. Various antivenoms against snake and spider venoms were (and still are in many cases) 
obtained from the blood of large animals like horses and goats. Most of these are now, however, 
obtained recombinantly, reducing or eliminating problems of immunological reactions, contamination, 
expense, and supply. 
Many other proteins of potential therapeutic use were initially impossible to obtain from natural sources 
in sufficient amounts or quality (purity) to make them realistic candidates for use as therapeutic agents. 
Many such proteins are now produced recombinantly. While in some cases still expensive, the 
recombinant forms are both safer and available in abundant supply. 
Currently Available Recombinant Protein-Based 
Pharmaceuticals 
Currently available protein-based drugs can be subdivided into several categories. These are (based on 
2008 sales) 
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hematopoietics (23%), monoclonal antibodies (20%), cytokines (19%), vaccines (13%), antithrombins 
(11%), plasma proteins (6%), insulin (5%), and growth hormones (2%). (Information cited in 
genengnews.com, January 1, 2009.) A brief discussion of a few representative examples follows. 
Tissue plasminogen activator (t-PA) is a protease, which can dissolve thrombi which form at sites of 
coronary vessel occlusion and can induce myocardial infarction and stroke. Removal of such blockages 
within the first few hours of a coronary event can be lifesaving. Previous therapy using proteins such as 
urokinase and streptokinase was less specific, often leading to internal bleeding problems. Because t-
PA binds to fibrin and is a natural human protein, it is more specific with generally less side effects. The 
protein must be produced in mammalian cell culture because it is glycosylated in its natural form (see 
below). Erythropoietin (EPO) is another example of a protein drug with a dramatic pharmacological 
effect. This protein stimulates the production of red blood cells (erythrocytes) and has a variety of uses 
including treatment of kidney dialysis patients to prevent anemia. Like t-PA, the protein is produced in 
mammalian cells because it must be correctly glycosylated for full biological activity. Similarly, 
granulocyte macrophage colony stimulating factor (GM-CSF) and granulocyte colony stimulating factor 
(G-CSF) are used to enhance the proliferation of hematopoietic progenitor cells important for immune 
responses and are used during bone marrow reconstitution as well as some cancers. 
A variety of proteins known as interferons and cytokines are now available in recombinant form and are 
used for a wide variety of disorders. Interferon-β is used to effectively treat multiple sclerosis (MS) and 

α-interferon as an antiviral agent. The interleukins also belong to the cytokine family. The best known of 
these is interleukin-2 and is most commonly used for the treatment of renal cell cancers. A wide variety 
of interleukins (more than 20 are currently known) are being explored for immune-related applications. 
Some other notable therapeutic proteins include the Factor VIII and IX coagulation factors, DNAse for 
the treatment of cystic fibrosis, and glucocerebrosidase for enzyme replacement therapy in Gaucher 
disease. These examples are fairly typical in that they either target receptors or their ligand or are 
themselves ligands or receptors or fragments or mutants, thereof. Alternatively, they are proteins with 
enzymatic activities of therapeutic consequences. Recently, however, the biotechnology industry has 
begun to be dominated by the class of proteins known as immunoglobulins (Igs). When these proteins 
have defined affinity for specific ligands they are known as antibodies. All Igs consist of two heavy 
chains and two light chains bound covalently by disulfide bonds (Fig. 21-1). The chains themselves are 
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composed of two globular domains in the case of light chains and four or five in the case of the heavy 
chains. Each domain comprises a beta-sandwich-like structure with the two flat sides of the sandwich 
also held together by disulfide bonds. The five different classes of immunoglobulins (IgG, IgA, IgD, IgE, 
and IgM) are defined by differences in their heavy chains. There also exist two different types of light 
chains known as lambda and kappa. The N-terminal part of the heavy and light chains varies 
significantly in three regions of their sequence known as hypervariable regions, a phenomenon which 
arises because of controlled genetic recombination events at the DNA level combined with somatic 
mutation. These highly variable regions are brought together in space to form millions of different 
binding clefts sufficient to recognize with both low and high affinity most substances, which are referred 
to as antigens. This generates a huge library of receptorlike molecules that can be used to create 
pharmaceutical proteins that can interact with virtually any chosen target. Not surprisingly, this has 
resulted in the use of Ig as therapeutic agents for amazingly diverse applications. Of the 5 Ig classes, it 
is the IgG type that is generally used. IgG itself consists of several subclasses with differing biological 
properties. By using cellular cloning methods, it is possible to create unique (monoclonal) recombinant 
antibodies as well as their fragments for virtually any ligand. Although the original technology was 
developed for mouse antibodies, it is now routinely possible to produce entirely human antibodies or 
animal antibodies in which the nonvariable parts of the antibodies are converted to human form 
(humanized monoclonal antibodies, hmAbs). Although IgG molecules are large (~150 kDa) and 
glycosylated (usually necessitating their production in mammalian cell culture), their unique specificity 
and long serum half-life contribute to their expanding use as therapeutic agents. A list of some currently 
marketed antibodies including their target and use is shown inTable 21-1. This diversity of applications 
ensures their continued development as therapeutic agents well into the immediate future. 
Vaccines12,13 
Outside of public health measures, there is little doubt that vaccines have had the greatest positive 
effect on human health. Although vaccines have now been used for several hundred years, there has 
been a resurgence of interest in their use in the last decade due to the new technologies available for 
their creation and an improvement in their financial viability.14 Vaccines function by exposing our 
immune systems to attenuated pathogens, pieces of pathogens, or other agents (all referred to as 
“antigens”). Under the right conditions (still incompletely understood), this can produce a “memory” 

response which results in a very robust immune response that can protect the immunized individual 
against later exposure to actual disease causing pathogens. There are three divisions of the human 
immune response generally recognized15,16 (Fig. 21-3). The first is the innate response which primarily 
involves the recognition of repetitive structures on the surface of pathogens by receptors on immune 
cells known as “toll” receptors. This leads to a complex series of cellular responses including activation 
of the adaptive immune response involving the production of antibodies (the humoral response) and the 
cellular response 
P.520 
 
which among other activities produces cells which can kill infected host cells. When testing vaccines, the 
production of antibodies is the most common event measured although it is becoming common to 
quantitate the production of cytokines as an indicator of cellular responses. 

Table 21-1 Currently Marketed Antibodies Target and Use 
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Name Target Typical Uses 

Avastin VEGF Cancer (multiple) 

Bexxar CD20 Non–Hodgkin lymphoma 

Campath CD52 Leukemia 

Erbitux EGFR Colorectal cancer 

Hercetin HER-2 Breast cancer 

Humira TNF-alpha Arthritis 

Mylotarg CD33 Leukemia 

Orthoclone 

OKT3 

CD3 Prevent transplant rejection 

Raptiva CD11alpha Psoriasis 

Remicade TNF-alpha Immune inflammatory disorders 

Reopro GPIIb IIIa Inhibits platelet aggregation (thrombux 

formation) 

Rituxan CD20 Non–Hodgkin lymphoma/arthritis 

Simulect CD25 Inhibits allograft rejection 

Synagis RSV Treats RSV infections 

Tysabri VLA4 MS/Crohn disease 

Xolair Ig E Allergic asthma 
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Zenapax IL-2 Inhibits allograft rejection 

Zevalin CD20 Non–Hodgkin lymphoma 

 

A wide variety of different antigens have been employed as vaccines.12 Among the most effective are 
those that employ attenuated viruses. Vaccines such as measles, mumps, rubella, varicella, rotavirus, 
and one form of the polio vaccine are all examples of such vaccines and have had a dramatic impact on 
human health. Effective vaccines can also be created by inactivating viruses and bacteria through 
chemical or radiation methods, with the hepatitis A, rabies, and some forms of the polio and influenza 
vaccines representative examples. From early in the history of vaccinology there has been the hope that 
individual components of organisms could also be used as the active components of vaccines. Today, 
proteins, carbohydrates, and nucleic acids are all important antigens with the former two currently 
employed in marketed vaccines. Originally, proteins for vaccine use were purified from actual 
pathogens. These include inactivated proteins such as typhoid and cholera toxins, partially purified 
influenza proteins (primarily the hemagglutinin and neuraminadase), as well as viruslike particles from 
the serum of hepatitis B infected individuals. More recently, recombinant methods (see below) have 
been employed, although there has been only limited success in these efforts. Nevertheless, the 
hepatitis B surface antigen (HBV), cholera toxin B, and surface proteins from the human papillomavirus 
(HPV) are all successfully used in highly effective vaccines. The OspA protein from the organism 
causing Lyme disease was also employed but the vaccine was eventually removed from the market. It 
should be noted that two of these recombinant vaccines (HBV and HPV) are in the form of viruslike 
particles which significantly enhance their immunogenicity. Several vaccines that employ carbohydrates 
as antigens are also available. In the case of adults, a vaccine against pneumonia has been developed 
which contains 23 different purified polysaccharide chains. Polysaccharides are only weakly 
immunogenic in children, however, and must be conjugated to protein-based carriers for them to be 
effective in infants. These carriers include diphtheria and tetanus toxoids as well 
P.521 
 
as an outer membrane protein complex from Neisseria meningitides. Important childhood vaccines 
based on polysaccharide/protein complexes include those for Haemophilus influenzae, meningoccal 
disease, and pneumococcus. Finally, it has recently become apparent that it is possible to make 
vaccines using DNA plasmids in which antigenic proteins are encoded within appropriate expression 
sequences. Through mechanisms that are still not entirely understood, expression of these antigenic 
proteins by cells of the immune system or their secretion by other cells can lead to significant cellular 
and humoral immune responses. Although successful human vaccines have yet to be developed on the 
basis of this technology, two veterinary vaccines are on the market. In another emerging technology, the 
integration of specific protein sequences into virus delivery vehicles such as adenoviruses is also being 
explored. Perhaps the most important points to note here are that (a) there are a wide variety of different 
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approaches to vaccines and (b) vaccines themselves are usually quite complex presenting significant 
challenges for their formulation and delivery. 

 

Fig. 21-3. A basic diagram of the mammalian immune system (see text). 

Nucleic Acids17,18,19,20 
As indicated in the previous section by the example of DNA vaccines, nucleic acids in both their DNA 
and RNA forms can also be used as pharmaceuticals. Historically, an approach known as antisense 
RNA was used to either alter gene expression or interfere with the translation of RNA into protein. The 
idea is simple in principle but difficult in execution. A piece of single stranded RNA that has a sequence 
complementary to a gene or RNA of interest (the “sense” target) is introduced into appropriate cells. The 

highly specific binding of the antisense drug to a specific mRNA or gene may result in its destruction 
through an enzymatic process or blocking of transcription, respectively. Various chemical analogues of 
RNA are often used for this purpose to improve their stability. The delivery of antisense RNA 
pharmaceuticals into cells, however, has presented a formidable challenge which remains unsolved 
despite a wide range of attempts to overcome the barriers that exist to this problem. So far, only a single 
antisense drug has reached market (for treatment of cytomegalovirus retinitis). Currently, the 
enthusiasm for this approach is rather low with approaches based on RNA interference (RNAi) (see 
below) more actively pursued. 
A second approach relies on the introduction of a gene (DNA) coding for a protein of potential 
therapeutic activity into cells (i.e., gene therapy). This gene (or genes) is usually introduced either 
incorporated into the genome of a virus21 or as a part of a bacterial plasmid, the latter often complexed 
to a polymeric, (usually) cationic carrier to facilitate entry into cells.22,23 Initially, RNA retroviruses with 
the ability to integrate their genes into host chromosomes were the most actively employed viral vectors. 
Problems of toxicity, however, have reduced their use. More recently, the DNA viruses, adenovirus and 
adeno-associated virus have been used. For safety reasons, there is also significant interest in using 
bacterial plasmids to delivery genes for therapeutic applications. Plasmids are circular, double-stranded, 
facilitated self-replicating pieces of DNA that can contain multiple genes as well as auxiliary sequences 
that can aid in replication and gene expression. They are easily produced in high numbers in host 
bacteria or other cell types making their manipulation and manufacture at high concentration easier than 
viruses. In most cases, plasmids are complexed to cationic polymers such as positively changed lipids 
or polyethyleneimines to facilitate cellular entry and to enhance their stabilization. The use of plasmids 
provides an especially flexible approach to gene therapy given their large genomic capacity and ease of 
synthesis, but so far no human therapeutics have been directly derived from this technology. Again, 
problems with their delivery, potency, and safety have inhibited their development. 
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The most recent approach to the use of nucleic acids as therapeutics has come from the discovery that 
many genes are naturally regulated by the presence of small RNA molecules.24,25This is a rapidly 
evolving field with new discoveries being made almost weekly. From a pharmaceutical perspective, this 
new technology clearly holds significant promise. Initially, efforts have been focused on the use of 21 to 
23 nucleotide double-stranded RNA molecules which are complementary to target mRNA species. In a 
manner similar to but distinctly different from antisense activity, the complexes formed are subject to 
destruction by a naturally occurring catalytic activity. The biochemistry and cell biology of RNA 
interference is both complex and fascinating.19 We leave it to the interested student to pursue this topic 
further on their own.20Promising effects have been seen in animal disease models and human clinical 
trials are underway.24,25 
The potential use of “aptamers” as therapeutic agents will be briefly mentioned. These are small DNA or 

RNA molecules (typically 15–60 nucleotides in length) that have been specifically selected for their 
specificity and affinity for proteins or other biological targets.26,27,28In fact, a drug for age-related 
macular degeneration is already available based on the use of aptamers. A number of clinical trails are 
also underway employing these unique molecules. Peptide-based aptamers are also under 
investigation. These generally consist of a variable peptide loop that is incorporated into a protein 
matrix. 
Discovery of Biotech Drugs 
Small molecule drugs are typically discovered by screening libraries of natural or synthetic compounds 
(combined with rational structure optimization) against protein-based targets. Targets are selected on 
the basis of our current fairly extensive understanding of metabolic and hormonal pathways and 
extrapolated therapeutic effects. It is this same modern understanding of cell and molecular 
biology29,30accompanied by corresponding pathologies that is used to design biotechnology-based 
drugs. One difference, however, is that in many cases components of these pathways or their 
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analogues are used as actual drug substances. Thus, protein drugs such as insulin, human growth 
hormone, and EPO are simply used to supplement their naturally occurring counterparts. With the 
availability of the sequence of the human genome of approximately 20,000 to 30,000 genes (the exact 
number remains quite controversial), in principle at least, all such genes are now available for 
therapeutic use. In addition, the many variants of each gene (sometimes in the hundreds and known as 
single-nucleotide polymorphisms or SNPs) are being increasingly defined and offer the potential for 
more specific therapeutic use. In addition, the use of antisense RNA and more recently RNA 
interference offers the possibility of gaining fairly detailed functional information. This can often be used 
to create cellular models that provide useful analogues of specific biochemical pathways or even 
disease states that can be employed to further develop protein and nucleic acid therapeutics. In ideal 
cases, animal models either natural or transgenic in nature in which specific genetic changes have been 
made to simulate human diseases can be used. This subject is a vast one and rapidly changing, but it 
seems certain that the information necessary to develop recombinant pharmaceutics will become 
increasingly available. 
Cloning31,32 
Approximately 30 years ago, Paul Berg, Herbert Boyer, and their colleagues realized that it should be 
possible to manipulate DNA in such a way that specific genes could be inserted in cellular systems and 
their expression induced. This has led to a now routine series of procedures to accomplish this task. 
Although the details of these methods can be quite complex and an art form in themselves, the basic 
idea is straightforward.31,32 First, a specific gene (e.g., one that is selected as a potential protein 
pharmaceutical) must be isolated. This is typically done by screening a large library of genes that have 
been inserted into circular pieces of bacterial DNA (plasmids). This gene is then inserted into a plasmid 
which has been specifically designed for expression of the gene into protein (an “expression vector”). To 

accomplish this, the gene is removed from the library plasmid by cutting with a highly specific protein 
known as a “restriction enzyme.” The expression plasmid is then opened with the same enzyme and 
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combined with the desired gene. The gene hybridizes to the sticky ends of the plasmid in a highly 
specific manner. The host plasmid is then covalently closed with another enzyme known as a ligase. 
The “recombinant” plasmid can then be inserted into a host cell for reproduction (we say the cell is 

transformed, a process not to be confused with the transformation of cancer cells). 
A wide variety of different cells types are available for expression purposes. These include bacteria such 
as Escherichia coli, yeast cells, baculovirus, animal cells in culture, plants such as corn and tobacco, 
and transgenic animals like goats, sheep, and cattle. It is also possible to express proteins in cell-free 
systems using extracts of mammalian cell cytoplasm. There are advantages and disadvantages to each 
expression system. For example, low cost and high levels of expression often dictate the use of 
bacterial and yeast cells. If posttranslation modifications such as glycosylation are necessary for the 
proper functioning of the protein, then eukaryotic, yeast, or baculovirus systems are typically used 
although each may produce a uniquely modified protein. If larger proteins are being expressed, then 
eukaryotic cells are usually employed. 
The vectors used to transform the expression system of choice must meet a number of requirements. 
They must contain one or more appropriate promoter sequences (binding sites for RNA polymerase), an 
origin of replication for DNA polymerase, a ribosomal binding site, appropriate restriction sites, and 
termination sequences. In addition, selectable genes that when expressed allow cellular survival when 
stressed and affinity tags to aid in the isolation of the expressed protein are often included (see Fig. 21-
4). 
Common promoters include those from phages, viruses, and inducible systems such as the arabinose 
system. A wide variety of tags are available for purification purposes. The most common is the His6 
sequence, which can be used for Nickel affinity chromatography, and the FLAG epitope sequence of 
DYKDDDDK. Others include the cellulose-binding domain and glutathione-S-transferase tags as well as 
the c-myc epitope (EQKLISEEDL), poly E 35 and poly K35, and CBP-calmodulin-binding domain tags. 
The next step is to get the DNA into the host cell (transformation). In the case of bacteria, this is usually 
accomplished by making the plasmid particulate through the addition of a positively charged ion such as 
calcium, followed by rapidly lowering the temperature to damage the bacterial membrane, facilitating 
plasmid entry. A more modern and efficient method is through the use of a process known as 
electroporation. This uses a pulse of electromagnetic energy to open up pores in the bacterial 
membrane. Although this procedure is 
P.523 
 
still poorly understood, it works for many types of cells and is even being considered for human use and 
gene therapy. Genes can also be introduced into cells by using viruses as cloning vectors (which have 
natural receptors) or by complexing the recombinant plasmid to a positively charged agent such as a 
cationic lipid or other positively charged polymer. To some extent, the process is an empirical one with 
the extent and stability of expression the criteria for success. 
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Fig. 21-4. The basic design of an expression plasmid. The actual plasmids used in the 

productions of biopharmaceuticals are usually much more complex (see references 

31 and 32). 

Transformation of yeast and mammalian cell lines (“transfection”) have some similarities to bacterial 
systems but some key differences as well. The student is referred to the more technical literature to 
explore these differences, which include selection procedures, plasmid design, and cellular growth 
requirements among others.3,4,5,6,7,8,31,32 
Once cellular transformation has been performed, it is necessary to grow these cells to a high mass to 
produce sufficient material for isolation of the target product (e.g., protein, virus, DNA plasmid). This is 
accomplished by a process known as fermentation. This procedure varies depending on the cell type, 
but in general, variables such as CO2 requirement, O2 levels, and necessary nutrients must be 
individually optimized. Typically, microbial cells grow much more rapidly than animal cells and grow to 
higher cell densities. Growth is usually performed in large fermentors or bioreactors, which permit the 
growth process to be continuously monitored and the amounts of O2, CO2, and nutrients to be 
maintained at appropriate levels. The use of incubators and fermentors is a highly specialized activity 
and requires extensive knowledge and training for maximum effectiveness. 
Purification of Macromolecular Therapeutics33,34 
After sufficient growth of cells and subsequent expression of the target protein or other macromolecular 
drug agent, the product can be found either inside the cells, secreted into the surrounding medium, or 
perhaps associated with the cells' surface. If the protein (or DNA, or virus) is secreted into the growth 
medium, its purification can usually begin immediately. If it is found inside the cell, however, its isolation 
is usually much more difficult. The cells must initially be broken open. This is usually done by using a 
French pressure cell (shear), sonication (sound), or disruption with glass beads (mechanical stress). All 
three methods are relatively rough, so gentler methods are also often used. These include freeze-thaw 
stress, lysis with detergents (dissolution of cell membranes), and enzymatic or osmotic lysis. Once the 
macromolecular drug substance is released from its association with the transformed cells, it must then 
be isolated from the contaminating proteins, lipids, carbohydrates, and nucleic acids. This is usually a 
relatively complex multistep process that is primarily empirically based although the physical properties 
of the protein/nucleic acid/virus can often provide important clues to the most effective steps. 
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Initial steps in the purification of macromolecular substances typically involve crude separations based 
on the gross solution behavior of the material. For example, differential precipitation by salts, organic 
solvents or solutes, pH, or temperature is frequently used for this purpose. In some cases, this may be 
followed by filtration steps using filters containing micron or submicron-sized pores that selectively pass 
or retain the macromolecular drug. 
The primary class of higher resolution approaches used today involves a variety of types of 
chromatography.35,36 Most generally, these procedures rely on passing a mixture of molecules in a 
mobile (liquid) phase, through a stationary (solid) phase, resulting in a partial (usually) or complete 
separation of the components. This occurs because of an interaction or lack thereof between the 
molecules to be separated and the solid phase. There are currently many different types of 
chromatography, some used analytically (to be discussed below) and some to separate molecules at 
preparative levels. The four most widely used approaches for the latter purpose are described below 
(Fig. 21-5). 
If it can be successfully performed, some version of “affinity” chromatography is usually an optimal 

choice. This is 
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because of the degree of purification (often greater than a thousandfold) frequently obtained by this 
method. The basic principle behind affinity chromatography is that highly specific interactions often exist 
between proteins and protein complexes like viruses and other molecules (referred to as “ligands”). If a 

ligand can be fixed (usually covalently) to an insoluble matrix (often in the form of small beads), then this 
can be used as a basis for separation since most or all of the other components in the mixture will not 
undergo this specific interaction. It is, of course, necessary to remove the molecule of interest from the 
support, but this can often be achieved by some type of competitive interaction with another substance 
or alteration of the solution conditions by a variable such as (low) pH or (high) ionic strength. The trick is 
not to alter the desired macromolecule by the elution process. Ligands are typically attached covalently 
to a resin such as sepharose while retaining an affinity in the range of KD 10-4 - 10-8 M. A wide variety of 
ligands have been used for protein affinity chromatography. For example, proteins with polyhistidine 
tags will bind to columns containing immobilized metal ions such as Zn+2 and Cu+2. They can generally 
be eluted with either imidazole which competes for the binding or low pH (e.g., ~4.5). The problem with 
this approach is that the protein drug now contains the His-tag, often an undesirable modification of its 
native structure (His-tags can be “sticky” because of their positive charge at pH <5). This problem can 

be overcome by using a cleavable linker between the proteins and the tag, but in general, His-tag affinity 
chromatography is primarily used in the discovery and basic research stages of pharmaceutical 
development. In contrast, a method that is commonly used to purify large amounts of immunoglobins 
uses protein A and G. These proteins bind to Igs with high affinity. They have been attached to various 
resins and are routinely used in immunoglobulin purification with elution performed by lowering the pH. 
Another commonly used ligand is heparin or other highly polyanionic polymer. Many proteins contain 
high affinity (although not necessarily highly specific) polycationic sites that can interact electrostatically 
with polyanions.37,38 For example, many growth factors, cytokines and blood proteins, contain such 
sites. High ionic strength is often sufficient to elute such proteins from heparin columns. Other ligands 
that have been used to isolate proteins of pharmaceutical interest include calmodulin (kinases, 
phosphatases, cyclases), adenosine monophosphate (AMP) (adenosine 5′-triphosphate (ATP)-
dependent proteins, nicotinamide-adenine dinucleotide (NAD) cofactor utilizing proteins), and cibacron 
Blue dye (proteins with large hydrophobic binding sites such as the serum albumins). 
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Fig. 21-5. The basic forms of liquid chromatography. The most common forms of 

chromatography used to purify and characterize biomolecules and their complexes are 

based on interactions between the biopharmaceuticals and a solid support (indicated 

by large open circles) which are usually derivatized with a molecular moiety to induce 

interactions with target molecules. (a) In affinity chromatography the immobilized 

ligand (▲) binds to a specific site on the macromolecule (all shown with lined 

interiors) and is usually eluted with a related soluble ligand or a change in pH. (b) In 

size exclusion chromatography, no ligand is used but smaller molecules are able to 

diffuse into particle support interiors slowing their progress through the column 

resulting in separations based on size. (c) In ion-exchange chromatography, 

macromolecules and their complexes are separated on the basis of charge/charge 

interactions with the support with elution induced by either changing the pH or 

increasing salt concentrations. (d) Hydrophobic interaction chromatography separates 

target macromolecules based on the interactions between apolar (hydrophobic) 

ligands and apolar sites on proteins. Elution is usually performed by lowering salt 

concentrations (which weakens apolar interactions). The same principle is used in 

reversed-phase HPLC but elution is typically induced by increasing concentration of 

an apolar solvent. 

A chromatographic method which separates proteins on an entirely different physical basis is gel 
filtration (also commonly known as size exclusion chromatography or SEC). In this case, proteins, 
nucleic acids, and even viruses can be separated on the basis of size. The method employs small 
beads of various porosities. Smaller proteins can enter into the highly channeled interior of these 
matrices and consequently their progression through a column of such material is slowed. In contrast, 
larger proteins can less efficiently enter into the beads or pass between them entirely. The overall result 
is a time-dependent separation of mixtures of proteins, nucleic acids, or even viruses from one another 
based on their hydrodynamic size. As discussed below, this method can also be used as an analytical 
tool to estimate the size and molecular weight of macromolecules and to detect aggregated material. 
A very commonly used method to separate macromolecules and especially proteins is ion-exchange 
chromatography. This technique separates molecules on the basis of their charge rather than their size 
or specific affinity for ligands. To perform this method, either positively or negatively charged groups are 
covalently attached to a polymer, which permits the free flow of macromolecules. The most commonly 
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employed groups are the negatively charged carboxymethyl or sulphopropyl moieties and the positively 
charged quaternary aminoethyl and diethylaminoethyl side chains. The negatively and positively 
charged groups are referred to as cation and anion exchangers, respectively. Once adsorbed to the 
charged surface, the macromolecule is eluted by either increasing the ionic strength with salt (in either a 
step or gradient fashion) or altering the pH to minimize the electrostatic attraction. Ion-exchange resins 
are classified as either weak or strong. Weak exchangers are typically effective over a more limited pH 
range than the strong exchangers. The selection of an appropriate ion exchange resin is determined by 
the macromolecules isoelectric point (the pH at which it has zero net charge), size, pH stability, and the 
scale at which the separation is conducted. 
The fourth method is known as hydrophobic interaction chromatography. In this case, the group which is 
derivatized to the support resin is hydrophobic (more correctly “apolar”) rather than charged or a specific 

ligand. Apolar sites on molecular surfaces can bind to these apolar groups. To increase the strength of 
this interaction, the molecules are usually loaded at high salt concentrations. In contrast to electrostatic 
interactions, which are weakened at higher salt concentration, hydrophobic interactions are increased 
under these conditions. Thus, macromolecules are eluted by lowering the salt concentration. This 
technique bears a resemblance to high-performance liquid chromatography (HPLC), which will be 
discussed below as an analytical technique. Both employ resin-attached apolar side chains of length 
C1-C18. HPLC, however, usually elutes protein with an organic solvent like acetylnitrile or propanol. 
Unfortunately, this usually alters macromolecular 3-D structure (although often, reversibly), often 
negating its use as an isolation technique. The exception is peptides, which may not require a defined 3-
D structure for their biological activity. 
Characterization39,40 
A key to the successful development of a macromolecular pharmaceutical is to obtain a detailed picture 
of its structure 
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and the response of this structure to environmental stresses such as temperature, pH, ionic strength, 
agitation, and freeze/thaw exposure. Although a detailed structural picture of a molecule like that 
obtained by x-ray crystallography or NMR spectroscopy can be very helpful, this is not absolutely 
necessary for the successful formulation and development of a biopharmaceutical. The usual approach 
is to use a variety of different lower resolution experimental approaches to obtain pictures of the 
molecule from a wide range of perspectives. Some of the most common methods are discussed below. 
Biology-Based Assays (Bioassays)41 
Although often lacking a high degree of precision and accuracy, assays based on the response of 
animals or cells to biotherapeutics are generally considered to be the ultimate arbiter of the retention of 
pharmaceutical activity. Well-known examples of the use of animals for this purpose include the 
lowering of blood glucose in test animals by insulin, an increase in weight upon the injection of growth 
hormone, and the production of specific antibodies when animals are exposed to vaccines. In some 
cases, transgenic animals have been developed as disease models. 
Thus, diabetic mice, mice with Alzheimer-like disease, and many animals with genetic defects similar to 
those found in humans have all been created and provide a basis with which to check the effectiveness 
of a particular biotherapeutic. The advantages of such approaches are obvious. They permit a direct 
evaluation of the critical properties of the pharmaceutical and may be sensitive to changes in its 
structure. It is possible, however, for structural changes to occur that are not detected by such methods 
because either the structural alteration does not affect activity or the usually fairly wide experimental 
variability in such measurements does not permit detection of relevant structural changes, even if the 
biological activity is perturbed. For these reasons (among others), additional assays based upon a 
variety of different physical and chemical properties of the target biopharmaceutical are usually also 
employed. 
Assays based on the response of cells to the presence of drugs are being increasingly used to check for 
structural integrity and biological activity. Many if not most biopharmaceuticals act on one or more cell 
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types by either binding to receptors on their surface or entering cells and producing a consequent 
molecular response. These cellular responses may involve changes in the level of important cellular 
messenger molecules such as cyclic AMP, ATP, and inositol phosphates or alterations in cellular 
properties like membrane potential, rate of cell division, or even cell death (toxicity). This is a large 
subject that we cannot explore further here, but an increasing number of experimental approaches for 
such measurements are becoming available facilitating this approach. A question that has yet to be 
unambiguously answered is to what extent cellular-based assays can replace animal studies. The 
speed, simplicity, and precision of the former, however, point to their increased usage. 
Immunoassays42,43 
Immunoassays are methods that employ antibodies to detect the amount of an antigen (e.g., protein, 
DNA, polysaccharides). These are solution or solid state assays that can employ either monoclonal 
antibodies obtained by a variety of methods or antisera obtained from the blood of animals injected with 
the macromolecule or macromolecular complex of interest. Monoclonals have the advantage that they 
are highly specific for a single site but antisera can be more easily obtained and their multispecificity can 
be advantageous under certain circumstances. In the case of vaccines, immunoassays can be used to 
measure antibodies produced in response to the vaccine. Alternatively, the presence and amount of a 
biopharmaceutical can be determined. In both cases, either the antibody or the antigen must be labeled 
in a way that the amount of that component can be easily quantitated. Common forms of labeling 
include attaching a fluorescent or colored group, a radioisotope (a radioimmunoassay or RIA), an 
enzyme (an enzyme-liked immunoassay or ELISA), or a magnetic particle (a magnetic immunoassay or 
MIA). A number of other approaches are also frequently used. For example, addition of antibody to 
antigen often produces insoluble complexes due to the multivalent nature of the antibody. This can be 
measured by light scattering or turbidity (see below). The latter is often referred to as nephelometry. The 
antibody or antigen can also be attached to cells (usually red blood cells) and the aggregation of the 
cells measured by a method known as agglutination. 
Many immunoassays are conducted in a competitive manner. Either a labeled antibody or antigen is 
used and the unlabeled molecule or virus of interest is used to compete or displace the labeled 
component in the antigen–antibody interaction (Fig. 21-6). 
Electrophoresis44,45 
The fundamental theory of electrophoresis is described earlier in the book and should be reviewed prior 
to reading this section. Here the focus is on the versions of electrophoresis that are primarily used for 
biomolecules, gel, and capillary electrophoresis. Gel electrophoresis is today usually performed in thin 
gels of cross-linked polymers. When the method is used for proteins, the gel usually consists of cross-
linked polyacrylamide, often in gradient form. When nucleic acids such as DNA are being 
electrophoresed, this is usually performed in agarose. In both cases, a semisolid medium of porous 
properties is used and an electromagnetic field is employed to move the macromolecule through the 
matrix. The relative “mobility” of the macromolecule is determined by a number of factors including its 

size and charge as well as in some cases, its 3-D structure. The most common form of protein 
electrophoresis is known as sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (SDS-
PAGE). In this case, the presence of SDS, a negatively charged detergent, causes proteins to unfold 
into rod-shaped structures1 
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Because the SDS binds relatively uniformly to the protein, the rodlike complexes migrate in proportion to 
their molecular weight (Fig. 21-7). If protein molecular weight standards are included in lanes of the gel 
not containing the protein of interest, a fairly accurate estimate of the latter's molecular weight can be 
made from a plot of the logarithm of the molecular weight of the standards versus their position on the 
gel and comparison of the unknown's migration behavior. If a reducing agent such as β-
mercaptoethanol or dithiothreitol is present, any disulfide bonds present will be broken and individual 
bands for any subunit present will be seen. For example, when immunoglobulins are subjected to SDS-
PAGE in the presence of a reducing agent, bands for both the heavy and light chains can be clearly 
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distinguished and their molecular weights estimated (Fig. 21-7). If no SDS is used, then it is much more 
difficult to estimate molecular weights but relative size information about proteins can still be obtained, 
including separation of proteins in mixtures. Because proteins do not usually absorb visible light (with 
the exception of those containing chromophores such as the heme groups of hemoglobin and the 
cytochromes), the gels are usually stained with a visible dye. Alternatively, gels can be stained with 
silver nitrate, a method approximately 50× more sensitive than the most commonly used dye, 
coomassie blue. The amount of protein present in each band is roughly proportional to the amount of 
associated dye. This can be quantitated by scanning the gel with a laser or by using some other type of 
imaging technique. There are a large variety of other types of electrophoresis that can also be used with 
proteins. For example, the separated protein can be blotted onto another piece of material and this 
stained with labeled antibodies to identify specific proteins of interest (a “western” blot). This permits a 

highly reliable identification of proteins to be made. Gradients of a protein unfolding agent like urea or a 
gradient of temperature can also be imposed. Such techniques permit protein unfolding and subunit 
dissociation to be studied. 
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Fig. 21-6. Types 

of immunoassays, the symbols represent antibodies ( ), antigens (♦) labels (•), 

and a solid support such as the well of a microtiter plate (—). (a) A 

heterogeneous, simple competitive assay in which labeled and unlabeled antigen 

compete with one another. (b) A sandwich assay in which an excess of a labeled 

reagent antibody competes for a site on the antigen which is captured on the 

support by another antibody which binds to a different site. (c) In the third 

method, detection is indirect through the use of the labeled antibody. (d) This 

illustrates a homogeneous competitive method in which the properties of the 

label itself (i.e., the signal) changes. (Adapted from G. Kersten and J. Westdijk, 

Immunoassays, in W. Jiskoot and D. J. A. Crommelin (Eds.), Methods for 

Structural Analysis of Protein Pharmaceuticals, AAPS Press, Arlington, 2005.) 
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Fig. 21-7. SDS-PAGE of representative biopharmaceuticals under reducing 

conditions employing a gradient gel. As expected, the virus produces multiple protein 

components and the IgG, two bands corresponding to the heavy and light chains. 

Molecular weights can be estimated by comparison to the known standards present in 

the left-most lane. 

Because nucleic acids carry a strong negative charge due to their phosphate groups, they can also be 
electrophoresed. In this case, however, a gel based on agarose is usually employed. The migration of 
DNA and RNA is dependent on their structure. Small pieces of double-stranded DNA or RNA generally 
migrate as a function of their radius of gyration, but larger species such as supercoiled DNA or single-
stranded 
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nucleic acids which can internally base pair and therefore form tertiary structure can behave in quite 
complex ways (Fig. 21-8). Nucleic acid agarose gels are usually stained with a dye such as ethidium 
bromide which intercalates between the bases, causing it to become highly fluorescent. The high 
separatory capacity of agarose gel electrophoresis (polyacrylamide can also be used) makes this an 
especially important analytical tool. 
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Fig. 21-8. An agarose gel of a supercoiled plasmid (sc) (left) which as been subjected 

to long-term storage with consequent development of open circle (oc) and linear 

forms (right). 

A third variant of electrophoresis of great importance is isoelectric focusing. Here, compounds known an 
ampholytes (mixtures of charged peptides) are included during electrophoresis. The externally applied 
voltage causes these charged agents to form a pH gradient within the gel. This causes the target protein 
to migrate to the point in the ampholyte gradient when its charge is neutralized, that is, its isoelectric 
point. Thus, this method allows one to measure the pH at which a protein is charge neutral. Proteins 
differing by a single charge (such as seen during a deamidation event, see below) can be distinguished. 
High concentrations of urea are often included during gel isoelectric focusing to reduce extraneous 
protein/protein interactions. 
Electrophoresis can also be conducted in small capillaries containing an electrolyte (capillary zone 
electrophoresis or CZE). Like gel electrophoresis, species are generally separated on the basis of their 
size to charge ratio. In this type of analysis, the motion of the buffer solution itself under the influence of 
the electromagnetic field (electroosmotic flow) often exceeds that of the electrophoretic migration of the 
sample and this contributes significantly to the separation. A variety of detection methods are available 
and are usually instituted through a clear area of the capillary. The most commonly used methods are 
UV/VIS absorption and fluorescence (either through the intrinsic fluorescence of the macromolecular 
such as protein tryptophan fluorescence (see below) or an extrinsic fluorescent group introduced 
through chemical modification). The output of the capillary can also be fed to a mass spectrometer for 
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molecular weight analysis. Isoelectric focusing can also be performed in a capillary format. Although 
more commonly used for proteins, capillary electrophoresis can also be used for nucleic acids. In a 
combination of the gel and capillary approaches, a separatory gel matrix can be included within the 
capillary. Electrophoresis has also been used to measure the zeta potential of macromolecules. This is 
discussed in Chapters 15 and 16. 
High-Performance Liquid Chromatography46 
In addition to electrophoresis, HPLC in its myriad forms is the most common analytical technique used 
to characterize macromolecules. The various types of separations available for HPLC are similar to 
those described above for the different types of preparative chromatography. The major differences are 
the use of small diameter columns packed with smaller particles that permit the use of high pressure 
(more than 1000 atmospheres) and consequent rapid flow rates and separation times (typically 
minutes). A wide array of detection methods is available including UV/VIS absorption, fluorescence, 
vibrational spectroscopies, electrochemical methods, and mass spectrometry. 
Probably the most frequently used form of HPLC is the reversed-phase mode (RP-HPLC). In this 
method, the packing material is derivatized with alkyl or other apolar substituents. The molecules to be 
separated interact with the apolar moieties through hydrophobic sites on their surfaces. They are then 
eluted with an apolar solvent like acetylnitrile or propanol, often in a step or gradient mode. Under 
optimized conditions, the time of elution (the “retention time”) may be taken as highly characteristic of 

the analyte and can be used to establish its identity and structural integrity. A common use of RP-HPLC 
with proteins is the construction of “peptide” maps (Fig. 21-9). In this important procedure, a protein is 
digested into peptide fragments of defined size by one or more proteases with their molecular weight 
determined by online mass spectrometry. This permits the chemical (primary) structure of a protein to be 
rigorously established and is routinely used to confirm a protein's identity and the presence of 
chemically altered residues. In general, peptides tend to elute on the basis of their relative polarity. The 
elution behavior of proteins themselves is much more complex due to their secondary, tertiary, and 
quaternary structure, but it is assumed that the presence of apolar binding sites plays a key role in their 
elution behavior as well as conformational changes produced by the eluting solvent.47 
P.528 
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Fig. 21-9. Peptide map of a mutated Ricin-A Chain after digestion by trypsin and 

analyzed with LC-MS/MS. The peptides were separated on a reverse-phase column 

C18 with gradient elution from 0% to 80% acetonitrile in water (containing 0.06% 

formic acid) at 10 µL/min, and the separated peptides were detected by mass 

spectrometry (upper figure). The lower figure shows a product ion spectrum which 

can be used to identify the sequence of the peptide shown in the upper right corner. 

The fragments with chargers on the N-Terminal side are called ―b‖ ions and the 

fragments with chargers on the C-terminal end are called ―y‖ ions. 

There are many additional forms of HPLC that are used as analytical tools in macromolecular analysis. 
Especially important are size exclusion (SEC), ion exchange and bioaffinity chromatography. SEC is of 
exceptional importance since it is used to detect changes in size. Thus, degradation that results in 
significant decreases in size or increases in mass such as that produced by limited association or more 
extensive aggregation is often first detected by this sensitive technique. One problem with its use is that 
dilution occurs during separation and thus the concentration at which separation occurs is not that of the 
initial sample. Furthermore, interactions of proteins with a column's matrix can significantly alter elution 
behavior. This makes estimates of size sometimes difficult. Inclusion of agents such as urea and high 
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salt concentration can be used to minimize this problem. Nevertheless, this method provides the most 
frequently used criteria for detection of the crucial phenomenon of protein aggregation. The method can 
also be used for nucleic acids and even viral particles if highly porous resins are used. With the advent 
of high pressures and appropriate packing materials, it is now possible to obtain analytical separations 
in a few minutes (and even seconds in certain circumstances) making HPLC-based methods of both 
widespread use and significant analytical importance. 
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Ultraviolet/Visible Spectroscopy 
A variety of spectroscopic methods are widely used to characterize biomolecules. An introduction to the 
general topic of spectroscopy is presented in Chapter 4 and it is highly recommended that this section 
be reviewed before perusing this section. This chapter is restricted to aspects of these techniques that 
are particularly relevant to biomolecules in a pharmaceutical context. 
Absorption spectroscopy in the ultraviolet and visible regions is a very versatile technique widely used 
with both proteins and nucleic acids.48,49 The technique has shown a recent resurgence due to the 
availability of diode array detection. Conventionally, absorption spectra were produced by scanning a 
moveable monochromator (a light dispensing element) through a sample contained in a cuvette (a 
visible and/or UV transparent rectangular sample holder of path length 0.01–10 cm, most commonly 
0.1–1 cm) with detection by a photomultiplier tube. In contrast, in a diode array instrument, all 
wavelengths of light are put through the sample simultaneously and a spectrum created after absorption 
of the light. The resultant spectrum is then projected onto a diode array for detection purposes. Most 
importantly, by using mathematical fitting techniques to interpolate between the individual wavelengths 
detected by the diodes (typical spaced at 0.5–2 nm), highly resolved spectra can be obtained after 
derivative analysis to produce a resolution on the order of ±0.01 nm. 
In proteins, there are two major intrinsic chromophoric groups to consider. In the far UV region (175–220 
nm), there are three electronic transitions observed because of peptide bonds with a broad peak seen at 
185 to 195 nm. Although this region contains information about a protein's secondary structure, it has 
rarely been used for this purpose due to optical interference by most substances. The high wavelength 
tail is often used, however, to detect proteins during various forms of chromatography. 
In contrast, the near UV region is used for a wide variety of purposes. This portion of a protein 
absorption spectrum (240–310 nm) is dominated by the π → π* transitions of the three aromatic amino 

acid side chains. Phenylalanine (Phe) manifests a weak peak with marked vibrational structure between 
250 and 270 nm, tyrosine (Tyr) a stronger, pH-dependent multicomponent peak from 250 to 290 nm, 
and tryptophan, the strongest absorbing side chain (another multicomponent peak) from 250 to 300 nm. 
In the case of proteins, the broad overlapping nature of these three contributions results in a broad peak 
centered between 277 and 287 nm (primarily from Trp and Tyr) with weak undulating bumps in the 
spectrum below 270 nm (due to the vibrational fine structure of the Phe contribution) and a marked 
shoulder for Trp at approximately 290 nm. Weak contributions from His and disulfide bonds can also 
occasionally be seen. The second or fourth derivative of a protein's spectrum dramatically brings out the 
underlying contributions usually in the form of 6 peaks (3 Phe, 1 Tyr, 1 Tyr/Trp, and 1 Trp) (Fig. 21-10). 
As indicated above, these peaks can often be localized to within 0.01 nm, providing a highly distinctive 
spectrum for each protein. Some additional information is possible since the Phe residues are usually 
buried in a protein's interior, most Tyr are interfacial, and the Trp residues dispersed throughout the 
protein's matrix. The important point here is that the position (wavelength) of each of these peaks is 
sensitive to the polarity of their environment. The general rule is that as the 
P.530 
 
environment of an aromatic amino acid's side chain becomes less polar (more hydrophobic), its 
wavelength is shifted to a higher wavelength (note that this effect is opposite to that seen in a protein 
intrinsic fluorescence experiment as will be discussed below). Thus, as the structure of a protein is 
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altered, to the extent that one or more aromatic side chains experiences a subsequent change in its 
immediate environment, changes in the position of the derivative absorption peaks provide a measure of 
conformational change (and potentially physical degradation). The folding and unfolding of a protein as 
induced by temperature, pH, or a potential unfolding agent like urea, guanidinium hydrochloride, 
alcohols, chaotropic salts, and detergents can be simply followed by this method if their optical 
properties do not interfere with the measurements. Data obtained by absorption measurements as a 
function of multiple variables such as temperature and pH can be summarized and visualized by a 
method known as the “empirical phase diagram (EPD).” In this approach, the six peak positions are 

used as components of a vector at any particular set of variables (e.g., T, pH). If colors are then 
assigned to the major components, a map of temperature versus pH displays different colored regions 
corresponding to different physical states of the protein (Fig. 21-11). For more information about this 
method, see reference (50). By far the most common use of protein UV spectroscopy, however, is to 
determine their concentrations using Beer's law (Chapter 4), which states that the concentration is 
linearly proportional to the absorbance with a constant of proportionality known as the extinction 
coefficient (ε, A = ε cl). Extinction coefficients, which are characteristic of each molecule, can be 
determined by dry weight or amino acid analysis or calculated from the aromatic amino acid content 
from a number of empirical algorithms.51,52 
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Fig. 21-10. Zero-order absorption spectra of four proteins, a peptide and a viral 

particle (upper panel). Note that all display rather broad featureless spectra. When 

their second derivative is calculated, however, usually six peaks are seen 

corresponding to the three classes of aromatic side chains (bottom panel). The second 

Dr. Murtadha Alshareifi e-Library

955



derivative spectra in the lower panel are displaced for clarity. See text for further 

discussion of the interpretation of such spectra. 

 

Fig. 21-11. An empirical phase diagram (EPD) based on the peak positions of second 

derivative UV absorption spectra. At each T/pH condition, the protein is represented 

as a six-dimensional vector which is truncated to the three largest contributions. The 

regions with different shaded characteristics represent different structural states of the 

protein. Such diagrams are usually shown in color as described in the text. 

A number of extrinsic chromophores may also be present in proteins. These include metals such as 
copper or iron as well as lanthanides (with Tb and Co the most commonly employed), which can be 
used as calcium analogues. Prosthetic groups such as flavin-adenine dinucleotide (FAD), flavin 
mononucleotide (FMN), NAD, rhodopsin, pyridoxal phosphate, and heme groups among others, all 
provide strong spectra in the UV/VIS region and are sensitive to their local environment. They can 
therefore be used as biological sensors of a variety of phenomena such as redox state, O2/CO2 binding, 
and light effects. 
Fluorescence53,54 
Probably the most versatile spectral technique for macromolecular structural analysis is fluorescence 
spectroscopy. When a chromophore such as the indole side chain of tryptophan in proteins is raised to 
an excited (singlet) state, rather than return to the ground state through internal conversion processes 
as in an absorbance measurement, it can do this by the emission of a photon. This constitutes the 
phenomenon of fluorescence. If this emission is from a triplet state, the process is known as 
phosphorescence (the combination of the two is called luminescence). For brevity, we will not be 
concerned with the latter here although the technique of phosphorescence can be quite useful in the 
analysis of proteins. In the case of fluorescence, the (relatively) long periods of time spent in the excited 
states (10-3-10-9s versus <10-15s for absorbance) allow various types of interactions with this state. This 
makes fluorescence usually quite sensitive to the fluorophores' immediate environment. The spectrum 
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of this emission is always at longer wavelengths than the absorption band(s) because prior to emission 
of fluorescence photons, energy is lost as the excited state returns to its lowest vibrational energy level. 
As a first approximation, the absorption and emission spectra are mirror images of one another. In 
addition to emission spectra, the lifetime of the excited state (τ; the time it takes fluorescence to fall to 
1/e of its initial value) can also be measured. The amount of emission can be measured either in terms 
of its quantum yield (the number of photons emitted divided by the number absorbed) or by simple 
intensity changes at a fixed wavelength. The latter is approximately proportional to the quantum yield. 
Fluorescence is usually measured at right angles to the exciting light, with the emission monochromoter 
scanned. Alternatively, the excitation monochromoter can be varied and emission monitored at a fixed 
wavelength to produce a version of the absorption spectrum known as an excitation spectrum. Lifetimes 
are measured by either exciting with single pulses of light and measuring their emission decay or 
determining shifts in the phase of the emitted photons after modulation of the exciting light. Both 
techniques can measure more than one lifetime component (up to three or four) by deconvolution 
methods or display distributions of 
P.531 
 
lifetimes. Most lifetimes of natural fluorphores are on the order of a few nanoseconds (Trp [~2.6 nsec], 
Tyr [~3.6], Phe [~6.4], NADH [~0.4], etc.). In general, low quantum yields correlate with short lifetimes. 
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Fig. 21-12. Intrinsic fluorescence spectra of biopharmaceuticals. (a) The position of 

the emission maximum (upon excitation at 295 nm) varies from approximately 330 to 

350 nm in these examples. Emission at 350 nm indicates that the tryptophan residues 

are on average highly exposed to the solvent. As the emission maximum decreases, 

increased burial of the indole side chains in indicated. (b) The effect of temperature 

on the position of the emission maximum and (c) its intensity. Note the appearances 

of transitions in all the macromolecules with the exception of the peptide. (d) Light 

scattering at 295 nm as a function of temperature acquired simultaneously with the 

intrinsic fluorescence data. The high value seen with the viral particle directly reflects 

its large size compared to the individual proteins and the peptide. 

The intrinsic fluorescence spectra of proteins tend to be dominated by tryptophan emission unless this 
residue is absent. Under such conditions, the emission of tyrosine and or phenylalanine can often be 
seen. Of special importance is the observation that this fluorescence is very sensitive to the environment 
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of the endogenous indoles (Fig. 21-12). Thus, various kinds of conformational changes that range from 
the very subtle to complete unfolding can usually be followed by this method. The position of protein Trp 
containing emission spectra varies from 310 to 320 nm (completely buried indole 
P.532 
 
side chains) to more than 350 nm (totally exposed to the aqueous solvent). Other phenomena such as 
ligand binding and subunit association and dissociation can also often be detected by changes in 
intrinsic fluorescence. In a particularly elegant use of this approach, single Trp residues can be placed at 
many positions throughout the structure of a protein by site-directed mutagenesis (it may be necessary 
to remove some tryptophans if the target protein contains more than one) and by measuring peak 
positions to estimate Trp exposure. This information can then be used to generate actual 3-D structures 
using additional modeling considerations. 
Studies of the fluorescence of proteins are not limited to the aromatic amino acids. It is also possible to 
add an extrinsic probe, which either covalently or noncovalently binds to a particular site on a protein. 
Common covalent fluorescent labels include molecules like dansyl chloride or fluorescein 
isothiocyanate. Covalent labels are available which bind to a variety of protein reactive sites such as 
amino, carboxyl, and sulfhydryl groups. Such probes are typically highly fluorescent and their spectral 
properties highly sensitive to their environment. Examples of fluorescent probes which are used to bind 
noncovalently to proteins include 8-anilino naphthalene sulfonic acid (ANS) and its dimeric analogue bis-
ANS. Probes such as this are usually assumed to bind to apolar sites on proteins although the negative 
charge on ANS may also result in electrostatic interactions. One use of ANS is to detect molten-globule 
(MG) states in proteins. In such states, as the tertiary structure begins to be disrupted, compounds like 
ANS can interact with the protein and their normally solvent quenched emission can be relieved with 
enhanced fluorescence expressed as well as blue shifts in wavelength emission maxima. Another use of 
noncovalent probes involves the detection of protein aggregation. When proteins self-associate and 
then aggregate, they often form intermolecular β-structure. Certain dyes (e.g., Congo Red, Thioflavin T) 
can bind to such structures with a change in their fluorescence or absorption spectra. 
Nucleic acids lack significance fluorescence (with the exception of a modified base in tRNA). 
Noncovalent probes, however, have been extensively used in their characterization and analysis. Some 
planar dyes can intercalate between nucleic acid bases, whereas others can bind within the grooves of 
the helix. Upon such interactions, their fluorescence can dramatically increase. This phenomenon has 
been used to measure DNA and RNA concentration, analyze the binding of other substances to nucleic 
acids through dye displacement (Fig. 21-13), and follow the behavior of DNA microscopically among 
other applications. Fluorescent dyes are also commonly used to study lipid bilayers and cell 
membranes. Using probes that enter into the bilayer, the fluidity of membrane interiors and associated 
phase changes can be monitored by changes in the spectral properties of certain dyes, often using 
temperature to induce phase transitions. 
There are many additional applications of fluorescence to macromolecular systems. Only three are 
briefly considered here. Quenching of protein Trp fluorescence by extrinsically added solutes is a 
commonly used approach to analyze the accessibility of these residues to the aqueous solvent. Certain 
low molecular solutes can quench indole fluorescence either by a dynamic collisional process (dynamic 
quenching) or by forming a complex with the side chain, preventing it from reaching an excited state 
(static quenching). Some commonly used quenchers are 02, acrylamide, I-, and Cs+. The different 
charge characteristics of the quenchers permit them to probe different electrostatic environments. The 
dynamic quenching process can be described by a relationship known as the Stern-Volmer equation: 
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Fig. 21-13. An example of the use of a fluorescent dye to measure complex formation 

between DNA and cationic lipids. The dye ethidium bromide is intercalated between 

the bases of a DNA plasmid where it becomes highly fluorescent. When cationic 

lipids are added, the dye is displaced and its fluorescence reduced. If the charge 

density of the cationic lipid is reduced by the addition of a neutral helper lipid (DOPE, 

dioeyl phosphatidylcholine), its efficiency in displacing the dye is reduced. 

Formulations containing such helper lipids are actually more efficient at transfecting 

target cells than those with cation lipids alone. 

 
or 

 
where Fo is the fluorescence (or quantum yield) in the absence of quencher, F the fluorescence in the 
presence of quencher, Q is the concentration of quencher, and K is a constant known as the Stern-
Volmer constant. If the quenching process is entirely dynamic, a plot of Fo/F versus [Q] will yield a 
straight line of slope K or kqτ. Curvature in such plots can be introduced by hetereogeneity in the 
environment of multiple Trp residues or the presence 
P.533 
 
of static quenching. If the lifetime (τ) of the indole is known, the rate constant (kq) for the collisional 
process can be evaluated. This can be used to characterize changes in structure or interestingly, the 
dynamic behavior of proteins in terms of the ability of the protein matrix to permit the transport of the 
quencher to the indole side chains. We will consider below other ways, including some that involve 
fluorescence, of studying the intramolecular dynamics of proteins. If no Trp is present in a protein, this 
method may also be used to study the quenching of Tyr residues. An ultraviolet absorbance technique 
can be used to acquire related information. In this case, simple cations of various sizes are added in 
increasing amounts to proteins and the positions of the derivative peaks from Trp, Tyr, and Phe are 
monitored. In this case, the shifts are due to the formation of cation-π interactions of cations such as K

+, 
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Cs+, and Li+ with the negatively changed π electrons of the aromatic rings. Since smaller cations diffuse 
more easily into the protein interiors, this method can also be used to analyze protein dynamics.55 
Another method in wide use is known as singlet–singlet energy transfer (or fluorescence resonance 
energy transfer or FRET). If the emission spectrum of a fluorophore (the “donor”) overlaps the 

absorption spectrum of a second fluorophore (the “acceptor”), then when the donor is excited and the 

donor and acceptor are close to one another, under certain circumstances the acceptor will emit 
radiation as the donor is quenched. When this is not due to the trivial reemission of an absorbed photon, 
the process occurs as a result of a resonant interaction between the emission process of the donor and 
the absorption process of the acceptor. The efficiency of this transfer process is a function of the 
spectral overlap, the relative orientation of the two fluorophores and the distance between them. This 
distance (R) is given by: 

 
where E is the efficiency of the transfer process and Ro is the characteristic transfer distance that 
corresponds to R where E = 50%. Ro is a function of the degree of spectral overlap, the refractive index 
between the donor and acceptor, an orientation factor (κ2), which depends on the relative orientation of 
D and A, and the quantum yield of the donor. Methods exist to estimate the orientation factor but a value 
of 2/3 for a random orientation is usually used. 
This method is most commonly used by placing either covalently or noncovalently specific fluorophores 
with the proper spectral properties (especially spectral overlap) at single locations either within a 
macromolecule or at sites in different molecules that are sufficiently close (<80 Å) that efficient 
resonance energy transfer can occur. Thus, relatively accurate distance estimates can be determined by 
this method. Numerous systems have been examined by variations of this technique and its utility is 
well-established for mapping a wide variety of structural features of single molecules, molecular 
complexes such as viruses and ribosomes, and the surface of cell membranes. FRET has also 
frequently been used in both static and kinetic modes to study nucleic acids and their complexes. 
A third important application of fluorescence involves the use of polarized radiation. This is based on the 
principle that there is preferential absorption of light when a chromophore has its transition dipole(s) 
parallel to that of the exciting light. Thus, if polarized light is used to excite a randomly oriented collection 
of fluorophores, those transiently oriented parallel to the exciting light will preferentially absorb light. If 
the “photoselected” molecules rotate within their excited state lifetime, the emitted light will be 

depolarized to some extent. Thus, the motion of fluorophores and the molecules to which they are 
attached can be analyzed by this method. Depolorization is typically measured in terms of a quantity 
known as the fluorescence anisotropy (r), which is defined as: 

 
where I|| and I⊥ are the intensities of the emitted light oriented parallel and perpendicular to the exciting 
light. Experiments can usually be performed in one of two ways. In steady state studies, the anisotropy 
or the depolarization ratio (I⊥ - I||/I⊥ + I||) is measured. By varying the temperature or viscosity, it is 
possible to calculate the rotational correlation time (ρ) of the macromolecule to which the fluorophore is 
attached. Alternatively, the target fluorophores can be excited with single photons of polarized light and 
the anisotropy of the emitted light detected. Because the anisotropy (A(t)) decays exponentially with 
time, molecules that emit later have more time to rotate: 

 
where the rotation correlation time ρ is just the time it takes a molecule to rotate 1/e of a complete 
rotation. Multiple rotation modes can often be resolved by deconvoluting the experimental data into 
individual exponential components. Thus, it is frequently possible to resolve internal dynamic motions of 
macromolecules from their overall motion. Polarization measurements have also been widely used to 
study ligand binding and protein/protein interactions. If a fluorescent label is attached to the smaller 
component, its polarization increases as it becomes part of the larger complex. There are many 
variations on such experiments, but the results can be quite sensitive to the presence of the interactions. 
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We have only touched on the use of fluorescence techniques for biological molecules here. A wide 
variety of experimental methods are based on this principle. These include fluorescence microscopy, 
single molecule fluorescence, fluorescence photobleaching and recovery, and fluorescence correlation 
spectroscopy. The interested student is referred to the comprehensive text by Lakowicz for further 
information.54 
Circular Dichroism 
The physical basis of circular dichroism (CD; see references 56 and57) is different from that of simple 
absorption and fluorescence and as such can provide somewhat different information: light can be 
thought of as composed of two opposite circularly polarized components. If one of these components is 
greater or less than the other due to differential absorption and they are combined, light that is elliptically 
polarized is 
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produced. It is the angle of rotation of the long axis of such an ellipse that is measured in a CD 
experiment (i.e., the “ellipticity”). CD is seen only in absorption bands, thus requiring appropriate 

chromophores. CD signals are produced by the interaction (technically, through the “dot product”) of 

electronic and magnetic absorption processes. This is, in fact, the general origin of optical activity. 
Electronic absorption can be thought of as a unidirectional displacement of charge, whereas magnetic 
absorption can be represented as a light-induced current loop. When a vertical motion of charge acts on 
such a circular displacement, a helical charge distribution is produced. As we will see in a moment, this 
is especially important for CD analysis of proteins and nucleic acids. 
According to the above, CD can only be produced when the local environment of a chromophore is 
asymmetric. In biomolecular systems, there are at least three situations in which this is seen. In the first, 
transitions could involve electrons near the α-carbon atoms of amino acids in proteins. Because there 
are no major absorptive chromophores here, however, any such signals are quite weak. Second, the 
tertiary structure of a macromolecule could place relatively symmetric absorptive molecular groups into 
asymmetric environments. Third, helices can facilitate a helical flow of charge thus producing relatively 
large optical activity if there is an appropriate absorptive chromophore. It is this last situation that has 
received the most attention and we will begin our discussion of the CD of proteins and DNA here. 
Proteins have several chromophores of potential interest from a CD perspective. These are the peptide 
bond, certain side chains (especially the aromatic side chains and disulfide bonds), endogenous 
chromophores such as heme groups, and extrinsically added chromophores whose optical activity 
changes or is induced when they are added to proteins. The CD of the peptide bond consists of a band 
near 222 nm (n → π*) and a signal, which is split into two parts through interactions between transitions 

at 200 to 210 nm (π → π*, ||) and 191 to 193 nm (π → π*, ⊥) (Fig. 21-14). Right-handed alpha helices 
produce a distinct CD spectrum with negative peaks at approximately 208 and 222 nm and a positive 
peak near 192 nm. β-sheets manifest a weaker signal (β structure can be thought of as distorted 
helices) at 215 to 218 nm and a positive peak at about 195 nm. Beta turns give a number of weak 
signals in the same region depending on their type. A left-handed α-helix results in a spectrum that is 
approximately a mirror image of the right-handed version. Cross-β-structure and beta-trefoils produce 
negative signals at 210 to 215 and 203 to 208 nm, respectively. Lastly, disordered structure typically 
gives a peak with a 195 to 200 nm minimum and often a weak positive signal near 230 nm. Because of 
the distinct nature of the CD spectra of these different types of secondary structure, a protein's CD 
spectrum can be used to estimate fairly accurately its secondary structure content. The basic idea is a 
simple one. One can extract inherent values for the ellipticity of the various types of secondary structure 
from a library of proteins of known secondary structure content (determined by x-ray crystallography or 
NMR). These values will reflect typical effects of 3-D structure, the contribution of side chains, and the 
length and distortion of regions of secondary structure as well as other factors. This data serves as a 
basis from which to fit unknown spectra and provide secondary structure content estimates. Such an 
analysis does not provide absolute values, but the fractional content determined and is often good to 2% 
to 3%. The method is especially powerful when used to monitor changes in secondary structure with 
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very subtle changes in helix and β-sheet content detectable. Note the specificity of analysis of 
secondary structure when CD spectra 
P.535 
 
are obtained in the 180 and 250 nm range. In contrast, UV absorption and fluorescence in the near UV 
region are primarily sensitive to changes in tertiary structure although they will reflect indirectly 
secondary structure alterations. CD does, however, offer tertiary structure information when used 
between 250 and 300 nm where the aromatic side chains and disulfide bonds become the absorbing 
chromophores. The protein spectrum in this region is quite complex, consisting of a series of positive 
and negative peaks. These are primarily produced by the induction of optical activity in these side 
chains although they do possess some weak, intrinsic optical asymmetry. Attempts to derive specific 
structure information from the details of such spectra have largely been unsuccessful. Changes in the 
CD spectra of proteins in the 250 to 300 nm region, however, are quite useful in the same way that UV 
absorbance and intrinsic fluorescence spectra are employed to detect changes in tertiary structure. 
These signals are, however, significantly weaker than the far UV peaks and either higher concentrations 
or longer cuvette path lengths must be used. In a number of cases, other intrinsic chromophores such 
as heme or rhodopsin groups or extrinsically added dyes can produce strong CD signals associated with 
their absorption bands. If detailed structural information is available, it may be possible to further use 
such spectra to provide additional structural information. There also exist a number of hybrid versions of 
CD such as vibrational, magnetic, and fluorescence-detected circular dichroism, which are useful in 
specific indications. In general, however, the most common use of protein CD involves the monitoring of 
protein conformational changes (in terms of changes in either secondary or tertiary structure, or both). 
Alternatively, the effect of ligand binding either through the induction of conformational changes in 
proteins or induced optical activity in the ligand is another common use. Using the latter method, binding 
constants and stoichiometries can often be determined. If temperature is varied, the enthalpy, entropy, 
and heat capacity of the binding process may also be determined using a Van't Hoff analysis. 
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Fig. 21-14. Circular dichroism (CD) spectra of representative biopharmaceuticals (a) 

with (b) accompanying thermal melting curves. A strong double minimum is seen at 

208 nm and 222 nm for the α-helix rich BSA and lysozyme. The weak β-structure 

minimum at 217 to 218 nm for IgG is more difficult to see on the same scale. Note the 

positive peak for the peptide between 225 and 230 nm which is often assigned to 

loosely coiled peptides. 
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Because of their helical nature, nucleic acids also produce strong CD signals. In this case, the CD arises 
from the nucleotide bases and their absorption between 200 and 300 nm. The CD spectra of the 
different forms of the nucleic acids are quite distinct from one another due to differences in interactions 
between the bases (Fig. 21-15). For example, the A form of DNA (11 base pairs bp/turn) produces a 
spectrum with a maximum near 270 nm and a minimum near 210 nm. The spectrum of A-RNA has a 
spectrum similar to A-DNA but is shifted to 10 nm lower wavelengths. B-DNA (10 bp/turn) has a less 
intense spectrum that is similar in shape but the peaks are slightly shifted. Z-DNA (12 bp/turn, but left-
handed in contrast to the A and B forms) is roughly a mirror image of the A and B forms. Depending 
upon the actual sequence of the nucleic acids, the spectra are subtly different but most importantly 
highly sensitive to changes in structure. Thus, the melting of ds DNA or RNA can easily be followed by 
this method. If small pieces of DNA (oligonucleotides) which contain specific binding sites are examined, 
the binding of proteins to DNA can be analyzed by CD changes. When dyes, drugs, and delivery agents 
bind to DNA, they often display quite marked induced CD or changes in the spectrum of the nucleic acid 
(Fig. 21-15). This can be used to study their interaction. If DNA becomes highly compacted which can 
occur when its charges are neutralized, quite unusual spectra can be produced which are diagnostic of 
unique forms of condensed DNA.58 

 

Fig. 21-15. CD spectra of pDNA and the DNA in the presence of a cationic polymer 

complex at different charge ratios (+/-). The CD spectrum of the DNA alone shows 

that it is in the B-form. The presence of the cationic polymers causes the structure of 

the DNA to change. A change in the CD spectrum of the DNA is seen because the 

interaction between the nucleic acids bases is altered, thus perturbing the helical 

nature of the DNA. 

Vibrational Spectroscopy 
The secondary and tertiary structure of both proteins and nucleic acids can also be analyzed by 
vibrational spectroscopy. Both infrared59,60,61,62,63 and Raman64,65 spectroscopies have been 
employed for this purpose. The former is an absorptive method depending on a change in permanent 
dipole moment during excitation, whereas the latter is based on small shifts in the frequency of scattered 
light due to interactions with vibrational states and requires a change in bond polarizability. Today, 
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infrared spectroscopy is almost always performed in a Fourier transform mode and is therefore 
(somewhat inappropriately) referred to as “FTIR.” 
FTIR spectroscopy is the more commonly used of the two techniques at least partially due to the wider 
availability and lower expense of the instrumentation. The theory of IR absorption is briefly discussed 
in Chapter 4. The method has a number of advantages over CD including the ability to more easily 
monitor various states of matter (solid, liquid, gas, suspensions), an increased number of secondary 
structure sensitive signals, and the ability to perform experiments such as isotope exchange (see 
below), dichroism measurements, 
P.536 
 
and two-dimensional correlation analyses. Furthermore, in recent years it has begun to approach the 
sensitivity of CD. 

 

Fig. 21-16. Infrared spectra of proteins and peptides. The amide I region extends from 

1700 to 1600 cm
-1

. The spectra have been deconvoluted to show the relative 

contributions of the individual secondary structure types (and in the case of the 

peptide certain amino acid side chains) to the zero-order spectrum. Most commonly, 

the amide I region is used to estimate secondary structure content by assigning the 

origin of the individual bonds to different structural types (helix, β-sheet, turns, and 

disordered) which are ratioed to the total band area (see the text). 

Infrared spectroscopy of proteins has been most frequently applied to the spectral signals known as the 
amide bands. There are many such vibrational absorption peaks with the most commonly examined the 
amide I, II, and III bands. The most frequently used band for secondary structure analysis in proteins is 
the amide I, which arises primarily from carbonyl stretching and to a lesser extent from NH wag. When 
proteins are examined, however, a very broad band is seen between 1600 and 1700-1 cm in this region 
(Fig. 21-16). A careful examination of this peak usually shows a number of small bumps and inflections 
suggesting the existence of underlying component signals. Several “band narrowing” procedures are 

available to deconvolute this broad peak into its constituents. These include derivative analysis as well 
as a procedure known as “Fourier self-deconvolution.” These component peaks are known to arise from 
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different types of protein secondary structure. Assignments are based on studies of model amino acid 
polymers as well as analysis of proteins of known (secondary) structure. Examples of assignments 
include α-helix (1650–1658 cm-1

), intramolecular β-sheet (1670–1680 and 1620–1640, multiple 
components), turns (1680–1700 cm-1), and loops and disordered regions (1645–1655 cm-1). In an 
observation of special importance to pharmaceutical scientists, aggregated proteins (manifesting 
intermolecular β-sheet) often produce distinct bands at either 1610 to 1620 or 1690 to 1695 cm-1. Some 
amino acid side chains (Asn, Gln, Arg, Lys, Tyr, His) also produce signals in the amide I region but 
unless they are present at very high levels, their absorption bands are usually ignored. The major 
problem with the use of FTIR to analyze proteins in the past has been the strong absorption bands of 
water and water vapor in the region of the amide I band. For this reason, D2O was often used as a 
solvent since its spectrum does not significantly overlap the amide I signals. Recent improved 
subtraction techniques, however, now permit the use of normal water for such studies. Thus, FTIR is 
now routinely used to estimate the relative secondary structure content of proteins with a precision and 
accuracy similar to that of CD. 
As indicated previously, one of the advantages of FTIR is its ability to obtain spectra from samples in a 
variety of physical states. This is often accomplished through the use of different sampling techniques. 
For example, in addition to conventional transmittance geometry, spectra of both solids and liquids can 
also be obtained by attenuated total reflectance (ATR). In this technique, the sample is placed on a 
transparent plate of appropriate material which permits infrared radiation 
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to penetrate to a small extent into the sample allowing an absorption spectrum to be obtained. Solids 
can also be monitored by pressing them into a disc with a medium like potassium bromide (KBr) or 
illuminated from above and a reflective absorption spectrum obtained by a technique known as diffuse 
reflectance (DRIFT) spectroscopy. Infrared spectra can also be obtained through a microscope or a 
diamond-based cell, both of which permit very small areas to have their infrared spectra measured. 
Nucleic acids can also be usefully examined by FTIR spectroscopy. In this case, the major signals of 
interest originate from the phosphate, base, and sugar moieties. All three groups are sensitive to nucleic 
acid conformation and to the binding of various ligands. Thus, B-form DNA can be distinguished from 
the other forms by the position of base carbonyl bands above 1700 cm-1 and the various phosphate-
stretching vibrations in the 1000 to 1300 cm-1 region. Furthermore, the IR spectra of nucleic acids are 
quite sensitive to hydrogen bonding. Thus, the unwinding of DNA or RNA as measured in a thermal 
melting experiment can be monitored by FTIR spectroscopy. 
Plasmid DNA is frequently used to deliver genes for gene therapy or as a vaccine. Often, the DNA is 
complexed to cationic lipids or positively charged polymers of various types. The cationic partners in 
such delivery complexes also produce distinct IR spectra. When the complexes are formed, IR signals 
from both components typically are altered as the various groups interact.66,67 This permits complex 
formation and stability to be directly analyzed by this technique. For example, the CH2 asymmetric 
stretching vibration of lipids can be used to measure the fluidization of their acyl chains in lipids bound to 
nucleic acids, providing a quantitative measure of their thermal stability and the effect of DNA upon lipid 
structure.68 
Raman spectroscopy is also routinely used for all types of macromolecular-based systems.64,65 This 
method has the advantages that the water bands are quite weak. This substantially decreases 
interference and many side chain vibrations are much better seen. Like FTIR, it can also be used to 
examine samples in multiple physical states. Its major disadvantage is that it is generally less sensitive 
than infrared spectroscopy. Two exceptions to this rule exist, however. If an absorption band can be 
directly excited, a spectral coupling process can produce dramatically enhanced vibrational signals from 
the specific chromophore (resonance Raman spectroscopy). In addition, if the molecule of interest is 
absorbed to certain types of materials such as silver, a much enhanced vibrational spectrum is again 
seen (surface-enhanced Raman spectroscopy or SERS). The mechanism of this enhancement is still 
debated. A major increase in use of Raman spectroscopy and its enhanced varieties is due to the 
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availability of tunable lasers of wide wavelength range and the potential to reduce the amount of 
material necessary for such measurements. 
In the case of proteins, the most common application is the analysis of amide bands to obtain secondary 
structure information, analogues to applications of FTIR. It is more common with Raman spectroscopy, 
however, to use the amide III band because it is better resolved. General assignments are 1260 to 1305 
cm-1 (α-helix), 1230 to 1245 cm-1 (β-sheet), 1258 to 1300 cm-1 (β-turn), and 1242 to 1255 cm-

1 (disordered). Tyrosine side chains give well-resolved signals near 850 and 830 cm-1 and the ratio of 
these intensities has been used to analyze the relative exposure of phenolic side chains. Tryptophan 
(multiple peaks) and disulfide bands (500–550 cm-1) also produce conformationally sensitive signals. 
Thus, secondary and tertiary structure changes can be simultaneously examined by Raman 
spectroscopy, a particularly attractive aspect of the technique. 
Raman spectroscopy of nucleic acids has also frequently been used to explore nucleic acid structure, 
perhaps more than infrared absorption spectroscopy. The two major forms of DNA manifest differences 
in the 800 cm-1 region (phosphodiester antisymmetric stretching) with this signal present in the A form 
but absent in the B form. The left-handed Z-form produces a unique peak near 625 cm-1(shifted from 
675 cm-1 in the A and B forms). A variety of other conformationally sensitive signals are available in 
other regions of the spectrum. Raman spectroscopy has also been widely used to characterize viruses 
in which distinct signals from both protein and nucleic acid components can be easily 
resolved.65 Furthermore, the interaction between these two components can be analyzed as well as 
various aspects of viral structure and stability. Few studies of this type have yet been performed with IR 
spectroscopy. 
Scattering,69,70,71,72,73Hydrodynamic,74,75 and 
Calorimetric76,77,78,79,80,81 Techniques39 
The theory behind many of the methods described in this section is discussed in Chapter 16 and should 
be reviewed accordingly. Specific applications to biopharmaceuticals and topics not reviewed previously 
will be focused on here. 
Light scattering is an extremely useful technique for analyzing the size and shape of biomolecules. For 
macromolecules which are much smaller (<λ/50) than the wavelength (λ) of light used in a scattering 
experiment, it can be shown that: 

 
where Iθ is the intensity of the scattered light at some angle θ, Io is the incident intensity, no is the 
refractive index of the solvent, dn/dc is the variation in refractive index of the solution with variation in 
concentration of the scattered (the refractive index increment), N is Avogadro's number, Mw is the weight 
average molecular weight, andc the concentration. Thus, in this case the intensity of scattered light is 
proportional to the molecular weight. The concentration dependence of this expression can also be used 
to calculate virial coefficients, which can be used to characterize the interaction between molecules. In 
the case of large molecules, which 
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possess multiple scattering centers within themselves, it is found that: 
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where  (the ―Raleigh ratio‖), and 

 

 

where B is the second virial coefficient andRG is the radius of gyration which is 

defined as Σmiri
2
/(mi), where mi is the mass of the ith element at distance ri from 

the center of mass of the scattering particle. Inspection of this somewhat 

complex expression, however, shows that a plot of  yields an 

intercept equal to the molecular weight (Mw) and a slope proportion to M and RG. 

The physical meaning of RG is not obvious but it has a fairly simple relationship 

to various shapes. For example, for a sphere, where R is the radius 

of a sphere, a rod,  where L is the length of a rod and 

 for a random coil, where  = mean square end-to-end distance. More 

generally, shapes can be modeled as prolate or oblate ellipsoids. For example, 

for a prolate ellipsoid,  where 2a, 2a, and Υ2aare the axes of the ellipsoid. 

Given these types of relationships, the shape of a particle can be estimated from 

the ratio of the value of the observed RG to the calculated RG for a sphere. 

Globular proteins typically give a value near 1, while more elongated molecules 

like myosin and DNA produce values greater than 10. If greatly elongated 

molecules like DNA give observed values of the RG much less than those 

calculated for an equivalent rigid rod, this is direct evidence for their flexibility. 

Another way to think about scattering by large particles is in terms of their 

turbidity  This is discussed in more detail 

in Chapter 16. Although this approach is less sensitive than studying scattering at 

other angles, it can be simply obtained in an absorption spectrometer since it is 

simply related to decreases in transmittance. Turbidity measurements are widely 

used in biopharmaceutics for this reason and have been especially widely applied 

in kinetic studies of macromolecular aggregation (see below). 

 

A second type of light scattering experiment that has been widely used in biopharmaceutics is “dynamic” 

or “quasielastic” light scattering (DLS or QELS). This involves an analysis of the fluctuations in intensity 
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of scattered light due to Brownian motion of the scatterers. This analysis is in terms of what is known as 
an “autocorrelation function,” G(τ) which is defined as <I(t) × I(t + τ)> where I(t) is the intensity of 
scattered light at time t and I(t + τ) is the intensity at some short time (τ) later. Inspection of this function 
finds that if the intensity remains high as τ is increased, its value will be high. If τ increases, however, 
and the value of I(t + τ) changes rapidly, it will quickly time average to zero. Thus, the value of the 
autocorrelation function falls toward zero more rapidly for smaller, faster moving molecules (Fig. 21-17). 
This decrease is exponential in form and is given by: 

 

Fig. 21-17. Dynamic light scattering. The size of particles can be determined by 

measuring the fluctuations in the intensity of their scattered light (a). Because of their 

Brownian motion, small particles produce more rapid changes in scattered intensity 

than larger ones (b). If one measures the change in intensity at very short time 

intervals, the intensity changes less quickly for light scattered by the larger particles 

and we say that these intensity changes are more ―auto-correlated.‖ Analysis of 

autocorrelation functions (see text) allows the size (more specifically the 

hydrodynamic radius or diameter) of the scattering particle to be determined. 

 
where D is the diffusion coefficient of the scattering molecule, B is a constant, and Q is given by: 
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where n is the refractive index and θ the angle at which the scattered light is observed. Thus, the 
angular dependence is small for smaller molecules (d < λ/10) but larger at lower angles for larger 
molecules.D can be related to R (the Stoke's radius of the scatterer) through the Stokes–Einstein 
equation in the following convenient form (see equation 17-7): 

 
P.539 
 
 
where η is the solution viscosity. Thus, the size of a large molecule like a protein or nucleic acid can be 
directly measured by this method. If the solution is homogenous, an accurate size is easily obtained. If it 
is not, two approaches can be taken. In the first, the data are fit to a function of the form ln [g(τ) - k] to 
yield two parameters, a weight average mean diameter and a polydispersity parameter (a measure of 
the width of the size distribution). This is known as the method of cumulants. In the second, the data are 
fit to a sum of exponential functions to yield a multimodal distribution of sizes. If the different species 
differ by more than a factor of two in diameter, they can usually be resolved if distinct populations are 
present. Analysis can be in terms of weight, number and intensity distributions, with the number 
distribution usually the most intuitively useful. If there are large, internal fluctuations within a 
macromolecule as might be seen by a large, flexible molecule like DNA, DLS may also be able to detect 
and resolve these motions as contributions to autocorrelation functions. Dynamic light scattering has 
become an increasingly important tool to the biopharmaeutical scientist as highly convenient commercial 
instrumentation has become increasingly available and changes in size and aggregation state are 
recognized as important degradation pathways for biotechnology products. 

A number of other methods often prove useful in the analysis of macromolecular 

size and shape. Osmotic pressure and viscosity measurements have previously 

been discussed in earlier chapters and will not be further considered here. More 

frequently used in the last few years, however, is analytical ultracentrifugation. 

This is primarily due to the introduction of modern instrumentation to perform 

such studies. Recall that in a velocity sedimentation experiment, the 

experimentally measured sedimentation coefficient (s, the velocity of the 

sedimenting particles divided by the unit centrifugal acceleration) is directly 

proportional to the molecular weight, allowing this quantity to be determined if 

the diffusion coefficient (D) and partial specific volume ([v with bar above]) are 

known ( ). If a mixture of macromolecules has multiple components 

which differ significantly in S, they can sometimes be resolved by this technique 

(Fig. 21-18). It is possible to perform sedimentation analysis in gradients of 

substances such as sucrose and cesium chloride. This has the advantage that 

differences in densities of particles are exploited. Therefore, mixtures containing 

proteins, nucleic acids, and viruses which differ in density can be separated and 

analyzed, and to some extent at a preparative scale. 

 

If instead of measuring the velocity of sedimenting particles or using solute gradients, one spins a 
solution of macromolecules into an equilibrium gradient, one can also calculate molecular weight from 
the resultant distribution of mass. This is described by: 
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where ω2 is the angular velocity of the rotor at equilibrium and d logc/d(x2) describes the gradient of 
concentration as a function of the distance from the center of the rotor. Thus, the slope of a plot of d 
logc versus dx

2 allows the molecular weight to be determined. Note that the need to know the diffusion 
coefficient has disappeared and therefore one can obtain an absolute estimate of the molecular weight 
from an equilibrium sedimentation study. A quite large molecular weight range (less than 100 to more 
than 10 million Daltons) can be characterized by this method. A very powerful application of equilibrium 
sedimentation involves the analysis of associating or dissociating systems. This is accomplished by 
fitting the data to various models of such behavior. The sensitivity and accuracy of this method permits 
both stoichiometries and equilibrium constants of associating and dissociating macromolecules to be 
obtained. 
Two versions of microcalorimetry are also widely used in the analysis of biopharmaceuticals. As 
described in Chapter 2, differential scanning calorimetry (DSC) measures the excess heat capacity of a 
molecule as a function of temperature. If there is an absorption or release of heat due to a structural 
change in a macromolecular system (an endothermic or exothermic transition), a peak is usually seen in 
a DSC experiment. A plot of Cp versus T is known as a thermogram. If the process is reversible, the 
area under such a curve corresponds to the enthalpy (ΔH) of the change in state. Structural changes in 
biopharmaceuticals are often detected by this technique (Fig. 21-19). Protein unfolding, the melting of 
nucleic acids, and phase changes in lipid bilayers are all routinely studied by this method. If transitions 
are not reversible, the temperature at which the peak of the transition occurs (the “Tm” or melting 

temperature) is used as a measure of thermal stability. In many cases, DSC thermograms can be quite 
complex. This can occur for a variety of reasons. For example, samples such as membranes or viral 
particles which contain multiple components can correspondingly manifest several transitions. 
Furthermore, individual structural domains within individual proteins can also often be resolved as 
isolated or overlapping thermal events. For example, the multiple structural domains present in 
immunoglobulins usually produce multiple peaks in the thermograms of these molecules (Fig. 21-19). 
When ligands bind to macromolecules, they often perturb their stability and thus can be detected as a 
change in Tm. Furthermore, protein aggregation can sometimes be seen as exothermic transitions, in 
contrast to the endothermic events seen as bonds are broken in other processes. Because it is not 
dependent on the presence of specific chromophores, is reasonably sensitive (sample concentrations as 
low as 10 µg/mL have been employed) and is now available in a high throughput (HTP) (autosampling) 
mode, DSC is widely used as a routine tool in the characterization and formulation of 
biopharmaceuticals (see below). 
A second calorimetry method of importance to the pharmaceutical analysis of biopolymers is isothermal 
titration calorimetry (ITC). In such experiments, small amounts of one component are incrementally 
introduced to a second. A common application is to study the interaction of a small molecule (ligand) 
such as an enzyme effector or excipient 
P.540 
 
stabilizer to a protein or nucleic acid. The small heats produced during the binding interaction can be 
plotted as a function of the molar ratio of ligand to receptor and the data fit to various binding models 
(see Chapter 11). If a good fit can be obtained, quantitative analysis of such data can yield the binding 
constant (free energy), enthalpy, and entropy of the interaction as well as the stoichiometry of the 
binding event. Thus, this approach has been widely used to study the interaction of plasmids with their 
delivery partners.82,83The heats of dilution produced as a consequence of the titration process must be 
subtracted from the experimental binding heats. The sample requirements for ITC analysis are modest 
(0.1–1 mg) and the method has also been adopted for HTP applications. 
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Fig. 21-18. (a) Sedimentation velocity profiles of a monoclonal antibody. The data 

was acquired from the absorbance at 280 nm. (b) and (c) are, respectively, the residue 

bitmap and residues of the best data fit. The fitting was done with the program Sedfit 

at a confidence level of 0.68 with sedimentation coefficients seen from 0.5 ~ 15, the 

best fit friction ratio at 1.491 and partial specific volume at 0.728. (d) Continuous 

sedimentation coefficient distribution of the monoclonal antibody finds the 

sedimentation coefficient of the antibody monomer of the antibody at 6.53 and the 

dimer at 9.20. 

Analysis of Macromolecular Dynamics 
The previous techniques discussed for use in macromolecular analysis are in general time averaged 
methods in that they see an averaged property that is smeared out over the time of the measurements 
which usually take many seconds to hours. Molecular systems like proteins, nucleic acids, and viral 
particles, however, display a wide variety of much faster motions that play an important role in their 
structure, function, and stability.84,85 In the case of proteins, these internal 
P.541 
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motions range from the rotations and flexing of individual side chains through movements and 
telescoping of regions of secondary structure to large-scale motions of entire domains. The presence of 
such motions means that probably the best picture of a protein molecule in solution is that of a large, 
Boltzman-like distribution of rapidly interconverting conformational states, with the true native state of 
any protein best described by such a distribution (see Fig. 21-21, later in this chapter). The importance 
of this view of protein structure is just beginning to be recognized in the world of biopharmaceuticals 
because of its relationship to physical and chemical stability. Nucleic acids also display marked internal 
motions, the most common characterized as “breathing modes.” This involves the rapid breaking and 

remaking of hydrogen bonds between the bases as well as changes in the stacking interactions 
between the bases. Although these fluctuations are quite small in large DNA molecules, they can be 
quite significant in regions of stress or at the ends of duplexes or at ss/ds junctions. Similarly, lipid 
bilayers are also subject to significant thermal motions that play a key role in their structure and 
functional properties. 

 

Fig. 21-19. Differential scanning calorimetry (DSC) of the representative 

biopharmaceuticals. The sudden decrease in heat capacity seen with FGF-10 and the 

IgG is due to their aggregation and precipitation as the temperature is raised. Note the 

multiple transitions seen with the IgG and BSA, both of which are multidomain 

proteins (see Fig. 21-1). The multicomponent nature of the viral particle also produces 

at least two transitions. 
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A number of experimental methods that can detect these types of rapid motions have already been 
described. These additionally include isotope exchange measurements as detected by NMR, FTIR, and 
mass spectrometry as well as molecular dynamic simulations. The availability of an array of novel 
multidimensional NMR methods also provides the ability to directly monitor the dynamic behavior of 
individual residues. The results of isotope-exchange studies (employing deuterons) usually reveal at 
least three different classes of exchangeable protons from peptide bonds: (a) a rapidly exchanging 
group that exchanges too fast to be detected (i.e., in less than a few seconds), (b) a class that exchange 
over seconds to many hours, and (c) a small number of buried protons that do not exchange over the 
lifetime of the experiments. The binding of ligands or alterations in protein/protein interactions typically 
produces changes in the relative number of each class of exchangeable protons. This then provides one 
picture of the dynamic aspects of protein structure in terms of the accessibility of the peptide backbone 
to solvent water. 
A wide variety of other methods are also available to probe similar and different aspects of protein 
dynamic behavior. As discussed above, several fluorescence-based methods provide alternative 
pictures of internal protein motions. Instead of the use of proton exchange, the quenching of tryptophan 
(and to a lesser extent tyrosine) residues can be used to study protein motions that permit the diffusion 
of various solutes into different protein regions. Similarly, as mentioned previously, cations of various 
sizes can be used in the same manner by measuring shifts in the derivative absorption peaks of Trp, 
Tyr, and Phe due to cation/pi interactions. The increased number and type of residues in the latter 
approach offers several advantages. In a new method, the slopes in the shifts of these same derivative 
absorption peaks with temperature can be used as a measure of protein motions.86 This is based on 
the well-understood temperature dependence of the dielectric constant of water and solvent penetration 
into protein interiors with highly buried aromatic side chains producing little or no temperature-
dependent slopes in contrast to more exposed ones. 
Time-resolved fluorescence anisotropy methods can be used to sample very rapid motions in the 
picosecond to nanosecond range of times. In this technique, polarized photons are used to excite 
fluorophores and their depolarization upon emission is used to characterize the motion of individual 
molecular groups in terms of their rotational correlation times. Because the fluorescence lifetimes of 
indole are so short, only rapid motions can be seen in this case. But if extrinsic fluorophores with longer 
lifetimes are either covalently attached or noncovalently bound to specific sites on a protein or nucleic 
acid, larger scale motions can be sampled. For example, if a long lifetime fluorophore is placed in the 
antigen-binding site of an antibody or is attached to a cysteine residue at a defined location, motions 
such as the flexing of the arms of a Y-shaped antibody can be measured. Another dynamics-sensitive 
fluorescence-based technique is red-edge excitation in which slow dipole relaxation and photoselection 
are on the same (or longer) timescale than fluorophore lifetimes. Because these processes are solvent 
dependent, they can be related to the rigidity of the local environment. If this local matrix is not altered, 
the emission wavelength of a subensemble present may be uniquely excited and be of lower energy 
than the mean distribution. Thus, the fluorescence emission spectrum will be excitation dependent and 
shifted to longer wavelength. 
P.542 
 
 
Two relatively simple techniques can also be used to measure the expansivity and contractibility of 
proteins, both parameters related to their dynamic behavior. In pressure-perturbation isothermal titration 
calorimetry, the heat emitted or absorbed when pulses of pressure are applied differentially to a sample 
and reference is measured. This heat difference can be used to determine the coefficient of thermal 
expansion of the partial volume of the target macromolecule. Such studies also permit the accessible 
surface area and solvation to be obtained. In complementary measurements, ultrasonic spectroscopy 
can be used to obtain the adiabatic and isothermal compressibility of a sample of any type. High-
frequency sound waves are sensitive to intramolecular interactions because they produce compressions 
(and subsequent relaxations) of highly structured polymeric systems. By measuring the speed of sound 
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through such materials, the attenuation produced by the pressure-induced compressions and 
decompressions can be related to the presence of cavities in macromolecular interiors. This is, in turn, 
related to fluctuation in volumes and their coupling to the local solvent and thus protein dynamic 
behavior (Fig. 21-20). 
A large number of other techniques are available to probe the dynamics of higher molecular weight 
systems. These include neutron diffraction, single molecule fluorescence spectroscopy, three pulse 
photon echo peak shift spectroscopy, ultrafast two-dimensional vibration echo, and correlation 
spectroscopy among others. We will not discuss them here, but the interested student needs to be 
aware that this is a rapidly expanding field with new approaches routinely becoming available. 

 

Fig. 21-20. Some idea of the effect of a ligand on the dynamics of the protein 

behavior can be obtained by measuring its compressibility. This is done by measuring 

the attenuation of sound when it is passed through a protein-containing solution 

(ultrasonic spectroscopy). As the sound-induced compression of the solvent squeezes 

a protein, a certain amount of energy is lost as the protein is compressed. This loss can 

be used to estimate the compressibility. In this example, when heparin is added to 

fibroblast growth factor-10 (FGF-10) (square), the protein appears to become more 

compressible, that is, its range of dynamic motion increases. The difference in 

compressibility is decreased, however, as the temperature is raised. See reference 

84 for further discussion. 

Breathing modes of nucleic acids can also be measured by many of the above methods. A number of 
unique methods are available as well. For example, chemical probes such as formaldehyde or 
dimethylsulfate that specifically react with single-stranded sequences can be used to measure the 
fluctuations in duplexes that are responsible for their reactivity. It is also possible to replace adenine 
bases in DNA and RNA with 2-aminopurine, which possesses unique CD, and fluorescence spectral 
properties that can be used to sense local dynamic behavior. A wide variety of fluorescence and 
electron spin resonance probes can be used to study membrane dynamics along with NMR and 
variations on some of the methods described above. 
What exactly is the utility of the many dynamics-sensitive methods briefly indicated here? Although such 
studies are still in their infancy, it is clear that an intimate relationship exists between the dynamics of 
biopharmaceutical systems and their stability. It was initially thought that this correlation might be a 
simple one in which increased rigidity (reduced dynamic motions) was related in increased stability. 
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Although this relationship has sometimes been observed, it has also been found that local decreases in 
stability can be observed upon ligand binding and macromolecule/macromolecule interactions. This is 
probably due to increases in rigidity and stability in one region of a molecule being relieved by 
decreases in stability (and increases in dynamic behavior) in other parts. It is clear, however, that the 
role of internal dynamics is becoming better understood in macromolecular system and that these 
phenomena will play an increasingly important role in the stabilization and formulation of 
biopharmaceuticals. 
Preformulation87,88,89,90 
The insertion of a molecule into a chemical system in which it possesses sufficient solubility, stability, 
and deliverability such that it can be used as a drug or vaccine is commonly referred to as “formulation.” 

The final form of this system containing the molecule itself as well as its accompanying excipients used 
to achieve these acceptable properties is also described as its formulation (noun). The formulation of 
biomolecules follows a process generally similar to that used for smaller molecules except that the 
physical nature of these much larger molecules necessitates the use of many different experiment 
methods (see above) as well a variety of other considerations based on their unique properties. It is 
conventional to consider the degradation of biomolecules as either physical or chemical in nature. In 
general, by degradation we mean change in structure. This may or may not be accompanied by a loss in 
biological activity as described below. This initial analysis of a macromolecular system prior to the 
preparation of the formulation is referred to as “preformulation.” 
P.543 
 
 
Physical Degradation 
Physical degradation is characterized by changes in the noncovalent interactions within and between 
biomolecules. The relationship between physical and chemical degradation will be considered in a later 
section. Physical degradation is usually discussed in terms of a catalogue of the various types of 
noncovalent interactions. Here, however, these phenomena will be considered in a somewhat different 
manner. Imagine a protein in solution of average stability at moderate concentration (0.01–10 mg/mL) at 
a fixed, near neutral pH (5-8). What happens to the macromolecule when we raise and lower the 
temperature starting under ambient conditions (15°C–30°C)? The effect of temperature will be 
considered from two different perspectives: changes in the structure of an individual protein and 
alterations in the distribution of the microstates of a population of such molecules (Fig. 21-21). Similar 
comments are applicable to nucleic acids and other macromolecular systems. Temperature is chosen 
as the “stressing” variable here because of its general nature and critical role in the storage stability of 
biopharmaceuticals. The reader is reminded that the primary effect of temperature is on the thermal 
motion of the solvent (the water molecules) and the internal motions of the various molecular entities 
within the protein. Increasing the temperature, of course, increases the rate and magnitude of such 
motions while lowering it does the opposite. 
As the temperature gradually begins to rise the interior motions of the protein will begin to gradually 
increase. Thus, the local motion of side chains, larger scale motions of elements of secondary structure, 
and the translational movement of the protein all begin to gradually increase in magnitude. At least at 
first, these effects on the structure of a protein are usually difficult to detect although they can often be 
seen in continuous changes in parameters like UV-absorption derivation peak positions. Most 
importantly, they generally have little immediate, obvious effect on the structure and stability of most 
proteins. This also results, however, in an alteration in the distribution of microstates with a shift to 
higher energy. As the temperature is further increased, however, these increases in internal motions can 
lead to a significant weakening of many forces that stabilize protein structure such as hydrogen bonding, 
electrostatic, and Van der Waals interactions.91 Note that the strength of apolar (hydrophobic) 
interactions tends to increase as the temperature is raised because of favorable entropic (-TΔS) and 
heat capacity (ΔCp) effects. In some proteins, this can lead to actual conformational alterations with the 

distribution of states splitting into two or more peaks. This does not necessarily imply that the protein 
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must unfold (denature) under these conditions, but rather that the weakening of key intramolecular 
interactions can produce local alterations in structure. This could be due to unfoldinglike changes in a 
particular region of the protein, a change in structure of one or more domains in a multidomain protein, 
or a consequent dissociation of a subunit-containing protein, among other possibilities. Such alterations 
could result in a change in a protein's biological activity or its immunogenicity. It could also lead to 
aggregation of the protein, especially if an apolar region becomes exposed. The type of conformational 
changes indicated may or may not be detected by methods like CD, intrinsic or ANS fluorescence, or 
DSC, depending on their magnitude and the exact nature of the structural change. As mentioned 
previously, one special form of these types of structural changes produces an important class of altered 
protein configurations known as MG states.92 

 

Fig. 21-21. The behavior of proteins and other macromolecular-based systems can be 

described in terms of a distribution of different structural states, each possessing 

certain energies. As the environment of the macromolecules changes as a result of 

alterations in solution variables such as pH and temperature, the distribution itself will 

alter. For example, at lower temperatures, lower energy state may be more populated 

(i.e., ―native states‖). At higher temperatures, as bonds are broken and the structure is 

altered, the population of these states (i.e., ―unfolded states‖) will increase. The 

existence of intermediate states is equally important due to their unique, individual 

behavior. 

MG states have several distinguishing characteristics. They display a dramatic decrease in tertiary 
structure as seen by exposure of their aromatic side chains as monitored by intrinsic fluorescence, 
ultraviolet absorption, near UV CD or related techniques. In contrast, their secondary structure remains 
substantially intact as seen by far UV CD, infrared, or Raman spectroscopies. Thus, when proteins that 
display this state are heated, the contacts between secondary structure elements and other distant 
contacts within the polypeptide chain are broken prior to major alterations of secondary structure. One 
consequence of this is that dyes such as ANS usually bind to MG-states with a dramatic increase in 
fluorescence, aiding in their identification. The reason MG states are so important to the pharmaceutical 
scientist is their tendency to aggregate. It is now generally thought that many cases of aggregation are 
due to the population of such states (Fig. 21-2). They are also commonly seen in proteins at low pH and 
high salt concentration, but their transient presence is probably responsible for many if not most cases 
of protein aggregation. If a protein continues to be heated, a much more comprehensive disruption of 
structure may take place. Although these so called “unfolded” or “denatured” states usually still contain 
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some structure (especially in thermally induced unfolding), a loss in biological activity is typically 
produced. When proteins begin to unfold, they often interact 
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with themselves to form intermolecular β-structure. These aggregative states can usually be identified 
by unique FTIR signals and dye binding as mentioned above and appear to be involved in a variety of 
disease states such as Alzheimer and Parkinson disease in which precipitated protein is present in vivo. 
Complete unfolding does not necessarily (and probably rarely) produce aggregation. Although this was 
once thought to be the case, passage through MG states is more likely responsible for most examples 
of commonly observed thermal aggregation. Although thermally induced aggregation is usually (but not 
always) irreversible, use of denaturing agents such as urea, guanidinium hydrochloride, or a chaotropic 
salt (e.g., LiCIO4, NaSCN4) can often be used to produce reversibly and more extensively unfolded 
protein. Frequently, data obtained from such experiments can be modeled as a simple, reversible, two 
state unfolding transition in which intermediates do not play a significant role93,94 (Fig. 21-22): 

 
where N and U refer to native and unfolded states, respectively. The fraction unfolded (fu) as induced by 
temperature or unfolding agent is then given by 

 
where X is the experimental value determined from a method such as CD, fluorescence, and so forth for 
the native (XN), unfolded (Xu), and fractionally unfolded (X) state. The equilibrium constant for unfolding 
(Ku) is then given by 

 

 

Fig. 21-22. A generic ―unfolding curve‖ for a simple two state system. If only two 

states, such as a native and unfolded form, are detectably present, a very sharp, highly 

cooperative transition is usually seen. Such transitions can be induced in 

macromolecular systems by a wide variety of different variables including 

temperature, pH, and the presence of solutes such as urea and guanidine 

hydrochloride. The midpoint of such curves when temperature is used as the 

perturbing variable is known as the melting temperature or the Tm. 

and the free energy (ΔGu) by 
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The relationship ΔGu = ΔHu - TΔSu and the Van't Hoff equation permit estimates of the associated 
thermodynamic parameters for the unfolding process. 
If a denaturant is used93,94,95: 

 
where ΔGH2O is the extrapolated valve of the free energy at zero denaturant concentration and m (the 
dependence of ΔGu on denaturant concentration) is a parameter related to the amount of protein 
surface area that becomes solvent exposed upon the induced unfolding. Thus, at least in these special 
circumstances, a fairly comprehensive quantitative picture of the unfolding process can be obtained. 
Let us return to more moderate temperature conditions. It is also possible for proteins to aggregate 
without any conformational change in their structure. The highly amphipathic nature of protein surfaces 
(i.e., they possess both polar and apolar regions) means that they have a significant potential to interact 
with themselves. Such interactions are usually temperature dependent with increased aggregation seen 
as the temperature is lowered. As discussed above, however, increases in temperature can also lead to 
aggregation through conformational changes or be due to the increasing strength of apolar interactions 
at higher temperatures. A variety of other forms of environmental stress important to the pharmaceutical 
scientist such as shaking and freeze/thaw events can also lead to protein conformational changes 
and/or aggregation although these phenomena are less well understood despite their pharmaceutical 
relevance. 
Low temperature can also promote the unfolding of proteins due to the reversed temperature 
dependence of the hydrophobic effect and the large heat capacity (and surface area) changes, which 
are usually associated with protein conformational alterations. Maximum destabilization is often seen at 
temperatures below freezing but destabilization per se can frequently be a factor in the behavior of 
proteins at quite moderate temperatures. Another form of physical degradation also arises from the 
amphipathic nature of protein surfaces. Proteins in solution must be resident in some type of container. 
This presents a variety of different types of surfaces with which a protein can interact. In fact, the plastic 
and glass containers commonly used to store proteins and other biopharmaceuticals may themselves 
possess some charged or apolar characteristics, enhancing the potential for protein/surface interactions. 
The air/water interface produced during shaking can also be considered an example of such a surface. 
Rubber stoppers and various types of syringes are frequently siliconized to reduce such interactions but 
often with only limited success. In fact, at very low protein concentration (<10 µg/mL), a substantial 
portion of most proteins may be adsorbed to container surfaces. As proteins remain adsorbed to 
surfaces, they may undergo conformational changes that optimize their interaction with the 
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surfaces, leading to additional problems. Potential solutions to such problems are described below. 
The effect of environmental factors other than temperature can also play an important role in the 
physical degradation of proteins. The highly charged nature of protein surfaces (and to a much lesser 
extent their interiors) makes them very pH sensitive. Important approximate pKa's are Asp (3.0), Glu 
(4.2), Lys (10.0), Arg (12.5), His (6.0), Tyr (10.0), and Lys (9.1). These valves can vary quite significantly 
(by several pH units) in proteins because of local environmental effects.96,97 Rough estimates of the 
total change on a protein can be made from these values or from average valves of the individual 
residues based on actual measurement of a large number of proteins. The charge density of a protein 
(Pc) can be crudely estimated from39: 

 
where the pI is the isoelectric point of the protein (the pH at which the charges sum to neutrality) 
and Mw is the molecular weight of the protein. Proteins tend to display their minimum solubility near their 
pI although many exceptions to this rule exist because of the potential for specific interactions among 
protein molecules. 
Charged residues often provide key interactions in the stabilization of protein structure. In addition to 
direct interactions between oppositely charged side chains (sometimes called salt bridges or ionic 
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interactions), ion–dipole and cation–pi interactions are commonly seen in proteins. Thus, as pH is 
varied, any of these (and many more) types of interactions can be altered leading to structural changes 
and changes in the stability of proteins. 
The presence of salt has a major effect on the electrostatic behavior of proteins. At low salt 
concentrations (<0.2 M for a simple salt like NaCl), this is successfully modeled by a simple charge-
shielding model as originally described by Debye–Hückel theory. This also works well for the 
interactions of ions like Mg2+ with the phosphate backbone of DNA. As salt concentrations are raised, 
however, a variety of other phenomena are observed. In the case of proteins, solubility can be 
dramatically decreased to the extent that certain ions can produce precipitation from solution (so called 
“salting out” salts) due to preferential hydration of the salt ions. In contrast, certain anions such as 

thiocyanate and perchloride and cations such as Li+ can increase the solubility as well as reduce the 
stability of a wide variety of macromolecules. 
All of the above phenomena can also be considered in the light of the “distribution of microstates” 

picture. Thus, particular microstates or populations of microstates can be considered to produce distinct 
surface properties, solubilities or aggregative tendencies that are responsible for their physical 
degradation. Whichever description is used, however, the challenge for formulation science is to reduce 
the rate (and extent) at which they appear. 
Nucleic acids also undergo a variety of physical changes that can be damaging to their use as vaccines, 
gene therapy agents, and RNA-based therapeutics.58,98 Physical pathways of degradation of DNA and 
RNA are at least partially a function of their size. DNA is often used in the form of supercoiled (sc) 
plasmids. If the ends of a large piece of double-stranded DNA are covalently joined, it is possible for one 
strand to pass through the other. Assuming no breakage of either strand, the number of times this 
occurs is a constant known as the linking number (Lk). One strand can, however, be twisted about the 
other (Tw) or a writhing about the duplex axis (Wr) can occur. The relationship between these three 
quantities is simple: 

 
Changes in these parameters can occur as a result of strand breakage and reclosure (often due to 
enzymatic processes by topoisomerases or by physical processes as well), producing a variety of 
topological forms that can be easily seen as individual bands on agarose gels (Fig. 21-8) or peaks in 
HPLC analysis. If cleavage of a single strand occurs, a closed circular form of the DNA (oc) will be 
produced. If cleavage of both strands occurs near one another, linear strands of ds DNA (l) result. 
These forms are also easily detected by various electrophoretic methods. Because sc, oc, and l forms of 
DNA may well have distinct (and possibly altered) stabilities and biological activities, they represent 
important degradation products. 
If heat is applied to either single or double stranded oligonucleotides, changes in state will also occur. In 
the case of large DNA molecules like plasmids, thermal melting (i.e., complete disruption of base 
hydrogen bonding and stacking interactions) appears only at higher temperatures (>90°C) and is 
probably of limited pharmaceutical relevance. An exception is longer single-stranded nucleic acids which 
may contain extensive regions of internal base pairing which lead to stem-loop type–structures. These 
regions can often melt in a highly cooperative manner with simple UV absorbance as well as other types 
of spectroscopic and calorimetric measurements able to detect their presence as lower temperature 
melting events. Shorter DNA and RNA oligonucleotides, of course, melt at much lower temperatures 
and this can also constitute important physical degradation events. Furthermore, “breathing 

phenomena” (see above) before melting and destacking of bases in single-stranded (unbase-paired) 
nucleic acids also comprise physical events of potential relevance to stability. It is now recognized that 
many RNA molecules also contain biologically significant tertiary structure due to distant contacts within 
polynucleotide chains (often mediated by metal ions). Although this has yet to constitute a major 
pharmaceutical issue, it can be expected to become so in the near future. 
Nucleic acids are also capable of aggregation when the charges on the phosphate backbone of 
polynucleotides are partially or fully neutralized by a variety of cationic molecules such as polyamines 
and metals. Under such conditions, the nucleic acids may begin to associate and ultimately extensively 
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aggregate. This may also be a result of structural changes in the nucleic acid. Related phenomena are 
often 
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seen when DNA is complexed to polycations to create gene and vaccine delivery complexes when the 
zeta potential of the complex approaches neutrality. The conformational properties and stability of the 
DNA within gene delivery vehicles are also subject to conformational alterations, which can be accessed 
by methods such as CD, FTIR, and DSC. One form of such change is known as condensation. When 
there is a reduction in the repulsive electrostatic forces between phosphate groups, large DNA 
molecules can often collapse into highly condensed structures, which are of both dramatically minimized 
volume and high density. Such structures can possess unique physical and spectral properties. The 
former makes these candidates for various types of delivery applications and the latter fairly easily 
recognized by a variety of experimental methods (especially CD). 
Chemical Degradation99,100 
Protein drugs are often also chemically unstable with chemical degradation events occurring at specific 
amino acids within proteins. These degradation reactions are influenced by intrinsic factors such as 
primary, secondary, tertiary, and quaternary structures as well as extrinsic factors such as pH, 
temperature, buffer, and excipients. Common chemical degradation reactions include deamidation, 
hydrolysis, oxidation, N,O-acyl migration, and beta-elimination. This section describes the 
characteristics of these degradation reactions. 
Deamidation Reactions 
The deamidation reaction is one of the most studied and best understood reactions in peptides and 
proteins (Fig. 21-23). It occurs primarily in asparagine (Asn) residues. In this reaction, asparagine 
residues can be converted to succinimide (Asu), aspartic acid (Asp), and iso-aspartic (Iso-Asp) 
acid101,102,103,104 moieties. The rate and mechanism of deamidation reactions are strongly 
influenced by the pH of the solution.102,103,104 At pH < 4.0, the amide group on the side chain of the 
Asn residue undergoes direct hydrolysis to release ammonia to generate Asp. At pH > 6.0, the 
deamidation reaction proceeds via a cyclic imide intermediate (Asu) due to the attack on the carbonyl 
carbon of the Asn side chain by the backbone amide nitrogen of the C-terminal of the Asn residue to 
expel an ammonia molecule. The cyclic imide can be hydrolyzed at two different sites to produce Asp or 
Iso-Asp residues in proteins (Fig. 21-26). The Asp-containing protein can be further hydrolyzed at the 
backbone to give two protein fragments (Asp-mediated degradation). The hydrolysis of cyclic imide 
intermediates generates the Iso-Asp- and the Asp-containing proteins with a ratio around 4:1, 
suggesting that the hydrolysis reaction favors the backbone carbonyl over the side chain carbonyl 
group. The bulkiness of the side chain of the amino acid C-terminal to the Asn residue (i.e., the n + 1 
residue) affects the rate of deamidation; the presence of a bulky hydrophobic side chain at the n + 1 
residue impedes the deamidation reaction and changes the Iso-Asp:Asp ratio from 4:1 to 2.5:1. The 
conversion of Asn to the Iso-Asp or Asp residue adds an additional negative charge to the protein, which 
can potentially influence the structural and physical stability of the protein and its biological activity. This 
change can be detected by both peptide mapping and isoelectric focusing. 

Dr. Murtadha Alshareifi e-Library

982



 

Fig. 21-23. Diagram of a deamidation reaction at Asn residues. The formation of a 

cyclic imide intermediate is shown followed by formation of Asp and Iso-Asp. 

The impact of secondary structure on the deamidation reaction has been elucidated in both peptides 
and proteins; for example, bovine growth releasing factor (bGRF) peptide (Leu27bGRF) contains 32 
amino acids with two segments of α-helix at Phe6-Gly15 and Arg20-Leu27 (Fig. 21-24).105 The Asn8 
residue on Leu27bGRF undergoes a deamidation reaction to produce isoAsp and Asp peptides. To test 
the effect of secondary structure on deamidation, the Gly15 residue was mutated to Ala15 and Pro15 to 
give the Ala15Leu27bGRF and Pro15Leu27

bGRF peptides, respectively. Because alanine is a strong α-
helix inducer, the Ala15Leu27bGRF peptide 
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possesses helical structure from Asn8 to Gln30, which is a greater helical content than in the parent 
Leu27bGRF.105,106 In contrast, Pro15Leu27

bGRF does not have any α-helical structure (i.e., it is 
random) because proline is a strong α-helix breaker.105 Evaluation of the deamidation reaction at the 
Asn8 residue showed that the rate of deamidation of Ala15Leu27bGRF was slower (t1/2 = 21.53 ±2.83 hr) 
than the parent peptide (t1/2 = 15.74 ±2.45 hr); this is presumably due to the greater α-helical structure in 
Ala15Leu27bGRF than in Leu27bGRF. Conversely, the rate of deamidation of Pro15Leu27bGRF (t1/2 = 
10.78 ±2.95 hr) is faster than the parent peptide,105,106 indicating that the secondary structure of this 
peptide has an accelerating effect on the deamidation rate. 
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Fig. 21-24. The sequence of Leu
27

bGRF and its mutants Ala
15

Lue
27

bGRF and 

Pro
15

Leu
27

bGRF. Asn8 is the deamidation site on these peptides. The mutations 

discussed in the text affect the secondary structure of the peptides. 

The rate of deamidation reactions is also affected by the position of Asn residues in β-turns. Linear 
(AcNG and AcGN) and cyclic (cNG and cGN) peptides have a β-turn structure at the Asn-Gly or Gly-Asn 
sequence in which the Asn residue is at the n + 1 or n + 2 position of the β-turn (Fig. 21-25).107 At pH 
8.8, the rates of degradation of the cyclic peptides cGN (<2.2 × 104s-1) and cNG (9.36 × 107s-1) are 
slower than the respective linear peptide counterparts, AcGN (20.1 × 107s-1) and Ac-NG (42.2 × 107s-

1) (107). This result suggests that the molecular rigidity of the cyclic peptides hampers the deamidation 
reaction. In addition, the cGN peptide with Asn at n + 2 is more stable than the cNG peptide with Asn 
at n + 1. The Asn residue at n + 1 of a β-turn undergoes deamidation reaction more readily than the Asn 
residue at the n + 2 position; this is due to a more favorable formation of the cyclic imide when the Asn 
residue is at the n + 1 position than when it is at the n + 2 residue of a β-turn. For the Asn residue at 
the n + 1 position, the shortest distance between the carbonyl carbon of the Asn side chain and the 
backbone nitrogen atom of the n + 2 residue for forming the cyclic imide intermediate is 1.89 Å (Fig. 21-
23). In contrast, the shortest distance between reactive atoms when the Asn residue is at position n + 2 
is 4.8 Å (Fig. 21-23). In conclusion, the secondary structure and the position of the Asn residue in a 
peptide or protein affect the rate of their deamidation reactions. Furthermore, it has been demonstrated 
that increased mobility of deamidation sites in proteins (e.g., when they are located on a protein's 
surface) also facilitates the deamidation reaction.108 
Asp-Mediated Backbone Hydrolysis 
Aspartic acid residues can catalyze backbone hydrolysis in peptides and 
proteins.109,110,111,112,113 The deamidation products of a protein containing susceptible Asn 
residues are Asp- and 
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iso-Asp–containing proteins that can undergo peptide bond hydrolysis at both the N- and C-terminal of 
the Asp residue via pathways a and b, respectively (Fig. 21-26). In pathway a, the carbonyl carbon of 
the n - 1 residue is attacked by the carboxyl group of Asp to form a six-membered ring 
intermediate.112 Upon rearrangement, the six-membered ring is open to the anhydrate intermediate 
that immediately hydrolyzes to form two fragments of the peptide or protein. Pathway b proceeds via the 
attack of the C-terminal of the carbonyl of the Asp residue by the side chain carboxylic acid oxygen to 
form a five-membered ring. The rearrangement of the five-membered ring hydrolyzes the peptide bond 

Dr. Murtadha Alshareifi e-Library

984



to separate the two portions of the protein. Like the Asn residue, Asp can also form a cyclic imide 
intermediate that can further rearrange to form iso-Asp. Comparison of the stability of Asp-containing 
linear and cyclic peptides has shown that the rate of peptide bond hydrolysis mediated by the Asp 
residue in a cyclic peptide is slower than the rate of degradation in a linear one.112Molecular dynamics 
simulations show that it is more difficult to form cyclic imide intermediates in a cyclic peptide than in a 
linear peptide; this is due to the rigidity of the cyclic peptide backbone and a favorable distance between 
the reactive atoms which can be easily accommodated in the linear peptide compared to that of cyclic 
peptides.113 

 

Fig. 21-25. The effect of the position of the Asn residue in a β-turn on a deamidation 

reaction. 
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Fig. 21-26. The degradation pathways of Asp residues to induce peptide bond 

hydrolysis. 

 

Fig. 21-27. The N,O-acyl migration reaction occurs at Ser and Thr residues. This 

reaction produces a rearrangement of the peptide backbone at the N-terminus of the 

side chain of the Ser or Thr residue to make an ester bond. 

N,O-Acyl Migration in Ser or Thr Residues 
Ser and Thr residues are prone to undergo N,O-acyl migration reactions which rearrange the 
protein/peptide backbone in acidic conditions (Fig. 21-27).114 This reaction can occur 
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via two possible mechanisms (pathways a and b). Pathway a is initiated by protonation of the carbonyl 
oxygen of the residue n - 1 to the reactive Ser residue followed by an attack of its carbon by the Ser 
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residue's oxygen to form a five-membered ring intermediate. The opening of the five-membered ring 
upon cleavage of the C–N bond generates an ester bond from the carbonyl of the (n - 1) residue to the 
side chain oxygen of Ser. The second possible mechanism is via protonation of the hydroxyl group of 
the Ser residue followed by an attack of the beta-carbon of the Ser residue by the carbonyl oxygen of 
the n - 1 residue to produce a five-membered oxazoline, which upon the nucleophilic attack of water on 
the double bond produces the five-membered ring oxazolidine intermediate. As in pathway a, opening of 
the five-membered ring intermediate generates the N,O-Acyl migration product. 

 

Fig. 21-28. The beta- and alpha-elimination reactions in Ser and Cys residues under 

acidic and basic conditions. 

Beta- and Alpha-Elimination Reactions 
Disulfide bonds have important roles in stabilizing the folded structure of proteins. They are normally 
formed by two Cys residues that are in close proximity due to tertiary structure constraints. The 
destruction or reduction of disulfide bonds may frequently have an impact on the structure and biological 
activity of a protein. The degradation of disulfide bonds can occur in mild to strong alkaline conditions 
when hydroxide ions abstract the alpha-proton of the Cys residue to generate dehydroalanine and 
persulphide ion (Fig. 21-28).112,115 Extrusion of the sulfur atom from the persulfide ion produces the 
thiol group of a Cys residue. In basic conditions, beta-elimination is often observed in Cys residues that 
are involved in disulfide bonds. This reaction is frequently observed in proteins that contain disulfide 
bonds. In acidic conditions, beta-elimination can take place in Ser residues; upon protonation of the side 
chain OH group, the alpha proton of Ser is abstracted by a water molecule to produce the 
dehydroalanine residue (Fig. 21-28). 

Dr. Murtadha Alshareifi e-Library

987



Alpha elimination can also occur in a disulfide bond under basic conditions to form thioaldehyde and 
aldehyde products. The alpha-elimination reaction proceeds via proton abstraction of the beta-carbon of 
the Cys residue to form thio-aldehyde and releases the thiolate anion from the other Cys residue. The 
thio-aldehyde can further react with the hydroxide anion to produce aldehyde. The presence of a 
reactive aldehyde may further react with amino groups (i.e., Lys side chains) within a protein or with 
another protein to form an imine bond. 
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Fig. 21-29. Disulfide bond exchange in proteins under basic conditions. 

The presence of multiple disulfide bonds in a protein can also lead to a disulfide bond exchange reaction 
under basic conditions.116 At high protein concentrations, disulfide bond exchange can form dimers and 
higher oligomers that can precipitate the protein from solution. The exchange reaction can be initiated 
by the attack of thiolate anion on the sulfur atom of a disulfide bond (Fig. 21-29). Presumably, this 
exchange reaction occurs when the thiolate anion is in close proximity to the disulfide bond. The 
exchange reaction could also occur via the attack of the hydroxyl anion of the sulfur atom of the disulfide 
bond to produce thiolate anion and sulfenic acid. Further reaction of the thiolate anion with the sulfur of 
sulfenic acid to release hydroxyl anion can produce the disulfide bond exchange reaction. 
Oxidative Reactions (Met, His, Trp) 
Oxidation reactions of methionine (Met), histidine (His), and tryptophan (Trp) residues are often 
observed during protein production and formulation. Such oxidation reactions are due to reactive oxygen 
species (e.g., ●OH, O2

●-, H2O2, O3, 1O2). The formation of reactive oxygen species can be catalyzed by 
metals (i.e., ferryl, perferryl) and can be produced by ionizing radiation and photochemical reactions. To 
prevent protein drug oxidation, reducing agents (i.e., glutathione, dithiothreitol, thioacetic acid, and 
cysteine) have been added to protein formulations. Methionine oxidation produces the sulfoxide amino 
acid and further oxidation generates a sulfone group on the side chain of Met (Fig. 21-
30a).117,118,119,120 The sensitivity of the Met residue to oxidation depends on its location within the 
tertiary structure of a protein. In protein formulations, the oxidation reaction can occur because of the 
presence of residual hydrogen peroxide that is used to sterilize containers and vials for storage. 
Oxidation of methionine can significantly reduce the half-life of protein drugs and generate major 
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problems in protein purification and formulation. Oxidation may also alter the physical stability of 
proteins through the production of oxygen radicals.120,121 

 

Fig. 21-30. (a) The oxidation of methionine to form sulfoxide and sulfone. (b) 

Oxidation of a histidine residue by hydroxyl radicals to form oxo-imidazole. 

The aromatic rings of His, Trp, Tyr, and Phe residues are also prone to oxidation. The imidazole ring of 
His in serum albumin is oxidized by ascorbic acid/Cu2+ or H2O2/Cu2+, producing an oxo-dihydro-imidazol 
ring (Fig. 21-30b).122 This oxidation is via a hydroxyl radical attack at the C2 position of the imidazole 
ring followed by the removal of the hydrogen radical to produce the 2-oxo-imidazol moiety. Further 
oxidation of His can produce an Asp residue.122 
The oxidation of Trp residues in peptides and protein with hydrogen peroxide generates N-
formylkynurenine (NFK), kynurenine (Kyn), oxindolylalanine (Oia), dioxindolylalanine (DiOia), and 5-
hydroxytryptophan (5-OH-Trp).123,124,125 Similarly, oxidation of the Trp residue in di- and tripeptides 
(i.e., Ile-Trp, Trp-Leu, Gly-Trp-Leu, and Ala-Trp-Ile) 
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by a superoxide-generating system such as hypoxanthine/ xanthine oxidase in the presence of Iron(III) 
and ethylenediaminetetraacetic acid (EDTA) generates NFK and Oia as the major products. The 
hypoxanthine/xanthine oxidase/Fe(III)-EDTA system generates the reactive oxygen species hydroxyl 
radical (●OH) produced via a Fenton reaction that oxidizes the Trp residue.124 
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Fig. 21-31. (a) The conversion reaction of Nterminal glutamine to pyroglutamine. (b) 

The reaction to form diketopeperazine at the N-terminal of a protein or peptide. 

Reactive oxygen species can oxidize the aromatic ring of Tyr to produce 3,4-OH-Phe as the major 
product; this reaction can also occur upon exposure of proteins to ionizing radiation. Tyrosine-tyrosine 
cross-linking has been observed in proteins upon UV and gamma irradiation as well as in low-density 
lipoproteins found in vivo.126 Similarly, the aromatic ring of Phe can be oxidized to form Tyr, 2-OH-Phe, 
3-OH-Phe, and 2,3-OH-Phe with ortho tyrosine (2-OH-Phe) as the major product. 
Other Reactions 
Other side reactions in peptides and proteins include the formation of pyroglutamate and 
diketopiperazine. Peptides and proteins that have glutamine and glutamic acid residues at their N-
terminus can form pyroglutamate degradation products (Fig. 21-31). The deamidation of glutamine at 
the N-terminus is more rapid than the deamidation of this residue when it is located in the middle of 
protein sequences. The driving force for this reaction is the formation of a stable five-membered ring 
when the Gln or Glu residue is present at the N-terminus. This reaction is not observed in N-terminal 
Asn residues because the ring product is an unfavorable four-membered ring. Pyroglutamate formation 
was observed during a stability study of a decapeptide vaccine (ELAGIGILTV) containing an N-terminal 
glutamic acid.127 
Peptides and proteins that have an Xaa-Pro residue at the N-terminus may be prone to diketopiperazine 
formation with release of the rest of the protein product with deficient Xaa-Pro residues. This reaction 
was first observed in a Gly-Pro peptide (Fig. 21-31). This reaction has been observed in recombinant 
human vascular endothelial growth factor. 
As mentioned previously, oligonucleotides (i.e., DNA and RNA) have also been investigated as potential 
therapeutic agents. These molecules are also subject to a variety of chemical degradation 
reactions.100,98 DNA and RNA molecules can both undergo various chemical changes via hydrolysis or 
oxidation reactions. RNA is generally less stable than DNA. The hydrolysis reaction can cause the 
breakup of the oligonucleotide chain and isomerization of the phophoester group on the ribose ring. As 
expected, these degradation reactions are strongly influenced by the intrinsic properties of the solution 
such as pH, buffer, and ionic strength. Similar to proteins, external conditions such as temperature and 
light can also have dramatic effects on the stability of oligonucleotide-based drugs. Physical instability 

Dr. Murtadha Alshareifi e-Library

990



(i.e., conformational changes, aggregation, and precipitation) of oligonucleotides and plasmids can often 
be induced by their chemical degradation. 
The hydrolysis reactions of oligonucleotides are catalyzed by acid or base as illustrated for RNA 
degradation in Figure 21-32. Acid-catalyzed degradation produces two degradation pathways. The first 
results in a phosphoester bond shift from C3′ to C2′ to make oligonucleotide 5; this bond shift will affect 
the higher-order structure of the RNA. In this case, the acid-catalyzed degradation is initiated by 
protonation of the oxygen of the phophoester group (compound 2) followed by a nucleophilic attack of 
the 2′-OH group on the phosphorous atom to produce intermediate 3. The proton transfer from the 2′-
oxygen to the 3′-oxygen generates intermediate 4, which upon a five-membered ring opening reaction 
produces degradation product 5 with an oligonucleotide chain shift. The second pathway generates two 
fragments of RNA (i.e., 7 and 8 in Fig. 21-32). In this route, the proton on the 2′-oxygen in compound 3 
can shift to the oxygen attached to the methylene group of the next nucleic acid to generate 
intermediate 6. The unstable intermediate 6 undergoes a fragmentation reaction and produces the two 
smaller pieces of RNAs, 7 and 8. 
Fragmentation of RNA can also be catalyzed by base. In this case, the reaction is initiated by 
deprotonation of the 2′-hydroxyl group as shown in intermediate 9 followed by the nucleophilic attack of 
the phosphorous atom by the 2′-oxy-anion to yield intermediate 10. The base abstraction of the hydroxyl 
proton of the phosphate group in intermediate 
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10 leads to the fragmentation of the RNA to give a smaller RNA 11 and intermediate 12. Opening of the 
five-membered phophoester in 12 produces another RNA fragment 13. 

 

Fig. 21-32. Schematic diagram of some degradation reactions of RNA catalyzed by 

acid or base. These degradation reactions cause RNA fragmentations and 
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phosphoester bond shift. 

Oligonucleotides undergo other hydrolysis reactions at different locations within the molecule to produce 
other products, including the release of a base (e.g., purines) as well as the ring opening of the ribose 
group. Furthermore, modification of the base groups can be catalyzed by base. Oxidation reactions of 
RNA produce RNA with an open ribose ring as well as RNA with modified base groups. For a further 
description of these other reactions and related changes in DNA, readers are encouraged to read the 
appropriate reviews.100,98 
Formulation 
In the previous sections the production, characterization, and the most common physical and chemical 
pathways of degradation of biotechnology-based products were described. How are these 
macromolecules and their complexes formulated? The goal is to take the various types of information 
that was gathered to create actual drugs and vaccines. 
The initial major concerns with solution state biopharmaceuticals usually involve conformational 
stabilization, prevention of aggregation, and inhibition of chemical degradation reactions. Thus, the first 
step in most formulation procedures is to identify such events. This is most commonly done using 
“accelerated-stability” protocols. Thus, various types of stress are applied to the system of interest and 
the methods described previously are used to detect changes in their physical and chemical structure 
including the association state of the molecule/macromolecular complex. The most common forms of 
stress applied in rough order of their utility are temperature, pH, redox potential, solute, shear (shaking), 
and freeze/thaw cycles. Ideally, one could employ actual, selected storage conditions (e.g., 2°C–8°C, 
24–48 months) but this is generally not possible due to temporal constraints in product development 
timelines. Ultimately, however, real-time stability studies must be the ultimate arbitrator of successful 
stabilization. Given the molecular complexity of biopharmaceuticals and the wide variety of methods 
available for their analysis, the decision on how to proceed is often a difficult one. 
One frequent approach is to pick one or several techniques that are expected to be sensitive to major 
degradation pathways. For example, one might use DSC to evaluate thermal stability at several different 
pH values and monitor stress-induced aggregation with SEC, oxidation induced by H2O2, and 
deamidation by high pH with HPLC-MS. Then, as described below, potential excipients can be tested for 
their ability to inhibit any degradation processes observed. The problem with such an approach is that 
important degradation 
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events might be missed because of the limited ability of a small number of conditions, events, and 
methods to detect all potential problems. There are a large number of variations on this approach based 
on both the techniques and types of stress employed. Alternatively, attempts can be made to cover a 
much wider formulation space by using many techniques and a wide range of solution conditions. One 
widely documented approach to the analysis of physical degradation makes measurements at 0.5 or 1.0 
pH intervals from 3 to 8 and from low to high temperatures (e.g., 0°C–100°C). A series of methods such 
as CD (to detect secondary structure changes), intrinsic fluorescence (to monitor tertiary structure), ANS 
fluorescence (to detect alterations in apolar surface exposure), and static and/or dynamic light scattering 
to measure association (aggregation)/dissociation phenomena are used to characterize the response of 
the physical state of the system to stress. Changes in dynamic behavior can be analyzed in a similar 
manner using methods such as isotope exchange, US spectroscopy, PP-DSC, fluorescence anisotropy, 
or solute quenching. Similarly, the presence of chemical alterations of individual residues can be 
described in terms of their rate constants as detected by LC-MS. All of the above approaches have 
recently been facilitated by the availability of HTP technology for their execution. The major weakness in 
all of the above is that it is still possible to miss key degradation events. Furthermore, the results 
obtained may not always be extrapolated to actual pharmaceutical storage conditions although this does 
not often appear to be the case. Variations of this HTP approach have been successfully applied to 

Dr. Murtadha Alshareifi e-Library

992



therapeutic peptides, proteins, VLPs, viruses, and bacterial cells as well as various vaccines types and 
accompanying adjuvants. It can also be used with solid-state formulations (see below). How does one 
analyze the vast array of information that is obtained by such an extensive collection of data and 
experimental conditions? One method is to use the EPD method described earlier for the analysis of 
high-resolution UV absorption data. In the multiple techniques version, however, normalized data from 
all of the techniques employed are used to construct the EPD. The resultant colored summary of the 
effect of the chosen variables (T, pH, drug concentration, ionic strength, agitation, freeze/thaw, etc.) on 
the physical and chemical structure and behavior of the biopharmaceutical can then be used to guide 
formulation development (Fig. 21-33). We should also mention that it is possible to redesign the 
macromolecular system if the exact mechanism of degradation is known. For example, residues in a 
protein that undergo deamidation or oxidation could be replaced with nondegrading analogues or the 
interior packing of the protein's amino acid residues could be improved through modern protein design 
methods to improve stability. Although in many ways an ideal solution (although immunogenicity can 
become a problem), this has yet to become a routine approach to stability problems. It may become so 
in the future. 
Often the first thing one does with a biopharmaceutical solution formulation is to select a buffer. A 
number of considerations are necessary for an optimal choice. First and foremost is that the buffer 
supports optimum structural stability and solubility. This can often be achieved through the methods 
outlined above. For example, a pH can be selected to place the formulation as far as possible from 
structural changes produced by changes in pH and temperature using a single method (e.g., CD, 
fluorescence, DSC) or as distant as possible from the apparent phase boundaries of an EPD. One 
caveat, however, is that a number of proteins undergo pH-dependent conformational changes as a part 
of their normal biological functions. For example, the lowering of the pH inside endosomes (sometimes 
the immediate destination of a protein taken up into a cell) might induce a structure change that exposes 
apolar regions, which permits interaction with the endosomal membrane and subsequent release into 
the cytoplasm. Furthermore, because so many degradation processes are pH dependent, it may be 
necessary to compromise in the selection of pH. Tables of physiologically acceptable buffers and their 
pKa's are readily available. Among the many popular buffers used for biopharmaceuticals are phosphate 
(pKa's 2.12, 7.21, 12.32), citrate (3.06, 4.74, 5.40), and imidazole (7.00). By combining buffers, it is also 
possible to obtain a very broad buffering range. 
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Fig. 21-33. Representative EPDs using multiple methods. For example, CD spectra 

(secondary structure), intrinsic fluorescence (tertiary structure), ANS fluorescence 

(appearance of apolar binding sites), and light scattering (association and aggregation) 

are obtained after normalization as vectors and represented as colors (or in this case 

regions of different shadings). Apparent phases of different colors then represent 

different structure states. See Figure 21-11 and text. 

A variety of other factors may be involved in buffer choice. Buffer ions may specifically interact with 
proteins due to their charged nature. They may also chelate or be contaminated 
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with metals, a potentially important phenomenon. One may also need to consider the effect of 
temperature on a buffer's pKa values. Some buffers, such as the commonly used Tris (tris-
(hydroxymethyl) aminomethane) species shift their pKa by as much as -0.03/°C. 
The next step in the formulation of macromolecules (if necessary, as it frequently is) is the selection of 
excipients to control critical degradation processes. This is usually done by screening a group of 
compounds and polymers usually referred to as GRAS (Generally Regarded as Safe) materials. This 
can be accomplished by using any one or a combination of the methods discussed above. Potential 
excipients are usually initially tested at high concentrations with concentration dependence studies 
employed later to define the minimum concentration that can be used to obtain the desired effect. 
The GRAS excipient list is based on compounds currently used in marketed formulations of drugs. It 
consists of a collection of carbohydrates, polysaccharides, amino acids, small molecules, detergents, 
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and polymers among other agents. A number of different mechanisms mediated by these compounds 
can stabilize macromolecular systems. High concentrations (i.e., >0.3 M) of sugars, amino acids, and 
some salts appear to stabilize through a mechanism known as preferential exclusion.128 This is based 
on the greater surface area of a macromolecule in its structurally disrupted (unfolded) state. The 
presence of the stabilizing agent causes the chemical potential (free energy) of the macromolecule to be 
increased in a manner proportional to its surface area. Because this is an unfavorable process, the 
effect is to differentially stabilize the native state (Fig. 21-34). In contrast, some stabilizers bind better 
directly to the native state. This shifts the N↔U equilibrium to the native form resulting in stabilization. 

For example, the presence of extended polyanion binding sites on many proteins such as growth factors 
and coagulation factors means that polymers like heparin and dextran sulfate can often have dramatic 
stabilizing abilities.129,130,131 Some compounds act by either directly or indirectly inhibiting 
aggregation. Those that act indirectly generally do so by stabilizing the native state which delays 
formation of aggregation competent species such as MG forms. Direct effects occur through blocking of 
the protein/protein interactions that are responsible for association processes. Inhibition of protein 
aggregation by detergents is thought to occur through one or both mechanisms. Because of the 
presence of disulfide bonds and free thiol groups in proteins, it is sometimes possible to stabilize 
proteins by the inclusion of a reducing agent to either maintain free thiols in their reduced (and active) 
form or prevent the formulation of nonnative inter- or intramolecular disulfides which leads to inactive 
forms. Since metals can inactivate macromolecules through a variety of mechanisms such as oxidation, 
the presence of a chelating agent can be used to minimize such problems. 

 

Fig. 21-34. The thermodynamic mechanism of stabilization of macromolecules by 

solutes which cause their preferential hydration. The solute (cosolvent) causes a 

greater difference in free energy of the unfolding reaction than in its absence leading 

to a destabilization of the unfolded (D) state (and therefore a relative stabilization of 

the native (N) form). 

As mentioned previously, the amphipathic nature of proteins means they are usually quite surface 
active. By this we mean that they have a strong tendency to bind to surfaces such as air/water 
interfaces as produced by agitation or to the inner surfaces of storage devices such as vials and 
syringes. In fact, at low concentration (<10 µg/mL), a substantial portion of the macromolecules may be 
resident on a surface.132 At least three common approaches have been used to minimize these 
problems. In the first, the design or nature of the surface itself can be altered. This is accomplished most 
frequently by the use of different materials or the addition of a coating that lowers interactions with 
proteins. The second method often employs the presence of a proteinaceous material such as serum 
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albumin, casein, or gelatin to competitively prevent or displace the macromolecular drug substance or 
vaccine from the surface. Initially, animal-derived versions of these proteins were used but they are 
being replaced by recombinant forms of the same or similar proteins. Third, detergents are often used 
for a related purpose due to their affinity for both proteins and/or container surfaces. It has also recently 
been recognized that particles originating from various sources such as the plastic or metal materials 
produced by the degradation of vial filling pumps and the tungsten used in syringes can result in 
particulate matter that must be removed for clean formulations to result. Many of the above phenomena 
can also result from conditions produced during the shipping of biopharmaceuticals. Solutions to such 
problems are similar to those described above, but careful shipping studies are essential to identify and 
minimize their occurrence. 
Drying of Biopharmaceuticals133 
Despite recent advances in the preparation of stable, solution-based formulations of peptides, proteins, 
nucleic acids, and viruses, it is still frequently necessary to employ dried formulations of 
biopharmaceuticals. By removing most (but not all) of the water and reducing inter- and intramolecular 
mobility, it is usually possible to dramatically stabilize such systems. Dried formulations are often 
considered less desirable because of significantly increased expense and the need 
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for reconstitution, but the dramatic improvement in stability obtained by such technologies is thought to 
be more than adequate reason for their use. In fact, many currently marketed biopharmaceuticals and 
vaccines employ such methods. By far, the most common method employed is that of lyophilization, 
which is also known as freeze-drying. The techniques of spray drying and spray–freeze drying have, 
however, also been used to dry biopharmaceuticals. There exist a variety of other potentially useful 
technologies such as foam drying, which will not be described here. 
Freeze-drying is far and away the most commonly used procedure.134 It is essentially a batch process 
in which water is removed directly from the solid state. It is generally performed in three distinct phases. 
In the first, the water in a solution of the biopharmaceutical agent is converted to ice. This results in the 
production of a concentrated frozen macromolecular solid. This freezing step is typically performed in 
the temperature range of -45°C to -10°C for 2 to 5 hr. The second stage is referred to as primary drying. 
This involves the removal of some unfrozen water (ca. 15%) and sublimation of ice at -10°C to -40°C for 
5 hr to 5 days (this stage is highly variable in time). The final procedure (secondary drying) involves 
removal of most of the remainder of the unfrozen water down to 1% to 4% as the temperature is 
increased from the previous process to 4°C to 50°C for 5 to 15 hr. 
In contrast, spray drying is a continuous process and involves drying from the liquid state.135 Its initial 
step consists of atomization of a macromolecule containing aqueous solution into small droplets. This is 
generally considered to be the most problematic aspect of the procedure given the presence of the 
air/water interface, a potential site of protein degradation and aggregation. The droplets are mixed with 
hot air (ca. 120°C) which rapidly (in seconds) removes most of the water resulting in concentrated 
solute. After further cooling at 40°C to 50°C, only a low water content (3%–5%) remains. The latter 
water content is typically somewhat greater than that produced by lyophilization and may result in 
greater degradation of the macromolecular drug or vaccine upon storage. In spray-freeze drying, the 
atomization and freezing is carried out in a solvent such as liquid nitrogen followed by 
macromolecule/vaccine drying. 
Because it is so much more commonly employed, we will consider lyophilization in more detail. In the 
initial freezing step, most biomolecules form amorphous solids (in contrast to many small molecules 
solutes which may crystallize). In general, primary drying is performed 2°C to 3°C below Tg′ (Tee Gee 

prime), the glass transition temperature of the freeze concentrate. The glass transition temperature 
(Tg for a pure solid) refers to the softening of a glasslike solid to form a viscous liquid state, which 
permits increased molecular mobility and subsequently enhanced degradation. One potential problem 
occurs because of the concentration that occurs during freezing. A buffer-like sodium phosphate may 
crystallize causing a shift of several units to lower pH, a potentially degradative condition. Thus, 
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phosphates are usually not employed (although small amounts may be acceptable). In general, a 
minimal weight ratio of buffer to other solutes is used to minimize crystallization-induced pH shifts as 
well as prevent large reductions in Tg′ and therefore increased solute mobility. 
What is the significance of glass transitions136? During primary drying (ice sublimation), Tg′ reflects the 

temperature at which the conversion from a glassy to rubbery solid state occurs. As the material is dried 
it can also undergo a loss of structure that is referred to as cake “collapse” with the temperature at which 

this occurs designated the collapse temperature (Tc). This can be detected by a special form of 
microscopy known as “freeze-drying microscopy”137 or by DSC138 as a district thermal event or by a 
change in electrical resistance. The collapse temperature is usually a few degrees higher than Tg′. 
During secondary drying as the unfrozen water is removed, this phase change is seen hear the Tg. 
These temperatures are very formulation dependent. As one moves above a glass transition 
temperature, the mobility and reactivity of the macromolecule or its complexes increase. During storage, 
the Tg can have a controlling impact on the drug's stability. In general, as the amount of residual water 
increases, the Tg is lowered. Thus, knowledge of this property is one key to preparing a stable, 
lyophilized formulation. 
To create a stable dry formulation of a biotechnology-based drug, all of the above must be considered in 
its creation. Besides optimization of the lyophilization cycle, such formulations almost always contain 
excipients.139,140 These are used to facilitate stabilization during freezing stress (“cryoprotection”), 

stabilization during freezing and drying (“lyoprotection”), and stabilization in the dry state to enhance 
integrity during storage. In addition, excipients are used for a number of other reasons. Bulking agents 
such as mannitol or glycine are often employed for “elegance” and to prevent “blow-out” in which the dry 

cake can be expelled into the freeze dryer. Bulking agents are often chosen for their crystallinity and 
their high eutectic temperature to facilitate rapid, easy drying. Crystallinity is typically evaluated by a 
combination of polarized light microscopy (to detect birefringence), x-ray powder diffraction, and 
calorimetry. Buffers are often included for pH control although care must be taken that their 
crystallization does not produce large and potentially destructive pH shifts. As a general rule, however, 
they are used in minimal amounts. Isotonicity modifiers such as glycerol and NaCI are also often used 
although they may be present in the diluent rather than the formulation itself. In addition, compounds 
such as hydroxyethyl starch can be used to raise the Tc of the product (i.e., to increase Tg′). Especially 

critical for biopharmaceuticals, stabilizers are often necessary to provide a sufficiently robust 
formulation. The complex relationship between water content, molecular mobility, and the physical and 
chemical degradation of dried macromolecular systems can make the selection and optimization of 
stabilizers especially challenging. There are, however, several generally accepted principles for 
successful stabilization 
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of biomolecules in the solid state.140 First, it is well established that the stabilizer must remain 
amorphous and in the same phase as the drug. Conversely, physical mixtures do not effectively 
stabilize.141 Second, the stabilizer should be chemically and physically inert. A well-known example of 
this problem involves the use of sucrose, often a highly effective stabilizer. At low pH, this disaccharide 
can be hydrolyzed to reducing sugars, which can covalently interact with proteins. Third, as mentioned 
previously, the formulation should not permit selective buffer crystallization and consequent pH shifts. 
Many macromolecules and viruses and other biological entities are often pH sensitive with losses in 
biological properties upon exposure to extremes of pH. Finally, it is very clear that low water content is 
often essential for optimal stabilization in dried formulations. It should also be mentioned that ice is a 
major stress during freezing. The formulation of an ice/water interface may result in adsorption of 
proteins and other amphipathic macromolecules which can be significantly destabilizing. This is at least 
partially due to the forces exerted by the surface on macromolecules due to the multipoint nature of the 
contacts between the surface and the drug or vaccine. The presence of stabilizers may reduce such 
destabilizing effects but the mechanisms are incompletely understood. The preferential hydration (solute 
exclusion) mechanism discussed previously may be operative at this level. In the solid state, several 
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factors are considered to play critical roles in stabilization. Chief among these is mobility. It has long 
been thought that dried formulations are most stable in the glassy, solid state. The existence of such a 
state, however, does not guarantee long-term stability, even at moderate temperatures. In addition, the 
presence of the “native” state of a protein is generally considered necessary. This is most frequently 

analyzed by FTIR spectroscopy which can conveniently analyze protein, nucleic acid, and viral structure 
in the solid state. A common observation is that without the presence of stabilizers, lyophilized proteins 
are not in their native state in their solid forms, producing accelerated chemical as well as physical 
degradation. 
A number of mechanisms have been proposed to explain how stabilizers are able to maintain 
macromolecular structure under conditions of low moisture.140 The water substitution hypothesis 
argues that many stabilizers interact with proteins and other biological entities in a manner similar to 
water. This is proposed to support the native state of such molecules and provide stabilization during 
freezing and drying by providing an appropriate physical environment. Two main lines of evidence in 
support of this hypothesis are that (a) many stabilizers are sugars and due to their multiple hydroxyl 
groups are able to hydrogen bond to macromolecular systems in a manner similar to water and (b) 
spectroscopic studies demonstrate water-like interactions between stabilizers and biomolecules in the 
solid state. The water substitute hypothesis has primarily been used to explain stabilization during drying 
rather than during storage. The second major hypothesis postulates that by creation of a glassy state, 
there results in a reduction in macromolecular mobility which leads to a decrease in the rate of 
degradative events. Two types of motions are recognized in glasses. The more global dynamic behavior 
is known as α-relaxation. It is directly related to viscosity and involves long time and length scales. 
Conversion to this behavior occurs when solids are converted to liquidlike states and are measured 
by Tg. Fast dynamic behavior is designated β-relaxation. This involves local motions on a much shorter 
length and time scale and can be measured by a variety of methods including dielectric, neutron 
scattering and NMR relaxation techniques. The relationship between the effects of stabilizers on these 
different types of motions is not simple, however. While it might be expected that stabilizers would 
simply decrease the amplitude of such processes, both increases and decreases have been seen 
similar to observations in solution. Furthermore, lowering the Tg does not always destabilize. This 
remains a very active area of current research with a consensus that dynamics are important, but their 
precise role yet to be definitively defined. 
Some tentative conclusions about the mechanisms of excipient stabilization can, however, be advanced. 
Cryoprotection may involve solvent exclusion if instability occurs early in freezing. If it occurs later, 
immobilization by vitrification is more likely. If surfaces are involved, the coating of such surfaces by a 
surface-active agent such as a surfactant or protein (serum albumin, gelatin, etc.) may be helpful. 
Lyoprotectants are usually amorphous, chemically inert glass formers. They form single phases with 
macromolecules and “moderately” interact with their surfaces. They should couple all relevant modes of 

motion, both local and global, to the matrix and preserve native structure during freezing and drying. The 
requirements for storage stabilization are similar but specific considerations are usually necessary for 
each individual biomaterial based on its specific sensitivity to their unique degradation pathways. 
Here are a few general rules to guide formulation of macromolecules for freeze-drying. (a) The amount 
of buffer should be minimized (avoid phosphates). (b) Employ other salts only if needed (i.e., for 
solubility) and minimize their amounts. (c) MaximizeTg′ (<-35°C is usually a problem; <-40°C is typically 
unacceptable). Lyophilization should be performed below Tg′ (or at least below the collapse 

temperature) in primary drying and below Tg in secondary drying. 
If stability problems arise, the following approaches have often proven successful to minimize such 
difficulties. If the problem occurs during freeze-drying, it should be isolated to either freeze/thaw or 
freeze dry stability. If the problem is during freezing, the addition of surfactants (Tweens and Pluronics) 
or high levels of “excluded solutes” (e.g., amino acids, nonreducing carbohydrates, polyethylene glycols) 
may be useful. If the problem is seen during drying only, the use of nonreducing carbohydrates such as 
sucrose or trehalose is often successful. If one has a storage stability problem, the moisture level needs 
to be carefully controlled. It is not unusual, however, for this to be inadequate to completely solve the 
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problem. In general, the best additional step has been to use a nonreducing carbohydrate like sucrose 
at neutral 
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or basic pH (if moisture control is not a problem). At low pH and higher moisture content, trehalose often 
proves to be a better choice as a storage stabilizer. 
Formulation of Vaccines87,90,142,143 
The formulation of vaccines is complicated by their varied nature (peptide, protein, VLP, virus, DNA, 
bacteria, polysaccharide) as well as the need for adjuvants142,143 in their less immunogenic forms. 
Nevertheless, the procedures employed are very similar to those described above for individual 
macromolecules. One apparently important difference is the ultimate goal. In the case of 
biotherapeutics, one wishes to keep immunogenicity to a minimum. In contrast, we desire to maintain an 
optimal immunogenicity for vaccines. Fortunately, however, both states can be achieved in the same 
manner, namely, by maintaining a particular structure (typically the native one) both in vivo and during 
long-term storage. Thus, the immediate relevance of the discussion in the preceding sections should be 
evident. What about complex vaccines such as attenuated viruses87? In such cases, it is still often 
possible to treat them as physiochemical systems. One must first isolate the virus in purified (i.e., >90%) 
form. They can then be subjected to the various stresses as described above and analyzed by the same 
physical and chemical methods. In this case, however, the resultant signals are the sum of the signals 
from all of the component viral proteins and nucleic acids weighted by the relative amount of each 
macromolecule and their individual signal intensities. In the case of many viruses, the measured 
experimental results will primarily reflect viral coat proteins as well as the integrity of the viral particle. If 
the rate-limiting degradation events are reflected by changes in the properties of components with large 
contributions to observed signals, the formulation methods described in the previous sections may well 
be effective. In many cases, however, live attenuated viruses are needed for efficacious vaccines. In 
fact, these live entities may constitute a very small minority of the total viral particles in a preparation. It 
is frequently the case, however, that all of the viral particles in such a mixture undergo the destabilizing 
changes of interest so that physical and chemical methods can still be used in accelerated stability 
studies. This is because the events that originally inactivated the majority of the viruses are distinct from 
those that are relevant to long-term stability studies (the initial inactivating events often occur during the 
cell culture process as is evident from kinetic studies). A second problem is that many vaccines are now 
used in combination form (measles, mumps, rubella (MMR); diphtheria, tetanus, pertussis (DPT); 
etc.).144 In such cases, the individual components must be studied separately and stabilizers identified 
for each individual component. Mixtures of stabilizers can then be used to address individual problems. 
Such approaches can also be applied to VLPs, DNA vaccines containing cationic delivery vehicles, and 
even entire bacterial cells. The latter is again possible if a critical event in bacterial integrity can be 
detected during accelerated stability testing. Nevertheless, critical physical and/or chemical degradation 
events may not be detectable in complex vaccines. In such cases, a trial and error (empirical) method 
must be used. One then usually employs an animal model (most commonly mice) with maintenance of 
immunogenicity as judged by stimulation of specific antibody levels (less commonly cytokine 
production). This is usually done by various types of ELISA assays. Selection of potential excipients is 
based on the principles outlined above with GRAS agents screened as potential stabilizers. In the case 
of live antigens such as attenuated viruses, cellular responses may also be measured because of the 
essential nature of the replicative states. Thus, vaccines such as those for measles can have their ability 
to kill sensitive cells used as a criterion for efficacy using plague assays. 
Another complication is the use of adjuvants with weakly immunogenic antigens such as monomeric 
recombinant proteins. The most commonly used adjuvants are the aluminum salts. Although only 
effective at enhancing humoral (antibody) responses, their well-established safety and efficacy profiles 
have resulted in their widespread use. Aluminum salts are usually used in the form of aluminum 
hydroxide and aluminum phosphate, the former positively charged at neutral pH, the latter negatively 
charged under these conditions. A general principle in the use of these adjuvants is that antigens must 
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be adsorbed to the surface of these particulate salts for them to be effective at enhancing immune 
responses. Thus, the first step in their formulation is to perform binding studies of antigens to their 
surface (Fig. 21-35). This is simply done by adding incremental amounts of antigens to aluminum salts, 
incubating for a short period, followed by separation of unbound antigen from antigen/aluminum salt 
complexes by centrifugation. The amount of unbound antigen is then measured (typically by optical 
absorbance or a dye-binding method) and the amount of antigen bound determined by subtraction from 
the amount added. The general rule is that negatively charged antigens bind to the positively charged 
aluminum hydroxide and positively charged antigens 
P.558 
 
to the negatively charged aluminum phosphate. Typical formations contain a milligram or less of 
aluminum with the amount of antigen more variable but typically in the range of a few micrograms to 
hundreds of micrograms. The charge on the antigen is usually estimated from its isoelectric point. 

 

Fig. 21-35. A representative binding isotherm of a vaccine protein to an aluminum 

salt adjuvant. In this case, the protein is negatively charged (it has a low pI) and binds 

well to positively charged aluminum hydroxide (squares). In contrast, it binds poorly 

to negatively charged aluminum phosphate (triangles). 

Suspensions of aluminum salts are optically opaque. Thus, methods that can be used to examine 
adsorbed proteins are more limited than those available for solution studies. Several methods are 
available, however, to examine proteins and other macromolecular systems adsorbed to aluminum salts 
adjuvants. For example, fluorescence methods can still be used. Sometimes enough light can still 
penetrate and exit such suspensions, sufficient for emission spectra to be obtained. If this is not the 
case, emission can be measured off the surface of the sample by examining emission at a lower angle 
(e.g., 45°–60°). This is known as front face fluorescence. As discussed earlier, both FTIR (in ATR and 
DRIFT modes) and Raman spectroscopy can be used in highly scattering samples. Thus, secondary 
structure information can be obtained by analysis of amide bands by both techniques. The problem of 
light scattering can be avoided entirely by the use of DSC since this is a thermal technique. The latter 
methods may not be sensitive enough to detect small amounts of absorbed antigens but fluorescence is 
usually sensitive enough for such applications. Effects of temperature and pH can be analyzed but it 
must be shown that the antigen remains adsorbed to the adjuvant surface under these conditions. 
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Alternatively, the antigen can be removed from the surface and then examined. This can often be done 
by low pH, high salt concentration, or treatment with an agent that dissolves the adjuvant (e.g., citrate) 
or a reagent that weakens antigen/ adjuvant interactions such as low concentrations of urea or 
guanidine hydrochloride (high concentrations cannot be used because they usually disrupt antigen 
structure). Although the interactions between antigen and adjuvant often contain a major electrostatic 
component, they may also involve apolar and van der Waal forces among other types of weak 
noncovalent interactions. A mechanism known as ligand exchange may also occur.145 Unfortunately, it 
is not uncommon for antigens to be difficult or impossible to remove. This is especially the case after 
long storage times where the antigen may undergo structural changes as it optimizes its interaction with 
the aluminum salt surface. In fact, it is often found that antigens are destabilized when they interact with 
aluminum salts.146 This is typically manifested by a lowering of the Tm measured by DSC, temperature-
dependent fluorescence, or vibrational spectroscopic methods. Fortunately, it turns out that compounds 
that stabilize macromolecules and viruses in solution often also stabilize them on aluminum salt 
surfaces, although usually to a lesser extent.147 One problem with aluminum salt formulations deserves 
special mention. Because aluminum hydroxide is positively charged, it attracts hydroxide anions to its 
surface. This increases surface pH leading to enhanced deamidation of protein antigens. This can often 
be prevented, however, by the inclusion of small (millimolar) amounts of phosphate in the formulation, 
which lowers the surface pH by converting small amounts of the aluminum hydroxide to aluminum 
phosphate. Until recently, it was thought that aluminum salt adjuvants could not be lyophilized. Recent 
work, however, suggests that the presence of carbohydrate stabilizers will permit this to be done148 and 
opens up the possibility of using drying technologies to improve the stability of aluminum salt vaccine 
formulations. 
Although the use of other adjuvants is still in its infancy, it is clear that this is unlikely to be the case in 
the near future. Recent discoveries have found that all mammals possess a series of proteins on the 
surface of immune cells that recognize highly repetitive structures on the surface of pathogens. These 
are now known as “toll” receptors.149 Concomitant with these findings, it was determined that many of 
the adjuvant materials that had been empirically discovered actually acted through binding to these 
receptors. This is in contrast to aluminum salt adjuvants, which appear to work through a variety of other 
mechanisms including depot effects, facilitation of antigen entry into cells, and other specific immune 
effects. A number of toll receptor–based adjuvants have now been tested in human clinical studies. 
While safety still remains an issue, it seems highly probable that many of these as well as non–toll 
receptor adjuvants will become available for human use. For example, a number of synthetic lipid A 
analogues (e.g., monophosphoryl lipid A), saponins, oil-in-water, and water-in-oil emulsions used alone 
and in combination appear quite promising.142,143 In fact, an oil-in-water emulsion containing squalene 
and two surfactants (MF59) is already available in a commercial flu vaccine in Europe. Novel adjuvant 
containing vaccines will present unique formulation problems due to their diversity. It seems probable, 
however, that the methods currently developed in conjunction with new technologies should be able to 
meet these challenges. 
Chapter Summary 

Despite the sophistication of modern biotechnology, significant problems still exist from a 
pharmaceutical perspective. Like all drugs, biotechnology-based pharmaceuticals and 
vaccines produce side effects in their recipients. Mechanism-based toxicity as well as adverse 
effects due to the general physical properties of macromolecules and their complexes remain 
poorly understood. It is clear that animal models are currently inadequate to address such 
problems. Improved animal models (especially disease based) are presently an area of great 
interest as are cell culture systems that might be used to elucidate mechanism-based toxicity. 
One phenomenon of great concern is the immunogenicity of biopharmaceuticals. This can 
lead to both loss of activity through neutralization by antibodies as well as pathological 
immune responses such as allergic reactions. Although immune responses to therapeutic 
proteins often have little if any negative effects, there is a growing concern that this issue 
must be more aggressively addressed. Conversely, both recombinant protein and 
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DNA-based vaccines are usually insufficiently immunogenic. Thus, the development of novel 
adjuvants as well as improvements in the delivery of DNA vaccines is clearly required. With 
regard to the latter, nucleic acid–based therapeutics remain inadequately developed and 
understood, necessitating a greater emphasis on pharmaceutical aspects of their behavior 
and delivery. 
In general, the precise relationships between the structure and behavior of biomolecules in 
both the solution and solid state are still poorly understood. In many ways, this remains a key 
to the successful development of biopharmaceuticals from a process, analytical, and 
formulation perspective. As discussed above, the role of protein dynamics in each of these 
areas has yet to be definitively explored. One aspect of this poor understanding is a lack of 
availability of potential stabilizers for use as excipients in biopharmaceutical and vaccine 
formulations. The GRAS list is, in fact, rather limited and offers a quite restricted number of 
options to the formulation scientist. As our understanding of biomolecular structure increases, 
however, we can expect that a combination of rational design and HTP screening methods 
should allow us to greatly expand stabilizer options after appropriate safety considerations. 
A practical problem with biopharmaceuticals is their manufacture at a scale sufficient for use 
in large populations. For example, in the case of monoclonal antibodies it appears that there 
is insufficient manufacturing capability if a significant number of such proteins currently in 
clinical trials come to fruition as marketed pharmaceuticals. The manufacture of live agents 
such as viruses has always proven to be challenging at an industrial scale. Thus, the 
development of new technologies to aid in the high-level manufacture of biopharmaceuticals 
is an important goal of modern biotechnology. 
As biotechnology-based products begin to go off patent, the possibility and then the reality of 
less expensive versions of these drugs and vaccines has become apparent.150,151The word 
“generic” is not generally applied to these agents because they are unlikely to be physically, 

biologically, and functionally equivalent to the original product. Both the terms “follow-on 
biologics” and “biosimilars” have been applied to such drugs. The major area of controversy 

with follow-on recombinant proteins has been the extent to which extensive clinical trials are 
necessary to ensure their safety and efficacy. In particular, are physical and chemical 
comparisons of biosimilars to the original innovator drugs sufficient to ensure these critical 
properties? A recent detailed study comparing the properties of EPO products from a wide 
variety of different sources152 emphasizes striking differences based on manufacturing 
process and company of origin raising significant scientific, legal, and regulatory concerns. 
Although at its beginnings, the use of biotechnology (e.g., fermentation, industrial enzymes, 
etc.) produced little public concern, this changed dramatically when it began to be used to 
genetically manipulate plants and animals. Scientists themselves expressed concerns that it 
might be difficult to predict the result of the alteration and insertion of new genes into novel 
cellular environments. At the public level, this went so far as to imagine the creation of 
genetically altered organisms with unique pathological characteristics and plants, which might 
spread deleterious genes into nontarget plants. All of the proceeding can and have occurred, 
but so far without any significant disasters. Initially, we perhaps forgot that plant and animal 
breeders have been doing the same thing for hundreds if not thousands of years with 
essentially positive results. While the potential for problems and negative public perceptions 
remain real, the success of modern biopharmaceuticals and vaccines has maintained forward 
momentum in the use of these technologies. Several recent problems, however, illustrate 
continued negative perceptions in a minority of the population. For example, the use of stem 
cells derived from embryos to treat various diseases has raised much controversy due to the 
source of the cells.153 This is, however, more of an ethical issue rather than a scientific one. 
Claims that the measles vaccine or the compound thimerosal (a mercury-containing 
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preservative) in certain vaccines causes autism in children are completely unsubstantiated by 
scientific evidence but have resulted in significant public concern, nevertheless.154,155 Such 
issues will no doubt continue to be raised but do not seem a major impediment to progress in 
biotechnology. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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Recommended Reading 
It is recommended that the interested student view three excellent films, which provide a nice overview 
of the history of biotechnology. These are “Glory Enough for All” (the discovery of insulin), “Double 

Helix” (the discovery of the structure of DNA), and “And the Band Played On” (the early days of the 

AIDS epidemic). In dramatic form, these three films well illustrate the promise and problems of 
biotechnology. 
Chapter Legacy 

Sixth Edition: published as Chapter 21 (Pharmaceutical Biotechnology). This is a new 
chapter written by Charles Russell Middaugh and Teruna J. Siahaan. 
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22 Oral Solid Dosage Forms 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Understand the basic concepts and challenges associated with the development of 
an oral solid dosage form. 

2. Describe the Biopharmaceutics Classification System (BCS) for drugs and 
understand how it may be applied to oral dosage form development. 

3. Understand the importance of solubility and permeability in oral drug delivery. 
4. Describe preformulation development activities and their importance in developing a 

drug product. 
5. Apply basic physicochemical principles to active pharmaceutical ingredients. 
6. Identify the roles that pharmaceutical excipients play in product development. 
7. Understand the important physical, chemical, and mechanical properties of 

pharmaceutical materials and their relevance in formulation development. 
8. Describe the common unit processes used to manufacture oral solid dosage forms. 
9. Understand the importance and role of oral dosage form performance tests in 

ensuring product quality and performance. 

Introduction 
This chapter, in many ways, is the culmination of those that preceded it. Physical pharmacy and 
pharmaceutical science is the science of the delivery of active pharmaceutical ingredients (APIs) to the 
target site to achieve the desired pharmacological effect. For the drug to exert its biological effect, it 
must be released from the dosage form, permeate through biological membranes, and reach the site of 
action. Successful design and delivery of APIs requires a sound fundamental understanding of the 
diverse array of scientific topics presented in this text. The goal of this chapter is to provide an 
introduction to how these topics are integrated into dosage form design, product development, and 
manufacturing activities. The focus of this chapter is on oral drug delivery, and in particular solid dosage 
forms. Table 22-1 shows that a majority of pharmaceutical products, 60% or more, are offered as solid 
dosage forms. However, many of the basic principles apply to the design and manufacture of all types of 
pharmaceutical dosage forms. The pharmaceutical industry is, after all, a drug product industry, not a 
drug industry. 
Gastrointestinal Absorption 
As the focus of this chapter is on oral dosage forms, a brief review and understanding of the 
gastrointestinal tract and drug absorption is beneficial. Additional discussion of details of the physiology 
and absorption of drugs from the gastrointestinal (GI) tract has been presented in chapters on 
Biopharmaceutics (Chapter 12) and Drug Delivery Systems (Chapter 23). 
The gastrointestinal tract is depicted in Figure 22-1 and some details of the dimensions and volumes 
and residence time are shown in Table 22-2. The oral cavity provides the first contact with biological 
fluids where mastication and mixing with saliva takes place and digestion begins. As ingested 
components are swallowed, they move through the esophagus into the stomach. The stomach provides 
several major functions. It processes food into chyme with vigorous contractions that mix the ingested 
contents with gastric secretions that continue digestion. It also regulates the input of these liquefied 
components into the intestinal tract and serves as a major site of chemical and enzymatic breakdown. 
As stomach contents empty, the chyme enters the small intestine where the absorption of a majority of 
drugs and nutrients takes place. 
Absorption of drugs and nutrients can occur from each section of the small intestine and colon. The 
small intestine is partitioned into three sections: the duodenum, the jejunum, and the ileum. For most 
drugs, the duodenum and the proximal jejunum are the best sites of absorption as they have the highest 
absorptive surface area and often the highest concentration of dissolved drug is achieved in the lumen 
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of this region. Small intestinal absorption is now understood to be dramatically affected by regional 
differences in the distribution of transporters, enzymes, and greater detail is provided on these aspects 
in Chapter 12 on Biopharmaceutics. Significant drug absorption from the colon may also occur although 
the absorptive surface area is substantially less than that of the small intestine.1,2However, drug may 
remain in the colon for 12 to 72 hr and this longer residence time makes the colon an effective site of 
drug absorption in some cases. Drug absorption may also occur from the oral cavity3,4,5 or, rarely, the 
stomach depending upon the drug and dosage form properties, which must be conducive to absorption 
from these sites.6 The low absorptive surface area and typically short residence time of the stomach 
limits absorption from this site. 
Biopharmaceutics Classification System 
An important goal of pharmaceutical formulation development is to ―facilitate‖ drug absorption and 

ensure that an 
P.564 
 
adequate amount of drug reaches the systemic circulation. Many orally administered drugs enter 
systemic circulation via a passive diffusion process through the small intestine, although paracellular 
and transport-mediated absorption also occurs and our understanding of these absorption mechanisms 
continuous to grow. The Biopharmaceutics Classification System (BCS) is a tool to categorize 
compounds according to two key parameters: solubility and permeability.7 Although the BCS does not 
address other important factors such as the drug absorption mechanism and presystemic degradation, it 
nonetheless provides a useful framework for identifying potential drug delivery challenges. It also 
facilitates the identification of appropriate oral dosage forms and strategies to consider that provide 
opportunities to overcome physicochemical limitations. According to the BCS, compounds are grouped 
into four classes according to their solubility and permeability as shown in Table 22-3. A detailed 
analysis of the transport and absorption of drugs is described earlier in this book and the student is 
directed there for a detailed discussion of the various aspects to relate to intestinal absorption. 

Key Concept 

Biopharmaceutics Classification System 

The Biopharmaceutics Classification System (BCS) is a scientific framework for classifying 
drug substances based on their intestinal permeability and aqueous solubility. When 
combined with drug product dissolution, the BCS takes into account three of the most 
important factors that influence the rate and extent of drug absorption for immediate release 
dosage forms: intestinal permeability, solubility, and dissolution. The framework of the BCS 
may be used as a drug development tool to improve product development efficiency, identify 
necessary clinical testing, and establish useful in vitro evaluation strategies. 

The basis of the BCS is rooted in the understanding that two very critical parameters affecting drug 
absorption are solubility and permeability. The importance of these two properties in determining oral 
absorption can be seen from the following equations describing the flux of drug across the intestinal 
membrane. 

Table 22-1 Most Commonly Available Pharmaceutical Dosage Forms1
,
2 
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Dosage Form 

WHO List of Essential Medicines 

(2007) 

Top 100 Best Selling Drugs 

in 2007 

Tablet 48% 63% 

Capsule 11% 3% 

Injection 38% 27% 

Oral 

liquid 

13% 2% 

Topical 4% 3% 

 

 

Fig. 22-1. Human digestive system. 

From Fick's first law (also see equation 11-2), the flux of drug through a unit cross section (in other 
words, a cm2 surface area) of intestinal membrane can be described by the following equation: 
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where Dm is the diffusion coefficient of the drug, C is the concentration on the luminal side (1) and 
serosal side (2) of the membrane, and x is the distance of movement perpendicular to the membrane 
surface. This equation can be simplified further as (see also equation 11-11): 

 

Table 22-2 Approximate Volume, Residence Time, and Dimensions of the 

Human Gastrointestinal Tract8
,
9

,
10

,
11

,
12 

  

Fluid Volume 

(mL) 

Residence Time 

(hr) 

Diameter 

(cm) Length (cm) 

Oral 

cavity 

1       

Stomach 15–250 0.25–3   15 × 30 

Duodenum     3–4 25–30 

Jejunum 22–300 2–4 3–4 200–

250 

Ilium     2–3.5 300–

350 

Cecum     7–9 9–12 

Colon 2–100 12–72 5–6 85 

 

P.565 
 
 

Table 22-3 The Biopharmaceutics Classification System7 
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Class I Class II Class III Class IV 

High solubility Low solubility High solubility Low solubility 

High 

permeability 

High 

permeability 

Low 

permeability 

Low 

permeability 

 

where hm is the membrane thickness (also see equation 12-11). 
Note that C1 and C2 are the concentrations of drug inside the membrane, but since these are very rarely 
known or measured, a distribution coefficient, K, is typically introduced into this equation to transform 
the concentrations to the respective aqueous concentrations on the bulk aqueous donor, Cd, and 
receiver, Cr, sides. The distribution coefficient reflects the tendency of the drug to partition into the 
membrane and is the ratio of the drug concentration in the membrane (C1, C2) to that in the aqueous 
phase immediately adjacent to the membrane (Cd, Cr). A lipophilic drug would have a distribution 
coefficient greater than 1 since biological membranes tend to be lipophilic. 

 
Equation (22-2) can then be rewritten as: 

 
where Pm is the permeability of the biological membrane, and Cdand Cr are the aqueous concentrations 
of drug in the intestinal lumen (donor side) and serosal side (e.g., blood), respectively. 
Finally, if the drug concentration is much lower on the serosal side of the intestinal membrane as is 
usually the case (often referred to as sink condition), equation (22-4) can be approximated by the 
following: 

 
Equation (22-5) represents the essential point of the BCS that drug absorption (i.e., the flux) is 
determined by two factors, the membrane permeability, Pm, and the concentration of drug in the lumen 
of the intestine, Cd. 
With the presence of solid drug in the intestine, the concentration of drug dissolved in the intestinal 
tract, Cd, may approach or equal its aqueous solubility if dissolution of drug from the dosage form is 
sufficiently rapid that it is not rate limiting. From equation (22-5), it is apparent that the flux of drug 
across the intestine is proportional to the aqueous solubility in the lumen, Cd. For drugs that have high 
intestinal membrane permeability, Pm, the aqueous solubility may be the limiting factor for adequate 
drug flux (BCS Class II). Where the membrane permeability is low, it may be the factor limiting drug 
absorption (BCS Class III). BCS Class I compounds are the least problematic; both dissolution and oral 
absorption are generally not major challenges. Finally, Class IV compounds with poor solubility and poor 
permeability are very difficult compounds to develop using conventional oral dosage form strategies. 
Utilization of BCS has led to extensive evaluation of drugs and drug products that now impact regulatory 
decisions on the type and level of testing necessary as, for example, to ensure equivalence of dosage 
forms. The BCS has evolved over the past decade to provide additional guidance on classification of 
products with respect to solubility, permeability, and even dissolution. In recent guidelines issued by the 
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Food and Drug Administration (FDA), a drug substance is considered highly soluble when the highest 
dose strength is soluble in <250 mL water (e.g., a glass of water) over a pH range of 1–7.5. Since 
dissolution rate is closely tied to solubility, FDA also provides additional guidance on dissolution criteria: 
a drug product is considered to be rapidly dissolving when >85% of the labeled amount of drug 
substance dissolves within 30 min using United States Pharmacopeia (USP) apparatus I or II in a 
volume of ≤900 mL. Finally, a drug is considered highly permeable when the extent of absorption in 
humans is determined to be >90% of an administered dose, based on mass-balance or in comparison to 
an intravenous reference dose.13 Early in product development the extent of human absorption may not 
be known and alternative methods of characterizing intestinal permeability may be considered. These 
include in vivo intestinal perfusion studies in humans, in vivo or in situ intestinal perfusion studies in 
animals, in vitro permeation experiments with excised human or animal intestinal tissue, or in vitro 
permeation experiments across epithelial cell monolayers.7,13,14,15,16,17 
Even though the BCS was designed to guide decisions with respect to in vivo and in vitro correlations 
and the need for bioequivalence studies13 (see Chapter 12), it can also be used to categorize the types 
of formulation strategies that might be pursued.18 Table 22-4summarizes some dosage form options 
that may be considered for each biopharmaceutics class. Each class of compound, and especially 
Classes II, III, and IV, requires different dosage forms to deal with the challenges associated with 
solubility or permeability limitations. Characterizing the properties of the drug, also known as 
preformulation characterization, provides the information necessary to classify drugs and identify 
suitable dosage forms to address drug delivery issues. Back in an era when local pharmacies offered a 
delivery service, drug delivery was described as ―a boy on a bicycle.‖ (J. Robinson, Oral 

Communication, 1995) In a way, drug delivery has not changed much. The goal of drug delivery today is 
still to efficiently and 
P.566 
 
effectively provide the medicine where it is needed and when it is needed. 

Table 22-4 Oral Dosage form Options Based on Biopharmaceutics Classification 

System18 

Class I: High Solubility, High 

Permeability 

Class II: Low Solubility, High 

Permeability 

 No major challenges for 

immediate-release dosage 

forms 

 Controlled release dosage 

forms may be needed to 

slow drug release from the 

dosage form and reduce 

absorption rate. 

Formulations designed to overcome 

solubility or dissolution rate 

problems 

 Particle size reduction 

 Salt formation 

 Precipitation inhibitors 

 Metastable forms 

 Solid dispersion 

 Complexation 

 Lipid technologies 

 Cocrystals 
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Class III: High Solubility, Low 

Permeability 

Class IV: Low Solubility, Low 

Permeability 

Approaches to improve 

permeability 

 Prodrugs 

 Permeation enhancers 

 Ion pairing 

 Bioadhesives 

 Lipid technologies 

 Formulations often use a 

combination of approaches 

identified in Class II and 

Class III to overcome 

dissolution and permeability 

problems. 

 Strategies for oral 

administration are not often 

feasible. 

 Often use alternative delivery 

methods, such as intravenous 

administration. 

 

Example 22-1 

Chloroquine phosphate has the following physicochemical and biological 
properties.19 Although the FDA has required in vivo documentation of bioavailability (BA) and 
bioequivalence (BE) for many drug products, in some cases FDA has allowed the use of in 
vitro methods for documenting BA and BE. Obtaining a biowaiver for a drug product based on 
in vitro BA and BE very often simplifies the application process and shortens the time to 
market. An FDA guidance describes recommendations for requesting waivers of in vivo 
BA/BE studies on the basis of the solubility and intestinal permeability of the drug substance 
and dissolution characteristics of the drug product, based on the biopharmaceutics 
classification system.13 
Using chloroquine phosphate as an example, is it a BCS Class I compound and therefore a 
suitable candidate for a BCS Biowaiver? 

 Aqueous solubility: Greater than 100 mg/mL in water 
 Dose: 150 mg 
 Human oral absorption: Rapid and almost complete. Bioavailability = 89% with high 

variability (67%–114%) 

The aqueous solubility is high, although data over the entire pH range of interest (pH = 1–7.5) 
are lacking. One dose of 150 mg will dissolve in less than 2 mL of water. This suggests that 
chloroquine phosphate can be classified as a BCS high-solubility compound. The human 
absorption data from commercially available products indicate that the drug is well absorbed 
since the bioavailability is 89%. The FDA guidance defines ―high permeability‖ as not less 

than 90% absorbed. While this falls slightly below the FDA guidance criteria, recent 
discussions have indicated that a minimum value of bioavailability can be lowered to 
85%.17,20 This information supports the classification of chloroquine phosphate as a BCS 
Class I compound with high solubility and permeability and it would be a suitable candidate 
for a Biowaiver. 
An oral solid dosage form of chloroquine phosphate should conform to the following:19 
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 Utilize standard excipients. 
 Comply with the requirements for ―rapidly dissolving‖ at pH 1.0, pH 4.5, and pH 6.8.13 
 Comply with the similarity requirements for comparative dissolution testing versus the 

reference product at pH 1.0, pH 4.5, and pH 6.8.13 

Preformulation Characterization 
While hundreds of thousands of compounds are synthesized and evaluated every year in the 
pharmaceutical industry, very few make it to clinical testing and fewer still make it to the market. There 
are many reasons for failure. Because of the challenges associated with drug discovery and 
development, the opportunity to identify and develop a safe and effective product benefits greatly from 
the integration of pharmacology, chemistry, toxicology, metabolism, clinical research, thorough 
physicochemical characterization and, very importantly, dosage form development. The ability to identify 
a suitable dosage form is critical to success. The dosage form must deliver the drug to the desired site 
at the desired concentration (often considered the blood) for the desired duration. Finally, the dosage 
form must be robust and manufacturable! 
To initiate formulation development activities, that is, the identification of an effective drug delivery 
system—important physical, chemical, and even mechanical properties (physicochemical or 
physicomechanical properties) as 
P.567 
 
well as drug absorption (permeability) properties need to be determined. 

Key Concept 

The Pharmaceutical Industry 

The pharmaceutical industry is a drug product industry, not a drug industry. The 
pharmaceutical industry is highly regulated and much of that regulation is focused on 
ensuring a safe, effective, high quality, and consistently performing product. The active 
ingredient (the drug) is obviously critically important, but it is only in the context of a drug 
product (a dosage form) that the drug can be safely administered to the patient with the 
confidence that it will have the desired performance. It is the drug product that is of true value 
to the patient. 

Evaluation of these properties during the drug discovery and development process, known as 
preformulation, help identify the most promising molecules for development and also provide key 
information for scientific dosage form design and development. Dosage forms that make sense to 
consider are dictated to a large extent by the molecular, particle, and bulk powder properties. 
Typically, for oral dosage forms, crystalline drug forms are preferred. Common solid forms include 
crystalline polymorphs, hydrates, and crystalline salts of the active ingredient. This is especially true for 
solid dosage forms such as tablets and capsules since the solid form of the active ingredient may be a 
significant component in the dosage form and will impact manufacturing, dosage form performance and 
stability. Ideally, the most thermodynamically stable form is chosen as it will generally provide the 
greatest physical and chemical stability. Therefore, early identification and selection of the solid form to 
be used in development becomes paramount as it has a direct impact on physicochemical and drug 
delivery attributes. 
Many of the physicochemical properties that have been discussed in this text are, in fact, dependent on 
the solid form. Aqueous solubility, hygroscopicity, and chemical stability are three obvious examples 
where very large differences may exist between solid forms of the same drug molecule. It is therefore 
important to rigorously characterize solid forms early in the discovery/development process. Selection of 
the right solid form can allow the pharmaceutical scientist to design the dosage form with optimal 
physicochemical, manufacturing, and dosage form performance properties. A thorough understanding of 
solid forms maximizes the opportunity to understand, control, and predict the behavior of a compound in 
the solid state, identify the appropriate dosage forms to consider, and develop a marketable product. 
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The reader is directed to Chapter 2: States of Matter and the literature for additional discussion of 
crystalline solids and polymorphism.21,22,23,24 

Key Concept 

Preformulation characterization 

Preformulation characterization is the evaluation of those properties of the drug substance, 
and the solid forms in which it exists, that can impact drug delivery and drug product 
performance. Every form of a drug substance has unique physical and chemical properties 
that must be evaluated and understood to ensure the successful development of a safe and 
effective drug product with consistent drug delivery performance. 

Example 22-2 

An antiviral compound, ritonavir, marketed in a semisolid capsule as Norvir (Abbott) began to 
demonstrate physical instability and dissolution failures in 1998.21,25 Upon investigation, the 
failures were shown to be caused by the crystallization of a new and previously unknown 
polymorph (Form II) in the semisolid capsule matrix that was approximately half the solubility 
of the original polymorphic form (Form I). The new form II, with lower solubility, was 
supersaturated in the formulation and upon storage, precipitated out in the capsule. The 
formation of this new polymorph was surprising since the semisolid dosage form using Form I 
showed no evidence of Form II formation on stability even after 24 months.25 The lower 
solubility polymorph exhibited slower dissolution which compromised dosage form 
performance. The semisolid capsule was withdrawn from the market and an alternative 
dosage form, a soft-gel capsule formulation with adequate stability, was developed and 
marketed. 

The physicochemical characterization described in this chapter and indeed throughout this text can be 
applied to each of the forms that have been identified and isolated as each solid form will have a unique 
set of physicochemical and mechanical properties. Careful consideration of these properties will 
inevitably lead to the identification of better lead compounds and forms with which to enter development. 
Some of the key physical, chemical, mechanical, and biological properties that should be of interest to 
the development team and the pharmaceutical scientist are listed inTable 22-5. Each of these physical, 
chemical, mechanical, and biological properties can have a significant effect on the final dosage form 
design, performance, manufacturing, or stability and these are discussed in greater detail in the 
following sections. It should be kept in mind that many of these properties are dependent on the solid 
form and complete characterization of each of the most relevant solid forms is needed to 
P.568 
 
provide a complete physicochemical picture. Because of its importance in product development, 
extensive discussion of physicochemical characterization to support product development is available in 
many reference books.26 

Table 22-5 Important Physical, Chemical, Mechanical, and Biological Properties 

for Oral Drug Delivery 
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Physical properties Chemical properties 

   Polymorphic form(s) 

   Crystallinity 

   Melting point 

   Particle size, shape, surface 

area 

   Density 

   Hygroscopicity 

   Aqueous solubility as a 

function of pH 

   Solubility in organic 

solvents 

Ionization constant (pKa) 

   Solubility product (Ksp) of salt forms 

   Chemical stability in solution 

   Chemical stability in solid state 

   Photolytic stability 

   Oxidative stability 

   Incompatibility with formulation 

additives 

   Complexation with formulation 

additives 

   Solubility in presence of surfactants 

(e.g., bile acids) 

   Dissolution rate 

   Wettability 

   Partition coefficient (octanol–water) 

Mechanical properties Biological properties 

Elasticity 

   Plasticity (hardness) 

   Bonding 

   Brittleness 

   Viscoelasticity 

Membrane permeability 

Absorption, distribution, metabolism, 

excretion (ADME) 

Metabolism: Gut, first pass, systemic 

 

Physical Properties 
Melting Point 
Melting point is defined as the temperature at which the solid phase exists in equilibrium with its liquid 
phase. As such, the melting point is a measure of the ―energy‖ required to overcome the attractive 

forces that hold the crystal together. Melting point determination is of great value and can successfully 
be accomplished by any of several commonly used methods including visual observation of the melting 
of material packed in a capillary tube (Thiele arrangement), by hot-stage microscopy, or other thermal 
analysis methods such as differential scanning calorimetry. Careful characterization of thermal 
properties such as that possible with differential scanning calorimetry provides an opportunity to assess 
and quantify the presence of impurities as well as the presence or interconversion of polymorphs and 
pseudopolymorphs. Melting points and the energetics of desolvation can also be evaluated, as can the 
enthalpies of fusion for different solid forms. Chapter 2, States of Matter, provides additional discussion 
of melting point and thermal analysis. 
As a practical matter, low melting materials tend to be more difficult to handle in conventional solid 
dosage forms. Melting points below about 60°C are generally considered to be problematic and melting 
points above 100°C are considered desirable. Temperatures in conventional manufacturing equipment 
such as high shear granulation and conventional tablet machine equipment may exceed 40°C, whereas 
fluid bed granulation and drying can involve temperatures approaching or exceeding 80°C. While 
amorphous solids do not have a distinct melting point, they undergo softening as temperatures 
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approach the glass transition temperature. Furthermore, common handling procedures (e.g., weighing, 
processing) can be difficult for low melting materials. Alternative dosage forms (liquid type) may be 
required for liquid or low melting materials. A comparison of melting points of polymorphs also provides 
a perspective on the relative stability of polymorphic forms.24 
Aqueous Solubility 
The importance of aqueous solubility in determining oral absorption can be seen from equation (22-5). 
From this equation it is apparent that the flux of drug across the intestinal membrane is proportional to 
the concentration of drug in solution, and more specifically, the nonionized drug concentration in 
solution. The aqueous solubility reflects this and an understanding of aqueous solubility, pH 
dependence, and the impact of biological fluid components is important in the physicochemical 
characterization of APIs. 
Drug solubility may be determined experimentally by adding excess solid drug to well-defined aqueous 
media and agitating until equilibrium is achieved. Appropriate temperature control, solute purity, 
agitation rate, and time as well as monitoring of solid phase at equilibration are needed to ensure high-
quality solubility data is obtained.27 A wide variety of techniques have been proposed for estimating 
aqueous 
P.569 
 
solubility. They can broadly be classified as (a) methods based on group contributions, (b) techniques 
based on experimental or predicted physicochemical properties (e.g., partition coefficient, melting point), 
(c) methods based on molecular structure (e.g., molar volume, molecular surface area, topological 
indices), and (d) methods which use a combination of approaches.27,28,29 While all of the methods 
have some theoretical basis, their use in predicting aqueous solubility is largely empirical. Detailed 
discussions on solubility predictions may be found in the literature and in Chapter 9of this book. Each 
predictive approach has advantages and has been successfully applied to a variety of classes of 
compounds to develop and test the accuracy of solubility predictions. Usually, approaches that are 
developed from structurally related analogues yield more accurate predictions.29 
Aqueous solubility is, in a simple sense, determined by the interaction of solute molecules in the crystal 
lattice, interactions in solution, and the entropy changes that occur as solute passes from the solid 
phase to the solution phase. For example, the pioneering work of Yalkowsky and Valvani30 illustrates 
the importance of two physical properties (melting point and lipophilicity) on solubility. They successfully 
estimated the solubility of rigid short-chain nonelectrolytes with the following equation: 

 
where S is the molar solubility, P is the octanol–water partition coefficient, and MP is the melting point of 
the compound. Equation(22-6) provides insight into the relative importance of crystal energy (melting 
point) and lipophilicity (partition coefficient). Increasing either lipophilicity, P, or melting point, MP, results 
in decreased predicted aqueous solubility, S. This semiempirical approach has been applied and refined 
for a variety of solutes and classes of compounds.31,32,33,34,35 From equation (22-6), one can see that 
the octanol–water partition coefficient is a significant predictor of aqueous solubility. A 1-log unit change 
in aqueous solubility can be expected for each log unit change in partition coefficient. By comparison, a 
melting point change of 100°C is required to have the same 1-log unit change on solubility. The 
Yalkowsky–Valvani and similar equations can be used to predict aqueous solubility often within a factor 
of 2, using physical, chemical, and molecular properties. 
Example 22-3 

Caffeine (log P = -0.2, MP = 238°C) and cortisone (log P = 1.47, MP = 222°C) have similar 
melting points but substantially different log P values. Use equation (22-6) to estimate the 
molar aqueous solubility of each. 
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These two compounds illustrate the impact of partition coefficient on aqueous solubility. 

Example 22-4 

Triazolam (log P = 2.42, MP = 224°C) and ethyl-p-hydroxybenzoate (log P = 2.47, MP = 
116°C) have similar log P values but substantially different melting points. Use equation (22-
6) to estimate the molar aqueous solubility of each. 

 
These two compounds illustrate the impact of melting point on aqueous solubility. 

Aqueous solubility prediction continues to be an active area of research with a wide variety of 
approaches being applied to this important and challenging area and additional discussion of solubility 
can be found in Chapter 9 of this book. 
Dissolution Rate 
Aqueous solubility can also play a critical role in the rate of dissolution of drug and release from dosage 
forms. The rate at which a solute dissolves was described in quantitative terms by Noyes and Whitney in 
189736 and the equation can be written in the following way (see also equation 13-2): 

 
where M is the mass of solute dissolved in time t, dM/dt is the rate of dissolution, D is the aqueous 
diffusion coefficient, S is the surface area of the exposed solid, h is the aqueous diffusion layer 
thickness which is dependent on viscosity and agitation rate, Cs is the aqueous drug solubility at the 
surface of the dissolving solid, and Cis the concentration of drug in the bulk aqueous phase. When C ~ 
0, this is commonly referred to as sink conditions and equation (22-7)can be simplified to the following 
(see also equation 13-7). 

 
From the Noyes Whitney equation, dissolution rate is seen to be directly proportional to the aqueous 
solubility, Cs, as well as the surface area, S, of drug exposed to the dissolution medium. It is common 
practice, especially for low-solubility drugs, to increase dissolution rate by increasing the surface area of 
a drug. This can be done through particle size reduction. If drug surface area is too low, the dissolution 
rate may be too slow and absorption can become dissolution rate limited. For high-solubility drugs, the 
dissolution rate is generally fast enough that a high drug concentration is achieved in the lumen and 
extensive particle size reduction is not needed. Use of high-solubility salts is commonly undertaken to 
facilitate rapid dissolution in the GI tract. 
Although the mathematics becomes somewhat more complicated, dissolution of particles may also be 
modeled and this provides greater insight into the interplay of solubility and drug particle size on 
dissolution rate. For a drug powder consisting of uniformly sized, spherical particles, it is possible 
P.570 
 
to derive an equation that expresses the rate of dissolution. A detailed discussion and derivation of the 
following equation is provided in Chapter 13 (equation 13–20) and will not be repeated here. The 
resulting equation that predicts the change in particle radius with time is: 
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Fig. 22-2. Relationship between aqueous solubility and maximum spherical particle 

diameter that will dissolve in 30 min. 

 
where r is the radius of the dissolving particle at time t, r0 is the initial radius of the particle, D is the 
aqueous diffusion coefficient, Cs is the aqueous solubility, and ρ is the particle density. 
The time for complete dissolution, τ, is the time it takes for the initial particle radius to be reduced to zero 
(i.e., set r = 0 in equation 22–9) and is given by: 

 
These equations may be used to make useful predictions about dissolution and the relationship between 
particle size (diameter) and solubility is shown in Figure 22-2. Based on these considerations, the need 
for particle size reduction to achieve adequate dissolution can be made. 
Because pharmaceutical powders are not monodispersed, that is, not all the same size, it is important to 
consider the particle size distribution as well. A few large particles may seriously affect the dosage form 
dissolution rate of a material under some circumstances and more sophisticated mathematical models 
have been developed to address these issues.37,38 As a rough ―rule of thumb,‖ if the particle diameter 

in µm is greater than the solubility in µg/mL, further particle size reduction may be needed to achieve 
adequate dissolution for an immediate release dosage form. 
Example 22-5 

A new drug is under development and the pharmaceutical scientist responsible for designing 
the first clinical formulation must identify the particle size necessary to achieve an acceptable 
rate of dissolution (e.g., complete dissolution in 30 min or less). Based on the 
physicochemical data available, the drug has a constant aqueous solubility of 10 µg/mL in the 
physiological pH range of 1 to 7. Additional information available includes the density of the 
crystalline drug (ρ = 1.52 g/cm

3) and the aqueous diffusion coefficient (estimated D = 9 × 10-

6cm2/sec). 
Estimate the time it would take for particles of 1 µm, 10 µm, and 100 µm in diameter to 
dissolve. 
Use equation (22-10). Note: use consistent units for mass, time, and volume. 
For 1 µm diameter particle τ = (1.52 × (0.5 × 10-4)2)/(2 × (9 × 10-6) × (10 × 10-6)) = 21 sec 
For 10 µm diameter particle τ = 2211 sec = 35.2 min 
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For 100 µm diameter particle τ = 2.1 × 105 sec = 3518 min 
Based on these calculations, the particle size of the drug should be 10 µm or less to achieve 
rapid dissolution. Certainly, a particle size of 100 µm would be too large to achieve rapid 
dissolution. 

Ionization Constant 
Knowledge of acid–base ionization properties is essential to an understanding of solubility properties, 
partitioning, complexation, chemical stability, and drug absorption, and an extensive discussion of ionic 
equilibria is given in Chapter 7. The ionized molecule exhibits markedly different properties from the 
nonionized form. For weak acids, the equilibrium between the free acid, HA, and its conjugate base, A-, 
is described by the following equilibrium equation (see also equation 7-10): 

 
and the corresponding acid dissociation constant is given by: 

 
The equation for a weak base, B, and its conjugate acid, BH+, is described by (also see equation 7-21): 

 
Of particular interest to the pharmaceutical scientist is the impact of pKa on aqueous solubility and 
partitioning (see Chapter 9). Taking a weak acid as an example, the total aqueous solubility, ST, is equal 
to the sum of the ionized and nonionized species concentrations in solution. Assuming that the solution 
is saturated with respect to free acid, the total solubility, ST, can be written (see also equation 10-61): 

 
where the intrinsic solubility of the free acid is Sa. The solubility equation for a weak base is given by: 

 
These equations can be written in log form respectively as: 

 
 

Based on these equations, typical solubility curves are shown inFigure 22-3 for a weak acid and a weak 
base and 
P.571 
 
several significant conclusions and implications are worth pointing out. Taking the free base as an 
example, at pH greater than the pKa, the predominant form present in solution is the nonionized form 
(free base) and the total solubility is essentially equal to the intrinsic solubility, that is, the free-base 
solubility. As the pH decreases below the pKa, a rapid increase in total solubility is observed since the 
ionized form, BH+, is dramatically increasing. In fact, for each unit decrease in pH, the total aqueous 
solubility will increase 10-fold in this region as shown in Figure 22-3. The total solubility will continue to 
increase as long as the ionized form continues to be soluble. Such dramatic increases in solubility as a 
function of pH demonstrate the importance of understanding and controlling solution pH and also offer 
the pharmaceutical scientist a number of possible opportunities to modify the dosage form and factors 
leading to oral absorption properties. It is important to recall, however, that often only the nonionized 
drug is well absorbed. 
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Fig. 22-3. Solubility (µg/mL) versus pH for an acid (intrinsic solubility = 50 (µg/mL) 

and base (intrinsic solubility = 1 (µg/mL) with pKa = 5.0. 

For weak acids, one will observe a rapid increase in total solubility as the pH exceeds the pKa (Fig. 22-
3) since the ionized species concentration, Ac-, will increase with increasing pH. The pharmaceutical 
scientist must understand the solubility properties of both the nonionized species and its corresponding 
conjugate, ionized, form(s) since each may limit solubility. 
From the solubility curves, one can draw conclusions regarding which solid form will exist at equilibrium 
as a function of pH. This basic principle is of significance in vivo since one might imagine dosing 
patients with a soluble salt of a base, which could rapidly dissolve in the low pH of the stomach, but as 
drug in the gastric contents enters the intestine where solution pH approaches neutral, precipitation of 
the insoluble free base could occur. Such changes have been proposed as an explanation for the poor 
bioavailability of highly soluble salts of weak bases. 
Example 22-6 

Kramer and Flynn39 investigated the aqueous solubility of 2-ethyl-2-phenyl-4-(2′-piperidyl)-
1,3-dioxolane and its hydrochloride salt as a function of pH at 30°C in 0.05 M succinate 
buffer. The pKa of the amine functional group was determined to be 8.5, the intrinsic solubility 
of the free base was 2.87 mg/mL, and the solubility of the hydrochloride salt corresponded to 
60 mg/mL. Calculate the solubility of the free base and the hydrochloride salt at pH = 4, 6, 8, 
and 10. 
Using equation (22-17), the solubility of the free base is: 
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Using equation (22-16), the solubility of the hydrochloride salt is: 

 

Hygroscopicity 
Moisture uptake or sorption is a significant concern for pharmaceutical powders. The extent of sorption 
of water depends on the chemical nature of the drug. Two types of moisture sorption are generally 
recognized: physical sorption and chemical sorption. Physical asorption is that which is associated with 
van der Waals forces and is reversible. A graph of the amount of water that is physically sorbed to the 
surface of a solid material as a function of equilibrium water vapor pressure yields an sorption isotherm. 
Greater detail on physical and chemical sorption is provided inChapter 15. In addition to surface 
sorption, water may condense in pores and the reader is referred to Chapter 18 for additional discussion 
of this topic. 
Moisture has been shown to have a significant impact on the physical, chemical, and manufacturing 
properties of drugs, excipients, and formulations. It is also a key factor in decisions related to packaging, 
storage, handling, and shelf life, and successful development requires a sound understanding of 
hygroscopic properties. Moisture sorption isotherms can yield an abundance of information regarding 
the physical state of the solid and the conditions under which significant changes may occur. 
Conversion from an anhydrous form to a hydrated form may be observed when the relative humidity 
exceeds a critical level and moisture content rapidly increases in the solid. Quantitative measurement of 
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moisture content also provides valuable information on the type of hydrate that has formed. 
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Fig. 22-4. Moisture sorption (% weight change) as a function of % Relative Humidity 

for an active pharmaceutical ingredient (API). 

Measurement of moisture uptake is typically done by either of two general methods. The classical 
approach involves equilibration of solid at several different humidities and the subsequent determination 
of water content either by gravimetric or by analytical methods such as Karl Fischer titration or loss on 
drying. Moisture adsorption or desorption may be measured using this method and the process is 
effective but tedious and time-consuming. An automated controlled atmosphere system in conjunction 
with an electronic microbalance is now commonly used.40,41,42 Such systems can generate an 
atmosphere with well-controlled humidity passing over a sample (often only a few milligrams are 
needed) and weight change is monitored and can be programmed to carry out a series of humidity 
increments to generate the adsorption and desorption curves. In this way, hysteresis may be observed 
as well as phase or form changes that are associated with moisture sorption. Examples of a moisture 
sorption curve are shown in Figure 22-4 and Figure 22-5. 
In general, water adsorption to only the surface of crystalline materials will result in very limited moisture 
uptake. Only 0.1% water uptake is predicted to be needed to achieve monolayer coverage of a 
crystalline material with an average particle size of 1 µm.31Amorphous phases tend to be much more 
prone to moisture sorption and high moisture uptake by a solid is likely to reflect either the presence of 
significant amorphous regions or a change in solid form such as the formation of a hydrate. Moisture 
sorption has, in fact, been used to quantitate the amorphous content of predominantly crystalline 
materials. 
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Fig. 22-5. Moisture sorption (% weight change) as a function of % Relative Humidity 

for an API demonstrating hydrate formation above 70% Relative humidity. 

Example 22-7 

Dynamic moisture sorption, in particular, provides an excellent opportunity to study solid form 
conversion andFigure 22-5 depicts a typical sorption curve of an antiarrhythmic compound 
that shows the conversion of an anhydrous form to a hydrate. Moisture uptake by the 
anhydrous form is very small on the moisture uptake curve until a critical humidity of about 
70% is achieved. At this point, rapid moisture uptake occurs and a hydrate form containing 
about 10% moisture is formed. 
Subsequent reduction in the humidity (desorption) shows the hydrate to remain until 
approximately 5% RH when it spontaneously converts to the anhydrous form. It is important 
to recognize, however, that conversion between solid forms is very time dependent. The 
relative humidities at which conversion was seen in Figure 22-5 are very dependent upon the 
length of time the solid material was equilibrated. For the material shown, conversion from the 
anhydrous to the hydrate ―at equilibrium‖ will occur somewhere between 10% and 70% RH. 

Particle Size 
Understanding a pharmaceutical powder's particle size, shape, and distribution is an important 
component of formulation development. When working with the API, a few large or small particles in a 
batch can alter the final tablet's content uniformity (potency, segregation), dissolution profile, and/or 
processing (e.g., flow, compression pressure profile, granulating properties). Yalkowsky, Bolton, and 
others have developed a model to estimate the API particle size needed to pass United States 
Pharmacopeia (USP) content uniformity criteria.32,33 A plot of the particle size needed to pass content 
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uniformity as a function of particle size and size distribution is shown in Figure 22-6. It is useful for 
estimating particle size requirements and determining whether additional drug 
P.573 
 
particle size processing, such as milling, is necessary. Drug particle size and size distribution 
information can also help decide whether a direct compression formulation or dry granulation approach 
is more appropriate. Examination of drug particle size can also reveal inter and intrabatch differences or 
trends. If the particle size distribution has changed from one batch of API to the next, this could 
significantly impact the processing properties of the final formulation, as well as dissolution, leading to 
inconsistent dosage form performance. 

 

Fig. 22-6. Predicted maximum geometric mean volume particle diameter needed to 

pass USP content uniformity requirements as a function of dose (mg) and geometric 

standard deviation (σg) assuming log normal particle size distribution of active 

pharmaceutical ingredient.33 

Key Concept 

Shelf life 

The shelf life of a pharmaceutical product is the time period during which the product is 
expected to remain within the acceptance criteria established by the manufacturer for the 
critical physical, chemical, and aesthetic properties when stored according to the 
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manufacturer's recommendations. The shelf life depends on the drug molecule, the dosage 
form, packaging, and the environmental conditions to which the dosage form is exposed. 
According to the FDA,43 there shall be a written testing program designed to assess the 
stability characteristics of drug products. The results of such stability testing must be used in 
determining appropriate storage conditions and expiration dates and include the following: 
sample size and test intervals based on statistical criteria for each attribute; storage 
conditions of samples; reliable, meaningful, and specific test methods; testing of the drug 
product in the same container-closure system as that in which the drug product is marketed; 
and testing of drug products for reconstitution at the time of dispensing (as directed in the 
labeling) as well as after they are reconstituted. An adequate number of batches of each drug 
product must be tested to determine an appropriate expiration date. 

Particle size and size distribution are also important as they are critical parameters in assuring that the 
desired dissolution rate is achieved. Several theoretical models for dissolution of powders have been 
developed and discussed in previous chapters of this book. Flow characteristics of formulations are also 
influenced by particle shape, size, and size distribution. 
Example 22-8 

The drug molecule described in Example 22–5 will be manufactured as a tablet dosage form 
for Phase I clinical testing. Using Figure 22-6, identify the particle size necessary to achieve 
acceptable content uniformity for tablet strengths of 1 mg, 3 mg, and 10 mg assuming a 
monodispersed particle size distribution (i.e., all particles are the same size, σg = 1.0). 
From Figure 22-6, for a 1-mg dose approximately a 130-µm particle size is needed to achieve 
content uniformity. For a 3-mg dose, approximately a 200-µm particle size is needed, 
whereas the high dose of 10 mg would require approximately 300 µm particle size. For this 
particular drug molecule, achieving the particle size needed to obtain adequate dissolution 
(Example 22-5, approximately 10 µm) will ensure that content uniformity can be achieved. 
Following milling of the drug to achieve a mean particle size diameter of 10 µm for clinical 
supply manufacture, the drug is found to have an extremely wide particle size distribution 
which is log normal with a geometric standard deviation, σg, of 4.0. Will content uniformity 
likely be achieved with the 1-mg dose tablet? 
From Figure 22-6, the particle size necessary to achieve content uniformity for this extremely 
wide particle size distribution is estimated to be approximately 8 µm. These theoretical 
estimates indicate that content uniformity could be a problem during clinical supply 
manufacture of the low-dose tablet. Further processing the drug may be appropriate to better 
ensure success in clinical manufacturing. 

Chemical Properties 
Stability 
Both solution and solid-state stability are key considerations for oral delivery. Chemical stability is 
addressed in detail in Chapter 15. The drug molecule must be adequately stable in the dosage form to 
ensure a satisfactory shelf life. For oral dosage forms, it is generally considered that 2 years is an 
acceptable shelf life. This allows sufficient time for the manufacture and storage of the active ingredient, 
the manufacture of the dosage form, shipping, storage, and finally sale 
P.574 
 
to and use by the consumer. Loss of potency is an obvious consideration and, generally, stability 
guidelines require that at least 90% of the drug remains at the end of the shelf life. More often though, 
shelf life is determined by the appearance of relatively low levels of degradation products. While 
perhaps a 5% loss of drug may be considered acceptable, the appearance of a degradation product or 
impurity of unknown toxicity at a level of 0.1% to 1% will likely require identification or qualification. 
Detailed guidance regarding stability has been provided by regulatory agencies such as those in the 
FDA Guidance for Industry and the International Conference on Harmonization.34,35,43 
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Solution Stability 
Solution stability is important for oral products because the drug generally has to dissolve in the gastric 
or intestinal fluids prior to absorption. Residence time in the stomach varies between 15 min and a 
couple of hours depending on fasting/fed state. In addition, the stomach is generally acidic in a majority 
of subjects but may depend on disease state. In this context, stability under acidic conditions over a 
period of a couple of hours at 37°C may be satisfactory. Residence time in the small intestine is 
approximately 3 hr where the pH may range from approximately 5 to 7, whereas residence in the large 
intestine ranges up to 24 hr or more. Stability studies for up to 24 hr in the pH range of 5 to 7 at 37°C 
with no significant appearance of degradation products of unknown toxicity generally indicates that 
significant decomposition in the intestine will not occur. Other intestinal components such as 
microorganisms, enzymes, and surfactants can dramatically alter in vivo solution stability however. 
Buffered aqueous solution stability studies are typically done at pH of 1.2 to 2 and in the range of 5 to 7. 
A complete degradation rate profile can provide valuable information regarding the degradation 
mechanism and degradation products. A complete study and understanding of solution stability is 
particularly critical for aqueous and cosolvent solution formulations which may be developed for 
pediatric or geriatric populations. 
Solid-State Stability 
Adequate solid-state stability is often critical for many drugs since solid dosage forms (tablets, capsules) 
are generally the preferred delivery system. Stability of the drug in the dosage form for several years at 
room temperature is desirable. Unstable drugs may be developed, but the time and resources needed 
are generally greater and the chances of failure also greater. Accelerated stability studies are often 
carried out early in development on pure drug to assess stability and identify degradation products and 
mechanism. Testing at 50°C, 60°C, or even 70°C under dry and humid conditions (75% RH) for 1 month 
is often sufficient to provide an initial assessment. More quantitative assessments of drug and 
formulation stability are carried out to support regulatory filings and generally follow regulatory 
guidances.34,35,44 
The field of solution and solid-state stability is large, varied, and beyond the scope of this chapter. 
Stability studies described above at a variety of conditions provide the perspective and understanding 
needed to make meaningful predictions of long-term stability and shelf life. Typically, solid-state 
decomposition occurs either by zero-order or first-order processes and additional discussion is provided 
in Chapter 14. Arrhenius analysis and extrapolation to room temperature provide additional confidence 
that the dosage form will have acceptable stability. Generally though, regulatory guidance allows for 
New Drug Applications to project shelf life based on accelerated conditions but data at the 
recommended storage temperature is required to support the actual shelf life of marketed products. 
Mechanical Properties 
Many investigations have demonstrated the importance and impact of the physical and chemical 
properties of materials on powder processing, oral dosage form design, and manufacturing. Physical 
properties such as particle size and shape clearly influence powder flow, for example. The previous 
sections of this chapter provide some perspective on characterization. However, mechanical properties 
(i.e., properties of a material under the influence of an applied stress) are also of great importance for 
oral dosage form development and manufacturing—particularly for solid dosage forms such as tablets. 
This section describes the importance of the mechanical properties of materials. For the purposes of this 
discussion, physical properties are considered to be those properties that are ―perceptible especially 

through the senses‖45(i.e., properties such as particle size and shape). In contrast, mechanical 
properties are those properties of a material under an applied load: for example, elasticity, plasticity, 
viscoelasticity, bonding, and brittleness. 
Table 22-5 lists some of the physical and mechanical properties that influence powder properties and 
compaction. For example, surface energy and elastic deformation properties influence individual particle 
true areas of contact as particles are compressed together. Plastic deformation likely occurs to some 
extent in powders and depends on the applied load and almost certainly it occurs during the compaction 
of powders into tablets. At asperities, local regions of high pressure can lead to localized plastic yielding. 
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Electrostatic forces can also play a role in powder flow depending on the insulating characteristics of the 
material and environmental conditions. Particle size, shape, and size distribution have all been shown to 
influence flow and compaction as well. A number of environmental factors such as humidity, adsorbed 
impurities (air, water, etc.), consolidation load and time, direction and rate of shear, and storage 
container properties are also important. With so many variables, it is not surprising that a wide variety of 
methods have been developed to characterize materials. 
What holds particles together in a tablet? A detailed discussion is beyond the scope of this chapter and 
excellent references are available in the literature.46,47 However, it is important to realize that the 
forces that hold particles together 
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in a tablet are the very same forces discussed in detail in introductory physical chemistry texts and in 
this book. There is nothing magical about particle–particle interactions; the forces involved are London 
dispersion forces, dipole interactions, surface energy considerations, and hydrogen bonding. The 
compression of powders into tablets brings particles into close proximity and these fundamental forces 
can then act effectively to produce strong particle–particle interactions and bonding. Particle 
rearrangement, elastic, and plastic deformation of material can establish large areas of true contact 
between particles; if the resulting particle–particle bonds are strong, a strong and intact tablet is 
produced. 

Table 22-6 Mechanical Properties of Compacts of Selected Excipients 

Determined at A Compact Solid Fraction of 0.9 

Excipient 

Compression 

Pressure 

(MPa) 

Tensile 

Strength 

(MPa) 

Permanent 

Deformation 

Pressure 

(MPa) 

Brittle 

Fracture 

Index 

Bonding 

Index 

Calcium 

phosphate, 

dibasic 

dihydrate48 

395 5.6 667 0.10   

Microcrystalline 

cellulose48 

98 8.7 153 0.08 0.06 

Croscarmellose, 

sodium48 

200 13.6 300 0.10 0.05 

Lactose, 

anhydrous48 

178 2.6 520 0.04 0.005 

Lactose, 

monohydrate48 

191 2.5 485 0.09 0.005 

Lactose, 155 2.4 543 0.17 0.004 
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monohydrate, 

spray process48 

Sucrose46 180 2.0 473 0.68 0.004 

Corn starch46 – 0.8 105 0.8 0.008 

Sorbitol46 – 1.9 410 0.03 0.005 

Calcium sulfate, 

dihydrate46 

– 1.9 235 0.08 0.008 

 

Materials used in the pharmaceutical industry can be elastic, plastic, viscoelastic, hard, or brittle in the 
same sense that metals, plastics, or wood are. The same concepts that mechanical engineers use to 
explain or characterize tensile, compressive, or shear strength are relevant to pharmaceutical materials. 
These mechanical properties of materials can have a profound effect on solids processing. 
The mechanical properties of a material play an important role in powder flow and compaction by 
influencing particle–particle interaction, cohesion, and adhesion. They are critical properties that 
influence the true areas of contact between particles. Therefore, it is essential to be able to 
quantitatively characterize them. Table 22-6provides some mechanical property information for a 
number of pharmaceutical excipients. One can see that there are a wide range of values and it is 
important to take these material properties into consideration when developing tablet dosage forms 
since these mechanical properties determine how the formulation will behave during tablet compaction. 
There are a wide range of methodologies available for mechanical property characterization and it is 
important to realize that experimental results are very dependent on the methods used. The reader is 
directed to comprehensive reviews of this branch of science for additional 
information.18,49,50,51,52,53,54,55,56 
Reliable mechanical property information can be useful in helping choose a processing method such as 
granulation or direct compression, selecting excipients with properties that will mask the poor 
mechanical properties of the drug, or helping document what went wrong, for example, when a tableting 
process is being scaled up or when a new bulk drug process is being tested. Since all of these can 
influence the quality of the final product, it is to the pharmaceutical scientist's advantage to understand 
the importance of mechanical properties of the active and inactive ingredients and quantitate them. 
Elastic Deformation 
In general, during the initial stages of compression, a material will be deformed elastically and a change 
in shape caused by an applied pressure is completely reversible and the specimen will return to its 
original shape on release of the pressure. During elastic deformation, the stress–strain relationship for a 
specimen is described by Hooke's law: 

 
where 

 
E is referred to as Young's modulus of elasticity, σ is the applied pressure, and ε is strain where lo is the 
initial length of the specimen and l is the final length. The region of elastic deformation of a specimen is 
shown graphically in Figure 22-7. As long as the elastic limit is not exceeded, only elastic deformation 
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occurs. The elastic properties of materials can be understood by considering the attractive and repulsive 
forces between atoms and molecules. Elastic strain results from a change in the intermolecular spacing 
and, at least for small deformations, is reversible. 
Plastic Deformation 
Plastic deformation is the permanent change in shape of a specimen due to applied stress. The onset of 
plastic deformation is seen as the change of curvature in the stress–strain curve shown inFigure 22-7. 
Plastic deformation is important 
P.576 
 
because it permits pharmaceutical excipients and drugs to establish large true areas of contact during 
compaction. In this way, strong tablets can be prepared. 

 

Fig. 22-7. Stress–strain curve depicting elastic and plastic deformation regions. 

Plastic deformation, unlike elastic deformation, is generally not accurately predicted from atomic or 
molecular properties. Rather, plastic deformation is often determined by the presence of crystal defects 
such as dislocations, grain boundaries, and slip planes within crystals. The formation of dislocations and 
grain boundaries, and hence the mechanical properties of materials, is influenced by factors such as the 
rate of crystallization, particle size, the presence of impurities, and the type of crystallization solvent 
used. Slip planes may exist within crystals due to molecular packing arrangements that result in weak 
interplanar forces. Processes that influence these (e.g., crystallization rate, solvent, temperature) can be 
expected to influence the plastic deformation properties of materials and processing properties. 
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Brittle and Ductile Fracture 
In addition to plastic deformation, materials may fail by either brittle fracture or ductile fracture; fracture 
being the separation of a body into two or more parts. Brittle fracture occurs by the rapid propagation of 
a crack throughout the specimen. Conversely, ductile fracture is characterized by extensive plastic 
deformation followed by fracture. Ductile failure is not typically seen with compacts of pharmaceutical 
materials. The characteristic snap of a tablet when pressed between the fingers as it breaks in half is 
indicative of brittle fracture. Brittle fracture of tablets experienced during normal processing and handling 
is not acceptable and selection of formulation components can allow pharmaceutical scientists to obtain 
tablets with acceptable properties. 
Viscoelastic Properties 
Viscoelastic properties can be important; viscoelasticity reflects the time-dependent nature of stress–

strain. A basic understanding of viscoelasticity can be gained by considering processes that occur at a 
molecular level when a material is under stress. An applied stress, even when in the elastic region, 
effectively moves atoms or molecules from their equilibrium energy state. With time, the permanent 
rearrangement of atoms or molecules can occur. 
The stress–strain relationship can therefore depend on the time frame over which the test is conducted. 
In compacting tablets, for example, it is frequently noted that higher compaction forces are required to 
make a tablet when the compaction speed is fast. All pharmaceutical materials are viscoelastic; the 
degree to which their mechanical properties are influenced by the rate of application of stress depends 
on the material. Appropriate selection of additional pharmaceutical ingredients is needed to address 
these problems. 
Biological Properties 
Partition Coefficient 
The basic principle of the distribution of solute between immiscible solvents has been described in some 
detail in Chapter 9. The partition coefficient is defined for dilute solutions as the molar concentration 
ratio of a single, neutral species between two phases at equilibrium: 

 
Usually the logarithm (base 10) of the partition coefficient (logP) is used because partition coefficient 
values may range over 8 to 10 orders or magnitude. Indeed, the partition coefficient, typically the 
octanol–water partition coefficient, has become a widely used and studied physicochemical parameter in 
a variety of fields including medicinal chemistry, physical chemistry, pharmaceutics, environmental 
science, and toxicology. While P is the partition coefficient notation generally used in the pharmaceutical 
and medicinal chemistry literature, environmental and toxicological sciences have more traditionally 
used the term K or Kow. One of the earliest applications of oil/water partitioning to explain 
pharmacological activity was the work of Overton57 and Meyer58over a century ago, which 
demonstrated that narcotic potency tended to increase with oil/water partition coefficient. The estimation 
and application of partition coefficient data to drug delivery began to grow rapidly in the 1960s to 
become one of the most widely used and studied physicochemical parameters in medicinal chemistry 
and pharmaceutics.59 
Selection of the octanol–water system is often justified in part because, like biological membrane 
components, octanol 
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is flexible and contains a polar head and a nonpolar tail. Hence, the tendency of a drug molecule to 
leave the aqueous phase and partition into octanol is viewed as a measure of how efficiently drug will 
partition into and diffuse across biological barriers such as the intestinal membrane. While the octanol–
water partition coefficient is, by far, most commonly used, other solvent systems such as cyclohexane–

water and chloroform–water systems offer additional insight into partitioning phenomena. Partition 
coefficients are relatively simple, at least in principle, to measure. However, the devil is in the details and 
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certain aspects demand sufficient attention that rapid throughput methodologies have not yet been 
successfully developed.60,61 
As mentioned above, partition coefficient refers to the distribution of the neutral species. For ionizable 
drugs where the ionized species does not partition into the organic phase, the apparent partition 
coefficient, D, can be calculated from the following: 

 
 

Permeability 
New chemical compounds generated in today's pharmaceutical research environment often have 
unfavorable biopharmaceutical properties. These compounds are generally more lipophilic, less soluble, 
and are of higher molecular weight.62 Indeed, permeability, solubility, and dose have been referred to 
as the ―triad‖ that determines whether a drug molecule can be developed into a commercially viable 

product with the desired properties. As seen in equation (22-5) above, intestinal permeability can be 
critically important in controlling the rate and extent of absorption and to achieving desired plasma 
levels. 
With the difficulties associated with accurate estimation of permeability based only on physicochemical 
properties, a variety of methods of measuring permeability have been developed and used. Among 
them are (a) cultured monolayer cell systems such as Caco-2 or MDCK, (b) diffusion cell systems which 
utilize small sections of intestinal mucosa between two chambers, (c) in situ intestinal perfusion 
experiments performed in anesthetized animals such as rats, and (d) intestinal perfusion studies 
performed in humans. All of these methods offer opportunities to study transport of drug across 
biological membranes under well-controlled conditions. 

Key Concept 

Formulation Development 

Formulation development is the process of identifying the materials and methods necessary 
to manufacture a stable dosage form that consistently meets specified performance 
requirements throughout the product's shelf life. Dosage form efficacy, safety, quality, and 
manufacturability must be ensured. Chemical stability considerations, drug release 
characteristics, physical stability, absence of undesirable impurities or degradation products, 
aesthetic considerations, and the ability to consistently manufacture the dosage form in an 
environment that meets product supply demand are important factors that must be addressed 
in formulation development. 

Oral Solid Dosage Forms 
Oral administration is the most frequently utilized route of drug delivery and solid dosage forms are the 
most commonly available (see Table 22-1). To successfully develop oral solid formulations, the 
important physical, chemical, biological, and mechanical properties of the API need to be assessed and 
integrated into a suitable strategy that will lead to a dosage form that meets the necessary drug delivery 
requirements. The focus of this section is to provide an overview of the most commonly available oral 
solid dosage forms and manufacturing technologies used today. The principles of formulation 
development and manufacturing apply to any pharmaceutical dosage form though. Often, the decision 
to manufacture a product is influenced by the cost of manufacturing, packaging, storage, and shipping 
as well as the drug delivery requirements of the active ingredient. The properties of the drug may require 
alternative dosage form technologies such as liquid preparations (oral solutions, suspensions), liquid-
filled soft gelatin capsules, and so on. Preformulation characterization influences the proper selection of 
the dosage form technology needed and a wide range of options exist (Table 22-4). Every dosage form 
requires a thorough characterization and understanding of formulation components, manufacturing 
processes, and product performance requirements. What follows is a discussion of these considerations 
focusing on the two most common oral dosage forms: tablets and capsules. The reader is also referred 
to the extensive literature available on this topic.63,64,65,66 
Drug Release From Oral Dosage Forms 
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Drug release is the process by which a drug leaves the drug product and is available for absorption, 
distribution, metabolism, and excretion (ADME), eventually becoming available for pharmacologic action 
(Fig. 22-8). The selection of the appropriate drug release profile is dependent upon the drug ADME 
properties and the desired pharmacological effect. Proper selection of excipients and manufacturing 
methods for the dosage form permits a wide range of drug release profiles to be achieved when properly 
matched with drug properties. Some of the more common drug release profiles for solid oral dosage 
forms are immediate release, modified release, delayed release, extended release, and pulsatile 
P.578 
 
release. Immediate-release drug products allow drugs to dissolve with no intention of delaying or 
prolonging dissolution or absorption of the drug. Delayed-release is defined as the release of a drug at a 
time other than immediately following administration. An excellent example of a delayed release dosage 
form is an enteric-coated tablet. Enteric-coated tablets protect the dosage form from the very acidic 
environment of the stomach and prevent tablet disintegration until it enters the upper GI tract where the 
less acidic intestinal fluid can dissolve the enteric polymer and facilitate the disintegration and 
dissolution of the tablet. Extended-release products are formulated to make the drug available over an 
extended period after administration. Typically, extended-release products reduce the dosing frequency 
required. Modified-release dosage forms is a term that applies to both delayed- and extended-release 
drug products and describes dosage forms whose drug-release characteristics are chosen to 
accomplish therapeutic or convenience objectives that are not offered by immediate release dosage 
forms. Pulsatile release involves the release of finite amounts (or pulses) of drug at distinct time 
intervals that are programmed into the drug product. Finally, controlled-release dosage forms is an 
inclusive term that includes extended-release and pulsatile-release products. Additional details on these 
topics and the relevant scientific principles are presented in chapters on ―Drug Release and Dissolution‖ 

and ―Drug Delivery Systems.‖ 

 

Fig. 22-8. Summary of processes associated with the administration of an immediate-

release oral solid dosage form: (1) wetting and disintegration, (2) deagglomeration, 

(3) dissolution, and (4) absorption across the intestinal membrane. 

Tablets 
A wide variety of tablet dosage forms are available. Compressed tablets as a dosage form originated in 
the mid-19th century and are still the most commonly available dosage form. The technology and the 
science of tablet compression has advanced substantially making it a convenient and effective 
manufacturing approach for a wide variety of drugs. Compressed tablets are manufactured by 
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mechanically compressing the pharmaceutical formulation using a tablet punch and die system as 
shown in Figure 22-9. In a production environment, high-speed tablet presses can produce tablets at a 
very high rate, often at a rate that exceeds several thousand tablets per minute. Excipients are 
incorporated into a formulation with the API using a variety of manufacturing processes to ensure 
satisfactory manufacturing, stability, and dosage form performance. Tablets are compacted sufficiently 
hard to ensure that they will withstand normal handling during manufacturing, transport, and patient use 
but will perform as required to deliver the active ingredient when administered. For immediate release 
tablets, this involves the rapid disintegration of the compressed tablet into particulate material with 
subsequent dissolution of the drug substance in the gastrointestinal tract. Tablets are the most 
frequently prescribed dosage form and can provide the patient with a stable, elegant, effective, and 
convenient dosage form. However, 
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tablets are available only in fixed dosage strengths and offer a limited range of doses for the patients. 
Tablets may be scored to facilitate breaking them to provide fractional doses. Although uncommon, 
tablets may be formed using molding methods and it is now possible for compound pharmacies to 
prepare small quantities of compressed or molded tablets for patients. Tablets must be uniform in weight 
and appearance, contain the proper amount of active ingredient, and consistently achieve the overall 
drug release properties required to ensure effective administration of the drug for the entire shelf life of 
the product. For tablet dosage forms, the shelf life is often 2 years or more. 

 

Fig. 22-9. Schematic drawing of typical punch and die system for tablet compaction. 

Capsules 
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Capsule products have also been used for well over a century and they continue to be used in today's 
high-speed product manufacturing environment. They have an important role in drug delivery as they 
are quite flexible, relatively easy to manufacture, and they are amenable to small-scale manufacturing 
by the compounding pharmacist. Capsule shells consist of two parts: the base, or body, which is longer 
and has a smaller diameter, and the cap which is shorter and has a slightly larger diameter allowing it to 
slide over the base portion and form a snug seal. Capsule products are generally prepared by filling 
formulated material into the base and slipping the cap over the base to seal it. Capsule manufacturing 
can be done by manual, semimanual, or fully automatic methods. In today's large manufacturing 
environment, capsule products can be manufactured at high speed, though not as fast as compressed 
tablets. For this reason, tablets are generally a more cost-effective dosage form. Capsule products are 
generally dosed in their entirety. 
Like tablets, capsules must be uniform in weight and appearance, contain the proper amount of active 
ingredient, and consistently achieve the overall drug release properties required to ensure effective 
administration of the drug. Gelatin is still the most common material used to manufacture capsule shells 
though newer polymeric materials such as hypromellose (HPMC) (hydroxypropyl methylcellulose) are 
becoming more commonly available and used. 
Powders 
Historically, powders have been used for both oral and external applications. Unlike standard tablets 
and capsules, powders enable physicians and pharmacists to more easily alter the quantity of active 
ingredient that is administered in a dose. Powders can also be useful in clinical studies because of the 
flexibility in dosing. Powders are not often made in mass quantities, however, and the application of 
powdered dosage forms is now largely limited to small clinical studies and compounding pharmacy 
practices. Powder formulations must contain the proper amount of active ingredient in each dose (e.g., 
that portion of the powder that is to be dosed) and consistently achieve the overall drug release property 
requirements. 
Formulation Development 
In addition to the APIs, dosage forms contain a number of other pharmaceutical additives called 
excipients. A formulation is a combination of excipients and active ingredient processed using one or 
more manufacturing processes to yield a pharmaceutical dosage form. According to USP, ―Excipients 

are substances, other than the active drug substance or finished dosage form, that have been 
appropriately evaluated for safety and are included in drug delivery systems: 1) to aid in the processing 
of the drug delivery system during its manufacture; 2) to protect, support, or enhance stability, 
bioavailability, or patient acceptability; 3) to assist in product identification; or 4) to enhance any other 
attribute of the overall safety, effectiveness, or delivery of the drug during storage or use.‖67Excipients 
are used for a reason and they play critical roles in a dosage form. A number of common excipient 
functions are listed inTable 22-7. Some of the more important excipients are described below. All 
excipients used in approved products are well studied and shown to be safe for human and veterinary 
use. 
There are a number of pharmacopeias worldwide such as United States Pharmacopeia, the European 
Pharmacopeia, and the Japanese Pharmacopeia, that provide public standards for excipients. 
As our understanding of drug absorption and intestinal physiology has increased, it has become clear 
that some excipients may serve a more active role of enhancing drug absorption by influencing intestinal 
transporters or other membrane properties. Such ―active‖ excipients are the topic of a number of 

research investigations as a way to improve the oral delivery of what has traditionally been considered 
―difficult to deliver‖ drugs. These active excipients offer new opportunities for pharmaceutical scientists 

but caution is also warranted as indiscriminate permeability enhancement can lead to unwanted 
consequences.68,69,70 

Table 22-7 Common Pharmaceutical Tablet and Capsule Excipient Functional 

Categories 
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Anticaking agent 

Antioxidant 

Binder (for wet granulation) 

Coating agent 

Coloring agent 

Diluent 

Disintegrant 

Dissolution retardant (polymers) 

Flavoring agent 

Glidant 

Lubricant 

Preservative 

Solubilizing agent 

Sweetening agent 

Wetting agent 

 

P.580 
 
 

Table 22-8 Common Pharmaceutical Tablet and Capsule Diluents 
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Calcium carbonate 

Dicalcium phosphate 

Lactose anhydrous 

Lactose monohydrate 

Lactose spray process 

Mannitol 

Microcrystalline cellulose 

Sorbitol 

Starch 

Sucrose 

 

Diluents 
Diluents are ingredients incorporated into formulations to increase dosage form volume or weight. They 
are sometimes referred to as fillers and they often comprise a significant proportion of the dosage form. 
The quantity and type of diluent selected depends upon its physical and chemical properties and it must 
be matched to the active ingredient to ensure satisfactory stability and performance. Because the diluent 
may comprise a large portion of the dosage form, successful and robust manufacturing and dosage form 
performance is very dependent upon its properties. Among the most important functional roles diluents 
play is to impart desirable manufacturing properties such as good powder flow, tablet compaction 
strength, and desired performance including content uniformity, disintegration, dissolution, tablet 
integrity, friability, and physical and chemical stability. A number of commonly used solid dosage form 
diluents are listed in Table 22-8. Among the most commonly used diluents are lactose, dicalcium 
phosphate, and microcrystalline cellulose. 
Binder 
Tablet binders (Table 22-9) are incorporated into formulations to facilitate the agglomeration of powder 
into granules during mixing with a granulating fluid such as water, hydroalcoholic mixture, or other 
solvent. In a wet granulation process, the binder may be either dissolved or dispersed in the granulation 
liquid or blended in a dry state with other components and the granulation liquid added separately during 
agitation. Following evaporation of the granulation liquid, binders typically produce dry granules that 
achieve desirable manufacturing properties such as granule size and size distribution, shape, content, 
mass, active ingredient content, and compaction properties. Wet granulation facilitates the further 
processing of the granules by improving one or more granule properties such as flow, handling, 
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strength, resistance to segregation, dustiness, appearance, solubility, compaction, or drug release. 
Tablet binders are soluble or partially soluble in the granulating solvent. Upon addition of liquid, binders 
typically facilitate the production of moist granules (agglomerates) by altering interparticle adhesion. 
During drying, solid bridges are produced that result in significant granule strength. 

Table 22-9 Common Pharmaceutical Tablet and Capsule Binders 

Hypromellose (HPMC) 

Povidone 

Pregelatinized starch 

Sodium carboxymethylcellulose 

Starch 

 

Table 22-10 Common Pharmaceutical Tablet and Capsule Disintegrants 

Alginic acid 

Crospovidone 

Microcrystalline cellulose 

Pregelatinized starch 

Sodium croscarmellose 

Sodium starch glycolate 

Starch 

 

Disintegrant 
For most tablets and capsules, it is necessary to incorporate a disintegrant to overcome the cohesive 
strength of the tablet that was generated during compression. Disintegrants (Table 22-10) facilitate the 
uptake of water into the tablet or swell in contact with water producing an expansion of the tablet and the 
breakup of the bonds that hold the tablet together. So-called superdisintegrates perform both of these 
functions and cause tablets to disintegrate very rapidly upon exposure to water. 
Lubricant 
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Lubricants typically are used to reduce frictional forces between formulation components and metal 
contact surfaces of manufacturing equipment such as tablet punches and dies (Table 22-11). The most 
commonly used lubricant in solid dosage forms is magnesium stearate. It is a solid powder that can be 
blended with other formulation components. Lubricants adhere to solid surfaces (formulation 
components and equipment parts) 
P.581 
 
and reduce the particle–particle friction or the particle–equipment surface friction. 

Table 22-11 Common Pharmaceutical Tablet and Capsule Lubricants 

Magnesium stearate 

Calcium stearate 

Stearic acid 

Sodium steryl fumerate 

Polyethylene glycol 

Sodium lauryl sulfate 

Starch 

 

Table 22-12 Common Pharmaceutical Tablet and Capsule Glidants and 

Anticaking Agents 

Colloidal silicon dioxide 

Calcium silicate 

Magnesium silicate 

Talc 

 

Lubricants are typically incorporated in very low levels—often 1% w/w or less. Caution is required, 
however, because excessive lubricant levels may retard tablet disintegration or dissolution by creating 
large hydrophobic surfaces that will not wet or dissolve. 
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Glidants and Anticaking Agents 
Glidants and anticaking agents (Table 22-12) are used to promote powder flow and to reduce the caking 
or clumping that can occur when powders are stored in bulk. Glidants and anticaking agents can also 
reduce the incidence of bridging during the emptying of powder hoppers and during powder processing. 
Glidants likely work through a combination of adsorption onto the surfaces of larger particles to help 
reduce particle–particle adhesive and cohesive forces and also by being dispersed between the larger 
particles and acting to reduce the friction between those particles. Anticaking agents generally work by 
absorbing free moisture that may otherwise permit the formation of particle–particle bridges that can 
cause caking. 
Wetting and Solubilizing Agents 
Surfactants, or surface-active agents, are amphiphilic molecules that contain both a polar and nonpolar 
region that can function as emulsifying, wetting, and solubilizing agents (see Table 22-13). The 
amphiphilic nature of surfactants is responsible for two important properties of these compounds that 
account for a variety of interfacial phenomena. One is the ability of surfactant molecules to adsorb at 
gas–liquid, liquid–liquid, and solid–liquid interfaces to reduce interfacial tension. They also have a 
tendency to self-associate and form aggregates or micelles once the critical micelle concentration is 
exceeded. The ability of surfactants to reduce interfacial tension is critical to emulsification and wetting 
while micelle formation enables the solubilization of water-insoluble compounds. These excipients are 
added to formulations to facilitate the wetting or solubilization of the drug substance. 

Table 22-13 Common Pharmaceutical Tablet and Capsule Wetting and 

Solubilizing Agents 

Sodium lauryl sulfate 

Docusate sodium 

Lecithin 

Poloxamer 

Polysorbate 80 

 

Table 22-14 Common Pharmaceutical Tablet and Capsule Coating Agents 
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Hypromellose 

Ethylcellulose 

Methylcellulose 

Ammonio methacrylate copolymer 

Cellulose acetate 

Cellulose acetate phthalate 

Methacrylic acid copolymer 

Sucrose 

 

Coating Agents 
Pharmaceuticals may be coated for several reasons including taste masking, improving ingestion, 
improving appearance, ease of identification, protecting active ingredients from the environment, and 
controlling drug release in the GI tract. The materials used in coating systems (Table 22-14) include 
natural and synthetic or semisynthetic materials. Although more popular decades ago, sugarcoating 
tablets is still performed. Some coating materials are used as colloidal dispersions. Titanium dioxide, an 
inorganic compound, is used in coatings as an opacifier. The coating system forms a layer on the tablet 
and changes appearance (nonfunctional coat) or performance (functional coat). Coating materials that 
are used must have the ability to form a film or coating system around the tablet that is complete and 
stable. The coating material must be applied uniformly to ensure proper performance by spreading over 
the surface of the dosage form and coalescing to form a smooth film. One important functional tablet 
coating is enteric coating. Enteric coating polymers are insoluble in the acidic environment of the 
stomach and protect the drug. Once the enteric-coated dosage form enters the intestine where the pH is 
higher, the polymer dissolves and allows the dosage form to disintegrate and the drug to dissolve. 
Drug Release Modifying Agents 
A variety of excipients, typically polymeric, may be used to delay the release of drug from a dosage form 
(Table 22-15). Common technologies used for this purpose include: matrix tablets, multiparticulate–

coated particles, and osmotically controlled dosage forms. Selection of the release-modifying agent is 
dependent upon the drug properties and the drug release profile that is needed to optimize dosage form 
performance. In comparing the tables of excipients provided here, it is clear that excipients may serve 
different functions depending on how they are used in a formulation. For example, 
P.582 
 
hypromellose (HPMC) may be used as a tablet binder, a delayed release agent, or a tablet-coating 
agent depending on the quantity and processing methods used. 

Table 22-15 Common Pharmaceutical Tablet and Capsule Drug Release 
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Modifying Agents 

Hypromellose 

Hydroxypropyl methylcellulose—acetate succinate 

Ethylcellulose 

Ammonio methacrylate copolymer 

Cellulose acetate 

Cellulose acetate phthalate 

Methacrylic acid copolymer 

Polymethacrylate 

Carboxymethylcellulse 

Polyvinylchloride 

Polyvinylacetate 

 

Other Excipients 
There are a variety of other excipients that are utilized in solid dosage forms that are not enumerated 
here. All excipients in a dosage form are there for a reason and current regulatory filings require a 
dosage form manufacturer to indicate the function of each ingredient and ensure that they meet 
standards for safety, efficacy, and quality. The United States Pharmacopeia (USP/NF), the European 
Pharmacopeia, and the Japanese Pharmacopeia provide publically available standards for these 
purposes. The USP,71 the Handbook of Pharmaceutical Excipients,72 and other standard textbooks 
identify the functional categories of excipients and their typical uses. 
Example 22-9 

A commercially available tablet dosage form for the treatment of Parkinson disease lists the 
following excipients in its list of inactive ingredients: mannitol, starch, colloidal silicon dioxide, 
povidone, and magnesium stearate. Identify the functional purpose of each excipient: 

 Mannitol: diluent 
 Starch: diluent, binder, and/or disintegrant 
 Colloidal silicon dioxide: glidant and/or anticaking agent 
 Povidone: binder 
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 Magnesium Stearate: lubricant 

Note that starch and colloidal silicon dioxide may serve more than one purpose in this 
formulation and it is sometimes difficult to know exactly what an excipient function is without 
knowing more about the formulation. The function of an excipient is dependent upon the 
formulation, the manufacturing process, and the dosage form performance requirements. 

Key Concept 

Current Good Manufacturing Practices 

Current Good Manufacturing Practices (cGMPs) are a set of regulations established by the 
US Food and Drug Administration that contain the minimum current good manufacturing 
practice for methods to be used in, and the facilities or controls to be used for, manufacturing, 
processing, packing, or holding of a drug to ensure that the drug meets the requirements for 
safety, identity, strength, and the necessary quality and purity requirements. Failure to comply 
with cGMPs in the manufacturing, processing, packing, or holding of a drug renders it to be 
adulterated and subject to regulatory action. 

Manufacturing 
Regulatory Environment 
The FDA regulates the new drug approval process in the United States and other countries have similar 
regulatory bodies to ensure that pharmaceutical products are manufactured and distributed in a way that 
ensures safety, efficacy, and quality. In 1906, President Theodore Roosevelt signed into law the Food 
and Drug Act that, in effect, established what is now known as the FDA. The responsibilities of the FDA 
were substantially expanded when President Franklin Roosevelt signed the Food, Drug, and Cosmetic 
(FD&C) Act into law in 1938. These changes came about as a result of the 1937 sulfanilamide elixir 
tragedy in which more than 100 people died after using the drug formulated in the toxic solvent ethylene 
glycol. The 1938 act required predistribution clearance for the safety of new drugs, authorized factory 
inspections, and expanded the legal authority of the FDA. Further revisions and expansion of the FDA 
responsibilities occurred in 1962 when the Kefauver–Harris Amendment to the FD&C Act established 
the requirement that all new drug applications demonstrate, for the first time, substantial evidence of 
efficacy for marketed claims in addition to the previous requirements of demonstrated safety. 
Today's pharmaceutical industry is highly regulated and global in nature and the impact of regulatory 
requirements is far reaching. Regulatory agencies, including the FDA, have established good laboratory 
practices, good manufacturing practices, good clinical practices, good distribution practices, good 
regulatory practices, guidelines for new drug applications, limits on advertising, postmarketing 
surveillance and clinical monitoring, and a host of other guidelines and requirements to ensure product 
quality, safety, and efficacy. The FDA's stated mission is to protect ―the public health by assuring the 

safety, efficacy, and security of human and veterinary drugs, biological products, medical devices, our 
nation's food supply, cosmetics, and products that emit radiation. The FDA is also responsible for 
advancing the public health by helping to speed innovations that make medicines and foods more 
effective, safer, and affordable; and helping 
P.583 
 
the public get the accurate, science-based information they need to use medicines and foods to improve 
their health.‖73 
With respect to pharmaceutical manufacturing, current Good Manufacturing Practices (cGMPs) play a 
pivotal role. Originally established in 1963 and expanded upon in 1979, cGMPs present the minimum 
requirements for manufacturing, packaging, and storage of human and veterinary products. These 
cGMPs provide guidance on organization and personnel, buildings and facilities, equipment, production 
and process controls, packaging and labeling, holding and distribution, and laboratory controls as well 
as records and reports. In effect, virtually every aspect of the manufacturing, packaging, and storage of 
a pharmaceutical product is carefully assessed, analyzed, and controlled to ensure product quality.74,75 
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Manufacturing 
Pharmaceutical manufacturing on a large scale is carried out in facilities that conform to good 
manufacturing practices. In comparison, pharmaceutical compounding (medications made by a 
pharmacist or other healthcare provider in response to a valid prescription) comprises approximately 1% 
of prescriptions filled, totaling approximately 30 million prescriptions and $1 billion annually.76 Following 
physical, chemical, and mechanical property characterization of the API, initial formulation development 
activities are undertaken to design a formulation with the desired stability, drug release, and 
manufacturing properties. A general outline of the overall formulation development process is provided 
in Table 22-16. Different approaches may be taken. The ―plan for success‖ approach often front-loads 
formulation development activities where extensive work is done to identify robust, manufacturable 
formulations very early in development. If the drug being studied moves successfully through early 
clinical studies, product manufacturing will not be on the critical path and the development process can 
move as quickly as possible. An alternate approach being taken these days is a material and resource 
sparing one, in which only enough time and effort is expended to identify and manufacture a formulation 
that meets the clinical and regulatory requirements of the project. In the former approach, the 
formulations utilized in early clinical testing are often very representative of what the final dosage form 
will look and behave like. With the latter approach, extensive formulation and process development is 
postponed until the drug successfully passes the early clinical testing milestones. With either approach, 
as the drug moves through development, a wide range of studies are conducted to identify the 
components and quantities of the formulation that are required to achieve the desired dosage form 
performance. Following formulation design activities, additional effort goes into identifying the 
manufacturing processes and specific processing conditions that will be necessary to combine the drug 
and excipients into a manufacturable product. 

Key Concept 

Pharmaceutical Quality by Design 

Pharmaceutical Quality by Design (QbD) is a systematic, scientific, risk-based, and proactive 
approach to pharmaceutical development that begins with predefined objectives and 
emphasizes product and process understanding and process control. This includes designing 
and developing formulations and manufacturing processes to ensure that predefined product 
quality objectives are consistently met. QbD identifies characteristics that are critical to quality 
and translates them into the attributes that the drug product should possess and establishes 
how the critical process parameters can be varied to consistently produce a drug product with 
the desired characteristics. The specifications of a drug product under QbD should be 
clinically relevant and generally determined by product performance. Under QbD, consistency 
comes from the design and control of the manufacturing process. 

Table 22-16 Formulation Design and Development 
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Preliminary Formulation Development 

   Physical, chemical and mechanical property characterization of the API 

   Preliminary formulation design (preliminary selection of excipients, 

processing) 

   Preliminary formulation process selection 

Initiate Marketed Product Formulation Development 

   Excipient range-finding studies 

   Identify and assess manufacturing process variables 

Final Formulation Development 

   Final process characterization 

Product Appearance 

   Tablet coating process characterization 

   Tablet tooling evaluation 

Scale Up Activities 

   Prepare large-scale lots 

Stability 

   Establish final packaging and stability 

Regulatory Filings 
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   File NDA 

   File regulatory documents worldwide 

 

Unit Processes 
Most pharmaceutical manufacturing today consists of a series of separate and distinct manufacturing 
steps called unit processes. Typically, each of these discrete steps can be viewed as an individual 
activity and each can be evaluated and optimized to produce a consistent material. Several examples of 
a series of manufacturing steps (sometimes referred to as a manufacturing or process train) are shown 
in Figure 22-10. Among the most common unit processes for oral solid dosage forms are milling, 
blending, granulation, tablet 
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compression or capsule filling, and tablet coating. Each of these unit processes offers challenges and 
opportunities to the pharmaceutical scientist. The physical, chemical, and mechanical properties of the 
materials (active ingredient, excipients, intermediate materials) that are introduced into equipment may 
influence the properties of the material that is obtained after processing. Those properties that have a 
significant and important impact on the manufacturing or performance of the product can be considered 
critical material attributes. Those processing parameters that have a significant and important impact on 
manufacturing or performance are referred to as critical process parameters. A recent paradigm shift 
within the regulatory agencies has pharmaceutical manufacturers moving toward a Quality by Design or 
QbD approach in which well designed, controlled, and studied materials and manufacturing processes 
identify the critical material attributes and critical process parameters needed to achieve a final product 
that consistently meets the performance requirements.75,77 Each unit process is often studied in some 
detail using appropriate experimental methods (e.g., design of experiments). 

Dr. Murtadha Alshareifi e-Library

1048



 

Dr. Murtadha Alshareifi e-Library

1049



Fig. 22-10. The three main methods for the preparation of tablets. (Courtesy of 

Stauffer Chemical Co. Tarpon Springs, FL.) 

Milling 
The particle size of pharmaceutical materials is often a critical material attribute that can impact 
processing and performance. Particle size has been shown to influence processes like blending, 
granulation, and compaction. Particle size also influences dosage form performance characteristics 
such as dissolution and content uniformity. For this reason particle size is often carefully studied and 
controlled. Where particle size, shape, and size distribution can be controlled by crystallization, crystal-
engineering strategies are desirable. Where this is not possible, materials may be milled to achieve the 
desired particle size, shape, and size distribution (micromeritic properties, Chapter 18). A variety of mill 
types are available to the pharmaceutical scientist and some of these are shown in Table 22-17. Proper 
selection of mill type and process conditions can be used to tailor micromeritic properties. Milling is most 
often applied to the API since pharmaceutical grade excipients may be purchased in a range of particle 
sizes that usually meet development scientist's needs. 
Blending or Mixing 
The blending of solid particles in the dry state is one of the oldest industrial processes known to man. 
Blending or mixing is a unit process that is used at some point in virtually every oral solid dosage form 
manufacturing process train. Science and technology have advanced our understanding of blending and 
a variety of methods are available to carry out this process. Blending is a process that results in the 
randomization of particles within a powder system and achieves an assembly of particles that are more 
or less thoroughly dispersed. Blending can be described as proceeding in the following steps. A static 
powder must first expand before particle–particle movement is possible. Once expansion of a powder 
occurs, particles are able to move; shear forces are necessary to produce movement between particles. 
Movement of particles relative to one another requires adequate three-dimensional stresses that result 
in essentially random particle movement and mixing. 
Diffusion mixers operate by facilitating the reorientation of particles relative to one another due to 
powder bed expansion and random motion of particles. Diffusion type mixers are commonly used in the 
pharmaceutical industry and include V-blenders, double-cone blenders, bin blenders, and drum 
blenders. Convection mixers facilitate mixing by 
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reorienting particles relative to one another due to mechanical movement using paddles. Examples of 
convective mixers are ribbon blenders, screw blenders, planetary blenders, and high-intensity mixers. 

Table 22-17 Mill Types and Approximate Particle Size Achieved 
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Type Coarse 

Medium 

Fine Fine 

Very 

Fine 

Super 

Fine 

Ultra 

Fine 

Range of 

particle size, 

µm 

1000–

5000 

500–

1000 

150–

500 

50–

150 

25–

50 

2–

10 

Screening 

mills 

X X X       

Impact mills   X X X     

Air swept 

impact mill 

  X X X     

Fluid energy 

mill 

      X X X 

 

Granulation 
If a simple blend of excipients and active ingredients does not have the physical, chemical, or 
mechanical properties needed to achieve the manufacturing and performance requirements, the 
blended powders may be further processed using granulation methods. A direct blend, often referred to 
as a direct compression formulation, is advantageous and often preferred over granulated powders 
because it requires fewer steps for manufacturing and is therefore more cost-effective. Granulation is 
the process of particle agglomeration and size enlargement of powdered ingredients to achieve 
desirable processing properties such as improved powder flow or compression. Within the 
pharmaceutical industry dry granulation and wet granulation methodologies are most often used if a 
direct blend is not suitable. 
Wet granulation is achieved by mixing a granulating fluid, often water, together with other blended 
components to achieve a wet mass that forms larger agglomerates called granules. Once the desired 
granule growth has been achieved, commonly referred to as a granulation endpoint, the wet massing 
process is stopped and the granules are then dried. As the drying occurs, ingredients which were 
dissolved in the granulation fluid form solid bridges that hold the particles together. Generally, a 
pharmaceutical binder (see Table 22-9 for examples) is added to the blend or granulating liquid which 
acts as the glue to permanently hold the particles together. The dried granules may then be milled to 
achieve the final desired particle size. The wet granulation process has a number of advantages related 
to improved processability but its disadvantages include exposure of the formulation components to 
granulating liquid and exposure to the elevated temperatures necessary to dry the wet granules. Wet 
granulation may be carried out in high shear equipment or alternatively utilize fluid bed technology. The 
properties of the granules formed depend on the properties of the individual materials used and the 
process and the process parameters that are used in granulation. 
Dry granulation is achieved by compressing powdered materials into dense, cohesive compacts which 
are then milled and screened to produce a granular form of material with desirable particle size 
characteristics. The compaction process in dry granulation may be achieved in a continuous fashion 
using what is known as roller compaction. Roller compaction is the process of compressing powder 
blend to produce a solid ribbon between two rollers. An alternative and less commonly used method is 
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to compress powders into large tablets, called slugs, which are then milled and screened. Among the 
advantages of dry granulation is that the materials are not exposed to granulation fluid or the high 
temperatures required to dry the granulated material. 
Drying 
In the manufacture of solid dosage forms, it is sometimes necessary to include a wet granulation step in 
the manufacturing process as described above. Drying is undertaken to remove excess water (or other 
granulation liquid) from the solid granules by evaporation. The drying process is designed to reduce the 
moisture content to an acceptable value. The final value depends upon the material being dried. There 
are a wide variety of drying methods. Among the most commonly used in the pharmaceutical industry 
are direct heating methods where heat transfer is accomplished by direct contact between the wet solid 
mass and heated air. An example of a static method of drying is tray-drying where the granulation is 
placed on a tray that is then placed in an oven and drying takes place. An alternative and more common 
method that is conducive to large-scale manufacturing is to physically move the moist granulation with 
heating to cause evaporation. The most commonly used method of drying is fluidized bed drying where 
the granulation is fluidized in heated air. 
Lubrication 
A separate blending step, called the lubrication step, is described here because it is a very frequently 
used unit process. The lubrication step involves a separate mixing step where a lubricant (Table 22-11) 
is incorporated into the formulation. It is very often the last step before tablet compression or capsule 
filling. As with the other unit processes, the properties of the lubricant and the process parameters must 
be carefully assessed and characterized because an inappropriately performed lubrication step can 
have a significant negative impact on dosage form performance. The commonly used lubricants 
magnesium stearate or stearic acid are very water insoluble. Incorporation of an excessive amount of 
one of these ingredients or excessive mixing has been shown to decrease the dissolution rate of the 
final dosage form. Appropriate characterization and control of the lubricant as well as 
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an understanding and control of this unit process is very often important in ensuring consistent dosage 
form performance. 

Table 22-18 Common Pharmaceutical Compressed Tablet Dosage Forms 

Immediate-release tablet controlled release tablet 

Bilayer tablet 

Multilayer tablet 

Osmotic tablet 

Sugarcoated tablet 

Film-coated tablet 
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Enteric-coated tablet 

Gelatin-coated tablet 

Buccal tablet 

Sublingual tablet 

Chewable tablet 

Effervescent tablet 

Molded tablet 

Rapidly disintegrating tablet 

Mucoadhesive tablet 

Gastroretentive tablet 

 

Compression 
Following the blending, granulation, and lubrication steps, the formulation is ready for compression into 
a tablet. Tablet dosage forms are manufactured using a compression process. A wide variety of tablet 
dosage forms with a remarkable range of performance characteristics can be prepared with the proper 
selection of formulation ingredients and processing. The seeming simplicity of the tablet dosage form 
belies the remarkable flexibility and creativity this technology offers as a sophisticated drug delivery 
device. Many of the available tablet dosage forms are listed in Table 22-18. 
Powder compression into tablets is the application of pressure to the formulated powder to achieve a 
reduction in volume and the generation of strength within the compacted material to form an intact 
tablet. Tablet tooling consists of a lower punch which snugly fits into the tablet die from below and an 
upper punch which can enter the die from above (Fig. 22-9). The die serves to hold the formulated 
powder in place when the lower punch is in place, and the upper and lower punches are forced together 
to compress the powder. Powder compaction can be done using a small, hand-operated press but, of 
course, in a large-scale manufacturing environment, high-speed tableting machines are used to produce 
thousands of tablets per minute. An example of a large-scale tableting machine is shown in Fig. 22-11. 
The process of powder compaction into tablets can be described as a six-step process as shown 
schematically in Figure 22-12. The first step (Stage 1) is the die filling step in which powder is moved 
into the die. The powder in this state is loosely aggregated in the die. The lower punch position holds the 
powder in the die and determines the amount of powder that the die will hold. The compression process 
begins in the second step (Stage 2) as the upper punch is pressed into the die; the applied force results 
in rearrangement and consolidation of the powder. In the third stage of compression (Stage 3), 
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significant particle deformation and possibly particle fracture occur as the powder further consolidates 
into a cohesive mass. In this stage of compression, significant areas of contact are established between 
particles as they are pressed closer together and this can result in significant particle–particle bonding. 
The decompression stage (Stage 4) begins as the upper punch force is reduced and the upper punch is 
removed. During the decompression stage some of the elastic deformation that occurred during 
compression results in some tablet expansion. (Stage 5) involves the lower punch being pushed upward 
as the compacted tablet is pushed upward. If the formulation is properly designed, the final stage (Stage 
6) results in the ejection of an intact tablet that has the desired strength and performance 
characteristics. On rotary tablet machines, multiple punches and dies are located around the outside of 
a circular die table and the compression process described above occurs as they are rotated under 
circular compression rolls that force the upper and lower punches together and punch guides pull them 
apart with precise timing. The entire process described above can occur on a production tablet press in 
less than 100 milliseconds. 

 

Fig. 22-11. Example of a production tablet press. (Courtesy of Korsch Tableting, 

Korsch AG, Berlin.) 

The compression process has been studied in detail by a number of investigators and a variety of 
equations to describe the relationship between compression pressure and tablet density have been 
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developed.78,79,80,81,82,83 One of the most commonly utilized equations was developed by 
Heckel.81,82 He proposed that there was a relationship between the yield 
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strength of the material and the pressure necessary to cause compaction. The yield strength of a 
material is a measure of its ability to permanently or plastically deform as discussed in the previous 
section on mechanical properties. A high-yield pressure indicates that a material is hard; a low-yield 
pressure indicates a soft material. From this, he derived an equation referred to as the Heckel equation 
(equation 22–25), expressing the relationship between the relative density of the compact and the 
compression pressure applied. 

 

Fig. 22-12. Stages of tablet compaction. 

In tablet compaction, an important concept is that of relative density. The relative density, D, of a 
material is given by the following equation: 

 
where ρS is the density of the powder or compact in g/cm3 and ρA is the absolute or true density of the 
material in g/cm3. The true density of a material is its density in the absence of pores, meaning that the 
material contains absolutely no void space between particles. The reader is directed to Chapter 18 on 
Micromeritics for further discussion of density and methods of measurement. 
From equation (22-23), the relative density, D, has a maximum value of 1.0 and this occurs when all of 
the void space is compressed out of the compressed powder and only solid material with no pores 
remains. Ranges of D are between 0.4 and 0.95 for loose powders and highly compacted tablets, 
respectively. Virtually all pharmaceutical tablets have some porous structure though, and typical values 
for relative density are in the range of 0.7 to 0.9, meaning that between 30% and 10% of the volume of 
the tablet consists of pores. The relationship between relative density and porosity, ε, is given by: 

 
The Heckel relationship is based on the assumption that the decreasing void space within the tablet 
follows a first-order rate process.82 
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where D is the tablet relative density, P is the applied pressure, andK is a constant that reflects the 
ability of the powder to consolidate into a coherent mass. 
Integrating equation (22-26), the Heckel equation is: 

 
K is the slope of the Heckel equation and is a measure of the plasticity of the material. A greater slope 
indicates that the material has greater plasticity and is more easily permanently deformed. AHeckel plot 
obtained by plotting ln(1/1 - D) versus P is shown inFigure 22-13 for three different pharmaceutical 
excipients. As seen in this figure, only the terminal portion of the plot is linear and conforms to 
equation (22-26). The different terminal slopes indicate that these three materials have significantly 
different deformation properties. The initial nonlinear region of the plot is the region in which the Heckel 
equation does not apply and reflects the initial stage of consolidation where significant particle 
rearrangement is occurring. 
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Fig. 22-13. Heckel plot of three pharmaceutical excipients. 

Heckel and other equations have been used to interpret and predict the compaction properties of 
pharmaceutical materials and formulations. Because of the critical importance of the compaction 
process in forming tablet dosage forms, a great deal of research has revolved around understanding 
and modeling this process. The reader is directed to other comprehensive discussions of powder 
compaction for further information.84,85 
There are several significant challenges to developing and successfully manufacturing compressed 
tablets in a production environment. The formulation must have the necessary properties to ensure 
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consistent powder flow properties that allow it to move through the manufacturing equipment, including 
movement from any intermediate storage containers to the tablet press hopper and feeder system that 
directs the powder down into the tablet die. Following compression, the tablet must have acceptable 
aesthetic properties such as a smooth, elegant appearance without cracks or chips. It must also be 
robust enough to handle any remaining processing that is required such as coating and packaging, yet 
consistently meet all the performance characteristics that ensure satisfactory performance such as 
disintegration and dissolution. 
Tablet Coating 
Some tablet dosage forms may be coated. Coatings may be described as either functional or 
nonfunctional. Although more popular decades ago, sugarcoating tablets are still performed. The 
sugarcoating process seals and protects the tablet dosage form and, with the incorporation of color, 
adds a distinctive look and taste to the tablet. Many tablets are film-coated today as it is a more cost-
efficient process than sugarcoating. A thin polymeric layer with a color added is sprayed onto the 
surface of the tablets to provide a distinctive appearance. Both sugarcoating and film coating may also 
serve to prevent the patient from experiencing the undesirable taste that some active ingredients have. 
An example of a functional coat is enteric coating. The enteric-coating material is insoluble in the acidic 
fluid of the stomach but dissolves in the relatively neutral pH of the intestine. Enteric coating is therefore 
a way of protecting acid labile drugs from being exposed to the harsh acidic stomach media that can 
degrade some active ingredients. Controlled release polymers may also be applied to dosage forms to 
control the rate at which drug enters the intestinal tract and is absorbed. 
Capsule Filling 
Capsules are solid dosage forms in which the medicinal agent and excipients are enclosed in a small 
shell of gelatin. The capsule shells may be hard two-piece capsules or a soft gelatin film. Two-piece 
capsules consist of a capsule body into which the formulated material can be filled and the slightly larger 
diameter cap that slips over the body to seal the capsule. Soft gelatin capsules are sometimes referred 
to as soft elastic capsules. Soft gelatin capsules may be filled with liquids or semisolid ingredients, 
whereas the two-piece capsules are very often filled with dried powders. Recent advancements in two-
piece capsule technology now allow for liquid and semisolid fills. The vast majority of capsules are 
intended to be swallowed whole by the patient. While a majority of capsules are manufactured from 
gelatin, new polymeric, two-piece capsules prepared from HPMC and pullulan (a water-soluble 
polysaccharide) are now available and additional materials such as starches are being investigated. 
Capsule machine equipment is designed to move the formulation into the capsule body followed by 
positioning and closing the cap to produce the final product. One of the main advantages of capsule 
formulations is that they do not have to undergo the compaction process as tablets do. This can simplify 
the formulation process. Industrial capsule machines are capable of fast manufacturing speeds though 
capsule machines do not currently reach the dosage form output of tablet machines. 
Continuous Processing 
While the previous sections have covered some of the details of current pharmaceutical manufacturing 
processes which are done in batch mode, the future of pharmaceutical manufacturing is moving toward 
continuous processing. Continuous processing often combines one or more pharmaceutical processes 
utilizing equipment designed to allow for continuous input of starting materials, material processing, and 
continuous exit of final processed material. There are a variety of benefits to continuous processing. A 
continuous process inherently provides an opportunity for improved quality and consistency as it 
involves processing a much smaller quantity of material at any one time. For example, in a typical batch 
wet granulation unit operation involving a batch size of 300 Kg, the entire quantity is processed 
simultaneously. For a continuous operation with reasonable material throughput, the quantity of material 
being processed at any given time may be only about 400 g. 
Continuous processing involves operating equipment at steady state and this makes process control 
strategies 
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including online measurement of critical process parameters as well as product quality attributes more 
feasible. Process and statistical modeling can be used to develop control strategies consistent with the 
Quality by design (Qbd) initiative. These advantages provide the opportunity for simple scale-up. In 
many instances, it is possible to make large-scale lots with the same equipment used during small-scale 
development activities by running the process longer. Finally, as the unit operations are integrated into a 
continuous process, there may be considerable material and resource savings. 
Among the commonly used unit operations in solid oral dosage form development, milling, roller 
compaction (dry granulation), compression (tableting), encapsulation, and packaging are inherently 
continuous processes. Wet granulation, drying, blending and coating are inherently batch processes. 
Over the last decade, a concerted effort from industry and equipment manufacturers has resulted in 
significant progress being done to make these unit operations continuous. As an example, for wet 
granulation, a modified twin screw extruder and other similar equipment have been designed for use. 
For drying, fluid bed and dielectric drying have been used. Several designs of low and high shear 
continuous dry blending equipment are also being marketed. For coating, there are several large-scale 
continuous coaters in use. With active research and development activities underway, significant 
advancement is expected to occur in the equipment engineering as well as overall process integration to 
make this approach for solid oral dosage from development a success in the next 5 to 10 years. 
Final Dosage Form Finishing and Packaging 
Following the manufacture of tablets or capsules, final finishing of the dosage forms takes place. Two-
piece capsules, for example, may be polished to remove small amounts of powder that may adhere to 
the outside of the capsules during filling. On a large scale, many capsule and tablet machines are 
affixed to a cleaning vacuum that removes extraneous material from the tablets or capsules as they 
leave the machine. Following manufacture, the tablets and capsules may be stored in bulk containers 
until they are packaged. The final dosage form packaging plays a critical part in ensuring and 
maintaining product quality. Drugs that are adversely affected by light will be packaged in light-resistant 
containers, whereas moisture-sensitive drugs may be packaged with a desiccant to ensure that the 
dosage forms are not exposed to high moisture levels that could cause physical or chemical 
degradation. Properly stored dosage forms will remain stable and effective throughout the entire labeled 
shelf life of the product. 
Dosage form Testing 
Tablet Hardness 
The mechanical strength of tablet dosage forms is an important property and it plays a significant role in 
product development and manufacturing control. The mechanical strength of tablet dosage forms is 
sometimes referred to as tablet hardness or tablet crushing strength. Pharmaceutical ingredients which 
bond well together are capable of forming tablets with high strength. An old rule of thumb for tablet 
hardness was that the tablet should break with a sharp snap when squeezed between the fingers and 
thumb. Commercially available tablet hardness testers are available to provide quantitative data on 
tablet hardness. Tablet hardness is the force necessary to cause a tablet to fracture when compressed 
between two rigid platens. Tablet strength is influenced by the formulation components, the processing 
used to make the formulation, and the process of forming the compressed tablet. The resistance of 
tablets to chipping, abrasion, and breakage depends on tablet hardness. Tablet hardness is used as a 
manufacturing control tool and hardness values are often determined throughout a tablet manufacturing 
lot. If tablet hardness values vary, adjustments to the tablet machine can be made to ensure that the 
tablet hardness remains within the accepted range. Tablet hardness values should be high enough to 
ensure satisfactory appearance and tablet strength to withstand further tablet processing and handling 
but not so high that the dosage form will fail performance criteria such as disintegration or dissolution. 
Friability 
Tablets must be hard enough to withstand the agitation and stresses that occur during manufacturing, 
coating, packaging, shipping, and patient use. However, tablets must also be friable enough to break up 
when swallowed. The pharmaceutical scientist's responsibility in developing a robust tablet formulation 
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is to produce a dosage form that has adequate hardness and tablet strength to withstand the stresses 
but, when necessary, will break up and release the drug in a consistent fashion when administered to 
the patient. Tablet friability is a measure of the ability of the tablets to withstand stresses. The USP 
describes friabilator apparatus and test methodologies to evaluate tablet resistance to abrasion. Tablets 
are placed in a 12-inch diameter drum which rotates for a set period of revolutions, typically 100. A 
shaped arm lifts the tablets and drops them half the height of the drum with each revolution. At the end 
of this operation, tablets are removed, dedusted, and reweighed. The percent weight change is 
calculated and is used as a measure of friability. Tablets that remain intact without cracking or chipping 
(e.g., <1% weight change) typically have sufficient strength to withstand further processing and 
packaging. 
Disintegration 
One simple measure of the ability of a compressed tablet or capsule to release drug is the disintegration 
test. The disintegration time is the time it takes for a dosage form to break apart upon exposure to water 
with mild agitation. Pharmacopeia's worldwide, including USP, provide details for carrying out 
standardized disintegration testing that specify the disintegration liquid, the apparatus, the number of 
dosage units to test, and disintegration endpoint determination. Disintegration tests, official in the USP 
since 1950, are only indirectly related to drug bioavailability and product performance. 
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For conventional immediate release tablets, disintegration times may range from less than 1 min to as 
much as 5 to 15 min. The disintegration time is markedly affected by formulation ingredients and 
processing. However, disintegration time does not necessarily bear a direct relationship to in vivo 
release of drug from a dosage form. To be absorbed, the drug substance must be in solution and the 
disintegration test only measures the time required for the tablet to break up into particles or for a 
capsule to disperse its contents. The test is useful as a quality assurance tool and is still used today for 
this purpose. 
Dissolution 
Dissolution refers to the process by which a solid phase (e.g., a tablet or powder) goes into a solution 
phase such as water or gastrointestinal fluid. If the dosage form is intended to disintegrate, the tablet or 
capsule disintegrates into granules and these granules deaggregate, in turn, into fine particles that 
disperse in the dissolution medium. The individual particles then separate and dissolve (e.g., mix 
molecule by molecule) with the liquid. Disintegration, deaggregation, and dissolution may occur 
simultaneously with the release of a drug from its delivery form. Some kinds of controlled release 
dosage forms are not intended to fully disintegrate on exposure to fluid but rather to slowly release drug 
from the dosage form over a period of time. Drug dissolution is therefore the process by which drug 
molecules are liberated from a solid phase and enter into solution. If particles remain in the solid phase 
once they are introduced into a solution, a pharmaceutical suspension results. Suspensions are covered 
in Chapters 16 and17. In the vast majority of circumstances, only drugs in solution can be absorbed, 
distributed, metabolized, excreted, or even produce a pharmacologic action. Thus, dissolution is an 
important process. 
The effectiveness of a tablet in releasing its drug for systemic absorption is influenced by the rate of 
disintegration and the deaggregation of the granules. Ordinarily of more importance, however, is the 
dissolution rate of the solid drug. Dissolution is the limiting or rate-controlling step in the absorption of 
drugs with low solubility (see BCS discussion) when it is the slowest of the steps involved in the release 
of the drug from a dosage form and passage into systemic circulation. 
Although there are many customized and unique dissolution testing devices reported in the literature, 
the United States Pharmacopeia (USP) and other pharmacopeias worldwide have established standard 
methodologies and equipment to perform testing of immediate- and modified-release oral dosage forms. 
The most commonly used methods for evaluating dissolution first appeared in the USP in the early 
1970s. The two most common methods are known as the USP basket (method I) and paddle (method II) 
methods. The reader is referred to Chapter 13 for additional discussion of dissolution testing methods. 
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In practice, a rotating basket or paddle provides a steady stirring motion in a large vessel with 500 to 
1000 mL of fluid controlled to 37°C. The devices are relatively simple and standardized. The USP 
basket and paddle methods are the methods of choice for dissolution testing of immediate-release oral 
solid dosage forms. Although water is one of the most commonly listed dissolution media found in USP 
monographs, it may not be physiologically relevant due to the lack of buffering capacity or other 
biological components. Biorelevant dissolution media are sometimes used instead of buffered aqueous 
solutions to more precisely simulate in vivo conditions and these are discussed in greater detail 
in Chapter 13. 
Modified-release delivery systems are similar in size and shape to conventional immediate-release 
dosage forms but the mechanism of drug release is very different and depends upon the design. The 
mechanisms for controlling the release of the drugs is becoming very sophisticated and special 
consideration must be given to how drug release is evaluated. For this reason there are several 
alternative dissolution apparatuses that may be used for modified-release dosage forms. 
Stability 
One of the most important activities of formulation development is to evaluate both the physical and 
chemical stability of the drug substance in the dosage form. It is essential that the drug substance have 
known purity (typically 97% or greater) and sufficiently low levels of impurities to ensure safety and 
efficacy. The presence of impurities, or the generation of degradation products as a result of 
decomposition on storage, must be carefully characterized and controlled and where possible, 
eliminated with appropriate product design, packaging, and storage. Chemical decomposition of 
medicinal agents may take on many forms; among the most common decomposition processes are 
those of hydrolysis and oxidation. Additional details on the various aspects of chemical stability are 
described in previous sections of this book. 
Stability is defined as the extent to which a product retains the same properties and characteristics that 
it possessed at the time of manufacture. A stable dosage form is one that retains all of its critical 
physical, chemical, and dosage form performance characteristics such as chemical stability, potency, 
disintegration, dissolution, and drug release. Pharmaceutical scientists are interested not only in 
chemical stability, that is, the extent to which the active ingredient retains its chemical integrity and 
potency but also in physical stability. Physical stability considerations include appearance, tablet 
hardness or capsule integrity, disintegration, and dissolution profiles. Appropriate characterization and 
control of physical and chemical stability of dosage forms generally will ensure therapeutic performance. 
Both physical and chemical stability considerations are important in selecting storage conditions and 
containers. Temperature, exposure to light, and humidity often are the critical parameters that influence 
dosage form physicochemical stability. Stability and expiration dating are based on reaction kinetics, 
that is, the study of the rate of chemical and physical change and the way the rate is influenced by 
storage conditions. The FDA and other regulatory bodies 
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worldwide have provided guidance and regulations regarding stability and stability testing of 
pharmaceutical ingredients and products.44,74,77,87 Stability testing during each stage of development 
provides the information needed to optimize product stability and performance. Table 22-19 provides 
International Conference on Harmonization guidelines and working recommendations to support 
regulatory filings regarding the presence of impurities and degradation products. Each commercially 
available pharmaceutical product has a well-defined shelf life and use of the product within its shelf life 
assures the patient that the product will be safe and effective when stored as directed. Typically oral 
solid dosage forms such as tablets and capsules have shelf lives of 2 years or more from the date of 
manufacture when stored at room temperature in appropriate containers, which may be necessary to 
protect them from light and humidity. In general, kinetic studies are performed to characterize stability of 
the active ingredient alone (bulk drug stability study) as well as the product. Accelerated stability is done 
to stress the drug in the dosage form to help define the limits and critical parameters that impact 
stability. Accelerated stability studies may be used to extrapolate or estimate shelf life at room 
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temperature. Accelerated stability studies are very often done in the early stages of product 
development and may be used to support establishing the product shelf life. In addition to the 
accelerated stabilities, long-term stability studies carried out under the usual conditions of transport and 
storage are done. Consideration of the different climate zones to which the product may be shipped 
must be considered as the different climate zones experience different temperature and humidity 
conditions throughout the year. While the details of all that is necessary to characterize the stability of a 
pharmaceutical product are beyond the scope of this section, regulatory guidance is available 
and Chapter 14 provides additional details. 

Table 22-19 Thresholds for Degradation Products in New Drug Products86
,
* 

Maximum Daily Dose Threshold 

Reporting Thresholds 

≤1 g 0.1% 

>1 g 0.05% 

Identification Thresholds 

<1 mg 1.0% or 5 µg TDI, whichever is lower 

1 mg–10 mg 0.5% or 20 µg TDI, whichever is lower 

>10 mg–2 g 0.2% or 2 mg TDI, whichever is lower 

>2 g 0.10% 

Qualification Thresholds 

<10 mg 1.0% or 50 µg TDI, whichever is lower 

10 mg–100 mg 0.5% or 200 µg TDI, whichever is lower 

>100 mg–2 g 0.2% or 3 mg TDI, whichever is lower 

>2 g 0.15% 

*The maximum daily dose is the amount of drug substance administered per 
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day. Thresholds for degradation products are expressed either as a 

percentage of the drug substance or as total daily intake (TDI) of the 

degradation product. Lower thresholds can be appropriate if the degradation 

product is unusually toxic. Higher thresholds should be scientifically 

justified. 

 

Example 22-10 

An antihypertensive drug underdevelopment was placed on stability and the potency was 
measured over a 36-month period. Graph the following data and determine the first-order 
decomposition rate, the half-life, and the shelf life (time to 90% of label): 

% Potency Time (months) 

100 0 

98.5 3 

97.0 6 

94.6 12 

92.0 18 

90.4 24 

85.0 36 

 

Calculate logarithm of A/A0 at each timepoint and plot as a function of time. Calculate the 
slope of the line using linear regression. 
The linear regression line for the plot of log(A/A0) = -0.0019t- 0.0008 with R2 = 0.997 
The rate constant from equation (14-13) related to the slope of the line: k = -slope × 2.303 = 
0.0044 mo-1 
Using equation (14-18), t1/2 = 0.693/k = 158 months 
The shelf life is defined as the time required for 10% of the drug to disappear. 
t90% = 0.105/k = 23.9 months. 
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ln (A/A0) = -0.058t - 0.0001 
The first-order rate constant is the slope of the linear regression line: k = 0.058 months-1 
The half-life can be calculated using equation (15-18) as: 
t1/2 = 0.693/k = 11.9 months 
The shelf life (time to reach 90% of initial potency) can be calculated using equation (15-14) 
as: 
t90% = (2.303/k) × log(100/90) = 0.105/k = 8.3 months 

Chapter Summary 

Physical pharmacy and pharmaceutical science is the science of the delivery of APIs to the 
target site to achieve the 
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desired pharmacological effect. For a drug to exert its biological effect, it must be released 
from the dosage form into the body, permeate through biological membranes, and reach the 
site of action. Successful delivery of APIs requires a sound understanding of a diverse array 
of scientific topics including physical and chemical properties, particle and powder properties, 
excipient properties and selection, dosage form manufacturing, drug absorption and transport, 
dosage form performance, and stability. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 
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23 Drug Delivery and Targeting 
Chapter Objectives 

At the conclusion of this chapter the student should be able to: 

1. Distinguish between conventional dosage forms and advanced drug delivery 
systems. 

2. Appreciate the need for drug delivery systems and recognize their benefits in 
enhancing drug bioavailability and reducing adverse effects. 

3. Differentiate various routes of administration and the uniqueness of drug delivery 
systems designed for each route. 

4. Identify the basic characteristics of gene and antisense oligonucleotide therapy and 
their delivery systems. 

5. Understand the concept of targeted drug delivery and advantages of drug targeting to 
specific organs, tissues, intracellular organelles, and molecules. 

6. Recognize the prodrug approach and its benefit in drug delivery. 
7. Understand the concept of controlled drug delivery. 
8. Classify controlled drug release kinetic profiles and recognize the benefits of each 

type of profile. 

Introduction 
―Drugs‖ that are taken by a patient exert a biological effect usually by interacting with specific receptors 
at the site of action.1 Unless the drug is delivered to the target site (in other words the site of action) at a 
rate and concentration, which minimizes the side effects and maximizes the therapeutic effect, the 
efficiency of a therapy is compromised.1 Often, the delivery and targeting barriers are so great that they 
render an otherwise potent drug ineffective. Dosage forms serve many purposes including facilitating 
drug administration and improving drug delivery. Traditional dosage forms include injections, oral 
formulations (solutions, suspension, tablets, and capsules), and topical creams and ointments. 
Unfortunately, most traditional dosage forms are unable to do all of the following: facilitate adequate 
drug absorption and access to the target site; prevent nonspecific drug distribution (side effects) and 
premature metabolism and excretion; and match drug input with the dose requirement.1 Alternative 
routes of drug administration and advanced drug delivery systems are therefore needed to meet these 
drug delivery challenges and improve drug therapy. In this chapter, the student will learn about 
advanced drug delivery systems.2,3 
Advanced drug delivery systems aim to overcome limitations of conventional drug delivery using 
traditional dosage forms by achieving enhanced bioavailability and therapeutic index, reduced side 
effects, and improved patient acceptance or compliance.3While the first three factors are well 
appreciated, the improved patient compliance is equally important because it has been estimated that 
patients take almost one billion prescriptions per year incorrectly resulting in a significant number of 
hospitalizations and nursing home admissions. Improved patient compliance is achieved by developing 
―user-friendly‖ delivery systems that are convenient to take and require lower dosing frequency. During 

the 1950s and 1960s some of the first attempts were made to transform common dosage forms into 
advanced delivery systems by sustaining drug release via the oral route.4 The Spansule capsule, 
consisting of hundreds of tiny-coated pellets of drug substance developed by Smith Kline and French 
Laboratories, is considered the first such example.1 As a pellet travels through the gastrointestinal (GI) 
tract, the coating dissolves to release the drug. The pellet thickness is changed to control the drug 
release pattern. By the 1960s, polymers began to be used to deliver drugs and scientists started using a 
systems approach to product development that combined an understanding of pharmacokinetics, the 
biological interface, and the biological compatibility.4 Nanoparticles were introduced in drug delivery in 
1970s; transdermal drug delivery system started appearing in 1980s and transepithelial delivery models 
were developed in 1990s. The phenomenal advances in the field of biotechnology and molecular biology 
during 1980s and 1990s made possible large quantity synthesis of biologics/biopharmaceuticals such as 
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peptides, proteins, antisense oligonucleotides, and siRNA. These compounds, although highly potent, 
are difficult to deliver because of their large molecular size, water solubility, and instability. 

Key Concept 

Advanced Drug Delivery Systems 

Advanced drug delivery systems are defined as a formulation or device that delivers drug to 
specific site in the body at a certain rate. Advanced drug delivery systems usually represent a 
more sophisticated system that incorporates advanced technologies such as controlled, 
pulsatile, or bioresponsive drug delivery.2 Usually some form of targeting technology may 
also be present. 

P.595 
 
 
There is an economic rationale as well for developing advanced drug delivery technologies.5 It has been 
estimated that the sales of advanced drug delivery systems in the United States were $64.1 billion by 
the end of 2006.6 The sales are projected to reach $153.5 billion in 2011. Similarly, the European 
market for advanced drug delivery systems totaled at $25 billion in 2007 and was expected to reach $47 
billion by 2013.7 In 2009, the largest market share is for targeted drug delivery systems (~$50 billion) 
followed by sustained-release formulations (~$45 billion). While oral drug delivery systems currently 
represent about half of the drug delivery market, pulmonary, transdermal, and nanodrug delivery 
systems are expected to show most promising growth in the future. 
This chapter aims to provide an overview of advanced drug delivery and targeting technologies. Major 
drug delivery routes are described and both advantages and disadvantages associated with each 
delivery route are discussed. An introduction to the concepts of controlled drug delivery and targeting is 
presented and representative examples of different drug delivery systems are presented. 
Terminology2,3 

 Active targeting: Targeting is achieved by binding to specific antigens or cell surface 
receptors. 

 ADME: Abbreviation for absorption, distribution, metabolism, and excretion. 
 Bioavailability: The rate and extent to which a drug is absorbed and becomes available at the 

site of action. 
 Biocompatible: The system is able to perform the desired function without eliciting toxic and 

immunogenic responses, either systemically or locally. 
 Biodegradable: The system degrades (chemical breakdown) either chemically or 

enzymatically by physiological environment. 
 Bioerosion: The gradual dissolution of the system (mostly polymer matrix). 
 Bioequivalence: Absence of significant difference in the rate and extent to which the active 

ingredient or moiety in two formulations becomes available at the site of action. Formulations 
showing superimposable drug plasma concentration (Cp) versus time (T) curve are said to be 
bioequivalent. 

 Bioresponsive release: Drug delivery is controlled by a biological stimulus. 
 Blood–brain barrier (BBB): The permeability barrier present between the brain (brain 

capillary endothelium) and blood, which prevents substances in blood from entering the brain 
tissue. 

 Carrier: Monoclonal antibodies, carbohydrates, proteins, peptides, hormones, vitamins, growth 
factors, immunotoxins conjugated to the drug for achieving site-specific delivery. 

 Cmax: The maximum plasma concentration reached after the drug administration. 
 Drug Delivery System (DDS): Formulation or device that delivers drug to a specific site in the 

body at a certain rate. 
 Drug disposition: All processes involved in the DME of drugs in living organism. 
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 Half-life (t1/2): The time required for half of the drug to be removed from the body. 
 Passive targeting: Exploits the in vivo passive distribution pattern of a carrier for drug 

targeting. 
 Prodrug: Pharmacologically inert derivatives that can be converted to active drug molecule in 

vivo, enzymatically or nonenzymatically, to exert a therapeutic effect. 
 Rate controlled delivery: Drug delivered at predetermined rate either systemically or locally 

for a specific period of time. 
 Spatial drug delivery: Delivery to a specific region of the body. 
 Sustained drug delivery: Drug delivery, which prolongs or sustains the therapeutic blood or 

tissue levels of drug for an extended period of time. 
 Targeted drug delivery: Drug is delivered to specific sites in the body. 
 Temporal drug delivery: Control of drug delivery to produce an effect in time-dependant 

manner. 
 Therapeutic index: Ratio of toxic to therapeutic drug dose. 
 tmax: The time at which Cmax occurs. 
 Variable release: The drug is delivered at variable rate. 
 Zero-order release: Drug release does not vary with time and relatively constant drug level is 

maintained in the body for longer periods. 

Routes of Drug Delivery 
The route of administration or delivery is a very important factor in designing a drug delivery system. For 
example, a conventional oral tablet could not be used to deliver medication in the ear since tablets 
require a certain amount and type of fluid to disintegrate and dissolve. The ear canal does not have the 
fluid or volume to be able to accommodate tablets. In addition, many tablets are simply too big to be 
inserted into the ear canal. Another factor is the therapeutic agent that has to be delivered. Some drugs 
are so poorly absorbed across the intestine that they need to be injected directly into the bloodstream 
through a vein (intravenous) or an artery (intra-arterial). It may be desirable to deliver a drug locally to 
the target organ or tissue without first entering the systemic circulation. This type of drug delivery is 
usually referred to as local or topical (Greek topikos, ―place‖). A good example of this is hydrocortisone 

cream. Hydrocortisone cream is applied topically to the skin where it is expected to exert its action as an 
anti-inflammatory and antipruritic (i.e., anti-itch) agent. Because of the potency and side effects 
associated with 
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steroid drugs, avoiding systemic absorption is often desirable. In contrast, drugs can be delivered to the 
whole body via the general blood circulation. This is usually referred to as systemic drug delivery. In 
order to enter the systemic circulation, a drug has to pass through a rate-limiting membrane such as the 
intestine or vaginal mucosa or it may be directly injected into the body avoiding a transmembrane 
absorption step altogether (e.g., it may be directly injected into a vein). Often, several dosage forms of 
the same drug are produced that may be suitable for different routes of administration. In such cases, 
the selection of the route of administration for the particular drug is generally dictated by the desired 
onset and duration of drug effect, reliability, patient's discomfort, and compliance. 
The common routes of administration are summarized in Table 23-1. It should be stressed that local 
drug delivery can result in the release of the drug into the systemic circulation and therefore provide 
systemic drug delivery to many other organs (Fig. 23-1). For example, if a drug is being delivered to the 
lung, it might penetrate the respiratory barrier and enter the circulation. Similarly, penetration of a drug 
through the oral mucosa (i.e., sublingual, buccal, or gingival) results in the systemic delivery of the drug. 
Fundamental differences in the various biologic routes of drug administration critically affect the onset 
and duration of drug action. Table 23-2compares different routes of administration using nitroglycerin as 
an example. The selection of route of administration and dosage form depends on the desired drug 
concentration profiles that need to be achieved, patient issues (e.g., the ability to tolerate treatment 
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regimens such as the frequency of administration or the ability to swallow a tablet), and the disease 
state that is being treated. For instance, intravenous drug administration is often used in emergency 
situations when 
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fast action is critical. In contrast, extended-release oral tablets or transdermal drug delivery systems are 
often used to prolong the drug action. Specific drug delivery systems that are used for the various routes 
of delivery are discussed in detail later in this and other chapters. 

 

Fig. 23-1. Commonly used routes of drug delivery. 

Table 23-1 Common Routes of Drug Administration* 
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Route Site of Absorption 

Parenteral Injected directly into body, so the absorption step is usually 

minimal or nonexistent 

   Intravenous Into a vein 

   Intramuscular Into a muscle 

   Subcutaneous Under the skin 

Buccal In the mouth through the oral mucosa (cheek near the 

gumline) 

Inhalation By mouth or nose and absorbed by the pulmonary (lung) 

mucosa 

Nasal In the nose through the nasal mucosa 

Ocular In the eye 

Oral Given by mouth and absorbed through the gastrointestinal 

mucosa 

Rectal In the rectum 

Sublingual Under the tongue 

Topical On the skin, local action 

Transdermal On the skin, systemic delivery 

Vaginal Into the vagina and absorbed through the vaginal mucosa 

*Most of these routes of drug administration can be used for both topical (local) 

and systemic drug delivery. 
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Table 23-2 Comparison of Routes of Nitroglycerin Administration* 

Route of 

Administration 

Drug Delivery 

System Onset of Action Duration of Action 

Intravenous Parenteral 

solution 

Immediate Several 

minutes (dose 

dependent) 

Translingual Rapidly 

dissolving tablets 

2–4 min 30–60 min 

  Extended-release 

capsules and 

tablets 

20–45 min 8–12 hr 

Sublingual Tablets and 

drops 

1–3 min 30 min 

Transmucosal 

(buccal) 

Extended-release 

tablets 

2–3 min 5 hr 

  Ointment 20–60 min 4–8 hr 

Transdermal Transdermal 

patches 

40–60 min 18–24 hr 

*Nitroglycerin belongs to the class of drugs called nitrates. It dilates 

(widens) blood vessels (arteries and veins). Nitroglycerin is used to prevent 

angina attacks (oral tablets, buccal tablets) and to treat attacks once they 

have started (sublingual tablets, chewable tablets, spray). 

 

Gastrointestinal (Oral, Per Os) 
Oral administration of drugs is the simplest, easiest, and most common route of drug administration. 
After absorption from the GI tract, the drug enters the liver through the portal circulation (Fig. 23-1). 
During this ―first pass‖ through the intestine and liver, drugs can be metabolically deactivated unless 

special measures are taken to protect them. Beyond the liver, the drug enters the systemic circulation 
and is delivered to the target tissues as well as all other tissues. The existence of first-pass intestinal–
hepatic metabolism is the most significant challenge of oral drug delivery. In addition, the oral route is 
not suitable for the systemic delivery of drugs that are poorly absorbed or significantly destroyed in the 
GI tract. 
In many countries, oral administration is the most common and preferred route of administration. The 
most commonly used dosage forms for the oral route are liquids, dispersed systems, and solids. Liquid 
dosage forms include oral solutions of drugs with added substances to make the preparation 
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pharmaceutically stable and aesthetically acceptable. Drugs administered in this form are more rapidly 
absorbed than other forms when administered on an empty stomach because gastric emptying is rapid 
and the drug is immediately available for absorption. Dispersed systems include emulsions and 
suspensions (see Chapters 16 and 17). The drugs in the emulsion or suspension forms are absorbed 
much more rapidly than in the solid forms since solid forms have to disintegrate, deaggregate, and 
dissolve. The solid dosage forms include the vast majority of the preparations used for oral 
administration. The widely used solid dosage forms are powders, tablets, caplets, and capsules. An 
entire chapter is devoted to this important dosage form and route of administration (see Chapter 22). 
Powders are administered occasionally for rapid systemic action. A tablet is a compressed form of the 
powdered drug along with therapeutically inactive ingredients that enable the proper disintegration, 
dissolution, lubrication, and so on, of the dosage form. A well-formulated immediate-release tablet 
should disintegrate rapidly and make the drug available for dissolution and absorption. Exceptions are 
slow-release and delayed-release tablets, which are designed for the continuous delivery of drug over a 
defined period of time or for delayed dissolution and drug release to target or avoid a specific GI location 
(e.g., enteric-coated tablets to avoid gastric release and inactivation of drugs). A capsule is a solid 
dosage form in which the drug with or without other ingredients is enclosed in either a hard or soft 
soluble shell generally prepared from a suitable form of gelatin. 
Many new drugs cannot be delivered in oral form because they are too large, highly charged, or are 
degradable by stomach acid or the various enzymes in the GI tract. Insufficient amounts of these types 
of drugs traverse the intestinal barrier and reach the bloodstream. Consequently, these molecules can 
be delivered only by injection or other nonoral means. Nevertheless, oral ingestion is regarded as the 
safest, most convenient, and most economical method of drug administration. When compared to other 
alternatives, patient acceptance and adherence to a dosing regimen is typically higher among orally 
delivered medicines. Prodrug approaches have been widely used to enhance the oral delivery of small-
molecule therapeutics such as acyclovir or ganciclovir (GCV). As described later in this chapter, by 
orally administering valacyclovir, the valyl-ester prodrug of acyclovir, one obtains blood concentrations 
of acyclovir similar to those achieved after the intravenous administration. Although the pharmaceutical 
industry has been successful in delivering small-molecule therapeutic agents orally, successes have 
been much more limited when it comes to larger drugs with more complex secondary and tertiary 
structures. Controlled-release drug delivery systems suitable for oral drug delivery are discussed later in 
this chapter (see Controlled Drug Delivery section). 
Parenteral 
The word ―parenteral‖ (Greek para, ―outside‖; enteron, ―intestine‖), meaning outside of the intestine, 

denotes the 
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routes of administration other than the oral route (mainly by injection). Parenteral routes of 
administration are often used when the administration of drugs through the oral route is ineffective or 
impractical. It is also suitable for administration of drugs that are poorly absorbed or inactivated in the GI 
tract. The parenteral route is also used for drugs that are too irritating to be given by mouth. Almost any 
organ or area of the body can be used to inject drugs. However, the most commonly used routes of 
injections include the intramuscular (IM), intravenous (IV), subcutaneous (SC), and intradermal (ID) 
routes (Fig. 23-2). Intravenous injection provides very rapid onset of drug action, precision of dose, and 
accommodation of a large volume of drug solutions. It is suitable for administration of high–molecular-
weight compounds. The other common forms of parenteral administration require that the drug pass 
through a significant amount of tissues and blood vessels (i.e., the endothelium of capillaries) to enter 
the circulation. The longer the path to the systemic circulation, the more delayed is the onset of drug 
reaction. Bioavailability of a parenteral drug also depends significantly on physicochemical 
characteristics of the drug (e.g., solubility, polarity, degree of ionization, molecular size). 
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Fig. 23-2. The most common injection routes: into a vein (intravenous, IV); into a 

muscle (intramuscular, IM); under the skin (subcutaneous, SC, sub-Q, hypodermic, 

hypo); into the skin (intradermal, ID, intracutaneous). 

Protein formulations, when given as injections, show poor pharmacokinetic profiles.8 The proteins are 
metabolized and rapidly cleared, which limits their therapeutic utility. PEGylation (covalent attachment of 
PEG to active moiety) reduces the plasma clearance of proteins by reducing their metabolic degradation 
and receptor-mediated uptake from systemic circulation. It also improves their safety profiles by 
shielding antigenic and immunogenic epitopes. An important example to consider is that of recombinant 
interferon-α (IFN), which is approved for the treatment of chronic hepatitis C, cell leukemia, malignant 
melanoma, non-Hodgkin lymphoma, and chronic myelogenous leukemia. When given subcutaneously, 
IFN is rapidly absorbed (t1/2: 2.3 hr) and reaches a peak plasma level in 1 to 8 hr, which then falls rapidly 
(elimination t1/2: 3–8 hr) and becomes undetectable in 24 hr.9 PEGylation with a 12-kDa linear PEG 
(peginterferon alpha-2b, PEG-Intron, Schering-Plough) significantly increases the absorption (t1/2: 7 hr) 
and elimination half-lives (t1/2: 4-days) of IFN.10 PEGylation with a 40-kDa branched PEG (peginterferon 
alpha-2a, Pegasys, Roche) enhances the absorption (t1/2: 50 hr) and elimination (t1/2: 11 days) half-lives 
to much higher levels.9 The improved pharmacokinetic profile reduces the dosing from three times 
weekly to once a weekly subcutaneous injection (with ribavirin) for patients with hepatitis C. Both 
products have safety profiles similar to unmodified IFN. 
The advantage of using these routes lies in reliability, precision of dosage, and timed control of the 
onset of action. Disadvantages of all parenteral routes of drug administration include discomfort, 
possibility of infection, tissue damage, administration by trained personnel, and so on. Drug delivery 
systems and devices suitable for parenteral use are discussed later in this chapter. 
Mucosal 
Delivery of drugs via the absorptive mucosa in various easily accessible body cavities like the buccal, 
nasal, ocular, sublingual, rectal, and vaginal mucosae offers distinct advantages over peroral 
administration for systemic drug delivery. The primary advantage of using these routes is that they avoid 
the first-pass effect of drug clearance. Some of the numerous approaches that have been taken to 
facilitate mucosal drug delivery are described in the following sections. 
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Mucosal delivery faces several challenges such as retention on the mucosal surface so that 
bioavailability can be maximized. Bioadhesive polyacrylic acid nanoparticles are an example of a novel 
DDS designed for mucosal drug delivery.11 They had a narrow size range, averaging approximately 50 
nm, and are stable in buffer. The drug timolol maleate is loaded into the nanoparticles from aqueous 
drug solutions, which is then released over several hours on dispersal of drug-loaded particles in 
phosphate buffer solution. Another variant of a mucoadhesive drug delivery formulation is based on H-
bonded complexes of poly(acrylic acid) (PAA) or poly(methacrylic acid) with the poly(ethylene glycol) 
(PEG) of a PEG–drug conjugate.12,13 The PEGylated prodrugs are synthesized with degradable PEG-
anhydride-drug bonds for eventual delivery of free drug from the formulation. The complexes are 
designed to dissociate as the formulation swells in contact with mucosal surfaces at pH 7.4, releasing 
PEG-bound drug, which then hydrolyzes to release free drug and PEG. It has been found that as the 
molecular weight of PAA increases, the dissociation rate of the complex decreases, which results in a 
decreased rate of drug release. On the other hand, drug release from PEG–drug conjugates alone and 
from a solid mixture of PEG–indomethacin +PAA was much faster than that from the H-bonded 
complexes. Because of the differences in thermal stability, the poly(methacrylic acid) complex exhibited 
slightly faster drug release than the PAA complex of comparable molecular weight. These H-bonded 
complexes of degradable PEGylated drugs with bioadhesive polymers may be useful for mucosal drug 
delivery. 
Buccal and Sublingual 
The buccal and sublingual mucosae in the oral cavity provide an excellent alternative for the delivery of 
certain drugs. The buccal mucosa is located on the cheeks in the mouth, and the sublingual mucosa is 
located under the tongue and on the floor of the mouth. Both of these mucosae offer an easily 
accessible area for the placement of dosage forms such as adhesive tablets. The buccal and sublingual 
routes provide improved delivery for certain drugs that are inactivated by first-pass intestinal/hepatic 
metabolism or are inactivated by proteolytic enzymes in the GI tract. Although this route shows some 
promise, it can only be used for potent drugs, as only a small surface area of about 100 cm2 is available 
for absorption. Delivery of drugs into the mouth is also potentially limited by the taste of the drug or 
components of the delivery system. 
The delivery of drugs to the oral mucosal cavity can be classified into three categories: (a) sublingual 

delivery, which is systemic delivery of drugs through the mucosal membranes lining the floor of the 
mouth; (b) buccal delivery, which is drug administration through the mucosal membranes lining the 
cheeks (buccal mucosa); and (c)local delivery, which is drug delivery into the oral cavity for nonsystemic 
delivery. 
The sublingual mucosa is relatively permeable, giving rapid absorption and onset of drug action with 
acceptable bioavailabilities for many drugs. This route of drug delivery is also convenient, accessible, 
and generally well accepted. Sublingual drug delivery systems are generally of two different designs: (a) 
rapidly disintegrating tablets and (b) soft gelatin capsules filled with the drug in solution. Such systems 
create a very high drug concentration in the sublingual region before they are absorbed across the 
mucosa. Because of the high permeability and the rich blood supply, the sublingual route is capable of 
producing a rapid onset of action, making it appropriate for drugs with short delivery period requirements 
and an infrequent dosing regimen. 
The most commonly used dosage form for the administration of drug through this route is a small tablet. 
These tablets are placed under the tongue. The tablets are designed to dissolve rapidly, and the drug 
substances are readily absorbed to the systemic circulation. Nitroglycerin sublingual tablets are 
frequently used for the prompt relief from an acute angina attack. The other drug products designed for 
this route are hormones such as dehydroepiandrosterone, melatonin, and vitamin C, and several metal 
salts. 
The buccal mucosa is considerably less permeable than the sublingual area and is generally unable to 
provide the rapid absorption properties and higher bioavailabilities as seen with sublingual 
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administration. Two main differences between sublingual and buccal routes should be considered when 
designing drug delivery systems suitable for oral mucosa delivery. First, these two oral mucosa routes 
differ significantly in their permeability characteristics. The onset of action from the buccal mucosa is not 
as rapid as the sublingual mucosa because it is much less permeable and absorption is not as rapid. 
Therefore, it is more suitable for a sustained-release approach. Second, the buccal mucosa has an 
expanse of smooth muscle and is relatively immobile, whereas the sublingual region lacks both of these 
features and is constantly washed by a considerable amount of saliva. This makes the buccal mucosa a 
more desirable region for retentive delivery systems used for oral transmucosal drug delivery. Thus, the 
buccal mucosa is more useful for sustained-delivery applications, delivery of less permeable molecules, 
and perhaps peptide drugs. Similar to any other mucosal barrier, the buccal mucosa has limitations as 
well. One of the major disadvantages associated with buccal drug delivery is the low rate of absorption, 
which results in low drug bioavailability. 
Because of the relative low permeability of buccal mucosa, DDSs for this route of administration usually 
include permeability or penetration enhancers—compounds that promote or enhance the absorption of 
drugs through the skin or mucosae, usually by reversibly altering the permeability of the barrier. Various 
compounds have been investigated for their use as buccal penetration enhancers to increase the flux of 
drugs across the mucosa. These compounds include but are not limited to ethers, cholates, aprotinin, 
azone, benzalkonium chloride, cetylpyridinium salts, cyclodextrins, dextrans, lauric 
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acid and its salts, propylene glycol, phospholipids, menthol, salicylates, ethylene diamine tetraacetic 
acid, several salts, sulfoxides, and various alkyl glycosides.14 

 

Fig. 23-3. Human respiratory system. 
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Pulmonary (Inhalation) 
The respiratory tract (Fig. 23-3), which includes the nasal mucosa, pharynx, and large and small airway 
structures (trachea, bronchi, bronchioles, alveoli), provides a large mucosal surface for drug absorption. 
Utilization of this huge surface for drug delivery might provide a more convenient way compared with 
parenteral administration. The advantage of this drug delivery route was succinctly stated by J. S. 
Patton, ―Taking advantage of the body's ability to transfer large molecules through the lungs is a better 

way to deliver drugs than sticking people with needles.‖15 This route of administration is useful for the 
treatment of pulmonary conditions and for the delivery of drugs to distant target organs by means of the 
circulatory system. 
The respiratory tract has a large surface area and therefore can be used for local and systemic drug 
delivery. The surface increases from the exterior region (nasopharyngeal) to the tracheobronchial and 
pulmonary regions, the latter consisting of bronchioles and alveoli (Fig. 23-3). One of the oldest 
examples of pulmonary administration for systemic drug delivery is inhalation anesthesia. An increasing 
variety of drugs such as beta-agonists, corticosteroids, mast cell stabilizers, antibiotics, and antifungal 
and antiviral agents are being administered by this route to obtain a direct effect on the target tissues of 
the respiratory system. 
The pulmonary route has been used for decades to administer drug to the lung for the treatment of 
asthma and other local ailments. Recently, this route has received more attention for the systemic 
delivery of drugs. The onset of action following the pulmonary administration of drugs is very fast and 
comparable to the intravenous route. The lungs offer a larger surface area (70 m2) for systemic 
absorption of drugs than other nontraditional routes of systemic drug delivery such as the buccal, 
sublingual, nasal, rectal, and vaginal cavities. The major challenge is the lack of reproducibility in the 
deposition site of the administered dose. The rate of drug absorption is expected to vary in many 
regions in the lung owing to the variable thickness of the epithelial lining in the bronchial tree. 
Nasal 
The uppermost portion of the human respiratory system, the nose, is a hollow air passage, which 
functions in breathing and in the sense of smell. The nasal cavity moistens and warms incoming air, and 
small hairs and mucus filter out harmful particles and microorganisms. The nose (Fig. 23-4) consists of 
two openings (nostrils) separated by a median septum. The vestibule at the entrance of each nostril is 
covered with hairs, which prevent the entrance of air-suspended particles. The nose cavity is divided by 
the septum into two chambers called fossae. They form passages for air movement from the 
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nostrils to the nasopharyngeal space at the back of the nose. Each fossa consists of two parts, an 
olfactory region at the front of the nose and a respiratory region that accounts for the remainder of the 
fossae. The nasal cavity is lined with a mucous membrane, called the membrana mucosa nasi, which is 
continuous with the skin of the nostrils. The respiratory portion of the nasal cavity contains ciliated 
(hairlike) projections consisting of columnar epithelial cells. 
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Fig. 23-4. The nasal anatomy. The nasal cavity is lined with mucous membrane and 

consists of three passageways or meatuses: A: upper; B: middle; and C: lower. 

The nasal cavity consists of three passageways or meatuses: upper, middle, and lower meatus. The 
nasolacrimal duct drains into the lower meatus. The nose is connected to the middle ear through the 
nasopharynx or postnasal space and through the auditory canal. The compartments of the nose are 
connected to the conjunctiva of the eye by way of the nasolacrimal and lacrimal ducts, and through 
several sinuses that drain into the nose. A portion of a drug administered into the conjunctiva of the eye 
may enter the nose through these ducts and sinuses and may also pass into the esophagus.16 The 
nasal mucosa is the only location in the body that provides a direct connection between the central 
nervous system (CNS) and the atmosphere. Drugs administered to the nasal mucosa rapidly traverse 
through the cribriform plate into the CNS by three routes: (a) directly by the olfactory neurons located in 
olfactory bulb (Fig. 23-4); (b) through supporting cells and the surrounding capillary bed; and (c) directly 
into the cerebrospinal fluid.17Therefore, in addition to local and systemic drug delivery, the nasal 
mucosa can be used to deliver drugs to CNS. 
Traditionally, the nasal route is used for locally acting drugs. This route is getting more and more 
attention for the systemic delivery of protein and peptide drugs. The highly vascular nature of the nasal 
cavity makes it a suitable alternate route for systemic drug delivery. This route is also useful for potent 
drugs because of its smaller surface area of about 200 cm2 available for absorption. The most 
commonly used dosage form for the administration of drug through this route is liquid solutions of drug. 
For large polar molecules such as peptides or polysaccharides in the form of drugs or vaccines, the 
nasal route provides a viable, noninvasive alternative to injections. For conventional molecules, the 
nasal route provides other clinical benefits relevant to certain drugs and patient groups: pulsatile or 
sustained plasma profiles, fast absorption and rapid onset of action, avoidance of first-pass metabolism, 
and avoidance of the effects of gastric stasis and vomiting often seen in migraine patients. 

Dr. Murtadha Alshareifi e-Library

1079



One of the major challenges is developing nasal formulations that improve the absorption of 
macromolecules and water-soluble drugs.18 Another challenge is the problem of short retention time in 
the nasal cavity due to the efficient physiological clearance mechanisms. Good systemic bioavailability 
after nasal drug delivery can be achieved for molecules with a molecular weight of up to 1000 daltons 
when no enhancer is used. With the inclusion of enhancers, good bioavailability can be extended to a 
molecular weight of at least 6000 daltons. Several methods have been used to facilitate the nasal 
absorption of drugs: 
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1. Structural modification. The drug is chemically modified to alter its physicochemical 
properties to enhance its nasal absorption. 

2. Salt or ester formation. The drug is converted to a salt with increased solubility or an ester 
derivative with better nasal membrane permeability for achieving better transnasal absorption. 

3. Formulation design. Appropriate formulation excipients are selected, which could improve the 
stability and/or enhance the nasal absorption of drugs. 

4. Surfactants. Surfactants are incorporated into the nasal formulations to modify the 
permeability of nasal mucosa, which may facilitate the nasal absorption of drugs. 

Chitosan is used as an absorption enhancer in nasal delivery (as described earlier for oral mucosa drug 
delivery). The chitosan nasal technology can be exploited as a solution, dry powder, or microsphere 
formulation to further optimize the delivery system for individual drugs. For compounds requiring rapid 
onset of action, the nasal chitosan technology can provide a fast peak concentration compared with oral 
or subcutaneous administration.18,19,20 
Two kinds of organic-based pharmaceuticals are used for nasal drug delivery: (a) Drugs with extensive 
presystemic metabolism (e.g., progesterone, estradiol, testosterone, hydralazine) can be rapidly 
absorbed through the nasal mucosa with a systemic bioavailability of approximately 100%; and (b) 
water-soluble organic-based compounds, which are well absorbed (e.g., sodium cromoglycate). 
Recently, nasal drug delivery has been used for systemic delivery of peptide-based 
pharmaceuticals.21,22,23Because of their physicochemical instability and susceptibility to 
hepatogastrointestinal first-pass elimination, peptide and protein pharmaceuticals generally have a low 
oral bioavailability and are normally administered by parenteral routes. Most nasal formulations of 
peptide and protein pharmaceuticals have been prepared in simple aqueous (or saline) solutions with 
preservatives. Another recent example is a commercially available nasal salmon calcitonin formulation. 
The calcitonin (Miacalcin) nasal spray is licensed for the treatment of established osteoporosis for 
postmenopausal women. Unlike injectable calcitonin, it is recommended for long-term rather than short-
term use and has been shown to reduce the risk of new vertebral fractures. The extent of systemic 
delivery of peptides or proteins by transnasal permeation may depend on the structure and size of the 
molecules, partition coefficient, susceptibility to proteolysis by nasal enzymes, nasal residence time, and 
formulation variables (pH, viscosity, and osmolarity). 
Ocular 
The eye is uniquely shielded from foreign substance penetration by its natural anatomic barriers, which 
makes effective drug delivery to the inside of the eye difficult. Two main barriers that protect the eye are 
(a) the cornea, which protects the front of the eye, and (b) the blood–retina barrier, which protects the 
back of the eye. 
Topical medications are frequently impeded in reaching the targeted site due to the eye's natural 
protective surface. In many situations, less than 1% of the medication applied to the surface of the eye 
will actually reach the disease site. The solution instilled as eye drops into the ocular cavity may 
disappear from the precorneal area of the eye by any of the following composite routes: nasolacrimal 
drainage, tear turnover, productive corneal absorption, and nonproductive conjunctival uptake (Fig. 23-
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5). Traditional dosage forms for delivery of drugs into the eye are mostly solutions and ointments; 
however, as a consequence of its function as the visual apparatus, mechanisms exist for the clearance 
of applied materials from the cornea to preserve visual acuity. This presents problems in the 
development of formulations for ophthalmic therapy. A large proportion of the topically applied drug is 
immediately diluted in the tear film, excess fluid spills over the lid margin, and the remainder is rapidly 
drained into the nasolacrimal duct. In addition, part of the drug is not available for therapeutic action 
because it binds to the surrounding extraorbital tissues. These processes lead to a typical corneal 
contact time of about 1 to 2 min in humans for solutions and an ocular bioavailability that is commonly 
less than 10%. 
To achieve a sufficient concentration of drug delivered to the back of the eye, medications are frequently 
administered systemically at very high doses to overcome the blood–retina barrier. Drug injections into 
the back of the eye are occasionally used, but are quickly removed by the eye's natural circulatory 
process, often necessitating frequent injections that can carry toxicity risks. 
To optimize ocular drug delivery, the following characteristics are required: good corneal penetration, 
prolonged contact time with the corneal epithelium, simplicity of instillation for the patient, nonirritative 
and comfortable form (i.e., the system should not provoke lacrymation and reflex blinking), and 
appropriate rheologic properties. Several novel drug delivery systems have been developed to enhance 
drug delivery to the eye24 (described later in this chapter). 
Transdermal 
The skin has been used for centuries as the site for the topical administration of drugs, but only recently 
has it been used as a pathway for systemic drug delivery (i.e., transdermal).25 The barrier function of 
the skin prevents both water loss and the entrance of external agents; however, some drugs are able to 
penetrate the skin in sufficient amounts to produce a systemic action. The transdermal route is of 
particular interest for drugs that have a systemic short elimination half-life or undergo extensive first-
pass metabolism, therefore, requiring frequent dosing. 
The concept of delivering drugs through the skin was first introduced in the early 1950s. However, the 
first commercial product was made available in the United States only in the early 1980s. These first-
generation, passive, transdermal patches set the foundation for this route of delivery. These 
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transdermal patches, which were designed to control nausea, vomiting, and angina, however, failed to 
succeed in the market. The introduction of nicotine patches for smoking cessation gave the necessary 
impetus to this technology during the initial years. Today, transdermal patches are widely used to deliver 
hormones and pain management medications. The basic process involved in the development of 
transdermal drug delivery systems (i.e., patches) is percutaneous or transdermal absorption. Novel 
transdermal systems, including iontophoresis, thermophoresis, and phonophoresis, were also 
developed to enhance transdermal delivery of drugs. 
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Fig. 23-5. (a) The mechanisms of drug elimination from eye after the administration 

of eyedrops into the ocular cavity. (b) The disadvantages of conventional ocular drug 

delivery. 

The skin epidermis consists of three main layers, the stratum corneum, the granular layer, and the basal 
layer. The stratum corneum is considered the most important barrier to drug transfer. It is a 
heterogeneous nonliving structure, formed by keratinized cells, protein-rich cells, and intercellular lipid 
layers. The lipid composition among the epidermal layers is very different. Polar phospholipids, which 
are components of living cell membrane, are absent in the dead stratum corneum. These lipids form 
bilayers and their acyl chains can exist in ―gel‖ and ―liquid crystalline‖ states. The transition between 

these two states occurs at certain temperatures without loss of the bilayer structure.26 The principal 
lipids of the stratum corneum are ceramide (50%) and fatty acids (25%). Although the stratum corneum 
does not contain phospholipids, the mixture of ceramides, cholesterol, and fatty acids is capable of 
forming bilayers. These lipid bilayers provide the barrier function of the stratum corneum.26 
To study the percutaneous transfer of drugs, the skin can be considered as a bilaminate membrane 
consisting of the dead stratum corneum (lipophilic layer) and the living tissue (hydrophilic layer) that 
comprises the granular and basal layers of the epidermis and the dermis (Fig. 23-6). Diffusion of polar 
drugs is much faster through the viable tissue than across the stratum corneum.27 The permeability 
coefficient through the skin, P, can be expressed as:28 

 
where K is the partition coefficient of the drug between the stratum corneum (s) and the viable tissue (v) 
and lv, ls, Dv, and Ds are the diffusion path lengths and diffusion coefficients, respectively. The subscripts 
s and v refer to the stratum corneum and the viable tissue, respectively. If the drug diffuses slowly 
through the stratum corneum, KlvDs is much less than lsDv, and equation (23-1)becomes: 

Dr. Murtadha Alshareifi e-Library

1082



 
In this case, the skin permeability is controlled by the stratum corneum alone. If the diffusion through the 
stratum corneum is fast,KlvDs is much greater than lsDv, and equation (23-1) becomes: 
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Fig. 23-6. The skin represented as two layers: the dead stratum corneum (s) and the 

viable or living tissue (v) (dermis and part of epidermis). The diffusion 

coefficients, Ds and Dv, and the diffusion path lengths, ls and lv, together with the 

partition coefficient, K, control the transport of the penetrant through the two layers. 

(Modified from R. H. Guy and J. Hadgraft, Pharm. Res. 5, 753, 1988. With 

permission.) 

In this case, the partition coefficient may be influential in the permeability. As K increases, the transfer 
from the stratum corneum to viable epidermis becomes less favorable and slower. At large Kvalues, 
partitioning of the drug is the rate-limiting step.28 
Example 23-1 

Transdermal Permeability 

Compute the permeability of a drug across the skin assuming that Ds is 10-10 cm2/sec 
and Dv is 10-7 cm2/sec. The path lengths are ls = 350 µm and lv = 150 µm. The large value 
for ls is due to the fact that the molecules follow a tortuous pathway through the intercellular 
spaces. The value for lv is the distance from the underside of the stratum corneum to the 
upper capillary region of the dermis. The partition coefficient is taken to be K = 1. 
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Because diffusion through the stratum corneum is very slow (Ds = 10-10 cm2/sec) and KlvDs = 
1.0 × 150 × 10-4 × 10-10= 1.5 × 10-12 is much less than lsDv = 350 × 10-4 × 10-7 = 3.5 × 10-9, 
then from equation (23-3), 

 
Using equation (23-2), we arrive at a similar order of magnitude: 

 

 

Fig. 23-7. Random-brick model for the stratum corneum. Arrows 1, 2, and 3 show 

three possible routes of drug diffusion. (Modified from K. Tojo, J. Pharm. 

Sci.76, 889, 1987. With permission.) 

Tojo29 proposed a random-brick model for the transfer of drugs across the stratum corneum. As shown 
in Figure 23-7, the cells rich in proteins separated from one another by thin-layer intercellular lipids 
represent the stratum corneum. The side length of the cells varies, but the total average surface area is 
constant. The thickness of the cells and the lipid layer are also assumed to be constant. According to 
this model, the transfer of a drug is divided into three parallel pathways: (a) across the cellular–
intercellular regions in series; (b) across the lipid intercellular spaces; and (c) across thin lipid layers 
sandwiched between flattened protein cells of the stratum corneum. 
According to the brick model, the effective diffusion coefficient, Deff, across the skin is given by: 

 
The first, second, and third terms on the right-hand side represent the three possible routes 1, 2, and 3 
in Figure 23-7, respectively; D1,D2, and D3 are the diffusivities across routes 1, 2, and 3, respectively; ε 

and (1 - ε) are the average fraction of diffusion area of the lipid and protein on the skin surface, 

Dr. Murtadha Alshareifi e-Library

1084



respectively. SubstitutingD1, D2, and D3 by their corresponding expressions, we find that equation (23-
4) becomes: 

 
The term n is related to the volume fraction of lipids in the skin and the average fraction of diffusion area 
of the lipids, 
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ε; K is the lipid–protein partition coefficient, and D p and Dl are the diffusion coefficients across the 
protein layer and the lipid layer, respectively. 
The flux across the skin is given by: 

 
where C p is the concentration of drug in the protein cell layer, h is the thickness of the skin, and Deff is 
defined by equation (23-5). 
Example 23-2 

Brick Model of Transdermal Penetration* 

Compute the flux at the steady state, dQ/dt, of a new drug from the following data: Dl = 1 × 
10-10 cm2/sec, Dp = 1 × 10-7 cm2/sec, Cp = 10 mg/cm3

, ε = 0.02, h = 0.0020 cm, K= 0.1, 
and n = 14.3. Use the random-brick model. 
We have 

 
The flux is 

 

Factors Affecting Permeability 
Hydration 
The skin permeability of a drug depends on the hydration of the stratum corneum; the higher the 
hydration, the greater is the permeability. The dermal tissue is fully hydrated, whereas the concentration 
of water in the stratum corneum is much lower, depending on ambient conditions. Hydration may 
promote the passage of drugs in the following way. Water associates through hydrogen bonding with the 
polar head groups of the lipid bilayers present in the intercellular spaces. The formation of a hydration 
shell loosens the lipid packing so that the bilayer region becomes more fluid.30 This facilitates the 
migration of drugs across the stratum corneum. From the rate of transpiration (i.e., passage of water 
from inner layers to the stratum corneum) and diffusivity of water in the stratum corneum, the amount of 
water in the tissue can be obtained.31 
Solubility of the Drug in Stratum Corneum 
Using the experimental results obtained from intact skin and stripped skin (layers of stratum corneum 
removed using Scotch tape), the solubility, C, of a drug in the stratum corneum was calculated from the 
following expression29: 
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where (dQ/dt)2 is the steady-state permeation across the intact skin,τ is the ratio of the two time lags, 
(t1/t2), and η is the ratio (dQ/dt)2/(dQ/dt)1. The subscripts 1 and 2 refer to the stripped and intact skin, 
respectively; h2 is the thickness of the stratum corneum. 
Example 23-3 

Solubility of Progesterone in the Stratum Corneum 

Compute the solubility of progesterone in the stratum corneum. The lag times across the 
intact and stripped skin are t2 = 5.49 and t1 = 1.55 hr, respectively, and the permeation rates 
across the intact and stripped skin are (dQ/dt)2 = 2.37 µg/(cm2 hr) and (dQ/dt)1 = 3.62 
µg/(cm2 hr), respectively. The thickness of the stratum corneum is 10 µm (10 × 10-4 cm). 
We have 

 
From equation (23-7), 

 

Excipients 
Common solvents and surfactants can affect penetration of drugs though the skin. Sarpotdar and 
Zatz32 studied the penetration of lidocaine through hairless mouse skin in vitro from vehicles containing 
various proportions of propylene glycol and polysorbate 20. Propylene glycol is a good solvent for 
lidocaine and reduces its partitioning into the stratum corneum, lowering the penetration rate. In this 
study, the effect of the surfactants depended on the concentration of propylene glycol in the vehicle. The 
decrease of flux for 40% (w/w) propylene glycol concentration can be explained by micellar solubilization 
of lidocaine. It is generally assumed that only the free form of the drug is able to penetrate the skin. 
Thus, the micellar solubilization of lidocaine reduces its thermodynamic activity in the vehicle and 
retards its penetration. At higher propylene glycol concentrations, 60% and 80%, an increase in flux was 
observed, possibly owing to an interaction of the surfactant with propylene glycol. 
Influence of pH 
According to the pH-partition hypothesis only the un-ionized form of the drug is able to cross the lipoidal 
membranes in significant amounts. However, in studies of isolated intestinal membranes, both the 
ionized and un-ionized forms of sulfonamides permeated the membrane. The diffusion of ionized drug 
through the skin may be nonnegligible, particularly at pH values at which a large number of ionized 
molecules are present.33 Fleeker et al.34 studied the influence of pH 
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on the transport of clonidine, a basic drug, through hydrated shed snakeskin. The contribution to the 
total flux, J, in µg cm-2 hr-1 of the nonionized and ionized species for a basic drug can be written as: 

 
where B and BH+ represent the basic (nonionized) and protonated forms, respectively. The dissociation 
of the protonated form is represented as: 

 
and 

 
Taking the logarithm of both sides of equation (23-10) and rearranging it, we obtain the concentration of 
the protonated form as: 

 
where [T] represents the total concentration of both the charged and uncharged species, 
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The concentration of nonionized form [B] can be computed from equation (23-12). The total flux, 
equation (23-8), can also be written in terms of the permeability coefficients times the concentrations of 
each species: 

 
From equations (23-11) and (23-12), provided PB [congruent] PBH+s, we have the following results: 

a. When pKa = pH, [B] = [BH+], and both species B and BH+contribute to the total flux. 
b. When pH is much greater than pKa, [B] is much greater than [BH+], and the total flux, J, is 

approximately PB[B]. 
c. When pH is much less than pKa, [B] is much less than [BH+], and the total flux, J, is 

approximately PBH+ [BH+]. 

Equation (23-13) allows one to compute the permeabilities of both species from the total experimental 
flux and the values of [B] and [BH+] from equations (23-11) and (23-12). 
Example 23-4 

Transdermal Permeability of Clonidine 

Compute the permeability coefficients PB and PBH+corresponding to the nonionized and 
protonated forms of clonidine. The total fluxes at pH 4.6 and pH 7 are 0.208 and 0.563 
µg/(cm2 hr), respectively. The pKa of the protonated form is 7.69. The total concentration* of 
the two species, [T], is 4 × 103 µg/uv, where µg/uv stands for microgram/unit volume. 

 
From equation (23-13) with the flux, J, expressed in µg/cm2hr and the permeability 
coefficient, P, in units of cm/hr, at pH 4.6, 

 
PB and PBH+ are calculated by solving the two equations simultaneously: 

 
It is noted that the values found for PBH+ and PB do not change with pH, whereas the 
fluxes, J, are markedly different at pH 4.6 and pH 7.0. 

Equations (23-10) and (23-13) can be combined to give: 

 
From equation (23-14), the permeability coefficients of the ionized [BH+] and nonionized [B] forms can 
be computed from the slope and intercept of a plot of J/[B] against [H+]. The corresponding equation for 
acids is: 
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From equation (23-15), the permeability coefficients of the nonionized [HA] and ionized [A-] forms are 
computed from the slope and the intercept of a plot of J/[A-] against [H+]. Swarbrick et al.33found that 
both the ionized and nonionized forms of four chromone-2 carboxylic acids permeated skin, although the 
permeability of the nonionized form was about 104 times greater. 
Binding of Drug to the Skin 
The skin can act as a reservoir for some drugs that are able to bind to macromolecules. The drug 
fraction bound is not able to diffuse, and binding hinders the initial permeation rate of molecules, 
resulting in larger lag times. Banerjee and Ritschel35 studied the binding of vasopressin and 
corticotropin to rat skin. Penetration of large molecules such as 
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collagen, used in cosmetic formulations, is questionable, but partial hydrolysates of collagen are able to 
reach the deeper skin layers. The sorption process can be represented by the Langmuir equation: 

 
where c represents the equilibrium concentration of the drug, x is the amount of drug adsorbed per 
amount, m, of adsorbent (the skin proteins in this case), b is the affinity constant, and Ym is the 
maximum adsorption capacity, (x/m)max. The sorption isotherm was obtained by Banerjee and 
Ritschel35 by equilibration of a measured weight of rat epidermis with a known concentration of 
radiolabeled vasopressin solution and was analyzed by scintillation counting (measured radioactivity). 
The small value for the adsorption constant in equation (23-16), b = 6.44 × 10-4 mL/µg, suggests low 
affinity of vasopressin for the binding sites in the skin. 
Drug Metabolism in the Skin 
The metabolism of drugs during transport through the skin affects bioavailability and can produce 
significant differences between in vivo and in vitro results. Oxidation, reduction, hydrolysis, and 
conjugation are kinetic processes that compete with the transport of drugs across the skin. Guzek et 
al.36 and Potts et al.37 found differences in the in vitro and in vivo extents of enzymatic cleavage in the 
skin and in the distribution of the metabolites of a diester derivative of salicylic acid. The authors 
suggested that the in vitro measurements overestimated the metabolism because of the increased 
enzymatic activity and/or decreased removal of the drug in the absence of capillaries. The fact that the 
skin contains esterases and other enzymes is useful for the administration of prodrugs. The solubility 
and absorption can be improved, and the enzymes could be used to cleave the prodrug to give the 
active drug in the skin.38 
Vaginal39,40 
The vagina has been used for a long time for topical drug administration. The most frequently used 
vaginal preparations include:39 (a) antimicrobials (antibacterial, antifungal, antiprotozoal, antichlamydial, 
and antiviral) pessaries, or creams such as metronidazole, 5-nitroimidazoles (tinadazole and 
ornidazole), and imidazole (clotrimazole, econazole, isoconazole, and miconazole); (b) estrogen 
creams; and (c) spermicidal foams, gels, and creams such as nonoxynol-9, octoxinol, and p-di-
isobutylphenoxy-poly(ethoxyethanol). 
Earlier, the vagina was considered as an organ incapable of absorbing drugs systemically and, 
therefore, systemic absorption of a drug through vagina was considered only from the standpoint of 
toxicity.40 However, it was shown that a number of topical drugs are able to achieve sufficient blood 
levels and can achieve systemic effects. Later, it was also shown that vaginal permeability of 
substances such as water, 17-β-estradiol, arecoline, and arecaidine is in fact higher than the intestinal 
mucosa.41 As a result, there is an interest in the design of vaginal delivery systems for systemic 
delivery of drugs such as estrogens, progesterones, prostaglandins, peptides, and proteins. The interest 
in systemic vaginal drug delivery systems is due to the ease of administration, rich blood supply 
facilitating rapid absorption, high permeability to certain drugs in different phases of menstrual cycle, 
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avoidance of hepatic first-pass metabolism, reduction in GI side effects, and decrease in hepatic side 
effects (e.g., for steroids). The disadvantages associated with vaginal drug delivery on the other hand 
are that it is limited to only potent drugs; there is a possibility of adverse effects due to the low amount of 
fluids present, hormone-dependant changes, and possibility of leakage. 
The vagina is a tubular, fibromuscular organ extending from the cervix of the uterus to the vaginal 
vestibule.39,40 In an adult female, the vaginal tract is about 2 cm in width and comprises an anterior 
wall of ~8 cm and a posterior wall of ~11 cm in length. Histologically, it consists of four distinct layers: 
epithelial with underlying basement membrane, lamina propria, muscular layer, and adventicia. Although 
sometimes considered a mucosal tissue, the normal vagina does not have glands and the vaginal 
secretions present on the surface is a mixture of fluids from different sources. It must be noted that 
vaginal characteristics, particularly the pH, changes with the phase of the menstrual cycle. The normal 
vaginal pH (4.5–5.5) is maintained by Lactobacilli present in the vagina. There may be an atrophy of 
vaginal epithelium, elevation of pH (6.0–7.5), and decrease in secretions, postmenopause. The vagina 
is normally collapsed on itself and capable of holding about 2–3 g of fluid/gel without leakage. Drug 
permeation across the vaginal membrane (epithelial) occurs mainly through diffusion, where hydrophilic 
molecules are absorbed via the paracellular route (diffusion between adjacent cells) and hydrophobic 
substances are absorbed via the transcellular route (across epithelial cells by passive diffusion, carrier-
mediated transport, or endocytic process).40 
The vaginal route is used for estrogens and progesterone delivery. Controlled-release delivery devices 
such as suppositories, inserts, and rings are also available. Vaginal route is also being investigated for 
the delivery of GnRH analogues and insulin. Antiviral vaginal gels and liposomal preparations, vaginal 
mucosal vaccines, microspheres (starch and hyaluronan), bioadhesive polymers, and gels are under 
various stages of development. Penetration enhancers such as organic acids and α-cyclodextrin are 
also being used to enhance the drug absorption across vaginal epithelium but they are associated with 
side effects. 
Central Nervous System42,43 
The brain is not a route of drug delivery but still an important pharmaceutical target. Drugs that act on 
the CNS are those 
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used for psychosis, depression and mania, anxiety, epilepsies, Parkinson disease, Alzheimer disease, 
pain, and brain tumors. Furthermore, the AIDS virus is also known to attack neuron and glial cells 
causing memory loss, palsy, dementia, and paralysis.42 Drug delivery to brain is highly difficult due to 
the presence of a blood–brain barrier (BBB) regulating the entry of molecules to the brain. The BBB 
makes the brain inaccessible to CNS-targeted drugs in the systemic circulation, more so for 
biotherapeutics such as peptides, proteins, and nucleic acids. 

Key Concept 

Blood–Brain Barrier 

In the early 1900s, researchers found the first evidence that the brain had a selective barrier 
that protects its cells. It is now known as the blood–brain barrier (BBB) and it is responsible 
for regulating the entry of molecules into the brain. The BBB separates the blood 
compartment from the extracellular fluid compartment of the brain parenchyma and consists 
of monolayer of polarized endothelial cells. The brain endothelial cells are connected by tight 
junctions, unlike the nonbrain capillary endothelial cells comprising large fenestrations 
(opening). BBB acts as a selective barrier and performs following functions: (a) isolate the 
brain from systemic influence; (b) provide pathway for the transport of nourishment to 
neurons; and (c) clear potentially toxic substance from brain into the blood. Besides the 
permeability barrier, highly selective enzymes are present in these endothelial cells, which 
further restrict the entry of substrates to the brain. The problem is further compounded by the 
presence of efflux transporters such as p-glycoprotein that are active in astrocyte 
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membranes. All components work in tandem to form a multicomponent BBB.42,43 Most drugs 
are unable to reach the brain because of their inability to penetrate the BBB. 

Various transport mechanisms exist in the brain endothelium for the uptake of nutrients into the CNS, 
which may also be utilized for the drug delivery. The transport mechanisms available for passage 
through the BBB are the following (Fig. 23-8):42 passive diffusion, active transport, and receptor-
mediated transport. 
Physicochemical factors also influence the drug delivery to brain. Increasing the lipid solubility of a drug 
increases its permeability across the BBB. Highly lipid soluble molecules (barbiturate drugs and alcohol) 
rapidly cross the BBB into the brain. However, this is true only for low–molecular-weight drugs in the 
range of 400 to 600 Da. Presence of p-glycoprotein efflux restricts the passive diffusion of drugs that are 
substrate for p-glycoprotein. Examples include vinblastine, vincristine, and cyclosporin. In addition, the 
transport of drugs that are highly charged or bind strongly to plasma protein across the BBB is slow. 

 

Fig. 23-8. Transport mechanisms available for passage across the blood–brain barrier 

(BBB). 

Delivery of Nucleic Acid Therapeutics 
Nucleic Acid Therapeutics 
Exogenous nucleic acids can be used to modify gene expression.44Zamecnik and 
Stephenson45 demonstrated that a short oligodeoxynucleotide (13-mer) that was antisense to the Rous 
sarcoma virus could inhibit viral replication in cell culture. The existence of natural antisense nucleic 
acids and their role in regulating gene expression was shown in the mid 1980s.46 This led to the 
development of technologies employing synthetic oligonucleotides as therapeutics for manipulating 
gene expression in living cells. Synthetic oligonucleotides (ODNs) are short (<30 nucleotides) nucleic 
acid strands (DNA or RNA), which are chemically synthesized. 
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Key Concept 
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Nucleic Acid Therapeutics 

The genetic information in biological systems is transferred from DNA→RNA→proteins (Fig. 
23-9). The double helical DNA unwinds and creates a copy of itself by the process 
called replication. As a result, genetic information stored in DNA is faithfully transferred to the 
next generation of cells or organisms. The information stored in a part of DNA is transferred to 
mRNA by a process called transcription. In eukaryotic cells, the primary transcript (pre-
mRNA) is processed further by alternative splicing (mRNA blocks are cut out and rearranged) 
and it migrates from nucleus to cytoplasm. The mRNA binds to ribosomes in cytoplasm, 
where information stored in mRNA is read as triplet codon (three base pairs for one amino 
acid) to assemble proteins (biological activity) by a process called translation. Information 
from proteins cannot be transferred back to either nucleic acids or proteins. Francis 
Crick47 called this unidirectional flow of information the Central Dogma of Molecular Biology. 
The importance of nucleic acid therapeutics and gene therapy lies in the fact that they provide 
the capability to interfere at different stages of this process with high specificity. 
Nucleic acids are polynucleotides comprising sugar (ribose and 2-deoxy-ribose), purine 
(adenine/A and guanine/G) and pyrimidine (cytosine/C, thymidine/T, and uracil/U) bases, and 
phosphate. DNA contains 2′-deoxy-ribose sugar and A, G, C, and T bases, whereas RNA 
contains ribose sugar and A, G, C, and U bases. DNA is a double helical structure, whereas 
RNA is single stranded but may fold back to form duplex structures. Base and sugar react to 
form nucleoside and addition of a phosphate group to the nucleoside gives nucleotide. The 
nucleic acids are linear polynucleotide chains connected through phosphodiester backbone. 
All nucleic acid hybridizations (DNA-DNA, DNA-RNA, and RNA-RNA) are stabilized by 
hydrogen bonds (Watson–Crick base pairing); G always binds to C with three hydrogen 
bonds and A always binds to T or U with two hydrogen bonds. This phenomenon is called 
base complementarity and accounts for target specificity of nucleic acids. AT and GC base 
pairs in the major groove can establish additional hydrogen bonds with T and protonated C*, 
respectively. These are called Hoogsteen base pairing and used for triplex formation. 

Antisense is not the only mechanism available; other mechanisms are now known to cause specific 
inhibition of gene expression (Fig. 23-10). 

1. Antigene mechanism: Triplex-helix forming oligonucleotides48 are synthetic single-stranded 
DNA, which hybridize to purine or pyrimidine-rich region in the major groove of double-helical 
DNA through Hoogsteen base pairing. If a stable triple helix is formed, it prevents unwinding of 
double helical DNA necessary for transcription of the targeted region or blocks the binding of 
transcription factor complexes. This mechanism is not considered efficient for clinical 
applications even though it provides an opportunity for therapeutic interventions at a very early 
stage. 
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Fig. 23-9. Transfer of genetic information in living organisms (Central 

Dogma). 

2. Antisense mechanism: Reverse-complementary (antisense) oligonucleotides, which hybridize 
to the mRNA strand of the targeted gene.49,50,51 After hybridization, antisense 
oligonucleotides block expression either sterically by obstructing the ribosomes or by forming 
an RNA-DNA hybrid, which is a substrate for RNase H enzyme, thereby causing the cleavage 
of target mRNA. RNase H is a ubiquitous enzyme that hydrolyzes the RNA strand of an RNA-
DNA duplex. 

3. RNA interference: RNA interference (RNAi) or posttranscriptional gene silencing is a natural 
process in eukaryotic cells by which double-stranded RNA targets mRNA for cleavage in 
sequence-specific manner.52 The mechanism of RNAi involves processing of a very long 
(500–1000 nucleotides) double-stranded RNA, which is cleaved 
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into short double-stranded RNA (small interfering RNA or siRNA, 21–25 nucleotides) by the 
DICER enzyme.53Synthetic siRNA can be produced and directly introduced into the cells. 
Once inside the cytoplasma of the cell, siRNA is incorporated into a large multicomponent 
complex called RNA-induced silencing complex (RISC). A multifunctional protein (Argonaute 2) 
in the RISC unwinds the double-stranded RNA and cleaves the sense strand of siRNA. The 
activated RISC containing the antisense strand of siRNA selectively seeks out and degrades 
mRNA complementary to the antisense strand. The activated RISC then moves on to destroy 
additional mRNA targets.50,54 
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Fig. 23-10. Different mechanisms for selective inhibition of gene expression: 

(a) Triplex-forming oligonucleotide binds to the purine or pyrimidine rich 

region in the major groove of DNA (antigene); (b) antisense oligonucleotide 

sterically blocks ribosome activity (antisense); (c) antisense oligonucleotide 

forms hybrid with target mRNA, which is a substrate for RNase H (antisense); 

and (d) siRNA forms complex with RISC, which facilitate recognition of 

target mRNA followed by its cleavage (RNA interference). 

4. Aptamer selection: Aptamers are nucleic acid ligands (15–40 nucleotides) isolated from 
combinatorial oligonucleotide libraries by in vitro selection.55 In solution, the oligonucleotide 
chain forms intramolecular interactions that fold the molecule into a complex three-dimensional 
shape. Aptamers have capability to tightly and specifically bind to the target molecules ranging 
from small molecules to complex multimeric structures. The therapeutic potential of aptamers 
arises from the fact that many aptamers targeted against proteins are able to interfere with their 
biological activity. 

Other nucleic acid agents such as microRNA are also known and so are nucleic acids with catalytic 
activity: ribozymes and DNAzymes.Ribozymes are RNA molecules containing different catalytic 
motifs.53 They hybridize (bind) to the substrate RNA through Watson–Crick base pairing and cause 
sequence-specific cleavage.DNAzymes on the other hand are DNA molecules containing a catalytic 
motif and similar to ribozyme, cleave the substrate RNA after binding to it. 
The unmodified nucleic acids have phosphodiester backbone, which are rapidly degraded in biologic 
fluids and in cells by the nucleases. Moreover, they show extremely poor penetration (diffusion) across 
the cell membrane.49,50,51 Most of the antisense oligonucleotides or siRNA therefore contain structural 
modifications. Oligonucleotides for clinical applications mostly have phosphorothioate or morpholino 
backbone instead of phospodiester. Several advanced antisense oligonucleotides are ―gapmers‖ 

consisting of a central DNA portion that can recruit RNase H and flanking 2′-modified regions. Other 
important structural modifications are 2′-OH modifications (e.g., 2′-O-methyl), locked nucleic acids, 
peptide nucleic acids, and hexitol nucleic acids. 
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The only nucleic acid therapeutic currently approved for human use is fomivirsen (Vitravene, 1998, Isis 
Pharmaceuticals) for the treatment of inflammatory viral infection of 
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the eye (retinitis) caused by cytomegalovirus.53 Vitravene is a 21-mer antisense phosphorothioate 
oligonucleotide complementary to mRNA transcribed from the main immediate-early transcriptional unit 
of cytomegalovirus. The drug was later withdrawn from the market. Antisense oligonucleotides in clinical 
trials are alicaforsen for ulcerative colitis (Isis); ISIS113715 for diabetes (Isis); ATL1102 for multiple 
sclerosis (ATL/Isis); OGX-011 for prostate cancer (OncoGene/Isis); and Genesense for varied cancer 
(Genta).50 The siRNAs in clinical trials are AEG35156 for X-linked inhibitor of apoptosis protein (i.v., 
Aegera Therapeutics); AGN211745 for vascular endothelial growth factor receptor (i.v., Allergan); and 
ALN-RSV01 for respiratory syncytial virus nucleocapsid (nasal, Alnylam Pharmaceuticals).50,56 
Gene therapy is the treatment of human disease by transferring genetic material into the specific cells of 
the patient.57 It must not be confused with the nucleic acid therapeutics described above. Advances in 
molecular biology, biotechnology, and the Human Genome Project have led to the identification of 
several disease-causing genes. Gene-therapy approaches are being suggested for the replacement of 
genes responsible for genetic diseases like hemophilia, muscular dystrophy, and cystic fibrosis. Gene 
replacement can also be used for altering the expression of an existing gene, inhibiting or augmenting 
the synthesis of a particular protein, and producing cytotoxic proteins or prodrug activating enzymes 
(see GDEPT). Gene therapy is also being investigated for the treatment of cardiovascular, neurological, 
and infectious diseases and cancer. Clinical success with gene therapy was first reported in 2000 for the 
treatment of severe combined immunodeficiency. 
The limited success of antisense oligonucleotides or siRNA and gene therapy is attributed to the lack of 
efficient delivery systems. 
Systemic Delivery of Nucleic Acids 
Local delivery of nucleic acid therapeutics could be achieved in eye, skin, mucus membranes, and local 
tumors. It is particularly well suited for the treatment of lung diseases and infections. The advantages 
are higher bioavailability and reduced adverse side effects, but not every tissue is amenable to local or 
topical delivery. 
Systemic delivery of antisense or siRNA oligonucleotides requires that the antisense or siRNA 
oligonucleotides are able to travel throughout the body to reach the target tissue/organ while avoiding 
the nontarget tissues. For effective systemic delivery, ODNs must navigate the circulatory system of the 
body while avoiding rapid excretion by the kidney, degradation by the serum and tissue nucleases, and 
uptake by the phagocytes of the reticuloendothelial system. Moreover, they should be able to overcome 
failure to cross the capillary endothelium, slow diffusion/binding in extracellular matrix, and inefficient 
endocytosis by tissue cells and release from endosomes. The major systemic delivery approaches are 
described below.57,58 
Viral Delivery Systems (Viral Vectors) 
A virus carries its genome from one host cell to another. It enters the new target cells, navigates to the 
cell's nucleus, and initiates expression of its genome, as a part of its self-replication cycle. It is possible 
to convert a virus into a gene-delivery vehicle by replacing a part of the virus genome with a therapeutic 
gene. Viruses that are used for delivering genetic material to host cells are called vectors, the process is 
known as transduction, and infected cells are described as being transduced. 
The viral vectors could be nonreplicating or replicating and common examples are:59 (a) retroviruses, 
which contain single-stranded RNA molecule as genetic material. Herpes simplex virus (HSV) is a 
retrovirus, whereas lentiviruses are a subclass of retroviruses; (b)adenoviruses, which contain the 
genetic material in the form of double-stranded DNA and cause common cold as well as respiratory, 
intestinal, and eye infections in humans; and (c) adeno-associated viruses, which have single-stranded 
DNA as genetic material. The lesser-used viruses are baculovirus and vaccinia. Although to a lesser 
extent, bacteria have also been used as a delivery vehicle. The most prevalent organisms used 
are Salmonellaand Clostridium; other lesser-used examples are Bifidobacteriumand Escherichia coli. 
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The evolution of viruses has taken place essentially as gene-delivery vehicles and therefore they are 
typically very efficient. Viral vectors are used in a large number of preclinical and clinical studies 
involving gene-delivery. Safety of viral vectors is the major concern limiting their use in clinical 
applications. The viral vectors are replication deficient and therefore nonpathogenic, but there is a slight 
risk of reversion to the wild type virus. There is also the possibility of inducing severe immune 
responses. The introduction of retrovirus vectors may cause mutagenesis of the host genome. The 
selective delivery and expression of genes (target-cell specificity) may be difficult to achieve and the 
manufacturing costs are high. 
Nonviral Delivery Systems (Synthetic Vectors) 
Safety concerns associated with viral vectors have led to the use of synthetic materials (synthetic 
vectors) for oligonucleotide delivery.49,57,58 Moreover, they are less expensive, easier and safer to 
make, and suitable for long-term storage. Synthetic vectors are molecules, which electrostatically bind to 
DNA or RNA, condensing them into nanosized particles. When nanoparticles are formed by 
complexation between cationic lipids (or cationic liposomes) and DNA, they are called lipoplexes, 
whereas when formed by complexation between cationic polymers (or polypeptides) and DNA, they are 
called polyplexes. This process of delivering nucleic acids into the cell by nonviral methods is called 
transfection (also lipofection when lipids or liposomes are used). 
Cationic liposomes are among the most extensively used synthetic materials for systemic gene delivery 
due to their relatively higher transfection efficiencies. They electrostatically 
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interact with the negatively charged phosphate backbone of nucleic acids, which neutralizes the charge 
and promotes the condensation of nucleic acids into a more compact structure. A common example of 
cationic liposome is transfection reagent Lipofectin, which comprises 1:1 mixture of N-[1-
(2,3dioleyloxy)propyl]-N,N,N-trimethyl ammonium chloride (DOTMA) and the colipid dioleylphosphatidyl 
ethanol amine (DOPE). Other examples of cationic lipids are 3β[(N,N′-dimethylaminoethane)-carbamoyl] 
cholesterol (DC-CHOL); 1,2-bis(oleoyloxy)-3-(trimethylamino) propane (DOTAP); and (1,2-
dimyristyloxypropyl-3-dimethyl-hydroxy) ethyl ammonium bromide (DMRIE). Recently, stable nucleic 
acid–lipid particle (SNALP) formulations have demonstrated high efficacy in several models in vivo. 
Polypeptides such as polylysine have also been investigated for gene delivery. Polyplexes of DNA and 
polylysine are poor gene-delivery vectors and require the addition of chloroquine. 
Cationic polymers with linear, branched, or dendritic structures also serve as efficient transfection agent 
due to their ability to bind and condense large nucleic acids into stabilized nanoparticles. Polymers with 
primary, secondary, tertiary, and quarternary amines as well as other positively charged group like 
amidines are particularly useful for this purpose. Examples of cationic polymers investigated for gene 
delivery are polyethylenimine (PEI), polyamidoamine or starburst dendrimer, imidazole-containing 
polymers, cyclodextrin-containing polymers, and membrane-disruptive polymers (polyethylacrylic 
acid/PEAA, methylacrylic acid/MAA, polyacrylic acid/PAA, and polypropylacrylic acid/PPAA). 
Unlike the ionic complexes, nucleic acid conjugates with cell-penetrating peptides, carbohydrates, and 
lipid molecules have been used for improved delivery with moderate success. 
Liposomes and lipid-based formulation have been mostly used for systemic delivery of oligonucleotides 
in clinical applications. The disadvantages of using synthetic vectors are low transfection efficiency 
(polyplexes), reproducibility, toxicity to some cell type's in vitro and in vivo, and colloidal stability upon 
systemic administration. 
Targeted Drug Delivery 
Magic Bullet 
Paul Ehrlich coined the term ―Magic Bullet.‖60,61 He envisaged a treatment of pathogens and toxins in 
the human body by means of a chemical substance, which is equipped with high affinity for the 
causative agent. Moreover, this substance should be efficacious in a concentration that is harmless for 
patients. While screening trivalent arsenic compounds for their potency on Treponema pallidum, the 
causative agent for syphilis, he discovered Salvarsan (magic bullet), which killed syphilis organisms in 

Dr. Murtadha Alshareifi e-Library

1095



most cases without killing the host. Although the concept of the magic bullet was introduced 100 years 
ago, the challenge of making drugs with selective toxicity (in other words, targeting) has not been 
broadly achieved. 

Key Concept 

Targeted Drug Delivery 

The main goal of targeted drug delivery is to optimize drug's therapeutic index (the ratio of the 
therapeutic dose to the toxic dose) by strictly localizing its activity at the target (diseased) 
site.62 Drugs can be targeted to specific organs (organ targeting), systems (systemic 
targeting), cells (cellular targeting), or specific intracellular organelles, or molecules 
(molecular targeting). Drug targeting could be achieved by physical, biologic, or molecular 
systems that result in high concentrations of pharmaceutically active agents at the targeted 
site, thus lowering its concentrations in the rest of the body. Successful drug targeting results 
into significantly lower drug toxicities, reduced doses, and increased efficacy. 

Drugs administered by routine parenteral administration are distributed throughout the body and reach 
nontarget (normal/healthy) organs/tissues leading to possible toxic side effects and low efficacy of 
treatment.62 Besides, there is a possibility of drug metabolism in the liver or other organs and excretion 
by kidney. As a result, only small fraction of the administered drug dosage will reach the target 
(diseased) organ or tissues. Targeted drug delivery62 aims to overcome limitations associated with 
routine drug administration by delivering drugs specifically to diseased cells and tissues while not 
exposing healthy tissues. Ensuring minimal drug loss during the transit to the target site, protecting the 
drug from metabolism and premature clearance, retaining the drug at the target site for desired period of 
time, facilitating the drug transport into the cell, and delivering the drug to the appropriate intracellular 
target site are other requirements of targeted drug delivery. Last but not least, these targeted drug 
delivery systems should be biocompatible, biodegradable, and nonantigenic. 
Types of Drug Targeting 
Drug targeting approaches are grouped into two major categories: (a) active targeting and (b) passive 
targeting. A brief overview of major active and passive approaches is provided below.63 
Active Targeting 
Active targeting is achieved by binding to cell surface antigens and receptors or membrane transporters. 
A brief overview of different active targeting strategies is provided below. 
Carrier-Linked Prodrug Strategy for Targeting Cell Surface 
Antigens and Receptors 
This strategy aims to develop prodrugs by conjugating drug molecules to monoclonal antibodies (mAbs) 
or ligands for 
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specific interaction with antigens or receptors expressed on target cell surface. These cell surface 
targets are distinguished into two categories: noninternalizing and internalizing. In noninternalizing 
systems, the drug conjugate is cleaved extracellularly, whereas in internalizing systems drug is cleaved 
intracellularly after endocytosis. 

Dr. Murtadha Alshareifi e-Library

1096



 

Fig. 23-11. General design of carrier-linked prodrug/conjugate for active targeting. 

Active targeting to antigens/receptors is achieved by employing carrier-linked prodrug strategy64 as 
shown in Figure 23-11. The delivery system has three components: (a) drug, (b) carrier, and (c) the 
homing device or the targeting moiety. Carrier-linked prodrugs are obtained by conjugating the drug 
molecules to low- to high–molecular-weight molecules (carriers) like sugars, growth factors, vitamins, 
antibodies, peptides, and synthetic polymers that can transport the drugs to the target site and 
subsequently release them there. The drug release in most of the prodrugs is accomplished by 
conjugating the drug to the carrier through a spacer that incorporates a predetermined breaking point, 
which allows the drug to be released at the cellular target site. It is achieved by incorporating linkages 
sensitive to enzymatic cleavage, acidic pH, hypoxia, or thiol-exchange reactions. Drug release is also 
accomplished by employing self-immolative linkers. 
Several cell-specific receptors are expressed under physiological conditions, which are specific to 
ligands and therefore could be exploited for targeting.62 Examples are (a) parenchymal liver cells, which 
are specific to galactose, polymeric IgA, cholesterol ester-VLDL, and cholesterol ester-LDL; (b) kupffer 
cells, which are specific to mannose-fucose, galactose, and LDL; (c) liver endothelial cells, which are 
specific to mannose and acetylated LDL; and (d) leucocytes, which are specific to chemotactic peptide 
and complement C3b. Receptors may also become available under pathological conditions. Examples 
include (a) antigenic sites on pathogens (bacteria, viruses, and parasites); (b) infected cells expressing 
specific antigens; and (c) tumor-associated antigens/receptors.64 
Monoclonal antibodies are used for active targeting because of their high binding affinity for respective 
antigens. Most mAbs belong to the immunoglobulins of the IgG class, which is smallest in size but most 
abundant antibody found in all biological fluids. Several standard chemotherapeutic agents including 
antifolates, vinca alkaloids, or anthracyclines have been conjugated to mAbs mostly through cathepsin-
B sensitive peptide linker or disulfide bond. It was found that these antibody conjugates indeed have 
selectivity toward the cells that expresses the respective antigens. These conjugates, however, failed in 
clinical trials because the mAbs were of murine origin and invoked immune responses. The problem of 
immunogenicity was resolved by the development of chimeric and humanized antibodies that do not 
carry murine sequences. FDA has now approved five chimeric or humanized antibodies such as 
rituximab (Rituxan), tratuzumab (Herceptin), alemtuzumab (Campath), bevacizumab (Avastin) and 
cetuximab (Erbitux) for the treatment of hematological and solid cancers. Of several immunoconjugates 
evaluated in clinical trials, gemtuzumab ozogamicin (Mylotarg, Wyeth, NJ)65 has been approved for the 
treatment of cancer (Fig. 23-12). This immunoconjugate consists of humanized anti-CD33 mAb linked to 
the cytotoxic antibiotic ozogamicin (N-acetyl-γ-calicheamicin). The linker consists of two cleavable 
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bonds. Mylotarg65 is used for the treatment of CD33+ acute myeloid leukemia in elderly patients who 
are not eligible for other chemotherapies and who are suffering from their first relapse. Mylotarg 
demonstrated clinical efficiency in pediatric patients with advanced CD33+ acute myeloid leukemia. 
Immunotoxins are antibody conjugates of highly potent drugs (DOX is frequently used) or toxins. 
Immunotoxins contain a toxin made by plants; insects; or microorganisms and examples include 
Pseudomonas exotoxin A (PE), diphtheria toxin (DT), and ricin. The primary targets of immunotoxins are 
tumor cells. BR96-DOX conjugate in an extensively investigated example, where an average of eight 
molecules of DOX are linked to chimeric mAB BR 96 through an acid-sensitive hydrazone 
linkage.66 Promising immunotoxins currently in clinical trials include TransMID 107 (transferrin-
CRM107) and PRECISE (IL13-PEI-301-R03).64 
P.614 
 
 

 

Fig. 23-12. Examples of actively targeted prodrugs: Mylotarg and EC 145. 

Besides antigens, cellular receptors also provide targets for prodrug design. Active targeting is achieved 
by binding drugs to ligands that display high affinity for a particular receptor. The ligands can be low- or 
high–molecular-weight compounds such as vitamins, peptides, sugars, native or modified proteins, and 
antibodies. Prodrug is taken up by receptor-mediated endocytosis after binding. The drug is then 
released in endosomes or lysosomes depending on the route of cellular trafficking of the particular 
receptor. 
Folic acid is one of the most highly used ligands because it retains high affinity for its receptor even after 
modification with drug/carrier molecules. It is overexpressed in many human types of cancers and a 
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broad spectrum of low- and high–molecular-weight drug folate conjugates with alkylating agents, 
platinum complexes, paclitaxel, 5-fluorouracil, camptothecin, doxorubicin, and mitomycin has been 
investigated. Prodrug EC 145,67 currently in clinical trials, is probably the most promising folate-targeted 
prodrug (Fig. 23-12). It is composed of vinca alkaloid desacetylvinblastine monohydrazide linked to folic 
acid through reducible disulfide bridge. EC 145 was found to be more active and better tolerated than 
the free drug in in vivo preclinical studies and showed superior antitumor activity. 
Cyclic peptides that bind to integrins can be used to target vascular receptors. Vascular receptor 
proteins are crucial for the interaction between a cell and the extracellular matrix and they are involved 
in tumor angiogenesis. Certain integrins (αvβ3, αvβ5) are overexpressed on proliferating endothelial cells 
and some tumor cells. Peptides containing the RGD sequence (Arg-Gly-Asp) that are present in 
extracellular matrix are used to target integrins and subsequently inhibit angiogenesis. A number of 
RGD-drug conjugates with cytostatic and diagnostic agents have been prepared to obtain the proof of 
concept. 
The asialoglycoprotein receptor (ASGPR) is a membrane-bound lectin expressed on hepatocytes and 
liver cancer. It has been used for prodrug targeting for the treatment of hepatocellular carcinoma. 
ASGPR has high affinity for terminal 
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β-galactoside or β-N-acetylgalactosamine on glycoproteins and is responsible for the endocytosis of 
several glycoproteins. The strong interaction of glycoproteins with ASGPR receptor is attributed to the 
cluster effect (multivalency) in which adjacent saccharide group binds to the receptor with high binding 
constants. The cluster effect is mainly due to the thermodynamic property of multivalent ligands rather 
than the presence of multiple receptor binding sites. N-(2-hydroxylpropyl) methyl acrylamide (HPMA)-
Gly-Phe-Leu-Gly containing galactosamine (PK2, FCE28069) is the only polymer–drug conjugate 
bearing a targeting ligand to be tested clinically. PK2 has Mw ~25,000, DOX content (~7.5 wt%), and 
galactosamine content of 1.5 mol% to 2.5 mol%. The prodrug showed 30% delivery to the hepatic 
region in preclinical studies. The prodrug was found to accumulate in tumors also due to the enhanced 
permeability and retention (EPR) effect and the ratio of tumor tissue to normal liver uptake was 1:3 in 24 
hr. The galactose-mediated liver targeting was about 15% to 20% of dose at 24 hr. 
The antigens and receptors described here are only representative and there are many more that have 
been investigated for active drug targeting. The disadvantage associated with antibody–drug conjugates 
and drug modified with ligands having affinity for particular receptors is that they are not exclusively 
target-specific and cross-reactivity of drug conjugate with normal tissue is observed.64 
Antibody-Directed Enzyme Prodrug Therapy 
Antibody-directed enzyme prodrug therapy (ADEPT) is a two-step mechanism for prodrug targeting, 
where a tumor-associated mAb linked to drug-activating enzyme (usually antibody–enzyme fusion 
protein) is administered intravenously in the first step, which binds to specific antigen expressed on the 
tumor cell surface.68 A nontoxic prodrug is administered systemically in the second step and converted 
to the cytotoxic drug by the pretargeted enzyme. The enzymes used in ADEPT are divided into following 
three categories: Class I: enzymes of nonmammalian origin with no mammalian homologues such as 
alkaline phosphatase and α-galactosidase; Class II: enzymes of nonmammalian origin with mammalian 
homologues such as carboxypeptidase A, β-glucuronidase, and nitroreductase; and Class III: enzymes 
of mammalian origin such as β-lactamase, carboxypeptidase, cytosine deaminase, benzylpenicillin 
amidase, and phenoxymethyl. 
Currently, there are two ADEPT systems in Phase I/II clinical trials with prodrug ZD2767P or N-{4-[N,N-
bisamino]phenyloxycarbonyl}-L-glutamic acid. The prodrug is activated by enzyme carboxypeptidase 2 
(CPG2) to active drug 4-[N,N-bis(2-iodoethyl)amino]phenol or phenol bisiodide mustard and is active 
against colorectal tumors. The first ADEPT system in a clinical trial uses a recombinant fusion of murine 
anticarcinoembryonic antigen (CEA) F(ab)2 fused to CPG2 in combination with prodrug ZD2767 for the 
treatment of advanced colorectal cancer and the second ADEPT study in clinical trials utilizes a 
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recombinant fusion of CEA sFv fused to CPG2, in combination with ZD2767P for the treatment of CEA-
expressing tumors. 
The ideal drugs for ADEPT are small molecules with the ability to diffuse into the tumor tissues to cause 
a bystander effect. The bystander effect is defined as the capability to kill the surrounding 
nondividing/nonexpressing tumor cells and is an important requirement for this type of therapy as it 
amplifies the drug effect. To avoid systemic toxicity in clinical application, the time interval between 
enzyme and prodrug administration should be optimized so that the conjugate accumulates only in 
tumors and not in blood and normal tissues. The target antigen should be either expressed on tumor cell 
membrane or secreted into the extracellular matrix of the tumor and use of high-affinity mAb is essential. 
The drug should be dose dependant and cell cycle independent. For effective therapy, the antibody–

enzyme conjugate should remain on the cell surface after binding to the respective antigens and it must 
also be cleared rapidly from the circulation to prevent toxicity. 
The major advantage of ADEPT over antibody conjugates is the amplification of the cytotoxic effects 
due to catalytic activation of prodrug. Another benefit is the ability to kill surrounding tumor cells thereby 
reducing the risk of tumor evading therapy by antigen loss. The cytotoxic effects of drugs are largely 
confined to the tumor target and hence the side effects are reduced as compared to systemic 
administration of chemotherapy. A significant obstacle for ADEPT is the immunogenicity of enzymes 
used for prodrug activation and the targeting mAb as both were derived from nonhuman sources. This 
problem has been resolved by the use of human enzymes in conjunction with humanized or human 
mAbs. 
Another analogous approach is ―Lectin-directed Enzyme-Activated Prodrug Therapy,‖ where 

glycosylated-enzyme conjugates are administered first, which binds to cells surfaces expressing specific 
lectin receptors.69 The enzyme then activates the systemically administered prodrug at the site of 
action. 
Gene-Directed Enzyme Prodrug Therapy/Virus-Directed Enzyme 
Prodrug Therapy 
Gene-directed enzyme prodrug therapy (GDEPT) is also known as suicide gene therapy and involves 
physical delivery of a gene for a foreign enzyme (not naturally expressed in the host) to tumor cells by a 
targeting mechanism that leaves the surrounding noncancerous cells untransformed.59 The 
transformed tumor cells express the enzyme, which in turn activates the systemically delivered nontoxic 
prodrug. Viral vectors are mostly used for gene delivery but they suffer from limited amount and size of 
plasmid-DNA. There is also the possibility of inducing severe immune responses. This approach is 
recognized as virus-directed enzyme prodrug therapy (VDEPT) when viral vectors are used for gene 
delivery. Nonviral vectors such as cationic liposomes are less expensive, easier and safer to make, and 
suitable for 
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long-time storage, but their gene delivery properties are far from optimal. 
An earlier example of GDEPT is herpes simplex virus thymidine kinase and GCV. The drug is 
phosphorylated by the herpes simplex virus thymidine kinase and then by cellular kinases to produce 
GCV-triphosphate, which incorporates into the elongating DNA during the cell division (S-phase) and 
causes inhibition of DNA polymerase and single-strand breaks. These characteristics make HSV TK-
GCV useful for eradicating tumor cells invading nonproliferating tissues. Other examples in clinical trials 
are (a) the purinenucleoside phosphorylase enzyme in combination with 6-methylpurine (prodrug); (b) 
carboxylesterases enzyme in combination with prodrug irinotecan (CPT11); and (c) cytochrome P450 
(CYP450) enzyme in combination with prodrug cyclophosphamide. 
For GDEPT to be effective, the expressed enzyme or a related protein should not be present in normal 
human tissues or expressed only at very low concentrations and must achieve sufficient expression in 
the tumors to give high catalytic activity. The prodrug should be lipophilic so that it can diffuse into the 
tumor cells before it can be converted into cytotoxic drug by the suicide enzyme. Alternatively, if the 
prodrug cleavage takes place extracellularly, the active drug should be capable of diffusing through cell 
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membranes. The drug should be able to kill surrounding nondividing or nonexpressing tumor cells by 
bystander effect. The advantage of the GDEPT approach is the possibility of delivering target-specific 
cancer therapy with reduced systemic toxicity resulting in a better prognosis for patients. There are 
certain theoretical risks associated with GDPET such as insertional mutagenesis, anti-DNA antibody, 
local infection, and tumor nodule ulceration, which may restrict its use. 
Antibody-Targeted, Triggered, Electrically Modified Prodrug Type 
Strategy 
Antibody-targeted, triggered, electrically modified prodrug type strategy (ATTEMPTS)70 delivery system 
comprises large complex made of two components: (a) targeting component consisting of an antibody 
chemically linked with an anionic heparin molecule and (b) a drug component consisting of the enzyme 
drug modified with a cationic moiety. The two components are linked through a tight but reversible 
electrostatic attraction. The cationic species conjugated to the enzyme is relatively small (positively 
charged peptide) and hence the enzyme conjugates retain its catalytic activity. However, this enzyme 
conjugate is unable to exert its catalytic activity because it is bound to antibody–heparin conjugate via 
electrostatic bonds. The ATTEMPTS complex is delivered to the targeted site by the attached antibody 
and the enzyme drug is released at the site by using a triggering agent such as protamine. Protamine is 
a heparin antidote, which binds to heparin more strongly than most of the cationic species. The released 
enzyme is then concentrated at the site of action thereby maximizing its catalytic activity toward drug 
conjugate at the targeted site while minimizing its toxic effects toward the normal cells. The selection of 
an appropriate cationic moiety is key to success of ATTEMPTS strategy because retention of prodrug 
after administration and its conversion to active drug relies on the binding strength of modified enzyme 
toward heparin. An important aspect of this approach is that both chemical and biological methods can 
be used to insert the cationic moiety. Yang and colleagues70 modified the tissue plasminogen activator 
(t-PA) with a cationic species (Arg7-Cys-) and rendered it inactive by electrostatic binding with negatively 
charged heparin–antifibrin antibody conjugate. After targeting the complex to the target site, t-PA activity 
was restored by administration of protamine (heparin antidote). 
The approach could be important because prodrug activation in ADEPT depends on chemical 
conjugation and enzyme cleavage, respectively. ADEPT is therefore restricted to small-molecule drugs 
only and macromolecular drugs such as proteins are not suitable candidate for ADEPT. 
Membrane Transporters 
Membrane transporters are integral plasma membrane proteins that mediate the uptake of different 
substrates including, polar nutrients, amino acids and peptides, nucleosides, and sugars.63,71 They fall 
into two major families: (a) the ATP-binding cassette family, which includes transporters responsible for 
drug resistance through efflux transporters like Pgp and (b) the solute carrier (SLC) transporters, which 
are capable of influx into the cell. An example of the solute carrier transporters is nucleoside transports, 
which are responsible for the uptake of nucleosides, the precursors of nucleotides. Transporters can 
also be selective for different classes of substrates as is the case for the transporters of purine and 
pyrimidines. Often, transporters require the flux of a secondary substrate, like the peptide transporters 
PEPT1 and PEPT2, which require the influx of H+ to facilitate their uptake functions. Because many 
transporters have nutrients as substrates, prodrug design is manipulated to mask the drug with nutrient 
moiety so as to initiate prodrug uptake through these transporters (Fig. 23-13). 
The use of membrane transporters as prodrug targets has largely stemmed from the discovery of the 
absorption mechanism of valacyclovir through the PEPT1 transporter.72 The addition of the L-valyl ester 
to the parent drug acyclovir vastly improves the bioavailability of acyclovir. Upon absorption, valacyclovir 
is rapidly converted to its parent drug acyclovir via esterase cleavage. Acyclovir is then free to enter the 
bloodstream, where it is taken up by cells via nucleoside transporters. Valacyclovir is the first example of 
a novel peptide ester prodrug that actively targets the human transporters, PEPT1, for increased oral 
absorption. Besides the obvious benefit of increased oral absorption, this method of drug delivery has 
been tailored to target cancer cells over expressing certain membrane transporters. The malignant 
ductal pancreatic cancer cell lines AsPc-1 and Capan-2 and the human fibrosarcoma cell line HT-1080 
overexpress the PEPT1 membrane transporter. It has been suggested that if 
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tumor cell uptake of hydrophilic polymer drug conjugates via a specific mechanism of internalization can 
be achieved; these drugs may avoid the development of or elimination due to multidrug resistance. 

 

Fig. 23-13. Schematic representation of membrane transporter targeted prodrug 

uptake. (Source: H.-K. Han and G. L. Amidon, AAPS Pharm. Sci. 2, 1, 2000.) 

The advantage of using transporters like PEPT1 is the potential for increased oral absorption. Thus, 
prodrugs utilizing the membrane transporters may be afforded the luxury of an oral formulation, which is 
the gold standard of administration. Amino acid side chains could be varied to alter the physicochemical 
properties of prodrug. The broad specificity of these transporters for multiple substrates increases the 
potential flexibility in prodrug design. Also because the transporter-targeting substrates are generally 
sugars, vitamins, or peptides, the byproducts of the prodrug's conversion yield nontoxic nutrients. The 
disadvantage associated with this approach is that these transporters are also expressed in cells of the 
small intestine, kidney, bile duct, and pancreas. Therefore, if PEPT1 substrates are used as targeting 
moieties, toxicity in these cell types may occur. Another problem could arise if the prodrug upon 
absorption by the transporter is quickly converted to parent drug. Once this occurs, the parent drug will 
be passively distributed throughout the systemic circulation, which could in turn cause systemic toxicity. 
Passive Targeting 
Passive targeting utilizes the natural or passive distribution characteristics of a carrier for drug targeting 
and no homing device is attached. Some of the major passive-targeting approaches are briefly 
described below. 
Mononuclear Phagocyte System 
Particulate carriers are phagocytosed by the cells of mononuclear phagocyte system (MPS), leading to 
major accumulation in the liver and the spleen62 (Fig. 23-14). After phagocytosis, the particulate 
drug/carrier complex is transported to lysosomes, where the complex is disintegrated to release the 
drug. If the complex is not broken down in the lysosomes, it may be released from the lysosomal 
compartment into the cytoplasm and may even escape from phagocyte causing a prolonged release 
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systemic effect. The ability of macrophages to rapidly phagocytose particulate drug/carrier complexes 
could be diminished by grafting PEG chains on the surfaces of particulate material. 
Passive targeting to MPS could be used for the treatment of macrophage-associated microbial, viral, or 
bacterial diseases and lysosomal enzyme deficiencies. 
Enhanced Permeability and Retention (EPR) Effect 
Prodrugs could be passively targeted to tumors by exploiting the EPR phenomenon73 (Fig. 23-14). 
Angiogenesis is induced in tumors to accommodate their ever-increasing demand for nutrition and 
oxygen as the tumor cells multiply and cluster together to reach the size of 2 to 3 nm.74 Unlike the 
normal tissue, the blood vessels in tumors become irregular in shape, dilated, leaky, or defective, and 
the endothelial cells become poorly aligned and disorganized with large fenestrations. The perivascular 
cells and the smooth muscle layers are frequently absent or abnormal in the vascular wall. Tumor 
vessels develop wide lumens and the lymphatic drainage in tumor tissues becomes impaired. This 
results into extensive leakage of blood plasma components such as macromolecules, nanoparticles, 
and lipidic particles in tumor tissues. These macromolecules and nanoparticles are retained in tumors 
due to the slow venous return in tumor tissues and poor lymphatic drainage. Longer plasma residence 
time and neovasculature are known to influence the EPR. This phenomenon has been shown to achieve 
10- to 50-fold (1%–5% and in some cases 20% of injected dose per gram of tumor) high local 
concentration of drugs in the tumor tissues than in normal tissues within 1 to 2 days of injection. 
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Fig. 23-14. Passive targeting approaches: mononuclear phagocyte system (MPS) and 

enhanced permeability and retention (EPR) effect. (Modified from D. J. A. 

Crommelin et al., Drug Delivery and Targeting for Pharmacist and Pharmaceutical 

Scientists, CRC Press, Boca Raton, FL, 2001, pp. 117 and R. Duncan, Nat. Rev. Drug 

Discov. 2, 347, 2003.) 

Passive targeting through the EPR effect is achieved by attaching the drug to macromolecules (e.g., 
synthetic or biopolymers) or nanoparticles (e.g., liposomes, nanospheres) that act as inert carriers. 
These macromolecules or nanoparticles do not interact with tumor cells but strongly influence the drug 
biodistribution. Molecular weight is absolutely important but not the sole criterion for predicting the 
molecule's biodistribution. The chemical nature of polymer, as well as shape and conformation in water, 
also influences its molecular size. Attachment to polymers results into improved water solubility, 
prolonged stay in blood circulation, and reduced toxicities. Polymer used for such applications should 
P.619 
 
be biocompatible (nontoxic, nonimmunogenic, preferably biodegradable), able to carry the required drug 
payload, able to protect the drug against premature metabolism, display active/passive targeting, able to 
liberate the drug at a rate appropriate to its mechanism of action, and able to enter tumor cells by 
endocytosis (if designed for lysosomotropic release). 
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Fig. 23-15. Passively targeted polymeric prodrugs: PK1, Xyotax, and PEG-

camptothecin (CPT). 

Several passively targeted polymeric prodrugs are being evaluated in clinical trials75,76 (Fig. 23-15). 
Examples are (a) PK1 or FCE28068 (HPMA linked to doxorubicin through tetrapeptide linker); (b) 
ProLindac (HPMA linked to diaminocyclohexane platinum [II]); (c) Xyotax or CT-2103 (polyglutamate or 
PGA attached to paclitaxel through ester bond); (d) CT-21006 (PGA attached to camptothecin); and (e) 
EZN-2208 or PEG-SN38 (PEG attached to 7-ethyl-10-hydroxycamptothecin). Genoxol-PM is paclitaxel-
loaded biodegradabe polymeric micelle of PEG-PLA. 
Another example is styrene-malic-anhydride-neocarcinostatin systems (SMANCS) obtained by 
conjugating neocarcinostatin (NCS, ~12 kDa protein) to two poly(styrene-co-maleic anhydride 
copolymer. NCS is a small protein, which is rapidly cleared by the kidney and shows nonspecific 
cytoxicity. Styrene-malic-anhydride-neocarcinostatin, which are targeted possibly by EPR, show 
improved pharmacokinetic properties. Clinical successes have been reported in patients with 
hepatocellular carcinomas. Dendritic structures and particulate materials are also being explored for 
passive targeting of prodrugs. 
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Polymer-Directed Enzyme Prodrug Therapy and Polymer-Directed 
Enzyme Liposome Therapy 
The polymer-directed enzyme prodrug therapy (PDEPT) and polymer-directed enzyme liposome 
therapy (PELT) also exploit EPR for drug targeting.75,76 PDEPT is a two-step approach and involves 
the initial administration of the polymeric prodrug to promote tumor targeting followed by administration 
of the activating polymer-enzyme conjugate. The process utilizes the EPR effect to target the polymeric 
prodrug as well as polymer enzyme conjugate. The feasibility of PDEPT for targeted delivery is being 
evaluated using following: (i) PK1 prodrug and HPMA copolymer-cathepsin B enzyme conjugate; and (ii) 
HPMA-methacryloyl-GlyGly-cephalosporin-doxorubicin prodrug and HPMA-methacryloyl-Gly-Gly-β-
lactamase enzyme conjugate. In another strategy, known as polymer-directed enzyme liposome 
therapy, liposomes (e.g., HPMA-phospholipase) are used to deliver the prodrug (improved EPR) 
followed by the polymer enzyme. 

 

Fig. 23-16. Particulate carriers in drug targeting: liposomes and micelles. 

Particulate Carriers in Drug Targeting 
Besides the soluble prodrugs/conjugates, particulate carriers have also been used in the targeted drug 
delivery.62,77 Advantages associated with particulate carriers are (a) high drug payload, (b) possibility 
of both covalent and ionic association between the drug and the carrier, and (c) high degree of 
protection available to drug after encapsulation. Several solid-particulate nanosuspensions are in the 
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market; examples include sirolimus (Rapamune) (immunosuppressant, Wyeth) and aprepitant (Emend) 
(antiemetic, Merck). Several examples of particulate carriers are briefly described below. 
Liposomes 
Liposomes are vesicular structures based on one or more lipid bilayers encapsulating an aqueous core 
(Fig. 23-16).62,77 The lipid molecules are usually naturally occurring or synthetic phospholipids, 
amphipathic moieties with a hydrophilic polar head group along with two nonpolar hydrophobic chains 
P.621 
 
(tails). These molecules spontaneously arrange themselves in water to give the thermodynamically most 
stable bilayer structures, where the hydrophilic head groups protrude outside into the aqueous 
environment, and the hydrophobic chains orient themselves inward, away from water. The flat bilayers 
self-close into concentric compartments around a central aqueous phase to give spherical liposomes 
with diameters in the range of 0.02 to 20 µm. 
The liposomes are either unilamellar (one concentrically oriented bilayers around an aqueous core) or 
multilamellar (multitude of concentrically oriented bilayers around aqueous core) (Fig. 23-16). When the 
liposomes are multilamellar, water may be present in the aqueous core and also between the bilayers. 
Multilamellar vesicles are formed under low shear agitation with wide size distribution, display relatively 
low level of aqueous encapsulation, and have relatively short circulation half-lives. The smaller 
unilamellar vesicles on the other hand have narrow size distribution and therefore preferred for 
intravenous applications where a long circulation time is demanded. They are also useful for 
encapsulation of water-soluble drugs but suffer from tendency to aggregate into larger liposomes. 
Multilamellar vesicles are readily converted to unilamellar vesicles by employing high shear processes 
such as sonication, homogenization, and extrusion. 
Different types of liposomes have been used in drug delivery62: (a)liposomes, which are neutral or 
negatively charged and used for passive targeting to the cells of MPS; (b) stealth liposomes, which are 
sterically stabilized liposomes carrying hydrophilic coating (PEG) for longer circulation times; 
(c) immunoliposomes, which contain specific antibody or antibody fragment for active targeting; and 
(d)cationic liposomes, which are positively charged and used for gene delivery. 
Liposomes are capable of incorporating both water-soluble (inside the aqueous core, e.g., daunorubicin) 
and water-insoluble drugs (within the bilayer, e.g., amphotericin B). They are biodegradable and 
nontoxic and proven to improve pharmacokinetic properties of the drugs. Injectable anticancer drugs, 
which exploit liposome technology, are doxorubicin (Doxil, Alza, CA, 1995), daunorubicin (Daunoxome, 
Gilead, CA, 1996), and cytarabine (Depocyt, SKYE Pharma, UK, 1999). The technology has also been 
used for topical antifungal products such as Amphotericin B (Ambisome, Gilead, CA, 1997). Liposomes 
have been used in pulmonary drug delivery. Lung fluids have a pH of ~6.8 and low protease or lipase 
activities and, therefore, liposomes are expected to be stable during administration. The drug release 
from the liposomes depends on the nature of phospholipids, composition of the liposomes, and 
hydrophilic or lipophilic properties of active ingredients. Multilamellar vesicles are used for nebulization. 
During the nebulization, the shear force generated by extrusion through the jet orifice reduces the 
liposome size to 0.2 to 0.3 µm. 
Liposomes suffer from drawbacks such as (a) physical and chemical instability in liquid state; (b) low 
encapsulation efficiency for several drugs; and (c) challenging scale-up and sterilization of the final 
formulation. Stability of liposomes is dependent on the lipid composition, storage conditions (light, 
oxygen, temperature, moisture), and stabilizers (cholesterol, α-tocopherols and inert atmosphere) used, 
and in some liposomal formulations, physical and chemical stability can be improved by lyophilization. 
Another major concern is the short half-life of liposomes in blood circulation, which can be improved by 
―stealth‖ technology (PEGylation). 
Micelles 
Surfactants molecules aggregate in aqueous solution to form micelles at certain concentrations and 
temperature62 (Fig. 23-16). Surfactants have a hydrophilic polar head group attached to a long-chain 
lipophilic (nonpolar) tail. Surfactant molecule used for micelles formation could be anionic (sodium 
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dodecyl sulfate or SDS and deoxycholic acid); cationic (hexadecyltrimethyl ammonium bromide); 
zwitterionic (lecithin or phosphatidylchloline); or nonionic (methyl cellulose and other lipophilic cellulose 
derivatives). Block copolymers comprising hydrophilic and hydrophobic segments are used to form 
polymeric micelles. Micelles are formed only when surfactants are present above a certain 
concentration, known as critical micelle concentration (CMC), which is characteristic for each surfactant. 
There is also a critical temperature requirement for micelle formation. A high CMC value suggests a 
rapid exchange of constitutive components and a fast disintegration of the micelles upon dilution, 
whereas a low CMC value suggests the contrary. 
Micelles are used for reducing the surface tension of water, increasing the miscibility of different solvent 
phases, and stabilizing the emulsions. Micelles used in targeted drug delivery should be of low CMC so 
that it is stable in blood circulation and does not disintegrate upon contact with blood components. The 
diameter of the micelles could be chosen in the range where EPR effect is expected to occur (0.2 µm), 
to allow for accumulation of drug-loaded micelles in tumors or inflammation sites. Micelles obtained from 
amphipathic block copolymers consisting of hydrophilic PEG block and hydrophobic doxorubicin-
conjugated poly(aspartic acid) or poly(β-benzyl-L-aspartate) have been extensively investigated. These 
drug-loaded block copolymers form micelles in water with spherical core/shell structure with drugs 
present in hydrophobic core. 
Polymersomes and Dendrimers 
Polymersomes are polymer vesicles with a core-shell structure similar to liposomes. They are made of 
diblock copolymers, which contain hydrophilic and hydrophobic portions similar to phospholipids. Since 
polymersomes are stronger and more stable than liposomes, they display less deformation under load 
and slower rate of drug leakage. The degree of polymerization and melting temperature (Tg) of the 
polymer are varied to control the vesicle-like properties such as rigidity, thickness, and permeability. 
However, polymersomes are not biocompatible, their degradation products are usually toxic, and the 
drug release from these platforms is generally too slow. 
P.622 
 
 
Polymeric dendrimers on the other hand are treelike or star-shaped polymers that adopt a 
quasispherical shape. Drugs are incorporated into the internal cavities or attached through the surface 
functional groups. The main use of polymeric dendrimers is to enhance aqueous solubility of the poorly 
soluble drugs. Toxicity of the dendrimic polymers remains a major concern. Similar to polymersomes, 
polymeric dendrimers too are not commercially available. 
Lipoproteins, which are endogenous lipid carrier systems comprising a lipid core and a coat where 
apolipoprotein is found, have also been used for targeted drug delivery. Examples are chylomicrons 
(10–90 nm); very low-density lipoprotein (VLDL, 30–90 nm); low-density lipoprotein (LDL, ~25 nm); and 
high-density lipoproteins (HDL, ~10 nm). Other common examples of particulate carriers are albumin 
microspheres, poly(lactide-co-glycolide) or PLA microspheres, and niosomes. 
Prodrug Approaches78,79 
Conventional prodrug design aims to improve pharmacokinetic and pharmacodynamic properties of a 
drug by chemically altering its structure, which is usually achieved by attaching a promoiety to the drug 
through reversible (enzymatic/nonenzymatic) bonds (Fig. 23-17). The most frequently used chemical 
linkages78 (bonds) in prodrug design are ester, carbonates, carbamates, amides, phosphates, and 
oximes. Linkages such as thioethers, thioesters, imines, and Mannich bases have also been used but to 
a lesser extent. The chemical groups that can produce the aforementioned linkages are carboxylic acid, 
hydroxyl, amine, phosphate/phosphonate, and carbonyl. 
Esters are the most common prodrug linkages constituting about half of marketed prodrugs.78 They are 
obtained by attaching the promoiety to the water-soluble charged group (e.g., carboxyl) on the drug 
through ester bonds and aim to improve the lipophilicity or membrane permeability of the parent drug. 
Once in the body, the ester bond is cleaved by ubiquitous esterases (blood, liver, and other organs) to 
release the active drug. Contrary to esters, phosphate ester prodrugs are prepared to enhance the 
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aqueous solubility of parent drugs for achieving more favorable oral or parenteral 
administration.78 These display adequate chemical stability and are readily converted to active drugs by 
phosphatases present at intestinal brush border and in the liver. The amide prodrugs are relatively more 
stable in vivo and hydrolyzed to active drugs by enzymes such as carboxylesterases, peptidases, and 
proteases. The carbonates and carbamate prodrugs are converted to active drugs by esterases, 
whereas oxime prodrugs are converted to active form by microsomal cytochrome P450 (CY450). 
Enzymatic cleavage is not the only mechanism available for prodrug activation; physicochemical 
environment at the target site (e.g., acidic pH, hypoxia, glutathione-based thiol-exchange reactions) is 
also exploited for prodrug activation. Activation is also achieved by incorporating self-immolative linker in 
the prodrug design. 

Key Concept 

Prodrugs 

The term prodrug is used to characterize pharmacologically inert drug derivatives that can be 
converted to active drug molecules in vivo, enzymatically or nonenzymatically, to exert a 
therapeutic effect (Fig. 23-17).78,79 It therefore implies a covalent linkage between the drug 
and the chemical moiety (also called promoiety) causing the inertness. The conventional 
prodrug design aims to overcome (a) pharmaceutical problems such as poor solubility, 
insufficient chemical stability, unacceptable taste or odor, and irritation or pain; (b) 
pharmacokinetic problems such as insufficient oral absorption, inadequate BBB permeability, 
marked presystemic metabolism, and toxicity; and (c) pharmacodynamic problems such as 
low therapeutic index and lack of selectivity at the site of action. Prodrugs have been earlier 
referred to as reversible or bioreversible derivatives, latentiated drugs, and biolabile drug 
carrier conjugates but the term prodrug is now standard. About 10% of the drugs approved 
worldwide can be classified as prodrugs. 
In some cases, a prodrug may consist of two pharmacologically active drugs coupled together 
into a single molecule so that each drug becomes a promoiety for the other; such derivatives 
are called codrugs. Abioprecursor prodrug is a prodrug that does not contain a carrier or 
promoiety but results from molecular modification of active agent itself (active 
metabolite). Soft drugs, which must not be confused with prodrug, are active drugs designed 
to undergo a predictable and controllable deactivation or metabolism in vivo after achieving 
the therapeutic effect. Prodrugs also differ from conjugates in that they are reversible. 

 

Fig. 23-17. The conventional prodrug design, where inactive prodrugs are 

transformed into active drugs inside the cell. 
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Attachment to promoiety through reversible bonds has been used to obtain prodrugs with improved 
lipophilicity or membrane permeability78,79 (e.g., enalapril, pivampicillin, adefovir dipivoxil, tenofovir 
disoproxil, famciclovir), aqueous solubility (e.g., sulindac, fosamprenavir, estramustine phosphate, 
prenisolone phosphate), and parenteral administration (fosphenytoin, foflucanazole, propofol phosphate 
P.623 
 
etc.). Prodrugs for improved ophthalmic (dipivefrin [propine] and latanoprost) and dermal (tazarotene) 
delivery and diseases such as Parkinson disease (levodopa), viral (pradefovir), asthma (bambuterol), 
hypercholesterolemia (simvastatin), and cancer (e.g., capecitabine [Xeloda] and ftorafur [Tegafur]) have 
also been developed (Table 23-3). 
A few specific prodrug examples are discussed below to illustrate the salient features of conventional 
prodrug design. Enalapril is a prodrug used for lowering the blood pressure, congestive heart failure, 
and kidney problems (Fig. 23-18). It is an ethyl ester prodrug of enalaprilat, which suffers from low oral 
bioavailability (36%–44%). Conversion to ester enhances the absorption from 53% to 74% and the 
prodrug is readily converted to active form by hydrolysis of ester in vivo, which inhibits angiostensin-
converting enzyme. Many prodrugs undergo site-selective activation too, common examples being the 
lipid-lowering bioprecursor prodrugs simvastatin (Zocor, Merck, NJ) (Fig. 23-18) and lovastatin 
(Mevacor, Merck, NJ) used for the treatment of hypercholesterolemia. Both prodrugs are administered in 
their inactive hydrophobic lactone form, which are then converted to active β-hydroxyacid form by 
CYP450 enzymes, mainly in liver. The active form inhibits the 3-hydroxy-3-methylglutaryl coenzyme A 
reductase (HMG-CoA), which is involved in cholesterol biosynthesis. 
Another example is capecitabine (Xeloda, Roche, Switzerland), which is an orally administered tumor-
selective carbamate prodrug of 5′-deoxy-5-fluorouridine (5′-FU) and used for the treatment of breast, 
colorectal, and gastric cancer (Fig. 23-18). The conversion of capecitabine to active drug is achieved in 
three-steps: (a) a hepatic carboxylesterase converts it into 5′-deoxy-5-fluorocytidine, (b) 5′-deoxy-5-
fluorocytidine is converted to 5′-deoxy-5-fluorouridine by cytidine deaminase enzyme in the liver/tumor, 
and (c) tumor-associated enzyme thymidine phosphorylase converts 5′-deoxy-5-fluorouridine to 5-
fluoruracil, which in turn is converted to 5′-fluoruridine or 5′-fluoro-2-deoxyuridine. The 5′-fluoro-2-
deoxyuridine is incorporated into the RNA and DNA, respectively. This prodrug demonstrates 
satisfactory GI absorption (~100% bioavailability) and low GI toxicity when compared to the parent drug. 
Conventional prodrugs are associated with several limitations, most important being their nonspecific 
activation inside the body. Current prodrug designs are therefore highly focused on the development of 
targeted prodrugs, where targeting is achieved by employing either active or passive targeting strategies 
described earlier (see sectionTargeted Drug Delivery). 

Key Concept 

Controlled Drug Delivery 

Controlled drug delivery, also known as rate controlled drug delivery, is defined as the 
delivery of drug or active agent in the body at a predetermined rate.80 A controlled drug 
delivery system is therefore one that provides some control over the drug delivery in the body: 
temporal or spatial or both. Controlled drug delivery should not be confused with prolonged or 
sustained drug delivery because the controlled drug delivery attempts to control drug level in 
the target tissues or cells, whereas the sustained drug delivery is restricted to maintaining 
therapeutic blood or tissue levels of drug for extended period of time. 

Carrier-linked design has been employed to obtain prodrug targeted to cell/tissue-specific antigens and 
receptors (Fig. 23-11). A recently approved example in this category is gemtuzumab ozogamicin 
(Mylotarg, Wyeth)65 (Fig. 23-12). Prodrug systems designed to exploit more advanced active targeting 
strategies such as ADEPT, GDEPT, and ATTEMPTS are in various stages of development and have 
been described earlier (see section Targeted Drug Delivery). Examples of prodrugs exploiting carrier-
mediated transport (Fig. 23-13) are valacyclovir (Valtrex, GlaxoSmithKline, UK) (Fig. 23-18) and 
valganciclovir (Valcyte, Roche). These are L-valyl esters (promoiety: amino acid valine) of acyclovir and 
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GCV, both drugs having limited and variable bioavailability. The prodrugs on the other hand show 3 to 
10 times high intestinal permeation, which is mediated by di and tripeptide (hPEPT1) membrane 
transporters. Following membrane transport, the active drug is released by intracellular hydrolysis. 
Levodopa is a substrate for neutral amino acid transporter (LAT1) at the BBB. After penetrating the 
BBB, levodopa is decarboxylated to dopamine, which can act locally, as it is no longer a substrate for 
amino acid transporter. Other prodrug examples in this category are midodrine (hPEPT1) and XP13512 
(MCT1 and SMVT). 
Passively targeted prodrugs are also being investigated in clinical trails.75,76 For example, anticancer 
prodrugs have been obtained by conjugating (covalent attachment) larger molecules (synthetic or 
biopolymers) or micro/nanoparticles (liposomes, nanospheres) to active drugs. These macromolecules 
or particles do not interact with the target tumor cells but strongly influence the drug biodistribution due 
to the EPR effect. Examples of passively targeted prodrugs and prodrug systems used in advanced 
passive targeting strategies such as PDEPT and PLEPT have been described earlier (see 
section Targeted Drug Delivery). 
Controlled Drug Delivery 
The drug concentration in the plasma does not remain constant and follows a ―sawtooth‖ kinetic profile, 

where the drug concentration fluctuates between maximum and minimum (Fig. 23-19). As a result, the 
drug level may rise too high 
P.624 
 
 
P.625 
 
leading to toxic side effects or fall too low resulting into the lack of efficacy. Frequent dosing is therefore 
needed to maintain therapeutically effective plasma drug level, more so for drugs with short half-lives, 
which is likely to result into toxic side effects and poor patient compliance. Using controlled drug 
delivery, which involves delivering drug either locally or systemically at a predetermined rate, 
undesirable fluctuation of drug levels in plasma can be avoided. Designing a controlled drug delivery 
system requires simultaneous consideration of several factors2b,3,80 such as the nature of disease and 
therapy (acute/chronic), drug property, route of drug administration, nature of delivery vehicle, 
mechanism of drug release, targeting ability, and biocompatibility. It is not easy to achieve all these in 
one system due to their extensive interdependency. Besides, reliability and reproducibility are also 
crucial to successful designing of delivery systems12 
P.626 
 
Ideally the controlled drug delivery system should be inert, biocompatible, mechanically strong, 
convenient for the patient, capable of achieving high drug loading, safe from accidental drug release, 
simple to administer and remove, and easy to fabricate and sterilize. 

Table 23-3 Food and Drug Administration–Approved Prodrugs 
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Fig. 23-18. Prodrug activation of (a) enalapril, (b) simvastatin, (c) capecitabine, 

and (d) valacyclovir. 
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Fig. 23-19. The sawtooth kinetic profile obtained after normal dosing and optimum 

therapeutic profile obtainable with controlled-delivery devices. 

Advantages of controlled drug delivery are that fluctuations in drug plasma level associated with 
conventional dosage forms are avoided and therapeutic drug concentration is maintained, which leads 
to more effective therapies with lesser side effects. Fewer doses are required resulting into improved 
patient compliance. While the therapeutic considerations are prime driving force for the development of 
drug delivery systems, there are economic considerations too.2b,3,80 Once the patent on the new drug 
has expired (20 years), the pharmaceutical company responsible for its discovery starts loosing its 
market share to generic competitors, which supply the same drug at lower prices. Repackaging the drug 
in a new delivery system allows the company to extend the patent life of its product. The disadvantages 
on the other hand are higher costs compared to conventional formulations, possible toxicity or 
nonbiocompatibility of the material used, and undesirable by-products. More importantly, many 
controlled drug delivery systems are invasive and require surgical intervention for their insertion and 
removal from the body. 
Types of Controlled Drug Delivery 
Drug release from a controlled drug delivery system is of three types: zero-order, variable, and 
bioresponsive2b,80 (Fig. 23-20). 

1. Zero-order release. The drug release does not vary with time and relatively constant drug 
level is maintained in plasma over an extended period of time. Since the typical ―sawtooth‖ 

kinetic profile is not obtained, the risk of drug achieving toxic peak plasma level is abated and 
so is the possibility of symptom breakthrough resulting from drop in drug plasma level. 

2. Variable release. The drug is released at variable rates to match circadian rhythms or mimic 
natural biorhythms. It is characterized by an episodic increase in drug concentration followed 
by a ―rest‖ period, where drug level falls below the therapeutic level. It may also be fluctuating 
or pulsatile (release pulses at predetermined lag times). Variable release is used in situations 
where changing level of response is needed. For example, in hypertension, blood pressure is 
lower in the night but increases in the early morning, and consequently maximum drug levels 
are needed in the early morning. Similarly in nocturnal asthma, bronchoconstriction is worse at 
night. 

3. Bioresponsive release. The drug release is triggered by biological stimulus like changes in 
pH, temperature, or concentration of certain biologically active substances12 
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Blood glucose level triggering the release of insulin from a drug delivery system is an example 
of bioresponsive release. 

 

Fig. 23-20. Typical kinetic profiles obtained from controlled drug delivery 

systems: (1) zero-order, (2) variable, and (3) bioresponsive. 

Mechanisms of Controlled Drug Delivery 
Only a small number of mechanisms are involved in the drug release from a controlled drug delivery 
system2b,80: (1) diffusion controlled release mechanism, (2) dissolution controlled release mechanism, 
(3) osmosis controlled release mechanism, (4) mechanical controlled release mechanism, and (5) 
bioresponsive controlled release mechanism. Any or all of the above mechanisms may be involved in 
the drug release from the system. 

1. Diffusion controlled release mechanism. The drug is released by diffusion through either a 
polymeric membrane or a polymeric/lipid matrix (Fig. 23-21). Diffusion controlled devices could 
be grouped into two categories: reservoir devices and matrix devices. In reservoir devices, the 
drug is surrounded by a rate controlling polymer membrane (nonporous, microporous). The 
rate of diffusion follows Fick's law and depends on partition and diffusion coefficients of the 
drug in the membrane, the available surface area, the membrane thickness, and the drug 
concentration gradient. If the drug concentration gradient remains constant, zero-order drug 
release is attained. Examples include Norplant subdermal implant (parenteral), Vitrasert 
intravitreal and Ocusert implant (ocular), Transderm-Scop transdermal patch system and 
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Catapres-TTS transdermal system (transdermal), and Cervidil vaginal insert and Estring 
vaginal ring (vaginal). 

 

Fig. 23-21. Diffusion controlled controlled-delivery devices: (a) reservoir and 

(b) matrix. (c) Drug diffusion from a homogeneous controlled drug delivery 

system. (Modified from H. Sah et al., Drug Delivery and Targeting for 

Pharmacist and Pharmaceutical Scientists, CRC Press, Boca Raton, FL, 2001, 

pp. 83.) 

2. In matrix (monolith) devices, the drug is distributed throughout a continuous phase composed 
of polymer or lipid. As release continues, the rate of drug release decreases with square root of 
time. This decrease in drug release is due to the fact that as the drug present at the surface is 
being released, the drug present in the center of the matrix has to migrate longer distances for 
release, which takes more time. Such devices usually do not provide zero-order release. 
Polymeric controlled release microspheres represent an example of a matrix-controlled release 
system.81 Commercial examples are Compudose cattle growth implant (parenteral) and 
Deponit transdermal patch (transdermal). 

3. Dissolution controlled release mechanism. The drug release is controlled by dissolution rate 
of employed polymer. Similar to diffusion controlled devices, dissolution controlled devices are 
also either the reservoir type or the matrix type. Since the drug release is dissolution controlled, 
the polymer must be water soluble and/or degradable. In reservoir devices, the release is 
controlled by the thickness and/or the dissolution rate of polymer membrane surrounding the 
drug core. Once the coating is dissolved, the drug is available for dissolution and absorption. 
Polymer coatings of different thickness can be employed to delay the drug release for certain 

Dr. Murtadha Alshareifi e-Library

1120



period of time. Such systems are used for zero-order oral drug delivery and examples include 
Spansule, Sequel, and SODAS capsules. 

In matrix-type devices, on the other hand, the drug release is controlled by the dissolution of 
matrix and decreases with time due to the decrease in the size of the matrix. Examples of 
matrix dissolution devices are goserelin (Zoladex) subcutaneous implant comprising 
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poly(lactide-co-glycolide) or PLGA matrix system for goserelin delivery and leuprolide (Lupron) 
depot comprising PLGA microsphere for parenteral goserelin delivery. 

4. Osmosis controlled or active efflux controlled release mechanism. Osmosis is defined as 
diffusion of water through a semipermeable membrane from a solution of low concentration 
(hypotonic) to a solution of high concentration (hypertonic) resulting into an increase in the 
pressure of the solution. The pressure difference is termed as osmotic pressure and defined as 
pressure required for maintaining equilibrium, with no net movement of water. Osmotic 
pressure can be used to deliver drug at a constant rate, and device and formulation parameters 
can be controlled to obtain zero-order release. Osmotic pressure is a colligative property and 
therefore depends only on molar concentration of solute and not its identity. An important 
consequence is that osmosis controlled devices operate independently of environmental 
factors. Examples include osmotic mini pumps from Alza Corporation used in experimental 
animal studies, DUROS implant pump for controlled delivery of peptides and proteins, and 
Oros osmotic pump for oral delivery. Commercial examples are nifedipine (Procardia XL) and 
chlorpheniramine (Efidac 24). 

5. Mechanical controlled release mechanism. Mechanically driven pumps used for drug 
administration in hospital settings. These pumps can be programmed to achieve zero-order or 
intermittent release. 

6. Bioresponsive controlled release mechanism. Drug is released in response to changes in 
the external environment. The external stimulus could be a change in pH or ionic strength, 
which might cause drug release by influencing the swellability of polymeric delivery systems. 
Similarly, there are systems incorporating enzymes, which may cause localized change in pH 
or substrate (e.g., glucose) concentration to trigger drug release by causing change in swelling 
or permeability of polymeric systems. 

Examples of Controlled Drug Delivery Systems 
The characteristic features of implants and Oros osmotic pump are provided below. More examples are 
discussed in later sections of this chapter. 
Implant 
An implant is a single unit drug delivery system designed for delivering drug at predetermined rate over 
an extended period of time.2b,3,80 It is available in many forms and the two most frequently used implants 
are (a) polymeric implant made of either nondegradable or biodegradable polymer (available in shapes 
like rod, cylinder, ring, film etc.) and (b) minipumps powered by osmotic pressure or mechanical force. 
Usually, an implant is placed (implanted) subcutaneously into the loose interstitial tissues of the outer 
surface of the upper arm or the anterior surface of the thigh or the lower portion of the abdomen. 
Implants may also be surgically implanted in places like the vitreous cavity of the eye or 
intraperitoneally. Implants have been mostly used for sustained parenteral administration, including 
ocular and subcutaneous drug delivery. 
Polymeric implants are made from either nondegradable or degradable polymers. Examples of 
nondegradable polymers used in implants include silicone rubber, silicone– carbonate copolymers, 
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poly(ethylene-vinyl acetate), polyethylene, polyurethane, polyisoprene, polyisobutylene, polybutadiene, 
polyamide, polyvinyl chloride, plasticized soft nylon, hydrogels of polyhydroxyethyl methyl acrylate, 
polyethylene oxide, polyvinyl alcohol, polyvinyl pyrrolidone, cellulose esters, cellulose triacetate, 
cellulose nitrate, modified insoluble collagen, polyacrbonates, polysulfonates, polychloroethers, acetal 
polymers, and halogenated polyvinylidene fluoride. Implants such as Norplant subdermal and Vitrasert 
are made from nondegradable polymers such as dimethylsiloxane/methylvinylsiloxane copolymer 
(containing levonorgestrel) and poly(vinyl alcohol)/poly(ethylene-co-vinyl acetate), respectively. 
Implants are also made of degradable polymers. Degradation is achieved by either biodegradation or 
bioerosion. Biodegradation is the degradation of polymer structure by chemical or enzymatic processes, 
whereas bioerosion is gradual dissolution of polymer matrix. Bioerosion can be of two types: (a) bulk 
erosion and (b) surface erosion. In bulk erosion the entire polymer matrix is subject to chemical or 
enzymatic processes whereas in surface erosion, polymer degradation is limited to the surface of 
implant exposed to the medium, and therefore takes place layer by layer. Polymers in biodegradable 
implants are either water soluble and/or degradable in water. The water-soluble polymers are PAA, 
PEG, and poly(vinyl pyrrolidone), whereas degradable polymers include poly(hydroxy butyrate), 
poly(lactide-co-glycolide), poly(orthoesters), poly(caprolactone), and polyanhydrides. Naturally occurring 
biodegradable polymers are proteins (albumin, casein, collagen, and gelatin) and polysaccharides 
(cellulose, chitin, dextran, hyaluronic acids, insulin, and starch). Zoladex implant and Lupron depot are 
made of PLA/PLGA, whereas Gliadel is poly[bis(p-carboxyphenoxy propane: sebacic acid in 20:80 ratio. 
There are mechanical implants too and a very recent example is Medtronic IsoMed Constant-Flow 
Infusion system. The system was approved for (a) delivering chemotherapy (floxuridine) in hepatic 
arterial infusion therapy for patient with colorectal liver cancer and (b) delivering morphine to the spinal 
fluid for patient with chronic intractable pain. The implant comprises two basic parts: (a) pump made of 
an outer round titanium shell (biocompatible) with a silicone rubber septum containing a drug reservoir 
(20, 35, and 60 mL) and (b) catheter made of silicone rubber tube, which is tunneled under the skin to 
the site of action for delivering drug from the pump. The whole pump is about 3-inches wide and weighs 
6 oz with standard flow rates of 0.5, 1.0, and 1.5 mL/day. The reservoir is surrounded by a propellant, 
which forces the drug content through the catheter to the site of the delivery and can be refilled. The 
pump is implanted surgically in 
P.629 
 
the abdomen and the catheter is placed in blood in case of chemotherapy and within the sheath around 
the spinal cord for pain relief. The system is ideal for patients with stable dosing requirements. Other 
examples of mechanical implants are SynchroMed pumps for chemotherapy (floxuridine, doxorubicin, 
cisplatin, methotrexate), intractable cancer pain (morphine sulfate), osteomyelitis (clindamycin), and 
spasticity therapy (muscle relaxant baclofen); MiniMed insulin pumps; and Arrow pumps (floxuridine, 
morphine sulfate, baclofen, heparinized saline). 
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Fig. 23-22. Schematic representation of L-OROS osmotic drug delivery system. The 

drug is liberated through the small orifice due to the osmosis of fluids through the 

semipermeable membrane into the osmotic push layer. 

Implants are more convenient because they eliminate the need for continuous intravenous infusion or 
injections for maintaining the drug concentrations and they improve patient compliance by reducing or 
eliminating the patient-involved dosing. Implants are capable of providing controlled drug release and 
deliver drug either locally or directly to systemic circulation bypassing the GI tract and liver. Implants are 
considered new drug product and therefore provide patent exclusivity of 5 years to new drugs and 3 
years to existing drugs. However, implants are invasive and require surgical interventions. If not 
degradable, they have to be retrieved from the body, and if degradable, it is difficult to terminate the 
drug delivery. Invasiveness is probably the most serious limitation associated with implants. Danger of 
device failure, possibility of adverse reactions, and biocompatibility are other concerns. Developing 
implants is highly cost-intensive and therefore limited to only potent drugs. 
Osmotic Pump 
The elementary osmotic pump, also known as Oros or the GI therapeutic system, was first described by 
Theeuwes and Yum82,83and introduced by Alza Corporation. The system is composed of core tablet 
surrounded by a coating of semipermeable membrane containing a laser-created hole (orifice). The core 
tablet contains two layers, one with drug and the other with the electrolyte. When the tablet is 
swallowed, a semipermeable membrane permits the entry of fluid from the stomach and intestines to the 
tablet, which dissolves/suspends the drug. As pressure increases due to the movement of water, drug is 
pumped out of the orifice. Only the drug solution is able to pass through the orifice and the system is so 
designed that only few drops of water are drawn in the tablet every few hours. Drug delivery is controlled 
by osmotic gradient between the contents of the core tablet and fluids in the GI tract. Surface area, 
thickness or composition of membrane, and diameter of orifices are altered to control the drug delivery 
rate. Other systems based on this technology are L-Oros softcap and hardcap systems (Fig. 23-22). 
In L-Oros softcap, the drug formulation is encased in a soft gelatin capsule surrounded by a barrier 
layer, an osmotic engine, and a semipermeable membrane. The barrier layer separates the soft gelatin 
capsule from the osmotic engine, thus minimizing its hydration and mixing with the drug layer. In the L-
Oros hardcap system, the drug layer and osmotic engine are encased in a hard capsule surrounded by 
the semipermeable membrane. Drug release of about 2 to 24 hr is obtained. Other examples in this 
category are nifedipine (Procardia XL) and Efidac 24. 
Example 23-5 

Elementary Osmotic Pump 
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Theeuwes84 first tested the elementary osmotic pump for drug delivery using potassium 
chloride to serve as both the osmotic agent and the drug model. In a later report, Theeuwes 
et al.85 designed a therapeutic system based on the principle of the osmotic pump to deliver 
indomethacin at a constant zero-order rate. For zero-order rate, these workers used following 
equation: 

 
where (dM/dt)z is the rate of delivery of the solute under zero-order conditions, S is the 
semipermeable membrane area (2.2 cm2), h is the membrane thickness (0.025 cm), k′ is a 

permeability coefficient, 2.8 × 10-6 cm2
/atm hr, and πsis the osmotic pressure, 245 atm, of the 

formulation under zero-order conditions (saturated solution) (k′πs = 0.686 × 10-3 cm2/hr). The 
concentration of the saturated solution,Cs, at 37°C is 330 mg/cm3. The zero-order delivery 
rate for this system is calculated as follows: 

 
Some of the drug is released from the device by simple diffusion through the membrane. 
Equation (23-17) should therefore be modified as follows: 

 
or 

 
where P is the permeability coefficient for passage of KCl across the semipermeable 
membrane (0.122 × 10-3cm2/hr). 
We have following: 

 
The time, tz, in which the mass of the drug, Mz, is delivered (disregarding the start-up time 
required to reach equilibrium) is 

 
where Mt is the total mass of drug in the core (500 mg KCl) and ρ is the density of the drug (2 
g/cm3 or 2000 mg/cm3): 

 
Beyond tz, the drug is delivered under non–zero-order conditions. 

P.630 
 
 
Drug Delivery Systems 
Representative examples of drug delivery systems designed for different routes of drug delivery are 
described below. 
Buccal Drug Delivery Systems 
Most of the buccal drug delivery systems are designed to overcome two major limitations: (a) low flux 
and (b) the lack of drug retention at the site of absorption, which is due to the saliva produced by the 
salivary glands. The major determinant of the salivary composition is its flow rate, which is influenced by 
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the time of day, the type of stimulus, and the degree of stimulation. The salivary pH ranges from 5.5 to 
7, but at high flow rates, the sodium and bicarbonate concentrations increase, which further increases 
the salivary pH. The daily salivary volume is between 0.5 and 2 liters, which is enough to clear the 
released drug. Hydrophilic polymeric matrices are used for oral transmucosal drug delivery systems. 
Some drug delivery systems are discussed below. 
Polymers 
Bioadhesive (mucoadhesive when the substrate is mucosal tissue) polymers are capable of adhering 
onto a biologic substrate. Diverse classes of polymers have been investigated for their potential use as 
mucoadhesives. Examples include synthetic polymers like polyacrylic acid, hydroxypropyl 
methylcellulose, polymethacrylate derivatives, polyurethanes, epoxy resins, polystyrene, and naturally 
occurring polymers such as cement, hyaluronic acid, and chitosan.14 Chitosan is derived from a 
material called chitin, which is an amino polysaccharide extracted from the powdered shells of 
crustaceans like shrimps and crabs. Chitosan is similar to cellulose in chemical structure, a plant fiber, 
and has many of the same properties, except that chitosan is positively charged and actively attracts fat. 
Chitosan works like a ―pollution magnet‖ to soak up pollutants and make them easier to remove. It is 

bioadhesive and binds to the mucosal membrane, prolonging retention time of the formulation on the 
mucosa. 
Gels 
The dosage forms designed for buccal administration should not cause irritation and they should be 
small and flexible enough to be accepted by the patient. Gels meet these requirements. Gels are 
hydrophilic matrices that are capable of swelling in water, without loosing their shape.86 When drug-
loaded gels are placed in water, chain relaxation occurs due to the swelling, and the drug is released 
through the spaces or channels within the gel network. Examples include natural gums and cellulose 
derivatives. These ―pseudohydrogels‖ swell, and the component molecules dissolve from the surface of 

the matrix. Drug release occurs through the spaces or channels within the network as well as through 
the dissolution and/or the disintegration of the matrix. A buccal mucoadhesive device (copolymer 
hydrogel disk) was developed for the controlled release of buprenorphine.87 The device was applied for 
a 3-hr application time, and steady-state levels were maintained during the time of application. In 
general, mucoadhesive oral drug delivery systems are used for both sublingual and buccal drug 
delivery. They provide an onset of drug action in 1 to 3 min and duration of about 30 min to 5 hr for 
sublingual and buccal drug delivery systems, respectively. 
Adhesive Patches: Systemic Mucosal Delivery 
Adhesive patches for mucosal sustained release consist of an impermeable backing layer and a 
mucoadhesive polymer layer containing the drug (Fig. 23-23a). The shape and size varies depending on 
the site of administration: the buccal, sublingual, or gingival mucosa. The duration of mucosal adhesion 
depends on the polymer type and the viscosity of the polymer used. The release of the drug is controlled 
by the dissolution kinetics of the polymer carrier rather than the drug diffusion out of the polymer. 
Adhesive Patches: Local Oral Delivery 
Adhesive patches for local oral sustained release generally consist of three layers (Fig. 23-23b): the 
upper layer of a nonadhesive and flavored waxy material containing the drug, the middle layer prepared 
from antiadhesive material 
P.631 
 
(magnesium stearate), and the lower layer designed for adhering to the oral mucosa. This three-level 
device sustains a constant saliva level of drugs, usually anti-infective drugs, over a 3-hr period.14 
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Fig. 23-23. Adhesive patches for drug delivery: (a) systemic mucosal and (b) local 

oral. 

The buccal mucosa offers several advantages for controlled drug delivery: (a) the mucosa is well 
supplied with both vascular and lymphatic drainage; (b) first-pass intestinal/hepatic metabolism and 
presystemic degradation in the GI tract are avoided; (c) the area is well suited for a retentive device and 
is usually acceptable to the patient; and (d) with the right DDS design, the permeability and the local 
environment of the mucosa can be controlled and manipulated to accommodate drug permeation. 
Pulmonary Drug Delivery Systems 
Aerosols are widely used to deliver drugs in the respiratory tract. The deposition mechanism of the 
particles depends on the inhalation regime, the particle size, shape, density, charge, and hygroscopicity. 
The size of solid particles or liquid droplets in aerosols normally ranges from 1 to 10 µm and expressed 
as the aerodynamic diameter, dae = ρ

½d, where ρ is the density of the particle and d is the observed 
diameter. The particles are delivered via mouth inhalation to bypass the nasopharyngeal cavity and the 
total retention of particles is only between 50% and 60% of the administered dose. 
Liquid jets and ultrasonic nebulizers, metered-dose inhalers (MDIs) (Fig. 23-24), and breath-activated 
dry powder inhalers (DPIs) have proved useful in the management of asthma. 
Nebulizers 
These are the device for converting drug solution or suspension into an aerosol suitable for inhalation. 
There are different types of nebulizers, but the most common are air jet nebulizers, which are connected 
to compressed air source that causes air and oxygen to blast through the solution at high velocity, 
converting them into an aerosol. Another category is ultrasonic nebulizers where high-frequency waves 
are used to create vertical capillaries of drug solution, which breaks up at high energy to provide an 
aerosol. Nebulizers generate small particles with high delivery capacities but suffer from inconvenience, 
long inhalation time, and poor dose control. They have been used for the delivery of insulin (diabetes), 
penicillin (lung infection), isoprenaline and hydrocortisone (asthma), and DNAse and tobramycin (cystic 
fibrosis). 
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Fig. 23-24. Metered-dose inhaler (MDI) for pulmonary and nasal drug delivery. 

(Modified from P. R. Byron (Ed.), Respiratory Drug Delivery, CRC Press, Boca 

Raton, Fl, 1990, p. 171.) 

Pressurized Metered-Dose Inhalers (MDIs) 
MDIs have drug solution or suspension in a volatile propellant. They are equipped with metering valves 
in conjunction with a propellant and therefore provide multiple dosing capabilities. A typical unit contains 
a container (10 mL), metering valve (for releasing drug volumes in the range of 25–100 µL), elastomer 
seal (critical to valve performance), and actuator (propellant). MDIs have been used for delivering 
albuterol (asthma). 
Dry Powder Inhalers (DPIs) 
DPIs deliver the drugs to the airways as a dry powder aerosol. They are mostly breath-actuated; a cloud 
of drug powder (aerosol) is produced in response to patient's breathing. Use of DPIs avoids coordination 
problems and there is a lower drug loss, but they are associated with problems such as requirement of 
high inspiratory effort from patient and more inconvenient coughing reflexes as compared to other 
devices. DPIs have been used for the delivery of noradrenaline and terbutaline (asthma) and insulin 
(diabetes). 
The use of lungs for the delivery of peptides and proteins, which are otherwise injected, is possibly the 
most 
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exciting development in pulmonary delivery.88 Lungs provide higher bioavalabilities for macromolecules 
than any other noninvasive route of delivery. However, unlike the smaller molecules, which undergo 
minimal metabolism in lungs, macromolecules (unless modified) are subject to enzymatic hydrolysis. As 
the molecular mass increases, possibility of enzymatic hydrolysis is decreased or even eliminated, 
which significantly increases the bioavailability.88 After 15 years of development effort, inhaled human 
insulin was approved in Europe and United States for the treatment of diabetes in adult (insulin 
inhalation [Exubera, Pfizer]).88 It has been reported that 4% of the insulin dose reaches the deep lung 
after the inhalation of single dose and it maintains effective glycemic control comparable to 
subcutaneously administered fast-acting insulin for type 1 and 2 diabetes. Exubera consists of blisters 
containing human insulin powder, which are administered using the Exubera inhaler (DPI) before each 
meal. Each unit dose blister contains 1 to 3 mg of insulin along with the excipients. After the blister is 
inserted into the inhaler, the patient pumps the handle of the inhaler and then presses a button, causing 
the blister to be pierced. The insulin inhalation powder (aerosol) is then dispersed into the chamber, 
which is inhaled by the patient. A major problem associated with this device is inability to delivery 
precise insulin doses. The product was withdrawn, reasons cited being commercial rather than safety. 
The key challenge for pulmonary drug delivery is to provide drug penetration deep into the lung to the 
smaller airways and the alveoli. The aerosol formulations are unable to move the medication into the 
deep lungs. The lungs are endowed with a sophisticated defense system that protects the body from the 
penetration of exogenous particles (Table 23-4). Upper airways provide filtering mechanisms that trap 
and eliminate particles with size >10 µm. Two reflexes, sneezing and coughing, also eliminate large 
foreign particles. Mucovisciliar transport in conducting airways removes smaller particles out of the 
respiratory tract into the mouth. In addition, immunoglobulins produced by plasma cells in the 
submucosa help fight against infections. Alveolar macrophages and neutrophils provide a defense 
against the smallest foreign matter that penetrates into the gas exchange area of the respiratory system. 

Table 23-4 Defense Mechanisms of the Lung 

In the upper airways 

   Filtering mechanisms in the nasal cavity trap and eliminate larger particles 

(>10 µm) 

   Two reflexes: sneezing and coughing 

In conducting airways 

   Mucociliary escalator, immunoglobulin A, produced by the plasma cells in 

the submucosa 

In alveoli 

   Alveolar macrophages with some interplay with and by neutrophils 
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   Immunologic mechanisms: interplay between the alveolar macrophages 

and T and B lymphocytes; immunoglobulin G 

 

Larger particles (>10 µm) are either filtered in the nose or impacted in the nasal and oral pharynx and 
cleared by coughing or sneezing. Consequently, drug delivery systems of such size do not penetrate 
further. Moderate-size particles (5–10 µm) are trapped in a mucous blanket in the conducting airways 
and move cephalad (i.e., toward the head) by ciliary action (cilia move only in the cephalad direction). At 
the level of the larynx they are either swallowed or expectorated. Small particles of aerodynamic 
diameter (<2 µm) can penetrate into the lower airways (e.g., bronchial and alveolar regions) and can be 
phagocytosed by alveolar macrophages. Therefore, submicron-size drug delivery systems can be used 
for drug delivery to lower airways, alveoli, and systemic circulation through the gas–blood barrier (i.e., 
the alveolocapillary barrier). The duration of local therapeutic activity is a complex function of particle 
deposition, mucociliary clearance, drug dissolution or release (for solid aerosols), absorption, tissue 
sequestration, and metabolism kinetics. 
Byron89 proposed a mathematical model for calculating drug residence times and dose fractions in the 
three functional regions of the respiratory tract: the nasopharyngeal, the tracheobronchial, and the 
alveolar. The deposition in the ciliated airways was largely unaffected by breath holding, and the 
particles showed a maximumdae between 5 to 9 µm (slow inhalation) and 3 to 6 µm (fast inhalation). 
Alveolar deposition was dependent on the mode of inhalation and breath holding. The latter is a 
common practice and allows deposition of small particles that otherwise would be exhaled. To 
determine the effect of breath holding on the deposition of particles, the sedimentation efficiency, S, was 
defined as 

 
The mean regional diameters for the three areas considered are 5 cm for the mouth, 0.2 cm for the 
tracheobronchial region, and 0.073 cm for the alveoli. In cases where the sedimentation efficiency is 
greater than 1, S is assigned a value of unity. A total lung volume after inhalation, Vt, of 3000 cm3 is 
divided into 30, 170, and 2800 cm3 for the mouth (M), tracheobronchial (TB) region, and alveolary (P) 
region. For each particle size, the exhaled dose fraction, E, is given by 

 
where the terms fM, fTB, and fP stand for the respective fractional depositions in the three regions. During 
breath holding, additional fractions will sediment, depending on the sedimentation efficiency and the 
ratio of the regional volume to the total volume of the lungs. The sedimentation dose fraction, SDF, after 
breath holding is calculated from the expression 
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where Vr is the regional volume of the M, TB, or P regions and Vt is the total volume after inhalation 
(3000 cm3). 
Example 23-6 

Aerosol Deposition in the Lung 

For a 3-µm monodisperse aerosol inhaled at 22.5 L/min, the fractional depositions were found 
to be fM = 0.04, fTB = 0.14, and fP = 0.55. Compute the undeposited or exhaled fraction,E, and 
the additional sedimentation of the undeposited fraction in the mouth and tracheobronchial 
and alveolary regions after 10 sec of breath holding. The velocity of sedimentation of the 
particles is 0.027 cm/sec. 
From equation (23-21) the undeposited (exhaled) fraction is 

 
After 10 sec of breath holding, the distance of particle fall is 10 sec × 0.027 cm/sec = 0.27 cm. 
Substitution of this value and the mean diameter of the alveolary (P) region in equation (23-
20) gives the sedimentation efficiency in the pulmonary region, SP: 

 
Because SP > 1, a value of SP = 1 is taken. From equation (23-22) the sedimentation dose 
fraction becomes 

 
Analogously, for the tracheobronchial zone (mean diameter 0.2 cm), a value of STB > 1 is 
obtained, so STB is taken as equal to unity, and for the sedimentation dose fraction, one 
obtains 

 
For the mouth region, M, the mean diameter, is 5 cm, and so 

 
and 

 
Thus, the total additional dose deposited after 10 sec of breath holding is 

 
These results show that for 3-µm particles, breath holding is adequate for depositing particles 
in the alveolar region (SDFP = 0.252), whereas breath holding is inadequate for depositing 
these particles in the mouth (SDFM = 0.00054) and in the tracheobronchial region (SDFTB = 
0.0153). 

Byron et al.90 studied the deposition and absorption of disodium fluorescein from solid aerosols having 
an aerodynamic diameter of 3 to 4 µm. The aerosols were administered for 20 min under different 
inhalation regimes (respiration frequency, RF, in cycles/min). The total dose administered, D, was 
divided into a transferable amount, A, which diffuses into the perfusate according to a first-order rate 
constant k, and an untransferable amount, U, according to the scheme. 

 
Assuming instantaneous dissolution of A and first-order kinetics, the amount in the perfusate, B, at any 
time t is given by the product of perfusate concentration and volume. The amount transferred to Bcan be 
computed from* 
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and 

 
where B20 is computed from equation (23-23) at time t = 20 min, andA20 is calculated using the following 
expression: 

 
The term A/20 RF in equations (23-23) and (23-25) is the transferable amount deposited after each 
inhalation. The inhalation or dose number, n, is equal to t × RF for t ≤ 20, where RF is the respiratory 

frequency. 
The ratio of transferable amount to amount deposited increases at high respiratory frequency, RF, large 
tidal volume, and decreasing aerosol particle size. Tidal volume is the amount of air that enters the 
lungs with each inspiration or leaves the lungs with each expiration. 
Example 23-7 

Small-Particle Transfer 

Compute the transfer, B, of 3-µm particles at t = 20 min, knowing that the transferable 
amount, A, is 37.7 µg, the respiratory frequency RF is 28, and k = 0.049 min-1. 
The inhalation or dose number is n = 20 min × 28 cycles/min = 560 cycles; from equation (23-
23) 

 

The pulmonary route provides effective administration of beta-adrenergic agonists in asthma treatment. 
Corticosteroids have been added to the therapeutic regime, in particular triamcinolone acetonide and 
beclomethasone, which are safe and effective in aerosol formulations.91 However, this route has shown 
to be of limited usefulness for antimicrobial drugs. The pulmonary route can be useful for controlled 
delivery of drugs to the respiratory tract, depending on the characteristics of the drug and the aerosol 
device. It is unlikely that this route will be a substitute for the administration of more conventional oral or 
parenteral drugs in foreseeable future. 
Nasal Drug Delivery Systems 
The most suitable dosage forms for the nasal drug delivery are aerosols, gels, liquids, ointments, 
suspensions, and 
P.634 
 
sustained-release formulations. Dosage forms for nasal absorption must be deposited and remain in the 
nasal cavity long enough to allow effective absorption. The standard methods of administration are 
sprays and drops. The particle size in aerosols is important in determining the site of deposition. 
Particles <0.5 µm in diameter pass through the nose and reach the terminal bronchi and alveoli of the 
lungs. A nasal spray requires that the particles have a diameter >4 µm to be retained in the nose and to 
minimize passage into the lungs. The nasal spray deposits drug in the proximal part of the nasal atrium, 
whereas nasal drops are dispersed throughout the nasal cavity. A spray clears more slowly than drops 
because the spray is deposited in nonciliated regions. An MDI is most often used for nasal and 
pulmonary delivery. This device (Fig. 23-24), when manually compressed, delivers an accurate and 
reproducible dose of the nasal (or bronchial) formulation. 
One of the limitations of nasal drug delivery is rapid removal of the therapeutic agent from the site of 
absorption. To overcome this, the addition of bioadhesive materials and mixtures with polymers has 
been investigated. By adding these materials to the drug in solution or powder preparations, increased 
drug absorption was observed because of increased residence time. Quadir et al.92 examined the effect 
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of microcrystalline cellulose on the bioavailability of ketorolac. They found that the bioavailability of spray 
formulations of ketorolac alone in rabbits was approximately 50% after the intravenous administration 
(Fig. 23-25). Nasal administration of ketorolac with microcrystalline cellulose significantly improved the 
absolute bioavailability (i.e., compared to intravenous injection) of the drug to 90%. 
A new nasal gel drug, zinc gluconate (Zicam) (Gel-Tech LLC, Woodland Hill, CA), significantly reduces 
the length of the common cold.93,94 The active ingredient in Zicam is zinc ion, which has long been 
used in cold lozenges. The gel formulation allows the ions to stay within the nasal cavity long enough to 
interact with the virus. Patients who took Zicam within 24 hr of the onset of three or more cold symptoms 
recovered in an average of 1.5 to 3.3 days, whereas patients who received a placebo recovered in an 
average of 9.8 days. 

 

Fig. 23-25. Comparison of bioavailability of injection and spray formulations of 

ketorolac (KT) alone and with a microcrystalline cellulose (MCC) in rabbits. 

(Replotted from M. Quadir, H. Zia, and T. E. Needham, Drug. Deliv. 7,223, 2000.) 

Major advantages and limitations of nasal drug delivery are summarized in Table 23-5. 

Table 23-5 Advantages and Limitations of Nasal Mucosal Drug Delivery 

Advantages Limitations 

Avoidance of hepatic first-pass 

elimination and destruction in the 

gastrointestinal tract 

Possible local tissue irritation 

Rapid absorption of drug 

molecules across the nasal 

membrane 

Rapid removal of the therapeutic 

agent from the site of absorption 

Can be used for both local and 

systemic drug delivery 

Pathologic conditions such as cold or 

allergies that may alter significantly 

the nasal bioavailability 
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Relative ease and convenience   

 

Controlled Ocular Drug Delivery Systems 
The action of a drug for ocular delivery is prolonged by (a) reducing drainage by using viscosity-
enhancing agents, suspensions, emulsions, and erodible and nonerodible matrices and (ii) enhancing 
the corneal penetration by using the prodrugs and liposomes. The optimal viscosity range for reducing 
drainage loss is between 12 and 15 cp when polyvinyl alcohol95 or methyl-cellulose96 is used as 
viscosity enhancer. To minimize potential irritation, ophthalmic suspensions are prepared by 
micronization techniques. The dissolution rate of large particles is smaller than that of small particles. To 
obtain the desired bioavailability, the dissolution rate of the drug must be greater than the clearance of 
the dose from the conjunctival sac and approximately equal to the absorption rate. Many drugs do not 
satisfy these requirements. 
Using water-soluble matrices, where the drug is either dispersed or dissolved, increases the precorneal 
retention and duration of action. The delivery of drugs from hydrophilic matrices is fast because the tear 
fluid rapidly penetrates into the matrix. The prolonged action is not controlled by the vehicle but by the 
precorneal retention of the drug. The penetration of water into the matrix can be reduced by hydrophobic 
polymers such as alkyl half-esters of poly(methyl vinyl ether–maleic anhydride) (PVM–MA). The matrix 
surface is water soluble above certain pH, owing to the ionizable carboxylic groups. However, the 
hydrophobic alkyl ester groups avoid the penetration of water into the matrix. The diffusion of drug from 
the matrix is impeded and it is released at the rate at which the polymer surface is dissolved. In one 
study, pilocarpine was released from PVM–MA polymers according to zero-order kinetics and controlled 
by the erosion of the 
P.635 
 
polymer surface.97 Grass et al.98 prepared erodible and nonerodible dry films for sustained delivery of 
pilocarpine. The polymers used in both cases were polyvinyl alcohol and carboxyl copolymer (carbomer 
934). The release of drug from the films fitted either the Hixon–Crowell dissolution cube root equation or 
the diffusion-controlled dissolution equation proposed by Cobby et al.,99,100 the latter providing the 
best fit. 
The ocular delivery of drugs from matrices can be improved by the use of bioadhesive polymers. 
Johnson and Zografi101 measured the adhesion (i.e., adhesive strength) of hydroxypropyl cellulose to 
solid substrates as a function of dry film thickness. A ―butt adhesion test‖ used by them provided a 

constant slow rate of film detachment to maintain the viscoelastic contribution of the film relative to the 
adhesion measurements as a constant. For thickness less than 20 µm, there is a linear relationship 
between the adhesive strength, Y(in g/cm2) and the film thickness, h (in µm). The adhesive failure, Y0, 
can be obtained by extrapolating the adhesive strength to zero film thickness. 
Example 23-8 
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Adhesion Properties of Hydroxypropyl Cellulose 

The adhesion, Y, of hydroxypropyl cellulose to polyethylene surfaces as a function of the film 
thickness, h, of the adhesive is given as follows: 

Y(g/cm
2
) 3850 2800 1750 700 

h (µm) 5 10 15 20 

 

Compute the adhesive failure, Y0. A regression of Y(dependent variable) 
against h (independent variable) gives 

 
The adhesive failure is given by the intercept, Y0 = 4900 g/cm2. 
The work of adhesion, Wa, of the dry film on the solid surface can be computed from the 
surface tension of the polymer and the solid surface101: 

 
where γs and γp are the surface tensions of the solid and the polymer, respectively. The 
superscripts d and p represent the contribution to the total surface tension from nonpolar and 
polar portions of the molecule. 

Example 23-9 

Work of Adhesion 

Compute the work of adhesion of hydroxypropyl cellulose films to a solid surface of 
polyethylene from the following data: γ

d
s = 34.2 ergs/cm2

; γ
p
s = 3.4 ergs/cm2

; γ
d
p = 24.7 

ergs/cm2
; and γ

p
p = 16.3 ergs/cm2. 

We have 
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Fig. 23-26. The Ocusert system consisting of a pilocarpine core (drug) sandwiched 

between two rate-controlling ethylene–vinyl acetate copolymer membranes. When the 

device is placed under the upper or lower eyelid, the pilocarpine molecules dissolved 

in the lacrimal fluid are released at preprogrammed rates through the rate-controlling 

membranes. 

Ocusert System 
Alza Corporation introduced the pilocarpine-containing device Ocusert. Made of an ethylene–vinyl 
acetate copolymer, the device (Fig. 23-26) has a central core or reservoir of pilocarpine between two 
membrane surfaces that control the rate of release of the drug. The oval device, slightly larger than a 
contact lens, is placed under the upper or lower lid, where pilocarpine is released at a zero-order rate 
and absorbed into the cornea of the eye. Two products are available, Ocusert P-20, which delivers a 
dose of 20 µg/hr, and Ocusert P-40, which delivers a dose of 40 µg/hr. 
Because of the close contact with the eye and continuous release of drug from the Ocusert over a 
period of a week, only about one fourth of the pilocarpine dose is administered, when compared to 
drops. With drugs that are only sparingly soluble in water, such as chloramphenicol, release in the eye is 
calculated from a form of Fick's law: 

 
where M is the accumulated amount released and t is the time. S is the surface area of the device in 
contact with the eye, D is the diffusion coefficient of the Ocusert membrane, K is a liquid–liquid partition 
coefficient between the Ocusert and the eye fluids, Cs is the solubility of the drug in water, and h is the 
Ocusert membrane thickness. As observed in Figure 23-27, a plot of accumulated drug release against 
time is linear, showing a break at point A (125 hr), then becoming horizontal, indicating that 
chloramphenicol is depleted, and no more is released after 125 hr. A plot of release rate, rather than 
amount, versus time results in a straight horizontal line to point A, then tends toward zero (Fig. 23-27, 

inset). The curve does not fall vertically following point A but is attenuated parabolically as observed in 
the inset of Figure 23-27. These plots indicate that the release rate of a sparingly soluble drug 
P.636 
 
is almost constant, that is, a zero-order release rate over most of the lifetime of the device. The flux or 
rate per unit time for a water-soluble compound is not horizontal (Fig. 23-27, inset) but becomes 
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attenuated as the release proceeds. By the proper choice of membranes for the Ocusert, the release 
rate of pilocarpine can be held essentially constant (zero-order drug release) for up to 7 days of delivery. 

 

Fig. 23-27. Controlled drug delivery of chloramphenicol through the Ocusert 

membrane. The graph shows the cumulative release versus time (inset: release rate 

versus time). 

These preparations present some disadvantages, such as noncompliance, especially in elderly people, 
and many patients lose the device sometimes without becoming aware of it. From the point of view of 
patient acceptability, a liquid dosage form is preferable. 
Example 23-10 

Chloramphenicol Analogue Release from Ocusert 

The diffusion coefficient of a new chloramphenicol derivative in the Ocusert device is 3.77 × 
10-5 cm2/hr. The surface area, S, of the Ocusert is 0.80 cm2, the partition coefficient,K, 
between the Ocusert and ocular fluids is 1.03, the thickness of the membrane, h, is 0.007 cm, 
and the solubility, Cs, in water (25°C) of the new compound is 3.93 mg/cm3. By use of 
equation (23-27), calculate the cumulative amount of drug released in 125 hr. 
We have 

 

Biodegradable Drug Delivery System 
Oculex Pharmaceuticals (Sunnyvale, CA) developed the biodegradable drug delivery (BDD) system, 
which is based on a microsized polymer system that enables microencapsulated drug therapies to be 
implanted within the eye. Unlike any other intraocular drug delivery system, this technology is 
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completely biodegradable. This allows biodegradable microsystems to release therapeutic agents 
directly into the area requiring medication for a predetermined period of time, enabling treatment of a 
broad spectrum of conditions and diseases that occur within the back of the eye. The key features of 
this technology include programmable site-specific drug delivery, a biodegradable therapeutic solution, 
minimally invasive delivery, versatile drug delivery platform, and better patient compliance. Two types of 
BDD systems have been developed. The first system (Surodex BDD) is inserted in the front of the eye, 
whereas the second (Posurdex BDD) might be inserted in the back of the eye by elective surgery. BDD 
delivery systems are designed to provide continuous, controlled release drug therapy directly to the 
targeted site for periods ranging from several days to several years. Several drug delivery systems 
based on this technology are undergoing clinical trials. 
Mucoadhesive Drug Delivery Formulation 
It is based on an ionic complex of partially neutralized PAA and a highly potent beta-blocker drug, 
levobetaxolol hydrochloride (LB × HCl), and used for the treatment of glaucoma.12,13 PAA is 
neutralized with sodium hydroxide to varying degrees of neutralization. Aqueous solutions containing 
varied concentrations of LB × HCl equivalent to the degree of PAA neutralization are added to the PAA 
solutions to form insoluble complexes. Complexes are prepared with different drug loading, such that 
the same PAA chain would have free—COOH groups for mucoadhesion along with ionic complexes of 
LB × H+ with COO—groups. From thin films of the complexes, drug is released by ion exchange with 
synthetic tear fluid. The film thickness attenuated continuously during the release of the drug and 
dissolved completely in 1 hr. Solid inserts of these films could be useful as a mucoadhesive ophthalmic 
drug delivery system. 
Transdermal Drug Delivery Systems 
Enhancers for Percutaneous Absorption 
The transport of molecules through the skin is increased by the use of adjuvants known as enhancers. 
Ionic surfactants enhance transdermal absorption by disordering the lipid layer of the stratum corneum 
and by denaturation of the keratin. Enhancers increase the drug penetration by causing the stratum 
corneum to swell and/or leach out some of the structural components, thus reducing the diffusional 
resistance and increasing the permeability of the skin.102 
Nishihata et al.103 proposed a mechanism for the enhancing effect of reducing agents such as 
ascorbate and dithiothreitol. The poor permeability of the skin is due to the ordered layer of intercellular 
lipids and the low water content. Proteins in keratinized tissue are rich in cysteine residues, and the 
strong disulfide bonds are possibly responsible for the insoluble nature of the protein. The reducing 
agents cause a decrease in the number of disulfide bridges, leading to an increase in the hydration of 
the proteins, which results into increased membrane permeability. Azone or laurocapram (1-dodecyl-
azacycloheptan-2-one) is the most efficient enhancer 
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for percutaneous absorption. It greatly improves the penetration of hydrophilic and hydrophobic 
compounds, though the latter to a smaller degree. Azone is an oily liquid, insoluble in water, but freely 
soluble in organic solvents. Most of the azone applied remains on the skin surface; the small fraction 
absorbed is located mainly in the stratum corneum. 
The compound has been found to be the most effective enhancer in the percutaneous absorption of 
dihydroergotamine, a drug widely used in the prevention and/or treatment of migraine. The effect of 
azone increases in the presence of propylene glycol. A possible mechanism could be the fluidization of 
the intercellular lipid lamellar region of the stratum corneum by azone. Azone is a very nonpolar 
molecule, enters the lipid bilayers, and disrupts their structure (Fig. 23-28).104 In contrast, a strongly 
dipolar solvent, dimethyl sulfoxide (DMSO), enters the aqueous region and interacts with the lipid polar 
heads to form a large solvation shell and to expand the hydrophilic region between the polar heads. As 
a result, both azone and DMSO increase the lipid fluidity, thus reducing the resistance of the lipid barrier 
to the diffusion of drugs. Alcohol derivatives of N,N-disubstituted amino acids and hexamethylene 
lauramine also enhance the permeability of drugs. 
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Fig. 23-28. Schematic representation of the interaction of the enhancers azone and 

dimethyl sulfoxide (DMSO) with the intercellular lipids of the stratum corneum: (a) 

Relatively ordered structure of the lipid bilayers. (b) Disordered lipid array due to the 

azone and DMSO activity. (Modified from B. W. Barry, Int. J. Cosmet. Sci. 10, 281, 

1988. With permission.) 

Membrane-Controlled Systems for the Percutaneous Absorption 
Route 
A transdermal device is a laminated structure consisting of four layers, as shown in Figure 23-29. It 
consists of (a) an impermeable backing membrane, which is the mechanical support of the system; (b) 
an adjacent polymer layer, which serves as the drug reservoir; (c) a microporous membrane filled with a 
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nonpolar material (e.g., paraffin); and (d) an adhesive film to make close contact with the skin and 
maintain the device in the desired position. 
P.638 
 
 

 

Fig. 23-29. A schematic representation of the transdermal therapeutic system. 

(Modified from K. Heilmann, Therapeutic Systems, Georg Thieme, Stuttgart, 1978, p. 

53.) 

Guy and Hadgraft105,106 proposed a model for the transport of clonidine across the skin (Fig. 23-30) 
from a membrane-controlled adhesive system. The constant k0 represents the zero-order rate constant 
for the membrane-controlled leaching of the drug, and kRrepresents the partition between the patch and 
the skin surface. The system should be designed so that the partitioning favors the skin and kR remains 
negligibly small. The first-order constants k1 and k2in Figure 23-30 are for drug transport across the 
stratum corneum and the living part of the epidermis. These constants are directly proportional to the 
diffusion coefficients for passage through the layers of the skin and therefore inversely proportional to 
the penetrant molecular weight as observed from the Stokes–Einstein equation: 
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Fig. 23-30. Transdermal delivery of clonidine from a membrane-controlled patch. 

(Modified from R. H. Guy and J. Hadgraft, J Pharm. Sci. 74, 1016, 1985. With 

permission.) 

 
The rate constant k3 of Figure 23-30 is included to express any tendency for reverse drug transport from 
epidermis to the stratum corneum and, in conjunction with k2, can be considered as a partition 
coefficient. The authors computed the values of k1 and k2for benzoic acid and used them to compute 
these rate constants for other drug molecules. The expressions are 

 

 
where kBA

1, kBA
2, and MBA are the rate constants and molecular weight of benzoic acid and M is the 

molecular weight of the drug for which the constants k1 and k2 are calculated. The ratio k3/k2 was found 
to be a function of the octanol–water partition coefficient, K: 

 
Using this model, one can predict the constants k1, k2, and k3 from the physicochemical properties of the 
drug. The rate constant k4 inFigure 23-30 represents the first-order elimination of the drug from the 
blood and cannot be predicted. It must be measured experimentally. 
Examples of membrane-controlled systems are the Transderm-Nitro (Ciba, Basel, Switzerland, and 
Alza, Mountain View, CA) for the delivery of nitroglycerin, Transderm-Scop (Alza and Ciba-Geigy) for 
scopolamine, and Catapress TTS (Alza and Boehringer Ingelheim, Germany) for clonidine.107 
P.639 
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Fig. 23-31. A schematic representation of an adhesive diffusion-controlled 

transdermal drug delivery system. 

Example 23-11 

Clonidine Release from a Transdermal Patch 

(a) Compute the rate constants k1, k2, and k3 for the transport of clonidine from a membrane-
controlled patch. The first-order rate constants k1

BA and k2
BA are 5.11 × 10-5and 80 × 10-5 sec-

1, respectively. The octanol–water partition coefficient of clonidine is K = 6.7. The molecular 
weight of benzoic acid is 122.12 g/mole, and the molecular weight of clonidine is 230.10 
g/mole. 
We have: 

 
From equation (23-31), 

 
(b) The steady-state plasma concentration of clonidine, CSS, can be computed from 

 
where A is the area of the patch, k0 is the zero-order rate constant for the delivery of clonidine 
from the patch, and Vdis the volume of distribution,* the amount of drug in the body divided by 
the plasma concentration. For the most efficient membrane-controlled patch, which contains 
2.5 mg of clonidine, A, the area of the patch is 5 cm2 and k0 is 1.6 µg/cm2 hr. The volume of 
distribution Vd for clonidine is 147 liters and the first-order constant, k4, is 0.08 hr-1. From 
equation (23-31), 

 

Adhesive Diffusion-Controlled Systems 
The basic difference between this system and the one previously described is the absence of 
microporous membrane (Fig. 23-31). The device consists of an impermeable plastic barrier on the top, a 
drug reservoir in the middle, and several rate-controlling adhesive layers next to the skin. The rate of 
drug release, dQ/dt, depends on the partition coefficient, K, of the drug between the reservoir (r) and the 
adhesive layers (a), the diffusion coefficient, Da, the sum of the thicknesses of the adhesive layers, ha, 
and the concentration Cr of the drug in the reservoir layer108: 
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Examples of these devices are the nitroglycerin (Nitrodisc) (Searle, Chicago, IL) and glyceryl trinitrate 
(Deponit) (Swarz Pharma, Monheim, Germany) for the delivery of nitroglycerin. 
Matrix-Controlled Devices 
In a matrix-controlled device, the drug reservoir consists of a hydrophilic or hydrophobic polymer 
containing the dispersed drug, attached to a plastic backing that is impermeable to the drug. The drug 
reservoir is in direct contact with the skin, and the release of drug is matrix controlled, that is, it is a 
function of the square root of time. To obtain zero-order release of the drug across the skin from such 
systems, the stratum corneum must control the rate of drug delivery. This can be achieved if the release 
rate of the drug from the device is much greater than the rate of skin uptake. Example is Nitro-Dur 
system (Schering-Plough Corp., Kenilworth, NJ). 
Iontophoresis 
It is an electrochemical method that enhances the transport of some soluble molecules by creating a 
potential gradient through the skin tissue with an applied electrical current or voltage (Fig. 23-32). This 
technique is used to enhance the transdermal transport of drugs by applying a small current through a 
reservoir that contains ionized species of the drug. Positive or negative electrodes are placed between 
the drug reservoir and the skin. Positive ions are introduced in the skin from a positive electrode and 
negative ions from a negative electrode. Figure 23-32 shows an iontophoresis circuit with the active 
electrode being negative. A second electrode, positive in this case, is placed a short distance away on 
the body to complete the circuit, and the electrodes are connected to a power supply. When the current 
flows, the negatively charged ions are transported across the skin, mainly through the pores. The 
isoelectric point of the skin is between 3 and 4 pH 
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units; below pH 3 the pores are positively charged and above pH 4 they are negatively charged. Owing 
to the negative charge in the upper skin layers, basic drugs are relatively easy to introduce. 

 

Fig. 23-32. A schematic representation of iontophoresis apparatus on skin. 

In vitro systems designed to study iontophoretic transport involve the use of diffusion cells in which a 
skin membrane is placed vertically between the two halves of the cell. The ―active‖ electrode, say the 

positive electrode for the transport of positive ions, is placed on the epidermal side. The other side of the 
cell contains a passive (oppositely charged) electrode in a conductive fluid. Iontophoresis enhances the 
transdermal absorption of insulin. At a pH below the isoelectric point of insulin (pH 5.3) the drug acts as 
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a positive electrode, whereas at a pH above the isoelectric point, the drug reservoir acts as a negative 
electrode. The greatest transport of insulin was found at pH 3.68 rather than at 7 or 8 owing possibly to 
low aggregation and a high charge density of insulin at pH 3.68.109 
The rate of skin permeation depends on the drug concentration, the ionic strength of the buffer solution, 
the magnitude of current applied, and the duration of iontophoresis.110 Iontophoresis is a promising 
method for delivering peptides through the skin. Burnette and Marrero111 showed that the flux of both 
ionized and nonionized species of thyrotropin-releasing hormone was greater than the flux obtained by 
passive diffusion alone. The increased flux was proportional to the applied current density. Transport 
through the pores is favored for positive ions, whereas transport of negative ions is probably smaller. 
Faraday's law states that equal quantities of electricity will deposit equivalent quantities of ions at either 
electrode. However, the correlation between the prediction by Faraday's law and the experimental 
values is not good owing to several factors involved in iontophoretic transport. Kasting et al.112 used an 
electrodiffusion model to study the transport of etidronate disodium, a negatively charged bone 
resorption agent, through excised human skin. At steady state, the flux, Ji, of drug through the 
membrane is given by the Nernst–Planck flux equation: 

 
where Di is the diffusion coefficient for the ion i (in the x direction), ziis its charge, and ci is its 
concentration. The term kT is the thermal energy of the system, where k is the Boltzmann constant 
and T is the absolute temperature. The Goldman approximation112 provides a solution of equation (23-
34): 

 
where K is the partition coefficient, h is the thickness of the membrane, and ci and c0 are the 
concentrations at either side of the membrane. Assuming that the concentration c0 = 0, in the limit 
as v→ 0, equation (23-35) becomes the flux passive diffusion, J: 

 
The term v is a dimensionless driving force, defined as: 

 
where e is the electronic charge, z is the charge on the drug, k is the Boltzmann constant, T is the 
absolute temperature, and V is the applied voltage across the membrane. The iontophoretic 

enhancement factor, Ji/J0, is given by: 

 
Equation (23-38) measures the increase in transport of a drug relative to the passive diffusion due to the 
electrical current applied. For positive values [zi and V of the same sign in equation (23-37)], 
equation (23-35) predicts that the enhancement in flux is proportional to v. For negative v values, the 
flux will fall exponentially with increasing magnitude of v. 
Example 23-12 

Iontophoretic Enhancement Factor 

(a) Compute the iontophoretic enhancement factor, Ji/J0, across human excised skin for a 
10% etidronate solution. The voltage applied is 0.25 V, the average number of charges, z, per 
ion is 2.7. The charge on the electron is 1 eV. The value of kT at 25°C is 0.025 eV. 
From equation (23-37), 

 
Using equation (23-38), we find the iontophoretic enhancement factor 

 
Thus, we see that the flux for the drug promoted by iontophoresis is 27 times that expected 
for passive diffusion. 
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(b) Compute the flux under the driving force of iontophoresis, knowing that the passive 
permeability coefficient, P, of the drug is 4.9 × 10-6 cm/hr and the concentration, c, is 1.02 × 
105 µg/cm3. 
Because P = DK/h cm/hr from equation (23-36), 

 
From equation (23-35), using the value 27 obtained in part (a) for Ji/J0, we obtain 

 

Kasting et al.113 found that equation (23-35) applies up to 0.25 V. At higher voltages, the flux of 
etidronate disodium rises much faster than the predicted values because of alteration of the membrane 
and because the diffusion coefficient is no longer a constant value, as assumed in equation (23-36). 
Burnette and Bagniefski114determined the skin electrochemical resistance, R, after iontophoresis. The 
decrease in resistance suggested that the current alters the 
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ion-conducting pathways of the skin even at the clinically acceptable current densities, leading to tissue 
damage.115 
The main advantages of iontophoresis include (a) controlling the delivery rates through variations of 
current density, pulsed voltage, drug concentration, and/or ionic strength; (b) eliminating GI 
incompatibility, erratic absorption, and first-pass metabolism; (c) reducing side effects and interpatient 
variability; (d) avoiding the risk of infection, inflammation, and fibrosis associated with continuous 
injection or infusion; and (e) enhancing patient compliance with a convenient and noninvasive 
therapeutic regimen. The main disadvantage of iontophoresis is skin irritation at high current densities, 
which can be eliminated by lowering the current of administration. 
Phonophoresis 
It is defined as transport of drugs through the skin using ultrasound 
(synonyms: ultrasound, ultrasonophoresis, ultraphonophoresis) (Fig. 23-33). It is a combination of 
ultrasound therapy with topical drug therapy to achieve therapeutic drug concentrations at selected sites 
in the skin. The ultrasonic unit has a sound transducer head emitting energy at 1 MHz at 0.5 to 1 W/cm2. 
In this technique, the drug is mixed with a coupling agent, usually a gel, but sometimes a cream or an 
ointment, which transfers ultrasonic energy from the phonophoresis device to the skin through this 
coupling agent. The exact mechanism of phonophoresis action is not known. 
Vaginal Administration, Intrauterine, and Rectal Drug Delivery 
Systems 
Vaginal delivery systems are in use for estrogen replacement therapy, which when used alone carries 
the risk of endometrial cancer. Traditionally, this risk is overcome by treatment with progesterone for 
about 14 to 30 days but it is associated with low oral bioavailability, lack of efficacy, and high level of 
metabolites. Consequently progesterone tablets, suppositories, and gels have been developed for 
vaginal administration.39,40 Vaginal administration provides higher and sustained plasma levels and 
low amount of metabolites. Various vaginal preparations of estrogens and progesterones are now 
available for use as contraceptives, in hormone replacement therapy, and in vitro fertilization programs. 
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Fig. 23-33. A schematic representation of phonophoresis apparatus on skin. 

Suppositories 
As mentioned earlier, suppositories are solid dosage forms intended for insertion into body orifices 
where they melt, soften, or dissolve, and exert localized or systemic drug delivery (suppository, from the 
Latin sup, ―under,‖ and ponere, ―to place‖). Once inserted, the suppository base melts, softens, or 
dissolves, distributing the medications it carries to the tissues of the region. Suppositories are preferred 
for their safety, suitability for sustained systemic and/or local drug delivery, and nonmessy, nonstaining, 
and convenient administration. The progesterones and estrogens vaginal suppositories are available 
commercially. 
Vaginal Rings 
Vaginal rings containing various progesterones and estrogens are available as steroidal contraceptives 
(Fig. 23-34a). These rings consist of a drug reservoir surrounded by a polymeric membrane. These are 
pliable drug delivery system that can be inserted into the vagina, where they slowly release the drug, 
which is absorbed into the bloodstream. The most common one being Silastic toroidal-shaped ring, 
which is about 2¼″ in diameter and the size of the outer rim of a diaphragm, designed for insertion into 

vagina and positioned around the cervix for about 21 days. Levonorgestrel (progesterone analog) is 
released from the device at a concentration of 20 µg/day with nearly a zero-order release. These rings 
are easy to use with the advantage of reversibility, self-insertion and removal, continuous drug 
administration at an effective dose level, and better patient compliance. This above device was 
P.642 
 
however associated with irregular bleeding. Another vaginal Silastic silicone ring (Estring) was launched 
in the United States in 1997 for treating postmenopausal women with symptoms of urogenital aging. The 
ring provides a constant release (6.5–9.5 µg/day) of estradiol over 3-month period and gives better 
results when compared to estradiol containing pessaries and creams. 
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Fig. 23-34. A schematic representation of (a) vaginal ring and (b) intrauterine device. 

Vaginal Inserts 
Vaginal inserts are in use for prostaglandin delivery. Prostaglandin E2 (PGE2) is used to ripen the cervix 
for induction of labor and for second trimester abortion. Prostaglandins provide benefits such as reduced 
time for onset of labor, reduced need for oxytocin, and shortened time for vaginal and caesarean-
operated delivery. These inserts are polymeric hydrogel material, which has the ability to absorb fluid 
and swell without losing its physical form. As it swells, the incorporated drug is released in a controlled 
manner. An example is Cervidil Vaginal, which contains 10 mg of dinoprostone and provides release at 
a rate of 0.3 mg/hr in vivo. The retrieval system comprises Dacron polyester net, which surrounds the 
insert and has a long ribbon end (net plus ribbon = 31 cm). Another example is the Hycore (CeNeS 
Pharmaceuticals, Cambridge, UK), which exists in two main forms, Hycore-V, a hydrogel pessary used 
to deliver drugs locally via the vagina, and Hycore-R, a rectal delivery system used to deliver drugs 
systemically. Misoprostol (prostaglandin E1 analog used for terminating second trimester pregnancy) is 
also given through the vaginal route at a dose 100 to 200 µg every 12 hr and provides three times 
higher bioavailability when compared to oral administration. 
Intrauterine Device 
An intrauterine device (IUD) is a small plastic device that is placed into the uterine cavity for sustained 
intrauterine drug release and is usually used for contraception. A typical IUD is shaped like a T and 
contains a drug, usually progesterone, in its vertical arm (Fig. 23-34b). The progesterone release 
causes the cervical mucus to become thicker, so sperm cannot reach the egg. It also changes the lining 
of the uterus so that implantation of a fertilized egg cannot occur. The IUD is inserted through the cervix 
and placed in the uterus. A small string hangs down from the IUD into the upper part of the vagina and 
is used to periodically check the device. A shorter-than-normal string can be a warning sign of an 
imbedded IUD. 
Central Nervous System Drug Delivery Systems 
Over the years, various strategies have been developed to overcome the BBB and deliver the drugs to 
the CNS.42,43 
Invasive Strategies 
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The invasive strategies are:42,43 (a) intracerebroventricular (ICV) drug infusion, where the drug is 
directly injected into the ventricles (large cavities in the middle of the brain). Following the infusion, drug 
diffusion to brain is still limited by physical barriers, catabolic enzymes, high and low affinity uptake sites, 
and low diffusion coefficients of high–molecular-weight drugs; (b) implants, where either genetically 
engineered cells secreting a drug or polymer matrix/reservoir containing the drug is implanted within the 
brain. Polymeric implants such as Gliadel are commercially available (Guilford Pharmaceuticals, 
Baltimore, MD). Gliadel is a small, white, dime-sized wafer made of a biodegradable polymer containing 
chemotherapy (carmustine or BCNU). Up to eight wafers are implanted in the cavity created, when a 
brain tumor is surgically removed. Once implanted, they slowly dissolve over a period of 2 to 3 weeks, 
delivering the drug directly to the tumor site in high concentrations. First approved in 1996 for use as an 
adjunct to surgery for prolonging patient survival, these wafers are now approved for patients 
undergoing initial surgery for malignant glioma; and (c) reversible BBB disruption, where transient 
disruption or opening of BBB is achieved by the intracarotid infusion of hyperosmolar (2M) solution of 
mannitol, leukotrienes, or bradykinin. This approach has significant side effects. All the above-
mentioned strategies are invasive and require intervention by trained professionals. 
Noninvasive Strategies 
Besides the invasive strategies for local drug delivery to CNS, there are pharmacology and physiology-
based strategies for systemic delivery to CNS. The most common strategy is to increase the lipophilicity 
(lipidization) of the drug for improved drug penetration into the brain (Fig. 23-35). This is achieved by 
either blocking the hydrogen bond forming functional groups in the drug or covalent attachment of 
lipophilic moieties such as long chain fatty acids. For example,42 O-methyation of morphine to form 
codeine or di-O-methylation to form heroin enhances the BBB permeability. Multivesicular liposomes 
(diameter <2 µm) are retained in the brain following systemic administration and therefore used for 
systemic drug delivery to CNS. A further 
P.643 
 
improvement in liposome-based technologies is achieved by employing immunoliposomes, where 
antibodies are attached to the liposomes through bifunctional PEG linker to exploit receptor-mediated 
transcytosis. 
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Fig. 23-35. Improving the drug penetration across the blood–brain barrier (BBB) by 

increasing its lipophilicity. 

Carrier-mediated transport mechanism is also used for drug delivery to CNS.42,43 As explained earlier, 
nutrients are transferred to the CNS by various carrier-mediated systems. Drugs containing molecular 
structure similar to the nutrient are designed for transport to the CNS by appropriate carrier-mediated 
system. Drugs such as L-dopa and α-methyldopa are transported across the BBB by neutral amino acid 
carrier system. Similarly, receptor-mediated transcytosis is also exploited to achieve systemic delivery to 
CNS. This strategy (prodrug) involves coupling of the drug to a peptide or protein vector (insulin, 
insulinlike growth factor, and transferrin) through reversible linker, which undergoes receptor-mediated 
transcytosis. Once it has been exocytosed into the brain interstitial fluid, the linker is cleaved releasing 
the drug. Pep:trans peptide-derived vectors (Synt:em, Nimes, France) are examples of such vectors. 
This vector family is derived from the optimization of natural mammalian antimicrobial peptides involved 
in an ancestral immune response system. Drugs linked to Pep:trans typically show up to 100-fold 
enhancement in the brain uptake. This approach suffers from rapid clearance of peptide from the 
bloodstream. Monoclonal antibodies such as anti-insulin (mAb83–7 or 83–14) and anti-transferrin 
(OX26) receptor antibodies have been alternatively used as vectors. The limitation with receptor-
mediated transcytosis is that it is a saturable process. 
Chapter Summary 

The objective of this chapter was to provide a perspective on advanced drug delivery. The 
two key characteristic features of advanced drug delivery systems are controlled delivery and 
targeting. Oral route remains the most preferred route of drug delivery but not always feasible, 
and therefore alternative routes of drug delivery are being explored. Each drug delivery route 
has its own merits and limitations, and the delivery systems depending on the route of drug 
delivery, must meet characteristic design requirements. The delivery of biotherapeutics 
(peptides, proteins, and nucleic acids) is more challenging because of their inherent 
disadvantageous delivery features. 
Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e. 

Dr. Murtadha Alshareifi e-Library

1148



References 
1. A. M. Hillery, in A. M. Hillery, A. W. Lloyd, and J. Swarbrick (Eds.), Drug Delivery: The Basic 

Concepts, CRC Press, Boca Raton, FL, 2001, pp. 1. 
2a. A. M. Hillery, in A. M. Hillery, A. W. Lloyd, and J. Swarbrick (Eds.), Advanced Drug Delivery and 

Targeting: An introduction,CRC Press, Boca Raton, FL, 2001, pp. 63. 
2b. V. H. K. Li, J. R. Robinson, and V. H. L. Lee, in V. H. L. Lee and J. R. Robinson (Eds.), Controlled 
Drug Delivery: Fundamentals and Applications, 2 Ed, Marcel Dekker, NY, 1987, pp. 
3. C. R. Gardner, in P. Johnson and J. G. Lloyd-Jones (Eds.),Drug Delivery Systems: Fundamental and 

Techniques, Ellis Horwood Ltd., UK, and VCH Verlag, 1987, pp. 11. 
4. H. Rosen and T. Abribat, Nat. Rev. Drug Discov. 4, 381, 2005. 
5. P. Evers, in A. M. Hillery, A. W. Lloyd, and J. Swarbrick (Eds.),Drug Delivery: Market 

Perspectives, CRC Press, Boca Raton, FL, 2001, pp. 49. 
6. Advanced drug delivery systems: new development, new technologies. Business Communication 
Company, Wellesley, MA, 2006. 
7. European market for drug delivery products and technologies. Medtech Insight, Irvine, CA, 2009. 
8. S. Frokjaer and D. E. Otzen, Nat. Rev. Drug Discov. 4, 298, 2005. 
9. K. R. Reddy, M. W. Modi, and S. Pedder, Adv. Drug Deliv. Rev.54, 571, 2002. 
10. Y.-S. Wang, S. Youngster, M. Grace, J. Bausch, R. Bordens, and D. F. Wyss, Adv. Drug Deliv. 
Rev. 54, 547, 2002. 
11. T. K. De and A. S. Hoffman, Artif. Cells Blood Substit. Immobil. Biotechnol. 29, 31, 2001. 
12. B. S. Lele and A. S. Hoffman, J. Biomater. Sci. Polym. Ed.11, 1319, 2000. 
13. B. S. Lele and A. S. Hoffman, J. C. Release, J. Control. Release, 69, 237, 2000. 
14. A. H. Shojaei, J. Pharm. Pharm. Sci. 1, 15, 1998. 
15. J. S. Patton, Chemtech. 27, 34, 1997. 
16. Y. W. Chien, K. S. E. Su, and S.-F. Chang, Nasal Systemic Drug Delivery, Marcel Dekker, NY, 1989, 
chapter 1. 
17. P. A. Hilger, Fundamentals of Otolaryngology, W. B. Saunders, Philadelphia, PA, 1989, pp. 184. 
18. L. Illum, J. Control. Release, 87, 187, 2003. 
19. P. Sinswat and P. Tengamnuay, Int. J. Pharm. 257, 15, 2003. 
20. H. Pavis, A. Wilcock, J. Edgecombe, D. Carr, C. Manderson, A. Church, and A. Fisher, J. Pain 
Symptom Manage. 24, 598, 2002. 
21. Y. H. Liu, M. C. Kao, Y. L. Lai, and J. J. Tsai, J. Allergy Clin. Immunol. 112, 301, 2003. 
22. M. A. Pogrel, Oral Maxillofac. Surg. 61, 649, 2003. 
23. S. Borsutzky, V. Fiorelli, T. Ebensen, A. Tripiciano, F. Rharbaoui, A. Scoglio, C. Link, F. Nappi, M. 
Morr, S. Butto, A. Cafaro, P. F. Muhlradt, B. Ensoli, and C. A. Guzman, Eur. J. Immunol. 33, 1548, 2003. 
24. Y. Ali and K. Lehmussaari, Adv. Drug Deliv. Rev. 58, 1258, 2006. 
25. M. R. Prausnitz, S. Mitragotri, and R. Langer, Nat. Rev. Drug Discov. 3, 115, 2004. 
26. W. Curatolo, Pharm. Res. 4, 271, 1987. 
27. R. L. Bronaugh and R. F. Stewart, J. Pharm. Sci. 75, 487, 1986. 
28. R. H. Guy and J. Hadgraft, Pharm. Res. 5, 753, 1988. 
29. K. Tojo, C. C. Chiang, and Y. W. Chien, J. Pharm. Sci. 76,123, 1987. 
30. W. Barry, Int. J. Cosmet. Sci. 10, 281, 1988. 
31. M.-S. Wu, J. Pharm. Sci. 72, 1421, 1983. 
32. P. P. Sarpotdar and J. L. Zatz, J. Pharm. Sci. 75, 176, 1986. 
33. J. Swarbrick, G. Lee, J. Brom, and N. P. Gensmantel, J. Pharm. Sci. 73, 1352, 1984. 
34. C. Fleeker, O. Wong, and J. H. Rytting, Pharm. Res. 6, 443, 1989. 
35. P. S. Banerjee and W. A. Ritschel, Int. J. Pharm. 49, 189, 1989. 
36. D. B. Guzek, A. H. Kennedy, S. C. McNeill, E. Wakshull, and R. O. Potts, Pharm. Res. 6, 33, 1989. 
37. R. O. Potts, S. C. McNeill, C. R. Desbonnet, and E. Wakshull, Pharm. Res. 6, 119, 1989. 
38. S. Y. Chan and A. L. W. Po, Int. J. Pharm. 55, 1, 1989. 
39. J. das Neves and M. F. Bahia, Int. J. Pharm. 318, 1, 2006. 

Dr. Murtadha Alshareifi e-Library

1149



40. H. Okada and A. M. Hillery, in A. M. Hillery, A. W. Lloyd, and J. Swarbrick (Eds.), Vaginal Drug 

Delivery, CRC Press, Boca Raton, FL, 2001, pp. 301. 
41. P. van der Bijl and A. D. V. Eyk, Int. J. Pharm. 261, 147, 2003. 
42. W. M. Pardridge and P. L. Golden, in A. M. Hillery, A. W. Lloyd, and J. W. Swarbrick, (Eds.), Drug 

Delivery to Central Nervous System, CRC Press, Boca Raton, FL, 2001, pp. 355. 
P.644 
 
 
43. J. Temsamani, J.-M. Scherrmann, A. R. Rees, and M. Kaczorek, Pharm. Sci. Tech. Today, 3, 155, 
2000. 
44. B. M. Paterson, B. E. Roberts, and E. L. Kuff, Proc. Natl. Acad. Sci. USA, 74, 4370, 1977. 
45. M. L. Stephenson and P. C. Zamecnik, Proc. Natl. Acad. Sci. USA, 75, 285, 1978. 
46. T. Mizuno, M. Y. Chou, and M. Inouye, Proc. Natl. Acad. Sci. USA, 81, 1966, 1984. 
47. F. Crick, Nature, 227, 561, 1970. 
48. M. Praseuth, A. L. Guieysse, C. Helene, Biochim. Biophys. Acta 1489, 181, 1999. 
49. R. Juliano, M. R. Alam, V. Dixit, and H. Kang, Nucleic Acids Res. 36, 4158, 2008. 
50. D. R. Corey, Nat. Chem. Biol. 3, 8, 2007. 
51. N. Dias and C. A. Stein, Mol. Cancer Ther. 1, 347, 2002. 
52. S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalchin, K. Weber, and T. Tuschl, Nature, 411, 494, 
2001. 
53. J. B. Opalinska and A. M. Gewirtz, Nat. Rev. Drug Discov. 1,503, 2002. 
54. Z. Paroo and D. Corey, Trends. Biotechnol. 22, 390, 2004. 
55. M. Famulok, G. Mayer, and M. Blind, Acc. Chem. Res. 33,591, 2000. 
56. D. Jones, Nat. Rev. Drug Discov. 8, 525, 2009. 
57. D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton, Nat. Rev. Drug Discov. 4, 581, 2005. 
58. K. A. Whitehead, R. Langer, and D. G. Anderson, Nat. Rev. Drug Discov. 8, 129, 2009. 
59. D. Hedley, L. Oglivie, and C. Springer, Nat. Rev. Cancer, 7,870, 2007. 
60. P. Ehrlich, Studies in Immunity' Wiley, NY, 1906. 
61. F. Winau, O. Westphal, and R. Winau, Microbes Infect. 6,786, 2004. 
62. D. J. A. Crommelin, W. E. Hennink, and G. Storm, in A. M. Hillery, A. W. Lloyd, and J. Swarbrick 
(Eds.), Drug Targeting Systems: Fundamentals and Applications to Parenteral Drug Delivery, CRC 
Press, Boca Raton, FL, 2001, pp. 117. 
63. Y. Singh, M. Palombo, and P. J. Sinko, Curr. Med. Chem.15, 1802, 2008. 
64. F. Kratz, I. A. Muller, C. Ryppa, and A. W. Warnecke, Chem. Med. Chem. 3, 20, 2008. 
65. P. F. Bross, J. Beitz, G. Chen, X. H. Chen, E. Duffy, L. Kieffer, S. Roy, R. Sridhara, A. Rahman, G. 
Williams, and R. Padzur, Clin. Cancer Res. 7, 1490, 2001. 
66. N. P. Barbour, M. Paborji, T. C. Alexander, W. P. Coppola, and J. B. Bogardus, Pharm. 
Res. 12, 215, 1995. 
67. J. A. Reddy, R. Dorton, E. Westrick, A. Dawson, T. Smith, L.-C. Xu, M. Vetzel, P. Kleindl, I. R. 
Vlahov, and C. P. Leamon, Cancer Res. 67, 4434, 2007. 
68. P. Carter, Nat. Rev. Cancer, 1, 118, 2001. 
69. M. A. Robinson, S. T. Chariton, P. Garnier, X.-T. Wang, S. S. Davies, A. C. Perkins, M. Frier, R. 
Duncan, T. J. Savage, D. A. Wyatt, S. A. Watson, and B. G. Davies, Proc. Natl. Acad. Sci. 
USA, 101, 14527, 2004. 
70. Y.-J. Park, J.-F. Liang, H. Song, Y. T. Li, S. Naik, and V. C. Yang, Adv. Drug Del. Rev. 55, 251, 
2003. 
71. H.-K. Han and G. L. Amidon, AAPS Pharm. Sci. 2, E6, 2000. 
72. M. A. Jacobson, J. Med. Virol. Suppl. 1, 150, 1993. 
73. H. Maeda, Adv. Enzyme Regul. 41, 189, 2001. 
74. A. K. Iyer, G. Khaled, J. Fang, and H. Maeda, Drug Discov. Today, 11, 812, 2006. 
75. R. Duncan, Nat. Rev. Drug Discov. 2, 347, 2003. 

Dr. Murtadha Alshareifi e-Library

1150



76. R. Duncan, Nat. Rev. Cancer, 6, 688, 2006. 
77. B. E. Rabinow, Nat. Rev. Drug Discov. 3, 785, 2004. 
78. P. Ettmayer, G. L. Amidon, B. Clement, and B. Testa, J. Med. Chem. 47, 2393, 2004. 
79. J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen, and J. Savolainen, Nat. Rev. 
Drug Discov. 7, 255, 2008. 
80. H. Sah and Y. W. Chien, in A. M. Hillery, A. W. Lloyd, and J. Swarbrick (Eds.), Rate Control in Drug 

Delivery and Targeting: Fundamentals and Applications to Implantable Systems, CRC Press, Boca 
Raton, FL, 2001, pp. 83. 
81. H. Kim and D. J. Burgess, J. Microencapsul. 19, 631, 2002. 
82. F. Theeuwes and S. I. Yum, Ann. Biomed. Eng. 4, 343, 1976. 
83. F. Theeuwes, in R. T. Borchardt, A. J. Repta, and V. J. Stella (Eds.), Directed Drug 

Delivery, Humana Press, NJ, 1985. 
84. F. Theeuwes, J. Pharm. Sci. 64, 1987, 1975. 
85. F. Theeuwes, D. Swanson, P. Wong, P. Bonsen, V. Place, K. Heimlich, and K. C. Kwan, J. Pharm. 
Sci. 72, 253, 1983. 
86. A. S. Hoffman, Ann. N. Y. Acad. Sci. 944, 62, 2001. 
87. J. P. Cassidy, N. M. Landzert, and E. Quadros, J. Control. Release, 25, 21, 1993. 
88. J. S. Patton and P. R. Byron, Nat. Rev. Drug Discov. 6, 67, 2007. 
89. P. R. Byron, J. Pharm. Sci. 75, 433, 1986. 
90. P. R. Byron, N. S. R. Roberts, and A. R. Clark, J. Pharm. Sci.75, 168, 1986. 
91. P. R. Byron (Ed.), Respiratory Drug Delivery, CRC Press, Boca Raton, Fl, 1990. 
92. M. Quadir, H. Zia, and T. E. Needham, Drug Deliv. 7, 223, 2000. 
93. G. Eby, Am. J. Ther. 10, 233, 2003. 
94. M. Hirt, S. Nobel, and E. Barron, Ear Nose Throat J. 79, 778, 2000. 
95. T. F. Patton and J. R. Robinson, J. Pharm. Sci. 64, 1312, 1975. 
96. S. S. Chrai and J. R. Robinson, J. Pharm. Sci. 63, 1218, 1974. 
97. A. Urtti, L. Salminen, and O. Miinalainem, Int. J. Pharm. 23,147, 1985. 
98. G. M. Grass, J. Cobby, and M. C. Makoid, J. Pharm. Sci. 73,618, 1984. 
99. J. Cobby, M. Mayersohn, and G. C. Walker, J. Pharm. Sci.63, 725, 1974. 
100. S. S. Jambhekar and J. Cobby, J. Pharm. Sci. 74, 991, 1985. 
101. B. A. Johnson and G. Zografi, J. Pharm. Sci. 75, 529, 1986. 
102. E. M. Niazy, A. M. Molokhia, and A. S. El-Gorashi, Int. J. Pharm. 56, 181, 1989. 
103. T. Nishihata, J. H. Rytting, K. Takahashi, and K. Sakai, Pharm. Res. 5, 738, 1988. 
104. J. W. Wiechers, B. F. H. Drenth, J. H. G. Joknman, and R. A. D. Zeeuw, Pharm. Res. 4, 519, 1987. 
105. R. H. Guy and J. Hadgraft, J. Pharm. Sci. 73, 883, 1984. 
106. R. H. Guy and J. Hadgraft, J. Pharm. Sci. 74, 1016, 1985. 
107. D. Arndts and K. Arndts, Eur. Clin. Pharmacol. 26, 79, 1984. 
108. Y. W. Chien, in J. R. Robinson and V. H. L. Lee (Eds.),Controlled Drug Delivery, Marcel Dekker, 
NY, 1987. 
109. O. Siddiqui, Y. Sun, J.-C. Liu, and Y. W. Chien, J. Pharm. Sci. 76, 341, 1987. 
110. S. Del Terzo, C. R. Behl, and R. A. Nash, Pharm. Res. 6,85, 1989. 
111. R. R. Burnette and D. Marrero, J. Pharm. Sci. 75, 738, 1986. 
112. B. Kasting and J. C. Keister, J. Control. Release, 8, 195, 1989. 
113. B. Kasting, E. W. Merrit, and J. C. Keister, J. Membrane Sci. 35, 137, 1988. 
114. R. R. Burnette and T. M. Bagniefski, J. Pharm. Sci. 77, 492, 1988. 
115. R. R. Burnette and B. Ongpipattanakul, J. Pharm. Sci. 77,132, 1988. 
Recommended Readings 
Drug Delivery and Targeting 
Y. W. Chien, Novel Drug Delivery Systems, Marcel Dekker, NY, 1992. 
A. M. Hillery, A. W. Lloyd, and J. Swarbrick (Eds.), Drug Delivery and Targeting for Pharmacists and 

Pharmaceutical Scientists,CRC Press, Boca Raton, FL, 2001. 

Dr. Murtadha Alshareifi e-Library

1151



D. A. LaVan, D. M. Lynn, and R. Langer, Nat. Rev. Drug Discov.1, 77, 2002. 
B. E. Rabinow, Nat. Rev. Drug Discov. 3, 785, 2004. 
Pulmonary Drug Delivery 
J. S. Patton, P. R. Byron, Nat. Rev. Drug Discov. 6, 67, 2007. 
Nasal Drug Delivery 
L. Illum, J. Control. Release 87, 187, 2003. 
Ocular Drug Delivery 
Y. Ali and K. Lehmussaari, Adv. Drug. Deliv. Rev. 58, 1258, 2006. 
P.645 
 
 
Transdermal Drug Delivery 
M. R. Prausnitz, S. Mitragotri, and R. Langer, Nat. Rev. Drug Discov. 3, 115, 2004. 
Central Nervous System Drug Delivery 
J. Temsamani, J.-M. Scherrmann, A. R. Rees, and M. Kaczorek, Pharm. Sci. Tech. Today 3, 155, 2000. 
Gene, Antisense, and SIrna Delivery 
R. Juliano, M. R. Alam, V. Dixit, and H. Kang, Nucleic Acids Res.36, 4158, 2008. 
D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton, Nat. Rev. Drug Discov. 4, 581, 2005. 
Prodrugs 
P. Ettmayer, G. L. Amidon, B. Clement, and B. Testa, J. Med. Chem. 47, 2393, 2004. 
J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen, and J. Savolainen, Nat. Rev. 
Drug Discov. 7, 255, 2008. 
Chapter Legacy 

Fifth Edition: published as Chapter 22 (Drug Delivery Systems). New chapter by Tamara 
Minko. 
Sixth Edition: published as Chapter 23 (Drug Delivery and Targeting). Rewritten de novo by 
Yashveer Singh, Hamid Omidian, and Patrick Sinko. 

 

Dr. Murtadha Alshareifi e-Library

1152



P1: Trim: 8.375in × 10.875in

LWBK575-01-Stud-Ans LWW-Sinko-educational March 26, 2010 20:50

A N S W E R S T O P R A C T I C E P R O B L E M S
F O R S T U D E N T U S E

CHAPTER 1: INTERPRETIVE TOOLS

1–1 k = 22.4 liter atm, 2.27 × 1010 ergs, 2.27 ×103 joules,
5.43 × 102 cal.

1–2 g = 32 ft/sec; t = 5.3 sec.

1–3 k = 2.65; n = 0.42.

1–4 Ea = 20,152 cal mole−1; A = 1.13 × 1013 sec−1.

1–5 Average weight = 2.97 grains; average deviation =
0.103 grain; standard deviation = 0.13 grain.

1–6 Partial Answers, calculated using a Casio hand
calculator:
(a) r2 = 0.9843; slope = 29.46; intercept = −2272
(b) r2 = 0.9599; slope = 26.14; intercept = −1255
(c) r2 = 0.9914; slope = 24.65; intercept = −921.5

r2 = 0.9810; slope = 24.57; intercept = −839
r2 = 0.9639; slope = 27.0; intercept = −1517

1–7 r = 0.9089; r2 = 0.8262; RA = 2.472 + 0.5268
log K . For the (ethyl, ethyl) derivative, the cal-
culated activity using the least-squares equation is
2.81, which is −0.7% different from the experimen-
tal value. Incidentally, the linear relationship found
between activity and log K signifies that the more
nonpolar the barbiturate derivative (as measured by
the partition coefficient), the more active it is as a
hypnotic agent in rats. The term r2 has more signif-
icance than the correlation coefficient, r ; and r2 of
0.8262 means that 82.62% of the barbiturate data are
explained by the linear equation obtained in this prob-
lem. (This problem came from C. Hansch, Biologi-
cal Correlations—The Hansch Approach, American
Chemical Society, Washington, D.C., 1972, pp. 30,
33. The data are from H. A. Shonle, A. K. Keltch,
and E. E. Swanson, J. Am. Chem. Soc. 52, 2440,
1930. Calculated values are given by C. Hansch,
A. R. Steward, S. M. Anderson, and D. Bentley, J.
Med. Chem. 11, 1, 1968. The regression equation cal-
culated here is slightly different from the result found
in Biological Correlations because we have used only
10 of the 16 data points.)

1–8 Partial Answer:
(a) With use of a personal computer or a hand calcu-
lator capable of multiple linear-regression analysis,

the square of the correlation coefficient is found to be
r2 = 0.9811, and the equation is

log S = 1.3793 − 2.5201(V/100) − 0.1216π

+ 1.8148β (1)

1–9 Partial Answer:
The cubic equation gives the density at 25◦C as
0.9970524 g/cm3; the CRC Handbook of Chemistry
and Physics, p. F5, gives the density at 25◦C as
0.9970479 g/cm3.

1–10 r = 0.9995; b = 0.432. The use of a programmed
hand calculator or a personal computer will provide
these results. The problem may also be done by hand,
following the instructions on pages 7–16.

1–11 1 μg = 1.6 units.

so,

250 mg × 103 μg/mg × 1.6 units/μg = 400 × 103

units = 400,000 units.

1–12 20 IU/capsule × 2 × 105 capsules = 40 × 105 IU
total is needed.

40 × 105 IU × 1 mg/1.49 IU × 1 kg/106 mg = 2.68 kg.

(2)

1–13 2.25 liters × 1000 mL/1 liter × 1 fluid ounce/29.6
mL = 76.0 fluid ounces.

1–14 18 g

9 mL
= 125 g

X

X = 125 g × 9 mL

18 g
= 62.5 mL (3)

1–15 This data set has an even number of data points, so to
find the median:

Arrange the data into an array of ascending values
(245, 247, 248, 250, 250, 251, 257, 259, 260, 262).
Find the middle two values (250 and 251) and average
them (250 + 251)/2 = 250.5. This is the median.

The mean is calculated using equation (1–6). The
sum of the values is 2529. There are 10 capsules in
this set. So, 2529/10 = 252.9. The weights of the
individual tablets are reported using 3 significant fig-
ures. Even though the calculated mean (252.9) has 4
significant figures, it is common practice to report the
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answer with the number of significant figures (3) plus
the first uncertain digit (the “9” in this case).

You can calculate the standard deviation using the
formulas provided in the book (equations 1–8 or 1–9
as appropriate). However, it is much more common to
use a calculator or spreadsheet to calculate the stan-
dard deviation. So, if you are using Microsoft Excel
you would go about it in this way:

Insert the 10 capsule values in column “A” rows 1
to 10. Insert the formula for standard deviation in cell
A11 as “ = stdev(A1:A10)” (note—do not include the
quotation marks). The spreadsheet reports back the
answer as “6.045200116,” so the standard deviation
is 6.04. Trailing zeros are not considered significant
figures, so the first uncertain digit is the “4.”
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CHAPTER 2: STATES OF MATTER

2–1 219 liters.

2–2 The volume of the bubble at the bottom of the tank is
4.19 ×10−3 cm3. The radius of the bubble increases
from 0.1 cm to 0.11 cm as the bubble rises to the
surface.

2–3 161 g/mole.

2–4 (a) 64.1 g/mole; (b) the molecular weight should pro-
vide a strong clue.

2–5 (a) 47.23 psi; gauge pressure = 32.5 psig;
(b) 14.69594 lb (avoirdupois)/in.2 = 101,325 kg m−1

s−2 = 101,325 N m−2 = 101,325 Pa; (c) check with
your local service station attendant.

2–6 (a) 0.256 atm or 194.3 torr; (b) 0.254 atm or
193.3 torr.

2–7 (a) 0.0177 kg; (b) 9.84 liter; (c) 9.64 liter.

2–8 55.2 mm Hg.

2–9 From the graph, the vapor pressure, P , is 43.7 torr;
�HV = 10,282 cal/mole. Using linear regression, we
find �HV = 10,267 cal/mole and P = 43.9 mm. The
heat of vaporization, �HV, of ethyl alcohol given in
the CRC Handbook of Chemistry and Physics, 67th
Ed., is 9673.9 cal/mole.

2–10 Partial Answer: (a) Butane, −11.30◦C; propane,
−50.73◦C; (c) Water boiling point is about 89◦C at
the mountain top.

2–11 (a) p′ = 329.3 torr; (b) �HV
′ = 7112 cal/mole.

2–12 (a) �T = −0.470 K ; (b) �T = −0.468 K.

2–13 (a) Using equation (2–17), we obtain �T/�P =
−0.041 K /atm; (b) 49.4◦C. If the temperature dur-
ing processing were greater than 50◦C, form I might
change to form II.

2–14 (a) 30 g; 105 g; (b) 9.00 g; 97.65 g.

2–15 (a) There is a single liquid phase up to 31% w/w
of A present, at which point two liquids are formed
(compositions are 31% w/w A and 78% w/w A). As
more A is added, the amount of the second phase, B,
decreases while that of the first phase A increases.
When the system exceeds 78% w/w A at 25◦C the
two phases disappear and the system again becomes
one phase. (b) At 45◦C, we are above the region of
immiscibility, and hence a single phase exists for all
combinations of A and B.

2–16 (a) 30% w/w A and 70% w/w B; 80% w/w A and
20% w/w B. These are conjugate phases; (b) 40 g of
A and 10 of B g.

2–17 (a) 39◦C; (b) 15 g of B (to produce a system contain-
ing 20% w/w A and 80% w/w B); (c) 40 g of A (to
produce a system containing 90% w/w A and 10% B).
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P R A C T I C E P R O B L E M S F O R
S T U D E N T U S E

CHAPTER 2: STATES OF MATTER

2–1 A weather balloon rises 2 miles into the upper atmo-
sphere. Its volume at ground level is 2.50 liters at
1 atm pressure and 24◦C. What is its final volume if
the atmospheric pressure is 8.77 × 10−3 atm and the
temperature is −44.7◦C at the 2-mile position?

2–2 An air bubble is blown by a fish at the bottom of an
aquarium tank and it rises to the surface. As in the case
of the weather balloon in Problem 2–1, its volume
increases as the pressure on the bubble decreases. The
bubble has a radius of 0.1 cm at the bottom of the tank,
where the pressure is 1.3 atm and the temperature is
14◦C. At the surface of the tank the pressure is 750
torr and the temperature is 27◦C. What is the radius of
the bubble when it comes to the surface of the tank?
For the equation for the volume of a sphere, see the
inside front cover of the book.

2–3 If 0.50 g of a drug in the vapor state occupies 100 mL
at 120◦C and 1 atm pressure, what is its approximate
molecular weight?

2–4 The Air Protection Laboratory in a large city iso-
lated a new gaseous pollutant that was found to exert
a pressure of 1.17 atm when 6.07 g of the sub-
stance was confined in a 2.0-liter vessel at 28◦C.
(a) What is the molecular weight of the pollutant?
(b) If the pollutant is known by chemical test to be a
sulfur compound, what do you suppose the compound
might be?

2–5 An auto tire is inflated to 30 psi gauge pressure (1
atm = 14.7 pounds per square inch, and the total air
pressure is the tire gauge pressure plus 14.7 psi) on a
day when the outside temperature is 10◦C. After the
car has been running on the highway for several hours,
the temperature of the air in the tire has risen to 26◦C.
(a) What is the pressure in the tire at this time, assum-

ing that the volume of the tire does not change
appreciably with temperature?

(b) Refer to a table of conversion factors in a hand-
book of chemistry to assure yourself that 1 atm
= 14.7 lb/in.2 (actually, 14.6959 lb/in.2). Express
the value 14.7 lb/in.2 in the SI units of Pascals.

(c) Would it be wise to release some air from the
car tires after traveling for hours during August

in the Southwest? How high can the pressure in
a tire become before it is in danger of blowing
out?

2–6 An experimenter wishes to determine the partial pres-
sure of chloroform required to anesthetize a 28.0-g
mouse in a 2.37-liter container at 20◦C. If 2.00 cm3

of CHCl3 is introduced into the closed vessel through
a valve, what is the partial pressure of the CHCl3 in
the container? Assume complete evaporation of the
chloroform. Calculate the partial pressure using both
(a) the ideal gas equation and (b) the van der Waals
equation. Assuming the density of the mouse to be
about 1 g/cm3, calculate its volume in liters and sub-
tract this from the volume of the vessel to obtain the
volume available to the chloroform vapor. The density
of liquid chloroform at 20◦C is 1.484 g/cm3, so 2.00
cm3 × 1.484 g/cm3 = 2.968 g and because the molec-
ular weight of chloroform is 119.4 g/mole, 2.096 g ÷
119.4 g/mole = 0.0249 mole of chloroform in the
vessel. The van der Waals a and b values for CHCl3
are given in Table 2–3.

2–7 A small household fire extinguisher of 0.80-liter
capacity contains CO2 at a pressure of 12.3 atm and
25◦C. (a) What is the weight of the CO2 in kg in the
extinguisher? (b) What is the volume of this mass of
CO2 at 25◦C when the pressure is reduced to 1 atm?
(c) Compare your result with that obtained from the
density of gaseous CO2 at 25◦C (density = 0.001836
g/cm3). CO2 is a gas, not a liquid, at atmospheric pres-
sure. The molecular weight of CO2 is 44.01 g/mole.

2–8 The vapor pressure of water at 25◦C is 23.8 mm Hg.
The average heat of vaporization between 25◦C and
40◦C is about 10,400 cal/mole. Using the Clausius–
Clapeyron equation, calculate the vapor pressure at
40◦C. The experimentally determined value is 55.3
mm Hg.

2–9 The vapor pressure of ethyl alcohol is 23.6 torr at
10◦C, 78.8 torr (mm Hg) at 30◦C, and 135 torr at
40◦C. Using equation (2–16), plot log P versus 1/T
[ln P of equation (2–17) may be used instead of log
P and the factor 2.303 will then not be needed] and
obtain the vapor pressure of ethyl alcohol at 20◦C.
What is the heat of vaporization, �HV , at this tem-
perature?
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2–10 A group of hikers decides to climb a mountain and
heat cans of beans and some sausages when they reach
the summit, using backpacker stoves. The mountain
is 3500 meters high (11,500 ft), at which height the
atmospheric pressure is 506 mm Hg. The temperature
at this time of year is −15◦C (5◦F) at the mountain
top.

The heat of vaporization of butane and propane,
two volatile compounds used as fuel for backpacker
stoves, are 5318 and 4812 cal/mol, respectively; and
their normal boiling points (at sea level) are −0.50◦C
and −42.1◦C, respectively.

It may be noted that flammable liquids such as
butane and propane will not vaporize and ignite at
temperatures below their boiling points and cannot
serve in cooking stoves at lower temperatures.
(a) Compute the boiling point of butane and propane

at the top of the mountain. Changes in tempera-
ture with vapor pressure are dealt with using the
Clausius–Clapeyron equation.

(b) Could either the butane or the propane stove be
used at the top of this mountain?

(c) Can water be “boiled” on the mountain top to
prepare coffee for the hikers? The heat of vapor-
ization of water is 9717 cal/mole and its boiling
temperature is 100◦C at 1 atm.

2–11 Isoflurane and halothane are nonflammable volatile
liquids used for general anesthesia.
(a) What is the vapor pressure, p′, of isoflurane at

room temperature, 25◦C? The heat of vaporiza-
tion, �HV

′, of isoflurane is 6782 cal/mole at its
boiling point. The vapor pressure, p′, for isoflu-
rane at its normal boiling point, 48.5◦C, is 1 atm
according to the definition of the normal boiling
point.

(b) What is the heat of vaporization, �HV
′, of

halothane within the temperature range 20◦C to its
boiling point, 50.2◦C? The vapor pressure, p′, of
halothane at 20◦C is 243 mm Hg. These two gen-
eral anesthetics are slightly greater in vapor pres-
sure than ether (ether, p = 217 torr at 20◦C). Of
much greater importance, they are nonflammable,
whereas ether is highly flammable.

(c) What other advantages does halothane have over
ether as a general anesthetic? Consult a book on
pharmacology.

2–12 If the skate blade of a 175-lb man on ice is 12 in.
long and 1/64 in. thick and the heat of fusion of water
(ice) is 6025 J/mole, what is the melting point change
that produces liquid water under the skate allowing
the liquid to lubricate the skate? The molar volume
of liquid water (its molecular weight divided by its
density) is 0.018 liter and the molar volume of ice is
0.01963 liter.

(a) Carry out the calculations using SI units and the
integrated form of the Clausius–Clapeyron equa-
tion,

∫ T

273.15◦K

1

T
dT = �V

�Hf

∫ P2

P1

dP (1)

(b) Repeat, using the approximation

�T
�P

= T
�V
�Hf

(2)

2–13 When a solid that exists in more than one crystalline
form is subjected to the relatively high pressure of
a tablet machine it might favor transformation to a
denser polymorphic form.

Sulfathiazole can be obtained in at least two poly-
morphic forms, I and II, with I being the lower-energy
state at room temperature. The densities are 1.50
g/cm3 for form I and 1.55 g/cm3 for form II. The
transition temperature I → II is 161◦C and the heat
of transition, �Ht, is 1420 cal/mole.3

(a) What is the effect of a normal pressure of 1 atm
on the transition temperature of sulfathiazole from
form I to form II? The molecular weight is 255.32
g/mole. Use equation (2–17), substituting �Hf,
Vt, and Vs with �Ht and the molar volumes of the
two polymorphs.

(b) What is the transition temperature when form I is
compressed in the tablet machine at 2812 kg/cm2

(2757.6 bar)? Would form I be stable during the
tableting process? (1 bar = 14.5038 pounds/in.2

and 1 kg/cm2 = 14.223343 pounds/in.2)

2–14 A mixture containing 21% by weight of phenol in
water (see Figure 2–22) is prepared and allowed to
come to equilibrium at 30◦C. The two liquid phases
that separate contain 7% and 70% of phenol, respec-
tively. If the total weight of the original mixture was
135 g, calculate (a) the weight of each phase at equi-
librium and (b) the actual weight of water, in grams,
in each phase.

2–15 A and B are two partially miscible liquids. The fol-
lowing mixtures (percent by weight) all formed two
liquid phases below, and one liquid phase at the tem-
perature noted (in other words, these are temperatures
at which two-phase systems became one-phase sys-
tems).

Plot these results on rectangular coordinate paper
and describe the phase changes observed as A is con-
tinually added to B at a temperature of (a) 25◦C and
(b) 45◦C.
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Data for Problems 2–15 and 2–17

A (%w/w) B (%w/w) Temperature (◦C)

20 80 10

30 70 22

40 60 34

50 50 39

60 40 38

70 30 32

80 20 22

90 10 10

2–16 If a liquid mixture containing A (20 g) and B (30 g)
is prepared and allowed to come to equilibrium at
22◦C, (a) what are the compositions of the two phases
present and (b) what is the weight of each phase? See
Problem 2–15.

2–17 Using the table of data in Problem 2–15, plot % A
on the horizontal axis versus temperature (◦C). Ten
grams of a mixture containing equal weights of A and
B at 50◦C is cooled to 10◦C. (a) At what temperature
will a phase change be observed; (b) at 10◦C, how
much B must be added to produce a single phase;
(c) at 10◦C, how much A must be added to produce a
single-phase system? See Problem 2–15.
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P R A C T I C E P R O B L E M S F O R
S T U D E N T U S E

CHAPTER 3: THERMODYNAMICS

3–1 Why is alcohol used in thermometers for measuring
very low temperatures, whereas mercury is used for
high temperatures? Hint: Look up in a handbook of
chemistry and physics the melting points of alcohol
and mercury.

3–2 Calculate the work required to vaporize 1.73 moles of
water at 0.68 atm pressure and a temperature of 373 K.
Assume that the vapor behaves as an ideal gas. Hint:
The volume can be calculated by using the ideal gas
equation, and the work can be calculated using W =
P�V , where �V is the difference in volume between
liquid water at 373 K, that is, 18.795 cm3/mole × 1.73
mole, and its vapor at 373 K.

3–3 By the use of thermodynamic calculations, we can
relate work done and heat produced in various pro-
cesses regardless of how seemingly unrelated the
processes might be. Consider the following: A 30-
year-old man weighing 70 kg (154 lb) produces
3600 kcal of heat per 24 hr by working 8 hr as
a brick layer and bowling in the evenings. If this
heat were used to raise the temperature of 200 kg
of water (specific heat of water = 1 cal g−1 deg−1)
that was originally at 25◦C, how hot would the water
become?

3–4 An athlete resting on his back on the floor lifts an
80-lb dumbbell 2 ft above his head. From physics we
know that force = mass × acceleration of gravity, and
the force multiplied by the distance the mass is lifted
yields the work done or energy used.
(a) How much work is done when the dumbbell is

lifted 500 times?
(b) If we assume that the energy expended is obtained

totally from burning body fat, how many pounds
will the athlete lose in this exercise? Approxi-
mately 9.0 kcal of metabolic energy is obtained
per gram of fat burned.

(c) How many lifts of the 80-lb weight would be
required for the person to lose 1 lb of fat?

(d) It is agreed that exercise such as weight lifting
is excellent for toning the muscles of the body.
From your calculations, do you find that it also
contributes significantly to weight reduction as
part of a diet regimen?

3–5 At the beginning of the 19th century, Dulong and Petit
determined the heat capacity, CV , of solid elements
to be approximately 6 cal mole−1 K−1.

A bar of iron, atomic weight = 55.847 g, falls acci-
dentally from the top of a building 93-m high. Taking
the molar heat capacity, CV , of iron as approximately
6 cal mole−1 K−1, compute the increase in the temper-
ature of the bar as it falls from the top of the building
to the street. Use SI units in your calculations.

We actually desire the heat capacity per gram (i.e.,
the specific heat), or, because we are using SI units, we
want the heat capacity per kilogram. To convert from
calories/mole to calories/gram, we divide the molar
heat capacity of iron by its “molecular” or atomic
weight, 55.847 g. Thus,

Hint: Express CV in J/(kg K).

3–6 The molar heat capacity at constant pressure, C p,
varies with temperature. The changes in the heat
capacity, �C p, for a reaction at a fixed temperature
is given by the expression

�C p =
∑

(nCP )products −
∑

(nCP )reactants (1)

where � stands for “the sum of” and n is the number
of moles of the compound.

C p can be calculated at different temperatures
using the empirical equation

CP = α + βT + γ T 2 + . . . (2)

where α, β, and γ are constant coefficients. C p and
�C p are given here in cal K−1 mole−1.

Calculate C p for CO(g), H2(g), and CH3OH(g) at
25◦C and compute the change in heat capacity, �C p,
for the reaction:

CO(g) + H2(g) → CH3OH(g) (3)

Data for Problem 3–6∗

CO(g) H2(g) CH3OH(g)

α 6.342 6.947 4.398

β × 103 1.836 −0.20 24.274

γ × 106 −0.2801 0.4808 −6.855

∗Data in this chart is from S. Glasstone, Thermodynamics for Chemists,
Van Nostrand, New York, 1947, pp. 53, 503.

3–7 The heat of reaction associated with the preparation
of calcium hydroxide is represented as

CaO(s) + H2O(liq) = Ca(OH)2(s); �H25◦ = −15.6 kcal

(4)
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What is the standard heat of formation, �H ◦, of
Ca(OH)2 at 25◦C? The standard heat of formation
of water is �H ◦(H2O(liq)) = −68.3 kcal/mole and
the standard heat of formation of calcium oxide is
�H ◦(CaO(s)) = −151.9 kcal/mole.

3–8 The synthesis of methanol involves the reaction of
carbon monoxide and hydrogen gas. The reaction,
together with values at 25◦C for S0 cal deg−1 mole−1,
�H ◦

f in kcal mole−1, and �G◦
f in kcal mole−1, is

given as follows1:

CO(g) + 2H2(g) → CH3OH(g) (5)

Data for Problem 3–8

CO(g) H2(g) CH3OH(g)

S0 47.219 31.208 56.63

�H ◦
f −26.416 0 −48.10

�G◦
f −32.78 0 −38.90

(a) Calculate �H ◦ for the synthesis of methanol
under standard conditions.

(b) Calculate �G◦, using the foregoing data.
(c) From �G◦ and �H ◦, compute �S◦ at 25◦C.

Compare this value with �S◦ obtained directly
from S0 in the foregoing table.

3–9 What is the theoretical efficiency of a steam engine
operating between the boiler at 20 atm, where the
boiling point of water Thot is 209◦C (482 K), and the
low-temperature reservoir or sink, where the temper-
ature Tcold is 30◦C (303 K).2

3–10 What is the minimum work in joules that must be
done by a refrigerator to freeze 1 avoirdupois pound
(453.6 g) of water at 0◦C with the surroundings at
23◦C? How much heat is discharged into the room
at room temperature (23◦C)? The heat of fusion of
ice is 1438 cal/mole or 1438/18.016 g/mole = 79.8
cal/g (in the range of 0◦C–100◦C). Thus, 79.8 cal/g ×
453.6 g of heat must be removed from the water to
form ice [from 23◦C (296 K, T2) to 0◦C (273 K, T1)].

The principle of a refrigerator (or air conditioner)
is the opposite to that of a heat engine.2 The refrig-
erator fluid takes up heat at the low temperature of
the refrigerator and discharges it at the higher tem-
perature of the surroundings (see pages 62–63 for an
explanation of a heat engine).

Because heat is discharged in a refrigerator (or air
conditioner) rather than taken up, as in a heat engine,
the work has the opposite sign to that given in equation
(3–34):

− W
Q1

= T2 − T1

T1

−W =
(

T2 − T1

T1

)
Q1 (6)

What is the efficiency, (Thot – Tcold)/Tcold, or, as it is
called, the coefficient of performance of this refriger-
ator?

3–11 What is the entropy change involved in the fusion of
1 mole of ice at 0◦C? What is the entropy change in
the surroundings? The heat of fusion of ice is 79.67
cal/g.

3–12 At 50◦C, a certain protein denatures reversibly with
a heat of reaction of 29,288 J mole−1:

native protein −→←− denatured protein;

�H50◦ = 29,288 J mole−1

The system is at equilibrium and �G = 0. Compute
the entropy change for the reaction.

3–13 According to Hill,3 the stomach excretes HCl in the
concentration of 0.14 M from the blood, where the
concentration is 5.0 × 10−8 M. Calculate the work
done by the body in the transport (excretion) of
1 mole of HCl at a temperature of 37◦C.

3–14 For the ionization of acetic acid in aqueous solution,

CH3COOH (aq) = CH3COO−(aq) + H+(aq)

�G◦
f = −95.48 −88.99 0.00

The standard free energies of formation, G◦
f, at

25◦C are given immediately under each species in
kcal/mole. Calculate the standard free energy change,
�G◦, for this reaction; from the thermodynamic
equation giving the equilibrium constant (ionization
constant), �G◦ = −RT ln K , calculate K for acetic
acid.

3–15 Given the standard free energy of formation, �G◦,
and the standard enthalpy of formation, �H ◦, calcu-
late the standard entropy change, �S◦, and the equi-
librium constant, K , for the reaction

CO2(g) + H2O(liq) = HCO3
−(aq) + H+(aq) (7)

The values for �G◦ and �H ◦ are obtained from
tables of standard thermochemical data (Wagman
et al.4) for 1 mole at 1 atm pressure and 25◦C, where
(aq) refers to a hypothetical ideal aqueous solution.
The values of �G◦ and �H ◦ for H+(aq) are taken as
0.00.

For the various species in solution, the values of
�G◦ and �H ◦ in kcal/mole are as follows:

CO2(g) H2O(liq) HCO3
−(aq) H+(aq)

�G◦(kcal/mole) − 94.254 − 56.687 − 140.3 0.0

�H ◦(kcal/mole) − 94.051 − 68.315 − 164.8 0.0
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3–16 For one of the steps in the citric acid (Krebs) cycle,5

(a) oxaloacetate2− + H2O → pyruvate + HCO3
−

�G◦(kcal/mol) − 190.53 − 56.69 − 113.32 − 140.29

and for another step in this complex series of
chemical reactions required for energy produc-
tion in the body,

(b) oxaloacetate2− + acetate → citrate3−

�G◦(kcal/mol) − 190.53 − 88.99 − 273.90

Calculate �G◦ and K at 37◦C for these two reac-
tions.

3–17 Diluted hydriodic acid (HI) is a pharmaceutical
product containing 10% of HI and about 0.8% of
hypophosphorous acid (H3PO2) to prevent discol-
oration of the aqueous preparation in the presence
of light and air.

Hydriodic acid is prepared on a large scale by sev-
eral processes, principally by the interaction of I2 and
H2S. Diluted hydriodic acid may be made into a syrup
with dextrose and used for the therapeutic properties
of the iodides and as a vehicle for expectorant drugs.

Taylor and Crist6 investigated the reaction of
hydrogen and iodine to form hydrogen iodide at a
temperature of 457.6◦C (730.75 K),

H2 + I2 = 2 HI (8)

They obtained the following results, where K is
the equilibrium constant:

Data for Problem 3–17

K = [HI]2

[H2][I2]

H2 I2 HI
mole/liter mole/liter mole/liter

3.841 × 10−3 1.524 × 10−3 1.687 × 10−2

1.696 × 10−3 1.696 × 10−3 1.181 × 10−2

5.617 × 10−3 0.5936 × 10−3 1.270 × 10−2

(a) Calculate the equilibrium constants for the three
experiments shown and obtain the average of
these K values at 730.75 K.

(b) At 666.8 K the average equilibrium constant, Kav,
for the reaction of I2 and H2 to form hydrogen
iodide (hydriodic acid) is 60.80.7 Calculate the
enthalpy change, �H ◦, for the reaction over the
temperature range of 666.8 to 730.75 K.

(c) Does the constant K increase or decrease as the
temperature is elevated? What does this say about
an increased or decreased production of hydrogen
iodide from its elements as the temperature is ele-
vated? Do these results suggest that the reaction
would be exothermic or endothermic? What quan-
titative result do you have to answer this last ques-
tion? How does the van’t Hoff equation [equation
(3–138)] help to answer this question?

3–18 Equation (3–135) allows you to calculate the free
energy change at the three separate temperatures for
the reaction of hydrogen and iodine to yield hydro-
gen iodide. Given the experimentally determined K
values and corresponding absolute temperatures, cal-
culate the standard free energy change at these three
temperatures.

3–19 A student cannot find the heat of vaporization, the heat
of sublimation, or the heat of fusion of water in her
handbook of chemical properties, but she is able to
find a table of vapor pressures (in mm Hg) for liquid
water in equilibrium with its vapor at temperatures
from −15◦C to +20◦C and for ice in equilibrium with
its vapor from −50◦C to 0◦C.

For ice passing directly to water vapor (sublima-
tion), and for the conversion of liquid water to vapor
(vaporization), the following values are found as the
table below:

Data for Problem 3–19:
Vapor Pressures for the Sublimation and Vaporization

of Water

Ice → Vapor
(Sublimation)

Liquid Water → Vapor
(Vaporization)

Vapor Pressure Vapor Pressure
(mm Hg) t (◦C) (mm Hg) t (◦C)

0.0296 −50 1.436 −15
0.0966 −40 1.691 −13
0.2859 −30 2.149 −10
0.476 −25 2.715 −7
0.776 −20 3.163 −5
1.241 −15 3.673 −3
1.950 −10 4.579 0
3.013 −5 6.593 5
4.579 0 9.209 10

— — 12.788 15
— — 17.535 20

(a) Plot the sublimation and vaporization curves in
the form of ln(vapor pressure) versus 1/T (K−1).

(b) Using the indefinite integrated form of the
Clausius–Clapeyron equation,

ln P = −�H
R

1

T
+ constant (9)

calculate the heat of vaporization and the heat
of sublimation for water within the temperature
ranges found in Table 3–1. �H is the heat of
vaporization or the heat of sublimation. Linear
regression on the data in Table 3–X, ln(vapor
pressure) versus 1/T , yields (−�H/R) as the
slope from which �HV or �Hs is obtained. An
estimate of the slope,

ln P2 − ln P1(
1
T2

− 1
T1

) (10)
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can also be obtained from a plot of ln P versus
1/T on rectangular coordinate graph paper. Use
least-squares linear regression, or the slope of the
line obtained from a plot of the data, to calculate
�HV and �Hs.

(c) For conversion of a solid to a vapor at constant
temperature the process should be independent
of the path: solid → liquid → vapor; therefore,
�Hs = �HV + �Hf, where �Hf is the enthalpy
change involved in the fusion (melting) process.

Compute �Hf (for the transition water → ice)
from �HV and �Hs obtained in part (b).
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A N S W E R S T O P R A C T I C E P R O B L E M S
F O R S T U D E N T U S E

CHAPTER 4: DETERMINATION OF THE PHYSICAL
PROPERTIES OF MOLECULES

4–1 2.93 × 10−19 J.

4–2 797 μg per 24-hr sample. This is an unusually high
copper level in urine and indicates a pathologic con-
dition.

4–3 At 285 nm, c = 2.6 × 10−6 mole/liter; at 276 nm,
c = 2.1 × 10−6 mole/liter; and at 226 nm, c = 2.3 ×
10−7 mole/liter. The 1/4-grain sodium saccharin
tablet in a 50-mL solution provides a concentration
of 1.58 × 10−3 mole/liter, which is larger than the
minimum detectable concentrations at 285, 276, and
226 nm. Any of these three wavelengths is suitable
for the analysis.

4–4 Partial Answer: When at high concentration, the
molecule interaction interferes with the absorptivity.

4–5 Pi = 54.73 cm3/mole; αp = 2.17 × 10−23 cm3.

4–6 The average molar absorptivity is ε = 4.29 × 104

liter mole−1 cm−1.

4–7 ε = 6512 liter mole−1 cm−1.

4–8 The standard isoniazid sample of 0.80 μg/mL yields
a fluorescence emission intensity of 60.5 − 1.2, or
59.3, where 1.2 is a correction for the blank. The iso-
niazid in the serum sample produces a fluorescence
intensity of 38.4−1.2. Thus, by the method of propor-
tions, one directly obtains the isoniazid concentration,
0.50 μg/mL.

4–9 {α} 25◦
D = 131 deg.

4–10 Look up the structure of codeine and cocaine, and
consult an infrared spectrum absorption table from
an organic chemistry textbook or spectroscopy hand-
book.

4–11 25 mg of diphenhydramine hydrochloride per cap-
sule.

4–12 (a) The values in Table 4–1 yield Rm for methanol
as 8.343 cm3/mole; and with the density of methanol
as 0.7866 g/cm3 at 25◦C, equation (4–24) yields the
value Rm = 8.218; (b) As (a), the unit (cm3/mole)
should be readily attached to Rm .

4–13 From equation (4–28), the molar ellipticity, [�], is
364 deg liter mole−1 dm−1.

4–14 25 deg 45 min.

1
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P R A C T I C E P R O B L E M S F O R
S T U D E N T U S E

CHAPTER 4: DETERMINATION OF THE PHYSICAL
PROPERTIES OF MOLECULES

4–1 The wavelength for the detection of lithium by its
atomic emission spectrum is 670.8 nm. What is the
energy of the photon of radiation that corresponds to
this emission line for lithium?

4–2 A urine sample is being analyzed for trace levels
of copper by atomic emission. The following flame
emission intensities (EI) were obtained at a wave-
length of 324.8 nm for the 24-hr urine sample, which
had a total volume of 980 mL. A set of copper samples
(CS) yielded EI values as shown in the table.

Data for Problem 4–2

Copper Samples (CS) Emission Intensity (EI)

Cu standard, 0.5 μg/mL 20

Cu standard, 1.0 μg/mL 38

Cu standard, 1.5 μg/mL 61

Cu standard, 2.0 μg/mL 80

Urine sample 32

What is the concentration of copper in the 24-hr
urine sample? If the normal copper level in urine
is approximately 20 μg per 24-hr sample, does this
calculated copper concentration indicate an unusually
high pathologic condition?

Hint: Regress CS in μg/mL against EI: CS = a +
b× EI. From the equation, if the relationship is linear,
obtain the concentration in μg/mL for copper in the
urine sample having an EI of 32. This is the result per
milliliter; but the volume of the 24-hr urine sample is
980 mL. Calculate the micrograms of copper in the
urine over a 24-hr period.

4–3 The ultraviolet spectrum of saccharin has absorption
maxima in methanol at 285, 276, and 226 nm and
molar absorptivities, ε, of 775, 951, and 8570 liter
mole−1 cm−1, respectively. Assuming a minimum
absorbance level of A = 0.002, find the minimum
detectable concentration of saccharin at each of its
absorption maxima wavelengths. Which of these
wavelengths would be suitable for the analysis of the
amount of saccharin in a tablet with a label claim of
1/4 grain of sodium saccharin when the tablet is dis-
solved in 50 mL of methanol? The molecular weight

of sodium saccharin is 205.16 g/mole. Assume that
the path length of the cell is 1 cm.

4–4 The Beer’s law plot, as shown in Figure 4–10, is
a straight line relating absorbance to concentration.
Describe an experimental condition in which the
Beer’s law plot might be a curved line, with the
slope of the curve decreasing at higher concentra-
tions. From a molecular point of view, what is the
cause of deviations from ideal solution behavior at
high concentrations?

4–5 The molecular weight of diethyl ether is 74.12 g/mole
and its density is 0.7134 g/cm3 at 20◦C. What is the
induced molar polarization, Pi, of diethyl ether? See
Table 4–2 for the dielectric constant of diethyl ether.
What is the calculated induced polarizability, αp, for
diethyl ether at 20◦C?

4–6 The following table of concentrations and absorbance
values, A, was produced for solutions of nitrazepam in
0.1 N sulfuric acid. The absorbance, A, was measured
at 277.5 nm. What is the average molar absorptivity,
ε, of nitrazepam in 0.1 N sulfuric acid calculated from
the three sets of data in the table? A cell of 1-cm path
length was used for the experiment. Draw the Beer’s
law plot associated with the data given in the table.
The molecular weight of nitrazepam is 281.3 g/mole.

Data for Problem 4–6

Concentration (C)(mg/L) Absorbance (A)

0.394 0.06

0.844 0.13

1.160 0.25

4–7 A traditional convention to describe the absorbance
through a 1-cm path length containing 1 gm of solute
per 100 mL of solution was termed the E1%

1cm value.
The E1%

1cm value for the ultraviolet absorbance of
indomethacin at 318 nm is 182 per 100 mL g−1 cm−1.
What is the molar absorptivity, ε, corresponding
to this E1%

1cm value? The molecular weight of indo-
methacin is 357.81 g/mole.

4–8 A blood serum sample is being analyzed for isoniazid
by fluorescence induced with salicylaldehyde. The
following relative fluorescence emission intensities

1
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are obtained for a blank sample with no drug, a stan-
dard of 0.80 μg/mL, and the serum sample: 1.2, 60.5,
and 38.4, respectively. Assuming that the emission
intensity is proportional to the isoniazid concentra-
tion, determine the isoniazid concentration in μg/mL
in the serum.

4–9 An aqueous solution of maltose containing 15.3 g per
100 mL was observed in a polarimeter to have a rota-
tion of 20 deg at 25◦C using the sodium D line. The
polarimeter cell was 10-cm long. What is the specific
rotation, {α}D

25◦
, of maltose? Note: Cell length must

be expressed in decimeters.

4–10 A forensic scientist is attempting to identify a sam-
ple as either a codeine or cocaine salt by infrared
spectroscopy. The infrared spectrum shows no strong
bands between 1600 and 2000 cm−1, some strong
bands in the region of 1400 to 1500 cm−1, and some
broad bands in the region of 3200 to 3700 cm−1.
Based on these data, which compound is associated
with the spectrum?

4–11 The diphenhydramine hydrochloride content of a cap-
sule formulation can be determined by proton NMR
using t-butyl alcohol as an internal standard.11 The
integral, Iu , of the six N-methyl protons in the diphen-
hydramine band at 2.85 ppm is divided by the integral,
Is , of the nine methyl protons of t-butyl alcohol in the
band at 1.27 ppm using equation (4–22). If a single

capsule’s contents, ν, are assayed, using W = 25 mg
of t-butyl alcohol as the internal standard, and the
average integrals of the bands at 2.85 and 1.27 ppm
are 1200 and 7059 units, respectively, what is the
amount, C (in mg per capsule), of diphenhydramine
hydrochloride in the capsule? The formula weights
(molecular weights) for diphenhydramine hydrochlo-
ride, EWu , and t-butyl alcohol, EWs , are 291.9 and
74.1 g/mole, respectively.

4–12 (a) Calculate the molar refraction, Rm , of methanol
using Table 4–1 for the molar refraction of con-
tributing atoms and groups. Compare the result
with that obtained by using equation (4–24).
The refractive index, n, of methanol is 1.326, its
molecular weight is 32.04 g/mole, and its density
is 0.7866 g/cm3 at 25◦C.

(b) What are the units on Rm?

4–13 What is the molar ellipticity, [�], for a penicillin V
solution with a specific ellipticity, [�], of 1.04 × 105

deg mL/g dm at 230 nm? Penicillin has a molecular
weight of 350 g/mole.

4–14 The refractive index, n, for quinoline, an antimalar-
ial drug, is 1.627 at 20◦C using light from the
D-line emission of sodium. If the incident light, pass-
ing through air, is at an angle of 45 deg from the
perpendicular to the surface of the quinoline liquid,
what is the angle of its direction inside the quinoline?
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P R A C T I C E P R O B L E M S F O R
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CHAPTER 5: NONELECTROLYTES

5–1 A solution of sucrose (molecular weight 342) is pre-
pared by dissolving 0.5 g in 100 g of water. Compute
(a) the weight percent, (b) the molal concentration,
and (c) the mole fraction of sucrose and of water in
the solution.

5–2 What is the normality of a 25.0-mL solution of
hydrochloric acid that neutralizes 20.0 mL of a 0.50 N
sodium hydroxide solution?

5–3 (a) Give the number of equivalents per mole of HCl,
H3PO4, and Ba(OH)2.

(b) What is the equivalent weight of each of these
compounds?

5–4 What is the equivalent weight of anhydrous
NaAl(SO4)2 (molecular weight 242) when used for
its sodium, aluminum, and sulfate content, respec-
tively?

5–5 How many grams of Ca3(PO4)2 are required to pre-
pare 170 mL of a 0.67 N solution? The molecular
weight of Ca3(PO4)2 is 310.

5–6 The vapor pressure, pB
◦, of pure butane is 2.3966 atm

at 25◦C and that of n-pentane, pp
◦, is 0.6999 atm at

25◦C. Using Raoult’s law, calculate the partial vapor
pressure of n-butane (molecular weight 58.12) and n-
pentane (molecular weight 72.15) in a mixture of 50 g
of each of these two vapors at 25◦C in atm and in
pounds/in.2.

5–7 The vapor pressures of pure Freon 11 and pure Freon
12 at 25◦C are 15 and 85 lb/in.2, respectively. In the
preparation of a pharmaceutical aerosol these two
propellants were mixed together in the mole ratio of
0.6 to 0.4.
(a) What are the partial vapor pressures of Freon 11

and Freon 12 in a mixture having a mole ratio
of 0.6 to 0.4, assuming that the mixture follows
Raoult’s law?

(b) What is the total vapor pressure of this mixture at
25◦C?

(c) An aerosol can safely be packaged in a glass con-
tainer protected with a plastic coating as long
as the pressure does not exceed about 35 lb/in.2

(20 lb/in.2 in gauge pressure) at room temperature.
Can such a container be used for the preparation

described in this example? Can freons be used
today in pharmaceutical areosols?

5–8 (a) State Henry’s law and discuss its relationship to
Raoult’s law.

(b) How is Henry’s law used in the study of gases in
solution?

5–9* One may wonder how a fish breathes oxygen when
the oxygen is dissolved in water. It is the peculiar gill
system of a fish that allows it to take up the oxygen
into its body directly from water. The solubility of
oxygen in the air dissolved in water is calculated using
Henry’s law, pO2 = kXO2 . The partial pressure, pO2 ,
of O2 in the air at 25◦C is 0.20 atm and that of N2 is
0.80 atm. The Henry law constants at 25◦C are given
in the following table:

Data for Problem 5–9

mm Hg Per Atmospheres Per
Gas Mole Fraction of Gas Mole Fraction of Gas

O2 3.30 × 107 4.34 × 104

N2 6.51 × 107 8.57 × 104

(a) Calculate XO2 , the mole fraction of oxygen, and
XN2 , the mole fraction of nitrogen gas, in air at
25◦C.

(b) What is the total mole fraction concentration of
these two gases in water at 25◦C?

(c) In air, oxygen constitutes 20%, or one fifth, of the
total pressure (see prior comment). What frac-
tional contribution does oxygen make to the con-
centration of the two gases in water?

(d) Is the dissolved air a fish breathes in water propor-
tionately greater in oxygen than the air we land
animals breathe?

5–10 The freezing point lowering of a solution containing
1.00 g of a new drug and 100 g of water is 0.573◦C
at 25◦C.
(a) What is the molecular weight of the compound?
(b) What is the boiling point of the solution?
(c) What is the osmotic pressure of the solution?

5–11 A 105-g sample of polyethylene glycol 400 (PEG
400) was dissolved in 500 g of water, and the vapor
pressure of the solution was found to be 122.6 torr at
56.0◦C. The boiling point elevation of this solution

∗Problem 5–9 is modified from J. W. Moncrief and W. H. Jones, Elements
of Physical Chemistry, Addison-Wesley, Reading, Mass., 1977, p. 115.
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over that of pure water (100◦C at 1 atm) was deter-
mined to be 0.271◦C. The vapor pressure of pure
water, p1

◦, at 56◦C is 123.80 torr. Calculate the
molecular weight of this sample of PEG 400 using
vapor pressure lowering, boiling point elevation, and
osmotic pressure. The “400” attached to PEG means
that the molecular weight of this polymer is approx-
imately 400 g/mole. The density of water at 56◦C
is 0.985 g/cm3. Experimentally, π was obtained as
0.0138 atm.

5–12 A solution of drug is prepared by dissolving 15.0 g in
100 g of water and is subjected to ebullioscopic anal-
ysis. The boiling point elevation is 0.28◦C. Compute
the molecular weight of the drug.

5–13 A solution containing 0.2223 g of benzanthine peni-
cillin G in 1000 g of benzene has a freezing point of
0.00124◦C below that of the pure solvent (5.5◦C for
benzene). What is the molecular weight of benzan-
thine penicillin G?

5–14 (a) Compute the freezing point depression of 1 g
of methylcellulose (molecular weight 26,000 g/
mole) dissolved in 100 g of water.

(b) Using the Morse equation, compute the osmotic
pressure of this solution at 20◦C. Express the
result in cm of solution. To convert mm of mercury
to mm of solution, use mm solution = mm Hg ×
ρHg/ρsolution. The density of mercury at 20◦C is
13.5462 g/mL. Assume that the density of the
solution is 1 g/mL.

(c) Assume that you have a thermometer in which
you are able to accurately read 0.05◦C and esti-
mate the value to 0.005◦C. Can you use freezing
point depression of the methylcellulose solution
to determine the molecular weight of this poly-
mer? Can you use osmotic pressure to obtain the
molecular weight?

5–15 (a) Calculate the cryoscopic constant of benzene. The
heat of fusion, �Hf, is 2360 cal/mole, and the
melting point of benzene is 5.5◦C. Its molecular
weight is 78.11 g/mole.

(b) Calculate the ebullioscopic constant of phenol. Its
heat of vaporization is 9730 cal/mole and its boil-
ing temperature is 181.4◦C. The molecular weight
of phenol is 94.11 g/mole. Compare your results
with those found in Table 5–4.

5–16 Compute the freezing point depression of a 0.20% w/v
glucose solution. The molecular weight of glucose is
180 g/mole.

5–17 What concentration of ethylene glycol is required to
protect a car’s cooling system from freezing down

to −20◦F? Express the concentration in grams of
antifreeze per 100 g of fluid in the system. The molec-
ular weight of ethylene glycol is 62.07 g/mole.

5–18 It is winter and you are caught in your home at night in
a severe winter storm of snow and ice; the temperature
is −20◦F. Your child is sick and you must get to the
village pharmacy 10 miles away in the morning to
have your child’s prescription filled. You just brought
home a new car but you forgot to have it serviced
with antifreeze. You have a 5-lb bag of sucrose in
the house and you know that the volume of the car’s
coolant system is 9 quarts (1 quart = 0.9463 liters).
(a) How far can the temperature drop overnight in

your driveway (no garage) before the coolant sys-
tem would freeze if you added 5 lb of sugar to the
water in the radiator and were sure that it dissolved
completely? The molecular weight of sucrose is
342 g/mole, and 1 lb (avoirdupois) = 0.4536 kg.

(b) All means of transportation, including taxis,
buses, and emergency vehicles, are tied up
because of the storm. The demands on the phar-
macy, grocery, and other stores are such that they
cannot deliver. What other solutions might you
arrive at to handle this emergency, should the addi-
tion of sucrose not protect the car’s coolant sys-
tem?

5–19 What is the osmotic pressure of a solution of urea
(molecular weight 60) containing 0.30 g of the drug in
50 mL of water at 20◦C? Use the van’t Hoff equation.

5–20 If the freezing point of blood is −0.52◦C, what is its
osmotic pressure at 25◦C? What is the vapor pressure
lowering of blood at this temperature?

5–21 A new alkaloid, guayusine, was isolated from a South
American plant, Guayusa multiflora. A solution con-
taining 0.473 g of the alkaloid per 500 mL of aqueous
solution produced an osmotic pressure of 0.060 atm
(i.e., 45.6 mm of Hg or 619 mm of solution) at 25◦C.
The drug does not associate or dissociate in aqueous
solution. Calculate the approximate molecular weight
of guayusine.

5–22 A new polypeptide drug has been synthesized and its
molecular weight is estimated to be in the range of
10,000 daltons (1 dalton = 1 g/mole). Which colliga-
tive property method would be best for accurately
determining its molecular weight? The question is
answered by calculating �Tb, �Tf, �p, and π at 20◦C
for a 1% solution of the drug in water. The vapor
pressure, p1

◦, of water at 20◦C is 17.54 mm Hg. The
density of the solution is 1.015 g/mL, and the density
of mercury needed to convert mm Hg to mm solution
is 13.5462 g/mL at 20◦C.
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CHAPTER 6: ELECTROLYTE SOLUTIONS

6–1 400 mho cm2/Eq.

6–2 (a) The equation of the line is �c = 126.45 −
43.70

√
c; r2 = 0.9999. The intercept is �0 =

126.45 ohm−1 cm2/Eq.
(b) From the definition of transference number and

the Kohlrausch law, equation (6–23), we can use
the transference numbers to calculate the ionic
equivalent conductances, lc◦ and la◦, where lc◦ =
�0tc+◦, la◦ = �0ta−◦; and �0 = la◦ + lc◦; ta−◦ =
0.604.

In the literature we find la◦ = 76.34 and lc◦ = 50.07
mho cm2/Eq.

6–3 i = 1.11 (a dimensionless number).

6–4 145 lb (66 kg). Some ice will sublime and pass directly
from the solid into the vapor state. This and other
factors such as heating by the sun will render the
answer given here a rough approximation. However,
the calculation will give the city winter emergency
crews an estimate of the amount of CaCl2 needed for
clearing sidewalks and streets. (Note: Some cities no
longer use “salt” on streets and sidewalks because of
its pollution problems.)

6–5 Partial Answer: (b) Concentration of NaCl solution
= 4.9 m or 286 g salt/kg water; (c) Check with a good
cook about the saltiness of the food in this concentra-
tion of salt solution.

6–6 0.00276, or 0.28%.

6–7 (a) a = 0.949; (b) a = 0.925; (c) a = 0.930; (d) a =
0.805.

6–8 (a) The vapor pressure is lowered from 23.8 torr to
20.91 torr, or �p1 = 2.89 torr; (b) a1 = 0.879; γ1 =
0.915 (you will need to calculate X1, the mole fraction

of water, to obtain this activity coefficient, 0.915, for
water).

6–9 a1 = 0.990; γ1 = 1.000. Thus, in a 100-g/kg H2O
solution of glucose (fairly concentrated, 0.56 m), both
the activity and the activity coefficient of water may
be taken as approximately equal to 1.0. This is not so
for a solution of an electrolyte, as seen in Problems
6–8.

6–10 γ± = 0.85.

6–11 γ± = 0.75.

6–12 (a) 0.01 M CaCl2; (b) From equation (6–58), γ± =
0.494 and a± = 0.0157. From equation (6–60), γ± =
0.582 and a± = 0.0185. The results from the two
equations are different. The ionic strength of the solu-
tion is 0.02 M, so equation (6–60) is required.

6–13 μ = 0.205.

6–14 0.90.

6–15 μ = 0.16.

6–16 (a) i = 1.69; (b) g = 0.85; (c) L = 3.16.

6–17 i = 1.02; �Tf = 0.11◦; α = 0.02, or 2% dissociated.

6–18 214.8 mOsm/(liter solution).

6–19 (a) Partial Answer: X1 1.0 0.878 0.575
a1 1.0 0.870 0.504
γ1 1.0 0.991 0.877

This tabular answer states that when X1 = 1.0, a1 =
1.0 and γ1 = 1.0, and so on. (b) Partial Answer: the
plot indicate the intra molecular forces between ace-
tone and chloroform is greater than that in an ideal
solution.
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CHAPTER 6: ELECTROLYTE SOLUTIONS

6–1 The equivalent conductance, �0, of the sodium salt
of a sulfonamide at infinite dilution was found by
experiment to be 100.3 mho cm2/Eq. The �0 for HCl
is 426.16; for NaCl, it is 126.45. What is �0 for the
free acid (the free sulfonamide)?

6–2 The equivalent conductances, �c (mho cm2/Eq), of
NaCl at several molar concentrations, c, are

Data for Problem 6–2

c 0.09 0.04 0.01

�c 113.34 117.70 122.08

(a) Plot �c against
√

c as in Figure 6–4. Compute �0

and the equation of the line (use least squares).
(b) The transference number, tc, of Na+ at infinite

dilution is 0.396. Compute the ionic equivalent
conductance of Na+, Cl−, and the transference
number of Cl− at infinite dilution.

6–3 A 1.0 m solution of sucrose had an observed osmotic
pressure of 24.8 atm at 0◦C. Calculate the van’t Hoff
i factor for sucrose at this concentration.

6–4* Calcium chloride may be used to melt the ice from
sidewalks. How many pounds (avoirdupois) of CaCl2
is required to melt a layer of ice 0.5 in. thick on a
sidewalk 50 ft long and 4 ft wide if the temperature of
ice is 10◦F? The molecular weight of CaCl2 is 110.99
g/mole. The density of the ice at 10◦F is 0.9973 g/mL,
and the degree of ionization, α, of CaCl2 is 0.8.

6–5 Some cooks add salt to a kettle of water in which
they are boiling peeled corn or unpeeled potatoes.
In addition to improving the flavor, this practice is
reputed to cook and soften the food better.
(a) Is there any scientific justification for this?

Explain.
(b) What is the concentration of NaCl in grams of salt

per kilogram of water needed to obtain a signifi-
cant rise in the boiling point, say 5◦C?

(c) Would this concentration of NaCl render the food
too salty to the taste?

∗Problems 6–4 and 6–8 are modified from J. W. Moncrief and W. H. Jones,
Elements of Physical Chemistry, Addison-Wesley, Reading, Mass., 1977,
pp. 146 and 124, respectively.

6–6 The equivalent conductance of a sulfonamide at 0.01
M concentration was found by experiment to be 1.104.
The equivalent conductance of the drug at infinite
dilution is 400.0. What is the degree of dissociation
of the weak electrolyte at this concentration?

6–7 (a) The vapor pressure of water over an aqueous solu-
tion of a drug is 721 mm Hg at 100◦C. (a) What
is the activity of water in this solution?

(b) Methanol has a boiling point of 64.7◦C. The vapor
pressure of methanol in a methanolic solution of
a sulfonamide is 703 mm Hg. What is the activity
of methanol in this solution at 64.7◦C?

(c) Chlorine has a vapor pressure of 10.0 atm at
35.6◦C. In a mixture of chlorine and carbon tetra-
chloride the vapor pressure of chlorine is 9.30 atm
at 35.6◦C. What is the activity of chlorine in the
mixture?

(d) Formic acid has a vapor pressure of 40.0 mm Hg
at 24◦C. In a mixture of formic acid and acetic
acid, formic acid has a vapor pressure of 32.2 mm
at 24◦C. What is the activity of formic acid in the
mixture?

6–8* The vapor pressure, p1
◦, of water at 25◦C is 23.8 torr.

(a) Compute the lowering of the vapor pressure of
water when 25 g of CaCl2 is added to 100 g of
water. The molecular weight of CaCl2 is 110.99
g/mole.

(b) Compute the activity and the activity coefficient
of water in the solution.

6–9 The vapor pressure of pure water (23.8 torr) at 25◦C is
lowered when 100 g of the nonelectrolyte glucose is
added to 1000 g of the water. The molecular weight of
glucose is 180.16 g/mole. What are the activity and
the activity coefficient of water at this temperature
and concentration of glucose?

6–10 Compute the mean ionic activity coefficient of a 0.01
M aqueous solution of diphenylhydantoin sodium
containing 0.01 M KCl at 25◦C. Use the limiting
Debye–Hückel equation.

6–11 Using the extended Debye–Hückel equation, com-
pute the mean ionic activity coefficient of a 0.05
M solution of epinephrine hydrochloride containing
0.05 M potassium chloride.
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6–12 (a) What amount of CaCl2 (in moles/liter) should be
added to a 0.02 M solution of neomycin sulfate to
produce an ionic strength of 0.09?

(b) Calculate the mean ionic activity and the mean
ionic activity coefficient for the 0.02 M solution
of neomycin sulfate at an ionic strength of 0.09
and a temperature of 25◦C. Use both equations (6–
58) and (6–60) (pages 140 and 141) and compare
the results.

6–13 A solution contains 0.003 M of sodium phenobarbital
together with a buffer consisting of 0.20 M sodium
acetate and 0.30 M acetic acid. Acetic acid is a weak
electrolyte; its degree, or fraction, of dissociation, α,

at this concentration is 0.008 and the undissociated
species do not contribute to the ionic strength. What
is the ionic strength of the solution?

6–14 A solution contains 0.05 M AlCl3 and 0.2 M
Na2HPO4. What is the ionic strength of this solution?

6–15 Ringer’s solution USP has been designed to have
approximately the same ionic strength as that of nor-
mal blood. Calculate the ionic strength of blood from
the concentration of the constituents of Ringer’s solu-
tion.

6–16 The freezing point depression of a solution contain-
ing 4 g of methapyrilene hydrochloride in 100 mL
of solution was 0.423◦. Methapyrilene hydrochlo-
ride dissociates into two ions and has a molecular
weight of 297.85. Calculate (a) the van’t Hoff factor, i,
(b) the osmotic coefficient, g, and (c) the L value for
the drug at this concentration.

6–17 The L iso value of an aqueous solution of ascorbic
acid is 1.90 and its osmotic pressure at 37◦C is
π = 1182 mm Hg. Compute i, �Tf, and the degree
of dissociation, α.

6–18 A 0.120 m solution of potassium bromide has a mil-
liosmolality of 1.86 × 120 mm = 223 mOsm/kg (see
Example 6–16, page 144). The density of water at
25◦C is 0.997 g/cm3, and the partial molar volume of
KBr is v̄2

◦ = 33.97 cm3/mole. Calculate the millios-
molarity, mOsm/(liter solution), of this KBr solution
using equation (6–66).

6–19 Partial pressures (in mm Hg), pl, of acetone at various
mole fractions, X1, are given in the following table
for a mixture of acetone and chloroform:

Data for Problem 6–19

X1 1.000 0.950 0.925 0.878 0.710 0.575

pl(mm) 344.5 327.5∗ 317.0∗ 299.7 230.7 173.7
∗These points have been added to the data.
Source: Data from J. von Zawidzki as reported by I. M. Klotz and R. M.
Rosenberg, Chemical Thermodynamics, W. A. Benjamin, Menlo Park, Cal.,
1972, pp. 355, 356. Some points are omitted and two points have been added
near X1 = 1.000.

(a) Compute the activity and activity coefficient for
acetone at various X1 values in these solutions.

(b) Plot both the experimental p1 values and the
Raoult’s law pressures versus X1. Discuss the
deviations from Raoult’s law and its implica-
tions regarding possible intermolecular interac-
tion between chloroform and acetone.
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CHAPTER 7: IONIC EQUILIBRIA

7–1 (a) [H3O+] = 2.88 × 10−3; (b) pH = 3.10; (c) [OH−]
= 5.62 × 10−6, [H3O+] = 1.78 × 10−9; (d) pH =
2.42, pOH = 11.58; (e) pH = 11.96; (f) pH = 2.32;
(g) pH = 7.07; (h) pH = 7.08; (i) pH = 4.81; (j) pH =
8.53, [H3O+] = 2.95 × 10−9; (k) pH = 7.18, [OH−] =
1.51 × 10−7; (l) pH = 6.89, pOH = 7.11; (m) pH =
2.49.

7–2 pH = 6.84, pOH = 7.16.

7–3 (a) 23%; (b) 28%.

7–4 (a) pH = 5.14; (b) [OH−] = 1.38 × 10−9.

7–5 pH = 4.70.

7–6 pH = 10.92.

7–7 pH = 2.58.

7–8 pH = 9.94.

7–9 pH = 2.36.

7–10 (a) [H3O+] = [OH−] + [NH3]; (b) [H3O+] +
2[H3PO4] + [H2PO −

4 ] = [OH−] + [NH3] + [PO 3−
4 ].

7–11 pH = 4.3.

7–12 pH = 4.06.

7–13 (a) pH = 9.24; (b) pH = 7.06.

7–14 pH = 10.72.

7–15 pH = 5.20.

7–16 pH = 10.09.

7–17 pKb = 4.68.

7–18 0.0087, or 0.87%.

7–19 (a) pH = 7.84; (b) pH = 7.68.

7–20 Partial Answer: (b) The equation obtained using the
nine oximes from the work of Kurtz and D’Silva is

pKa = 29.92 − 1.71 δOH; r2 = 0.967, n = 9 (1)

(n stands for the number of compounds involved in
the regression as independent variables)
(c) The pKa of acetophenone oxime calculated from
the equation under part (b) is 10.85. The literature
value is 11.41.

7–21 pKa

Compound Calculated Literature

Benzaldehyde oxime 10.81 10.78

2,3-Butanedione
monooxime

9.13 9.34

Phenol 9.88 9.97

2-Nitrophenol 7.42 7.14
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CHAPTER 7: IONIC EQUILIBRIA

7–1 Practice calculations involving pH, pOH, and ionic
concentration in aqueous solutions.
(a) Convert pH = 2.54 to hydrogen ion concentration,

[H+].
(b) What is the pH of a 7.93 × 10−4 molar solution

of a strong acid?
(c) If the pH of a solution of a strong base is 8.75,

what is its hydroxyl ion concentration? What is
its hydrogen ion concentration?

(d) What is the pH of a 0.00379 M solution of HNO3?
What is its pOH?

(e) Convert the hydroxyl ion concentration 0.00915
M to pH.

(f) Calculate the pH of a 2.37 × 10−3 M solution of
sulfuric acid. H2SO4 dissociates completely as a
strong electrolyte in a dilute solution, as found in
the present problem.

(g) A 0.017 M solution of HCl is mixed with a 0.017
M solution of NaOH. What is the pH of the final
mixture?

(h) What is the pH of a 0.034 M solution of NaCl?
(i) The solubility of phenobarbital in water at 25◦C

is 0.14% (w/v). What is the pH of the saturated
solution?

(j) If 15 mL of 0.02 M NaOH is added to 15 mL of
0.02 M acetic acid, what is the pH of the solution?
Convert the pH to hydrogen ion concentration.

(k) The pOH of a drug solution is 6.82; what is the
pH of the solution? What is the hydroxyl ion con-
centration if the solution is a strong base?

(l) What are the pH and pOH of a 5 × 10−8 M solu-
tion of HCl at 25◦C?

(m) Calculate the pH of a 0.06 M solution of formic
acid.

7–2 If 100 mL of 0.005 M sulfathiazole is mixed with
57 mL of 0.003 M sodium hydroxide, what is the
pH of the mixture? What is the pOH of the solution?
Sulfathiazole reacts in part with NaOH to give sodium
sulfathiazole. Hint: Use the Henderson–Hasselbalch
equation. The pKa of sulfathiazole is 7.12.

7–3 (a) What is the mole percent of free phenobarbital in
solution at pH 8.00?

(b) What is the mole percent of free cocaine in solu-
tion at pH 8.00?

7–4 (a) What is the pH of a 5 g per 100 mL solution of
phenol?

(b) What is the hydroxyl ion concentration of the
solution?

7–5 Calculate the pH of a 1% (w/v) solution of mor-
phine sulfate. The molecular weight of this salt is
668.76.

7–6 What is the pH of a 1:200 aqueous solution of
ephedrine at 25◦?

7–7 Calculate the pH of a 0.01 M solution of tartaric acid.

7–8 Calculate the pH of a 0.01 M solution of physostig-
mine at 25◦C.

7–9 Calculate the pH of a solution containing 0.1 M acetic
acid and 0.1 M formic acid.

7–10 (a) What is the PBE for a solution of ammonium chlo-
ride?

(b) What is the PBE for a solution containing
equimolecular amounts of Na2HPO4 and ammo-
nium chloride?

7–11 The sulfonamides can exist in the form of an
ampholyte +NH3C6H4SO2NR− in aqueous solution.
The two acidity constants of sulfadiazine are pK1 =
2.1 and pK2 = 6.5. Calculate the isoionic point for
this drug.

7–12 What is the pH of a solution containing acetic acid
0.1 M and sodium acetate 0.02 M?

7–13 (a) Calculate the pH of a 0.1 M solution of ammonium
borate.

(b) Calculate the pH of a 0.1 M solution of ammonium
propionate.

7–14 What is the pH of a 0.01 M solution of (NH4)3PO4?

7–15 What is the pH of a solution containing equimolar
amounts of succinic acid and tribasic sodium citrate?

7–16 What is the pH of a sulfadiazine sodium solution con-
taining 0.5 mole of drug in 1000 mL of solution?
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7–17 The pH of a 1:500 aqueous solution of ephedrine was
determined with a pH meter and was found to be
10.70. Calculate the pKb for ephedrine.

7–18 Calculate α, the degree of dissociation of 0.01 M
physostigmine, disregarding the secondary ioniza-
tion. α is the concentration of the ionized form,
[physostigmine+] = [OH−]/Cb, where Cb is the con-
centration of the compound.

7–19 The weak acid corresponding to the salt benzylpeni-
cillin sodium, molecular weight 356.38, has a pKa

of 2.76, and the drug is dissolved in isotonic sodium
chloride solution (0.9 g NaCl per 100 mL) to make a
3% w/v solution of the antibiotic.
(a) What is the pH of this solution, disregarding activ-

ity coefficients?
(b) What is the result using ionic activity coefficients?

(Use the Debye–Hückel equation.)

7–20 In a study of insecticidal oximes (R2C NOH) Kurtz
and D’Silva (A.P. Kurtz and T.D.J. D’Silva, J. Pharm.
Sci 76, 599, 1987.) postulated a relationship between
the pKa value of an oxime and its proton chemi-
cal shift, δOH (see pages 99 and 100 for a descrip-
tion of chemical shift). To learn whether pKa values
could be obtained from NMR data, the authors deter-
mined chemical shifts of the hydroxyl proton, δOH, of
selected oximes with known pKa values. pKa and δOH

values are listed in the table that accompanies this
problem.
(a) Plot pKa on the vertical axis versus the experi-

mentally determined δOH values on the horizontal
axis.

Data for Problem 7–20

Known pK a and Experimental δOH Values

Compound δOH pK a

2-Propanone oxime 10.12 12.42

2-Butanone oxime 10.14 12.45

3-Pentanone oxime 10.18 12.60

Acetophenone oxime 11.15 11.41

Benzaldehyde oxime 11.19 10.78

4-Nitrobenzaldehyde oxime 11.84 9.88

2,3-Butanedione monooxime 12.27 9.34

3-Oximinopentane-2,4-dione 12.92 7.38

2-Oximino-1,3-dithiolane 11.15 10.70

(b) Use least-squares linear regression analysis,
regressing pKa versus δOH, to obtain an equation
relating these two variables. How well do the coef-

ficients of your equation correspond to those of
Kurtz and D’Silva?

(c) Use your equation of the least-squares regression
line to calculate the pKa from δOH = 11.15 for
acetophenone oxime. Compare your calculated
pKa with the literature value, pKa = 11.41, for
acetophenone oxime.

7–21 Kurtz and D’Silva (A.P. Kurtz and T.D.J. D’Silva,
J. Pharm. Sci 76, 599, 1987.) used NMR chemical
shift data to obtain the pKa of a number of oximes, as
described in Problem 7–20. Furthermore, these work-
ers observed that the sensitivity of phenol pKa values
was similar to that of oxime pKa values for changes
in proton chemical shift, δOH. That is, the slope of
the plot of pKa versus δOH for oximes was nearly the
same as that for phenols. Thus, it should be possible
to use a single equation to express the pKa versus δOH

values for both oximes and phenols. To test this pos-
sibility, the authors used 20 oxime pKa values and 51
phenol pKa values and regressed these against mea-
sured δOH values. Kurtz and D’Silva added an indi-
cator variable∗ to account for the difference in these
two classes of chemicals. The indicator variable, I , is
taken as equal to unity for each phenol in the equa-
tion and as zero for each compound that is an oxime,
giving the expression

pKa = a + b(δOH) + c(I ) (1)

The 20 pKa and δOH values for the oximes and the
51 pKa and δOH values for the phenols are entered
into a computer program designed to handle linear
regression with indicator variables. As the oxime and
phenol data are entered, I is given a value of 0 for
each oxime and a value of 1 for each phenol. The
computer-generated results (N. H. Nie, C. H. Hall,
J. G. Jenkins, K. Steinbrenner, and D. H. Bent, SPSS:
Statistical Package for the Social Sciences, 2nd Ed.,
McGraw-Hill, New York, 1975, pp. 373–375) provide
values for a, b, and c in the foregoing equation.

In essence, the indicator variable produces differ-
ent intercepts and thus divides the results into two
separate lines having the same slope. The lines in this
case represent the two classes of compounds, oximes
and phenols; and the single equation relating pKa and
δOH for these two classes is, according to Kurtz and
D’Silva,

pKa = 28.15 − 1.55 δOH − 3.96I, r2 = 0.97 (2)

*Indicator variables, also called dummy variables, are described in N. H. Nie,
C. H. Hill, J. G. Jenkinsu, K. Steinbrenner, and D. H. Bent, SPSS: Statistical
Package for the Social Sciences, 2nd Ed., McGraw-Hill, New York, 1975,
p. 373.
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Plot the two lines on a graph of pKa against δOH.
Locate the points for benzaldehyde oxime and 2–3
butanedione monooxime on the one line and phenol
and 2-nitrophenol on the other line. Use the observed
(measured) δOH values for these four compounds:

Data for Problem 7–21

Compound Measured δOH

Benzaldehyde oxime 11.19

2,3-Butanedione monooxime 12.27

Phenol 9.23∗

2-Nitrophenol 10.82∗

∗From G. Socrates, Trans. Faraday Soc. 66, 1052, 1966.

and the foregoing equation to calculate the pKa

values.
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CHAPTER 8: BUFFERED AND ISOTONIC
SOLUTIONS

8–1 The acid:salt ratio is 1:0.36.

8–2 pH = 10.36.

8–3 (a) pH = 7.03; (b) pH = 6.46.

8–4 (a) pH = 2.40; (b) a 25.1:1 ratio of sodium ascorbate
to ascorbic acid, or 96.2 mole % sodium ascorbate
and 3.8% of ascorbic acid.

8–5 pK1 = 6.13.

8–6 βmax = 0.115 and it occurs at pH 3.98.

8–7 β = 0.15.

8–8 One Possible Answer:

Na2HPO4 (salt) = 0.052 M
NaH2PO4 (acid) = 0.265 M (1)

8–9 Partial Answer: β at pH 7.0 is 0.0048; β at pH 8.2
is 0.064; β at pH 9.24 is 0.21; β at pH 10.8 is 0.021,
βmax is found at pH 9.24, where pH = pKa; βmax =
0.576C = 0.21.

8–10 (a) pH disregarding ionic strength is 7.87; (b) includ-
ing ionic strength, pH = 7.79.

8–11 β = 0.0069.

8–12 βmax = 0.015 at pH 6.1 (see pages 218–219).

8–13 A mixture of 0.044 Na2HPO4 and 0.0105 NaH2PO4

has a buffer capacity of 0.03 and provides a pH of 7.4.
The ionic strength of this mixture is 0.14. The ionic
strength may be raised to 0.16 by the addition of 0.02
M NaCl or KCl.

8–14 pH = 8.34.

8–15 3.83 grains = 248 mg.

8–16 V ÷ 6.7 mL, E ÷ 0.20, �Tf = 0.12.

8–17 Partial Answer: From the Sprowls valve you can
calculate the concentration of the isotonic solution,
which is lower than 25%.

8–18 Check your results against Table 8–4.

8–19 (a) E = 0.84, 0.60, 1.31, and 0.25; (b) �T 1%
f =

0.49◦C, 0.35◦C, 0.76◦C, and 0.15◦C.

8–20 (a) Add 7.2 g of NaCl; (b) add 0.14 g of boric acid.

8–21 Dissolve the drugs in 66.44 mL of water. This solution
is isotonic. Add 0.3 g of NaCl and bring to a volume
of 100 mL.
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CHAPTER 8: BUFFERED AND ISOTONIC
SOLUTIONS

8–1 One desires to adjust a solution to pH 8.8 by the use of
a boric acid–sodium borate buffer. What approximate
ratio of acid and salt is required?

8–2 What is the pH of a solution containing 0.1 mole of
ephedrine and 0.01 mole of ephedrine hydrochloride
per liter of solution?

8–3 (a) What is the pH of a buffer consisting of 0.12 M
NaH2PO4 and 0.08 M Na2HPO4, the former act-
ing as the acid and the latter as the salt or conju-
gate base (see E. J. Cohen, F. F. Heyroth, and M.
F. Menkin, J. Am Chem. Soc. 49, 173, 1927; 50,
696, 1928).

(b) What is the value when the ionic strength cor-
rections are made using the Debye–Hückel law?
Hint: Use equation (8–15). The value for n in
the terms pKn and (2n – 1) is 2 in this prob-
lem because the second stage of ionization of
phosphoric acid is involved. Thus, the equation
becomes

pH = 7.21 + log
[Na2HPO4]

[NaH2PO4]
− 0.51 × 3

√
μ

1 + √
μ

(1)

8–4 Ascorbic acid (molecular weight 176.12) is too acidic
to administer by the parenteral route. The acidity
of ascorbic acid is partially neutralized by adding a
basic compound, usually sodium carbonate or sodium
bicarbonate. Thus, the injectable product contains
sodium ascorbate, ascorbic acid, and the neutralizing
agent.
(a) What is the pH of an injectable solution containing

only ascorbic acid in the concentration of 55 g per
liter of solution? K1 = 5 × 10−5 and K2 = 1.6 ×
10−12.

(b) What is the molar ratio of sodium ascorbate to
ascorbic acid, and the percentage of each com-
pound required to prepare an injectable solution
with a pH of 5.7?

8–5 The thermodynamic dissociation exponent, pK1, for
carbonic acid at 30◦C is 6.33. According to Van Slyke
et al.,1 the ionic strength of the blood is roughly 0.16.
Compute the apparent dissociation exponent, pK1, to

be used for the carbonic acid of blood at 30◦C. Notice
that the pH or −log a+

H is given by the expression

pH = pK ′
1 + log

[HCO3
−]

[H2CO3]

= pK1 + log
[HCO3

−]

[H2CO3]
+ log γHCO3

− (2)

Therefore,

pK ′
1 = pK1 + log γ(HCO3

−)
∼= pK1 − 0.5

√
γ (3)

8–6 Plot the buffer capacity–pH curve for a barbituric
acid–sodium barbiturate buffer of total concentration
0.2 M over the range of pH 1 to 7. What is the maxi-
mum buffer capacity and at what pH does βmax occur?

8–7 What is the buffer capacity of a solution containing
0.20 M acetic acid and 0.10 M sodium acetate?

8–8 Your product research director asks you to prepare a
buffer solution of pH 6.5 having a buffer capacity of
0.10. Choose a suitable combination of buffer species
and compute the concentrations needed.

8–9 What is the buffer capacity of a solution containing
0.36 M boric acid at a pH of 7.0? What is the buffer
capacity at pH 9.24, that is, where is pH = pKa? At
what pH is β a maximum and what is the value of
βmax? What is the buffer capacity at pH 10.8? Using
the calculated values of β, plot the buffer capacity
versus pH. If the student wishes to smooth the buffer
curve a little better, he or she may also calculate β at
pH 8.20 and at 10.0. When these six points are plotted
on the graph and a smooth line is drawn through them,
a bell-shaped buffer curve is obtained. See Figure 8–4
for the shapes of several buffer curves.

8–10 A borate buffer contains 2.5 g of sodium chloride
(molecular weight 58.5 g/mole); 2.8 g of sodium
borate decahydrate (molecular weight 381.43); 10.5 g
of boric acid (molecular weight 61.84); and sufficient
water to make 1000 mL of solution. Compute the pH
of the solution (a) disregarding the ionic strength, and
(b) taking into account the ionic strength.

8–11 Calculate the buffer capacity of an aqueous solution of
the strong base sodium hydroxide having a hydroxyl
ion concentration of 3.0 × 10−3 M .

1
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8–12 Assuming that the total bicarbonate buffer concentra-
tion in normal blood is about 0.026 mole/liter, what
would be the maximum buffer capacity of this buffer
and at what pH would βmax occur?

8–13 Describe in detail how you would formulate a buffer
having approximately the same pH, ionic strength,
and buffer capacity as that of blood. The ionic strength
of the blood plasma is about 0.16 and the buffer capac-
ity in the physiologic pH range is approximately 0.03.
Use the Na2HPO4/NaH2PO4 buffer and pK2 of phos-
phoric acid. Activity coefficients must be considered,
and the thermodynamic pK2 of phosphoric acid must
be used to obtain the answer.

8–14 Plot the pH titration curve for the neutralization of
0.1 N barbituric acid by 0.1 N NaOH. What is the
pH of the solution at the equivalence point?

8–15 A 1–fluid ounce (29.573 mL) solution contains 4.5
grains (291.60 mg) of silver nitrate. How much
sodium nitrate must be added to this solution to make
it isotonic with nasal fluid? Assume that nasal fluid
has an isotonicity value of 0.9% NaCl.

8–16 Compute the Sprowls V value, the E value, and the
freezing point depression of a 1% solution of diphen-
hydramine hydrochloride.

8–17 A 25% solution of phenylpropanolamine hydrochlo-
ride is prepared. The physician desires that 0.25 fluid
ounce (7.393 mL) of this solution be made isotonic
and adjusted to a pH of 6.8. The Sprowls V value
is 12.7. Discuss the difficulties that are encountered
in filling the physician’s request. How might these
difficulties be overcome?

8–18 Compute the freezing point depression of 1% solu-
tions of the following drugs: (a) ascorbic acid, (b) cal-
cium chloride, (c) ephedrine sulfate, and (d) metha-
choline chloride. The percentages of sodium chloride
required to make 100 mL of 1% solutions of these
drugs isotonic are 0.81%, 0.48%, 0.76%, and 0.67%,
respectively. Hint: Refer to Example 8–11.

8–19 (a) Compute the approximate sodium chloride equiv-
alent of MgO (molecular weight = 40.3 g/mole),

ZnCl2 (molecular weight = 136.3 g/mole),
Al(OH)3 (molecular weight = 77.98 g/mole), and
isoniazid (a tuberculostatic drug, weak elec-
trolyte, molecular weight = 137.2 g/mole), using
the average L iso values given in Table 8–3.

(b) From the E value you calculated in part (a), com-
pute the freezing point depression of a 1% solution
of these drugs.

(c) Can one actually obtain a 1% aqueous solution of
MgO or Al(OH)3?

8–20 Using the sodium chloride equivalent method, make
the following solutions isotonic with respect to the
mucous lining of the eye (ocular membrane).
(a) Tetracaine hydrochloride: 10 g

NaCl: x g
Sterile distilled water, enough to make 1000 mL

(b) Tetracaine hydrochloride: 0.10 g
Boric acid: x g
Sterile distilled water, enough to make 10 mL

8–21 Make the following solution isotonic with respect to
blood:

Chlorpromazine hydrochloride 2.5 g

Ascorbic acid 0.2 g

Sodium bisulfite 0.1 g

Sodium sulfate, anhydrous 0.1 g

Sterile distilled water, enough to make 100 mL

Hint: First, compute the E values of chlorpro-
mazine HCl and sodium sulfate, not given in Table
8–4, from the approximate L iso values given in
Table 8–3. The molecular weight of chlorpromazine
hydrochloride is 318.9 daltons∗ and the molecular
weight of sodium sulfate is 142.06 daltons.

Reference

1. D. D. Van Slyke, A. B. Hastings, C. D. Murray, and J. Sendtoy, J. Biol.
Chem. 65, 701, 1975.

∗The word dalton is used in connection with molecular weight: 1 dalton =
1 g/mole.
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TABLE 8–4

ISOTONIC VALUES

Substance MW E V �T 1%
f

Liso

Alcohol, dehydrated 46.07 0.70 23.3 0.41 1.9
Aminophylline 456.46 0.17 5.7 0.10 4.6
Ammonium chloride 53.50 1.08 36 0.64 3.4
Amphetamine sulfate (benzedrine sulfate) 368.49 0.22 7.3 0.13 4.8
Antipyrine 188.22 0.17 5.7 0.10 1.9
Antistine hydrochloride (antazoline hydrochloride) 301.81 0.18 6.0 0.11 3.2
Apomorphine hydrochloride 312.79 0.14 4.7 0.08 2.6
Ascorbic acid 176.12 0.18 6.0 0.11 1.9
Atropine sulfate 694.82 0.13 4.3 0.07 5.3
Aureomycin hydrochloride 544 0.11 3.7 0.06 3.5
Barbital sodium 206.18 0.29 10.0 0.29 3.5
Benadryl hydrochloride (diphenhydramine hydrochloride) 291.81 0.20 6.6 0.34 3.4
Boric acid 61.84 0.50 16.7 0.29 1.8
Butacaine sulfate (butyn sulfate) 710.95 0.20 6.7 0.12 8.4
Caffeine 194.19 0.08 2.7 0.05 0.9
Caffeine and sodium benzoate — 0.25 8.7 0.28 —
Calcium chloride 2H2O 147.03 0.51 17.0 0.30 4.4
Calcium gluconate 448.39 0.16 5.3 0.09 4.2
Calcium lactate 308.30 0.23 7.7 0.14 4.2
Camphor 152.23 0.20 6.7 0.12 1.8
Chloramphenicol (chloromycetin) 323.14 0.10 3.3 0.06 1.9
Chlorobutanol (chloretone) 177.47 0.24 8.0 0.14 2.5
Cocaine hydrochloride 339.81 0.16 5.3 0.09 3.2
Cupric sulfate · 5H2O 249.69 0.18 6.0 0.11 2.6
Dextrose · H2O 198.17 0.16 5.3 0.09 1.9
Dibucaine hydrochloride (nupercaine hydrochloride) 379.92 0.13 4.3 0.08 2.9
Emetine hydrochloride 553.56 0.10 3.3 0.06 3.3
Ephedrine hydrochloride 201.69 0.30 10.0 0.18 3.6
Ephedrine sulfate 428.54 0.23 7.7 0.14 5.8
Epinephrine bitartrate 333.29 0.18 6.0 0.11 3.5
Epinephrine hydrochloride 219.66 0.29 9.7 0.17 3.7
Ethylhydrocupreine hydrochloride (optochin) 376.92 0.17 5.7 0.10 3.8
Ethylmorphine hydrochloride (dionin) 385.88 0.16 5.3 0.09 3.6
Eucatropine hydrochloride (euphthalmine hydrochloride) 327.84 0.18 6.0 0.11 3.5
Fluorescein sodium 376 0.31 10.3 0.18 6.9
Glycerin 92.09 0.34 11.3 0.20 1.8
Homatropine hydrobromide 356.26 0.17 5.7 0.10 3.6
Lactose 360.31 0.07 2.3 0.04 1.7
Magnesium sulfate (optochin) · 7H2O 246.50 0.17 5.7 0.10 2.5
Menthol 156.26 0.20 6.7 0.12 1.8
Meperidine hydrochloride (demerol hydrochloride) 283.79 0.22 7.3 0.12 3.7
Mercuric chloride (mercury bichloride) 271.52 0.13 4.3 0.08 2.1
Mercuric cyanide 252.65 0.15 5.0 0.09 2.2
Mercuric succinimide 396.77 0.14 4.8 0.08 3.3
Methacholine chloride (mecholyl chloride) 195.69 0.32 10.7 0.19 3.7
Methamphetamine hydrochloride (desoxyephedrine hydrochloride) 185.69 0.37 12.3 0.22 4.0
Metycaine hydrochloride 292.82 0.20 6.7 0.12 3.4
Mild silver protein — 0.18 6.0 0.11 —
Morphine hydrochloride 375.84 0.15 5.0 0.09 3.3
Morphine sulfate 758.82 0.14 4.8 0.08 6.2
Naphazoline hydrochloride (privine hydrochloride) 246.73 0.27 7.7 0.16 3.3
Neomycin sulfate — 0.11 3.7 0.06 —
Neostigmine bromide (prostigmine bromide) 303.20 0.22 6.0 0.11 3.2
Nicotinamide 122.13 0.26 8.7 0.15 1.9
Penicillin G potassium 372.47 0.18 6.0 0.11 3.9

(Continued )
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TABLE 8–4

ISOTONIC VALUES (Continued )

Substance MW E V �T 1%
f

Liso

Penicillin G Procaine 588.71 0.10 3.3 0.06 3.5
Penicillin G sodium 356.38 0.18 6.0 0.11 3.8
Phenacaine hydrochloride (holocaine hydrochloride) 352.85 0.20 5.3 0.11 3.3
Phenobarbital sodium 254.22 0.24 8.0 0.14 3.6
Phenol 94.11 0.35 11.7 0.20 1.9
Phenylephrine hydrochloride (neosynephrine hydrochloride) 203.67 0.32 9.7 0.18 3.5
Physostigmine salicylate 413.46 0.16 5.3 0.09 3.9
Physostigmine sulfate 648.45 0.13 4.3 0.08 5.0
Pilocarpine nitrate 271.27 0.23 7.7 0.14 3.7
Potassium acid phosphate (KH2PO4) 136.13 0.43 14.2 0.25 3.4
Potassium chloride 74.55 0.76 25.3 0.45 3.3
Potassium iodide 166.02 0.34 11.3 0.20 3.3
Procaine hydrochloride 272.77 0.21 7.0 0.12 3.4
Quinine hydrochloride 396.91 0.14 4.7 0.08 3.3
Quinine and urea hydrochloride 547.48 0.23 7.7 0.14 7.4
Scopolamine hydrobromide (hyoscine hydrobromide) 438.32 0.12 4.0 0.07 3.1
Silver nitrate 169.89 0.33 11.0 0.19 3.3
Sodium acid phosphate (NaH2PO4(optochin) · H2O) 138.00 0.40 13.3 0.24 3.2
Sodium benzoate 144.11 0.40 13.3 0.24 3.4
Sodium bicarbonate 84.00 0.65 21.7 0.38 3.2
Sodium bisulfite 104.07 0.61 20.3 0.36 3.7
Sodium borate · 10H2O 381.43 0.42 14.0 0.25 9.4
Sodium chloride 58.45 1.00 33.3 0.58 3.4
Sodium iodide 149.92 0.39 13.0 0.23 3.4
Sodium nitrate 85.01 0.68 22.7 0.39 3.4
Sodium phosphate, anhydrous 141.98 0.53 17.7 0.31 4.4
Sodium phosphate · 2H2O 178.05 0.42 14.0 0.25 4.4
Sodium phosphate · 7H22O 268.08 0.29 9.7 0.17 4.6
Sodium phosphate · 12H2O 358.21 0.22 7.3 0.13 4.6
Sodium propionate 96.07 0.61 20.3 0.36 3.4
Sodium sulfite, exsiccated 126.06 0.65 21.7 0.38 4.8
Streptomycin sulfate 1457.44 0.07 2.3 0.04 6.0
Strong silver protein — 0.08 2.7 0.05 —
Sucrose 342.30 0.08 2.7 0.05 1.6
Sulfacetamide sodium 254.25 0.23 7.7 0.14 3.4
Sulfadiazine sodium 272.27 0.24 8.0 0.14 3.8
Sulfamerazine sodium 286.29 0.23 7.7 0.14 3.9
Sulfanilamide 172.21 0.22 7.3 0.13 2.2
Sulfathiazole sodium 304.33 0.22 7.3 0.13 3.9
Tannic acid — 0.03 1.0 0.02 —
Tetracaine hydrochloride (pontocaine hydrochloride 300.82 0.18 6.0 0.11 3.2
Tetracycline hydrochloride 480.92 0.14 4.7 0.08 4.0
Tripelennamine hydrochloride (pyribenzamine hydrochloride) 291.83 0.30 7.3 0.17 3.8
Urea 60.06 0.59 19.7 0.35 2.1
Zinc chloride 139.29 0.62 20.3 0.37 5.1
Zinc phenolsulfonate 555.84 0.18 6.0 0.11 5.9
Zinc sulfate · 7H2O 287.56 0.15 5.0 0.09 2.5

The values were obtained from the data of E. R. Hammarlund and K. Pedersen-Bjergaard, J. Am. Pharm. Assoc. Pract. Ed. 19, 39, 1958; J. Am. Pharm. Assoc. Sci.
Ed. 47, 107, 1958; and other sources. The values vary somewhat with concentration, and those in the table are for 1% to 3% solutions of the drugs in most instances. A
complete table of E and �T f values is found in the Merck Index, 11th Ed., Merck, Rahway, N. J., 1989, pp. MISC-79 to MISC-103. For the most recent results of
Hammarlund, see J. Pharm. Sci. 70, 1161, 1981; 78, 519, 1989.
Key: MW is the molecular weight of the drug; E is the sodium chloride equivalent of the drug; V is the volume in mL of isotonic solution that can be prepared by
adding water to 0.3 g of the drug (the weight of drug in 1 fluid ounce of a 1% solution); �T 1%

f is the freezing point depression of a 1% solution of the drug; and L iso is
the molar freezing point depression of the drug at a concentration approximately isotonic with blood and lacrimal fluid.
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A N S W E R S T O P R A C T I C E P R O B L E M S
F O R S T U D E N T U S E

CHAPTER 9: SOLUBILITY AND DISTRIBUTION
PHENOMENA

9–1 (a) 6.421 × 10−3 M; (b) 6.378 × 10−3 m; (c) X2 =
1.251 × 10−4.

The eutectic point, obtained from the intersection
of the two lines, corresponds to a mixture of 0.30
griseofulvin and 0.70 succinic acid on the mole frac-
tion scale. The melting point of the eutectic mixture
is 173◦C.

9–2 660 g.

9–3 The aqueous layer weighs 170.2 g and contains 22.1 g
of phenol; the phenol layer weighs 29.8 g and contains
17.9 g of phenol.

9–4 (a) 1.5 × 10−4 mole/liter; (b) 8.8 × 10−4 g/dL. The
symbol dL stands for deciliter = 100 mL.

9–5 (a) 0.274 mole/liter; (b) Ksp = 0.0335; (c) 0.280
mole/liter.

9–6 4.3 × 10−5 mole/liter.

9–7 pHp = 9.03.

9–8 pHp = 8.5.

9–9 % Alcohol 10 20 30 40 50

pHp 8.73 8.63 8.55 8.02 ∗

∗At about 50% alcohol and above, phenobarbital in a 3 g/100 mL solu-
tion of the drug will not precipitate no matter how low the pH.

9–10 13.3 mL.

9–11 pH = 5.7.

9–12 � Sf = 16.0 eu, log Kcalc = 2.71, log S = −2.73,
Scalc = 1.86 × 10−3 M, Sobs = 1.29 × 10−3 M.

9–13 0.083 g after first extraction; 0.046 g after second
extraction.

9–14 C = 1.0 mg/mL.

1
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S T U D E N T U S E

CHAPTER 9: SOLUBILITY AND DISTRIBUTION
PHENOMENA

9–1 The solubility of sulfamethoxypyridazine (SMP) in
a 10% by volume mixture of dioxane and 90% by
volume of water is 1.8 mg/mL at 25◦C. Calculate
(a) molarity, (b) molality, and (c) mole fraction of
SMP. The density of the liquid, dioxane, is 1.0313
g/mL; of the solution is 1.0086 g/mL; of water is
0.9970 g/mL; and of the solvent mixture is 1.0082
g/mL. The molecular weight of SMP is 280.32
g/mole, that of dioxane is 88.10, and that of water
is 18.015.

9–2 At the critical solution temperature of 65.85◦C for the
phenol–water system (page 45), the critical compo-
sition is 34% by weight of phenol. How many grams
of water are dissolved in 1000 g of the solution at this
temperature?

9–3 A 200-g mixture of phenol and water at 55◦C has a
total composition of 20% by weight of phenol. The
two liquids have the respective compositions of 13%
and 60% phenol. What is the weight in grams of the
aqueous layer and of the phenol layer and how many
grams of phenol are present in each layer?

9–4 What is the solubility of the electrolyte magnesium
hydroxide (a) in moles/liter and (b) in g/100 mL if
the solubility product is 1.4 × 10−11? The molecular
weight of Mg(OH)2 is 58.34.

9–5 Brequinar sodium dissociates as brequinar−and Na+.
Its apparent solubility product is Ksp = 0.0751.
(a) Compute the solubility of this compound.1

(b) Compute the solubility product, Ksp, using the
mean activity coefficient, γ ± . (c) Compute the sol-
ubility after addition of a 0.05 M solution of KCl.

9–6 What is the solubility of barium sulfate in a solu-
tion having an ionic strength, μ, of 0.25 and Ksp =
1 × 10−10 at 25◦C? The activity coefficient for a bi-
bivalent salt at this ionic strength is 0.23.

9–7 The molar solubility of sulfathiazole in water is 0.002,
the pKa is 7.12, and the molecular weight of sodium
sulfathiazole is 304. What is the lowest pH allowable
for complete solubility in a 5% solution of the salt?

9–8 What is the pHp of a 2% w/v solution of sodium
phenobarbital in a hydroalcoholic solution containing
15% by volume of alcohol? The solubility of pheno-
barbital in 15% alcohol is 0.22% w/v. The pKa of
phenobarbital in this solution is 7.6. The molecular
weight of sodium phenobarbital is 254.22 g/mole and
that of phenobarbital is 232.23 g/mole.

9–9 Using data in Figures 9–4 and 9–5, calculate the min-
imum pH required for complete solubility of sodium
phenobarbital in a solution containing 3 g of the drug
in 100 mL of a mixed alcohol–water solvent. (a) Cal-
culate pHp, the minimum pH for the drug, in each
aqueous solvent consisting of 10%, 20%, 30%, 40%,
and 50% by volume of ethanol. (b) Plot pHp ver-
sus percent by volume of alcohol in the solvent. The
molecular weight of phenobarbital is 232.23 g/mole
and that of sodium phenobarbital is 254.22.

9–10 A prescription calls for seven grains (1 g = 15.432
grains) of phenobarbital in 60 mL of solution. The
vehicle consists of 20% by volume of glycerin, 5%
by volume of alcohol, and the balance water. From
Figure 9–4 it is observed that about 25% by volume
of alcohol is required in the solution to dissolve this
quantity of phenobarbital. How much USP alcohol
(95% by volume) must be added?

9–11 If a container of pure water is shaken in the air, the
water will dissolve atmospheric carbon dioxide until
the dissolved gas is in equilibrium with that in the
air. At atmospheric pressure the solubility of CO2 is
found to be 1 × 10−5 mole/liter. The dissociation
constant, K1, of carbonic acid is approximately equal
to 4 × 10−7. Compute the pH of water saturated with
CO2. Hint: [H3O+] = in which c is the equilibrium
concentration of the gas in water.

9–12 Calculate the molar solubility of butyl p-hydroxy-
benzoate (mp 68◦C) in water at 25◦C using equa-
tion (9–27). The log K for benzoic acid is 1.87; the
contribution by an OH group is −1.16 and by a CH2

group is 0.50, according to Leo et al.2

9–13 If 0.15 g of succinic acid in 100 mL of ether is shaken
with a 10-mL portion of water, how much succinic
acid is left in the ether layer? The distribution coef-
ficient K = (concentration in ether)/(concentration in
water) = 0.125 at 25◦C. How much succinic acid is

1
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left in the ether when the phase is extracted with an
additional 10 mL of water?

9–14 Propionic acid is added to the aqueous phase of a
20% oil–water emulsion, and 0.65 mg/mL of free
acid remains in the aqueous phase after equilibrium
has been attained between the two phases. In a 20%
emulsion, q = Vo/Vw = 20/80 = 0.25. The aque-
ous phase is buffered at pH 3.5. Propionic acid is
found to dimerize in the oil phase, and the distribu-
tion constant, K′′ = /[HAw], is equal to 15.0. The Ka

of propionic acid is 1.4 × 10−5. Compute the initial
concentration, C, of propionic acid to be introduced
into the aqueous phase. The molecular weight of pro-
pionic acid is 74.08 g/mole.

References

1. S. Y. P. King, A. M. Basista, and G. Torosian, J. Pharm. Sci. 78, 95, 1989.
2. C. Hansch, J. E. Quinlan, and G. L. Lawrence, J. Org. Chem. 33, 347,

1968; A. J. Leo, C. Hansch, and D. Elkin, Chem. Rev. 71, 525, 1971; C.
Hansch and A. J. Leo, Substituent Constants for Correlation Analysis in
Chemistry and Biology, Wiley, New York, 1979.
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A N S W E R S T O P R A C T I C E P R O B L E M S
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CHAPTER 10: COMPLEXATION AND
PROTEIN BINDING

10–1 log K1 = 3.9, log K2 = 2.97, log β = 6.87.

10–2 K = 38.5.

10–3 2:1 complex.

10–4 (a) The phase diagram should look similar to Figure
10–12; (b) So = 1.7 × 10−6 M (the solubility in water
reported by the authors is about 1 × 10−6 M); (c)
K = 479 M −1.

10–5 (a) m = 3.39 (number of hexanoic acid molecules
per griseofulvin molecule in the complex); (b) Km =
1248 M−1, the stability constant of the complex of the
formula, AD3. The number 3.39 is obtained by regres-
sion analysis and is therefore an average. It is assumed
to be an integer value, m = 3, for the complex.

10–6 See Table 1 in Al-Obeidi and Borazan. (F. A. Al-
Obeidi and H. N. Borazan, J. Pharm. Sci. 65, 982,
1976.)

10–7 K = 12.8, (δA
c − δA

m) = 0.50.

10–8 (a) K = 0.0552 liter/μ mole = 55,200 liters/mole;
v = 2.75; (b) K = 0.0602 liter/μ mole = 60,200
liters/mole; using v = 2.75 from part (a), [Pt] = 22.2
μ mole/liter.

10–9 r = 0.14; β = 0.571.

10–10 Partial Answer: for [Df] = 1.43 × 10−3 mmole/liter
(1.43 × 10−6 mole/liter), r = 0.41; r/[Df] = 289
(liters/mmole).

10–11 Partial Answer: In case I (see the table for this prob-
lem), the concentration, [Dt] (= A/εb), of unbound
acetaminophen in the absence of phenylbutazone,
[Dt

′] = 0, is 2.97 × 10−4 mole/liter. The concen-
tration, [Db], of bound acetaminophen is 1.00 × 10−4

mole/liter. The r value is given by [Db]/[Pt] = 0.17,
and the percent bound is ([Db]/[Dt]) × 100 = 25%.

In case II (in the presence of phenylbutazone
[Dt ] = 0.65 × 10−4 mole/liter), the concentration
of unbound acetaminophen is [Df] = A/(εb) =
0.782/(2.03 × 103)(1) = 3.4 × 10−4 mole/liter. [Db]
is (3.97 × 10−4) − (3.4 × 10−4) = 0.57 × 10−4

mole/liter and r = (0.57 × 10−4)/(5.8 × 10−4) =
0.10.

1

Dr. Murtadha Alshareifi e-Library

1183



P1: Trim: 8.375in × 10.875in

LWBK575-10-Stud-Prob LWW-Sinko-educational March 17, 2010 7:57

P R A C T I C E P R O B L E M S F O R
S T U D E N T U S E

CHAPTER 10: COMPLEXATION AND
PROTEIN BINDING

10–1 Albert1 studied the chelation of cadmium ion by
asparagine. Potentiometric titration of 0.01 M aspa-
ragine, pKa = 8.85, and 0.005 M cadmium sulfate
was conducted in 50-mL samples by adding succes-
sive quantities of 0.1 N KOH. Plot the data of n versus
p[A] and compute log K1, log K2, and log β. The data
table is below (n, p[A], and β are defined on pages
208–209).

Data for Problem 10–1

mL of 0.1 N NaOH pH n p[A]

0 4.81 − −
0.25 6.12 0.10 4.75

0.50 6.50 0.20 4.40

1.0 6.85 0.40 4.10

1.5 7.20 0.57 3.80

2.0 7.45 0.74 3.62

2.5 7.70 0.93 3.45

3.0 7.95 1.11 3.30

3.5 8.21 1.26 3.16

4.0 8.50 1.42 3.05

4.5 8.93 1.56 2.92

10–2 The following results were obtained by Higuchi and
Zuck2 for the complex formed between caffeine and
benzoic acid. In the analytic procedure, benzoic acid
was distributed between water and a hydrocarbon
solvent, Skellysolve-C.

Molar concentration of free
benzoic acid in aqueous
solution of caffeine
obtained by partition
study

11.94 × 10−3 mole/liter

Experimentally determined
molar concentration of
total undissociated
benzoic acid in the
aqueous phase, corrected
for partial dissociation
(free + complexed
benzoic acid)

20.4 × 10−3 mole/liter

Original concentration of
caffeine added (free +
complexed caffeine)

2.69 × 10−2 mole/liter

Assuming that the stoichiometric ratio of the two
species in the complex is 1:1, compute the association
constant, K.

10–3 Using the solubility method, Higuchi and Lach3 stud-
ied the complexation between a polyethylene glycol
and phenobarbital. The findings obtained at 30◦C as
follows:

Polyethylene glycol content of
the complex formed in the
plateau region of the
solubility diagram

30 × 10−3 mole/liter

Total phenobarbital added 21.5 × 10−3 mole/liter
Phenobarbital dissolved at

point B in the solubility
diagram, Figure 10–12

6.5 × 10−3 mole/liter

Compute the stoichiometric ratio [PGE]/[pheno-
barbital].

10–4 The formation of an inclusion complex of 1,8
dihydroxy-anthraquinone with γ -cyclodextrin in
aqueous solution was studied using the solubility
technique4 (see page 211). The concentrations of
anthraquinone derivative found after addition of sev-
eral increments of γ-cyclodextrin to 10 mL of buffer
containing an excess of the anthraquinone (1 × 10−3

M) are

Data for Problem 10–4

Cyclodextrin Added Anthraquinone Found
(× 103 M) (× 106 M)

2.37 2.56

7.89 8.72

11.58 12.56

15.79 15.60

18.95 15.81

22.63 16.41

30.0 16.41

38.0 13.84

(a) Obtain the phase diagram by plotting the concen-
tration of the anthraquinone found (vertical axis)
against the concentration of γ-cyclodextrin added
(see Fig. 10–12 for a similar diagram).

(b) Compute the solubility of 1,8 dihydroxyanthra-
quinone.
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(c) Compute the apparent stability constant, K, of the
complex from the slope of the initial linear portion
of the plot obtained in part (a). (Use the first five
points.) K is obtained from the expression J. A.
Plaizier-Vercammen and R. E. De Nève, J. Pharm.
Sci. 71, 552, 1982. K = slope/[intercept (1 −
slope)].

10–5 Griseofulvin contains two keto groups, four ether
oxygen atoms, and an aromatic ring, all capable of
accepting protons to form hydrogen bonds. Griseo-
fulvin has no proton-donating groups, so it acts only
as a proton acceptor, A. The molar solubility of griseo-
fulvin in isooctane, [Ao] = 0.9358 × 10−5 mole/liter,
increases rapidly with increasing molar concentra-
tions of hexanoic acid, [Dt], an acidic donor, owing
to the formation of a donor–acceptor complex, ADm :

A + mD ⇀↽ ADm (1)

where m is the stoichiometric number of D molecules
interacting with one A molecule. Mehdizadeh and
Grant5 determined the experimental solubilities of
griseofulvin in isooctane with increasing concentra-
tions of hexanoic acid, [Dt]; the data are shown in the
following table:

Data for Problem 10–5∗

[Dt], Molar [At] (M × 105),
Concentration of Concentration of

Hexanoic Acid (Donor) Griseofulvin (Acceptor)

0.1632 2.317

0.465 4.178

0.784 7.762

1.560 20.902

3.118 77.581

4.693 207.16

6.316 435.18

7.855 858.98
∗The concentrations given here are selected from among the 15 concentrations
each of hexanoic acid and griseofulvin given in the original article.

The authors show that if only one complex species,
ADm , is considered, say m = 2, the increase in sol-
ubility, [At] − [Ao], of the acceptor (griseofulvin) in

isooctane is proportional to the m/2 power of the total
concentration of the donor (hexanoic acid), [Dt]m/2,
according to the following expression:

[At] − [Ao] = [ADm] = K [Dt]
m/2 (2)

where K includes Km , the stability constant of the
complex, Kd, the dimerization constant of hexanoic
acid raised to the power (−m/2), and an additional
term, 2−m/2:

K = Km K−m/2
d 2−m/2 (3)

(a) Take the log of both sides of equation [At] − [Ao]
= [ADm] = K [Dt]m/2 and regress log([At] −
[Ao]), the dependent variable, against log [Dt],
the independent variable. Compute the stoichio-
metric number, m, of the complex from the slope.

(b) Obtain the stability constant of the complex, Km ,
using the intercept you got in part (a) and the
second equation above. The dimerization constant
of hexanoic acid from a separate experiment is
Kd = 6000 M−1.

10–6 Al-Obeidi and Borazan6 investigated the charge trans-
fer complex formation between epinephrine and the
nucleic acid bases adenine, thymine, and uracil by
ultraviolet absorption spectrometry. Epinephrine is an
electron donor, and the nucleic acid bases are assumed
to act as electron acceptors.

Obtain the molar absorptivity, , and the equilibrium
constant, K (1/molarity), of the Benesi–Hildebrand
equation [equation (10–28)] by plotting Ao/A versus
1/Do. Here Ao and Do are the total concentrations
of adenine and epinephrine, respectively; A is the
absorbance of the complex at a definite wavelength. It
is assumed that epinephrine forms 1:1 charge transfer
complexes with these nucleic acid bases in acidified
aqueous solution.

The accompanying table shows the values for Ao/A
and 1/Do for the adenine–epinephrine complex at
four temperatures, as back-calculated from the K and
ε values of Al-Obeidi and Borazan.6

Data for Problem 10–6

1/Do (liter/mole) 1.0 2.0 3.0

Ao/A at, 2◦C 0.022 0.034 0.047

Ao/A 18◦C 0.029 0.047 0.066

Ao/A, at 25◦C 0.031 0.053 0.075

Ao/A at, 37◦C 0.037 0.065 0.093

10–7 Hanna and Askbaugh7 derived an expression for
computing the apparent equilibrium constant of
1:1 π -molecular complexes from nuclear magnetic
resonance data:

1

�A
obs

= 1

K
(
δA

c − δA
m

) 1

CD
+ 1

δA
c − δA

m
(4)
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where CD is the concentration of the donor on the
molality scale, δA

c is the chemical shift (see Chapter
4, page 99.) of the acceptor in the pure complex form,
and δA

m is the chemical shift of the acceptor in the
uncomplexed form. Therefore, δA

c − δA
m is the shift

due to complexation. �A
obs is the difference between

the observed chemical shift and δA
m .

The equation requires that the concentration of the
donor be much larger than that of the acceptor and is
analogous to the Benesi–Hildebrand equation except
that the shift of acceptor protons on the pure complex
replaces the molar absorptivity of the complex, and
the concentration of acceptor does not appear.

Nishijo et al.8 studied the complexation of theo-
phylline with an aromatic amino acid, l-tryptophan,
in aqueous solution using proton nuclear magnetic
resonance. l-Tryptophan is a constituent of serum
albumin and was suggested to be the binding site on
serum albumin for certain drugs. The authors added
l-tryptophan to a fixed concentration of theophylline
at 25◦C.

Data for Problem 10–7

(Tryp), 1/CD (M−1) 25 50 75 100

1/�A
obs 5.9 9.8 13.7 17.6

Compute the apparent equilibrium constant, K,
and the complexation shift, (δA

c − δA
m), using equa-

tion above. 1
�A

obs
= 1

K(δA
c −δA

m)
1

CD
+ 1

δA
c −δA

m

10–8 The binding of warfarin to human serum albumin was
studied at pH 6, ionic strength 0.170. The following
values were found by O’Reilly.9

Data for Problem 10–8

[PD] [Df] r/[Df]
μ mole/L μ mole/L L/μ mole r

9.1 3.0 0.13 0.40

17.8 6.4 0.11 0.72

30.2 17.2 0.08 1.35

46.1 50.8 0.04 2.00

(a) Obtain the Scatchard plot, equation (10–40),
using these data and compute K and v using linear
regression; v is the number of independent bind-
ing sites. Express K in liters/mole.

(b) Assume that the concentration of protein is
unknown, and compute K from [PD] and [Df]
[equation (10–41)]. Compare the constant K
obtained in parts (a) and (b). Compute [Pt], the
total concentration of protein, using the number
of binding sites obtained in part (a). See equation
(10–41).

10–9 In a study by Meyer and Guttman10 of the binding
of caffeine to bovine serum albumin by the equilib-
rium dialysis method, 2.8 ×10−4 M of albumin was
allowed to equilibrate with 1 × 10−4 M of caffeine.
After equilibrium was established, 0.7 × 10−4 M of
caffeine was contained in the dialysis bag, and 0.3 ×
10−4 M of caffeine was found in the external solution.
Calculate r, the ratio of bound to total protein. What
is the fraction bound, β, of caffeine?

10–10 Chan and his associates11 investigated the in vitro
protein binding of diclofenac sodium, a nonsteroidal
anti-inflammatory drug, by equilibrium dialysis and
plotted the results according to the Scatchard equation
(10–44) used to describe two classes of sites:

r = v1 K1[Df]

1 + K2[Df]
+ v2 K2[Df]

1 + K2[Df]
(5)

These workers used a statistical method known
as nonlinear regression on the following data to cal-
culate the parameters v1, v2, K1, and K2. The num-
bers of binding sites, v1 and v2, found for the two
classes of sites are 2.26 and 10.20, respectively. The
corresponding association constants are K1 = 1.32 ×
105 M−1 and K2 = 3.71 × 103 M−1.

Using the equation just given, calculate the val-
ues of r (dimensionless) for the following free drug
concentrations: [Df] in millimole/liter (×103) = 1.43,
4.7, 16, 63, 132.4, 303.4, and 533.2.

Plot r/[Df] (liter/millimole) versus r to obtain what
is called a Scatchard plot. Compare your results with
those of Chan et al. To obtain an answer to this prob-
lem, you may compare your calculated r/[Df] values
with the r/[Df] abscissa values read from the graph
of Chan et al.

Hint: Use the same units on K1, K2, and [Df] to
calculate r.

10–11 The effect of phenylbutazone in displacing aceta-
minophen from its binding sites on human serum
albumin (HSA) was studied by the ultrafiltration
method at 37◦C and pH 7.4, with a constant con-
centration of acetaminophen of [Dt] = 3.97 × 10−4

mole/liter and with increasing concentrations of
phenylbutazone, [D′

t ]. After ultrafiltration the
absorbance, A, of the free fraction of acetaminophen
corresponding to several concentrations of phenylbu-
tazone is

Data for Problem 10–11

Case I II III IV[
D′

t

] × 104 0 0.65 3.89 6.48
mole/liter

A 0.683 0.782 0.809 0.814
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The table also shows the absorbance of
acetaminophen in the absence of phenylbutazone,
[D′

t ] = 0. The molar absorptivity, ε, of acetaminophen
at 420-nm wavelength in a cell of path length b = 1 cm
is 2.3 × 103 liter mole−1 cm−1. The HSA concentra-
tion, [Pt], is 5.8 × 10−4 mole/liter.

Calculate the percent decrease in the Scatchard
r values for acetaminophen and the percent bound
at different concentrations of phenylbutazone, [D′

t ],
shown in the table.
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CHAPTER 11: DIFFUSION

11–1 Q/t = 6.71 μg cm−2 day−1.

11–2 Partial Answer: (a) The equation of the linear regres-
sion line is log R = −7.569 + 1.646 log r. The slope,
1.646, and intercept, −7.569, compare well with the
values 1.667 and −7.4739, respectively, predicted by
the convective diffusion (CD) equation (1).
(b) For r = 1.25 cm substituted into equation (1) for
the linear regression line,

log R = −7.569 + 1.646 log (1.25) = −7.4095

R = 3.90 × 10−8 mole/min. From the CD equation, R
= 4.87 × 10−8 mole/min. The regression equation (2)
has an error of about 0.5% and the CD equation, (1),
an error of about 26% in relation to the experimental
value of R = 3.881 × 10−8 mole/min.

(c) Under aqueous diffusion layer control, page
234, equation (11–33),

j = d M
dt

1

S
=

(
Da

2ha

)
Cs; R = d M

dt
=

(
SDa

2ha

)
Cs

=
(

πr2 Da

2ha

)
Cs (1)

ha = 0.0214 cm. The actual dimethicone membrane
thickness is about 0.025 cm.

11–3 3.182 g/(103 cm2) per day1/2.

11–4 3.194 g/(103 cm2) per day1/2. A value of about 3.1 g/
(103 cm2) per day1/2 is obtained experimentally.
Y. W. Chien et al., J. Pharm. Sci. 63, 365, 1974.

11–5 J = 9.55 × 10−4 mmole/(cm2 hr).

11–6 Partial Answer: (b) ko = DmCp/hm = 0.530 mg cm−2

hr−1; tlag = 0.0539 hr or 3.23 min; (c) Dm = 2.31 ×
10−7 cm2 sec−1 using hm = 0.0164 cm; (d) Cp =
10.46 mg cm−3.

11–7 Pcalc = 2.08 × 10−4 cm/sec.

11–8 Partial Answer: percent dissociation at pH 4 is 0.32%;
at pH 8, it is 96.93%.

11–9 Partial Answer:
(b) at pH 4.67, P(theoretical) = 4.885 × 10−6 cm/
sec, and at pH 6.67, P(theoretical) = 7.285 × 10−6

cm/sec.
(c) The Henderson–Hasselbalch equation is used
to arrive at the relationship pH = pKa at the half
neutralization point, and the Henderson–Hasselbalch
equation is also used in this chapter (page 237) to
obtain an equation for the percent ionization of a weak
acid at various pH values. These remarks should assist
you in arriving at your answer.

11–10 Partial Answer: (b) y = 0.111x1.005; (c) y = 0.0724x
+ 0.2355.

11–11 15,945 cal/mole, or 16 kcal/mole. The answer varies
depending on the number of significant figures
retained.

11–12 Partial Answer: 36.63 mg released in 15 days.

11–13 D = 12.4 × 10−5 cm2/sec.
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CHAPTER 11: DIFFUSION

11–1 The diffusion coefficient of tetracycline in a hydrox-
yethyl methacrylate–methyl methacrylate copolymer
film in a mole ratio of 2:98 is D = 8.0 ( ± 4.7)∗ × 10−9

cm2/sec and the partition coefficient, K, for tetracy-
cline between the membrane and the reservoir is 6.8
( ± 5.9) × 10−3. The membrane thickness, h, of the
trilaminar device is 1.40 × 10−2 cm, and the concen-
tration of tetracycline in the core, Co, is 0.02 g/cm3

of the core material. Using equation (11–103), cal-
culate the release rate, Q/t, in units of μg cm−2 of
tetracycline per day.

11–2 Nelson and Shah1 applied their convective diffusion
model (see Example 13–3. Chapter 13, page 305) to
the permeation rate (rate of diffusion), R, of butamben
through a dimethicone membrane under conditions of
aqueous diffusion layer control. For a circular mem-
brane, the permeation rate is given by the convective
diffusion (CD) equation:

R = 2.157 Da
2/3 Cs α1/3r5/3 (1)

where Da is the diffusivity (diffusion coefficient) of
the solute in the aqueous layer, Cs is the solubility, α is
the rate of shear over the membrane, and r is the radius
of the circular membrane. The rate of permeation, R,
written as dM/dt elsewhere in this chapter was con-
sidered the dependent variable, using the radius of
the membrane as the independent variable. The equa-
tion obtained by least-squares regression predicts a
straight line in a plot of log R versus log r, holding
the other parameters constant.
(a) Prepare the graph of log R versus log r, com-

pute the slope and intercept, and determine how
well they compare with comparable quantities
predicted by equation (1) as above. The values
of the known parameters are Da = 6 × 10−6 cm2

sec−1 = 3.60 × 10−4 cm2 min−1; Cs = 9.4 ×
10−4 mole/liter = 9.4 × 10−7 mole cm−3; and α =
35.006 min−1; the experimental R and r values for
the plot are as follows:

Data for Problem 11–2

R (mole/min) 1.325 × 10−8 2.712 × 10−8 3.881 × 10−8

r (cm) 0.65 1 1.25

∗The quantities in parentheses are standard deviations. That is the diffusion
coefficients ranges from 8.0 (–4.7) × 10−9 to 8.0 (+4.7) × 10−9, based on
a variability of ± 1 standard deviation (4.7) from the mean D value 8.

(b) Choose one of the three values of r from the table
and the known parameters given here; substitute
these into the least-squares regression equation
and into the CD equation [equation (1)]. Com-
pare your results from these two methods for cal-
culating R. What is the percentage error in these
two methods relative to the experimental value
of R?

(c) This system is under aqueous diffusion layer con-
trol. Compute the thickness, ha, of the static aque-
ous layer using r = 1.25 cm and R = 3.881 × 10−8

mole min−1 = 6.47 × 10−10 mole sec−1.
Note: In preparation for graphing, be sure to first

convert R and r to logarithms. Recall that when con-
verted to logarithmic form in equation (1), quantities
multiplied together are added. Therefore, equation
(1), written as log R versus r, becomes log(2.157)
+ 2/3 log Da + log Cs + 1/3 log α + 5/3 log r, and
for Da, Cs, and α held constant, we have

log R = log
(
2.157Da

2/3 Csα
1/3) + 5/3 log r (2)

with the first log term on the right side as the intercept
and 5/3 = 1.667 in the second log term as the slope.

11–3 The release of ethynodiol diacetate through a silicone
dosage form may be calculated using the Higuchi
equation,

Q/t1/2 = [D(2 A − Cs)Cs]
1/2 (3)

because diffusion is found in this case to be the rate-
limiting factor for drug release. A, the amount of drug
per unit volume of the silicone matrix, is 100 g/(103

cm3); the solubility, Cs, of the drug in the silicone
polymer is 1.50 g/(103 cm3); and D, the diffusivity of
the drug in the silicone matrix, is 3.4 × 10−2 cm2/day.
Calculate the rate of drug release from the silicone
dosage form in units of g/(103 cm2) per day1/2.

11–4 When Cs is small relative to A, as found in Prob-
lem 11–3, the Higuchi equation reduces to Q/t1/2 =√

2D ACs Recalculate the results of Problem 11–3
using this abbreviated equation.

11–5 A cell contains a silastic membrane with diffu-
sion layers of identical thickness on either side
and butyl-aminobenzoate at a concentration C =
1.72 mmole/liter or 1.72 × 10−3 mmole/cm3 in the
donor compartment. Calculate the steady-state flux, J,
through the membrane in millimoles per cm2 per hour.
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The equation that represents the process in which both
membrane and diffusion-layer control obtain is

J =
[

Dm K Da

hm Da + 2ha KDm

]
C (4)

The data obtained from an experiment at 37◦C are as
follows: Dm = 2.7 × 10−6 cm2/sec = 0.00972 cm2/hr,
Da = 6.0 × 10−6 cm2/sec = 0.02160 cm2/hr, hm =
0.006 cm, ha = 0.0188 cm, and K = 10.3.

11–6 Borodkin and Tucker2 studied the diffusion of sali-
cylic acid from a polymer film containing dispersed
drug. The kinetics was made linear with time, that is,
zero order, by laminating a second film, consisting
of a hydroxypropylcellulose-polyvinyl acetate mem-
brane of thickness hm = 0.0164 cm, to the releasing
side of the film with the drug as a reservoir layer.

The drug layer controlled the duration of release,
whereas the nondrug layer consisting of the cellulose
membrane served as a rate-controlling membrane.
Diffusion through the film is the limiting factor in
a drug release, so that equation (11–72) applies. Q,
the amount of drug released per unit surface area, is
given for various times:

Data for Problem 11–6

Q(mg/cm2) 0.46 1.00 1.54 2.19 2.69 3.23 3.54

Time (hr) 1 2 3 4 5 6 7

Equation (11–72) can also be written as

d Q
dt

= DmCp

hm
(5)

which represents the instantaneous rate of release of
drug at time t. Integration of this equation and evalu-
ation of the integration constants yields a term for the
lag time, tlag:

Q = DmCp

hm
t − DmCp

hm
tlag (6)

Equation (6) shows that a plot of Q against t yields
a straight line of slope DmCp/hm = ko, the apparent
zero-order rate constant. The intercept of equation
(6) is (DmCp/hm)tlag = kotlag, from which tlag can be
computed.
(a) Plot Q versus time, t, from the data given in the

table.
(b) Regress Q against t and obtain ko = DmCp/hm (mg

cm−2) from the slope and tlag from the intercept.
(c) Knowing the lag time and the thickness hm of the

nondrug layer, compute the diffusion coefficient,
Dm. You will need the lag time equation.

(d) From the slope obtained in part (b) and the diffu-
sion coefficient, Dm, calculated in part (c), com-
pute the value of Cp, the concentration of the drug,
salicylic acid, in the reservoir layer of the base
film.

11–7 Farng and Nelson3 studied the effect of polyelec-
trolytes, such as carboxymethylcellulose (CMC), on
the permeation rate of sodium salicylate across a cel-
lulose membrane at 37◦C. Fick’s law can be written to
cover this case, assuming the existence of three bar-
riers in series: the membrane and an unstirred liquid
diffusion layer on either side. The reciprocal of the
permeation coefficient for the three layers is

1/P = h1/D1 + hm/φDm K + h2/D2 K (7)

where h1 = h2 = 82 × 10−4 cm for the two static
diffusion layers; hm = 46.6 × 10−4 cm for the cellu-
lose membrane thickness, D1 = 1.33 × 10−5 cm2/sec,
D2 = 1.11 × 10−5/cm2 sec, and Dm = 1.69 × 10−6

cm2/sec for the three diffusion coefficients. The par-
tition coefficient, K, for the salicylate between the
solution in compartment 1 (left-hand reservoir) and
water in the membrane is 1.16. The volume fraction,
φ, of water in the membrane is 0.667. Calculate the
permeability, P, for the salicylate and compare it with
Pobs = 1.86 × 10−4 cm/sec.

11–8 Sulfadiazine, pKa = 6.50 at 25◦C, as with all weak
acids shows a variable-percent dissociation as a func-
tion of pH.
(a) Prepare a table showing the percent dissociated

and percent undissociated sulfadiazine at pH 2, 4,
6.5, 7, 8, 10, and 12.

(b) Plot the results on rectangular graph paper.
(c) Predict the absorption of sulfadiazine from the gut

and from the small intestine in terms of the pH–
partition hypothesis and from the results obtained
in parts (a) and (b).

11–9 (a) As a continuation of work on transcorneal per-
meation of pilocarpine (see Example 11–7), you
are asked to plot the experimentally determined
corneal membrane permeability, P, versus pH
(Table 11–5) on ordinary rectangular graph paper.

(b) Calculate P(theoretical) [see Example 11–7,
equation (11–62)] using the values PB = 9.733 ×
10−6 cm/sec and PBH

+ = 4.836 × 10−6 cm/sec.
The nonionized fraction, fB, of pilocarpine at each
pH value is calculated from equation (11–96). Plot
P(theoretical) versus pH on the graph prepared
under (a). Note that the pH at the inflection point
of the sigmoidal line is equal roughly to pKa =
6.67 for the conjugate acid of pilocarpine at 34◦C.

(c) Does this sigmoidal curve suggest any relation-
ship to the titration curve of a weak acid, Figure
8–1, where, at half-neutralization, pH = pKα?

11–10 The steady-state penetration of progesterone and its
hydroxyl derivatives across the intact skin was found
to be related to the solubility of the drug in the stratum
corneum. The solubility in the stratum corneum and
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the rate of permeation decrease as the hydrophilicity
of the progesterone derivatives increases.4 The data
are found in the following table for the progesterone
derivatives numbered 1 through 7:

Data for Problem 11–11

Drug no. 1 2 3 4 5 6 7

Solubility (mg/mL) 1.09 2.46 7.97 2.82 12.5 32.4 47.7

Permeability rate 0.15 0.31 0.97 0.29 0.57 4.73 2.37
(μg/(cm2 hr))

(a) Plot the permeability rates, dQ/dt, in μg/(cm2 hr),
on the vertical axis against the solubility of the
progesterone derivatives on the horizontal axis of
three-cycle log–log paper. One may postulate a
linear relationship between the steady-state rates
of permeation of progesterone and its solubility in
the stratum corneum. However, it is found that a
linear relationship is obtained only when the data
are plotted on a log–log graph, which suggests
that the true relationship is a power curve. Let
permeability rate, dQ/dt, be y and the solubility
in the stratum corneum be x, and write the power
curve relationship:

y = axb (8)

where a and b are arbitrary constants.
(b) Use a handheld calculator or a personal computer

to obtain the values of a and b using the data given.
(c) Now assume a relationship between y and x in the

linear form

y = a′x + b′ (9)

and compute a′ and b′. Does equation (8) or equa-
tion (9) better fit the data?

(d) Why did a log–log fit of the data suggest using
the power equation y = axb?

(e) Would it be possible to extrapolate results such
as these to the transdermal absorption of proges-
terone derivatives from various ointment bases
into intact and damaged or diseased human skin?
What factors would need to be taken into consid-
eration?

11–11 The percutaneous absorption of chloramphenicol
through mouse skin was investigated at various tem-
peratures. Permeability coefficients were recorded
together with temperatures as follows:

Data for Problem 11–12

Temperature, ◦C 25 31 37 45

P (cm/min) × 104 1.12 1.87 3.01 6.20

Plot the Arrhenius curve and calculate the energy
of activation for permeation. Compare your results
with those of Aguiar and Weiner,5 who, in a similar
study, found Ea to be 15,000 cal/mole.

11–12 Hydrocortisone was released from a silicone matrix
implanted in the vaginal tract of a rabbit (see Table
11–6, page 247). Calculate the amount of hydrocor-
tisone (mg) released from the vaginal implant in 2.5,
5, 10, 15, 20, 25, 30, and 40 days. Plot the amount
released, m (mg), versus time in days. The following
data are taken from the work of Ho et al.6 The solubil-
ity of the drug in the polymer matrix, Cs, was 0.014
mg/cm3; the diffusion coefficient in the matrix, De,
was 4.5 × 10−7 cm2/sec; the partition coefficient for
silicone/water, Ks, was 0.05; the permeability coeffi-
cient of the rabbit vaginal membrane, Pm, was 5.8 ×
10−5 cm/sec; Paq was 7 × 10−4 cm/sec; the loading
concentration (initial amount of drug per unit volume
of plastic cylinder), A, was 100 mg/cm3; the length,
h, of the silicone cylinder was 6.0 cm; and its radius,
ao, was 1.1 cm.

11–13 A new drug is placed in a Graham closed-boundary
diffusion cell (see Fig. 11–27) to determine the drug’s
diffusion coefficient, D. The initial concentration of
the drug, u0, is 0.0273 g/cm3 in water at 25◦C. The
total height of the cell is H = 3.86 cm and the height of
the drug solution in the cell is h = 1.93 cm. A sample
is taken at a depth of x = H/6 at time t = 10,523 sec
(2.923 hr) and analyzed for the drug; its concentration,
u, is found to be 0.0173 g/cm3. Rearrange equation
(11–108) so as to calculate D, the drug’s diffusion
coefficient. (See Example 11–13.)
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A N S W E R S T O P R A C T I C E P R O B L E M S
F O R S T U D E N T U S E

CHAPTER 14: CHEMICAL KINETICS AND
STABILITY

14–1 If first order, k = 0.026 hr−1, t1/2 = 26.8 hr.

14–2 (a) k0 = (2.2 × 10−7 g dL−1 sec−1; (b) t90 = 13.2
days at 35◦C (zero-order breakdown); (c) t90 = 6.1
days at 35◦C (first-order breakdown).

14–3 (a) t1/2 = 142.5 min or 2 hr 22 min; (b) k = 7.87
10−4 min−1, t1/2 = 880.56 min or 14 hr 41 min;
k decreases by 84%, and t1/2 increases by 518%;
(c) without (I), 1.2 × 10−5 M; with addition of (I),
4.10 × 10−5 M.

14–4 (a) Ea = 20.8 kcal/mole; (b) k at 25◦C is 1.99 × 10−5

absorbance unit per hour (using regression analysis);
(c) predicted life = 513 days (ca. 1.4 years).

14–5 k = 1.082 (liters/mole) min−1; t1/2 = 92.4 min.

14–6 (a) Bss = k3

k4
[AH+] (1)

(b)
[AH+]ss = k1[A][HT

+]

k1[A] + (k2 + k3)
(2)

(c)
rate = d[P]

dt
=

(
k1k3

k2 + k3

)
[A][H+] (3)

14–7 Partial Answer: (a) k1 = 0.0383 hr−1; (b) at t = 5 hr,
B = 0.046 mM and C = 0.004 mM; at t = 10 hr, B =
0.079 mM and C = 0.011 mM; (c) t1/2 for A = 18.1
hr; the concentrations of B and C at 18.1 hr are 0.110
and 0.03 mM, respectively.

14–8 A = 3.8 × 103 sec−1.

14–9 Ea = 20.3 kcal/mole, A = 1.2 × 109 sec−1 (using
regression analysis).

14–10 Ea = 29.8 kcal/mole, A = 3.71 × 1014 hr−1

14–11 (a) �S‡ = −41.5 cal/mole, k = 0.072 hr−1; �G‡ =
24.9 kcal/mole; (b) 0.26 mg/mL; (c) 22.5 min.

14–12 Ea = 61.6 kcal/mole.

14–13 Partial Answer: log kobs = 0.111δ1 − 4.504. A plot of
log kobs against δ1 results in a straight line. Dioxane

is toxic and cannot be used in pharmaceutical prepa-
rations. See Merck Index, 11th Ed., 1989, p. 3297.

14–14 (a) ko = 0.019 hr−1; (b) check your answer with
equation (14–113) and Example 6–14. The rate con-
stant, ko, changes to 0.0156 hr−1 when

√
μ/(1 − √

μ)
replace

√
μ on the x axis and the slope A becomes

0.5295, similar to the theoretical A value.

14–15 kH = 0.229 M−1 hr−1 or liter mole−1 hr−1; ko =
0.00135 hr−1 by linear regression analysis; extrap-
olation by eye yields 0.0013 hr−1.

14–16 From the figure in Problem 14–16, log k = −3.75;
k = 1.78 × 10−4 min−1. From the calculation using
the given equation, k = 1.95 × 10−4 min−1 for com-
pound 7 at pH 4.

14–17 Partial Answer: At pH = 2.0, [H+] = 0.01 M,
[OH−] = 1.0 × 10−12 M, kobs = 7.62 × 10−11 sec−1,
log kobs = −10.12. At pH = 8.0, [H+] = 10−8 M,
[OH−] = 10−6 M, kobs = 7.60 × 10−11 sec−1, log kobs

= −10.12.

14–18 Partial Answer: (b) The regression equation is log kobs

= 0.8689 pH − 11.150. The value of kOH
− is 7.08 ×

102 sec−1.

14–19 Partial Answer: k25◦C = 0.0315 hr−1 at pH 5, k25◦C =
0.0083 at pH 8, k40◦C = 0.111 at pH 5.

14–20 The H2PO4
− ion is acting as a catalyst.

14–21 Partial Answer: (a) At pH 6, kobs = 0.0547 hr−1; at
pH 6.5, kobs = 0.162 hr−1.

See equations (14–138) and (14–139). To compute
[H2PO4

−] and [HPO4
2−] at each pH one uses the

buffer equation

pH = pKa + log
([

HPO4
2−]

/[H2PO4
−]

)
(4)

where pka is the second dissociation constant of
H3PO4. At pH 6, one obtains [HPO4

2−]/[H2PO4
−]

= 0.062/1. Thus, for 1 mole of buffer mixture, one
has 0.062/(1 + 0.062) = 0.058 mole HPO4

2− and
(1 − 0.058) = 0.942 mole H2PO4

−. Calculate the
[H2PO4

−] and [HPO4
2−] values at pH 6.0, 6.5, 7.0,

and 7.2 for 0.1 mole/liter of buffer. The total rate con-
stant at pH, say, 6, where [OH−] = 10−8, is kpH6 =
(4.28 × 106 × 10−8) + (0.036 × 0.0942) + (1.470 ×

1
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0.0058) = 0.0547 hr−1. Then, calculate the kobs values
at pH 6.5, 7.0, and 7.2.

(b) Finally, plot the log kobs values versus pH.

14–22 (a) kM = 0.169 M−1 sec−1; (b) k′
M = 9.03 × 105 M−2

sec−1.

14–23 ko = 0.056 day1; kH+ = 18.0 M−1 day−1; and kOH− =
3.3 × 104 M−1 day−1.

14–24 t95% = 10.4 min. Degradation has occurred to the
extent of 5% in 10.4 min, so heating at 70◦C for a
full 15 min would not be advisable. Brooke et al.
(D. Brooke, J. A. Scoptt, and R. J. Bequette, Am. J.
Hosp. Pharm. 32, 44, 1975.) found by actual assay
that heating at 50◦C or 60◦C produced less than 5%
decomposition.
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P R A C T I C E P R O B L E M S F O R
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CHAPTER 14: CHEMICAL KINETICS AND
STABILITY

14–1 The time and amount of decomposition of 0.056 M
glucose at 140◦C in an aqueous solution containing
0.35 N HCl were found to be

Data for Problem 14–1

Glucose, Remaining
Time (hr) (mole/liter × 102)

0.5 5.52

2 5.31

3 5.18

4 5.02

6 4.78

8 4.52

10 4.31

12 4.11

What are the order, the half-life, and the specific
reaction rate of this decomposition? Can one unques-
tionably determine the order from the data given?

14–2 According to Connors et al.,1 the first-order rate con-
stant, k1, for the decomposition of ampicillin at pH
5.8 and 35◦C is k1 = 2 × 10−7 sec−1. The solubility
of ampicillin is 1.1 g/100 mL. If it is desired to pre-
pare a suspension of the drug containing 2.5 g/100
mL, calculate (a) the zero-order rate constant, k0, and
(b) the shelf-life, that is, the time in days required
for the drug to decompose to 90% of its original
concentration (at 35◦C) in solution. (c) If the drug
is formulated in solution rather than a suspension
at this pH and temperature, what is its shelf-life?
Note: 100 mL = 1 deciliter = 1 dL.

14–3 (a) Menadione (vitamin K3) is degraded by exposure
to light, a process called photodegradation or pho-
tolysis. The rate constant of decomposition is k =
4.863 × 10−3 min−1. Compute the half-life.

(b) The formation of a complex of menadione with
the quaternary ammonium compound cetylethyl-
morpholinium ethosulfate (I) in aqueous solution
slows the rate of photodegradation by ultraviolet
light. The rate of decomposition of 5.19 × 10−5

M of menadione containing 5% (w/v) of the com-
plexing agent (I) is as follows (the data are based
on the paper by Kowarski and Ghandi2):

Time (min) 10 20 30 40

Menadione remaining
(mole/liter × 105)

5.15 5.11 5.07 5.03

Compute the k value, t1/2 , and the percent
decrease of k and increase of t1/2 in the presence
of the complexing agent.

(c) What is the concentration after 5 hr with and
without complexing agent? Use ln rather than log
throughout the problem.

14–4 Garrett and Carper3 determined the zero-order rate
constant for the degradation of the colorants in a mul-
tisulfa preparation. The results obtained at various
temperatures are as follows:

◦C 40 50 60 70

k 0.00011 0.00028 0.00082 0.00196

(a) Plot these results according to the Arrhenius rela-
tionship and compute the activation energy, Ea.

(b) Extrapolate the results to 25◦C to obtain k at room
temperature. You can also use regression analysis
to answer (a) and (b).

(c) The rate of decrease of absorbance of the colored
preparation at a wavelength of 500 nm was found
to be zero order and the initial absorbance, Ao,
was 0.470. This preparation should be rejected
when the spectrophotometric absorbance, A, falls
to a value of 0.225. Therefore, to predict the
absorbance of the preparation at any time t hours
after preparation, one uses the zero-order equa-
tion A = Ao − kt. Calculate the predicted life of
the preparation at 25◦C.

14–5 In the saponification of methyl acetate at 25◦C, the
molar concentration of sodium hydroxide remaining
after 75 min was 0.00552 M. The initial concentra-
tions of ester and of base were each 0.01 M. Calculate
the second-order rate constant and the half-life of the
reaction.

14–6 Assume that under acidic conditions a compound
undergoes reaction according to the following mech-
anism:

(1) A + H+ 1⇀↽
2

AH+

(2) AH+ 3−→ B

(3) B
4−→ Products (1)

1
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(a) What is the expression giving the steady-state
concentration of B?

(b) What is the expression giving the steady-state
concentration of AH+ if the total concentration
of acid added to the reaction mixture, [HT

+], is
related to the acid present during the reaction, both
free, [H+], and bound, [AH+], by the equation

[HT
+] = [H+] + [AH+] (2)

(c) Give the rate law expressing the rate of formation
of products if, instead of measuring the total con-
centration of acid added to the reaction mixture,
one uses a pH meter to measure the concentration
of “free” acid, [H+]. Use the results of parts (a)
and (b). See under Rate Determining Step, page
329, for help in solving this problem.

14–7 Diacetyl nadolol, used in ophthalmic preparations for
glaucoma therapy, hydrolyzes in a series of consecu-
tive reactions represented as A

k1−→ B
k2−→ C , where

B and C are the intermediate and final products, acetyl
nadolol and nadolol, respectively.

The apparent rate constants, k1 and k2, are first-
order constants. The rate of decomposition A → B is
given at pH 7.55 and 55◦C by Chiang et al.4 as

Data for Problem 14–7

A (mM) 0.23 0.19 0.16 0.13 0.09 0.06

t (hr) 5 10 15 20 30 40

where mM stands for millimolar.
(a) Compute k1 using least squares.
(b) The rate constant in the second step, k2, was found

by nonlinear regression analysis to be 0.0243
hr−1. On the same graph plot the concentration
of A remaining and the concentrations of B and
C appearing as A hydrolyzes, versus the time in
hours as given in the table. Prepare a table of
concentrations of A, B, and C at various times,
t, using the appropriate equations in the section
on the complex reactions in this chapter, pages
324–328.

(c) Compute t1/2 for A. What are the concentrations of
B and C at this time?

14–8 The hydrolysis of atropine base was found by Zvirblis
et al.5 to be first order with respect to the base. The
degradation constant, k, at 40◦C was 0.016 sec−1. If
the energy of activation, Ea, is 7.7 kcal/mole, what is
the Arrhenius factor, A? What does the value of Ea

suggest about the stability of atropine base at 40◦C?

14–9 The following data for the first-order decomposition
of penicillin are obtained from Swintosky et al.6:

Data for Problem 14–9

First-order rate 0.0216 0.0403 0.119
constant, k, hr−1

Temperature (◦C) 37 43 54

Plot the results and compute the activation energy.
What is the Arrhenius factor, A?

14–10 The first-order degradation of glucose in acid solution
results in the formation of 5-hydroxymethylfurfural
(5-HMF), and 5-HMF yields additional breakdown
products that give the straw color to glucose solutions
stored for long periods of time at high temperatures.
These conditions exist, for example, in military ware-
houses and medical units.

The values of the rate constant for the breakdown
of glucose in 0.35 N HCl solution at 110◦C to 150◦C
are given in the following table:

Data for Problem 14–10∗

◦C ◦K 1/T (◦K–1) k (hr–1) ln k

110 383 0.00261 0.0040 −5.521

130 403 0.00248 0.0267 −3.623

150 423 0.00236 0.1693 −1.776
∗Data are from K. R. Heimlich and A. Martin, J. Am. Pharm. Assoc.,
Sci. Ed. 49, 592, 1960.

Calculate the activation energy and the Arrhenius
factor, A, for glucose in acid solution tested experi-
mentally for accelerated breakdown over the temper-
ature range of 110◦C to 150◦C.

14–11 Methenamine is used to treat urinary tract infec-
tions, its antibacterial activity being derived from
formaldehyde, which is produced on hydrolysis in
acidic media. About 0.75 mg/mL is the physiologic
concentration of methenamine following a normal
dose in humans. Methenamine circulates in the blood
(pH 7.4) as the intact drug without degradation but
is rapidly converted to formaldehyde when it reaches
the acidic urine.

The Arrhenius activation energy, Ea = �E‡ at
pH 5.1, obtained in vitro at several temperatures is
12 kcal/mole and the Arrhenius factor, A, at 37.5◦C
is 2 × 107 hr−1 (Strom and Jun7).

Dr. Murtadha Alshareifi e-Library

1195



P1: Trim: 8.375in × 10.875in

LWBK575-14-Stud-Prob LWW-Sinko-educational March 29, 2010 20:8

S T U D E N T P R A C T I C E P R O B L E M S : C H . 1 4 3

(a) Compute the entropy of activation, �S‡, and the
first-order rate of the reaction, k. Compute the free
energy of activation, �G‡, from equation (14–
91). Assume that Ea = �H‡ = �E‡.

(b) The drug remains in the bladder for about 6 hr
and the effective concentration of formaldehyde
is about 20 μg/mL. Compute the concentration of
formaldehyde in the bladder after 6 hr assuming
that the concentration of methenamine in the urine
is that of the drug in plasma (0.75 mg/mL).

(c) When does formaldehyde reach the effective con-
centration, 20 μg/mL, in urine?

(d) Note that �H‡ is a large positive value, �S‡ is a
relatively large negative value, �G‡ is therefore
positive, and the Arrhenius factor is small relative
to A values normally found. Rationalize these fac-
tors in terms of the conversion of methenamine in
the body to formaldehyde. See Example 14–11
and the paragraph following it to assist you in
your reasoning.

14–12* In a differential scanning calorimetric experiment
on the thermal degradation of cefamandole naftate,
Zheng and Zhang8 obtained the following data:

Data for Problem 14–12

Heating rate, β 5 2 1 0.5
(◦C/min)

Degradation peak 472 466 460 475
temp., Tm (◦K)

Let x′ = 1/Tm and y′ = ln β/Tm
2. One then casts

the data into the following transposed form:

Data for Problem 14–12

x = x′ × 103 2.119 2.146 2.174 2.188

y = y′ + 13 2.2955 1.4048 0.7375 0.0575

Now one carries out regression analysis of y
against x where the slope is −Ea/R, and solve for
Ea. The degradation peak temperature, Tm, of a drug
molecule depends on the rate of heating, β, in a dif-
ferential scanning calorimeter; thus the slope is

− Ea

R
= dy

dx
= dln

(
β/T 2

m

)
d(1/Tm)

(3)

In this way one can obtain Ea values and rapidly
scan a series of drug analogues for their stability or
breakdown. This method is known as the Kissinger
approach.9

∗Problem 14–12 was provided by Professor Z. Zheng, Shanghai Medical
University, Shanghai, China.

14–13* The observed alkaline hydrolysis rate constants, kobs,
of maleimide10 in dioxane–water mixtures (v/v %)
at 30◦C containing 0.03 M NaOH are given, in chart
below, together with the solubility parameters11 of
the solvent mixtures, δ1 (dioxane–water). Plot kobs

(vertical axis) against the delta value, δ1. Then plot
the log of kobs versus δ1 on the same graph and find
a simple linear relationship between the two vari-
ables. Does the addition of dioxane protect maleimide
against hydrolysis? Explain. (The solubility parame-
ter is related to polarity, as explained on pages 334–
335; the larger is δ1, the greater is the polarity of the
dioxane–water mixture).

Data for Problem 14–13

% (v/v)
Dioxane δ1(cal/cm3)1/2 kobs × 103 s–1 log kobs

5 22.78 10.68 −1.971

10 22.11 9.219 −2.035

15 21.43 7.612 −2.1185

20 20.76 6.572 −2.182

25 20.09 5.476 −2.262

30 19.42 4.580 −2.339

40 18.07 3.217 −2.493

50 16.73 2.223 −2.653

60 15.39 1.573 −2.803

70 14.04 1.199 −2.921

Would the toxicity of dioxane† prevent its use in
pharmaceutical products? See Merck Index, 11th Ed.,
1989, p. 521.

14–14 The effect of ionic strength, μ, on the observed degra-
dation rates of cefotaxime sodium, a potent third-
generation cephalosporin, was studied in aqueous
solution at several pH values, with the following
results12:

Data for Problem 14–14∗

kobs × 103 hr−1 (25◦C)Ionic Strength
μ pH 2.23 pH 5.52 pH 8.94

0.2 7.99 3.28 22.6

0.4 7.82 3.30 25.6

0.5 7.82 3.24 25.5

0.7 8.07 3.25 27.1

0.9 7.79 3.17 28.3
∗Data in this chart are from S. M. Berge, N. L. Henderson, and M. J. Frank,
J. Pharm. Sci. 72, 59, 1983.

∗Maleimide reacts with the sulfhydryl group of proteins and may one day
become a useful drug. This problem deals with the chemical kinetics of the
alkaline hydrolysis of an imide in an aqueous solvent, the dielectric constant
of which is altered by the addition of dioxane.
†Dioxane is toxic and cannot be used in pharmaceutical preparations. See
Merck Index, 11th Ed., 1989, p. 3297.
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(a) Does a primary salt effect exist at any of the
pH values under study? If so, compute the rate
constant, ko, by plotting log kobs versus

√
μ and

extrapolating to μ = 0.
(b) When you regress log kobs versus [(

√
μ/(1 +√

μ))] instead of
√

μ at pH 8.94, the slope agrees
better with the theoretical value, AzAzB , where
Atheor = 0.51 at 29◦C. Why? See Carstensen.13

14–15 The following data were obtained for the decomposi-
tion of 0.056 M glucose at 140◦C at various concen-
trations of the catalysts, HCl:

Data for Problem 14–15

kobs (hr–1) Normality, [H3O
+]

0.00366 0.0108

0.00580 0.0197

0.00818 0.0295

0.01076 0.0394

0.01217 0.0492

Plot the results and, from the graph, obtain ko and
the catalytic constant, kH. It may be assumed that
hydroxyl ion catalysis is negligible in this acidic solu-
tion.

14–16 The moieties CH2NHCH3, CH2N, and CH2NO
were attached to a model peptide to form a prodrug
known as a Mannich base (compounds 7, 8, and 9,
respectively, of Bundgaard and Møss14). The pH–rate
profile for the hydrolysis of the Mannich bases (see
Fig. 3 in reference 12) exhibits sigmoidal shapes. The
points of the three curves can be calculated using the
equation

k ′ = k1 Ka

[H+] + Ka
+ k2[H+]

[H+] + Ka
(4)

where k1 and k2 are the first-order rate constants for
degradation of the Mannich base, B, and the conjugate
acid, BH+, respectively. Ka is the ionization constant
of the protonated Mannich base. The values at 37◦C
given by the authors for compound 9 are k1 (min−1) =
2.5 × 10−3, k2 (min−1) = 1.0 × 10−2, and pKa = 5.1;
Ka = 7.94 × 10−6.

Calculate k, the first-order rate constant for the
degradation of the Mannich base, compound 9, at pH
4. Check your answer at pH 4 by reading the log k
value from the accompanying figure and converting
it to the rate constant, k (min−1), for hydrolysis. You
may want to calculate the k values for compounds 7
and 8. The rate data for the breakdown of compound
7 are as follows: k1 = 0.024 (min−1), k2 = 1.8 × 10−4

(min−1), and pKa = 7.2. The values for compound 8
are k1 = 0.42 (min−1), k2 = 1.7 × 10−3 (min−1), and
pKa = 7.2.

pH profile for the Mannich base derivatives 7 (�), 8(◦), and 9(•) in
aqueous solution at 37◦C. (Figure 3 of H. Bundgaard and J. Moss,
J. Pharm. Sci. 78, 122, 1989. Reproduced with permission of the
copyright owner and altered according to the authors.)

14–17 The degradation constant, kobs (sec−1), for codeine
sulfate can be calculated at 25◦C using the expression

kobs (sec−1) = kH+ [H+] + kOH− [OH−] + ko

= 2.46 × 10−11[H+] + 3.22 × 10−9[OH−]

+ 7.60 × 10−11 (5)

The constants kH+ and kOH− associated with the
concentrations of [H+] and [OH−], respectively, are
expressed in M−1 sec−1, where M−1 stands for recip-
rocal moles per liter and ko is in sec−1. Calculate the
observed rate constant, kobs (sec−1), for the decom-
position of codeine at 25◦C in codeine sulfate solu-
tions at pH 0.0, 2.0, 8.0, and 10. Powell15 showed
that codeine sulfate solutions are subjected to gen-
eral acid–base catalysis due to a buffer consisting of
the phosphate ions, Na2HPO4 and NaH2PO4. Plot log
kobs versus pH and compare with Figure 1, page 902,
in the report by Powell. Note: At pH = 0.0, [H+] =
1 M. Above this concentration (>1 M), pH values
become negative. However, below pH = 0 we do not
use minus pH values but rather an acidity function
known as Ho (see Albert and Serjeant16).

14–18 Equation (14–132) can be written in logarithmic form
to produce equation (14–134),

log kobs = pH + log (kw kOH− ) (6)

This equation allows one to compute kOH− from the
intercept of a regression of log kobs against pH. Use
the data of Khan10 for the effect of pH on the alkaline
hydrolysis rate constant of a new drug, maleimide,
given in the following table:

Data for Problem 14–18

pH 8.39 8.51 8.84 8.88 9.13 9.36 9.68 9.89 10.08

kobs × 103 0.1514 0.1750 0.330 0.3124 0.6510 0.9310 2.059 2.633 4.057
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(a) Plot log kobs (vertical axis) against pH.
(b) Using least squares, compute the specific catalytic

constant kOH− from the intercept.

14–19 Thienamycin is an antibiotic with a structure some-
what related to the penicillins. Its decomposition
accelerates as the concentration is increased, and a
derivative, N-formimidoylthienamycin (imipemide,
imipenen), has been introduced to improve the sta-
bility and broad spectrum of activity.

Smith and Schoenewaldt17 studied the stability of
imipenen in aqueous solution at 25◦C and 40◦C. A
first-order reaction of ring opening occurred in dilute
solution (1 or 2 mg/mL) and a second-order reac-
tion became evident at higher concentrations. The
pseudo–first-order rate constants, k, hr−1, at 25◦C and
40◦C are given in the following table at buffer pH
from 5.0 to 8.0. The reaction rates were independent
of general acid–base buffer effects, and the effect of
ionic strength on rate was insignificant.

Data for Problem 14–19

Buffer pH 5.0 6.0 7.0 8.0

k (hr−1), 25◦C 0.0315 0.0069 0.0040 0.0083

k (hr−1), 40◦C 0.111 0.0257 0.0169 0.0462

The equation describing the rate–pH profiles of the
drug at 25◦C and 40◦C is

kobs = k1[H+] + k2 Kw/[H+] + ko (7)

where kobs is the experimentally determined first-
order rate constant, k, at a definite pH; k1 and k2 are
the second-order rate constants for hydrogen ion and
hydroxyl ion catalysis, respectively, and ko is the first-
order rate constant for water or “spontaneous” decom-
position. Kw/[H+] is written in place of [OH−], where
Kw is the ionization constant of water. Knowing the
pH, one has by experiment both [H+] and [OH−] =
Kw/[H+]. At 25◦C, Kw

∼= 10−14.00 and at 40◦C, Kw =
10−13.54.

Plot the experimentally obtained points on the pH
profiles for the pseudo–first-order rate constants at
25◦C and 40◦C using the data from the table. Draw
the line obtained by use of equation (14–150) to deter-
mine how well the theory fits the experimental results.
Using multiple least-squares regression, compute the

values of ko, k1, and k2 at both 25◦C and 40◦C. The
researchers obtained the following results using a sta-
tistical method known as nonlinear regression:

Data for Problem 14–19

Temperature ko (hr–1) k1 (M–1 hr–1) k2 (M–1 hr–1)

40◦C 0.01565 9730 10300

25◦C 0.00403 2780 4150

Use the coefficients k0, k1, and k2 to back-calculate
k25◦C and k40◦C.

14–20 Notari18 studied the hydrolytic deamination of cyto-
sine arabinoside in buffer solutions of varying compo-
sition prepared so as to maintain the pH and the ionic
strength constant. He reported the following data for
the hydrolysis at 70◦C:

Data for Problem 14–20

Buffer Composition

pH NaH2PO4 · H2O Na2HPO4 NaCl k, hr–1

6.15 0.120 0.012 0.000 0.00311

0.048 0.0048 0.094 0.00171

0.024 0.0024 0.125 0.00118

6.90 0.040 0.040 0.000 0.00113

0.029 0.029 0.043 0.000872

0.016 0.016 0.092 0.000619

Using these data, determine which species in the
buffer solution is functioning as a catalytic agent.
Give your reasoning for choosing this agent. Hint:
Plot k versus [NaH2PO4] and versus [Na2HPO4] on
the same graph. If one or the other of these catalytic
species produces parallel lines at the two pH values,
catalysis by this species is occurring.∗

14–21 The degradation of phentolamine hydrochloride in
phosphate buffer at pH 5.9 to 7.2 and 90◦C is
attributed to both the buffer species H2PO4

−/HPO4
2−

and specific base catalysis. The value of the specific
base catalysis constant kOH− was found to be 4.28 ×
106 liters mole−1 hr−1. The catalytic coefficients of
the species H2PO4

− and HPO4
2− are k1 = 0.036 and

k2 = 1.470 liters mole−1 hr−1, respectively, and the
total buffer concentration is 0.1 mole/liter. The equa-
tion for the overall rate constant is

kobs = kOH− [OH−] + k1[H2PO4
−] + k2

[
HPO4

2−]
(8)

The solvent effect is negligible and k0 = 0 (based
in part on Wang et al.19).

∗Dr. Keith Guillory, University of Iowa, suggested the test in Problem 14–20
to determine what species is acting as the catalyst.
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(a) Compute the overall hydrolysis rate constant, k,
at the pH values of 6, 6.5, 7, and 7.2 using the
appropriate expression. At the pH range of 5.9 to
7 you can use the second dissociation constant
of phosphoric acid, pKa2 = 7.21, to obtain the
concentration of H2PO4

− and HPO4
2− at each pH

value. Disregard the effect of the solvent alone.
Then calculate the kobs values at pH 6.5, 7.0, and
7.2. Finally, convert the k values into log k and
plot them versus pH.

(b) Plot the logarithm of the calculated k values
against pH.

14–22 The degradation in methanol of chlorthalidone, an
oral diuretic sulfonamide, is catalyzed by ferric ions.
The observed rate constants in methanol as solvent
vary with the FeCl3 concentration as follows:

Data (a) for Problem 14–22∗

[FeCl3] × 104 M 0.64 1.93 3.78 4.96 6.22

kobs, hr−1 0.019 0.081 0.21 0.26 0.36
∗Data in this chart are from N. K. Pandit and J. S. Hinderliter, J. Pharm.
Sci. 74, 857, 1985.

The addition of acetic acid to a chlorthalidone–
methanol solution containing 6.15 × 10−4 mole/liter
of FeCl3 also influences hydrolysis. The variation of
the observed rate constants with increasing concentra-
tions of acetic acid, expressed as [H+], are as follows:

Data (b) for Problem 14–22

[H+] × 107 0.52 1.60 1.98 2.30

kobs, hr−1 0.436 0.672 0.764 0.772

The total kobs, when both [H+] and [FeCl3] vary,
can therefore be represented as

ktotal = ko + kM[M] + k ′
M[M][H+] (9)

where ko is the first-order rate constant due to the
catalytic effect of the solvent alone (methanol), kM

(M−1 sec−1) is the pseudo–second-order constant for
the metal ion catalyzed reaction, [M] is the concen-
tration in mole/liter of FeCl3, and k′

M (M−2 sec−1) is
the pseudo–third-order constant for the metal ion and
acid-catalyzed reaction.
(a) Plot kobs (vertical axis) against [FeCl3] from the

first table of this problem and compute the equa-
tion of the line from which kM is obtained.

(b) Plot kobs versus [H+] from the second table, and
compute k′

M. Hint: Apply the general equation (9)
to each part of the problem. That is, include the
appropriate terms in the slope and intercept you
get in parts (a) and (b).

14–23 The hydrolysis of cefotaxime sodium at 25◦C is first
order,20 and kobs = ko + kH+ [H+] + kOH[OH−]. The
pH has very little effect in the range of 4.3 to 6.2, and
kobs in this pH range has the value 0.056 day−1. The
ionic strength and the phosphate buffer used have no
effect on the decomposition constant. The kobs values
at pH 1.5 and 8.5 are 0.625 and 0.16 day−1, respec-
tively. Compute ko, kH+ , and kOH− values.

14–24* Cyclophosphamide monohydrate is available as a
sterile blend of dry drug and sodium chloride pack-
aged in vials. A suitable aqueous vehicle is added
and the sterile powder dissolved with agitation before
the product is used parenterally. However, cyclophos-
phamide monohydrate is only slowly soluble in water,
and a hospital pharmacist inquires concerning the
advisability of briefly (for 15 min) warming the solu-
tion to 70◦C to facilitate dissolution. Brooke et al.21

addressed this problem. Assuming that degradation
to 95% of the labeled amount is permitted for this
compound, and given k at 25◦C = 0.028 day−1, Ea =
25.00 kcal/mole, what answer would you give?
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CHAPTER 15: INTERFACIAL PHENOMENA

15–1 Hint: What kind of intermolecular forces do you
believe might contribute to these observations? Par-
tial Answer: increasing temperature decreases molec-
ular interaction.

15–2 Partial Answer: (a) γ = 73.37 dynes/cm.

15–3 Check your answer with Hiemenz.1

15–4 39.2 dynes/cm2.

15–5 65.2 dynes/cm.

15–6 (a) 64.0 cm.
(b) The important process is not capillary action, but

rather appears to be osmosis.

15–7 Partial Answer: (a) 2.30 cm.

15–8 Partial Answer: (a) the spreading coefficient is
Sinitial = 35.10 dynes/cm. (b) The positive spread-
ing coefficient means the test lotion spread on water.
To understand it spreading on the skin, the literature
used a substrate to mimic the skin condition. Please
refer to the original literature.

15–9 Wc = 54 ergs/cm2; Wa = 91.8 ergs/cm2; Sinitial =
37.8 ergs/cm2.

15–10 WSL = 48.98 ergs/cm2 or 0.049 N/m; Sinitial =
−77.42 ergs/cm2 or −0.077 N/m.

15–11 Partial Answer: (a) Magnesium stearate: γSL = 109.8
dynes/cm; lactose: γSL = 8.55 dynes/cm; (b) for mag-
nesium stearate, Sinitial = −110.3 dynes/cm; for lac-
tose, Sinitial = −9.76 dynes/cm.

15–12 � = 6.6 × 10−9 mole/cm2; 7.1 × 10−7 g/cm2.

15–13 (a) ∂γ /∂ (wt%) = −0.06015 ergs cm−2 (wt%)−1;
(b) � = 1.2 × 10−11, 2.27 × 10−11, and 3.26 × 10−11

mole cm−2; (c) the areas per molecule are 1383, 730,
and 510 Å2; (d) Does aminobutyric acid significantly
lower the surface tension of water?

15–14 At pH 5, (dγ /d ln c) = 9.28 × 10−5 N/m; A =
45 (nm)2/molecule. At pH 4, (dγ /d ln c) = 2.5 ×

10−5 N/m; A = 160 (nm)2/molecule = 16,400
A2/molecule. Tanford et al.2 calculated the area of
bovine serum albumin at pH 4 using intrinsic viscos-
ity and obtained 16,286 Å2/molecule.

15–15 Check your answers against Figure 1 of the article by
Korazac et al.3 Extrapolating to the lower end of the
curve yields an area/molecule of A ∼= 52 × 10−20 m2

= 52 Å2. Extrapolating to the end of the curve yields
A ∼= 96 × 1020 m2 = 96 Å2.

15–16 25 Å.

15–17 22 Å.

15–18 M = 10,121 g/mole.

15–19 6042 g/mole.

15–20 (a) n = 1.1, k = 1.76 liters/g; (b) n = 1.1, k =
1.76 liters/g.

15–21 (a) Using the two-point formula and the Freundlich
isotherm for slope, 1/n, and reading directly from the
y intercept on the log–log plot for k, one obtains 1/n
= 0.688 (dimensionless) and k = 0.4 mg/g.

The units on k are taken as mg/g because at the
intercept the Freundlich equation requires that c =
1 mg/mL, or in logarithmic form, log c = log 1 = 0.
Then, log(x/m) = log k + (1/n) log c = log k + 0 and
log(x/m) = log k. Therefore, (x/m) = k and k has the
same units, mg/g, as has x/m.

Using regression analysis on the Freundlich log–
log equation, log(x/m) = −0.4048 + 0.6906 log c;
r2 = 0.9999. The slope = 1/n = 0.6906 (dimension-
less) and from the intercept, log k = −0.4048; k =
antilog(−0.4048) = 0.394 mg/g.

(b) Using the two-point formula and the Langmuir
isotherm for 1/ym, we obtain the slope:

1/ym = (c/y)1 − (c/y)2

(c)1 − (c)2
= 6.45 − 3.57

20 − 3

= 0.1694 g/mg

ym = 1/0.1694 = 5.903 mg/g (1)

For the intercept, one reads directly from the graph
to obtain 1/(bym) = 3.35 g/dL; 1/b = intercept × ym

= (3.35 g/dL) × (5.903 mg/g)(1/b) = 19.78 mg/dL;
b = 0.051 dL/mg.

1
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Using regression analysis on the Langmuir equa-
tion,

c/y = 1/(bym) + (1/ym)c;

c/y = 3.247 + 0.1653 c; r2 = 0.978

Slope = 0.1653 g/mg = 1/ym; ym = 6.0496 mg/g

Intercept = 1/(bym) = 3.247 g/dL

1/b = 3.247 × 6.0496 = 19.643 mg/dL

b = 0.051 dL/mg (2)

15–22 Aspirin, 63 tablets; chlordiazepoxide, 452 tablets; and
diazepam, 1958 tablets.

15–23 (a) �G◦ = −2.9 kcal/mole at 37◦C and −3.0 kcal/
mole at 50◦C; (b) �H◦ = 490 cal/mole; (c)
�S◦(37◦C) = 10.8 ue and �S◦(50◦C) = 10.8 ue; (d)
at 37◦C, x/m = 8.3 mg/g; at 50◦C, x/m = 7.9 mg/g
at c (mg/100 mL) = 0.5.

15–24 Partial Answer: (b) Ss = 0.0879 erg cm−2 deg−1;
Hs = 89.17, 90.52, and 89.09 ergs cm−2 at 20◦C,
90◦C, and 150◦C, respectively; (c) See Harkins4 for
an interpretation of Hs and Ss .

15–25 Partial Answer: Ss = 0.113 erg cm2 deg−1; at 20◦C,
Hs = 60.08 ergs cm2.

15–26 Partial Answer: (a) θ (water) = 115.7◦, θ (ethylene
glycol) = 92◦, θ (benzene) = 50.2◦.

15–27 35.6 mJ/m2. (Note that the numerical value 35.6 for
the surface tension in the SI units of mJ/m2 is the same

as the numerical value for surface tension in the cgs
system, namely 35.6 ergs/cm2.)

15–28 Partial Answer: A sphere has the minimum surface
area.

15–29 The film converts into a small spherical drop, which
has very small diameter because of the very thin thick-
ness of the film.

15–30 11.8 × 10−6 joules.

15–31 Hint: Apply equation (15–11). Partial Answer: The
small become smaller and the big become bigger.

15–32 The surface tension of hot water is less than that of
cold water. This could lead to the decrease in the cap-
illary rise. On the other hand, the density of hot water
is less than that of cold water. This in turn should lead
to an increase in the capillary rise. The decrease in
the capillary rise that was found in the experiment
indicates that the change in surface tension with tem-
perature is higher than the change in density.
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CHAPTER 15: INTERFACIAL PHENOMENA

15–1 Water has an unusually high surface tension, and
like other liquids, its surface tension decreases with
increasing temperature. What is your explanation for
these two phenomena?

15–2 You wish to formulate a sunscreen product that low-
ers surface tension and thus spreads easily on the
skin. You choose p-aminobenzoic acid, a powerful
sunscreen.
(a) Calculate the surface tension of a 12.35 wt% of

p-aminobenzoic acid solution in water at 25◦C.
The DuNoüy tensiometer ring circumference is
12.47 cm and the correction factor β according to
Harkins and Jordan is 0.920. The dial reading in
dynes was obtained experimentally as 1989.

(b) What agent might you add to improve the spread-
ing qualities of this product?

15–3 Equation (15–1) considers γ as a force per unit length
(dynes/cm) in the surface, whereas equation (15–2)
views γ as an energy per unit area (erg/cm2) of the
surface. Show the dimensional equivalency in both
cgs and SI units for these two interpretations of the
surface tension.

15–4 What is the pressure difference, �P, in dynes/cm2

across a soap bubble formed from the soap solution
of Example 15–1? The radius of the soap bubble is
2.50 cm.

15–5 Calculate the surface tension of a 2% (w/v) solution
of a wetting agent that has a density of 1.008 g/cm3

and that rises 6.60 cm in a capillary tube having an
inside radius of 0.02 cm.

15–6 Water has a surface tension of 71.97 dynes/cm at 25◦C
and its density at 25◦C is 0.9971 g/cm3.
(a) How high will the water rise in a very fine capillary

tube of radius 0.0023 cm?
(b) If water rises by capillary action only 64 cm in a

narrow tube equivalent to a xylem tube in a living
plant, how is it possible to lift aqueous nutrients
to the topmost leaves in the tall trees in a forest?

15–7 (a) How high will the liquid carbon tetrachloride rise
in a capillary tube of radius 0.015 cm at 20◦C? The

density of carbon tetrachloride is 1.595 g/cm3 and
its surface tension is 26.99 dynes/cm at 20◦C.

(b) Could one use this experiment to estimate the
acceleration, g, caused by gravity on earth?

15–8 (a) Paruta and Cross1 studied the spreading on water
of a number of surfactants (spreading promoters)
added to mineral oil as a laboratory test in the
design of cosmetic creams and lotions. The sur-
face tension of water at 25◦C is ∼72.0 dynes/cm.
The surface tension of a test lotion consisting of
5 g/dL (5% w/v) solution of sorbitan monooleate
in mineral oil was found to be 31.2 dynes/cm
and the interfacial tension γ it of the oil–surfactant
solution measured against water was 5.7 dynes/
cm. Calculate the initial spreading coefficient,
Sinitial, of the oil–surfactant solution (the oil phase)
on water.

(b) What is the significance of the positive spread-
ing coefficient? Could you suggest a better sub-
strate than water to test the spreadability of a cos-
metic lotion? See Paruta and Cross for another
approach.1

15–9 The surface tension of n-heptyl alcohol is 27.0 ergs/
cm2, the surface tension of water is 72.8 ergs/cm2,
and the interfacial tension between the two liquids is
8.0 ergs/cm2 at 20◦C. Calculate Wc, Wa, and Sinitial.

15–10 The contact angle θ for a skin lotion when applied to
the back of the hand of a number of subjects was found
to have an average value of 103 deg at 24◦C. The
surface tension, γL, of the lotion measured at 24◦C
in a capillary-rise experiment was 63.2 dynes/cm, or
63.2 mN m−1 in SI units (the symbol m stands for
both milli and meters; 63.2 mN m−1 is read as “63.2
millinewtons per meter”). What is the work of adhe-
sion, WSL, and the initial spreading coefficient, Sinitial,
for this lotion on the skin?

15–11 Magnesium stearate and lactose are excipients com-
monly used in tablet formulation. The measured con-
tact angles of water or of a saturated aqueous solution
on the surfaces of compacts of these two powders are
θ = 121 deg and θ = 30 deg, respectively. Their sur-
face tensions (against air) are 72.3 and 71.6 dynes/cm,
respectively. The surface tension of water (against air)
at 20◦C is 72.8 dynes/cm.

1

Dr. Murtadha Alshareifi e-Library

1202



P1: Trim: 8.375in × 10.875in

LWBK575-15-Stud-Prob LWW-Sinko-educational March 17, 2010 11:17

2 S T U D E N T P R A C T I C E P R O B L E M S : C H . 1 5

(a) Compute the interfacial tension between water
and each of these compacted powders. You will
need equation (15–59).

(b) Compute the spreading of water on the solid sur-
faces. (Data from Lerk et al.2)

(c) How do you explain the quite different spreading
results on these two powder compacts?

15–12 p-Toluidine, a yellow liquid used in the manufac-
ture of dyes, is only slightly soluble in water. The
surface tension of p-toluidine was measured at var-
ious concentrations at 25◦C (298 K) and the results
were plotted. The slope, dγ /dc, of the line at c =
5 × 10−3 g/cm3 was found to be −32,800 cm3/sec2.
Using the Gibbs adsorption equation, compute the
excess surface concentration in mole/cm2 and in
g/cm2. The molecular weight of p-toluidine is
107.15 g/mole.

15–13 The surface tension of aminobutyric acid in water
at 25◦C is given as a function of concentration
(weight percent of aminobutyric acid) in the following
table:

Data for Problem 15–13

Weight% w/w 4.96 9.34 13.43

γ (dyne/cm) 71.91 71.67 71.40

(a) Plot the data and obtain the slope ∂γ /∂ (wt%) from
the two-point formula or from regression analy-
sis. (If you use regression analysis, the intercept
should be close to the surface tension value of
water at 25◦C, 71.97 dynes/cm.)

(b) Calculate the surface excess (the Gibbs adsorption
coefficient, γ ) for aminobutyric acid at the surface
of water for each of these three concentrations
(wt%).

(c) What is the area occupied by each molecule of
aminobutyric acid at the water surface?

(d) Regarding your results, do you think that amino-
butyric acid acts as a surfactant within this con-
centration range?

15–14 The adsorption of proteins at the oil–water interfaces
is of biologic interest because in cell membranes var-
ious proteins attached to polar lipid-bilayer regions
control cellular aggregation and cellular growth.

The adsorption of bovine serum albumin (BSA) to
a polar peanut oil–water interface varies with ionic
strength and pH. At 30◦C and ionic strength μ = 0.1,
the maximum adsorptions (surface excess values) are
� = 2.54 mg m−2 at pH 5 and γ = 0.70 mg m−2 at
pH 4. The isoelectric point of BSA is near 5.3 Com-
pute the area per molecule of BSA at the two different
pH values and the limiting slope (dγ /d ln c). Why

does A, the area per molecule of BSA, differ at these
two pH values? Hint: Does protein conformation vary
with pH? The molecular weight of BSA is about
69,000 daltons. You will need the Gibbs adsorption
equation, � = −1/RT(dγ /d ln c), and for the area
per molecule, A, you will need the equation A =
1/(N�), where N is Avogadro’s number and γ is the
surface excess. You will want to convert � (g/m2)
into mole/m2 using the molecular weight (g/mole) of
BSA.

15–15 Korazac et al.4 studied the isotherms of surface pres-
sure, π , versus area per molecule, A, for insoluble
monolayers of dipalmitoylphosphatidyl choline on an
aqueous substrate of pH 5.2. They obtained the fol-
lowing results (from Figure 1 of their article):

Data for Problem 15–15

π (mN/m) 60 40 20 6 4 2 1 0

A × 10−20 m2 40 44 50 52 68 94 95 96

Plot π against A as in Figure 15–18. For the sev-
eral segments of the curve, extrapolate the line to
the x axis to obtain the limiting areas of the phase
changes observed. Identify the phase changes that
occur. Express the areas in nm2 and in Å2.

15–16 When 1 × 10−4 cm3 of stearic acid, dissolved in ben-
zene, is placed on the surface of water in a trough, the
stearic acid spreads over the surface and the benzene
evaporates off. The monomolecular layer of acid that
is formed covers an area of 400 cm2. Calculate the
length in angstroms of the stearic acid molecules.

15–17 Stearic acid has a molecular weight of 284.3 g/mole
and a density of 0.85 g/cm3. Using the data of Problem
15–16, compute the cross-sectional area of the acid
molecule in square angstroms.

15–18 By analogy of monomolecular films to a two-
dimensional gas, the molecular weight of a substance
can be obtained with the film balance by using the
equation πA = (w/M) RT. By plotting the product of
the film pressure, π , and the area, A, against π and
extrapolating to π = 0, a value of π A/w = 2.4 ×
106 erg/g at 292.15 K was obtained for w grams of a
synthetic gum. Compute the molecular weight, M, of
the gum. (Note: R = 8.315 × 107 ergs/mole deg.)

15–19 Insulin was spread as a film on the surface of an aque-
ous solution having a pH of 2.05 and an ionic strength
of 0.01. The value of πA/w extrapolated to π = 0 was
obtained as 4.02 × 106 ergs/g at 292.15 K. Compute
the molecular weight of insulin using the equation
given in Problem 15–19.
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15–20* From the logarithmic form of the Freundlich
isotherm, equation (15–50), using concentration, c,
instead of pressure, p, a plot of log(x/m) (y axis)
against log c (x axis) gives a straight line. When
the value of c equals 1.0, log c = 0, the y intercept
is log(x/m) = log k, from which the value of k is
obtained. The n value is computed from the slope.
The use of log–log graph paper allows one to read
directly the k value from the y-intercept axis where
the x axis is c = 1. Caution: One cannot obtain the
slope, n, from a direct reading on a log–log plot.

A newly synthesized steroid is adsorbed on acti-
vated charcoal at 37◦C. Data are obtained for adsorp-
tion from a phosphate buffer solution at pH 7.4:

Data for Problem 15–20

Amount (mole) of
Steroid Adsorbed Per Equilibrium Concentration,

Gram of Charcoal, x/m c, of Steroid (mole/liter)

1.585 × 10−4 3.162 × 10−5

2.310 × 10−4 5.012 × 10−5

3.162 × 10−4 7.079 × 10−5

5.012 × 10−4 1.122 × 10−4

7.943 × 10−4 1.995 × 10−4

1.259 × 10−3 3.162 × 10−4

(a) Plot x/m against c using log–log graph paper and
obtain k and n. Hint: Use 6 cycle × 6 cycle log–log
graph paper because you will need to extrapolate
the line to read the y intercept at c = 1.

(b) Regress log(x/m) against log c and compute k and
n from the intercept and the slope, respectively.

15–21 The following data are obtained for the adsorption
of timolol, an antihypertensive agent, from aqueous
solution onto kaolin at 37◦C:

Data for Problem 15–21∗

x/m (mg Adsorbed c c/(x/m)
Per g Adsorbent) (mg/100 mL) (g/100 mL)

3.1 20 6.45

2.8 17 6.07

1.8 9 5.00

0.84 3.0 3.57
∗Data in this chart are from B. C. Walker, B. Pharm. Thesis,
University of Otago, New Zealand, 1978.

(a) Plot the data on log–log paper according to
the Freundlich isotherm and evaluate n and k
[equation (15–50)] using concentration, c, instead
of pressure, p.

∗Problems 15–20 through 15–22 were prepared by B. Hajratwala, Wayne
State University, Detroit.

(b) Plot c/(x/m) (y axis) against c (x axis) accord-
ing to the Langmuir plot as shown in Figure 15–
25. Compute b and ym according to the Langmuir
equation [equation (15–58)]. (The ym value is cal-
culated from the slope, and b is computed from
the intercept.)

(c) What are the units on n, k, ym, and b?

15–22 Sellers et al.5 reported the following constants for
adsorption of various drugs by activated charcoal at
37◦C:

Data for Problem 15–22

Tablet Strength
Drug ym b (mg)

Aspirin 262 0.012 300

Chlordiazepoxide 157 0.010 25

Diazepam 136 0.010 5

In cases of drug overdose and poisoning, one prac-
tice is to administer an aqueous slurry (suspension)
of 1 g activated charcoal/kg body weight as an anti-
dote. If the patient weighs 72 kg, how many tablets
overdose of each type is such a slurry capable of han-
dling?

15–23 From the affinity or binding constant, b, obtained from
the Langmuir isotherms, the standard free energy of
adsorption can be computed as

�G◦ = −RT ln b (1)

because the affinity b is an equilibrium constant.6

The Langmuir constants for the adsorption of nadolol,
an adrenergic drug, onto magnesium trisilicate were
determined at two temperatures:

Data for Problem 15–23

b

T (◦C) ym (mg/g) (liter/g) (liter/mole)

37◦C 58.2 0.33227 102.14

50◦C 53.8 0.34168 105.457

(a) Compute �G◦ at the two temperatures.
(b) Use the integrated form of the van’t Hoff equation

and compute �H◦.
(c) Compute �S◦ at 37◦C and 50◦C.
(d) Using the nonlinear form of the Langmuir equa-

tion, that is, x/m = ym bc/(1 + bc), together with
the parameters ym(mg/g) and b (liter/g) given in
the table at the two temperatures, compute x/m
for the following concentrations, c: 0.5, 5, 20,
50 mg/100 mL. Plot the Langmuir isotherms at
the two temperatures on the same graph.
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15–24 Use the data for the surface tension, γ , of glycerol
at three temperatures, 20◦C, 90◦C, and 150◦C from
a handbook of physics and chemistry,∗ namely 63.4,
58.6, and 51.9 ergs/cm2.
(a) Plot γ versus temperature (kelvins on the hori-

zontal axis). Use regression analysis or a tangent
drawn at each temperature to obtain the slope
(∂γ /∂T)p = −Ss .

(b) Knowing γ and the entropy of the surface, Ss ,
calculate the surface enthalpy, Hs , at each of the
three temperatures using the appropriate equation
(page 358). Does Hs appear to remain constant
over this temperature range?

(c) What is the meaning of Hs in surface chemistry?
How do you interpret (explain) the entropy value
obtained?

15–25 Use the following data to obtain the entropy of for-
mation of a surface and the surface enthalpy at 20◦C,
100◦C, and 200◦C for carbon tetrachloride:

Data for Problem 15–25∗

T (◦K) 293.15 373.15 473.15

γ (dyne/cm) 26.95 17.26 6.53
∗The values in this table are found using the data from the CRC
Handbook of Physics and Chemistry, 63rd Ed., 1982, pp. F-35–F-37.

Calculate Ss from the slope of a plot of γ against
T, and using this value, compute Hs at the three tem-
peratures.

15–26 The contact angle, θ , of a liquid on a solid surface
can be evaluated from the Girifalco–Good–Fowkes–
Young equation7 and Hiemenz8:

(1 + cos θ )γL
= 2

√
γs

dγL
d (2)

where γL is the total (dispersion plus polar) surface
tension of the liquid and γs

d and γL
d are the surface

tension of the solid and the liquid, respectively, due
to the dispersion (weak electrostatic or London force)
components, d. For relatively nonpolar liquids γL ≈
γL

d .
(a) Compute the contact angles, θ , of water, ethy-

lene glycol, and benzene on Teflon. The sur-
face tensions of water, ethylene glycol, and ben-
zene are 72.8, 49, and 29 dynes/cm, respectively,
and the corresponding γL

d are 21.8, 28.6, and
29 dynes/cm; γs

d for Teflon is 19.5 dynes/cm at
25◦C.

(b) What significance do these values have? See
Sharma and Ruckenstein7 and Hiemenz8 for the
meaning of these values.

∗The values are found using the data from the CRC Handbook of Physics
and Chemistry, 63rd Ed., 1982, pp. F-35–F-37.

15–27 The interfacial tension between oil and water or an
aqueous solution can be computed from the surface
tension of the pure components by means of the
Girifalco–Fowkes equation:

γo,aq = γo + γaq − 2
√

γo
d γaq

d (3)

where the subscripts o and aq stand for the oil and
aqueous phases, respectively, and the superscript d
signifies the dispersion or weak electrostatic inter-
action part of the surface tension of the aqueous
phase.9

Compute the interfacial tension between a 10%
by volume aqueous solution of ethylene glycol
monomethyl ether (γaq = 56.9 mJ/m2 and γaq

d =
22 mJ/m2) and paraffin oil (γo = 30.8 mJ/m2). Note:
mJ/m2 is read, “millijoules per square meter.” Also
note that for a paraffin oil, γo

d = γo because paraffin
oil is a nonpolar substance.

15–28 To manufacture gunshot, melted lead is poured
through small orifices from a certain height into water.
During the fall, lead cools, forming spheres. Explain
the phenomenon.

15–29 What happens to a soap film when it breaks? Where
does it disappear to?

15–30 Compute the amount of work required to increase by
a factor of 3 the surface area of a spherical drop of
mercury (γ = 0.470 N/m, 20◦C) by deforming it.

15–31 Consider two soap bubbles having radii r1 and
r2 (r1 < r2) connected via a valve. What happens
if we open the valve?

15–32 The rise of pure water was measured in the same cap-
illary tube twice. The first time the water temperature
was 35◦C and the second time it was −25◦C. The rise
was higher in the second experiment. Explain.
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A N S W E R S T O P R A C T I C E P R O B L E M S
F O R S T U D E N T U S E

CHAPTER 16: COLLOIDAL DISPERSIONS

16–1 CMC = 0.053 mole/liter.

16–2 M = 17,170 g/mole; slope = 2B = 0.0147; B = 7.35 ×
10−3 mole cm3 g−2. Degree of aggregation = 49, that
is, each micelle contains an average of 49 molecules
of SDBS.

16–3 x = 3.93 × 10−3 cm = 39.3 μm or 3.93 × 10−5 m
displacement in 1 hr.

16–4 Equation (16–7) can be used. It gives 28.4, 54.5, 78.9,
and 104 Å at the four temperatures.

16–5 70,641 g/mole.

16–6 M = 2.797 × 105 or 279,700 daltons; B = 2.56 ×
10−7 liter mole g−2.

16–7 Angular acceleration = 4.737 × 105 rad/sec2, and
the number of g’s is 483 or a force 483 times that of
gravity acting on the sample.

16–8 10.26 × 104 rad/sec2, or 105 g’s.

16–9 44,727 g/mole ∼= 45,000 g/mole.

16–10 (a) 54,613 or 54,600 daltons; (b) radius r = 36 Å.

16–11 (a) 14.2 dL/g; (b) dL mole0.983 g−1.983. These units
would differ, however, for each polymer having a dif-
ferent a value. Because the Mark–Houwink equation

is an empirical one, in practice, the units on k are
obtained disregarding altogether the Ma units. The
units on k then become the same as those on intrinsic
viscosity, dL/g.

16–12 [η] = 8.53 kg/mole of solvent = 8.53 m−1.

16–13 The viscosity of the solution is 0.172 poise. The rel-
ative viscosity is η1/η2 = 17.2 (dimensionless).

16–14 D = 11.15 × 10−7 cm2/sec.

16–15 (a) k = 2.60 × 10−5 dL g−1, a = 0.966; (b) Using
the Mark–Houwink equation in logarithmic form, we
find the molecular weight of the newly synthesized
sample to be 469,583, or 470,000 daltons.

16–16 Partial Answer: Bentonite, ζ = −43.4 millivolts; bis-
muth subnitrate, ζ = +28.2 millivolts. See the paper
for the reason for the positive and negative ζ values.

16–17 2.22 to 1.

16–18 [Cl−]o/[Cl−]i = 1.07 to 1.

16–19 (a) D = 9.4 × 10−8 cm2/sec; (b) Dp = 7.6 × 10−8

cm2/sec; (c) Hint: Is the radius of the pyrene “particle”
larger in the micelle or in free solution? Are the diffu-
sion coefficients directly or inversely proportional to
the radii? How can this information be used to design
a drug for passage through the membrane pores of a
new dosage form?

1
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P R A C T I C E P R O B L E M S F O R
S T U D E N T U S E

CHAPTER 16: COLLOIDAL DISPERSIONS

16–1 The equivalent conductivity, A, of a solution contain-
ing a surface-active agent decreases sharply at the crit-
ical micelle concentration owing to the lower mobility
of micelles. A plot of A (vertical axis) against the con-
centration or the square root of the concentration of
the surface-active agent shows an inflection point at
the critical micelle concentration (see Fig. 16–3).

Chlorcyclizine hydrochloride, an antihistamine
used for the relief of urticaria and hay fever, is surface
active and forms micelles in aqueous solution. The
dependence of A in mho m2 mole−1 on

√
c is given as

follows (partially based on the data of Attwood and
Udeala1):

Data for Problem 16–1

� × 103 4.7 5.1 6.0 6.6 7.0 7.5 8.0 8.7

mho m2 mole−1

√
c (mole/liter)1/2 0.33 0.30 0.26 0.24 0.23 0.20 0.17 0.14

Plot � versus
√

c and estimate the CMC.

16–2 The turbidity, τ , of an aqueous sodium dodecylben-
zene sulfonate (SDBS) solution was determined in
a light-scattering photometer at various concentra-
tions above its CMC (modified from data in Tartar
and Lelong2):

Data for Problem 16–2

c × 103 (g/cm3) 2.68 7.58 13.30 22.15

τ × 104 (cm−1) 1.09 1.80 2.08 2.31

The turbidity, τ , increases with concentration
because the surfactant molecules aggregate to form
structures with molecular weights much greater than
the molecular weight of the monomer SDBS, namely,
349 g/mole. The value of H in equation (16–2) is
4.00 × 10−6 mole cm2 g−2. Plot Hc/τ versus c, and

using equation (16–2), obtain the molecular weight
of the aggregate in the aqueous solution. Also, give
the value of the solute–solvent interaction constant,
B. The degree of aggregation is obtained by dividing
the molecular weight of the aggregate by the molecu-
lar weight of the SDBS monomer. What is the degree
of aggregation?

16–3 For spherical particles we can express the diffusion in
terms of their radii, r, the viscosity, η, of the medium,
and the absolute temperature, T [equation (16–7)]. In
1908, Perrin used this equation and a suspension of
gamboge particles of accurately determined size to
calculate Avogadro’s constant, NA. He obtained val-
ues lying between 5.5 × 1023 and 8 × 1023 particles/
mole. Currently, the accepted value of NA is 6.022 ×
1023 mole−1.3

Using equation (16–7) in the expression x =√
2Dt , we obtain the equation, x =

√
RTt

3πηr NA′ , for the

calculation of the mean Brownian displacement of a
particle.

For a particle of radius r = 10−6 m (10−4 cm)
in water (η = 0.01 poise) at a temperature of 20◦C
(T = 293.15 K), its displacement, x , is to be observed
over a period of 1 hr (t = 3600 sec). R is the gas con-
stant, expressed in units of 8.3143 × 10−7 erg deg−1

mole−1. The poise is expressed as dynes sec/cm2 or
ergs sec/cm3. Calculate the mean Brownian displace-
ment to be expected. How might you use this equation
to determine Avogadro’s number?

16–4 When insulin solutions are stored at room temper-
ature, a process of self-association occurs and the
molecules aggregate. The degree of aggregation is
affected by pH, ionic strength, and temperature. The
aggregation process was studied in the temperature
range of room temperature (20◦C) to human body
temperature (∼35◦C) at pH 7.5 and ionic strength μ

= 0.1. The diffusion coefficients of aggregates at the
various temperatures and viscosities of the solvent are
given at the top of the following column:

Data for Problem 16–4∗

T (◦C) 20 25 30 35

D × 107 (cm2

sec−1)

7.8 4.6 3.7 3.0

η (poises) 0.0097 0.0087 0.0076 0.0072

*Data from H. B. Bohidar, Colloid Polym. Sci. 267, 159, 1989.
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Compute the hydrodynamic radii of the aggregates
at the various temperatures. See the Stokes–Einstein
equation. The poise is equal to 1 g cm−1 sec−1.

16–5 A sample of horse albumin in an aqueous solution
at a concentration of cg = 3.20 g/liter was placed in
an osmometer at 28◦C. Its osmotic pressure π was
measured and found to be 0.00112 atm. What is the
molecular weight of the serum albumin, assuming
the solution is sufficiently dilute for the use of equa-
tion (16–11)? The gas constant is R = 0.0821 liter
atm/mole deg.

16–6 The osmotic pressure, π , of a fraction of polystyrene
was determined at 25◦C at various concentrations, cg,
as follows:

Data for Problem 16–6

π /cg× 105 (1 atm g−1) 12.5 16.3 20.0 23.8

cg (g/liter) 6.0 12 18 24

Calculate the molecular weight and the second
virial coefficient, B, for the polystyrene fraction. Use
equation (16–13) disregarding the C × cg

2 and higher
terms. Can this large molecular weight be determined
by the osmotic pressure method? What other methods
are available to obtain the molecular weight of such
a large molecule?

16–7 An ultracentrifuge is operated at 6000 rpm. The mid-
point of the cell with the sample in place is 1.2 cm
from the center of the rotor. What are the angular
acceleration and the number of g’s acting on the
sample?

16–8 Find the angular acceleration in rad/sec2 for an ultra-
centrifuge with a rotor of radius 6.5 cm rotating
at 1200 rpm. Convert this angular acceleration into
g’s, assuming that the acceleration due to gravity is
981 cm/sec2.

16–9 Determine the molecular weight of egg albumin from
the following ultracentrifuge data obtained at 20◦C:
the Svedberg constant s = 3.6 × 10−13 sec, D = 7.8
× 10−7 cm2/sec, the partial specific volume v = 0.75
cm3/g, and the density of water at 20◦C is 0.998 g/cm3.

16–10 The sedimentation coefficient, s, at 20◦C of
saramycetin, an antifungal antibiotic, is 5.3 Svedberg
(1 Svedberg = 10−13 sec), the diffusion coefficient is
D = 6 × 10−7 cm2 sec−1, and the partial specific vol-
ume is v = 0.607 cm3 g−1 (v is obtained by use of an
accurate pycnometer and a microbalance) (selected
data from Kirschbaum4).
(a) Compute the molecular weight of saramycetin.

The density of the solvent is 0.998 g/cm3.

(b) Compute the radius of the saramycetin particle.
Assume that the particles are spherical. The vis-
cosity of the solvent is 1.002 × 10−2 poise.

16–11 (a) Use the Mark–Houwink expression, equation
(16–24), to calculate the intrinsic viscosity, [η],
in dL/g of a methylcellulose polymer having a
number-average molecular weight of 15,200 g/
mole. The constant K is equal to 1.1 × 10−3 dL
mole g−1, where dL stands for deciliters (1 dL =
100 cm3). The exponent, a, of equation (16–24)
is 0.983 and is dimensionless.

(b) The units of dL mole g−2 on K are not quite correct
in the problem. What are the exact units?

16–12 The variation of reduced viscosity, ηsp/c, with con-
centration for a new nonionic surfactant is given in
the following table:

Data for Problem 16–12∗

ηsp/c 8.96 9.39 9.82 10.25 10.69

c (mole/kg) 0.005 0.01 0.015 0.02 0.025

*Data from D. Attwood, P. H. Elworthy, and M. J. Lawrence, J. Pharm.
Pharmacol. 41, 585, 1989.

Compute the intrinsic viscosity, [η], of the surfac-
tant.

16–13 It requires 40 sec for a volume of water, density 1.0 g/
cm3, to flow through a capillary viscometer and
614 sec for an equal volume of a glycerin solution
having a density of 1.12 g/cm3. What is the viscosity
at 25◦C and the relative viscosity of this solution? The
viscosity of water at 25◦C is 0.01 poise or 1.0 cp (see
pages 469–471and 477–478).

16–14 The molecular weight of a spherical protein is 20,000
g/mole and the partial specific volume v is 0.80 cm3/g
at 20◦C. The viscosity of the solvent is 0.01 poise.
Calculate the value of D, the diffusion coefficient at
this temperature [see equation (16–8)]. Notice that
one is dealing with a cube root.

16–15 The intrinsic viscosities, [η], of several molecular
weight fractions, M, of a new cellulose plasma exten-
der were obtained by plotting ηsp/c for each fraction
versus the concentration, c, in g/dL (where 1 dL = 100
cm3) as seen in Figure 16–10. The resulting intrinsic
viscosities, together with the molecular weights, M,
determined separately by osmotic pressure [equation
(16–12)] at 25◦C, are given as follows:

Data for Problem 16–15

M (g/mole) 67,820 153,756 202,200 329,150

[η] (dL/g) 1.21 2.65 3.54 5.56
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(a) Plot ln[η] as the dependent variable versus ln M
(M = molecular weight) to obtain the constants K
and a of the Mark–Houwink equation.

(b) Use the values of K and a in the Mark–Houwink
expression [equation (16–24)] to calculate the
molecular weight of a newly synthesized cellulose
plasma extender, the experimentally determined
intrinsic viscosity of which is 7.83 dL/g.

16–16 The zeta potential, ζ , for a colloidal system in an
aqueous electrolyte solution is given by the formula

ζ = 4πη

ε

v

E
(9 × 104) (1)

where 9 × 104 converts electrostatic units into volts.
(a) The term “4πη/ε (9 × 104)” is given on page 400

as equal to approximately 128 at 25◦C and 141
at 20◦C. Refer to a handbook of chemistry and
physics for the viscosity in poise (dynes sec/cm2)
or g/(cm sec) and the dielectric constant, ε at 20◦C
and 25◦C and verify the values 128 and 141 for
this term in equation (16–28).

(b) The electrophoretic mobility, v/E (in cm/sec per
volt/cm), for bentonite in water is given by Schott5

as −3.39 (± 0.07) × 10−4 at 24◦C. The quan-
tity ± 0.07 in parentheses indicates that the value
−3.39 was measured experimentally to within a
precision of (−3.39 − 0.07) × 10−4 to (−3.39 +
0.07) × 10−4. The electrophoretic mobility of bis-
muth subnitrate particles (13.18% w/w) in water
at 24◦C to 25◦C is +2.20 ± (0.09) × 10−4 cm/sec
per volt/cm. Calculate the zeta potential of ben-
tonite and of bismuth subnitrate at 25◦C. Why do
we find both positive and negative zeta potential
values in this problem?

16–17 Compute the ratio of concentrations at equilibrium of
diffusible benzylpenicillin ions outside to those inside
a semipermeable membrane when the concentration
of an anionic polyelectrolyte inside the sac is 12.5 ×
10−3 g equivalent per liter and that of benzylpenicillin
inside the sac is 3.20 × 10−3 mole/liter at equilibrium.
Set up the Donnan membrane equilibrium [see equa-
tion (16–34)] and solve the equation for the ratio of
diffusible benzylpenicillin ions outside to those inside
the membrane.

16–18 The Donnan effect is important in concentrating ions
in various body fluid compartments. The interstitial
fluid of the body lies between the vascular system with
its plasma and erythrocytes and the tissue cells of the
body. The plasma and the cells contain nondiffusible
protein anions, whereas the interstitial fluid contains
only diffusible ions such as K+, Na+, and Cl−. There-
fore, the Donnan membrane effect in the body is to
influence the distribution of the diffusible ions. The

protein anions tend to attract and retain small cations
(K+ and Na+) in the tissue cells and blood vessels and
repel small anions (Cl−) into the surrounding inter-
stitial fluid.

In the normal body the concentration of plasma
protein is 16 mEq/liter and that of the chloride ions
is 113 mEq/liter. What is the ratio of chloride ions
across the interstitial (fluid(outside) − plasma(inside))
membrane? Hint: The Donnan membrane principle
[equation (16–33)] is used to calculate the ratio of
chloride ions.

16–19 The diffusion of a drug compound solubilized in a
micelle and hindered by passage through microp-
orous membranes provides a method of controlling
the release of the drug.

The ratio of the diffusion coefficient of a spherical
particle in a cylindrical pore (Dp) relative to the dif-
fusion coefficient of the same particle in free solution
(D) is given by the following equation6:

Dp/D = (1 − ξ )2[1 − 2.1044 ξ 2 + 2.089 ξ 3

− 0.948 ξ 5] (2)

where ξ is r/rp, the ratio of the particle-to-pore radii,
and Dp is the intrapore diffusion coefficient. When
the radius of the particle is much smaller than the
radius of the pore, the intrapore diffusion coefficient
is practically the same as the diffusion coefficient in
free solution.

The diffusion of pyrene solubilized in micelles of
the surfactant sodium dodecyl sulfate across micro-
porous membranes at 25◦C was studied by Johnson
et al.6 The radius of the micelle is 26 Å and the vis-
cosity of the solvent 0.089 poise. The pore radius of
the membrane is 283 Å.
(a) Compute the diffusion coefficient, D, of the

micelle in the free solution [see equation (16–7),
page 395].

(b) Compute the diffusion coefficient, Dp, of the
micelle particle in the pore. Compare this value
to the diffusion coefficient of free pyrene (not
present in micellar form), which is determined in a
separate experiment, Dfree = 5.6 × 10−6 cm2/sec.
The radius of the pyrene molecule is approxi-
mately 2.5 Å.

(c) Comment on your results.
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CHAPTER 18: MICROMERITICS

18–1 dIn = 16.7 μm; dvs = 23 μm; Sw = 1740 cm2/g.

18–2 dIn = 16.5; dvs = 19.5; dwm = 20.6 μm.

18–3 2.47 × 10−4 cm = 2.47 μm.

18–4 2.0 × 104 cm2/g or 2.0 m2/g.

18–5 6 × 104 cm2 or 6 m2.

18–6 (a) Slope, S = 7096.56 g−1, intercept, I = 123.98
g−1; (b) Sw = 0.482 m2/g; dvs = 8.56 μm.

18–7 Sw(before) = 14.8 m2/g; Sw(after) = 1131 m2/g.

18–8 (a) Check your answer with pages 458 to 460.
(b) Partial Answer: 6.7 and 9.2 Å; (c) Partial Answer:
for p/po = 0.2 and r < 6.7 Å, pore volume is 54.9%;
(d) 5.5%.

18–9 69.8%.

18–10 (a) 3.14; (b) 0.019 or 1.9%.

18–11 40%.

18–12 3%.

18–13 2%.

1
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CHAPTER 18: MICROMERITICS

18–1 Suppose that, by means of an optical microscope, the
following hypothetical data were collected:

Data for Problem 18–1

Diameter (μm) 10 20 30

Number (n) of particles 3 2 1

Compute the arithmetic (length-number) mean
particle diameter, dln, the mean volume surface diam-
eter, dvs, and the specific surface in cm2/g, assuming
that the particles have a true density of 1.5 g/cm3 and
are spherical.

18–2 A sample of silica was analyzed by the microscope
method and the following data were collected:

Data for Problem 18–2

Diameter (μm) 10 15 20 25

Frequency (n) 73 77 82 37

Compute dln, dvs, and dwm.

18–3 Using the Stokes’s-law equation (18–6), calculate the
particle diameter, dst, of magnesium oxide powder,
ρ = 3.65 g/cm3, in an aqueous medium having a den-
sity of ρ0 = 1.05 g/cm3 at 25◦C and a viscosity of
0.013 poise (i.e., 0.013 g cm−1 sec−1). The particles
settle a distance of 24.0 mm in 1.00 hr under grav-
ity acceleration g of 980 cm/sec2. Hint: Remember to
convert 24.0 mm/hr to cm/sec for the rate of settling
of the particles.

18–4 What is the specific surface, SV , of the particles of
a sulfathiazole powder having a particle density of
1.5 g/cm3 and an average diameter, dvs, of 2 μm? It
is assumed that the particles are perfect spheres.

18–5 What is the total surface in cm2 of 4 g of a local anes-
thetic powder in which the particles have an average
diameter, dvs, of 2 × 10−4 cm and a true density of
2.0 g/cm3. Assume that the particles are spheres.

18–6 Millan-Hernandez (B. Millan-Hernandez, Physical
Chemical Properties of Pharmaceutical Suspensions,
Thesis, University of Texas, 1981) obtained the spe-
cific surface, Sw, and the mean volume surface diam-

eter of micronized griseofulvin powder. In the exper-
imental work using the Quantasorb apparatus, one
replaces V and Vm of equation (18–18) by the masses
X and Xm. At the final stage of the work, Xm is con-
verted to Vm by dividing Xm, the mass of nitrogen, by
its density:

Xm gram gas/gram powder

ρN2
= 1.250 × 10−3 g/cm3

= Vm cm3/gram powder

(1)

Nitrogen gas is introduced into the apparatus at
three pressures, p, in mm Hg, and X, the number of
grams of nitrogen gas adsorbed on the powder sample,
is recorded. The saturated vapor pressure, po =758.71
mm Hg, for N2 at its boiling point, 77.2 K, is also
required for the calculations. The data for p/po and
p[X(po − p)] are obtained for each of the three gas
pressures, and p/[X(po − p)] is plotted on the vertical
axis against p/po on the horizontal axis. See equation
(18–18), page 455, and Example 18–7.

The data for one experiment are as follows:

Data for Problem 18–6

p/po (x axis) 0.0970 0.1970 0.2920

p/[X(po − p)] (y axis) 815.58 1515.37 2199.58

(a) Using linear regression analysis, obtain the slope,
S = (b − 1)/(Xmb), and the intercept, I = 1/(Xmb).
These terms conform to the slope and intercept
in equation (18–18) except that X and Xm have
replaced V and Vm. By simple algebra, it can be
shown that the reciprocal of the sum of the slope,
S, and the intercept, I, yields the value of mass,
Xm, of N2 gas that 1 g of the powder can adsorb.
That is,

Xm = 1

S + I
(2)

(b) Then, using the density of N2, 1.250 × 10−3

g/cm3, convert Xm to Vm (cm3/g) and obtain the
specific surface, Sw (m2/g), and dvs. The density
of griseofulvin is 1.455 g/cm3.

18–7 A sample of charcoal was analyzed in the BET appa-
ratus before and after activation and the Vm values
obtained were 3.4 and 260 cm3/g, respectively. Cal-
culate the specific surface of the charcoal before and
after activation.

1
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18–8 The experimental values of a water adsorption/
desorption isotherm at 20◦C on a type of clay are
given in the following table.

Data for Problem 18–8∗

V1 (Adsorption) V2 (Desorption)
p/po (mL/g) (mL/g)

0.20 0.079 0.123

0.31 0.109 0.147

0.35 0.129 0.150

0.40 0.135 0.165

0.45 0.141 0.177

0.49 0.141 0.182

0.56 0.150 0.188

0.66 0.152 0.191

0.77 0.161 0.194

0.80 0.170 0.200

0.89 0.182 0.209

0.96 0.224 0.224
∗Values in this chart are from Figure 7 in S. Yamanaka, P. B. Malla, and
S. Komareni, J. Colloid Interface Sci. 134, 51, 1990.

(a) Plot V1 (adsorption) and V2 (desorption) on the
vertical axis against p/po (horizontal axis). What
is the meaning of this isotherm?

(b) Using the Kelvin equation (18–24), compute the
radius of the pores corresponding to the relative
pressures given in the table. See Example 18–8.

(c) Assuming that all pores are of radius less than
265 Å, compute the cumulative percent of pore
volume with radii less than those found in part
(b).

(d) Compute the percent of pore volume with radius
between 40 and 60 Å.

18–9 Calculate the porosity of a sample of aluminum oxide
having a true density of 4.0 g/cm3. When 75 g of the
powder was placed in a graduate cylinder, the Al2O3

was found to have a bulk volume of 62 cm3.

18–10 (a) If the weight of a tablet is 0.2626 g and its bulk
volume is 0.0836 mL, what is the bulk density?

(b) If the true density of the mixture of ingredients is
3.202, what is the porosity of the tablet?

18–11 Calculate the percent porosity of a sample of talc that
has a true density of 2.70 g/cm3. When 324 g of the
powder was placed in a graduate, the talc was found
to have a bulk volume of 200 mL.

18–12 The true density of aspirin is 1.37 and the granule
density is 1.33. What is the porosity or percent void
spaces within the granules?

18–13 The true density of a powder mixture is 3.203. When
compressed into tablet form, the granule density of
the mixture is found to be 3.138. What is the porosity
of the tablet?
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CHAPTER 19: RHEOLOGY

19–1 (a) Ev = 3684 cal/mol; (6)

Temperature ◦C 29◦ 45◦ 88◦

η (cp) (calculated) 0.8484 0.6231 0.3114

1982–83 CRC Handbook, p F-40 0.8148 0.5960 0.3221

19–2 38 poise.

19–3 Partial Answer: (a) For n (rpm) = 100, G = 1875
sec−1; for S (scale reading) = 72, F = 1536.5
dynes/cm2; (b) N = 2.624 (a dimensionless number);
η′ = 106,724 poise (dynes sec/cm2); (d) When the
shear rate, G, is 1875 sec−1 the shear stress, F, has
a value, by back-calculation, of 1457 dynes cm−2.
Note: η′, the antiln of ln η′, is a rather large number.
The student should not be surprised to find η′ in the
thousands or millions of poise.

Another approach to solving for F is as follows.
One begins with the expression ln G = −ln η′ + N
ln F and from regression analysis using this equation
one obtains η′ = 106,724 and N = 2.6239. Therefore,
using FN = η′G, for G = 1875 sec−1,

F2.6239 = (106,724)(1875) = 2.00107 × 108 (1)

Using the yx key on a handheld calculator, you can
run through the exercise, 23 = 8; therefore; 2 = 81/3.
With this kind of operation applied in our problem, we
find F2.6239 = 200,107,000, F = 200,107,0001/2.6239

= 200,107,0000.381112; F = 1458 dynes/cm2.

19–4 f (yield value) = 9200 dynes cm−2; U = 10 poise.

19–5 U1 = 18.5 poise; U2 = 7.2 poise; B = 24 dynes
sec/cm2.

19–6 U1 = 11 poise, U2 = 16 poise; f1 = 1972 dynes cm−2,
f2 = 1526 dynes cm−2; M = 10 dynes sec cm−2.

19–7 Partial Answer: kv = 1.9376; viscosity of oil number
1 = 8.970 poise. From the table, the NBS value for
oil number 1 is 9.344 poise. Our result is therefore in
error by 4%.

19–8 Partial Answer: For oil number 1, η = 2.704 poise.

19–9 (a) Cf = 113.57 cm−3; (b) f = 3919 dynes cm−2;
(c) U = 8.876 poise.

19–10 (a) 27339 sec or 7.59 hr; (b) Need a wider bore pipette
and a liquid with a higher viscosity as the reference.

19–11 The viscosity of the patient’s blood was also mea-
sured in a capillary viscometer at 37◦C and found
to be 0.0372 poise. How does your calculated result
compare with this experimentally determined viscos-
ity of the blood?

19–12 See several of the works listed below:

B. W. Barry and A. J. Grace, J. Pharm. Sci. 60, 1198,
1971; J. Pharm. Sci. 61, 335, 1972.

B. W. Barry and M. C. Meyer, J. Pharm. Sci. 62, 1349,
1973.

E. L. Cussler, S. J. Zlolnick, and M. C. Shaw, Percep-
tion Psychophys. 21, 504, 1977.

H. B. Kostenbauder and A. Martin, J. Am. Pharm.
Assoc. Sci. Ed. 43, 401, 1954.

G. W. Scott-Blair, Elementary Rheology, Academic
Press, New York, 1969.
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CHAPTER 20: PHARMACEUTICAL POLYMERS

20–1 (b)

20–2 (c)

20–3 (b)

20–4 (d)

20–5 (d)

20–6 (b)

20–7 (b)

20–8 (c)

20–9 (e)

20–10 (a)

20–11 (a)

20–12 (d)

20–13 (b)

20–14 (d)

20–15 (d)

20–16 50,000 (49,500 has three significant figures, which is
more than the M values of the input).

20–17 Mz = 401,000; Mw = 162,000; Mn = 43,500;
and Mw/Mn = 3.73.

20–18 The intrinsic viscosity of polyethylene oxide will
decrease, as higher temperature favors polymer–
polymer interactions and reduces the polymer–water
interaction. Higher temperature results in partial
to incomplete insolubility of polyethylene oxide in
water.

20–19 Decreasing trend of the melting point is associated
with decreased intermolecular interactions as the size
of the pending group increases.

20–20 (b)

20–21 (a)

20–22 (d)

20–23 (b)

20–24 (e)

1

Dr. Murtadha Alshareifi e-Library

1214



P1: Trim: 8.375in × 10.875in

LWBK575-20-Stud-Prob LWW-Sinko-educational March 16, 2010 11:2

P R A C T I C E P R O B L E M S F O R
S T U D E N T U S E

CHAPTER 20: PHARMACEUTICAL POLYMERS

20–1 There are three monomers: M1, M2, and M3; M1
contains one double bond and no functional group,
M2 contains one reactive functional group and no
double bond, and M3 contains two reactive func-
tional groups and no double bond. Which statement is
true?
(a) All three monomers can be polymerized via addi-

tion and condensation polymerization.
(b) M1 can be polymerized via addition, M2 cannot

be polymerized, and M3 can be polymerized via
condensation.

(c) M1 can be polymerized via addition, and both M2
and M3 can be polymerized via condensation.

(d) None of the monomers are polymerizable.

20–2 Which statement is true regarding polymer molecular
weight?
(a) Number average molecular weight is related to

the size of the polymer chains.
(b) Weight average molecular weight is related to the

number of polymer chains.
(c) Polydispersity is related to the number and the

size of the polymer chains.
(d) Number average molecular weight is always big-

ger than the weight average molecular weight.

20–3 The Tg values of the two polymers P1 and P2 are
−20◦C and 100◦C, respectively. Which statement is
true?
(a) At room temperature of 25◦C, both P1 and P2 are

rubber.
(b) At room temperature of 25◦C, P1 is rubber but P2

is glass.
(c) At room temperature of 25◦C, both P1 and P2 are

glass.
(d) At room temperature of 25◦C, P1 is glass but P2

is rubber.

20–4 Which statement is false regarding the Tg and Tm of a
given polymer?
(a) Tm is a first-order thermal transition but Tg is a

second-order one.
(b) Tg and Tm are related to the amorphous and crys-

talline parts of the polymer chain, respectively.
(c) Tg has a broader temperature range than does Tm.
(d) For a given polymer, Tg is always higher than Tm.

20–5 Which statement is true for the elastic properties of
polymers?
(a) A low modulus polymer is stiffer than a high mod-

ulus polymer.
(b) A high modulus polymer is tougher than a low

modulus polymer.
(c) Stiffness is the ratio of strain to stress.
(d) Toughness is the area under stress and strain

curve; energy to break.

20–6 If you are asked to increase the viscosity of water with
a minimum amount of the following polymers, which
polymer would be your choice?
(a) A very hydrophilic and low-molecular-weight

polymer.
(b) A very hydrophilic and high-molecular-weight

polymer.
(c) A very hydrophobic and low-molecular-weight

polymer.
(d) A very hydrophobic and high-molecular-weight

polymer.

20–7 In preparing a water-soluble polymer, which action
would be wrong?
(a) Using a water-soluble monomer
(b) Utilizing emulsion technique
(c) Utilizing inverse-emulsion technique
(d) Utilizing inverse-suspension technique

20–8 Pseudo latex is a
(a) Dispersion of a monomer in water.
(b) Dispersion of a water-soluble polymer in water.
(c) Dispersion of a water-insoluble polymer in water

using high HLB surfactant(s).
(d) Dispersion of a water-insoluble polymer in water

using low HLB surfactant(s).

20–9 Which of the following statements is true for a dis-
persion system?
(a) In a W/O system, the dispersed phase is water,

and the continuous phase is oil.
(b) In an O/W system, the dispersed phase is oil, and

the continuous phase is water.
(c) Surfactant should be more soluble in the contin-

uous phase.
(d) Surfactant concentration determines the size of

the dispersed phase.
(e) All of the above are true.
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20–10 Which of the following polymers can be used as an
enteric coating material?
(a) An anionic polymer.
(b) A cationic polymer.
(c) An amphoteric polymer.
(d) Both anionic and cationic polymers.

20–11 For taste-masking application, what polymer would
you not recommend to use?
(a) A polymer which is soluble in water at neutral

pH.
(b) A polymer which is soluble in water at low pH.
(c) A polymer which is insoluble in water at all pHs.
(d) An oil-soluble polymer.

20–12 Which statement is false about polydispersity and
chain length?
(a) A monodispersed polymer contains similar

chains.
(b) A polydispersed polymer contains different

chains.
(c) Polydispersity�1 means polymer chains are very

different in size.
(d) Polydispersity is always lower than 1.

20–13 You have two polymers with different Tg values: poly-
mer 1 (−90◦C) and polymer 2 (90◦C). If you are asked
to coat your tablet with these polymers, which one
would you select?
(a) Polymer 1.
(b) Polymer 2.

20–14 Which statement is false?
(a) Polymers do not exist as gas.
(b) Monomers containing double bond may be poly-

merized via free radicals.
(c) Polymers containing high concentrations of resid-

ual monomers may not be suitable for pharmaceu-
tical use.

(d) Different isomers of a polymer have same physic-
ochemical and mechanical properties.

20–15 A pharmaceutical packaging material requires being
a tough polymer, the tougher the better. After test-
ing different polymers using a mechanical tester, you
select
(a) A polymer which shows high modulus.
(b) A polymer which deforms less at its failure or

breaking point.
(c) A polymer which shows high stiffness.
(d) A polymer whose force-deformation curve has the

largest area.

20–16 A polymer sample was fractionated into three homo-
geneous or monodisperse fractions as follows:

Data for Problem 20–16

Fraction Weight, Grams Molecular Weight

A 10 100,000

B 20

C 100 10,000

Given that the weight-average molecular weight of
the entire sample is 23,000, calculate the molecular
weight of fraction B.

20–17 A sample of polyvinyl chloride was fractionated from
its solution in tetrahydrofuran. The weight percent
(based on the weight of the entire sample) and the
molecular weight (g/mole) of successive fractions
were as follows:

Data for Problem 20–17

Fraction
Number Weight (%) Molecular Weight

1 6 7 × 103

2 9 1.7 × 104

3 15 3.8 × 104

4 20 7.5 × 104

5 23 1.4 × 105

6 16 2.5 × 105

7 8 4.5 × 105

8 3 1.05 × 106

Assuming that the fractions are essentially
monodisperse, calculate Mz, Mw, Mn, and Mw/Mn

of the polyvinyl chloride sample.

20–18 Will the intrinsic viscosity of polyethylene oxide
increase, decrease, or remain unaffected as the tem-
perature of its aqueous solution is increased?

Hint: Express your answer in terms of hydration.

20–19 The melting points of some isotactic polyolefins
[ CH2 CH ] are as follows:

R

R Melting Point, ◦C

E CH3 165

F C2H5 125

G CH2 CH2 CH3 75

Explain the trend in melting point when going from
E to F to G.
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20–20 Drugs targeted for colon diseases may be formulated
into a material (a polymer) which can protect them
from the harsh low pH environment of the gastric
medium. The material selected for such application
should have
(a) High solubility or complete solubility at low

pH.
(b) No solubility or low solubility at low pH.

20–21 Coacervation is a process by which a drug is encap-
sulated inside a polymeric matrix by precipitating
the polymer in solution. If the drug is sensitive to
heat and acid, which option would be least attrac-
tive for precipitating the polymer from its aqueous
solution?
(a) Increasing the temperature of the polymer solu-

tion.
(b) Adding an effective but permitted amount of alco-

hol to the polymer solution.
(c) Increasing the pH of the polymer solution.
(d) Increasing the ionic strength of the polymer solu-

tion by adding reasonable amounts of salts.

20–22 Which of the following materials displays thermo-
gelling at a higher temperature?
(a) Cellulose (has no solubility in water).
(b) Cellulose with methyl substitution (it is soluble

in cold water).
(c) Thermogelling is not dependent on the number

and nature of substituents.

(d) Cellulose with methyl and hydroxypropyl substi-
tution (it is soluble in water over a wider temper-
ature range).

20–23 If the solution property of a material is sensitive
to temperature, that material displays thermogelling
property. Which of the following materials less likely
displays a thermogelling property?
(a) A material containing both hydrophilic and hy-

drophobic groups.
(b) A material with ionizable hydrophilic groups.
(c) A material whose chains can aggregate if temper-

ature changes.
(d) A material whose hydrophobic groups associate

if temperature rises.

20–24 Swelling concept has found applications in which of
the following areas?
(a) Superdisintegrants, which are used in tablets and

capsules to help the dosage form to disintegrate
properly.

(b) Osmotic tablets (Oros technology), which can
deliver the drug at a constant rate over a 24-hr
period.

(c) Implantable osmotic pumps (Duros technology),
which can deliver the drug over a few months to
a 1-year period.

(d) Superabsorbent polymers, which are used in ultra-
thin baby diapers to absorb baby’s urine.

(e) All of the above.
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CHAPTER 21: PHARMACEUTICAL
BIOTECHNOLOGY

21–1 Partial Answer: There is no specific or correct answer
to this problem. It should, however, be responded to in
terms of the information available in the PDR, at least
one external source of information, and the text mate-
rial concerning formulation and the role of buffers,
pH, stabilizers, etc.

21–2 It was initially thought that stabilization by disul-
fides was produced by lowering the entropy of the
unfolded state. Recent explanations include stabiliza-
tion of local or packing interactions (i.e., an enthalpic
form of stabilization). Destabilization is thought to
result by inhibiting conformational changes which
would lower the free energy of the folded state. Effects
on the dynamic properties (internal motions) of a
protein by disulfide bonds could either increase or
decrease stability depending on the relative effects
on the folded and unfolded states. In other words,
if the difference in energy between the two states is
increased, the stability is increased and visa versa.

21–3 MG states are conformationally heterogeneous states
of proteins, which contain near native secondary
structure, substantially disrupted tertiary structure,
and slightly expanded (e.g., 10%) sizes. They are
important because of their tendency to aggregate and
their possible role in protein folding and unfold-
ing. Their maintenance of secondary structure can be
detected by far UV CD, FTIR, and Raman spectro-
scopies. Their disrupted tertiary structure can be seen
through the use of intrinsic fluorescence, near UV CD
and absorption spectroscopy, as well as some Raman
signals. Their expanded size as well as their propen-
sity to aggregate can be detected by DLS. Such states
also tend to bind dyes such as ANS.

21–4 Removal of water can often stabilize macromolecules
because water can be both a key reactant in chemical
degradation reactions and an essential component of
their structure (i.e., “water of hydration”). A second
reason is that removal of water can decrease the inter-
nal motions of macromolecules, which slows a wide
variety of degradative processes.

21–5 Virus-like particles are protein complexes formed by
one or more surface proteins of viruses. They lack
nucleic acids but retain the overall architecture of viral
particles. They are thought to be highly immunogenic
because they retain the multivalent nature of the viral
surface (as opposed to their monomeric recombinant
protein counterparts). They also tend to be highly sta-
ble which facilitates their development as vaccines.
Their effectiveness is perhaps not surprising when
one remembers that the immune system has evolved
to deal with similar structures, especially through the
“toll” receptors.

21–6 DNA vaccines, which in their simplest form consist
of plasmids coding antigenic proteins of interest, are
thought to enter cells where they produce the encoded
protein through a natural transcription/translation
process. The plasmids are taken up by some type
of endocytic process and escape from the resultant
endosomes by an unknown mechanism, which may
involve leakage or more extensive disruption of the
endosomes. The dendritic cells and macrophages may
be especially important in this regard, but other cells
(such as muscle cells) may also be able to support
their translation. Through mechanisms that are still
unclear, the antigenic proteins may be secreted or
peptides derived from them presented in the con-
text of receptors on the surface of cells where normal
immune responses ensue.

21–7 The surface of cells is negatively charged because of
the presence of sulfated polysaccharides, sialic acid
residues, and negatively charged lipids. Thus, DNA
would be expected to be electrostatically repelled
from the cell surface. When cationic polymers and
lipids are complexed to DNA, the negative charge on
the DNA can be neutralized with the complex even
becoming positively charged. This allows such com-
plexes to bind to the cell surface, triggering endocy-
tosis of the complex. The DNA is also collapsed in
size by charge neutralized, which may facilitate its
uptake by cells.

21–8 Solubility is due to a balance between the interaction
of a molecule with the solvent and the forces respon-
sible for the formation of a solid phase. Although a
single amino acid change might not be expected to

1
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produce a major change in the hydration of a large
protein, such a change might well either disrupt one
of a small number of the interprotein interactions
responsible for the solid phase or produce one or a
few novel interactions of this type. This could lead to
large increases or decreases in a protein’s solubility.
In fact, such small effects on the solid phase appear to
be responsible for a variety of human diseases such
as sickle cell anemia in which a single amino acid
change in human hemoglobin results in the formation
of insoluble protein polymers that directly produce a
serious pathological condition.

21–9 In peptide mapping, a protein is cleaved by a protease
into peptides of defined size and sequence. The pep-
tides are separated by reversed-phase HPLC and their
molecular weights are determined to a high degree
of accuracy with mass spectrometry. If a chemical
change occurs in a specific residue, the molecular
weight of the peptide containing that amino acid (or
acids) as well as its chromatographic behavior will
be altered and consequently identified. The actual
sequence of the peptide can also be determined by
modern methods of mass spectrometry. If coverage
of the amino acid sequence is incomplete, it may be
possible to improve the resolution by alteration of
the chromatographic conditions. In addition, a sec-
ond protease with different specificity (i.e., it cleaves
the protein at different positions that the protease ini-
tially used) can be used to create a different series of
peptides. A combination of the two “peptide maps”
will usually dramatically increase coverage of the pro-
tein’s sequence.

21–10 When recombinant proteins are produced in different
types of cells or purified in different ways, the final
product may differ even if the same DNA sequence is
present. This can be due to different forms of chem-
ical modification (e.g., glycosylation) produced by
different cell types as well as different trace impuri-
ties remaining after isolation of the product. These
differences may be quite subtle but still influence
the efficacy, toxicity, and pharmacokinetics of pro-
teins produced by different types of cells and iso-
lation procedures. As companies produce follow-on
biologicals, they hope that a thorough physical chem-
ical and biologics characterization of their biosimilar
products will reduce or eliminate the need for exten-
sive and expensive clinical studies. The problem with
this approach is the lack of complete identity to the
original (“innovator”) products for the reasons stated
above.

21–11 When the far UV CD spectrum of a protein changes,
this is usually taken as evidence of a change in its
secondary structure content (i.e., a conformational

change). Although this might be expected to happen
with temperature, it is usually independent of protein
concentration. One exception is when the associa-
tion state of the protein is changing with temperature
and/or protein concentration. A more likely explana-
tion, however, is that the protein is undergoing signif-
icant aggregation. This often produces the spectral
artifact known as “absorption flattening” in which
particles “shadow” one another producing a loss in
intensity and red shift in the spectrum.

21–12 It has been found in a number of cases that the fluo-
rescence of tryptophan in single-Trp–containing pro-
teins is quenched by a neighboring residue (most often
one containing a positive charge such as His, Arg, or
Lys). This permits its weaker fluorescence from Tyr
residues, which is normally hidden by the strong fluo-
rescence of Trp, to be seen. When excitation is moved
to 300 nm, the loss of Tyr fluorescence now permits
the weak Trp fluorescence to be seen. When the pro-
tein is unfolded, the indole side chain of Trp is moved
away from the quenching side chain allowing stronger
Trp fluorescence to be produced.

21–13 One needs to isolate each peak and determine its
covalent structure (amino acid sequence). Isolation
is probably best done by ion-exchange chromatogra-
phy since the differences among the different species
is presumably one of change. Preparative isoelectric
focusing could also be used. Peptide mapping could
then be used to determine the differences among the
isolated proteins. Since only one or a few peptides
are expected to be altered, the sequencing necessary
should be quite limited. The most common source of
such chemical changes is deamidation although dif-
ferential sialyation is also sometimes observed. The
presence of sialylation can also be established by the
use of the enzyme neuraminidase while changes in
deamidated species are seen by induction of further
deamidation through the use of high temperature and
increased pH.

21–14 The idea is to create multifunctionality within a single
macromolecule. This is best illustrated with a couple
of examples. Recently, a number of proteins have been
fused to human serum albumin (HSA). Because the
serum half-life of HSA is so long, this will extend
the life of any fused partner and potentially extend
its period of action. A variety of different proteins
and peptides have been used to extend protein half-
lives. Can you name some others? Another example
is the fusion of a portion or entire antibody to a sec-
ond protein. The binding specificity of the antibody-
combining site can be used to either target the fusion
partner to a particular site in the body defined by
the Igs specificity or to add a second function. New
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applications of this type are arising with some fre-
quency.

21–15 The critical fact is that A/U pairs have two hydrogen
bonds whereas G/C have three. We can then make the
following simple calculation:

# Hydrogen Bonds

6 A/U, 2 G/C 12 + 6 = 18

7 G/C, 1 A/U 21 + 2 = 23

3 A/U, 3 G/C 6 + 9 = 15

2 G/C, 2 A/U 6 + 4 = 10

Thus, based on the hypothesis that the number of
H-bonds is roughly proportional to the Tms,

Tm Region

2 G/C 2 A/U 45◦C A

3 A/U 3 G/C 53◦C B

6 A/U 2 G/C 72◦C D

7 G/C 1 A/U 82◦C C

This is not a bad approximation but differences
in the interactions between the bases and sequence
individualities require the use of more complex algo-
rithms, which work quite well to estimate the Tms of
oligonucleotides.
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21–1 Select a recombinant protein that is a currently mar-
keted drug. A later edition of the Physicians Desk
Reference (PDR) should be helpful in this regard.
(a) Describe the mechanism of action of the protein

and the rationale behind its use.
(b) Describe the composition of the formulation of

this protein based on the information provided
in the PDR. Provide hypotheses about why each
component might be present in the formulation.

21–2 Disulfide bonds have been reported to both increase
and decrease the stability of proteins. Explain how
such different effects might be induced by this com-
mon form of inter- and intrachain cross-link.

21–3 What are molten-globule (MG) states and why are
they important? Explain how near and far ultravi-
olet circular dichroism (CD), infrared and Raman
spectroscopy, intrinsic fluorescence, ANS (8-amilino
naphthalene sulfonic acid) fluorescence, and dynamic
light scattering (DLS) can be used to establish the
existence of such states.

21–4 Why does drying of macromolecules such as proteins
and DNA often greatly improve their stability?

21–5 What is a virus-like particle (VLP)? Why have VLPs
proven to be such effective vaccines compared with
monomeric recombinant proteins?

21–6 Explain how DNA vaccines work.

21–7 In nonviral gene delivery, a cationic polymer is often
added to the DNA plasmid. What is the purpose of
such positively charged polymers?

21–8 Perhaps surprisingly, even a single amino acid change
in a large protein can have a dramatic effect on its
solubility. Why?

21–9 Describe the procedure known as “peptide mapping”
and how it can be used to characterize the chemical
degradation of proteins. If after treating with a pro-
tease such as trypsin, the coverage of the amino acid

sequence is less than 100%, what might you do to
improve the coverage?

21–10 It is often said that biopharmaceuticals such as recom-
binant proteins are defined by the process used to
produce them. Explain this statement. How does
this idea impact the controversy over the production
of “follow-on” or “biosimilar” protein pharmaceuti-
cals?

21–11 A protein displays the typical characteristics of the
circular dichroism (CD) of an alpha-helical rich pro-
tein with a negative ellipticity double minimum at 208
and 222 nm. When the protein is heated or its con-
centration is increased (with the spectrum normalized
for concentration), the spectrum is reduced in inten-
sity and shifts to higher wavelength. What might be
happening?

21–12 Somewhat surprisingly, when some single-try-
ptophan–containing proteins are excited at 280 nm,
they fail to show typical tryptophan-containing flu-
orescence (i.e., a broad emission peak between 320
and 355 nm). Instead, they display what appears to be
tyrosine fluorescence near 303 nm. When the exci-
tation wavelength is raised to 300 nm, however, or
the protein is unfolded by high concentrations of a
reagent such as urea or guanidine hydrochloride, typ-
ical tryptophan fluorescence is now seen. What might
be occurring?

21–13 Upon isoelectric focusing, monoclonal antibodies
(immunoglobulins) typically display a series of
closely spaced bands. How might you determine the
origin of this heterogeneity? What is the origin?

21–14 A recent new approach to the development of protein-
based pharmaceuticals and vaccines is based on the
creation of “fusion” proteins in which two different
proteins or protein domains (fragments) are joined
together at the DNA level to create new proteins. Why
would one want to create such fusion proteins? Give
some actual examples of such proteins which you
either find in the scientific literature or are your own
idea.

21–15 When subjected to differential scanning calorime-
try, an RNA molecule is found to produce four

1
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distinct transitions which we will designate A, B,
C, and D with Tm (melting temperature) values of
45, 53, 72, and 82◦C, respectively. Theoretical cal-
culations reveal four hydrogen-bonded base-paired
regions with the following compositions: 6 A/U,

2 G/C; 7G/C, 1 A/U; 3 A/U, 3 G/C; and 2 GC/2 AU.
Assume that the differences in stability (Tms) are due
entirely to the difference in hydrogen binding in the
different regions. Assign the four different composi-
tions to the regions associated with each Tm.
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CHAPTER 22: ORAL SOLID DOSAGE FORMS

22–1 From equation (22–6):

(1)

Log(S) = −log(P) – 0.01 × (MP) + 1.05.
Log(S) = −1.6 – 0.01 × (153) + 1.05
Log(S) = −2.08

S = 10−2.08 mole/L
S = 8.32 × 10−3 mole/L
S = 8.32 × 10−3 mole/L × 230.8 g/mole

= 1.9 g/L = 1.9 mg/mL

The measured solubility is reported to be approx-
imately 4 mg/mL.

22–2 From equation (22–5):

(2)

Flux = Pm × Cd

Flux = (8 × 10−4 cm/sec) × (4 mg/mL)
= 3.2 × 10−3 mg/cm2/sec

Assuming 50 cm2 of absorptive surface area, the
rate of absorption is as follows:

(3)

Rate of absorption = (3.2 × 10−3 mg/cm2/sec) × (50 cm2)
= 0.16 mg/sec = 9.6 mg/min

Amount of drug absorbed through 50-cm2 intesti-
nal area in 30 min:

(4)

Amount absorbed in 30 min = (9.6 mg/min)
× 30 min = 288 mg

A typical dose of naproxen is 250 to 500 mg, so
absorption is expected to be rapid.

22–3 From equation (22–10), solving for ro

(5)

ro =
√

2 · (7 × 10−6 cm2/sec) · (6 × 10−6 g/mL) · (30 min) × (60 sec/min)

1.5 g/cm3

ro = 3.2 μm

22–4 ST = (0.010 mg/mL) · (1 + 10(2−4.5)) = 0.01
mg

mL

ST = (0.010 mg/mL) · (1 + 10(4−4.5)) = 0.013
mg

mL

ST = (0.010 mg/mL) · (1 + 10(4.5−4.5)) = 0.02
mg

mL

ST = (0.010 mg/mL) · (1 + 10(6−4.5)) = 0.326
mg

mL

ST = (0.010 mg/mL) · (1 + 10(8−4.5)) = 31.6
mg

mL

(6)

Note that the total solubility is equal to twice the
intrinsic solubility when the pH = pKa because 50%
of the drug is ionized at that pH. Also note the rapid
increase in solubility as the pH exceeds the pKa for
an acid.

22–5 From Figure 22–6, a 1-mg dose would require a par-
ticle diameter of approximately 150 μm or less to
consistently achieve acceptable content uniformity,
so an active ingredient with a particle diameter of
200 μm would not be adequate to achieve the nec-
essary content uniformity. From Figure 22–6, several
options exist that would require particle size reduc-
tion to achieve the desired content uniformity. Among
the options include the following: (a) a mean particle
diameter of approximately 70 μm with a relatively
narrow particle size distribution (geometric standard
deviation, σ g, of 2.0), (b) a mean particle diameter
of approximately 25 μm with a relatively moderately
broad particle size distribution (geometric standard
deviation, σ g, of 3.0), or (c) a mean particle diame-
ter of approximately 8 μm with a very broad particle
size distribution (geometric standard deviation, σ g, of
4.0).

22–6 Plotting the log of the drug remaining as a function
of time shows a linear relationship consistent with
first-order decomposition.
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The half-life for decomposition can be estimated
by calculating the slope between two points. For
example,

Slope = ln(0.125) − ln(0.76)

300 − 50
= −0.0072 day−1

(7)

A more accurate value for the slope can be obtained
by regression analysis.

The half-life, t1/2, can be calculated as follows:

t1/2 = ln(0.5)

Slope
= −0.693

−0.0072
= 96 days

t90% = ln(0.9)

Slope
= −0.105

−0.0072
= 14.6 days (8)

This stability profile at elevated temperature of
50◦C would not likely be sufficient for a marketed
product. However, it could potentially be used in early
clinical studies if the product was stored properly such
as under refrigerated conditions. However, further sta-
bility testing to assess stability at room temperature
(25◦C) or refrigerated conditions would be necessary
before it could be used in clinical studies. Charac-
terization of degradation products (see Table 22–19)
would also be necessary if they were present in sig-
nificant quantities.

22–7 Calculate the volume for each tablet (volume = π ×
(radius)2 × thickness), the tablet density (tablet den-
sity = weight/volume), and the tablet relative density,
D (using equation 22–23).

Tablet Tablet Tablet Compression Tablet ρs Tablet D Tablet
Thickness Radius Weight Pressure Volume Density Relative

(cm) (cm) (g) (MPa) (cm3) (g/cm3) Density

0.350 0.500 0.205 10 0.275 0.746 0.48

0.306 0.500 0.203 17 0.240 0.845 0.54

0.253 0.500 0.199 32 0.199 1.001 0.64

0.230 0.500 0.202 50 0.181 1.118 0.72

0.202 0.500 0.201 78 0.159 1.267 0.81

0.192 0.500 0.202 110 0.151 1.340 0.86

0.181 0.500 0.202 152 0.142 1.421 0.91

22–8 Calculate the volume for each tablet, the tablet den-
sity, and the tablet relative density. Calculate 1/(1-D)
and plot this value for each compression pressure on
a logarithmic scale (natural log).

Tablet Properties

Tablet Tablet Tablet Compression Tablet ρs Tablet D Tablet
Thickness Radius Weight Pressure Volume Density Relative

(cm) (cm) (g) (MPa) (cm3) (g/cm3) Density 1/(1-D)

0.350 0.500 0.205 10 0.275 0.746 0.478 1.92

0.306 0.500 0.203 17 0.240 0.845 0.541 2.18

0.253 0.500 0.199 32 0.199 1.001 0.642 2.79

0.230 0.500 0.202 50 0.181 1.118 0.717 3.53

0.202 0.500 0.201 78 0.159 1.267 0.812 5.32

0.192 0.500 0.202 110 0.151 1.340 0.859 7.08

0.181 0.500 0.202 152 0.142 1.421 0.911 11.22

Plot ln(1/(1-D)) versus compression pressure to
obtain a Heckel plot.

The last five data points appear to be linear as plot-
ted in the Heckel plot. The slope of this linear region
of the plot can be calculated using linear regression.

D Tablet Compression
Relative Pressure
Density (MPa) 1/(1-D) ln(1/(1-D))

0.48 10 1.92 0.650

0.54 17 2.18 0.780

0.64 32 2.79 1.027

0.72 50 3.53 1.262

0.81 78 5.23 1.672

0.86 110 7.08 1.957

0.91 152 11.22 2.418

The slope of the last five data values (ln(1/(1-D)
versus compression pressure) is:

Slope = 0.0115. (9)
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22–1 Use the Yalkowsky–Valvani equation (22–6) to esti-
mate the aqueous solubility of naproxen in mg/mL.
The melting point of naproxen = 153◦C, the logP =
1.6, and the molecular weight = 230.8 g/mole.

22–2 Calculate the flux of naproxen and the rate of absorp-
tion (in mg/min) possible through approximately
50 cm2 of intestinal surface area of the intestinal tract.
Naproxen solubility is approximately 4 mg/mL and
the intestinal permeability, Pm, is approximately 8 ×
10−4 cm/sec. Estimate the amount of drug absorbed
in 30 min.

22–3 Estimate the particle radius, assuming spherical
geometry, necessary to achieve complete dissolution
of celecoxib in 30 min. Celecoxib aqueous solubility
is approximately 0.006 mg/mL and the aqueous diffu-
sion coefficient is estimated to be 7 × 10−6 cm2/sec at
37◦C with a true density of approximately 1.5 g/cm3.

22–4 Calculate the total solubility of a saturated solution of
an experimental drug, a weak acid, at pH = 2, 4, 4.5,
6, and 8 with an intrinsic solubility = 0.010 mg/mL
and pKa = 4.5.

22–5 Content uniformity is a critical product attribute. A
new active pharmaceutical is being considered for
development and it will be necessary to manufacture a
tablet formulation that contains 1 mg of active ingre-
dient. The active ingredient’s mean particle diameter
produced for development is 200 μm. Can a tablet
dosage form be reliably manufactured to consistently
contain a 1-mg dose? If not, what particle size and
size distribution is needed to assure successful man-
ufacture?

22–6 The concentration of drug in a tablet formulation was
determined by HPLC as a function of time at elevated

temperature (50◦C) as shown in the following table.
Determine whether decomposition is zero order or
first order and calculate the half-life, t1/2 and t90%.
Does this formulation exhibit sufficient stability to be
used in early clinical studies?

Time, Days Drug, mg

0 1.0

50 0.76

100 0.50

150 0.38

200 0.25

300 0.125

22–7 An experimental formulation has been successfully
compressed into round flat-faced tablets with the
properties given in the following table. Calculate the
tablet density (in g/cm3) and the tablet relative den-
sity. The formulation has a true density of 1.56 g/cm3.

Tablet Tablet Tablet Compression
Thickness Radius Weight Pressure

(cm) (cm) (g) (MPa)

0.350 0.500 0.205 10

0.306 0.500 0.203 17

0.253 0.500 0.199 32

0.230 0.500 0.202 50

0.202 0.500 0.201 78

0.192 0.500 0.202 110

0.181 0.500 0.202 152

22–8 Utilize the data in Question 22–7 to produce a Heckel
plot. Calculate the slope of the terminal linear portion
of the Heckel plot.

1
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A N S W E R S T O P R A C T I C E P R O B L E M S
F O R S T U D E N T U S E

CHAPTER 23: DRUG DELIVERY AND TARGETING

23–1 (d)

23–2 (c)

23–3 (e)

23–4 (b)

23–5 (c)

23–6 (b)

23–7 (b)

23–8 (e)

23–9 (c)

23–10 (c)

23–11 (a)

23–12 (c)

23–13 (a)

23–14 (b)

23–15 (a)

23–16 (d)

23–17 (e)

23–18 (b)

23–19 (a)

23–20 (c)

23–21 (a) 2.058 × 10−5 cm3; (b) 23.67 μg; (c) 5.33 μg/

0.5 mL or 10.66 μg/mL.

23–22 The molecular weight of this polylactide is 16,845
daltons = 16,845 g/mole ∼= 17,000 g/mole.

23–23 20 atm.

23–24 B40 = 3.61 μg.

23–25 (a) Vm = 3.32 × 10−4 M hr−1; (b) km = 4.75 ×
10−4, M; (c) km = 4.74 × 10−4, M; (d) 1/V = 6359.5
M −1 hr; V = 1.57 × 10−4 molar concentration per
hour (mole/liter/hr).

23–26 0.931 mg.

23–27 Partial Answer: (a) At pH 4.67, P = 4.885 × 10−6

cm/sec; J = 1.80 × 10−10 mole/(cm2 sec); (b) At
t = 30 min, MB = 2.15 × 10−7 mole; MBH+ = 1.98
× 10−7 mole; (c) tL = 13 min.

23–28 Partial Answer: (a) J (without enhancer) =
0.0305 μg/(cm2 hr); (b) J (after treatment with
enhancer) = 0.739 μg/(cm2 hr).

23–29 C = 32.3 mg/mL.
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P R A C T I C E P R O B L E M S F O R
S T U D E N T U S E

CHAPTER 23: DRUG DELIVERY AND TARGETING

23–1 Which of the following dosage forms are used for oral
administration?
(a) Liquids.
(b) Dispersed systems.
(c) Solids.
(d) All of the above.

23–2 After oral drug delivery, drugs are absorbed in the
gastrointestinal tract and through the portal circula-
tion enter liver, where they are destroyed by so-called:
(a) Second-pass metabolism.
(b) Drug efflux pumps.
(c) First-pass metabolism.
(d) Drug deconjugation.
(e) None of the above.

23–3 Injections are performed:
(a) Into a vein.
(b) Into a muscle.
(c) Into the skin.
(d) Under the skin.
(e) All of the above.

23–4 What does the term “buccal delivery” mean?
(a) Systemic delivery of drugs through the mucosal

membranes lining the floor of the mouth.
(b) Drug administration through the mucosal mem-

branes lining the cheeks.
(c) Drug delivery into the nasal cavity.
(d) Suppression of buccal activity of the gastrointesti-

nal tract during oral delivery.
(e) None of the above.

23–5 Specify which onset of reaction, drug delivery period
requirement, and dosing regimen the sublingual route
of drug delivery can provide:
(a) A slow onset of action, long delivery period, infre-

quent dosing regimen.
(b) A rapid onset of action, long delivery period

requirement, frequent dosing regimen.
(c) A rapid onset of action, short delivery period

requirement, infrequent dosing regimen.
(d) An intermediate onset of action, long delivery

period requirement, frequent dosing regimen.

23–6 Any pulmonary approach to quickly deliver drugs
systemically must target:

(a) Conducting airways.
(b) The deep lung.
(c) Oral pharynx.
(d) All of the above.
(e) None of the above.

23–7 Imagine that you are developing aerosol drug formu-
lation to the delivery of drugs into conducting air-
ways. Which particle size you will choose?
(a) >10 μm.
(b) 5 to 10 μm.
(c) <2 μm.
(d) All of the above.
(e) None of the above.

23–8 The advantages of nasal drug delivery include:
(a) Avoidance of hepatic first-pass elimination and

destruction in the gastrointestinal tract.
(b) The rate and extent of absorption and the plasma

concentration versus time profiles are relatively
comparable with those obtained by intravenous
medication.

(c) The existence of a rich vasculature and a highly
permeable structure in the nasal mucosa for sys-
temic absorption.

(d) The ease and convenience of intranasal drug
administration.

(e) All of the above.

23–9 The solution instilled as eye drops into the ocular
cavity may disappear from the precorneal area of the
eye by which of the following route(s)?
(a) Nasolacrimal drainage.
(b) Tear turnover.
(c) Corneal absorption.
(d) Conjunctival uptake.

23–10 The rate-limiting barrier to drug permeation through
the skin lies in which of the following layers?
(a) The dermis.
(b) The granular cell layer.
(c) The stratum corneum.
(d) The hypodermis.
(e) The appendageal pathway.

23–11 Suppositories are solid dosage forms intended for
insertion into body orifices and are used for:
(a) Rectal and vaginal drug delivery.
(b) Oral drug delivery.
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(c) Nasal drug delivery.
(d) All of the above.

23–12 The cells lining the blood vessels in the brain:
(a) Are very leaky, allowing many molecules to cross

through to brain tissues.
(b) Form the tight construction of the vessels prevent-

ing blood gases from entering the brain.
(c) Are a lot closer than anywhere else in the body.
(d) All of the above.
(e) None of the above.

23–13 Which of the following statements is FALSE?
(a) Electrically charged molecules penetrate the

blood–brain barrier faster than uncharged
molecules.

(b) Large molecules do not penetrate through the
blood–brain barrier easily.

(c) Low lipid-soluble molecules do not penetrate into
the brain.

(d) All of the above statements are TRUE.
(e) All of the above statements are FALSE.

23–14 Increasing the passive entry of “restricted” drugs into
the central nervous system can be achieved:
(a) By modifying the structure of “restricted” drugs

to temporarily or permanently increase their water
solubility.

(b) By modifying the structure of “restricted” drugs
to temporarily or permanently increase their lipid
solubility.

(c) By modifying the structure of “restricted” drugs to
temporarily or permanently increase their electric
charge.

(d) All of the above.
(e) None of the above.

23–15 Which of the following drugs are the most susceptible
for the transcellular route of drug delivery?
(a) Lipophilic drugs.
(b) Lipophobic drugs.
(c) Hydrophilic drugs.
(d) Water solutions of drugs.
(e) All of the above.

23–16 Select the substances that are NOT transported to the
brain through the transcellular route:
(a) Gases.
(b) Water.
(c) Lipophilic compounds.
(d) Hydrophilic compounds.
(e) All of the above.

23–17 Repair, Inc. is assembling a portfolio of locally tar-
geted, sustained-release delivery technologies and

angiogenic factors based on proprietary fibrin deliv-
ery technology. This technology:
(a) Provides a primary scaffold that induces angio-

genesis.
(b) Orchestrates the repair process by anchoring cells

to damaged tissue.
(c) Stabilizes and protects multiple growth factors.
(d) Functions as a slow release reservoir.
(e) All of the above.

23–18 The key to target selectivity in nucleic acid therapeu-
tics is attributed to following:
(a) Phosphate backbone.
(b) Specific base pairing.
(c) Sugar.
(d) All of the above.

23–19 Choose the most appropriate definition for prodrugs.
(a) Pharmacologically inert drug derivatives con-

verted to active form in vivo, enzymatically or
nonenzymatically.

(b) Ionic complex of drug with charged molecules
that break apart in the body.

(c) Covalent conjugate of drug, which is active by
itself.

(d) Both (a) and (c).

23–20 Liposomes could be best described as following:
(a) Polymer vesicles.
(b) Surfactant aggregates with hydrophilic polar head

group and hydrophobic tail.
(c) Vesicular structures based on one or more lipid

layers surrounding the aqueous core.
(d) All of the above.

23–21 (a) The mean diameter of an ethylcellulose micro-
sphere containing indomethacin was found by
Benita et al.,1 using a projection microscope to
be 340 μm (340 × 10−4 cm). What is the volume
of the microsphere, assuming that it is roughly
spherical?

(b) The density of the microsphere is 1.15 g/cm3; cal-
culate its mass in micrograms.

(c) The amount of indomethacin in the microsphere
is 22.5% by weight. What is the total amount of
the drug that can be released in 0.5 mL of buffer
solution from the microsphere?

23–22 The polymer polylactide was used as a biodegrad-
able controlled-release microcapsule for delivery of
the narcotic antagonist cyclazocine. The molecular
weight of polylactide in g/mole (daltons) can be deter-
mined using the Mark–Houwink equation:

[η] = KMa (1)
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where [η] is the intrinsic viscosity, 17.50 dL/g at 25◦C,
and the values of K and a for this class of polymers
have been reported to be K = 1.69 × 10−3 dL/g and
a = 0.950, respectively.

What is the molecular weight of the polylactide
used to prepare the microcapsule? (Note: 1 dL =
0.1 liter = 100 mL.)

23–23 The approximate osmotic pressure, π , produced by a
saturated phenobarbital sodium solution in an osmotic
pump–like device is given by the equation:

π = v
Cs

M
RT (2)

where v is the number of particles into which a
molecule of phenobarbital sodium ionizes, namely,
about 2. The saturation concentration (solubility) of
phenobarbital at ordinary temperatures is Cs = 100 g/
liter. The molecular weight of the drug, M, is 254.2 g/
mole, R is 0.082 liter atm mole−1 deg−1, and T is
310 K for body temperature on the kelvin scale.

Calculate the osmotic pressure produced by the
drug (exclusive of any added osmotic agent mixed
with the drug) using the equation just given.

23–24* An aerosol was administered to an isolated perfused
rat lung preparation. Compute the particle trans-
fer, B, at t = 40 min. The transferable amount is
A = 7.8 μg, the respiratory frequency is RF = 14
min−1, the dose number is n = 280, and the rate con-
stant is k = 0.07 min−1. Hint: You will need equation
(23–24) to compute B20 for t = 20 min, and use this
value in equation (23–25) to obtain the value of B40

at t = 40 min.

23–25 Nasal absorption has been considered to be facili-
tated by a carrier mechanism and therefore to fol-
low the Michaelis–Menten scheme (page 328). The
Lineweaver–Burk equation (14–68),

1

V
= 1

Vm

+ Km

Vm

1

S
(3)

can be used for nasal absorption. V is the rate or veloc-
ity of absorption of a drug substance, Vm is the max-
imum velocity of absorption when the drug is at a
high concentration and all the carrier is combined
with it, S is the concentration of the drug, and Km is
the Michaelis constant, which expresses the tendency
of the carrier–drug to decompose.

The nasal absorption of the amino acid l-tyrosine
was measured in a nasal in situ rat preparation at 37◦C

∗
Problem 23–24 was prepared by Dr. P. R. Byron, Medical College of

Virginia, Virginia Commonwealth University.

and a pH of 7.4; the data of Hussain et al. as read from
their graph are as follows:

10−3 × S−1

(concentration−1)

(M−1)∗ of l-tyrosine

0.42 0.86 1.79 3.58

10−3 × V−1 (absorption

rate−1)(M−1 hr)

3.19 4.62 5.72 8.00

∗Note that the value 0.42, for example, expressed as 10−3 ×
(concentration) is actually 0.42 × 103 = 420. And 3.580 ×
(concentration) means 3580. Likewise, for the reciprocal
concentration S−1 = 3580 in the table, V−1 is equal to 8 × 103 =
8000. That is to say, when the exponent on a unit in a table heading is
negative, as in (mole/liter), the actual component is to be read as 10−3.
When the exponent in the table heading is 10+3, the actual exponent is
read as 10−3.

(a) Using linear regression analysis, calculate Vm, the
maximum rate of nasal absorption of l-tyrosine.

(b) Also from regression analysis, calculate the
Michaelis constant, Km, and give an interpretation
of this constant as it applies in nasal absorption.
[Hint: Return to the word definition of Km on page
328 and the formula Km = (k2 + k3)/k1.]

(c) Plot the data on a rectangular coordinate graph and
carry the straight line to a point where it intersects
the horizontal axis, to the left of the vertical or
y axis. At this point, −1/Km can be read. Use
the Lineweaver–Burk expression to show that this
point on the horizontal axis provides the value
−1/Km. (Hint: Set 1/V, the value on the y axis,
equal to zero.) Finally, read the value −1/Km on
the x axis, invert it, and change the sign to obtain
Km. How does this value of Km compare with Km

obtained from the slope of the line in (b)?
(d) At a concentration S = 4.26 × 10−4 molar, such

that 1/S = 2347 M−1, what is the absorption rate
of l-tyrosine in molar concentration per hour?

23–26 The diffusion coefficient, D, of a new pilocarpine
derivative in ocular fluid is 9.2 × 10−9 cm2/sec. The
surface area, S, of an Ocusert is 0.80 cm2, the liquid–
liquid partition coefficient, K, between the fluids of
the Ocusert and the eye is 1.83, and the thickness of
the Ocusert membrane, h, is 0.01 cm. The solubil-
ity of the drug in water, Cs, is 8.0 mg/cm3. Calculate
the cumulative amount of pilocarpine released from
an Ocusert in milligrams per 24-hr day. See Example
23–10.

23–27 The transcorneal permeation of pilocarpine at several
pH values was studied at 34◦C using an in vitro rab-
bit corneal preparation. The fraction of nonionized
pilocarpine, fB, as a function of pH is given in the
following table:
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Data for Problem 23–27∗

pH 4.67 5.67 6.24 6.40

fB 0.01 0.09 0.27 0.35

*Data from A. K. Mitra and T. J. Mikkelson, J. Pharm. Sci. 77,
771.1988.

The permeability coefficient of the nonionized
form, PB, is 9.733 × 10−6 cm/sec and the permeabil-
ity coefficient of the ionized form is PBH+ = 4.836 ×
10−6 cm/sec. The concentration of pilocarpine in the
donor compartment is constant, Cd = 3.69 × 10−5

mole cm−3.
(a) Compute the total permeability coefficient, P =

PB fB + PBH+ fBH+ , and the total flux, J = JB +
JBH

+ = PCd, for pilocarpine under steady-state
conditions at the various pH values studied.

(b) Compute the amount of penetrant, M, through
the corneal membrane at 30, 60, and 150 min at
pH 6.4 for the ionized and the nonionized forms
of pilocarpine. The diffusional area is S =
0.95 cm2.

(c) Compute the lag time, tL, in minutes at pH 4.67.
The thickness of the membrane is h = 0.022 cm.
Hint: Use the equations given in Chapter 13 to
solve parts (b) and (c).

23–28 The total flux, J, of an acidic drug through the skin at
several pH values is given by the equation

[A] = PHA [HA] + PA−
[
A−]

(4)

where PHA and PA
− are the permeability coefficients

of the nonionized HA and ionized A− species, respec-
tively. The concentration of the ionized species, [A−],
can be computed from the equation[

A−] = 10(pH−pKa)

1 + 10(pH−pKa)
[T] (5)

where [T] = [A−] + [HA] is the total concentration
of ionized, A−, and nonionized, HA, species.

The pKa of indomethacin is 4.5.
(a) Calculate the total flux, J, of indomethacin at

pH 7. The total concentration, [T], of indometh-
acin at pH 7 is 916.6 μg/mL and the permeability
coefficients are PHA = 3.62 × 10−3 cm/hr and
PA− = 2.19 × 10−5 cm/hr.

(b) In a second experiment the snake skin was pre-
treated with dodecyl N, N-dimethylamino acetate,
a new enhancer. The permeability coefficients of
indomethacin were found to be PHA = 3.90 ×
10−3 cm/hr and PA− = 7.97 × 10−4 cm/hr in the
presence of the enhancer. The total concentration
of indomethacin and the pH were kept unchanged,
[T] = 916.6 μg/mL and pH = 7. [A−] is calcu-
lated using the foregoing equation, together with
the equation [HA] = [T] − [A−]. Compute the
total flux of indomethacin in the presence of the
enhancer.

(c) Using the flux values obtained in parts (a) and (b),
compute the amount of indomethacin penetrated
per unit area, Q (μg/cm2) = Jt, at t = 5 and 20 hr.
Plot Q (y axis) against time (x axis).

23–29 Compute the solubility, C, of desoxycorticosterone
in the stratum corneum using the following data
obtained from in vitro experiments with intact and
stripped mouse skin (data from Table II in reference
29). The lag times across the intact and stripped skin
are t2 = 3.90 hr and t1 = 1.20 hr, respectively, and
the permeation rates are (dQ/dt)2 = 4.73 μg/(cm2 hr)
and (dQ/dt)1 = 12.1 μg/(cm2 hr), respectively. The
thickness, h2, of the stratum corneum is 10 μm. See
Example 23–3.

Reference
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